diff --git a/_static/simulation_output.png b/_static/simulation_output.png index ff640bcec..86b8e8df7 100644 Binary files a/_static/simulation_output.png and b/_static/simulation_output.png differ diff --git a/sphinx/auxiliary/Boston_getting_started_example.ipynb b/sphinx/auxiliary/Boston_getting_started_example.ipynb index 5a3d061dc..a7ce39a31 100644 --- a/sphinx/auxiliary/Boston_getting_started_example.ipynb +++ b/sphinx/auxiliary/Boston_getting_started_example.ipynb @@ -551,14 +551,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAHYCAYAAACiIN65AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3TUVf7G8fdN76FDQqjSQkISICACIi7SFBUFVhHXgi4iKvaCLrr605VVbGDDtrKKioBdUERFpCiGHghSJIFQAgRISG/390dCFjCQNslM4Hmdk8N8253PTPbs7pPbjLUWEREREREREVfm5uwCRERERERERMqj8CoiIiIiIiIuT+FVREREREREXJ7Cq4iIiIiIiLg8hVcRERERERFxeQqvIiIiIiIi4vIUXkVERERERMTlKbyKiIjUEGNMojHmojLOP2yM2WGMyTDGJBtjZpec31hyLsMYU2iMyTnu+OHjnu9vjLHGmAeOO3f+cfdmllzPOO6nZe18ahERkZrh4ewCREREzibGmOuBvwEXWWu3G2OaAZcBWGsjjrtvMfC+tfatMpq5HjhU8u8zJc/+DASUPNsa2AHUs9YW1NRnERERqU3qeRUREaldPYBvrbXbAay1+6y1b1T0YWOMHzASuA1ob4yJrZkyRUREXIvCq4iISO36BbjOGHO/MSbWGONeyedHABnAHOBb4DpHFygiIuKKFF5FRERqkbX2feAOYDDwE7DfGPNQJZq4HphtrS0EPgBGG2M8HV+piIiIa1F4FRERqWXW2lnW2ouAesB44AljzODynjPGtAAuBGaVnPoc8AEuqalaRUREXIXCq4iIiJNYa/OttXOA9UBkBR75G8X/2/2lMWYf8AfF4VVDh0VE5Iyn1YZFRERqlqcxxue442uBvcASIJPi4cMRwK8VaOs64HHg9ePO9QTmGGMaWmtTHVOyiIiI61F4FRERqVnzTzpOAA4D7wPuQBJwq7V26ekaMcb0AloDr1hrDxx36QtjzDZgNPCyo4oWERFxNcZa6+waRERERERERE5Lc15FRERERETE5Sm8ioiIiIiIiMtTeBURERERERGXp/AqIiIiIiIiLk/hVURERERERFxendsqZ8iQIfabb75xdhkiIiIiIiJSM0xZJ+tcz+vBgwedXYKIiIiIiIjUsjoXXkVEREREROTso/AqIiIiIiIiLk/hVURERERERFxenVuwSUREREREznz5+fkkJyeTk5Pj7FKkhvj4+BAWFoanp2eF7ld4FRERERERl5OcnExgYCCtW7fGmDIXn5U6zFpLamoqycnJtGnTpkLPaNiwiIiIiIi4nJycHBo2bKjgeoYyxtCwYcNK9awrvIqIiIiIiEtScD2zVfb3q/AqIiIiIiJykl27dnHhhRcSHh5OREQEL730Upn3LV68mODgYGJiYoiJieGJJ54A4MiRI7z66qsn3Dds2LBaqd0REhMT+eCDD0qP4+LimDhxIgDvvvsut99+e63XpDmvIiIiIiIiJ/Hw8OC5556jW7duHD16lO7duzNw4EA6d+78p3vPP/98vvrqqxPOHQuvEyZMqK2SKSgowMPDMRHvWHi95pprAIiNjSU2NtYhbVeVel5FREREREROEhISQrdu3QAIDAwkPDyc3bt3V/j5hx56iO3btxMTE8P9998PQEZGBiNHjqRTp06MGTMGa+2fnuvfvz933XUXvXv3JjIykpUrVwKQmZnJ2LFj6dGjB127duXzzz8HintBR40axaWXXsqgQYMAeOaZZ+jSpQvR0dE89NBDAGzfvp0hQ4bQvXt3zj//fDZv3gzADTfcwMSJE+nduzdt27Zl7ty5pfX//PPPxMTE8MILL5yy5/jAgQOMGDGCHj160KNHD5YtW1bh76iy1PPqYNZajc0XEREREXGgp2ctYPPOfQ5ts1PLZkwaM7RC9yYmJrJmzRrOPffcMq+vWLGC6OhoQkNDmTp1KhEREUyZMoX4+HjWrl0LFA8bXrNmDRs3biQ0NJQ+ffqwbNky+vbt+6f2MjMzWb58OUuWLGHs2LHEx8fz1FNP8Ze//IV33nmHI0eO0LNnTy666KLS91+/fj0NGjRgwYIFfPbZZ/z666/4+flx6NAhAMaNG8frr79O+/bt+fXXX5kwYQI//PADAHv37mXp0qVs3ryZyy67jJEjRzJlyhSmTp1a2qO8ePHiMj/7nXfeyd13303fvn3ZuXMngwcPJiEhoULfa2UpvDrQ2m27eOq9+bx2zxgaBQc4uxwREREREammjIwMRowYwYsvvkhQUNCfrnfr1o2kpCQCAgKYP38+w4cPZ+vWrWW21bNnT8LCwgCIiYkhMTGxzPA6evRoAPr160d6ejpHjhxh4cKFfPHFF0ydOhUoXo15586dAAwcOJAGDRoAsGjRIm688Ub8/PwAaNCgARkZGSxfvpxRo0aVvkdubm7p6+HDh+Pm5kbnzp1JSUmp1PezaNEiNm3aVHqcnp7O0aNHCQwMrFQ7FaHw6kD+Pl5s272fSW98wox7r8XNTaOyRURERESqq6I9pI6Wn5/PiBEjGDNmDFdeeWWZ9xwfaC+++GImTJjAwYMHy7zX29u79LW7uzsFBQVl3nfySE5jDNZa5s2bR8eOHU+49uuvv+Lv7196XNZI0KKiIurVq1faC3y6usoaynw6RUVFrFixAl9f30o9VxVKVw7UPqwpk8YMZVn8dt5ZUHNjvUVEREREpGZZa7npppsIDw/nnnvuOeV9+/btKw18K1eupKioiIYNGxIYGMjRo0er9N6zZ88GYOnSpQQHBxMcHMzgwYOZPn166XutWbOmzGcHDRrEO++8Q1ZWFgCHDh0iKCiINm3aMGfOnNLPtm7dutPWUNH6Bw0axMsvv1x6fKqA7AgKrw42qn93BveI4KW5P7B22y5nlyMiIiIiIlWwbNky3nvvPX744YfSbXDmz58PwOuvv87rr78OwNy5c4mMjCQ6OpqJEyfy0UcfYYyhYcOG9OnTh8jIyNIFmyqqfv369O7dm/Hjx/P2228DMHnyZPLz84mKiiIyMpLJkyeX+eyQIUO47LLLiI2NJSYmpnSY8axZs3j77beJjo4mIiKidMGnU4mKisLDw4Po6GheeOGFU943bdo04uLiiIqKonPnzqXfS00wle0WdrbY2FgbFxfn7DJOKz0zmxGPvo4FPnliPEH+Nd+FLiIiIiJyJklISCA8PNzZZdS6/v37M3XqVKdvS1NbTvF7LnMFXPW81oAgf1+mThjF/sPpPPrOF5UeNy4iIiIiIiInqpXwaox5xxiz3xgTf9y5BsaY74wxW0v+rV8btdSW6HPCuHPkABbGbeLjxa7dUywiIiIiIq5h8eLFZ02va2XVVs/ru8CQk849BHxvrW0PfF9yfEa5cUhv+nZpx5RZ37BlV+WWnBYREREREZH/qZXwaq1dAhw66fTlwMyS1zOB4bVRS21yc3Pj6XFXEOjnwz2vziErN8/ZJYmIiIiIiNRJzpzz2tRauxeg5N8mTqylxjQMCmDKLVeyY+9Bnn5/gbPLERERERERqZPqxIJNxphxxpg4Y0zcgQMHnF1OpfWOOIe/D+vLvCWr+XrFBmeXIyIiIiIiUuc4M7ymGGNCAEr+3X+qG621b1hrY621sY0bN661Ah3p9isupFv7lvzz3S9JSkl1djkiIiIiIlIOYwx/+9vfSo8LCgpo3Lgxw4YNq1Q7/fv359h2nxdffDFHjhxxaJ1nC2eG1y+A60teXw+cfpfcOs7D3Z1nbh2Bu5vhvlfnkldQ4OySRERERETkNPz9/YmPjyc7OxuA7777jubNm1erzfnz51OvXj1HlHfWqa2tcj4EVgAdjTHJxpibgCnAQGPMVmBgyfEZLbRhPZ68aTgbE/fwwpxFzi5HRERERETKMXToUL7++msAPvzwQ0aPHl16LTMzk7Fjx9KjRw+6du3K558X98dlZ2dz9dVXExUVxVVXXVUafgFat27NwYMHARg+fDjdu3cnIiKCN954o/SegIAAHnnkEaKjo+nVqxcpKdq5BMCjNt7EWjv6FJcG1Mb7u5KLYsO5ZkBPZn6zgl7hbbkgpoOzSxIRERERcWnPbk/h94wch7bZMcCH+89pWu59V199NU888QTDhg1j/fr1jB07lp9//hmAp556ir/85S+88847HDlyhJ49e3LRRRcxY8YM/Pz8WL9+PevXr6dbt25ltv3OO+/QoEEDsrOz6dGjByNGjKBhw4ZkZmbSq1cvnnrqKR544AHefPNN/vGPfzj089dFdWLBpjPN/VcPomPLZjz81qekHEp3djkiIiIiInIKUVFRJCYm8uGHH3LxxRefcG3hwoVMmTKFmJgY+vfvT05ODjt37mTJkiVce+21pc9HRUWV2fa0adNKe1d37drF1q1bAfDy8iqdV9u9e3cSExNr7gPWIbXS8yon8vby5PkJoxj52AwenDGPtx+8Hnc3/R1BRERERKQsFekhrUmXXXYZ9913H4sXLyY19X+Lr1prmTdvHh07dvzTM8aY07a5ePFiFi1axIoVK/Dz8ysNvwCenp6lz7u7u1Og9XIA9bw6TZuQRky+7hJWbk5kxhdLnF2OiIiIiIicwtixY3n00Ufp0qXLCecHDx7M9OnTsdYCsGbNGgD69evHrFmzAIiPj2f9+vV/ajMtLY369evj5+fH5s2b+eWXX2r4U9R9Cq9OdHmfaC7tHcWrny0mbnOis8sREREREZEyhIWFceedd/7p/OTJk8nPzycqKorIyEgmT54MwK233kpGRgZRUVE888wz9OzZ80/PDhkyhIKCAqKiopg8eTK9evWq8c9R15ljfyWoK2JjY+2xPZLOBJnZuYx8bAY5efl8+uSt1Avwc3ZJIiIiIiJOl5CQQHh4uLPLkBp2it9zmWOu1fPqZP6+3jw3YSSHjmby8JufUtf+mCAiIiIiIlIbFF5dQOfWodx31SAWr93C+99prLuIiIiIiMjJFF5dxLUDz+XCmI48+9F3bNyxx9nliIiIiIiIuBSFVxdhjOGpvw+nUbA/9742h8zsXGeXJCIiIiIi4jIUXl1IvQA/nhk/kuT9h3l85lea/yoiIiIiIlJC4dXFxHZsxW1X9OerFev5bOlaZ5cjIiIiIiLiEhReXdC4S/vRs1Nrnvzv1/yx54CzyxEREREROSu99NJLREZGEhERwYsvvlh6/qqrriImJoaYmBhat25NTExMmc+3bt2aLl26EBMTQ2xsbOn5d999lz179pxw38GDB2vugzjYiy++SFZWVunxxRdfzJEjRwAICAiosfdVeHVB7m5uPDN+BD7entz76hxy8/KdXZKIiIiIyFklPj6eN998k5UrV7Ju3Tq++uortm7dCsDs2bNZu3Yta9euZcSIEVx55ZWnbOfHH39k7dq1xMXFlZ47ObzWhsLCQoe1dXJ4nT9/PvXq1XNY+6ei8OqimtQP4l9/v4Lfd6Xw7EcLnV2OiIiIiMhZJSEhgV69euHn54eHhwcXXHABn3766Qn3WGv5+OOPGT16dIXbnTt3LnFxcYwZM4aYmBiys7MBmD59Ot26daNLly5s3rz5T8+9++67XH755QwZMoSOHTvy+OOPl157//336dmzJzExMdxyyy2lQTUgIIBHH32Uc889lxUrVvDbb7/Ru3dvoqOj6dmzJ0ePHqWwsJD777+fHj16EBUVxYwZMwBYvHgx/fv3Z+TIkXTq1IkxY8ZgrWXatGns2bOHCy+8kAsvvBA4dc/xs88+W9ruY489VuHv6FQ8yrvBGHMecC1wPhACZAPxwNfA+9batGpXcYYospafUjO4sFGgQ9q7ILoDNwzpzbvfLOfczm0YGNvZIe2KiIiIiNQlT89awOad+xzaZqeWzZg0Zugpr0dGRvLII4+QmpqKr68v8+fPP2HoL8DPP/9M06ZNad++fZltGGMYNGgQxhhuueUWxo0bx8iRI3n55ZeZOnXqCe01atSI1atX8+qrrzJ16lTeeuutP7W3cuVK4uPj8fPzo0ePHlxyySX4+/sze/Zsli1bhqenJxMmTGDWrFlcd911ZGZmEhkZyRNPPEFeXh6dOnVi9uzZ9OjRg/T0dHx9fXn77bcJDg7mt99+Izc3lz59+jBo0CAA1qxZw8aNGwkNDaVPnz4sW7aMiRMn8vzzz/Pjjz/SqFGjU35/CxcuZOvWraxcuRJrLZdddhlLliyhX79+p/29nM5pw6sxZgGwB/gceArYD/gAHYALgc+NMc9ba7+ocgVnkK9S0nhsyz7uP6cJ1zRv4JA27xo1gLjfE5n89ud0bh1K80Y13x0vIiIiInK2Cw8P58EHH2TgwIEEBAQQHR2Nh8eJ8enDDz88ba/rsmXLCA0NZf/+/QwcOJBOnTqdMrwdG3rcvXt3PvnkkzLvGThwIA0bNiy9f+nSpXh4eLBq1Sp69OgBQHZ2Nk2aNAHA3d2dESNGAPD7778TEhJSel9QUBBQHDLXr1/P3LlzAUhLS2Pr1q14eXnRs2dPwsLCAIiJiSExMZG+ffuW881R2u7ChQvp2rUrABkZGWzdurXmwivwN2vtyf2/GcDqkp/njDGnjttnmUuaBvNTagZTt+8nxNvTIT2wXh4eTL11FCMefZ37X5vLzEk34unh7oBqRURERETqhtP1kNakm266iZtuugmAhx9+uDTIARQUFPDJJ5+watWqUz4fGhoKQJMmTbjiiitYuXLlKcObt7c3UBw4CwoKyrzHGPOnY2st119/PU8//fSf7vfx8cHdvTg7WGv/9Pyx89OnT2fw4MEnnF+8eHFpTeXVVRZrLZMmTeKWW26p8DPlKW/Oa2kwNcZ4H3/BGNOrpKi6syxWDXM3hic7hRIR6MPDm/cQn57tkHZbNm3A4zdeytptu3jlsx8d0qaIiIiIiJze/v37Adi5cyeffPLJCb2sixYtolOnTicE2uNlZmZy9OjR0tcLFy4kMjISgMDAwNJrlfHdd99x6NAhsrOz+eyzz+jTpw8DBgxg7ty5pbUeOnSIpKSkPz3bqVMn9uzZw2+//QbA0aNHKSgoYPDgwbz22mvk5xcvErtlyxYyMzNPW0dF6h88eDDvvPMOGRkZAOzevbu0xqoqr+f1A6BbyesVx70GePWkYwF83d14KSKM69YmcefGZP4b04rmvl7VbvfiXl34ZdMfvPnVUnqGt6F3xDkOqFZERERERE5lxIgRpKam4unpySuvvEL9+vVLr3300Ud/GjK8Z88ebr75ZubPn09KSgpXXHEFUNxLe8011zBkyBAAbrjhBsaPH4+vry8rVqyocD19+/blb3/7G9u2beOaa64pnTP75JNPMmjQIIqKikprbdWq1QnPenl5MXv2bO644w6ys7Px9fVl0aJF3HzzzSQmJtKtWzestTRu3JjPPvvstHWMGzeOoUOHEhISwo8/lt25NmjQIBISEjjvvPOA4sWj3n///dIhzVVhrLWnvmjMGmtt15Nfl3VcW2JjY+3xy0y7qh1ZudywNokGnh68G9OKYM/qD/XNzs1j1D/fIC0zm0//71YaBdfcHkoiIiIiIs6UkJBAeHi4s8twGe+++y5xcXG8/PLLzi7FoU7xe/7z+GbKHzZsT/G6rGM5Ths/b57vHMbunHzu3ZRMXlFRtdv09fbi+QmjyMjKYdIbn1DkgDZFRERERETqgvLCa5gxZpoxZvpxr48dN6+F+uq07vX8eLxjM1alZfPP3/dxul7uiurQoikPjRnCsvjt/GfBcgdUKSIiIiIiru6GG24443pdK6u8Oa/3H/f65LG6rj921wUMbRLMnpx8Xk48SHMfT25r07jabf61fywrNv7BS/O+J7ZjK6LbtXBApSIiIiIiIq6rvPA6Gwi01h44/qQxpgmQXmNVnWHGtmjI7px83tqVSqiPJ1eEVG+vVmMMT9x4GRt37OG+1+Yy74nxBPn7OqhaERERERER11PesOFpwPllnB8IvOD4cs5MxhgmtWtG7/r+PLV1HysOnX7p6YoI8vdl6q0jSTmczqPvfOGQIckiIiIiIiKuqrzw2tda+8nJJ621s4Cyd9eVMnm6Gf4dHkpbf2/uT9jNloycarcZ3a4Fd44YwMK4TXy8WKO4RURERETkzFVeeC1zieIKPlshxpi7jTEbjTHxxpgPjTE+jmjXFQV4uDM9Mgx/dzfuiE9mf25+tdu8cWhv+nZpx5RZ37BlV4oDqhQREREREQB3d3diYmKIjo6mW7duLF/u2AVTb7jhBubOnQvAzTffzKZNmxza/pmmvAC63xjT8+STxpgewIEy7q8UY0xzYCIQa62NBNyBq6vbritr6u3JtMgwMguLuCM+mcyCwmq15+bmxtPjriDQz4d7Xp1DVm6egyoVERERETm7+fr6snbtWtatW8fTTz/NpEmTauy93nrrLTp37lxj7Z8Jyguv9wMfG2P+aYy5tOTnceBjTlyJuDo8AF9jjAfgB+xxULsuq2OAD8+Eh7I9M5cHEvaQX1S9+aoNgwKYcsuV7Nh7kKffX+CgKkVERERE5Jj09HTq168PQEZGBgMGDKBbt2506dKFzz//HIDMzEwuueQSoqOjiYyMZPbs2QCsWrWKCy64gO7duzN48GD27t37p/b79+9PXFzxVMCAgAAeeeQRoqOj6dWrFykpxSMsDxw4wIgRI+jRowc9evRg2bJltfHRXcZpw6u1diVwLsXDh28o+THAudbaX6v75tba3cBUYCewF0iz1i6sbrt1Qe8GATzcvhnLD2cyZVv194DtHXEOfx/Wl3lLVvP1ig0OqlJERERE5OyVnZ1NTEwMnTp14uabb2by5MkA+Pj48Omnn7J69Wp+/PFH7r33Xqy1fPPNN4SGhrJu3Tri4+MZMmQI+fn53HHHHcydO5dVq1YxduxYHnnkkdO+b2ZmJr169WLdunX069ePN998E4A777yTu+++m99++4158+Zx88031/h34ErK2yoHa20K8FhNvLkxpj5wOdAGOALMMcZca619/6T7xgHjAFq2bFkTpTjFlSH12JOTz9u7Umnu48XYlg2r1d5twy/kt4RE/vnul3Rp25yWTRs4qFIREREREeeaE7eL5MPZDmsvrL4vo2JbnPaeY8OGAVasWMF1111HfHw81loefvhhlixZgpubG7t37yYlJYUuXbpw33338eCDDzJs2DDOP/984uPjiY+PZ+DAgQAUFhYSEhJy2vf18vJi2LBhAHTv3p3vvvsOgEWLFp0wLzY9PZ2jR48SGBhY5e+hLjlteDXGbADK6hI0gLXWRlXz/S8CdhzbR9YY8wnQGzghvFpr3wDeAIiNjT2j9oSZ0LoRu3PymZ54gBAfT4Y2CapyW54e7jxz60hGTH6N+16bw/v/uAkvj3L/PiEiIiIi4vLKC5o17bzzzuPgwYMcOHCA+fPnc+DAAVatWoWnpyetW7cmJyeHDh06sGrVKubPn8+kSZMYNGgQV1xxBREREaxYsaLC7+Xp6YkxxWvnuru7U1BQAEBRURErVqzA19e3Rj6jqytvzusw4NIyfo6dr66dQC9jjJ8p/u0MABIc0G6d4WYMj3dsRtcgXx77fS+r07Kq1V7zRvV48qbhxO/YwwtzFjmoShERERGRs