

1

2

Our team: Oliver Morgan, Ismail Hendryx, Anas Jehani, Naomi Jack

A project applying the NeuroEvolution of Augmenting

Topologies (NEAT) Algorithm onto the OpenAI game:

3

Link to Gitlab Project

Table of Contents
Abstract

Introduction

Rationale

Architectural Design

Implementations ...

Summary ..

Project Management ...

References ...

https://git.cs.kent.ac.uk/om270/ai-project/-/tree/main/All%20Versions%20Of%20Breakout

4

Abstract

In this project, we set out to create an AI that can achieve the highest

score possible at Atari’s ‘Breakout’. We used RAM provided by OpenAI

Gym, to train a NEAT algorithm. In the final model, it scores 25+ points

per game consistently

Introduction

What is Breakout?

Atari’s Breakout is a classic arcade game involving a paddle, ball, and

a wall of bricks to break through. The objective of the game is to break

all the bricks in the limited lives the player has.

The gameplay is as follows, the ball is initialised to drop down from, like

gravity in the real world, and the player must prevent the ball from

falling below while also aiming at the blocks in order to score points. If

you fail to hit a block, the ball will just bounce according to physics, but

if you fail to prevent the ball from falling into the bottom of the screen,

the player will lose a life.

A detailed breakdown of the score is:

Red - 7 points Orange - 7 points Yellow - 4 points

Green - 4 points Aqua - 1 point Blue - 1 point

What is the environment?

OpenAI’s environment provides us with data to make the machine

learning easier. The first kind of data is a 210x160 RGB image of the

game and the second is 128 bytes of RAM. Both are valid options;

however, it does change which algorithms are best suited for the

game. The RAM array contains all the game state, including the reward

system, the position of the paddle, position of the ball etc.

5

Rationale:

We opted for the 128 bytes of RAM and the NeuroEvolution of

Augmenting Topologies (NEAT) algorithm. The most common approach

would be using the RGB array, such as in Deepmind’s famous paper,

which is usually coupled with Deep Q-learning(DQL). We explored DQL

but opted for NEAT because we were more familiar with this algorithm,

although there are a few more reasons covered in the ‘alternatives’

section.

NEAT is a type of genetic algorithm that is used to train artificial neural

networks (NN), in our case feed forward neural networks. The algorithm

finds an optimal neural network structure for a given problem, without

requiring any prior knowledge.

The algorithm starts with a population of random neural networks,

known as genomes, and then uses genetic operators such as mutation

and crossover to create new networks. The new networks are then

tested on a task, and their fitness is evaluated. The fittest networks are

then selected for the next generation, while the less fit networks are

discarded. In this case fitness corresponds to the score achieved by the

NNs, but what it exactly is defined as is further explored in the next

section. The process can be summarised in three stages: Initialisation,

selection and reproduction.

Architectural Design:

NEAT has many genetic algorithm techniques, but we settled for five

key ones: speciation, mutation, crossover, elitism, and survival threshold.

We experimented with other techniques as well, mentioned in the

“Implementation” section.

Each genome is a feed forward neural network (FFNN) with thirteen

inputs and 3 outputs (RIGHT, LEFT and NOOP). Each genome will have

its own random configuration of hidden layer(s), with randomized

weights and biases, and an output layer with its’ own random weights

and biases. These weights would determine the specific directions in

which the paddle moved. Every genome plays several episodes (in

final version set to five), which are the number of rounds it plays of the

game and earns a reward level depending on how much score it

acquired.

6

As mentioned, the score or the reward system, was used in order to

contribute to the fitness function. In the final version, the fitness function

was the sum of the reward of the population over all the episodes and

summed with the penalty function. This determined what ‘successful’

meant, to select the best to reproduce and carry on to the next

generation. This results in a better set of genomes, known as the

population.

We opted for the FFNN because it was a relatively simple problem, and

fitted well with the RAM array we are given. If we had opted for using

the RGB values, we would not have used this neural network.

A configuration file was also used to determine the hyperparameters,

such as: population number, generation number, stagnation level etc.

These were adjusted by trial and error, a conclusion we came to as

other optimisation algorithms were not necessary for the task.

Other design alternatives:

The main design alternative we explored was Deep Q-learning with

convolutional neural networks (CNNs). As CNNs were used, we inputted

in the RGB value instead of the RAM array. This model was slower than

NEAT, and we could not get it running in time. It involved converting to

grayscale, as RGB was redundant. In spite of this reduction in

information, it was still 84x84 size. After a few more variables are taken

into account, the total parameters were about 1,700,000 (Eliuseev,

2022), which made the coding process difficult to debug. However, it is

an effective algorithm and would have converged sooner than

NEAT(ANDERSSON, 2012). An explanation for why it is so effective is that

it uses a Q-table, the net benefit for a given decision, and chooses the

highest value out of the table. It steadily learns using backpropagation

and gradient descent, to optimise for the best values in the table. This

reduces the redundancy found in NEAT, where even at advanced

stages in the training it can have unfit genomes in the population.

