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Abstract 

In this project, we set out to create an AI that can achieve the highest 

score possible at Atari’s ‘Breakout’. We used RAM provided by OpenAI 

Gym, to train a NEAT algorithm. In the final model, it scores 25+ points 

per game consistently 

 

Introduction 

What is Breakout? 

Atari’s Breakout is a classic arcade game involving a paddle, ball, and 

a wall of bricks to break through. The objective of the game is to break 

all the bricks in the limited lives the player has. 

The gameplay is as follows, the ball is initialised to drop down from, like 

gravity in the real world, and the player must prevent the ball from 

falling below while also aiming at the blocks in order to score points. If 

you fail to hit a block, the ball will just bounce according to physics, but 

if you fail to prevent the ball from falling into the bottom of the screen, 

the player will lose a life. 

A detailed breakdown of the score is: 

Red - 7 points         Orange - 7 points        Yellow - 4 points 

Green - 4 points       Aqua - 1 point           Blue - 1 point 

 

What is the environment? 

OpenAI’s environment provides us with data to make the machine 

learning easier. The first kind of data is a 210x160 RGB image of the 

game and the second is 128 bytes of RAM. Both are valid options; 

however, it does change which algorithms are best suited for the 

game. The RAM array contains all the game state, including the reward 

system, the position of the paddle, position of the ball etc. 
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Rationale: 

We opted for the 128 bytes of RAM and the NeuroEvolution of 

Augmenting Topologies (NEAT) algorithm. The most common approach 

would be using the RGB array, such as in Deepmind’s famous paper, 

which is usually coupled with Deep Q-learning(DQL). We explored DQL 

but opted for NEAT because we were more familiar with this algorithm, 

although there are a few more reasons covered in the ‘alternatives’ 

section.  

NEAT is a type of genetic algorithm that is used to train artificial neural 

networks (NN), in our case feed forward neural networks. The algorithm 

finds an optimal neural network structure for a given problem, without 

requiring any prior knowledge. 

The algorithm starts with a population of random neural networks, 

known as genomes, and then uses genetic operators such as mutation 

and crossover to create new networks. The new networks are then 

tested on a task, and their fitness is evaluated. The fittest networks are 

then selected for the next generation, while the less fit networks are 

discarded. In this case fitness corresponds to the score achieved by the 

NNs, but what it exactly is defined as is further explored in the next 

section. The process can be summarised in three stages: Initialisation, 

selection and reproduction. 

 

Architectural Design: 

NEAT has many genetic algorithm techniques, but we settled for five 

key ones: speciation, mutation, crossover, elitism, and survival threshold. 

We experimented with other techniques as well, mentioned in the 

“Implementation” section. 

Each genome is a feed forward neural network (FFNN) with thirteen 

inputs and 3 outputs (RIGHT, LEFT and NOOP). Each genome will have 

its own random configuration of hidden layer(s), with randomized 

weights and biases, and an output layer with its’ own random weights 

and biases. These weights would determine the specific directions in 

which the paddle moved. Every genome plays several episodes (in 

final version set to five), which are the number of rounds it plays of the 

game and earns a reward level depending on how much score it 

acquired.  
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As mentioned, the score or the reward system, was used in order to 

contribute to the fitness function. In the final version, the fitness function 

was the sum of the reward of the population over all the episodes and 

summed with the penalty function. This determined what ‘successful’ 

meant, to select the best to reproduce and carry on to the next 

generation. This results in a better set of genomes, known as the 

population. 

We opted for the FFNN because it was a relatively simple problem, and 

fitted well with the RAM array we are given. If we had opted for using 

the RGB values, we would not have used this neural network. 

A configuration file was also used to determine the hyperparameters, 

such as: population number, generation number, stagnation level etc. 

These were adjusted by trial and error, a conclusion we came to as 

other optimisation algorithms were not necessary for the task. 

Other design alternatives: 

The main design alternative we explored was Deep Q-learning with 

convolutional neural networks (CNNs). As CNNs were used, we inputted 

in the RGB value instead of the RAM array. This model was slower than 

NEAT, and we could not get it running in time. It involved converting to 

grayscale, as RGB was redundant. In spite of this reduction in 

information, it was still 84x84 size. After a few more variables are taken 

into account, the total parameters were about 1,700,000 (Eliuseev, 

2022), which made the coding process difficult to debug. However, it is 

an effective algorithm and would have converged sooner than 

NEAT(ANDERSSON, 2012). An explanation for why it is so effective is that 

it uses a Q-table, the net benefit for a given decision, and chooses the 

highest value out of the table. It steadily learns using backpropagation 

and gradient descent, to optimise for the best values in the table. This 

reduces the redundancy found in NEAT, where even at advanced 

stages in the training it can have unfit genomes in the population. 

