
Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 1

Digital Design Laboratory (Advanced Program)

OBJECTIVES

➢ The purpose of this lab is to learn how to connect simple input (switches) and output devices

(LEDs and 7-segment) to an FPGA chip and implement a circuit that uses these devices.

➢ Examine a simple processor.

PREPARATION FOR LAB 5

➢ Finish Pre Lab 5 at home.

➢ Students have to simulate all the exercises in Pre Lab 5 at home. All results (codes, waveform,

RTL viewer, …) have to be captured and submitted to instructors prior to the lab session.

If not, students will not participate in the lab and be considered absent this session.

REFERENCE

1. Intel FPGA training

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 2

Digital Design Laboratory (Advanced Program)

EXPERIMENT 1

Objective: Design and implement a simple processor.

Requirement: Design and implement a simple processor which is shown in Figure 1.

Figure 1: A simple processor.

Instruction:

➢ The Registers block and Addsub subsystem is written in Lab 3, Multiplexer block is written

in Lab 1. Modify these subsystems to satisfy the parameters of the processor.

➢ The FSM control unit is prepared in your Pre Lab 5. Write the code for this block.

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 3

Digital Design Laboratory (Advanced Program)

➢ To describe the circuit given in Figure 1, write a top-level VHDL entity to connect all the

subsystems above. A suggested skeleton of the VHDL code is shown.

LIBRARY ieee; USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY proc IS

PORT (DIN : IN STD_LOGIC_VECTOR(8 DOWNTO 0);

Resetn, Clock, Run : IN STD_LOGIC;

Done : BUFFER STD_LOGIC;

BusWires : BUFFER STD_LOGIC_VECTOR(8 DOWNTO 0));

END proc;

ARCHITECTURE Behavior OF proc IS

… declare components

… declare signals

TYPE State_type IS (T0, T1, T2, T3);

SIGNAL Tstep_Q, Tstep_D: State_type;

…

BEGIN

statetable: PROCESS (Tstep_Q, Run, Done)

BEGIN

 CASE Tstep_Q IS

 WHEN T0 => IF(Run = ’0’) THEN Tstep_D <= T0;

 ELSE Tstep_D <= T1;

 END IF; - - data is loaded into IR in this time step

 … other states

 END CASE;

END PROCESS;

controlsignals: PROCESS (Tstep_Q, I, Xreg, Yreg)

BEGIN

… specify initial values

 CASE Tstep_Q IS

 WHEN T0 => - - store DIN in IR as long as Tstep_Q = 0

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 4

Digital Design Laboratory (Advanced Program)

 IRin <= ’1’;

 WHEN T1 => - - define signals in time step T1

 CASE I IS

 …

 END CASE;

 WHEN T2 => - - define signals in time step T2

 CASE I IS

 …

 END CASE;

 WHEN T3 => - - define signals in time step T3

 CASE I IS

 …

 END CASE;

 END CASE;

END PROCESS;

fsmflipflops: PROCESS (Clock, Resetn, Tstep_D)

BEGIN

…

END PROCESS;

reg_0: regn PORT MAP (BusWires, Rin(0), Clock, R0);

… instantiate other registers and the adder/subtractor unit

… define the bus

END Behavior;

➢ In your design, you may need to use a decoder 3 – 8. The code for it is shown.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dec3to8 IS

PORT (W : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

En : IN STD_LOGIC;

Y : OUT STD_LOGIC_VECTOR(0 TO 7));

END dec3to8;

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 5

Digital Design Laboratory (Advanced Program)

ARCHITECTURE Behavior OF dec3to8 IS

BEGIN

PROCESS (W, En)

BEGIN

IF En = ’1’ THEN

CASE W IS

WHEN "000" => Y <= "10000000";

WHEN "001" => Y <= "01000000";

WHEN "010" => Y <= "00100000";

WHEN "011" => Y <= "00010000";

WHEN "100" => Y <= "00001000";

WHEN "101" => Y <= "00000100";

WHEN "110" => Y <= "00000010";

WHEN "111" => Y <= "00000001";

END CASE;

ELSE

Y <= "00000000";

END IF;

END PROCESS;

END Behavior;

➢ Use functional simulation to verify that your code is correct. An example of the output

produced by a functional simulation for a correctly-designed circuit is given in Figure 2. It

shows the value (010)8 being loaded into IR from DIN at time 30 ns. This pattern represents

the instruction mvi R0,#D, where the value D = 5 is loaded into R0 on the clock edge at 50

ns. The simulation then shows the instruction mv R1,R0 at 90 ns, add R0,R1 at 110 ns,

and sub R0,R0 at 190 ns. Note that the simulation output shows DIN and IR in octal, and

it shows the contents of other registers in hexadecimal.

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 6

Digital Design Laboratory (Advanced Program)

Figure 2: Simulation result for the processor.

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 7

Digital Design Laboratory (Advanced Program)

EXPERIMENT 2

Objective: Design and implement a simple processor with memory.

Requirement: Extend the circuit from Experiment 1 to the circuit in Figure 3, in which a memory

module and counter are connected to the processor. The counter is used to read the contents of

successive addresses in the memory, and this data is provided to the processor as a stream of

instructions. To simplify the design and testing of this circuit we have used separate clock signals,

PClock and MClock, for the processor and memory.

Figure 3: Connecting the processor to a memory and counter.

Instruction:

➢ A diagram of the memory module that we need to create is depicted in Figure 4. The VHDL

code for this module is prepared in exercise 3, pre lab 5.

Figure 4: The 32 x 9 ROM with address register.

➢ A diagram of the counter is shown in Figure 5. Write VHDL code for the counter using the

hint from the Figure.

Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 8

Digital Design Laboratory (Advanced Program)

Figure 5: The 5 bit serial counter.

➢ Use functional simulation to verify that your code is correct.

Check: Your report has to show two results:

➢ The waveform to prove the circuit works correctly.

➢ The result of RTL viewer.