9vmzZspLCykYcOGpKWl0aRJEzw9Pfnxxx9JSkoCYM+ePfj5+XHttddy3333sXr1ajp27MiBAwdKw2t+fj4bN26sUg2DBg3i5ZdfLj0+1it8tjhtt5y1Nqms88aYY6sCl3m9oqy1vxpj5gKrgQJgDSU9rGcTLzc3XogI44a1Sdy9MZmZMa1o7edd5fYuig3nmgE9mfnNCnqFt+WCmA4OrFZERERE5OxwbM4rgLWWmTNn4u7uzpgxY7j00kuJjY0tnRMLsGHDBu6//37c3Nzw9PTktddew8vLi7lz5zJx4kTS0tIoKCjgrrvuIiIiotL1TJs2jdtuu42oqCgKCgro168fr7/+ukM/syszp1soyBgTBNwGNAe+AL4DbgfuA9Zaay+vjSKPFxsba4+twnWmSc7O47q1Sfi7uzEzphUNvKo+5Dc3L5+rn3iT/UeO8skTt9K0QdWHI4uIiIiI1LaEhATCw8OdXYbUsFP8nk1Z95Y3bPg9oCOwAbgZWAiMBC53RnA904X5evFSRBgH8wq4a2My2YVFVW7L28uT5yaMIic3nwdnzKOwqOptiYiIiIiIOFt54bWttfYGa+0MYDQQCwyz1p5dg6trUZcgX57qFEr80Rz+sXkPhdXYQqdtaGMmXz+MlZsTmfHFEgdWKSIiIiIiUrvKC6/5x15YawspXhn4aM2WJH9pFMi9bZvwQ2oGL/yxv1ptXd4nmkt7R/HqZ4uJ25zomAJFRERERERqWXnhNdoYk26MOWqMOQpEHXecXhsFnq3GhDVgdGh9Zu0+zIe7D1W5HWMMj143jLAm9bn/9XkcyajeasYiIiIiIrXldOvzSN1X2d/vacOrtdbdWhtkrQ0s+fE47lgrANWwe89pQv+GAUzdvp/FqVXv8Pb39eb5CaNITc/kkTc/038JiIiIiIjL8/HxITU1Vf/f9QxlrSU1NRUfH58KP1PeasM+wHigHbAeeMdaW1DdQqvjTF5tuCzZhUX8ff1Otmfm8lZ0SyICq74h8XsLV/D0rG+YNGYofxvUy4FVioiIiIg4Vn5+PsnJyeTk5Di7FKkhPj4+hIWF4enpefKlMlcbLi+8zqZ43uvPwFAgyVp7p4NqrZKzLbwCpOYVcN2aJHKLivhv11aE+nhVqR1rLbe/+CFL47fx4eSb6dw61MGVioiIiIiIVFuVtsrpbK29tmS14ZHA+Q4vS8rV0MuD6V3CyLOW2+OTSc8vrFI7xhie+vtwGgT6c8+rc8jMznVwpSIiIiIiIjWjMqsNO3W48NmurZ83z3cOY1d2Hvdu2k1eFfdtrRfgx7PjR5C8/zCPz/xKcwhERERERKROqOhqw+labdj5Yuv58XiHEOLSsnhiy74qB8/YTq2ZMLw/X61Yz+fL1jm4ShEREREREcfzON1Fa617RRoxxtS31h52TElyOhc3DWZPbj6vJB4k1MeTCa0bV6mdWy7rx8qEHfzfzK+IatuctqFVa0dERERERKQ2lNfzWlHfO6gdqariqHsAACAASURBVICbWjRkeLNg3tyZyuf7jlSpDXc3N54ZPwIfb0/ufXUOuXn55T8kIiIiIiLiJI4Kr2WuBiU1wxjDw+2a0aueH09u3ccvhzOr1E6T+kH86+Yr+H1XCs9+tNDBVYqIiIiIiDiOo8KrVv2pZZ5uhmc7N6eNnzf3b9rN1syq7X91QUwHrh9yHh98v5JFcQkOrlJERERERMQxHBVexQkCPNyZFhGGr7sbE+OT2Z9btaG/d4+6iMg2ofzj7c/YfbBqw5BFRERERERqkoYN13HNfDyZHhlGekERE+OTySyo/B6wXh4eTL11FIVFlgdem0t+FdoQERERERGpSacNr8aYvxz3us1J16487nCAg+uSSugY4MO/w0PZlpnLQ5v3UFCFLXRaNm3A4zdeypptu3jlsx9roEoREREREZGqK6/ndepxr+eddO0fx15Yaw85rCKpkr4NApjUvhlLD2Xy720pVdoD9uJeXRjRrxtvfrWU5Ru310CVIiIiIiIiVVNeeDWneF3WsTjZiJB63NiiAXP3HmFmctX+njDp2qG0CWnEQzM+4WBahoMrFBERERERqZrywqs9xeuyjsUF3N66MYMbB/LSjgMsPJBe6ef9vL14fsIojmblMOmNTygqKqqBKkVERERERCqnvPDa1hjzhTHmy+NeHztuU86z4gRuxvB4xxC6BvkyefNe1qZlVbqNDi2a8tCYISyL385/FiyvgSpFREREREQqx5xubqQx5oLTPWyt/cnhFZUjNjbWxsXF1fbb1jlH8gu5YW0SR/ILmNm1Na18vSr1vLWWu1/5mB9Wb+a9h8cS3a5FDVUqIiIiIiJygjKnqJ42vP7pZmM8gUhgt7V2v4MKqxSF14rblZ3HdWuTCHR3492YVjTw8qjU8+mZ2Vz56OsYYN4T4wny962ZQkVERERERP6nzPBa3lY5rxtjIkpeBwPrgP8Ca4wxox1eojhUC18vXooIY39eAXdv2k1OYeXmrwb5+/LcrSNJOZzOY//5skorGIuIiIiIiDhCeXNez7fWbix5fSOwxVrbBegOPFCjlYlDRAX58lSnUDakZ/OP3/dSVMkAGt2uBXeOGMC3v23k48Xq8RYREREREecoL7zmHfd6IPAZgLV2X41VJA43oFEg97RtwvcHj/LSjgOVfv7Gob3pE3kOU2Z9w5ZdKTVQoYiIiIiIyOmVF16PGGOGGWO6An2AbwCMMR6AQyZAGmPqGWPmGmM2G2MSjDHnOaJdOdGY5vW5KrQe/00+xMd7DlfqWTc3N54edyUBfj7c8+ocsnLzyn9IRERERETEgcoLr7cAtwP/Ae46rsd1APC1g2p4CfjGWtsJiAYSHNSuHMcYw/3nNKVfgwD+vS2Fn1KPVur5RsEB/PuWK9mx9yBTZi2ooSpFRERERETKVqnVhh3+5sYEUbwIVFtbwUK02nD1ZBcWcfO6nfyRlcvb0a3oHOhTqedfnLuIN778mam3juTiXl1qqEoRERERETmLVX6rHGPMdOD4GyxwEPjRWru02hUZEwO8AWyiuNd1FXCntTbzVM8ovFbfwbwCrluTSL61zIxpTaiPZ4WfzS8o5Ian/8OW5P3Me2I8LZs2qMFKRURERETkLFT5rXKAOIoD5bGf1UAG8Kwx5i4HFOUBdANes9Z2BTKBh06+yRgzzhgTZ4yJO3Cg8gsOyYkaeXkwPbIFOYWWO+J3cbSgsMLPenq488ytI3F3M9z32hzyCgpqsFIREREREZFiVRo2bIzxBZaXBM6qv7kxzYBfrLWtS47PBx6y1l5yqmfU8+o4vx3JZMKGXXQN8uOVLi3wdCvzDxxl+i5uE3dOn80NQ3rzwOjBNViliIiIiIicZarU81oma2129WopbWcfsMsY07Hk1ACKhxBLLehRz5/HOoTwW1oWT2zZS2X+kDEwtjOjB/Tg3W+W89O6LTVYpYiIiIiISBXCqzHGwxhzI5DsoBruAGYZY9YDMcC/HNSuVMCwpsHc2qoRX+1PZ0bSwUo9+8DVg+nYoikPv/kpKYfSa6hCERERERGRcsKrMeaoMSa95N+jxpijwG5gKMXb6FSbtXattTbWWhtlrR1ura3cJqRSbX9v2ZDLmgYzY2cqX+xLq/Bz3l6ePDdhFDm5+Tw4Yx6FRUU1WKWIiIiIiJzNnLpVTlW4+pzXzJxc/H28nV1GpeUXFS/etCoti5cjW3Buff8KP/vpz2t45K3P6Na+Jd06tCS8VQjhrUJo2aQ+bm5VGpkuIiIiIiJnr8pvlQNgjPECxgARFG+Vswn4wFqb6+gKK8KVw+tvmxO5Y9pH3Db8Aq7+S088PdydXVKlHC0oZOzanezLzec/Ma1o51+xEG6t5Y2vfubblRvZtvsABYXFqxf7+3jTsWVTOpeE2fBWIZwT2rjOfS8iIiIiIlKrqrTPa2fgC2AZxVvlGIq3tukDXGatrfXFlVw5vP6x5wD/en8Byzdup21IIx4YPYR+0e2dXVal7M3J57q1SXgY+G9Maxp7e1Tq+bz8ArbtOUBC4h4SkvaRkLSXzbtSyM7NA4q32ukQ1pTwVs0IbxVC51YhdGjRFF9vr5r4OCIiIiIiUvdUKbx+D0yx1n530vmLgEestRc6tMQKcOXwCsW9kD+t28K/P/iWpJRUzo9qzwOjB3NOaGNnl1ZhmzNyGLs2idZ+XrwV3Qo/9+oN/S0sKiJpX2pxmN25l02Je0lI2ktaZvGi1W7G0DqkEeGtmp3QSxvs7+uIjyMiIiIiInVLlcLrZmttp1NcS7DWhjuouApz9fB6TF5BAR8sWslrn/9EVk4eowf0YMLw/tQL8HN2aRXy86EM7opPpk8Df56PCMPDVHwP2Iqw1rL3UBoJSfvYlLiHzSXBdt9xqxaHNqpXEmb/10vbuF4gxsG1iIiIiIiIS6lSeN0CdDl5fqsxxgfYYK2t9TGxdSW8HnMoPZNpn/zA3MWrCPTz4Y4rL+SvF8bi4e768z7n7DnMv7alMCqkHpPaNa2V0HgoPZOEpL0k7NxbOuw4cV9q6fWGQf6EtwqhU8tmdG4dSnirZrRorIWhRERERETOIFUKr/8AegG3W2sTS861BqYBcdbaJxxdZXnqWng95ved+5jy4Tf8umkH54Q25qFrhtCnSztnl1Wul/7Yz7vJh7i7TWOua9HQKTVkZueyeVdxkE1I2sempL1s372fgsLirXn8fbxLwmzJkOOWzWirhaFEREREROqqKq82fDvwAOBX0kgGMNVaO93RFVZEXQ2vUDxU9vvVm3n2o4Xs2n+I/jEdeGD0YFo3a+Ts0k6pyFombd7DwgNHeSY8lIGNg5xdElCyMNTu/cXzZ0t6aX/fuY/svHwAvDw96BDWhPCWJcOOW4fSIayJFoYSEREREXF9VQuvpTcaEwhgrT3qwKIqrS6H12Py8gt477tfeP3zJeTm5zPmonO59fILCHLRBYpyi4oYv34Xm47mMCOqBTHBrjlvt7CoiMR9qSU9tP/rpU0/bmGoNiGNiufPlvTSdmrZTAtDiYiIiIi4lioNG77ndC1aa5+vZlGVdiaE12MOpmUwbd73zFuyhnoBvtxx5V8YeUE3l5wPezi/gBvWJpGeX8TMrq1o6Vs3ejCttexJTTsu0BaH2pTD/1sYKqxx/eLe2ZYhpcG2cb1AJ1YtIiIiInJWq1J4fey4w1uAGcdft9Y+7pDSKuFMCq/HbEray5RZC4j7PYkOYU15aMwQenVu6+yy/mRndh7Xr00i0N2NmV1bUd+zcnvAupLU9IzSBaGOBdqklOMWhgoOIPyEebQhtGhSXysdi4iIiIjUvGoPG15jre3q0JKq4EwMr1DcQ/hdXALPfvQtuw8eYUC3Ttx39SBaNXXOIkmnsi49m3HrdhIe6MOMqBZ4n0Gr/GZk57B5Z8oJvbTb9xwoXRgqwNe7dEGoY3vRtg1t5JI95SIiIiIidVi1w+tqa203h5ZUBWdqeD0mNy+fmd+uYMaXP5NfUMh1g3sx/rJ+BPj6OLu0Ut8dSOfBhD1c1CiQKeGhuJ3BvZG5efls232ATUl7Sntqf9+VQk7JwlDenh50bd+SJ2++nNCG9ZxcrYiIiIjIGUHhtS45cOQoL879ns+WrqVBoB93jhjAFf264u4iPZ3/TU7lhT8OcENYA+5s28TZ5dSqwqIiduw9WBpm5y1ZjY+XJ6/dM4bOrUKcXZ6IiIiISF1XpTmvG4BjN7QDth3XmLXWRjmywoo4W8LrMRt37OHpWQtYvXUnnVo2Y9KYofTo1NrZZWGtZcq2FD7ee4SH2zVlVGh9Z5fkNFuT93PLc++TnpXN8xP+Sr/o9s4uSURERESkLqtSeG11uhattUnVLKrSzrbwCsVB8ZuVG5k6eyF7U9MYFNuZ+64eRFhj5wbGAmu5d2MySw9l8mJkGOc3CHBqPc60/3A6t77wAVt2pTD5ukv464Wxzi5JRERERKSuqt6w4dO2bMwKa+151W6oAs7G8HpMTl4+/1mwjLe+WkpBURHXDz6PWy7th7+vt9Nqyios4uZ1SSRm5fF4xxB61vMn2PPsXMAoMyeXe16Zw8/rtzLu0vO5c8QArU4sIiIiIlJ5NRpea20l4rM5vB6TciidF+Ys4ovl62gUHMBdIy9ieN9o3Jw0H/ZAbgFj1yWRnFO8iFE7P29ign3pGuRLTLAfoT6eTqnLGQoKC3nyvfl8/GMcl5zXhaduGo5XHd5SSERERETECWo0vNbaYk4Kr/+zbnsyU2YtYN32ZDq3CmHStUPp3uG0I71rTG5REfHpOaxNz2J1Wjbr07PJKNlippm3BzFBfnQN9qVrsC/n+Hmf0SsUW2t5e/5Snv94ET06tWbaxKsJ9vd1dlkiIiIiInWFwuuZyFrL179s4PmPv2PfoXSG9Izg3qsG0byRc7dtKbSWbZm5rEnLZk16FmvSsjmQVwBAoIcb0UG+dC0JtJ0Dfc6o/WKP+XrFBh5+61NaNK7P6/de6/Q5yiIiIiIidYSGDZ/JsnLzeGf+Mt6ZvwxrLTcO7c1Nl/TF38d582GPZ61lb24+q9OyWVsSaP/IygPA0xgiA31Khhr7ER3kS9AZMm82bnMit0/7CE93N167ZwyRbZo7uyQREREREVdXo+E10lobX+2GKkDh9fT2pqbx/Jzv+HrFBprUC+Sevw5k2HldnDYf9nQO5xewLr04zK5OyyIhI4cCW/yf1Hb+3sQEFQ8z7hrkR7M6PG/2jz0HuOW59zmUnsnUCaO4sGtHZ5ckIiIiIuLKqrRVzg7+t8/rsUaOHVtr7TkOK6+CFF4rZu22XTz9/gI27NhNl7bNmTRmKDHtWji7rNPKLixi49Ec1qRlsTY9m3Xp2WQeN2+2a5AfMcG+dAv2o62fV52aN3swLYMJL8xiU+JeHr52KNdcdK6zSxIRERERcVVVCq8NTzrlBvwVuA9Yba0d4bDyKkjhteKKior4cvl6np+ziANHjnLJeV24Z9RAQhoGO7u0Cjk2b3Z1SZhdnZbNwePmzRb3zPrRNah43qyXC/YuHy8rN4/7X53Lj2t/58ahvbn3rwNdskdcRERERMTJqj5s2BjjBvwNuB9YC/zLWrvJoeVVkMJr5WXm5PL210v5z4LlGGO46eI+jL24D77eXs4urVKstezOyWdNejZr04oXgdqRXTxv1ssYIgJ96Bpc3DsbE+RLoIfrzZstLCri6fcX8MH3KxncI4Ip467A26vuDokWEREREakBVep59QTGAncDS4GnrbXba6S8ClJ4rbrdB4/w3OyFfLNyI80aBHHPXwdySa8umDo0/PZkh/KK580eC7Qnz5vteqx3NtiXpt6uERKttbz7zXKe/Wgh3dq35OW7RlMvwM/ZZYmIiIiIuIoqhddkoAB4Edh58nVr7ScOqcwYdyAO2G2tHXa6exVeqy/u9ySmzFrApqS9xLRrwUPXDCHqnDBnl+UQxfNmi4cYH5s3m1UybzbE26N0mHHXYD/aOHne7Le/beTBGZ8Q0iCYGfdeS8umDZxWi4iIiIiIC6lSeH2XExdsOp611o6tfl1gjLkHiAWCFF5rR1FREZ8tXceLcxdxMC2Dy3pHc/eoi2jaIMjZpTlUgbVszchlTXpW6RY9B/MKAQj2cCO6ZK/ZGCfNm129ZSe3v/QhxsCrd11DtIsvqiUiIiIiUgscu1WOMaaptTalWiUVtxMGzASeAu5ReK1dmdm5zPhyCTO/XYGHmxt/H3Y+Nwztjc8ZOg/TWktyTj5rSoLs2rRsEkvmzXq7lcybLQm0UbU0bzZxXyq3PPc++w+n8+z4kVwUG17j7ykiIiIi4sKqH16NMcHACOAaINxa27zaVRkzF3gaCATuU3h1jl37D/Hc7O9YGLeJ0Eb1uPevAxnSM6JOz4etqGPzZo+tarz5uHmz7f29S/ea7RrsS5Mamjd7KD2T2178gPV/7ObB0YO5bvB5NfI+IiIiIiJ1QNXCqzHGF7iM4sDajeKQORxYYq0tqlZFxgwDLrbWTjDG9OcU4dUYMw4YB9CyZcvuSUlJ1XlbOY2VCTt4+oNv+H3nPrp1aMmka4YS0SbU2WXVquzCIjYctwjU+qM5pfNmQ709i8NssB8xQb609fNyWMDPycvnwRnz+C4ugb8N6sUDowfjrq10REREROTsU6U5r7OAfsBC4CPgB2CbtbaNQyoy5mmKt+ApAHyAIOATa+21p3pGPa81r7CoiE+WrOaluT9wOCOL4X1juGvkABrXC3R2aU5RYC1bMnJZm55VvBBUWhap+cXzZut5uNOrvj8PtmtKPc/qDzEuLCpi6kcLmfntCi7qHs6/b7myzm1pJCIiIiJSTVUKr+tKHvwvMNtau8sY84e1tq3DqztNz+vxFF5rz9GsHGZ8uYT/fvsLXp7ujBt2PtcPPu+s35fUWsuunHzWphWH2QX70wn18eSVLmGE+jgmaL638BemfPANXdo255W7RtMwKMAh7YqIiIiI1AFVHjbcieIhw1cB+4FOQBdr7T6HVqfw6rKSUlJ59qOF/LB6M2GN63PfVYMYGBt+VsyHrYhVR7K4e1My3m6G6ZEt6BTg45B2F61K4IHX59E4OIAZ911L62aNHNKuiIiIiIiLc8iCTbEUB9mRQLK1trdjaqs4hVfnWbHxD6Z8sICtyfvp0ak1D10zhPBWIc4uyyVsz8zl9vhdpBcU8Vzn5vSq7++QdtdtT+a2Fz6gsKiIV+66hm4dWjqkXRERERERF+a4rXJMcZdbP2vtT9WtqrIUXp2roLCQuT+tZtq8H0jLzGZEv65MHDGARsEa1ro/N5/b45PZkZXLox1CuLRpsEPa3ZlyiPHPv8+e1DSmjLuSIT0jHNKuiIiIiIiLqtKc1+nAKW+w1k6sfl2Vo/DqGtIzs3nt85+YtehXvD09GX95P6696Nyzfj7s0YJC7tu0m5VHsri9dSPGtmjokOHVRzKyuP2lD1m9ZSf3XjWQsUP7aNi2iIiIiJypqhRerz9di9bamdUsqtIUXl3Ljr0HeebDb/lp3RZ8vTzpEd6aPpHt6NulHa2bOSa41TX5RZZ/btnL/P3pjAqpx4PtmuLugO8hNy+fSW9+yjcrNzJ6QA8mjRmKh3v1VzgWEREREXExjhs27EwKr65pZcIOFsZtYtmG7SSlpAIQ2qgefSLPoU9kO3p1bkOQv6+Tq6w9RdYyPfEA7+46RP+GAfyrUyi+7tXfs7WoqIjn5yzinfnL6B/TgakTRuGnrXRERERE5MxS5dWGrwfuBDqWnEoApllr/+vQ8ipI4dX1JR84zNIN21i2YRu/bNpBZk4u7m5uRLVtTp8u7ejTpR2RbUJxd6t+mHN1H+0+zDPbU4gM9OGlyDDqe3o4pt3vV/Lke/Pp3DqEV+665qzdg1dEREREzkhVGjZ8HXA3cA+wuqSRbsCzwEvOCLAKr3VLfkEh6/9IZtmGbSzbsJ34xD1Yawn29+W8iLbFYTbyHJo1cMziRq7o+4NHeWTzHpp6e/BKZAvCfB3TU7p47e/c+8oc6gf5M+PeazkntLFD2hURERERcbIqhddfgKuttYknnW8NfGSt7eW4+ipG4bVuO3w0kxUb/2Dphm0sj9/O/iNHAWjXvEnxEOMu7Yjt2AqfM2zhp7VpWdy5MRkPU7wXbOdAx+wFG79jN7e+8AH5+QVMv3M0PTq1dki7IiIiIiJOVKXwusla27my12qSwuuZw1rL1uT9LIsv7pWN25JEXn4B3p4exHZsVdIr2452zRufEQs/7cjK5bYNuziSX8iznZvTp4FjthfafeAwtzw/i50ph/jX34cz7Lwoh7QrIiIiIuIkVQqvq6y13St7rSYpvJ65snPziPs9iWUbtrE0fjt/7DkAQLMGQfQuWfjpvIi21Avwc3KlVXcgt4A74nexLTOXyR2acXmzeg5pNy0zm4nTPuK3zYncNXIAfx92/hkR+EVERETkrFSl8JoFbDtFY22ttf6Oqa3iFF7PHntT00qC7DZ+2fgH6Vk5uBlDZNvmpasYR53TvM5tF5NRUMj9m3bzy5Esbm3ViL+3dMyWQnn5BTzy