From ed22e031f76ae86c0453964cd9c5eaae0ee7eb34 Mon Sep 17 00:00:00 2001 From: Lior Kamrat Date: Thu, 14 Nov 2024 21:44:18 -0800 Subject: [PATCH] LK CHM Docs review #12 - Cerebral doc --- .../contoso_hypermarket/cerebral/_index.md | 41 +++---------------- 1 file changed, 6 insertions(+), 35 deletions(-) diff --git a/docs/azure_jumpstart_ag/contoso_hypermarket/cerebral/_index.md b/docs/azure_jumpstart_ag/contoso_hypermarket/cerebral/_index.md index 28f0facf..321ada10 100644 --- a/docs/azure_jumpstart_ag/contoso_hypermarket/cerebral/_index.md +++ b/docs/azure_jumpstart_ag/contoso_hypermarket/cerebral/_index.md @@ -105,13 +105,10 @@ This transparency helps users understand how Cerebral processes their requests w ![Enable debug](./img/debug.png) -> **Important**: -> - For detailed information about data types and how Cerebral processes different sources of information, see the [Unified Data Sources](#unified-data-sources) section. -> - For examples of how to formulate questions and understand query types, refer to our comprehensive list of [Example Queries](#example-questions-by-category). -> - Common questions include: -> - Documentation: "How do I calibrate Scale-02?" -> - Commercial: "What are our top 5 selling products this week?" -> - Real-time: "What's the current temperature of HVAC unit 02?" +> **Note**: For detailed information about data types and how Cerebral processes different sources of information, see the [Unified Data Sources](#unified-data-sources) section. For examples of how to formulate questions and understand query types, refer to our comprehensive list of [Example Queries](#example-questions-by-category). Common questions include: +> Documentation: "How do I calibrate Scale-02?" +> Commercial: "What are our top 5 selling products this week?" +> Real-time: "What's the current temperature of HVAC unit 02?" ### Data Integration and Query Processing @@ -150,17 +147,6 @@ The following table details the equipment types and metrics being simulated thro | LightingSystem | `LightingSystem{01..XX}` | - brightness_level
- power_usage_kwh
- status | - Light intensity
- Power consumption
- Operational status | | AutomatedCheckout | `AutomatedCheckout{01..XX}` | - items_scanned
- total_amount_usd
- payment_method
- errors
- queueLength
- avgWaitTime | - Scanning activity
- Transaction values
- Error states
- Queue metrics | --> -| Equipment Type | Device Format | Fields Monitored | Example Metrics | -|--------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| -| Refrigerator | `Refrigerator{01..XX}` | | | -| Scale | `Scale{01..XX}` | | | -| POS | `POS{01..XX}` | | | -| SmartShelf | `SmartShelf{01..XX}` | | | -| HVAC | `HVAC{01..XX}` | | | -| LightingSystem | `LightingSystem{01..XX}` | | | -| AutomatedCheckout | `AutomatedCheckout{01..XX}` | | | - - > **Note**: The simulation generates realistic data streams for each device type, enabling testing, demonstrations, and development. Device IDs are formatted with sequential numbering (e.g., Refrigerator01, Refrigerator02). All metrics are published to the MQTT broker and InfluxDB and can be queried through Cerebral using natural language. **SQL Server** handles all commercial operations data, providing a robust foundation for business intelligence. From transaction processing to inventory management, this relational database ensures accurate tracking of sales patterns, stock levels, and customer interactions, enabling data-driven decision making across the organization. @@ -180,14 +166,6 @@ The following table details the relational database structure used in Contoso Hy | Stores | Store locations | - store_id VARCHAR(10)
- city VARCHAR(100)
- state VARCHAR(50)
- country VARCHAR(100) | - 'SEA'
- 'Seattle'
- 'WA'
- 'United States' | | DeviceMetrics | Equipment telemetry history | - id INT
- timestamp DATETIME2
- device_id VARCHAR(50)
- equipment_type VARCHAR(50)
- metric_name VARCHAR(100)
- metric_value DECIMAL(18,4)
- metric_unit VARCHAR(20) | - 1
- '2024-03-12 15:01:00'
- 'HVAC01'
- 'HVAC'
- 'temperature'
- 22.5
- 'celsius' | --> -| Table Name | Description | Key Fields | Example Data | -|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| -| Sales | Transaction records | | | -| Products | Product catalog | | | -| Inventory | Current stock levels | | | -| Stores | Store locations | | | -| DeviceMetrics | Equipment telemetry history | | | - **Chroma Vector Database** serves as the foundation for Cerebral's documentation intelligence. By indexing technical manuals, maintenance procedures, and operational guides, it enables sophisticated semantic search capabilities through Retrieval Augmented Generation (RAG). This allows Cerebral to understand the context and intent behind documentation queries, delivering precise and relevant information to users. - Stores and indexes technical documentation @@ -230,18 +208,11 @@ Current supported industries and roles include: | Automotive | - Line Supervisor
- Quality Inspector
- Maintenance Technician | - Assembly line monitoring
- Quality assurance checks
- Equipment maintenance | | Hypermarket | - Store Manager
- Shopper
- Maintenance Worker | - Sales analytics
- Product location
- Facility maintenance | --> -| Industry | Roles | Examples | -|----------------|-----------------------------------------------------------------------------------------|----------------------------------------------------| -| Retail | | | -| Manufacturing | | | -| Automotive | | | -| Hypermarket | | | - ### Example Questions by Category > **Note**: These examples represent common queries that Cerebral can handle. The system understands variations in phrasing and can maintain context through follow-up questions. For more information about data sources and query processing, see the [Unified Data Sources](#unified-data-sources) section. -| Category | Query Example | Expected Response Type | + ### Prompt Catalog System