Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ADD: Hysplit reader in io module #791

Merged
merged 5 commits into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion act/io/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

__getattr__, __dir__, __all__ = lazy.attach(
__name__,
submodules=['arm', 'text', 'icartt', 'mpl', 'neon', 'noaagml', 'noaapsl', 'pysp2'],
submodules=['arm', 'text', 'icartt', 'mpl', 'neon', 'noaagml', 'noaapsl', 'pysp2', 'hysplit'],
submod_attrs={
'arm': [
'WriteDataset',
Expand Down Expand Up @@ -39,5 +39,6 @@
],
'pysp2': ['read_hk_file', 'read_sp2', 'read_sp2_dat'],
'sodar': ['read_mfas_sodar'],
'hysplit': ['read_hysplit']
},
)
105 changes: 105 additions & 0 deletions act/io/hysplit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
import os
import xarray as xr
import numpy as np
import pandas as pd

from datetime import datetime
from .text import read_csv


def read_hysplit(filename, base_year=2000):
"""
Reads an input HYSPLIT trajectory for plotting in ACT.

Parameters
----------
filename: str
The input file name.
base_year: int
The first year of the century in which the data are contained.

Returns
-------
ds: xarray Dataset
The ACT dataset containing the HYSPLIT trajectories
"""

ds = xr.Dataset({})
num_lines = 0
with open(filename, 'r') as filebuf:
num_grids = int(filebuf.readline().split()[0])
num_lines += 1
grid_times = []
grid_names = []
forecast_hours = np.zeros(num_grids)
for i in range(num_grids):
data = filebuf.readline().split()
num_lines += 1
grid_names.append(data[0])
grid_times.append(
datetime(year=int(data[1]), month=int(data[2]), day=int(data[3]), hour=int(data[4])))
forecast_hours[i] = int(data[5])
ds["grid_forecast_hour"] = xr.DataArray(forecast_hours, dims=["num_grids"])
ds["grid_forecast_hour"].attrs["standard_name"] = "Grid forecast hour"
ds["grid_forecast_hour"].attrs["units"] = "Hour [UTC]"
ds["grid_times"] = xr.DataArray(np.array(grid_times), dims=["num_grids"])
data_line = filebuf.readline().split()
num_lines += 1
ds.attrs["trajectory_direction"] = data_line[1]
ds.attrs["vertical_motion_calculation_method"] = data_line[2]
num_traj = int(data_line[0])
traj_times = []
start_lats = np.zeros(num_traj)
start_lons = np.zeros(num_traj)
start_alt = np.zeros(num_traj)
for i in range(num_traj):
data = filebuf.readline().split()
num_lines += 1
traj_times.append(
datetime(year=(base_year + int(data[0])), month=int(data[1]),
day=int(data[2]), hour=int(data[3])))
start_lats[i] = float(data[4])
start_lons[i] = float(data[5])
start_alt[i] = float(data[6])

ds["start_latitude"] = xr.DataArray(start_lats, dims=["num_trajectories"])
ds["start_latitude"].attrs["long_name"] = "Trajectory start latitude"
ds["start_latitude"].attrs["units"] = "degree"
ds["start_longitude"] = xr.DataArray(start_lats, dims=["num_trajectories"])
ds["start_longitude"].attrs["long_name"] = "Trajectory start longitude"
ds["start_longitude"].attrs["units"] = "degree"
ds["start_altitude"] = xr.DataArray(start_alt, dims=["num_trajectories"])
ds["start_altitude"].attrs["long_name"] = "Trajectory start altitude"
ds["start_altitude"].attrs["units"] = "degree"
data = filebuf.readline().split()
num_lines += 1
var_list = ["trajectory_number", "grid_number", "year", "month", "day",
"hour", "minute", "forecast_hour", "age", "lat", "lon", "alt"]
for variable in data[1:]:
var_list.append(variable)
input_df = pd.read_csv(
filename, sep='\s+', index_col=False, names=var_list, skiprows=12)
input_df['year'] = base_year + input_df['year']
input_df['time'] = pd.to_datetime(input_df[["year", "month", "day", "hour", "minute"]],
format='%y%m%d%H%M')
input_df = input_df.set_index("time")
del input_df["year"]
del input_df["month"]
del input_df["day"]
del input_df["hour"]
del input_df["minute"]
ds = ds.merge(input_df.to_xarray())
ds.attrs['datastream'] = 'hysplit'
ds["trajectory_number"].attrs["standard_name"] = "Trajectory number"
ds["trajectory_number"].attrs["units"] = "1"
ds["grid_number"].attrs["standard_name"] = "Grid number"
ds["grid_number"].attrs["units"] = "1"
ds["age"].attrs["standard_name"] = "Grid number"
ds["age"].attrs["units"] = "1"
ds["lat"].attrs["standard_name"] = "Latitude"
ds["lat"].attrs["units"] = "degree"
ds["lon"].attrs["standard_name"] = "Longitude"
ds["lon"].attrs["units"] = "degree"
ds["alt"].attrs["standard_name"] = "Altitude"
ds["alt"].attrs["units"] = "meter"
return ds
1 change: 1 addition & 0 deletions act/tests/sample_files.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@
EXAMPLE_OLD_QC = DATASETS.fetch('sgp30ecorE6.b1.20040705.000000.cdf')
EXAMPLE_SONDE_WILDCARD = DATASETS.fetch('sgpsondewnpnC1.b1.20190101.053200.cdf')
EXAMPLE_CEIL_WILDCARD = DATASETS.fetch('sgpceilC1.b1.20190101.000000.nc')
EXAMPLE_HYSPLIT = DATASETS.fetch('houstonaug300.0summer2010080100')

# Multiple files in a list
dlppi_multi_list = ['sgpdlppiC1.b1.20191015.120023.cdf',
Expand Down
23 changes: 23 additions & 0 deletions examples/io/plot_hysplit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
"""
Read and plot a HYSPLIT trajectory file from a HYSPlIT run.
-----------------------------------------------------------

This example shows how to read and plot a backtrajectory calculated by the NOAA
HYSPLIT model over Houston.

Author: Robert Jackson
"""

import act
import matplotlib.pyplot as plt

from act.tests import sample_files

# Load the data
filename = sample_files.EXAMPLE_HYSPLIT
zssherman marked this conversation as resolved.
Show resolved Hide resolved
ds = act.io.read_hysplit(filename)

# Use the GeographicPlotDisplay object to make the plot
disp = act.plotting.GeographicPlotDisplay(ds)
disp.geoplot('PRESSURE', cartopy_feature=['STATES', 'OCEAN', 'LAND'])
plt.show()
17 changes: 17 additions & 0 deletions tests/io/test_hysplit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import act
import matplotlib.pyplot as plt

from act.tests import sample_files


def test_read_hysplit():
filename = sample_files.EXAMPLE_HYSPLIT
ds = act.io.read_hysplit(filename)
assert 'lat' in ds.variables.keys()
assert 'lon' in ds.variables.keys()
assert 'alt' in ds.variables.keys()
assert 'PRESSURE' in ds.variables.keys()
assert ds.dims["num_grids"] == 8
assert ds.dims["num_trajectories"] == 1
assert ds.dims['time'] == 121
assert ds['age'].min() == -120
Loading