
Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 1

Digital Design Laboratory (Advanced Program)

OBJECTIVES

➢ Getting to know how to describe finite state machine (FSM) using variety styles of VHDL

code (logic expressions/ behavioral expressions/ shift registers).

➢ Design and implement digital circuits using FSM.

➢ Download the circuit into the FPGA chip and test its functionality.

PREPARATION FOR LAB 4

➢ Finish Pre Lab 4 at home.

➢ Students have to simulate all the exercises in Pre Lab 4 at home. All results (codes,

waveform, RTL viewer, …) have to be captured and submitted to instructors prior to the lab

session.

If not, students will not participate in the lab and be considered absent this session.

REFERENCE

1. Intel FPGA training

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 2

Digital Design Laboratory (Advanced Program)

EXPERIMENT 1

Objective: Know how to implement a FSM circuit and download the cicuit into the FPGA chip.

Requirement: Implement a FSM that recognizes two specific sequences of applied input

symbols, namely four consecutive 1s or four consecutive 0s. There is an input w and an output z.

Whenever w = 1 or w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise,

z = 0. Overlapping sequences are allowed, so that if w = 1 for five consecutive clock pulses the

output z will be equal to 1 after the fourth and fifth pulses.

Figure 1 illustrates the required relationship between w and z. And the state diagram for this

FSM is shown in Figure 2.

Figure 1: Required timing for the output z.

Instruction:

Students derive an FSM circuit that implements this state diagram, including the logic

expressions that feed each of the state flip-flops. Using 9 state flip-flops called y8, …, y0 and the

one-hot state assignment given in Table 1.

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 3

Digital Design Laboratory (Advanced Program)

 Figure 2: A state diagram for the FSM Table 1: One-hot codes for the FSM

1. Create a new Quartus project for your circuit.

2. Follow FSM circuit designed in exercise - Pre-Lab 4, write a VHDL file that instantiates

the nine flip-flops in the circuit and which specifies the logic expressions that drive the

flip-flops input ports.

3. Use the toggle switch SW0 as an active-low synchronous reset input for the FSM, use

SW1 as the w input, and the pushbutton KEY0 as the clock input which is applied

manually. Use the red light LEDR9 as the output z, and assign the state flip-flop outputs

to the red lights LEDR8 to LEDR0.

4. Compile the project, and then download the resulting circuit into the FPGA chip. Test the

functionality of your design by applying the input sequences and observing the output

LEDs. Make sure that the FSM properly transitions between states as displayed on the

red LEDs, and that it produces the correct output values on LEDR9.

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 4

Digital Design Laboratory (Advanced Program)

5. It is often desirable to set all flip-flop outputs to the value 0 in the reset state. Table 2

shows a modified one-hot state assignment in which the reset state, A, uses all 0s. Create

a modified version of your VHDL code that implements this state assignment. Compile

your new circuit and test it.

Table 2: Modified one-hot codes for the FSM

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 5

Digital Design Laboratory (Advanced Program)

EXPERIMENT 2

Objective: Know how to implement a FSM circuit using VHDL behavioral expressions and

download the cicuit into the FPGA chip..

Requirement: Implement the FSM given in experiment 1, using another style of VHDL code.

Use a VHDL CASE statement in a PROCESS block, and use another PROCESS block to

instantiate the state flip-flops. You can use a third PROCESS block or simple assignment

statements to specify the output z. To implement the FSM, use four state flip-flops y3, . . .

, y0 and binary codes, as shown in Table 3.

Table 3: Binary codes for the FSM

Instruction:

1. Create a new Quartus project for your circuit.

2. Use the same switches, pushbuttons, and lights that were used in previous experiments.

3. It is necessary to explicitly tell the Synthesis tool in Quartus that you wish to have the

finite state machine implemented using the state assignment specified in your VHDL

code. If you do not explicitly give this setting to Quartus, the Synthesis tool will

automatically use a state assignment of its own choosing, and it will ignore the state

codes specified in your VHDL code. To make this setting, choose Assignments >

Settings in Quartus, and click on the Compiler Settings item on the left side of the

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 6

Digital Design Laboratory (Advanced Program)

window, then click on the Advanced Settings (Synthesis) button. As indicated in Figure

3, change the parameter State Machine Processing to the setting User-Encoded.

Figure 3: Specifying the state assignment method in Quartus.