A consideration for neural network design, as an alternative to FFNN,

was a Recurrent Neural Network (RNN).This is a sequential type of

neural network, which seemed to fit with our problem as the agent

takes actions over time. However the input to the neural network is a

fixed subset of the RAM memory of the Atari emulator at each time

step. This limited its usefulness and so we decided not to use it and

stuck with the FFNN.

7

Implementations:

We had four versions of implementing an AI Agent for “Breakout.”

Before we go through all of them, an early roadblock was

encountered.

Unfortunately, our preferred environments did not support the ALE-py

import needed initialise a Breakout instance.

Issues using Jupyter Notebooks (using the Kent Servers):

Similar issues were faced when using Virtual Studio Code and other

environments such as PyCharm and IntelliJ. Furthermore, the

proposition of running a Neural Network on our local machines, which

may require hours of training, appeared to be an unsuitable approach.

For these reasons, we used the Google Collaboratory platform for our

project. All training and runtime operations were executed by Google’s

servers and the platform supported various imports including ALE-py.

Breakout: Version one

Before we could use NEAT, as concluded in the rationale, we need to

determine whether we would use the RAM array or the RGB values. We

investigated the RGB approach at first. After printing the RGB values,

we knew immediately this approach would be slower. There was a

great deal of noise in the data, mainly arrays of [0,0,0], indicating the

black background. Although we were familiar with this kind of

computer vision problem given our DQL experience, it did not make

sense for NEAT. The NEAT algorithm contains hundreds of neural

8

networks, meaning the architecture could not be so complex to take

an 84x84 input, as a reminder this was the figure we found in the

rationale.

Now knowing we needed to use the RAM array, our task was to find

which part of the 128-byte RAM array was most useful. Finding the x-axis

position of the paddle, and the X and Y position of the ball was

identified as the most important. Our main goal for this version was to

understand the RAM array as best as possible, so the paddle

movement was kept as random with no learning taking place for this

version.

We found the most important values, 13 total, after delving deeper into

documentation (CodeProject, 2020).

However, we still had to know what these values were responsible for.

This was done by trial and error. We would print out which RAM position

was used, and observe the corresponding movement using the

matplot to plot the state of the game after each step. For example, we

observed that when the paddle moves left and right, the 72nd position

of the RAM array would be used. In other words, the 72nd position in the

RAM had 255 values that determined the X-position of the paddle.

After this we normalised all the RAM values, which we would need for

the next stage. The score was predictably low, never reaching higher

than 3.

Breakout: Version two

At this stage added the NEAT algorithm. A small removal we

incorporated was that by default there are four actions a paddle can

take, NOOP, fire, left and right. However, we removed the fire

operation, as it just added complexity but did not change anything.

We then forced a fire action before every step of the game, ensuring a

ball was always fired after the agent lost a life. As mentioned, there are

three central stages in NEAT, and GA at large, each stage

encompasses its own techniques. The genomes go through the three

stages, which are explained below. The values of each of these

9

techniques were based on TechWithTims NEAT Python Flappy Bird (Tim,

2019)/

Initialisation:

Set of genomes was generated all with their own random weights and

biases. Every genome would play one round of the game, known as

the number of episodes, which were all created by a seed, the seed is

the random state that each game was initially created as. Therefore,

every genome would have its own random variation of the game.

Selection:

The largest determinant to a genome being selected was the fitness

function. This was set to the scoring system mentioned in the rationale,

so if a blue block was broken it was gaining a score of 1. Every genome

would play the game once, either beating the game or losing all five of

its lives.

Elitism was also a crucial addition. This selects a certain number of the best

performing genomes, and carries them onto the next generation.

This encouraged stability in the algorithm, as we guaranteed some good

genomes in each generation.

Survival Threshold: This is similar to elitism, accounts for the number of

genomes that will carry on to the next generation. However, it is overridden

by elitism and meant that it was often a secondary hyperparameter that we

adjusted.

Reproduction:

At this stage, the algorithms that were selected must combine their

attributes to create a fitter population for the next generation. There

are two main ways of doing this.

Crossover: During crossover, two parent genomes are randomly selected

from the population, and a new offspring genome is created by combining

their structure and weights. The offspring genome inherits nodes and

connections from both parents, with excess and disjoint genes being

inherited from the more fit parent, and matching genes being inherited

randomly from either parent. The weights of the matching genes are

averaged to obtain the weight of the corresponding gene in the offspring

genome. This was handled by DefaultReproduction class in the NEAT library.

