diff --git a/environment.yml b/environment.yml index 4c20ce9..50d8ddb 100644 --- a/environment.yml +++ b/environment.yml @@ -12,7 +12,7 @@ dependencies: - scikit-learn - pytorch-lightning - xlsxwriter - - occwl + - occwl=1.0.0 - jupyter - pythreejs - tensorboard diff --git a/models/brepnet.py b/models/brepnet.py index c580617..3bd08cf 100644 --- a/models/brepnet.py +++ b/models/brepnet.py @@ -678,11 +678,37 @@ def brepnet_step(self, batch, batch_idx, save_segmentation_output): def training_step(self, batch, batch_idx): save_segmentation_output = False output = self.brepnet_step(batch, batch_idx, save_segmentation_output) - + + # The batch size is the number of faces + num_faces = self.num_faces_in_batch(batch) + # Log some data to tensorboard - self.log("loss", output["loss"].item(), on_step=True, on_epoch=False) - self.log("train/loss", output["loss"].item(), on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) - self.log("train/accuracy", output["accuracy"], on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) + self.log( + "loss", + output["loss"].item(), + batch_size=num_faces, + on_step=True, + on_epoch=False + ) + + self.log( + "train/loss", + output["loss"].item(), + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) + self.log( + "train/accuracy", + output["accuracy"], + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) return output["loss"] @@ -694,7 +720,19 @@ def validation_step(self, batch, batch_idx): """ save_segmentation_output = False output = self.brepnet_step(batch, batch_idx, save_segmentation_output) - self.log("validation/loss", output["loss"].item(), on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) + + # The batch size is the number of faces + num_faces = self.num_faces_in_batch(batch) + + self.log( + "validation/loss", + output["loss"].item(), + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) return output @@ -729,7 +767,8 @@ def collate_epoch_outputs(self, outputs): return { "accuracy": accuracy, "mean_iou": mean_iou, - "per_class_iou": per_class_iou + "per_class_iou": per_class_iou, + "total_num_faces": total_num_faces } @@ -738,8 +777,25 @@ def validation_epoch_end(self, outputs): Collate information from all validation batches """ output = self.collate_epoch_outputs(outputs) - self.log("validation/accuracy", output["accuracy"], on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) - self.log("validation/mean_iou", output["mean_iou"], on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) + num_faces = output["total_num_faces"] + self.log( + "validation/accuracy", + output["accuracy"], + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) + self.log( + "validation/mean_iou", + output["mean_iou"], + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) # If the segment names information is provided then log the # per-class IoU @@ -747,7 +803,15 @@ def validation_epoch_end(self, outputs): assert len(self.segment_names) == len(output["per_class_iou"]) for name, iou in zip(self.segment_names, output["per_class_iou"]): log_name = f"validation/{name}_iou" - self.log(log_name, iou, on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) + self.log( + log_name, + iou, + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) def test_step(self, batch, batch_idx): """ @@ -762,9 +826,26 @@ def test_epoch_end(self, outputs): Collate the results from all test batches """ output = self.collate_epoch_outputs(outputs) - - self.log("test/accuracy", output["accuracy"], on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) - self.log("test/mean_iou", output["mean_iou"], on_step=False, on_epoch=True, sync_dist=True, prog_bar=False) + num_faces = output["total_num_faces"] + + self.log( + "test/accuracy", + output["accuracy"], + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) + self.log( + "test/mean_iou", + output["mean_iou"], + batch_size=num_faces, + on_step=False, + on_epoch=True, + sync_dist=True, + prog_bar=False + ) # If the segment names information is provided then log the # per-class IoU @@ -916,4 +997,15 @@ def test_dataloader(self): def configure_optimizers(self): - return torch.optim.Adam(self.parameters(), lr = self.opts.learning_rate) \ No newline at end of file + return torch.optim.Adam(self.parameters(), lr = self.opts.learning_rate) + + + def num_faces_in_batch(self, batch): + """ + Find the number of B-Rep