4. Compile your project.

Examine the circuit produced by Quartus open the RTL Viewer tool. Double-click on the

box shown in the circuit that represents the finite state machine, and determine whether the

state diagram that it shows properly corresponds to the one in Figure 2.

To see the state codes used for your FSM: open the Compilation Report → Analysis

and Synthesis section → State Machines.

5. Download the circuit into the FPGA chip and test its functionality.

6. Change the setting for State Machine Processing from User_Encoded to One-Hot.

Recompile the circuit and then open the report file, select the Analysis and Synthesis

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 7

Digital Design Laboratory (Advanced Program)

section of the report, and click on State Machines. Compare the state codes shown to

those given in Table 2, and discuss any differences that you observe.

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 8

Digital Design Laboratory (Advanced Program)

EXPERIMENT 3

Objective: Know how to implement sequence detector using shift registers.

Requirement: Create VHDL code that instantiates two 4-bit shift registers; one is for

recognizing a sequence of four 0s, and the other for four 1s. Include the appropriate logic

expressions in your design to produce the output z.

Figure 4: Sequence detector using shift registers.

Instruction:

1. Create a new Quartus project for your circuit.

2. Use the same switches, pushbuttons, and lights that were used in previous experiments.

3. Compile your project. Download the circuit into the FPGA chip and test its functionality.

Observe the behavior of your shift registers and the output z.

❖ Could you use just one 4-bit shift shift register, rather than two? Explain your answer

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

Shift Register 1s

Shift Register 0s

Combinational

circuit

w z

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 9

Digital Design Laboratory (Advanced Program)

EXPERIMENT 4

Objective: Know how to implement a digital circuit using an FSM.

Requirement: The Morse code uses patterns of short and long pulses to represent a message.

Each letter is represented as a sequence of dots (a short pulse), and dashes (a long pulse). For

example, the first eight letters of the alphabet have the following representation:

 A • —

 B — • • •

 C — • — •

 D — • •

 E •

 F • • — •

 G — — •

 H • • • •

Design and implement a Morse-code encoder circuit using an FSM. The circuit take as input one

of the first eight letters of the alphabet and display the Morse code for it on LEDs.

A high-level schematic diagram of a possible circuit for the Morse-code encoder is shown in

Figure 5.

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 10

Digital Design Laboratory (Advanced Program)

Figure 5: High-level schematic diagram for the Morse-code encoder.

Instruction:

1. Filling this suggested skeleton of the VHDL code:

Library ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY part4 IS

 PORT (…. -- Define input and output ports

….);

END ENTITY part4;

ARCHITECTURE Behavior OF part4 IS

 TYPE state IS (…

);

 --present and next state

 SIGNAL y_Q, Y_D : state;

BEGIN

 --FSM State Table

 state_table: PROCESS(…)

 BEGIN

 …

 END PROCESS; -- state_table

 process(Clock, Resetn) -- state flip-flops

 begin

 …

 END PROCESS;

 --FSM outputs

 --turn on the Morse code light in the states below

 ledr <= '1' WHEN …;

ledg<=’1’ WHEN…;

…

 -- Create an enable signal that is asserted once every 1 second.

 second: …

 -- letter selection

 process (SW)

 begin

 case (SW) IS

 WHEN 000 =>

Laboratory 4:

FINITE STATE MACHINES

Department of Electronics Page | 11

Digital Design Laboratory (Advanced Program)

 morse_code <= …;

 morse_length <=…;

 WHEN …

…

 END case;

 END process;

 -- Store the Morse code to be sent in a shift register (data), and its length in a counter (size).

 PROCESS(Clock, Reset)

 BEGIN

 -- if Reset = 0 then data = size = 0; otherwise, if load = 1 then data = morse_code and size = morse_length; if

shift = 1 then data(2 DOWNTO 0) = data(3 DOWNTO 1) & data(3) = '0' and size = size – 1.

 END process;

END Behavior;

2. Create a new Quartus project for your circuit.

3. Use switches SW2 − SW0 and pushbuttons KEY1 − KEY0 as inputs. When a user

presses KEY1, the circuit should display the Morse code for a letter specified by SW2−0 ,

using a LEDR to represent dots, and LEDG to represent dashes. Each LED will be on for

1 second. Pushbutton KEY0 should function as an asynchronous reset.

4. Compile your project. Download the circuit into the FPGA chip and test its functionality.

Observe the behavior of your shift registers and the output z.

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

