diff --git a/sdk/cognitiveservices/Vision.Face/CHANGELOG.md b/sdk/cognitiveservices/Vision.Face/CHANGELOG.md index 99a3a13665824..0be7b94dd73c0 100644 --- a/sdk/cognitiveservices/Vision.Face/CHANGELOG.md +++ b/sdk/cognitiveservices/Vision.Face/CHANGELOG.md @@ -1,7 +1,7 @@ # Release History -## 2.7.0-preview.2 (Unreleased) - +## 2.7.0-preview.2 (2021-11-15) +- Add support for new detection attribute `qualityForRecognition` ## 2.7.0-preview.1 (2021-03-25) diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperations.cs index fca90c9f7e997..d33e19170fcbd 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperations.cs @@ -114,7 +114,7 @@ public FaceListOperations(FaceClient client) /// /// A response object containing the response body and response headers. /// - public async Task CreateWithHttpMessagesAsync(string faceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) + public async Task CreateWithHttpMessagesAsync(string faceListId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) { if (Client.Endpoint == null) { @@ -135,12 +135,20 @@ public FaceListOperations(FaceClient client) throw new ValidationException(ValidationRules.Pattern, "faceListId", "^[a-z0-9-_]+$"); } } + if (name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "name"); + } if (name != null) { if (name.Length > 128) { throw new ValidationException(ValidationRules.MaxLength, "name", 128); } + if (name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "name", 1); + } } if (userData != null) { diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperationsExtensions.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperationsExtensions.cs index b2752e1041f55..5a2dc8815e82e 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperationsExtensions.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceListOperationsExtensions.cs @@ -74,7 +74,7 @@ public static partial class FaceListOperationsExtensions /// /// The cancellation token. /// - public static async Task CreateAsync(this IFaceListOperations operations, string faceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) + public static async Task CreateAsync(this IFaceListOperations operations, string faceListId, string name, string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) { (await operations.CreateWithHttpMessagesAsync(faceListId, name, userData, recognitionModel, null, cancellationToken).ConfigureAwait(false)).Dispose(); } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperations.cs index a004ab363f3b4..a12f1f5c35ca2 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperations.cs @@ -541,7 +541,8 @@ public FaceOperations(FaceClient client) /// should not be provided at the same time. /// /// - /// The range of maxNumOfCandidatesReturned is between 1 and 5 (default is 1). + /// The range of maxNumOfCandidatesReturned is between 1 and 100 (default is + /// 1). /// /// /// Confidence threshold of identification, used to judge whether one face @@ -608,9 +609,9 @@ public FaceOperations(FaceClient client) throw new ValidationException(ValidationRules.Pattern, "largePersonGroupId", "^[a-z0-9-_]+$"); } } - if (maxNumOfCandidatesReturned > 5) + if (maxNumOfCandidatesReturned > 100) { - throw new ValidationException(ValidationRules.InclusiveMaximum, "maxNumOfCandidatesReturned", 5); + throw new ValidationException(ValidationRules.InclusiveMaximum, "maxNumOfCandidatesReturned", 100); } if (maxNumOfCandidatesReturned < 1) { @@ -933,8 +934,9 @@ public FaceOperations(FaceClient client) /// faceIdTimeToLive after the original detection call. /// * Optional parameters include faceId, landmarks, and attributes. Attributes /// include age, gender, headPose, smile, facialHair, glasses, emotion, hair, - /// makeup, occlusion, accessories, blur, exposure, noise, and mask. Some of - /// the results returned for specific attributes may not be highly accurate. + /// makeup, occlusion, accessories, blur, exposure, noise, mask, and + /// qualityForRecognition. Some of the results returned for specific attributes + /// may not be highly accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. The /// allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by face @@ -979,10 +981,13 @@ public FaceOperations(FaceClient client) /// comma-separated string like "returnFaceAttributes=age,gender". The /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, glasses, - /// emotion, hair, makeup, occlusion, accessories, blur, exposure, and noise. - /// While 'detection_02' does not support any attributes and 'detection_03' - /// only supports mask. Note that each face attribute analysis has additional - /// computational and time cost. + /// emotion, hair, makeup, occlusion, accessories, blur, exposure, noise, and + /// qualityForRecognition. While 'detection_02' does not support any attributes + /// and 'detection_03' only supports mask and qualityForRecognition. + /// Additionally, qualityForRecognition is only supported when the + /// 'recognitionModel' is specified as 'recognition_03' or 'recognition_04'. + /// Note that each face attribute analysis has additional computational and + /// time cost. /// /// /// Name of recognition model. Recognition model is used when the face features @@ -1431,8 +1436,9 @@ public FaceOperations(FaceClient client) /// faceIdTimeToLive after the original detection call. /// * Optional parameters include faceId, landmarks, and attributes. Attributes /// include age, gender, headPose, smile, facialHair, glasses, emotion, hair, - /// makeup, occlusion, accessories, blur, exposure, noise, and mask. Some of - /// the results returned for specific attributes may not be highly accurate. + /// makeup, occlusion, accessories, blur, exposure, noise, mask, and + /// qualityForRecognition. Some of the results returned for specific attributes + /// may not be highly accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. The /// allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by face @@ -1476,10 +1482,13 @@ public FaceOperations(FaceClient client) /// comma-separated string like "returnFaceAttributes=age,gender". The /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, glasses, - /// emotion, hair, makeup, occlusion, accessories, blur, exposure, and noise. - /// While 'detection_02' does not support any attributes and 'detection_03' - /// only supports mask. Note that each face attribute analysis has additional - /// computational and time cost. + /// emotion, hair, makeup, occlusion, accessories, blur, exposure, noise, and + /// qualityForRecognition. While 'detection_02' does not support any attributes + /// and 'detection_03' only supports mask and qualityForRecognition. + /// Additionally, qualityForRecognition is only supported when the + /// 'recognitionModel' is specified as 'recognition_03' or 'recognition_04'. + /// Note that each face attribute analysis has additional computational and + /// time cost. /// /// /// Name of recognition model. Recognition model is used when the face features diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperationsExtensions.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperationsExtensions.cs index e6c9463ac2f87..5768943769999 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperationsExtensions.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/FaceOperationsExtensions.cs @@ -185,7 +185,8 @@ public static partial class FaceOperationsExtensions /// should not be provided at the same time. /// /// - /// The range of maxNumOfCandidatesReturned is between 1 and 5 (default is 1). + /// The range of maxNumOfCandidatesReturned is between 1 and 100 (default is + /// 1). /// /// /// Confidence threshold of identification, used to judge whether one face @@ -253,8 +254,9 @@ public static partial class FaceOperationsExtensions /// faceIdTimeToLive after the original detection call. /// * Optional parameters include faceId, landmarks, and attributes. Attributes /// include age, gender, headPose, smile, facialHair, glasses, emotion, hair, - /// makeup, occlusion, accessories, blur, exposure, noise, and mask. Some of - /// the results returned for specific attributes may not be highly accurate. + /// makeup, occlusion, accessories, blur, exposure, noise, mask, and + /// qualityForRecognition. Some of the results returned for specific attributes + /// may not be highly accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. The /// allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by face @@ -302,10 +304,13 @@ public static partial class FaceOperationsExtensions /// comma-separated string like "returnFaceAttributes=age,gender". The /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, glasses, - /// emotion, hair, makeup, occlusion, accessories, blur, exposure, and noise. - /// While 'detection_02' does not support any attributes and 'detection_03' - /// only supports mask. Note that each face attribute analysis has additional - /// computational and time cost. + /// emotion, hair, makeup, occlusion, accessories, blur, exposure, noise, and + /// qualityForRecognition. While 'detection_02' does not support any attributes + /// and 'detection_03' only supports mask and qualityForRecognition. + /// Additionally, qualityForRecognition is only supported when the + /// 'recognitionModel' is specified as 'recognition_03' or 'recognition_04'. + /// Note that each face attribute analysis has additional computational and + /// time cost. /// /// /// Name of recognition model. Recognition model is used when the face features @@ -396,8 +401,9 @@ public static partial class FaceOperationsExtensions /// faceIdTimeToLive after the original detection call. /// * Optional parameters include faceId, landmarks, and attributes. Attributes /// include age, gender, headPose, smile, facialHair, glasses, emotion, hair, - /// makeup, occlusion, accessories, blur, exposure, noise, and mask. Some of - /// the results returned for specific attributes may not be highly accurate. + /// makeup, occlusion, accessories, blur, exposure, noise, mask, and + /// qualityForRecognition. Some of the results returned for specific attributes + /// may not be highly accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. The /// allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by face @@ -444,10 +450,13 @@ public static partial class FaceOperationsExtensions /// comma-separated string like "returnFaceAttributes=age,gender". The /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, glasses, - /// emotion, hair, makeup, occlusion, accessories, blur, exposure, and noise. - /// While 'detection_02' does not support any attributes and 'detection_03' - /// only supports mask. Note that each face attribute analysis has additional - /// computational and time cost. + /// emotion, hair, makeup, occlusion, accessories, blur, exposure, noise, and + /// qualityForRecognition. While 'detection_02' does not support any attributes + /// and 'detection_03' only supports mask and qualityForRecognition. + /// Additionally, qualityForRecognition is only supported when the + /// 'recognitionModel' is specified as 'recognition_03' or 'recognition_04'. + /// Note that each face attribute analysis has additional computational and + /// time cost. /// /// /// Name of recognition model. Recognition model is used when the face features diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceListOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceListOperations.cs index 34500b1254232..445ab7da2266a 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceListOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceListOperations.cs @@ -85,7 +85,7 @@ public partial interface IFaceListOperations /// /// Thrown when a required parameter is null /// - Task CreateWithHttpMessagesAsync(string faceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); + Task CreateWithHttpMessagesAsync(string faceListId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); /// /// Retrieve a face list’s faceListId, name, userData, recognitionModel /// and faces in the face list. diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceOperations.cs index b3c0862cb979c..08d42781ac1d3 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/IFaceOperations.cs @@ -196,8 +196,8 @@ public partial interface IFaceOperations /// largePersonGroupId should not be provided at the same time. /// /// - /// The range of maxNumOfCandidatesReturned is between 1 and 5 (default - /// is 1). + /// The range of maxNumOfCandidatesReturned is between 1 and 100 + /// (default is 1). /// /// /// Confidence threshold of identification, used to judge whether one @@ -273,8 +273,9 @@ public partial interface IFaceOperations /// * Optional parameters include faceId, landmarks, and attributes. /// Attributes include age, gender, headPose, smile, facialHair, /// glasses, emotion, hair, makeup, occlusion, accessories, blur, - /// exposure, noise, and mask. Some of the results returned for - /// specific attributes may not be highly accurate. + /// exposure, noise, mask, and qualityForRecognition. Some of the + /// results returned for specific attributes may not be highly + /// accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. /// The allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by @@ -324,9 +325,12 @@ public partial interface IFaceOperations /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, /// glasses, emotion, hair, makeup, occlusion, accessories, blur, - /// exposure, and noise. While 'detection_02' does not support any - /// attributes and 'detection_03' only supports mask. Note that each - /// face attribute analysis has additional computational and time cost. + /// exposure, noise, and qualityForRecognition. While 'detection_02' + /// does not support any attributes and 'detection_03' only supports + /// mask and qualityForRecognition. Additionally, qualityForRecognition + /// is only supported when the 'recognitionModel' is specified as + /// 'recognition_03' or 'recognition_04'. Note that each face attribute + /// analysis has additional computational and time cost. /// /// /// Name of recognition model. Recognition model is used when the face @@ -427,8 +431,9 @@ public partial interface IFaceOperations /// * Optional parameters include faceId, landmarks, and attributes. /// Attributes include age, gender, headPose, smile, facialHair, /// glasses, emotion, hair, makeup, occlusion, accessories, blur, - /// exposure, noise, and mask. Some of the results returned for - /// specific attributes may not be highly accurate. + /// exposure, noise, mask, and qualityForRecognition. Some of the + /// results returned for specific attributes may not be highly + /// accurate. /// * JPEG, PNG, GIF (the first frame), and BMP format are supported. /// The allowed image file size is from 1KB to 6MB. /// * Up to 100 faces can be returned for an image. Faces are ranked by @@ -477,9 +482,12 @@ public partial interface IFaceOperations /// available attributes depends on the 'detectionModel' specified. /// 'detection_01' supports age, gender, headPose, smile, facialHair, /// glasses, emotion, hair, makeup, occlusion, accessories, blur, - /// exposure, and noise. While 'detection_02' does not support any - /// attributes and 'detection_03' only supports mask. Note that each - /// face attribute analysis has additional computational and time cost. + /// exposure, noise, and qualityForRecognition. While 'detection_02' + /// does not support any attributes and 'detection_03' only supports + /// mask and qualityForRecognition. Additionally, qualityForRecognition + /// is only supported when the 'recognitionModel' is specified as + /// 'recognition_03' or 'recognition_04'. Note that each face attribute + /// analysis has additional computational and time cost. /// /// /// Name of recognition model. Recognition model is used when the face diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/ILargeFaceListOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/ILargeFaceListOperations.cs index 6b9fc28671533..60492bbbd7ffc 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/ILargeFaceListOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/ILargeFaceListOperations.cs @@ -88,7 +88,7 @@ public partial interface ILargeFaceListOperations /// /// Thrown when a required parameter is null /// - Task CreateWithHttpMessagesAsync(string largeFaceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); + Task CreateWithHttpMessagesAsync(string largeFaceListId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); /// /// Retrieve a large face list’s largeFaceListId, name, userData and /// recognitionModel. @@ -212,6 +212,14 @@ public partial interface ILargeFaceListOperations /// A value indicating whether the operation should return /// 'recognitionModel' in response. /// + /// + /// Starting large face list id to return (used to list a range of + /// large face lists). + /// + /// + /// Number of large face lists to return starting with the large face + /// list id indicated by the 'start' parameter. + /// /// /// The headers that will be added to request. /// @@ -227,7 +235,7 @@ public partial interface ILargeFaceListOperations /// /// Thrown when a required parameter is null /// - Task>> ListWithHttpMessagesAsync(bool? returnRecognitionModel = false, Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); + Task>> ListWithHttpMessagesAsync(bool? returnRecognitionModel = false, string start = default(string), int? top = default(int?), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); /// /// Queue a large face list training task, the training task may not be /// started immediately. diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/ILargePersonGroupOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/ILargePersonGroupOperations.cs index e1813ad30de8d..7f0d706352009 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/ILargePersonGroupOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/ILargePersonGroupOperations.cs @@ -83,7 +83,7 @@ public partial interface ILargePersonGroupOperations /// /// Thrown when a required parameter is null /// - Task CreateWithHttpMessagesAsync(string largePersonGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); + Task CreateWithHttpMessagesAsync(string largePersonGroupId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); /// /// Delete an existing large person group. Persisted face features of /// all people in the large person group will also be deleted. diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/IPersonGroupOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/IPersonGroupOperations.cs index 1a8f493005934..36c4c3e7c566d 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/IPersonGroupOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/IPersonGroupOperations.cs @@ -83,7 +83,7 @@ public partial interface IPersonGroupOperations /// /// Thrown when a required parameter is null /// - Task CreateWithHttpMessagesAsync(string personGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); + Task CreateWithHttpMessagesAsync(string personGroupId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)); /// /// Delete an existing person group. Persisted face features of all /// people in the person group will also be deleted. diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperations.cs index 9a23246a6504b..87b65e6778e3b 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperations.cs @@ -118,7 +118,7 @@ public LargeFaceListOperations(FaceClient client) /// /// A response object containing the response body and response headers. /// - public async Task CreateWithHttpMessagesAsync(string largeFaceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) + public async Task CreateWithHttpMessagesAsync(string largeFaceListId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) { if (Client.Endpoint == null) { @@ -139,12 +139,20 @@ public LargeFaceListOperations(FaceClient client) throw new ValidationException(ValidationRules.Pattern, "largeFaceListId", "^[a-z0-9-_]+$"); } } + if (name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "name"); + } if (name != null) { if (name.Length > 128) { throw new ValidationException(ValidationRules.MaxLength, "name", 128); } + if (name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "name", 1); + } } if (userData != null) { @@ -952,6 +960,14 @@ public LargeFaceListOperations(FaceClient client) /// A value indicating whether the operation should return 'recognitionModel' /// in response. /// + /// + /// Starting large face list id to return (used to list a range of large face + /// lists). + /// + /// + /// Number of large face lists to return starting with the large face list id + /// indicated by the 'start' parameter. + /// /// /// Headers that will be added to request. /// @@ -973,12 +989,20 @@ public LargeFaceListOperations(FaceClient client) /// /// A response object containing the response body and response headers. /// - public async Task>> ListWithHttpMessagesAsync(bool? returnRecognitionModel = false, Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) + public async Task>> ListWithHttpMessagesAsync(bool? returnRecognitionModel = false, string start = default(string), int? top = default(int?), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) { if (Client.Endpoint == null) { throw new ValidationException(ValidationRules.CannotBeNull, "this.Client.Endpoint"); } + if (top > 1000) + { + throw new ValidationException(ValidationRules.InclusiveMaximum, "top", 1000); + } + if (top < 1) + { + throw new ValidationException(ValidationRules.InclusiveMinimum, "top", 1); + } // Tracing bool _shouldTrace = ServiceClientTracing.IsEnabled; string _invocationId = null; @@ -987,6 +1011,8 @@ public LargeFaceListOperations(FaceClient client) _invocationId = ServiceClientTracing.NextInvocationId.ToString(); Dictionary tracingParameters = new Dictionary(); tracingParameters.Add("returnRecognitionModel", returnRecognitionModel); + tracingParameters.Add("start", start); + tracingParameters.Add("top", top); tracingParameters.Add("cancellationToken", cancellationToken); ServiceClientTracing.Enter(_invocationId, this, "List", tracingParameters); } @@ -999,6 +1025,14 @@ public LargeFaceListOperations(FaceClient client) { _queryParameters.Add(string.Format("returnRecognitionModel={0}", System.Uri.EscapeDataString(Rest.Serialization.SafeJsonConvert.SerializeObject(returnRecognitionModel, Client.SerializationSettings).Trim('"')))); } + if (start != null) + { + _queryParameters.Add(string.Format("start={0}", System.Uri.EscapeDataString(start))); + } + if (top != null) + { + _queryParameters.Add(string.Format("top={0}", System.Uri.EscapeDataString(Rest.Serialization.SafeJsonConvert.SerializeObject(top, Client.SerializationSettings).Trim('"')))); + } if (_queryParameters.Count > 0) { _url += "?" + string.Join("&", _queryParameters); diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperationsExtensions.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperationsExtensions.cs index dbc4f17de01da..c41f97283cccf 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperationsExtensions.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/LargeFaceListOperationsExtensions.cs @@ -78,7 +78,7 @@ public static partial class LargeFaceListOperationsExtensions /// /// The cancellation token. /// - public static async Task CreateAsync(this ILargeFaceListOperations operations, string largeFaceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) + public static async Task CreateAsync(this ILargeFaceListOperations operations, string largeFaceListId, string name, string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) { (await operations.CreateWithHttpMessagesAsync(largeFaceListId, name, userData, recognitionModel, null, cancellationToken).ConfigureAwait(false)).Dispose(); } @@ -196,12 +196,20 @@ public static partial class LargeFaceListOperationsExtensions /// A value indicating whether the operation should return 'recognitionModel' /// in response. /// + /// + /// Starting large face list id to return (used to list a range of large face + /// lists). + /// + /// + /// Number of large face lists to return starting with the large face list id + /// indicated by the 'start' parameter. + /// /// /// The cancellation token. /// - public static async Task> ListAsync(this ILargeFaceListOperations operations, bool? returnRecognitionModel = false, CancellationToken cancellationToken = default(CancellationToken)) + public static async Task> ListAsync(this ILargeFaceListOperations operations, bool? returnRecognitionModel = false, string start = default(string), int? top = default(int?), CancellationToken cancellationToken = default(CancellationToken)) { - using (var _result = await operations.ListWithHttpMessagesAsync(returnRecognitionModel, null, cancellationToken).ConfigureAwait(false)) + using (var _result = await operations.ListWithHttpMessagesAsync(returnRecognitionModel, start, top, null, cancellationToken).ConfigureAwait(false)) { return _result.Body; } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperations.cs index 292b0c76ad05c..95500d2f91767 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperations.cs @@ -114,7 +114,7 @@ public LargePersonGroupOperations(FaceClient client) /// /// A response object containing the response body and response headers. /// - public async Task CreateWithHttpMessagesAsync(string largePersonGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) + public async Task CreateWithHttpMessagesAsync(string largePersonGroupId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) { if (Client.Endpoint == null) { @@ -135,12 +135,20 @@ public LargePersonGroupOperations(FaceClient client) throw new ValidationException(ValidationRules.Pattern, "largePersonGroupId", "^[a-z0-9-_]+$"); } } + if (name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "name"); + } if (name != null) { if (name.Length > 128) { throw new ValidationException(ValidationRules.MaxLength, "name", 128); } + if (name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "name", 1); + } } if (userData != null) { diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperationsExtensions.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperationsExtensions.cs index 33c23e8cae79f..4cf9bd31dcadb 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperationsExtensions.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/LargePersonGroupOperationsExtensions.cs @@ -73,7 +73,7 @@ public static partial class LargePersonGroupOperationsExtensions /// /// The cancellation token. /// - public static async Task CreateAsync(this ILargePersonGroupOperations operations, string largePersonGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) + public static async Task CreateAsync(this ILargePersonGroupOperations operations, string largePersonGroupId, string name, string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) { (await operations.CreateWithHttpMessagesAsync(largePersonGroupId, name, userData, recognitionModel, null, cancellationToken).ConfigureAwait(false)).Dispose(); } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributeType.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributeType.cs index ac89ad267019a..ac5177ef6b160 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributeType.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributeType.cs @@ -50,7 +50,9 @@ public enum FaceAttributeType [EnumMember(Value = "noise")] Noise, [EnumMember(Value = "mask")] - Mask + Mask, + [EnumMember(Value = "qualityForRecognition")] + QualityForRecognition } internal static class FaceAttributeTypeEnumExtension { @@ -93,6 +95,8 @@ internal static string ToSerializedValue(this FaceAttributeType value) return "noise"; case FaceAttributeType.Mask: return "mask"; + case FaceAttributeType.QualityForRecognition: + return "qualityForRecognition"; } return null; } @@ -131,6 +135,8 @@ internal static string ToSerializedValue(this FaceAttributeType value) return FaceAttributeType.Noise; case "mask": return FaceAttributeType.Mask; + case "qualityForRecognition": + return FaceAttributeType.QualityForRecognition; } return null; } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributes.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributes.cs index 9f468c35e89fa..eee6feff15468 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributes.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceAttributes.cs @@ -60,7 +60,11 @@ public FaceAttributes() /// image. /// Properties describing the presence of a mask on /// a given face. - public FaceAttributes(double? age = default(double?), Gender? gender = default(Gender?), double? smile = default(double?), FacialHair facialHair = default(FacialHair), GlassesType? glasses = default(GlassesType?), HeadPose headPose = default(HeadPose), Emotion emotion = default(Emotion), Hair hair = default(Hair), Makeup makeup = default(Makeup), Occlusion occlusion = default(Occlusion), IList accessories = default(IList), Blur blur = default(Blur), Exposure exposure = default(Exposure), Noise noise = default(Noise), Mask mask = default(Mask)) + /// Properties describing the + /// overall image quality regarding whether the image being used in the + /// detection is of sufficient quality to attempt face recognition on. + /// Possible values include: 'Low', 'Medium', 'High' + public FaceAttributes(double? age = default(double?), Gender? gender = default(Gender?), double? smile = default(double?), FacialHair facialHair = default(FacialHair), GlassesType? glasses = default(GlassesType?), HeadPose headPose = default(HeadPose), Emotion emotion = default(Emotion), Hair hair = default(Hair), Makeup makeup = default(Makeup), Occlusion occlusion = default(Occlusion), IList accessories = default(IList), Blur blur = default(Blur), Exposure exposure = default(Exposure), Noise noise = default(Noise), Mask mask = default(Mask), QualityForRecognition? qualityForRecognition = default(QualityForRecognition?)) { Age = age; Gender = gender; @@ -77,6 +81,7 @@ public FaceAttributes() Exposure = exposure; Noise = noise; Mask = mask; + QualityForRecognition = qualityForRecognition; CustomInit(); } @@ -182,5 +187,14 @@ public FaceAttributes() [JsonProperty(PropertyName = "mask")] public Mask Mask { get; set; } + /// + /// Gets or sets properties describing the overall image quality + /// regarding whether the image being used in the detection is of + /// sufficient quality to attempt face recognition on. Possible values + /// include: 'Low', 'Medium', 'High' + /// + [JsonProperty(PropertyName = "qualityForRecognition")] + public QualityForRecognition? QualityForRecognition { get; set; } + } } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceList.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceList.cs index 2047e6b3f5270..d9c178f76946d 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceList.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/FaceList.cs @@ -19,7 +19,7 @@ namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models /// /// Face list object. /// - public partial class FaceList : MetaDataContract + public partial class FaceList { /// /// Initializes a new instance of the FaceList class. @@ -43,10 +43,12 @@ public FaceList() /// 'recognition_04' /// Persisted faces within the face /// list. - public FaceList(string faceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string), IList persistedFaces = default(IList)) - : base(name, userData, recognitionModel) + public FaceList(string faceListId, string name, string userData = default(string), string recognitionModel = default(string), IList persistedFaces = default(IList)) { FaceListId = faceListId; + Name = name; + UserData = userData; + RecognitionModel = recognitionModel; PersistedFaces = persistedFaces; CustomInit(); } @@ -62,6 +64,25 @@ public FaceList() [JsonProperty(PropertyName = "faceListId")] public string FaceListId { get; set; } + /// + /// Gets or sets user defined name, maximum length is 128. + /// + [JsonProperty(PropertyName = "name")] + public string Name { get; set; } + + /// + /// Gets or sets user specified data. Length should not exceed 16KB. + /// + [JsonProperty(PropertyName = "userData")] + public string UserData { get; set; } + + /// + /// Gets or sets possible values include: 'recognition_01', + /// 'recognition_02', 'recognition_03', 'recognition_04' + /// + [JsonProperty(PropertyName = "recognitionModel")] + public string RecognitionModel { get; set; } + /// /// Gets or sets persisted faces within the face list. /// @@ -74,13 +95,16 @@ public FaceList() /// /// Thrown if validation fails /// - public override void Validate() + public virtual void Validate() { - base.Validate(); if (FaceListId == null) { throw new ValidationException(ValidationRules.CannotBeNull, "FaceListId"); } + if (Name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "Name"); + } if (FaceListId != null) { if (FaceListId.Length > 64) @@ -92,6 +116,24 @@ public override void Validate() throw new ValidationException(ValidationRules.Pattern, "FaceListId", "^[a-z0-9-_]+$"); } } + if (Name != null) + { + if (Name.Length > 128) + { + throw new ValidationException(ValidationRules.MaxLength, "Name", 128); + } + if (Name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "Name", 1); + } + } + if (UserData != null) + { + if (UserData.Length > 16384) + { + throw new ValidationException(ValidationRules.MaxLength, "UserData", 16384); + } + } if (PersistedFaces != null) { foreach (var element in PersistedFaces) diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/IdentifyRequest.