faces in this batch + """ + Xf = batch["face_features"] + labels = batch["labels"] + num_faces = labels.size(0) + assert num_faces == Xf.size(0), "Xf tensor must have size equal to num_faces" + return num_faces \ No newline at end of file diff --git a/notebooks/brepnet_input_features_similarity_search.ipynb b/notebooks/brepnet_input_features_similarity_search.ipynb index 3d0ec9b..e515dbf 100644 --- a/notebooks/brepnet_input_features_similarity_search.ipynb +++ b/notebooks/brepnet_input_features_similarity_search.ipynb @@ -152,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "id": "68fd06c7", "metadata": {}, "outputs": [], @@ -171,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 6, "id": "88f6c24a", "metadata": { "scrolled": false @@ -187,7 +187,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "388371b520d849e5bcbee05f505b5d7d", + "model_id": "46ed98da437a4ab59fdf88273da9ef8c", "version_major": 2, "version_minor": 0 }, @@ -208,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "id": "2d6321f8", "metadata": {}, "outputs": [], @@ -218,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "id": "72336c63", "metadata": { "scrolled": false @@ -240,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 10, "id": "b5d63d32", "metadata": {}, "outputs": [], @@ -284,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 11, "id": "664c4f00", "metadata": {}, "outputs": [ @@ -292,7 +292,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Interval [0.0, 11.654363636270176]\n" + "Interval [0.0, 21.304689088927404]\n" ] } ], @@ -313,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 12, "id": "5390a62a", "metadata": { "scrolled": false @@ -330,7 +330,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9ea2ff4959643c9b789c6ad8601b140", + "model_id": "e6116f9fdf0647c88f044a18bda8c6f0", "version_major": 2, "version_minor": 0 }, @@ -345,14 +345,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "19\n", - "Close file 52890_dc92327c_3\n" + "0\n", + "Close file 21492_8bd34fc1_15\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58a6f6b2f5a3421b86f75f6e2a4cb716", + "model_id": "ab77ba55c8a54e38b94bd35e87e60d47", "version_major": 2, "version_minor": 0 }, @@ -367,14 +367,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "7\n", - "Close file 30274_ca0d10b2_1\n" + "9\n", + "Close file 56436_2a8fc254_3\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a5c1ea406524e2b862a772e182d48df", + "model_id": "1539d1dd803c4b5cb8303b648f70176e", "version_major": 2, "version_minor": 0 }, @@ -389,14 +389,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "14\n", - "Close file 148082_8b644daf_0\n" + "10\n", + "Close file 37117_89aac9d4_9\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02fb24f9c41645fd9099f1851b0c7fda", + "model_id": "9d0c888ba4de463c9a279d00773dcd9a", "version_major": 2, "version_minor": 0 }, @@ -411,14 +411,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "11\n", - "Close file 134103_d89213ee_0\n" + "20\n", + "Close file 44647_d83249a9_0\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f864c150434e49708d2dc4fa8653bbe6", + "model_id": "699f75403047422e96ea520910127174", "version_major": 2, "version_minor": 0 }, @@ -441,22 +441,6 @@ " dists_to_view = min_dists_for_each_face[index]\n", " close_viewer.display_faces_with_heatmap(dists_to_view, interval)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a5ea0cc1", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fe4bcfd5", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -475,7 +459,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/notebooks/brepnet_similarity_search.ipynb b/notebooks/brepnet_similarity_search.ipynb index 9c3d231..0e043ea 100644 --- a/notebooks/brepnet_similarity_search.ipynb +++ b/notebooks/brepnet_similarity_search.ipynb @@ -82,16 +82,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py:1295: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n", - " \"GPU available but not used. Set the gpus flag in your trainer\"\n", - "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py:106: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py:1585: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n", + " \"GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\"\n", + "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py:133: UserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " f\"The dataloader, {name}, does not have many workers which may be a bottleneck.