A consideration for neural network design, as an alternative to FFNN, 

was a Recurrent Neural Network (RNN).This is a sequential type of 

neural network, which seemed to fit with our problem as the agent 

takes actions over time. However the input to the neural network is a 

fixed subset of the RAM memory of the Atari emulator at each time 

step. This limited its usefulness and so we decided not to use it and 

stuck with the FFNN. 
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Implementations:  

We had four versions of implementing an AI Agent for “Breakout.” 

Before we go through all of them, an early roadblock was 

encountered. 

Unfortunately, our preferred environments did not support the ALE-py 

import needed initialise a Breakout instance. 

Issues using Jupyter Notebooks (using the Kent Servers): 

 

Similar issues were faced when using Virtual Studio Code and other 

environments such as PyCharm and IntelliJ. Furthermore, the 

proposition of running a Neural Network on our local machines, which 

may require hours of training, appeared to be an unsuitable approach.  

For these reasons, we used the Google Collaboratory platform for our 

project. All training and runtime operations were executed by Google’s 

servers and the platform supported various imports including ALE-py. 

 

 

Breakout: Version one 

Before we could use NEAT, as concluded in the rationale, we need to 

determine whether we would use the RAM array or the RGB values. We 

investigated the RGB approach at first. After printing the RGB values, 

we knew immediately this approach would be slower. There was a 

great deal of noise in the data, mainly arrays of [0,0,0], indicating the 

black background. Although we were familiar with this kind of 

computer vision problem given our DQL experience, it did not make 

sense for NEAT. The NEAT algorithm contains hundreds of neural 
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networks, meaning the architecture could not be so complex to take 

an 84x84 input, as a reminder this was the figure we found in the 

rationale. 

Now knowing we needed to use the RAM array, our task was to find 

which part of the 128-byte RAM array was most useful. Finding the x-axis 

position of the paddle, and the X and Y position of the ball was 

identified as the most important. Our main goal for this version was to 

understand the RAM array as best as possible, so the paddle 

movement was kept as random with no learning taking place for this 

version. 

We found the most important values, 13 total, after delving deeper into 

documentation (CodeProject, 2020). 

 

However, we still had to know what these values were responsible for. 

This was done by trial and error. We would print out which RAM position 

was used, and observe the corresponding movement using the 

matplot to plot the state of the game after each step. For example, we 

observed that when the paddle moves left and right, the 72nd position 

of the RAM array would be used. In other words, the 72nd position in the 

RAM had 255 values that determined the X-position of the paddle. 

After this we normalised all the RAM values, which we would need for 

the next stage. The score was predictably low, never reaching higher 

than 3. 

 

 

Breakout: Version two 

At this stage added the NEAT algorithm. A small removal we 

incorporated was that by default there are four actions a paddle can 

take, NOOP, fire, left and right. However, we removed the fire 

operation, as it just added complexity but did not change anything. 

We then forced a fire action before every step of the game, ensuring a 

ball was always fired after the agent lost a life. As mentioned, there are 

three central stages in NEAT, and GA at large, each stage 

encompasses its own techniques. The genomes go through the three 

stages, which are explained below. The values of each of these 
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techniques were based on TechWithTims NEAT Python Flappy Bird (Tim, 

2019)/ 

Initialisation:  

Set of genomes was generated all with their own random weights and 

biases. Every genome would play one round of the game, known as 

the number of episodes, which were all created by a seed, the seed is 

the random state that each game was initially created as. Therefore, 

every genome would have its own random variation of the game. 

Selection:  

The largest determinant to a genome being selected was the fitness 

function. This was set to the scoring system mentioned in the rationale, 

so if a blue block was broken it was gaining a score of 1. Every genome 

would play the game once, either beating the game or losing all five of 

its lives.  

Elitism was also a crucial addition. This selects a certain number of the best 

performing genomes, and carries them onto the next generation. 

This encouraged stability in the algorithm, as we guaranteed some good 

genomes in each generation. 