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/IdentifyRequest.cs index a253bc501f9ca..57284478bf4c3 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/IdentifyRequest.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/IdentifyRequest.cs @@ -43,7 +43,7 @@ public IdentifyRequest() /// personGroupId and largePersonGroupId should not be provided at the /// same time. /// The range of - /// maxNumOfCandidatesReturned is between 1 and 5 (default is + /// maxNumOfCandidatesReturned is between 1 and 100 (default is /// 1). /// Confidence threshold of /// identification, used to judge whether one face belong to one @@ -90,7 +90,7 @@ public IdentifyRequest() /// /// Gets or sets the range of maxNumOfCandidatesReturned is between 1 - /// and 5 (default is 1). + /// and 100 (default is 1). /// [JsonProperty(PropertyName = "maxNumOfCandidatesReturned")] public int? MaxNumOfCandidatesReturned { get; set; } @@ -144,9 +144,9 @@ public virtual void Validate() throw new ValidationException(ValidationRules.Pattern, "LargePersonGroupId", "^[a-z0-9-_]+$"); } } - if (MaxNumOfCandidatesReturned > 5) + if (MaxNumOfCandidatesReturned > 100) { - throw new ValidationException(ValidationRules.InclusiveMaximum, "MaxNumOfCandidatesReturned", 5); + throw new ValidationException(ValidationRules.InclusiveMaximum, "MaxNumOfCandidatesReturned", 100); } if (MaxNumOfCandidatesReturned < 1) { diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargeFaceList.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargeFaceList.cs index 1fef4dc53271b..d85b4b2de5697 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargeFaceList.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargeFaceList.cs @@ -17,7 +17,7 @@ namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models /// /// Large face list object. /// - public partial class LargeFaceList : MetaDataContract + public partial class LargeFaceList { /// /// Initializes a new instance of the LargeFaceList class. @@ -39,10 +39,12 @@ public LargeFaceList() /// Possible values include: /// 'recognition_01', 'recognition_02', 'recognition_03', /// 'recognition_04' - public LargeFaceList(string largeFaceListId, string name = default(string), string userData = default(string), string recognitionModel = default(string)) - : base(name, userData, recognitionModel) + public LargeFaceList(string largeFaceListId, string name, string userData = default(string), string recognitionModel = default(string)) { LargeFaceListId = largeFaceListId; + Name = name; + UserData = userData; + RecognitionModel = recognitionModel; CustomInit(); } @@ -57,19 +59,41 @@ public LargeFaceList() [JsonProperty(PropertyName = "largeFaceListId")] public string LargeFaceListId { get; set; } + /// + /// Gets or sets user defined name, maximum length is 128. + /// + [JsonProperty(PropertyName = "name")] + public string Name { get; set; } + + /// + /// Gets or sets user specified data. Length should not exceed 16KB. + /// + [JsonProperty(PropertyName = "userData")] + public string UserData { get; set; } + + /// + /// Gets or sets possible values include: 'recognition_01', + /// 'recognition_02', 'recognition_03', 'recognition_04' + /// + [JsonProperty(PropertyName = "recognitionModel")] + public string RecognitionModel { get; set; } + /// /// Validate the object. /// /// /// Thrown if validation fails /// - public override void Validate() + public virtual void Validate() { - base.Validate(); if (LargeFaceListId == null) { throw new ValidationException(ValidationRules.CannotBeNull, "LargeFaceListId"); } + if (Name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "Name"); + } if (LargeFaceListId != null) { if (LargeFaceListId.Length > 64) @@ -81,6 +105,24 @@ public override void Validate() throw new ValidationException(ValidationRules.Pattern, "LargeFaceListId", "^[a-z0-9-_]+$"); } } + if (Name != null) + { + if (Name.Length > 128) + { + throw new ValidationException(ValidationRules.MaxLength, "Name", 128); + } + if (Name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "Name", 1); + } + } + if (UserData != null) + { + if (UserData.Length > 16384) + { + throw new ValidationException(ValidationRules.MaxLength, "UserData", 16384); + } + } } } } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargePersonGroup.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargePersonGroup.cs index 72d2266a75129..2ffa6991678e4 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargePersonGroup.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/LargePersonGroup.cs @@ -17,7 +17,7 @@ namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models /// /// Large person group object. /// - public partial class LargePersonGroup : MetaDataContract + public partial class LargePersonGroup { /// /// Initializes a new instance of the LargePersonGroup class. @@ -39,10 +39,12 @@ public LargePersonGroup() /// Possible values include: /// 'recognition_01', 'recognition_02', 'recognition_03', /// 'recognition_04' - public LargePersonGroup(string largePersonGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string)) - : base(name, userData, recognitionModel) + public LargePersonGroup(string largePersonGroupId, string name, string userData = default(string), string recognitionModel = default(string)) { LargePersonGroupId = largePersonGroupId; + Name = name; + UserData = userData; + RecognitionModel = recognitionModel; CustomInit(); } @@ -57,19 +59,41 @@ public LargePersonGroup() [JsonProperty(PropertyName = "largePersonGroupId")] public string LargePersonGroupId { get; set; } + /// + /// Gets or sets user defined name, maximum length is 128. + /// + [JsonProperty(PropertyName = "name")] + public string Name { get; set; } + + /// + /// Gets or sets user specified data. Length should not exceed 16KB. + /// + [JsonProperty(PropertyName = "userData")] + public string UserData { get; set; } + + /// + /// Gets or sets possible values include: 'recognition_01', + /// 'recognition_02', 'recognition_03', 'recognition_04' + /// + [JsonProperty(PropertyName = "recognitionModel")] + public string RecognitionModel { get; set; } + /// /// Validate the object. /// /// /// Thrown if validation fails /// - public override void Validate() + public virtual void Validate() { - base.Validate(); if (LargePersonGroupId == null) { throw new ValidationException(ValidationRules.CannotBeNull, "LargePersonGroupId"); } + if (Name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "Name"); + } if (LargePersonGroupId != null) { if (LargePersonGroupId.Length > 64) @@ -81,6 +105,24 @@ public override void Validate() throw new ValidationException(ValidationRules.Pattern, "LargePersonGroupId", "^[a-z0-9-_]+$"); } } + if (Name != null) + { + if (Name.Length > 128) + { + throw new ValidationException(ValidationRules.MaxLength, "Name", 128); + } + if (Name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "Name", 1); + } + } + if (UserData != null) + { + if (UserData.Length > 16384) + { + throw new ValidationException(ValidationRules.MaxLength, "UserData", 16384); + } + } } } } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/MetaDataContract.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/MetaDataContract.cs index 5abd9f09f998d..906089710d990 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/MetaDataContract.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/MetaDataContract.cs @@ -18,7 +18,7 @@ namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models /// recognition model name for largePersonGroup/personGroup, and /// largeFaceList/faceList. /// - public partial class MetaDataContract : NameAndUserDataContract + public partial class MetaDataContract : NonNullableNameAndNullableUserDataContract { /// /// Initializes a new instance of the MetaDataContract class. @@ -38,7 +38,7 @@ public MetaDataContract() /// Possible values include: /// 'recognition_01', 'recognition_02', 'recognition_03', /// 'recognition_04' - public MetaDataContract(string name = default(string), string userData = default(string), string recognitionModel = default(string)) + public MetaDataContract(string name, string userData = default(string), string recognitionModel = default(string)) : base(name, userData) { RecognitionModel = recognitionModel; diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/NonNullableNameAndNullableUserDataContract.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/NonNullableNameAndNullableUserDataContract.cs new file mode 100644 index 0000000000000..f8aaa1050d945 --- /dev/null +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/NonNullableNameAndNullableUserDataContract.cs @@ -0,0 +1,96 @@ +// +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. See License.txt in the project root for +// license information. +// +// Code generated by Microsoft (R) AutoRest Code Generator. +// Changes may cause incorrect behavior and will be lost if the code is +// regenerated. +// + +namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models +{ + using Microsoft.Rest; + using Newtonsoft.Json; + using System.Linq; + + /// + /// A combination of user defined name and user specified data for the + /// person, largePersonGroup/personGroup, and largeFaceList/faceList. + /// + public partial class NonNullableNameAndNullableUserDataContract + { + /// + /// Initializes a new instance of the + /// NonNullableNameAndNullableUserDataContract class. + /// + public NonNullableNameAndNullableUserDataContract() + { + CustomInit(); + } + + /// + /// Initializes a new instance of the + /// NonNullableNameAndNullableUserDataContract class. + /// + /// User defined name, maximum length is + /// 128. + /// User specified data. Length should not + /// exceed 16KB. + public NonNullableNameAndNullableUserDataContract(string name, string userData = default(string)) + { + Name = name; + UserData = userData; + CustomInit(); + } + + /// + /// An initialization method that performs custom operations like setting defaults + /// + partial void CustomInit(); + + /// + /// Gets or sets user defined name, maximum length is 128. + /// + [JsonProperty(PropertyName = "name")] + public string Name { get; set; } + + /// + /// Gets or sets user specified data. Length should not exceed 16KB. + /// + [JsonProperty(PropertyName = "userData")] + public string UserData { get; set; } + + /// + /// Validate the object. + /// + /// + /// Thrown if validation fails + /// + public virtual void Validate() + { + if (Name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "Name"); + } + if (Name != null) + { + if (Name.Length > 128) + { + throw new ValidationException(ValidationRules.MaxLength, "Name", 128); + } + if (Name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "Name", 1); + } + } + if (UserData != null) + { + if (UserData.Length > 16384) + { + throw new ValidationException(ValidationRules.MaxLength, "UserData", 16384); + } + } + } + } +} diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/PersonGroup.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/PersonGroup.cs index 89bc8bb7e364d..5d3209bbee805 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/PersonGroup.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/PersonGroup.cs @@ -17,7 +17,7 @@ namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models /// /// Person group object. /// - public partial class PersonGroup : MetaDataContract + public partial class PersonGroup { /// /// Initializes a new instance of the PersonGroup class. @@ -39,10 +39,12 @@ public PersonGroup() /// Possible values include: /// 'recognition_01', 'recognition_02', 'recognition_03', /// 'recognition_04' - public PersonGroup(string personGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string)) - : base(name, userData, recognitionModel) + public PersonGroup(string personGroupId, string name, string userData = default(string), string recognitionModel = default(string)) { PersonGroupId = personGroupId; + Name = name; + UserData = userData; + RecognitionModel = recognitionModel; CustomInit(); } @@ -57,19 +59,41 @@ public PersonGroup() [JsonProperty(PropertyName = "personGroupId")] public string PersonGroupId { get; set; } + /// + /// Gets or sets user defined name, maximum length is 128. + /// + [JsonProperty(PropertyName = "name")] + public string Name { get; set; } + + /// + /// Gets or sets user specified data. Length should not exceed 16KB. + /// + [JsonProperty(PropertyName = "userData")] + public string UserData { get; set; } + + /// + /// Gets or sets possible values include: 'recognition_01', + /// 'recognition_02', 'recognition_03', 'recognition_04' + /// + [JsonProperty(PropertyName = "recognitionModel")] + public string RecognitionModel { get; set; } + /// /// Validate the object. /// /// /// Thrown if validation fails /// - public override void Validate() + public virtual void Validate() { - base.Validate(); if (PersonGroupId == null) { throw new ValidationException(ValidationRules.CannotBeNull, "PersonGroupId"); } + if (Name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "Name"); + } if (PersonGroupId != null) { if (PersonGroupId.Length > 64) @@ -81,6 +105,24 @@ public override void Validate() throw new ValidationException(ValidationRules.Pattern, "PersonGroupId", "^[a-z0-9-_]+$"); } } + if (Name != null) + { + if (Name.Length > 128) + { + throw new ValidationException(ValidationRules.MaxLength, "Name", 128); + } + if (Name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "Name", 1); + } + } + if (UserData != null) + { + if (UserData.Length > 16384) + { + throw new ValidationException(ValidationRules.MaxLength, "UserData", 16384); + } + } } } } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/Models/QualityForRecognition.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/QualityForRecognition.cs new file mode 100644 index 0000000000000..90f74dd5db3a6 --- /dev/null +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/Models/QualityForRecognition.cs @@ -0,0 +1,66 @@ +// +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. See License.txt in the project root for +// license information. +// +// Code generated by Microsoft (R) AutoRest Code Generator. +// Changes may cause incorrect behavior and will be lost if the code is +// regenerated. +// + +namespace Microsoft.Azure.CognitiveServices.Vision.Face.Models +{ + using Newtonsoft.Json; + using Newtonsoft.Json.Converters; + using System.Runtime; + using System.Runtime.Serialization; + + /// + /// Defines values for QualityForRecognition. + /// + [JsonConverter(typeof(StringEnumConverter))] + public enum QualityForRecognition + { + [EnumMember(Value = "Low")] + Low, + [EnumMember(Value = "Medium")] + Medium, + [EnumMember(Value = "High")] + High + } + internal static class QualityForRecognitionEnumExtension + { + internal static string ToSerializedValue(this QualityForRecognition? value) + { + return value == null ? null : ((QualityForRecognition)value).ToSerializedValue(); + } + + internal static string ToSerializedValue(this QualityForRecognition value) + { + switch( value ) + { + case QualityForRecognition.Low: + return "Low"; + case QualityForRecognition.Medium: + return "Medium"; + case QualityForRecognition.High: + return "High"; + } + return null; + } + + internal static QualityForRecognition? ParseQualityForRecognition(this string value) + { + switch( value ) + { + case "Low": + return QualityForRecognition.Low; + case "Medium": + return QualityForRecognition.Medium; + case "High": + return QualityForRecognition.High; + } + return null; + } + } +} diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperations.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperations.cs index a3f8e5b9db98c..f0365429a35fa 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperations.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperations.cs @@ -114,7 +114,7 @@ public PersonGroupOperations(FaceClient client) /// /// A response object containing the response body and response headers. /// - public async Task CreateWithHttpMessagesAsync(string personGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) + public async Task CreateWithHttpMessagesAsync(string personGroupId, string name, string userData = default(string), string recognitionModel = default(string), Dictionary> customHeaders = null, CancellationToken cancellationToken = default(CancellationToken)) { if (Client.Endpoint == null) { @@ -135,12 +135,20 @@ public PersonGroupOperations(FaceClient client) throw new ValidationException(ValidationRules.Pattern, "personGroupId", "^[a-z0-9-_]+$"); } } + if (name == null) + { + throw new ValidationException(ValidationRules.CannotBeNull, "name"); + } if (name != null) { if (name.Length > 128) { throw new ValidationException(ValidationRules.MaxLength, "name", 128); } + if (name.Length < 1) + { + throw new ValidationException(ValidationRules.MinLength, "name", 1); + } } if (userData != null) { diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperationsExtensions.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperationsExtensions.cs index 262bf90a39fad..26d321474e602 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperationsExtensions.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/PersonGroupOperationsExtensions.cs @@ -73,7 +73,7 @@ public static partial class PersonGroupOperationsExtensions /// /// The cancellation token. /// - public static async Task CreateAsync(this IPersonGroupOperations operations, string personGroupId, string name = default(string), string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) + public static async Task CreateAsync(this IPersonGroupOperations operations, string personGroupId, string name, string userData = default(string), string recognitionModel = default(string), CancellationToken cancellationToken = default(CancellationToken)) { (await operations.CreateWithHttpMessagesAsync(personGroupId, name, userData, recognitionModel, null, cancellationToken).ConfigureAwait(false)).Dispose(); } diff --git a/sdk/cognitiveservices/Vision.Face/src/Generated/SdkInfo_FaceClient.cs b/sdk/cognitiveservices/Vision.Face/src/Generated/SdkInfo_FaceClient.cs index 700539baef333..a4a7978585439 100644 --- a/sdk/cognitiveservices/Vision.Face/src/Generated/SdkInfo_FaceClient.cs +++ b/sdk/cognitiveservices/Vision.Face/src/Generated/SdkInfo_FaceClient.cs @@ -33,10 +33,10 @@ public static IEnumerable> ApiInfo_FaceClient // BEGIN: Code Generation Metadata Section public static readonly String AutoRestVersion = "previous"; public static readonly String AutoRestBootStrapperVersion = "autorest@2.0.4413"; - public static readonly String AutoRestCmdExecuted = "cmd.exe /c autorest.cmd https://github.com/Azure/azure-rest-api-specs/blob/master/specification/cognitiveservices/data-plane/Face/readme.md --csharp --version=previous --reflect-api-versions --csharp-sdks-folder=D:\\code\\azure-sdk-for-net\\sdk"; + public static readonly String AutoRestCmdExecuted = "cmd.exe /c autorest.cmd https://github.com/Azure/azure-rest-api-specs/blob/main/specification/cognitiveservices/data-plane/Face/readme.md --csharp --version=previous --reflect-api-versions --csharp-sdks-folder=D:\\Workspace\\AzureRest\\myclone\\azure-sdk-for-net\\sdk"; public static readonly String GithubForkName = "Azure"; - public static readonly String GithubBranchName = "master"; - public static readonly String GithubCommidId = "0d832037c324f08da297bb292b5ad91c47f5fa23"; + public static readonly String GithubBranchName = "main"; + public static readonly String GithubCommidId = "cf6beaa3c62ba2c00c01c6cd2067a14e1888fb55"; public static readonly String CodeGenerationErrors = ""; public static readonly String GithubRepoName = "azure-rest-api-specs"; // END: Code Generation Metadata Section diff --git a/sdk/cognitiveservices/Vision.Face/src/generate.ps1 b/sdk/cognitiveservices/Vision.Face/src/generate.ps1 index 76512eefdd353..3048204e3e81f 100644 --- a/sdk/cognitiveservices/Vision.Face/src/generate.ps1 +++ b/sdk/cognitiveservices/Vision.Face/src/generate.ps1 @@ -1 +1 @@ -Start-AutoRestCodeGeneration -ResourceProvider "cognitiveservices/data-plane/Face" -AutoRestVersion "previous" +Start-AutoRestCodeGeneration -ResourceProvider "cognitiveservices/data-plane/Face" -AutoRestVersion "previous" -SpecsRepoBranch "main" diff --git a/sdk/cognitiveservices/Vision.Face/tests/FaceDetectionTests.cs b/sdk/cognitiveservices/Vision.Face/tests/FaceDetectionTests.cs index de1b512f18cde..ace1cd8831480 100644 --- a/sdk/cognitiveservices/Vision.Face/tests/FaceDetectionTests.cs +++ b/sdk/cognitiveservices/Vision.Face/tests/FaceDetectionTests.cs @@ -44,7 +44,8 @@ public void FaceDetectionWithAttributes() FaceAttributeType.Makeup, FaceAttributeType.Noise, FaceAttributeType.Occlusion, - FaceAttributeType.Smile + FaceAttributeType.Smile, + FaceAttributeType.QualityForRecognition }, detectionModel: detectionModel, recognitionModel: recognitionModel, @@ -89,6 +90,7 @@ public void FaceDetectionWithAttributes() Assert.Equal(BlurLevel.Low, face.FaceAttributes.Blur.BlurLevel); Assert.Equal(ExposureLevel.GoodExposure, face.FaceAttributes.Exposure.ExposureLevel); Assert.Equal(NoiseLevel.Medium, face.FaceAttributes.Noise.NoiseLevel); + Assert.Equal(QualityForRecognition.Medium, face.FaceAttributes.QualityForRecognition); // Ensure face landmarks are de-serialized correctly. var landMarks = face.FaceLandmarks; diff --git a/sdk/cognitiveservices/Vision.Face/tests/SessionRecords/FaceDetectionTests/FaceDetectionWithAttributes.json b/sdk/cognitiveservices/Vision.Face/tests/SessionRecords/FaceDetectionTests/FaceDetectionWithAttributes.json index bcf3ceb301f22..95331e1598f05 100644 --- a/sdk/cognitiveservices/Vision.Face/tests/SessionRecords/FaceDetectionTests/FaceDetectionWithAttributes.json +++ b/sdk/cognitiveservices/Vision.Face/tests/SessionRecords/FaceDetectionTests/FaceDetectionWithAttributes.json @@ -1,8 +1,8 @@ { "Entries": [ { - "RequestUri": "/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=true&returnFaceAttributes=Accessories%2CAge%2CBlur%2CEmotion%2CExposure%2CFacialHair%2CGender%2CGlasses%2CHair%2CHeadPose%2CMakeup%2CNoise%2COcclusion%2CSmile&recognitionModel=recognition_04&returnRecognitionModel=true&detectionModel=detection_01&faceIdTimeToLive=86400", - "EncodedRequestUri": "L2ZhY2UvdjEuMC9kZXRlY3Q/cmV0dXJuRmFjZUlkPXRydWUmcmV0dXJuRmFjZUxhbmRtYXJrcz10cnVlJnJldHVybkZhY2VBdHRyaWJ1dGVzPUFjY2Vzc29yaWVzJTJDQWdlJTJDQmx1ciUyQ0Vtb3Rpb24lMkNFeHBvc3VyZSUyQ0ZhY2lhbEhhaXIlMkNHZW5kZXIlMkNHbGFzc2VzJTJDSGFpciUyQ0hlYWRQb3NlJTJDTWFrZXVwJTJDTm9pc2UlMkNPY2NsdXNpb24lMkNTbWlsZSZyZWNvZ25pdGlvbk1vZGVsPXJlY29nbml0aW9uXzA0JnJldHVyblJlY29nbml0aW9uTW9kZWw9dHJ1ZSZkZXRlY3Rpb25Nb2RlbD1kZXRlY3Rpb25fMDEmZmFjZUlkVGltZVRvTGl2ZT04NjQwMA==", + "RequestUri": "/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=true&returnFaceAttributes=Accessories%2CAge%2CBlur%2CEmotion%2CExposure%2CFacialHair%2CGender%2CGlasses%2CHair%2CHeadPose%2CMakeup%2CNoise%2COcclusion%2CSmile%2CQualityForRecognition&recognitionModel=recognition_04&returnRecognitionModel=true&detectionModel=detection_01&faceIdTimeToLive=86400", + "EncodedRequestUri": "L2ZhY2UvdjEuMC9kZXRlY3Q/cmV0dXJuRmFjZUlkPXRydWUmcmV0dXJuRmFjZUxhbmRtYXJrcz10cnVlJnJldHVybkZhY2VBdHRyaWJ1dGVzPUFjY2Vzc29yaWVzJTJDQWdlJTJDQmx1ciUyQ0Vtb3Rpb24lMkNFeHBvc3VyZSUyQ0ZhY2lhbEhhaXIlMkNHZW5kZXIlMkNHbGFzc2VzJTJDSGFpciUyQ0hlYWRQb3NlJTJDTWFrZXVwJTJDTm9pc2UlMkNPY2NsdXNpb24lMkNTbWlsZSUyQ1F1YWxpdHlGb3JSZWNvZ25pdGlvbiZyZWNvZ25pdGlvbk1vZGVsPXJlY29nbml0aW9uXzA0JnJldHVyblJlY29nbml0aW9uTW9kZWw9dHJ1ZSZkZXRlY3Rpb25Nb2RlbD1kZXRlY3Rpb25fMDEmZmFjZUlkVGltZVRvTGl2ZT04NjQwMA==", "RequestMethod": "POST", "RequestBody": "/9j/4AAQSkZJRgABAQEASABIAAD/7gAOQWRvYmUAZAAAAAAB/+EbekV4aWYAAE1NACoAAAAIABcBAAADAAAAARpAAAABAQADAAAAARGAAAABAgADAAAAAwAAASIBAwADAAAAAQABAAABBgADAAAAAQACAAABDgACAAAAnwAAASgBDwACAAAABgAAAcgBEAACAAAAFQAAAc4BEgADAAAAAQABAAABFQADAAAAAQADAAABGgAFAAAAAQAAAeQBGwAFAAAAAQAAAewBHAADAAAAAQABAAABKAADAAAAAQACAAABMQACAAAAIgAAAfQBMgACAAAAFAAAAhaHaQAEAAAAAQAAAiqIMAADAAAAAQACAACIMgAEAAAAAQAADICkMQACAAAADQAAA8KkMgAFAAAABAAAA9CkNAACAAAAGAAAA/CkNQACAAAACwAABAgAAAQUAAgACAAIUGhvdG9ncmFwaGVyOiBCcm9va2UgRHV0aGUKTG9jYXRpb246IE5ldyBPcmxlYW5zLCBMQQpHcmVlbiBDb2FzdCBFbnRlcnByaXNlcwpXaWxsIEJyYWRzaGF3bSBDby1Gb3VuZGVyCkNhcHR1cmVkOiBEZWNlbWJlciAyMDE2ClVzYWdlIFJpZ2h0czogR2xvYmFsIFBlcnBldHVpdHkAAENhbm9uAENhbm9uIEVPUyA1RCBNYXJrIElWAAAASAAAAAEAAABIAAAAAQAAQWRvYmUgUGhvdG9zaG9wIENDIDIwMTcgKFdpbmRvd3MpADIwMTc6MDU6MDUgMTk6MTc6MjEAABiCmgAFAAAAAQAAA1CCnQAFAAAAAQAAA1iIIgADAAAAAQABAACIJwADAAAAAQyAAACQAAAHAAAABDAyMzCQAwACAAAAFAAAA2CQBAACAAAAFAAAA3SSAQAKAAAAAQAAA4iSAgAFAAAAAQAAA5CSBAAKAAAAAQAAA5iSBQAFAAAAAQAAA6CSBwADAAAAAQAFAACSCQADAAAAAQAQAACSCgAFAAAAAQAAA6iSkQACAAAAAzcyAACgAgAEAAAAAQAAA+igAwAEAAAAAQAAAu6iDgAFAAAAAQAAA7CiDwAFAAAAAQAAA7iiEAADAAAAAQADAACkAQADAAAAAQAAAACkAgADAAAAAQABAACkAwADAAAAAQAAAACkBgADAAAAAQAAAAAAAAAAAAAAAQAAAPoAAAAgAAAACjIwMTY6MTI6MTUgMTA6NDQ6MjkAMjAxNjoxMjoxNSAxMDo0NDoyOQAAeYxYAA9CQAAzNfAAD0JAAAAAAAAAAAEAAAADAAAAAQAAABgAAAABA6VVVQAAgAADpVVVAACAAAAAMDQyMDUyMDAwOTIzAAAAAAAYAAAAAQAAAEYAAAABAAAAAAAAAAAAAAAAAAAAAEVGMjQtNzBtbSBmLzIuOEwgSUkgVVNNADA2MjUwMDYzNzUAAAAGAQMAAwAAAAEABgAAARoABQAAAAEAAARiARsABQAAAAEAAARqASgAAwAAAAEAAgAAAgEABAAAAAEAAARyAgIABAAAAAEAABcAAAAAAAAAAEgAAAABAAAASAAAAAH/2P/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAeACgAwEiAAIRAQMRAf/dAAQACv/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A83YScZ8ctcY/B2i6XIvpt6e20bm5Dqt0z7XDb+a2Pa/9Gudwmvc62lpgvBI7fmukT/KWph3Mfh4xtd7Qdtg/kyN3/Qc9QZB+B/NlgfxbVRszMZ+OGyaKL31x7dhDPW9TX/vi2vqlkNswWsdq1rnNE+ZNg939R6yOmsOH1asXj2ssNd5PG0h9W4n+Vu9ivfVr9Cbsc6lpZM6fRa2l8QP3mKHJrE/Qs0PmH2PQWtobYWtAe0yQRwP5JVa2msmRp4gKxbYwwBoY1+KrOIUAZSx9JjRo0HvrqnkDgAeMaIFhsFTjXtNke0PJDSfBzm7nIGS11jZa1tjmjRtjiBr9P3tB93tRQ2SWfSADgdeBrPdVr66C4uDQ09wIg/ehtZ9nYQC4tJLiXncZP0vd+cq9tz9GzryfinAarSUd9DN24CNeB5/BBOKSTtHHJB/2ojr451+CjXl0udsa4Bx4adCf/JKTWmMZIE0JC0DsSyYgT8VEYtjjtNZn4jvxor2/jaBJ4H8f7KsVM9P3jV7uPET9J/8AXd/0EOMhcIhx8rD9Ata6NxBkDjTz/rLPe3369lqdSsDbdkyQJ+//AHLM5cSVJAmrWT3bmK5wqLQNTGv3orGl4BA0MweJjv8A1UKtwLGNaZP50cgDlHa6bdkQRxA0AhApGyYNG8NENgGQOIA8U8yZUd7GmNdxkKTeUwrn/9Dzmh7mvJEQRqDwYMif3lbwCHY7q3EfSP8A0hCpDQT3Ks4lj2erGrRqWgCf62qimNGSJd2r9bx238vdVDiP3q4aeP6iN0jIcM0NcI9Wsl2ke4Pe4a/yt6n9WZ+zena0Flr7Q2JkcNex3+coZIZg9RqeRAcbG7WiGgH3N2j3bWNjaqpOsofY2eE8MZu054n49ghvsGuuvgqxydw9oMdk25x1AjzUdLrSus00QXWnmYjyT+7bqSgPfXGpE+ZTgEWisteXGZcPxVDKuPqbGiTy7Xie2itW5FAJlzePGVSaWOe95I9zjB+alxx1aPP5TDEAP0jSVhNeFZkPcC+t9YbWfpOa/wBSXD+Sz0dj/wDjVk5r6/tdwp3Cje40hxlwYTuq3Fse9rP3VqMx68l4qe91bXcBrHPc8/6Outg3b3fmLPzqicqxwrfq4geoPTgD6MtH8lSxq2lgmSAS3sDLfkUncZtrIa/xdP0bP/Jfy1dqe7bBOpMrFw/VpyWuZBJ0NLQZePD853t+ktet5c7VhrdH0HQSNf5KhyRo6bF1MOTjj4hzMpxOTYD+a4t+QQB9Iqxmn9as+X5FXZyVJHYeSpbluVECtgmA7RxHgClSLDZY1x9vLI8zH/fVFjHOYAx0EEEAjQ/FTaYc9w4cQAPCOf8ApFNPVcGw5hDmzzGvzKI1KpjrIJ+9H9DUR80wlcA//9Hzf82Ykd0XDcftBE/TaR8k4r0jsdIQ2VWtcyzadp/OUZ1BXh6n6uXGqp7yWGunIYH7iQQMhnp12DTa6v12N9T9xX+vYhD2XWTVYLYDAQSGuGxu38z6T7Hv/wCMWX9VKKeoXZ3TryWsy8YtlvYsd7Xx/I9RrlrZltmX9XW33yM3p1gxs4cEWVOFO4/8ay1l25U5isn2D/GbkDeKj4yH+A1mGumra573uiQA4ASf7KFfc305YC0+bnH/ADdVXa5wBAifHuk9z3CCZhEBYShsLnkkk69pJH4oZa0dkYtUHNMcFOWtZ4A4CPitwiLnWvvbdXQXVCloO98iv0/e7axjN1djn/10K0safc5o76kIvTcyjEzasp9Tcuqsn1KDDg5rgWubH0XP/OY1OsgWxzxQyUJixbZ6f0rJzcypz6zj4jyXH1XkvFbfpepd+ia1/wDUq/PT9R6dhV5WNgV7hZeRV9oIcxpcY3W+lXuf7d3tZ9PYuuwej9CyP1+qiu2rKb+iG71amtn22Ywt3+g97dnqs/wVzNiodZ6Q/Epbdjvc77O71K2EN2yed35zUw5bl26Vtqyw5THGOkI97ri0eHprfXn+3bU1gOx0FwdI9luu3e21jv8AMWtXvLg54Ae5oJA7Ej3N1Q+vdRxrsul9WPXQKQA6xr5e5o2trb6R+j6f5iLum0EazPzTpkkRJFaKAAJAN6uTkum+w+f5Ah1p7ifUfPMmZTV9vNSDZjO7YaSNeFOZMnlDCkE1LrYhBoaT25VhqrYE+iJ+StN0KhO7INn/0uCY2YVd5cAKiYbv5jz0VpoVXKGrv606eYBUMd2U7PQfVLId/wA5cNljvbbvxzOn02HbJ/r1rrOt9NfTl5DAQKOvUPxn6jaM7HY6zDdu3bf1ulj6vb/hql5/0vK+yZeJmuMNx7a7Hnwa1w3/APge5ey9U6bX1Tp9uLU7Y94bbi2EzsvYRdi37o+j6oZ/1pV8wqYPcUz4jeMjseJ8bd1fO3Fox2McPpB5cSD97FE9R6i7l7WT2Y1v/f8Aenyq3ltVr4a87qbKeHVPpds9F/8AYd+j/wAz/BoA0VgRjWwa5lK9ykFuXZ9O+wz2DgB/0NqHgtfZaW2uJD6rmy4k/mPjn+qnD4MzAHdbf1P6IMzIf1G4H7PjvIqLdSXnl4H52zdt/r/pLP0dKUqET0VC5SQdO+rOTkmp99jMVr62nYQTYR9PRm3/ANKrsOh/VrpuJa2kVb7SQ9zX+/cBq199rx7a9zfzGs/4n/Sa2N6mMHV1AQ6HN2tlzA7+bue8R6+5/wDNv3+pdd9PZWz1sa1Xa+2s126Zdfvqu3Dc9xbv09Hd78hrbanbPT+h/N/QrrglIy6+TYERHo0sDHbiPysQHSu51rANJryXOyqLGt/tXUf18exD6619nR8llYJdt5HO2ff/ANFWOu0ZRrZndPYK8zD3A0uBPq02RZbRZW39I/a8eqyz+dr2equfyev15WOaRYMS5wO9rt7i0R7tnps2v/7dUZibsa62yiY4aOhqnlep0myuutpADWEBrQBDZ+k+AN3vUabiws3ERA0EgxPH9n+qul6i7G6P9XsrplxAzsvbkBr43klza2sfUHb/AGU1769n6Ol65cBweSfb5nkgwVONvBry38Wpa6XvPi5xn5lPV2Q3nlTrcAU/os6pwVOuC8DzQRYAiVOBcPimkJDuUDbWAAjN1KCzRoHkrFTSTwoCyh//0+KsoLDMaKnlgB4/lNk/LRdR9iZaPM8LG650y3EbXa5pDHOLAfMjcq0JDipnlE00cZ7vSLJIDpafMHsvXPqT1E5v1f6dY5xfbSDi2tOsmkhtfA37rGLyPEre5joAhpBXpH+K6yw4nUMKsSfXqeJ4ixj2P3OG702ubjWf20M8bGm4IThlR8CHN679U6cj6134v7QZU7Mc+5tNND8ixl21lv2e6mlzPT+14/qZVV3qbP1bIWD1n6qdX6TjnLsFWRiMIbbkUPDxU5xhjcur+cx9377v0P8Awq9M+sDc/Mfj4OFhOJqsNuPmNBsrqy6CwY/25vss9LJq349tn+Cpu/m/8LRm/VHK+s2RlXDq2JW3pNlb2ksxmMYXS9ttL21btzPbfXk+o3+d9n/BWCGQ0CLMRUa7/ocXyqnAWb0O/wD3T5O5p1LySB2HK9f+rPSv2b0nExLBGxhtucJMP/w2+Pd/Pet/XZVUuIzOh4uB9c6OnUAnB9WnJqa/VwoLRm+k+fpensfSvTaQ5lILpY9wDXE6h3+m/Od9P0rnf9dRyy4hEdN04xVn6MH49u52y4UNtEgxuAJMO3/Qr3Ms9Oz/AIy5V3DeGWPprvdO18AwZPs+jspd6d7XY/8AbWg9odYHANNtbmhzj23CPpO9359T/ZWq2YXH1gHgBw3sIE+6PUbsc/2O/TV2/mKNkc/IrdUyxtB9I0H1awHFxAHv9u396tz6P53/AAa57rpw8dzepMqD858DGDIDbMhrvS9S2lsssax7qbH/AL/829dBkOrBYQwvY9m2XzEA7a/pbWfRyPzFz/Uz9prbi3WBox8QNaQRDb3Wutcdztrf+0NtaEd/zTLb8nGsxL2u9TKebcq71GX5FhLnPc07Ofd9H9zcswn3lzRuMA7j4wR7V1GUxr6zb6RH6YkC2JG8Pd7ma+7e791cnn3OY5wB3vc5zZPEAy5SR1LFIU0rvY8t8Dp8Dqkwkymyh+kGoMjWOOU9XBU3Rj6s0bFk2jwHKArWG33T4lMlskbu8zgHsrbNNfyLPpt0LT27q7SZaFXkzh//1MjCybKXgWsJHirP1mbRk/Vy25kB1NldkE6xOx0f56zM/r+U9hDKmhp0BJ1j4Da1VK7Lb8DK3WNAexwcJAJI9waPznf5ypCBsS2ohtGQojew5WL/ADsDuIXef4vGWPys4Ul7XurrY2I2i2fWpst13Nburspr/wDDC8/ocBY0zGoXS/Vfqj8PKyCHbGFldvrEEsrsx76rsezK2e9uHa79TyLG/wA19q9RTZI2CDsWPGaIL7fjmt7RbU4PZaAS9vBI03rDy+m42D16vqPo7mvNl1BaSHNynM9C6llbPp/bMb9P/wAfj3f6ZGZ1nBab2nIoxXY7i69trzS5hA3v9WtzW1O5/nmforK/0rHoP1gupuwRVXcDnXGq3DvBaRVZu/VcilvubbU20fptn89jer6ns/RqLJmgcep4SDfF+7LwXRhIT6niFcP70Xi8RmNl/wCMO99D2214VG228fRstYGV5Vv/AG7ZfX7f9F+4uxq9rKqzLC4ElrtW6RXtn+3/AKRcP9SLmPzs9lmOyrMFbW37TtdYRY5t/wCg9lFTqtn6T0PT/TWeouzsyLGeo9ocCwbGyDG76Pb3/wA7a7/MTZaUNqAiGUWRe9kktQ5rhl00hzXV57rQ1jXlrg3abnW17GN/StiivY5//F+/1PVOzIZZey2nYKmk0gsHt9hH5zB/wlv6Nn/XLFx+Xdl5v1iqYx2zp+FW+thYNxsNhHq7Wtc1+5v6Jv8A1v8A4xbdeSwCtteKAHu273kBvs9gDPRl3u/OY70k07eYtcN/LRB1bNbRRW5zi+xth2tHtaA1rqm++XfR9Kvf+kWbj1vbi5HUskvrYC/Hw62sJLzFr/X9zf0ttttj6KHf6P1VfdU2y+nNy/UsuuedrntBbptsFWHjN+nsc9/p/wCDr/wtiz+p5TrKMe/J3b7nvdhYocC2uhn89k2+m732u3em+7+ar/wCIQXPyMsjDD7P5y20vDSd3sYB6tuxv8uxlVf8tctk2vdlO3abZAHGhE8fyty18u4uAJMve0veB2DiTTVJ+ltr3XWf8JcsjKspsdXbSZsaAy7T84e1rv3XbtqsYh4bsGQrXjdseOC3SONPpJq/o/EqTm++pmoDxq4+Rcj/AGYnRujuwKJNaLaQDUrSxGRr4LObIeAfGFpUHa0Dx1TJrotuoS7nsVdxXHaWnkLOZYWuDhyFdofDgQdCopBki//V47Irf6Z3ggAyTzqfFDxXhrnNBAY4GQ4/2v8AOXS2fV+xzeST/J0H/flidTxHdItYXNk3B2zvEd/cqkZiWg3bMoEalw2Y+Q4jbW4gd4hdB9WcmrpfVm5PUKzdhPrtx8yhmrn1XMNb2ctb9P0/z1h+tYXAkkuniVsY3Uaa6fTtDS4fQa0QJ/4R35ylmTW1scQHQHVLum4Tce9m9j63VU+rO/7O8Ftdb/3/AEWPcymz/R/8Wi9N+tmV07Ex6MGqs4uM8vZQ/WHHX1KrrBZbQ/8Ac2fof9LTbWs3I6xRl5Nb7gLLAwVuDo5b9HYh3Mq9R7nNfVMEaT5H2s/kqLhHUanVk4idjtoHd6TkV9T+s2Z1auhuE41G91W71WmxzmV3udubU3bku+nV/LW91bINQAdEEut9z7HNAHqOh1e4epWyf8JYsTpmDf0rrNLbHD08uoinJr91Vlbtt1d9Fp2bm7q/fW7+a/wi2c925tsE2EEZA2NI3ub72te/9I1n0/5z/AqOZuTLAelwPqvdVd1XIGRW2rLaTbkke32Nl/rtbPp/ovU9Oxmz9F/573iwb2mrIsZO9xBMAglsbobtbY789j1w2Y3Iwuu2WUWGu2gsFd1ZggitrSWu1/t7vU3/AJ/qK+76wdVqbtffu3EPn063ccHZs/N/c2J0oWbHUBZGdWD0Lumo1lsV/armMh9Fe71HTt2MyMqXbKvaz2M9+z6CxOoWRf8ATbdcxm22xoDWby3bVi0Al7vRpr2fzf6Kr6DP0nq2W1Mj6x9TdWWuyce1r/ph1fp7/wB3e3Heyt//AG2snIzczKcQbAS4CfTbsY1v0vc7+cd9L6CdDHLqQiWSPS1Z2WTa+mj3v4c+ePzXOn993/QR+i/V7K6ozqDsd7KmdNxX5d77DAIYNzKmx+e7a92/6DNiqVtirZjtGzva7ie7m/vInSuoX9LzRk1A2Vua6nLpJIbfTYNuRiXO/cvZ/wBtP/TfTrViFDRglZ1YY8G0SZc2QRM/yYWhDWkOBG4/R8Cur+uv1dwuqdHx/rn9W2OZjupaMuhggtrrHpNv9Nm734fp/Z8zZ6nsr9b/AANli8/bn3t9ryHfHn/OCbkxm7GyYzsauwMdmQNwaGuYdToN0Ay1/wDKSawjgyR2OhVPHzZrkSNp176eKttvdY5pJkgQfgPzv+koiCN2QEFk1yt0O9vwKqtDS4ggjz/irLK31tJOrdDKYVwf/9a7TePH4rmvr7YHvwAI4fK4JJZ+H+cj9fyb2X5D9G6+WvLRqfEKbaLLNSTJ4AWekrmvRqOm3AtJk6QJEq1h5gpa4ZFgIgxGrpWEkmy29S4b6Psf1dGHndC6a1tjaqjaywlhH6tmsLqGmytx214XWW02t9vp/wCUPU/nLMv9XNnspLm5JsL8exu1zWxLe/p2fzu32vtXiySq5Nx9fs/RbOLr9PLxeu6jXY3Nc90gvbvtrPI1d7nH81+xv+YqdjaLR+dA77jr8mQudSU0en7GGW5dw1Y7OG/6/wBouUq8f7Q1ttjCKeG6w10Hbr9H2/2Pf/pFgpKTWutrNHpbqA1vuHkBwB9yzrixoOnw/wBiy0koKk+qdN+utX1b/wAXXTMXH22dXym5BoqOorY7IyP1q5v+j/0LP8M//ri89qrDm+8bgNBI0+5ZqSmOwY47l1LMJrdrmS1xEiD3+aId+IGPueLGPJazbMgthzp/k+/99Y6SjnXVkHg9LXY4Ea/H5LSxbWvEHtIM+Hn/ACVxCSrSZYv/2f/iDFhJQ0NfUFJPRklMRQABAQAADEhMaW5vAhAAAG1udHJSR0IgWFlaIAfOAAIACQAGADEAAGFjc3BNU0ZUAAAAAElFQyBzUkdCAAAAAAAAAAAAAAAAAAD21gABAAAAANMtSFAgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWNwcnQAAAFQAAAAM2Rlc2MAAAGEAAAAbHd0cHQAAAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIYAAAAFGdYWVoAAAIsAAAAFGJYWVoAAAJAAAAAFGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQAAANMAAAAhnZpZXcAAAPUAAAAJGx1bWkAAAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJUUkMAAAQ8AAAIDGdUUkMAAAQ8AAAIDGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAxOTk4IEhld2xldHQtUGFja2FyZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAAAAAkoAAAD4QAALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmlldwAAAAAAE6T+ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAABWFlaIAAAAAAATAlWAFAAAABXH+dtZWFzAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAACjwAAAAJzaWcgAAAAAENSVCBjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADcAOwBAAEUASgBPAFQAWQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8ApACpAK4AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZBmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghGCFoIbgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqBCpgKrgrFCtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0NDSYNQA1aDXQNjg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/sEAkQJhBDEGEQfhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMjE0MTYxODE6QTxRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxayFtYW+hcdF0EXZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqeGsUa7BsUGzsbYxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7pHxMfPh9pH5Qfvx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOUI8Ij8CQfJE0kfCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQpBik4KWspnSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63Lu4vJC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1EzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjsaUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJLcqZzAXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwhfIF84X1BfaF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZyhteHO4efiASIaYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6kuOTTZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJnPedZJ3SnkCerp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhSqMSpN6mpqhyqj6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSctRO1irYBtnm28Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFnwePCX8Lbw1jD1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62zzfPuNA50LrRPNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDdlt4c3qLfKd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG7RHtnO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8mP0p/br+S/7c/23////bAEMACgcHBwgHCggICg8KCAoPEg0KCg0SFBAQEhAQFBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/bAEMBCwwMFRMVIhgYIhQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/CABEIAu4D6AMBEQACEQEDEQH/xAAbAAADAQEBAQEAAAAAAAAAAAAAAQIDBAUGB//EADMQAAEDAwMDBAICAwEAAgIDAAEAAgMQERIgIQQwMRNAYEEiMgVQFEIjMyRDNHAVgJA1/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QARhEAAQMBBQUDCgUCBAUFAQEAAQARAiExQVESAxBhcSIygcFCIDBAUPCRobHRE+FSYiMzcgTxgsJDYKLSUxSSsuLyY3Mk/8QAMBIAAAMDCQcEAwAAAAAAAAAAYGFxAHCxECAw8AERIUFRQICQMYGhwVDA0eGwkWL/xAArEwEAAgIBAwIFBQEBAQAAAAABABEhMUEQUWFxgSDwkaGxMEBQwdHh8WD/2gAMAwEAAhADEAAAAfkZQ6cVGdI9XnvrzcLIHWVmRa+vjWVnkalwzl3n3+PXozdSomoRAIFViJIGIQAACAsoChqAQkAMBEVlZIgASY2IBU1CQRAUqSRAACQCgBCAABZsAEiJI0C4qNZWdGaAZ0iiRiGBUMasIYAIBnjejkjpxQRnp6HPXoY1z2QFY2BovTFLxWa5vldeekvs8enXNdMVKIVACAokgzJskYgKKWoVlwCECgCEFihqDJs57IoAogxskkChE0kBCAQAJBWJC0BEBS1LjZQkQrJM6ChwzWWpeiERUjGIkocaK4mpLHAAgAZ43o5SnTjTIrKzuxr0ue+zOg8zeMbMK1l3EUdUvgdefTm92N9+NdEvRKDOewNBAsIEmZNlKQwAQIDAaoBCENENQEKgixEhWZBNQjBUgAhCCkjVQyLAoaggAQlViRJIibJpFBDNJaXfJGdMAAZUMtUIzraFDAQAM8b0cpTozogrGzpzfT573zdF5dTms5NTfNsoZ1y+H157ZvXjXoY31y9ErLqTnQKEIkYiAGACJARQAIYAIQCRDoJpCEkCqSEmgZIhAAiBkiAZNJGrGBRpLJSc2soRFiJoHAM0lZvLAxDEAxxJtK6kZcqSQABgeN6OUJtLrmhzam0vqct0MDCuPU2zWaqrO/N8fphxpL6vLp0y6nQtmcZ2c5ZQCEBJCUrEMQhFCAAEIBDERYxkVRJCSKpJGZ2BcSIAGCyjWCiSbJJrSWa2i5dYizCzG5KkhJpCpwwLlouVjAyrWKiK3gVxFAjSAkAGAHi+jlKay7Zsmeo5fU562lwqEa81lyxZ1zWse7m/LdecmZ7nHrvLsaChCqCgAQgEFKGAgEIAABIqgpSRDFQBFMlJEIVIRFXDMzQYAICAGMQCM61iV7MsqSce8wiqSSbJABjNJXFqxkkHTLCMopUSSUayykgADA8b0coS5erNuXOzOu7GuvN56zSl57NJc7GdMvqZvl7zgY6ntcevXm2VGiygTSEIkAEFIIAGSAxAces7S42UZ2dOdUBIEjpEpIhBQBIxElgUSIZmWA4ZnU1rEL2ZIxqbMLMrFYiSLJAYDNc2loAIN5UkiNBqCEUXEiAAGM8X0coSl7eeosyoOvF6ZrNJNJefUBqkpfcxeWuGzn1PT5b9HOqHFrRKRSEIQgEICQGAgIsuWLMLKIOPeVZ6XLoxiEZpVokkgKgAEJGUqAYAIAGEIyraM66ZajIiosysyuSpIJsQDAZtm0oMRRcsoCKLVEjKhiEAAMZ4no5JA68aRNZWdeNdudYoilIypWNWetm6Hz+8XL6PPfdnWhpLoMms0CSRiEAECAAAQxEWSUSY6lxmbyoCSbAkkQU0BkjAYCGrAAAQ4ZFaRlWsu0QSZUzDWc7lVBFiJqoBjNs2lZlVS7RKAAMpUBrGdXGYwABjPG9HKEVdfPQBz6nTm9+NykEndnfm7xS6RlZ6E16Gb4mszZ2899mdWallrJCIQhCACSQGAJ5/TPJrPs8eqqUR5+8I9DGwQAIysCjMQWAhiRhTCWQKAFYCHAZ1rAUbSwIDMmufeYZmpJskBjApdc2iTO3WLkmszollKNFRJpEVUZVUAAMZ4vo5IlOnOtM3Q4d56M3vxqSKR6nLp5XTFAZ2d013ZeNvOktR6WN6y6DKlVkABICAQVMJGqsBnNZtNJEMRhqVFyoQCTOqJIoBEhcJkZVgSCudLnSlBAMY4zqooo1lRIhkGWnNrEWIVSiAYwKXXNsyqTeHCqAGaxSoCRFAEMAAo8b0cghNZdsa7c68vpijsxrQzJPR57zrm1mTWV13R5+sqUPQxrszqigMwAAAQkFKlENUCIQCVIxAMQgJM7EMioQGheSuJRICJqCaS6TrtjrSsBwE1pDNJWIKkuMjn3OXWEArEIRQDGrjSXOzWVlwrcLKjU0lBCESljUhgMYHjd+QTW+btnUpjqI683SXNA3zr0Oe/P6Zk3XNNLIscsHZjXbnVFGYDAQCClIBbCMAEIQAIAEUIkkkmwJIsQMmuSYSCADqDGpJtlRrr59tpthEWaSsuEBdqRAZnNpz7w4EVIQqqGAAaS3LrE0hE1UUOKEsiQKGrgGAxnj9+QTWmbpLpLjc5anXjW8uYwPV49OTczSlmxWam0vDrPqcum8rGIAAQAIVgBIwVIASIYhDAkkgVMhAkVk3Ea4yxNxRctK5VVHJZnbClqVL3cu200K4BDEUaEgSZ1z6Z6wQrAQE1UMBrcaSsqIsRNNXFABUtGaBQ1cAwGM8fvyQU43zq45tSLOvGtpZLMj0OewzrSXLUiy0o5bPR577M6oZIgAAEKgBIhiAZJICEIQECEhSGBFkpGuKvNMzecXNy9E6kudbxyanLqyoCppr6PHvQKQEjKNSRkmGmOpncgSFIQDAY10y0VkCRmOklxvKCLi1yQKGoOGMBnjd+RSGaZqIsR0ZvRnSKMbOzG+nOsiibMNRJZFm+NehjdDAQxiCkIAJQABCJiQCgBCERZABTGSiuefXlm4VwAlJ1Z7E1hZ1zW1vgbiBQFS75328+qKlkQyzQQqZzVz6k3LQAQgKABrrlaomy5Uc2pFdGbtCGVLRCIY1cAwGB43o5AAawSxYGkvTi2qM7NM678byNBnNrOdlmNm+dd+NbSsAEIAoEAEIwEAhQhUAIBE2ZipgiEBlrz4b84y0Y0D1894mvL1zzs6ZfP10m0HCUVL3c+vVneaOWShlgOg5q5OmakEAEIBjBWaxpLkWrKOayK0jaHDUTRckYKwhjAYHjejkAUawS5WSbS75tyoiyT0+XQUNZeLeJspcNZ3xe/O+jNYgESlKIqQEgKEOgBEiABBUpIgqEYgC55d+OLzpGNGlr0ze+evkb551vJyXrN0BBRKLTXq8e0BKFCGUAzm05N5pBAQAIoAGtxrLnRLoSTSEnTkhrRcY2NSGAxDGM8b0cgChwBLnZpL0ZtQhVlXpcunTnQby8Ws5aiTLU2zenN6c1qwEJGImpAYAAhiAQiRioIRAKkAIjLXDm35aZaMaM1lzradOHSZdmea9IuwABRSXu59d86aqGAFDAw0495GWCiIQFAA5aNpZFaDhUgjVHFLpEkUDgGIYDGeP6OSGMcA5c7NJenN0lgDDU7+e+/n0o6JfO3nCxWRch2Y10S0ErESgKkACAQwGIRNACEiEMRFMQkRzdPHF42y0YDRKEtZNJe/OvN2zvQCALSBd877efW1UMCaoqEZ1ybzFywAQgKAcrGayoiqlYiapNckM0WRBDGADEMZ4/o5AFBAOWLLl0l2zQDGzrxv1efW46Fzs59Z4rM7nDWe/nvplcAKhIqQAIBAAAAUkAUBEAhGdUMhEnF1+fTNM0gACUM2oao3muLVi7JWUjgqWoXpx07sdWICShhEHF0zNy1EQCAocCsZayZ2aS6y51BpJoKAtUMcAxjEAFHjejkQx0oRUsWIqXsxqUZzanVjfqcuvTNbRnXHrM2K58/ePQ573luAkKQgGAgJpDhjCgQkYgJEMVSICUTPH1+fbNssaKEoK2GoX0J0505rUqUqGoFa4Fa+ny7bTUCJNBDiTi6YmhAQCGMYSsoqWbEZWdWdow02zKAIsauGBYDVIgKXxe/EGMgZUs0k3zoiiSbO3n06sb6876JQ59TKybjzOnPrxrozqwEAyQAQDFTCKGKgSIAESKpGZoxiJueTp8/RikaMISyO3rz23nS5fP3jksxtzaS0UlIQLpNC1NNrfHRrYDIOLeJpoCEAxjCVlFS6EEWXNBlXREoBFlK4ZRUoMQgKPD9HEGMgocsis6M61jnoLPQ5dOvHTKzvx00MLMrnm3jg3zcvXjWktAMAAChDCkjGoMRCIBgTQSIlETSEzz9PBoxTLRiImktWXN9M6cOsZLndSrW0cjEotrM1NVN653tnYugxRNcW8KxAAhVUMakMoDSUKMwtEqEAFxctlDloBDEMZ4Po4gwJKHKEWaS9GahCO7HTv59Ma7cb1MUizj6c/P3zvOtJd82yxI7WAAMYiUYDEIkkixrFiEIiyRCFZJV8VXk0SuBKQpLK7Tp6Ge3HZz3MEWSAxLLed30Z33c+lLJmSmq0KJri3hWIAEKqhjCWhgXLYCMqY4Yii40lscrGADAAPB9PECGIC5UZ2WdWNOWbJOnO/W49cNO3G9jIizz+nLk1iprbOmXJsMAFUoAIQVJKQFZoiaYCAQgASIKRo88a88rq56sBKw3K0qmm0LJKFIhvO9Jaas3zrs56tUZoi1skk494VgIBCKGMJaAY4paAkVTJSgzWNZbUhjAQwGB4Ho4gDGSCiSM68aogRa+75+/LqeljroknFrGes8O+eK7Z0FJrFgADGAjOosRmgIB0QgoAQCEArEBd82OuVM3AzKiii1KzSba9OevNXFtc3hpcbS8+pnZ0413c9MRkUtFkmdcm8CIBAKqhjlChiHDAFZKFVKDNY3mqgABgADA8H0cQAGSAhDNs3aWQEe1x7Y16fProtnmb5dWdeV145Fy3LrGhpLQqQhmNmdmVNJIQAQAFAQgpCAQrEBd81XyUm2fXSTb0Xfm6zg2Te+d+rz68ep6XPeFmNzlZyayEWcu8yb5qN83pxpDLWiDOuXeEgAE0FQxqRQwAYQAAwUGXHTNVAMAAYAB4Ho4sBAIpUkgby75sDIr3OPXzt59Pl22l0l498+zOuLfPjuds6k3lZYHPrJQXLmk1CTSEgogAgCiEAqQgRUgOpxGOmd/Vz05bPL3nzdZpejOmvpc+nfnexzp52s8+s89z2Z3yaxx7znZZ1Y11898W8duNygtFEGWnNrmDEIVOGMBy0AwAYQBQMJQ0jeXSUGAhgMBngejiAAiRjVJJvL0ZpDXDU+g49eqXydT1+XZICszs8Xpy6c62zWFk0jOxgAxGNiASAAAhiAQqBAJEKnE0E6nvc9+J0xhZcvbnVDl9nn16peOzh1nCzg3hH0PLr5useX15waRtL041zanZjUCKLMzLTl1zYCAAGMYS0AwABgEAUSs0jaXWVgAAMQxnz3o4suUERYDESay9WbIia9Pl09Xn08Try9jl2786xrC55tZ83fPfOtItcbl1IwEAzJFQIAAQAAkBBSAQkQUgAzs7pcqDWXtzUXNeljpy2Yk2cus+Z05uX3OXXzOnOo8/pi5dJdc241lkQGpmYanPrAACEOnDGpFAAwAAGABKy43l1VxIiwAYDPnvRxuKUAzsQAIs3zpwgO3G/b49vJ68s6+i4d6ODWc9Ty98t86lKFSLAAADNJCgAEAkFARCCkAhCQpQDFW67wLRRmmVpL0S7So6JfL3jKz1ufTi1nszvw+vGbA3xrpyFRIyzMx1OfWABAKnDGNXDABgADEMAlDSNpdlcIogsQxjPn/RxcoUBJFgBJRtm6S0QazX0Pn78m8eL15fS8PR3Z1y2cms+X05VFKixjECNQhJAVAAIBAMSIQUCEIEQAAGzX0/LvFz59nk9OVn0PHv0LypyWTYHHrOZ6Gd9Mqjg6Z83fPNNs3pyBLBRZlWFmOsAgCkOGMYS0AwAAAAGEC6G2brLQDJGBQAeF35IYihGdgAhmstwDltfpPP6Kj5zvw686+k498LOWzxuvDRXCGtJJFEMKAEACAYgABCQFQIQgEgAAatfScvR33GUvOnNXfnV2YLxpnZjZx6zFdWdetjdEnz3XjxbxvnXTgwIJNlxrn1nO5BAFIcMYFSsAGAAAAA4Fo3l1luAYAAwGeF35AAAzKxDWUDWW4RakfT+f09svj75+P15fV+f06ryp4vbhkjVjAACAKBAMQAAAIAEiClBSEISAKDA9DPT3MdeOvUmc5aqkZlLgs2Ynnbxy6z353Kceseb05h1Y11YoIRBsuVc+s53IIKQioYwKlYDAQwAAGEI0XWXaW4YAAAMZ4Xfk4AAZlSpkpJrLcItUfQ8PR6fPeVny/o8/q8+nvcuvNXideHLrNysAGIcAUgEMQDAQCAQIgCkIQgAAAIR6s6ennozqyRVlEkNYGCcWs8WsdEvNqc9zhrM047+WqAgZa4VjrMXKEOkA4YxjlYAAwAAAcAFrrLrLpAAwABjPC78nAAFGdXLpE1lYyokoa+zx7ezy62eH05eN25fX+b06S+T05eV057SsBjFDEAAIKAABASMQIgABEUkm0EEVFyqo1n6bl6PQlEmV1aIlYl565Lni1jCylxuebeZTKzt562lIkZaycm8Z2ABSEUOGBUrAAGAAABDGtm+botQDAAACjw+3JgrSSiKI1lozrGzWNpZJPSx1+g4dmuVz8j6fN9Bx7+rjfBcfPd+HTnQMAhgACAAEABSEISTUppLz7kozDUVa5ubVtZXGmXZy1VOt9Thr6/h6NpEqKsYErmcp4++fLvKMrmLEY6z1Y10ZtSoqWhnDvGdgAqBFDhgVKwAAGAAA4Y1uOiWlqAYAAwA8TtyBqwEkirSWoy1MrN5enOiMrOnO/pvP6LW0+b7cOTU+t4ejmufmO/n6c6BgMIKIQDEKs7ISamyLMqzsBqR6PPfF0wFS5WFa50moqU6Mz2Oe+1crPUzr5nePa49+1dLkEoUgQvnnjdOUWejjfNrPnbxFmGs9Gdb5txBrKFS8PTEohioEUOGMcoMAABgADhrRrLtLcAwAAABniduTVgMRCRVGkuNk2aS6SpGusv13m9WkonNrPyPo831PD0bzXzHfzbZ0AMlJrOyKlM7JrOxCsCwhguVVDlD0eeuXczs0zc9STSaTXRHfi90rRV7ON5bx4Verx77xpY7EqKRiPJPK6c0WZpx7xNY6ztm7S3LcBUtS8HTmgFQIYxwxqxwAMQAAwAuXSNF0lqGMBDAYAeJ25NQYwhVz6zcrMrGaS3E1cC/W+b1d2dSaJ8t24Z2fS8u3zPXjwdOc1NZWIYhgXFDEAFgMk56qHKHpc94azz6mmbFkV15335125uhR0510GiLefHN+fbtiirEAlpEeTZ5m8AiE595gy1m40lkY46M6qXz+vNwBSEMY4Y1Y4QwAAGIYFy7RS6y1AADABjA8PtypQRUAHPqWIzsuXqlxQKBfqPP6fVxqVtOW5+M9Pm+z8/p8TfP5708ESMBjGOKEADKGA0S8wypQ9HnubOPeenOuzN6863l3WLHZ0Z1sUOXfeIxvwLfaxqkdIFUKpjz9Z83WIspUcms52AJcojXSXK52zri6YBAAhjHAUCuAYAAAMALl2i10lcMQxiGMAPF7c2OAYwOfUZKTTNs1CGM+h4ej6rWMOfWc6afId+Oi+pz18v6OGGsyMZQCKEIYwAYwA5jTOgDszbjLT0cb2jddpZTZdZefWbsk9rGubU2ufncdvUzdrFCVDpQjls8ffLOqEcuoQHPvG+dBnc6TQiXDWQQhkpSscMYK4BgAAAwAuXaLXSVwwABgMBr4nbk4BjGIx1GIzsR0ZqARa+ty6/T8e2gFWebrPx3o8/1XDv42+XD0zhrNCGIYAAwABo1YHMaZ0COrN6peqa7c2Kizc7TXn0qzj3h1tHTy6X25ZGHLt428e3z6AVMojojJPN3nz9Yoys3FLxayGdmkuNzahcvPrKABAjVhDKHKAMAAAABly7RoukoEMAGIoY18TtyIBjGBhYUGdk1cXLcIte3G/rvP6NUS6XKPh/Rw9LG/G3z9DOvJ7ckAAADGAAMEFYzmEXKjrzfa59NDRfTNJVvD5dOnpz466cbx1OPGu+WunPns3zrws6pfRzoJUsZmYpw6xxbxhZ66+uedHgJNZ2MqEWsphqAgECNWOAocoADAAABgVG8ui3KxhAMksBjXxO3JwhgUBlZNBnZNONJdIRouudfZeb09VgNHZ5NnzvXlFQnNvCoGIYAMYCAEagzAkuUPd59OmXpl6iLOw05defeOHePXlLnXj1x6Z83WfQ59NOnPSOXj3+N9HD3eXXuzoICsk5Lnz94ysmz6Ve1OCa+fk5dShJnVw1lMtQEAhJSsIZSsAAIBiGAwKjeXValYDJKhjGA5fD7cmMBgrTOs7GRZIFrpkFqz7Py+v2u/mzxvHn0dgfD9uPLqWYazFjAQwAAGAIgVjMzMuX08b9jnvpmujWeKxHZndpiIW8enKRtZ5dd3HsdOc7w+fTxK8HePTxv0Mbsa4pwaxzazdbp69dKeYfMWay5WXE1cTVy8+sghCRjUHDKAFEAGoAQxgXG0ustKwABwDKGrjw+3JgMAUJTHUoiyQKN81DGv1fm9XsSXrKlBp4ms/Hejj1ZvoY35HXkUhgIYDABAgUoZkG8v0fLr25u1RKrNs6w1l2by551Ws8Wp3p1Y3lvGOOnbvnkZnPz6eRrPBrO8vdnQZUJtKrNNTdCwPkrnWWKQzWVEphqACAEagxwwAAGIBjUhjKjaXeWlQwgGBQxy0eH25ADBQZKYalmdkgUay1DVHscu31XLpdgXchEvwHo4Y6z9Dw7fOd+BTAQAAgGAAgoSQfRcuvpY1dk26pfLqrH0581dUs51pc89nUdHLpt05+Pbvm3vHUj5dfD3PN1nBA65pwijWzvmuS5nWeFPLqUpdIFqIsky1EIBIFKABUAAAAAwGVKFxvNbQ1YBDAYylcM8TtyQDBWAkw1LjLUQijWXSUEaS/cef09LKVo0F+Y3j5zvx7M6izm1mgAAEAgAAESI6Zr6fl09Dnvn3m7Hjp1axwanRz6a75rOsq25dObrz6M3j1nul26c3y6clnRNY2VZ5epxHAmdhL0Gsvv43Gs+JvHlay5ZTeauXC5pUgZ1nYgECA1AGVCAACiABjGtRcbzW8CgwHDKGrhjPD7ckADUAZz6zRnYCGbS6S7SuOXU+r8/p924yx0u5pCvNxv4r1+XUzsiwABAAgAQhCAD2OfT6bG9M6mzXOq3jmsrOuvGtd486ttZ059MN44l1sz59NOnPGXpud+Pbl6c9JrW586a8bfOVzTQ9bOuzOvG6c/K3lx051lZpEGGpcZ10ZuVnPqAgRU4YhjUAYCAAGEBRUtnTnW0CgwHFAUrhlnh9eaFYArCAw1kqalEUaS3DVmaexy7fW8ukTWlzdm/Tlw8e3yHo4ed0xRFgACGIBEiEIKcB9fx7+lz6dGufLqdPPozn3jWXk1OjGl059WbyL0HLvHVnRjRqeWbzV895dOfDvPZHZz6Ybz83vGRrHs5189055R2Z1NiVWZolys0lYRFnPqAkCaYwCBaAAAAABhDKXXN6ZdIasBlRQKwhjPH685EIYAMy1M7FSQEXLrFKiU6Jv7jy+jq6cubl111nbpjl57+Z6Y8PvxslCkACEIkQCGM0Xqzfo+fT0sbizpRgq1jhV0cumXTnlXcm/LrlvDluwxrm689s65k1x08zry1leN62c2s6Lrm/L9eXNZ2Y1251y7zUqTm1NM3GzSXOy1izmuWqskBgADlYwAAAAAYRUu0dM1pFKhjHFFKQwGeT15okQCGURZzaisYElmma1olFX13l9Xv9OPHx77azdyl8jN8vtx87efqgxfF59fM68+bpibEIBAAGksV7vLp7GNds1G8aS9GbiLc5rnszTOlXFW8Ln0OvPh1nqTp49V0x5Wp0mvLplvGBRpz683Tkzns+f6Y6Y6s6UuOs6RU1hrMxhqXE1UZ6mRNiAQwEMqUAYAACGADi5do3mtItUMY4oY5WAzy+vNEkgIRRFnNvLEICy5ahDUT3+Pf6fFxxvSzTeNLmcW+mPznrPr/F6OfWc17ZN+k+b6Y8XtzkCaAQUGfZce3Zz094mu7FW85zW2Weo1iw57z7ctM6wNOe+Drz6M6zXaMtZ0lfPreseTrN2bc+nL153m+D058h7MvKdmN8usXKS828wZ2SVBSA59ZQhDABlSgDAAAAGIcaS6xvLrK1YDHFjUHABwdMQMlIqRAI5umEAgLXSCCqllPQx0+z8/ZS0dXbjt15eZ5vT8f346y1qfaJtc4lnRqfL8evyXbnAhUDA6s6+o5dPRzVZpqGdY7x0E8emvbnwnRZry6Y7zw10M6cu1dOfPLdmvHtx9eW2dcuptHDrNm3Ppl05+DvGZ2Z1rE16HLr4fbjrFTXNrGNIcNWkUzmsixCKABlyoYAAAAABUay3G0usuigAOKGrHDEcfTEkiREVAgObeZsBDKNJXE1pLnZvnX23l9PZcaaxWpnN5y8HTl7Fn5/b9f5fRw51y6z3d/P2y9dnnZvxHfGdiEFB9Hx6+jnfq6xyG8vSnNvOktc989cm8dULO+vWeOzWWuXR7x5y6azvz6ZbxzVpHPneHTkS+ty6rfP5jecbNc67TKzTOs7OTWSKOawlz1LlmzOwMqhEIYwGXKAAAAAAAXGkukusukaKxDCKKVwDA5emUgSSIzsgRzbzFgICjaVxFaSyhX2vk9fv+ryc3m7Quc16Hq816z5vk9Py+s+725+7rGPPfJw7zL19+PR15fK+fv8n6OSJAR9lx79Ca6zrLMvVrPNnXRc550s6fXnOdXc6Y3ybzrm8+prm8uppLljem8efqdUbcuvndeXRjW+d8u8cGsYVyWe5jXBvJnW8cupUC+XvGublqXLlrKAkxsBDGAy5QAAAAAADTN0Ll1i1qLViAqKWoBgc+8gAIhIqEzrn1nLUQCKNZWIuVDPquHb28GXudPfje883n6+b5PW/Rw+R78tY47IPW5dPovL6O/wBPm26Y+IzvxO3NCNV+x49tY3udrFnWe86wrLzqOe9OmPPt7NY1xrHUxlmxcuvF15dmdRNdCcNmku/Pr53XjNdMeWuesWcCe9jfDvN51vnXm756Ly2cuskKgyskoizMBDGAy5QAAAAAAcaS3FrrFKzWViAcUVKxgY7ywGIRnZBJyazzbyKkALl0EaShUezw7/Yb54Y3GNbdefL5u71z8bpn1eHf5v1+fh6c8bFSPsfn+v3vd5c+es8vzfvmLA7s7+n576bHWyac98nXnpKY3prJz3W8Y6krfPV9MeedJty647xjLQc98fbltLGNmsebuelHgx3L1S+dZ6Wb53THVNTm8e8ay8VnPciic2plrNS7Skc+ogpwxjilAAAAAAY4uXSLXSVjLilBhFFysYGO8suBQASaxsws87eVQiGaS7SoAHHp46fXcuiy9L2eXHnvz/H6semPkPX5+/nr6Dl0+X78sdTMqX6vw+n3fpePj8XfWz4frPM680evjp7vPfTrMG9muNxY7OnLPcxHz3h0x3plLqee1rF8uk9efm10s68u3F15Gby1rLFz1r8/Z3mmbz6mKaVvLGdc28b5vKc2s5WKuPeXG8tShy6yqBwxjilAAAAAAcUXLcWukrAZcUoBcOWwGY7zQ5bAZcNZsyTw+vPPRIijbN6ZqUigcdOd/c8dxNen7vJx+Xvx+fvrvHnduddefoV5WNcnLp3duWvLRjXs+zh895ev0WufxDp4nbmH0HPr2Z13p33OCsws3sOXTHedMa1i94xW7Obn0y68+rN5c73ufL1NTfn0neOUCufTHpzR5ms90sRNSFnfm5Y3ydMVHJXNrGdY2ZWaSqzXNK5rABgBUUoAAAAAFRUtlRotysQy4ahUWVLQDOfedJaKHGi2OAivA68ubcSAy5dpaiaoRpL+iYuHHr2erhVnm+H19fp4dfo4gGGb8hw7/QcujuOf08fc6Y4fJ2x5dvlO3PyO/FH1XLt2Zt6z0xrjVdMc6yl43zdM9uLmdO8ci5mvLrn055yzZpjee8dOby46b6z5tis25783ty6c3zNTujOXVXnWO8bRWd8PTm45jk3nSOPeYNFIoDCxUQxgXKwABAAwGVFS0XLoVKABY4Cl0i5WAzk3nQuW41W4taKGfPdeXn7yrARRrLpKjWIrSPqvP6O3nrbvj0fV5VHNw7dfo4gAeHx6+f5/Rpjfk+vy/e9uPN5e3heb3eN6fL5Pfz6S/X8u3Rm8+899xpz6R0xnLWNa6z59d+bw6nXi8W5tL2ok8yb6LNOXTm689c3grol4dYit+XTx+/H2+fTxtZw1n3ee+ayJrl3jqlnOuPfPaXnOPeVZx7y5ds1GkonNqAAMZUtCABAAwGXLUVFroErBBWXABpLotQAcXTNRtLZvLpGy0MceL05+L2wICGaS6yhpE1tHtcuvvY1hOnpenzdPXlhy6bdebADLF+X49vY8/TDs9r0+Xy/B7MNXxe3n8Dtz6s6+lx09DGo1m94fLrh059kZ5068tROmNs721hWPOsV4tZ6E6c7NY4FysfPpx9OWk1tz35XXn05vkdMehm+lnXl7zWdcu8epjeWbhvOKY2ZanHvMWVLUXLcsWY2IBgBpKAACABgVFy0VFrYwlEBrcAFy6LUMDzumNJbNJdo2XWXUuKXy94+e7clYABpLpDXWA3X6jn09bfPyvN6/W9Xl6evKM11VgAHm8uni8t+3z3v35c3n7adsfHM+T2x6mNe/nfbm42dSLG46YVl8ui6Y86aUY2aWelmqyVwxvLpz6JYxvbWPI1PSiuXby+vLSXjI1nh1nqxv1TfOvM1jnMdTtzrSXzenPMxsy1OXWQqWoZpmqs7JAAGXKAAAIBjKi5WXGiuHRAMa3CEUusXKDODeGrKNZdY0XaXeNV5NZ+X78YsQwLl1i1Yjpl+i5dPT6c483f1vf5ACcW9wABR8dw7/AE28Y+TvnXb6PP8AnGrjZ7WN/Rc96bzzm2b0bzxy9SHLpy9M6S8MvTc+NvPr430JzGmN5dOes1WbvZ5NbWVy6+X244RkKzk1PpeXWN46s6+c1jOps7sb1PH6c9s6w1nl3nOySoauN86RlZNgIBlysQCAAGVFFS0XFrUAAMtXAIZpLauGcuszVCHGi6RrL0S9C52fK9+GOohiNI1ltUCdk19Pz6HTHtTOGN9np4sUOgAEef5e/ntdHn69Xr4eMz8pvMH0mOns89zrOllY0t55DrR43x7ztmrn08ntyJfYzcaIyzvr3zwqZdZcNZxrTl08XtxctZuG8qvpuHXg688TyNZ2zbrsxvg3iTG5y1MtTnsYRayay1EmdgIBlygAIAAY40loo0loIYABotQgAqXQqUCwAikOAuWjQK8Hty5tZAAuNJdVBJvNfZZvPb9D24+L4/X3d+XZ14gQ6AAjF+a8nq9O5g+J9HLGyLPq+XX1Mbz3jeNcax641zeSXY8yugOfT5/tx7M69TGufU4bPWxvezEqzPOufeNI5c683pzRpnW2p60vbjfl7x42s9Wby2VVS+ZvHRnWOsqoTi3lgXKio3zrKyaJAVOKUABAADLipbKNJWOAAAa7QlSBS3Fys7VDNM6zTCs0imdWbqvjdeXHvKACjWXWADRfr+fTyD7TvxUvNy6Ozo6YjF264YjLjvl8/bm648vU9Ph1+T7c+Dphn2nHv1XPLXUzed8us9Gbrmmp5LTzdj5Htx9XG9Zbl6AsvOo1kTtxvLePOXjTDU7JerG1vHTm3jp8734bS5mxhZy2by4WRZNm2Neb25yM0lC4cudgCkMYAACAAKLlcUXGisAHAIZrKwENbjRXHVUEI1yTnsyrKxWXLqcW88usghjLl1gGB9Ry64Ht9cduL0dedakZufPcy67xjx6ZY32+vz1Z8H5+0VWdZ2dcvr53rrO9zzzW9zyV0Jrz6Y9Mc+dTnXDvn8p25enz6exjdHqY1x9OfbjeOp0RjL5W8cB0S1XpxGNnTEx5dlWVNYJVmFSkVnZnZB1Y3hrPH0xJUWpGubnU2OULCAKQCRDUGXFS0aS2ADCAYFrcIAWo0LlvU57IMbM7MahKLl3XaOTWeHeUAyipdYQDPXz09zLy86+rxmM6veXuTnSHqa9M7debM+OvnePX5XvzivT5dJs+jx0e8VnXVjR0xzE2Xz3y9MGbz5183348Ws9+de3y69UaHQRLnqRHNLdky955+8s6+e+Xpz8uztxvtrzLMTDWeaz08a8nrz3zrHWYOvnubPP7c4SlrNpdc3n1lFS6y1E0xCskRKUogukVLRpKxjGAoYDLWoBqFxpLxdMZWQTZnSEaRtLqusZWeZ0wgGXKG0SAzVfquXThX6LhrXrlZsy6dMbdeeXHp1+vgRj5+nmeL04dJ8v6+HLvMHTL9jy681nbZfPfHvPRnUy2nDWh5ifM+jjvm+1jfpc93ZzWPO6s4dZ3zroSCF6I8/efRlvn08Hvw6ZfS575N48feejGuLeOjG7ri3hAZWdONM5emOXWbXXNcukvLrKNs3WWShFCrJFSASNdIuWi5QChgOAAGayg1Y40Xz+nOQJMdRFwjpl6preOTWfK6YkQxlS7EiKNJaPpOPXsxut8/S1no3i9ZWLONIzxrm83bHHTyu2X25/M+jjBpL9vy6s5V1jHWeiKxtbxzGcvk6zx6zpL6OdRXVnWVmpURWudVrPMZndHNqWeeK59KavGvC7cpipctTsxvzenOhEWQc2s9GdPeeWypajSXTOubWZrfF2lQySxqkxsikMDSKl0ilBjAYBAMDRahqDjQ4OmARJlZNAjWXuzYrNPP3iaQwGaSsRZ3Y36eNeJ0x9tz3401EvTnXXm+X15bM/Sc1ZeLjss6Vvd15/D+rhnYj6LG/XzrTGtbOVdLm8b8/pzua4487WYKOuXvlyFZpnfUnnbzWdb2RGud9Fz4nTGmN90vl9Ofs415014Xbh6Wd8tmGs751y6yyLEY2c+oHRqRCl0luXbN5NZk3zrSNImpKKloysw1AQGkXLpKwABjGAAOGukNWOLOLpiCiTKzOmIo6s2yDh3nKwABllyoo1l++4dvj7jk65+m49+FNZd864uvLx+vLs56+v4ddtY8nHXss9P0cPjM68XriTtzr6DO+zGlrFrhNPLh3mVlPA6c809bn12PSzdJrg3jpxvPWN866JfL640jKXnudlyiq2FZ4ms7RUtrjc51FiJsRxbygLNtTKXXNJXLnZKdWNMuVmdlFS2SRZjYySluNJQYDABjAAHGkrGrLjg64k1jIzsQEVpDO7OsbOPecLAAAsuUGUfoPDtyR8b25dk37PHridEsaz4vXl05vtY6XJ1XN46R05lnxG852dc17ON+1z3w6znRnUazlZ1c+nm758Vis7Mb7QJ1M5bzePphy9GN8vTnrL6XLpzdMKOOvXl4dZ8u52XJICzGtI59SUZy7mVjGVCq9SM6qW5VEXPXjTNZc7EBrKAayo5dZys2lY5WAwGIYxgEMtbgGrjh6YYySDOzWWbAZa6Rybzz2AgpxRcoUUv2HLr7zHw815XXn7fLrUrMrnLU2zWY2Znsx1437HXl8Zjfj9eft8+u52S1ZctZ1zazgefrPDrN5u0dWd9Z3ywc9jl5N5cvXjfm9eWsumNc28aS9c1FnhdOfbz2t55EuXLUUUc+oGGs4ajHDAVa6medVLUrlSb5UVKwASI0ULlkw1LgEAxgMAAYDh05dIYlccfTAAhATUIFDNpcNTl1kEAyipWM1l9rn0+mxr5PWeXeKVkIhjKVGaYWayyTYj3efX0sbjWdiDjM6zka+P15cms+ty6dOddZ2511R5u87Z3lrKKzrk3gjrx04enPsjGa8vpz68a7JryunPmTeXl1nbOubWVXLvOVgXFDEez0xhXm8+jlctQzTLUJWAwMrNJQRvLmTZQiiAAAAoQwHFFy0A15d4CRmZNiEI1XSNDj1ObWQAKNJdZaHFqy4RrLZjZz2TVQFrURSEAxH0/Pp041z7z1Y3nZiTZx2Zx5vTHNrMJ7vHt2noZ1yazrKprl3jol6ee/P687jrzvi1nkSUy07sbm58Lrz3zblw1nXOuPeMNTHUC4sayjs/S94Vn53Ok50s0lcXFxtLJoYliISlo2lqVVhYwRlEEgAwAYxxorhiXPWQkZlZlZADAZtLhqZ2UXFKy4pUA4BnRL3Z1yazwazjU2C3GkaLIhwhgfQc+vSKzs57w3nJPK1OiXnIs8npz57OvOvrOHc1jEedOsdZ1zVVy65vl9OcHocuvN059svkbzw6zvmhy7zpLinH0zlZRpm0UTWVntbx+iSeHXxN1zZRNXm3m6S6wjWWTOxlQ1zs2l2lasxSKAShkEjAYAUONFcAE0kkKgzsmoRFFLtEE2TQAxjjWXWW5c7LPSxrol8Tpjk1mKcUMgtUUOAZnX0PHt2WayuOTUiXpzry985rl1nBPM6YuPa59PazrmOiXMqWjl1LlZzax1S743x9MccRZFnFrOss1lZx7xnWkbSyMRnZnWtn6lrHmr8HNfR9OfzOdZ41vjd5ayhcs2SMQwKl1loCiSahGUSSAAMBlRa1AIVUSZWQhUCIspd41lws59ZigVVGkvRm9edaSxZBsdMukvlbxmWUM57MbGIa1FK4o9XO+vOt866LPNs3Sc64emJjz95uPG689YpfQzr1ue+PWe3OunG8N42led6JybzjZjASuOsI5dTGzl3lJFaRvm0oRZz2RVgdep+hM+Mv1DPxPXPzPLo80lqXSXSW4QialNZdZZNCCjWXOxElgIkChAUEWtwCLqRiAzCs0zsmt4k5tZzooAI0Ns3aXWXWW4mpOmXk1nBNpbUMbMrARBZrKiTul9DO6Xpjns1Msa8/rz7c683Wee58vpjSW4tWawxqkysxrOzrzrSWLLiVw1nCzOzSUMrKOjOmJEY6mdXATST6PWfvYKwT866Tg5dIlAgKl0luGBUtiKlmnGpA4itZQVkjNFRmlDii5QDoXSUCJqUmsbJObWVSTDUmgAAqLl1OnOunNRz3MV1S5nPZRrLcsWZWUaS5GkrACj3sdOlMs74t89V259I3z8nWdZry+nPg3i5bjRagLGSUBNZWY2Qk0hiNJaOewOqUllJrKwLJAVI0PtOnP6fFDzNz86qee8pQBygFQy5dpbjKqgLHKwEayxYxgXKASMuEM9XG5KJpCEk1mnm9Mce8oQUgBBajeW4tXCqRIxCGVKxCGarMfV4s5fP7TSPVxvtl2x05t80qXVnx+mN8a87pjzd4qKLl1GQTSQLVxNMlJqEVBjZmUaS0BlUptLURUWImqGVZ+lXPoQHzfXHw+dvGspQBwANQ0l2zUUEBrLJQy5YskouBbKAkqAR7eOlCAlACTKzx+vPz95BiFSBKW41lQgQViIskCzfOujNDOyRknTNfeXPk8d/PbJO+a7pbxvPWebUzNM3PWdpryd487fNlS0WaKkxskios1lQyCbM6ERBpGiszM7NpdZUJJrKySgCg9LWf0qQA+J78/mOPUlzlBiGOA2zqwILi5bEXLQwCIqo0UNSpWMyST3MdGUMoAEYp4fXn5nTAAhUkC1uEIQgGKpRCpxtL2Y1cqRU5QR1c9/bM4R8rddB6SznfUnmaza7c9+b15aL5esc2soYyhmZNkUEWZ2EoAWOWhgVE1lSTqzq4mkSkVJQGdgFKz9ZudZUkV8B25+Nw7OXMkQDEONZaloqGria1ypaGKGMFo0LlAGYp7mOjKGMYyjI8Hpy8nrhkgTQgMcrJqUBAABSGONJdF2xdpaGZnqctFfcenh8t5PR5m30ONowzvz+vLY359OXpz5rPM3jJKGAAIy1MrIsRUrACi4paOeyRWVL1ZoSKpEiCoEjqB1J+qa59U0AcGp+Xl42AUsJBIAMctxpLrLCXKyoa0OKBbKLhqyyT1MbYyhlDGuaeD05eR1xQiRUIyQGsoUQAMBBTgGtRpL0Zu0tmR9Jy1jy6fRe3zLjr4509+VrHPfn9eekuR0xw6zw6nDvnnXRmskZRFkgAAAE0gLJMbLjpmglEAyKkiwAZlYqmz9budJQivzvU8XNvOqKWxAIzSSALhyhrLtmsuWUpQY40Wii4FsD0cboCwKKlZnZ4PTl5HXFASKmJJAALHKCCgSNahE0FRvL041oZno8en2fbj8px6/UduWWN803lZljc2YVpLWN+X1446nFrONyjfNpQLIIFYDABgIikZ2dObcqAdAhEpFQhSEKzKkfrWsbSyfn/SeDmvNqVmisAKgMxmaSCo1y2zqgCGrAqNFoCy5aLO3GrBaGMqVmSeH15eV1wygM6lEAwLluGBNIYypaJIsCo1l1loxOvG/vUjWfnuW/pLnlbzlqXnzvg3h2Xjfj9uMknLrKKgpE1UMApEoiakSBNWbZoMqWgJqBJFQk0CIszpn63rGkvwm583m1K5QtbABmgjOFUGsaqYuac+ppLpm6Q1BFxQFLsVDXQ7MaClooCoa5WeJ15eX0xRpKkx1IAY1qKigVjHDAZaoyshKBRIoOnGvtPL6PY9vl8Hz9dtT0LPO49+jeJzrzt5mXmjj6Y6c3zd5zZCaikjLVCSRDHUkiSK0rsmpyI0GSIkipSKhIoJszplWfrdz8Xp8pm1LcqGaKwAo0UMUANpQ35657ODeGdGNbSuGqLHCpxstlS2dmNUNWMcMoxrxevLzOmKKEZWAxy0VDVjKhrUMKQyUxszoFUo1uNZfo/F6dvRy+n3z+Q5dfYOGa11nXG43nml5U2lws8Xty1i5Ys57AZQxDAmoGBnZjZ7E3RnlBmnRLRJmRUJFSk1JFgTW1n3es/nmdUaSoCjRQBllAuSAFwjp5b5tTi3gOjOts2oFVlygFRS6HRLmf/aAAgBAQABBQJDv8IpqiKKvu+j0RdObYRG0XJIkY3vN2ifjG7YtKAVgaHoGy2V0RqsrLFY74oC2gi6sVisVisEWlELFYrFYLDTdZHTdZH0m636De3QOiwRKG46HwKfMRoQU5BPp8fdyyYrfedowuU/YRm7LpvdWRFO6LQrLtTFWVtNqi3XIBTm20lWVlZYlYhYhWVlYqxVj1rLZWvpvqCFSddrr5PdE2Q3HRb2BRpGmoAWdE0i1i9A0ZI5oUe5lH0+ZlB/zbumaHtTRvtpKsirU21X6+IRCsroqysendXrtSwpYLbRY2INukKBHR3oAu6aivhOTdm/PQYvkijE1Z2WaIUiFGFFNLg0fg/8ndoT9G2uKDdBGy/FZa7Iem+dRHSsrKysVirLal9LGI7p3bpCg1igJvatthZbdFlHUYmIoOWSkQoDue0XeMEiUWe5QHZiB3CFDZd0U3t6z56HemyNLUsrLFWVlZWVlut1gViScQExuSICATz0xqugEWlBAWQ7q118BDt0WI0ITVGnUPd3YL4GxvdRFgT3M8fJ/OPdkRs5i+QrrJXofS3Wf21X6JX4gC1Du7UTotXdbNA+x7Ar4kG/TGg9mi9L2QtQK67Ipquj0Wd3JoUiaEzZE7Jy/wAWbE93G6Ym45stbltsuOCmf9I3C5XzQ9/QDRLK4G5Y1zgU3EJ3IjaQbjQSgj0DuUTs3YarHSe+5VgFu5NFkUU4p/oDdWAoV8/CCPdBHpN7nsCnIFMNLpyZuDs5w3ITU7dRYePmfYQ7LtOOzO3YhBW9FlR3ZkbWmRuQEbGqWR6ij03Xel1dXV/Rk2QBdVoRq7u/v1imhDohHpDv8J1GIdnI9ou8zd0dj8NXHLWrk/aOPLKb/o0bD8GZIVPoyhQkLxgohNyOgoeo/IlFRs2Jqeyf1iV3V0XFZK96hWRC/wABT46Lew7vo1NTl8M/KUfUHd6CB3h/KT/lF35ITSE0gIvCDroEX9Bycwo5C0o03QbPmyfe9DoPcdXfpflpNL7WTk7v1HGwAQFHU+EKldgFsh26LSm95BRiYU5Bf5D7MIs8oLYmLud0dn8jdrbYMtjQGp6/hivTeroWOTY2todAodV1dXV1dZLJC3Qf2AsKdkUV8WsE/pipqKXV9m1+fglHWNLUzu4bOCamolBHvAVK37K2+ICBsQ/7zD7vBxi/5igpdX9TtVyHXuhIgQdN0Kip0SK/S+GuWW17mjadzZBDt6CNt04YrMpyamor5conWUm4NSh35K38PG/CNfA7I+qur0ND0zpuQmPy0WuaBZIaL0kO46ZaU7sBbQSm0Cvtep7DqNNluUAnIJtPk9mdx+JFG/jdHYSbxwtvHBcPHf1d1dE67rcqxVyg7SRdHUx+Wq9BQ1Kd1B2r8dymdtjUVPfqNpdOQTa/A2Ubk7umDYr4G7IrXG08bvsPS3V+jfSaXRoDZCsYyMzS1+kXBachX41lfPTbU7utuNg5XITKFBCh619DUEUOyiKcimpyKaowSZtuTHbIaj6e+i9O1L6YxcOpxXtbP+1x8+qN9iTpGp/e9z021eCmFSDajdHwnd+uaBBFBOUZ3+EwbuTkO8ez53XlZ3afW7anHX+uaHy8pmEhV95XZN1xHIaBqd3b1G0crr4PYhYpnYVHoBQ0CCugnIHdu4shsXd3fl8jZ8/dmyj9cVavw46rLiP8c/NdeU0/xOtjsXHQNUib1juvi6+O6Kb+NPkI9vRBCny6kKsgE9qfQ95+wJwjO/Qur+oebDVdDvM69R2PQiddvRcLoaxrK+brZfJ7tXago70bUKupBQJw+r91bY9p+zCfFH2rdHrX6RQ0PO/Qca+P/Segz6kG/Rcnaxq7r4p8IpneoKPowUHK6uiaQoUA2j8TZOTIyR1tnG4j/wCUfrfnR89A0ATybGtlirBbLJXULt0dfweq1FHs3Y2TqMRPqAgjQ94yUx9GpwThurEsZsWIUur9C/pT26Jpx+PLIZWuDsSsF9VkstIuE1wcOgeqE5ieENl8Oo3oDrmlqXV6RBEWTDdCj0VHfJ+07CgaX1Xpv1zrPYdGGBjy4cZpD+YBJsS5E1srLFWpjTIrylB1xoPY9UUKtQ0HbXanx1QgsdigKQBEbM70kRCJIdMbytKBV6XoO3VvS/Qurq6yXzpvUEBf3JmtLnlGuKx07BZK5K8chQhGoo9fsu6NLAp3pzQFAohBFccopvcr4PY9nd5Ru1qAK3rbrFXCui5ZLIlZLJZLJZLJXKuaHurrJbrFW0Nie4u4UMYI4oRDVsidFwsldQgFChRoKnsetfRbdp1jrFChoE1GhUB3Te4Xw4IL/wCSdRv+gKO6Z+Om6urrJZLJZryLNZovV1crfqY3aiQE2xFLq9b6LFWWyLlut1akH5UOko9j3691srfbSEPSBMOxoVF+Q/EfmgiE82JZiX7ubsi7ZZIFXVyvsrOWLlg5eNYI2VvSHtg4nxgNj7ZK+jFYFCNyxF8G2eHBfcrxG2K3CtdOV1GLOoaihT+3qAh6E6BoZ+THi1xkDcBBP/7PCeNw268Ys1rShG0INbSyOyJCvdXRKKLhe6ufS2UXFne2bhvgEcDnJ8UcTvMAjJIUHOXHa50koADIyX4p1kS1Fy+SbLNOddA2Qwcv9jEJ1e4oKFO9SPTChp8xRDGRpa+N+weQjI1Dd8p+ssJwvYrCxXZXRKJV63Xf0zGi8vjjHDddkJELeTNHj/cfZznvc1m7VYKFgRjyIYApHAJzwnG6DXlN4z1KwtLuyATO6sL20lH8vUBD0rUKlcNwXIia5sJs6wKMIRbiP8Yhdlt21+L0vqO59LYIfV7JWmOVxe5qY3I4ALC6aBlEyy7KSVYvenmNic8oOfdk/wBOS5rhZbWFP8W/lpPcoeoCHpW1CcuMUXG0hxfE7Jvw8bfGfjed0zsFfon1Du0YygczfG6jYQRHcFllCz7FwCdICgpCjBIRexbe7Pwc/wAr52YkCxQV9mNtqPd3bUPRBCpNgBt0zpCvQJy4xXxyGrjSYlpR3aBs76uP53Frq5p8+vi2TnjLZq8qMqllJQnmC8yHLhav7jSoCZk8SJ0YTW/YfiyIf2Zm3Tm2O9G99IR7v/H1AQQpboW0nUKlQH7N7cgbXseM/JoRaLyo/l8A02VqXV639VCMpBDEU/iRlP4uIdG8ERXcxlkU4ImxyObnFPcmJjgmtDSQSpYCnNsAm99IR7u9SEPQW0hDRF+UY+r2ZNlZi7hyYuTm/aXs9ELYVyCy9fG7CTLB4N23ZeeFrhHDV7EQjFdOZKix6wTH4oNDk57WLMOHIsEEENDTR3d3b1AQ9MNDDZ0O42XLiQ+roH5NkT7Fs2zb/wALByQwM2UR/wB4C+aloKtZd1I1OC+WPewOnITuTJYoOQOn5Cd3f29SEPQHSKhFcY7KRuTZBi7gypw2sFyUO38Lwp7J3HY8sDoEdJTgnJ4VvsSLHu7dAXWO4+qBvpCf3d6oehKsgEWrHQEVxDshuObEmuc10MhdGuU1R/j63ZZtWbV5FkU3dWFDdp43IbK3PoFqc1OFkUQtk57QTIr3LDtpIT+/qR6EoIGhV0FgsUVxCh2CnYHMe2x4EuTbWXKbtH6W6yavKyj5MT5HLIpxN290KtK/xZG6xaLiIytibIJInBw+dRTwnrJfZ4MblgnAUjJvcDU/8vUBD0JQQo6jSg5XRXGP2b+K+OZFieNJhKTcTC7G7P6l15GLzMXnajMvK5GR6udA7TfkKO/IfkUETSKJ7kyBpTW3UUVwxga22POaNxrspjs4po2YRjISU4or5YAU38diuxum9078vUBD0JoCro0FL0hP3j7U5EWbHNLTxJPJH/i8Wl0XC8jF541/YC/sLzPXkkRc6mKsrVdayFWfjP3FH9x3KKZx5HJkEbUGAAMEilid42RDEXkg5rGx89nQKnVkLq9g8oirSUHAOafq7t8Np8+oHonUCNQr0Cbs/jm4pbbmw4P4MuEzw5coWf8A2HrzyLyyFZO1N0jQ7shWH8eQm0cvlsMj0xkLEA1yILU2NqxJRYQsfqb5fsIP9ULsmIaiuRRhRVkV3Vtm3DcxliFu0jMNuvj59QPREUCNB3sKhfPFP1oFyohJGbsdxpPLDzo8XK2mysVbpHtoh/Hkfi3s2N7h/VYWshjjaQSmwpzWONv6qxD0HOjJeIHCOaRgDY5Hxs8fFODxquiVPa1lhjTFWQXZYtD2mwc3a67IFtv8PUjWe3XC71CK4TtoXtxkxyVrrnxYSfrprO54+ksW+4FlZW9HB2n/AAgYzCJ85P8AqBETb3MQDzK4SMTPqS0wnzXEcbuOrHyPNoi4Nm5cUsbmODm6rKRieNyvgup/iW2A/LfK7U3JzLNtkMg+7f4w1NBUIrhFNRQpzofJEw4Pld5uKxzZGyMIPofmsCcx0jYoWNBJCyXikaY4HMd/XE4bFceNEucTCzithP8AYD3RMeWvem7cbkubIuM90MmsqeO6Juro5JnEe9SRua3G6LRY/ZpcGoH7NaSLNBPb1AQ9G5DRdDRwz9o+1SLjmRGObhH/AFkYus10XoT3rACS1jMQ6RDj4L6QxxRBEjkHdp+swkd5HfWJoYbys8bnOHjM7SoInFNAEX7CFxHF5GbdJKLlJIr7yOXCjFrKZx8jmvB+jVd7jixAnMABOR9QEENfytuk5DSNHHNpYu1jo58HkjieWna/ZHv6B3egBJi4wAEcRXjkaGzxxtjjeZC8TLYpxcFJI4KExCIfY/5f6yuOA8QYCNw+5daSWNtnfR3H5AeLg0vV7kU5waGNwbxYy2IhStc6OUsp3czs5X+y7j04Q1NNx1XIUNRoZs+D8WSNs8b0O45DDFNe5G5cLH0Dq8NgQs5Nunf6Gjjed3mkDw0IPKmc5yawQNePIml0zWsBjLgFM9rOQwuEj23izM8Ba0jlxs8hDonRckFZlBwKKJTjdEpkG7Yn8gxyZsYbt5gJiaBg3dEgO+yLRbJY/Y/j6gekKGkaeI67Rp/ZQZMHePaTnRY+hdSJmbg5iZFG9Of/AF2xRl5LjMcWPbaSFPmzEbW8eMjKUSgHjcqwHm/sthapRlxh5nMa1jZI5BG5nkc+XjNdEbOaWsTC9qGZH3RbIV4Cmta1FmY495o7uYWS4l8jHxtNnNBRsAXXeQbDZBON2+nCGv46hodAQ0cGSxGl4Dm8qLxygpz2cjjegNONDZjWMkL2mNkGUxLDIfrIs3I8myLI+Kns5EsIizhdHA1z7s5U2ZhyYr/aBznR4cgsfHHHPKXJwa18zMZJGlwDDYSOYRzJF/aJXnXlJUEWQ/GWdxcsLiZ4YCQH3JTmWHwe2wNt3n1ATfTHSKkFQuxfC7Jun9jEm94Xlkk9vJ1b1gYHyndrBkyxlfIzyJj7EsZMnPf5IYmRoh8sEJc5sWLJA4lk+b4GPic2GQ4tfK+P7Dk4XbK5vgyDo3uEUc7RLFyIGlPdI1zs7kEUaAh93MiIa4eYcjm7CVzWYvKIaFYlwDbg/TdwbbE3cneoCb6U6hRtk61ODJdg3FbbciPISNxe1ws7v076eE36BvjgLbNzbGAyzXhr24GJ0wjYzPezsx44ppnWTmSeT+s0P47RC7kStjmzk8gfynjjOFmmOLkgPKfGJONxZ8mx5ZPgLVyGutuTjZBcaLGN8gLeRy7rBqZvG1l078HdwXIAWL7rFFSeoCb1Aei7SNF6cB9nMKLghQdpbrms/wBrHYl259BDEI+M37OGyhbkWYuYA50fJx8LJGPbF/YMe7o5zG1F7SyPkeWE+Vw5ELWymOMxBzpIpIwTJDHFyJWPdCb2L2RytMsc8oLZLRslwhL3xwB7o4kYA55ljiidPJK5rfq1g8nHBsxzQ2QPLDjg96Dfu38fkp3b04Qr89G3QdotUaIDaRojwEDLdnIO2mNhOwkvFnfHVshGVx47zOuJsfG1/wB3P/Bxsf8AYZGRRtMUvhMsoE3jm8n9dzm8TxtAc6PkNyRwkg405kYwFsofHaYyS8aLySCGKMBzh4eZM21pJomCSTjvZCHOtHyuUM4/G2ETSF87dnRFl8nlNaBKLNBdk9jMo2o9/kbklDv6dqHWtrd0QjTivuyQ/SpbvyuK6Y8v9dLFHw4DyJm/puMnfqOIpv1uKdxpmo9FrrIr9bGmtzma6zoBtHaRd2yuLQWzOUsMMc5BMW8kT2MvI3DkSxvfESzG9pMJ2ciZjbfVknma2SCVzXyMmHI8EbZAxhj4j5CyJrWTf/DyclNj/W5XIy4rsyjAAo8Q8v8A9b2v82DRNc2aA2Rt7OKtu532Cb3d39KEE3r2VtLtQqEafr3p/wCKGyumbndj5SXRnyceaKcOif8AsOGEOeSY+W1xl4EEq5P62WHpQN/rw8WMW5H2hJdExzQ54eFB5E0J7RJDC9z2tDWyNdtM2aTjxtDxA1jQ6QeLlTfTCWRkcWXHd4micuHInYX8fJhacvM0COdz2jmNEzlyIr8Q+NsL3/QZOU0T8GNaxl3KTdOIDn3wc4eYt3eRbdyt9ZL2x+v+PpRQdWyOs9jpGg04brStOTFdMjusgFyC6zedyweW58y/XcZnIlj4nHjRdExf2uKmzQOWxX7D9ddEWOrix+SeW7U02jmvnYF7Yy0TYvY5xhjc5oN3+RjHNmlDGOc8NkEw8nFMwT4XDkNjiZIBnHxS8xtDGclv48kPfxI3REQPcePIJCJWRs5nIkDU2X/cWTOgkcTBPjfhtL55QP69/wDxvb/tlDQ1+ZhLRlK7Yk54odnfiUUSU7v6QUHWsNB0HpxG0nHP0EZcoo0+TdTNuON+qjaZWQ+KN74JWGeeOThtKH6/jl3/AOn4zhx+C7jkSSh3O4DJmuYWu0/qmKTdzXMeYWOL8ry2Cm+81t3WIdMCzkOkzdBJJC1kZhJUrXDkzBphLgV9/KAI+RPIxrry+YQ3HCLRG2QNnL3Ph5TH3lZGOMCcnZB3EZlIG5HiOa2R3/OKN8nHZhjJjZji+Jge9OgAF7wkWRKIV1vdzbl1r+mFB1rUsiKu0hDVxHXi/FtzYi4FymttTkMYBzeM+Nfqpy+FGKMp0DWoTytUczZKfteJtp4sREEH2mmb/pjyhbF/sjDml0GTk45SjZRNYxz2vlg47w5sdmvGRZym3gY+IqF0joXtc5k7I2zzu/8AMZwR/u80UOMjhFHyhmVyBfht+8URc7jcx7WH9ex5b43NmjtG/wAoMnC8hLI3eDCITcYuCMYu53+3/B1yOysnIbtKf6QVGsdCysrIihbR2kK+j5IX6v7MeXy0G5a0CkkwYjnly5fLBDLJC+XkchGR6ycDD+ylYrZKORSNyb+w4fgNY25SOPhbA2wmsZnkiEsAc+Uf1YYY2CPOwcGtLl2fE5kcrzJ5cXeQQx48V48Yma3kh7nM5LZXcRkcRbCf/M/JShrOZyCcDtKSws4ZleyCJnj5rmBvDMi5LJRyXR2mh/6wXbyWhgBvm36yuIL7Pc5tgLlzQE8gHIq9l9nItsPRj0lqFtLJ41Cor+t3MbxfkMUU2IPJCMkji4xQMH7O8lg4cuLGTuKlxj4zmNkax5U8QmgcC004Tb8h1nGBrXFoeZ5D/tU8bJHvbIyH7xxODZE5pezFlpnhk0sgMBkc4YTeVkDGTSeNkv28piBi4j2+OLPynHw8mRqkbNJxwGYOkDJuI5yYyYcnkCzm3ZyeQAZTj5fs1EsHMBf5nB3jcGN5Ukv+0ZkAAPH4f5bFxsgvl249SOmBvosrKykGoKysgjT9ef8AeDgS8yusLPIt88mLOLAg8ad8JfG3lxFpa5zVZMZk/mfXjRf8smvlguuezDlU/XtuQ77QsLGcUTBjJcprEMveaXAu7v8ApcTOfI2N/jlijdBGQQzMwuU2DeVNkYH9w+MSwuka9zCOUxkbXchwPEhmMoiZIeORG1/3HKms2Tk/9Z/GHPkUjJXcrP8A3TvDOVm48vGYwzsHn2Eh/H/5G/iewG1tm7NtsO2odQUHTHSsrLFSR/ST8tDaGhQXGOPIcy7eM27k8Wc7udxJwXSkfq1xeKeOf2MFnxRiVv8A+oCi/WiF/N43IkjiFo5P/wDX/wAv2n/2acJuMDPsZf8Ag0Yhl/6/2a+DGV33PIa9qlkY3jMcGM+okauOZMGtIkc4OZyGy+PxlzGNj/rvkDVLKBzJ/M6Mxu8rI4Wv4bn4ABvI3MXKs2WV+XHk+3JneP6bp1NO/wAnhitPiJpM/wC2QPHN+bz9ifqf+ouWvp8g/S63v6UaR26e1LUtR7btmFtIKB0NQ+rs/wDRG7CKN2TXtyDgoLY1ljEkf2ikbyH4y8vxtj/aRuoYGiSPkL9i/LkUYz6x/wCpxuDK6MQ2TsgYImhsRlC8zRHypIySG2b5HRWdcMxm5Bjiljc1rnv8kHGfK9sUT7+OHw8o2Ba50ILTG4kTfhyHvA5bWPI5OHg8g/qQsz5E7oWcVjD4ntH9r/4eWTlI5nmu+0+SODSXlwt9vj/JYpvYkIXtqHpB0boUHdClgrI3tyBqGgdyuI50sD9hHJalgo/q/Rz4LrjuKnh8jeOwmdeSwxL389uMiiGUsP8A2i3a04Syua5+LDKbsjhP+oBohIDjIMuWDdrJHultNhyTI1/hD2hxKu7yce4Rwbym3JlblxIXxFsDjhIJHMnaxvK5MoDbyGWYDw/b+vAQxz85ppGY8Yud5nhy5HjCkmvK50hbM05YgPQ/B7sQvl9lu4ABHYfwoo2gshXlDUKhf5EbcB5a/kNxTSonXCds7RIzNjwYJdnshhB5BNhyb24Yd5P2/wD9hcVuUzPvEDs3/wCx44XclrBjyBKyESt8bWBsRx8sDm+TkZStYRyIBJdeNq418RfxOewPJLeXM2UjxtErY4geM9rWNlH9r/c+DlM2lDf6rz/sk/4vmYIcjj4ZQX5t48kjixwepQ1Sk/2D/wApB/6HSZGS4Ti1jdydl9b3ATO7d07t6MIdIa7ppQKaUCghTkhfOgVanL44kTBFOLxNULbBOFwO2jmQ5M4s3jeDg+Y/XkfYcT/l+wfnylwRZBmJGMjIyfOwusbYSWdPyI2uYQ/yNnF+JIMIZxaV3hfxuayV7fC5RiISMZGnyMbDM52UvlPHMj3DA+WFjPPYt5i5Fv6kh/8AOHkohvjdIXRwRZLkBgixZ4Ji7+s4jOX8yS/klr7TW84zKfuZiga/H+TSja3qhoHQugVkg6yBTVdcluz9n6BUIpu7YpseLxOQ2Xjxxfeo1ciPF0TQ6Blw4S/+iRzYonuycuE27G/Ylrc+K4tjjZaA+XNri6a95rhTODOPHE1ojaPA4NeeNGGMwEIe/wD1mMNlgiAXJlP9aIeZsQtx3k5N25fIewTAnyzZHhl8bYmZuDw0M+OLHIxcgyf1Ly4Svb4t3En/ANETZSyUOahujYA/k4/a1LKy2yH5O/I+jGsaRS9LKysrICgKB2CBU34yiztAQ0Q/jxGh0H676yNYA57wJOhJDkyKV/GUsm3Fhwb+25CNOG3/AFxbKbeKb/h4y13kcHcOYYNMb5CJBFN5HTzOc2NzmhciUmPiH/U8ZOkcDHM82a6WVAPauNNEWReHxPawqTxM5fKmYAZJDNJfwdoQQFJfxNY6wkIllmvxHck4AEpjATEL8mLH+typPviRESLjdShXR7fFBfJO7+iGsdALFYrFYlWNLILyBDkBOe9wmvfQENEJX6//AIskA/ZKQ/7YZOgTZTyeOTitYWy8rwRPc5zkVFG7xh7ZGuy8zrF4IymL28aP6NYxnhc2W48ruUPM7kGR+PNc6/H2jEgBmmaWtbI0tcA/ytyhOLmtZ5XCLxSxtM/KGPGmkvI4j+qSbNj+r+Onsc3jffyzPf4ATIm+ITs3n4udi5zeOMnSSXzdsFJ2oO26ttZXCOkelGoVsFZGyOKJ3cSvuQUGgpjbI7NntqGiL8+AfpM7x8xrg5rmNcvCWoPe1B7Si8A1L1cuPM42UP6zkYScxjLT8cx0aLuj2ODXu4z3Xbg+T7iOd0Zkkv4bOW2fHsVFbwmxdO/ySs2BkJQD72LVGzJRsY9sgc1SOkBaxqmzA5b78ffyE/7RieUPEIpXRKZ8P9eSaISTS3EMdjH4/GZt4/IOLIi0Nkvdx7o7gttQJtrHtsrH0Y6I6BLsd0W7jYFyc8LNOIV7K7irXUg1DQDZ365/3/YNDZ/10uULpsHtc11C1pRjFon7Zp7iEGuemtDQuWwwcjlct04g5GSfxD5G8eFi4/2ErrQN/wBUTImiE+QPbOySeVsb5A0eSQyM47co4oxLhyZiyO645TGFRm/HJQPiDWWT/sw7ufjjypHl7XxPiPiL4hH/AGXPb/b87cJJWlvKmYOPNyHPcOO1slmCWFo8crjZxA40THudM7/c3LGsguMVuDey7lqBOOi3px0MmgF68yMiL0XXV0N0E3ZA7Sb9PhSYT/soQY+FIWy/ZF4aRKV5Si9yPhaBI56EQvRzw1fsmCSJfMfNso5S+dtiyYPzkc3x/wCYdZcdv0Y2IzYyCPk+ZTPk8Esj2nkP+qhBUeZEDR4xeR1xnvEWFssvn/3yOlMfFY4tgZ/53Y5/6v7Ba13LbGAzlmIJxEjoo2+Ga/mLt2O+r7+O5ei1zF3R2p3oU7Z1yrr4H5EYigCtau1vSX1Cl1eh0tRCazeUFp+ei0rj8rzsn439cxNuDAVjMF45ShAUImBN+jqOfZTXcOO8StniMMxpxtuQI8nxSO8uTJZgFyHW44exrI8vA5pLt38iXeR7sGO3MbMjG0OTSCTtLx5W2inHj85MkEQdEzIRt8VuK1+EReIHyffO/Ib4/wC0+UMhkkdyJI2RN5TfH/X5fibM4sEeT05QMHj5D7OCO9Bug4EKYVA3BTu1G02QVqEI6h6IUJ3paoaUEzdWwVw9SElHvoGljS5ZOaePyf7QeHxsj/YpvKhchIwq9CAuylkxairGKf8AZMDm0jP+x+TYYGvYxjAWnyta+V7uRMbxkwZtcy/F8ojDpJFynMDzAMGxgHG5d5A17Xrxt8r4WGX8X8cu8ULgWOY164zThD5f67m8jOKUf2JeXEOQIs3tjiE0UbP7UjIBBy8PP8d003lbcQPdkbbk7/HYBxDjNvcubstl9UCbgbUarIhCrdwR6QajQ90VdXIoHJrnNN8HueSnd9A08F2PI5fDAe1z4ZONOzkxSxmORpVze7geVLM2TifsMBG8SMc2448mLpJ92iyMflgeCH0imE/Hc6RkXZgwdJDk4/R3IGWPJjb4y3xxODoYIgMGvJZiQnWbFj9SwgR2l5ERyWwfxoiI4iDGWOXENmRNtAXsEsM0shgivFI4iRrgeUy39jlT2jF3ugjEhytO27k7ENb/ANLr5epTWL8igvh2471GwHbuihQIjdwpao9GE7srIojZbIUacmkfXuni3SidjJiJYeTGQYJ3wyF4nYb0K5zfrdQcqWFRSNlZ4IgpYfCeOEG2X7KHCSnH7/abjZyRyGaL+vFGIWRykRSTQtDuT5J3u5PIjdAcnWaMyFx5Lon/AG/jIbBzAWxQ4ObM4iCX/gcSZc2ceTkxf1vK+53HFdBhH4P67nQmXhuZ5JZoWutdmABj+odsR9eNI7J0ZsgLK+yJvUbF25Qutsc7igGkL5TgnM3Vlag9EKWVinU2RBQWJo03bYqTp8WQPj5vGyUrMXcPkeN8zE29gduYA6NsaEShNoTzcXM5MHITWFhdyTJJz4M4nNtSEbDFrf8AW50kEL2xxsliZHG6OSOAJsToYvFZ07w1gYEIQQyGO0TR548miYjxyH/Q4h73mTxvzDA4l8rX+GQM8AYA9z/9EP4RgeCKMiUSsbFCwPfK63GuWyRXxkP0c76sZiR+LjtZPdfVILP0g3CuiEfxsUzv8bZN7OAW4V1ZDrDQNBVl8gpwTTQdgpLdEU/WPvD/AIcpgL8FDKXNzXlTpboOAQkXkKLiiVxv2KAZBPnG9vPdDmuO0f1WxkiCch3IdN4HCVsAyUjC+MuY7jSTWU2ShmJG7Xs+iLrtMbcrbwsbZjTjKB4Zv+LmgvkZaGYy/wBfOHzPd/5m5YQQvEXI5LBC0h8vkbj45IpnPcQ1u7wAG/czOq99baJL56Lbin+VLbjYBfPY9ljcYWI9R8O3QW9Qrp/RAVlwJfGvOEXfdBXKurq6uskSrpxTJ5WtuTWD7RfW3jyb9nN43nkY7/WcpTK2Mgv8MTCS56hf5APqeOzNQyZqzXKAm0P/ADnDXceVrhF9c5cgyXHxWJlfADxjDEQ/kPjdGHPf93TCFrG8qQHkbLcteS4jIC32unP1/ruF/Zk5nGfC/U3v8qy7IjYbUuL3KGNvkj69xZWCsrde9N6FXXem9A0KzQHm+iysg1YrFWrk40DVZEouV1kroI64AxzfDcRZlsZyBaWHk7SvgZbzPlY4tDeweCHB5Yc/JEG4J1nKRxcnEgWCfIHRyusx2KmY0KbIKzSRKx7n8hz5o2Rsk4tioI4/BypvG5gc9wBcfoF/i4runuqArVaCTwuN/W4/NgjlhMbr42W1BQFd1ZFfBVrj8UbFfItiN04WXZX9FYqy2VkQAjuraLmhF1isVisVboMZdeNSbJx0jocRjXRSumYGvDBdhHj/ANvIcRPKJZIHti8PJeLRMxD93HvBJ43x7p72wgBvjZcp7wjGSY33LneBWLF9GF0rmp0JEGAEjm/+djBFCTEIXC6jc2N4cSzL6/Zr3bJzr0A0Gn6t7Gcxft3FvCY5SBxV6CoNHXKch2HfZdldP7jZE740+KnojQbo7i1LZK2+1QgrK1LrJXV1emKDVZEIBRBO7Sd7LFYrBEdAlwXCcPCxucwdc+KMujEuTbOJ2QtHJxYsxORfkttXg8jEhmUmJYXBhEITHAte1rnwmSWTFxcYXWef/SRDJPaw5L3hj5XytxcE1skiucAEbZl4Cc4mjWq2gmjXFp487ORF+4H/AIm95+D4uO9hY7sQRT4Xwjdb6GpxyddXWyATtq/HRGgBy+Ed1bZFugCjkdITUKGgCY5Ocn91isaO1Opey4LjeJ1pYD9LkycQDGMwtmdK57YMWO/2ODWhz+WTihSLlTRtb+xZd80bo5JMoAWBznRiFt4Yo7NjyZnxTYNdG8yFwgH0YA1jZGOeZJM0bBGYBZPKsigNGyJpakHJl48gMXP4kP6YslIBH7DiOD12pkVmECKEq+hvdyadromj0OxK+OiNB+i3KssVisFii0VCcUTqCDlmg5WVkSg5XT0CgaWRCsrIigoQViuI/wAc7Zh/YL4/K13H8kPja8zRx8oZubIM5XtDHchzGv5bC0IVG1bqwKMakEiDnNTeZMAeZIR/Zu7+4C48pqfO8vdLI4q1CU0IDQ40to/VcwQSUliErOZxjDIN9OSD1kChXtW6KB2O5TO+o6Bo8V1isQrIruMbpzU6xBV0SjrCCarouRcgUHJxoCg5ZImgVkQvG7Glk04va539h5d/YdEC2VkXlkxYnnKTxeSF04dE2JjG8lztAqDoui0FGJqMSwWJVirKyxRsiUAgr0ui5Yrtp+P1XPzFOdxByY5Yyx35jVdXQIQtTLdfIcheyZ2vS6Gm2qyssViCrK1lZWTmqREq+sICgcs1lXJZK+q6urr9YY3w8n9foiIUrmCUP+03/wBZ7RJHGSY3GJkjAHvibtzPzqEFZWrdXvpsFigEdkXLcoNrsEXIAuQaBqAo0uaeFyhyYKftODmDdpduOg1Ar/IGh2QTu3wBahC31WR71FlZFWVlisVZPCl6IV1dXV1dXV1dXV0HJpQCsraIpHRu483lj53EyJbYrj/aN0rXcb+yy4fkeKZ8A19wIwYw5kwGEnIG9tZoQsrLJZLILNZovTck66sgrLsi6jY9BRW6to4XLdxZRvX9lwMHi7S4W6A7Bf49k07fIR3OrdBDRa6ItrsrKyeNpx1bq6ur6WlNcslellakHKfCYTHJHyeIJWubY8XaZkcIfHYRXf5W/SX/AFs5ByLJpLqTyrkANB03V0aXW1L03VlshcnFY0JXdAFyawDSaWRO2iMWjo9jXt53BdEWOATm2NlbTcrNZCxF0E3sU073V9R7IVCI6T1yPTZIOQOgo8K8HEknglXPixlYcXvyEhDvK8t8cr2/2ZvMYi1vkkx8bHunhs6ROcrjUSslfTYrArBbXcsl9itgmsLkABS4purFWpcUsalcYl3HrzGQmFxu7L/XTFYKx1XKDkHBN0X0fNe1SL9GTtyPTgoFA6P1j7t5Ebon8bkNnj5cfkiKb/t4zmxkGKNciQf1w58zGMkdAI42SkGN43a5figVi1eNi8QXiXgavA1eJiwjVo19FcLIq5W9MbrBoRddNjputlurK63W6xCsKmrPwo5zWN/Yc93KfrssVidQr8aAUEEO9bnov7cjqWVlbTZW0tQoVwn4yyRsmY/z8GeCZvIgfx+PjDG6INh+romuTWxNdxi9qbiydxeYpyP7FvvKBdWshW6ur0sVZWVtFws7L7PTWUurLalqHUafEX/JEgD9l+wPJd0Au5pYLE1B1nsNqX2b2vQVa4jXJuJ9FurallZEK1QgVkslA60nHN4+VAJo+DyP683ZcgYQteCizd+alxj5Mshu9r83lrQ7KSTkYtp20fNtF1dZK5W6tXyWALnCzlcq4V+kTWP/AJr9n+x8x6ITtDQrJsTXKSINF1kUDfQak7fA76d6bVupDtyOvZWVlallZGl1kslkgUDtxpwGRyMkb+y4t1BzInwcksxFi4/ZjomuUrGeGWRroQ6SVSMa2LGy5Dg6ah2V9N9O1SomZmRmTVkL9YBDt+0/ZZ0HQGmyFGdp/wAaM7VHen+Xy0i/dNG3RepvS7o3rvUU4v8A9f8AUGTKXHx8XMc7nZeV4gwY2cTsyt/5suKWYM/5nx2Jk/rtEWIpJ207U3W+jejMcaOxs3IIdT5bfL9m/meFbaB0DXdbpn4z9qR9qs7UHb4F0F/hd6//2gAIAQIAAQUC9CPeR6Y9/hH36ffp99ih99hH+At7cCPvYdAe/R6Ya7e4B71P85b2Ceiffp//ADkf5gaz7GH8wfYo/jR7JOsfzJ/nTrHvY+wT/OH36fYlv5k/ytuvf+ZPsE/zh9gn36fdo0HrW9zmtupf2Ef5wewT/Oj2AaBH+RsrK3sc0FDUfxN/Zp0H+bHsEfzdvYB0Go/hz7PNRoH8QfZx0mg9Vb24dAR9FZWVlbWOidPx7TPRsrKyt1xrvpHtUI0CsremKHUHtE6x6goVv0RQo+zigUatTkFf05QR6fzQezjpHqj6Ao+zTqCPqD6AoFH2YdQ9ffoCtvZ4KOgenOi/QOo1t7LOoVb/AAIodA9mu1j150GhCFT0x7COttCh6Y6xSyIqK26dvYZ9UdF9VtB1DRf2W7WPT2QqUKu0OqEeqfYRpjoKHph0DQK9RUoIUdUeySjpvWxRWayHUOgoI6DUIjpFFBBBW9kO0hXsS6uKtSyy6fzpFbIVKFXaDpHso6GtV0VigisVstltTt0DpFTo+UdBoKWTkKD2dZMaiaFWJRAFNytws0LrErJdtbtB0d0DV2g0IQXyjQIIVNDU+xuwqBR4TTSywCLbIPKD6dj0ToCGgUsihQI0NBVyCOgo0PsM9zvUChfTO+kso0pyaeqEdHzUIUdUVKKajpPsV6anhNdZeRXVlhRp1Ft0DpPQdT4qaGnzUIII0NBrHsRy7Im6snUFCENBQoU1NqdIr80FToNDpdoGsexCimChqFapVinAoN0NqdB0Cl181FXVFTQUHsEdQ9gU0ohFM0Fd1mVkVejmoFM1WR0Cp0CpQq7SNY/mx1HUBq3SU4IGuVGa/mh0jSaClkUKDQdI/mx1CiKNodJqxFFNTaHSKmh1HUaBD2KOq6jaHUUUDZPTkxNodIr8oo6hQI0NRpv0x7Cum9ILGg7nYUOg0Ol2oVPoD7HCDUe/QssldMC7npCpodZqOqUPYwqD0CVZAIHpnSOiKDqHUP5YdQUssVdXV9BdS1qfIOsVNCndMUGoBWQFD7JKCCyV6WRamlZIlAXQFAgEQsldGrtZ6p0Cg0Hoj2AaGuSzWS2V7oNqXIGuKt0B1ginaB7QNAFgrFYlYLEIbVLqjWKnpmpoUdA6BQ1j2CRTdZLIK6vVztAOolDSUUFfomhR1hDQddvYBV9YCIoaWoNR0DpmpoUaFO0N9nN1NoQrLGgVkOgVbUdJoNRRofaIR0DXdHVeh0Cl6nqHUfZZoOqShrOkjoio0FW6A6R/nj1rdE9E1KGq+odc+6yih6AK3s86hQaDoPu00NTU0FSNJ9aFb2aaGhoEajTbUaGg0Wpb3EdIQ6tlZWVlZW9u36lqD+HBRHsfFdtYoalD+IBR9jg3XbWdI/ie/schBW0HWP4rv/Ej1t9YoP44fxI9eCn6RQ9O/ssetciLoUsBpNAh7UHrSo+zgr0tpGge0h64GyBujsdgnIdAfzBQ9SPXO7/L+wR76Cj/ADZQ9B//2gAIAQMAAQUC9Cf/AOvAfwF//wCLB9Mdd/8A8F3V1et1dX9hj+cv7KH8Rfqg+7r6L9QH3afZ4/lBUJ2se63HWxHpj3UdbU72SNZ/hHdE6B0B/OjWf4R3pR/Oj2CPcx6gHUv/ADY/ij0gPQX/AJkfyuXWsrfzI/izpvpssejZWQH84P4twqetZW9gD+LcrrJOVtdlZYrFYq3u19bXRaUGrGyxWKsgOtf2Ef4M7rAICh1DXb2EKD+aPsEfyY6R9gChQ/kbq6uh7GFDQVP8MK261v58aB/HW6p9gn+LB9Bf2ANDan+HB9nip0H+IB9nCpoKH3sNBQ9FdXV1f3GNBoOjdXV1f1Z9qlChV/UHqH2iNZ9Sa26Jo1D2cE4IVKaj/C/FD7Ob/HjsPZo1FD+ICPs0aj6+3QNb+zyENB9OOoKntegrf2WNRqf4E0Gg+zW6z68aBQFGo031H2ENbqn0I1HURS6BqaFX6d/YY9UNFtFqX6R9ntR0hH090ahGo0CpQ6o9hCmWgI+iHWKtU1CNR7NGi6Nb0wWJ6g0Cg0DQD0ggjQq/shqGgrugK5U3WSt6E1ujUI1GgaD7LboJVkFeuVLV79AaTUaLbV+KmrUfZwpdOKAoFeuwWxWNLqy7626BpIqNAoDT4qaGooKj2VejEUaZFByxCLbU79IaCjrGgUFDVqKGgIUHsP4G1b0DaYacqEII9UoaPipq3WE5DSPYrUQmFOasFZEq6unagbIjSOgNQoKfFTUUFDrPsRq7q1qDQDrNHI1Gk1+KGooKDWNB1n2IECn0FToFAVdGpqNA0Gll8VNW6hQ0Ps35O5IQQTtApgFirUBRYndM1Gg6DVvUPscUIqdITSiL1tR+v4oKDpGoRofYh6gTTR1BpFAU+jE/tQaTUayho+KlHqH+ZPVbR3QFO6amKTuaCh1fFBqNRQdC3s2yJ6d0URt3qNAoNLdRqPQD2OVdDo3WKATz1xQaxU9UI+yAiOjdOKI6Y0nomh1/Hs66yVlZW0Wpeg7EaD0R0zQ6iVdXoPZRRWKtS6unBWQV7K9boFWVtAoNIqOsaHQPZIoKWWKxVlurLKoCtW/RPWNG6D7SJWa2VwslkjvUBDSEamo6YqKjQanSEdZ9gilliraQNB1DWEekKjWdI139gBW1nWdQ0Hpioq2rdDvZx1Opel6FXR6AV9Q1mpqEKD2kNB12Q1WoOiOoPaZ0X6NkdY0jqHQFf2gFbq36I6IqOqeuPdYQR9wDUaHQNA9WfaQoKjSag6R7rFBQUOg6b6hQe8D1bq6urq/uq9D/ABA9ojQf4g+yCENY0n3gCir6BrP8V29mn2yfXkJuse82q9q3OkUPvIJ6BVqX0nQfeBF0QhRqPQPvAdvhqKGkIezP/9oACAECAgY/AvaYV27kTgF3dVHSjU6RBkol12c5qCTNvlsmybBsfqjQXatlM/mH1siiHSzu1b75+LYchqchTytFxUxjU6G61jsGhuF6uNQfI+hZVHlcx6VkR5c/TWTSwZrQYNrMV/ajqvPiDlwXCgPig4VH4rH1etbgRpbXtJ5HSMdneQmr0HZWx9ROH2C4o1eYU//aAAgBAwIGPwL2eOg9IfX7uR5uATgyFSKMVZB4Qq+GzkxbD9UajM4j7ztaBopusw7BcdMQ+rgyv56ONUfK+hH+LCYo4vftraPNPwaCQcD4HpjxB5AK/wD/2gAIAQEBBj8C87TY942Aop9m/wA7h5mqs9XV8x8/Q95T+ijL0C1UsTbGVVDh2+pt3p9F3+lv6NxtVE58iOz27fIf1/mNy3Yejg+QFQ+itsYbD6vp6QwsHpfzW70mo4I7Pl5jd63s2N79rDYPQq08hvI7vRabBsqKoNZskj5FvpG5b1l9Ea4W+ddfq+X47N3kR3egvts9PrYiBZtKGxvSGh2/QL9w12V7ExdPj5/h59rrZL5DvO/AbN3kBDc/oDKnqOLdqcLjsGPo9m177kyfBctI7lml7vbHD05yt3t8Nm/yX9yf0B/d5W/yd/oj+TvToMgVwtW9c/pHHZVO54WINdYPb5rNKm7yd/pD+EfPbvvPlDz1EyHp7+UdgKG+3237LNhAu9BGWzchXlv+vkb7lV+KaQ7fT/0/P035+U2wi70kbGQKgb2YlOG3piO3YRh6E+WvlWItf6JX1Dl9Rv5chds5bBZ7fP07j6LTyXWY9ntj6NVOn9UBU2TBD3p8PWm/yK2Cz0gNt3Iop/UrWlSFnrbf6eVZb6lIUcVIer2THynT+Q3pLRuRT+Y3+nNHqf1BRV8l/NRzWLlsby9x9MzBPjtHqZ/VmQ3ojDaPMNh5so+fHkPgn9Sut3quEkT5t/NlH1q+0HZHDy6+sWw82fRd3qQIYBP6ufzL/wDAL6li5I5dg3LgfTt3oLeab0nemO3u9TyHq7ki6MSKjZX1C/kv6l3I+rP3dQacQm0Iy1T+Y/RUP2x7lWWY4+ecejU7Rsb1PuvT7bfIrb6lsdZdPlG5VL+cosFX0bd5D+p4nZZ6rw4p5/3Af8sVygy3lWeZLhU8wfXJ22V2V9RVT+hnzR9DbH1Ll2FUVdlFXy7VaqeigXK2i3o4eXZsqV01VnmLf+BH2P5FmweU3pB+3ZegdWw0oqRpihmrC9Y4KlFUpyaIBPsqrPLq6tK5gn9db9lNr7PuO4Q37N14TeQ59LEDIRJxXLISkcEQTzOjHT8VZOsmq8nsismnHIPiql1wtVisQAsVbE+2ioq+UUKX+vKJj5G9Tib7k/qTvWf3rNin2Mt3kUWAWKpTY2SRT2HAqtFTyB5QRPrZ0NoT2hH1JvRO+q7lTZ2rit2y1UC5j2BOzKzaIXPTY1x2sLVv9SOq19JbyHXH1K2w+3uTiyXzVFyqxc4kV/GU2Q4qciMr/JddESbdsffsb/gJ9pGwJvUkY4pmVjKnsVVRCCsVmx8fIxOAWY9Z2P8A8Bt5Hb6ljPAp/wDbnVMsruU46gn20VVQ8FdsqtydZRUoi9Zf+AXWb1Vk1a6dxw/BNbE9JUgfOW0wVPOD1wyy7SPU/wBs2XcU6/NA2/UekD1qNrpwq+qXC/8A0HUO/wA9WhXLVWN/wEyym7afRrdrN5pl3lNbL2tWXsDY7uCwkFWkvNuPKstTGntjuVPbf66byMy3FOnR89arVRWbLVb57dvVSqSZrZXD6lGVrO3DErSyfmrJTjbW1DzT7LPJbFbx2qgraMv0TA0Nj3JjQ+1iOw+u2RB8qpXUsVYrNlqt84EPIG2vKMSrHP5j3DvXhb29vkmMckPzWf4D4oGJf+2dhG8/q/pCy2QIIdA9OnEgti1EDENGXmt3mKIvyfJWgsiK0qL04sv7qXdiaz2u2H1qPJzXJsUCE6sGzqVvoo8gKxhim8eJ78OFq6id/wBB3lcss0jZG/8ACO8p/wC45Tdh/lX7wbR8MLz/AFfRRla55YKMtQ2S6RYtTRiHJrEcce1aesZPO9A+guFjwVnVYmBu4pjG60J7d/r3eEPTMwHLigTNzgO9cwBwITReD+//AOEd9q/NgPp9SssA2r+a6P8A1SX7gzyl0yvPH2ogdbmn4Iiwb+KbW55HpP1QfnnOwD2sUweSvb+CjktmKngpwlUg/AqWgbunzLC1NeqKt63jYdhBqLlQdJZGvTUKMoizvVTYfmmtY+nv6SE16psZPcVk9yzJxem9GOw6mpZdG87+AWaMG08fp3pm5jdZ7Bf/AKXyuj+O5c3PG97T/Vu3JoHJib+ER4RvX24RzT+A7URLnnK2d3AL9nngeo4cEYaX7kj1ahsH47lnlzQNszb/APVHMaSC5P8Ablb8D8EGqdQMexffvgWLYISFh8w6zOm8ghc3SuFhW6QQvNiIsCxLOpC4+uG8oHBFsFlNvo5RjHt/Fcwc+1OJWUS5sLojf3R96yiOeRtn9PZghCBaV2n/AKpJ/wC4PCV3tvTy5NO7E7ycFknywHTvWU00sVk0uX+3vnjuj9V92A/bvh38Vm1P4fDH/qUDbcy1IdEZCiBHVCr/ADXKM4mOxHQ1KYeZe7ZVM1cE9m5b43bLf6D3LNZluTix0QKug5YEKJ7CiPXjLcUYFFfq9GlgBUppSIj8/wAE2lZc/wA/xWfUGeJuFp3r7mmH1JUjHfh2Xpz/ACGs5b/oEdOY/aj8U1ugPb3JrYYr7J/gFs8T+T6lc/Td9F9zV6PDHD8V/wCQKaXj0+8JwO1QLuTRgpw1aRcjJuNQ6OlEV07O74Ia996yy6h5oRj1I6kql2GxoQpKh4oiRbL8vwXNU/PeN6NzLGiwoEQbYlUpV099vZ64HkuLQgUaX+jMLblWuPH6BOxbwjHfw7k4P3N2O4fpC+5M8/5L+AC+/wD7h8FwGA/Vivs6ZaQ6925fasAWUfxXlZP7X+P/AHTh/TvX/wCQ9q71n1P4f9v8e5c3Tcp6fUsv9wGMeRuH4IiEahR1DQS5SN9sfoomIpPlPcpRmeCzR7OOCrbh9FTyK7XX359R6AgDbf27JAeHm+qE3e6Sa1rFW8INaKKMjwTxFoYok1IR93p7+kDYy3Y+QRcbNjE+imZ7PbeqF44fmOA3J5jcSP8A2x7yvuDmnKkNPuHevuSLf3GNw3D6r7EeXUvnd/isulTU8U/qvtSHGdy+1p/wjrn/AKR3rPZoi5f+RHl0I1MPzb2TdOmRRcxzT00Jiy9RmKiXt8kQzOpiRrGo7KhftUcPEqOrKpvTNyT+a+RTSocfKxOCz6vZH6oy6dGNhvPBcvTd2fPit96OUtjwsRBtQIwQvoi1A6kLbwgy5vcj6+zC0bIoS9DEbBeskaRHUe4b1mlyRHsw3m9fc1K6dkI3r7z85uwH5R3rJoHK3VPuC+w1lsl9sDND/uYL7GnZ49TD/wCSD/wiz23rnH7fhh9VLTlQLJUmBy0+Csyw1BfipQmcynHTHNGzsWnqmbYsntzKWmaCJpwNQtTRAaPVGR3/AIo5y+pFUTEZTuXLIEYFPl91VYV0+9cx9y5QjHc5QzU0bJH836Y7sSiDyiP8cP0qWFqkMQVSqrQPYg1xRFuZPI3LAexUrt6+HrhvKIRC3ph1j0PK37lte7gmkGgPEvumuhHphevuTNbofl/+W9Zf7c5YD+Q47gskOTKvtgf51/48OaRtnhx3ofaeUJlsm/8AMSpQLRwUZzmSRaozEXXLFhqj4hCbsYVUNS11ZyyWppRiZGBo9ECSItgoah5jqDK594UNWPh6uCc1dZQGhKoWEk/vVCx2WKqp719zV/iPh/N/V+ncm/NXThgs+jzTj1ah6eCF72fgmHXesKKTYui9SKqLXHYRaSubxfP1yD5ebZ+k2rl9BAPTaVyeH+Uj8t/aVGEuk17LvxWcV04/xD/X9F9vQOXV8cvrvK+w2Rr7ivt2NeF/4kDX/u+3iUtO0495UtNmPsyEibbeK1NE380UY5ahDUHVpnN9fgqycSU9AQcws7kDSOVUHLOKnGRQMazgQVJzyFaUZ1c5c+GCtrDD4oa+l0ytCePSaS7imPvVdo0wLVklXVuwCyR8P8mpj+iPFGOlywFykIk1wRuoom10bniscwQJscJhQWd4QPZL23FbsUMP+AGTX+hTl7+A/FCMbdXq7/hRGUBySo3eERo80hyiPy9yaH8p6yvskcT+KGhm5CHjK/8ApdRnH/br9VGcRQrcVqaZP64j5qGrCDsWPAp3YSREiSJXKWnl/jND+kqGq9JcsmRjGBIkjpyaEo9Mr0Ja0zKQ5Z8UYwjy6te1SgaKUCecWcRYokDqt4ihWpokb49qoHF6MgaIZpA5gnfc2w6w/k8O4XlZwcul4p3y3DAb1l/t+XTUnrRFhcoGRtCiwslaoGRxCGUM1HUryFStik9r2L5Be3u9c5fLl6GGto+96rMOg8o4eI9q+4/7UfZ0f7iFJSObLuu+C+7HqN34Itbihqk82nzfVNCLxkPmpaJaJhZwuQlKdYrT1wOmh4FSgSyo8pQoexRmGjioa05FjyS7bEYxjUWKM7CLVGZKp06w/wCYfVZo9WnUKOqZUNqpzZ1PTiMsT+5B/itLXlOnTJt6xzKWeNd6pVi34diNDahHTcSkWQz9NmX8xH+n5o4PQKW4oMLQmstCjfIFmWoLAKshK0gu6I7WREqA3cUw4HsUmvqqe/4ot65FzoB05VLNpxQJv9Ci91VGA6TWPbT4CqkY10xRvmUNOH8UK6m83R7ymj/JOg9tyBAc6dqryQl70Ys74qWlKzTNP6TYoTi8hPlLfBEMIxkp6OrqU3JiHnHll3FZRFoatnFS05HgpaZrLvuUS248QpwkeWXMO9ShbIInTg0oVD7kCZNGYei1NGVTE0dOAxitLWB6TVsDapQjHgT8FGcpsY0Le5Rna9CjljTVD9oUdSnKfmvuSlmEQ+8Pd2rO1tyL4rUFuC0yBludTEjYfmtSIuLhFq5gi5u+SGUdQUSUXoAfmhcGZBrFluF2/wBdBDyYwhRrV9y0C1DSBa91WUirSO1ftzzKsfOGePKpzgeimn8vqvtmhjWSOsOmRMpD23L/AMiw+Ee2KynrkmrKccFGb5Qoaprn5JP8EYwFlijO8WqM0DEcurQ/1CxPZKFQo6jvigdONJKcHyxnzx43qGtIuYW8EJRFJIxJoVPRjEyySp/SVp6jiMZcsu5ETOZ8VqaAiouW8J7KLW0iaHmHaiALFoTs5vmpPKoUMniLFAlc1c0CRxC0yKZoKlcpX5cwdESL5oqBAa5Sibj80P0llSrG1PKpZ0AMVvv9sFmb11lQ8knFECLuF+XUghPV1fiuV5ncuX+3mU2poygMSKfBOLCnhzR80JxtjHNIfJRuPUe1SEqGZyxlxoo6R8Zyxl7XqNxijLU5WRlO3UrwFw9ylCR4IwFos4hCVj28b1PTlK3mA+alAByFTllGo7E5k4kHWpot0mitbKtPXgDLIa8LCpQYRBsX7knlC3sUdSMahacwGGpyHuRc1jX3LT1Ag1BILWjKVksw7VAxD5ostSNIp5SJy1U2FyhuCoHWjIkAWU3haMzWtVqQAoarSkTuWlIcFJ7injeAtTNxUhZeELva9U3P+CpYmdnVabvp6mp6Hx8h5JgpYr+Sl4UdWQuZ0YzsjVlywCqYxX8sfeuWcew7Pu6IrfFVofLjG69CHg1JMDuFxWWdJSoCtPStiOaXZZ8VCJrAAlSnA2+ErT0tWmY1+dEZy5oqMybblyihWpCcqPniPmoarWUJ3FYAowqVLSyt9uVHwNQo6hnSXKR8kQzup6TblHMajlPYpxPjGb6qUAFmsMK+5VL5h80YQh0FacjJuCxzw+IWjOxiiADJ8FqQytbag8rY2fBcIhgjcGRcuYyClFuiVD2oEm0ItUxknAYRLo5uYkLTPYhc4VeBxX6QbF8gm7T9ExtuT3/l+iPqV/Q4nftzFMLNufV5j+W5GMwMjLNAsQs1x7FzQVSwTglHLqmUcJdyMdSHLdMd4WeFJ4oxlaPKlqKEY1ADtx/BNbGKlrQLiZpE4DBajWgAEKMYllHTlF4w5jxsChG2HswUmFQhLxRwWlqxjTpkTgVKEpNwUZWyioyiFGTtHUGU8RYnJrGvuUNSIWAK1YylbzjvWlqRD1b3qxgVqQnJ3UGFRynsWtpks9QuWJLXrQ1JSYO1N6pWUS6hKIoQpAmhUqOzoi/KoGZtWtCMMa/FavNv+C0ZmtxWtGx0QAS4ULmofxUoyPTUEI0rj9EbzRSvLo/mK4rL4/CgBSVrqlPXI2Nsyrfsc1mbF9xuUr7Z/wBuj/LZUJ4TyrmGYYqmz70BUW+VHL1Wcbyp6osez+milKHJq6lAeK5xSA6hu3KMx1Tk4PciZDKQpagL5zTgLEItYKqMJWS8X1UoRClCwqMpGpFeN6npgbx2ojBZzKumRJMOZ+9ShlbIWqoyMrMFo6tr8h7bFK5q+5acxV8FSLAi9asJz6Zuw/UtMxHUGWpCxOS5gQfctSERaFpyJsQLuTciQWdGD0qHQxjJTH5hcmA6oX7iy5pNllYE3U4TCjOFrknmjOnbVDL4gi6/KGUgL1vvX6xYNyp1WunH+f8ABAj1y8umKaHSPih5GMsFnkpacRbiuSWU2FV1JHtXUfenBLptXmjjf+KjPTo6yTpP5ogoakeiXwP4+RGOJWcdAD8CbOxZR1UfvWnEjp5u4LlqTRD7dDEVj7Xom0yo3GiAjy5QtTUJzg2cFKZ6QFGcRQqsqFamlEOxzDtWnIBgaFF5UKnpmqju5T2KcH6g6lGMSeKzEtkINNykDzOmjHpp7lCTsv8A+kPktPUiOmQTk0IWrpAZrVGuUEfgtTTkScpWmwRjGLtK/eo0rJjuWpnNRKxRyRaiYluace9a8bWktIgMtSMjZL5rUEBmzRjLuKjqSo9nBS7UGwUm96rYnHVj7XIxtO5YA0Q9u31yYvyhZVnHauYHiuWJKwdfc1CuaLaV2Pas0bCnFh8mE/ysvkVknbccfxUtNGJtFu0bqqMfBMvIbo0HxX9JLFasxNxSIB+K04SDG17lIm2wFaMJ0MeZxuUss3JsdQhIcSEQ/Ee2KtYC5RnetOVglynuRapjWm5aepGJrirQAVqxlImucdq0pxjbyuiLHWppyNrqDCrN7qLW07BaO1c0rFo6sIu0vnRTieVlpah5isBIIwAfLIjvUwSIiYdAPmlEqTlhOIl7qLS5qXrXo+C0pEsi3N+4D7wtcRizh6qBlO+wKbVoCg35CKcVCjDEqT8xcoPhRHsT7KCxZbL01je3x9S7rz6Jlx2CNya5ZRslFMbVjC+P0T6dqY0N+2MB4iyIwCh/SFqaJ6o1996kCp79upLxeH5rUmPABAjf/iVKcTUCoKjmjWXMW3qbgjLSvcUAKgmsfopNzARA4LThZV/cqVAUp9JF6yRjdU3dilCU2O5O2aUOYPuVBQpr4qMiVA254mPuqE4FY1UZSNqYVdammItlm44FQlKdJhlOLKYsMe5coJzBSjI5ftlachzFagsEmn3FaWoZfpKkBY60J9T8p7bFCRhUWL8g1IueAtWnA80XZFqdB7lLLEnNDgnoACo5pZngtLJFuoIObJWKbUqqYFypMgpJ/Z7lW35buC33+271a/iwVPNwKzIyw2btrjlO9Vn8FLmeMl9weK3ishtVdT4L7mbMbk0GOKgDaAFCrU9h5InveXD8GQkbJl59vSjG+csoKLGgXOHzoXwAtv7VLWjQylaMBRVi8Yi1TkQykczPjvUYeK/6rHMpRZAHwvH3LUiTbVGMeaQWnqBgYSB7ipQlO1RvMVCVgVK/chdiFDUjFsptKBnOhwU4M7oRsyExWtCRfMMy5R0laOpKVC8SnjF8pBdc/uQsDEI1tWkYjwkVw3L7si8gbAgYRtiPgVpl2eJC1Hk60SBcVomUr+5csfFapZqoAWC9CIRXYq+7vTn2+qBsFhPrkHBZ9y3lb02zf5BiV80LDvWc3XLmiRwrsnrWk92COe25dm3T0rrJcL/oml0Z2B+QK0g2bTcy4I1yvT3qEIlSItZRy8hauGJWpqSDuaGP0VSxOK0dOlS54BZp23FPSJiVGWZagMyxaQHwK09T83KUY41sWpAAk1UJZWcXrW05zo7gDerHIWjqxjZL4GinElacnchRMRaFrRkWqJjtWnKAfMGWpGUm3BQItEhVTArwUc9A1ilARrYozvkak9y0hI5hlU2jYVpknwlaBDyWq0GG9aOaWNi0aX38FQWyUnruC4XIoquCbG9caf4Kvqfd6HlJ6aMgENso+T9wdqyYLeFGBx2HP2IxiojdshHErfAV7av7kD4ZPIxUH6MnKeJsP1WnChv9yNLFqakS+4rKQ0sth7iogKMXBbFHkHJFu0rOegexXLFtLVDxJx4b01CYlaes4jHpnfbYUc3PIWE9y05NaiLlKEpdEj8aoH84+SlABlOJlUd1UKvmDrVhCHTI2qEjJmwUDbniR7qrSlfGSLBn/MpOc0oy71qABqKGoa0UbhIllEylmAuC0JQi11Vq5p9gWkR+U2rQarYLVpTetISlcTRaeWNgkSSovxYI77lvu24llS5OOLn4qXGh9V4efy/mQOxsNgl5JjinN1qzRQngnQwRNxQ4bOAcKU4ltSVIH4MpNSUeVkW8IAMfijJqwCkRIh1GI580gKW4qUrd34KAj7iqxIK1bx9z29y1PtSbJbHHcdxQy9QqLmOHYvhMe1yOkWylNmfK8fcrekqJMnelFIRh/JF64hac3EWNycyJdTi1qiGbKTFasBXNWiLRZsVoTnJ+Zqb0ckbKuoGRuWs1AjVyQhG1hYv7eVA9AsxkGBqtO9p0Wq5yrSapratKwMCi5JMirMohBSNTysEbmDMEAO1VKC4oG9FC82Mvd6ldb/Ib0CE77Ud1dj4+YzXhZD0lZvCUALZH/FZRslupsnO8WLTMOkPOce8KH6i7rUMvzMJ8BetSZq5ohFrVpxBbKDLuChCYtkKhUOaIuUjLlbH6oFxzGR+KMiQ8pldObTJeJ3+Id4TZKAV4b1CYqpiw5n9961dPe/vWBC0NUQJqx7VJoWYrTk4HBV1LQtWLZmm/vUWDCUVqCUlEgdMhVamYtuWllF1pWuZVKAFlAp3LQL2SH0UwzoXASC1B1UtWjGXuCnKIpCLVUHkBW5T8VgCAseV+6ixc/JNdtCtRdNHFN66AwCD9VhQw80cFG9xamwQgKg3qUrgjI312AXzlTsU5xoegDhapTjymArgv3Bll1EHfWiiIFs1WURQgLVMoUDRB+ajlLiIsUpMjjKg7V0giItCfJbJwpaerHkIdTyVGrLJ/lv8AeFEQ6Z0hu3HctSe7KyjLNJpDK3BTGX3ot1Rr7k8puJDp4oWUUaLWeQFIlaBzPVqKYjDtKnmkzXBTxIWk/KG9qLVv3lRxJDKY+2ujpIPxWoMosUou5cMpE0uYIfbtotaQasmqoCUwGrRamo/1XAXrdEfidm7aVYj72QF1/roLW0TccwRPuTeZqKrIRm0z07vwVOorOeqXyQ0I8ZfTbWmSLg7zYoxlScYvxdCEqHVkz/FGMg4lRQjAvGIsP1U5SiQAgTbJ5V3rU1BaOXMFQu604UaAzn5BNl5p05VHTErEDeZPmOAWg/6i+/A7llFGp/mP4K3JMSD/AI4hRy/yA2BfcBy1aUVqRyu4tH0UcwYs1d1FOIukb1A96sHND5LSkGpK5Uiai00WqCewfVTup2rT4LUOJv8AooyETIRkHKrGVi1KS9yNDYKlZenxfRR06mRLyCPhDmzcGV9ZJojcoxoMxWJf5LMb6p9hVisQQue9YG4+r6+aIXaqXhjsksp7PM5Z9ErETapUdulGUi5Nu2GW2RGeP6YqW8shHq09Mdrmg+ChCB3kKUjRSaplQdtFUdIWZskpl6KIDSHuWqWF0e9EsMukLjepTMC5sQiaMGbjUrTkN4kMfx+anffvbfwxRDZoSQnbp43jjuUgPGHa9x8Coy7FKD2SvwNVqxyxL1Q5KhaMhEMXiqABiKoVeiliTdYvt2fcUmBpRaEWAzSqgARaF2LWFL1EPgp0oKVxFVnkbA9FOcRRjU76/JaYMqW0UWGJqgD4RYE1lPnsfDyhVVss/HsXD1M16Ybd22pVr+bkEZYEFCQsKqFy14rmFFb5NEwtRPiCOjKyVY8cFWwpxWOwBU6tOLdpQ8M4V/xxRlqUM5Evc1gU9TDlEgvzutLSPL4j2I5ZVlT3qMLWRNjIzMuqUpJ6vqSKauWFSibnc93uCZ/a6Q70MwaXhndw/BWZXvFnbgiTHls1AK9rIw6sh5TfuPcUJY0lxG65RnaByk/+0v8AVR1SJN0yvp2KbSotFwJ8y6Wc3/RCRq9AT9FKJNIt77yo81BG4Kdq/t7epW3hdVylEeM2ldVic9RlaVqZfy3KZoAzKMXdh801rR+alvLexXdtO0OqBA2oeprfKt86CpAoEXhZL4fJNKNPzBUOyxUTG5UquYsF+WKYbHjRi8VG5vmvt6ip0FYyQEqT6uy5SJpKdAeNEb4xCAgchlX2CAZwLx9Fqfp5A/xWnBrOZEiRopypLBdDZYrRFBRanPWVKbA/A/X3put6Sgb98TYhhIsxwfq3EBEmjcz/AKd/FS/uv+4XMd5pFv8AUo/ngHkcUIikpl5x3CpUIx/qkPbepziftykfai0o5o8tSQjKdZPRabALV6fCyhZ0lalQv7eo6ldanhQAMtHNEl3d1OpAwC0+SpNpWuXAuYID80rVGWJvUzI7qbkLhb5FVTYy47Hv9SUVT5imx/NxJsNCvuC2KDFsyxVY1VisWCc1TaYYYn6J5c0sTtqvux8O1pCi5aULcbk2DR3g3rS0o88RzS7LPisvRKZZigCLFOYNAhni5lzHtWpqB4tyqk3MsVpaWV3LljcEeQvOg7VlArGKjG/qlsAarv7bsUMJEtiSbhgMTgiP8vb+UfpHxWT/ALf8u+Vw4RtRlbowp/mv9yjA9Brn7juUtYFi+WOGUfUrUcNM0iblqQPh9ndCw8qPI/MtP9ta37f5VBtPwqb6a0Hh4lGAiAOr6JzIWrRaQsktWVBS1aUayYWBXDPJNGrX8VAEiLBGV8j88EU6Pt7tp2DYe5b/AG+Pq10yw859mfUPis8ej5IVZPmc70zbKlWJrvIOKMCjHbpnegQcsxWX4rUnMM5yxIsYfigLYwr2qU4HsQhONdQ5XCMhKkcULCZqMctinKrQ5I/OShDNSHMe5ZzbKJ+Ow43cfyqMY2w5pjEnw/5bWU5CyPLpnA+J1mjbGPNDHfE4rO+XWqS974hBup3mLf8ABHLRxZ+GCfpoTmFnaFo/djmhiK/iFrHTk3CvwKj0nl4KVD1XVWm5I7Fq1NouUedjlvU+cIA9MEQbo3rpFq0+XwyU8TREgUjHgoB7K/RZi9ZKV1GCi9BbvTD2fZ21H03qmwHbZaiMbor5D59vqevlOK7lnFotijTzZa5CQoQvtz6r1Fj00+iaYVqofJfbnj2hDU2w4hTnl5sfggDcFPVFJTNoohEF3x+oUYtTTDniaBDTyOZ+xQHTlU5x1KBAmQOZ5HtR1HAGpyjgL0YDtkfluRoeW3hjvQq4l8xuX3QebLm4tv8Aqvu+HUMXlgf1fVTlE5hY1/EXSQAPIIioxOIWqTdEc8e8LTGqLuXUH18PA0WIINR/qjf2LSanDvC1iwlS0UKi0yOWyQdFpRPMoPFxuP1Wq/LzAV3KRpJoso5+WJqwWoKlpBS/bplXQ1VGMRdV1CAvOYtuTfmNSUTxZ9y03nbVgqXm07kb2DV7hs9vaqe8ezFPeqD3og2iu0XoZQ3wWO+7gPNN6Vu8zzVVLFuN3mxgaJx0yqE4pILf4gjH3bAupdZAIWTWLxul9UJRsKZS0J2x6eCywrJZpVKlEhsFlO2MJSP3BMCW8YqRjJ8HUISjxZcsrFOZD5pfAUCez7Y+alK11DTyNLULOPipSjOwUElp5p1FwWpLVL38U0urL8Lu1RnG6OY/J+IvCmY9OURPE+KPetGAtJobiI4onSvlXS74fSwqepAsXbcWFRILU8M5y6dwpTcpEeCNYmxZoHKWcwNmNMFpQ1ItqWi49kr1rMRINfQ+9ByYERsKiJDqLrrYRCIi1ZGTlS1JsZGS07AtR5+IWLVMZu0QowcO9yOoaupzlJhDlDfFNAcoUpE5WBl71G0tG+xcP8UTie2iPuW40Te27aAb6bLkbE9qLe+4fj5nDY/pr+S14sWb3+cjLem9yraFnj2hCcfIjLCmzlrHBRLkZk7VxWe0FVqb1xWYbT7wnztJw4XOKNaFPUvNnyQadIi/4oynHmmblEE5byhKBzCI5N5N6sEIwPMJWonV1qZXLBRiKgW/NuxDj7diynqx4/j8FH8hlnOD9I7CaqRH8WnFiMCbwol/445hPuUtUU1mzSF0nr78CoacrdMOcQU0/wDdlljqfXsWU/7hERIe2CyzGaEBQpoyzjVLfq9mUxjRvgoR0czAWMtWWs7+2Ci4j0o/1YqDB/itSzrX9xy8xoFOdmUUZRjEtip5R4mBKnWsY3IijyIG9brFKQHaq+15Tm+qrdb7b/IdOKAoq0KpPlPsGz5IoN6j+fnYmyi+4O3ZlPTL2+KzY7A6Pv2x/SmkHGIX2796a42lfZ0e0reFXZmudnVeg17cO2gUTuU3plqDwqueRaYcoEuTZDhipT+2TGPU95wU9QBjaI4PdwCL2kZjvK09/NLssHB08+MuFr8MVP8A7tsfw3Ms0DTp+shiVN9wa4hqKWWoOpWN43fqC1zCj2wPzGCkOHsJBVqW5TZL3haZdxGV47KqMgOmXhP+kqYEmOBofcoStaQsUnpJ7JfVRo1PCtfnxtXhPKohouSs7jlis+rBzJ5e+xSkWAtZDTiXlM2Bc/VacVCjOXc/RTJl1FsFEAN4n+SzG0B6ob/8Sva9VwTeUQPM70NlRsyo4lM3A4ot2elU2020VPODcijsaR2keRVUtX29f/1/VfeH8U7fqrQyy6dTednvWXcDlPd2hCB8ONtbOK1aNd76KbM7LT5hlZamnLUr1D5hSlKR5o2b/wDFARBLBs1yItx+nBZD1ANEqep+Sh+o7Ss8axgKx3m8LS0xzGRzyxAFv0UP1gvh24EYqOa00IN/A3qWm1jj6e1VpeMYG3sNh+BUstubolxuNoXNTmv7pBHNWlku6S0mJi8hbUJpRzxzCor8LQr4FuHwK1G1OwqXMLMFosQbyGWpJjHUlygfBQGp0gWFS+3puZUCDx6YPb2LUnY9FeREcFAMPzJ2JuHYpBsr8qaz8UB2pvLL2+afCzZO65cUZXj/AA25vbguWz0l0/oRieOyQ84z8uCt26en7G/3C0omZ3n5Bu5NqU1NQ03N9ApaU4kyIobjgVEyAjcX3UU9EzkS/K3vQctExt3XoaRpXkl4SLhxRGLxkB/7lzdpGyvXmD/XgWrvQP8At9Uv0/gpf3LtI1OGXwjvR1rJypHTOGPbahC2MayH0wKM+vSJJ/UPbELTI5gX9t/zUnqM4+dxtCYcwMhyyt99hU2/bLdJs/8ASe5aFPF4f+kqGOYbvgUbTS8OqCLmTClbUNIDJqTvH5byjENKXTAjvCecnylgtSUaiIyuy0wQal1MRe6PeVEDHMexV8ZvUzGoAbsH4qIsyhD3+2CdUs8t5U0o9XdEd6yyqRfjHwy7OmWFPNbvI+ar70yJ+CPwH1Ti0V9uPohu202blb5LnztvoOhEjpiZE/BQDuDRjh+COYVhmEZDd9b1AxmzintgoSA/kPMN+I43qJiKyj8k05NOPNpn2uxChAjJpy+Yue4G5G8kGMvqnsl7fAovbehKNoTw8bQPDxDiFHTj/FLm1P0gdxwX3RSdmn7YL7A5daVdY7t39VgQ09Pl1pUbCOPuWbS5ft3XH8d6jAjLqzlXEAVObEKEZeKVCLO0XLUfp94WgKxq+I9xWlCbSBObNgBfIInT5Zy6SMPzcEPucsdOkDj+afbYEcpGU8sZbsQpEanSLUHlvUpVeUrVEDUNAiTbK8qVbKBsFKQqIi9ZMWHeUWsNETjRMLPLAFSaAKOn4rZ8T9LEc9DDmjLD8DYQqKtPJr5BxQ8j2uQ+I/FDZT0OzZW9U8xX05wWnLl7AnjzE8mn3yUdAUlIVJuF54lO36YIR05MNIfGX4KIlIMI/NEiNIeL5qupmIIkB4eHajmjljb9q/8AqfAL72p0eA/9YwNyzY7AT0X/AF4hSmK/cP8AyC8cV94V0RSMN/6VnlXWJcEeKVwH6RYpZi2v/uy+UYqJbn8Gl/qngF90839zKyIv/TugMT2oyn1CksI7oi/ihFnhLph/qmborPL9yepSOH/1FuJRjI54+M939IwRGmf5KRBuG44ICpdohAflGC1Z0c2U7Ec0ARGPcoRiCDbKqa2cvl+KcjpuWWx+c9yjEVzdSJsIHxKqmFnmIOHej4E2EfLt2SbxEA8E5We40fuW7yKbNya9UVVvTfDZvQG5U2Pd6INlqYbKeorFvFB2rlPLp8kePjPctSco06IqIgcuWtFPUDSjKVOyilqkfvxNQhM32xuWrp5QbxwNbF9yVZR6RuwX24H9p+aOH6eHyUPd7tv2ZFgf4zgTaOBu3ozs0oUiP/dPts4Iangn/H+gY/5lnsGlUHE96OprcuqeaRNm6I3AXL7ppq6nywQYZTDxDvF6lqU56D+kbt5UtTpGnSLWbyogSBMqlHPCkBlxDn8FpwADQ5i3wU9SE2wBWlpSiC5ctgKqQESIDq+iiCGvJK1Nbp08dwwR309sVImt3sAmuj7FVtNT3e7zQkLRVDUif6hgbwUd0o7Iajn7eV9Ufqtid1aYDgSmP+I9vit3l0sv8juXFW+2HlcPQK7aBbvUuUB6utQGBDTu3pgXaZopBq4oCUmYkLWiHkowjHKCeo9y1BM84JeR32Ffaj4A8Z4j6prHHxF6D0lePa43eRlBeB8J9qJ/tmNGYVCyRBg5eWG+iIjMSzFmNChGUKQHH4hak4SyylQMcaWIuBMQDAi33cVDTEqmsgVKcvALlmMqy55Pvs+C1dTLzmxqUQrIfkibys5rOwGrkoRlaOafFRMmiJmz9IQi2WFrC/B1Us1e38Fy19rVu84NTTNbxjuK/RqCuIP1BTz1BKAwFT9ExsNGWUCWpLUP7O4AVjxp2itrqtibbXY/kU2DyX2/Dz4Ce7ZZX1MMCta22NymDaeeJs3FCT9QxWpEAUm/vVo54+1ilkjUFxKVPxWkeqcnG7gtPWmXgKSAuUxAPfHdvHetMyLyIr5qhIVS6cPE7kRmBf8AMO9CMoxMR7WrNKPAA2cE5iWHQH+PFfxveTI2rOwGAuHB05lU2+gfbmf29T4Sx4Gw9m0xNMJC0HEb1lETygZybCfzROEvgXCy/wDpPdwPwPoDeb+fl7lTyqWpx6bnblx8gSwLrVYW5StOlxUx9sULhQl9uk4t22haWrCDZT81llJoyuClpHkEOk37juQjC2dJHfYUc28T+oQjaB0yvI3+m18sf2+oeYdB/wBPEXYjb/8ApGsf+k7j8LVUNbQ2jcV+sfEfUfEecby/6vWZ0z1A2bln0e2P08iE8zf7cvnH6LRlm3KQ5igQ7wIKlEl/ysoziMpHVihORzZsVq5YZnJyi7iCoa2qfuGw7k2HqQSiWIsQn4xSY3/jbtOvpjmH8gxGP9Q+IVOwrMP8wwP0P4ebfySm8vd6tEoliL0JSpK/6r7mlb4h3piK7NXTvtjxCMg35goSzdQWpACRdRozOKnBa8DqCNXotMxiZGyqnDoiC4G49zrU0gH+5zRPzT25qnj6VXzebwGmoN2PEJxZt+5p/wAc/wDll9JXYHsXwI7lSsTZ9DvHneGxvI37OHrBrYYfRCcC4Kp1CxZbxauKnp5KXcJexTCFdMsgWYELUhM2SzDgVQZo6o+KlGzLYtLUiHk+UnjctKczliC1LQ6AFr19Ar5inv8APRGAG0wmHiaEKRfpqJHxD/rj4saFNLpNv1CY+2/zLeSfW0dWJzCXw3IQieWZqNme6SjLAqEhYeXvCkHpqBwhKU2ylQlGJlnGX6KM6QyF0JE5sy1NHpvj8wiGtFScRgs3vl3KlnolFWqrQeRgrPfss8xpE2mI+XkGWqQBDmEjViLKX4NfYicUxuPL3jv89x9bS0TYbE94LxKzDqFJDf7WI43bHNoFOxaepgfgVODIEHm0y7BSjCNJCjqJlNstCAoyjHNmvK1YSOWrgbpYJrIR+LY71uuX6dliwVpXUVarVardlis8ltjRTm3yPy+cjwG0ykWiLSmFNGPSP9R7sFuT+70Z8fV9ewrPGzxC4hDUFM1yymLfq73RhI0u3jFT0c5p0/OKjqSkS9JBS04wpJZDT7ZynuU9O0TGYd6LeFRl1PH5KWbGz+pDhXsW5Us9Brtoqnz0P6Rsc0AtK+3p/wAA/wCbed2A7dny9QbvUsTvTYL9QsX2J9EzTdL8fmpZyPtHH2sRlLw0phcoSFaZZfMKUG6uaPeoysa1OZU1I/ELS1dOFhYk71ITlQiwLRIpUh1gMtvBBrDX0OxYK7tVYqzz0eA2HR0T+yOo/m/+Pz2bvQH9/ljbvTerM56TFys0C4X3Y2rTjIZ9Swwvf83C9ZDbOgCk3Lmo+8WITEqxr/1BEEkiVQs4jz6JfsvU4Pwb3haU+kGhJR8U4TtWnqz6RSQ3FCA8FnoTnp9qfVNhZs4+fbYf7fRPJ45Y/pG7HHhs3emOn9VjNY0vcqD9u8o57F//AJ6/n/p7e5Qbs4qWWUhWrP7W4KeSZlG9x4rx7kRzGL/tnu7FqZnYx/ce723IZAHavcfcubpzcq1QT+2RzHBSzB6MT8pdoutUs5/d8I9CGXp28y5ajf8Ait/nYta4ZZdHTOVn1JuH/pAd+JayzZu9CHmjjsojssX/2gAIAQEDAT8hSYwwOJnNozNYUncgYipJcviUzAl3gKKxJkuV3eKmh0NyyqcIP/feYvuia018+srth+0NufT3jd1z0qIOGWS7gHBmXYZ3mZZ1hE59661CpvBPK76O+1eNzktXb54l3K1KESJKh+oneJatfP4Jd5JblIW2wHFnifJ876LyvLHsZbvHGGXLlwRrBPLLd8y3llveW95iaj6Uy730v9GulSpQF+w/5LvwRcYNRlf9So1G5xRzt/UCpzCcnfiYWhfMvFwZed46W3UoPn595faFqB5zMfT5+sPn57wT2lR9A/Psd4qO6fjr46fL0NwkXGoMZiVZ4lq5rmPEFwyEW6vEDCckFztAHiuaSWYfSFDlUxnXLs7L6zBonF4+c8QPEwutQK87p/v1mNlfP+TGF/T/AGL+vH4lf9YBCER/kT7xR/v9SsSuoIFZ3Fxz6zL58y5cx8Ny/EuD1GbyJlvquUubqF9Yk1KdszxnmPrPKzyz1y7/AN6Xg+e84AlOulPaU8T5/wB/Qqa24II0t4vX/YJK5+z57Q8cfOOnONR3xPCZmfeHVYhuDZ4nyyx8SpR/zoVuXte/yeZVP9wsAZQE7fOPSa/PMov8EetFreexzK91x/yF16fB56Zj0ygTHSbjisI3LoHW4nj0uJWRxolhH9ogOMMHwxjVRaPSLlzuWH718snOYcTz9v8AI61l0v49Jkpp+biUxqVHz8+YxnicZbtiAeiiVyJiYmdSmqxBTHHRfX3lRIS/ia088T52HxvxCuX6RikTxvvPQ6ZifAyp7yw8ynierMu9R81G+tyjvL/Eo0TuMThKD16Nc/SDLAaH+E3Bln5axKrE+SJH8x+Dz01/uGJpjUdY776f1C5hekviWIdu8X0VjH9xN44x/wBh29o8LzxL4cQNd+7/AFjialzUu3k7+v8AXVm+rGLEei5jzNIe1FJjnUVzL1jpLqFmDhm8/eO1iD6k196mPZm7vv8A9j28yo3t+fzAMZx3lw/aYCq/PfxODh+cS9Kv13/kz4rzBvo/Ax2MrOJ79GumdTMIzNTU+al9fv1ufjp3djpXPS5iFvpAcxXiNVkmInXxKlcdN+ijU8ss+iVD0Z6YuN8e0s9eYVwK34uMrvHtGPTt8OziOjMc9L+k+X579PPz8swruw13e0TU9+0yMuPn8xTZA19ZZpr/AFDQDB1/rF4c8/PEuXx9enHwPQVeelizFieExV2jxmY9Awo3VHlwxAUDtCI8zXxUoovo/Mz1xu5/4PzHanYzLgtbm/TgiB8+8Wj37w1kgOV47SiPwP34jDXSs3OMxm8T8dLmPh8SutN4n46OhfRjPEqOu0v6fPEthavcDPpKEHaB0I3XPb51LY+frPOHyqXDEuts9EVLyvVKaRwtZ1DMijY/EC6v1iq329O8F+T+4NNc/wDs1NW69I6nmPwHU6HcNQ6ceY5e+H547TAUt5gM8eIF1vu/f/ksHz853AH5pkxLYj6sUy4+Q9ps/L28d4Vyybf89PEazXt8/iWcfB9+lRm3S56nOCDmOHcBcQceZaxKaQSrk/aMGtILsQFozxM48f5Br5/9ZwKwdv7ipb7Y8QgrQxyp38/md+0vjFi0+nf06b63L615l/Dz8Nu4RdGYo6rC3019XtLlks63Hugl3Fly/gqBRrcb8v8AcoZ95+Imr/o4JiumJfVtG2FBXTHRRLK/L/PMC73/AEP+oFA0fX19ZbFpt/o/uBiCl3Pl/c48Sz11evmMYziPxAVPofgaJ5iEGuP7fbiIVFBrtFyF1muWDfOj/wAhBX6/PiNkDTz86IlqO2Q/BNj7/wDkyfHzf/kKZdGfaK8vMxrrjqx6GkN3CEujVAYd9LmbRwXmaXRWF1N+Qen+pe7RAmKYKJ8wAfR/5MKoxvH9wcl2vxPbnM1/VfmDbcrcZrE8xnr030vMuX0uYlkWM/BWq6wvLruQJbPDiYTecp+GuSGimfw5ijQ3/kIRil07niXLneUswOhvpcv4BQ/JhKE8nE0S15fPwMzKvmFluPMDoDc9Jna4FnjgmUoo9okAOL/te7KTGOT/AEQTrWoiI3xAoc7m6e4w/wCzxGc3wR6F9SEOlzXrLivLX+/SBQ0Ny8QYrmcvSLw3MB2IMrp16T/D/scTY+f/AD1ml8+f69Ovmc/CzRKSxLRh6F4jlNZqw45gtwNm5uzkIy20Vppnr2Sqr0v5gLjHdNF8xMnHz/cBv6wJduXFynLgYnz89+nz8+s+f+dPTpUz0el9Xm89DKrC8ennWZcth3mRvF28+rBxM9/z9SZweCq/aMo/IN9+T0gvq1f53C6xquOl1LjT2gq+7FlOm/Tcv4Eh95n9D3mD16UHQTMPO3zyB4eYtEVUBy+b9JSHaKo5v6xvfPEFhaP/AF94rHq/yZn479GfN/DXTieJzG1jcxW9n5feWb4rMz7SmVtczNXCLt+frN32jj3lPaDn2XGZ656fJNxiqBuCYQc9AvqHDKxDmjcWCGOmM3ncIbQUTFYJLjfFwLFZVCBXV9kwvZq9nrOytTmiZvOIM39P/PHR/wDY3xC+dx+3wPaPwM/MHNffooTMhBe+S9/eK+0DsAy/ZzjR9ssEoKPrPXiL1GH1esuenR0VyxgOfR0WLL7fBZOb6XLlzHrLl5+D36kPtC+e70Iu2XiB42/OfBKMsr/wPHQc76bvOCNn9Tb5fLLi7zH4yGIQ8Q8Hu+e8ygamgDUoOKGNkOH/ANmTXNdGcp/6gDUoXz895rPT3+ePEG7UmXHz3+Ii4jDcygwOjl6hhmMYsktKnDvBZmUoI2vaZF9pUa8YOlAtyBHZ/wA2JeHvUReWZVvTzfzUShnft3o/uYu4pd8x/E/uPPR+B6HVvj59I7KTn5eWITnbG/kT79BdSqNbcv7qKt61se3HtMyzb4fWUSx+/S03KHmo5xEvogDm+YsZfv04l8dNzMzKmPV+cT5fPaYmZbC5cvodO00c+XY8d4QP/ZzXMwYJgzFZ1zG2HsxsePn7xZ9IuGqP/YsXjo9TodDpkPb57dKrMfzuBTVQsRhy7t+ifPz7QfP9Si8Q/wDJk4jV5zD7E09B77s7+Z9Lj57vxV8GKOcM5jg1M55S6itcw/EA7nnqUl4ikciXcd7gmtUPwCwHvLgaOz6NVMDkPEWJ5+dQF5N+3fDzPtOIs495d/1L+nxMxNT8dbjo/L5NdUwr39IVGP20dtc+pOJeX/JidneVjxK7xwXMnoql/wDkubh2j8QLSsJS+vPQqXFWG3B8/mVAaPlegL/kA9XziLP5mOY5Q8wwd/P2qH/YK98su1fntLxma9/j/qU+sOlF7Pn6w+3z+elFqYXOmNfX+oal+e3vPL57Q5e0O1y/YT5fPaI5eOP9iUD6y8dsV/52gUV8PJ89Ho9SbFD0OYo+lbjvK+x3juW8rnIJU1gIVvMP3ssDTUuk8o+nNeaY0q1aB/hGavmaQxFbJbp+Jz08S/03/wB6c9H16YmCAGze0Y1ESiXW+IxftF6VfOJiX0ro94suLLGp38wT8PhaZODcKtGdHsf656BO7mLzDfz9JRa+0JeHo8esLH9f7B7fC6+DLU3xLysKLvv3lJlvQhr+583O6uPljYPf5qI+p83CleJm0b3LLr58Si/D8scPjjzH5JeZdvgxDrj4K6suTgS3EDefgRZ0Lx0JAlc9o5B30rLDp2OYLp4yytkAmHF4YcUNt+O/+wXh0My2Kj0T4V276qS8ddzPSunnjq53qcRSIOv7u3+y+CLfTzPWXL+IxjHoMs3Aw0eP86ffor/qj3fTiXBn2EfZFPBFD59oMYWfQEV654/2YPhetdGZq+cyjQrvDwNcyyvMsvXl6c/WFeFTBZpN/PiDB903HnxL4Sji79e/Ru8czg7/AD9Og8/FcOrH0ip4lB07dN46Dt0qNYV5lY8SrhxG2JYPENTBa2DXj0mY6c+3cm5rDmzX04v6MPn58TxvxO5KxXz6R16T7sslzjxPEeOrr4fm+i/FYT1SvRz8CxjTz4jB4GUuZ7HUzB7yhRMGLFl9BTJs1DNcd/71uXBv0+dRyxqDNvXouJxFiZkvnc9MfP8Af6f2p6Qqcenz9Jlbw69IGZ79vaKVWB3OWtr6xfTZ8+ktNyyPePK9sEMXz/v+Q55lr3o+avxqEJZ0x9J838TNuiaim0fRlXDtLioIdQrkNP8AcoV34isdx4K74P78Ruou5rGq12716zLnHz95qXHzLi2ynmVNfC/oYdFy+jH4RUY9Ac76nDoBc1FjdxHQU9o/CgDZBE/TpeJvEeCXOITU5rozeo73Dj4uT4dHoaviU8FVX9zcmNPXlY7nPHz2iLNnsfn3mpx2lvO8+nHpGuZ6vaLyvj54n5Q+0GF7uYdSX1PhMdFxgRTTqHczdTZhzfEFLLWwytfIwbiLLe555JfeXF6fN9Br4mc9cy49OJmV1YxxH1GBjLMrfRt6zEWn2RY/A4jYOIKi1HHlpmzwMnx4t+TnoFscR6iDzOY9HSZxfK/TEOvyR6c/HcFS+eB+SBajfHbt95RXV7fnxiJvxx/dxboblnPCffpTi/p87g/+TGTjt4hn4Dz09eg2HS3GMc/CGIHQV0uAqPE2gkNMYllO8GUm0uVjz88Rh58ylqRe5r2l3pN/A/fp5lnt1uXHcuX0Wpd+Ouer8/8AnVqLzDsmuu/Tp9uL8S/QF+kOWcECXN4Kj8eVb/CABcb30YdzEHEvP3m+hGzXP/Jk+h+M3DodOc1EHpAORjt/frBqt7+fliyzs+b/ALgUfN+IoKOdJyu/z94Lz31E+v2PX+pnbzKYdnf50SqzWY7fj4qHwk1i9T6H5fPaLc2lULorjWumWzA3+09i8Q6IMHs/7Ud3NS8svorBvj6zmMsiy5f16Ofifkly+njosZqWwK4jwuVcqotWlj+YSuhAmtxROGp5KYi+l3WbfHQfVFgrMdVzC5XUfBp6J+OfiHy9fn58fGNTP2h+qDgX6ynbWv8AyAZX9f7iDvVYPMGE7w2s7hrt4iW9qnd7SgYxTn58yxJlen5+HN/BiDCDMxOoRhjqqyo06OEExNe8Au5UoTPTjEugtg2YOKnsGbh+ZzKdzxC+XRe/z4iD0lr8S5fwfN9Ke8qJ0x+gOZcXiLMBDz0rqSoN7jo+IyH6x6u/6GQb+RGcR6VTPxK63q1ZuBM9mE6eOv5/Qe8AZ7wa/L58xD88ef8AIbfSFoXXMNQMJ5mV34d8bg3NPxCXqEb4305+fm+h8PHTmEOjqME9MZWYMRiiXmD/AJNiCjTCOfoZ2XEfXn5ae+ZVoz4/2bmNT16MiNXL6X2+C+l56Wy+jPxVcr6Rig7aiTXS6SVDv8F9R6YBc5+PUBuLao5gCzJ0cXCPTjp+Jr6RG++349PgOhhjCS7vL5ff/Yo57YI4/COHzUag8s3dDVVUv68dCt44/PXsSpXwhDqdGXMSj4PwRSeEJzMSxkvzsmDzLNQMHmGiFSPdHaO7fvqawc+ZfH3nEz7TnpfSyXH7zM8S5czMyv0MdGItK+XiVMRmiOVAh0rq/AualDbHb4FniDnmlmPZiWlC4uvWOScO9Q68dPMS0Tj0+f8Az4OIfAdMGMujjXnv79pYy9UXzB4zOXLNvT5+stCuPll9YNswdyD0L+CrnErpXTnx2h8BGXKj0EzIJiugCW7nmOWFxTD3iOYFgXBfvOv+RGK0xTcehb8OJ+Ixc3K+HHTMqfNRidNy6i6lxipQh8T1VMqe7t9WUokpJZxPJMI9pFMt6ZlTATZqdsPacenS+hNTianzfidQ+A6bxFHz812YfLBhPvEp7X/57zWG+Z4zP0mA/L/2O/TjqdMdLO/bpVypXWvhdziHQGYYQaiZrKthc6iqzUrVzMYg2cwIkpM0MCBDw5llXRLPMH/2dkW5cuXnvL6bXoplV6xXiZ6Y+C/boKxDfPTaVHXwYma6D4mArRljvkZd+gSqYcWPYcSoP871juyO/wDqdv4ATDpUlEJpIDzAtlkDiOh0fvN3ebS+vr7dT4lTNwY7xXyPzzMm5lY9o+PrKBue3w1Df4hRhBu04lSpUCvhd9CMWYpRgN9DUBMy5S4SGI6s3MgZoljPKCDUT5uZa7S7nUB/Qhq+e8pdSlMNPz9oGCj0n9wmJc8cyvaOetExGMW8EswvpZ/zo9FOWImXRTmciHwKHTawvvXpNt6jBtht0L+u47bp5WLvFlLBQjEvoFyvUiScYsNgp5hN7mta46GujNZw+DPQPhOhM+/9f+y3h6oPs7fOoaRgK3uoFtu8yygYrL6dSEIEJ/503PHWv/enPwMIfAkqugOsEEgaqBFcHpYeuGCze/7IiXXo+OItvBhSEqK3A+Gj1n4jc56HnpzET6cqes4SaajkcRXPQ+URKS3EescneEoTwJnDuZUlR6GjA7qiBVVwXMYl3K+xLGKdRllMrvEvMX6RjZhJQKwmU86g6tOjHm+kGa+/6RDqRv0lVk+kaSj59oCxzoiL3xcHub+AhBPx09f0iDoOpdbmazUlMXvgazA6Cm3EtbTQrCNjAaKTjGvfn6QV7PaW2QYVuFHNswwrmfJGUnlK9FPEocxHeI7xPrLRIviWy4b7zMqUdK+KxPbmPh95smY6bpZERMtlveetYWxuI9KptijWZlq6i9kyhNRYu5OahNBiyoc9Nvn6zLLmU9yG2MP1BOZY5+fEtGsvzuAbXSfP1io7f8T09+vPUrqY9Zuef0UxCXL6gwlIwYjqFGPuhGS71mAcxAa3MRxLYa+fxXiBRBfz9IW2XXMGnccSwqPHoXFnDO+dC3IJTbj3gvSWU53EKcTD+yWDwv8A9lxpC47i+m9r7RUy56cyl5gnvBOU7OvWBgMlWCeC/wCdK5KqorZcy0Cv7TY1TBUstStWj8/WO/WPH4mlTfwNovvjVs46fL0+bh+idPzMclz5J5IdCdnRrUrbD8Ra3zNyuJn47lzmDqdJqPRUJTnMefA6Cl06YLJMQsIQc3qWrv1OPnzA0nB7zn9Qz7n/ALLXf1gB4dCPUYLG3tKree0xnGZj5Zyi/nbLd56Vfsy6H69MiquFgzedfWMdno5ZdX/sV4jSn6yklhlz7RslGWhxxfmY35fWX7RDjvLMKfmUJvmG0YMxdblHdCuIGYv2ZcomEsYgeqaObiv8lpijgSf7h/kQI06h8Daf3Jyz5/z6yq+Dn06H65vzMUhDxPMOmp831OlfDzFxCMOmsQTNTjG9/wBsLqYgpIQzNiBCBxhKiDmppNbH9w/8hkG3/pC9Pb/JpjcMMz2Yi8nzqL9Ib3FPWOVROUcS+nz8+f2TuQDge7K49VFf1TDI8nr4o5hJYTsZeTzK7lVv38Sui7u/8Rxcu6y7LUHdunmZK5QnAZuZjRghlCjxNpGveVqEU29YgsenQC9kC8G4InMoDxGB7oICjjqb69XzqE4ZXwB0On5+A/RPl6Pl/wB6aP6+B6+3xvQj0XViptGFLHCMw+3SvmMpIEFFwWSAuNnZ3lskPxv/AMmf7i7QwwTbljQx8+8dQr3jnos/yT7dL/YijjcQd5gGgjbBpdeXEFNrgeeQIpeHQeDiDCvSPu8/5KnlPoIrTEqW+0oFzbw+fvHK2csCrb50RTgD7xYyrBDaVlqbS9EZrn/b6Q+uy94eg5PNTL17jE6GGVn5+s++m3FmLHR+3wH6mPjLp7zz0zDn7dLyV8BAldHoR6DMDEWLoqqpiYnDhomItrMGfxCxRoRCcHmW3bYmUpPxLvfz/wBlzePrAh8Fr/r9xhY0zcMrdKc51Xp4h6e35NwqQ3mKfTD5/wCSpd6Moo/Lj3gN08PaY4h1NvSFc2+uogdzWaKsBL7v11BoUOPMWW4qDNWoNufPtDwcYl76GAnRms6+dwfN8/0Rj0vpWvr81MH6Nwlz5r9kv4omf+wkhwWVys1fab6fNf314h0uPr1XHoqg3ptNJWwb8ZYx7csLgETiWO8ZxHXWzX/ZijiAOy9fPaCPPjoDawOXz6yvh4j4/Qf2CDPV+YIPGr/3+4Ic+RPvBavDrwOGIPeOTz/2AHNGx78Su1A4lVt70x07zCWIsWsAOTwhcDpqGUW9veX0lcCGoO6mfMw9otoF7mro9TfUKkTXXjo6/ZHU06Nmu/EqBnxM3PSHwNdCo5l/b4SOEamkopFfrlNjiOOgFNqn2khaGL3LGAF3tArXi4qtE+6GU8cd/nmUhnMSyPZ+6yttDKBrfrBsDyhU57ccrUqeClxra8Wy8vFQGqfSFwPpOEp4lfYNfT/YvbidqbXNE8XyURB2yjQdj+5xsWYTYcdGiHeMddDc0mMKyZ6fP+dOY/CfF6dPT9BPgV7YmNcTfn4K6V1cP0C5s6eJCTvLA+kyv2hnMxEgymFXAtVslepMbglfiVGo3KqWs3M/vPCEv9/aGJzgPrzAb3DKD3D0noJfTtMgYDXpKlsW6yk+p4eZzLeZ4xADks0T6JW8YoBboPnEUcTyjqDnno4Ts6MY3O4ffp6b7zzK7+36J+qdQ+/xeOvE9Ot9HV1HfVhF0YalCxxBbnB4ioHEA2BGyWNwUfWWfF8SpX8HmUvqf78Zc50rH/Y1rsh1ZklVF/BDfiUb4YAa6CtS5WD1X9S6AW88wCL941VdvzuIbhJfW5dRLPz7z8Ii8+qvosr69H4j9Y/TOZfmF9Kvrg9KY9fHRzBuKiXL8jqtQLswm/EoK2wZ+gR4db/Urr+ep8VdefjsgU2nF47PRmR2/EZQvQcnyZJS7NOoYhnqZ2ZliYsQgAXFbYMjniCqfacUas6lCxvq1A09ppLe/wDSDofq6h0HwE5menPSu88SvgGYCoDMsZCcR69skxBgZRiQm3QACrJaj33Ffofgr46lfFyRjuP6Gtyw7nktlUpdVUYFFuohxGiuJ9wvXhPMBt1g5X+wymty7Op0SJjxLjE45cuZ6mhZWduSUEVOYtYu7zYjcMd/9/2cz7Rh9oaqfW7zAnjpt6Pfpz8B8F/pkECfJ8PpqWf+/wBfCPwbRY6Cx1LXDb0YQzBXmK4VRHcsexgcjhNhN83FVfP7TbmI5YnsR7lwzF2nlllVRLdsx9vp03UGYhuOYiZzUCs1YjcMhuVACvQ6PMUBlcww74du6AQfuBOGDPWH+TFq7dA3mHVIIVW8RxYQ7+r4/wAl/llhplTEMMEkCYJr2x3hgPhfb7L5RurVhlrOOyr9ycfP1K2T5+f7gleeZveo8/zM/Dz+yOgfWEzDrqc9K579MTPSviL0Eog1ERzOjVCYaTApRMKDvmGbSfMfj48fDcQbSIbMT7oJosV1DXwdAX2obiY6ZiCeEOliegYlkxLBqlzhKBseA59PHlmtS4x6B+SK2FKfcfafvDr1HyMypyf/AFNpMKenjpcIkYyCeqrcDTPMzVL7y4bwbJa4yRiWdDq6oYvh9e8T3HYws3h4YFCCsip8iq+zDBRyV1bkHuesFdNP0fV53E/PxPPboMznpx+0IJp8T0rFPvKePefP/YQnz8+OlznpuZI4RdRiLi4lWcqzUYCxiaSGPKs+sBcF2Z9fnz8+JfTMS0HrE+EQ0vsjwtiqx9cW0B9/zF9yjkyll4RfiZ1Ux2iXUZxM5Gkmp0OHp11cTO/LM1NV2Q/fUHlLI2G7/Kv2+yeSO7k9f+6WgINKzH9A5hTsz3dpb+gm7LehKECHxfLBe9ziF10eg9MSZZ9p5lM1t3OwesvicMF17xKvvmOI4bhaab0k3FPJmLxt6rTX+Q1WDhOHm4Uim2OR6nmjFOFth+bcn46OZfeHd6VGHUh+qQOgh0/vp8nTXUp610Dt00nMHWdRmkeBKTtUSVMqRgBluIHHXtCULM/eOJ3THgCX8h6Edh+2IptPvPWY46B07pRMS2WzL4AX6nosYcKaTmbkMQUEXdH4Nswos7Sk8rR8I+tS2PTsQGO6Tbyuy/wnHz/4U5fXLKR/4Esmarh4z8erB5+4vmXHgpPADIYZKGFHWNgeIXcyVfrMJUfv0rtCU9p2GoOnxmA2jqVp7TKy969Y7QIgGbPEtkwZRgias0/NjyYq36cWaZmLFtWnpmPJV2NmOfaBaDR0vO78+Yuddpy+I/V/HwHENdBXT0nl+f8AsvEzL5cTzK6h1pfSalTBHcU06Zxg6PTwlw+0q/WVBHHeDsV/EHvq3FD1uPJUUZ4+CmW6Q9yu3QSXNwx8Gzoblwvt0zi+elbD8muV9IWCXiT+j4ZYHvUf9fP0iwVK3x/HkZRAGwao2+uVPvMPpHEAq20bLdu0IuUf8yu/csBcR4j+ld4D2byk8nYd+ZiClu7N/VN9skz7n0Yw6/fuf2xt1y9H/nRXS5uZ6AmyXNNX3a9HtDYt/KeksxbAqZCf+H/I0b2EslJWDo03B88nof8AsQNlh8cRq3JVeJUNxy+IzTAV1429oVUfwtfhJ7sFZ3OXzPX4T9S/hITb4Kz4Q16z8TLLE8wbdfPj0npM30v4XUTMrrhCxK+GameO7vPBQJgY02F+9OYxfPMThbTc9IYGUdL+88fBjqdahuUTFdNTzDfpl3ccFs7PlYGo2Aba57SLqDvufUvHlt4g/F/4XPZF5t5+hK+yWKMM2F/7HaGMRwP3n8+WWRaj6HY4CMs9gz61zK0LA+gn8RH1Wl33ge1tBDueKJlBaD6L/Ig6L/1Mi+2GBVWAfQ9Zr4LJx8LKSrXBmG1U7kv7dSjfCauHQ8nP+zh7MDQq9MpPc/7FiBYHyG69TiZVcfdE9QiidsD7n4mc7BaU6hn3K/qYO7Tb6Y+9Tcxl+Bh8B+oQhDp8/Pp18/Pz3nHS89OPh9OvE3mzqI8S89Npp02kD0azBR5NRdSrP9y55VYfSawH5xO7jh+FhjPx2Tevi4lxFyONvLgOVQUVQWmaOzjuSqFjv6D1wARf5e+vn5hYM+dld0derntMOtZ/xv5Zhro4Y+oPRCoTgMep8wefsS/XtFSOmrPdf95xGH/zcv3w+a7ef+O0YC2bbekDEtLc5N1GZtS14xd9LiAJVY/tCT224ePZOly+3wLUd8yxhh2/yek+cX2I3ae9f5LKxD5fWVyafLPa4sbzUnPvcbrpbzXe/wCyHq0dh+UNzFI/37MIoqh+pGReTxkzNIoY8d4CZbn2NROFRb/v9z5ZmfmPRh+xPv1Pv1vp56bb6ny/30zPeHyz067TSMeh1OYmJSyK54hLl+uY4COV+GolPY7l7bcJTXXM1M/H69SX8EbjycptHb3XRMyVlrHu8ODmWRwW5z59flglDMHkOV3IhRetfg4IOF79Ydh9IncyTw/D2I1vAps8eiWT0I59PSI/bD+4hV6gcH8A7z5WbS91LZPuv4vMW7wZ9Gx+kQHyDfftNRWo9wc2MzDmvRtQLnEoHb/RgAn9nn/elfSKGWbl9CgiZpqXy7wu+OCaYtP0394ffuHFgL3BXh79/eVoSydlz7oZPU3r8CKrWCm91svzUbEcmw+0oKgsNdo9GLOFOT0zHZ6lvL/vxOvjx+n3d+pXT16XPn/soS8nz9OgZVzl/wB+Mle/wTHodTOJTeZlI4jHeFe/TiYy5idruybilVdP0qWtr9MuYl/G8QgFpoTFiDK0U5/BGRAsXUvu7GDFY75M+j9yPbWnYfnXKHcHyRlDfcb2f2Y1VOQ/P3nJ+n9Pkji3i6PNuV41CFUBi/vI8uOXHn+6VgPPnNqKRPr5lht0W3sKHNp9C4+mY1tT9EyfmNDlb53/AGJjH5ixphWxwNxSFjv+0chFHcUX24i4isVEa7lgbip2znzpmt5n1ZVEGyVc2qPPb+kdba4fXEaRJbd4gWLqmPS3L2myMJf+vvAos2J/cUvQHoHP9RbF2hl/UP0T4+fjwmsJjr37Sl0HX9XPx1J4+KodBi+l6q6CMIrHFx2JQrCYhZBDHQWFXHF3/wC0OZC0DGfMZT47+O+n5m/QmWaXHgc157uCDLS4D7HgQVbY9gr5+9GBwIc/gDlE9Hj2S58wVLRj+q6vKdj77fPlOMOzt6PeWKVhL8vL3QUDYezz5lcd8F0+QIw7C80m/biELlUr48eSFgDk1O8Pw1enPdUGlXfP7TL/AMEFqYjeHeD1xNd3Vvvj1uEsr7OHbzWZuuvl9ZUp9k/5PeJp+N3MpVdw1M1BZo7+nE85PTPPekWbzDg5HZ4Z9GFo4NLDKvivSXnMRryshrfDE8Ix6kaSVdH2lnOQ+3E2XdznJB7CrIaRbWjz3mpyspP0LmIfT06/nqfsjpPgZrfqvR+086n4hC/j3BibRj0voIwhuV8MVquO3UlmHLMIqrhQZh5h+Co/BfS5cuUymV5hMdLse7e3/Zqx9A/eRMI6A6o/9B7TAqeFpeiuVjXJt4cXl74j+Z73HzMXqf8AoHuxVe5Rvwe8tK2uLQ5B7/tAjsrbPL3VGPZz5e/+ZXomvRxghDk1g48vSM4nOOTTx5mQ9sl6+k1Cn1ZQFDTBBrbjbmJoYv8ATDw2TIffl1HiLUc0V5PHnUyWj34e0sK+Xh9GYD0WfeYo/NiHt+nAsL3VBc1nb/TAaycvPu7nYq3oHHgZdXUUMWNfa82iNR8gPqD2zCtOeji+GvUgKMG+1/1BUO+Pf/sVh5ZSBkZqWURoK9SacZFEFKMQXCbpgJl4/wDYGH5X+zuX8LPr/fM3Pm57RasfPtDs7le0+b6a+DHwaTmDHxgRw+Zav2mYJNzUOiI5iaYWyNRWmSbxB9yImHZK+N6Y+L1TiFUy03Snn+mE9z8LfX8MdJyX2Cd1dQBuH2PpyjcMfZB7vM8sNHxPH07ku1q4f15jcRVxHl/ESwgYtsvaQFFry1knBQIx4ZYuaXc/Az/+5DnJGP3PpM4OCW1oG4/+podyUm63k9ncThUeTJnr6kWEoVeph+kvlQ5irtE89vrK2UGLfx7xldqYNaTh/qXdglLNPTbdhETqd0rVRcc6aezsO43hZHYU5eDGpWZv2DuO9PaBcINhryehxGb6YHA4z5qCkwR9ppHkZcXYKfnEyoK0PrN1ZcW+8XwTe5j0zLv0x2Gx9MMuvi231MPR+Dn4D4rnPW+u+odd/wCwdnbmeOhTn5/9mPrK7Q+0zOOvjo9HU5mnwHRUBeJWi+2MIMxJd6h04l6j1mEewmE06O/WZ+J+LHMYtnM1PvomvqwVZlPC3r9AgUyu9e4PttAXK6XlMPl2kn3IPByQAHYX+x3Z9dW72eZiAcuw7HeCBKPc+TmYBfT5MxUvTQ8MP4mSKbHZ2HpDL2ftNYTD20940bFh4eKgma83GNqJ1RZ51sgtwWr8n/IPAkLVFAZcOfOpVmOyd/8AIOGF/aX31LIPdXKtPclgLI8fn07+ZbsoDS/U71qHClrWFZ4H1mOVeIHlYKJtpVUczFjicPH0mdXPzI2n3doyNo/jR/sAmtaLH/PaCOFt8sU3A368R40u+koPB95kXAH8St67uwR5H5ub7wsDdWz5Vx4e81pjh8R8B+qdT16eJ6S4SpXEqE+cTya6Uyp+JqX12nHwHRfSaJzKbxucTZNMJxLxdlcR27GIqINdB+ufCw5fzbhskTPxt+hBrIrZ2Gn2Nkxqrh4Xl2plhXPL3F2v9TbE+x6dzMxxXgNjyIR2V9Hd37yriHv11Kr3UTZO30jivvGTWQa/8GUlfbQyWtZ77IZ8rPoG+zERXAZejKNIrgjQieFwPni4hmTa8NKHclTAKJ2b+svNXj0Zdu/tH+IFq0/APrMRAPpf4ZcPYBx7dovAmfJUccGRfncqKFz/AIPoztcJF5Ru2h2esErbxfIn2RszhePV7xsvto+YEm6OIESCcU+rEoY42SliE2eYI3Yp9G4jrMqxr3mnja97l6FxT9B195wRvP0/SH6o9O0O3S+np8+PgJ8/PjoFZ6Y6Mr4NoLUdx6rhLqWZuWnCYMNS3iODBhAFrUoq9Zmdxtr8ddVj8OXBldQR4aexWPoRf8pWj1YmVwHg9NxXe6S50t2URWJ77jw+EGMN+64dh4PbT3JYHcDxXkwXIPm8n/UpBO4Mesp2bW+258MBBhj+mamlg7/6ITGjlli3WP0d19GGofuDJlgEOE+zMNBwwCjUT3B9kODTX+mz3JdXAPl74g9KOzOZdtPgDqRsFnhFafeF4dzfMSwUyKrHk5lKsb1f04YIYVDuRBqAHPq+0DlYPNgW9u0jIDqXQekvsfFNgI2l8LPbvOT6hQAb5O8AJgLO3M0W7oIixsUjOnWFPOnvOHJBfzv+pm0rvf3qlFtNPhOffX6Rz+qdf5voVS/nvXmY9vnfQ6fPz3hCbg/Pz9Y9WJ8/PbpXQw6J0EOh6cxaLkpZvA9//IehiFKTvEqpMC20RaNMstpu3SuvHS4vw0y0SXZHFlsrxOHr72E9LJ4xFeR2O9sO1EFDKFmsB+cdhCdQ0DaOGu9blcAMG/dwRn/VMOyXzCkn1HXY1PT/AEPkspBoF59YILYwYYdPtGZSc+cn5COaQvhhv6x6F/qF2oMejK+sMtF2+k/7KWuBhrHtDPpN7RfdnryRDYCnlsv6xg1p8Tk+8ZVZPbX/ACZVWo+itOw7k+8a0IPDK5kfzGfSULTXz7SOnRC/TB9amyHDsYVeeE1I48DsETbVVn3llCnMKihope2LWvd+YyQM543GIdTxEBVlg74ZlE7JfWUHLsp9uIPkLXomGMqt3qA8QNHbt6uoi+mJHd/kcNdo/AfAfp8dCW6TE+Sah8Pz7S66ZlRionwGeDHPeVdS89blwh1bS6b7S6eIfq1Hdw1A1BbVmNTZW/HaVl4/Yd/JMgHa8Ddd2C3PrUrYf8uZc+gf9IVae0CbKfPSmVKlErx10q95ddx3HsD05Ymal9v7YpSqVOnyMc/5qVPZHcrpp9h5O/dKdDyQzq6A47rrULo84brsvrCT5DLeX9ZU5dGskLi1qH0ScmumPj3s9x+5iZu+6jf2j9ur5V5jbXldRDBp2cNSGeuNuWHXFzhNZfxKLdob9Zk0FfBtPvKglwQO+M6X9TcvEMd9N+tTMoL9fm9cSytgPu+8sbi85fdVKX6KgY8zXo3CMNAd6LK8XACgLx3mfWUPePtGEBYfaX0suDX1nB4P0TnAw+SaUBszMbbR9UxWhbesArd6LOI7SwD1HX0l2w17A7/2GtFr6k4O0ZPg5/FspdNfon6B+gDb8+/Tc8TmfP8A2FxvGfnt1L530qumkejMz00jvo/AOi68b2RDZD7RacShG4DHeDQ77JbeMUuMw4lsxW//ABJVcEtuntE69CL92YQHoQmu957tg81AaB+Sxlx6Tz7RJ5j8VXrc2sf3f+oEtObzl9IdNIHFsr4xEBpHgId+1CBBgX49HvE+mfQ5HzO4EoexJj0n5QJL/uAyt2HDsMD6z+9hUEs/mEZtfKs5fiCXFU4zs/MPOTexyTKoX9IawDaFZQKIHk5c5P6jmOuhr5VBarZ8+soeJ/K52D5XfKUmtQt+fMRYf0EoAAF43+8dXcgoQc+WZCjKejHmy2/U7y970e3/AGG8ajfyTIoV/lQtsWB7OPzHQuB+SK/fX4xj7wPbyv3hoOiyoCrYi3xiPU84qahgYIB6SrujZfr3cDECcDJe9eieI/pMMpDn/nMKa8V2NVht+1JwhPvhMr4Pn26faN/P3h/50xM+3XN3G2OOfnvKW0xMc5ZUSZv4o/ADobgx0w/s9ZWwAiONyoe0RdyTGuGGWNVMYKm5HKSrOL8k0r3qcfmD0bzPvUIfmJ7+imOf4D8XKCnIw7eNuf8AsSgIbHD9Ix+G0uV+mANvof39bmAX1cjjPGJpX21/ZFKb9vh0f3LoJatHgHiULxaO2tFzcw6Gq32CWrCvl9IBSkrt/wAmXTAsYdPrCnZXzDvBS0GBwlyUYpiVQoKIZwHSwXHf2c5mo5T2b1/Ux7Xn5x/EbKyoedQr1K6iG1kPuz9ooNsren/ZscALjTKU4cn+oQa8rOS/xHMeH7ONHEspQ9Eo1xBa3v8A1Am9DDxy+kFCYPY5n6sthutXqQzWEr0afswv/SpkfmJSAm37BjVDHSgXlK8smevpKx1gXW41Lzy3cqF4Ype7k7YlBGg1y3z3ZW19k9B5m1t3g+3ZLvkX59vaWMrW1q4Qsaf2ZDoJrMPrxDU/PaExPmoPwd+8ZWWWd3Hz5iZamZWlyHH/AGA4idHWJv8ACQehuOpU8MRf6ZmjB3hC8Gp+SJdMY6yuKmwa2cH+ypgqV/nntLzFpfjsnNnEAJXsYfaNZvXczD7WoVj+RuXVzzU+XZ5J75Gz856lk0oND8PchdVjTpXwU47OTwf9lhjbeQvNeka2Lnw+ThJgdpqa8vLmVSad/nNn1ixYNpKVxLvkjzFDna53Zsiz3ofSXlpKrKXnqdR2b9GeAG+4nmrFy2YZV6CzJwP1B/1MpGHB1hZv1igOA/eYrlfxyzFlldvKGgC8wW3NjRmc1InlVuGAwl6mY9vHtgxEmsn2V7xoiqtvTmLoMWBsLgEwk/molLaV+0wkBVH0jt0mQseEAGlhU5ux+JbYNMmZjIUWfmKmeHvFlphcniKojzhXYN6hrGBlv/EL1BcQqFNvBrMoybsL+jiaevPpPWjbx59JsyFv7HrLMGmTzp+M+I+MMwhNSH2ijPT58z7Qg/eX0rZNYjPzE9vntHdhjt0J0IOok4g+IIzmcQmofkkx6JMThLAlw5cSgXnujfEKXY1n60aA8RwS0r54uVOz7wc/4iXuakhFhdrmJ8Y3/jLzROJRBf7AH/JUQ+AtxxZ2O2Ot1d9LX3hKGkO+GTnE8SzaVs8sxDIwL27vbiaDQvj1HtMVDf8ARCEhS57M4q5ivOofjz4ubJmpxi8epk+8sIfQGPuI8S36W33gO4ih3gem/tAXCNnp/wCoXL09jJ9pTTtmKsbUfC/ugNdLFxtctVq4QFibr/EZcqjgKyuWFbr7zxAlFW694f5Igz9pTAKJ7lkIIaPtiY7ZVPnzCGlvrh1DCEoc85/ud9MFZnq+AXxVTB/R77+04pOe53lsDy85hxQHZ6Nwm+KnP5MMGserzxUKqVYSvRidRaV7xT6O54jTbtkceCWaA+4eU8jen5D2OIHNuNP79HaMXkHy+/xn6whroIVNm+t5wykHjnp8/JK/9j/709JaffPDoIRJVQ/EIehro5IM1WIPP+EOR8ny1LKtv++T2lqCeq9+mOPB/qJE7RuuPTwThB5fqx58xIs2j8I/aOcI8f8AFRG093+wrKGm246B42P8RW6vlfrGX/E9H+QDWGUB7x8mIevi4x938Rd+kPow+TMg0yj1y/eJf4rTxBpfBA+cP2lJvDA/52MwlyDd6E7ywCgY+8xiW000x7zmBSdqysvcdlPrkjnxZQiCVq+N8+sGH2vzk+8BPE3RNELY3ncBWVn7yomDiIZ8MRaF1oSvZ0Pkzn0jw47znZ/2XnIf3Jbf2GWxb/I7/E84M8OJiiImNpi4RQvfGX4hHKu33MTGFTuEe8LDS9QApYCacN+cQPAE1mOsCef5hLhsTzjHDatPzFucJcpWIr9Fxp4A9jk9IMyp03TBDybhbHtBmuv+zIVeC37YJS9przwsuOHjz8BwJX1hfdz6wsInrS6fHHu+M3+odBCEJfeDjr6w+fnzDofPz2nzXStTGOOld89//J9TEnJEiH3lc5+JWOtwx1LPZVp6zANcSsvp4d/PrLbe0JR+oYm0ehGmhtc/Q5YL5Lbh5PZ8ameb7H9R6r/WU5dkqVEwwNbt9sWe5CF+vIdkgHi+w/xzF1ndevE2kNezEeiV9l/oH3nM/hL8hLUu/I6MBcrxFI7ZyICqzE9mAXj3l9qobquynhb6xILG8rgyQcocbJ3cbih4oJc1xWyEPhRvHHpUcKsc7mJVtnHmFVuArfdFQjfTfebCG43cxnmC4rbHrKsLSqd9Zh24LliGg/yOezJ9f+E0ASS5bOPpDXFIXiu96xyDJjnGYlhwDfz4jUx/yNEGp5I4KcIBWNDPhhOYTmArRN3hz8ZUHLCrMyDlKl6WuB5b+8acpQfhxSGtBGv0dwU2D9KsX5go8ij+g7Q5xA8etTKzi9D+4ei8O2NscxVOT+rmC7yOTWOdS2HOt/7MuWzsaD+75l8DlTj28bHxn6gQhDfwLrj0mefn/wBl56Z9u0r79PSIg5fJ/wCSq+f7lCeOIc9u8qP0x+uKHEsGJT8QwjI6TUTZQc+3EbH8kqRVtf3OIw4hHsYBQYXcDEUioTD8vsef8RaxhY+ez2YgOjA7JHG6wxhdwD/X2leC/wCJHad/wEceKh3rQe+JTyxlBOV9VA0AXn5VMEV7ILWFAqvqKF29o/G3KudPtBpwahwu3gYB3fGzv7O08OZ5TlPpLju1hFuVQiJF8L2O/CTJTRt2XVuccRlCHwrkl3pgmTf/ABNRxv6y7RSJ9P8AkGKmtxiC3vEAxogPbf2ix0ISEsXjMK8cx6uvWNyssMZMkCNr753LXmQHNqzE0Fd7GTP3habpRvDe4IymFcyh+IXtBthG/clHG0NxHWwavk3GRHT/AGvtHRVJ8gpn1YHzWIu1yoPGVVzTP8CY/qNgBG8u4FMi+zrHEbHKLO+B+0PpZSGNVyfJGoDnI6M8d5gGWd86qJojTIHiYVrH/oe8d2Cd8vjyWpVo7mHvr0/aA7dBv4BqvpL/AOdRuGzvCB8B9uenzUKhn/YAuJlC+98fPeI9vvKbWkcNf61AHY8x6hKwCuiujSevMYO6dgMDpnOWf9mEKiDD8nyuJWG/H/UwWqcVk57ZJWlj7T/Sc3uBhXlv0SvKxQSqvaeeJSsNi6caDiIaoJPQhv6X5xv4YALukOT46MunXqOdkE8yB69/QzKX2qh5tr8S4WDR7H/IGqLlffX2h/S8ejkrmJEsw1OHfeLimLPd8MyR24hNuFHlhpgF1qnPkeHiDY2GZaxqP9ygAKT3Y+0xAaH3wwbXimsedSpag5wwX4oJjG9RzPEtzrEXwtjM2MdA8p9oyHTbeNOJjcHWEAF/fnf/ALCVsj9nH2ZiuAHrhhV7hceGDT8ln3lW9EcO0FzyLDruXLQWuO+GFWRNMY748y4lbGlrb6JQcETRTz3zMftq3w5ivB/uIUGQtEqUux9cQSkF7DZf9tTMse/DdvbIa1HpAz6n7seU6yvr39oDWWnExa9OUE5cUdjx5VL54gRe5prl2iof15nN+M/Gfp5hCHVnr9CXmDmEIePn16eZxLdwr2lzs77ntD2QP/JQPBMLRjz+ZZYW+PxfmOvz8F9BUl9GLZH5dcpmxdw9TBGxnJc3mmH/AGWPLiNRe9MOXur4OdbXrwxMvFNGPQo7t/aBha+o9o8Dri//AAemtjN8cPRzDvva9EXMZNvntGP3lHIH2jDMC12egrsE1cofU/NNepbNvGLiKmhDXpKGeXheL7RqxbE2XImnPJDiQli8GDKUeQ1QrcQNz78/mY9z1bzoGM2ZjvrF+5mdmUyVFWS9kv8Asj0zynHcuHbXBFDMAYrJklPFO18mHHtMGvAOMoBb1XOotEVDxyr8SnJhr+on9I+2H8SgCVXOCVB4wfvGl378eMyvFzX1NxEq75fRi18qdMd9zN9t+59YVa7RfXcE32grwm9EUH4xKQMX90qLLOj2Ynlgfp/UVqsmVAvbjhiNoAjV/JzEoybNEQrqvsYNr2mjboUNd/rNult8wMdwzdyptDjTO/oy57zAvILePRDh0uvLX48/shvoQhrrznoulwuDPn/2b6lIrCDmiCrOKfV5xBMeeIFzXo/5Aorv2lJnfY+dyxxR5/qEP5+WV31rodNzmBZDmdACxq8OPtE9llUJgd+P+dNmN7h7Bs+fT4QwN4/q/wBRlqPtp/sEzNR+t9LYcLbHbi/MrjYZY3yjjpeGhv03BdThl5FT6EAQWj3Z1FuLs8P0GjUULte2BI0pUWsdT7RcQPPmi0uvcjdpe/7hEDkkCkSu/lv8QOAtPFcvSHH02Fj6GSUMGIOTH/k5sbHD8BhVjl9+ZKaIJh0phidLMO1DUdsEVYVp94pIHnzHM6b9/wDhFnW/ZmI4JHDyeZRHos/0zm7y++CGJAGDecOoCqxu/wDEFhgxx3RxobfieTZ8RP7JfWPEuS0A5eZVzey8sSjiU9omLc5XurzB24OniJgxOVV9oAhipx435jtDyr0c8DOCryqWzdXwNtup4xXT7faYsrtmZtl1NluBV8+hDtRmL+KhTY0L8CUF/wCj/wB+M1+mSvpCEIfAfAOO/X7S/tLTc7eYqalj6GiLT7fP9y2xXPBPJ6sAaKcd31gDgiD5+d+0Uvzn4ToIzMjgdBUGq36n/sdbyW7n2i6H6I/Dkmu6U02qnJ85mJnKlN9VfwfmEi0QWmBUcX/kyE3CRsBa3qaJexj6RxXsMLh4/HjvcF9+95tSzK1b1vMOvE039NzZdBwps1zgi9RnLfarTC03fFnKdyY9ANmvqQda2KW841flARm+Xz7TI5SbDS36FjEq8DysD3O67ywwHj0e0BDuSPqo+0pvzPzHnLR/xHF4C4d37TEed7YcOWVtAd/8maP6t/8AspssPGnH5hrygpn4Y0OU2/6j90gwwKxAY257Lu9y3ZdSBaVCtvrAG+pPJzFQ5a2i9rNeSeTjmU64KVxqvvFctFYMZxVy7SNZNsHiXLPdjXghTcuxKraB8b/yE0oBd+X/AAgaNFest0v0iKyYruPdg0ayvB/rFY5E5/qJa1Z7Su6AmIHqmQ7u6vWTOIqDhfa89pfJzf0Y10fhNfokCHQQdD4D7fA+0J/XW8QQrl/sKXfgePM7mu8Cx+nz3mD+5UUjv/Yqx9ZU3NRwvgOgevCmMUn4J/Mvh8n/ACbxLXRYEdj4Qqnd9P8AkXmfHh/xgF4L8+I+7Ae216URtBaEsVeGF2Nf7RiUtX1cHvcbNA7GhR5L45lCctE7OfZ8M4gtFzQV7pUACCOxglKnlN56CGRBxJxniBIBdt/WAHR7GOwi/wC6LhD0wy+NfiOlLimW313r1YpxPFWBf0Zc0xWGyuE8eZUjJ9lE9DBOVyovqx7wklJwG8eDMd6Mtg/7HVg5FuzcCF7e0cpa0GIO2x1+FxcmwfSU1WbwTbZTbwzGjcaH1gCr0/zOZbnG1wetTEXVK/ruwxkg4PHdgZVG+sJ6i2X4Zqhfvr/U5+OH9paw4+omJcz9G34/qVszgI69rc7l2zEcGVwK7HtCZXYriv8ATFwNMNa+bmi/SLgzpnLvxqBio3qWcwx4j2lq5Ws92MBOXNmr1Xp0f1zoQh8Pb4gz11KnMyXZnoP3hhNA5nYzPJtiDG8/NzZgsPgOghUVR3L+zCqLwxR1FPkx9yBRfkf18GyfC0lOo1Y3xCu8V9ff2YULwv8AyXA5A+Rn6RGYFYm3N+r/ACMUfk/dfrOTlO8/6LmER1rlzk/ubxA6RysvTiXIXZM7bmKAFsVuIPnWfuliA6vLOCFrr/yU0pjnOcdQKYgo7bx6yqNLcHnE5gmXVf5GNK/mFy85IYCtd2b8zr6wKBks7Vxj6xnaGOHgvNxEK9nb7zKJiHO1v2lgC0BrDmIMEOseGHeueZgrGj9oyXkp5HiXhtnZldAfbPeAAXuuXUFxowXL7Qp0suvzVOPKAD+u0oUZMWxLU9w7RZQBXPi4qyZKa3zC5K4/0MOk2aBttyv0hADcVuMRkgCqZnYF6Xa8GeJg6wRfc+Ir+rPfgPpK8s9/Pf0e0aebYuJhxpiKGqpzmYAzjMSjazmY2YEKPEGZpkbPAwZenn9YhOegO8/r9MH6RBt8S8Ri91zuK95tMheuZZmvaBQc/NRLZyfOItXp3LsvtDfxpfd1ZV9Kn9y+jJY/WJJUUHrj/JSrf0d/vCPZV/Pp+iqHtJvIMu52f4i4Z7U4gbDk7cD32waR8uPdNowi+T60vqxA8m14WSnvONMQ7bfYqUeYSece2IeqHmcfJgQM72URDqKtO7H2jCBsPbh9+8oApbf+Rbvw+dP1zAdg1XLe2vSB+ZiRolo0DaAdtRW1iy7Xj1V4faNwSU4Mg/RE3cZ4TA5O8x7t2FPf0gF0FkXVcNZmARuMuzuyQ1DIUrOQluF4nlfeF5nPy3CTFb90yQj7n7RBeOwP9iehrjxvmKKlc1Z07wvi9+X6dpdxah9VYjENUm3VD/kVA77JWTk+68w7VDdgMler4i4Cm19j6rWNS0aZjj0l8x9Lanuyu+S35hKoNBOc79I037q4yx2Ge1ucfhLjarDj/sTyEzCmtJk9JTAY3Hf7o3b3HePOu5uPBqhOXyzTtTHcrd8MNZU+TX0nMI/Fx8RDoQY+DPV/Cbh3nad07of9fPaX7R1c9KgqfbFi9EryuOJYxnwSrBRBk7vhUUOjKn3JW/qiU09y2dGyHMGvqv6/QP8AoSzDkXHkhPjFrfzav0lqB2oxYjN4zuZMdkxLLzi8Jx6krMZ9/wDWVZnBbn9jWOMxJNzFx3f3x/2luFA+hMeWeYbeTTiErlldv8hMFTnexb8xIEqHcZd9iG1J4j6Fk4zLucjxiBMjlXQc+hjh/KZgwSr2NB32CNv67X9niAK3Qs0nFu7WZ5QHxoPszMdJZ1T54iJKnSl8L+5eVCa05wy+Vt4YSWOTyWSvbKU9Y39OkqIroeTvEj6bLXNxVcTR19eZgpGRd8WX3mHM/NFI1BlIojONsCB4/qXWyAHkFvpuUFiUM7z38BMBgK8tkV7IIMWQM99yzWW28vNzIt5/K6zB4SmO/cz8Gvb/AGFDwwfRmGoGvpErLINhxkiqtmGcttwprkw7+rv3R3hzkX38w309ZU2jj9E3CEIfFnoOjOJzFCECNX6ylThvMZcrjQNwd0al5GuSJrcctAGKHhiEwvDxEu585+E6b66R04/uFmc3XqRht/2M1INnvC93nn6zMuB4/ozEs93QGw45+AzGTOZFzDPbO/8AYyLnHs36EzFox6JRc8nMCDiGnDl/FTFXYPl4HCVE7wGNbxgltmfaGXJ5lY9W6cP/AGWEIUuK1t1uM1DgQhiAPxC7r1eJccfoF0fYjaFnF96/BKnXe5/yCpdknIOPoCWpikGzuaGnwjGN4DK9XI92pWtL6OT2G0wMi2uuXdLr0lW2tA6YsLwtNEqJhpl4weSiacTtP2CDiAXrCFZOXbDKtspvCfT+o/K4MOniXhSsFvN6QWAVaU9TsJQVcQWy2aCAVohIMG3l4hB1ieHtmc5P9oCzfCCT3gua5xxMVcBo/wBlAO3qnF/Nyt8tCvFfYg0YMt6/7FZoQOw+HLAmVP6qGA2ADsd4u1vNrTRWB8t6jXz87hsEuMw8Z9YM2TEFmn9/SJvgBtv/ACWLXBpvz2J6asBz9PMNZ31vEMypn9AhCEy+P8zPwPXoS/r0RbCQbGauOu3jc7YzqDv7/wCTLzcbtaiFbxBZGUNx1MGbZuhH4FDpc8AMJ5YE/EYbvHpLpOSj1ZJcM7cn1IJZPz26bSHZEeIGXTp6f8lNG/jX11ALLsHzmfn3l9JRGj53EEpyRrkf2Qf1Byq5/LsShsvT88xRtWRf6IknzPnxE5SLbuMfaET/ACqx9J6R57ETUuxxnLalt11v96jGpVAw87xTdxXjBrzGDQKlu1Ro43gz7wtArv8ANW/eEvbD75l+Wdp2ay+dQWW89/MFyUDTqr0eSsLI1EATjcM1ck8wkCoFkw0uwswLRy/Bo8owJRQ+NS71UVKNdkE5p7x17LzhrPegINBz6c19YPOKdnjMCPMbDGMWeZgJqWfuEp1HnMKnB8EN4VslAcjzMoePPhjHnTk7x2G4V38R9VL7mNysNS1irx3hqLJT7Uaz6kcSpLe52MXXtKEAYHw8do7eaSmA0uVcEOfd1R/sAF8b/v6rFyHOX5/qbIdug5f7ja7Z1XpMDn1hmpnZL5KrnmERKzVWylv22+MY9OYzHQgjcdfCy+p0IQ1B/QeZfX7eIQRhGu17sp8HEvxqvm4jjRH4zxEi7O1Ae8TaKAumCqD2+AlQhqMGMH/RJ/jDo8ntzDDgL+8B5xFc9YShYk6FxxAMluOV9poib/qELa+QwaOpVqoCHO3pzNlQwHkm2kc/7O65C8jT3YnK8flLvC1GDu6w+qCEKIPJljy4OyELWzD4iLnafyrPtUfZMTaGN0a3LtJGK9/JKMPhJyuHuwu8qrOVfiY6qVXbgtcdpZev7h1cu7fu/wBEKFoXfGX05xyUxHyndDbqbRy5rxRx2NjCDtcr73oX4y3tiO72fsmSVz+z51MELlXLh+5DiMDOQdl87m5kY7XvB2iTRI88Zld5ydu8GQddic3lwh1rW5VZt7QN6ciq4mSOl7d0sCnL78seWub2lTHIy59PLD2CxwfeK/AmZy4b+mIqAa8rQ9naKZWWszI3Urd5cOMR0HOq5o36EMivX3c/biJa3Y/98jtDUAjfO/8AJcldt7jycM5s4xqCWw2MDZvX/Ht3l6OdH8hfPdL6MwC9JsqBe4mTvKpqV1DN9HUIdDoQ+PCDOevH4m0Iv2jfcvvE+0VnieIfZipE4g68zZY8RyOXaO3Ulwh/5FhuMxniEeg+j/nMY0u1/Lkm1Ul/WKcvB/4gCglrJXvEf1wasr5Zd938nU9NxND4Tlswn5jD0a9JvPEfgJ+lc5XQPEsnG8uS+LizQLbnLXpiV4nssn/IzAE2dtv2lakKPRg3KR5RfXM0UZKMNL0ets/qLKAavtFxyYu21H2iteOPNYmYcLHfhDoLoVvA9NL7jF/+vLh2K4zC1dXkwP2lfvGnLChslrmrAJKcNh8N5Xn3QqRFrvQc35eJaNujz274a8Q65sY/vyQtFi4VNQuY4Xd/aagxbHL6wTQ3MUyW9KnLNsw/MaDZj/yLs4D3f+QhRBq3MLoKdld5nNabt6Qeq6heXPaXtBSz+BuNbb0UGrcDu3mOV5qxrHEKoWO4be0FVVFr0eePSOgFD9X/AMcxcVxcvZNv0PPg+8uSsN+vk4j+J7hZnx5jw1A3vE1bNMW1Km/XuNn4lt8KYeOE939pcvM5zF7hbPaD67gDz4lY+z/U+rLfSVXV6iHxenwi/Evn5/7EscdGlQyx37I7ZS8SipmKXQ1fH/YIOp8rhSC/cOihr4F9A4jDfSqG9mDZVWMJdIw7nc/sjalj6Tl7QCk33M/9gms0KyneL5qIzBfRA7A3FssyPS8aufyQXmdMSMoTX+0fGxoOeypomzWX5ckKU2DbsQ2crhmoeeVUFVrIK8b+yXGIPklsn1DEsEFaO7H2JlouEtMXoWXbtJseC/quVA5B5Bw8IwGfbDWTO1eSXuI8x7Ncu1Q88NEYUqyvHaKdZ1Q4RL7jTbBPaYr9VDvPtPm46nB8P1NlARVifPt8HqhLeGF7/Lk+keRwvQfFQmg2g9ndQcyGMnM0Nj5iBre2B7M2kVBSis5fMzVkofpmUOOh9OZ23HDLK29mOfEuVNbnfL9pugMQLa0tjVW1u1tdq8ypaobMTGiiVVASg99y58/xeX+SoroB7nMO41avYMH30RcLxjX++YaHiXfzZ7Molpb8+GDwBN93+Ea2Y8dJpTyXHbh+eIeTk7y8zo5t/qdxCr0z53Btm2R4P7XlldNfMRzKvff/ALLe071smjtRh39fSV+T5qfaY/7/AJPWOHxOepCHS5fwX+gOh4ip9WYUn4i3i8uIrxUWFTgO5XMYMY8wi4Hb3jYbW/EaaxBf4i+pMr02iIfsjyf3ACcF+eGZPXHsvzqcBNqPde0KC6zxA6m3x29YSC0KGWTPUX05ejEisLJZrTLWUuTzw+moeP3uxH9wf8nAG2+zFWwlRIKvSr6B+mYel69XBklvBpbL1j0StVMCxqSYWw6Hvt9pTdOC/tNWlWFrbx4g0cUGvwU4ZVjTfLb/AFnMHnUbn0L3rxCW4kdW8er+0VmtWnntkB5SqJ85nAmSRTeEr9XaEGj9O+hA8AuX+yG2mVnw69Ox3+icGH3MmxX9935Me2IwhnJo3ZRmwavxe3+yVMg9nvh7SttsuetxEnAH6wpU+KHBuUie2+jRCnilCQP0huYiUX9xxmVqycc+Jvg0vtqU+mDgN5y3UCN0Fqrr3eISxojd2r2lRvba28HMBQeIfXgTO3ArfsHpKWw0APXKvdi/M/p+eYmL29+4Yfr04pjviiPc/wBnlh5H6blcYwanDYrOP6mBnq51LuFYZRoTR3eo7vo8sbwqBhxBTXEy9PnUG88cf9lQSvl2mZbXz+Zhpvt39JXQ2evUfBmpd/oHwH36Ko/EUdTuPeVrzMCxnRz6pH6xxA+fniWqjXacxKbJxDh+X+TOTrvLnwkOpEE4H+Qv+6/4jEFY4C/0jk9e0yoO/wDkNux2hoe0yrzzG90f10KUnk/z2jTYbD+pmA329/WOgIMtZuew8QVYXyY1JhnmczV04Xsmn/Y0zesC+f7hUWDDMfTZHYGQRu3DO7zMTWvp3y9YFxUnho34jp+Y9pqTcBbsegMCxYA5sWO4YrmGuWKox29JkNkF5XDwBuZ7eVHfselnjIV7FiB6ZVAVmEDw0XtjPMaLX3Bz3w1VkSjBRafKb6qnZ9rIgrXMzw7P086Y8XJA7LnxxjAYnsG1+ELdJ3jzjI+keAN8Atod8KzLlF0opP8Ag7M3P21vpc4WxoROMdkqlyl8fLFaQtX3esOzoZMwTnLw4wGsx6QoVenjiXdaUEbdWsvkwKVa82eIrG5J8acc95nG9M4+8pZCgb4X+ZgV4Bd0eOCeUS+HG3cqGzy/g7esKDAJ+XiOK8z8vBEli/p6cdWkNjf0iGzB9r2JxmHDHeWOizt85mRuVZWiKACsAh4jDZMFTi9nMLO4ijklILn5+0XPz/0gNKz8uYX3Xlzz5gUdsr78QtMP2lZziccY2v2uKH+5XeW/Q+f9+EhqZ5xDEHmL/sfGJkzBuu//ACJ59mJ9WbVrt/2cDPzzNvWIU7JeDiueZcL6fLvPLfibQ+Ah1NQ3cBxkcf3CIOTB8cfSMxPaI8McXMJdMKl8CDuFXmCTm9TLenH9xAENcTG/TvU4rS/6oL4H6e/aaPMLNDo9litdnrLjwPgf8CXRd2mUllTFOB8+8+33Xlrtq5kGnqjBT0h7hcF6AGATu7JUK94FLR2H3n07S5abPfTY9bUUZbUUL8GsZRSmVRGsuLc/ZY7dPcjud/DAmCt/R7ms3CtlF2o0FxTrmIQsKxzzyP7TTWhVPAVyBKjfYxcHpsPWD1BV3Oxv6RUKqswdv/KWFUtD+h+IplUGWd1pqDJcQK540Zk/TdXM4YOg9ogzCDv0jSXvi3f4mlmxAqUwp+rwv0qKCa7na6PQIJ6fZ5obfYqGUJWkyMWeAqYWiTcjnZRrBLr1qpRv9sM9vJjUoWTn5uppbfmB/bMjl+w93dqPqaZ87r0OYmDxfto6h1+QHpC+8OiWQ3UqTmX9oYYaPPzzGdF8SCw5aCUV8/aPNsA/4N9rZzN3j6c+8zubqr/Ke0oomTHv48EtWy+i7/1C7lSrfj/IWze+YKvn5qaTUv4vn5Pi+zrs8cx5i+JuVdZxKLRmXWto401uX794FXpMsvtpgwHfLLCd3MyYbfiIdF0q3NiJYMqCbzbAY/7EDu4EH7SujhmMYEaKH24iu6UU4DIm/Uhlez8mGW/vhZpc+xjeDQ8LTq16evRFnDn7c33zQRAcWrzZt8QHsvAMKZeHqIakp7uFZ+kMqxUrtVfiIDKhBO9R5gcwdv7DMXBAbPPt90LEIb7sLfllQr6mzvK51eh3Z7ofaKeKqUc0VICaK36s+u8QUH1EbyLdIwj7iDTTLNCVrG3iX0cJfdL16aPDw7IzcKU0YQClqge58i5IqYLUrc38plQga5D2ckMGPR6+x394IiTg2+VkYaSKmF/qTnm1wDee+5ZStcfH1xM2Tm0x6/7H1/6VNVzGMv6KwX4jQgmysHBSzetRUMXhKYW5N5xjvDMnK6w+soKOU7exd42wuIVPS8mUpCwpt851KugUOeX1eCNYNXhxRg93zL7HO/8AJUCEV1FDtX9CHQ6Gz6w1r2f9hbnnmOfRjP4gGfT594F9li3ru4qx7Zma2r7n/CVu82K+TiJ4hhPO3ZjQBjhTXvyTIVt+/wA1EANc122rtjPeUR25rs7q+3rGaWu0SvHzqZ9pqD01OfgPgN/AY/qBfmBnMdfmVvv0K158ypa86mWIG5XBHXOZbjfML8/18R0roEGsAWKzZDVOFcyiWGyLZiu/wA6O24xxKJfYuPSN61nef66MHEevZp/7rMKQhdzWjydCNIq1Zxyw+KvLM+BUfUOM8RJCrnN5PEFTC1VBen+QBpg070L2S5fALC5RycAxCyMDJM8eglhFieoSr70xPr35luVsnkOWnoIDPUlL8H51GYDF3h+jgyiqt73DvEFhBkfh7rglx2HvDdCm0og7ctKzLV8mvWRgBQHjDyvhgdOwjbj8uY33aLLHoe7gM1o27NPkGJAVtVb98Ebqh2EIcDBhlwl9V4xUPr3oGcuwHgx/pGemVLCsrXrLwENHKX0thjk0Td7EtUs6GWvLU4IvmZryGKnP1AKO576zN4bXlz4Ne8cF3uvn7YS1cLt+uPbHLLF0/px/70IS49FbuGbV9h3XaeJ5+cvuHl8PMp7zvfPrHK88s43v/wBmg60r/LlgzfZm26d9sf5FfufO4JxlUtx8sqRheP8AWI1K3i/f+5nivc9/PFOcxooujb+aYutT5gO5/SNFyPMPd5lkpx9Z3V8F/Dz0J8/PrAhv5+SdhylUf1/cLK1j8R91fLFWBgapP+pfoTAYywNoHdnKy7hSNdv9lyxnPSmWg+gdIrKIY1uOwoRGYkI+Eqgx0ZWIZmaqVcuYHYK+XNwpmdefuM7vgxXU7xdio9mIz4LS4R5PNpZQGpe26vRUMwirvhWH2GM3u9Tmk5eoN0YzWtx3KXFWFQHQucuYC+1QKfTW/sQip4Ne03WWP7Hwxyumi5oW3g13JR7QPbHr4Yo+muk49V9pkulU45i7+wIRdOg0GFeDA8wF42l7eccJ4x0AKeQsGh7sppVe9ta+HyR5uKrez9T2lLqqx0Bl2BrmYesoeqTdD3uB8rdp5DU3psPCpi3yw8EdQhc45di4g48DPLN85tlht7y10rwfNHrLQBdUAC02cuW3wSuKaXY3nywwAqRd55oObgULZfZKODe2YzitOCj7stReB4rVh6Zlmfye/wDzoF9C0qowO7FDauAPWWJne77vbR6REWb4LY9z8r1l7WzsfOu0v9lf+RtqXFOa5m2lUfOZQDOf8/pmDRNDkrL/AJ6Tmu7VXzuMA3Zx4Xd9/Mqnf5u/Erng3fj57zC7Livx3mfS/gfZlBHH0K33bhw3o9vm+8wvTD+b/wAlFjTdf17TTpU3+Yl5m+n4+M18BE55SAO8hNp7ohdse9XLHrxLrlzMd5nccUXF79vnmVIdMkErAJiX0qVAjqFCIUsj1IpeJzEhNR8ziC0VbHu48wQIvsV+SiMUsPuWe6yjrSsH0u4hc5Lk/wCX5w8R+jK4BXdirLTLdDw24mhuQNyYeyNbsZy8W4J2J3aePJYUyNNq/NeL6GfDbE+lTkH3Jd1VU1pwH3EWcd27/guyAtdypf8AEtG5xMegH2cFwfiWuTh7sAq9gqHY/mUXGPYv668xW53Vz54DGjqPbHAHG57kC2IW+3sjjgEJRFu15GzAO8s8i0XC5x5lTVVWZPv6aN4VFGjClcf6m9e7AlzFyWs0dXfdF4mttLb9NesY1vdO95w4rVRq2pWDxkPrUwQNm79i8zFnaFZ1btrxOyTjy/8AIxWVUO3weX5K/oDuegY/Nxt+tSjLrJMnGz3DPoxqFd55eP8AksdamEHxfmDQ09YV18+3iObT1f5MwFCqeK5PWDGFd4r7n29fWYX7Lr5xFwtjN/3ganr/AOTJxjS/NwATihes5fUrTFsTtX/u64mQaKzzr+4+gtH++eZnRxiFmR7y9fWe8ca+fkg7S+h8bz05l2eI3hVwH3m98fOWXxl4hdRFmXPaLWh7szpzKgozmHPiGMZx8N/ZDMF0cehngnSuqMWl4TT03BjqG5i/WVGsWmBTZ6jiM8M/V6uhMknqdbfdl7jFrf1Luq88Nbcd2IlFXeAYA9ue8JbOXme0dgipOqKHZTjEs++vn1t+JZ1GHmvv0HNQCVYBf4P0nNwnaSVxYzvH0UgyZbeAxX3dn/crEchXn3X7mPS0qevN2LiBeGuUG06++RIluhM+I8VLnA26fewIcFG3+RrdBOu9uW7H2jmW5CnvvMThOEORckKqA268WCF004yTsbzKEyX99hxbFnhz2+vjvEoNs4aOIorQcqXQepmFCsMtq+Nr1lBkSjePp/ZCANdNd96exB0WSgy+DCOddv8AZuZI9krvMS+u3dOB8jZ9yHKbPJwDZTLPOPvX9y2BuGqjqy22D6mURsxZY8JpP77RVCba/wAfJMgYVxO/ed/OyWc4Q94e6/nUTN21y/1GjHfDn1IYVCtbqYcl384JjPbj/DMkrAufrtlFdOb8cdleIKvseOaIumnJ83cumddpizuvn/2VtWZp8HMzXjcPc6/z7RPMrfY6Z6/mHwXpw3t88QEsUVPN1Fe6K3UUJvy7yu3G/MT51/2UVV5I78d5vpYqKKXL6D0AhJgigLKJTiWHQC4DoroqB1NwfSaIIesv6OqPaZoxzlrfEtOOCsO7LIi5EbQZNPl8jCQspx6TZkjdjgf3BgYW9WnfCQWMGI4bc1ATkAXlt/TFzEuW02NUpWHcodFd4nrqnOV2HdvEVejYH0GsS2eOjYu+Uv0ir15kPI2YIRjkFD2/xiHPUJgtesT3gKL+3ZPRLJy558xYmig7qy1W4oCvQwex7R2FVuwMXeN7m6I1nPBacG4hzxXOwUe/EFK8hTtmm5k11bFZm/WPWHk2H0BeKiUq2r5WijLFMWr3wX4RDV12H1y85lT1i4J9fmGDH1mIh/kakz4lZ89VQIY4D2efXjiclKA4XHoveFHFpDwPFuaighKy1WkTtUy+VRVWD6w/4SDts3/p5JnJ7PjhIXD6UOJ6zvMfOKg5y+fMAGrt1XzroOYqp2y8Z+e0oBvD6Z7+Ja3Hv/UGg4eK+lME6NunHzUxfP2l2dkVU68fO5YhFTv/AO32JTgc/NTj11EmScYlc9dy+nHV5Gna/PHEL8E4svaoNfIkccepog+aGZ18+0bbl3Gok5iiEWL0vqpVCEYQDp5ZkQ9QPEehYOhroq/PQeTcJfga+0wk/wAiGDqqgrsTankeRxOPBF7Z3nzMxI4M5PEUR1WCHs5Ti/I1Sov1VslIIvfGlrgdyiQug5YpuMvqj8c99HR9eohErxzMJiFw4J7n9x3oO0PWLAQmR/7HcA0qVYu1C+2xOFDGv9VE5fWGAHNHl5YiNeFj39+yUzbeUe6uJpR+YN4WM7YqRyDH4hXaHfFDoc8pPHS6iy3BDsfWACYi9GdZzPGoXhydTVN+w4D8CIAedkWczFpz2CVN8P3u+B40myGunGIIlBTmPqe0VnaFX2qesXL7V/fiLbfPn6RSvtMkO3EVpEpxOZZPG/ziXnxNjFz4C528bjWpTfz83N6+v9Q7Qf8AGHYf+v8AOqrpXz/nR5HLiUNtTJrLL5rMFXMWe0t4d/8AIlQBg8J6QownBH8N/CTGDXSywalhF6pTor0o6GLZf2+b7Q8Suiq8JQ9AoH+Im4tlLQH+xBNo5129juWTEDAXxhuXFVZ2v0jRB7ymjymZat3Y+5cTDeBu6fqVECOHZhGkdzVm4Z6HRU10MRxCYbmyPeI0+0oj655ugWPOp+EIdLNSzUtc6hP+Ri2NPMRg3OBMadKj9pz0aIDPyG08ht+HqNxltur7sejfKEFpUdoaw8k5OHPg588vQZz8A5nvMsePnUwAa+fxKv2mAWn5CW3d51LS/Fb9ZR9Jud8/+eJkgr15+s0fKvaL9pW6+fpNrGiXyy4eH+5XjEp8/PET7QxOMdLltav8THcslpRo7xwBp5ixHeK/7A68/NnmXs7Rvmpi1BXQt8eXQxKOhUWXMI9K4MzLZcKTWVlRipV3aa7cQyxr5fdErCawn9esvNQIofIe4NnvmLk6VseTEx/J4maXCuqc37Mcy6s83Y+kBxjtz2MTIh6LPE3KwGDydxfaA3mKu7VJ373Fk94Hps/OoGb6E26G0vXiXLhWHreZ8suWdOCIcErsdYf6lV+ehfQMTOp3Oml2OiesTqzkjmWsFaOEyJ5Gav8AoY79tHULxLDx8fD8hAFWs/3e0BR0Oj6h9vtHM5+IlqioFbb+fWclk4uXZ+czvffETlyxYrieyjYRvB/2B6uPnzPzAu+ZQzqXfz83Crp9v+w+yFafvKQllp44/wCwHr+cwYdHlZxv8xsmmCj8zS0g3xLa6PTniUExuPxhBUIz+EGH4CWYlkTGK6VOKjv9dx5IwgqwNejwxKS37vh5jIgGxlEJgLGb1D7koQIHiTP2bI4I5KjiqHxv1jMfY9x2hQR9x2i/l5D1ziX7B+Yba7wLBRe7mn1zLwshb2GH+oU68wg4lym+nmg5CktzKjzEPQzqKwrjmJcwHrB2OnHRWrRlgGc34Sr+pSlTLn4BZzX3PY+qfSIBkWR6nUU2uE0eHxwwQl2ZMvnuoNHuH8/cPjubfBKGJzXm2GHpEoMsScf2izFRw3c+fnxCb1L6KVT6od2a09/XoC5v2/qaxKmL1Ef6liuge8LneUSjqUrp6Lj8ZLly5fwBi5cuDKWeWV6KhDCTOlm+R5/xO+p39SzYbn9ekR0U1DzFQJYUT0ye8cWVseC/swDbT44P+VEhCFxZovw+8s+kmzQ7epGh7757kNu5y0nJ75IUF2L0gt7Lhl9WYtzzfuQDk05lQJuHmaTaBMwZXmKvEuum2UpWCmpQFYYwQB7waivoilac/wCID557x+/RlvE8mV2Id0DD4HTCL0I9jqHg9rkYnhQ9kf6LfUSw/qzx5j7kTcJzwnAezE8Sx8NGmdyZ7ksA8YjCzN7lPaI92frA7NxFO2Ogt047T0hjzDtO1zqGKuad4RMf3FLTDcZZUpvPUxLmamJrc5dCMfguD0WXLly/iGCOpDCPQocK3uuV6OJjP0XJnC+Gu3RqB3Hz/wCRyeD/AB+0C0Uq9T+uyDrgvqGH+oQBsZ9pVcLl3M7Th0sMvZg3VXt9JelPqb4AzuFrHxbZTvZFze6C7Vh97WIA2LeQ/NQQsemOiXEneiIxuASjpZ3YdioU3Cg8RBr5+SJIP9pjvVvnUyfpYAVqLHRliu2vV/RzKXJ+Widz6cTCPWPe6YOhNGYa236PgRkod3Jbm5TYrCy0YM5wcHY4hfkFbw/Z4duhKOyPYxKPVgujUwYimzUXuUDzl0B+szxD6IJBhmOQGjLD7QcQ1X3joTklwhjcIdBl58T8zidu3aaJylzjo9DowYsWHSpUr4KetHRODcdXGX75PX/0g8Fe0GRmtnoP/DuKXwz6olO0FIYyx5zPerJn7i58NfeWcl2X/wB8xIWsMjjCY8RqLcWJnUy9nkMY3LkAVsz6sorMd8jMsJ2b9XfoR9jBQeHJ9pdvL7Qqxkim48UeG95VP7PvFc3nl9LUbSt5Zj3ztGdg+fEt5lLmVZKDa+fPn1jfUz3Y6ouVcnR3R8rexK+TMCeXuz1fTMbce7E5P0jyb6NB0FPRyMrj1i+nUyxbTQTMlXr/ANrw4Sry4G3+jzAvLFadv+9AmeqXiViUyOeg9FojoCVLiDhPz0rMGbr/AC1Mvn7y2RxPpHMsu/n1hS/PzULzibLPR/v/AN6EIOYQZzXHecTOk5dD4b+AIdRUqVKhBCdKldXibRsG9nt/yCzkX2ItgXyDScPENdFrXHCSxOHgf+D6w0jsjXAOz3ltaU2ez+LUqqBkVk9Jc4Dtw7ywpyk9Lf2wNNMeez8wCFXu/SX820HdX/cWU6C54j/Yzu4eLge9QKsYE4LEs7y5TmJZ6MyntLnx01+vz7Sko9vn7zExKuYZk3qZOyCEaDcOxcXAND594F+vn5qZeY67dDro/acy5pF4jt6T552OiJwFpoDavYloKXHkfaf3Jv05fnmBeXAaf2+eh8FdFGVry/309YvxTO1mZNxWyBqHUl9FlUAKIbv6SmXP+f3F9WYKrDM4/MVdL32h9b7GXCXCXLg2Tn0IEYfhqBAJUSVK6Kh8AAgQVKOhynhzL3xPOHX9kUB8jXvGTBufoekq9GB5bzq3BArgBHAXbxUQ248DWX7kwDH6jh9ZTjLKjviX/n3ITwCIrD8zCXagYWCfUfWWCZr2224lolxeVuH1iXL9kPHQY22+kBMSvPSkrPHp3y6KJZ7Stzvp7/8AkuD6D51OU9n+tSnZ5RxPNlO0XmPRzGPVlUCcPpDQ9vxRQLdTfIYeX+Zy/wBsC88NHfy9Q+KLnPfxM9pzLGI5LllYldpU6uat9khTUJUL+DYd8/TpfabJ4B88ELB9nz2hala0f2TTCOpcMTwh1XMvXoNmm+hBIsd/BUCHWu/woEIYEuvgLKLKI4kD2ML0UAzTXKu/DM1BN6jdH6kyJ9aZuVXgA8bv1xAtY9j7KeMws0oUFEefs34qU13VnJ9iAAUP8IjYYB9F59Nx75ntOR94mGFSPrftOZXE7vz46bxPWH/kuo+U4lSpUukuNxB6zsx35YD3n4OPRMSk17ymrjhfPf5Zj37dGMaqMfn57xjGMWpuOCpdXJQ+8FA7FS5g2D+pPvejy38/OIL+WfL46kPhEc9CbQUYjFlWLdRfVXydLY4Hp+PnUqtvAVG4Uan2hn1g2k6wRCT4D+phXLbXZ84nv6znEOnPX19ul5zj1Y1MTEKmJiY6FQqYmOZjoamY4a6Tcz8DfEzLurSfbvEAh2mzF985hYqq5YMwHnjnl1b+qLDVW/e31O2Y+0HnKbyazWkawq4xwzV2KnMpZQsPJzXdK6UqPcd2Yc+v1QguwKzXkzmjUDS1F48lwOlf8CDKmHEAVrIVXoLd0Pclh4FV3va1tP8AvQSlfXodCHRibTwjCo6jj2I2vabPdMPz530Z85+J+A8PphLcldHEav5qNZ6PR6PUgxsVO7ZR2yxLEdVQORW+KBv/ACH0N+f+deejFdDoddvgMaal/c67IT0hfrLW723HUNyuXl/5CvXzUxfl88xIYX3/AOeZbShTlPn8Rp7vXPrnkn//2gAIAQIDAT8h+J/QYR6Ez/8AbD9AR/8Ar3rf6B/9cPwPSpX6J/8ADL6H8K/A/CfEw6n+fv4j+FfgY/qHof8A4U/hXqRj8L1fhHUf3QfxY/hX4X4H9E4/drCXAi/w5/FPwPxGEZp++v8AiD+IOj8DD439xp8OI/8Ax56HR/WMf2tvxXL/AGlfsz+HY9D4w/EdH/4QfqJ+7ep8Q+MnPQ/yifrn8O9To/A/GR6H+Jr9RK/WP4d+F+FPjZxH+PPjf4F/cP6hhqP8W9U/QD9Q/YHQ/gH4To9DH+DPjYdT9Afpn7V/gj4DH+Kf1Cfpkf2j/AiHwn+CP0T9sP2r/BD4DuP8EfqX+i/pH7V/c1+iOpGP/wAsf4Yx/jbh0v8ART9wfwp6nRnEf4E/SvqfpX0r+cHqdTX8yrpZ/wDApCP7av21y5n/AOOCJ+wqVK/+ePwPxEvo/pXL/bn6tw6X8B+mP5RPhNfBfS/4JYNy5l8Ii/HUOmph/Qn8owifCPW/4E6g6r6v6AYdXpf84GPS/wCJqHRZfV+GpUr4z/OyJ8T/AAZGX8L8BL+AKi+Bi/Gfy8PgP4qoEonsl+lx0uX0vEIdX9A/mAfxJ6X0XL+M+Eer+gfyp6DD1P4q5fw3Lly4/rD+UY9F0ep/DJ9f166q/RP5iQ/xQS5f6J8V/oEP465f6NxLj1v7+pUro9SCv16ldH4z+YkIep/bVK6EVKhH4X4X9MldLlw6Pxn8efpHBjoR/Wplvg1Er9AfEvguP6Q6sPgfjP5V+AahB04+KmW+DUfqvS9D4GLl9B+sy6cfpHwHwM+8YfzLH4HD8DSUft16HS5n2+Bah1Xnwx/RP0a/+ADXRI/3S9S9L6b8S6lQJ+HTXyTLP6J+iw/nJam3VQdB+4NuhD36XNzXS4feVNz8iXD9wV/OVTHMN9B/biL8Opv0hj0n5m5qJm99Rm5ln9E+K/hf48/YXj0m37xUu+jn06h3i1N+kdS76Znnc+9B+gHQ/Rf48/S06V8Cp9Y/uF61L4lTs+r0PPTErOfRKj0MvtMHz0T4j4zq/wAifpsGH6fBpK6H7cT7JXMuVNS79Z+en4y+gtwHeH4nfB6PxrmvX9C+l/zO0PhVPr0Yv2b1CMJcqam5ddEn5mDUJj7PVLPWL6nV+C+hHHwv88PiYrOmn9mvQjiH1jmGJxNw+s/GXOPSEVMv6Mu9yaTjpg+sHrUqVK6X8Y+E/mBj410H7IvTmfmH1mUJXMvMIxYuO0OoDj06cvDLhG0P0LhiH6Q/mdofBUNw6H7JcJUba3DEYP3i5uUx+2H0jvqBcr79GcenRcWnoWh8CyvrAlxiw+Cup/HH6Ygy+pHfS/srj2hP6mGYswPvKqD7xY6DB/pDvOIQR/cXHpPsggfaOodpefD0tgy5UqMvoSHQ6P8AIn6ekr4A9Ch+wuL03NdF5rtOehlTT6y59nRViELTEg+sOmfvFcHEMMEGcenQfmHR6MejuP8AJn6gzHiPWoUagXkq4/eeT7SxyfQh3/aH6g4v3lT+ph7Ty2n4w1OIQ4i5x6S0+1048kH7xafXonM4mn1lzaafaOcvSbQ6Lj/cCcS8enRjD+SP1T1uK5sd5ca3DJG7qL+keuMeR4luWIeh5/TbgQjl9Oh+ZjjtqX9Zn2n2Tt7Q+3TL3I7PSBxDoG+gzH26JiBj0YRZnPU6k7wnHQ6n83r1uWZZQwTaUj45ltGL5leb9Uoxfh9J7JQ42T61+hLE/qB9448kJ3dA+8FN779HoteHU4mn16bRftHxDoH3z0cej0Vnpz0YbnPQhvodL6H846hBOpyPEy+Os2PQgjt2hs8x8yEvwS0s5PpG6yhO0Fw96ib5PZ/kG88fFt6Tj1n4jMD1hXEejg+JZ69D8QY8mZcYMfPaZ9J9iD2n5E/qbR108ptHfRdBCO+gjuMuc/yh+o4Z9ggxIdpT5YyjuqcWu3mF3XqjaMD0faC8y7eJRDV/6fE76E5n3XKjcv2mk2Sf1MXL95avSBCkOO/M0nHQc+nRTj0m0N+vQfZg62V1Lx0L+JxOfg/HU/jT9Sv5RuukHpT6y5Xrctu3LH0OlSpR4nYx+OnA4g2RNO+PhOiwjv0zCbj/AO9G1+0qJz0r6jo7nE7ezNpc/wC4fmXj0i/E59em0z+nVNS8Rjr6T+kI69pXR6n8ifqnxOfvOVbHsIp94e5iq79nSw+Hn3heDPXO/f8A7Ex5YN+/XXoRle0Hd/Xofafk9HPog46E3PGPgflLi5jk9ekTaf36uPPTx6S466Vj2jro4lY9/wBE/jT9QYgwr7SmuJSqOmGel/iA35NnwKi+02IQWvricya+j8FhHcZp6x+sv2m+4DpX3nb2YQms4iwuDMro4g5YbiVP6QcTiHQEqcSsQ19Zx7ykNe/8vcPhfi0hxcufB0NPhjCFloEcPrn/AGJH1noShxEG3PpCPPplZnP1+AwYR4hGfdnL1gR+qWeVwWZlT8IfaH4n/UMyrPfod+subesdfboNQdDcqBLhqGoQ5hDqfz7DylZ6yw8y4ghx5+AXHCUdsQZ6uTZue6z8n4HoD3g0d+rj6TWH9QPrDiP7j0wfXomeh48w/qH4n9pcdQMekJtDcYbiw1DoDDCHPSv/AIIOlfSvvMVPhFPrObvKoZ6a55uHU9Oeu/QdXjzPvHU/ErqEXJ9Oq/cJtUOg/cixOPSD8TmG4dGuhqHQGGG4fAdT+ea/eEX26YN/CLiWVE+sea7RUdO02fX4FZv26fYnf56E++5UEMe/Rv2ZUDPaWr0gX5lFekJz6nTaJjp5Q3GGyBnp36B+IQhqE495UIfCxh/NOfeHHp0GPXoIfCeYeeZc8MWKhfaas1vu+ARIqHeaS4Yj7q6bdISqny9HpOZ9k/B6LBOPeG5tDcSdujA/iXDcIczj1hDXQ+M/x5D9NiAmTXwHxKUqG/SZRocsBR6dT0dzX16Cfcg5WD0/x0X7R6XicoSvaut1AxKzDc5jDpzDoHTif0h8B/KkP0mJMoA/j9IWe0IfulBfLPkfljqxM+kuEcvfno7i/wCzT1nEDoDqIROjNfaDice8/p0NzmMOlZ9oGZXV11+ep/J1K6H6TDrd+/6NRC3rN/iP/qBXwEZXaDnOIfaEePtKjqceYZ9+hjCfmPRZcUHHUbnntLgwnPtDo6nHQ76EP/ghjFBiGYeYI3KRy+DsZlq92c2+8Ws99xxFvr1WEYs09ZUCWsN8y/aKL4/7jjodQz04nHvAgb9Ogx9iL0VHfT/fhv8Aj6lfCfpjocatOoB10p0MdOyeENzgiwAaiXMyu2JX5ZykPqloL9oQi+riV9o/nob9ITmbQOj0dwm/af10IQgeJmOice8H5h0BL6jicxhqP6J/h6lSvjP1GnxH3kz6xagpbtFekandg+wd2dzLz1ImTx1MadQjvPEJzHXjcH3hCVA6PRj+ZolRjB0f06Opx7z+0Op0SH4Jrp/X80fqD6dPYi+99dO+Es9cdF6a2wOO+orPPVhHp3QPtAn546Lj1l49YdFj+Y4hH7QziLmbdNp/WBExOPef2mvece8IQ31f7Af4w/TelESCPJPOEqx9kagp0noOPJM3Uwlz7HRxCO+ii6ly5/UJeJeIajube8vor0TBKx0XE4945p8I+GugP0H+X1hG5XHwVCnZ+kPuQROe8H0x+009IfATP6yvaP1l+07u8PxNxyxj0OhHpIs26bdYi+lQjqcQfToysfEQ6n8qfpPRRL+ML6z3ykRhzD7p29WE5h95dvSRWJrzL6VBOPM4hOfE28QPt0cw36QMxO/S1y8zU4enW4wnMI/uL/hD9PmOPRihh12ly4yo+YEU6xBWYdHouYRefSP6wWXcei59kXqIb6EJUN+0Ny4bI7jlyosDPg6jpfwHxP8AJn6e04jlxJUqV0qV1r3IP2gMP06O5crmG4bm0GcwIdD+5v4GO4bm0GD+JtMw302hlHUCcSowj8APj2/ZX/An6m4H6iPgYdUz0cRhb1SvSp+Y9u0whH7zabQ6HMP66GUGVFnEuadP6hHqHxkyz2/kz96wY/nrxBlV5qHWpVPpmfmErniHnoH0IQ3CHRJXW4I/EHxkZt6xiv5K/wBRlw/XgTzx0/ucTDqe3UXH7wLn4n2QPpLhgXPsHQPtLzLg5l30I/AQP0DoQf5u/geh1uX+lt7T+4qIRn2Qeih9/gc3Mv6xfr+YfmP26Bj2i49YM49Zx6whKrp456/3KgfojEh/XTs4jT/40RJ/noMxMeIJ9k8/FqMh7wMxhubfXr/CM24n4jmH4hT1/XX8F37fP0fgqV/B3L/XqV+0YmI66qx6QhqHQ/0rh0T8NkV8L+mdRiWX238dSv1H9e/4WmufhdTiDLx6QnMvov8AWXLl/rX8bnP160eko9H9m/uD9Wv18lmds/d/o+BP9gYlZ6DcFdGL2P4WNR+z14nTBX8SQ/aV+iPgk+58vaX0YGYjfStx0QjHJ9v1dda/Tv8ATPgOHMT+JP2r+hb6wfWKMnuQYxZ/30Zsggbh+6X+q/A4XyfpVK+F/kT8LX01L5NxIYa9+qdAY9JT1uXDvKp/cX+u/Cf1alR/liW18zDGHCS71IKz2+X4LzBn1lV038dy5fRcuX+mv7B/aH+Wd/Zgm9PDE60Rs+05FjL0Wpc/KOvTHRp79D9lX7N66/v/AD/4ZUOIvqS/J/g7Q5cc/wCw03vr57T7xr26HMJVnpB0Of2qv2T016/OP9/YrB6V/IqldbviDA+Z+TLCquPPl/2LPTTD8wiVBz6kviaev8IdNfL5fh+2H+Uf0T7oU2x2j6H5/qfihPzGHT/SZ95i5n26n8CQ+/z9/wBnt8B+B/R//9oACAEDAwE/IfiP1B/9ifpvRh/9eda/QejD/wCxv9Q/+rP2D0P/AIZ/hT4T9NhD/wCGf4U6v6r0H7tf4s/xx8bCc/u66VFgfw7/ABxH4mEf31fxD/HEfjP3APw5/ij/ABD+u/t6+KpX6r1Fy+qSP80fon4nofxKy/0BhI/y5+ifG9R/DLGL/TGWev67/DnV+I/QIfwzSLGX+qs9f1n+RPjJzD+Eeq4vQYfpj/8ADOYfwixYv6FZm3xr94/wR8L1Yfx43+gv/gnq9D+CWL41TFn4D4xr/wCCP8Ofx30X6hf/AAJ+AQ/gnn9E61iH6C/Tf5kwh/BP6J1YfBfwv9J/YH8EQfjIfwOnt+kdFifplv0X9d/hR1evMP4HSP6PfxKOMzPpH4rl/DfSP80Or0Y7/gmPxV1GW9JfwXL/AELQ/m8+FjD+COelSpjov4CKd5j46hB/PgfEw/hAGYPWpUqV+gOE11P/AIIyowl/pV+3cr7yy9iDor4rQXVB8Y/nCD8LuMeldK/fjqOBdor6RHkT6ID1lPHQZX/w4jBly+o/gx7J7kI8dR8I/QJ/8KV/IHwMvpf/AMIMHo/xNfomV1JdwfqP8vL4H+Mue6V6cpUrqGYxP03+YF/EtumOipUD9A6v6Z/lRGJH1f4Yfgq/iVKlSofrH+UIdD0OjH+Gp9Or+ncv9Q/y5IxfxXi6Vf6L8D0r9F/mJhDrP4M6sslfrXL/AEX+ZmPHWftrl9Fl9HqfoG5f6T1qV1Pjf5mY6ej+vfwhfxPV6kfhqanP6T8D/wDCB0V9HfxX8IX+s9X4KldfxMPXpz+k/A/EfzRD4DHn4C5f7U+A9K+ELi9XHmD9F/8AiSX0If3B1V0V0rprzKlxY/v028phjt+i/wDw1N8S9dTF0J+3Iwgvt0qal30rpcCp+DKj9M/pT+tf84SyEcnRP2x0D4WXXrHPr01NwWk1HpxTDH6Kf/FTn9yPguOOhj16EW9Qz6zXrDcqumL4g+0H9Bf/AITfpfwZEP3ASutS4Uz9oxj95n3l4xBYQ/SErvxMjx0H4n43qfzZ0X1j+vwYdX9uZX1l8Spc3KrqvvK4YQHlD2TzO2PQi/ir/wCE0j8Is6EP7M6rCMqXNzUq+gz8RWXGZ47k+z0uvafY9T4K6n/waj8JBnps/Zh1I/SGI5juaj+empz6xgUSV9SZPSbdKlk9Ix6X0XL+Dw/Sf5hZj8Q6D+0OJ+Iwx/XRcTEegTk7x6MnpEz6z+oteZX0g+sKP6Ncxj/8GVkcfBcdR6P7JUfvLhTeo5hK+0MKllekJ+8HHp0I4l49JX3hP7mlypVnRI/AEv6RehA/Qf5ldAR6M0h/Z1D8R+8/uZYigy/pLuL58QU9Ejz9o9uj9o4/qB9590XEX7wYzjydKiSpcuBK6CPR/k39PaZ9oqceeidAj+xHTX5hncftKxHHd6DpdnpKh9+gvPRWJc7uI9MIfpFjnpSc+sYx6HU6EP58hz8BAsvUa4zD7Ep2+8Hx+Zlr7x/VIRZ/c+xj40n2sd10Y813n9QjU4uh9mJ9oFnk6DxOZsldG33hj/fQ9FdGcznoQ/8AgyunT0mSamKwHQtiuF3OwZlX5H9PR1GD16NfSd/eVnxGvpPunf3n5Zcw9oKfXo9KdGG/efeDFz69DqPV6vRnPR6v82sznr2+jSX8fSJ9IVznxLenpMveWlPnpfy/K/0BnoufSGfDH7xcduj+JkVrodC3kdDo5t2jDUzDzGLF/kGZz6xl4+AjqcdGPR+B/nNoxrOGfV60Gsvf/IKvefiekP16CfLFDj7ytcxHH0g6O+ISvi09Ybj93qzthPzDD6yh8dH8x5rhlcQlQ7Jj16C9D+4ahvpZpDXwF046GcQlf/A8Tb6yoMe8bdEvohOMzu56ARXZC2sMbo0+Svi4nHr0Z9lTjxMQn4TQZ/cpqV7Rq/WXFuLMd9GPHrPx0czQjr06L7kXUS+pXQE5/Qf5kXTnEBvt9ujG3S/wQqqMTDpcuWw7vrB75Jzmfwjpnce/wEegR3DXh1KzHE56BhJePMuV7y/o6Vjp394yp/xGG/WJOPToT+3UZWehP7R6X0Or/Iv6jwzmnBLNVDvqBPMR8ED7d+gU+vw/5EjkNQNPiE679HpfvO1fTow37HQw+sdwjNWXPy6fhK+8rENzeLGf16uenn1lQ30vMN9HP8u/qKJBTfMuHno5OlHpFx4dfAGZ3m0GgfrOM/MPgkeqz6cw+jKZ9Cz7z+oue/M/EZt6zmD2juLCS4dEwR1B6UzOY9Cy5z0dy8y0d/y7+pvMlRYrv0WPSHSks8xSGT0gE9JZ5gSqVqbQ17vzOJoenXSHRm3pP76faWx6R+0Lekz4VGNS5+UfvH8zbxEmmMNenTSG+hYox1LiyozmOox/lmP6ZK08w+xKnxFTFN/HwKoNMU75lDq4Z2tQ1jsfAdFfaDtnEehz0vtrmLMf1CfaZHpGXiEOfHR/M/pKgxc+sYziEYE5j0LmMf5h/UfPMJf0uZg/CvtOLt0hj26eMWt46jpx1yeqPQ58E+3R+eil9DA30JXsylDuMu4/swZnMX5nEeh1dxjLzGPwP/wJZ7dB9+mlfCqg1mfQml8uIHR9a46Pf4HAcb6fdi0eJcSfZUH3gx6Fe5qXFiUv1JrxBjL+h6EHM/PodQjzLx8C/mMZz0c+0uPxH84/siz69F9ugx+F8Q7RKVyQZgVPwTt7HwNvBDUrRqOWA9D2XKhrouXcf/Oh1v3n5HwHRHUdQepCSo9Gcxjvox/lX9V5TB8D8TFXMj1noIZRb9+o343Pvc4m3g6vsx4JU+0/10CH46czhElzf2hDcuXiOpxDrx7x6L056H+ZY/pHT8GNyDH6NPaNp9MlrXB+YYPPyfXqS8d7SowaO3HTiH1jv06L79C9BPx0GP06bx3Dc/tOI6nEI9Lx7xcS+pv4t/k7l9H9IjHXt00/Rgvo0T/URfgePSH0l94mK3HfkjN5cJz4jj26CEZ+IblSug+kTqdT+5USM/tHpzOYQej1f5Z/SOnMSoIn0RDqWhh8BNV6TPH0lX7R3FHWougRc9ql+8dwrLqVjvAh6Pw/1DPwl05nPtFi9Awj90DouGun+fzT+mdHfCx5ijpaE8nefRB2zEQNuj3j2Y6H2ykGveJGfaS/v1OvWP3nE0i/CZr3nHr0YxgnQ3OYvx1LK6mcdH4X4T+HuX+g/qBs8k+xmPSFo9APrC3iJN5exHsw6ozTydSbz1WGscxOn3Ys+nRlx6HUm5cIRQ6GG5z7T+kfhI/l/nX9Q+/T3oeFS+ie2KmC+fgRGJ126Dp2S4sr9OgSo9Cf1DMYR9Ax1GulZeZefaM+037Tn26H4D/OD+mdFfRD4l/WLldD4IifeDHp1NxlQfeM5jAa6EHRXX+4wJWe0YamntKhLy4MuVAzOYY7+E/GX