This was chosen as it will allow the algorithm to build from one

generation to the next, meaning if it performs the correct action, it

10

should exploit this in future generations and similarly poor actions should

be disregarded.

Mutation: Mutation is applied to the offspring genome by adding new nodes

or connections or modifying the weights of existing connections. This was

handled by DefaultReproduction class in the NEAT library.

It was chosen as we did not want to only be limited by what the parents had,

but this value had to remain low throughout the process to not have too

much randomness.

Speciation: Calculates the genetic distance between each genome and

the representative genome of each species. If the distance is less than the

specified threshold, the genome is added to that species. Otherwise, a new

species is created for that genome.

Now the model was set to learn from its games, as opposed to random

movement in the first stage. The fitness function will inform the algorithm what

to improve, which at this stage is equal to the reward system as outlined in

the rationale. The genetic algorithms used by NEAT would allow the algorithm

to how to improve, and as such we expected a much higher score for this

version.

11

Performance Evaluation:

The average fitness peaked around 1.2 meaning the ball was hit

around an average of 1.2 times for the best generation. The score was

also only slightly increased to four. This was far lower than we expected

so we turned to the visualiser, that we set up in the first version, to

understand what was happening.

Getting stuck at local minima:

Having trained this version over 10 generations with a population of 10,

we noticed in our visualiser that the paddle would get stuck in either far

right corner or the far left. To tackle this, our first instinct was to increase

the amount of data. For this population size was increased and number

of generations was increased, to 30 and 200, respectively.

12

Although a slightly higher average fitness was achieved during some

generations, this was an unsuccessful attempt as for most of the game,

the paddle stayed in either of the corners.

The average fitness peaked around 2.4 meaning the ball was hit

around an average of 2.4 times for the best generation. The score also

remained at the low of four. For the next version we knew we needed a

more complex fitness function.

Breakout: Version three

There were several areas we identified as needing improvements,

which we will break down for each stage.

Initialisation improvements: The seed used for each genome was

different and therefore unfair. A good genome could get a lower score

only because the game state was initialised in a disadvantageous

manner. We solved this by making the random seed constant for each

of the genomes.

Selection improvements:

There were three main problems.

The first problem was that a genome could get lucky as it only played

one episode of the game. Episodes is the number of games the

genomes get to play, and was now set to be a value of five. The fitness

function was changed to take the average of a genomes score

between the five episodes, a better indication of a genome’s true

13

performance. Now the genome could not just get one lucky episode, it

had to perform well in all five, making the algorithm more reliable.

The second problem, partially caused by increasing the episode count,

was that the seeds for each episode were all random. It meant that no

two genomes could truly be compared, leading to a less accurate

selection process. Thus, we kept the seeds constant for each episode,

I.e. each episode had a seed that was used for the entire population.

This is known as incremental learning. This solution meant that each

genome could experience five unique game environments, making the

selection process better, but also each genome could be fairly

compared with each other, inacontrast to before where they all had

different seeds.

The third problem was more complicated, that of being stuck at a local

minima. As our initial idea of putting more data to the problem did not

resolve anything, we knew we had to have a penalty function. This

would take successive moves that in either of the farthest X-positions of

the paddle, that being the farthest left position by the left wall or being

the farthest right position by the right wall. This penalty function would

deduct from the reward obtained by a genome in a given episode.

We thought that this needed to be a high value at first, to emphasise to

the algorithm so it would not get stuck in the local minimum. However,

we discovered that any penalty even that of 0.1 would prevent those

genomes from being selected.

In total the fitness function was now an average of the reward over the

five episodes, and a summation with the penalty function. This now

means that fitness is no longer exactly indicative of the score the agent

will get from playing, but they are closely correlated.

To be clear fitness function used to be:

fitness function = reward function

And now is:

fitness function = (Σ (reward function)/numberOfEpisodes) - penalty function

No changes were needed for the reproduction stage, although we did

tweak the hyperparameters. The generation size, population size and

number of elitisms were all slightly increased.

14

Performance evaluation:

We finally achieved a good score in this version, a score of thirteen.

After inspecting the visualiser, we felt that the algorithm was learning

well and performing the correct moves. However, it felt like we needed

to train it more, a problem that we struggled with as the runtime took

multiple hours. Each generation was an average of 91 seconds, and

we had a total of 250 generations.

Breakout: Final version

With the Artificially trained game now earning respectable counter

scores, the next step was to improve & fine tune the model to achieve

even better scores. This is the stage we introduced parallelism, known

as parallel NEAT (P-NEAT).

We were reluctant to use parallelisation at first as NEAT is

interdependent between generations, one generation influences the

next. However, we realised that within each generation, we could

parallelise the genomes so that they could be trained concurrently. This

would solve our speed problem, as the time taken to complete one

generation would be the same for completing any number of

generations, constrained by our system’s CPU and RAM of course. This

was done using the multiprocessing package, using a Pool where we

define the number of processes, we can run multiple instances of our

eval_genomes function at once. We settled for 450 generations,

previously 250.