9md8vWIDoy7ozuTrL6lz342IiIiICFUMr61O16K1NqmaRVWawuvZqaCwkI079hSvYhy/nfXbkymylkA/H3p1bkOfyOJVjJs3ckxPZk3LL7I8sWUvX+1P58pmwUxq3wwPBwRYay3T5v3AjC+X0LdLO1647a/4+3o7oGIRERERkVpTpfDayVq7ueS1t7U297hrvay1vzi8zHIovAoUD5P9ZdMfxT2zG7az71AaAG1CGpUu/NSjU2uX3gPVWsuriQd5a1cq/Rr4MyW8uUP2ggWYu3gVj8/8ivZhTXj9njE0qR/kkHZFRERERGpBlcLramttt5Nfl3VcWxRe5WTWWv7Ye7AkyG4j7vckcvLy8fRwp1uHlvQt6ZXt2KKpS84DnbPnMFO2pdA50IeXIsJo4OWYvWB/Xr+Vu1/5mCA/X2bcO4b2YU0d0q6IiIiISA2rUnhdY63tevLrso5ri8KrlCc3L59VW3eW7i27JTkFgEbBAaW9sr0jzqFBUK1P2T6lxalHmZSwh8ZeHrzcpQUtHbQXbELSXm59fhZZuXm8dMfVnBfR1iHtioiIiIjUIPW8ytlp/+F0lsVvZ9mGbSzf+AdHMrIwxtC5VQh9upxD38h2RLdrgaeHcxc3Wp+ezZ3xyRgD0yLCiAzydUi7e1PTGP/8++zYe5Anxl7O8L4xDmlXRERERKSGVCm87gc+Knn4qpLXxxr7q7W21schKrxKdRQWFbEpcW9xr2z8dtZu20VhURF+Pl6cG96GviV7y7Zs2sAp9SVl5XFb/C5S8wr4d3hz+jV0zF6wR7NyuOvl2azY+Ae3X3Eht15+gUsOoRYRERERoYrh9frTtWitnVnNoipN4VUcKSM7h1827SgNs8kHDgPQokkD+nYp3o7n3PA2tbpib2peAXfEJ/N7Rg6PtG/GlSGOWUE5r6CAf/7nSz5bupbhfWP4542X4uXhmPm1IiIiIiIOVPnw6ooUXqWmWGtJSjlUEmS38WtCItm5eXi4u9G1fcvSvWXDWzXDzc0xqwKfSlZhEQ9s2s2yw5mMa9mQ8a0aOaSn1FrLq58t5pXPFnNeRFtevP0qAv18HFCxiIiIiIjDVKnn9YvTtWitvayaRVWawqvUlryCAtZs3VXaK5uQtBeABoH+nBfZlr6R7egdeQ6N6wXWyPvnF1me2rqPz1PSuLxpMI+0b4anm2OG+n768xoe+88XtA1pzOv3jqFZg2CHtCsiIiIi4gBVCq8HgF3Ah8CvJzdirf3JgQVWiMKrOMvBtAyWx29nWfw2lsdvJzU9E4Doc8J46ubhtA1t7PD3tNbyetJB3tiZSu/6/jzbuTl+DtoLdvnG7dw1fTZ+3l68ds8YwluFOKRdEREREZFqqlJ4dQcGAqOBKOBr4ENr7caaqLAiFF7FFRQVFbF5VwrLNmxj5jcryM0v4OlxV3BR9/Aaeb9P9h7hX1v30SHAh+mRYTR00F6wW3alMP7590nPyuHF26+ib5d2DmlXRERERKQaqjfn1RjjTXGIfRZ4wlo73XG1VZzCq7iavalp3DV9Nht27OaWS/tx+5UX4l4Dc2J/Ts3ggYTdNPTy4JXIFrTyc8xesCmH0hn/wiy2Je/nnzcMY8QF3R3SroiIiIhIFVUtvJaE1ksoDq6tgS+Ad6y1ux1cYIUovIorys3L58n35jNvyWr6dmnHs7eOJNjfMfu0Hi8+PZuJG5OxFl6KDCPKQXvBZmbncvcrH7N0wzZuubQfE0f8RVvpiIiIiIizVGnY8EwgElgAfGStja+Z2ipO4VVclbWWjxfH8dR7CwhpEMS0iVfTsWUzh7/Pzuw8bt+wiwN5BTwdHkr/ho5ZMCq/oJD/++9XzP1pNZf2juL/brpcW+mIiIiIiDNUKbwWAZklh8ffaABrrQ1yWHkVpPAqru7/2bvz+Liqgv/jnzNb9jRpliZp2qYrbdm3sqiI7KJsCogrKu4gygMqqwuCoiK4oagIDz/1Adk3QRAUUETKVqD7mjZp0ixNs08y2/n9MUtm0qRNM7dNMvm+X6+8Zu695545J4HbfHPOPXfZ+jq+/su/0NXbx/cvOovTjz7Q8c9oC4S4dEU9q7r6uHLeNM6rKnakXmstv3viX/z8gedYsrCGn196wV4ZQRYRERER2QU951VkX2lp7+Ky2+7jjbVbuPC0Y7j8/JPxuN2OfoY/HOHKVVt5sa2Hi2aUcHGNM8+CBXj8P29zzR2PMHPaVH57+SeYXlrkSL0iIiIiIiMw5C+1u1xVxhiTv9taR1BmF+fOMMb80xizyhizwhjztdHWJTKelBUVcOe3LuRjJy3h7r+9zOd/8kfaOnt2f+IeyHG7+On+1XyoYgp/qNvOt9c0Eow488eoM449iDu+8Ula27v46PW/Z8WmBkfqFREREREZrd0tifqoMeanxpjjjLP19QAAIABJREFUjDF58Z3GmDnGmIuMMU8Dp6Xx+SHgcmvtIuBo4GJjzOI06hMZN3weD9d+8gP88PPnsGx9Hed+57e8s9HZdc48xnDt/Aq+PKuUJ5o7uXR5HT2hsCN1L1k0mz9dexE+r4dP/eBOXli21pF6RURERERGY5fh1Vp7IvAc8EVghTGmwxizHfgTUAFcaK19YLQfbq1ttNa+EXvfBawCpo+2PpHx6Kx3H8Kfr70Il8vwyR/cyYMvvuFo/cYYvjCrlO8uqODV9l4+9/YWWvpDjtQ9b3o591z3OeZUlXHxz/6Pe59b6ki9IiIiIiJ7atzc82qMqQFeBA6w1nYOV073vMpEtaOrhyt+8wAvr9jIR953BFd94v2Or+b7Uls331i5lSKvm9sOnMHs3CxH6u3p6+cbv3mA55et5aLT38Vl552Eay88y1ZEREREhPG8YFPsvtkXgButtQ8NcfwLwBcAZs6cefjmzZv3cQtFnBEKh/n5A8/xhydf4pB5M/jZJedTXuzsot0ru/r46vI6wtbys/2rOWRKriP1hsJhfvCnp7j3H6/y/qMO4AefO5ssn9eRukVEREREkozP8GqM8QJPAE9ba2/ZXXmNvEom+NvSFVxzxyPkZfu49ZLzOXzBLEfrr/cHuHh5HU39IX6wsIoTSp15Fqy1ljuffImf3vd3Dlswk2s+cToLZkzDrVFYEREREXHO+AuvJvpcj7uBNmvt10dyjsKrZIp19U189Rf30tDazpUfO42PnrjEsUfdAOwIhvja8nqWd/XxzbnTuGC6M8+CBXjqleVc9fuHCQRD5Gb7OHhuNYfMm8Eh82Zw8NxqCvVsWBEREREZvdGHV2PMH621n9zdvj1ukTHvBv4FvANEYruvttY+Odw5Cq+SSTp7/Fz5u4d4ftlazn73IXz7wg+S7eBUXH84wtWrG3h+ezefnjGVr9aU4XIoIDe1dbJ0dS3L1m/hzXV1rK1rImItxhjmVpVx6LwZHDxvBofOn0FNRYmjwVxEREREMlpa4fUNa+1hSdtu4B1r7T5/rI3Cq2SaSCTCrx99gV8/8jyLZ1Xy80svYHppkWP1h63lR+ubuL+xndPLC/nugkq8LueDZI+/n3c2bWXZujreXF/HW+vr6OztA6AoP5dD5lVHw+y8GRwwZzq5WT7H2yAiIiIiGWHPw6sx5irgaiAH6E2qKAD8zlp7lcON3C2FV8lUzy9bwzdvfxCP281Pv3Iex+w/x7G6rbXcWdfGr2pbWFKUy82Lp1PgcTtW/1AikQibtm1n2botvLm+jmXr6tjY2AqA2+Vi4cwKDp5XzaHzZnLI/BlUlUzR6KyIiIiIwCjD67ustS8ZY26y1l6515q2BxReJZPVbtvOpb+4l40NLVx2/kl89v3vcjTQPd7UwfVrG5mdm8WvDqimPGvfrhbc3t3LWxvqWbaujmXr63h741b8/QEAyosKOGR+9L7ZQ+fNYNGsSnxeZx8lJCIiIiITwqjC6+vW2sMHTxseSwqvkul6+vq59o5HefrVFZy2ZH++f9FZ5GU787xWgJfberhi1VYKPS5+dcAM5uY5V/eeCoXDrK1vTozOvrW+nvqWHQD4vB4OqKlKjM4ePK+asiJnVk0WERERkXFtVOH1v8Aq4HTgL4OPW2svdap1I6XwKpOBtZY7n3qJW+97ljlVZfzi0guoqShxrP7V3dFnwfZHLLcurubwImeeBeuElvYulq2v48110ftml9c2EAyFAZhRVpxYBOqQeTOYX12Ox713pz+LiIiIyD43qvBaCpwE/Aj49uDj1tq7nWrdSCm8ymTynxUbuOLXDxCORPjRFz/E8Yfs51jdDX0BLnmnnvq+IDcurOTkskLH6nZSIBhi5eZG3ly3hbfW1/PGui20dnQDkJvt46A51Rwyr5pDYqOzU/SYHhEREZGJLq3Vhg+21r7leJNGQeFVJputLTu49Jd/YdXmRi4++3i+fNZ7cblcjtTdEQzz9RX1vNXp5/I55Xy8eqoj9e5N1loaWtuji0DFFoJaU9dEOBJ92tbcqrLoM2fnR++drakocez7JSIiIiL7xKhGXr9prf2xMeaXwE4FNW1YZN/oCwT53v8+zqMvvcX7DtmPm774IQpys52pOxzhmjUN/KO1m09WT+Xrs517Fuy+0tPXz/JNDYnR2TfX19HZ4wdgSl4OB8+rji4ENX8mB8yucvQeYhERERFx3KjC6xnW2seNMRcOdVzThkX2HWst//fsUn50z9+YXlrMLy69gPnV5Y7UHbaWmzc0c2/DDk4tK+D6/SrxTeDRykgkQu227Ynnzb65ro4NDS1A9DE9+82YljI6W1VapMf0iIiIiIwfo582PJ4ovMpk99qazVx223309gX4wefP5tQj93ekXmst/6++jZ9tauGIKbncsv/efxbsvtTR4+ftDfWJxaDe3lhPb1/0MT1lRQWx+2ajo7OL9ZgeERERkbE0qpHXxxliunCctfbM9Nu1ZxReRaCprZOv/+ovvLWhns994N187dwTcTs0UvpUcwffXtNITU4Wvzygmorsffss2H0lHImwLukxPcvW1VEXe0yP1+Nm/5qqWJiNrmysx/SIiIiI7DOjCq/v3VWN1toX0mzUHlN4FYkKBEP88M9P8Zd/vsYx+8/hp185j6J8Zx55s3RHD5ev3Equ28WvDqxmfp4z99eOd60d3dFFoGJhdnltA4FgCIDppUWJacYLqqeRm+0jJ8tHts9LTpaXHJ8Xn9ej6cciIiIi6Utv2rAxxgcsJDoSu8ZaG3CubSOn8CqS6sEX3+D6u5+grKiAX1x6AYtnVTpS79ruPi5ZXo8/HOGW/adzZFGeI/VOJIFgiFVbtqWMzja3dw1b3mUM2VlecrJ85MRCbbbPS25SyI1vx9/nxN4PDsLx7dwsb6LObK9HKyeLiIjIZJDWo3I+ANwObIhVNBv4orX2KSdbOBIKryI7e2fjVr72y3vZ0dXL9z5zJme+62BH6m3sC3LJ8jrq/EGu36+S08rH57Ng9xVrLY1tHdQ2bscfCOLvD9DXH8QfCODvD+LvD9IXCNLbH6AvMGi7P5g4xx97Hx/V3RPZPu+QITcagL3k+HyxsLtzCB4o60scz85KDdced+bc5ywiIiITVlrhdTXwQWvt+tj2XOCv1tqFjjZxBBReRYa2vbOby2+7n6Wra/n4yUfxzQtOxevAgkudwTCXraznjQ4/l80p45PTp2pqrEPCkUhKqI0G3WAs+CYH4oHAG9+/U0juT932B6Jl9nRRPo/bHR3tjQffLC+5sZBbkJvNZ047loPnzdhL3xERERERIM3w+qK19rikbQO8kLxvX1F4FRleKBzmp3/5O3c//TKHL5jFLRef58hCQ/2RCNetbuTvrV18bHoxl88pn3DPgp2MrLX0B0PRwBsPtbFR4JSQnBSek0NyX3/qdl3zDjp7/Vx+/sl86tRj9EcMERER2VvSCq+/AWYB9xG95/U8YA3wEoC19iHHmrkbCq8iu/fEy2/z7TsfozA3m59/9SOOjJRFrOWWjc38eesOTiot4IaFlWTp/stJpaPHzzV3PMI/3ljNSYcv4oaLzqIwL2esmyUiIiKZJ63wetcuDltr7WdH26o9pfAqMjKrt2zj0l/cy7a2Tq795Omc/74jHKn3j/Vt3LKxmUMLc7hi7jTm5vkUYicRay13P/0yt9z3dyqmTuHWi89n/9lVY90sERERySzprTY8Xii8ioxce3cv37z9Qf79znrOfe9hXPOJ08nypf/c1qebO7luTSNBa3EDM3N9LMjLYn5eNgvys9gvL4synx4bk8mWra/jf267j+2dPXzro6fy0ROX6OctIiIiTkl75HWngvtyxDVO4VVkz4QjEX710D/57eMvcuCc6fzsko9QWTIl7Xqb+oO83elnbU8/a7v7WdfTR2P/wOq5UzwuFsTC7Py8LBbkZTNHo7QZZUdXD1f+7mH+9fY6TluyP9d/9kzycybHM4FFRERkr0orvH44aTMbOAdosNZe6kzbRk7hVWR0nn1tFVf9/mGyvB5uveR8jlxY4/hndIXCsSDbz9qePtb29LOhp5++SPQ64wZm5fpYkJcdDbT5WSzQKO2EFolE+MOTL/HzB55jRvlUbr3kfBbOrBjrZomIiMjE5ty0YWOMC3jWWntCuq3aUwqvIqO3saGFr/7iXrY0tfGNC07hk6ccvddDY9ha6vyBaKDt7o+O1Pb0sS1plLbI404aoc1iQX42s3M1SjuRvLa6lst/8wCdPX6u/sT7Ofe9h+sPEiIiIjJajobX/Yg+53Veuq3aUwqvIunp9vdx1e8e5rk3VvOBYw7k+s+cSU6Wb5+3ozMYTozQRl93HqWtiY/SxkZo52uUdlzb3tnNN29/kJdXbOSMYw/i2xd+kLzsrLFuloiIiEw8aU0b7iL1ntdtwFXW2gedadvIKbyKpC8SifD7v/6bXzz4DxbMmMYvvvoRZpRPHetmJUZpk++jXdvTnzpK63Ungmz8nto5uT58GqUdF8KRCL997EVue+R5ZleWcuvF5zO/unysmyUiIiITi1YbFpFU/3p7Hd+4Pfo3qJu/fC7vPnCfT6YYkc5gODHdOD79eENvP/2xUVqPgZqcrJT7aOfnZVPqc2uUdoy8vGIj37z9AXr7Alx34Qc5+92HjHWTREREZOJQeBWRndU1t3HpL+5lbX0zX/vwCXz+g++ZEIEvbC1b/IGUBaLWDRqlLU4epc3PZkFeFrM1SrvPtLR3ccVvHuDV1bV86LhDueYTp4/JFHURERGZcBReRWRovf0BvnPnY/z1v+9w0uGL+OHnzyEvZ2Leq9gRDCemG8cXiNo4aJR2du7A4lDxYFvq84xxyzNTKBzmtoef57ePv8iC6mncesn5zK4sHetmiYiIyPg2PsOrMeY04OdE12e5w1p7067KK7yK7B3WWv74zH/5yb3PMGvaVH75tY9mTMgIxUZp1yWtdryuu5+mwMAo7VSvO2WEdn5eFnNys/C6xv8o9ETwr7fX8a3fPkQgFOJ7nz6TDxxz4Fg3SURERMavPQ+vxphdruBirW1Lq0XGuIG1wMlAPfAq8FFr7crhzlF4Fdm7lq7axP/cdj/9wRA3ffFDnHjYwrFu0l7THgyzftAo7YaefgI2dZR2Qd7AfbQL8rMo0SjtqDRu7+CKX9/Pm+vr+Mj7juDKj51Gls871s0SERGR8WdU4XUT0VWGDTAT2BF7XwRssdbOTqtFxhwDfNdae2ps+yoAa+0PhztH4VVk72vc3sHXf/kX3tm0lS+deRwXn/M+3JPkPtGQtWzuDaQ+xqe7n+akUdo8tyvxlTPoNdfjIjf+Pukrum3Idbtj5U3iPNcEuMfYKcFQmJ8/+Bx3PvkSi2ZVcuvF5zNz2tivdC0iIiLjSlqPyrkdeMxa+2Rs+/3ASdbay9NqkTHnAqdZaz8X2/4kcJS19pLhzlF4Fdk3+gNBbvjjkzz44hu8+8B5/OTL5zIlL2esmzVm2uP30nb3s7UvSG84kvLVE47gj732hiOJ59WORI7LkOdJDbupoXfgfc4Q+3I9LnJdLvI80eOeCRCG//nmGq76/cNEIhFuuOhsTjly8Vg3SURERMaPtMLr69bawwfte81ae0RaLTLmPODUQeF1ibX2q4PKfQH4AkBZ9ezDr7rzb+l8rIiMmGVFbQMvvr2egpws3r/kAEqm5I91oyYEiyUYsQTtwGsgeXvQsWDEErCWUOw1up+U4yPlNuB1GbzG4HUZfLFX7y5efcnbg46591IY7ur18/SrK2na0cXBc6dzzP5zJ80Iv4iIiAzvspMXpBVenwb+BfyJ6DTiTwDHxaf7jpamDYtMDMvW1/H1X/6Frt4+vn/RWZx+tBbb2dci1tIXsfSEIvRGIvSGdh7t7R30fvDIcG944LzecITICD/bY6JTpQs9bj49o4RzKqY49jilQCjET//yd/74zH85cM50bvnKeUwvK3akbhEREZmw0gqvU4HvAMcRDa8vAtc7sGCTh+iCTScCW4ku2PQxa+2K4c5ReBUZGy3tXVx22328sXYLF552DJeffzIet3usmyWjZK2lP2KHDb2DA7E/HGF1dz9vdfo5payAa+dXUOBx7uf/zKsrufYPj+Ayhh98/hxOyOCFwkRERGS30n9UjjEm31rb7ViTonWeDvyM6KNy7rTW3rir8gqvImMnEArx43ue5v+eXcqShTVccs77mFddTlF+7lg3TfaBiLX8b10bv65tYVqWl5sWVXFgoXP3QW9pauOy2+5j1eZGPnv6u/jah0/E62BAFhERkQkjrZHXY4E7gHxr7UxjzMHAF621X3G2jbun8Coy9h799zK++7+P0x+MrsBbMiWf+dPLmTe9jHnTy2NfZRRO4gWeMtlbnX6uWrWVlkCIi2vK+FT1VMdWTO4PBPnRPU9z7z9e5dB5M/jpxedRMXWKI3WLiIjIhJFWeH0FOJfoisOHxvYtt9Ye4GgTR0DhVWR8aOvsYeXmRtbVN7F+awvrtzazfmsL/v5Aosy04sJooK0uHwi1VWXk5WSNYcvFCV2hMN9bu43nWrs4pjiP7+9X6ejzb5/87zt8+67H8Hk8/OiLH+I9B813rG4REREZ99ILr9bao4wxbyaF17estQc73MjdUngVGb8ikQiN2ztYv7WFdVubWF8fDbUbGloSo7QAVaVFzJteFhutjX7NqSolJ8s3hq2XPWWt5cHGdm7e2Ey+28UNC6s4ujjPsfo3NbZy2a/uY219E1884zguPud43WctIiIyOaQVXh8AbgF+BRwNXAocYa29wMkWjoTCq8jEE45EqG/ZEQ219U1siI3UbmxsJRgKA2CMobqsOBpqk0ZqZ1eUkOXzjnEPZFfW9fTxrVUN1PYG+PSMqXx5VhlelzPTiP39AX7wp6d48MU3OHJhDTd/+VzKigocqVtERETGrbTCaynwc+CkWEXPAJemu9rwaCi8imSOUDjMlqa2RKiNTz/e3LSdUDj6IBeXMcyqKBl0P205NRUlWsxnHPGHI9y8oYmHtnVwYEE2Ny2qoirbuZH0R/+9jOvvfoLcbB8//tK5HLP/HMfqFhERkXEnrfD6LmvtS7vbty8ovIpkvkAoxOZt2xNhdl19M+u3NrOlqY1I7JrlcbuoqShNhNr4aO2M8mJNLR1DTzd3csO6bQB8e0EFJ5cVOlb3uvpmLrvtPjY1tnLx2cfzxTOPw+1yOVa/iIiIjBtphdc3rLWH7W7fvqDwKjJ59QeCbGxsHVggKhZq61vbiV/LfF4PsytLU0Zq508vp7qsCJeCzj5R7w9w1eoGlnf18eHKIq6YU06225nvfU9fP9+/+6889p+3OGb/Ofz4Sx+mpDDfkbpFRERk3Njz8GqMOQY4Fvg6cGvSoULgHC3YJCLjQW9/gI0NLTuN1DZu70iUyfZ5mVNZmnI/7bzqcqpKpmAcesyLDAhGLLfVtnB3fRvzcrO4aVEVc/OcWWXaWsuDL7zBjX96ksK8HH765XM5YmGNI3WLiIjIuDCq8Ppe4HjgS8DtSYe6gMettescbOCIKLyKyEh1+/sSi0NF76uNhtrm9q5EmdxsH3OrUheJmj+9nPLiAoVaB/ynrZtr1zTiD0f4xtxpnFPh3B8LVm/ZxmW/uo+65ja+du6JXHT6uzS6LiIikhnSmjY8y1q72fEmjYLCq4ikq6PHHwu00VAbn368vbMnUaYgN5t5VYOeUTu9jNIp+Qq1e6ilP8S1axpY2t7LKWUFXDu/ggKHFtvq9vfxnbse56lXlnPcwfO56Qsfoig/15G6RUREZMykFV7/DpxnrW2PbRcD91prT3W0iSOg8Coie0tbZ09KqI2P1Hb0+BNlivJzqakooby4gPKigthrIaVF+dHtogIKcrMVcAeJWMtddW38praFimwvP1xYxYGFOY7Uba3l3n+8yk3/9zdKCvP46VfO49D5Mx2pW0RERMZEWuH1TWvtobvbty8ovIrIvmStpbWjm3Vbm9mwtZn19S1sbtpOS0c3Le1ddPv7dzon2+elrKiAsqRAWxYLueXFBZRNyae8uIC87KxJF3Lf6vRz1aqttARCXFxTxqeqp+Jy6HuwYlMDl912H9vaOvif80/mwlOPmXTfXxERkQyRVnh9negCTVti27OAh7XasIhMdj19/bS0R4Ns844uWjpir+1dNMf2Nbd34e8P7HRuTpYvMXpbNiU/FnCTQm4sAOdlO7PQ0XjRFQrzvbXbeK61i2OK8/j+fpWU+DyO1N3Z4+faPzzKs6+v4oTDFnLj585mSp4zI7wiIiKyz6QVXk8Dfge8ENt1HPAFa+3TjjVvhBReRWQi6vH3R8Ns+0C4HRxwW9q76AsEdzo3LzsrMU05ZUS3uJCy+MhuUT45Wb4x6NnoWGt5sLGdmzc2k+92ccPCKo4uznOs7j8+819u/sszTCsu5JaLz+fAOdMdqVtERET2idGHVwBjTClwdKyil621rc61beQUXkUkU1lr6Y6H3CECbuJ9exeBYGin8wtysxNhNh5ooyO4hSkjvFk+7xj0bmjrevr41qoGansDfHrGVL48qwyvy5mpvm+tr+N/fn0/Le3dfOujp/Kxk5ZoGrGIiMjEMKpH5Sy01q42xgw5Pdha+4ZDjRsxhVcRmeystXT29qUE2sTrjq6UEd5QOLzT+YV5OYmAmzw9OWW68pR8fF5npvLujj8c4eYNTTy0rYMDC7K5aVEVVdnOjCK3d/dy9e8f5vllazn1yP25/rNnUpCb7UjdIiIisteMKrz+3lr7eWPMP4c4bK21JzjVupFSeBURGRlrLR09/sS05OhrJ63t3SkBt7Wji1A4stP5xQW5lE0ZCLgVUwv58HsPo6qkaK+09+nmTm5Ytw2Aby+o4OSyQkfqjUQi3PXUf/jZA88xvayIWy8+n0WzKh2pW0RERPaK9KYNjxcKryIizopEIrR3+5OmJ3fGRnO7U0ZzW9q7yMnyccUFJ3P+8UfslSm49f4AV61uYHlXHx+uLOKKOeVku12O1P362s1cftv9tPf4ufrj7+e84w/XNGIREZHxaVQjrx/aVY3W2ofSbNQeU3gVERkb9S07uO7OR3ll5SaOWjyb73/2LKrLih3/nGDEclttC3fXtzEvN4ubFlUxN8+ZFZfbOnv41m8f5KXlG/jAMQfy3U+fkXGrOYuIiGSAUYXXu2Jvy4FjgX/Ett8HPG+t3WW43RsUXkVExo61lvuff52f3PsMEWv5n/NO4qMnHonL5czoaLL/tHVz7ZpG/OEI35g7jXMqpjgyUhqJRPjd4//iVw//k5qKEm695HzmV09zoMUiIiLikLQelfME8HlrbWNsuxK4TeFVRGRyatjeznfufIyXlm/giP1m8f2LzmLWtBLHP6elP8S1axpY2t7LKWUFXDu/ggKP25G6X1m1iSt+8wA9/n6u+9QHOOc9hzpSr4iIiKQtrfC63Fp7QNK2C3g7ed++ovAqIjI+WGt56F9v8uN7niYYCvP1c0/k4ycfhdvhUdiItdxV18ZvaluoyPbyw4VVHFiY40jdLe1dfPP2B3ll1SbOfvchXPepD0yo5+WKiIhkqLTC66+A+cA9gAUuANZba7/qZAtHQuFVRGR8aWrr5Lv/+zgvvLWWQ+fN4IbPnc3sylLHP2dZRy9Xr26gJRDikpoyPlk9FZcD04jDkQi/fuR5bn/sReZNL+PWi89nTlWZAy0WERGRUUpvtWFjzDnAcbHNF621DzvUsD2i8CoiMv5Ya3n8P2/zgz8/RX8gyCUfeh+fPu1Yx0dhO4Nhrl+3jedauzi2OI/r96ukxOfM82hfemc93/ztg/QFQnzvM2fwwWMOcqReERER2WNph9dZwHxr7bPGmFzAba3tcrCBI6LwKiIyfrW0d/G9u5/gH2+s5sA507nxc2czb3q5o59hreWBxnZu3tBMgcfFDQurOLo4z5G6m9o6ufw39/PG2i2cd/zhXP3x95Pl8zpSt4iIiIxYWtOGPw98AZhqrZ1rjJkP3G6tPdHZNu6ewquIyPhmreXJ/y7nxj89SU9fPxeffTyfPf1deNzOLLQUt66nj2+taqC2N8BnZpTwpVmleF3pTyMOhcP84sF/cMdf/83CmRXcesn5e2UxKhERERlWWuF1GbAEeMVae2hs3zvW2gMdbeIIKLyKiEwMrR3d3PDHv/LMqyvZv6aKGz93NgtmOPtIGn84ws0bmnhoWwcHFmRz06IqqrKdWXDp+WVruPJ3DxMOR/jSWcexaFYlcyvLKC8ucOSRPSIiIjKstMLrK9bao4wxb1prDzXGeIA3rLWjviHIGPMT4AwgAGwAPmOtbd/deQqvIiITy9OvruD7d/+Vzt4+vnTmcXz+g+/B69DjbhKf0dzJDeu2AfDtBRWcXFboSL0N29v5xq8f4M31dYl9edlZzKksZU5VKbMrS5lTVcacylJmlE91vF8iIiKTVFrh9cdAO/Ap4KvAV4CV1tprRt0aY04B/mGtDRljfgRgrf3W7s5TeBURmXh2dPVw4x+f5MlXlrPfzApu/NzZLJ5V6ehn1PsDXLW6geVdfXy4sogr5pST7U5/wShrLa0d3WxoaGFjQwsbG1vZ2NDKpsZWmnZ0Jsp53C5mTitJBNs5lWWJgJuXnZV2O0RERCaRtMKrC7gIOCVW0dPAHXakqz3tvv5zgHOttR/fXVmFVxGRievZ11fxvbufoKO7l89/8D188czj8HmcWS0YIBix3Fbbwt31bczLzeKmRVXMzdt7wbHb35cIshsaWtjU2MrGxla2NLURjkQS5SqmFjKnsozZVaXMjY3Wzq4spXRKvqYgi4iI7Gx04dUY4wbuttZ+Ym+0KvYZjwN/sdb+aZjjXyC6YBQzZ848fPPmzXurKSIispe1d/dy05//xmP/eYv51eXc+LmzOWD2dEc/4z9t3Vy7phF/OMI35k7jnIop+zQkBkIh6pqyk9cmAAAgAElEQVR3JI3UDgTb3r5AolxhbvbA1OOk0drqsmLHHzMkIiIygaQ18vo0cIa1NrDbwqnnPQtUDHHoGmvto7Ey1wBHAB8ayUiuRl5FRDLD88vW8N27Hmd7Zw+fef+xXHz28Y4+lqalP8S1axpY2t7LKWUFXDu/goIxvifVWsu2ts7UkdqGFjY0trK9oztRzutxU1NRwuzKUuZWlSVGbWdXlJCT5cyCVCIiIuNYWuH1t8BhwGNAT3y/tfaWtFpkzIXAl4ATrbW9IzlH4VVEJHN09vj50T1P8/C/3mROVRk3XnQWB8+b4Vj9EWu5q66N39S2UJHt5YcLqziwMMex+p3U0eOPhdlWNjYO3F9b37yDSOzfamMMVSVTEqE2Pmo7t6qU4gJnnnUrIiIyDqQVXr8z1H5r7fdG3RpjTgNuAd5rrW0Z6XkKryIimedfb6/jO3c9RvOOLj516jFc+uETyHZwFHZZRy9Xr26gJRDikpoyPlk9FdcEude0PxBkS3MbGxoGph9vaGihdtt2+gLBRLmi/NzY1OOBe2rnVpVRVTIFl6Ygi4jIxDL68JoobEwhYK21XWm3xpj1QBawPbbrv9baL+3uPIVXEZHM1O3v4yf3PsP9z79OTUUJN1x0NoctmOlY/Z3BMNev28ZzrV0cW5zH9ftVUuJzbrGofS0SidC4vYMNDa1samyJjdhGR213dA1MZsryeqipjC4UNTBSW8asaVMdnaYtIiLioLRGXo8A7gIKYrs6gM9aa193rHkjpPAqIpLZXl6xkevufJTG7R184uSj+Nq5J5Lr0H2e1loeaGzn5g3NFHhc3LCwiqOLM2+67Y6unsRCUcmP9tna2k78332XMUwvKx54tE/sebVzqsqYkjc+p1aLiMikkVZ4fRu42Fr7r9j2u4FfW2sPcrSJI6DwKiKS+Xr8/dxy/9+557lXmVFWzA2fO5sjF9Y4Vv+6nj6+taqB2t4An5lRwpdmleJ1TYxpxOnw9weo3bZ90IJRrdQ2bScQDCXKlRTmMaeqjHnTyzhs/iyWLKqhrKhgFzWLiIg4Kq3w+pK19l2727cvKLyKiEweS1dt4ro/PEpdyw4+duISLjv/JPKynXluqz8c4Scbmnh4WwcHFebww4WVVGVPzpV8w5EIW1vaYwtFRaceb2poZd3WZrr9/QDMqSxlyaLZHLV4NksW1miBKBER2ZvSCq+3ArnAPYAFPgLsAB4EsNa+4Vgzd0PhVURkcuntD/DzB57jT39/haqSKVz/2bM4Zv85jtX/t+ZObli3DQN8Z0EFJ5UVOlb3RBeORFi1uZFXVm1i6apaXl+7OfGc2gXV01iyqIYli2Zz5MIaTTUWEREnpRVe/7mLw9Zae8JoW7WnFF5FRCan19du5to7HmVz03bOO/5wvnHBKeTnZDtSd70/wJWrG1jR1ce5lUVcPqecbLdW6B0sGAqzsraB/67axNJVm3hzXR19gSDGGBbOrOCoRbM5atFsDt9vpmM/GxERmZTSX214PFB4FRGZvPoCQX750D+4+28vU15cyPWfPZN3HzjPkbqDEctttS3cXd/GvNwsblpUxdw8Z6YoZ6pAMMTbG7eyNBZml22oJxAM4Xa5WFxTyVGLZrNk0WwOWzDTsUW3RERkUlB4FRGRzPDW+jquueMRNja2cs57DuVbHz2VQoemrb7U1s11axrxhyN8Y+40zqmYgpkgz4Qda32BIMvW18XCbC1vb6wnFI7gcbs4aE51YprxIfNmOPocXxERyTgKryIikjn6A0Fue+R57nzyJUqn5PPdz5zB8Yfs50jdLf0hrl3TwNL2Xk4pK+Da+RUUeNyO1D2Z9PYHeHPtlug9s6trWbGpgXAkgs/r4eC51SxZWMNRi2Zz0NxqfN6J+8xdERFxnMKriIhknuWbtnLNHY+wrr6ZM489mCs/fhpF+blp1xuxlrvq2vhNbQsRoDLLS02uj1k5vpTXcp9HI7Mj1O3v4/U1sTC7ahOrtmzDWku2z8uh82dEVzNeNJv9a6rw6o8FIiKTWXrh1RhzLFADJP40aq39f060bE8ovIqIyGCBYIjbH3uB3z/xb4oLcvn2hR/kpMMXOVL3yq4+XtzeRa0/wGZ/gM29AfyRgX87c1yGWfEwm+NjVm5W7NVHrhZ92qWOHj+vrdnM0lWbeGXlJtbWNwGQm+3jsPkzE/fMLq6pxO3S91JEZBJJa7XhPwJzgWVAOLbbWmsvdax5I6TwKiIiw1m5uZFr7niENVu2cfpRB3DNJ093/Hmk1lqaAyFqe6NhNvm1sT9I8r+qZT5PIsgmv1Zme3FrtHYnbZ09vLqmNhpmV9WysaEFgILcbI5YMCtxz+x+M6bhUpgVEclkaYXXVcBiOw7mGCu8iojIrgRCIe544t/c/tiLFOZmc92FH+DUI/ffJ5/dF45Q1xcdnU0Jtv4AXaFIopzPGGbkeGNhNisxBbkmx0ehV9Nl41rau3h1dS2vrNzEK6s3saWpDYApeTkcubCGJYtqOGrRHOZNL9PUbRGRzJJWeL0fuNRa2+h0q/aUwquIiIzE2romrv79w6zc3MgpRy7muk99gJLC/DFpi7WWHcEwtYNGajf7A2ztCxBK+qe42OtmVs7O99ZWZ/vwuiZ3QNvW1sHSVbWJe2a3trYDUFKYFwuz0XtmaypKFGZFRCa2tMLrP4FDgKVAf3y/tfZMp1o3UgqvIiIyUsFQmDufeolfP/I8edlZXPOJ0zn96APGVbAJRiwNfUFq/f1s7g2kBNy2YDhRzg1Mz/Gm3lcbC7ZTve5x1ad9pb5lRyLILl1VS9OOTgDKiwo4clENRy2M3jM7o7x4Un5/REQmsLTC63uH2m+tfSHNRu0xhVcREdlT6+qbufYPj/DOxq2ccNhCvnPhBykrKhjrZu1WVyhMbSzQxqcib/YH2OIP0J+0aFS+27XTSsizcnzMzPGRPUkWjbLWsrmpLRZkN/HK6lq2d3QDUFkyJbH405JFNVSVFI1xa0VEZDf0qBwREZm8QuEwdz/9Mr986J9k+7xc/fH3c8axB03IEbmItWzrD6YE2/hrUyCUKGeAiiwPNblZqdOQc3yUZ3lwTcC+j5S1lg0NLYlR2aWra2nv7gVgRllxLMjO5qhFNZQXF45xa0VEZJC0Rl6PBn4JLAJ8RGcv9Vhr9/nVXuFVRETSsamxlWvveIQ319fx3oMX8N1Pn8G0qZkTXvzhSMo9tYlg6w/QGx5YNCrbZaIjtLGFompyoyO1NTk+8jLwGauRSIR19c0sXb2J/67cxGtrNtPV2wfA7MpSlsTumV2yqGbM7o0WEZGEtMLra8AFwP3AEcCngPnW2qudbOFIKLyKiEi6wpEIf/77K/zsgefwetx886On8qH3HDohR2FHylpLSyC00+N9NvsDNPQFiSSVLY094qcm18fC/GwW52czLy8roxaMCkcirN68LXrP7OpNvL5mCz190WU95k0vZ05VKQU52eTnZJGXk0V+ThYFOVnkxfYVJO3Pz8kiN8unx/eIiDgnvfBqrT3CGPO2tfag2L7/WGuPdbiRu6XwKiIiTtnctJ1r73iU19du5t0HzuO7nzljUt4PGYhEqPMHd3q8z6be/sQjfrzGMC8vi8UF0TC7KMMCbSgcZkVtI0tXbeLV1bU0bO+gx99Pt78/EWp3xRhDXrYvFmazE6E2LzuLgtxY0M3OoiA3OykMD7zPz84iPzcagjP5jygiIiOUVnh9ETgJuAPYBjQCn7bWHuxkC0dC4VVERJwUiUS457lXueX+Z3EZwxUXnMz5xx+hAEF0tHZrX5CV3X2s6uqLvnb3pQTa+XlZLMrQQBsXjkTo7QvQ7e+n298Xe+0fZrufHn8/XbH98QDc5e/H3x/Y7We5jEkZ0c3PjgbfgtzspPfxYBwLybmx8JszEI5zfF79NywiE1la4XUW0ET0ftfLgCnAr621651s4UgovIqIyN5Q37KD6/7wKK+s2sTRi+fw/c+eyfSy4rFu1rhjraW+L8iqpEC7squP7vDQgXZxQTZzczMv0I5GKBymty9AV0qo7Uu8H2kY9geCu/0slzGxYJudCLbxkDs4DCePAudm+/C6XXjcbjxuF+7Ye2/Se4/LhcftwuNx4zJGIVlE9ob0Vhs2xuQAM621a5xs1Z5SeBURkb0lEolw3/Ovc/NfnsFauPz8k7jghCN1L+NuxAPtyq7oyOyqIQLtgvwsFsVGZxVo0xMKh3ca1R0yDPf1093bl/Q+dX9/MLT7DxuBncKtOxZu3W7cSUE3EXqTyqSc44q997hwu1x43e7Y8aHr9cbKRY8NOh57n1KHa9eh3Odx4/N68Hnc+n9eZOylNfJ6BnAz4LPWzjbGHAJcb60909k27p7Cq4iI7G1bW9v5zp2P8Z8VGzhyYQ1XfOQU9psxDZ/XM9ZNmzCstdT1BVnVNRBmV3UPBFqfMcyPBdr4CO0cBdp9KhAKJaZDd/VGQ29PX4BQJEIoHCYUihCORAiGw4TDsX3hSOwr+j4ciRAMhQlHUvfH34dj74PhWJmkOkPhSKLeYNL76PEIoSHq3Vc8bjdZXg8+b/TV6/GQ5Y1++TxufD4PPk/StteDz5u6nbXTPm+iPp/HkwjKWV4PWb6Bz4jv8ypEy+SWVnh9HTgBeN5ae2hsX2Lxpn1J4VVERPYFay0PvfgGP7rnabr9/XjcLmoqSllQXc78GdNYUD2NBdXlVJUWadrkCEUGj9AOE2gXJ43QKtBKnLWWcCQyZCAOhcOx0D10IE4J1LFyA6E7nNjuD4YIBEOJ10B8Xyi2Hdz1dn/snIBDo9pej3sgJHuTQnFsnzcpDMcDb3Jojm/H9/mSysbr87rd0ZRgDMaAIfZqzMB+Ytux/xXjZVKOpZRJrSN+jUw5NtTnJO8n6fMS5+98LkN8viHR0NRj8bqGq5+dP0/GTFrh9RVr7VHGmDcVXkVEZDJp7ehm6apNrK1vYl1dM2vrm9ja2p44npedlRRoy1lQPY35M6YxJS9nDFs9cUSGGKFdPSjQxqccLy6IhloFWhnvrLUDYTgUD8PhWCCObvcHQwSDqWWCSQE4EaAHheLh6ksE6eT6QuGx/lZklOFDbqJEyvaw5QcqTC2/m/PZxecPPnfYssDsqlLu+tand9/hsZVWeP0D8BxwJfBh4FLAa639kpMtHAmFVxERGWvd/j7Wb21hTd22RKBdW99MZ48/UWZacSELYoF2fvU0FsyYxpzKUk09HoF4oB08QtszKNAuzs9mkQKtyLAisWnduxpBDobCWAsWCzYavC2x1+T9RDODHVQmfswmv9p42eg2DHNsp89JrSf5PIYoHy1jd25TvJ0Mat+gdsfrj5cn+XxStxm0bXdz/k7ld3M+u/n8ndoz+PszwrIAZUUFfPVDJzDOpRVec4FrgFNiFT0NfN9a2+dkC0dC4VVERMYjay3NO7pYU9fEuvqmRKDd2NCSGP3Q1OPRi1hLnT+YeFzPyi4/q7v7E4E2y2VYkDdohDYvC4++ryIiE1F6qw3vLcaYK4CfAGXW2tbdlVd4FRGRiSQYCrO5aTtr65o09dhhA4HWnxilHSrQxsOsAq2IyISx5+HVGPPYrmpMd7VhY8wM4A5gIXC4wquIiEwWI5l6XDG1MDrlWFOPRyxiLVv8gcT9sytjgbY3FmizXdHn0MYD7eKCbGbnKtCKiIwzowqvLUAdcA/wyuBKrLUvpNUiYx4Avg88Chyh8CoiIpNZfOrx2vqmxEitph6nLx5o42F21S4Cbfw+2upsH9kuo++piMjYGFV4dQMnAx8FDgL+CtxjrV2RdmuMORM40Vr7NWNMLbsIr8aYLwBfAJg5c+bhmzdvTvfjRUREJgxNPXZexFo2+wOsigXalV19rOkZCLQQXRiq0OtmisdFoccde++m0ONiitcd3eeJ7fO6Ysfc5HtcuBR6RUTSkd49r8aYLKIh9ifA9dbaX47gnGeBiiEOXQNcDZxire3YXXhNppFXERGRKE09dlY4PuW4q4+mQIjOYJiOUJjOUCTpfZiOYBh/ZBd//AcKY4E3JeR6XYmwWxDbnpISit1aMVlEJGp04TUWWj9ANLjWAI8Bd1prt466JcYcSPTRO72xXdVAA7DEWrttV+cqvIqIiAxPU4/3jWDERoNsKLyLkBuhMynwdobCdIUiRHZRb47LJALvFI+bgljATQ65BZ7Yvng5r5scTXEWkcwyqmnDdwMHAE8B91prl++VlmnkVUREZK+KTz1eV9+cMlKbPPU4PyeL+dOTph7PqGDhzGnk52SPYcszS8RaesIROuIhNxZwO1JCbiQl8HbEQnFgF7+zeQxJU5ijU50LkgNubKS3YIgg7FboFZHxZ1ThNQL0xDaTCxrAWmsLHWmZwquIiMiY2N3UY2MMs6ZNZf+aKhbXVLJ/TRWLZlVSkKtAu6/1hQeCbkcwQlfKyG+EjlA4ui+YOvLbHd7VWC/kuwfu4S3wuPAag9dl8LkMXmPwxLa9u30Fryu1vC/peEo9SZ8R3+8GjR6LSNz4fM7rnlJ4FRER2bviU49X121jVW0jK2obWFHbyLa2jkSZmUmBdvGs6KsWhxqfQtbSFRvl7YgF3q6kqc7xsBuf1hy0lmDEErSWUOw1EHsNRiwhawnthV8fDaQEYo/L4EsJyOxBkE6qY9B+z6Cw7TOulLpTXlPOGwjnWpBLZK9TeBUREZHRa+vsYeXmaJhdGQu0DUnTjmeUFbO4por9Zw8E2qL83DFssewtERsNsdGQC4FIJLZNSvjd3WsoHozj+5MCcjCSFJoTQZoR1R2vd9djzqPnMdGwO2zQdZESlAePOsePJ5/rGWak22NSy3oGhfN4sB/63PiXRrVlwlF4FREREWft6Oph1eZtsdHZBlbWNlLfsiNxfHppUXSqcWzK8f41lRQX5I1hi2UyCQ8RaoNDjCZHwzGJQL3TOUnhOTQofO+y7DChPBgbvQ4NasPe/K08efQ4Ody6jcEQSwqGxHsTyw7xzJvYb5JThUnZl5w2TFK9JrEv6X3SuexUziSVG6p+k7Iv3vaUegfVPfgznYjy6daR7t8TzChbUJ7l4eKasvQ+fO8bsnNaJ19ERERGrbggj2MPmMuxB8xN7Gvv7mXV5m2x0dnoCO0zr61MHK8smRKdcjyrMjFSW1KYPxbNlwznNga32zBR7tAODxGM4yPaoWFC8OBR6ZAdHJIHB2xSpoSHYgNZ1kYXuIl+xWJ0yr5omfgyOMn74qE78RoL4gPbqfVaoqP3gz83fu7Q9Sft3+mc+Ocnfe7gMtikcqmL+YxGuuN/6f6pIp2za3J8aX32WNLIq4iIiOx1nT1+Vm3ZxopNA1OONzdtTxyvmFrIolnx0dnolOOyooIxbLGIiIwhTRsWERGR8aOrt4/VW1KnHNdu254YeSkvKoguCBULtPvXVFJe7MiDDkREZHxTeBUREZHxrcffz6otqVOONzW2JgJt6ZT8xCN7FscC7bTiQi1GIyKSWRReRUREZOLp6etnzZamlFWONza0JO6ZKynMS51yPLuSyqlTFGhFRCYuhVcRERHJDP7+AGvqmlixaWDK8YaGFsKR6MNRigtyBxaEit1DO720SIFWRGRiUHgVERGRzNUXCLKmrillyvGGrc2EwtFAOyUvJ2XK8eJZlcwoL1agFREZfxReRUREZHLpDwRZW9+cMuV4XX0zoXAYgMLc7MQzaOMjtTPLi3G5XGPcchGRSU3hVURERCQQDLEuFmjjU47X1jcRDEUDbX5OFguqp1FTWcLsylJmV5Qyp6qU6aXFeD3uMW69iMikoPAqIiIiMpRAKMT6rS2sjN1Du6GhhU2NrWzv7EmU8bhdzCyfSk1lKXMqS6PBtrKUmooSivJzx7D1IiIZR+FVREREZE909PipbWxl07btbIwF2k3btrOlqS0x9RhgakFeLMyWJELt7MpSppcW4XFrtFZEZA8pvIqIiIg4IRQOU9/SHg2z8a9t0dcdXb2Jch63m1nTpqYE2uhU5BIK83LGsAciIuOawquIiIjI3tbe3RsLtNvZ1NjCpm3b2dTYSl1zW2LlY4CSKfnMiU07nlNZmpiOXFVahFsLRonI5KbwKiIiIjJWgqEw9S07UkdqG1rZ2NhKR48/Uc7n9URHaysGjdZWlpCfkz2GPRAR2WeGDK+efd0KERERkcnI63EnguhgO7p6EiO1GxtbqW3czpq6Jp57YzXhyMBobVlRwcBobVUpNRXR0drKkil6vI+IZDyFVxEREZExVlyQR3FBHoctmJmyPxAKUde8I/Xe2sZWnnplOZ29fYlyWV4PNRUl0TCbFGprKkrIy8na190REdkrFF5FREREximfx8PcqjLmVpWl7LfW0pY0Wht9bWXVlkb+/tpKIkm3hU0rLqSmsmTg8T4VpcyuKqWiuFCjtSIyoSi8ioiIiEwwxhhKCvMpKczniP1mpRwLBENsaW4btBLydp54+R26kkZrs31eaiqSHu1TUcqM8mLycrLIzfKRk+UlN8uH1+PGmCFvPxMR2ae0YJOIiIjIJGCtpbWjm9pt29nY2EJt4/bY/bWt1Le2M9zvhG6Xi9xsHzk+LzlJoTY3O/o+xxfbl+1LPZ41sJ0TK5+bVD4nFoxFRIagBZtEREREJitjDGVFBZQVFXDkwpqUY/2BIFua29ja2k5vX4DevgD+QIDe/iD+/gD+/mB0X/x9IEBHj59tbZ0D+/oD9AWCe9Qmr8cdDbbxgJsUdlND8EAAjgfmlAA9qHx2llePGxLJQAqvIiIiIpNcls/L/OppzK+ellY9kUgEfyCYGnYD0WAb3Y6H4QC9SaE3UT4Qfb+jq4etLUnhORAkEAztWZ+8noHA6/MOTIXOHjQiHHvvcbswGDDgMgZjDIZo6I9+gSH66jIGhtuXtB2fbm2MiW2T2OdyDZTd6XMT9Q6cYwCTfE68zugHJM6J1hvbN+hzSDonXjfxYyOwJ9PHR1pypHXu2cz1vVFn5vB63FSVFI11M0ZF4VVEREREHOFyucjLziIvOwumOFt3KBxOhN/exGtyIA7S29efEnhTRotj5Zt2dKXs8/cHCIUju2+ASIaYX13OozdePNbNGBWFVxEREREZ9zxuNwW5bgpysx2vOxAKEQ5HsETvDY5+xd4P3kfSsaR9kdh7ks5J7IudE0k6ByyRSFL9RM+N7O6zB50TrcOCHWbfoM8h3o6kfjhtpHWO9KNj3x1n65xg6/44qTDP+f+H9hWFVxERERGZ1Hwej34rFpkAxvROdmPMV40xa4wxK4wxPx7LtoiIiIiIiMj4NWZ/YzLGvA84CzjIWttvjCkfq7aIiIiIiIjI+DaWI69fBm6y1vYDWGubx7AtIiIiIiIiMo6NZXhdALzHGPOKMeYFY8yRwxU0xnzBGPOaMea1lpaWfdhEERERERERGQ/26rRhY8yzQMUQh66JfXYxcDRwJHCfMWaOHWLpL2vt74DfARxxxBGTd2kwERERERGRSWqvhldr7UnDHTPGfBl4KBZWlxpjIkApoKFVERERERERSTGW04YfAU4AMMYsAHxA6xi2R0RERERERMapsXyi1Z3AncaY5UAAuHCoKcMiIiIiIiIiYxZerbUB4BNj9fkiIiIiIiIycYzltGERERERERGREVF4FRERERERkXFP4VVERERERETGPTPR1kgyxrQAm8e6HbtQyuRdNXmy9n2y9hsmb98na79h8vZd/Z58JmvfJ2u/YfL2fbL2GyZv3ydCv1uttacN3jnhwut4Z4x5zVp7xFi3YyxM1r5P1n7D5O37ZO03TN6+q9+Tz2Tt+2TtN0zevk/WfsPk7ftE7remDYuIiIiIiMi4p/AqIiIiIiIi457Cq/N+N9YNGEOTte+Ttd8wefs+WfsNk7fv6vfkM1n7Pln7DZO375O13zB5+z5h+617XkVERERERGTc08iriIiIiIiIjHsKr2kwxriNMW8aY54Y4pgxxvzCGLPeGPO2MeawsWjj3mCMKTLGPGCMWW2MWWWMOWbQ8YzsuzHmMmPMCmPMcmPMPcaY7EHHM6bfxpg7jTHNxpjlSfumGmP+boxZF3stHubc04wxa2Lfhyv3XavTN0y/fxL7b/1tY8zDxpiiYc6dsP2GofuedOwKY4w1xpQOc+6E7ftw/TbGfDXWpxXGmB8Pc25G9dsYc4gx5r/GmGXGmNeMMUuGOXci93uGMeafsX+7VhhjvhbbPxmub8P1PaOvccP1O+l4Jl/fhu17Jl/jdvHf+mS4xmUbY5YaY96K9f17sf2Zc42z1uprlF/A/wD/BzwxxLHTgacAAxwNvDLW7XWw33cDn4u99wFFmd53YDqwCciJbd8HfDpT+w0cBxwGLE/a92Pgytj7K4EfDXGeG9gAzIn9t/EWsHis+5Nmv08BPLH3P8rEfg/X99j+GcDTRJ+vXZppfR/mZ/4+4FkgK7ZdPkn6/Qzw/tj704HnM7DflcBhsfcFwFpg8SS5vg3X94y+xg3X79h2pl/fhvuZZ/Q1bhf9ngzXOAPkx957gVeI/k6aMdc4jbyOkjGmGvgAcMcwRc4C/p+N+i9QZIyp3GcN3EuMMYVEf+n5A4C1NmCtbR9ULCP7DniAHGOMB8gFGgYdz5h+W2tfBNoG7T6L6B8uiL2ePcSpS4D11tqN1toAcG/svAlhqH5ba5+x1oZim/8Fqoc4dUL3G4b9mQPcCnwTGG6BhAnd92H6/WXgJmttf6xM8xCnZmK/LVAYez+Fna9xMPH73WitfSP2vgtYRfSPk5Ph+jZk3zP9GreLnzlk/vVtuL5n9DVuF/2eDNc4a63tjm16Y1+WDLrGKbyO3s+IXvAiwxyfDtQlbdczcLGcyOYALcBdJjpl+g5jTN6gMhnXd2vtVuBmYAvQCHRYa58ZVCzj+j3INGttI0T/YQDKhyiT6d+DzxIdXR8sI/ttjDkT2GqtfWsXxTKx7wuA9xhjXjHGvGCMOXKIMrQt3l8AABN4SURBVJnY768DPzHG1BG93l01RJmM6bcxpgY4lOjIxKS6vg3qe7KMvsYl93uyXd8G/cwnzTVuUL8nxTXORG9rXAY0A3+31mbUNU7hdRSMMR8Emq21r++q2BD7MmFpZw/RqWa/sdYeCvQQnX6QLOP6Hrs34CxgNlAF5BljPjG42BCnTuh+j0LGfg+MMdcAIeDPQx0eYt+E7rcxJhe4Bvj27ooOsW9C953oda6Y6FSrbwD3GWMG9zMT+/1l4DJr7QzgMmIzbAbJiH4bY/KBB4GvW2s7R3raEPsypu+Zfo1L7jfRfk6a69sQP/NJcY0bot+T4hpnrQ1baw8hOotiiTHmgBGeOiH6rvA6Ou8CzjTG1BIdUj/BGPOnQWXqid5LEVfN0NMTJpp6oD72VxyAB4iG2cFlMq3vJwGbrLUt1tog8BBw7KAymdjvZE3xadCx16GmGWXk98AYcyHwQeDj1tqhLuSZ2O+5RP9Y81bsWlcNvGGMqRhULhP7Xg88FJt+tZToDJvBi7lkYr8vJHptA7if6BSywSZ8v40xXqK/0P7ZWhvv76S4vg3T94y/xg3R70lzfRvmZ57x17hh+j0prnFxsdv6ngdOI4OucQqvo2CtvcpaW22trQEuAP5hrR08CvfY/2/v/mOiOvc8jn8O0pkstda6SnvtmLhtFShTHGMDNNsKsTtE75oNWIJRa1UgWZu4sUmVkppuaxtDbZNG6zaadmslF6NtrF0oNaRRMBAjVygql9qVusRt2f6gGAjGXyP27B9DvWjBKzjwHOa8Xwlx5swhfp4c58Evz3O+I+k5Kyxd4W2mP4521kizbfsnSd9blpXQd+hpSaduOi0ax/6dpHTLsuL6fjv5tML3UPQXjePur0LhiV99f5YPcE6DpBmWZf2DZVkehd8fFaOUb0RYljVf0kuS/sW27YuDnBZ147Zt+y+2bcfbtj29b65rV7gBxk83nRp1Y5f0X5LmSZJlWTMVblzRedM50TjuHyRl9D2eJ+nbAc4Z0+Pum78/lPSNbdvv9Hsp6ue3wcYe7XPcQON2y/x2i3/vUT3H3WLcbpjjplh9HcMty/o7hRdf/lvRNMfZDugaNZa/JGWqr9uwpNWSVtt/7fb1nsJdu/4i6XHTWSM45oCkRknNCk+A97lh7JI2KjwBtEj6kyRvtI5b0h6F7+29qvAP9QJJfy/pkMKT/SFJk/rOnSrpQL/v/aPCnf3+R9IG02OJwLjPKHwPyIm+rx3RNu7Bxn7T62fV140zmsY+yDX3SCrre683SZrnknE/KekrhTtM/lnSnCgc95MKb4Nr7vee/qNL5rfBxh7Vc9xg477pnGid3wa75lE9x91i3G6Y41IkHe8be4ukf+87HjVznNUXFAAAAAAAx2LbMAAAAADA8SheAQAAAACOR/EKAAAAAHA8ilcAAAAAgOPFmg4wDHfcYeqffv1TJHIYdzBm+ZC/JxrGzrhvXzSMWxr62Bn32Ma4b49bxy1Fx9gZ9+2LhnFLvMdvF+Me24bzHh+ENdBBVl4BAAAAAI5H8QoAAAAAcDyKVwAAAACA41G8AgAAAAAcj+IVAAAAAOB4FK8AAAAAAMejeAUAAAAAOB7FKwAAAADA8WJNBwAAAAAASToYs9x0BDgYK68AAAAAAMejeAUAAAAAOB7FKwAAAABX6O7uVm5urhITE5WUlKSjR4+ajoQh4J5XAAAAAK6wdu1azZ8/X/v27VMoFNLFixdNR8IQULwCAAAADkPjosjr6elRbW2tdu3aJUnyeDzyeDxmQ2FI2DYMAAAAIOq1tbVpypQpWrVqlWbPnq3CwkJduHDBdCwMAcUrAAAA4CJbt26V3+9XcnKytmzZYjrOqOnt7VVTU5Oef/55HT9+XHfffbfefPNN07EwBBSvAAAAgEu0tLTogw8+0LFjx3Ty5ElVVlbq22+/NR1rVPh8Pvl8PqWlpUmScnNz1dTUZDgVhoJ7XgEAAACX+Oabb5Senq64uDhJUkZGhj777DMVFRUZTjbyHnjgAU2bNk2nT59WQkKCDh06pEcffdR0LEnc43y7WHkFAAAAXMLv96u2tlbnzp3TxYsXdeDAAX3//femY42abdu2admyZUpJSdGJEyf08ssvm46EIWDlFQAAAHCJpKQkvfTSSwoGgxo/frxmzZql2Fj3lASBQECNjY2mY2CYWHkFAAAAXKSgoEBNTU2qra3VpEmTNGPGDNOREGH5+fmKj4+X3++/fmz9+vVKTExUSkqKcnJy1N3dbTDh8FC8AgAAAC7S0dEhSfruu++0f/9+LVmyxHAiRNrKlStVVVV1w7FgMKiWlhY1Nzdr5syZKikpMZRu+NyzRwAAAACAnnnmGZ07d0533XWX3nvvPd13332mIyHC5s6dq7Nnz95wLCsr6/rj9PR07du3b5RT3TmKVwAAgDGAbqSIlLq6OtMRYNjOnTu1ePFi0zGGjG3DAAAAAOASmzZtUmxsrJYtW2Y6ypCx8goAAMYUViDdhesNRE5paakqKyt16NAhWZZlOs6QsfIKAADgMgN1IpXCn4GZkJCg5ORkFRUVGUoHYCRUVVVp8+bNqqioUFxcnOk4w0LxCgAAXGugIm7x4sUKBAIKBAKaPn26AoGAwYQjY6BOpDU1NSovL1dzc7O+/vprrVu3zlC6keXWaw53WbJkiZ544gmdPn1aPp9PH374odasWaPz588rGAwqEAho9erVpmMOGduGAQCAa61cuVJr1qzRc889d/3Yxx9/fP3xiy++qHvvvddEtBE1UCfS7du3q7i4WF6vV5IUHx9vINnIc+s1h7vs2bPnd8cKCgoMJIksVl4BAIBrzZ07V5MmTRrwNdu29cknn7jmMzBbW1tVV1entLQ0ZWRkqKGhwXSkEcE1B8YuVl4BAAAGUFdXp/vvv18zZswwHWVU9Pb2qqurS/X19WpoaFBeXp7a2trGZFOX4XLbNQfGGlZeAQAABrBnzx5XrcD5fD4tWrRIlmUpNTVVMTEx6uzsNB1rVLntmgNjDSuvAAAAN+nt7dX+/fv11VdfmY4yarKzs1VdXa3MzEy1trYqFApp8uTJpmONGjdec2CsoXgFAAC4ycGDB5WYmCifz2c6yohYsmSJDh8+rM7OTvl8Pm3cuFH5+fnKz8+X3++Xx+NRaWmpq7YMR/s1B6IBxSsAAHCtgYq4goIC7d27N6q3jw7UiVSSysrKRjnJ6HPrNQeiAcUrAABwrcGKuF27do1uEIwarjkwdtGwCQAAAADgeBSvAAAAAADHo3gFAAAAADgexSsAAAAAwPEoXgEAAAAAjkfxCgAAAABwPIpXAAAAAIDjUbwCAAAAAByP4hUAAAAA4HgUrwAAAAAAx6N4BQAAAAA4HsUrAAAAAMDxKF4BAAAAAI5H8QoAAAAAcDyKVwAAAACA41G8AgAAAAAcj+IVAAAAAOB4FK8AAAAAAMeLNR0AAIA7cTBmuekIAABgFLDyCgAAAABwPIpXAAD6uXz5slJTUzVr1iwlJyfr1Vdfvf7atm3blJCQoOTkZBUVFRlMCQCA+7BtGACAfrxer6qrqzV+/HhdvXpVTz75pBYsWKBLly6pvLxczc3N8nq96ujoMB0VAABXYeUVAIB+LMvS+PHjJUlXr17V1atXZVmWtm/fruLiYnm9XklSfHy8yZgAALgOxSsAADe5du2aAoGA4uPjFQwGlZaWptbWVtXV1SktLU0ZGRlqaGgwHRMAAFdh2zAAADcZN26cTpw4oe7ubuXk5KilpUW9vb3q6upSfX29GhoalJeXp7a2NlmWZTouAACuwMorAACDmDhxojIzM1VVVSWfz6dFixbJsiylpqYqJiZGnZ2dpiMCAOAaFK8AAPTzyy+/qLu7W5J06dIlHTx4UImJicrOzlZ1dbUkqbW1VaFQSJMnTzYZFQAAV2HbMAAA/fz4449asWKFrl27pl9//VV5eXlauHChQqGQ8vPz5ff75fF4VFpaanTL8MGY5cb+bgAATKB4BQCgn5SUFB0/fvx3xz0ej8rKygwkAgAAEtuGAQBAn2vXrmn27NlauHChJGn9+vVKTExUSkqKcnJyrm+nBgDABIpXAAAgSdq6dauSkpKuPw8Gg2ppaVFzc7NmzpypkpISg+kAAG5H8QoAANTe3q4vvvhChYWF149lZWUpNjZ8h1F6erra29tNxQMAgOIVAABIL7zwgt566y3FxAz8X4OdO3dqwYIFo5wKAIC/omETgKhDF1ZgaCorKxUfH685c+bo8OHDv3t906ZNio2N1bJly0Y/HAAAfSheAQBwuSNHjqiiokIHDhzQ5cuX1dPTo2effVZlZWUqLS1VZWWlDh06ZPSjgQAAYNswANyGm7uwStK2bduUkJCg5ORkFRUVGUwH3JmSkhK1t7fr7Nmz2rt3r+bNm6eysjJVVVVp8+bNqqioUFxcnOmYAACXY+UVAG7Db11Ye3p6JEk1NTUqLy9Xc3OzvF6vOjo6DCcEIm/NmjW6cuWKgsGgpHDTph07dhhOBQBwK4pXAPgbfuvCumHDBr3zzjuSpO3bt6u4uFher1eSFB8fbzIiEDGZmZnKzMyUJJ05c8ZsGAAA+mHbMAD8DQN1YW1tbVVdXZ3S0tKUkZGhhoYGgwkBAACiH8UrANxC/y6s/fX29qqrq0v19fV6++23lZeXJ9u2DaUEAACIfmwbBoBbGKwLq8/n06JFi2RZllJTUxUTE6POzk5NmTLFdGQAAICoxMorANzCYF1Ys7OzVV1dLSm8hTgUCmny5MmG0wIAAEQvV668HoxZbjoCgDEuPz9f+fn58vv98ng8Ki0tNf4ZmMxtAAAgmrmyeAWA4ejfhdXj8aisrMxsIAAAABeheI2Q6dOn65577tG4ceMUGxurxsZGrV+/Xp9//rk8Ho8efvhhffTRR5o4caLpqABwW5jXAACAk3DPawTV1NToxIkTamxslCQFg0G1tLSoublZM2fOVElJieGEADA0zGsAAMApKF5HUFZWlmJjw4vb6enpam9vN5wIAO4M8xoAADCF4jVCLMtSVlaW5syZo/fff/93r+/cuVMLFiwwkAwAhod5DQAAOAn3vEbIkSNHNHXqVHV0dCgYDCoxMVFz586VJG3atEmxsbFatmyZ4ZTuRRdWYOiY1wAAgJOw8hohU6dOlSTFx8crJydHx44dkySVlpaqsrJSu3fvNv4xGgAwFMxrAADASSheI+DChQs6f/789cdffvml/H6/qqqqtHnzZlVUVCguLs5wSkTS9OnT9dhjjykQCOjxxx+/fnzbtm1KSEhQcnKyioqKDCYE7gzzGgAAcBq2DUfAzz//rJycHElSb2+vli5dqvnz5+uRRx7RlStXFAwGJYWbm+zYscNkVERQTU2NJk+efMPz8vJyNTc3y+v1qqOjw2A64M4wrwEAAKeheI2Ahx56SCdPnvzd8TNnzhhIA1O2b9+u4uJieb1eSeGtlsBYxbwGAACchm3DwDAM1IW1tbVVdXV1SktLU0ZGhhoaGgynBAAAAKIHK6/AMAzUhbW3t1ddXV2qr69XQ0OD8vLy1NbWRkMbAAAAIAJYeQWGYaAurD6fT4sWLZJlWUpNTVVMTIw6OzsNJwUAAACiA8UrMESDdWHNzs5WdXW1pPAW4lAodENDJwAAAADDx7ZhYIgG68IaCoWUn58vv98vj8ej0tJStgwDAAAAEULxCgzRYF1YPR6PysrKDCQCAAAAoh/FKxDFDsYsNx0BAAAAiAjueQUAAAAAOB7FK4Db1t3drdzcXCUmJiopKUlHjx7VK6+8opSUFAUCAWVlZemHH34wHRMAAABRyLJt23SGoRpzgYFosWLFCj311FMqLCxUKBTSxYsXFRMTowkTJkiS3n33XZ06dUo7duwwnBQAAABj2IBdT7nnFcBt6enpUW1trXbt2iUp3KDK4/HccM6FCxfosAwAAIARwbZh3JGBtpG+9tprevDBBxUIBBQIBHTgwAHTMREBbW1tmjJlilatWqXZs2ersLBQFy5ckCRt2LBB06ZN0+7du/X6668bTgoAAIBoxLZh3JGBtpFu2bJF48eP17p160zHQwQ1NjYqPT1dR44cUVpamtauXasJEybojTfeuH5OSUmJLl++rI0bNxpMCgAAgDFuwK18rLxi2H7bRlpQUCApvI104sSJhlNhpPh8Pvl8PqWlpUmScnNz1dTUdMM5S5cu1aeffmoiHgAAAKLcWFx5hUNYlhWQ9L6kU5JmSfpK0lpJ6yWtlNQjqVHSi7ZtdxmKiQiyLKtOUqFt26cty3pN0t2S3rdt+9u+1/9NUoZt27kGYwIAACAKUbxi2CzLelxSvaR/tG37z5ZlbVW4YP0PSZ0Kb/F+Q9IfbNvON5cUkdL3C4v/lOSR1CZpVd/zBEm/SvpfSatt2/4/YyEBAAAQlSheMWyWZT0gqd627el9z5+SVGzb9j/3O2e6pErbtv0mMgIAAACIDtzzimGzbfsnSd9blpXQd+hpSacsy/pDv9NyJLWMejgAAAAAUYWVV9yRQbaRvispoPC24bOS/tW27R9NZQQAAAAw9lG8AgAAAAAcj23DAAAAAADHo3gFAAAAADgexSsAAAAAwPEoXgEAAAAAjkfxCgAAAABwPIpXAAAAAIDjUbwCAAAAAByP4hUAAAAA4Hj/D67pRHTKCCyCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAHYCAYAAACiIN65AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1jW9f7H8eeHvVVwT6xMUQRUMHOl5dbMsmVWeqxfO9udlnWy06lTtrRhy2PDyrJhpZVamrMMZyiWWrhFBJUhm8/vD5DQEBCBL+P1uK77ur/7ft2gV739LGOtRURERERERKQ6c3E6gIiIiIiIiEhpVLyKiIiIiIhItafiVURERERERKo9Fa8iIiIiIiJS7al4FRERERERkWpPxauIiIiIiIhUeypeRUREREREpNpT8SoiIlJJjDFxxpgBxRx/yBjzpzEm1Riz2xgzu+D4poJjqcaYXGNMRpH9h4rc388YY40x9xc51qfItWkF51OLvFpXzbcWERGpHG5OBxAREalLjDHjgGuAAdba7caYpsBIAGttpyLXLQHet9a+VcxjxgFJBe/PFNy7DPAruDcY+BOob63NqazvIiIiUpXU8ioiIlK1ooDvrLXbAay1+621b5T1ZmOMD3ApcCvQzhgTWTkxRUREqhcVryIiIlXrJ+BaY8x9xphIY4zrKd4/GkgFPgG+A66t6IAiIiLVkYpXERGRKmStfR+4HRgM/AgcMMY8cAqPGAfMttbmAh8AY4wx7hWfVEREpHpR8SoiIlLFrLWzrLUDgPrATcBkY8zg0u4zxrQC+gOzCg7NBbyA4ZWVVUREpLpQ8SoiIuIQa222tfYTYCMQWoZbriH/v91fGWP2A3+QX7yq67CIiNR6mm1YRESkcrkbY7yK7F8N7AOWAmnkdx/uBPxchmddCzwOTC9yrDvwiTEmyFqbWDGRRUREqh8VryIiIpVr/gn7scAh4H3AFdgB3GytXV7SQ4wxPYBg4BVrbUKRU18aY7YBY4CXKyq0iIhIdWOstU5nEBERERERESmRxryKiIiIiIhItafiVURERERERKo9Fa8iIiIiIiJS7al4FRERERERkWpPxauIiIiIiIhUezVuqZwhQ4bYb7/91ukYIiIiIiIiUjlMcQdrXMvrwYMHnY4gIiIiIiIiVazGFa8iIiIiIiJS96h4FRERERERkWpPxauIiIiIiIhUe1UyYZMxZgYwAjhgrQ0tOPYv4P+AhILLHrLWzq+KPCIiIiIiUr1lZ2eze/duMjIynI4ilcTLy4uWLVvi7u5epuurarbhmcDLwLsnHH/BWjulijKIiIiIiEgNsXv3bvz9/QkODsaYYieflRrMWktiYiK7d++mbdu2ZbqnSroNW2uXAklV8VkiIiIiIlLzZWRkEBQUpMK1ljLGEBQUdEot606Peb3NGLPRGDPDGNPA4SwiIiIiIlKNqHCt3U719+tk8foacCYQAewDnjvZhcaYG4wx0caY6ISEhJNdJiIiIiIiUiF27dpF//79CQkJoVOnTrz00kvFXrdkyRLq1atHREQEERERTJ48GYDDhw/z6quvHnfdiBEjqiR7RYiLi+ODDz4o3I+OjmbixIkAzJw5k9tuu63KMzlWvFpr4621udbaPOBNoHsJ175hrY201kY2atSo6kKKiIiIiEid5ObmxnPPPUdsbCw//fQTr7zyCps3by722j59+rB+/XrWr1/Po48+Cvy9eK0KOTk5FfasE4vXyMhIpk6dWmHPLw/HildjTLMiuxcDMU5lERERERERKapZs2Z07doVAH9/f0JCQtizZ0+Z73/ggQfYvn07ERER3HfffQCkpqZy6aWX0qFDB8aOHYu19m/39evXjzvvvJOePXsSGhrK6tWrAUhLS2PChAlERUXRpUsX5s6dC+S3gl522WVceOGFDBo0CIBnnnmGzp07Ex4ezgMPPADA9u3bGTJkCN26daNPnz5s2bIFgPHjxzNx4kR69uzJGWecwZw5cwrzL1u2jIiICF544YWTthwnJCQwevRooqKiiIqKYsWKFWX+GZ2qqloq50OgH9DQGLMbeAzoZ4yJACwQB9xYFVkqm7VWffNFRERERCrQU7O+YcvO/RX6zA6tm/Lg2KFlujYuLo5169ZxzjnnFHt+1apVhIeH07x5c6ZMmUKnTp14+umniYmJYf369UB+t+F169axadMmmjdvTq9evVixYgW9e/f+2/PS0tJYuXIlS5cuZcKECcTExPDkk09y/vnnM2PGDA4fPkz37t0ZMGBA4edv3LiRwMBAvvnmG7744gt+/vlnfHx8SErKnzf3hhtuYPr06bRr146ff/6ZW265hR9++AGAffv2sXz5crZs2cLIkSO59NJLefrpp5kyZQpff/11Yf7i3HHHHdx111307t2bnTt3MnjwYGJjY8v0cz1VVVK8WmvHFHP47ar47Kq05vcdPD3rW96492oa+Ps6HUdERERERE5Tamoqo0eP5sUXXyQgIOBv57t27cqOHTvw8/Nj/vz5jBo1iq1btxb7rO7du9OyZUsAIiIiiIuLK7Z4HTMmv3zq27cvycnJHD58mAULFvDll18yZUr+SqMZGRns3LkTgIEDBxIYGAjAokWL+Mc//oGPjw8AgYGBpKamsnLlSi677LLCz8jMzCzcHjVqFC4uLnTs2JH4+PhT+vksWrTouO7UycnJpKSk4O/vf0rPKYuqWue1Tgjw8ea3Xft5/uNFPHHdRU7HERERERGpFcraQlrRsrOzGT16NGPHjuWSSy4p9pqiBe2wYcO45ZZbOHjwYLHXenp6Fm67urqedIzqiT05jTFYa/n0009p3779ced+/vlnfH3/ajgrridoXl4e9evXL2wFLilXcV2ZS5KXl8eqVavw9vY+pfvKw+mlcmqVdi0bc+3gc/l06VrWbd3pdBwRERERESknay3XXXcdISEh3H333Se9bv/+/YUF3+rVq8nLyyMoKAh/f39SUlLK9dmzZ88GYPny5dSrV4969eoxePBgpk2bVvhZ69atK/beQYMGMWPGDI4ePQpAUlISAQEBtG3blk8++aTwu23YsKHEDGXNP2jQIF5++eXC/ZMVyBVBxWsFu/mi82gaGMDkd74mJzfX6TgiIiIiIlIOK1as4L333uOHH34oXAZn/vz5AEyfPp3p06cDMGfOHEJDQwkPD2fixIl89NFHGGMICgqiV69ehIaGFk7YVFYNGjSgZ8+e3HTTTbz9dv5oy0mTJpGdnU1YWBihoaFMmjSp2HuHDBnCyJEjiYyMJCIiorCb8axZs3j77bcJDw+nU6dOhRM+nUxYWBhubm6Eh4fzwgsvnPS6qVOnEh0dTVhYGB07diz8uVQGc6rNwk6LjIy00dHRTsco0cLozdwxbTYPXDWEawef63QcEREREZEaJzY2lpCQEKdjVLl+/foxZcoUIiMjnY5SJU7yey52Bly1vFaCAd1C6BPWjqmf/UB8UrLTcURERERERGo8Fa+VwBjDw1cPIyc3j2c++s7pOCIiIiIiUkMsWbKkzrS6nioVr5WkdZNAbhjRh29+jmFlzHan44iIiIiIiNRoKl4r0XXDetG6SSBPvDuPrOzip8EWERERERGR0ql4rUSeHu5MumY4O+ITmfHNCqfjiIiIiIiI1FgqXitZr85nMSiqI69/uZTdCYecjiMiIiIiIlIjqXitAg9cNQQXFxeefG8+NW1pIhERERGRusoYwzXXXFO4n5OTQ6NGjRgxYsQpPadfv34cW+5z2LBhHD58uEJz1hUqXqtA08B63HZxP37c8Ds/rPvN6TgiIiIiIlIGvr6+xMTEkJ6eDsDChQtp0aLFaT1z/vz51K9fvyLi1TkqXqvI1QN70K5lY/7z/nyOZmY5HUdERERERMpg6NChzJs3D4APP/yQMWPGFJ5LS0tjwoQJREVF0aVLF+bOnQtAeno6V155JWFhYVxxxRWFxS9AcHAwBw8eBGDUqFF069aNTp068cYbbxRe4+fnx8MPP0x4eDg9evQgPj6+Kr5qtefmdIC6wt3NlUfHjeCaJ2cwfe6P3H35QKcjiYiIiIjUCM9uj+e31IwKfWZ7Py/uO7NJqdddeeWVTJ48mREjRrBx40YmTJjAsmXLAHjyySc5//zzmTFjBocPH6Z79+4MGDCA119/HR8fHzZu3MjGjRvp2rVrsc+eMWMGgYGBpKenExUVxejRowkKCiItLY0ePXrw5JNPcv/99/Pmm2/yyCOPVOj3r4nU8lqFup3dhlG9I5j57Uq27TngdBwRERERESlFWFgYcXFxfPjhhwwbNuy4cwsWLODpp58mIiKCfv36kZGRwc6dO1m6dClXX3114f1hYWHFPnvq1KmFrau7du1i69atAHh4eBSOq+3WrRtxcXGV9wVrELW8VrF7rxjED+t+49/vzuN/D4zHGON0JBERERGRaq0sLaSVaeTIkdx7770sWbKExMTEwuPWWj799FPat2//t3tK+//8JUuWsGjRIlatWoWPj09h8Qvg7u5eeL+rqys5OTkV+G1qLrW8VrHAAF/uuuwCVm+JY95PvzodR0RERERESjFhwgQeffRROnfufNzxwYMHM23atMIVRdatWwdA3759mTVrFgAxMTFs3Ljxb888cuQIDRo0wMfHhy1btvDTTz9V8reo+VS8OuDS87rRuW0L/vvhd6Qcrdi++yIiIiIiUrFatmzJHXfc8bfjkyZNIjs7m7CwMEJDQ5k0aRIAN998M6mpqYSFhfHMM8/QvXv3v907ZMgQcnJyCAsLY9KkSfTo0aPSv0dNZ2rauqORkZH22BpJNdmmP/dy+eNvcNWA7jx89bDSbxARERERqUNiY2MJCQlxOoZUspP8novtc62WV4d0atucMedH8eGi1WyO2+t0HBERERERkWpNxauDJo4+nwb+Pjz+ztfk5eU5HUdERERERKTaUvHqoABfb+67cjC//rGHOT+udTqOiIiIiIhItaXi1WEX9gwjqkMwz3+yiKTkNKfjiIiIiIiIVEsqXh1mjGHStcM5mpHJcx8vdDqOiIiIiIhItaTitRo4q0Vjxg/pyefL1rH2951OxxEREREREal2VLxWEzdddB5NA+sx+Z2vycnNdTqOiIiIiEid99JLLxEaGkqnTp148cUXC49fccUVREREEBERQXBwMBEREcXeHxwcTOfOnYmIiCAyMrLw+MyZM9m7d+9x1x08eLDyvkgFe/HFFzl69Gjh/rBhwzh8+DAAfn5+lfa5Kl6rCR9PDx4aO5Tfd8cza+HPTscREREREanTYmJiePPNN1m9ejUbNmzg66+/ZuvWrQDMnj2b9evXs379ekaPHs0ll1xy0ucsXryY9evXEx0dXXjsxOK1KuRWYAPZicXr/PnzqV+/foU9/2RUvFYjF3TrQN/wdkz7fDHxSclOxxERERERqbNiY2Pp0aMHPj4+uLm5cd555/H5558fd421lo8//pgxY8aU+blz5swhOjqasWPHEhERQXp6OgDTpk2ja9eudO7cmS1btvztvpkzZ3LRRRcxZMgQ2rdvz+OPP1547v3336d79+5ERERw4403Fhaqfn5+PProo5xzzjmsWrWKX375hZ49exIeHk737t1JSUkhNzeX++67j6ioKMLCwnj99dcBWLJkCf369ePSSy+lQ4cOjB07FmstU6dOZe/evfTv35/+/fsDJ285fvbZZwuf+9hjj5X5Z3QybqVdYIw5F7ga6AM0A9KBGGAe8L619shppxAgf/Kmh68exsiHXuG/H37L87de7nQkERERERHHPTXrG7bs3F+hz+zQuikPjh160vOhoaE8/PDDJCYm4u3tzfz584/r+guwbNkymjRpQrt27Yp9hjGGQYMGYYzhxhtv5IYbbuDSSy/l5ZdfZsqUKcc9r2HDhqxdu5ZXX32VKVOm8NZbb/3teatXryYmJgYfHx+ioqIYPnw4vr6+zJ49mxUrVuDu7s4tt9zCrFmzuPbaa0lLSyM0NJTJkyeTlZVFhw4dmD17NlFRUSQnJ+Pt7c3bb79NvXr1+OWXX8jMzKRXr14MGjQIgHXr1rFp0yaaN29Or169WLFiBRMnTuT5559n8eLFNGzY8KQ/vwULFrB161ZWr16NtZaRI0eydOlS+vbtW+LvpSQlFq/GmG+AvcBc4EngAOAFnA30B+YaY5631n5Z7gRynFaNA7nhwj5M+2wxo/tuo1fns5yOJCIiIiJS54SEhPDPf/6TgQMH4ufnR3h4OG5ux5dPH374YYmtritWrKB58+YcOHCAgQMH0qFDh5MWb8e6Hnfr1o3PPvus2GsGDhxIUFBQ4fXLly/Hzc2NNWvWEBUVBUB6ejqNGzcGwNXVldGjRwPw22+/0axZs8LrAgICgPwic+PGjcyZMweAI0eOsHXrVjw8POjevTstW7YEICIigri4OHr37l3KT47C5y5YsIAuXboAkJqaytatWyuveAWusdae2P6bCqwteD1njDl5uS3lMmFoL75csZEn3pvH3H/fgqeHu9ORREREREQcU1ILaWW67rrruO666wB46KGHCgs5gJycHD777DPWrFlz0vubN28OQOPGjbn44otZvXr1SYs3T09PIL/gzMnJKfYaY8zf9q21jBs3jqeeeupv13t5eeHq6grkd3E+8f5jx6dNm8bgwYOPO75kyZLCTKXlKo61lgcffJAbb7yxzPeUprQxr4WFqTHGs+gJY0yPglA1Z1qsGsLTw51HrhnGzvgkZnyzwuk4IiIiIiJ10oEDBwDYuXMnn3322XGtrIsWLaJDhw7HFbRFpaWlkZKSUri9YMECQkNDAfD39y88dyoWLlxIUlIS6enpfPHFF/Tq1YsLLriAOXPmFGZNSkpix44df7u3Q4cO7N27l19++QWAlJQUcnJyGDx4MK+99hrZ2dkA/P7776SlpZWYoyz5Bw8ezIwZM0hNTQVgz549hRnLq7SW1w+ArgXbq4psA7x6wr5UoF6dz2JI90688dUyRpwbRqvGgU5HEhERERGpU0aPHk1iYiLu7u688sorNGjQoPDcRx999Lcuw3v37uX6669n/vz5xMfHc/HFFwP5rbRXXXUVQ4YMAWD8+PHcdNNNeHt7s2rVqjLn6d27N9dccw3btm3jqquuKhwz++9//5tBgwaRl5dXmLVNmzbH3evh4cHs2bO5/fbbSU9Px9vbm0WLFnH99dcTFxdH165dsdbSqFEjvvjiixJz3HDDDQwdOpRmzZqxePHiYq8ZNGgQsbGxnHvuuUD+5FHvv/9+YZfm8jDW2pOfNGadtbbLidvF7VeVyMhIW3Sa6dosPimZ4Q9OI7J9G167a2yxzfwiIiIiIrVRbGwsISEhTseoNmbOnEl0dDQvv/yy01Eq1El+z8UWPqV1G7Yn2S5uXypYk8AAbru4P0s3bOX7tX+fLltERERERKSuKK3bcEtjzFTyK99j2xTst6jUZALA2AHn8MWy9fzn/W/oGXomPp4eTkcSEREREZEqNn78eMaPH+90DEeV1vJ6H7AGiC6yfWz//sqNJgDubq5MGjec/UlHmD73R6fjiIiIiIiIOKK0ltfZgL+1NqHoQWNMYyC50lLJcbqd3YaL+3Rh5rcrGdkrnLNalH+Qs4iIiIiISE1UWsvrVKBPMccHAi9UfBw5mXsuH4iPlydPvDuPkibZEhERERERqY1KK157W2s/O/GgtXYWUPzqulIpAgN8ufuyAfyyJY6vVm50Oo6IiIiIiEiVKq14LWltltLulQp26Xld6XxGC56dvYDktHSn44iIiIiI1Gqurq5EREQQHh5O165dWblyZYU+f/z48cyZMweA66+/ns2bN1fo82ub0grQA8aY7iceNMZEAQnFXC+VyMXFhcfGjeBQchpTP/vB6TgiIiIiIrWat7c369evZ8OGDTz11FM8+OCDlfZZb731Fh07dqy059cGZZlt+GNjzL+MMRcWvB4HPi44J1WsY3Bzrrwgio++/4VNf+51Oo6IiIiISJ2QnJxMgwYNAEhNTeWCCy6ga9eudO7cmblz5wKQlpbG8OHDCQ8PJzQ0lNmzZwOwZs0azjvvPLp168bgwYPZt2/f357fr18/oqOjAfDz8+Phhx8mPDycHj16EB8fD0BCQgKjR48mKiqKqKgoVqxYURVfvdoosXi11q4GziG/+/D4gpcBzrHW/lzZ4aR4Ey85nwYBvkx+52ty8/KcjiMiIiIiUiulp6cTERFBhw4duP7665k0aRIAXl5efP7556xdu5bFixdzzz33YK3l22+/pXnz5mzYsIGYmBiGDBlCdnY2t99+O3PmzGHNmjVMmDCBhx9+uMTPTUtLo0ePHmzYsIG+ffvy5ptvAnDHHXdw11138csvv/Dpp59y/fXXV/rPoDopbakcrLXxwGNVkEXKKMDXm/uvHMw/X/+UOT+u4Yr+UU5HEhERERGpVJ9E72L3oYqb96VlA28ui2xV4jXHug0DrFq1imuvvZaYmBistTz00EMsXboUFxcX9uzZQ3x8PJ07d+bee+/ln//8JyNGjKBPnz7ExMQQExPDwIEDAcjNzaVZs2Ylfq6HhwcjRowAoFu3bixcuBCARYsWHTcuNjk5mZSUFPz9/cv9c6hJSixejTG/AsWty2IAa60Nq5RUUqoR53bm0x/X8MIn3zOgWwhBAX5ORxIRERERqTSlFZqV7dxzz+XgwYMkJCQwf/58EhISWLNmDe7u7gQHB5ORkcHZZ5/NmjVrmD9/Pg8++CCDBg3i4osvplOnTqxatarMn+Xu7o4x+XPnurq6kpOTA0BeXh6rVq3C29u7Ur5jdVfamNcRwIXFvI4dF4cYY5g0bgRHMzJ5bvZCp+OIiIiIiNRqW7ZsITc3l6CgII4cOULjxo1xd3dn8eLF7NixA4C9e/fi4+PD1Vdfzb333svatWtp3749CQkJhcVrdnY2mzZtKleGQYMG8fLLLxfuH2sVritKbHm11u4o7rgxxhW4Eij2vFSNM5s3YvyQnrw1bzmX9O1KZPs2TkcSEREREak1jo15BbDW8s477+Dq6srYsWO58MILiYyMLBwTC/Drr79y33334eLigru7O6+99hoeHh7MmTOHiRMncuTIEXJycrjzzjvp1KnTKeeZOnUqt956K2FhYeTk5NC3b1+mT59eod+5OjPWFtcruOCkMQHArUAL4EtgIXAbcC+w3lp7UVWELCoyMtIem4VL4GhmFhc++DJ+3p7Mefwm3N