
2 VECTORIZATION

• ActivitySim’s core design makes use of vectorization

• Vectorization is the processing of an array of data at
once instead of each item one at a time

• The core Python pandas and NumPy data science
libraries wrap vectorized interfaces around low level
C/C++ numerical computing libraries

ACTIVITYSIM

• An open-source, online, activity-based
travel modeling software platform

• Led by a consortium of transportation
planning agencies

• New member agencies are welcome to join,
and all members help make decisions about
development priorities

7 FURTHER WORK FOR CONSIDERATION

• Existing code improvements
– e.g., replace costly string operations with faster categorical data

operations

• Algorithmic improvements
– e.g., pre-calculate and cache a fixed set of segmented logsums

• Machine tuning
– e.g., optimize Windows MKL settings

5 RESULTS

• With 24 processes, the current full-scale example runs
in 200 minutes (7.3x faster) on the test machine

• With setting MKL environment variable to override low-
level threading, 170 minutes (8.6x faster)

SET MKL_NUM_THREADS=1

• With MKL=1 and 26 processes, 165 minutes (9x faster)

6 RESULTS DISCUSSION

• Multiprocessing design works well, and surgery was
minimally invasive

• Good speed-up, but diminishing returns

• Linux and OSX faster than Windows

• Multiprocessing currently running slower with Python 3,
which we’ll soon fix

• More research to optimize use of the Python MKL toolkit

FIGURE 1. Example Model Components

1 ACTIVITYSIM EXAMPLE MODEL

• MTC (San Francisco Bay Area MPO) existing ABM
used in production

• Downloadable, runnable, full-scale implementation

• Used for Continuous Integration test system, results
verification, and benchmarking

• 7.5 million people, 1450 zones, 825 network skims

• Replica of CT-RAMP model design at this point

• Adding new features every few months

Parallelization of the ActivitySim Activity-Based Modeling Framework Ben Stabler
Jeff Doyle

FIGURE 2. Vectorization Components FIGURE 5. Results
in the Windows Cloud

3 PARALLELIZATION

• Single-process, the current full-scale example runs in
24 hours and 30 minutes on the test machine

• With 24 threads, the reference
model runs in 5 hours on the test machine

• The goal of parallelization is not just
speed, but also software that is:
– Difficult to break
– May use Python package advances
– Easy to use and extend

4 PARALLELIZATION QUESTIONS

• Low-level or high-level? High-level most straightforward
since the problem is embarrassingly simple to parallelize

• Process households in parallel since they are largely
independent of one another

• Create shared data structures and accumulate results
across households when necessary

• By threading within a single process or by using multiple
processes?

• Threading in Python is not easy due to the Global
Interpreter Lock (GIL), which helps make Python fast
and easy-to-use

• The multiprocessing library is the popular alternative,
which means parallel Python sub-processes with
independent memory spaces

activitysim

Intel
MKL

Matrices
Glue

Math

Models

Tables

C/C++ arrays

High-level
instructions

• Process chunks of rows of household, person, tour, or
trip pandas data tables

• Like R, operate on the entire table at once within a
single process

• The goal
– Express all calculations with pandas, NumPy vectorized

functions and avoid for loops
– Write as little raw Python as possible

Intel Xeon E5
2.6GHz 28 core

224GB RAM

Restartable
data pipeline

sliced by
household and

then person

Basically the
same code for

single or
multiprocess
(except for work

and school
location choice)

Number of processes
and chunk size

activitysim.org

FIGURE 4. Parallelization Design

• Azure Standard_E64s_v3, with 56
processes, 105 minutes, $12

• Azure Standard_M128s, with 120
processes, 84 minutes, $27

• Azure Standard_E64_v3 Linux,
with 56 processes, 71 minutes, $8

• Azure Standard_M128 Linux, with
124 processes, 51 minutes, $16

• Single process 10% sample runs
– OSX, 15 minutes
– Linux VM on Mac, 16 minutes
– Windows VM on Mac, 28 minutes
– Windows hardware, 28 minutes

COMPONENT CONTRIBUTION IN ACTION

TEST MACHINE

	Slide Number 1

