Parallelization of the ActivitySim Activity-Based Modeling Framework

An open-source, online, activity-based

travel modeling software platform

planning agencies

Led by a consortium of transportation

x

>

New member agencies are welcome to join,

and all members help make decisions about
development priorities

ACTIVITYSIM EXAMPLE MODEL

« MTC (San Francisco Bay Area MPO) existing ABM

activitysim.org

used in production

« Downloadable, runnable, full-scale implementation

« Used for Continuous Integration test system, results

verification, and benchmarking

/.5 million people, 1450 zones, 825 network skims

« Replica of CT-RAMP model design at this point

- Adding new features every few months

FIGURE 1. Example Model Components

Mandatory

Accessibilities

¥

Usual Work, K-12, Univ. Location

!

Auto Ownership

¥

Free Parking Eligibility

v

Coordinated Daily Activity Pattern

Fully Joint Indiv. Non-Mand.

At-Waork

¥

v

¥

v

!

MPO

Frequency

Frequency

Frequency

Frequency

¥

v

Composition

¥

Participation

4

k

Destination

Destination

Destination

v

v

Scheduling

Scheduling

Scheduling

Scheduling

v

4

v

Mode

v

Stop Frequency

v

Purpose

¥

Destination

v

Scheduling

Mode

v

CBD Parking

Aggregate

Household | Person

Person Daily

Tour

Trip

VECTORIZATION

* ActivitySim’s core design makes use of vectorization

* Vectorization is the processing of an array of data at
once instead of each item one at a time

* The core Python pandas and NumPy data science

libraries wrap vectorized interfaces around low level
C/C++ numerical computing libraries

FIGURE 2. Vectorization Components

COMPONENT CONTRIBUTION IN ACTION

aCtIVItYSIm Models High_level
anda ' '
p da: Tables Instructions

e NU;PYR Matrices
& python Glue
Intel C/C++ arrays
MKL Math y

* Process chunks of rows of household, person, tour, or
trip pandas data tables

* Like R, operate on the entire table at once within a
single process

* The goal
— Express all calculations with pandas, NumPy vectorized
functions and avoid for loops
— Write as little raw Python as possible

METROPOLITAN
M T TRANSPORTATION
COMMISSION

@NDAG

Oregon
Department

of Transportation

METROPOLITAN
C O U N C | L

Puget Sound Regional Council

SEMCOG

0

PARALLELIZATION

» Single-process, the current full-scale example runs in
24 hours and 30 minutes on the test machine

 With 24 threads, the reference

model runs in 5 hours on the test machine

* The goal of parallelization is not just

speed, but also software that is:
— Difficult to break

— May use Python package advances
— Easy to use and extend

Intel Xeon E5
2.60GHz 28 core
224GB RAM

PARALLELIZATION QUESTIONS

* Low-level or high-level? High-level most straightforward

since the problem is embarrassingly simple to parallelize

* Process households in parallel since they are largely

independent of one another

 Create shared data structures and accumulate results
across households when necessary

* By threading within a single process or by using multiple

processes”?

* Threading in Python is not easy due to the Global
Interpreter Lock (GIL), which helps make Python fast

and easy-to-use

* The multiprocessing library is the popular alternative,
which means parallel Python sub-processes with

independent memory spaces

FIGURE 4. Parallelization Design

models:
Restartable ### r[1p_.in::Ltiali eeeeee
initialize_ 1 se
: 2 - t bilit
data pipeline iy
- mp_hous ste
I d b - school location
s Ice y - workplace
- auto_ownership sim e
household and - .
- - simu
- mandatory tour freguency
then person - mandatory tour_ scheduling

- joint_tour“:par“tic ipation

- non_mand uency

. - non_manda _tour desti i

BﬂSlca"y the : EngmagjztoryItourTsch:izling

same code for s

- - atw ur g

SIngle or J E:E:;SP su tou; mode_choice
mUItIprocess : tPI:LE:dESEination
(except for work - frie scheculing

and school T rite data dictionary

location choice)

num processes: 24

Number of processes
and chunk size

Ben Stabler
Jeff Doyle

RS G

the science of

RESULTS

* With 24 processes, the current full-scale example runs
in 200 minutes (7.3x faster) on the test machine

» With setting MKL environment variable to override low-
level threading, 170 minutes (8.6x faster)

SET MKL_NUM_THREADS=1

» With MKL=1 and 26 processes, 165 minutes (9x faster)

* Azure Standard E64s v3, with 56
processes, 105 minutes, $12

* Azure Standard M128s, with 120
processes, 84 minutes, $27

* Azure Standard E64 v3 Linux,
with 56 processes, 71 minutes, $8

* Azure Standard M128 Linux, with
124 processes, 51 minutes, $16

» Single process 10% sample runs
— 0OSX, 15 minutes
— Linux VM on Mac, 16 minutes
— Windows VM on Mac, 28 minutes
— Windows hardware, 28 minutes

RESULTS DISCUSSION

FIGURE 5. Results
in the Windows Cloud

11111111111111
,,,,,,,,,,,,,,,,,,,,,,,,
ttttttt

nnnnnn

load average of 64 is ideal

ssssssssssssssssssss

* Multiprocessing design works well, and surgery was

minimally invasive

» Good speed-up, but diminishing returns

 Linux and OSX faster than Windows

* Multiprocessing currently running slower with Python 3,

which we’ll soon fix

* More research to optimize use of the Python MKL toolkit

FURTHER WORK FOR CONSIDERATION

» Existing code improvements

— e.g., replace costly string operations with faster categorical data

operations

 Algorithmic improvements

— e.g., pre-calculate and cache a fixed set of segmented logsums

* Machine tuning
— e.g., optimize Windows MKL settings

	Slide Number 1

