
2  VECTORIZATION

• ActivitySim’s core design makes use of vectorization

• Vectorization is the processing of an array of data at 
once instead of each item one at a time

• The core Python pandas and NumPy data science 
libraries wrap vectorized interfaces around low level 
C/C++ numerical computing libraries

ACTIVITYSIM

• An open-source, online, activity-based 
travel modeling software platform 

• Led by a consortium of transportation 
planning agencies

• New member agencies are welcome to join, 
and all members help make decisions about 
development priorities

7  FURTHER WORK FOR CONSIDERATION

• Existing code improvements
– e.g., replace costly string operations with faster categorical data 

operations

• Algorithmic improvements
– e.g., pre-calculate and cache a fixed set of segmented logsums

• Machine tuning
– e.g., optimize Windows MKL settings

5  RESULTS

• With 24 processes, the current full-scale example runs 
in 200 minutes (7.3x faster) on the test machine

• With setting MKL environment variable to override low-
level threading, 170 minutes (8.6x faster)

SET MKL_NUM_THREADS=1

• With MKL=1 and 26 processes, 165 minutes (9x faster)

6  RESULTS DISCUSSION

• Multiprocessing design works well, and surgery was 
minimally invasive

• Good speed-up, but diminishing returns

• Linux and OSX faster than Windows

• Multiprocessing currently running slower with Python 3, 
which we’ll soon fix

• More research to optimize use of the Python MKL toolkit

FIGURE 1.  Example Model Components

1  ACTIVITYSIM EXAMPLE MODEL

• MTC (San Francisco Bay Area MPO) existing ABM 
used in production

• Downloadable, runnable, full-scale implementation

• Used for Continuous Integration test system, results 
verification, and benchmarking

• 7.5 million people, 1450 zones, 825 network skims

• Replica of CT-RAMP model design at this point

• Adding new features every few months

Parallelization of the ActivitySim Activity-Based Modeling Framework Ben Stabler
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FIGURE 2. Vectorization Components FIGURE 5. Results 
in the Windows Cloud

3  PARALLELIZATION

• Single-process, the current full-scale example runs in 
24 hours and 30 minutes on the test machine

• With 24 threads, the reference 
model runs in 5 hours on the test machine

• The goal of parallelization is not just 
speed, but also software that is:
– Difficult to break
– May use Python package advances
– Easy to use and extend

4  PARALLELIZATION QUESTIONS

• Low-level or high-level? High-level most straightforward 
since the problem is embarrassingly simple to parallelize

• Process households in parallel since they are largely 
independent of one another

• Create shared data structures and accumulate results 
across households when necessary

• By threading within a single process or by using multiple 
processes?  

• Threading in Python is not easy due to the Global 
Interpreter Lock (GIL), which helps make Python fast 
and easy-to-use

• The multiprocessing library is the popular alternative, 
which means parallel Python sub-processes with 
independent memory spaces
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• Process chunks of rows of household, person, tour, or 
trip pandas data tables

• Like R, operate on the entire table at once within a 
single process

• The goal
– Express all calculations with pandas, NumPy vectorized 

functions and avoid for loops
– Write as little raw Python as possible
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FIGURE 4. Parallelization Design

• Azure Standard_E64s_v3, with 56 
processes, 105 minutes, $12

• Azure Standard_M128s, with 120 
processes, 84 minutes, $27

• Azure Standard_E64_v3 Linux, 
with 56 processes, 71 minutes, $8

• Azure Standard_M128 Linux, with 
124 processes, 51 minutes, $16

• Single process 10% sample runs
– OSX, 15 minutes
– Linux VM on Mac, 16 minutes
– Windows VM on Mac, 28 minutes
– Windows hardware, 28 minutes

COMPONENT CONTRIBUTION IN ACTION
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