+f3jGp56HVMu977xxB6X0WfWPXcSd0v3h9JXvOztHoYIQ6PRh0sOo1B9ugwfWMNzmP69CXn43/4IjvxBBr4xTyS/SXgxYj9k7up04n4nHQxc34ldLinPicxn5hrzF6OPWMWIPbpSVmL+BUJ/k4jD/4d1DMSOPXWVKh0MeZcAbzFeOp0Br3jFYn2xJVQjKlfWB1MddGMuOo6lYjCGJ0COvPQj0r9I/k39M16TmCVBl9C/F9mJZ5giL69DXTxGM0iTiLGKf1NfAQ1GMrEToxHXTSOENxZzL6keq/Gfsq/gX9N9F/qC+Aj1HqI11G/W5+Id+8y3qMJpGPRj/fRMesSXAhuVNurDrfxr/8AIiPTjpzGXHo9N+8/EZfEen5jHUYziDL6jFD4n9Fgy/8A4B/Xs8dP6+EI9FUIs/M+6LK+sIs/PS/vKxKiYldGHwP6iul/zNfAdH9bWf1BmMJ90ToEft8Dg46BGHQkO8Izmf1GMu+nnj4L/SfgfvBv/wCNUGf66LEH6zaE8fFuErFxCM0enX+UIuOZ+YRi/Tpf6tdF6VXpz8Fy/wCEr9e/2pBhvoTmMYxg/SqPS/wzcv8AYPwDx3+O/wB5X8LXwnRlZjOOqv1lSpX7XXpx1SL6n8W/vFSDfh+Af8iy8RjF0IfwpPgH1IN/xT+8JX6My9SJ0IwSuojCG/v/AA1+Bxn6w/iX97T5ImHf0JXWTn1jFj/DjXt8BlXDD9G/37+9r6yu+uhk+3Uft0Ln1j9JUe0uz+HNf/FOL5hvPEo9Ivv8FYi49Jd9NfHUqVKlSpX6dfsDXt/Gv73s7wsj9RjhlnmN9CVPwhv79Dv26P8ACmvb+MY/vXmDPrKvRj9UvVaw/C/fmV94Ne0al0+sX7df7I17fswidL/bMf31SUTI8xSvaD6E06bI/iMG4n2ZU2/hH9oR6n7Z/fn2flLXiU9pr7xn4hHqficT89X+BdftCPU/V//aAAwDAQMCEQMRAAAQA7WQOFcTjUGDDf8Aia//ALt/uuyCvs8QaR/ugAmirJL8k/pfWw3i1kt+AQAD3T9tJRM4AHQkEDoaHexUtrGl0zH/ALyWR+2PApV6zcJNSy+XgLJ3TRcU7u/EggDmCv7v9nVHOA7S+5RJq2GJFL1GSWfbWS2fSZ17M05joiwo2tuW0eouTAHfH8gkHskB7ftoYQfbIU6u0712AhNpe222yySyyyTZYkfEZptIFy2yjyaJbtl8H/RMEEg61FT6NNHt/m5qm0kBqFAV3JOWe2WW2yS2yVvgXQG1rf8AyHkkfVKFd6PUG6jxAS4w5L/f2bPTzjw0lwvX1iX7eSskEkNtsky4/wC1Cf8AwiCCgAkSAAJsYddCr/pPlL+7oERjb/NHxTgc86/f+sJ6bJs2Wk2SyWyTfBJagaWkSCUgkGEW5sbhWJVafvUl6b/Amta2pI4Rm8rRI8ayZPS9JmyWWyyxV9+Kp6YL2gA34EE0kD/9tQO9uaTt8gpnf4GjZerZjdIqnw+MGv2gyQrGSyWy2WWqel32Vu2BJ7/bASQiZJf+iTKrj5rhqzffEjH+X7IZt9Ia8sbG12FoBPWyWSWcSF7+ySQhWNg+B25IAiVtP2yQdT7bow4DMzIF5cS/tk4xbvACLo5DMpxJ2SWmatLFNg6yXG0B13p7WAkAwdv+SwQw/bNmFpZrBAsUG/5oHOWmE2leCqVhpomyTQJEPJlK7+6KYpTKyw1I0EyBuyESv2t+foybvl5EknIy7J6BDKMb/wAoqbuAJgssGxTT/wCm1r/rGqjlp7AL3zwayN+W2oJm8V22pkG88zN2bKkvzSe+JHj5tJ7LJJZZW2mWk22vraBrEhK0oBzCDmJSC/3nBU1xmyit8jWlJsjZ+18NHVTJdnAO9bZILLQC00mm0kjJ3/l7Z1jBc7tDWLbR562T29f2cHNze2tf+TIk8wLFvbUDSzq/bSBYCCE22v8AJIyP0ke+IpmyG+bbJ22HQP0Np6bo9Ju6ltwv8SFNkEKNnkKmJLryyy2wAEtpJ7JvyOkbe0JBkjfUj22lW2yF4BNvXchOkDSv3lMmXNskCVoqxXF1MnmS26Zpp/JJo60vw7fqtB8MVal9bpKW2S+0JtaZstOeEb+jMyT7JAAxV1fMSV68X+2zfv5NJP6WQD6kzXlss4gywFMCViySSiphrZt1/AdOPn4Cz7pIgCqMIyh3Iw69OSbtP77TWkAtb8EOmNkMMbTA3nWM2UiwVtLftSr937L/ABJs7TbZJFUZEt8OFTnr+lzb9slthTAS+5BeZTIYL2oErrPxJBJtrLW+WtRJLdy2JFvzTSMoqq0u2kOWTle+baWlJsoJTa+7ILySD8xKeniHG6BIBMuKb0ydjqumPSzF2bCaNstUKNc0l/N6YaslltoNlAbS9ILTaTbGuM+YPkT/AMqcSAeE3tk7FHVZQlsIlJLZbZKrWWQPEbeO/bbLZZSmQQkvwTdyOCUHuqHbwdqDGYgDD22+chY2A8GgW43LZbPZblIyl8kHfz7bLyASAW029XWxWLGfUr6ShQqJvu2wCiYIm3xk4GqkmoQF3ZLJ+gLMrUnNhy/VKKfZYft8B8dwmmRJ83JUkin4D2qNeWAmQRE2/M3Wlglj6AkbIRdnLKmF316+C2mxS7t/v/UN/l+00LI0w2SzTX9vucwJk2SCA1/z1aG/vblKGJZA/mok00t+3twgV2HJ7CQSAht98l8yJGmmomKwMbP/ALmUXNAil7cjIwJpbfew424NLNttNh/JJCUK/f8AtsuTOGBc2/y25I7SeaI25tXh99hZoZJ4224v7rDaXzTs7szbTSbbbY+L1EZGvqFjVSQMID23236IG6phLdj26UNWd6QJIOPX+k2dKTaS/dn8nyTaXVtbT9TR904sQRzSBJoJItkv2YA2ab/DH23jgoXVJBBCyb28GxjLTbSbt3HkDbT2BKaWQlnjF9KLxJABHoAMms3zQEz+yPlGP/aTVMbrJBOb33GzEDSSTTdmw08bSTsJiX60dudDnPIIsYGlBBIIv+TZn224tiZKqSheBtbtJVW+Z3ToSTbbT8Xn3rTasIITW6Tgfn7eW8+NpAAJBBBu6bMv++LKwqHS5HhLO23JX3yEzVJSSTbXoJ+2yaYJJDZ2LZ5eUFfAJJtBABBAAE+fQF/ssoB4UtdJDXe3z5L2xJ2bhCabbS+IG227TMl2oDh+JPBWCUJBEhJBIDABG2bRtpg+rMyqJ13Npu3zFm8IEydBaSbS/wASP3/0m/vsZih8i2qN/SQHLZLw22iCH9/zxvfA8HxcbM9MLOtmL/8AAg7OAkJJNbxY3JvdLePY7o3bwMWl1EE7af7e7tycfFOj4/7Swe1OBGmbx9RwD7cEHdyEtJtLc9i9tZJfglcHNIz3De1SggYWzYDW+7ClI0hm5S/QpkbkRR1oh1Inzgh7KylsJJaii7dNtr0AHRSM3BK7/hSS6sbHRJfU+3FdWZ1+vA2oLZ2R/VohJT7EgHYiSMtpNXE3bpttYgOF0pnPkEP9T4qsUVpNEmh2RvagAlTztUpjJFnOpGmWr4kA7AW2n5hucCfZJJJAnay1x7anlbsg2wAxtpshm/aBHvEEhWdPlCiuoigm4jxMEgD5iyy0pNTkz3NNtAbZuDJb3f8As0OQlALZIBAJKlq0HE7mca4i9ptGiYkYGHCIBwGzFllpALnIkjS7ZF2zRF+3+n0oFWIIAAIAJYJUtqKITiYviClF4nMr8Rh6IZBGJuUkktpJU6Bnq/yA+yb4nLGxV90B2ZBJABILIEyv+oD3ILbl1nrZTScfNX4zYIwG6kslksK2VB0s3QH3TSE4l+M8HQQXaYBIBJYBmiiUaI53vrZV2yf3gw8nPOTBvBnAANllkezpBN2bs3TCJKuPwS0oKAqTAAJAbJE9njtKVk72iBpqNlGCRJ0wCJO5MyZbQBsi35BBvyM3TZNoX6/RGTmU0zIJIABaJHS1bKdaNMKaelTKFO/2lBHANmIG7TTaRtf2IN1zcn6ZB9SnbwJZABAvSJJJAAZB03LnxAXXYk2SyNCgv10QnwNvxJO/2/3Ss54Av3Zu/TIPOWqZIYROqhIYBJIloM4mMIAXaC1KwFDqiabowPO5Js+lI/8Asf8AZicYki5C/NtEggrVIDisKmVBIEkmSyy6pqJxVIOACq8u81rkwjaeb23rfYsJkkH7xTUE3s3K1IG3QvKcn9hD7KtJgAWS0Xg+ESCvJJ84eiIgxb7F40CeXdpLwkkEELYy+EDMG7W2WyGlNzAYQ9n1PNtsCy3Y9JSnUqpJkpTnqRFP/AYf/F6NRtugkAAkP3XEA9GX5KSy/wBTSfg77Zkv750TTbbp+rNxm8O4j9IVmEaLtmCw7ziSgaVIJAIJenuJAqcm7bFs7TTTX82Wa9ByfLMpDIJ2Ww2BzA/gtojZEddG+tV6kTltDpAJAAB929JEQN2snVtjaaDzm/8AD6gLv6nKQDf6xby2gfbUWgqi3HlJx2uNHfZaFQACAABj9yAKwNspP3ZI1sl1VTcyNJVVJpLQERlE5dwW69TRQrfLZGB/8okhJZCiACCSSGpcSTEbfym5FCmt0uZkRep1l+YPCbYUzQNuUg+/Kya34tU3cGDTW0ZbaUCQACQTGO+SBhbtJZeMc18mjbT8afpd8AwHYD+vN/kIw2+iGQxynqncSMlanLZSgSQASBrxyoSO7d4U0G7kV3EIeiOxqtsnjLZC0CWyIiYOQ3cgOF6R8WiefHn7TIMASACQPMaTyDlI31rZ23Qk6QDnRUjuOqYjC5KvSQwp8sR2eX2cg/NIJLsDVbSZDgQAQSKrzIBgB5S04CvX8G1xwvVDQ6ocL1+1iMglXM8w377kahEL6AuMEba+5JKeSAAARo+5YMTPKeqHo/zgmqeGOQhYAVFOZqs+vXdq4lQQXezbl58beAsO4a3TZfSQbQQtVXZQuhrZohh5A9U22Rz6yVAABBQYFjRrY4oNaPTzpe8iwvaT34mbZ5LI4wDaCALi7fTm+JadUMW9gm2JeNKICABvkCg+CQJkhOGkHjmnhyjsSxptIg2HbJUSRbQR6eU7udnTdVVeovBWk7hoPjCgAAWyBThZoZEa37Oqt8KQAEP6Q2Ake8npIySBSQHX3lth+z5PqUeTog0nMAT/AMkYADcx83czhtsLOz/DSCHbhsYGhkRDi2RKxAk20Durr/7H9LmWhLjt05pjYjsi8GAAnXIWg2W7xbOO+5sQEnsZs0hTIQ90KtqMkG0g+1V/f4/Z1y38je7ApAfEeamEmAA+jOvWfK60F3oUUAb/AMbc2pNrPkYvkHzxBIJI07K+/wBNei5wO+MTxGyUE+jgLzwT0i9KAcVkSzFKBXtC6WuSQLDKooCFkjKSQASEY+G1/wD/AHYxhOnwDkCbTP32RjLrZiWdit5e8LncMvwi+c/v+uYZb4tvb0Uj+YDxJVULb+2G7NVroR7gqabU/wByul2PiB/mt7ITU9Vmdlh89TPtESZXUqpniV6IBGTxy6oSG/8Ac9kuVxglQ2tJSf8A6d4AbpI+ivkGoeg5r/1Eny0Ra9W/EtCXy0OuUezwk4VZtLW36/BRVtI+xaT0cQrq8V713dlZ8YV328u8IXrVfZGHP9FVQ8TGc6yTSG5lDmkBKf2xxNVtnIM5u+lUtd9z2i+yopb79f8AxrL1uvuOoyFhwEW28YfADvN23c2wFJCS0m1zwY7NWSX1b/ZVK1PTfU9cPc3SuxkGsShbtg1zhCNZgomSIAzT8pEoi9+XZASAm3/yOD69TtYfJYpWrcLuDgUE/wAN5eJ+urOdUR54lc+u4/iQ8gg3dVtgGX5OWkEkJ7DoWTW6rcRX0VWMm0NPCZxczhE1ytz1RfEFnbi+L8bioH/gAGzKSzYuwS2gkAgvO5mW+2jbeCeyu13OInbMH97eWKQ8sN2fkEjgoPM1bQgjrR0G5ZWWFSVXJMAkggDfpFNuP7FMeWux8ntt5fHAgALqgu+XTveRdcn8zjRVSXMTiE4gaRyXQqEhJokkgLPctppXb6krEYA6fhaMTgiyX14auFyB7A8m71InZDCGVkJ4ebhJ1rxNA8htmwElYfKfuwbcKU2ltK/aVm76gbIJGADF69rafmndGz9kcpUzyI7HDVVRtuxNUJtyUgrHf009ysOTyC3AqJWxJ77DmQ0GZP13gza/uk+jYE4rSvkQ2UbegM06SNqJZN8Ih8b9FNwpBfQAxtJ9yP6SS25OuhscloTkbjea042Sye3ZH8/472L+3JVqmI62sMFrL/tvDdyHQgEWIIcuVq/NVUmynsfSsY2bz4BZ5+ux3n97i26WGJySunjZQZRNq0Qfb7MjroSEhGniE75OqWmn4X44HHg9zuhYUnrpLuJnDVcgy/4uNb8kWGSyKNr0Nj/gg7bd2SEs2yemmxixb4Ejl6S7ktSIN8sE1BqZuZm4vvmr+uupt9Vs+JFtZaRSjWgAJPGy0JjS2yF4xOZ2LCzMDjY7Vpea1O2KVrMIcjGWuFy4rNthverCnRPb2uWnAAppDhyhJ2jf/wCYfptaCcKlGBIOaSlBaksXDUV+wHzueN0kvjQaLTsowHL2heoQBCTZXn8Cf4z332Hws7S6yEFgVg4atn++24JcOAX3dbE4QkF0YBITadgDmAWAfjdIbVq9/oC++csAZsAjqWUIjfJmIa1jNe/63M7thJPOZitloLbEA3s+I8T5FwBdK7AbtmnbH/an3bSpAO7UNBoyX96yfaFsB2N3bTc/I44k5tkj+EpLWJwntnou3C8eQDeoUUy2YuwK3/JO86RIOIIApQ/ZaJf2QuiAib0GHsYBWq+UliBbVBP1fEPfDpzAP+JsTWdWgPNhBfkLGOkBbor1DK/6e3JM+7x6b550m5Hm+Ssk7Lb/AIfyvES9Xb//2gAIAQEDAT8QSjij7kVCR2E3u5rHrC5HOYkL251KS9am3hrIzEX5F/3vHaBnm5oXfb1lSaB4YWZwt7wsGKLecwZWuD6T6NjtKGyvDL6muJtgXojK4RB57zUyJXUA08T1QlILah6dpVRnQuTykGAIDh+ioHEQyNPlAFwcM8Bd5KzHklDpqVlHcB+kydqxeoiwNvMplAIwFSkX08xAli86rtEwIX6QDaFdsswwY9zx6TFaz/crxvUstwV2zmHAbfG5cXkCFRKUrZx2hUGHChZPWAQw4jA+GLiCzYGi/TtKgG026uJWHD33frEs013OSeA1tz/cMsOKznxM3c87haX0AivEHUxXYjzNVp8FNeGImkOwOfdjFobVLvud5aarw8nvDk4cbvmWJeL+8Gyt+mIFGjyfioZ7JXPiWWpN3iWc/SK7a45i+XPeBU3kDHvGzLvVGosqb7ubme8rtIFyquWLFNjm+8MTc7Y+so1geN3FSxY2+ZbVG+594+Vv4nFXpwf9l8vLqPI4+0oq++KiPP1jlrjb7RzdexqINvft3n2arxKfZ7zJdwyy6NTK4HJtiu1bavLKKYPHjwQP9RTYANum4sWJegN+sRBWePIwDKUfaF1L+jACu+YWW12gKt5NkLoC+D1mGtF+yTuc7SciqMeZQPdYXVrumUfOU7QQrjPscRBnI4riHMdFrwekE7La+t8kcLULOeBmB3V7wLeFM1x/4iJZZoPd7SjA4d7AKoaGbw48TNoD3Pe40xsUfrMpseSHK6ub5zCZsOamHfFdl8x7JmiEGTzcow1KrvbtEC9mCVwFrjUbqbM/LL6fJHunDdc1K0sJPOQXnEIVAndqNIKDl7y+Siu/EMwWB7QoYxKpywcFEFPePVjUAL4ICq9aLOPaZJWjk3SV5RbY2XCK3TnM1cDSjle0frwyBahmKg1jY+bgCvkN3wPEMGKr0K7o2oF5yeObglnAajsIA7reeJU77pxj1iDkeNRRrN58CDZp7cesuNuXzq2UcmPTEQrN5xnib1U9jUshulYl9sL2Kx7yi10Oy5pd707ihzrjnDGwnExupgC/tO6Y+8s19o7c+JakbeT/ACPlEPL9JzfErO78mIluf9iwm0xfMx5q29uxFeMvz3gl6vzAea1AmAOuYAbojmy3PrLrC+5uU7XurcE4RjZeQ8wcsGuVYgO82NFnpDRY84/Ef7yyribJ7YZjzGfU5iBy9M3AioUjYIb4uawiOL81Me3fPKy66WHEcPniDN1ofxqUDek5iPpeWIoUZZtw+0sy8zV4t7zLNa4jSxkPz2lAiGyqCl+fqZhUugk0B/aJu1RbC9fSAidGG9PpGtnbLecsVVAvu4hTXlXuxao5TviAM1lgcw3k+kDLT2lnHfJxUpyqpqcg6yrnEuj1geJkrV3iu5FHNXxwIXTf1YBlrZe/pKWiijnVsNgx3t34I1yA+zW48DW82MdArh6DiWILq8Gscy4ENC/AitlXsF8zYrMpH29YqIXa+weY8rj73UqtesxVrTl1ZNvFVf8AyHD3i7GeY7uexqXK47xKqaiM3T+ZSlMpBrt4lcBWIwShzn8RDX7ggRe7c3l2XqW34xNGdUMwpnPb2htIz2YAi4d2Nso/Tt43L8bUF+kpQHKHT83MwouFHkiG3gKLm8QDKVgcBuvWApawt7Fz2QqqdjQyViFDvVtowQxLZWXYIlPaOI80HbMAC6qlTtvcLA87JSy8iVWqIUuWDg1MdqeWKl8GbxncNHJXfL6FTGqaXnfvGiqvz47wsaMaY3yHo8TDRjs/7HCllbxc0j5WbDUsKAc3C+hlErTmh3CsGl5iYz31EougG15nevk7zAZpM2RWWWeHcUYHMEq+Jy1nuS9diev/AIy0vPvGjeWFdoFtvOCFGKmgMMTdbThoYDxQ8yzA4+3vKRY4Km60PrK8Y2veCLsy88REuBi6y+P6gXdlLy7jni+7cC5QuYNmEfvKpVpxdxBt8O8aLwfGWU8vquD0XX0lAEijI94slhGPTzBruxx5hiDpy3qVZXt6xNAE5KzfmLQGT6Zhzq8N4hSvrr+7nfLfA2cSjavbhW6qNouk0NVi4CCM5KHWY5cOa0liBvzq4DYUZX4viWAxzeO9zIPC8cX4lNHewhenfzqcdhuEKvNcEJ9Dj3O8Ppc53mMQGdkLOfd5OY3w0ZY5IA3u79A7SypYWrsxs0d/W/WYKsoqu2rmJaAKOXaDarCKMeYZwaaeRlnbFIrIVy+szoLFWcLrMC0yBQzgvCBpWUq8A5ZVGSW9YdopEp25guccbNE9EpVP0/2YpHxfaC3qjnxEuXNffzLXCxZbTKxPFx5feUjjxHZSMEcrDEtsChMf2auEPs3UN51NE9yWGM92aDEtOK7VcRL6wU3KQdmEI3tjKWA12sQHF1wgBtXLxKq1BS6z59EqKnfprRmPEXpywN5hcDXAN45YXNHZn8Ui8YdYU0z2guPUdqYJK1/XaaWw1QeO8Txle3eIWu7rWG41Y1eMc5I+XFWeYWad51EiNd5O8dmD34hdZHruKXVmNhELwB88xzqvJL0J2/2OGvvfpLV3N3LCmzYd5Z0zXriWrNZ16Shclr7PeNPTcuykxdMxhMcRBxVOYFC1Qa7TjfrzF3hsu0/qN4rOnZl9yjbcS27wUY5lmb3pjgj1zZ+IqO74e9xGSrOfSKnJZybiS32BWII7rpHx2lzdGIalYmtKCwNFIwtO3aotIB6nmFrhntENVm9HdmeW01MMGv8AIgGq4uomqu80gfaKcqvBV2wDbbuXiYlqCu1xsAbOWY0DqCoBt0hKtRhceD0l3WfV9JaBtP7hzKByTDByXydjxGI0mRyUNZ94QAW5etGZlfBMgMLzUCbmc12rcSjgvFRWDyXiN5XxKyDSxvtkmfnieriOiuZahZH8kGv3RKW7u0HcTFuw2duZkX3XXrFqiqUsHBBV43de0bLt60aA4gKwwJRi1IAGFNCUEzkJpfHtE3YKCbqu0UrrboOK8yml7MPv6TE0TsdvAjLHJDmzuRDdEzeS95bXk7td+0pZVcXT53C+avN0yryqq+rAzrUMmrjZrTNvMSFG4M/slKKzxN4e3O4Sav8A5Clu3fiZ2A2lIh47zJHbP0ibKMSoW6DfMUA5c1B3F/iC5qdvaIYtWDT5JsuWH3iHBHHEVCKmynEfkgsV5gi78gxA31AOwvpFWFd2A8RqgurZjNQzsay7IOkYvopl10NnJ7TKELP+oaBV3l/uIaaySjDXk7xb3xoNe8W6vWllEBfJ7wIo0eOfEVh77JTW894AINaKgYCxnfe5l54eJkFN88ErOqHeWV2/LKLffBf4l5V9e0cX37Ru7rHMTmtGO7BxWr2esvQONvnmGD3cr5llX9CItWe0owep4gujHZ6y8/NRriAyh38zKJ9OfaZFL9OZauS9u43SPTDKHryeYABkHFw7B7jUUaaNZ48xbxGCO1arkYzLGldltuZXq5wLVRzjzuCW6y4PSAHJ6moEbFD2tYEWU1x2PERVtfBT0hUDNYgvcVYdsTE4efMaac9/8mNQt9IkAljIPMqBmvLr/YPl8C32iwJi0Bi3Atzy9oBtp/7eEKSQ2eY6VAoLElu0ghVbVD8oH1L9iLV6Bg9WHD3ZSXfIPsRtPWPj1qAvu93gmOK/2FXjHaCj3gQxVxvLbWJkLcOa8QXdOmvcgDnnmNmGVq9Z5git38kgyljeMs+3iCFLTtWX2YkCD7CGYehe64hQBq3wWJcH7RtVKyGq7wdBWS1tRwRh3B5VY8qFIa7Y8t6VKtGtZa94sXCwPvKWzOc6+0xowfeBRku/7nY9kB++vHeK99X0NZCN6eDhlhbako3/AMjR3/5HQLtlRjJqUP8AGowMesI84qWgOs12hbU0gcDXMqXtxE9VM13TGSD2xDTU98RqRJS9IFgGLX62gCKoQ9+MwzsOTyhCZNrYrLGpQ1akyHd73LoSlaKcO/aMFS2jzxDYMp0vI35mkc4dLwgAxwZA7xaVfGCLlOcHpGq9TPeV4yVxHDcvkF49EmMDvUsOMDQ92H5esUq2zyf3FoDj51GnkrzuKrw1shbZbO3EXdNFVU9OD6StHvMGSys3LA0WETPiqgjkOL1XftCplo1tEC8LxWbnYbvn0gl5N1j8THe2WC/1NMZthAoQ8HtHv2HrzOQLrdYiDdnp3jmJziuMcRbc4v3jtRqYp15v/steW/tCKtyi9Q0btYHv2YlEUtzhdssdl97KI2OXFoWhYKFdrhXajiCrwW99Sz5Hg5mVbM81/UWuM94SkOAiAOJhNb5cykdzl4uWbSte0qx7qxNaBqDvTn2vmRAOxezypLxNHY1MWgC3NdiVsDlzfF50lDRg4t8S7GCweRF8qutd+81rtV84lhs5zT27sa5OMB37wX7fNRbz3zDVdvr6y+ceIc14he9ywNYW/JCiXoydiBet8X/U7F+kLccbe808WFOL2/Sc4BgSY4WsvMQ222TiEaYTa1Jm5Rugo0c21SKtc5W+MQmY6BasC11DgXB3SLW3F9otZpj63dwFmcKFYp3j28hDERNsuLJfjzcusnyTs76lt4PBGqy0G3XrLXnPJx0LDiaW/WF3qa94khs4Nx8n2IY57viZN2zcPH7TCnjvNvxHUvCx+NoEUVKTcsvOO8uzbnzEuYKsLqomvM0XKF8VCvVbNXpxK0UuU0+ISk1UppUY8xT3GFJ2UB2IaaOz/SCAZNNrmo7DI39SDLQV39dwAZePY9e89l19P/ZxtzwHeOX7nmC5prgrMW1Orv68yt+Cq8+kFbvW+0cBfrNVfT1ltZeMSgl5vtLG3XzzEt74e1S88nONZ5lgZutRb9O0t3WeI+M0LLeAcoa7a0AtoxD0C6am/pGUal3i3t3RJFhYBpi9wgB081FexDOJTOM8xs3v1gmDgINIUnOm2eKWtwP1cC/iHsWN3qq5ljlE+0tff57Tz9yYTG+179WcePMtbBZCMNuV9Y4JegG/SAF05qS16y1v/wAxDWcpiJjePSWXF1MBzg+vtFC1eXVfWOWg0LdHME8eT5xGtGX/ACGKmOMzb/4IUQHzgWC7ySGMiaHZlVco3Dm1tBtzCwGil28Yjr/PmYF8uYveTkNm6plzhHogiyflGkprfjc+6l/qa9gHvEVWcxcfj/k2LrjzUJV8cQWkA0WNQUry/SFLTdwyOVMF8RuztOA79pq1ASazmjGR4q8jxM2X6j3949sxY7ucrBBFxQTWIokGA0dtS6YYPdf+xncQHAO8YJOIYBDOj3gKFVRKO/ZgE0KcGFeYPYcmFhqvlja9264hVE3x2ndLF+szV83Uxl1Ue/RbF8sNLxNBrNDLN5e0IV7RLF536d5Zt83KPK8zJUYDVQjYtd5lWDCcEYFYdxhbVMygjxsjr2NBHxs8t3CLANYphKlKPVb5mOoJL4v+kUcDgvSNxKyWmRNvL9YCXuuawFxwDjbhuKANAeGWoAIbq0uUZszZjV1Ywt69in3idm29wN9zNPjmEzjHY5uVbfuiZw0uMZiskQDy/aUVfzczcZv5YU1fOCFmqbNSgpOauN6c/iAQYFuoVk7RUMEpRoFuDTsdmWLGrCuF9GPnai22lwyGstMJqrkRGO4IHeFjtNpd9AIsKDqLJ2uGgEUJhWDUMlXnl/FxHhW/EbU3jhiBdAt5ZuODyBXeZyjzfMsy0Vv0iFauu/eIdsblm/HOJRL9llExi5xgxu5bdKXuuYt8347s5D6ssGW/olLF4M5l7GsOt5hSNfSDdVr/AJLrGj66nfxmyNe+IObxdTOMC+Y0UZHPeXSbvvBrAGfNcShClR0shQW79jQw+nd/IjFNBrgx2lLDg1f9xUtoLe0FFOlhwVsi0AA9XKfdN7ZtXmyGme/2jRVY+rRGxqvGNUx0Zd4PNS8Lu+U9Pkh2neVUtimnvDQ94FAq6jk4F1cAahjmtqfacUo+wG6YzUTKroXRDQcFl7cRN6adtTA2WmQvv3gqNQSg5amxOUMGvSDl2oDdEGva6Q4IUsMWquYFF+Q/2TmLoV2fSWqDRzNX5JQfDp7esEO8+mfFSlq/r/yXj6VESI0GU3uUJd+Cpkzt4HeNjmoKlQ8E/wCnqb9zggpm5hOo2w5OdsPsVzxBlPr6Sj/TcY5avFROA5rzKKvDmpmJQygiZdPeWLLyZjcVmxrMfFtkNRN2w1eq5+sIrlV2UMsNKANlORuHmSNBzfiBAhoLpd2iplktessaOEwXUtZMAFKy+0NQ4UoeNWhbwYDNR5pbvPAgrwrjn3mDK1s4v1lj+0vNPr7Mzo1xGvvlnBUN2f5Bd4o4X/Zs8WK6l/fC+kB8694slZHGD51O2b0xAuM3fDg5mQ8ucwj8u5V6pDOca5isGpOVGri1V5Zz4hGMKFe8cv8ApdRfeMEC6hRYIAZWcOI+q5n4Hb+JZbS3Wcy8Du9+sER7HaLGhqm437DKzu/byxAvvguI4P8ArBf7bIo4+np/2DZ3xHyWPtHbl6TJvnMwcd+GXdt1zLrnIGX0i0v0dquCvM5beSnB7kv8Qe3oS6uWhpXFTC2c/aoUYPP/AGIClqtPjmVGg6sCAXZMPMK2LxB3e8GWVwZasoNmCUttfPrHBdYTA/3A5FtjbcyoWUH1d4MFXZnNALcfLyriNgUDmuYAxoObtv1i5Wt8cV4mVFfTu+sx6esNVeebnP8AUNFYTUAf5FTOCtwVg+VgboUee5C7lOmqhaB0338RNEytoqqMOYYAK55TvUIfNBXaooqZfUsgce7Zi4796POO8yB713nkIWANJ2jClBVVo7wvhYEO4XxF6U2JQc0cyt25z4DmHbgFVeGrxHH9QC748bmBv7E9ML33cM6RecRNVpXLPuOMXA84ZhBbN+sRwM4x4lAd+GGHEb/I1SscShcSmDndfiJOu9R+R5IDgabgBTlY9IdIxWImNDguANyihjUnhIv6KnuEa+Ckvm+8qd7t7AiWm5UAp1kqoqtSm6JriGEK9iGRKAKck3IHAwPGqltZyeOZlgMWw4imPu5lG2TFDz5qXnx41KNetB4jkddg/MXL4JbY1ntrEzTxhY3rWcDNkuh5/qXm+/vUGsO63vMFyxRnP+ITQ7Ow5Orio+AD9EhY5Nizsjz6TIM5NV94sCXdxyYow0ICbSKhoM6xWoPCCx3qygIjyB/EsBxeqeZcWYqlzs8wsGcOrgjIGrSg9ZSlu2TGY5eMIK7G06yxKM64qK8Uv/YUsTLHvG+TjHmI4Vff0jl3HuXLM2+qYmEXk094AH/0IF/fJuFC1yDiVmDQW3iFVVmvkiwU3k+8AV6afMdiWnbdTsexGhdZgEoNy10Sx5l97rnGCpeTJmNISvEoOOAgWtI/dCggtYwZrmFI1UZjA76qNmqllPJLGjVD3b4lkJmVXkjPFwAxu31gJNOj6sUc/wDSIFDkxzXvFrBvmte0Bxr5xFavL2Z3r2mHt/cJprMAadrv2lWqo7wsKfqxOELbFrcPSOe1d4RUZc2djRKA4yzftHAUDj34IRBlHevEvVJa8GlfmG15XB44glE0ZbipOtUd2+0SrSUL5GNzIcjt27XHbAims+faIF4QKrvzG1QuWxmjaAGi4pibR5WVBf8AszvjhlBrLx6QbsC/7jWL51xDKz34Yhxxt/5EstK7eZVMyR9El2ffUuSFrHHlywBBx5gPRj0iA044l6rLuTBd5Nx2BdRkJk8ypckiDahqLC1whjCZ5ly+yrPHrMDLoF8R7U2AGoa6I93fwQSyE4sxhyOyKig6NJ6wIsw3qioH2FDvKYQKlI0+/wB41RzQ4OZSWjp7iexUK3UXn1xL1MVnJ/cbdmoKJXz5mWfmolnsHH93OxMmcw01FuE3T4mdAAbHc5AY+ueIjkVqwKvMufwVqZfQzGA7zsgaXZ9yUbB9IBrqWqKcQwK2WFWaufXUWANOTzLPLydpBVS85zcyrYC7gMGAy82uo1g2b7Sh3P7jRatfdKObsTmWDOE76r2iABm9c5iLyb7Sl2lvniPprWIqWLNVgF/MWBS2d5S2Z4YMhhwJr0g1iN7n0Vv1lqe2O3tBou/Vi2H6PMOab48QL39o2zdXi49I48cKxvFhtgvG61XmUF/6WIA/VGk03jxgaWHkWWyLi85MMoWuGT74gKAxnBhZU3sd4VI3gLvRSNgZAU3zFo0Wi247o93/ACOu3D3i3r2jej6Td3k5m3XpCqb1kssTgwGBredTLX29XmXLXEVvQeYJqmmA8GrhspxnjVJnRKkFtmexuUy1o77n+yhmkYOYZKqbCk5YJGrpmh8wENCLMXa/8jtUMH0lhO6dyxVbXFYjIItK4RvBeDw/8hdN2bF4KqAAMAVnxMX27cyvGYYy+sLu+/aJyXTYdME4fbn6wO9RCt4cAwUpyR8bZ3n1fMD5Lrv2lz/Ues+ItHBVrLMN8TIj83MbHa/eVrcKy88ytJ2Re4617SnBpwYBMF7NwEhZUMDo14+kUBaqyc+IgxTF2y71unHli2AE61WOfuQ2CcGizJA0DR7/AHlbBgbzWLhKS7+/HpGxpzr0itC5PB27wc3tcQSxebp4jgr78+0pctHmZFn1YUb737y9p9/xLts9lil6uuZaA7BuvEGk8b8zEt3w6s5i4aw8+TxFaMUcdzxGVdtuE95fAYirRHXEtqsXyEF1SETXPrMU6c8wFz4ZSazxzEdQ2nKQieRxEDzoqCG9OceJRhBzfh9IkO7x5ibujbvAu9DgeZd6Mu3mA3pyfTtMchrUVd3menuT8tTI+H3gao47dpR57xerxO5zDPV51/kQxcdnftLZlW+R6y6L2cG5ZVe5BN9nC6hR84hBpBaliFyzgbuQlVrXEzH0P8lTbDAOiAXSw95dHNNsWC3XlAJnSa7UxwE3sZYBW+XmZVrYA9NykaC3TCVAFmnzzFtXlnfznzG8t60TTgz5lhBjm5n/AH/kL0ZHj0h5jZ8v2TllsMg8okaYDF+ZvwQseJiQq14TWL9PJiQoG6CbXlQthd8c5gpRg4OXEWO7PJBkKWC4PWMawKonbmDMMBWDAxnAWjTk4lgvTztmBaVxvURiRClc53Pv2pmb1zrMz89odw++peTOameK7vrDJb98n/kAWe/czMcLjb95VwPsxcyV2gIdztHLamYFRUx3ghUxVcRYBfHoS2OPWE7myiZaGas955Qt+8t4cI6bYPS4mloAgPIU+hFdIM+UQ916efWB94HIFhDGxaAGVtFJtEoavtEgEoNZpYXtTTmtylXB9seJTGr+WpW+Lz7yzI0le0zkGw+cXFXbnmXhTNZ94brtlrJKQBWgPWCuys4HzxFw1796JqXfn1hs1mpnFY4xqNhlxykLG6dVrzmLjWjn+5ZVi5+bliq4/qb3nzrc1l/49Y378jBXD/7DorpkgUM3jPeGFv1YB6GPWUc7vHaLm79Jpda0eqLCZTtdQDsirmuDOpjKLhqxjtz7Spr2CJ0RdP1g7zrOTM8/9lZrUDBXzUMz3nzSLF9uYr/2LzzCSVTfHvDbfYGN+via2eqWlHMBp0ouxdlMzoy3vmHeTfHOZRtadnbEJujLfe5fZeXAf7MNcXLzfpKTihb5ohDDzr0nfaL4u8RFa75/7LKc/klBougO+ocgVmh7S/tjHmV/10Tszf4uUx6zgDjUPG+WFrN+IL61AqjDZrvELYaHWlLgRuNFiTs9Ycd4IBCbw/oh0pnRt5rJcxyBwDSwdPNCFvOo1k2/iu0os4HczBzoB70OIWAuZp7iIha5G8c57ymgylthBIwRPP8AUK20o0XND5VDfl349JZkvJzBvFUd/wCrmz8znEsCrg3fiJu3VXXOZWbv1vdymu/pzA1nL/UeqMr8IP5bjEx7RmHEfn6xOESrO+J/cXMr9sxitmtbZaA50yliqpiu0sOCxGwb9IhBpWaiE/8AkJ2Qq+hyQEyVFmrUCpQ5y1ZOJt6pcFI8+rFqcAxViJTYmclVMAtauLcPd2mTN0fWn1iGLVMalE7D95QjgZOK8R4W+LlrQ1WUrctKHf0Y2JoO05H6esNUX673MV559ZkMaDEG9Gq3jMVtoyxqrblzhr0gWV9f+xrJeO3eIc1jNRKTvdvepV40O2CgKoz3ifRqtx9DalaluA8PMKB9TtFQOfSF5e2Tw+YOE+rAclo4z4lmvt2uEOV+Eea69PEqVk346UBw+71haWZ7EDW2BFVkNdoAnDtBTI7CZl35PMqnuzL6xzuKWpuGxltABh3OyYV7du0M/jtcRXjUpTWAywVmzv7sDalLhyZ7xF59HOIq8xV8QWsOfkiX2CiuougZMhdygL5qvWELMhu97jGG8B2IHGHiu3eN3RRwSgbxRomfF/iN8/8Ar4j24qWGU5K8QxjZs4mWCJ44lD695kAcWvx2laspvxMTebazvEbwXOFXkuLQlMFG75XHAzlo4A3F0vUANxAJAoXgcw+MZowfWFA3V8sDha3XMRGUt9w7zMLoN/4imWhmgbvsRsNMU4uA2qvT6zAL337wwC+ku8V6D2YtG7r3e8TFD6qW20W89pxTzwwAOLPZ9Jsas/r1ho23Hxrsyny3BLLwGpS3nFHoxVzsiKXpj9rYg6+WbmsRyfDj/IFpL9N4nb41UDe8Xj2nYL5xLW+YDKudwCTAsI1mCjj94245Xk3FsVjBckwggCabxBSpyHCfeUob9ztHQiaaF3uGCC05TkmABGueY0Gy7WXPR5ZlYyLFSznLfmXjvWrxceN548+sDl+su1xicnfnvUsu1x29Y/niPmWJ47d4vnWa/qopdOe7KDzcRv6TXeCLs+7Fefl5lgx6v9Rtje892Wqvc3Bc1k/EG8qJ2lFM4cf+yww3b94KHv3lHWItWg2tX5gAEWy9pdbK8nmUM8DzmAle9jKS4Xk5hat+sc7TGRTvOTcEbaV3fESYTtjcWav57Rc9pbL1XOopHZ+TUSmjTyHmaLdOgh7jxC6q86QlTgHJLVX2lpbl35iVOXj3i0p1GvcRN8cy+5/wlM5GPPYxKJKxquLmBtQX21xmXYf1xNtcHvFxM13eVJ8+07HlqVi+0L4xBt3k3O34g16v1YFl67ygFsXnjtAi2uQ1f3RK0UAZzAClcR51edQJ3AugGAkttfZuWVYKdXwgrCCjxicFyDFuHvAbWwuG7hValIMbVupUFGrHOY4Q3N2DPaGjOzNyt/jcMV43Nqq6zMC3eqNQ3vWqgvsaIl37wS8NPPpL75O3+y8L9fxMZ9Mdo7Syd6mvjzM3xxMxzGPXX1mVDtCp6/3LttYiRjADw68QI5x6RF1WPEFlVVmoiRSsMoS4T6TIXxT7y0wjK8XCq0AhjNoZgKrGIm8LTLVohi79rg7EN3SYzBCmDOPWU9t/WGjn55hV1VJrSyUKHC/OIDImygje/sRv6P5mrur7Su1eF4iRXu1niNu2OQxnzH69/wDsusfXzL5YqKrPtHaUZfn2gNluP7JmyFB94qoTxLG/9lN3r1lZ9dEyfvMvVwSgy3XH9TLh/RcXgdhmpgq6OT/fWWmTJrPiIt0Ks/yUM1nlu79YXCWz2TLbtyx3XtLV7TNECte0M+EZAtWTxG21Cov0j2AyrxfMD332xYvaWZ7O2X2jGpdeGEfZm+ITX3IaCrvl0VFkG3dfiKjV944TGH7RWI+9xAc0cwHAMn2lGhl0+Ja8KnHnxGqb+TmpTmQp81UDUEUDxRb7pa2/Bfjgg3Rv0mgxm6onfV8OIGqu3EoxXOLm1RmBhqHd1v2g6a94N3xA0tJ3SKKlX+ZTIwcbv0gBObDYkITZOwVy8wTh7BmjWYIlnGQda2g6hDp277Rpugy6BivtMZKVSr1fpcbArDGm4oQQssNGNsGnDNPaMyreThiul6Oe8D5YBb9yVn8obutf3uF5Rd5PTgmeTAXR+IiEqzGcjK34/qJvJduAI+2PfEzvvh7Rcf7C1LMS/wBHPrF9RgzjX0g9Xabh9vEdw+sc67SqnfEBlj0hA+SZqt6iUX6VKltaSllY1CUDj6yw+iXFttJYerAn+2VKA8oe8FRL2v8AqGw78cV3mA5xeXswFzsl3+dSzVG3e5R3x3/yWBy8zRnyuXrs6l3u7eXt3mFvMwHv24j0Diq7MsU92q/2UHGD6y61k7PaYGy9npCiwocRUz7ekrQ1fEWyujX+ymrMOrZiq94t+MxeM48QTBlrL5jpfupKBeQ948qUuzvUSjjje43dO+JdFdskFfYbrcpWjf4mauMC+JdR8+sLfVgf+Su24BzKxr27xCyiDvCG1sVXwFxM/So4GKjMrcibRc96nnfb16fPmIRx6xWQd4890WLAGIkqxX2IA8V27y1p9ZYYVyRFS+vpe4lDvx6SmGjMDT+pVmMefJCdZH0VHNVTB34gplAcFH5l0hq+PTlhnL7naNcYiGR39My+bwEw9Rc099w5OZpnmH4lrGaq/afho8RyktbrxCLSDFoNRwb7XuCa6bBZMfilc4UPajWjnOKh3Ghq3CAbeyBrcMzStsayHLgKewEuzzAjBmwznukDBgWF21ucLd78esrD4PzKt16npDfzmArQtBleYBjaGSpnSZ/BA0b4qC/TjW4Ll35/yIVX/PaF1qw/MM80GvXyQY99+JTC8wrR+QgzfvLfpCN9/vHdcVxdRA7kVIvKx+x5lB68eI5ZvtENmvQjZ5M+moW7nNVFalGAjo4bLSwW0NP/AEwxpgR9ZeKhC07pAcnG281DC91hlhHQY/8AYW8nFcRVuv8APWAVPc7+8vUo5XlKRf8AkR63zLMfOJk8+fxKYX0iM14Pb7w12g7KzdXKQ8HMzx9O0Rq/vBOM/OpbzQGv+xV7xljJOR9vEXJz49O8HNJfDmvzOy0Gp3rV/WBxqzZFlsK7wRZK48RLtYCF27ftLMzlJYcjSeYjVvlBpcw7oHP2g73NB3igK6NgWxCqyi6w4ZWdAjvcxHEXm4s1x/XMOXftLuienTfEzUclcRSWzR7juDU9Lv1MQFh9UI20OPNRy+sLVPJXvLzXnJN7736zKNlvziBYZt+mJpzsxdYBldGS3iaI3id8pLCytPW4uQoy4eII1TjvHFua5XcRbx9Px6I7r2grs9JWJXbiceCG/oxkPdpO8tOMNinxLwnC/Q1ECZGjqz0iJZgGltAkDssbfDmEdNFvKNUyXx3TggCsCz6NZl9i1Ub6ihmi1w9rgjkW+GRa+0DtmQjvUZC8/bcR2BtmBtlbovhBeftF28uCcbfMovzVPkn1O3YglOPJKS1f9j3N7F/5P/H/AGWIa495pk3v2iH4l28nLqM5rPbmU3DmNRXtLVf9cy1HfXaHSb7zSV9I+ZgMXMb6XBG+LsvFTNtqU+sCbkuPRNIbPxGgteGoRFpi9kApd6AylC1dzsQrK8bR0vmLI3iw9ggmFg+fEdButtd+8BWwhslimB/HmFG2w8wLBLd3ADbXKuPWNsML6ssmBzEOstS3duOPWLRWNzKX3fq9pZV7c4TJzn7Tud30gE8eZxecf5AppzW46V7ekWit3GvY45lHj8RoxxES29ZzmJituswx58/+xq3QmU9Y5a3iPVMcY7Sz8f8AYQhp7QWwC3cOziVtgb2wO4ZEVipcDkOIiW2j/wBRqrzPWbe3iGPxLw/PtK1M3DUz6fmIJ+bmbuK3tymAVvSvmAYm4N8uLuBRXPEVgyzjuPzC15c8Q7Vgw+kFC/f2hI8GOwzKXix2Gdx004qjywG+yrZmlTWM8+Z67vMfG0vG8uwzNFz2HnEDtjzPkPMIXVOIYS9Yt8S6StOI6DQpDuxWAApy7ekAOFvjVcGDzpnIssULqERoXR5xuYMHH44lYW1fo8wvi2BQMIIMayD38ymLrditSjmxHPr5ioNDvOYGgfllgjoGOx3uOMX9IDtXbH4jANY8HEuCAVv6zjya7w4wW7rtxCsLCzBrucT8tp+I4p3+fSFKa/zO5gZf9gz88xw4xzXedhm28wELldZdyApXZi4ijSDv2liX2qCkgYv76hVHiHReDS/5LSM0Zjip8xh7scnNTHzozB3i1CtTTx05qy8gwIUA70p8JdEb1WIpQ4U0YwwW3IrtMjV3itSlV73HQ86WUTHsd4990aiKKeMzd3MZpz95WMFGfMRdt+AlVva6IaeXPrLLo5mLWdUyrzbKVu3zMFb2+uZfD95Rmzzibzzz9Y/bOYif7Mm8aaxmDzXD3gw9njz5lBkw474lelAq5k1n+omQ33vt4gLXF4qAwcb7QY9IUS9RI03qJVfeBtnGf+Rw8y+T2jPL5WC3PEy+vEdDtvV2mazPv1b6dhNIXCFXCg8kuBZgTmGDPpcNrV3IAK/qHdYDUKy3ScEHSp85jbYF095bMcoX8ShQu55Kud3kqVnDl28MrHryanbh+viWOD/SoubOM+8FD73D5uHfntDveYC/TTD2rz/UobQGLmUCkzu8kbANDVvEWO4NFY/6QgFWpSNF9o3CLR9obXBVuKzz4jUuXtvEV23nFHaUwUDYOyBHeVo8HMKy999xqvJn5eI4uiAuNHnvHYctA95w/vcslVWePEHQod/WNO8ztTXN9pd5ur+p5iX96/MB5VwekTyVMJXHedgaNdvM58v3nqxyRFZtv8xytNwb8MC6vHb/AGZU3vv2lBy5M/TmW477xXH1iPVemJL2gJB5hXJWqlkDDVZGBhWUD5USxoyc7iM1BLFDjiZKSkeOUpqlGuOCXUaFl9PEtoZ932lvrN/9g7GBgH+pdcJRkdvHaZY1nmCG2nt3mwvLANW+P/J5PZXrLvrHJ4mS0Y45uOD+TtxK0c6Yu1b7xW6zzLJTR3qVRVW8956ZH6fSI5z/AMZVj27ym8ZzM1f0qapT1hhRK19iLFHs+ssLuL5hqFLd0nEaPYrj/YRutdouS7av/sdjZfefUYPaFntD5MQj9ZZZg/MtElXA7Cpi2CDvE33mb+4Q1rERlxX9SjekTYLnaZdo2ZbHdyye6Hs/2Km9XedS6IpQ8VNb55jkcWeOYJl+faGMTxTC6zoJsQ+8zBsc9vMA64FftDWedEwheThh84OCb8HzUXg7d+XcaFj05mQcdyDrH+z59Yavl3zqcO/DK1jJErixHHEUsFFF4CUIY12K3orWpcBdIoZQ5rCnmGV1vMPCgF2eeKg7SlPqwwPWKyijiMLC7VlFe0BUeMpLu77e8Qy5c+vtApu1t2ys1+ZlDsbe8SEzTh9IFhNOuJYdeHtKLtN7I7cHNTnO+5nELt8nmB4PL6RDvjW5ivHb+4GHRXMpnzGj64VIpDzqHKGmriSpusMeFC0xCM8d9+0pYFf9lhA8ytTJNWl8d5spkxn/ACKWBlIZY3pgWmHaoMoYOe8WGrSNYCFBrUCLcBh4+WWJbg5eO8swO9+8Th47XMm7x5hyJZjEUSrd4TftHdr7u5f23XaVjsREUiGIq8eXtAMfV3HbJX4m1Vjg7Q74HvDua0ekbDV/aJZhv17T6/SOr29j8Qsf14gnKh6c+Yh37wc5XOPpKP8AneW1jH+wfV3Yiz3eP6mEd8+Y56c9uIlLc8338yw81M87bhvcqucQmJXMSp90xWDMGfHaWTPeLCjMgoSXQ4s0jqOEZPeLGwD51L7q/WGaANTlotzMv9wIsywmkteYNunMrV+JsPbSb+8tHBdcMfZ49IlLnfbiNqu581KtdPbw+Y0eOKxuXbOSmz0lRobD8IG1433li43/AFL28G/FxtaMvpoeJob49jxEW78+8pR25gjf0uYzXtM038s4DrjvBW8Tj9yAxe+nV90MMYlrmsIug6M3VU/cgFC4Vy2doFumKV9sGo2HFua98aqDPoYMa+kFVbZp2Pcj2r5JZfp81Pn7Qbyn1/MpUX7Hb3lU+OYwyLvIzZAO6c7hQKNuCsMHdYPEQnbsxDD9L7vMAymZY49vPErhw9vXUADGK3Ct3mFXf2Y4ahuJln8wnLV5gHjvMV0afxFGoDDHmbvN/WVMLblhsqWoR2qEIvGdSvxVmOVVWmOzj1isAy1Za4FR/UNAZQ8Z5lhvA1eqMDFdOn/iVvO6L77lsx4c7iL7V3icV9GLUaEHizz3jpn1mMlVMuLsquKnNo3XmCzsyycSxhh9k8wFnjOJijLnhn1VvjMHLRvF8ESyx95g3v5zEIA23mNF0Xm6m0Ku/aWMP8RvHBdrEtDFc9oUcvlzmKsHPaF+xhYWLZl15Jbscc8RbZzUHZ4Zp/UMCvHmHpMv9z59o+J2Hv3lGLNEMhy6K32U00kqz7ki1UmSw16QCrpYN2u1W5ZiGXKqRXv6yl889AX57wpvEObXiZ8/TzAC0u9Qwc4fpNKq8uK7SkPeswvcfdcWneeZSrv6SgPF0vrLAA2OOfeEc2le8N273n/yZf1/s/ty8Y7Sxclhr1ZZhWW6f5C0LPbz6RbrNZr3ix5YObvErBfv7w36cekp43/Uofz294Qjpw1gz3jVRw/TUzku+ArTqUBwd811sIDoYpcZsYg8Jv0Q1eiYOG5Vcjfv3lmWwWv1lucgQz4g6fuahS2H/YAvFbzAqvAemVGA340VMmkQHDy+kIBedLubQ4rXO+0dMa7+OY5XAa5r7QsOCvOY93Ztmcf+TPPz6zD5rUygMXeZy573N/WAFcBvmElYvsxtK9WGR3juHDcS3zU+4XqxwVaaZWjR2iUXR3X+pRGSm4aYpszMaBsM1qKKMMhetQ7LgGCQjszzLVFMMeGE1a/IH+wAttgeJblzWSmKveBqKEFDD2a5IekjjQ7OfEocUuRg1s1ujRLPp38Sy7PLDBXjTtAry6HFwrQ5ubxfo6iu8sUmvARgW6ll0Z4axEsAn58RZVJjmKlYCWBa0faWaYcXy8ynBa1iKcpeoI0OmntBYHWiVDh7xRmtcxQy3x2gV2C5mebwmIU/5DH1hX+esGyl8RF0cy1dSrbH1TPinkhJfpmZ5ZDrchCxAVWucx+PaXLlBs9ZRvGIBO7N6Cbq9d4tjXdhkbHLNY/WXauOxAx8gqx6RW7+6MHvAMCA0MVUvs+/+ytE47czvZfccaipL2F26ipubpr6TYDdXrvc48XRHGZXOx5g2VCzAfOoro4x2gNvK48HpDXn8wrVzZr3/MM5NHHMz/2W8+5E3fPDFa01bZmqbqM0HyRnHOIFkrPKvXDmEQc8tbvmYQsseazMwQW4hXAS4rZZwriZqtHDWJm/WWtaP/Zp27naHHdc24PaJWM+GArOR3cKx2+ipVOTnM2qjv8A5Lb21le8oSnfdlX2rs5CK8acvEoOMvExo4hT/Uxd/mFHZ9IQcajxMmjXaALO0un7xsNxmTHJM18HMqU4hP8AJxG+8svjDd8Qml5vNSsDMO+KO874pww7BWC47RLpdGWGlV4wM5jObMLzVf1IakMHegqNbBFzp4hbS1z6QfJ7QaL2Yc9o8oFvfcSy7K4JXb1r+pRjD4JkLyjgrANf8iHh7Qzc2a9Jt/qDnlwzAhuj2girunI8QZlK49okV7gjnBY0vmDoynGPaONUHPp7RAwpwRGUHIxplbX2nC4cU/1NW6eP+xu3NVM8NSkUY5ihWK9Zbu/MKeKOfpHzzEmX2lnYw7dS3NxzDEqYcVF2+naI5rcrwjRKveVEqcr9bmdG7LBCoPjvFNIalGiovJBs8TEtBi6miyOf+TvAdiM91hqBf0gqAPQPbEbOfIwGwxml7xl4Nu4KV+Irpx3llL9JxvRKicDhKBdaB8lyw5uq0ERrzwTOX2qODvzfExjN9pTQZy8cQrXfEN6+SBTValtd+Z76uFzmMa081Cm3TpR3MwwKndZoO0GBI6dosFr2LRa42x4N1SvGLlFtCrQzucVetS1/zzBcXvma4l3i3F8ZluA196lXdVbR595VNJfbOiLl0XXpxKvBvmKNYwwrffTNt1m/vNceL/yGBF1MezGv/YXB2nI7n3cPaVunEPePj7wjEzCs+eLjBT6wa7OGe96xDgLz4gwrdJ94DTulAjMzB5ywRLwOb4gYtBdOrjddF/8AJdwaMcXMEU2qY7gpQiaWGDBZZrjEINAsomcwbeAUcesqhO1n/YA3Z7RphBwbx2fSUBx3IEyrfBqJYN9yUrX1i2X0XxF1NE+cxZWXpzBYV7RTuHvW3n5IhKunn+oGla9iOw/5mUO//YnyPSKuUhvuNGee+ZWNePpxKJk1slf8lb8fWJ2+sfT38+JR69zMANDO1plBpF5GCCXZ2GWGBoWnvfmAaPr4iB6bgjfvONqXmCu1wMyA7RwBoYM37R31Bl9/aIurzLt4JUsvUgeHheppB2EvIJfMpaXHFblCG7gA9Nwy/RcepC/SxX+xYRrBpiWhW7dMBK3febZw8TVaXcPT/wBhUYtUt7VuGUaYJGqm8psbzT/kpxn55mVXvY8nmLWQzzKavGee8Mp47d4ViF9/pAhv5+sAVvXf+4W+O9zBvjbBy3rvKg7HK5+0ADk4sd+4iQN8g9vQRcsBVPjmDeADd1V5V9ILahfluaxvuS9l/wDkLcsnbvMnv+ILKHnKw2BzqI0uL86r1gUOqIMBSntOA4ODUKe6+1ZrEqwOOK7+kL5x45hjx/TA40alNSsem4VcMT/glhrUUN16VFp57sYq9oKzfeJK/X1lx7ZzLPliVwO0x9oLtiqUjKEt0mIA3zELi2oQUbWIvOZPpEHssGCxFffdkd9a8ri2diCBiq6bzzGKaLZqiAL1iLXg+8TOJ2PrNoX4+e8soL7mO0NdB019YNyPdxL8avat/iVFUGjLqJ3Q5A7esElZi6/EH0bcy8Gm0JVllDKH0e0CsarvPnvDOymIc/SJ94G/HfiJib032xEdu5sxny7zN45Y9+OHzK/FzFv3Y5v5uMZwFCDldwqHIx6QN67FmeuAIGE95cS9NFRXY95l7t+0RMKPe5rOXcJSYRzj/Y1RZxiYLcatURE3oBtmD5oqMxdBgm+8pZsOxLLqZv8A5PBrccAYxT+mVRmrNali3FXAYZuUXVWC1ZFqJrbH4lsjb9EdIcZPpDR3+JdGSO3VA+2Y4u8vaVpWbxEO1QeZogsbfQxN05bzzniFNAY0Esu+XlFwO/XxLPrru8EDinuvtC6xA/5NnjLA133iGTGf8hvnEA2mN/8AsNv2qWu91DGRp8w3f1eHtLWAHF95Vtt9h4iI0ZPa/MBVGj7esyo8BnvFn/POpazlxcprgMj+YB4OZojR2ibwXT3uChC2p8esAVG3HE0y9U1BWTC8Rustav0dQ3zZh9oY99yjtrvMQr2lDi5on3gGHPEQLnEdTNL9piW5nuyt2e0cmDKVLJFNb5XqHaC7MXCKJVZSLJRvbEH4Ijk1Q0dsTvkYHuyhkN2vWK1KCilBhAGRo7NmdwYC4sLpJtll4O0ECK6waTFAOAGojgq+0oyhiPWYV6Dj1hUAN0cEeVxcy0d1rgYuHv7EHRZVdGD0Igu1mSo1VQGq8ykPx6zn8T8G+87OpSvY2Styu77zWdpo/wCeI45zHkSc43M/8jfpK4idseZ6fSNOI39dxohYWQK3+IKok4oL3LNdTEBNQGwGlQ1Lwuw602vCP96Nu1Q0TFUKEs0DwED2aFqtBdi05atxNbBWd2Y1Yqu/BM0rX0hYfY59Y5QpMPdmYIZM3FzC2zKehD3jY4M7nc3mOXy7ZZTKwuxtGBoqfQvfUXCDW1qGVs/ulBazcvJeE+cytVl5P9iuH7neKiXpPNMTjOmKzm6jeThbfPmNtmsF+BgABWTFbi5C99sxc2Hr7cR9XtcDh6KhQ+JtTuDeWBeO3DAor7T59vMO08faXnzWegGF3DOPr/2Y43xBpe+/EvPntOM4mz7ovC78R6c32594hxya7XCw5N0zu339fEv3TcQpbjeqhWOA9krhw8SjfJFtykrTw/3Ch4ld9MTF8cxox+YJm2DVvpCacd4Oam/pKjcd++mC0x48RbvefUgeA1AaObqE1uq8cpuINwCLU3/yCkURQ2rsbbjNFLtYCo9H/ZQvQOwsAFGTmxxDMFd0fbML0MNXekJHRtvPeKtdGrzUtJ2YeLviCC4oa7xEi/LEIdeg5jAjRWqHvENfd/kyB9TtHx0M0affxCfm/wCxv5794l5ft/k48xTfk3K7XGsVuVo+nrM+/JrMx7G6i4v2vtM0xv25iHHtEx9yYpzbGwsiCdieOI/Wt3AXAKvaWYCb6KIHQ8F5jvB6OYKkIdTkDbZAZ6lS4Grwmm7Xdd7cIvr2rDmEwsFg7eswk2wUwB2jVqoZec8krGmRTK8xBxYTl9ZThorDMJoGdHaLMOlB/sNhBzmq+sChRwtQ3mVdpkBVbjUDCcsLAvs4rvcWNnONTRaVxjfNwiJLKs9O8PwRAnD6wgFHCBlxjv4lN+vLLmF2aXeZWbeCq8S5VGb9M8Q3VY3n7plW8qspO44r/Y0wYxXtCsg1gxWJfGAN8XM01qBnvMUeJ4b/ABPAY9Z8khez3udq3uHbxXrMPXzM8esHNmuGpXGPzjzN+0Hx76zD7d5dX+JaN7vv+IM8f8cTJL4yf+yuM+LuAVzVcH9xrANcLzNAchutHpBRtMcpHvfNHaBAtq+DMAaLv18SsGMHPrC+aU4IWY78kEqmWOtS83aMTiVl5r5ubdoZBg+naAg0/mLz6xYO0UsuvTtMvvmHvgG3ikdwxXl54irBasxBoIllcSxFnz9o2TjNswtaLPSNEKHeq5hk3Kz2F1MlhRo7XKNG3KCGl4wefMBpwG74iPANd4qmzh4mqWDn/wBTIVfcXvDgvhEJHJrxOMHmvECgusRZbUMU5lGYXPrzMM+xOMO+3M4zxqt/SaTknbKfeeozPLnMzVmFwSv/ACU3fMc+fEThcxrfy1H/AM5iO83HvW55l+dZTM7sZ8ShyPSGDOze7SCQQd1U9wliOI7IYgVrA0Mx5fkAzTAXQOw3gzfiF+Kwa8RX6I3lrxMTgu3aWDaNq4xBAKhz+KhFZyseOxcqIq5vfoS3jsA5h4BHZ47QLaRCr92Jwdl2eneIagHIVcAmX4oUjjEMqs185gGx0y/xB9oUnknwE5Fr/vaYFKO85/EWC67e8VTNpjPfcCwG6P13ErnDA81mattOkiFIc7exEN3RpT9pbTZvb3i3v6QdA+87hyalr6wx/s88d/7nN8dv7hfhqW2cnK9oeuPMrOPnvBvfE17bfzNYOfx5l2PDM3bt+8Dxh48TdZoPvG0xvh9e8NZ+3j1jz69pmHgg2vCxP9HibALRZnuxo0p3ozmBa+fH2ljJsv2HaWdijjz4mhZtbewHmGq9sStY1r1lNW4O0vhq+/pAsxXAzLtZ9iIt41ub+YEUv9dzK+YyA2uoVE3Kj6xFrjhl91GF2i7/AMj1kiTAG2cVzL0DUWin3JdLtdekQDAW3Yl7d4xWAGYVfpevpCA6gvWCERXOr7+spuW8OH0hTYs1TqvJA7AaODUXdVHDmBVGawcYgAoK7yk28443DAdn5YtDbXatxK1tfRKf+RvF8bmbw12eJQnAcJ/2IHjsSmte0oZXJxuo5bfpr3nbGXPvPeJyleJeL5+eI3n6+07fSIfT6TWAmMV6WTn+o49mJh4nrqXjJf8AcJRUgB3lQ4UsFPAhhE0YbfkhadYOa+kKzQLDa2YhqLBLzlhsKs60l1DnYLbtBdgBldEtU+TcVEMydyBLbwJZ9AhZxheU8aJSYaWXc7rKJNbHf5iCKIK8V3jiAB9FRgnRrQSxuW/kjmB7SpReHdvMPH3rQc3AirQqmgghL7fiApT/AMmvXjtMkbvz7wVRPp4iVeCy14IVk8h7pDigqoijw7Mai2hgzgZjbledHaentcdWauszAHWWncHF6h5+s58b9IVddtT7pxBxn2OZZD6BzL754nFbfWYAzrmWufS55ufZwxx4L+8747wTh4zUWca+9zB8avs+kbg93/scrwOLpxLjJXJ5aE94UYzYz9oALO1651HlpoPM7hw0V3mKt/1fMD2b37kMZcLn2he1PmV7Ud4Jo3/UtwfQrMyM0vCcwU7t+0DHr37Q2OJZM6/uFXFRTT4my3qNut93MsO8PnUq2+8em6yj6zgKRHRPm5YPF0ekChX/ACbABkigVi1vXUtcZPqxFMEhnG6fMBnl5ahQpE/YxRsKO3p2nCcnz9YNnAGj1ioqAd52Moa8+JR2rt2JznHY5lPvef8AsXTgwesYOWHYTC1OMZ7f8i/8Jp1n8MOTmea1Hhx6+Jgd45zUaTV95il+8rviVjOJXtfErGHLN455PMCtXk3EY3l47zTPuupz9IBuqdJDK41UQE6GB2lWByAzSQCNCqhW9BLBcCipxWGBBxlqDkBthq1huBkPALc8xE5CDB6Qkb3QtOYHaxgShDjEyBCuAGC3eDWxAaMHaXlNam3pKpBQ5maXFHb6S4AQC6xpIQaCs7cXa7VqE3ATfeNuUvJx6yhXgt1rUxbW+YN89j0i4W81uDdN47d5kK0t+lSma41LJq6Fe+5jDKV+IlAt1nvBxbxo4I7xGy290a+su3GHtA4DDAV2+7PzDAZh9oDxipaGPQl8HtOKL9I1fiV21xMWfiZf+RWwEv8AEpq+O3pGz81uWpwpi4fnTOF4t2RijgrHrPPMyHH9wXF5d3CvLStX1gDRXiUPFaFd40z5d9sSqGgnJBRvBqF+B58Srd2+eIcgC8ynB9vEtoaxFS3PzuIdaO3f1hpqoKg5+8cl8BM/7MfbRFK+WMsvzcODvVQX00qOAb9Y1F5VEHFTn2mfsgXMXQpjEPNjmCzLOO9Q0qsuH64gbQGK68RSAaADOIgyX38QtVeHaFajDh73Mja3KuHpcUHpzAwX0YKbMhEvR5jL+UrPhbqcem5ntTOb4MrxLrH0Zj6a/wCzGzV3HPpHf5hl7EaX8S6L7cf7Gw7seTM88xvTM58yq5y7CPf6E1V09r/EwPv7TGcOPtOc1UK9fLPluOZQpfJzEgJ0KMcpsUCHAlamg3YKxiO85Om++IgFoTvdzB5QMglLIrdhmfRd1S4o4FtRqD9ivTswsKqaxqWi7LtzZLHOrLYCndK+WFPldMwtSXNprVRRiDN+kZ9VYT7xGLt7swV4YxT3TZ7d/Fw2/HJMZ8TRWWvPMpbNZ9IXB6Wa8yx1pF9EjprMTlzur1cHnbeoXHfMqkm+fSer0/yF0fiHbnzDVXT3l+zuE9MQz4qH1v8AEsrtN5+kvXbaQKyt7ivJj+4ezzGijg+sHm/eCXeu/mX9K2QbbboxSYzHee3aWW8lbI6qjZQOn1IBdZrd7zKoO93if+xtmSx9d64gUoYmDtWMQoKYJX0h4xX1ubBff17xOwv9eY5NXXmVoc44hYvjtKq+fL/UyZ57/wCTdd9/MrOscSssSPEWSD76hjN+sU8+kaw87JhXv/sR7tZIQJpUXs7GRwNLiUPkYO8SyztO8F+6xrYHbBn2mVbS0eLla17huDnr5gUiGNvTtKmkpkvBcPlUtLuOTk/yDsfTiXkmL5mU9ZyfNRzj3uPNFPaX7ekp2cTyb2XAy36R7uOWVvhmGuYpK7cZbmB9csqZ32n9e8qio3/0lf5f9T09P/I3A+fETFfie3qSrt0eYefd/qU0WEvA1C1wwDxS5Snjg1N0HINDusNEZld1uBGspXakhhZnhKJn6xwu0dbQwvMO8A0lWogQl7VLzfNS7Sh3C6JfPW2j6ENABb3ErFtFnpNLh7EAjZaDjwyki7bOPDMGsvg7Sws4jC70jr+4vucxFZxnjiCr4a/EU0qHfFyopeRlO8Tfka16f3Lh6Pusu4N/LPmKM+VDN95gcYz6xzjvuOS7o7xtIXQJnsP2hV0cQrFbYU+fHeYZcT8wt95j1O8e0eUwc9pyiIfOCZD0mL9XiUl8vaDizfeaN47d4aO0V5ecEV6w/VojSng83L1bnufrB7j4anlbAar8wHDqB+cXAy/VilAw3g5zKrsL9oF4g7aXbubOXfvKebTmVX+SmLzXNQoMlkz0O8PkJKzjcHEzz+JtMGri4z/ko6M9yZ7zAgW1BFGd0CZlAnfdH5Iz6QVuaLhigNqQJ4f3AfVl58lNQ1mhyIEzWuP8lWndP0mKwaxG9e5iVSvDp9Zxtx94UHl9pi8ccx7uqnN7vJ6wcXz94gd/ntM++7lFd2WrrMC/Fc8RDjFSjj2JVGRrjzO973XMHV48+k3q65nK36zF0+Z3DnlnfsxMPb+4nfPiPk9o0NbuceOTxHPKwOTW5WndysEy+kItonN8BwNtaxHNQKguK/Dxca2sdmYBq1eoFw59IemtESzPMCWhTmMlMcRrcjJxE4Cib3jdk2QBzFltegQMU1A/JmHccd4sWu2u3KwZQ1kfEoZvk8QrZti0Xg7EdM7/ADLJrnv5g2dKgcxQM003Lk4sHGM8RUJsJvWWGvH1mJqzmW5fKDRlb78yhG/+8zbUC8J6vMvzZC1+7GB5/qHj5IXf5jrP1ncth9KgcVniG8VBLzvllZs3zmct4XR4mDy8JKboy+sLU7ZvvXYjzly/d4jDH28xK0ijY+sEvkfDNGMU+0HPIcePWHg+sze6xt4O0AEDbz4hyllcpmYsrnBTjED1P2J4ei5Y7w4zuVujGqeGCV3XggI0NHzuAo+ICwwcXEU794EYhT0gNy3G/wAS8uYfeYKfT/2CrSkT1jEuwY0264hcVUFDaz2gOE0Lx2lZZi4oUafMUYVt8HiEv4oYWOJV5NzJtxczu8ame3tDd1V+8rD+JTrn8TdvM9cXMue2436507qMquM95b3ZfiVl/L2jdWF0+WZrVd6hhxeJYE84n97lNT7k7vfMbfPhltXb/cTtucp+ZV5HpPnzG3PiV3MTAfNw1c+3eWCXg9/aHucVFkq8BcrUj2lhNWuUgHIcy8MpkzBuP/sULxuBVJfpFPBiSrRHy47YmSZ3ACl7M7hIDZl7VCJaZ8pShCn0QYuFV7w/ssUb9YQiFbjtul3iavGXcVq03iZkxnXvKCxm/f2l9DCM4wBHhHN0QMtZA+ai8b5hVO/rLsvRr6TNfmcnMuzxcL9+zBTjUHf1JpfbcvF14l/SXlv6QKuucSizk8z1faVjxxD63L7a5Zmd/wC/MzRrOHvNsf5DnBL1nRtlx71oe0KBpwZvmct63fEL9O5FVHNal8tuq7Sw3i1+/mOMaXf9wKuZGscQpzeN+IYCsEHh7f8AJbeuxAc2sL1g7waa7fiEs35jan1gxYPDCcPaUViGY4JTgV59IK8pMV/Mdnl32iZGaysRCZhLo8TnrnGpSqVqvHaDkNhk5jiWUqMMWht2xMTyhcrT53G9ccSsXzqaY4wTzxwnfxOaCAjXOzz4l2eO/MMnvD6R7MGpg+ftUqmzNTZ6+0p32mjP/rO9+n/ssAXLk9Iqcb4mGnqQZa3/AH4jZjfM2nMcbKvvK1Uwf9gX4eTxG95D6MXbATWGvMzCPrEFDyAzFlAt8GMxAUh53Kuw88xU7logeqxvZOId2DIaUocDcOEMxLaxRikGlFuLiaDjjtAtEYY/qIlX6zNnEEy/6lxt9oN2L8wOyNyzoYvBECkCUf4xxjBorinDBVJZ0PSOLmM7YhQ9zUFgqZcUFYlIBBOHdkLtHK/tBgxecS1FabK+jH/tDcXkacMwDjTgzKWlcOw+02Ff5EFLfLXaUxTWS44l/VmFNvywrNy29U9/M7NdmGPMHg9J/WmZemvaWXnDBr01Xa5mp2NfnEe/M2Z3/szl44hdUV4hhvfLcL5y7rmC3GufWEnbvMFVwTk/8QxkPHr9ZSljcruU7JrGFrF49oltUw+8F0aasN+sCl9t0cywKeMJqWfPiCYo24iXVY4SNGb9OdRwJxz6waAxjd/iGtJp7OZ5sneVueO537ys8N1mCbbi3dvnMMF7cwaUPPiLzl3GC3Ij+4o83zMrnMpCuGw3XiK3hsPBDbbssXKMTC48Qy9YLHiegWl+XmFel/LHvxxAWs35O0zdX6neY3vxKExriP8AWpV5Nu5nGMER5q5Rec8vpM1T9ScDqVV3gmfR14jrsGia3gHUQW6Ht/5DLdI9mC2BPwyzgM5zBsauL/yA1W9hmOwMavEpkozZj6SvQu9XL94OA7yzwk5YjblrjnMFdksT2xcFls1Eq+J3iavwyvyGy8lwkLa0vaBIq4qdxiPKsAAPtqUqPpRqAWRKN2FJL3LPyJqwIpkqWweIk8veYrtUS87Y3tEqzUU+8riPoXNtPPpFFChleElZKVezJDsxO7DWJyQRNDmXwueI4IshyYVFBS919xSEQiEoFXuHpLaQrF55O7aFGU5MekIYOOhmWU9y9yhXLRY+2INnGDfJcptByu3NVG73l16TGW8jVcRAxz38w5VrtDHjvDn5x094VdH3