-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClasswork.py
39 lines (33 loc) · 977 Bytes
/
Classwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import matplotlib.pyplot as plt
class Basic_stats():
def __init__(self):
pass
def bs_median(self,bs_value):
n = len(bs_value)
bs_value.sort()
if n % 2 == 0:
median1 = bs_value[n//2]
median2 = bs_value[n//2 - 1]
median = (median1 + median2)/2
else:
median = bs_value[n//2]
return median
def bs_spread(self,bs_value):
a = np.percentile(bs_value,25)
b = np.percentile(bs_value,75)
c = b-a
return c
def bs_outliers(self, bs_value):
a = np.percentile(bs_value,25)
b = np.percentile(bs_value,75)
c = b-a
Q1 = a - 1.5*c
Q2 = b + 1.5*c
length = bs_value.count()
for i in length:
if(bs_value[i]>Q2 or bs_value[i]<Q1):
return bs_value[i]
def bs_boxplot(self, bs_value):
plt.boxplot(bs_value)
plt.show()