
Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 1

Digital Design Laboratory (Advanced Program)

OBJECTIVES

➢ The purpose of this lab is to learn how to connect simple input (switches) and output devices

(LEDs and 7-segment) to an FPGA chip and implement a circuit that uses these devices.

➢ Examine a simple processor.

PREPARATION FOR LAB 5

➢ Students have to simulate all the exercises in Pre Lab 5 at home. All results (codes, waveform,

RTL viewer, …) have to be captured and submitted to instructors prior to the lab session.

If not, students will not participate in the lab and be considered absent this session.

REFERENCE

1. Intel FPGA training

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 2

Digital Design Laboratory (Advanced Program)

INTRODUCTION: A simple processor

Figure 1 shows a digital system that contains a number of nine-bit registers, a multiplexer, an

adder/subtractor unit, and a control unit (finite state machine). Data is input to this system via the

nine-bit DIN input. This data can be loaded through the nine-bit wide multiplexer into the various

registers, such as R0, R1,… , R7 and A. The multiplexer also allows data to be transferred from one

register to another. The multiplexer’s output wires are called a bus in the figure because this term

is often used for wiring that allows data to be transferred from one location in a system to another.

Figure 1: A digital system.

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 3

Digital Design Laboratory (Advanced Program)

Addition or subtraction of signed numbers is performed by using the multiplexer to first place

one nine-bit number onto the bus wires and loading this number into register A. Once this is done,

a second nine-bit number is placed onto the bus, the adder/subtractor unit performs the required

operation, and the result is loaded into register G. The data in G can then be transferred to one of

the other registers as required.

The system can perform different operations in each clock cycle, as governed by the control

unit. This unit determines when particular data is placed onto the bus wires and it controls which

of the registers is to be loaded with this data. For example, if the control unit asserts the signals

R0out and Ain, then the multiplexer will place the contents of register R0 onto the bus and this data

will be loaded on the next active clock edge into register A.

A system like the one in Figure 1 is often called a processor. It executes operations specified

in the form of instructions. Table 1 lists the instructions that the processor has to support for this

exercise. The left column shows the name of an instruction and its operands. The meaning of the

syntax Rx  [Ry] is that the contents of register Ry are loaded into register Rx. The mv (move)

instruction allows data to be copied from one register to another. For the mvi (move immediate)

instruction the expression Rx  D indicates that the nine-bit constant D is loaded into register Rx.

Table 1: Instructions performed in the processor.

Each instruction can be encoded using the nine-bit format IIIXXXYYY called machine code,

where III specifies the instruction (opcode), XXX gives the Rx register, and YYY gives the Ry

register. Although only two bits are needed to encode our four instructions, we are using three bits

because other instructions will be added to the processor in later parts of the exercise. Assume that

III = 000 for the mv instruction, 001 for movi, 010 for add, and 011 for sub. Instructions are

loaded from the the external input DIN, and stored into the IR register, using the connection

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 4

Digital Design Laboratory (Advanced Program)

indicated in Figure 1. For the mvi instruction the YYY field has no meaning, and the immediate

data #D has to be supplied on the DIN input in the clock cycle after the mvi instruction word is

stored into IR.

Some instructions, such as an addition or subtraction, take more than one clock cycle to

complete, because multiple transfers have to be performed across the bus. The finite state machine

in the control unit “steps through” such instructions, asserting the control signals needed in

successive clock cycles until the instruction has completed. The processor starts executing the

instruction on the DIN input when the Run signal is asserted and the processor asserts the Done

output when the instruction is finished. Table 2 indicates the control signals that can be asserted in

each time step to implement the instructions in Table 1. Note that the only control signal asserted

in time step 0 is IRin, so this time step is not shown in the table.

Table 2: Control signals asserted in each instruction/time step.

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 5

Digital Design Laboratory (Advanced Program)

EXERCISE 1:

Objective: Known how to convert instructions to machine codes.

Requirement: Use the information in the introduction, convert these instructions to machine codes.

mv R1,R4

mv R3,R2

mvi R2,#5

mvi R4,#-6

add R3,R7

add R2,R0

sub R5,R6

Check: Your report has to show two results:

➢ Describe the instructions.

