forked from yuanming-hu/taichi_mpm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mls-mpm88.cpp
162 lines (135 loc) · 7.51 KB
/
mls-mpm88.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//88-Line 2D Moving Least Squares Material Point Method (MLS-MPM)[with comments]
#define TC_IMAGE_IO // Uncomment this line for image exporting functionality
#include "taichi.h" // Note: You DO NOT have to install taichi or taichi_mpm.
using namespace taichi;// You only need [taichi.h] - see below for instructions.
const int n = 80 /*grid resolution (cells)*/, window_size = 800;
const real dt = 1e-4_f, frame_dt = 1e-3_f, dx = 1.0_f / n, inv_dx = 1.0_f / dx;
auto particle_mass = 1.0_f, vol = 1.0_f;
auto hardening = 10.0_f, E = 1e4_f, nu = 0.2_f;
real mu_0 = E / (2 * (1 + nu)), lambda_0 = E * nu / ((1+nu) * (1 - 2 * nu));
using Vec = Vector2; using Mat = Matrix2; bool plastic = true;
struct Particle { Vec x, v; Mat F, C; real Jp; int c/*color*/;
Particle(Vec x, int c, Vec v=Vec(0)) : x(x), v(v), F(1), C(0), Jp(1), c(c){}};
std::vector<Particle> particles;
Vector3 grid[n + 1][n + 1]; // velocity + mass, node_res = cell_res + 1
void advance(real dt) {
std::memset(grid, 0, sizeof(grid)); // Reset grid
for (auto &p : particles) { // P2G
Vector2i base_coord=(p.x*inv_dx-Vec(0.5_f)).cast<int>();//element-wise floor
Vec fx = p.x * inv_dx - base_coord.cast<real>();
// Quadratic kernels [http://mpm.graphics Eqn. 123, with x=fx, fx-1,fx-2]
Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))};
auto e = std::exp(hardening * (1.0_f - p.Jp)), mu=mu_0*e, lambda=lambda_0*e;
real J = determinant(p.F); // Current volume
Mat r, s; polar_decomp(p.F, r, s); //Polar decomp. for fixed corotated model
auto stress = // Cauchy stress times dt and inv_dx
-4*inv_dx*inv_dx*dt*vol*(2*mu*(p.F-r) * transposed(p.F)+lambda*(J-1)*J);
auto affine = stress+particle_mass*p.C;
for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { // Scatter to grid
auto dpos = (Vec(i, j) - fx) * dx;
Vector3 mv(p.v * particle_mass, particle_mass); //translational momentum
grid[base_coord.x + i][base_coord.y + j] +=
w[i].x*w[j].y * (mv + Vector3(affine*dpos, 0));
}
}
for(int i = 0; i <= n; i++) for(int j = 0; j <= n; j++) { //For all grid nodes
auto &g = grid[i][j];
if (g[2] > 0) { // No need for epsilon here
g /= g[2]; // Normalize by mass
g += dt * Vector3(0, -200, 0); // Gravity
real boundary=0.05,x=(real)i/n,y=real(j)/n; //boundary thick.,node coord
if (x < boundary||x > 1-boundary||y > 1-boundary) g=Vector3(0); //Sticky
if (y < boundary) g[1] = std::max(0.0_f, g[1]); //"Separate"
}
}
for (auto &p : particles) { // Grid to particle
Vector2i base_coord=(p.x*inv_dx-Vec(0.5_f)).cast<int>();//element-wise floor
Vec fx = p.x * inv_dx - base_coord.cast<real>();
Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))};
p.C = Mat(0); p.v = Vec(0);
for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) {
auto dpos = (Vec(i, j) - fx),
grid_v = Vec(grid[base_coord.x + i][base_coord.y + j]);
auto weight = w[i].x * w[j].y;
p.v += weight * grid_v; // Velocity
p.C += 4 * inv_dx * Mat::outer_product(weight * grid_v, dpos); // APIC C
}
p.x += dt * p.v; // Advection
auto F = (Mat(1) + dt * p.C) * p.F; // MLS-MPM F-update
Mat svd_u, sig, svd_v; svd(F, svd_u, sig, svd_v);
for (int i = 0; i < 2 * int(plastic); i++) // Snow Plasticity
sig[i][i] = clamp(sig[i][i], 1.0_f - 2.5e-2_f, 1.0_f + 7.5e-3_f);
real oldJ = determinant(F); F = svd_u * sig * transposed(svd_v);
real Jp_new = clamp(p.Jp * oldJ / determinant(F), 0.6_f, 20.0_f);
p.Jp = Jp_new; p.F = F;
}
}
void add_object(Vec center, int c) { // Seed particles with position and color
for (int i = 0; i < 1000; i++) // Randomly sample 1000 particles in the square
particles.push_back(Particle((Vec::rand()*2.0_f-Vec(1))*0.08_f + center, c));
}
int main() {
GUI gui("Real-time 2D MLS-MPM", window_size, window_size);
add_object(Vec(0.55,0.45), 0xED553B); add_object(Vec(0.45,0.65), 0xF2B134);
add_object(Vec(0.55,0.85), 0x068587); auto &canvas = gui.get_canvas();int f=0;
for (int i = 0;; i++) { // Main Loop
advance(dt); // Advance simulation
if (i % int(frame_dt / dt) == 0) { // Visualize frame
canvas.clear(0x112F41); // Clear background
canvas.rect(Vec(0.04), Vec(0.96)).radius(2).color(0x4FB99F).close();// Box
for(auto p:particles)canvas.circle(p.x).radius(2).color(p.c);//Particles
gui.update(); // Update image
// canvas.img.write_as_image(fmt::format("tmp/{:05d}.png", f++));
}
}
} //----------------------------------------------------------------------------
/* -----------------------------------------------------------------------------
** Reference: A Moving Least Squares Material Point Method with Displacement
Discontinuity and Two-Way Rigid Body Coupling (SIGGRAPH 2018)
By Yuanming Hu (who also wrote this 88-line version), Yu Fang, Ziheng Ge,
Ziyin Qu, Yixin Zhu, Andre Pradhana, Chenfanfu Jiang
** Build Instructions:
Step 1: Download and unzip mls-mpm88.zip (Link: http://bit.ly/mls-mpm88)
Now you should have "mls-mpm88.cpp" and "taichi.h".
Step 2: Compile and run
* Linux:
g++ mls-mpm88.cpp -std=c++14 -g -lX11 -lpthread -O3 -o mls-mpm
./mls-mpm
* Windows (MinGW):
g++ mls-mpm88.cpp -std=c++14 -lgdi32 -lpthread -O3 -o mls-mpm
.\mls-mpm.exe
* Windows (Visual Studio 2017+):
- Create an "Empty Project"
- Use taichi.h as the only header, and mls-mpm88.cpp as the only source
- Change configuration to "Release" and "x64"
- Press F5 to compile and run
* OS X:
g++ mls-mpm88.cpp -std=c++14 -framework Cocoa -lpthread -O3 -o mls-mpm
./mls-mpm
** FAQ:
Q1: What does "1e-4_f" mean?
A1: The same as 1e-4f.
Q2: What is "real"?
A2: real = float in this file.
Q3: What are the hex numbers like 0xED553B?
A3: They are RGB color values.
The color scheme is borrowed from
https://color.adobe.com/Copy-of-Copy-of-Core-color-theme-11449181/
Q4: How can I get higher-quality?
A4: Change n to 320; Change dt to 1e-5; Change E to 2e4;
Change particle per cube from 500 to 8000 (Ln 72).
After the change, the whole animation takes ~3 minutes on my computer.
Q5: How to record the animation?
A5: Uncomment Ln 2 and 85 and create a folder named "tmp".
The frames will be saved to "tmp/XXXXX.png".
To get a video, you can use ffmpeg. If you already have taichi installed,
you can simply go to the "tmp" folder and execute
ti video 60
where 60 stands for 60 FPS. A file named "video.mp4" is what you want.
For more questions, please email yuanming _at_ mit.edu
or visit https://github.com/yuanming-hu/taichi_mpm/issues.
Last Update: Nov 16, 2018
Version 1.4
----------------------------------------------------------------------------- */