Survival Threshold: This is similar to elitism, accounts for the number of 

genomes that will carry on to the next generation. However, it is overridden 

by elitism and meant that it was often a secondary hyperparameter that we 

adjusted. 

Reproduction: 

At this stage, the algorithms that were selected must combine their 

attributes to create a fitter population for the next generation. There 

are two main ways of doing this. 

Crossover:  During crossover, two parent genomes are randomly selected 

from the population, and a new offspring genome is created by combining 

their structure and weights. The offspring genome inherits nodes and 

connections from both parents, with excess and disjoint genes being 

inherited from the more fit parent, and matching genes being inherited 

randomly from either parent. The weights of the matching genes are 

averaged to obtain the weight of the corresponding gene in the offspring 

genome. This was handled by DefaultReproduction class in the NEAT library. 

This was chosen as it will allow the algorithm to build from one 

generation to the next, meaning if it performs the correct action, it 
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should exploit this in future generations and similarly poor actions should 

be disregarded. 

Mutation: Mutation is applied to the offspring genome by adding new nodes 

or connections or modifying the weights of existing connections. This was 

handled by DefaultReproduction class in the NEAT library. 

It was chosen as we did not want to only be limited by what the parents had, 

but this value had to remain low throughout the process to not have too 

much randomness. 

Speciation: Calculates the genetic distance between each genome and 

the representative genome of each species. If the distance is less than the 

specified threshold, the genome is added to that species. Otherwise, a new 

species is created for that genome. 

Now the model was set to learn from its games, as opposed to random 

movement in the first stage. The fitness function will inform the algorithm what 

to improve, which at this stage is equal to the reward system as outlined in 

the rationale. The genetic algorithms used by NEAT would allow the algorithm 

to how to improve, and as such we expected a much higher score for this 

version. 
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Performance Evaluation: 

 

The average fitness peaked around 1.2 meaning the ball was hit 

around an average of 1.2 times for the best generation. The score was 

also only slightly increased to four. This was far lower than we expected 

so we turned to the visualiser, that we set up in the first version, to 

understand what was happening. 

Getting stuck at local minima:  

Having trained this version over 10 generations with a population of 10, 

we noticed in our visualiser that the paddle would get stuck in either far 

right corner or the far left. To tackle this, our first instinct was to increase 

the amount of data. For this population size was increased and number 

of generations was increased, to 30 and 200, respectively. 
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Although a slightly higher average fitness was achieved during some 

generations, this was an unsuccessful attempt as for most of the game, 

the paddle stayed in either of the corners.  

The average fitness peaked around 2.4 meaning the ball was hit 

around an average of 2.4 times for the best generation. The score also 

remained at the low of four. For the next version we knew we needed a 

more complex fitness function. 

 

Breakout: Version three 

There were several areas we identified as needing improvements, 

which we will break down for each stage.  

Initialisation improvements: The seed used for each genome was 

different and therefore unfair. A good genome could get a lower score 

only because the game state was initialised in a disadvantageous 

manner. We solved this by making the random seed constant for each 

of the genomes.  

Selection improvements: 

There were three main problems.  

The first problem was that a genome could get lucky as it only played 

one episode of the game. Episodes is the number of games the 

genomes get to play, and was now set to be a value of five. The fitness 

function was changed to take the average of a genomes score 

between the five episodes, a better indication of a genome’s true 
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performance. Now the genome could not just get one lucky episode, it 

had to perform well in all five, making the algorithm more reliable. 

The second problem, partially caused by increasing the episode count, 

was that the seeds for each episode were all random. It meant that no 

two genomes could truly be compared, leading to a less accurate 

selection process. Thus, we kept the seeds constant for each episode, 

I.e. each episode had a seed that was used for the entire population. 

This is known as incremental learning. This solution meant that each 

genome could experience five unique game environments, making the 

selection process better, but also each genome could be fairly 

compared with each other, inacontrast to before where they all had 

different seeds. 

The third problem was more complicated, that of being stuck at a local 

minima. As our initial idea of putting more data to the problem did not 

resolve anything, we knew we had to have a penalty function. This 

would take successive moves that in either of the farthest X-positions of 

the paddle, that being the farthest left position by the left wall or being 

the farthest right position by the right wall. This penalty function would 

deduct from the reward obtained by a genome in a given episode. 

We thought that this needed to be a high value at first, to emphasise to 

the algorithm so it would not get stuck in the local minimum. However, 

we discovered that any penalty even that of 0.1 would prevent those 

genomes from being selected.  