\"\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "addd3e88662c4f408de611d9b2324c22", + "model_id": "b9f8b40a89a24a3fbeb04862392b830a", "version_major": 2, "version_minor": 0 }, @@ -110,7 +110,7 @@ "DATALOADER:0 TEST RESULTS\n", "{'test/Chamfer_iou': 0.8418079018592834,\n", " 'test/CutEnd_iou': 0.7290322780609131,\n", - " 'test/CutSide_iou': 0.810285747051239,\n", + " 'test/CutSide_iou': 0.8102856874465942,\n", " 'test/ExtrudeEnd_iou': 0.7076271176338196,\n", " 'test/ExtrudeSide_iou': 0.8099502325057983,\n", " 'test/Fillet_iou': 0.9281437397003174,\n", @@ -192,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "id": "13fd9a92", "metadata": { "scrolled": false @@ -205,17 +205,10 @@ "Viewing example 21242_6c2af7c2_7\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:The `topods_solid` was deprecated since v0.01. It will be removed in v0.03.\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b0e5bc17e824410ea767a3db8a6c93ea", + "model_id": "bb42859f955b4f5d9fa2ce6af7898a0b", "version_major": 2, "version_minor": 0 }, @@ -236,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 14, "id": "f1893d90", "metadata": {}, "outputs": [], @@ -246,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 15, "id": "a98a6c49", "metadata": {}, "outputs": [], @@ -261,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "id": "6a563b97", "metadata": { "scrolled": false @@ -309,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 17, "id": "4c64b822", "metadata": {}, "outputs": [ @@ -317,7 +310,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Interval [0.0, 21.425180436508676]\n" + "Interval [0.0, 18.090275079197]\n" ] } ], @@ -338,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 18, "id": "893187c8", "metadata": { "scrolled": false @@ -355,7 +348,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4c18162b667417da3fae7a6b2d93543", + "model_id": "340dc280c2594ac3b40371d5f8c1d871", "version_major": 2, "version_minor": 0 }, @@ -370,14 +363,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "24\n", - "Close file 30274_ca0d10b2_1\n" + "22\n", + "Close file 56436_2a8fc254_3\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fa6c8517efca4146884095372ea22ac5", + "model_id": "a0f1deac6c59496da6b77cd96135e3cd", "version_major": 2, "version_minor": 0 }, @@ -392,14 +385,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "0\n", - "Close file 52890_dc92327c_3\n" + "3\n", + "Close file 24051_4852a192_5\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "57fad3aec2544c55b1e1adf79faa5910", + "model_id": "e3aae6cd4682480ab67457dbf75994ac", "version_major": 2, "version_minor": 0 }, @@ -414,14 +407,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "23\n", - "Close file 148082_8b644daf_0\n" + "5\n", + "Close file 44647_d83249a9_0\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf14e029187048a595f17a49692e27ac", + "model_id": "c5000d0d66da4b4681bd2ca7eb8a63f6", "version_major": 2, "version_minor": 0 }, @@ -436,14 +429,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "1\n", - "Close file 139656_d270af2a_0\n" + "15\n", + "Close file 21492_8bd34fc1_15\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e28c042d0886427085f344ab1fbf4723", + "model_id": "0312716185a849048925c23bae453aeb", "version_major": 2, "version_minor": 0 }, @@ -466,14 +459,6 @@ " dists_to_view = min_dists_for_each_face[index]\n", " close_viewer.display_faces_with_heatmap(dists_to_view, interval)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6c72a8b7", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -492,7 +477,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/notebooks/find_and_display_segmentation.ipynb b/notebooks/find_and_display_segmentation.ipynb index c30e1cb..d10d90f 100644 --- a/notebooks/find_and_display_segmentation.ipynb +++ b/notebooks/find_and_display_segmentation.ipynb @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "cb69622e", "metadata": {}, "outputs": [ @@ -58,8 +58,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "0it [00:00, ?it/s]\n", - "GPU available: False, used: False\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25/25 [01:51<00:00, 4.46s/it]\n", + "GPU available: True, used: False\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n" ] @@ -76,14 +76,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py:106: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py:1585: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n", + " \"GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\"\n", + "/home/lambouj/anaconda3/envs/brepnet/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py:133: UserWarning: The dataloader, test_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", " f\"The dataloader, {name}, does not have many workers which may be a bottleneck.