m1xuV58z0lY89544fnMa5K7eZt3d/Sb9J3X5ZWPPBPffzVw5H6ymL9vU7w3RusjMH4MtWL3rTniVSgzwOpyzltrmGq0P1+8pyoeP+zOHsVx5gDb2Xx2heHbxe4UVepuXnV1Y36woaF7Ew7D9oWl1KGU/2UNcf5BODHN+Ibz3mG31m1x4c4JlRqom/ELKqrneo4FY/wBm5WXFQG0L5uENwqU+Zkl57Q5qIpZsiAGFpjvOQGu8rTsuoCJaLOCph0MrUHHPMG/S4Ocn0lNd+5Ct77Ss7pxgn/qcX9COlfftNYrGr8x7VEC/eB2IcCpiO4HuMSx7A2RJab0H1miw8tx9CrWCYtMvdURZtPqzPLPqwuHvC6htm637cyoPcmZTt83NKXHaGi9y6npKYqVBxXNblV/rLifViA3T5xEBvguoh2vcKT4MNvCCmvMtZg9GMe/7KSBEcAAY9F9ZbAIA02dkQ2MRNTHDNzKq3UcBHAGYV2l2O+YQMUoYMWzGgyofXU0mimX3lDQtx0xwMqjw97nZDq8PmCUXyz6vSZrQVco0ghbpuUUd2z6LgwiiBV0Emy5AgDmRm0sq/ZRQU3kTk4R8sq67cR3jWkrtBTdYdZiDpoKSc0YvkmQeW4j/AHYw3e61Cqt9uYBxvmG8HpcLsz6zvj1GVq3DpJX2zicVsZ4Pebrt2n0/Nz+pWn/s1fPjxGzEz3xA7+5CuUx2/qIV416TD1Qy4y5omAA4z2uXjJS5qbTk16+JsH35iDF1f9bqVd4rgO8QrQmnPpOTa/KyU8uO0KnBqI5YNHF9q/EZXxBNW0Lh4lae/vAgX6Yhl4inLU8YEirmG/WDBWO0G157SgU6ln9tSqtQZa7EZweCBzW+8GKGr4mJ81j2lkbePCOIvm8Vt0gToz5IjWNDDwRE1q8EIqGXBb6ShlPdheQ0WNxen0TP4mI9AVfWX0qN6IhOfhWPtFdF4URuYDsBNsb1SdgvrLc1UpaRbgGlDMUUANvdzCCkdTF5hzK5O+Jyrg1Mg9qlLFWOYTFm9kBS+/bcqv33TKHYZtpYIB3quZWhy0op2SkBNhZt9DA2xyKxA5jFr1Qho2wkOZKwQt0LvMWqvQQ5LowBY+zKttdFUYD1mAeRjdh9o1cxHhd94smFgPtPJZBvP3Yr8ZdRoU4WdyGxhEG2q7QUSoM0lrZYZ7QhborZNgaYcrUDZeP6heEbGV6VckX6xJsq86WahZoXJkPiERSFJ40NkFddkOXBJl7/AH7KcPucoqjumpsO+GKDZhi3/IFst8OMTCq8YjpfsXqUd+5Bu2eNd5eM7eJ/6Jl4Wdr/APJV551/kx7+JvJxivMQTOZZusua8zHaqzcMeWY59e+pn/kOKrHzuHHHnmUxqtVM3y/aDWcO3vMao/yYe7qBdtnh71O1+UDu5xjvUEpqxz5SrDZ27nkgmC1yXA7hhzn3h4Pd2xJ6bvdQtcAr9PeF8A3z6SwVv0iGL3yQgvTiCDkt7HZgu1Y5dTlAX01E15gt+ullFlg/EB5yTIV55qJfvjK7qv1lZRuKZQoFeZXDEutM4kz65YcuwWrcwiwRY1cDEWs9TMW+yIvvEAAi6BfzL72NPwiNveUxB7vWCTDeCLbRxKNuJvWAgMr0GKNuVgu6MTjCqxEMOP6mfeN35hlrVcTHtMY98/1GYCzI1OcylwNZz2hdZxASw745lNnnXrHjCgd5V5XtBYvnRsuJ7TQx9xmoNdvh6iTUioKoFK5UGSBY5GCU2uXWlEcYq7YbyDVKEFxx+ghsyrACqVW6x3BSki+4hqKFqKVxUG5sEfCbhRX1SlCsTIxBesRznmNM6doLO0VMp9kA4Gtr5qKU8pGxzBShyrmuYU5o2cbgaWAPR2Q8AApPSKlU95mzurETrADZEWyUcgOIUqwhVDyVCSqUARDkbTDD0MBceZUsAVqyPYjQmbZP+RLRurWbwYayEfTxd944O3klfV+tRMpfia+Bqed/iod91khl8c3BB1PBuZMm/tCht+kMqss+/wAs9M+Znj1LiFeOai+0Kf8AJfa7dejMWuw3M/d7S3l4gbxnt/pHTDrdwNV53M+rsk1eQ4DOoEh1el2XLs3VGmYXgd7wVMLbD+D/AGOw1Zt4ZfJzzOXHOJkyWkPXf0lPeXqG7VnGoWDjOY2tFwzILzu3Uud8qjKfPvDDCAOSJX/EQvE8vpxNCDTByNwLLVaS4ulG6IbHLFquSC9WCz1lk5c7ndKESwO64uitWV5jpwkX8wahfeZrpTuA9sRZvmHCQR16u45tolzwY4NKzsJ4+sFwC5zVR/s57d5lxKXPHb+oCrxknP8AceHjvEt7ZmBXmXR4XfEuFx3XHavQ5lsgNNWl7ViiExLhTxbEY0AvcR0cweSxBS5OYLNdvTF88B6UNY6EGzY/CmKNu2W7dpYJGOOLHtAfujYPeKb5Qv3QOzqCNdIepc7gVviRy9nC+m1JxexBvnHDBB2IuN13Y8CLtGmeI0M4jy36+GBhDKoZo4i64NQcLJmCoXM8HcgwijIVYMorg67X3kG67BhCwAtF0RAehtex3ED4aXCcFhCqFW82mi4aN7Ne0btMNVXizHKN5l+QuP1DAl1lINxAMtVxn3hZgvYL8wXP3eY/Ql21fFxXu3Ewob/qMQ52sPv2medTHrykO++yyhzzq4U5zf8Akd/1KvJbFcvOmcO7495gDuspV3l54mAw/WZxr3m6vNn2hZ6xthXv2gss9/8AZ9j3glDorGLhelt49IJt9CzcrVcUC8ZeY1Cm196hks+7HtKKWC8ZwMoFRbtHvLAtRz3uGg0rFHYhgqgdnpwDOxq+0Pq8/wBErgPW5+EzKu+TiU1u4LrxVx3b6TAGNuKiU/3E6bis2+e0UYeY277b3FsaxxFSOiIh4L8wIZmyMe6EJNHdavvEAREYWKskKuuXtcFrkMnfcxgwAUs1BocF+I3jocyu/rPKrvAf17znlDjgilCGtXUcnmZfCcSh3xxHBs1MfOJQwVz7d4BrnxCne/tMhNWZJS4l51AM7i8GHGJzvUV9pl7wlTasfEHlvj7HE7hp2MvADoZSy98xZedL22azWtbkA3Ox1ZuQN6JHcAsNW4bCjg4Lw8FrRFTXFBmoV7iyGov8qseTEK01tmRFIQGka7wBauLv2YptKRms4osD/DZu5MIvYkPPHtCmkvGfaa9ty28PtCjmej1jTq5VTkWTeIroVuijMRLY2t5l5wD6rzqYTAKo4b4hGzC11v1iIMa6KX1jJRwN5LMQezAvTZRKlApFjcovcNmsRlEB3eV4T2RRanS7m8S3AaJesyqhWuIWHdAB8tz2HciqZ3xcbHGTRP7i236pK16YhhOJXjW4V7+IK9XtqcYl57eJaCM4ceZeMelesYffL7Ev6Ttm2V626hveCbZ+ahox6/WaX31jtN+y8ED67PaFX3YpyjivWqZhQztR48xUNAps1jhgrRsrXiZB7OfX0g0ZCzJzLbW3F2mqJZl6bIcGuKgYztgcJ9P9n97/ALjXLOA7y6fO4Z4o7d2VSC+2eYkfd4lg3fmVQzBn2QQm1NRTholFK6e25hTjFQGkLKwDg8zI02d5Yy3NvWBakNRiv1EHPDucMWGwCZztE5h7RLfDDIe/3SBe8jDW8v4no77RNX4qL77gMmXQS+frFf8Ak3L5MstrMxm9eNx5GvxB7EEdaPxKVsK5z3jV6s55JpCaYJaqHmLto7wF70avE+mKlYUL4VEWqCCjcd0TXlYXUexBXsGgVfqy8uHO1sMuuQ2b+GphZC5N+HMx264gByRUBTrYTd4MELLlSBkAIlnEUF1Fj2L84OBNwVcYamyOXip6ptflMv4wi0OFrkYlzC08iM5N12gKFcd4lLXvLc8yzC+09WFy9AmLdIx4NpTXPlDV00QcWY0gpgNMqwVgVQCGoBm/RggDIGue3iQwnC+gGSBXAqjdMoFhF4hODiZPmE0D29o0REC61kjXxY8CBtNYmHohM5oXOcoI2vX33AG0rW3txK7nx6eIK19kwyZe0qnz2iaYgDXmA15IVv5uaad1r/YAHrh9SO9znlrtzDBVz1czGaD2g/8AP8nFfaaq7qcZZX/sMB8kDWcdt4l8L7pSgWhzf+xFp/Ut5bePxClozxnUOafXio2AznntU5xnsP8A2Lwyat+8Ey1S3vdEMHDOeHxAy4Lv6XCw/NwXdYhX+UzauxgZzZ5a/uWeaHcXg0/2Bi++ah32Gahu3eO5dXHf+w/8ja16RW+WZ0VXeBgrbn6xnDtVzunYkrzQm459EdvgiGlhGsDUESls9e0fLMQvZUEGiwGjMExAZe72CW/IZjfHia05O0tNGV4gHqfnMfDO5XZzKznj+p6/JKvXpKoGGHv2lFYe+8xAKOIedPOiW9e8uVWbhphzLXTCkK1D6oQZx4IaCwFfQbeI5pPkNo5YeHsjttUCNj1cKJCA5NQm1cOClJQx3Z8B1PrFwDhevKAeph46O7iBabxeqtVag40WkYCEq32veWhiWcIhwujvoHBVLo4XmQlM5ApyIZpF6438FI3jRjGIMhFiHODGiNux2wZ3SPPiUGjC0cQixEaJerVPHNwdAOjMa2+OIGS03fM7oMFxRgFFKm/WOoLXHzAPKG+d7MXWADlhxCOMYtwMDhYAG06RSDa7wcRFuBVBkC2ASKYhumMAlyVxhsuHYBDhzQgUiQ4E+fryMWP9ReO5wR7r68S80a01PT0I0Xjf3Z9jcMG8dodzEvOPtDmGDM4yVeGbW8wrPnNyy/HPvK3yvvHv8s/O/wDkbQ4vI+JtxLLxPGvH9w7d+f7mD7jnEzNvnWJ46c4h5UBV9veaqkrlilXsmB16QdfjzCmFxu/WC+A3QDd90WDRlN5wXFPd/uAsC1hvLImtXvG5RLeD17yz15O9st1xz6zXZWYZ9oeTTays5yBmoLZiObub4xDU7xUVPVBPnVza4Zy7blSHShjpO8EQKiOGYKVWXPaIVQ3XPeCnlFUW/wCbJcDKpvoj6RvevFAC5iATCzXiJUr6sG8b7zHOOxzKwFV3hV7/AOxxfJCq8cXA3Z6QyU+7CtJ9Z3X4l+zSQwrjmWNsGnyZPEMtDvGdQ1fHzxDS7eIEH6iYS1DlY1xM1tDNYFSRZXJ2SEZqFpXMUFwGnXPwQVgSpXLYJSqtVvlhATYR412SFtD3ajuW1DbItHslGw1BGxC7UJK7eFJbVgUqscXLRRQVeD3RaEbrQTEJvM2koqZVvSYnTE4kdwaxpAcsFHAil0d7jX5qhYkLIH60tjQ3ACkyLFsopZbOY+65bqteIFl05q8a4Iqqy8vmM3oFB3YelnZ9DwygVsY1ZIzsMUeYj+SnIxfaHMRx8dyNvU1zNNTBzwDyIQnUnnIY0ElZOKzaEhNQwYkjIm3gZHeF1Ig0i5hNGlnFu/nEz33Fw4K4l6dRu363PTHabF7TO5oPHchwEwbm/SVy85+k2B9KlvL9JwL3xMMNb8sPsmZ4yvL/ALNZl+3fmUy5HK+IB/ow9i+0yS26zUcmqXN9oOK347+kFBKgLeX2ncgt8NQvIiU2+0MXRSuZWXvWC8TgX7y6rw57doYbzH5eJhaD+m4W12m75rXiCwOOHw+Z2X7cTfmt/wDYGD683FlrFzfGc5J5ZZWa5ljfePP9QKFe00x9Y8Bx6QFmqC+S4Wfdk718KxMWxbGrYbc9kh5gpDDnUHBGcWN4R0CkJPuAuxfpFKVS1eGiVe36SgcTC7iV5f6np7+kvH4ltRXZmvtDuZ5lPOfSCGeO8vtid6b9ZsA47QrPELWqYpVM/O4fP+zApYFKBfV2OiT3ZfOBoSUOoZIcJLzWg1cQAiZZesSD2ZHW9zvIXhS3sXey9GpxvHMauNWaVZhLl3ly/PBBytjTk0QJIAreKrEitRmV5RvOdCUAe8drFA2TmhCLDsNPaVr2IjVQmKoD6p/EQs2IuRnT0QdAPY4HeiUi1KyxZ6xSFqB8igFWh6pywy0UqA1UWw3xXePoAYLZtDXIc+krsu4q9kKhBzbK+SCpkEF5EYhugK4pFIhtAve8LijYU0+rUgiWKB5ameqHdWI4cTGcqC4G5wIL9Rs+KyxUw6eIuEjyDXAFjMlAMJgUYaJYATfmb9kbed9o4KMvmD3v6y++u8xvmd6MQr20f+w7cVd8y7zsZryPJ2htOY0Z94tNal44/wDZv+pd1LeM8TF51v2mU81iFNUVxnmFrG7gsKp1nv4jK7vMtPU0GH7wvvbxecMKG7b71j6TJ3hGhzd8xoWqAta9alreKeK0+YqyuBnF3zBAVsgW7GHr5f1KHvADWs+YUON7Sc40QHV5/wBlvb2gKFmfEu7dsRQ65Yd6591iqsNeOIv+1LyeJlRMmaU+McwZv3IysN+OY8W8jK2YwX7Sxw3/ALMgVXsgbPpKxEj4Z2wI9yLddP5jSngi7goqmlrGdQvUrb43Kz2IJ59PWYLnfaVQHz7w+kc331meWJ83zEXl9GUze+0A6LllV6DC3dcxF3a3+4Bp7MPX2hjNlqop2i46UeKWKWFqSajccXkLRMQBtI/ToCgNv5UiZLK1agtF7mF8z1QAa1p44K9CirdjkobYKeQyxhJajsvs5o21CoAWAesfF2kze3aLdmmPR/BMUnAdUc48JU5mY0DUbguChsUlOfUir623Y8Riju4xNV6ysROuMRkBkogsMC1hYO0SpRNJ/VIg8l7IpWfCM+jEMWzKKhYF3oEMo/fe0qyxFbLRUAtKBrBswWCbL2DTzjDwrrRs2wSZACFVMhRAbKqK5E4PWHkrLyBBhTHJkszCSCWciO4pNuKYKKmBVeRuaqUR0dcqRYlaXZpcXKwB7E/6jvVPb0ijnj8zWH1oj31HB95eQHu4llY1uGP6udjcMy9pDFfdmHunE59O8v61B8/WF8b1DQHOjcO76Q4cd4We7NtfeW3n/wBJhXjcxVzw8esMFaxvi5mzx9My26u3IRoIe4xV494AZ5Oe/SLZ3f1EQFrg5PEXEAd14pziFg4FpZ+IHOL2bV5mWtI95hHNcahVdvLAreOL3iU13DUGmPN+Zbnt579oC5uvHeI1lu8MBcuvMN73G09yJZXzcd6z3hmW8xWZ+8DzjvDDO+Yi/hxLVYW/Qy6D/wBlqpg2rmMT+5gPzBJulZjbLSnRHsqUo7mYIYAHwEVSrAnZJR/qJXqNVN32mqOauJqsHafOI4C2/wDPMGUu3v0pNOPMUMfacW4YuryajeEdkGm1r17RjRlTuOF9z8QENrIK02RzjykW06doesggMHiPAN+n85HdRtFFkarU9013SMll06u1uASikBb/ALNPF8FkMhuw53RX9EeiXuUs7cGKmQKzzmAVGEwDeOImqnhtRIhU5Xm7EuNwuG0c1mKQFdC78wEjSg0sCXgk0/CQpISzt/Ooe1Cbyc1GoWEFAtiADsUDCHhFHEcwO8Ec7yA79ZShU5qo8Yr2UgolDm5STGqVUcoTQvcaZZByScKIANFentsWhuO9CYtSDxDeUuZMLnMZBmIqEsG9XEFl0AsdX4gW2tqI8IKAVzTj/iVKHNNF8Y4soAZCu/sS9XRdDWAD0Q0AEgMlFP1mLLJTt/f0n09OZrz4i8XcFUNS/P8A2D2MS8tamxftLPfXtLu4viXmXwfWU/xnlLx3gy3GjiWe8FquJjDj7+kHih2SqAVnVEw4xsd4jRSpfiBgPrff2lBc2cbNeJa0N4+WOJhTuzTupSoNVu+9dosCy81pIwFwW+rDLJ8cwOqwpEcwpxnvz7wGwlXzKr8zXmuZeRO+HxLEw2/NT7uZ5339obRvxXeJXbxEJT2iW1zEhc7YO0fVe3wRxpVwzIelS1XPsMU+QNkoL47kbB4GbiDKx1c2G/UiHbQy9IrR53DFPyFzVE2vyjTM4pzEH1/EzxuBjKkx7xlFZNxpCvt+ZeM8zHOpzR7OoF450EaYw8cztb0Ux9KvnMG9L7S+C249hG9KiRZCyg0FyvjW7QF/eZI+laFhXbQaIyPexKb7IkIvSir9pHmkqLIBmQ9PIUZWSLKNG4z32noWRePfeKcWuwP3ciPsmRWciM6CibzqA8Ap88OaIxC5hFuUwNKEmSf0JR2Fbp8cVQwtGsOYY6lBdVXdpSYBBRSv9poLYuFWRipcNWjDxeCKIql0jFI3KVkAJJVm/QLXmJXtehTCcKNZf8mSQ9ZXQgcSVAFp9YiwGLwxBghDKupsgCHwebbzAVxdbypuBNZC+cMwUoEHzNcBSq84GY4LBA7FwnBT5JRsgtKuq9liRS5HZdpo+0g61hYNt8zHds3UVcP1nz2invLylzk4K1L+sv0GHpqHOeO0tins78T8sfvy9pfv2l/TxFxd+/iagnzuGT8LB9moPPHMV74zUsOmf+5aNWfHEcmGkb71Grpi+TtAo5dk4hlXf7k5KUHN5+WDAbxqbdnZgHKWfiUc3Rzx7QuspQ06QHIdlxM2mf7iDVaxmC7x1n6uZwO2oKVmqyaPM4pr/sIYb8Tca8948/iMfP1jr8yjbovPH1ipmrM1/U/wPeKGGr94h1ulQMYvYeIZiohx940it8wRNYdQlrKh8SpSCU+YJSrnzOOqzPmJZXvKVTipbvBxD7vMc+nExdy6RSc4f/Yl1ycko+vLu48LdH2jF4q9TgzMHrzK5+kWTC8DJRKtK15BluJ4g/A/f4RfpFNX2MEmG7HqDDlUO1lzxSDhSLViQeaEhm01IVNoGOEyi6RJdHclgIVq3QAimwyjDmhThKkNtwr+NgHhEAY31tW3cQAD7i3nFAJOVPNuImGE2aZcAZGpKEmIqKIlHFtitRbqb4Kii7rlkXB9IaFgitZl7IEgdt+kQSyamao+q0aRQI5H/UxfBscYYTNvrAjwQTdPYPiEWKeth4uzKPlc2xQCoURssAyV7dxHaF9cqhqjM5y6gxgJkuYBs/6SntARsKwRWUEkT98KDkVEoYR0KcobW8DVg+saJrYO6oKRmUlpRi4f0guHz7R+nE9fnzG/SuJpxCqe+IuM/L0GvBxG127TiW2eIPZ9Zqz6+kW8a7sQcTvx4l6Jff6S++u8XN7l7z6TJlsh1VtlWy4C6o9pggMPfiWe2r5e0pe8u/8Akr2DTCtW7ngg3V7+vmF3hzz/AMiKZwc512ZxrtMLRtcqbgc4+ksC1UiVlvtEDjy+D3lW3XMCm7zaxUhi3cKc877+JVEAfJ+fMovxDVt9riMeOJ9DvMGd+09kGnpLuX6cS6swxBl94qucyyGrWEF5I2MZmzeblhRkeYFVzLu1EAYNrApsNHHCZiYemL4uJC3oIDs3zKMZqouNfT7RvwR8tys+TmUGvzE94v8AW4HPyxZe0slK3t3M8ym6O2u8ConQeWZgWf8AyNRG7s7eDNEwFhhXVCXEpGMU5qwVuClaeNBSANnsM1F4yQOUwr3FENzikGYOqlLZIgT7bYDGLVLF0TlvMwWI5CUukuqAKyAFDgdwIM+hncC49JtMqUSaHaS3eQIKnJsTDKI4Y2hGNKXZiEkO6IVuYQsCG63AKhZoinPvBK5AdhLTQQu4kwoBByUw1RoBV/ciC9iJot2nEdimuhc7gW5XWCXkjCQIMaYQAs1eDQ0Q13HTe8pCGrzerjkjJnySouNUTbF16SnYF3YwfSvZMuUzXUHM17kw+o0zQ5+ksZ/fCtRgxX64FQVYLAfw4MwybgnIw2dub2aJkx2i15XtHHmuZfb6wfnzM7+vaHb38S8+szLd5zll2vzczM8sv/ybHtM36SyGse0vv25mTfEHX5jB3M/PdjBL2ahRsr+088GS3OILAo0+kFBwqMnGLj0wbviEUUtpo79rgefkgXnto7RbaVv2iwW40tbe8KSgOMdq7xFrk2OYzW2q4Igc2kDjtn/srasckbH03FLQOV795R8CwFu88nivE/8Aeabjt7T2I0rHt5gz/kfPb7MWO34lUxrvAKxt47kSmZpgFhDWguLsKiw5jBWi8r9WZYHAf6jSKBbY4HZsrKB3yk3uLU0NnpHHe61Ky/SW9tMo5lc/XtKvwmLQ3eYj/Kjb14jnM+WZ5ICl+ZY4P/IPirHUq33GmHEWcgrlEB2s+0AIRCvHyY8kRmlYLszLSQeilwIbSj44CQUGwA2PlGjcu8rgyRL46FNsBhkHeN2Am5N53nsjECgFNkCQn5KiZrFuIFjJkM5QdvKXPGOSYB7ZUKdWFf48AOLQxvBJbeLWRjKig0FaI2kFRUJZsfeQmRxSvHkBEEBa8hFAggNqNa9YtxeVZncEuHClpF5URauQm15tKggY0Hfq4StFLbcQ+SFnnxQaAYlLqV34SDAR9k5RhUCvPEEKL3D7RSFCKhBlFCEW4RVyjzctWLBUqtgDFdn4JUzMy4w3TDZYpHd4hDTjgQgHAZudz+Y0Nk5CtQlNAXPoYX3TMtlU+aamzLMfPvLxc4n9nMvvL/7N/wBwNeeZeb08QXNZLJuqnifOYPjPbUb1p5qI7+lws2+sPvHk/WGm+0bhfkg5bvE7coexFZvh1ud2w/1yQLHBz2vvLXeuA3Lyc+PnEHm7b15mKzkuxNp7SzDeeHxLDGxLigpoXR3lFVWuO8eDUV2uteZ4PR7Roq4dEUdZgO/vxD3Qy958tw0LI3N2ofMDNcd40Rrgg5a95dVF1iZNxpzK1qpbrdfiaOMm71UHDnEEB2r+kpzLTHpKatXD9Jq2Bpe5ANzMbQ9YGyJo8TAG0lq+2JKM/wBwMIGEAQ2cD5ICdyNPwIFeWJhGuA4M1BskeF68ROm1UK/MTOCLauu8yO3aPfH5sMsFHo5lOq+m5kMP0gPFeoKVs7omZi86pTpIkuyFQheuTdMxIrkL3YI62kLVuiM2I1vlTHKY469IAN3ZRtrkxVdlereTNQaES0UM5Fj3XuDKgQd8y4e8rT4GoIGA8+FN+V5hj3AEbG4M+gpilmmBy3CsYfXTPWq0FaU4IakgAireV+kBqhVyzpREozPuH0IdnJ3e7bhLNrgW7wmEinoabkHQi9zf7FIUxXvYwk3dKymqYbqA1cdxLRGAHNloRAIamXKA8BQGRcbW+ISkDpTFoF5SmbGQ90mSii3lp0vrmL1VWNSxGeq1vvPq8QA4xGxn520jQF+cqSEdXzwcJAVy9q6HsipkYvehuJbFAVhYsBaOTeueajdz8auXep7w1Ua7Y6OsmoGs68zPGoYw55qbsPftD6+k41PvMaIv+TbX29YLyRe2DzC2yq0zJv2lSvDr+4qO5rPMdWBXHGWAX6X3u4Hdl0HPiGWx89odgYK5JVIXjj/qG1VR2/uBIKU21lfLtAT1ee8wjhPOmK1UdtVGtPG5fge+q7RBxmnCTEDlO3aUOBv5zKC860TT+3tEDiq7ML3aeJZ/FnBr16eEr7ZqGPbjxAX5ji2X9ZRg9nxBz9Y5O/eWIctA8blKlKKr0gFS8ojNuESi4mTtS7d4qSGFsJXmBIwjlSsxELM2A9GOnodCC4wOvnX2YZTPgZib6kJ82yFUocceFKxO3kDygCi5MPFSjKzAb+neZjfbWpVvdIt6181L9lqZadLAd3tMLkR1Y+iXLYnTvDPqlA+UXQAgI3oAOyRTk40m2MQAHsWy0QWsN4qAWIXABKNYhRZrVXWxPklE2ImXJnshkE2FNYYesXgaDVCnczE577C4RmrgFYOKCf2Fy17/ADKery59h4l3hoA4W5dsk0AxIr0RoK1J2GAgtp3uLNSpwWl6LlPZlLD3osGzUCBqLe8DesYoQqsW928NKNjbMxgg0XmV5H4aND+ZTWjFL5NvWX7lUpxZ3HOeBaxdwFWqbk7iPXyEJbX7YGvE2FIQyqWnMZW+xLIosdNMQQAvJnd49owWW4cu0yJmjEr3D/BpOeyZcPohTEIdFNh3ImhZGqGlToYYlIVrQMGywBGAlBRveo+Pli+Mf3LhVZfQnmYxich94IHrqUI18kvHruea1jMLr/ZZRH5qeu+YXk+hHIX6TR6TY4MmIM47bg+iUoO/f1lubdIcl5dl+YHE4A2veNlMMCp6HP3mgNn4i2M3qnaFm8pBtY5eSGT7BLuVXjN+8psztwPeBenDo7P/AGCMksY7rmrjdFWgd0+YAApsxx2iWqN+0Uchf4iWWlfeVX/f6hd4z2uD2czb+pzuaee8z9eYeO+JwPeeSWV9q5l7Griejj2hSHBGLt8uEBPIUzCGWMAy4hCE33f7mASODRLc8Vi1jEPopZMI1YbhYwQmBNuRasN2qi6QQQHIF+sHxh82iKUH5+8StL3O/RDgY2nIkAxLOJTuQ8YdCo9VAZg9a4JVvd7SsemW9QK3xqVR6bJRzAMdsWa0nfKEDkt08AYpBUG0U2hV9fEuNgi7nhT+et0gguGZVZPkYl4Y9eJw420tkaJeYViOD1mG+6jRj9uQ7csmBbKFahaQTgtTdxmK5DDarbHLryIMqOMUV7zszEEujEpgyVMMLd1bitRyslMNR79fBrtKJaTbGRh5Kt7hMQshceVWH2hFjDZp/wCJg4rmCQhWKbLBgDSEOFabuArLDiILt45l20xVbSygQuwESeCzwER6R2uimxCsLqqYqFYL1krtERRjsv8ABL/UitjJ/sW5C9tB0YgMlfj2mJC5nVdicvq5BQBVKCTKMCBjVwLaikVAqoKLKALmKKlHC0rgHMANZQcwhNM0dvEXxiP2jOPaeZ9rlax7Slu9czFnjU7nY1A8an3vcp0/WOV4fuS3C+8LOM9pWL95mi+denifRUyfHEDr3lS11uHlz2cV4g4HZyunHaEfJ2d3iV2z2OX/ALKb57cfePcPzmC1b62gVhUO8wKGsqH5luTPr/2YsVwW43iDhB5vFRVQ71fjmLaO1HfzdwVUtkPB3xGIuhzxA0Mt77RKgtWlqzmHtlC7ozRMLio3fKOq7zJgxzzNnrub/sjonMKj+8vK14qOs5fEpWvrPuE8O/2h8eA+jieWshcuKO65gq2pL6K2xQJT2eWVw4vI95UVHg5uK8q98thUDXOdA2YmHBc1yt8KAcjLpWfZEDe5d/c3PRVT+UMBXJy3mIhHj3FAFRIayAh2trNZMJBuV7+gys/meqn8SjN+xz7zvKMVxmUaRWJuu8RSWoebN7DAIQ4uaJBFu2gNXtSDGlq3nG1djwjhIicvtUsMGeWBbQuFuFGArOUxnisinGZkRGNAchGxfRKaROT2mdxQX3HnCx0FYYOhDFDJijJyrftKaQlpihdXCke46SjIhrrcr56YYp7opF3byWvEqxQ54C1glOlFZyslK9MFy6MCAoJbaLbqJEaI6ckPEuLaiCwYXrZf9wDjEztWYac9HWWGNkvKk8RRqFbLMBhN7NAV3PSBtVAaHm9Zq7RBtEK/qOjdxaG60IEw1h7Kb+kdaERoMYyQGPOQMtohrEDOtb9CNVa8njUSqEb2FQVNmT3UQ0u4pbb9jDaHLtxzgF5tCtXp7EoDoDsn+2O5qqwd4y5U4iyOvE8ETFys90jVR57zsMdpd50feLV4hV1ePrGqI3rniGKrFQqZ9v7gr/kXF5lqLvu1Flqz7pY01mVGvFVx6XCrydUD97Ru/kVMMm+0IQvN63xuUot4x5qGN5xr+5kJdN5MQKUcViKjF8VXntM8ZTlZfv2bfolXAbmhjES2va6rcWzGtH9xtm6eE2QIZjzolXjO42pDfGo1tfXo737xmvEyqUY15lO+9zOR33+YeXm4G0CIqzhw+kRNUK8RbOi/7RcrkZ8zvzx6x1HPEHc1HyJgrB7sUNC+6u6KAmmrGBQXExi2bWCBwyO0Pc7uYftHWxjWvtBQR7x07sCtxq2GocHvNCFicO5yLHHHmBK5JXj3nph7RsMbePMRIew0iTAgZXBCW4sYxWpNdVQuyhk0R5YIINcukO63/CDLpxnCpHYlRI0x27atH3QtoB00qa3b14Xd+WIyrI3KZ36IlUYCxhii1FUeogMB3q92ZmBQCHV6kRiMgKIXuBpG9uHbRDnqScPEfFlsXZkINCCWVRDSPI4CM7DmNUGN9tn5SrkTWCgeFLVsjOTDcLS26HEKNo29f6kyJOOioSYwnqxtGTKXbs1AcF6q8i4Qp5tA7xUQNCpBxMRbNKut2E1hZCoWwCVbiOJNGFgc42WKgKIVGf8ANHzhrlAreBgxLE2wYMVsAO1TEQLkjsHaPmXChsplcqHOGlwkWyUhchmKCYATvGIRYN3DDYwC4o9Gw1WPxHfmc1Dn7MO5MecG4MhKxPm5VeZ45h2+o/7G47+1S3eZzX1l/U+0cf6Q0ebgyS3GuYbtsWWKzhPtLDRl58EzF8N388ymy28O6jW9GGCOMYcLqx4ikFHKmXPEoM7MY3nzA7PC/vFVaPb+4N+PWKNriseBLIoUBgmUO0oAtrtWIlvkbdQp7g58zZLvbsVFt7BusTsl+aoKmQJaYL4jATjjvF2sxuUL9yUCyrzzEjFX4mKoux8+Zpxo3KOnrxAAZu+Zg9GvWEFs2MCO8KkzCrFiQucKR2DCeqAB2sDsBe+cUIE5zRFW6AsUG6EConFSxXCeEez0vDyGoHPOVAe0kba82QM0SSH3gBSw4E71JOkIAxYLMQ6Celx5JDQQYucui1CFL37xOPzKzqr3KiLbWzQ0QN7k4vnA6B2EKqkDUGSAIyVAa/7U3gqNTdRqjxBQ2ixqLxVFwCJCw4esZAFEUYQMYQjK2B9RMDFomz+hKAIGRWeSFE9Uk7ZdpcZa7yA4YrCUAV6xhaETbAgUbyGKcT6QnwzPWdmN9MPaNfiA6eMyYPqIuBZzyLtQVJL0rg/DL4AXD5l0xXz6ZAqxYdKy5cjVprXEN1gEMZLG4qmWgtSPRYGjoEqYxWuXFe8Z1btKgWUOm+BTgIDAkC4sF3HAZZYq6aih5bMAwKXyKXw7QwMWLA4hDSAGMFaWmJgqnM9khwvr9Go4h2gC7eXMpguHGFdoYUJHMWEyxcBuc7iEEHIbm0QR2AUEt5QzOs87fKyx3ZR3A4pv6RyeGH3hx9IV6TxUSejmdjgld8k5medSgYae3acFmZqknNfac+kf/SCwXOdQY7XqDXftO1yrU48B31ZFhx/z3gXMOquc2P5l1lwJiaMjfa+PEMYyvJ4viYiarZjmGKFYTOOO9MLRxm8ek4XjgIzoM8wuMmPHLElslg2mY6g8lysB41vOr7wYV5rfWEZS1zVzdTitRbpKOE4faCZ2r+kZOKrUdzo/SemK3CPjtOT3nr9YxPXiYD2ZT0HMLqBFcX4TF9MzNWcSqykOFOoXBnBWUcTeB3FD13HevAOBB+1nlLdGyB09A3wxgoCXSsR5pF9TO+DFIyhr5n0DiNi1XEe1DU7gtwoBVgDCbRGK+0gQUCpA+wyoIlMLsqA3er+k+3j0i7gAPQoRii89KtJNZUxtYDBBAMGEIgeicrSfcCG9rWenghtpLbINUPOEGBE3EF3jBtv5CJOdTVl2hB6s41DYgTr6WtXqYii4BafnlO9iRWsCFLAsqAIMG/wLo8suNFKKNYpaIADKjcHiAQXMF6BdbP7TiKFM323G10LOwzElU95atCcQz1TsKil7EDOWufaU62hLmq16xh22rNvZCvmu1C0QTBUbKd6JUynQz2mBgX3Fo2iuEObyiR1aQ8hCjMp5h7EN1E4gGi2E+mAaKdsgm5hnGhVDjDAQKdbbFmVAaOb2D5QMpm9FcOABs1AqaPbBhXjsVTRAzeTLrc3eIbu1QMMuEWC1Dtw8QlkHm8gxBZZRo6cT7V/iLC55h/5PEze3mO9vp2m97nOpi+8458y/ll58TeuYeJfYlCEJ3nNVKgePyQ5LurlGl0/3BA739cT8/iDmja6nHzXfEsUzn7epB065r+ockPDn3uGzg3Q8wIV4MUbVgmN93/ybXtGm/O4JXF8g2+k3drYwSryNt5zEKhZY0FcxSjrhrA9owChwe/MFgBLZ2WOTRmvvGcF25ea/MUG8UwTB7XNS1Pq+vaYmq8T7nEr/ACJmA1/cKvnjjEV7vEDfPb0ilhxzLU24IrztOYdnQ3e9/lLlkhVPMa7t3Ple0BFVAFMYgyFVIYAmktMqVbYuyaqWADScesFAWZn/AI5TAPBUZCEUrcKKSZeGp/yJeoHzVPRbcAE0gPpBn9pfVkpPj+lcoL3eG9xNwSFFE9dxDPbud4leOzMRSh4MB3jHsELAgVsrfWIhUK5yXgxWs2pTAOSvEYLuxgFVe7GV9wwzkwYN/mBNOqd2wNxkcDTcBhQKwMxRms3sgQDQXLvBGQe409sgBgxi489HiGaoRhgbIpRYTJAPHudstAQKYNNYcwHRLBEU2lHoaMNeBxolt3ZNj7vWUFUqSmFCX2xSzJReDmlJYmxDRGeepjcRiEp8sEa0NBoo2agBN37y3i4xdAhbAMbJ/wBewfyJWEJxy+FANRUgvIdm4JYtatcsKBQAAoTkq8woXsqpqkRumKYyVV8kASDrKzyY5Os7AtuOkMp1URtJENAeGMq1Mls8jGKClrLzHEoPq9IzKBdhjG3I4tk0x2pCSBUKPNUHF+qYj+YT8wOlc+NsxDnh8zHo/iWVmPaPa5Tfb/Zd454lcs79+8NeftBhXfdlMC8GK7wFB+O7K5Hvf3qGrc+HtMvO4uk886lxODQ8wNKN24faLVDl0Ud4uzd5AlgVornfpLiDCIPPrfLfvCgvfJ3TtcL4sCqfzUt0+oSi4LTpxLylUhfgO05HXlnMwXQDnyeKYEY1Wf8AE8BYHg5lcNuKPHdhJwF7ILlLS0mz2mD2aNi7qBZl2cmC/eNc8cwC8+8wXAnzMno59Iq8XrmUyQFfaESetvMztRgvbiXTumTwyzv7B6I3ivWMl1myYIXjXfxAe8mIr0IrKHkJ94xAFUJFxhnIg0kVINcki9FwzGXTPfmqj7ssKqupLQYWqht3AbRyltAG2ICQgCuLeymLRWgvtK3G8r7d44VTOj/sAnasQcCLE2vNFwjKlC2SDCsziIW+mII5M7SLNQA7P8IpZeNO3tLLpYEvSv0Sm54nN+pEoocrYrtUzv68slfqTIsa4hWB2JTiyLeTVS3MVV4KEymMbewgRcrBjT8kU+zekqSLZq5H+3GkAVTARbE2y2t7QubioMOY5GQC1a7IQQ78Wgupp9ezi5T4DTlQ+YomzVumbwcQCLmmiCnSi3jNSgtGFhVcjgU8opMa0cMQBbq2qnYCVcRWlWcVldfW8dDAzG0yGvtkBkBAKyzeAy6gzpwj3gg0o3ojuevUrIsBFS5IUw9HhjDOCWAmXxnOMHNsAcMrUgN1FXiBBEUAeLhSkZiTHaMjTYYPAbQ2OVxoMBELGkvaRawhy49I1CqxK/556DzDjB9O0zDXg1DX9zfj1jZdQ74jeSvUmId+8ObycJuBkV2ElLOf+ygXXr5ZTnN/mC3D7s9Qh2afrHTRjl/qWi9uO18kr5eRuUCZUzXh5llDfPyxmQ0tt8wK3WLz3uIVNjCduYMO23UKA7ihlgnjtAOy8ep6TBTWQvrC2TvviFrRb9A8wVqrDl7UQ6VyexrvNQUXxhQNGy+67hQUyu5iuyCAYkB8lpYUpvD0Zmc/5DDj5Ica9Zmrn7wwLfEypzjiLTgof7mvtqIvYbz/AHHALpp3phQIp7waL6wIhY2eZXqv33/qBpN32YFDjh7VF47CS7K18BZGObwIYHbKcaY4GDYNjzaXL4Q5tHzET4WA2yGy+8QPLRmuioD8oQwjRAzQJ877QL9O8OENsD5ZQhVzMKxGPWAhHOFztS3JqXNdpTOeFUbrVqpTvQZN6bjFoVR1BgVOlyXr4RLexAgcGrBQFK1rJFTAgppmitprGBoUddiTZHSFfjqRCnmY+gHCig9kbNQUbByxfgDQQM9o4lEFlGC/SEgrrh7EhAwkMULl6w8m27a7XmCmL+gAQBW4NPGfwi9VDLeYGQ4hY1qFk7jGrDHFqhJ2J3khGztRvOEXLOrvT/ZGkugKjJCooEg4A5zHudLRo7ekvowzUK1B7YF0hIBjAVUyBhEDjnTDTDNYCU5sauBC9WNYV2ilangqSsYh8oP2ImZKcm75iH3R0aEAKuYegxt3sygNCt6GKigWFto3cvXZ4HUtOUaTVGmD7c7ubxCwW0gPEX8Z4uPjNw0dpqj39Zj53Crmmdfeeaz/AHPPbJMufv0f/CGszc7/ADiF3T7EKzxepzf+zC1X/ITBntBxVGA7YhNvpxMXkw4p4qOdbx/7KqwoNE5UcLhM+0TI7NTPq5z5gOx5vzsmBRxipchXqmrjTnjfa+0OGM5Mac94ZNVXLUvFidqeYuFVW+7EReVxCbma5zUTACgVykNheGBmCKQYWabeBKQVkq7Y9YsjENNjV6lFrqFZTwiJdZs8Y4hbN3nXaF16x7/VmnetTX5Y4m/PJBJh8xMOfP8AssK128xBHJ+IKpOG8xxpyHAzJbYwE9I9qME93eBEEyOmZlS+1v1nf19j/r4QDA1+8QaLdB3UVhXYeBhVBXHsWfjpuHDqPaMqROsOCPwq053Yw7zrtA0gV6rRqqi8hpo9iN5ESB5LURcHCQTKA6LWBuYMqsWZ9pRSWvZYUHqiNKXkIhYliwc7uChlVC4gInWKyp9MxqVLyf6iZpnvQZHoju4iQCGEa0JijOE63CrCjI85HpZS4wp/sLXBAvZ3E+0lJIMS07FMRto23wgWB5qttI1pipW1pp5jdmtxF80Girxy3iA0ErlfI5izh99MCNjP1nWwy0mgDWhpEkRfPA+EvmdwOqHeUDNruBSpRZAKTsYR70L+i3KOvlZsMkpUa2a6KgIVhRVtEYuE9GaQTzBGcCloySMBkgMNVe3GKo3AtV3wCZMqYw4INBTbSjzxKwic28yjMUrKsnBELSuOMbBlA+Rpq9MYtulZtoofSNCxH2nzUxqbnr7Q+is3N141OfTMr/ajT78EturxxK5u7hrHMv6krdQK9ftDjO+zLHPYf7LXjeiDdNEwKOYO3yT03MXg+mRmB3V4H0lh8vE25KomNi08wLyb2LC5aUS2salu2qTPrLdDwuCzWBViANFq6OPEukCFvWvOIFDWDyvLBtq5qK5ldmWqX28TQgUYP6lhSgc7E8EIa15ZkoUtMK/3MDmugLzzBwLdLM0V2ajl9ZXb3iZm1G+84mpn/RqHHox4b8QWNW0yzHnXmG8wC3EBVbVG+/aL2S8BwR0Vpknt2elLafhbioFNLrmDsyp5PaEdxg45IRfuYkiOUCrBY6lpCal4vGHKIwQOw8sobD6Qw4kknuPCkJGAgpBc0CYKBVNOrSiNUc1WBfZiD/wyK4gCFKrFfskmAQAoq2ihrx2c2wFx4hamqvMDNdUrYbEVmUKCFoVYDQLKdftlTFlcYWIxVCSrlm59xNIZCbMzNeg7esDCX5HVzvJiGShbVsp5hAYmi2shdc1t4KeIAhFrG7B8wBLTEKa2YVGmC7IYTl25Q9ssPAK+lhhFG5eCnDshsVE+OBpLm3AYxgmr6sc0mIUgHyBLhpdV2mKWelFTe0a57AGmLWxQOa6xcOzsopahliD9UqjWA1AQTYbX4RsIRWakHmosKC3okY2HRt01ESyuvloqr4iSxsJkegl0GCmialBqwFDphoFUXlfWBprMag5EBliQcBl6ILuDAawU/wAZTjiuIKnrs6ef+zzxNGMzSPJMX+WPnn7xvtC89/viYqjXjif1PF+8/KBf5gT19PtCqrknJwEsp7fPvDfPh7TEug1ZxGwcnmpjPBWSYG8VyQiufAv7TdD7+uyZfLBbOfXUW6tj5Y2g7cbJqisbf5UE3q+PMLLTtn/kMLwfes4nPKMOc+iLZbudejNDjyg97nB4O0CWyOR5QBDdL7eYab9bPMAV2uXdgNFgt1rEHmGvHtDR0jo/7GWcjcd+e8Vb/wCz7e74mHH09I5v0uM50wiB03faUW15/wCypygjuAzDAV2Nxs7bz2iU6aoc1/3p3E2epLFzWfhZXionM7H6luRiKNHojm413PrNXJU3yAo7sNJpYuuCPxkbfO35m9l+Yxrsfclh6oNGgfcK3D7kDqiQfiS68esEGikiLLwNcbzcaCXA+uePiALaOVYvHjMJXxlkDzHQ5cDiGKvY8NaUcIDODWvZH9f3ExuIEHOgP6I1GzhuUyqpYzh30tpBECFE3LMcQKgJYC1VjyI1DszrSyQDE/Fm5AnwBhqoczTems0gIUCNSoEy79ZXfE1xPa4Rjs3tjFPMd5vpKsWuNVr0Z2Ul+L2lpxpIIXOihaCoLPxbcpsysifN6MjAK1U2RRYlVSU2JSAusnsDWIREZvsay1TajRjZbgjXirazdsqvKsto0HrGdNdwI0gDc9QxxIWCGkPHfrAualyTDUuW2QrDvmW4ms5aRaA7Rm5RcbLXgldiJsDxYAz45azR0MlFD4OJSgveaOI1eNOpn+pmvTcP+QEx9Gcp6Wz0f+T29T/InY9o+/vGhxvmYh/53gF1yahuvGCF8amVfSv7g+eJbQY5uXxr13mPay6wn3iu6s4XxC071AyKDi3MBii61ePWVboazb3Y3X5CXiq9mbXz/UqKocYvs8QvHL3jurSuxzChXG33g61rD3qIFrpHD/RBoJbd7El773CZffeiNert33igS8cmSMZCn2PrGUNhutD/AHAACmgaF7KZD+hqeMn1I5z2nnR29ZjEt/swzxC++swC+523OD7ViVrHGpVO6pfmANLADnMbx0+t8Bglt2qnIZymCjXY63EFF2fCUBaETuRCUs9t4GP6pDkogD/ORcHaDUShZoMoryVeLXM3qc911Hc47VOQY2sYsJyFKwBZyLFzi7An1jaumdrjdS8bFzC+JVu1BG9EwlgrUeLMCKGbRUDE2wogeVwWi2FvEawjUcLgz5BqChcIMq06e24tZNeYRBWBQ2qmY4D/AHVaXtXO+2JWgseGDmurkVe7FDUogabioQnniqWPlGuR0cgRsY6WSFGSpJmotqCMikDiiCJTJ5hZoOK8iwND13TKQzOGVCgxAmi00lFKCUUtBg8IARzAVpP7hhCdg1RG/CBfdA+hgyChjEZQC6sJzYjafCEkbGUeKaXIRAO7CjKJ2UjKr5uO5hKFBCugXqMeCKy0EuI7ASxfkOS4ZcbLJ54gr3BpCNBVMwzWFoK8juIxwNz219IClWkUluL4YQB3a9Ilo8G2IvszNz1+s+cQUr7M4e3zU8v2lb58S+LmvPb0nJ2IVuqO8OOQhrHuQl7q9QY73A+WLYLaH0Zo4fSUJddgc1DsYihg24/9l58GoWNzS3HLzVysG+1Qy4wkrNLfYuBrv+ajapzziA44OGBXUKC+VllVi/pO0Nrh8xoeiK57xGb7m/7izIag3pF9naVAxNW3UM3BaXzCgVsrivCLooCg1lm5AOh2MYjOuWrqJoj95fL6svHbxBzZH4ueWVxLo7kD71cd3XnMedsT0T+0NrEweyg//CgzQORTEejSFgoiwdXuBEEbHT0rn4WA7RaKFqNbh207h5QpPs8BzLKVse4GHKstKcBJkl4faar7yxlryjLeyHqnrSIIWS+UtpHzMbhkJ6HmVmkHGOpsQUreGzKwqhtSvSXsYlNu3ohriB2m8ECx7ANOWLONKDSfzEU5QXtf2mBZUbYEo2xH2yAFj5RMXIkRnm0zzkB76D/Y3r7rTLsTStD23ymsNkDwtUFg2KgbCmiQ2XXViNhJi9lDUwPaig2qyf4imoFlKcvMrNVIMDiH0CUhI2RbVizGmzTUCzDcYhBDb4tkgrKsZTkBCB7mBQyEZbi8z7S7wgDsoQG17pRTwgAOmlXCahM/uy2wIKtCoC6FIN/b95z8iUjPd2/0I3wErvMj2lhs+sj8EmyXK7F4ueCyx5EdkuU78StdmBJcgFOvaJWtQjlBj1AaYvbbnkYlEvqruIaVVYV0Feox3EiFYV5IrTwzZE9CEG59/MNntCmyvWWjl9oUVx49Y3lwc+It50zaPfFTetSz1HU/8+k3eGDHZ4IBeaPTzMuMnEItVHHH4h3vR/yZ9X8zJivFz0ZMf7BQLTsoVBo74xepwGK15jyJ5qGcu8PZiVeMMrtnsxuGvEzOD48d5oSZG/fvUStkclBiUcCu/hi0gW7puEClUfWOXRYH07ypQ3WLMVKgG73UoZfU3r1iD1UF5qAA2eXK9pehuFGj6wBsjnEojpseYzI+Zf1nMqXnxKE/uHF1abr8xPvgh45dRDqpqvphiSLc0KpPnp+Y6W9AxLw0aiAlVs6h+3wh27fch3/bx1uXtmUY5B3Qq4jVuCHGWHry1Ij+V7R18/1LGdypUviOpF/AQeXJ2+jMNfUmxA5REK5zhO0aQBqNYgggZ8WlItQnHKzulq4CKy3EAOhOQ4MGCCCJC7WqqMl3oCnpgHHxVHOCgEtF8bS7FdiVCF+w9YTjWnsJYMVOKeNkobgZqkB7QDMK0oQFB4keSKwkpcXZJ8YMA8OkUrQABqZI0ThXQU1eGZ0saucnHTB8DFRmDfIGr1ZUxigqyduX5NAYhDJEGirOhjJjLiaxJp5mIIUKoFEjWQ98opIq86YAh9tCDUEnn0+EGFzaQKF7gF7NGNsS22Wq1G8lLoMpqwKs4FmpzMYLSDiqBOKTwKAlAOxhBXylP34jMqlquLiXsWKdkAOQ0reI0TqZYRWpoMly49o2Bg8XKkhGS2204iga3sN/OfQ5gc/eOuHjzLmyDC/r5lvZuDeftLQx7Tkd5zPn0lM7L9p+H2h4JfL7zLPf6xXvHrBkoqvrcNl51awrVTbvPFzl5eZ90ePPEbcVbxU0Kx6RIjbTvkxP9ZiVWPKd5odu/pMqpThPSHuvvMwU1xxMu68nf/JatWcvJfMUcmBGDvUCfD2MRLuUPNxeruw48RENwtXVQAE2pprPeJAKP/pMJjujlxPGAu94gMIy6N+sdS9RC8ylo8iFXFzx9Jz6bYH0irUQVeXtCFdP/Zan3p/MRwSri6/4jB0oiC4ukPpUP/ZH8C5SiRrQekXmB0lkgSGGDZ+pArAeHD95iNq1XUESzI6et36twRt/ncCKSrt6Q1+kAl5AAwMpiyqdrVj6Nl0nBEf7KrDHfpuZ2tFscZBNzU+ZJtZMRaWFKxAL7NaMicYhdFC/SFFcIJQgbtUFacqvxGnBFDmlR2Qg/IsL6SEcUjq6CstpaJoE13iheYtbWCWSor5Y0jvmfQoGmDskxAqDdtaSSVZGhqGEimUG1Kk15khX/i82z0pZktrjnWiLBsFjbUBeiSwUKncQbiV1lzWmFDluqQHugVQoZiKreGcGhC0dIotWqjgbmRZzK6jlui0ZCrkGx+uEJzIFftHcj63BgYpQStVolDDJ3IRguM2wrQg7moG3LF1eOAlu0Xq7EJXJYV6r+xUSoXUXRmCPRSUMhJQ1dVecRhAOKe0JltUeBe5RkEpuzi4rULLvDnMOmC0oyvZKGHe4hqEO6TkAMMRBK3IS8SxhZslSqvl3ALrmoXfa9RHql7Xv51BDfbU5cP2lI3p8R09vMc47QTbjiN1iU+00necO0BV9854iuu03zszOQ+vMCq7c+rBTF6u1hg3jvLC85MPpF8axEc/P0lXmBto83HinKe7FqnvE+n98RzRy0/1LD+x1MsOnHhIKrvuo3ji2K8+tOvtBuBtw0seJSKF5uJFgLTWJU0SrZ3Zy3KHBttaqANrOCvzArtHjvAxTGw2pxMclcbxCLUNA1BUsOA1MGFVuWPaaf1CvW4dz2l5J83iLsYeO0trO+GCTLnaxy2kG+IjlFI8MAMcHJluZ4qBzBV0sElC+N0pyexv+3S2qzizD9o4qJs2RzJtFq4KtgPY9XFwQ03yxSJfdGLwgqgbeV7qIgEKR0kESpc0FwHulDRy0gOjCn5ghsXcVAuYNl2mkLBltc6cFBdQ7rf4QUELiMqVZPLKyjnlLkEf7Yc3xEhWhq1n5sXqCWuGOWFIwQWzG9zl7aFcakHxCOFZc/qlbW6SuH+pgclCgpZgJGtpxeyEpRLXY1IAKoawgOA5DpzTeURNtsNl3DTmQzN5BKEirSaRtHaLDP/BVSg8Bkv6LVwwbzcJdTt4zOKBFdER9RFGoBIFWILs615ivKOAlMZq4/FRQnc1MNfDSLZZVKGu9LwsnCz6SELCByXwQDYdnYtYiGbXOCpOY65Dl5QgaH0yhL6mA/Zg335e25SJcPmxK5VQMHrWJb0sAlzYXAYC0xR0q5IvIdr8e8oJ7gBx90s2aLZSrDcYSW0q6xzHKVtdjFwdCBoZSvpuu8nYgNxpbM3ohy7RcI7rEzQqUiD07VzEZrm7t5qFONHDES113mPnxM+39zBuVuhuDTArHDFmnTuoCBnOl7kDr6xZx7xhbjV+ZZvDqCm3PNf3Lf+wddyZ+3sMN51suK/W8eIl333AKXnh7eI2F/wDZm04PsQ0Pn3jdnAvDv6ylFetP+Ri90fT1n4doltXizkh1aKPj9o4lDgc5bgRb2K0EHhJql6qCVy7biCn2IFVoFtxWls4SI81VmpfocKc/SXtb07TSm6xHEv8A8iXMNK34lb8MHLkmCxqxxj3l79JTNi85ow4U1rlzRwhyYsw+sBE3d9wlQWT/AEiPU5mDYHflqPSxdplhGHpF2PTG0GNwYLlPWA65RmJbITLlf9GGblxEk4Wyu5LQEKBTDRBQFoXQwLQXnDNPrGQgtTPC8yxnQStXJ4jsEOmeURAhMUY26KgYiHIAcCt3IYmuUOXMEBU1qlMgvsTATOJAA7YVTwgUIrNoF4BxhSAEqjAQsd3mPGIxQSVQ8CJS0IMZq7MYXUu3N4H1UqMAaDs/LSaazO9e7K+U3Bqwb+gpsMwXtI2wD6U/S1SgkblwVRN7IaGsdnCRliL6BqUMniDHjxCIAusDe41U9AKFwqwNF4Kpqea7mXmU0EW4MCQRSdkRCr7jYSClmokgvi0ZVcosNmDaJRFIfiYPAZ7OveZFaIzLBgiHIEOzG17Ue0YV6kBWwgRW7uGTQxdCJziDWQE9DiKJIir0cSvaTMc0O45u5FYaZUBxPYp/E41XYzy4gFZQXbDISA4ef7i75xqI1Yate0ShTTcTIoxiWiljizxCC1WL9I0L2d1wNRF6qvZid9McFPEE9CWf5MFea48xUhyytfO4fSuZb/yBj71FWTI/Wdzp3Cr/AORaHOdS+Dfgm9ZL4ngfR3PXfjvCw5TR5jIDVmTvFdjHNPMMOrD8SintofE7GhM9j3mqsPf+4qcODkLp7SiCtCiZ2F+e8wsoVqs3KF12UzRc3mvEuwBjOTmBbyrjxCjlvY/1MKFWBzca5Dmeu6mOh5ObNZgio5pgDiP3HUcayzepsQNd4lY8FZj7URZ9KYceNn/sYW86caySnscKt4YrIEA5S6iTwwFPAsj/ALaAr0izsHNn+zJe4B+JmsXbL7sa0rByMLvKw9u7oobgiZRXCJb7VKG2ivvqCrRW/dagLJpjnu7dpbHA571iX0WBq4rFkHGX4+7E2WbiqYZPK6ZbR9YzcWyNzjOktPyGABgCpQrc3igMPvDRLtABbLQBvMXG0NsZCN6M2hi/9THuhUKtOoBqgG3gqeox48HRHUdhoN2MiwLAsJiQVLcSCIYDv8rIqp0pB1kpLAjKG4ZGDIQDsAqs0vhMwmveS8NkegFvc70hVXmxMdsMy9sPfHaDapzRg04xFapHsMvhFWlQbFW+BCLqQClPiapLY2k+sx9II1mE0FoO6q5d4FTklRYwI1W8VgMQZEJJoZYsDTIxjRafSJJlgtmj7oT0wTw0X5I7rXW8ru5kTVSkYxrjxUQFv5vMS8WIphPIiyooQbqs2d2RUAEEDSg2ZgUEdrqBdAtVSzmFa8NFZg3CpqEX7LnoemjktlsudfWFBJbgK9IubbWZYpY7mvepdzWVnXtEKLHLLBlFCBeTeYVArCs2+kAsS7IM5OdsK+dztxCpl9YZ1sg+nEtWSjZ6x5L9v7lvO/p7xewd9ys5xWoPGnt6QqtZj3S+YJeHfE7/AH9Icc9pYL5xbCI93Fbg473h9O04vzzjHiNUlZ+0KGhq9LAHo8djxKhg2cf5CGWrmu2iAK4sug7yoGCq0npESyk3Rm5UsLvNwRj0RWRHAZPMSmsP0mJKCwYpcQR9qZaL3SEE282QbIf2TdLR6xmEqc/3MYO1Sw9YKb+mJomn3itwxco1X91LoKijYQCbh4pIAgeApiRkUCXIrKAEGHAgghdxwn1hV+4S3QZcYI7m4FRzyw4BvyiGrzex3gm1Cx9YuIIXOB5/8TSqW+urjAC294nR8ksTVlcVhmOelAoSxWZVwbiZ/Uj1Voqg4nEMeQo5Rlm1WOECIclTEzkg4NkJzwGBGtYjKi3ClBmpwKGCRc1FFVsuDLUcgG1F3uQzjSIAYvfCqMwuIcShmFQ+3LidIfgIqOCnrBDauqDVM0NWnJ2YhJj4ChaKJQqswd9QxDtqgRoCRd7CKqoDESoHIPmHzB9tUAHd0DF43W4tyFwTvKwu065auIE7cR5F1CBFNI58sG4buto5GkyQ2YI1bvMuGU1Va6RXnVFlbWFvZABxryAPcSkQbcAIGF2sWCl7sofAgJlhUhhLVr/ogo4i1p7MEqlLLbDJGOEUBa1pQs9qv1VX8mbi8LHFtwAQBK4F6c0N5MACm0EWIVmb2eSGkUzJXKVVLUG6yArmIUwnS4AmCqFBvyTdMuTCnNSj3uMXu3yShgLZVF/eVN7AIoo0MwpRjo7xVldCmg+EZ26qxTLfeL6o4yrgviDppXF1qCgD/EpMvdiXvvqZ7cS7pDvMrPqxldx55qNcOsQC2XXb1gHVX/cvniDfrGuM26lu2Kzmc6xxB80+JZevW/EH/viLFcu/9g4vtzPOxgNG62ZgJbt+upZztzmXtFDRm4e1pimjO6rENHQ7eZYtbtisyhVOHMLlposyTJNRQO6l+M4EH2DAYpL90zR3Bqpkru8enR7cy/tBIqcfSDaOPEt5ll3etTIpfEAxtA97zKIhKnLzw3dF8D7cwW1FMzNH4l7cq/I+ZU4W5eYSwrRXTBQEqW/LD1uFQvmbOItYSOe6x4YYaxRHzFu9rW3MltQMI/JM9K7BfsImcKrs0XItKRG8RV0mnmI+DhJi3M6IqSLOMIGm19yg1I2YQa7PMRFy4+Fy4YgyW+ely7g+EGaFBNSAmeIAz3n8ybEnCQAK4hkRJEtlCDPVs2LZ88g0c49DkqNKXkoJXQqxQarLYFVIePiQhbFHboVt/jFYp67W2aYCnseIy09qHCTZnrC6v0nJ8/uUZemJIrIUUkk0gVVTvhYXx01lymy9kGvTC4VAdC7XV5RX1mirLfaRTwDFiqAAqHSoGJmemRY8KpQRqZTzlCjCeALMAHZNHVWqrKqI74jYFUgBuV4SAEwpASYeIGHEbKEaCoQrRSVbeSbkWcuUYBAUcPMq9wYzd5UJ2ZhErmW1raEYI54BrxGyIbcJo9oDbsAgsUyqBR3ZF8+sqiWFKWtcKKgWBHDBzMUGHCQrhUsNXohdmMNswwBrbt9IsLgaXY1CQcMrZn6SuyezxFnpLVw1wJlTxdbQ0pa0BrflExCoELoxG0Atp4c2m3auY5WdvtAiNQGjnmLHiKgu+x59YGc6e/YmUx9TxNIVd7q8THSjnEKK09oNZ55Hi5dlOj7TxwTK928dszxUHHmYq0rdvmOk/G8Q+i67Yl64rdQcHNv3iw0ZZWMSi8OXUDA1Tju7xOsDnvAHInLvGxR6NSurFwYBpThyZzGrA5V5eYGAu1v+oGVuLuHqzC73WahoF2At5/qGpQe5uVhY2Xjg7Q1PU9ZojUU1eH8T3z3jfuZiP9iKUkvwtiMSys+yRYsVj8MXxxRx/jEsBiod/MjC1m2xSQ0VtyB1FUUmGX9QNvZs3nMcPu8zMobt77lYI3XXe0vsO+GwlpGK7uiGlK1XC6hTabDg9Jvs7EPeKuXO8y3Auu3ec9W61W0Q6NsNAti/bDW1ZfNc7hudINNpABUcL3YLoWkviLZtiaAAtqpzLIn+DDjiFAHxZbkJRnJwQQHrio1CqihiIKO2JdnlRBgakEMhTUYmGG9mge+UkmcW0EYLmEEv7MYOnaosmBpSTloscbjiHCYqWGRcDS1kCJiBbVX0FFNzrmp5IOTgt4sDxAapKAYlATIdrYZYuCBoW2bLWdwMkq6rjxgANhMr7XEqjQHcCUxhFQdA2UhfllLCfk5mgjZKq3ZiqFHEuxmLCq5cAq1cveZ5O04AWkG6ROAIc1ErxQJOAYyChIBZirhAWeqz2rtlKgAwC6pLqAu6zYFuBiPzOfzNc6I6tWQ43BNlFwUrQvWRT7QBw6rLY7QViNVNNaqpVMBJR6AmBiWo35hUFVVt95f0i2NQ1grsLw50SowNWF5x3hXAnIuD3g6tbtPTmoOE5NJ4XeUYUUBRkpwJZYzBC5s0gDK3U+RumL2vhW5ZXYrTLS3RFF0l0B5hzpXp2nLdHPMDvh47dLS867QUGVjdekwb73cHFfSFO98RtEzG6/uGHmOKe2a5lPTBXMzy94ZNKeILduYY93FSp86hAFFOzcArdLo4zBcBQtLRRzaDbNDgOTvKGzOwIWscNDV8wdu3NKzFstWovUqRt3Wr9JhR3jud4bsFLOHsxc1w4Ve2oKd8G5asbl/aX/zov/I9VxD7cDGv/Z3vmphYZM/3Kgz1BCtJifXnckNYrNUTNKoHmwTicFhw92pUuMjcIalGvUglsNXitxwbXzuvSDumZbf4juQoJw2MJjIKBcxZpWJrUkx2qk2nlFpCo+wkPaKXG2oyoKdVWSIKcVcbdJ2+cejcsrRFDa7BUCiUV4WJZD9MmeZQruIM1QZqbbFYQY4TekHWPMRkCVylr1IyqOwN/wCoGI2BcKnRECq85ghFTLIEJpMSQjASkQqRZECFQbY8cQkopA4YFqFtJYUowESllDKmMiOyxzeRU7kVn2PeQVFBVUEZLvi8007+QVly4Yz9zACmoA1Uygd4K4c+IFndNElPAnEesYWIEys6XCQGtE4LzLlAhdFOaixkonAZY2dbuhVaNtYXoQE2HLE32iw7BQVYij6TRaiDZJapFawhLtOBMgPoINOBVBHcYuUDYFk8CNX2os5q1oTo7zXIc4ALFpaMUtPEFY1gB94KTiGWW/7KDFYjdKNPDCxgKx2wXFdNitViAqzffzAxj6ksQ2mKlrDCYvi4NFSoKyxVoNGZVZ7kdNFGKVuNEAPaijLbQz5gkOlqzXvDFy5QcVUEXTFTyONvRaVkSHxylOotiDAXJa17mDLMeVurdvpAZbhFG7IpWxoZbsxEVONeveC8vb85jdAKvmWvQb3xepYNV6OZnfHeCb/Eu67OI0nkavmZMVjuf3AmO39TPrZhgujN8Qc6h5yd40a5QTi75+WWPOY16DKAWqnxO7S+XtMYBh/ESMBTHY7yi1i7cQC3NDi69YFxV4BnB1RXlBjR35lCtxWTdEpVKuzuXp8kXBjmVCgpy4ObmWIDl39IP/s/HMuZcfWFTaIfYxHGvd3KvTiL9e8JHevjMxScJHV2bviziKNndlcMwP8AKyvaE9g+OCAtY+yZMsCX+YIBZ4w4lAAA3ntE4kc4fdGLWWPEyAotqCchHGCOON8SVHET0UKkrWy1sqBgSuaK7iG7zz+Jam8RdJtohA+GzKBvBDfn1ht4oGK8ByoGB5R5ql2wBaKtGExAyAYMKroFYJagBWkmro7LgEy5HQlMhrF6opt4PFpmUkSFYmE9aBcZG3NHutGdGh7p8nMrTAxwFniiKyjKxD0hMq8C3dl9iWs1HNOVWGI16vTaWJGCux1bTBx6nVNVko9WFQtF8CirFY9kOH4C6ODETbsjVyNGKqdW5Gjxg6PiiI3aMWS5oVfDCBlZDkpDhVGHx93NAmFw2AW2e0qwJtydVMw8qGLGU1bMMVHda5wI1TBgeCRAVmmI46I2VRq31Cjeg3vgyOYWSc791UArEyb+k5N3qNC/+VM1vBtiLYDbxD94/WtBNNMv3K1ONb1AQGha/wBymjDQnaBm0PjqoSvXHk0GFKdKasGfpG0Wx7xA8jV/U5l8ohHNNEFiNACsUcwMw0jTMuniTOBFN2l7IKq2KXeAN5vsjDIBuKcqCBqEpbbdl6SLJaOVx6DFdmC0ViEtisLfntKwcdomj1Wbz9ou33lpl2/MTTdJxBsPzKFussSXm757TzzyHiW+r/sHRfOMRbc8kv3P7lnbCe8qxrNu2ZKuyw7IrwIdG6iDvRs7XXMoi3G6ePEsiqvLnxEbDDdi8ekRZ+L1qWL9DDvcchLL1wTQ43Boo2be0bMVtGriAULV4PvM7GOGKbY6/ueOWWBC71BC8Y9SKcd+Yy6/qWmd/bEUjAF84greY2v9SsVR4d7gmzmIeNOY9ZR5ZvNk88RbzRLLd5JjWcajnpWIpvHcl3lHqyITU8wX7IgKGgQPqGNaMeJSm8xkwRxiK0y1rM5yuBo1SjajpzK3jZsaMgeJFkQrzf5DuJT6mqAcUDGUkLZMJfBHcSwOcGvsHvXklPNjpmoaURBrIMgaCOE9IK6jrgRAhcJUrKq3RNrANcL7ohAMgagfUyGQLg3i3YKjZRtlDpHxSYAWVVOCeoCLFcpXa6wmpDjFYnHthRyjCkrcXKkkF1CoqnfYQCkyUHr3hA532kMKGXaFq5NcMAJhvNVURi/1sppH3QvVogGW9xBbMTlM2B5YyUkumCIzcboU6spRqG6LoLuIFmuBxiCsJFTmGeCG5GqsP0cEFhOlvK6EvsyquZRfhgRZqLzDbcyfFSlBzub8GowrXcMzJj1toQMxewNea12heueILdTDX0ahdEy3RMKDBKxne9wYiFurdKfRDTcizgE8ywLQvhvOOyJGKmGyXuQqICDZU82TAoHbKicc+6XKjbm2rN6Rw2sHAG6v3TKuywzwwI8otsUYU94dALjPwoLMCUAVKCtJIjNttMyjeiLCoyHl6sQ24GYAKrdcdniNl5eXpLYCzq8Y7xeKo3/7Bt5TtHv9f+wFvB28QMhzxM2U5OJRqtaXiUOy6x5qUANXDD+Y8FNc47EctmB2/wBQmuKwH9xjbdGK8wUE1GaKGuJiXWbXniCgFy2KLSRk1iooZhlr1zEqksqwBKqu03EXSguu3rMZVb9I+KKM2blP6JuL0NOeB8YKoaMXqZjMIDZmMV7Rnj1JV48wBx6/PaGvXdwqpO2CXQ4jScTCM8W6mVYt7795n0qIa8f9gFXnUyWQ7oHvD6oKmcupsceI4fmp319ZvhQVlZQwf7iKFHZxCdEM5BSIwjQC659qqSP0VdXJ4gCAW4fvZMFT5adBU5WHl5GjVgeoqnrkggrj/mwWs4IY9LW1hzwQXwCBICO4LhlZLVSpovByJWHEhYknIZ46x2pcJctKA1FU4P7kIDEoEhmGsDRcRQ2DHBo8IRccWjjHUJYzyxWBacFCGxUF3uiSP6Lr9eigADAHZ5AGkPSiYlBOZJ8gy50QOa8e8FsjUSQVO9VckKqszmrIwugNbDgeEJ7iUCi+Ul/ULBiAbyVNXdZneTBUK+lahKk1VA4HOYAQaF6742yoaNuGBsIC2wPVpivRF+0WmNzumof4LxEZcnO4hjgzhrS92Qkwlh8isOFUqhdhZZpwFaKmQByB3k02pcB0r4inbut+JjX3iWBxmvEEdxuCTRzq6yDYQNkDEDbYxRCtxSZR47tcRIAXWTaLiViBYi1VmHJiUj0G3dAjSjgRs4wSDRbgMiPEJt2g86uBtG1Eum6EkQBdKFyuWyoixodYPEAvuzLS04mopXZsD2wqmHNnlqLisX9JklmPzzLpS508wxQzsWDyKTvxNVWGsRw3WHf8zDdH/Ze8a4h3da8Qu/xCrvvMt373O9a5x/kFoXfNZMxbH1zChzpzfbxLQtjIHfvuKmkGDm31lgEwhGizTEqY5aucWhvzL4LEzo+tQdbRxf6y4uzlXaFFDC+d/SDyUZsWLoC23d5ihZWUHOL3BYLri9+Ig1XGGFvJB9b1BbzAiltdVD0hXA/1LBf/ALELl3UFuu0FZ/7FgX7R3jwwnydyZ+s/OYwzTyY4l54i767RW2ZsN95cZW1r8RCXX5qOac+JgurP8gvBozXmUpO2D/2ITLHaBdnBwxHaWFYoESeQyILX2UFk4rgzysAIk8oOOUaiPChcnFT2pvt/5mKvgRR0RVKSAU0JhhRIRa0ksUSQo8yWJpbNyItpG2+lK4weLV4mkwvGxOJvALzQbyB64OvtVy++/fDszuE2yGgngMUQG3VNHaAWJmQISxMmSbzKaXSpWl7fMW5iepoHVPyBc4zAALC8QYBKxDScAZRyLywcAGLBoqDox4JZKUIlZEBbQBbeSKzLqLKrdDD1knZOwUCbVvLSkYwOS/FqVRXgiTCsoJleTalF8vexmRqj7SO2UgkW2jzCxRxM6mOIGxuBW2uWUAEIU2eY2uPq/wBymckZ4d7qhMfivpMEbligh3ezExxNmgopKuBju9EH595iMnnHiWtBRoPbtCplYPU9xl/qu7g8VjgXYc09YkHECduQuWG0FLhiqrUVhIAWi7BRJ0O74HbmMAs8jk7IqTo9l+6AJFgImRfZFjv3AMBJRSijy5iEgvBSYGlTTRNq26vnlhCWdCyOV3k4hZkCsETxmDV1vSKIJSu/MsC2L1oPL6wIKOau7GFk3b4i3wX85nlny8+0MbzUTaYgYr6HeGqeYXt97lK4x/c57LutF+09qfO5Zys5OGVUjjYOBqDIiFAAPKWTQW2DawTWwmQUYmAGMit45hlZWDXVf3NoAw9yNsFjtjcLOh9NzCUTz5mUgq7zgD9ZXiqOxFFqj3lL+SKKzl5l1afU4gdjC/8AT1iXi72doxxt0Rav7Rqxsg9q7nPtBdMdzmEH3HcQN1RGleO8Z9HmPYg2dEa84gmwglhx24YqMuahWZ3mO2DvVR0OHceQrhEJn7QlUOazGCm/eGJL0aqcjQgJRhkYMjH3mZ9PNBbwqBAdDOEywLFEy5lZRJCzVZ4xXgMM5qxwmZnidkVjNvNIqCHAGjF3Xo8ubfduEM89o1EsN0IiNPxq8xKkKL8SgWYo3qaokLzkGIcQADhqJE7fEALrM8C1GtoWEgq2UIqlSIXNCO6PFNinh1dg5QJgBIFRcENia2Q6EDuO+26CgMt96slbzDRfjhLHGQhr67vDhuamDcegK3Iuj/wPFIBj6Vu0aqBkEIBojZoRu5Oy7JasL/dm4tVHuwWzkOIgNM9iXEz/AOM4a5jXN5rcGq5dktW36cT06A0pCkgqXT7oQsvcJLqF5J2EmiFd+Q4rwQIH/wBkRAsGtPDzAIYAtFfSJNIp7flIA5SwoGcGYYdLAeC8xN7Sy3zXLA0eBQdvVLitaI8IIEFFWdn1ibalsiiJ/UukaREex3IFNkU4N8qZhqopMqMEA0TxaoEs0K1mwKsfgQdKUFiXbuACVYtVhXv7wC2OauaWDkWjVOS3MKRLWPqrEaEWqYeGCi81uxezAabZc8PoS90LwCazKDHjji40fFem5hGs1s1OK2/eGsOW4nSZXX+S6bcnM0zniDu8PYgz2O/aAi4HN5x6VN5gCq8ekJkTcd5llNCS8uFfSXoKARx94OaPBNlxcLUCl8siXUxQq33Qh7U4OYLSYTfC4BTYBk9IYB2iknDDLznmpWpzx2g++XGYqmWntBunHzzHdcErHN8PEri8ezLKu3JNwfJFRS7cPmVcwOSztL/NnBNy5H7w7NYmtVXsgDLrdxIeXfiZ39Yu74YiZ4iInJ2iqVWcZgct5+8sDHkwQD/2UI1g4leh2UHbvuKW6LcALJDBWpRysIHuBZ3OID8B+wnvNc4IXLwmEx9ROz3MUeX7s5u4SVPBsuPEIgbYsTApW45sDxA58K7nBMvSq+ko4GHfMoGxyEtixseADVFRByE9iSIAoIDFFEGBblKm4rIe0MU1K4srgCaSqARWU8kEkB3Vtm/UluWlQ2EEp1hzFbZperJkPEHC0RF3uKdh1UWx/IwzstsF5FIwwYuj2NKQyvaDaFUkmm5KK9IYA8+ejkvcA19t6OcvISu3nlBX6nmOFGVBABggUPnKuYq2vU7jEBrbdxFDv+oPBzy8Sgf7A7DUZLnPVlN7TQwllmGWAiAGGy1ZJvKBLTIQdIQWsBCEegvM1HkTgiCO0LDSoENOYRMjkHo5YxLBBEOx4jhst7819yUBBHjGjsiSLGPK4sFpvfj1jKSqXZ5DiPQeDnLfrA2O81wvGbADuBphCpAWlK16peBBR21UGQusXssRTdvFUuwOYauVizvjGfWUgK1YuKxuKsxbtdPeeBodxC5FA7T3CMCo5BS8ag6zko7e8LPePIZ3Rll04OMc5nGffH3qZcfNeJWnCY9oLn6s2M9492/niZR79prevvLjltOAeWAJwCjdSoEXrsMBNUMPI5IxXIYKa9o7A4W2DGDdmOKmAOPL3mIvNEL8TQS08f32mk3Gc57HiWPp9INY+hHlfrKPcg+YXLO48Ud5WTC3vFHEu0Z4IKlMyjA57a9pUQ1bziGr2+ksvv8ANxBb9JeFa4uJv7PWIl1h0+ZmVIAekZcTw32lx4zBnLVkENbXmYSewR5N3TPoFLJuuEElFaxbwzFEPzpBle0YWsqwoEXN1AqX2CH2kCZr9ZIc/bN2W+0ygnWY2Ae7HldyUaLJkWdYYzFRZFjibNDZICZ85lAa1xmZVzK13vcwCr1HKV/2OtNWceGYMDONn0QvITRnPiaROqWK94vMcluoGrmEMPeBHb/2CSfgggFNeEBdofV5gjlRjwPUIqzGoEjgQrRoARI5KA4iAJf7JkxZeXLfvHc61g0e8JwY4zLtb1EbWHz2hBdndzmZSjAZCB7PR3mLS6DCxfyZZ5XmEAZ7sUZdxHijtLarviYgWH+AnVAgWFtRhreTFW12COGQ7Y1BVXALcUbFQqpcImxIn1XcUrODn/YtDQujMZUyO7iqVH2+jAAFcM8FHEfRRtrsXxFmAyBnvBELXWFKiBg2UWcmZU17I2+WVziaXY0vp5hZMUu/CdogxVXfbzFgLxIc5efeG+bKjMgLpiijlZrhI7cUrd7LcypmWwec6YWj5Fqr3qZKXaZK1WoJol6eDMGzbeRDazzig3XeFkO96beyw5QNODsXeL1eKNRc0b0jERnfEQQHA0Dw8/SGTwOu1eiPDs49Ig2pdsteJiZMBIEBAlP0lqBbffBy3CfJKXswqVTLTz3lDA0FtuK+h3XolAiiwUj3EQNejxUEavUHHeMMFfXtCLUzeCLjD7Qo4guvf0lt9uYMgOWY03fYgG3pAUGnVcR3PvOb9SYlf/Ibc1xqUPrADetH9wa7HeFVuBl158sa4jCfeJPEFU4uAq4EF4YFIFbWcO4WW+NHdiCxcx2tIO9MD4yxsRwlB80tPmaq8gBsdIrUxWq3PaNiai8B7iG3gdviq4Y3hFxtRBXvA2YL6MwlKNTTkgj4qDQ+1RUKpNf1A5uU4fWaVqpdKumtzOrRNDWHfoS6lNDw9t1Bo5G69ImsOHZzOAUGC4U70wN/aYEBdKAsD7RDkeIhkseYjfD6R7nRs/c+0GrT6O8ARXYJW7gvaD8y1WnN7jlbHL58TGcUfZ3h24HtcaMYPMAZYYo3wELydk3KKtO0VTt5lLv3lP8AEMkI22x4OPT0hayjbSZbqURwFJCNW+LcMegUqURyTfL9ZN9KkESz6xla2y8Ttkls4vnicwOn6yqx8mYoa7F1BoVhu13iiDKjsFumiNUKl35gXlQtFzrhgksjDgf4iBsaE3rXch802r8QVr0UteTUEXbkrfqhbFeB4G5dkyYXz2lTBrb6wrWQfbzLUpg+tPMM8I5r6eYiquXLv2RoWjK6qpcVeDQf0wYoXlvP5jUYp5fxiHgrk8zNYxT7SxvN/mCJTkEjDeq65u5oMvfy8QS0fO6e9waIiwTvAmJeCB3gQ5g5HPswdQvODVwglA78sa9+lxBxxLc/eaf9mufSKfXotX+YenoQWN+e0xfbtMDJnzA0cd4tN4CKXMs2Z4gwa77g9mWO/BG61s4hfb6sRPzLrZd8XG/MXjuR1m/8l0F5/qWOZhCILOUID7gWjpOXsi4oFqCkTkQhsKO/Myt3XmOybX6crQLq2diDgNRk+hYjrJLXPIXsfbpYBuw1o3FpXI3dxhlBsVrDk4QMcvKro8C+0KNF1Jg2OREOL0X6QpQ1xAwQBvN/P1nkdSmXnTKrWS6/uohYKHEwwn1/uGW8ed4lgVu91xEteQVDYteHLvyTRNvHqsaLeeysfJfp5io0rg9faMKU8w35pOOf5nCBTwlTa03Z7RK0XbLEd9oUKPp5gO8iu8Wy1vnjvArGDg3MMFO+67wnJabaiXjhxKs993uOsa4jqKsXCDuef6jV2DiOwAxyuIMaMA8DKuu4myCyDRE1QWgv2EUyIrSTUDNtO05Paid/6i8EuDyTeJtcZAKX285ixsIl4DEXxlQuDVwbZK3nvpcEvgKeFYhASkqvPiNvrT1mAPCvNuILIEYG0HhUUUtGLOggorajNxxRWrXbzBFGi4fEDUqnN5zfioZGxW2qa5ECOFaGuLlzat5pZGF4HNI4afSZCwciswCgIy0pqoAD7v8Aso/7FTLjv2gqiiK5HhCVdlKuvEAqbby7XELyOTvLFdNnfxEXibuYK8pj0lSuBtStQG9tQ4PxLrcPtz79OY7z/wCxa8zn5qI6+s7DPPeGA9t1Gzw4ojz4hV9eLg/aHbrjxUw7/wDI/Df5lz33Bd/UiYvX+QEfLMMQWtwuM+ZbOPWBZjUVcU9nFx6JBPZCi1cQ0XBNog6kCuk7S6imzMUogFwyZ6x3uzpdBQHnwVLuU8RyzlBTGvygPiV76KpFWEOlqDNpeE9ZopyxRJpT5BueYedHEMJaUKkljNmPvEQo9+YD7d6vcC+X4zB53v1mRRnv/s1qsnLOc4zfrKHCY5WKOMHfiJVsWv8AswjD6yzsMgRri1GIA0PmLMOjZ/TMTv44+kGwcwLsdkrb0xe5Zy2nkK5f6hhnjOOIjVWJwHb6RpuzIEzFZnwekqsVjQjKOMHnmIWY5lKpz2rUDCoAXVHd/qBLL8vEVXJg0EAD05hf/OJc960T7/GtAEBpEsetCDcE4WCL7MHSRRbYV3RwJD8y/wDstfWX2IMvXbmUp71zMOBwfTcIB2buN5y8jsaiULqgNeCAom8p6wpnHl7OhBMt3uUOYNrbCFo7F57Q2hTNc78MKw20jEIiaX7QtCy/XEosSmNMpcCTEaWLJCove78RilE4ZsgugSwoTvKUNDVBCmSzplkPfXbczBvyaiBrUClDajzKnNWuT0hT3CF43OQ9K7ShKwuHvcBfniNtcbYsi8+IrSsmjxLD4MfSW4+0qzuTPO437cxi35h9IyuxAH93HtmPr38xL6k7vp2mL+YY1+JbncXZHSKvzzFPEpOZSeHeWf16xsv5lHf0ljX3lP8Akof7gRp3cyZtlOwdXnlHiVyMvW+qL1RJ4G5XkqPP+JCaXKDWJCI+w60DZhz5RWENd7Sa9kDgRiqHyQNfmyGNOhAVomSyVUfGtxU+bBuZG3ZdW3lESo4no8yn03Dym2GTzWM8R0WqDTqNWG+0U2zXzqEdmscnpCvv2lReR2hZjw4iNX2JfjJ28y3FUd47j/yVOVvaLEL9IQFEyuYVlF81ArBVbPMHfNL9a3BUWq+/afdl+Yw0PTIoYNtuXrArWvy7SvABKWPHHzxODLdhmCu88GWFqxBzzcVcr7wlIFyqxWNnMo5cc3H8xtXcp98RTLQvAHVgIskbBGILgAu0jJygasMoTO1MpIdguccp6HEeNjuTw4lwY598XAlIC1XEsrpKMFcaloOQvGvMqbZ4eOWVZ4fiASlt1W60hijA3LQoYBwQ5vOK8QFe/HMEK+jFLX6rjdUqRzMVepb/ADBq3rfnUsUwcO5uVwM1isYMDcPgnbKZ12uMrPEEIF0lJuISS2Dh9IEapEdPeUKsG1iNOyz0myr9GCllGMERSnNRoZy6DvL2GXtAv3hCv78QHoLmfVgxnPebX8s0r6xeDHFTHErGcVCjEc3cUqHe/DUyMS3+TaHqg8z8x8YO87cQiFcVCDmI1z4l/wDUJPy+sBd6s47EJVu+/wDUsrW+3khUQIFcEQVTAzsUAkJiYejwdveNHTK7lwZSRvfQ0mRXlcFQp6iIs78IPNQx1gmgXKvvNq9mMcRE3N7hKGrmm3g3tUs7tmwvUZguqg+EGAe0IJfFygSky94OWRJm7+aloK1oqUrQ5LK/EwU9Z39IPA36S3RRA5Z/5NqvEAXRF4EDzDBC7VYIngXlywlbVO8vylK/aEXTFnrnEZ1Y5ZoPAZhs8J4hAu4RhYaChdBogZ4rD3YJpY9tkKNA4OXsx5hzeB7MW5V2UCFxy33xKatgPOjEsUW4uOS6XtMx4PtG6nszEU5079IY1DXu/AFyYUGXKTluK6dNsJ4wvYnPkzyVzTxBft3jyj0iN+8TYGIqSyql5I6rdsVpXEt2LTIa9Yk7ZcY8yqBaUJhqDKqvhP7iSrSLOKYA0F9yWBrb7Eal4DZfeuCYThbvLNj6f8grnJ2JTIwX7zQTRbl8RGhtbN0/9gGlj3xT4iVBTtt9IqLm2hO/mItjm8+0QIrXaaiOB5ljJz31XglvNbfS4Iuqvgmw36eZYOBG17zZfBq+0NFdKMulVY2uYsHF2kq+yP8A6hmn0ma8Yn/qN744g8fWOE4ip8yj17zD/cRfEDcr6+PMtLGiH0Su8b/wlf8AYWXAQ8TETb6zjKussZX/AJGy51AuTFfSfV4h3ddZwMtQrwETJagJFe7siYIpju8MxkGeRDKQnHaUfxZAAVubdwoMIotbvm4d2tujEujElgN6QtePIC97hHlizKcwASvdJUwZoA0Ui33KUI0PbHcvdBM1a5rKogKOxsqC2FtrxF6RaUiwBwK+6Uwnbq1QpZbvbnEpTJ2ZUZfrc0jPb31Nw+tZN9LwZWnoO8b7A4IRZoEobJeDtB0A24HmBQUasOkqkKZMkzINWaIKFx2Xo9CADSPauJSKb5v7xWp7TJcUugBzh+6LKHA5n2Y0xtydz0iyFObKPDUQUtVjSKqtrlb9pUYMczk73BrRTqWpxsZe11Nlzv6wgsSA8Urq+8z9A2sE71OF6rk4Ar8g8iOgKDwjvG95htN+r/kKZATh5gjx8+k5389oJaU7nEU0o9o1gs7ERAK4zDK+cTj7Qf8AYqptwe+I1Q4PaCuUsG+8qiO74hsb9HMEL5vZ5YooXmNZeg3FRFTcao0Jgq77nOHkRPgnERcciPZcEuzWveHcCjPrfmNtwMBzBEWAgbd+6DVbeI0c8nPiMQFy7Z3GT6TIK9QloqZdkEC9hXYEgqjFYr0icPPcjLrzx2TiX9Jp9/EfOXiPh9Z2+sH/AMj9U57nERqZTzPcPEyFF8Zh9ctqvpFmOO02oK+dzy+8ec0vMH1lHGDiIky/uCNa8RJXF7jswt+0a54Ig8JY8AHrvMagCFtJKmVKXl4g5AWCBUKxJRG6mYL2eSCxMU9i4hhJggUl7RcDVanHlM/6xysamSo50Lv/AFy/68+QeJABsgsVaeod9iUYKQBO4mdxVLu5NrKRke0vl17DiX+VYfWZA2fZlHW+241Ko8t8b1EWp6Ff1Lte3xPADVbfMou95qAFOHb18RWZG9BHPR4ePMd57+8U5vXB4mJYeGCwKsDeeImew2aj6g8eYLjROf6iK+6cETndqmoQQfGK+6JlgDlyhAbVl7cX6SmhTsY/EWb2/TRzK5cLb4j7PjT6xfRx3e8sLXd1ibdr+kq3dkyeEFdy2Y1R229J7JGQAtDUE7LoZGIhclWh7EPUOUwLfOe3OYLc+hDFc9q3mawcdo1zkhXTR9YHSXXaLFFs8AwDu6+2o0lC6OcxCvVHeJXeExFIigs3ANmmZl/UiW3Xz2nOQvs8zPFpWU1mW1usrN03l5lSrOR7t4h0sBQMS8F8MBGp6tvHh2hFKIuzst1MnVcFa94KBb7hq/tFRY52VnOtQa7C7hQDYivrDITXTbfhm+C3uRispq3tfLFwuTnxDCtem4AwaIYKaM4cjFy1nc9dkTBf7IdGK8QAp9YpWcxe07dpzeoZY+s+3mYlmV1EXjKcE93uH9RTx7x3+dT5HMDvnllBvOHOoUNYfz3iJ69sxyO3md/FcOYo6+sNVu83AGN8ehEVV5YFC6e0JtoA9GSUicp+n/SEkVK3nvKy9jg73hAtKlGsjytiTbR0oBpAeBZpsfqMwRXJagGhBZc04ifbxBmlxiF5WEiyQrDe4TWcwwQSsrYfhCooCHBwYGMEUyg+4lJMX3/2Cw5bIhzjeK4qOAdp2/qVNpnOO3mG19k2MDvOYCTiGCNDhlltpVb8eY5r94mB43OwacYqLYr0jtVd6mZlt5leceTU4dcoDuS1Zwx90F4DszvVsIg/oEYFK6HLd2KhvQ8pm5fWVcj2/qWFDPPrFa4un77jtT6cTMnHLFhOLqDTp3mNniL/AKkwfJgZoG2I+kcueE8Hr6GIEAFq4AOWKwFLCTdHlgUq6rKaCCBFZm2pZvPMvJepzUXPxqU8MKfBA3fe4KL+8wFp8vmBV0pz3eJ3Irh3uLmHPDNhztlGiEVKGRbl4hMwEqNXsEXZ6Q43nGLjnjfPrAXPPD5hWGtXSfeDdYpdHFw55lPmRdLfHPELC5Ob73BVkVI7+e8LxSnd9ruKRQik23B0cnHaKk4qsxaIZlzAYrMvkFVMjC+3/ZlvhzmKLvLsYNnmV37EALc8DmIMHXbvKah31nt5l5blfviUN43qEn4zHlnMegPbxDTtFXIwd/tGtaYVWPauGWfCGWc9zzAUe+eYcUPMz/uLdD/lwG+e7Cc8cwgOfHacA435gc99+YUPTPeOvNcxdXjTMwfCSmTCZPaGstBZTVd4EAvJG/IXhjmNsZbhqUnbgdIvSBrNz6OFZCcTopTIXRIGyM9atzWIA0oIyhqhACXcdQZWtxa4pYWorTyWp4Q7NNvBKoQ+Idqggypau8v9yr2VqG9ZDk9oVx332m5E70wE2x/soD3HDxHiavtLm8MYi36NS9Vi/rFXov6zGrcXfeJUy8eYvIFRN3/ntP7xFY2+hrxPEFiBQkwDECoirCjLFRAdAuxihoDfg1EbC3dktWWv/YBvGcQ8FF5IXdCXn0jy3qteIDox5gU7Vs7xOR94i32LmdWO0R9TzMQY7kokWMOaQSv9B9BN70v7mA+E9LdFFewBzA17Wy9qBc/9jdeDvNvPmFA+/iVefpN+/ERDv2gtAx5lT+/aAsVxzERvXf3gN8ZxKpXXbmoORWNOZpde5kmTHql4MRbXeQ8Xca9IaLxEX60s7mHiV3wcJqyaEcvY4T1SmbUo8Qji1xUqW3Gw4jaA+8eUPJmgVjtcYgqCHKnCuYWdUxS34ltdZWVq4tCuDVjk2QunyZhdF+eIDhv2lFi894aa143C7vxqFoaH5QvN5ezMRW6+0unDGZyh3+0LDdkvTcyQgMM5g7sQLbz/AFDStcRMc+kovL9Zk2eYeKQ257zS+7JzUM0292vaNcU/7LGBfYxLqY712j8DusVMmf6nhax2l9tkXKyifJMTRy7y6lmIiy2I5yX0osUUoA4UUFYdWF19IAHtDApGowjNQZUSRajWGDQsppuxRUoZsJAYBhJM5oFcpR3iQbjqSVjoy1CMBXIKFEtOF3NDBq12zBgG4FUlYFxBVk2kGFAAgDAtVQVCRj0oqq4n31x9prt6X97jdP37M0xK0i0muxLW1qvpBhz6/wDZp83BGi+0VYAEctg4Cty1F3fEFd08/wBRpar7DuNafQVlSOK0rbV847QECChchtb5YuimjjtLNmm8OZccA03S+sDOs+LF7opGTsNX9rjVarP3jtsO/M4j61BsLvO41XiVtvDj6Rvx6+ZzrXmN27+SbZxCrjVL1cKU5ZAC6uC4QhyjPrhp1R+EFKXMW5XmW69pm9+lamLX9ZS/z3lU0z5b/uU41zGsdql88MKrv2rUKtv59Zvql5hfELxXtBo2VrOI+z/2fUm93dzQ62+k+czPM7HHiWvnJnwQu+z7RFtDDXFe8yjuwOPDNSd8h3lU8PPrU8gK/D2zFHhnt7Sgisty37wVIa07BPMKSrOQDd8cwBI3IoGziF//2gAIAQIDAT8QjrqRh6nQ6EGejSPMug1Uf299L+G5fS5cuD8V/FXw1K/cvwP67+i9D4Aw+FglR1NpUUFL+zv9kMH4T4Ll9bl/sr/TY/pX8AR/Sd9DoYxgjoR6J0ZtOOjZj8J/A3L+C/2V/HfEH9N/TfgI7/S26HUx6Awj8LuaQ3BmP8tcuX0uX+gwfqH9g/qTqelSuh+B6NYQZ/lF/Bfw3L6Uly7i1+sfiqMv9B/UkHqHQhHpvo31bwY/fKxf7Tj9e4tdDosP6j8BHHwvwP6esIvSvgE56g6OIxx9AfujdyrcQIwbE/ZP6h8C9CH7ES76Hxv6enUifAOgbIQjCMwZlNy/t66ERiqKYXM4z9/rq9SH7AR/Sf03XU+Ada6HUTaVroM5j+7xlxrj97roRfgIfrg61+mn6TH4Bh00m/Q6uoTXoSJK/Zg5hp5+FaTBj9/r9Eh+qEWP6r+kI6i6kh1cMGyEej02TBmzNutfssW/iGRTv9WpUqVKlSown6BFv9uO8fgqVH9oXFGMroQZmKut9KixDc3j/Anx1+jUYRPiXj9PX6hWYlEej+2cMyuhj1JZDcHqfBbn8OCVK+I+FLlPwXj9Mx/TGEX4XrX7ESqi9D8LSO4Pw7R5mh/DAgdK+MdKldK/Wx+qfjfgf2SoEfhJKodFg/BYH8IEOlQ6JHqxfElkFNfqENfqPXiX0JV/tVdD4wh0YQ6LoafwgSoHxDpinP47D9QSqP1HquIzboEf2j8DHowh6sOrSDHQP4MfGbTpCVBT+hQ/qH9R6HUgy5tHq/sH4GPUiRK6MJp0dfwoIHx6/qLCv3E9D4NQm3wP7B+Bj1Om0uXF0XCbR2/wY/HUYa+A/QFP6Sj8b+oftT8DHqfCN9Fwm0H8GHH6m0P0DZH9HaHxv6h+5JH9FUJfRv8Ax4h8Fy+ldDz+iQ/VYQj0P3Zj1IInUYPS6Yrp/ghv9R4RS+qpXwuZR+ifqsGKPQ6P7m+lSujlwfAJpD4Cv3236TlUt5ZYdFQOty5cv4FOhKfhNw/VehL+B/cMZcIvWTT4AwLIYSJ+9qVKgfpJcpzAIdbl/GoJVFcfEfsjpcP3KRh0Op11ITSPcUX9nUqEVKlSpUqVKldT9JBL8S4v46lRpqP6Bv8AaP7g6MepD0dfCa6c0To/HUqVKlSvgFfrj0r9F631qV0vpr+iQ/ZXj92wdSHHR18A5haGpluV0rpUrpiWSnRcP2oly4/Hcs6kSwlZcsZfRUWP0dv3L+2fgdTJKa+EIOIstFZaX1JUqVAhK/anUTokEVHvAqURCICLMoJcIXK6B0Cokb0lQeyJ+/P7Z+F5ismWVKZxCcMY/CqVK/dXUSw5irG4gNsAIwy45fQLgQJZES7qWZEIqviIa/cv7Z+Am8oYbOob6PR+Cv31zZGjUFFRlHRcXEV9AlhC2EIjBRlzmPRMzT4iEf3D+2fgOgmRKnodAs+BUr+AWZgwi4sWDF0rqBKxHUdyhcsi2dGDNyz4ibfuWPwP7FidSDo5d8GWJxElSv4JbldK6O5GXhCnMt3hwIJCXCMZOoujNPjJt/C38J8T8AxGOVcoehNpx0r+DVEt7yxDPMAzAi/BWIEEYkXrjmM0+M/dn9qx+DSbQaZcTBfQm8PhqV+/SyuhroUjfHwXCAQHQL6B0vuMfhehNv3T+2fgFkOemaollQU9Dcy/hrddCYIH6BB6IMDAQIwnxn7s/tnq9BnoNMVk5+usf4N680ERtH4zovqYi10OZX8CP7EjLh8Iwhz14oAphp6KbfvqZaX61UthHeGKpf6BBhCXMwTuE1UOfiGafun9iRj0JUZcuEMeipixKHoqf2+3aX6XFyspAVNOjL6CLmLbAqGIypjrXxD1MDA9C6GVKlfBr/FkY/AYnQhxHfW3Eu6Npp+rU8UJWh5SsO1KR6u5rHppHXRgdAgVLlyzfQYfogi9QIdFUd9HMSPTT9y/sjpUqHR6V0OI9bkVyhhBv4VTxQlbvPVKw7UA6XLl/C9d5pNut10CCRbMpdesDmE5MMMG0R6HxPWyrggw6AiYxA6HzHpx/FnU6vwDENPwY6mC+jxKdLxSj4n9E6PXaL4RBFUModz0g5wXlmkrNzARFPQ+J60hLhNS8xpYxcwmYguGVOf4wh0Oj8W3wXLhklTU4PjuXL/SOj12izNpZdRRFWDUyg95XCHUTPMWGrh8R1FgBD4r+Ct9Llxl3La6FmBseiM5/cP7U+B+B6DMIWldOlS0qc82mKmXeZcuX+u/Ek3RAcxT7RwgQlMwOWNtQDuCuWLxhhXItggxKiqJTX6BBx1rouYPaOpxKY0MtlNEaP8AGnU6PwmMYdMhBSYQlQn9lx8A1FTcSEqKOWOdQgJDSMGWC8WOdXDoINy7ZVIUp+i+ldSEC3DDUC4mC4qluYb/AJAdEj8Bx1IvS+B2l2S6f2R8HCKzHMu+g0QarMy1Ax1uIMAPEWuYzqQoGUWQKx0DNL4/SBzA56JBJl1KCWziKEP449Dq/Abh3BQ+ABvpuH7E6r01ZYwV4jhC6GNmUAOgbzHAgkEICE41HhHcyLZnmDFYCzMr+IQgXFvBDowuoTibQ5ImM9D9w/Gn65hDq/A6m0rUwLxGOruGkYsfsTrfUqosFzDBNahu1KhHG4JwNWVBuoLFIA0k4hKhHCoKadRjUYsQpJ2pUrqFQjxIUIDquYlMBSYgsRJpDf7l/aHQh1fhECLK6EwPRoy3H7E6KiI7Zcuah4IA3LrRAQKWxVWyixAdx7uYqMiFnMqhgJ7RW7gwMY6Fso7JiYgnRdxVBaDKjExFDMrFwS8RbjDf7l/aHQ+B+HBcJvodMiZyJAf2MdLmXUF4nERBsgxgphy4l84weyYCkFjGpuLgAyy6hQkijF0g3mUvubiDFiH4JUeyLiCty5cCyIFRTvCViXjEH7hj+0Oh8DHrcspAiRfgoa6WEvWf2NRCKELRUY0pAdGY1UrVoWQxVKDDSPWEXXMKOYaXF0PSYUela+kE+Yu8viUQrqyqzNq6GS2VmWEFzOJcTLCiJDH7kx/anxPRh0NRkTXXSJIdkT9keSd0yzBDc0ImmIuYLi5rIJkywKuCMCixbqJaYwSAHcWYhL1HNpwUgRuYSo3iFabdLjMlQozRvctiYM2VNvaGmURckwi6qH7kx/gFuekwMGDEFQsQXD9i2bjqoHbUVuo3WhBLYNUJItgbwTBUWqk7IFwiiVZF4i2LYcbmGAIY7GGkltTBEg+YJcRARy1TaNcQJC7qCLjE2naEN/uGP7w/ALikBVs04izDFmYIrP17jGKBi5sscLIhLhNcSuB2QsMAhxbCWu4uy5YVAMxKAlpSwixgA06iU1MFxUIiq6AC6lhNxeYLcQMVHULRAKYrCplTAoirCbZhpjHBAlc/t2Mf3h+GhQUdAYgRKy6BB2U01F06cjPQlXMG9fopCZpWVBUmVk0WG1CLMy7tM4RS6xFKKirDuSnMARrJIYqipeIzUJCCrDBwxaxgDCKwzgggMJUwSE2pjJBIs+pDmKwegS8YgYjHtD9sxj/AhTcVnQaiSXMEE1ISkgiWcmB81CpudFyxQMwKYH6WW2cUbXBdsoBCC5iRqNjYhTEGUN9xjfci7wGZjzBAIubSgwCKSoTYypjEQKkZEscKiyjCFxWZgiyxVUmLGciGhN4HKXgqDJMEHPTeY7/cP7Uh+mbgcdEdCMgrzjXggC2ixEhHh9h0YPGKFpIvMEIlnx0QHMCi1FhBlQ3cikaKxQMOJqQcUTKQrEBhJqjBtIGU0gVmMCCXWFHMwsUJBWQXZCAgjAII6i6LLr7QBSDBdkNdDubQ6mv2j1f2x8L8RtTBTooLYNYm5jTAInTZhggIzCCeGA7IqhJExUpIszFPiLAhbgcRlgl0SMQQoRgCEJACNzHMbEZYEmkENwBAQMLAgEQjUV8w2AoYawxFCJjEQiEWWTYYgEwWWwwVFC4c5VQStQ6eeINGYftHq/uz8ZsikBKqWFRrG4wtxDo3GRLEbFER2idzMR4BkrEBNS1z4vkmckpzDlBkIIW2C9Ee4gYRhAMWMpmYIupKu2BwlyDhCssHIIshEAzRUwDBVxgo4CjE3C2LMXFx2TQhIy8S3RwEEMGJ2hCHcPP7U/t7/WcycOYhRC1ohZyg3CwgtAAgqEsgHcr2i3EC9+UziXsJKH4dq0QXEVxKNxibmRDcViDbLFRdTpGgBN7y4g0QNwoiV5iq0RymFwIIwYMMqy2HTNkJzgKRgChFS4zIDDEQ4KmkdweBhYgsQ4EsCiLJKpi6gslSrzMEG39o/uX8T1epyStgxrGZSAwetY7c8hcNI/DBKmD0MOy5EAE6tsGibTsjhmMyiNEBzCoqHpLNBIY51M8MKJ3TUWCDY1C7nZKGZVBQg2QckQBipgLITcURGFxRgYM0QMdECkRWJamEGMxcEdzicQj5nFzB+N/Zv7C5cJt8TLl/BZaWrgI0mLCEFKorwNw84HVEcRLIPS07EGKaEoTO+SPXraEFBMi4TTUwLglc0UgSL0QruOFwKuJdpyIFYS7Cy4QjRrEaisqZgKGHCUBNUtSmyLociLCdFwk7LhUmRguVSojyqLwwY6I7hxFg6jllx+N/Uf29y5cMosfpjai0jK9XA0zInbzyRxzNDicRUeSXU0lOI6kNsACduu7a6aCZWjKHBRLXTGBFVR2JVRFUaLKg3l3CwmoJzGMZi8wtjoQOZgYVU5odmXiG0ShqGCHohTcHqO42x5msDDBnM4KiUzuj0TMrieP4m/gGovhSJ8DGUVYasjYRguYgZgZ/ApeYCiGMwBVUHydGFluWsAor1lys3IazHaIyAxm8zbHSyLzoscjG0QN0w5somTA1KKEAntLIZWQ6zDpjIxAomTDBaloEOtS7GSos47Zo9ABcZpC0YUZ2nM4Iy47hcd/G/pv7xfE/E6wJqdK9oHwzkOJIwi3cRSujdBgI8PTRiNRbBOMS2oUsiYthwKwDDqC9w4QIVBSZj7SpalW4ixlagbYQ53EC3LyF0CrIusigh4RZibqFBhmDKMvUtmJAkLDUvDCcwW9OOjTFhn439N/eP4nq9Rf1jOFLSugU/CcUS+XQIwWDAiROvUliacwycpvUvFQo3AIpmEEdpolFcNjUQcQENXE5QctzsXC0NY0GFy0IlhCLQ7R8psdAsUXcEqDMzJFLi3Ns3hDAhgVuBXTNSpw/aD+1YkY/CPherDomzF14JVbosI7PhqaS0pGRnrptSEDQZdBxl4msCzMQMICVE8RMZg6JSAmpZzGRgLlRc6mZmXSobAylwaSCxrJcHSinVCvMHMBTKpcsHRcJpCVJk0RqYkHw8Qd4H7F/bvxPM0/SZe0lIZgr4MWvhdSwltYUoxbBDjQVB0bxYqHadiNacuVDTMB4gSggMu244GszJFkuHeZRZRHdEte4Xq4r2hUyxQBFQwGnrGCxZJywbUrcI130DlGAQcajwTcDE06304jqGofwl/Cx67R4+J+DaXL0nb8HfiCuFBqXRnEVydTeZdeSmWPmYtdG5FRmMDFgr6N1AmaDcdVMJSENwxBTmX23HEmWQW4Qu5ol2Zks3JywpvGBDOLUXFx1DzBi4NpgR+Dz1THQ/dP6Ny5cuX1ZbpA+Kx+FtN+jyi8p6j8JnzKGIBsxSpJCjXVcsbasBUMYNbFwsrOZBQqUATBAqWBibsGJa5hxAsgs0MbEx1MoizK5mmAR2m+K25bIZI4zLUjwlNQCsTAM06lmvhJcr4n9J/bnwEuLD4z8GkWZiGWFzeS2kYAQTmCeHwGYhgiLXlG7SJyELB6GUjDRUoJUoM6g5zrZGDcsgK3IWHicEGjECiMqYhmMXRDOILsmzKxmEQmJWDAzhFz0yhiXiUU9Na6hrKMkGyKwQ10umFi+r1v+EqVLjKlugJUo6P4n4dE5kyJLsI3ropxBTG4LAI1DkOgwLUAKdTIUUVrKqGDMXQEQuWK8ywq4cMQWoGtSi25F+kaYZWXJKhgwZQ5m1RduJ1maxir5hKYBgwZeQZQlsBzC3Ady9MtqPM3gzKCHCUv4HmuqdFEz8DL/AG7+hTK6xFSo/rhZKMEChZAFmRWSG1CR5UkDcMcJYjfV+dhZHW7EwyhhuYBuduLEir1FhVRjiuQFrCXvEQtszPRwIrYKLhSyFCN1BgYAk2aig1E0g55hNsXzDBc5gQYGpmYMwa2gjfQR6jmDeerHUG3qsvpf6T+0qV0PjX9QkYqLvDMtXO9ADFQbiNygiqiV6IG5XgmcYgw5zq1YcQ4KgvMyUTJCXhjdEAQqpQCoKQzYGOgq3GCaVCjC8QI1p2JnFwCoR5hKiUgQLcBSFYN5l0YFEohzFuobCPMOjETpr1YkN/GvoPwnR/dL0ZuaxBD9JVKvESLNzSsiukRzPJHeYC1NJMJRFeYy/OOx1aMDzFXKioAE7o6iE9AvEIohxcMowYVAHEM0xR7o1EHCGMYCxEK4neuAV0i0DQxKRcIRJa0vbCOpk6gol4gdN4iEqHfK9dGUxO8v9Ewfif3VdKiXKsgQ+F+ERTuNCPJBiRCUizJENZS4YWkxg1KzLGkFzlWX1Sm4xZoI3xDcYilRncHzBlmdpFkCCnEvCMFpDmIdywAw0ATshLTO1qFNQZVG3McQCIYIXqBrEQRocFRUVO5HFE5jqV1Hnrv0ehKrq7j8LLg9L6v7gfhcQ6L9IWJAs8zhhioiOYR6LKdM6wi6WECoLDAYpcRgvwFBlUGDNQqzmUBCY8S5lGs48CGVZRnNDaGoNFRRp0Alja2XcUcoaAW4MIENkyYgWQsAUIYQjbM432mVescyKgl9QrqNMW89Gcyur8L1GEXLl/ux6X0d/qjCILWQsJbkijGOoYZNsGwWVCDUxGCMyFfRQbYNZSxrh0TACNgcRK14gtY5YmFSumLgiupuXBFoylvpK2kwzUZaLwq+gUZmFio2aIlRs4OTE2YckDLG0dwJcHW+pp6PwJnqQ30fgJiP7B/TSDE6P6s1eJalR0VuOqViR6FSos1ClIHqMZ6FO1xyIrS5SFhKEZSRb00N8QyBDlTAq3iGSGo276Xe7QcJQzMwDRlQcMRq9R3FkYKol5YowDBFFuYQa6HwF/Bbbq9Lj8TH4LmW4y/3BH4H9Oy4LyS9TAda+GpXQIhlHU0rMoPaGKSEYTLNTEK8kuQKOlyBk6XfTc1hzUCMIZczeZW4LbA56RdwK3CDEaBcvBtPM5gUFyiwcfogotgpT4z+hUqN9D9rfUlfDfxriy5cvrXRZcCVKlSv0cLlxcBeIRGplJdxRNlQvfQcRsUwwGI3lhW51AEM24u3MoVgbuLKLCw7YbiViFDMVTUwdRpYaiAqLVTOoubgZ6cz1uX1FsUaCGHEWbiRI9E+E6b+E/a30uDDEv4K6D0XLly/0FXUP1VxGbiLcBvMXHSooLcGcR3hDUJSqNKI1IuagXronZGGDoN4gW2WbklvMAmSNqzCBSJmBlZx0UZei/AdNU56Kr9Og25iRI9U6EI9d9DoS/134T4L+F6X0qVKldVjFwYvQdBL6g/oFRwXFdIYErQTAqLSOQZQ0Q8w7voyzCMCiMVRuYjPBCrEoJUDlKKQG5XFgsTDthMsCi2WMUKhWYsNRdlHRfhDpQ3KGcuhDlDKmMT4j4WGPhP1X4L+K/gehA+FjHodUgQjLl9D4jryS8MwOIzXSXhYAJZqoQ2i0QZej0SzJcQbYoylrgaDEJArC6izFgCCFK1CViMLqNyAuD5lBL6L8IfARplkGY8xpElREZToda6MIkqV0P1X4DPS5fUuXDqED4mJGWnUlSoR+Aely+j0uXDZMCBbTNRKDBMqjTFS7RWJAssWv0Kg9CIgxECaWYlEtW4PvACoA6X0CL4Q+LLHWhi0YpK+BLjNiJ8VdT9U/DuX0OlwYQlQIfG9HpUCVKgdElSodHpcyZfC1Q2jWwSsw7sg1BRuFG2LWA3+oMH1r63LhAix61A+NcoKb67EbhOvjqVEY9K6pHopX7G5cvpcHor9NOiulSpUr46lStyJNWN564Em5BBWzBmYwSg2RpVsoaIafpVK+K4sIE1F+AJYRf0GVkBs6gQFVfpMScROrDf7a5f6a9KlSpUqVKlSownS/hfEERhsUkCWS4sjEKQUVQMFkZYESkYgxUMrEv8ARJV9FSuioEahL6X0Do/Gv4FwxOrBaUGn9FjOZuJ0YfuBj/VqVKlfCIkr4L6FkSKQpHBLJpEwzvnZHYMtivdTWZTIRr+gdK611vrcvpXRajb9Q3NnqNSlSSS/jrotBjHoP48kSD4UVpJzguJmRczNREhWZ5GSoNGNshisIEr4iV8Vy5fQlTBNxpF+G5fSul/Bu/A28R2rEz+kkqMW/khInwXnGGyYKvmVisyGGDQkGLMbDiaLLECoSyTYMdwjmMtl5fptLy8tLZmVK+C5bA7zs/DfwXL6nQ3NnqCtEcFELH9sf2B+quXLl/Bcv4WPWwAkaEcyqM1WzUqACNMXNxsopLuVuyVZYq8MDeOCOXFv4KlfBfxV0YIt/rHXd6BbRMCiaxf10+Mj+wPhX+lfS5cuXLgy5fRiSui5kvpBxIeCsaoJO4FwZYUUS6QcYUjBBgWNEs/qVKlfDlEqY/VOuz0rSe4v67EdalSsSvgP2J+wXLly/gOtdRIlxVIIsmYkpEIFCDIhqHBG3UlEhJIj4QLWIUt1GZX6pNS+lfr7Edw6BX9htN+u/wAD14/WP24+J6bagutQFK0VkLjraL3FK107YlrzN8QOEBpi8P2Qx6Fx/W3Jhr98mfi//9oACAEDAwE/EIdWHwHo9RxGG5pFRGHSv3tdKlSpXSpUqVK+G5bLly5cuX+vUr9U/Rf2uo9H4Tc1l9CwfoV8FSv3CSviqVKlSpUqVK/YVKlfpn7o+BQhHoYdB6E0nPTrCHwJ/A1+3rpXw1H9M/TP1z4CEIvow6HQnEdxmsPjv+PqVKlSpX6AdH9M/eHoQ6XLj8DCEFMY4fy9fDUrpUqBK6r9M/Qr9sOh+A6a6EenSPMP3t5/+CH6hgdBDq9DosOhD0bQf3ScQwZiwiCD/wDFjqwh1eh3GMIwmvWIftr6MKRLlCNxO5/BH8UOr0Oj1D4CE0lrm8JxD9u9WZSoX8D/ACa5f7QhHoQj02mnR6kZt0DBlw/ZWlHw1aHd+tcuXLly/wBtt+xf2pCDoQj1MkrMfh5mZDRD9rX4ksKfqL0GVS8vLQRBdwHX7Jj/AAx0VGEOrFBnrXUZjqaw/gX4l6DC9L63LiGo/MB1+ifG6l/pjLg9T9sIlS4wh1Y4xOr18TR/h1EsjCy/0CIagfuxUYH7ldK6jqzacSuhHo6gxN4fwj0jstFEIv4zoQf3YD4z9odLj0PgIr6hH4BC/hFUUWPRMo+AFxKh1IQablhf6r+odeZUI9D9wfCupGMIEcRt/CVHVV+DIjLhAig+A6VP6q/qHUcwidT4n9kdSMfUidRub9B/BMyVFj1vpRUYKYvRtUPhIS4/cHxVEh+0PgIdWEM9CM26c9J/Bqi5exly4y5UpZZ1XHj4Tpcv9N1+qfwB8D1VAidFR6DUP4KsqMZfVYYQ3LIfojpcfpv7l/XPgIdX4ARglYjroWP4NbLFiS+tdModOb49y5Qwb/en9qfAQfiHVIyujX+CLRFmLF6L1Oom4noHpfRcpgdOD9uIxi/cHwnwv4BIkSJZML/gjpQx+I6rjMxhqBLmYEqV8Awh+2ESCD+/uX0Eqor6V0MI/wAEbvTofiIEByoB0i5Kty4Q6X1bgw6DIPmWF/E/qn8GdaTb4CRUxwMP3ty5cyIaY/ACwmgl5hHEAKIW7YQIMfiCELdQaBzD4n9o/uSHVi6bdWM3h1BA/Z3Lly5cuXLly5cvrUowT0tI9kvLhCOyncUdTHxCYsAgO4Y1+i/xx1Y+m3V6O+l46v6Fy5cuXLly5f69ivRGoWh6UwgcpCAh1roREAhFdN/0n+OPgWZcHPwOmo0m0wmkuX0vrUqV0V+2TMBNQAEMgwjCVKhUuGdQ7EVxB9ormdhCpiVAqVHoM/osf44+Dbo2XD4QMwICHRXxr8F/s9nQu8TNBMzGRh4uReAcQduCvUFQsyoxSX0ZcWDCmZId3xsf3B+2PhGIKZj6m2M5YQlfpv7XQjvMkUEAEQlMSFE5gQldBLlRYsWAwUqj0CHSi/jf48+BmkS4qepK6BjofBf6D+0SVKmoOI5hAuVKgZgrospYgjAsJQkrodDUN/Gw/jj4GaxmDLjpp0Wuh0v+BYa6KgQJUGZcWHQxcJpGypRAplQhA+PT96w/ZX1YuglTCPTDM5ly/wCDJfS5cWDJ5EeCV7RZMYZDMNdEblHQh+hr/IHwLMIZdSw6VBic/wAKLBGjiZcRNYiiGXUqXLzFiwigcxOglQh/BD91tNILJUyprozWPw3L/f1IxLIiNzMYFOu5UZVFQhV0enbD4h66fuj90qZr05YYY7IzSGpf8LqMPecsXSup1SJOYIjK4sGH8FP3J016XEFM4Ou0P4ePmIEPhOjBOYsegL6DH8EP2R0SV8BGPHwaRjs6HP79cJUegldMMwD56a+E6pGPTEQajNwfj2/i2HV6EqVGPqLIKZd0DF/tlykr0plpcTcOgiRhAxAqMq4WFJOOl/E9FzKRXQnRS/i2/i2EOj0JfRizDXWjohDZDf6txMpKy8tLy4dSbw6bQ3CDEXQGVcDoQgkI/BUYS+hYEOhY9AhroS4dHf8AFvS5fU+BZh1sIlShGCvhWSkp1LS0V6V8Z1NdJ1EJcLQEqpVxO0EwIW5VBh0fgeh8G4okYwg5ixHXQ/jXq/HtHfwV5lVOhplpeWl/sTrp0HUQUwQ6esXGUYJv7S8SrUHZ0ZcOlxh03BjKjKuVNS8ypkcQsNQf41+E+A6afBUqOGMS5zftT4OkJarlGACVcwidpcC+WY4gMsqN2MyMci4ZfSutfBOlSutFwiS9PQScfuj92dFZFNI5EuLKm5xw4nPEr9v1hKtiOIsm0WCzEXghXcVNRtg6ByKJYNsTDKhLsv8ARPW+lRIbnMshaSiXmFj+Nf0ljoRjmYiKmOA3+4qKUQSPSk1DG5lMOIRlGXExpCxYRkDTMTvqLKkVrda/Qr6V0SJHJcWoOYEoxH+Nf0nmPRldKYeK6UJH9tAmeJVTsqCU3RMFzVZlr1AgFUQZ4jG6xuSK1ECxvSb/AIn4BeI9LiMwS1lENwIx/jWH6KroRHqIKur+0C+iBgJFxDK4VW5QnkzwmmIMmooWgRiZkEjFojUSGKhF0y/4lGLUCssehqI3GczSPDLziMf3J8R+sw/RWYal6yErMZ6i0GEGf2u7hFWJnljeCpcusOMpLxmNBcQamxcBqMCsMgiLe0a3J4Zqdzou+ixbjDkyl9PgDEMkWmZiS5WY6/jXo/ou4UCX0eobSvP7MWyzUSUEZtlnUqFsVHKiUCiWGY1qElR3DACBm6BGmFCQutgW3DcSWNMzMxHqSKyJ1HMCOJeYjzAhHX7k/aPR/R4+jXROmDKoGKfs6olXFqZ5ZbiHzmSyCAnIhW0xo5hiA7dAFKyyqhsIbmDUVMJFQXAgj4FcBgZiuKjLpgsToy5Xf90P2j0f0KlEaXBlRhOZYXCVM2/Yi2Mq7QFbj1SotlYVg7olASDmGSOOIV5RQI2MRCNcKxmAbBpL3mAESFgmcSoqRuV1u8TTsiuYMS8SmUYlZlQcRzDUcx/cn7V/QI9YyTcYRyguBTB/ZDibVMMQ2KmxF2V6Vmai5pnYQkbIFrJkuEMRCGKdINobW5pqMxC0qGZcwSua9K6YLjYjsSjM06DqOyWwNxZW4/uRD9q/p8UHQESLMVxkYNR/YlCVbYfDAARaleiGsOxYw3OEiO2ZLhZQAYvMDcENMG0jNmAQaYSlhBSCkYFyUSlwIniICWXobTSIqWpjVXFAzmGp3jH9wQ/gDqFtFiibyipnmkyQU/sKmSXmaBzOSL3DuixkVjEpVS6SOTORTCVUVmUAkUviVbLA7CNUEd3Muy5dVKVYqpJYRrVyhzNQOJpmLMHMZbFgZZhcXMFnRzDoy+P3BD9q/qOyZ8IuYsQJRJkPaCcw7MAZ4LiLiIm/0R6HFy5zLW40EJaIHNwsHEaCgc30AQg2xQYxqW3CvMTeGGS4uSDUTMN5ETLKVUSkCIjNcriFiXERjBuLERioeIKXoWVmLmEI/tyH7V/UeKgpeiXBMAG4gJAGTG1LAYfVFxroBlAQWo1+jVFR3w9opiNVjIUQIlDRIUC4NIthIGS0O4KqZCoNGFrJFiNEGMLDCQ3iMEigipZg+EShcMUqXiZYMECgY3U4Mdk0i8JWWKbiY6KnH7g/av6lEJXQDKWoElsNYzJbB6uoQFEXjnfSLywKNwi0Rp+O6NtRgZiruAc1GlkILEQ7gQ5MxylczARY9kG2yBCAN9AOEyiZQ9ZaYmUmiKCDqmOiNoxWow3B0TXSlIhzFqO5UJpHq/tz9s/pqhBYQtpeUmK2Ksj2MR6Lo0sDRjoMbIRUqBcEhWXIw51T8QyYFRyYGMsIoMWzA8keYKVsWxGqqO4aBgqjOIpaqIiMqkUMQ3NwrEGEFI7yS9kBGT6AgSiLhICqZBORBuAtR4TiMvcenjmJnEf25+2f1DImYK3coblQjiahFKCFy1AEgNTUMwMG1dLLg/FkwCcob1EJUW2dpQi6QUXcWVIKwIDCmEag3FdoQOCNRuEBZUQTm2HbAUTeYGWJQgtIYUJA1CmawM1MZyiYWqlLmk2Rg1OJ3jH7w1H+MV0f1PKI5qTWWKi2N6OjZsQYgiqwaijUt3gXPQaRIiCLpEhH4CLQiqWBmXaYOyOmsbCwwQMC4c1CUMpoQNxGmIShCW68QtSFXUGoaxwjySAUIIVfWCXqVsSNSGmoNMbA3DJcNwZgpSBTBpZsylbmjLsgbiqXLqZYlfxVdR+o5RHq0vzlvKE5QNroTI1E4PxI3ZCmIdTNxChr4BMxoQ8w7ITA0mritrmErgY3EHAbDMNwU2QCFyleOhTzGqvdFOILwgtHWEfDCp5gshaYuIXacICQcibI76CbQN5iAouZmBlhqcx3GE8Rz/FVK/RVK+CpSEIaQtdxFFFxiaESomDJ4LClMTpcCDhTZ6ygJo2JuPWDbMrj4g4zAvBMnvHTMBLYlZENJUGIuQE3eYOm4gKwbAROYAUuFQIpKjck5slzSlpYS+mVQbQZHooRndUblckVdBZBylZIkNsNdCJDBKh8Z/B1KlQYj8J8SxgiisdC6kawKj7+kcUT3EoLjxwd1GsMLL1iwgVfgWK6KWyuBILOcw5uDB4hrGEIBcLNpFpWEUJKG4asTQhLDcK2oXiLUIosYOCN4mbgCcENOGVIywsmTmLopZE7gpjpDGxFki4nLcHEe0Og4l/xwxB8V/ARUjC9UD4OiGcgcRuHwLFzNTIEEjcC6emIEVqQIHWrRNUjvEE2xiQhSJgaxAtpgTWYrSiGDDWSo1uG7YNMi8wtZjpuIScMMC4oYYFswYuhc1iwLZQJguJhDRNiYETWoNXGsRbnfpz0qEYfGfw5+I+IQgRVlxelo/hS4qMFoAVBbPRmkiC0MUTobSWQKUNwKihnamItMSDJakDNxTUjmZiNOI6qBQuUVC1LwNgw/EWCpWwqRExlFMWwMR1CVcbUjiJpC1uVKjgjagyXKyRnEVdWbgfxJ8Q+I6nXMTxKiQkrb6Fa+ECuWKalDTACFsQjLZXl1OGZxFga2zO4NkIycTMR0skrcbpZIU5gRTCirqBwiVakulQo1NoJVEEalKgFI1gauHhNJpCYvFSmyLU0RaoNR0gxGGUUUD4L6Bj/AA50P0x1I9BoohVXoNaOipgp+GyFeXQXmLwhZM0RhXRjDOamxIJtiUWAKNyhbHNxAlm4VGMVdxpxKaSytTTWJiiQ0rFpK6WYkKgyzmG4GN0SsRMMWyXEqqOM1jzNiDc3ubIXNo/h5gxf35+iS5fwHEd/pGoaGItJWk3+iIYK8YCRRdi43Li9GsHKK9+gqWSIlXEmo1TcAhZFXErEDMOZh94gah4JUMBSi2IrUphAO8YKNEiky9opF0ImGcEShF6jAqpuLwhVY8wNs0R3Hfw8w3Hf7s/Z6Tb9MNBDRBgJf+jGagEXKdxxiM9QTiFHA2cahzLm40VUAYGghjjAW46KpakwRandG4blxUo7gyYmitXDlcptEFQLhU2SspgE0Z2jaWRHGHaBxDcCLNRKKiw+Mb6P7o/RqVKlfGqvxj4WpDfQGM5z9BYwq45QguU7G3roh0Istw5sIESIDgzA6TO2JtYNwYAIU4zylICZhVDBsQKY93GQYMS6xNkV1Gk0zDEoYaMMwC0OU74gGZtm0ehx8LK6P7o+I/Rz0CBH458G04I4i5U1EA7jIKIcRH4DO4A2wW4S0VLoMXoNzNmxgYZkKhOMRXCHSYoLUnFcz3xEtzFbCLMxxBxFQxxFpImiXnEZJeZekWRBiaZZA2l1nRUq47S0MSmLzHpUSup1r+FuVCXLlxly/wBAfAbjUZbDBqM0Mbg6Acx7zMtIvzJulumDO2DUdIISUItwxygCMFjJRCYIKbqVHMA1KeY0IkqLqL2lRLiiQ0RlEwIqsp21NoUojyRhmNXK2j+ECiGsREXiBElZhxNGMAxZYa+A46j1Dj4a/bn6Fy+pcuXD9csxKGNXDBRCjDA7yneEYT0RkXDZK6nSxRR6ndg3COoKsy5gpqnUJKxAVhZSpW9R4lwoj6GLAoit8QFVzGzCbnbERmsGSDMBaJABUYVHLU0RRSLuPBFiGXUROj8DErpfQ3Eo6kr+Bv4yMCCv0xjFWKrJOWoAKwRdtZTB4RLuUDqoygojEuVPjroiqbtyu25YBEcoVZIE2yo5uWNzJmBGCBGabXKJB5jvpFjM71Lgj8QLgLRpCgQtoAgC8QgxqmWx4gVbHTCPQg3026kGOup1OqfwNdCam4r/AExctIMD0a8EB2S0DxEkQZe5gV0ZPgK6ERdDKVLWHbcIJAN6HGYjmLNRxgRM3FTMXICwtBZz0s4IzCgZnairmRlBqNkgWlQQ+Ol2Iw3MAzFbKj08wabjFnQlkHtK6nR+AifwVwal1Fj+kosgql8JWYpbGGcSsE2lbcMtTDBCBhAprqPRXLtL1mAU5i01Eh2RsMR8kGFYrMyqRJgMeIa1MlSO22d0FGJrmNlx4WdAjzGYC55StxFoI5EC8QZbgtvoGcziG5fRi6uuh0fgNQ+EjE6V+2I/ojHo/pOkYq6E6giYjDoNPR8INMhAzBckYi0zGQfAqpNoj4iqpULYzO3KLiF6xbljjHRwR0guHbdQELgwoKmRRKqCQxAhAhzdzATBmLRKZihcciw4Q79Y8wYhWxQOt9ahCE4l/psTpX7l+Guh0f087RaSplLTBDXQXBBGkaGZLIQlkuHJKjCV0E0Sx6BbAuQysAIALjoId0zuB4gZZgzVroYSWolgGZYuWpKwDKaMGJgJRlggZgXHpA05mpFhi4IUhqLKi/E7IQ6J0PiOpE/ZHwHw10I/sCuQ0OsvMzHotgy5cuXLGNoQnqXdBkOJeGNMS1QZSwqLcUdNpU0rBhiXdEWmM0rpaYjxmNowHrE1mXCyzM1uWIojIXArBKSFZYETUyj6P6BWsQhDpXxkPgroP3LD9cdOCI+BfwXLly4wBLeuoTCJiMSsxVi5m4Kwyoi29KkHHQDBusWLijMhamKxLURlEVjpnBGpUZcwKomLI6cRXdSwSs9H42aoqa+M+Guty4dE/fV0fhqBKlSutvSujLly5f6PCGmC1mCNoVdQKgTKrla6DMGmyLSyNYIAFEyjtJVEW6IeSDCDIRaIwV2xstQAd9JXKmWWBcxueIuOi+NaLh5mjDTMB0uX0v4XprqahH9pUrpUSPw30ZUqVK/RCV0P6oxcbLMQlFQMwblkiFRYzBWWbdLHiDbKMwKLjHcfWmGZyyyjoDEaahliTIZgQQOhAwcRcVOehegfA9OD0CMY1CB+A6MfietfuK+KonW5cvrXRUqV8JUqVK/QeibuLI2uXzMnMVsMKS4tnZBquhKi0Bm2ZrndMS3cF5ljLtwLbgdS7hBQg0RuCL4SqgLcOIEdzCLfQPhXoLKg36w3AuJckGLIbg/E/CRz0v8AdV8TH4iHwkY9KldH4nrgqV3GZgolEMLUJYqXe4LAWxYOh0GTBTASiWYSlRFWQWBAZiQYilr0iwLgAZgWW4i49stZXQPhX4G3REjCyyIw6iB+MjBly+j+xcdKlSuionwMX4iD0D1WXLj8Kda+CpUdMAWIKdCFkUKMeMQWneCm4wuMVf6YMFIBFOyZtsreojtFrcU9K6h8K/FjnqkobMEv4BhF3+ofsNSpUelRIxlxj+idLiy5cegy5ceh1vV8fAYZuygYSiIINUyrpExUbFEqGYv1E+AV8LGVD4FlfGCq6lktxC/juXB631uHQ638Vfo10rpUT9VcuX1uX+hfQQSDOnXMM5C4hGI8TMlhEpzBd4hstm/x11v46gRl9K+BelfoAmYXp315CBj9Il/E/t6j+ovrcuXL6XLg9K+FVLIkbGmSDT0GEiEuYCXakbUvaXADDSkFIkZ/SZcuXLly4sLj1rpfQPjr4Bz8FnSEOT9E+A/dp+2jBl/BXTUYmfEJxCVN4cJ2SocpKqJEsmtJbCwh+g9L+KuhKlfBuBX6jNXwg1+hfRcYQ6Ev9u/t9wYfCBxBx6CoZNwq4QwwZhMXq4LEJmCClzFl/Ey/jqV1vqF/r6vgSEHHWpXx3Llw+C/2j+5DB+C6BisFIuRkqWMTNxCIULDECgLEjDCkNRmoSpTqVlZSUlEx0v4KlEWH6KpXV66vhBA+OpXxH7h/W18VSvhIdaKrhGYhEuIQE2QEFk4huyAGpaqYFUkgWRlI5g+O/wBK5c3A/Weur4AQP1K6j/GNdH4CEuXKBK7zepndjoAdtRzhFwVipxExJhI2m4oVHLAD+rcv4hn9Z66ujcCB+uDKJfQP8K1KlfC9bly4QZUMV5jxSWEZRzAUGO54IQzDEYwGUEGlLFdOrL/VYFxL6X+u6GBib9JUD9hr+hH7F/b34jpquO9woGKl6NpAjnOUpWJrmNZhWSv2QdWH626HnofsdP0I+E+D/9k=", "RequestHeaders": { @@ -27,7 +27,7 @@ "no-cache" ], "Date": [ - "Wed, 15 May 2019 09:57:24 GMT" + "Tue, 09 Nov 2021 23:05:46 GMT" ], "Pragma": [ "no-cache" @@ -39,7 +39,7 @@ "ASP.NET" ], "apim-request-id": [ - "9df739d1-ca84-4ef4-93ee-f415f88820bf" + "c0e5ad1d-64eb-498b-b514-55d92e1778fd" ], "Strict-Transport-Security": [ "max-age=31536000; includeSubDomains; preload" @@ -48,7 +48,7 @@ "nosniff" ], "Content-Length": [ - "1924" + "1957" ], "Content-Type": [ "application/json; charset=utf-8" @@ -57,7 +57,7 @@ "-1" ] }, - "ResponseBody": "[\r\n {\r\n \"faceId\": \"cc7ed45b-b4e0-40a2-a3b2-0fccd25d4041\",\r\n \"faceRectangle\": {\r\n \"top\": 202,\r\n \"left\": 550,\r\n \"width\": 127,\r\n \"height\": 127\r\n },\r\n \"faceLandmarks\": {\r\n \"pupilLeft\": {\r\n \"x\": 579.2,\r\n \"y\": 242.6\r\n },\r\n \"pupilRight\": {\r\n \"x\": 626.3,\r\n \"y\": 226.7\r\n },\r\n \"noseTip\": {\r\n \"x\": 617.0,\r\n \"y\": 268.5\r\n },\r\n \"mouthLeft\": {\r\n \"x\": 606.3,\r\n \"y\": 303.9\r\n },\r\n \"mouthRight\": {\r\n \"x\": 643.6,\r\n \"y\": 289.6\r\n },\r\n \"eyebrowLeftOuter\": {\r\n \"x\": 556.3,\r\n \"y\": 240.0\r\n },\r\n \"eyebrowLeftInner\": {\r\n \"x\": 595.2,\r\n \"y\": 226.1\r\n },\r\n \"eyeLeftOuter\": {\r\n \"x\": 571.0,\r\n \"y\": 246.6\r\n },\r\n \"eyeLeftTop\": {\r\n \"x\": 577.9,\r\n \"y\": 239.8\r\n },\r\n \"eyeLeftBottom\": {\r\n \"x\": 579.1,\r\n \"y\": 247.6\r\n },\r\n \"eyeLeftInner\": {\r\n \"x\": 587.0,\r\n \"y\": 242.1\r\n },\r\n \"eyebrowRightInner\": {\r\n \"x\": 609.4,\r\n \"y\": 222.4\r\n },\r\n \"eyebrowRightOuter\": {\r\n \"x\": 637.1,\r\n \"y\": 203.2\r\n },\r\n \"eyeRightInner\": {\r\n \"x\": 620.0,\r\n \"y\": 231.2\r\n },\r\n \"eyeRightTop\": {\r\n \"x\": 625.3,\r\n \"y\": 223.6\r\n },\r\n \"eyeRightBottom\": {\r\n \"x\": 627.4,\r\n \"y\": 230.2\r\n },\r\n \"eyeRightOuter\": {\r\n \"x\": 633.4,\r\n \"y\": 224.0\r\n },\r\n \"noseRootLeft\": {\r\n \"x\": 598.7,\r\n \"y\": 240.8\r\n },\r\n \"noseRootRight\": {\r\n \"x\": 612.6,\r\n \"y\": 235.7\r\n },\r\n \"noseLeftAlarTop\": {\r\n \"x\": 602.3,\r\n \"y\": 264.4\r\n },\r\n \"noseRightAlarTop\": {\r\n \"x\": 622.2,\r\n \"y\": 253.6\r\n },\r\n \"noseLeftAlarOutTip\": {\r\n \"x\": 600.5,\r\n \"y\": 277.5\r\n },\r\n \"noseRightAlarOutTip\": {\r\n \"x\": 629.4,\r\n \"y\": 264.3\r\n },\r\n \"upperLipTop\": {\r\n \"x\": 624.7,\r\n \"y\": 290.2\r\n },\r\n \"upperLipBottom\": {\r\n \"x\": 626.0,\r\n \"y\": 294.3\r\n },\r\n \"underLipTop\": {\r\n \"x\": 628.2,\r\n \"y\": 300.3\r\n },\r\n \"underLipBottom\": {\r\n \"x\": 630.2,\r\n \"y\": 308.6\r\n }\r\n },\r\n \"faceAttributes\": {\r\n \"smile\": 0.0,\r\n \"headPose\": {\r\n \"pitch\": 14.8,\r\n \"roll\": 7.8,\r\n \"yaw\": 32.0\r\n },\r\n \"gender\": \"male\",\r\n \"age\": 41.0,\r\n \"facialHair\": {\r\n \"moustache\": 0.6,\r\n \"beard\": 0.6,\r\n \"sideburns\": 0.1\r\n },\r\n \"glasses\": \"ReadingGlasses\",\r\n \"emotion\": {\r\n \"anger\": 0.0,\r\n \"contempt\": 0.0,\r\n \"disgust\": 0.0,\r\n \"fear\": 0.0,\r\n \"happiness\": 0.0,\r\n \"neutral\": 0.844,\r\n \"sadness\": 0.0,\r\n \"surprise\": 0.155\r\n },\r\n \"blur\": {\r\n \"blurLevel\": \"low\",\r\n \"value\": 0.0\r\n },\r\n \"exposure\": {\r\n \"exposureLevel\": \"goodExposure\",\r\n \"value\": 0.34\r\n },\r\n \"noise\": {\r\n \"noiseLevel\": \"medium\",\r\n \"value\": 0.43\r\n },\r\n \"makeup\": {\r\n \"eyeMakeup\": false,\r\n \"lipMakeup\": false\r\n },\r\n \"accessories\": [\r\n {\r\n \"type\": \"glasses\",\r\n \"confidence\": 1.0\r\n },\r\n {\r\n \"type\": \"headwear\",\r\n \"confidence\": 1.0\r\n }\r\n ],\r\n \"occlusion\": {\r\n \"foreheadOccluded\": true,\r\n \"eyeOccluded\": false,\r\n \"mouthOccluded\": false\r\n },\r\n \"hair\": {\r\n \"bald\": 0.0,\r\n \"invisible\": true,\r\n \"hairColor\": []\r\n }\r\n },\r\n \"recognitionModel\": \"recognition_04\"\r\n }\r\n]", + "ResponseBody": "[\r\n {\r\n \"faceId\": \"655830e8-7f1b-4768-b70e-05daa2998c53\",\r\n \"faceRectangle\": {\r\n \"top\": 202,\r\n \"left\": 550,\r\n \"width\": 127,\r\n \"height\": 127\r\n },\r\n \"faceLandmarks\": {\r\n \"pupilLeft\": {\r\n \"x\": 579.2,\r\n \"y\": 242.6\r\n },\r\n \"pupilRight\": {\r\n \"x\": 626.3,\r\n \"y\": 226.7\r\n },\r\n \"noseTip\": {\r\n \"x\": 617.0,\r\n \"y\": 268.5\r\n },\r\n \"mouthLeft\": {\r\n \"x\": 606.3,\r\n \"y\": 303.9\r\n },\r\n \"mouthRight\": {\r\n \"x\": 643.6,\r\n \"y\": 289.6\r\n },\r\n \"eyebrowLeftOuter\": {\r\n \"x\": 556.3,\r\n \"y\": 240.0\r\n },\r\n \"eyebrowLeftInner\": {\r\n \"x\": 595.2,\r\n \"y\": 226.1\r\n },\r\n \"eyeLeftOuter\": {\r\n \"x\": 571.0,\r\n \"y\": 246.6\r\n },\r\n \"eyeLeftTop\": {\r\n \"x\": 577.9,\r\n \"y\": 239.8\r\n },\r\n \"eyeLeftBottom\": {\r\n \"x\": 579.1,\r\n \"y\": 247.6\r\n },\r\n \"eyeLeftInner\": {\r\n \"x\": 587.0,\r\n \"y\": 242.1\r\n },\r\n \"eyebrowRightInner\": {\r\n \"x\": 609.4,\r\n \"y\": 222.4\r\n },\r\n \"eyebrowRightOuter\": {\r\n \"x\": 637.1,\r\n \"y\": 203.2\r\n },\r\n \"eyeRightInner\": {\r\n \"x\": 620.0,\r\n \"y\": 231.2\r\n },\r\n \"eyeRightTop\": {\r\n \"x\": 625.3,\r\n \"y\": 223.6\r\n },\r\n \"eyeRightBottom\": {\r\n \"x\": 627.4,\r\n \"y\": 230.2\r\n },\r\n \"eyeRightOuter\": {\r\n \"x\": 633.4,\r\n \"y\": 224.0\r\n },\r\n \"noseRootLeft\": {\r\n \"x\": 598.7,\r\n \"y\": 240.8\r\n },\r\n \"noseRootRight\": {\r\n \"x\": 612.6,\r\n \"y\": 235.7\r\n },\r\n \"noseLeftAlarTop\": {\r\n \"x\": 602.3,\r\n \"y\": 264.4\r\n },\r\n \"noseRightAlarTop\": {\r\n \"x\": 622.2,\r\n \"y\": 253.6\r\n },\r\n \"noseLeftAlarOutTip\": {\r\n \"x\": 600.5,\r\n \"y\": 277.5\r\n },\r\n \"noseRightAlarOutTip\": {\r\n \"x\": 629.4,\r\n \"y\": 264.3\r\n },\r\n \"upperLipTop\": {\r\n \"x\": 624.7,\r\n \"y\": 290.2\r\n },\r\n \"upperLipBottom\": {\r\n \"x\": 626.0,\r\n \"y\": 294.3\r\n },\r\n \"underLipTop\": {\r\n \"x\": 628.2,\r\n \"y\": 300.3\r\n },\r\n \"underLipBottom\": {\r\n \"x\": 630.2,\r\n \"y\": 308.6\r\n }\r\n },\r\n \"faceAttributes\": {\r\n \"smile\": 0.0,\r\n \"headPose\": {\r\n \"pitch\": 14.8,\r\n \"roll\": 7.8,\r\n \"yaw\": 32.0\r\n },\r\n \"gender\": \"male\",\r\n \"age\": 44.0,\r\n \"facialHair\": {\r\n \"moustache\": 0.6,\r\n \"beard\": 0.6,\r\n \"sideburns\": 0.1\r\n },\r\n \"glasses\": \"ReadingGlasses\",\r\n \"emotion\": {\r\n \"anger\": 0.0,\r\n \"contempt\": 0.0,\r\n \"disgust\": 0.0,\r\n \"fear\": 0.0,\r\n \"happiness\": 0.0,\r\n \"neutral\": 0.844,\r\n \"sadness\": 0.0,\r\n \"surprise\": 0.155\r\n },\r\n \"blur\": {\r\n \"blurLevel\": \"low\",\r\n \"value\": 0.0\r\n },\r\n \"exposure\": {\r\n \"exposureLevel\": \"goodExposure\",\r\n \"value\": 0.34\r\n },\r\n \"noise\": {\r\n \"noiseLevel\": \"medium\",\r\n \"value\": 0.43\r\n },\r\n \"makeup\": {\r\n \"eyeMakeup\": false,\r\n \"lipMakeup\": false\r\n },\r\n \"accessories\": [\r\n {\r\n \"type\": \"glasses\",\r\n \"confidence\": 1.0\r\n },\r\n {\r\n \"type\": \"headwear\",\r\n \"confidence\": 1.0\r\n }\r\n ],\r\n \"occlusion\": {\r\n \"foreheadOccluded\": true,\r\n \"eyeOccluded\": false,\r\n \"mouthOccluded\": false\r\n },\r\n \"hair\": {\r\n \"bald\": 0.0,\r\n \"invisible\": true,\r\n \"hairColor\": []\r\n },\r\n \"qualityForRecognition\": \"medium\"\r\n },\r\n \"recognitionModel\": \"recognition_04\"\r\n }\r\n]", "StatusCode": 200 } ],