We also made final changes to the values of the hyperparameters

based on kb100’s NEAT_Breakout configuration file (kb100, 2022).

Performance Evaluation

15

This graph shows the fitness for each generation from Generation 400-

450 as we had used checkpoints to help us run the code for extended

periods of time over multiple days (which is why the image above only

goes up to 50).

A significant difference in average fitness during the majority of

generations, with the paddle score reaching 25+ in most games. This

version was by far our most successful attempt with the paddle playing

efficiently.

An overview of the final approach is as follows:

1. Define the NEAT configuration settings, including the fitness

criterion, population size, and genome options.

2. Initialize the population of genomes with random weights and

architectures.

3. Evaluate the fitness of each genome by running an episode of

the Breakout game using the genome's neural network as the

controller. The fitness is calculated based on the score achieved

in the episode.

4. Select the fittest genomes to reproduce and create new offspring

genomes using crossover and mutation.

5. Repeat steps 3-4 for multiple generations, with each generation

containing a new population of genomes.

6. If the maximum fitness threshold is reached, stop the algorithm,

and return the best performing genome. Otherwise, continue to

the next generation

16

A summary of the values of the most important hyperparameters is

displayed in the table below.

 Version1 Version 2 Version 3 Final Version

Population 10 25 25 50

Generation 30 30 250 450

Mutation
rate

0.01 0.01 0.01 0.05

Elitism 2 2 2 3

Connection
Add Rate

0.5 0.5 0.5 0.9

Connection
Remove
Rate

0.5 0.5 0.5

0.05

Survival
Threshold

0.2 0.2 0.2 0.05

Potential Improvements:

For the NEAT model there a few things we could have added. One

such idea included finding the ball’s x position and providing additional

reward if the paddle’s x position matched the ball’s or vice versa.

Another idea was to make the fitness function even more complex, by

penalising lives lost so that the best genomes would achieve a high

score and not lose lives in the process.

The other improvement we would have liked to make was to be able

to get the DQL model fully functional. We explored it quite well, but

due to bugs we were unable to complete the programming in time. It

could have been a good contrast to NEAT, observe how and why the

models are so different in architecture and how that affects its

performance.

Another improvement that we could have made is to not tune the

hyperparameters using trial and error but rather an algorithmic

technique such as Bayesian hyperparameter optimisation. This was not

required for this project, but it could have made the solution more

elegant and save us time, although we still would have needed to

tweak the ‘prior.’ The ‘prior’ is the initial hyperparameters that it will

optimise, a good prior saves time overall and thus would have had

some element of trial and error to obtain the best one possible.

17

Bibliography:

CodeProject. (2020). Learning Breakout From RAM – Part 1. [online] Available

at: https://www.codeproject.com/Articles/5271949/Learning-Breakout-From-

RAM-Part-1 [Accessed 3 Apr. 2023].

Eliuseev, D. (2022). Teaching a Neural Network to play the Breakout game.

[online] Medium. Available at: https://blog.devgenius.io/teaching-a-neural-

network-to-play-the-breakout-game-793ad7d1b20e [Accessed 3 Apr. 2023].

ANDERSSON, M. (2012). How does the performance of NEAT compare to

Reinforcement Learning? [Pdf] p.76. Available at: https://www.diva-

portal.org/smash/get/diva2:1643563/FULLTEXT01.pdf [Accessed 3 Apr. 2023].

Ruscica, T. (2019). techwithtim/NEAT-Flappy-Bird. [online] GitHub. Available

at: https://github.com/techwithtim/NEAT-Flappy-Bird/blob/master/config-

feedforward.txt.

kb100 (2022). NEAT Breakout. [online] GitHub. Available at:

https://github.com/kb100/NEAT_Breakout/blob/master/train_config

[Accessed 3 Apr. 2023].

https://www.codeproject.com/Articles/5271949/Learning-Breakout-From-RAM-Part-1
https://www.codeproject.com/Articles/5271949/Learning-Breakout-From-RAM-Part-1
https://blog.devgenius.io/teaching-a-neural-network-to-play-the-breakout-game-793ad7d1b20e
https://blog.devgenius.io/teaching-a-neural-network-to-play-the-breakout-game-793ad7d1b20e
https://www.diva-portal.org/smash/get/diva2:1643563/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1643563/FULLTEXT01.pdf
https://github.com/techwithtim/NEAT-Flappy-Bird/blob/master/config-feedforward.txt
https://github.com/techwithtim/NEAT-Flappy-Bird/blob/master/config-feedforward.txt
https://github.com/kb100/NEAT_Breakout/blob/master/train_config