➢ The machine code results.

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 6

Digital Design Laboratory (Advanced Program)

EXERCISE 2

Objective: Understand the control unit of the processor.

Requirement: Use the information in the introduction, sketch the FSM of the control unit.

Check: Your report has to show two results:

➢ FSM diagram.

➢ Control signals of each state.

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 7

Digital Design Laboratory (Advanced Program)

EXERCISE 3

Objective: Understand the memory block (ROM) organization.

Requirement: A diagram of the random access memory (ROM) module that we will implement is

shown in Figure 2a. It contains 32 four-bit words (rows), which are accessed using a nine-bit

address port, a four-bit data port.

(a) ROM organization (b) ROM implementation

Figure 2: A 32 x 9 ROM module.

Instruction: The VHDL code for ROM (nine-bit address port, a four-bit data port) is shown:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity myROM is

 generic(

 addr_width : integer := 32; -- store 32 elements

 addr_bits : integer := 5; -- required bits to store 32 elements

 data_width : integer := 9 -- each element has 9-bits

);

port(

 addr : in std_logic_vector(addr_bits-1 downto 0);

 data : out std_logic_vector(data_width-1 downto 0)

);

end myROM;

architecture arch of myROM is

 type rom_type is array (0 to addr_width-1) of std_logic_vector(data_width-1 downto 0);

 signal user_ROM : rom_type;

 -- note that 'ram_init_file' is not the user-defined-name (it is attribute name)

 attribute ram_init_file : string;

 -- "rom_data.mif" is the relative address with respect to project directory

 -- suppose ".mif" file is saved in folder "ROM", then use "ROM/rom_data.mif"

 attribute ram_init_file of user_ROM : signal is "rom_data.mif";

begin

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 8

Digital Design Laboratory (Advanced Program)

 data <= user_ROM (to_integer(unsigned(addr)));

end arch;

After constructing ROM, data inside is empty. We can define data in ROM by using

“my_ROM.mif” file. This file is only used with Quartus tool (see comments for details). An

example of ‘.mif’ file is shown below. In ‘.mif’ file, the comments are written between two ‘% %’

signs (both single line and multiline). Further, we need to define certain parameters i.e. data and

address types (see comments for details). Lastly, in file, we set the values at all the addresses as

‘0’ and then values are assigned at each address. This can be useful, when we want to store data at

fewer locations. (Remember that in this file mif example, ROM is 16x7).

% rom_data.mif %

% ROM data for seven segment display %

% data width and total data %

width=7; % number of bits in each data %

depth=16; % total number of data (i.e. total address) %

%

 format of data and address stored in this file

 uns : unsigned, dec : decimal, hex : hexadecimal

 bin : binary, oct : octal

%

address_radix=uns; % address is unsigned-type %

data_radix=bin; % data is binary-type %

% ROM data %

content begin

 [0..15] : 0000000; % optional : assign 0 to all address %

 0 : 1000000; % format => signed : binary %

 1 : 1111001;

 2 : 0100100;

 3 : 0110000;

 4 : 0011001;

 5 : 0010010;

 6 : 0000010;

 7 : 1111000;

 8 : 0000000;

 9 : 0010000;

 10 : 0001000;

 11 : 0000011;

 12 : 1000110;

 13 : 0100001;

 14 : 0000110;

 15 : 0001110;

end;

Pre Laboratory 5:

A SIMPLE PROCESSOR

Department of Electronics Page | 9

Digital Design Laboratory (Advanced Program)

VHDL top module for ROM is:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity top_module_ROM is

port(

 SW : in std_logic_vector(4 downto 0);

 LEDR : out std_logic_vector(8 downto 0)

);

end top_module_ROM;

architecture arch of top_module_ROM is

 -- signal to store received data

 signal temp_data : std_logic_vector (8 downto 0);

begin

 user_ROM: entity work.myROM port map (addr=>SW, data=>temp_data);

 LEDR <= temp_data; -- display on LEDs

end arch;

Check: Modify the code above to construct the circuit in Figure 2b. Data in ROM is defined by

the machine code in exercise 1.