In total the fitness function was now an average of the reward over the 

five episodes, and a summation with the penalty function. This now 

means that fitness is no longer exactly indicative of the score the agent 

will get from playing, but they are closely correlated. 

To be clear fitness function used to be:  

fitness function = reward function 

And now is: 

fitness function = (Σ (reward function)/numberOfEpisodes) - penalty function 

No changes were needed for the reproduction stage, although we did 

tweak the hyperparameters. The generation size, population size and 

number of elitisms were all slightly increased. 
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Performance evaluation: 

We finally achieved a good score in this version, a score of thirteen. 

After inspecting the visualiser, we felt that the algorithm was learning 

well and performing the correct moves. However, it felt like we needed 

to train it more, a problem that we struggled with as the runtime took 

multiple hours. Each generation was an average of 91 seconds, and 

we had a total of 250 generations.  

 

Breakout: Final version 

With the Artificially trained game now earning respectable counter 

scores, the next step was to improve & fine tune the model to achieve 

even better scores. This is the stage we introduced parallelism, known 

as parallel NEAT (P-NEAT). 

We were reluctant to use parallelisation at first as NEAT is 

interdependent between generations, one generation influences the 

next. However, we realised that within each generation, we could 

parallelise the genomes so that they could be trained concurrently. This 

would solve our speed problem, as the time taken to complete one 

generation would be the same for completing any number of 

generations, constrained by our system’s CPU and RAM of course. This 

was done using the multiprocessing package, using a Pool where we 

define the number of processes, we can run multiple instances of our 

eval_genomes function at once. We settled for 450 generations, 

previously 250.  

We also made final changes to the values of the hyperparameters 

based on kb100’s NEAT_Breakout configuration file (kb100, 2022). 
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This graph shows the fitness for each generation from Generation 400-

450 as we had used checkpoints to help us run the code for extended 

periods of time over multiple days (which is why the image above only 

goes up to 50). 

A significant difference in average fitness during the majority of 

generations, with the paddle score reaching 25+ in most games. This 

version was by far our most successful attempt with the paddle playing 

efficiently. 

An overview of the final approach is as follows: 

1. Define the NEAT configuration settings, including the fitness 

criterion, population size, and genome options. 

2. Initialize the population of genomes with random weights and 

architectures. 

3. Evaluate the fitness of each genome by running an episode of 

the Breakout game using the genome's neural network as the 

controller. The fitness is calculated based on the score achieved 

in the episode. 

4. Select the fittest genomes to reproduce and create new offspring 

genomes using crossover and mutation. 

5. Repeat steps 3-4 for multiple generations, with each generation 

containing a new population of genomes. 

6. If the maximum fitness threshold is reached, stop the algorithm, 

and return the best performing genome. Otherwise, continue to 

the next generation 
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A summary of the values of the most important hyperparameters is 

displayed in the table below.                                                                                 

 Version1 Version 2 Version 3 Final Version 

Population 10 25 25 50 

Generation 30 30 250 450 

Mutation 
rate 

0.01 0.01 0.01 0.05 

Elitism 2 2 2 3 

Connection 
Add Rate 

0.5 0.5 0.5 0.9 

Connection 
Remove 
Rate 

0.5 0.5 0.5 
 

0.05 

Survival 
Threshold 

0.2 0.2 0.2 0.05 

                     

Potential Improvements: 

For the NEAT model there a few things we could have added. One 

such idea included finding the ball’s x position and providing additional 

reward if the paddle’s x position matched the ball’s or vice versa. 

Another idea was to make the fitness function even more complex, by 

penalising lives lost so that the best genomes would achieve a high 

score and not lose lives in the process. 

The other improvement we would have liked to make was to be able 

to get the DQL model fully functional. We explored it quite well, but 

due to bugs we were unable to complete the programming in time. It 

could have been a good contrast to NEAT, observe how and why the 

models are so different in architecture and how that affects its 

performance. 

Another improvement that we could have made is to not tune the 

hyperparameters using trial and error but rather an algorithmic 

technique such as Bayesian hyperparameter optimisation. This was not 

required for this project, but it could have made the solution more 

elegant and save us time, although we still would have needed to 

tweak the ‘prior.’ The ‘prior’ is the initial hyperparameters that it will 

optimise, a good prior saves time overall and thus would have had 

some element of trial and error to obtain the best one possible. 
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