\"\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b49acd5a5d7c4820aba106c82a9d991d", + "model_id": "7b33a6645f51441aaafbae72958bd5f5", "version_major": 2, "version_minor": 0 }, @@ -102,7 +104,7 @@ "DATALOADER:0 TEST RESULTS\n", "{'test/Chamfer_iou': 0.8418079018592834,\n", " 'test/CutEnd_iou': 0.7290322780609131,\n", - " 'test/CutSide_iou': 0.810285747051239,\n", + " 'test/CutSide_iou': 0.8102856874465942,\n", " 'test/ExtrudeEnd_iou': 0.7076271176338196,\n", " 'test/ExtrudeSide_iou': 0.8099502325057983,\n", " 'test/Fillet_iou': 0.9281437397003174,\n", @@ -134,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "id": "c27a8a70", "metadata": {}, "outputs": [ @@ -143,7 +145,7 @@ "output_type": "stream", "text": [ "We found 25 example files\n", - "Viewing example 30419_d55a0a22_2\n" + "Viewing example 142473_f37f7cba_0\n" ] } ], @@ -152,7 +154,7 @@ "step_file_stems = [ f.stem for f in step_folder.glob(\"*.stp\")]\n", "print(f\"We found {len(step_file_stems)} example files\")\n", "\n", - "example_index = 6\n", + "example_index = 0\n", "file_stem = step_file_stems[example_index]\n", "print(f\"Viewing example {file_stem}\")\n", "viewer = JupyterSegmentationViewer(file_stem, step_folder, seg_folder=step_folder, logit_folder=logits_folder)" @@ -168,14 +170,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "id": "407a0d40", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3bed5667b9c34bf0b4daef8d3428c3ff", + "model_id": "5bb6b5b2123b4ebeb3a67dd755799ba0", "version_major": 2, "version_minor": 0 }, @@ -201,14 +203,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "id": "0d85f794", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c9ef48d26804470af7add1ca1d7ed45", + "model_id": "4c3e9c64b06942e7a7dd5b3f3836a5b6", "version_major": 2, "version_minor": 0 }, @@ -234,14 +236,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "id": "fb95f0c2", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c33cb7f61c7745d28c79f0e00e1413f9", + "model_id": "d6bfd55d377f43f588cc02bebacc7518", "version_major": 2, "version_minor": 0 }, @@ -267,14 +269,14 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "id": "d28594ae", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "81c7c323c5104bacaa326f81f1de7b76", + "model_id": "fe523e7fd8a54fa69ce2db6ae10ad03f", "version_major": 2, "version_minor": 0 }, @@ -289,14 +291,6 @@ "source": [ "viewer.view_errors_in_segmentation()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b2e1206d", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -315,7 +309,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/notebooks/step_viewer_example.ipynb b/notebooks/step_viewer_example.ipynb index a3c2af1..d2c307a 100644 --- a/notebooks/step_viewer_example.ipynb +++ b/notebooks/step_viewer_example.ipynb @@ -78,13 +78,6 @@ "id": "8b77e9b0", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:The `topods_solid` was deprecated since v0.01. It will be removed in v0.03.\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -117,7 +110,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0577c349f49c424cabf8404d7d91c693", + "model_id": "068375981651401c949f900e6d883337", "version_major": 2, "version_minor": 0 }, @@ -150,7 +143,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c6d6c4efec0d404fabfce2b1dc8c67b6", + "model_id": "7631c2b7e0d34610b9de76e9898bd6c9", "version_major": 2, "version_minor": 0 }, @@ -165,14 +158,6 @@ "source": [ "viewer.view_segmentation()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f56e5c9b", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -191,7 +176,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/notebooks/view_npz_files.ipynb b/notebooks/view_npz_files.ipynb index 4b75d1b..12abe11 100644 --- a/notebooks/view_npz_files.ipynb +++ b/notebooks/view_npz_files.ipynb @@ -74,9 +74,7 @@ "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/25 [00:00