1cnY4kIiIiInLaYmNjCQkJcTqGVLKT/J5NcdeW1m34PaA98CtwPbAAuBS4yInCVf7Ox9ODh64extbdB5i1SBNAi4iIiIhI7VTabMNnWGs7Axhj3gIOAq2ttSmVnkzK7Pwu7ekXcTYvf76YId070TSwntORREREREREKlRpLa/ZxzastbnAnypcqx9jDA9dPYzc3Dz++8F3TscRERERERGpcKUVr+HGmGRjTIoxJgUIK7KfXBUBpWxaNmrAjRf25btfNrH8121OxxEREREROW0lzc8jNd+p/n5LLF6tta7W2gBrrX/By63IfsBpJZUKN2FYL9o0CeLf780jMyu79BtERERERKopLy8vEhMTVcDWUtZaEhMT8fLyKvM9JY55NcZ4ATcBZwEbgRnW2pzTSimVxsPdjUnXDuf6Z9/l7fkruGVUP6cjiYiIiIiUS8uWLdm9ezcJCQlOR5FK4uXlRcuWLct8fWkTNr1D/rjXZcAwoBNwR7nTSaXrGXomQ88J5Y2vlzHi3DBaNwl0OpKIiIiIyClzd3enbdu2TseQaqS0Ma8drbVXW2tfJ3+JnD5VkElO0z/HDMbd1ZUn35+vbhYiIiIiIlIrnMpsw+XuLmyMmWGMOWCMiSlyLNAYs9AYs7XgvUF5ny/Ha9wggNsv6c+yjVv5fs0Wp+OIiIiIiIictrLONpx8mrMNzwSGnHDsAeB7a2074PuCfakgVw3oTvtWTfjPrG9Iy8h0Oo6IiIiIiMhpKetswwElzTZcWquptXYpkHTC4YvIH1NLwfuocuSXk3BzdeXRcSPYn3SE6XN/dDqOiIiIiIjIaSmt5bWsvi/HPU2stfsACt4bV1AWKdClXWsu6duFd75bxdbdB5yOIyIiIiIiUm4VVbyaCnpO8Q835gZjTLQxJlpTZZ+aey4fiK+XJ0+8+7UmbxIRERERkRqroorX8lRF8caYZgAF7ydtGrTWvmGtjbTWRjZq1Ki8GeukBv6+3H35AKJ/28FXKzc6HUdERERERKRcKqp4LY8vgXEF2+OAuQ5mqdVG9+1K2Jktefaj7ziSlu50HBERERERkVNWJd2GjTEfAquA9saY3caY64CngYHGmK3AwIJ9qQQuLi48Om4Eh1KOMvXT8gxPFhERERERcVaJxasx5vwi221POHdJkd0LSnqOtXaMtbaZtdbdWtvSWvu2tTbRWnuBtbZdwfuJsxFLBerYphlXDejORz9Es+nPvU7HEREREREROSWltbxOKbL96QnnHjm2ocKzZrj9kvMJCvBl8jtfk5uX53QcERERERGRMiuteDUn2S5uX6o5fx8v7h8zmF//3MMnS9Y4HUdERERERKTMSite7Um2i9uXGmB4j86cE9KWFz9ZRGJyqtNxREREREREyqS04vUMY8yXxpivimwf229byr1SDRljeOTa4RzNzOa52QudjiMiIiIiIlImbqWcv6jI9pQTzp24LzXEmc0b8Y+hPXnz62Vc0qcLkR2CnY4kIiIiIiJSohJbXq21PxZ9ASuBZCC2YF9qqJtG9qV5w/pMfnce2Tm5TscREREREREpUWlL5Uw3xnQq2K4HbADeBdYZY8ZUQT6pJN6eHjw0dijb9hzgvQU/OR1HRERERESkRKWNee1jrd1UsP0P4HdrbWegG3B/pSaTSnd+1w70j2jPK18sYX/SEafjiIiIiIiInFRpxWtWke2BwBcA1tr9lZZIqtSDVw/FWsvTH3zrdBQREREREZGTKq14PWyMGWGM6QL0Ar4FMMa4Ad6VHU4qX8tGDbjhwj4s+GUzyzZudTqOiIiIiIhIsUorXm8EbgP+B9xZpMX1AmBeZQaTqjNhaC+Cmwbx7/fmk5mV7XQcERERERGRvylttuHfrbVDrLUR1k2hlMQAACAASURBVNqZRY5/Z629p9LTSZXwcHfjkWuHs+tAEm/NW+50HBERERERkb8pcZ1XY8w0wBY5ZIGDwGJrraqcWqRnpzMZdk4ob85bzoieYbRpEuR0JBERERERkUKldRuOBtYUea0FUoFnjTF3VnI2qWL3jxmMu6srT743H2tt6TeIiIiIiIhUkRJbXq217xR33BgzHVgJvFgZocQZjRsEMHF0f56a9S0Lo2MZFNXR6UgiIiIiIiJA6S2vxbLWpld0EKkexlzQnfatm/L0B9+QlpHpdBwRERERERGgHMWrMcbNGPMPYHcl5BGHubm68ti4EexPSua1uT86HUdERERERAQopXg1xqQYY5IL3lOMMSnAHmAo+cvoSBF51rIiKdXpGKct4qxWXHpeV979bhVbd8c7HUdERERERKTUpXL8rbUBBe/HXk2stZdba/dWVcia4uv4I9wWs5snt+4nO69mT3h012UD8PXyZPI78zR5k4iIiIiIOK7UbsPGGA9jzD+MMVOMMc8WbHtWRbiaZliTeoxvGcicfYf5v407OZCZ7XSkcmvg78s9lw9kze87+HLFBqfjiIiIiIhIHVdat+GOwGagH7CT/HGu/YBNBeekCDdjuOOMxvw3pDm/p2Ywdl0c648cdTpWuV3StwvhZ7bk2Y8WcCRNc3SJiIiIiIhzSmt5nQbcbK0dZ62daq19yVo7DrgJeKXy49VMgxoF8G6XYLxdXPi/jTv5eO+hGtn11sXFhUfHjeBw6lFemvO903FERERERKQOK614bWGtXXjiQWvtIqBp5USqHc7y9WRW12B6NPDlqW3x/Ov3/WTm5Tkd65SFtGnG2IHnMHtxNL/+scfpOCIiIiIiUkeVVry6FDe+1RjjBbhVTqTaw9/NlZc6teSG1kF8GX+ECet3si+j5o2Dvf2S/jSs58cT735Nbg0swEVEREREpOYrrXh9F/jUGBN87EDB9sfAe5UVqjZxMYabgxvxfMcW7EjP4qp1cfxyOM3pWKfEz9uLf44ZTMyfe/lkcbTTcUREREREpA4qbamcfwPfAkuNMQeNMYnAj8BCa+3kqghYW/Rv6M/7XdrQwM2Vmzfu4r3dSTVqHOzQc0Lp0fEMXpjzPQeP1Py1bEVEREREpGYpdakca+3L1trWQFsg2Frbxlo7rfKj1T7BPp6826UN5wX58fwfB3hoyz7Sc2tGN1xjDJOuHU56ZjbPzV7gdBwREREREaljShy3aoy5u5hjhdvW2ucrIVOt5ufmyrMdW/C/XYm8EneQ7Uczeb5jC1p6ezgdrVRtmzVkwrCevPHVMi7p25WoDsFORxIRERERkTqitJZX/yKve0/Y96/caLWXizFc17oh00Jbsj8zm7Hr4liZVDO64t54YV+aN6zP5He+Jjsn1+k4IiIiIiJSR5iyjrs0xqyz1nap5DylioyMtNHRtWfSoF3pWdyzeQ/b0jK5NbgRE1oFHte6XR0tXvcbt774AfdcMZDrhvV2Oo6IiIiIiNQuxRZEpY55LaLmzC5Ug7Ty9uCdiDYMauTPy3EJ3Bu7h7Rq3qLZv0t7+ndpz6ufL2Ff4hGn44iIiIiISB1wKsWrVBJvVxee6tCcu89ozI8HU7lm/Q7ijmY6HatED40digX++8G3TkcREREREZE6oMTi1RjzqzFmozFmI9Dh2Pax41WUsU4wxnBNy0BeC2vFoexcrlm3gyWJKU7HOqkWjRpw08i+LIjezNINW52OIyIiIiIitVyJY16NMW1Kutlau6PCE5Wito15Lc6+jGzu2byH2NQMbmgdxI1tGuJSDcfBZuXkcMkjr5Gdk8vc/9yKl4e705FERERERKTmO/Uxr9baHSW9Cp9szKqKTluXNfNyZ0Z4a0Y2qccbOxO5c9NuUqrhOFgPNzceuXY4uxIO8da85U7HERERERGRWqyixrx6VdBzpICXqwv/OrspD57VhFWH0hi7No7tadVvHGyPjmcwvEdn3vx6GRu27SIzK9vpSCIiIiIiUguVeamcEh9izFprbdcKyFOqutBt+ETrjhzl/tg9pOXk8Xj7ZgxsFOB0pOMkHE5h+APTSE3PL64b+PvQpEEATQMDaNIggCaBATQNrPfXscAAfDw9HE4tIiIiIiLVVLHdhlW81hAHMrO5L3YvG5PTGd8ykNvaNsK1Go2D3XUgiTW/72R/0hHik5KJP5TM/oL3QylH/3Z9gK83TY8VtgXvRbebBgbg560GfRERERGROqjYQsetMh8uFaexpztvhrXi2e0HmLk7idjUDJ4OaUF9d1enowHQqnEgrRoHFnsuIyubA4dSCgvaYwXu/kPJxCcls3nHPhKPpP7tPl8vT5oG/tVa+1drbr3CYwE+XphqVMSLiIiIiEjlqKiW11BrbUwF5ClVXW15LerzfYd5als8jTzceK5TCzr41fwWyqycHBIOpRQWtIVF7rEW3KRkEo6kcuKfV29Pj8Luycd3U/7rWH0/HxW4IiIiIiI1x6l3GzbG/AkUvcAU2bfW2jMrLF4ZqXjNF5Oczr2b93A4J5dJ7ZoyvEk9pyNVuuycXA4eSS1S0B5h/6Fk9if+1U054XAKuXl5x93n4e5GkwYBNDuxBTewXmE35UB/H1xcKmr+MhEREREROQ3lKl6DTjjkAlwO3AustdaOrrB4ZaTi9S9JWTncH7uHNUfSGdO8AXed0Rh3l7rdwpibl0fikdTC8bbH3uOTktlXOB43hZzc45cecnN1pUkD/8Jxt02D6h3Xmts0MICgen64qsAVEREREals5Z+wyRjjAlwD3AesB/5jrd1cofHKSMXr8bLzLC/9eYBZew7RtZ43z4S0IMijooYy1055eXkkpRwtMu72yAlFbv52VnbOcfe5urjQqL7/cQVt08AA2rVqQs9OVd4JQURERESktipXy6s7MAG4C1gOPGWt3V4p8cpIxWvx5scf4Ymt+wlwc+W5ji0IDfB2OlKNZq3lcOrR41twT2jN3Z94hPSCdW2vGtCdB64agptr9ZhAS0RERESkBitX8bobyAFeBHaeeN5a+1lFpSsrFa8n91tqBndv2kNCVg4PntWEi5vVdzpSrWat5UhaOm98tYyZ366kd+ezeO6Wy/D3qfkTaImIiIiIOKhcxetMjp+wqShrrZ1w+rlOjYrXkh3OzuXB2D38dPgoo5vV5/4zG+OhcZqV7pMl0Tzx7jzaNAnitbvH0rJRA6cjiYiIiIjUVOUf81rsjcY0sdbGn1akclDxWrpca3klLoH/7Uqis78XUzq2oLGnu9Oxar2fY//kjmmzcXUxTJs4hq5nt3Y6koiIiIhITVRs8XpKTXLGmHrGmAnGmEXA2gqJJRXO1Rgmtm3MMyHN2ZaWyVVr41h35KjTsWq9c0La8tGj1xPg480//juTL1dscDqSiIiIiEitUWrxaozxNsZcYYyZC8QAzwP/BlpVdjg5PQMbBfBel2B83Vy4YeNOZu89RHlb2qVsgps25MNHr6dru9Y88MZnvDTne/JOWHdWREREREROXYnFqzFmFvA7MAh4GQgGDllrl1hr9X/kNcCZvp683yWYng18eXpbPI/9vo+MXP3qKlN9Px9ev/dqRvftyutfLeXuVz8hPTPL6VgiIiIiIjVaaS2vocAhIBbYYq3N5eQTOEk15e/mygudWnJj6yC+ik9mwoYd7M3IdjpWrebh5sbkCSO578pBLIyOZdxT/yPhcIrTsUREREREaqwSi1drbThwORAALDLGLAP8jTFNqyKcVBwXY7gpuBEvdmrBrvRsxq6LY/WhNKdj1WrGGP4xtBfTJl7J9r0HueLxN4jdsc/pWCIiIiIiNVKpY16ttVustY9aa9sDdwHvAauNMSsrPZ1UuPOC/Hm/SzAN3F25+dddvLs7UeNgK9n5XTsw65HrALj6yRl8v3aLw4lERERERGqeci2VY4wxQF9r7Y8VH6lkWiqnYqTl5PLY7/v5/mAKgxv589jZzfB21XqwlSnhcAq3vfghMXF7ufvyAUwY2ov8v0oiIiIiIlLEqa/zaoyZRgljXK21E08/16lR8VpxrLX8b1cSL8clcJavJ891bEErbw+nY9VqGVnZPPTm53y7ehOX9O3Co+NG4OHm5nQsEREREZHqpNjitbT/a1aVWIsZY5jQOogQPy8e2LKHsevieKpDc3oF+jkdrdby8nBnys2X0rZZQ16b+yO7DhzipduvoL6fj9PRRERERESqtXJ1G3aSWl4rx+70LO7ZvIetaZncEtyQCa2CcFGX1kr11cqNPPL2FzQLqsdrd42lbbOGTkcSEREREakOii1ESh3kaIwZZ4xZa4xJK3hFG2Ourfh84qSW3h7MjGjDkEYBvBJ3kHs37yE1J9fpWLXahT3DmPnAeFKPZjJm8pus2vSH05FERERERKqtEovXgiL1TuAeoDnQArgfuKOiClhjTJwx5ldjzHpjjJpUHeTt6sKTHZpx7xmNWZqYyrXrdvDn0UynY9VqXdq1ZvZj/0fjBgHc+Nx7fLxYfwVERERERIpT2oRNPwFXWmvjTjgeDHxkre1x2gGMiQMirbUHy3K9ug1XjejDadwfu5esPMsT7ZvRv6G/05FqtdT0DO55dQ7LNm5l3OBzuffKQbi6aPZnEREREamTytVtOODEwhWg4FjA6WeS6iqyvi8fdAmmjbcHd2/ew6txCeTVsPHRNYmftxev3DmGqweewzvfreK2Fz8kLV2t3iIiIiIix5RWvKaX89ypsMACY8waY8wNxV1gjLmhYKxtdEJCQgV9rJSmqZc7MyJac1GTery5M5E7Nu0mOVvjYCuLm6srD109jEnXDmf5r9sY+++32XPwsNOxRERERESqhdK6DR8FthV3CjjDWut72gGMaW6t3WuMaQwsBG631i492fXqNlz1rLV8su8wz26Pp5mnO893aslZvp5Ox6rVVsZs565XPsbD3Y2X7xhD+JktnY4kIiIiIlJViu02XFrx2qakJ1prd5xmqBM/719AqrV2ysmuUfHqnPVHjnJf7B5Sc/J4vH0zBjVSz/HKtH1vArc8P4v4wyn85/pRDOvR2elIIiIiIiJVoVxjXr2ttTsKitT9x7YL9puddiJjfI0x/se2gUFAzOk+VypHRD0fPujSlvZ+Xvwzdi8v/nGAHI2DrTRnNm/ER4/9H53btuDe1+bwyueLqWnrMouIiIiIVJTSitcPimyvOuHcqxXw+U2A5caYDcBqYJ619tsKeK5UkkaebrwZ1prLm9Xnnd1J3PrrLg5l5zgdq9Zq4O/L2/dfy6jeEbzyxRLun/4pmVnZTscSEREREalybqWcNyfZLm7/lFlr/wDCT/c5UrXcXQwPtmtKR38v/rM1nrFr43iuY0tC/L2cjlYrebi78eT1o2jbrCEvfLKI3QmHmHbHGBrW83M6moiIiIhIlSmt5dWeZLu4faljLmpanxkRrbHAPzbsYMr2eBYkJLMnPUvdWyuYMYb/G9GHl26/gt92xXPF42/w+654p2OJiIiIiFSZ0iZsOgB8RH4r6xUF2xTsX26tbVLpCU+gCZuqn6SsHCZv3c/KpDSyC/481XdzpaO/F538vfLf/bxp5FlaQ7+UxaY/93Lrix+QmpHJczdfxnkRZzsdSURERESkIpVrtuFxJT3RWvvOaYY6ZdW5eD2amcW23QfofEYLjDntXtU1TnaeZWtaJptS0tmUksHm1Ay2p2WSV3C+sYcbnQoK2k7+3nT08yLA3dXRzDVVfFIyt774AVt27uf+MYO5ZlCPOvlnTkRERERqpVMvXquj6ly8fvNzDPe8+glNAwM4v2sHBkZ2pNvZrXFzrbsFWnpuHltSM9icksGmlAw2paazM/2vCYdaebkXtNB608nfixA/L7xdS+vNLpD/jyUPvP4Zi9bEcnn/SB6+ehjubnX3z5qIiIiI1Brlann9sqQnWmtHnmaoU1adi9cjaeksWfcbi9bEsiJmOxlZ2dT386FfxNkMjOxIz05n4Onh7nRMxyVn57I5Nb+Y3VzQShuflT9jsQtwho/nX92N/b1o5+uJh4sK2uLk5eXx4pzveWvecnp0PIMXbrucer7eTscSERERETkd5SpeE4BdwIfAzyc+xFr7YwUGLJPqXLwWdTQzixW/bmPRmliWrP+dlKMZeHt60DesHQO6hXBeRDv8vDU77zEHs3IKWmfTC1poMzicnQuAuzG08/U8rstxWx8PXNVNttDny9bx2P++olXjBrx611W0aRLkdCQRERERkfIqV/HqCgwExgBhwDzgQ2vtpspIWBY1pXgtKisnh19i41i4Jpbv124h8Ugq7m6u9Oh4BgO6deD8rh0ICtCyJ0VZa9mXmZ1fyKbkdzvenJpBWm7+CFpvF0MHP6/juhy38nKv0+M+o7fEMXHabKy1TJ14JVEdgp2OJCIiIiJSHqc35tUY40l+EfssMNlaO63ispVdTSxei8rNy2PDtt0sWhPL92ti2ZVwCBdj6NKuNQMjQ7igWwgtGtZ3Oma1lGctO9KzCgvaTSnp/JaaSVbBn+EANxc6+v1VzHby96KxZ93qpr0zPolbXpjFzgOH+Nf4C7mkbxenI4mIiIiInKryFa8FRetw8gvXYOBLYIa1dk8FByyTml68FmWt5bdd8SxaE8ui6Fh+352/bmfHNs0Y0C2EAZEhnNm8UZ1uTSxNdp5l+9HM48bPbkvLJLfgfEMPt4KC9q8ux/Vr+QzHyWnp3P3KJ6zctJ3rhvXirssG4KIxwyIiIiJSc5Sr2/A7QCjwDfCRtTamcrKVXW0qXk+0Iz6xoEV2C+u37QIguGlQfiHbLYTQts1VhJRBRm4evxUs2XNsluO49KzC8y283PMLWT8vOvp7E+LniW8tm6U3OyeX/7w/n9mLo7mgawf+e9NofDw9nI4lIiIiIlIW5Spe84C0gt2iFxrAWmsDKixeGdXm4rWoA4eS+WHtFhat2cLqLX+Sk5tHkwYBXNCtAwO6hRDZvk2dXoLnVKXk5LIlNeO4Lsf7MvNnODZAsI8HnYp0OT7bzxPPGv4PBdZa3l/4M//94Fvat27KK3eOoWlgPadjiYiIiIiURuu81lRH0tL5cf3vLIzeXLgETz1fb/p3ac+AbiH0DD0TLy3Bc8qSsnLYVLAG7bEux4kFMxy7GWjn60lHf+/Cbsdn+nriVgO7cC/dsJV7Xv0EHy8PXrlzDKFtWzgdSURERESkJOVqefWz1qaW+NQyXFOR6mLxWtTJluDpE3YWA7t1pG94O/x9tARPeVhric/ML2iPLdmzOSWD1IIZjr1cDO2PjZ8taKVt5e2OSw0oaLfujufmFz4gKTmNp264mMFRnZyOJCIiIiJyMuUqXr8H1gNzgTXW2rSC42cA/YHLgTettXMqPO5J1PXitahjS/AsKliC5+CRVNxcXTm3k5bgqSh51rIrPZvNqemFXY63pGaQkZf/98bP1YWu9by5qU0jQvyr9z8aJCancvtLH7F+2y7uuPQCbhjRR5OBiYiIiEh1VO7ZhocBY4FeQAMgB/iN/DVf37bW7q/YnCVT8Vq8vLw8NmzfzcLov5bgMcbQtV1rBhSMk23RqIHTMWuFHGv5Iy1/huNNqRn8cDCFw9m5XNS0HrcFNyLIw83piCeVmZXNIzPmMm/Vr4zsGc7kCSPxcK++eUVERESkTtKY17qi6BI836+J5bdd+UvwhLRpVlDIduSsFlqCp6Kk5OTy5s5EPtyThKeLC9e3DuKqFg3wqKYTPllrmf7lj0z7bDFd27Vm6sQrCQzwdTqWiIiIiMgxKl7rqp3xSflrya6JLVyCp02TIAZGhnBBtxA6awmeCrHjaBbP/xHP0qQ0Wnm5c9cZjekX5Fdt/5Hgm59jeOjNz2lU359X77qKs1o0djqSiIiIiAioeBUoYQmerh0YEKkleCrCqqQ0pvwRzx9Hs+he34f7zmzCWb6eTscq1sbtu7n1pQ/JzMrm+Vsvp3fns5yOJCIiIiKi4lWOd2wJnkVrYln+6zYtwVOBsvMsc/YdYvqOg6Tm5HFps/rcHNyI+u7V7x8G9iYe5tYXPmDbngQeHDuEqwac43QkEREREanbyl+8GmPes9ZeU9qxqqDitXKkZ2ax4tftLFyzmR/X/05ykSV4BnQL4bzws7UETzkczs5l+o4E5uw9jK+bCze2achlzRrg7lK9uhKnpWdy//RPWbz+N64a0J0HrhqiFngRERERccppFa9rrbVdi+y7Ar9aaztWXL6yUfFa+bJzcvllSxwLozcftwRPj45tGdAthPO7dqBhPS3Bcyq2p2UyZXs8Px0+SlsfD+45ozG9AqvXzzA3L4/nZi9k5rcr6d35LJ675TL9g4WIiIiIOKFc67w+CDwEeANHizwoC3jDWvtgBYcslYrXqnVsCZ5Fa2JZFP3XEjxd2rViYLcQLcFzCqy1/JiUyvPbD7ArI5s+gb7cfUZjgn2q13jYT5ZE88S782jTJIjX7h5LS/1+RURERKRqlat47WWtXWGMedpa+0ClRTsFKl6dY63l913xLDzJEjxDzwkluGlDh1NWf1l5eXy05xBv7kwkIy+PK5o34MY2DfF3qz7ddH+O/ZM7ps3G1cUwdeKVdDu7jdORRERERKTuKFfxusZa2+3EbsNOUvFafRxbguf7NbGsK1iCp8tZrRjVJ4Kh54Ti560upyVJzMrhlbgEvth/hHrurtzapiEXN6uPazVZWidu/0Fufv4D9iYe5okJFzGyV7jTkURERESkbihX8foTEAsMA2afeN5aO7Gi0pWVitfq6cChZL5atZHPl63nj70JeHm4MzAyhFG9u3BOSLDWkS3BltQMntkWz7rkdM729eS+MxsTWd/X6VgAHE49yl0vf8zPsX9y44V9uf2S/vpdioiIiEhlK1fx2hAYAPwXePTE89badyoqXVmpeK3erLVs/GMPXyxbx/yfY0g5mkGzoHqM6h3BqN4RtGoc6HTEaslay6KDKbzwxwH2ZeZwfkM/7mrbmJbeHk5HIysnhyfemcenS9cyKKojT/3fxXh7Op9LRERERGqt05ptONxau6HCI5WDiteaIyMrmx/WbuHzZetYuekPrLVEdQhmVO8IBkV1xNerek1UVB1k5Obx3u4kZuxKJNfCNS0DmdAqEF+Hx8Naa5n57UqmzF5Ip+BmvHLnVTSq7+9oJhERERGptcrV8nq/tfYZY8w04G8XqtuwlNX+pCPMXbGBL5atZ0d8It6eHgyO6sglfbrQrX0bTDUZ51ldHMjMZuqfCcw7kExDD1duD27MiCYBuDj8c/ph7Rbum/4p9Xy9ePnOq+jYppmjeURERESkVipX8XqhtfYrY8y44s6r27CcKmst67bu4vNl6/hmdQxHM7Jo1agBo/pEcFHvCJoH1Xc6YrXya3I6z26P59eUDDr5e3HvGY2JqOfjaKYtO/dzywuzOJKaztAeobRpEkSbJkG0bhJI6yaB+KhLsYiIiIicnvJ3G65OVLzWHkczs1gUHcvny9fx8+Y/McZwTkhbLu7ThQHdOmhcZYE8a/nmQDIv/ZlAQlYOQxsFMLFtI5p6uTuWKeFwCv+a+RUb/9hD4pHU4841qu9Pm4JCVoWtiIiIiJRDuVpev6KY7sLHWGtHnn6uU6PitXbak3Aov1vx8vXsTjiEn7cnQ7uHcnHfLoSf2VLdioGjuXn8b1ci7+1OwgDjWwVxbctAvF2dnf03LT2THQeS2BmfxI74RHbsT2TngSR2xCepsBURERGR8ihX8XpeSU+01v54mqFOmYrX2i0vL4/o33bwxfL1fLd6E+lZ2bRt1pBRvSMY2TOcJoEBTkd03N6MLF78I4GFB1No6unGHW0bM7iRf7Us8FXYioiIiEg5nF63YWOMB9CB/JbY36y1WRWXrexUvNYdaemZfPfLZj5fto41v+/AxRh6hp7JxX26cH6X9nh6ONdttjpYc/goU/6IZ0tqJhEB3tx3ZhM6+ns5HavMjhW2hQWtClsRERERyXdaS+UMB6YD2wse1Ba40Vr7TUUmLAsVr3XTjvhE5i5fzxfLN7A/6QgBvt4M7xHKqN5dCG3bvFq2OlaFXGuZu/8Ir8QlcCg7l5FN6nFb20Y09HBzOtppUWErIiIiUqedVvG6BRhhrd1WsH8mMM9a26FCI5aBite6LTcvj59j/+TzZetYFB1LZnYOZ7VozKjeEVzYM6zOrj2akpPLWzsT+WBPEh4uLlzfOoixLRrg4eLseNjKkJqewc4Dh1TYioiIiNRep1W8LrXW9v1/9u47TI7qTvf493SanpxHM9IoC0QQChgQQYgoQBhjwBjMsjbJxmEd1zbr3X2eu9f3Pvvsrr3X2Ov1OoNZew22MZhgcpQQIIKQhAAjlDXSSBM0OXU694+ununu6ZEmSd3T/X4ej7u66lT178yI0rw6Vafi3hvgxfh1x4rCq8R09fbz+Pot/OmljWzcthe3y8XKxcdx1blLOW/p8fg8U3v0cTx29wW4c0cTL7Z2U+/38rV5NVxQWZQzI9MKtiIiIiJZYULh9cfAbOD3RO95/TjwPrAOwFr7wKSVeQQKr5LKjv3N/OmljTy0bhPN7V2UFRVwxVmncPW5yzhxdl26yzvmXm3r4bvbD7KjN8DppQV8Y34NxxdNnfthj4aUwfbgIXY3KdiKiIiIZJgJhde7D7PZWmtvHW9VY6XwKocTCod5ecsO/vTSWzy74S8EQ2EWzqrlmnOXcsVZiykvLkx3icdMyFr+2NjOj3c10xWKcE1dGV+YU0W5N/dGpI8kPtjuPhgNtYcLtrUVJeT7vOT5vPh9HvK8zqvPG13v9eD3ecnzefB7h9r5fd7o+qTt/jwvfq8Hn9eTM6PkIiIiIocxsdmGM4XCq4xWe3cvj6/fwoNr32LLzv143G7OX3o8V5+7jBWnLMDrcae7xGOiIxjmJ7tb+MP+Ngo8Lj47q4rrppfjdSkkjUaqYNvS0U1/IMhAIERfEKMIbgAAIABJREFUIMhAIEh/MDT4GgiGxvVZxhjyvJ6EcDsYkr2eYWH58GHYeZ+0Pf54CssiIiKSoSY88jqs4bEccY1ReJXx+KDhIA+u3cgjL2+itbOHytIiPnLWYq4+dxnH1deku7xjYnvPAP9vRxOvtPUwJ9/H1+fXsKKiKN1lZaVwJMJALMwGQgwEnddA0Am7IfqDzmsgOLi9PxAcDMXx2/tTHKc/OLQtGAqPq874sJyf500YQY4Py35fNAwX5Pv46DlLOWFW7SR/x0REREQSTCi8fizurR+4Gthvrf3y5NQ2egqvMhHBUJiX3t7Gg2vf4oWN7xMKR1g0dzpXn7uM1csXUVZUkO4SjyprLWsP9fD/dhxkT1+Qc8oL+fr8GuYW5KW7NJmAVGG5byDIgBNw48NwXyAQF5oTt/cPxI0gx4XlWEju7O0nGApz9blL+fI1F1JTXpLurouIiEh2mrzLho0xLuAZa+2FE61qrBReZbIc6uzhz69u5oG1G3l/zwG8HjcXnXoCV61YxjmnzMedhY+ZiQlGLPfuP8TPd7fSH4lw3fRyPjurihJvblxKLePT0dPHTx5+kf95+jW8bhe3Xn4Ot1x+jiaxEhERkck2qeF1IdHnvC6YaFVjpfAqR8N7uxt5cO1bPPrK27R391JTVsyV5yzh6nOXMbeuKt3lHTWHAiH+a1cLDxxop9Tj5gtzqri6rgyP7oOUw9hz8BDf+8PTPPX6u1SXFfPlj13IVSuWZvU/+IiIiMgxNaHLhrtIvOf1APD31to/Tk5to6fwKkdTIBTixY1b+dPajazZ/AHhSISlC2Zy1YqlrF6+iOKC7HzczPvd/Xx3+0He7OjjuMI8vjGvhjPKc2dmZhmfDVv38J37nmTz9gYWzqrlm5+4hLNPnp/uskRERGTq02zDImPR3N7FIy9v5sG1b7F9fzN5Xg8Xn3YiV5+7jDNPnIsry0aZrLU829LFnTua2T8Q5ILKIr42r4aZ+bokVEZmreWJ197he79/mn0t7Zy35Hi+fv0qFszIjYnQRERE5KhQeBUZD2stW3bu508vvcWfX3mbzt5+aitKuWrFEq5asYxZ0yrSXeKkGohE+E3DIX65p5WQhRvry/n0zEoKc+TRQjI+A4Egv3lmPT99eA19A0GuPe9UvnjNBVSWaEZrERERGTOFV5GJGggEee6t93lw7Vu8vGU7EWs5/YQ5fOrSs7hg6fFZNRrbNBDkhzubebSpk0qvmy/OrebKaaW4dD+sHEZbVw8/+tML/O65N/D7vHzmihV86tKz8Pu86S5NREREpg6FV5HJdPBQJw+/vInfPf8G+1vamVtXxc2XncWVZy8hL4t+Ud/S2cd3th/k7a5+Tizyc8f8GpaWZvcjhWTidja28O+/e4rn33qfuspSvnrtxXz4zEVZ9Q88IiIictSMPbwaYw57PaS19tAEixozhVfJNKFwmKdef5e7HlvHu7sbqSwt4saLz+ATF56eNc+NtdbyeFMnP9jZTFMgxKXVxXxlbg11/uwJ6XJ0rH9vJ9+990ne3d3IKXNn8M0bLuW0hbPTXZaIiIhktnGF151EZxk2wCygzVkuA/ZYa+dOfp2Hp/Aqmcpay2t/2cVdj61j7eYPyPd5uea8U7np0rOory5Pd3mToi8c4Vd7W7mn4RAGWFKSz8x8HzP9Xmbm+6jP91Lv95Hv1uiaDIlEIjzy8ma+f/+zHGzr5OIPncjfXreKObWV6S5NREREMtOEHpXzE+Bha+1jzvvVwMXW2q9PaomjoPAqU8EHDQe5+/GXefSVt4lEIlx6xsncuvocTp47Pd2lTYr9/UHu2tPKX3r62dsXoDMUSdhe5fMMBVrndWa+l5l+HyVeTfyUq/oGAtzzxCv8/M8vEQyFuOGiM/j8R8/LmisUREREZNJMKLy+aa39UNK6N6y1p01ScaOm8CpTycFDnfz66Vf5/fNv0N03wPIT53LL6nM4d/ECTBZNfNQRDNPQH2BvX3DwdW9fgL39QVoCoYS2JR4X9f6hMDsz30u9E3KrfZ6s+r5Ias3tXfznA8/zxzUbKMrP43MfPY+/uugMfF5PuksTERGRzDCh8PoksBb4DdHLiP8aWGmtvXQyKxwNhVeZirr7+vn982/y66de5WBbJ8fV13DL6nO4/MxF+DzZ/Qt7XzjCvv5YmHUCbl+Ahv4gjf1BwnFt/S4zGGzr4y9H9nup9XvxKNhmlQ8aDvLd+57ipbe3MbO6nK9dt4pLTz9J/4AhIiIiEwqvFcA/ASuJhtc1wP/RhE0iYxMIhXhi/Tvc9dg6tjYcpKasmE9ecibXXXAaxQX+dJd3zAUjlsaBaLBtiAVcZ/S2oS9IIO785DFQl5d4CXLsHtv6fC95msV2ynrp7W18974n+aChiWULZnLHDZeyZMHMdJclIiIi6TPxR+UYY4qstd2TVtI4KLxKNrDWsm7Ldu56bB2vvruDQn8eHz//Q3zq0jOprShNd3kZIWItzYHQ4CXIsXAbuyy5Ozx0n60BanyewUmjBi9HdoJtsUf32Wa6cCTCA2s28B8PPE9rRzerly/ibz9+MTOyZLIzERERGZMJjbyeDfwCKLLWzjLGLAE+a639wuTWeGQKr5Jt3t21n7sff5knXnsHY+Dy5adwy+qzWTirNt2lZSxrLe2hMA1x99Y2xL22BsMJ7cu87mETSNX7vczK91Hudesy1QzS0zfAXY+v4+7HXyYcifDJS87k9ivOpaQwP92liYiIyLEzofC6HriW6IzDy5x1W6y1iya1xFFQeJVsta+5jf9+6lXuf3EDfQMBVpyygJtXn81ZJ81TuBqjnlCYhv7g0GhtX9C53zbAwYEQ8XMjF7hdQzMiJwXcmjwPbn3v0+LAoQ7+44/P8dC6TZQW5vM3V53PdRechlej6CIiIrlgYuHVWrvcGPNWXHjdZK1dMuGqjLkM+AHgBn5hrf3Xw7VXeJVs19HTx++ee53fPL2elo5uTpxdxy2rz+bS00/WL+6TIBCJsL8/ODRaGzdD8r7+IMG4c6LXGGb4vYOXIMcmkprm8+B3u/C7DH6XC7/b4DVG/8hwFLy7az/fve8p1r+3k7l1VXz9ulVcsGyhvtciIiLZbULh9X7ge8B/AmcCXwZOs9Z+YkIVGeMGtgKrgAbgdeAGa+27I+2j8Cq5IhAM8cjLm7j78ZfZ0dhCXWUpN116Fh8771QK/XnpLi8rha3l4EBocDbk2CXJsXtue8OREfd1AXkug9/tIs9lyHe5yHNHw21sfXzYzXNF3+c57/2x90nt4vfPc9Z7XbkV3Ky1vLBxK//+u6fY2djCGSfM4Y4bLuWkOdnx3GQREREZZkLhtYro6OjFzoGeAr480dmGjTFnAf879sgdY8zfA1hr/2WkfRReJddEIhFe3PQBdz22jje37qakwM/1F57OX69aTnVZcbrLyxnWWtqCYfb0BWgOhBiIWAYilv5whP6IpT8SiXsfSdpmGXCWByIR+sPR9v2R0U+YF88Ng2E4LykMJ6/3x62Phd8Rw7TbDK7Lc4J0Jj2eKBgK84cX3uBHf3qB9u4+rjx7MV+59iJNciYiIpJ9JhRez7HWrjvSujFXZMy1wGXW2k877z8JLLfWfjGp3e3A7QDV9XM/9Pd3PTGRjxWZsg62dfLWB3vZ0diMyxiOnzmNZQtmUl5cmO7SZFwsIRsd8Q3Z6HIoElse2haMWKcNcduG2ifsH1uOJB47PL6cjMuAxxg8BrwuFwsL8zilJD+toTYQDPHm1t1s2t6AMYalC+o59bhZeLP8mckiIiK54murjp9QeN1grT31SOvGyhjzceDSpPB6hrX2SyPto5FXEdhz8BD3PPkyD6x5i4FgiPOXHs+tq8/hQwtn615ASSlinZFiZ+R3wBn5TRg5DiePICe2b+gP8lp7L9N8Hr4wp5orppXgSuOft33Nbdz5h2d4bP0WKkuL+PI1F3D1ucvwuHVvuIiIyBQ39vDqXNZ7NvBV4M64TSXA1ROdsEmXDYtMzKHOHu599jV+++xrtHX1csq8Gdx6+Tlc/KETcbtc6S5PstAb7b3cuaOJd7v7WViYx1fn1XBmeXpH/jdtb+A7v32Ct7bt5bj6Gr75iUtZccqCtNYkIiIiEzKu8HoecD7wOeAncZu6gEestR9MqCJjPEQnbLoI2Ed0wqa/sta+M9I+Cq8iw/UNBHjopY3c/cQr7G06xMyaCm6+7CyuWrGU/DxfusuTLBOxliebu/jhziYaB0KcXV7IV+dVc1yhP201WWt56o13+d7vnmZvcxsrTlnAN66/hONnTktbTSIiIjJuE7pseLa1dveklxQ99uXA94nOQXKXtfafD9de4VVkZOFIhGff/At3Pb6OzdsbKCsq4IaLTufGi5dTUaL7YmVyDUQi/G5fG7/Y20pPKMKVtaV8fnYVNXnetNUUCIb47bOv8ZOHXqS7b4BrVi7jS9dcqMnNREREppYJhdengY9ba9ud9+XAfbHLfY8lhVeRI7PW8ubWPdz9+Dqef+t98rwerlqxlJtXn83saZXpLk+yTHswzC/2tPC7/W14jOGT9RXcVF9BYRqfS9ze3cuPH3qRe599Da/Hw2c+vIKbLjtLVyKIiIhMDRMKr29Za5cdad2xoPAqMjY79jfzqyde5qF1mwiFI1z8oRO4dfU5LFkwM92lSZbZ2xfgP3c181RzF5VeN5+bXcVVdWVpnZl414FW7vzD0zz9xntMKy/hK9dexJVnL8ale8JFREQy2YTC65tEJ2ja47yfDTw40dmGx0PhVWR8mtu7+J9n1nPfs6/T2dvPqcfP4tbV53D+0uP1i7xMqs2dfdy5o4mNnX3MLfDx1bk1nFtRmNaZsN94fzffvfdJ3t65jxNn13HHDZey/MS5aatHREREDmtC4fUy4GfAi86qlcDt1tonJ628UVJ4FZmYnv4BHlizgXuefJX9Le3Mravi5svO4sqzl5DnS9+9ipJdrLU839rND3Y2sacvyGmlBXxtXg0nFadvUqdIJMJj67dw5x+eobG1gwuWLuTr169i3vTqtNUkIiIiKY0/vAIYY6qAM50DvWKtbZm82kZP4VVkcoTCYZ56/V3uemwd7+5upLK0iBsvPoNPXHg6ZUUF6S5PskQwYnngQDs/2d1CezDM6uoSvji3iun+9N172h8I8uunXuVnj6ylPxDk+gtO4wtXna9JzURERDLHuB6Vc4K19i/GmJSXB1trN0xScaOm8Coyuay1rH9vJ3c9to6X3t5Gfp6Pj61cxk2XnsWM6vJ0lydZoisU5ld7D/E/+w5hLdwwo5zbZlVSnMZJnVo7u/nRgy/whxfeJD/Py2c/spK/XrVcVyCIiIik37jC68+ttZ8xxjyfYrO11l44WdWNlsKryNGzde9B7n58HX9+9W2shUtPP4lbVp/DyXOnp7s0yRIH+oP8aFczf27qpMTj4jOzqrhuejleV/ruh92+v5l/v+8pXty0lelVZfztxy9m9fJFab1HV0REJMdN7LLhTKHwKnL0HTjUwa+fepXfP/8mPf0DLD9xLresPodzFy/QL/QyKf7S3c+dO5p4rb2XmX4vX5pbzcVVxWn98/XKOzv4zn1P8v6eAyyeX88dn7iUU4+flbZ6REREcti4Rl6vOdwRrbUPTLCoMVN4FTl2unr7+f0Lb/Cbp9ZzsK2T4+pruGX1OVx+5iJ8Hk+6y5MpzlrLurYefrCjmW29Aywuyedrc6tZWpq+e67DkQgPvbSJH/zxWZrbu7jk9JP424+vYta0irTVJCIikoPGFV7vdhZrgLOB55z3FwAvWGsPG26PBoVXkWMvEArx+KtbuOvxdXzQ0MS08hL++pLlnHXyfKZXllJamK8RWRm3sLU8fKCD/9rdQksgxIVVRXx5bg2z89M3qVPvQIC7H1vHXY+tI+g8H3ne9Gpm1VQwe1oFs6ZVUFZUoD/3IiIiR8eEHpXzKPAZa22j874O+JHCq0husdby0tvbuOvxdax/d+fg+nyfl9rKUuoqSqmrLKW2ooS6yjLqKofe+zUJjhxBXzjCfzcc4p69rQSt5WN1Zdw+q4oKX/pG+ZvaOvnRgy/w8jvb2d/aQfzfmSUFfmZNq2BWTTTMzppWORhsK4rT+1xbERGRKW5C4XWLtXZR3HsXsDl+3bGi8CqSGXbsb2b7/mYaWztoPNQRfW3t4MChTprbu4a1rygujAu2pc5XGXXO+6rSIlwuVxp6IpmmJRDiJ7tbeLCxnQK3i1tmVvJXM8rxu9P75yMQDNHQ3MaepkPsORj92n2wlT0HD7GvpZ1I3N+nhf68wWA7u7aCWTWVzJoWHbWtKi1SsBURETm8CYXX/wSOA+4FLPAJYJu19kuTWeFoKLyKZL5AMMTBts7BMLu/tX1wubG1g/2t7fT2BxL28bjd1FaUJITbWmckd7rzvijfn6YeSTps7xngP3Y2seZQD7V5Hr4wp5oP15TgysDgFwiF2N/SMRRo4wLuvpY2QuHIYNv8PF80yMZGbGsqmF1byayaCqrL9I84IiIiTHS2YWPM1cBK5+0aa+2Dk1TYmCi8ikx91lq6evsHw2xjazv748Jt46EOmto6E37hByjKzxsata0oHbxUORZua8pL8KbxuaFydLzR3sP3djTzXnc/JxTl8dW5NSwvL0x3WaMWDIVpbO1wAm2rE3APsafpEHub2giFw4Nt/T4vM2vKmT2tMumS5Apqy0sUbEVEJFdMOLzOBo6z1j5jjCkA3Nba4dcGHmUKryK5IRyJ0NLenXBJcmz5gLPc1tWbsI8xhurSooRR2/iwW1dZSnmxJtmZiiLW8kRTJz/c1cyBgRArKgr56twa5hfmpbu0CQlHIhxo7YiG2YOt7I4bsd3b3EYgGBps6/N6mFldPhhmYwF3dk0FtZWluBVsRUQke0zosuHPALcDFdba+caY44CfWGsvmtwaj0zhVURi+gYC0dHahHtu48JuawcDcb/8A+R5PcPDbdwEU7UVJeTnpW+WWzm8gUiE+/a18Ys9rfSGI3y0tpTPz66mOi/7Ht0UjkQ42NY57P7a2CXJ8X+2PW63M2I7fAKpuspSPG5dkSAiIlPKhMLrRuAMYL21dpmz7m1r7SmTWuIoKLyKyGhZa2nv7nXusx0ebA8c6qSpvYvk82BZUUHCqG1tRQnT48JtdVmxRrnSrD0Y5ud7Wvj9/jY8xnBTfQWfmllJQZondTpWIpEIze3dwwJt7H1fIDjY1uN2MaMqfsR2aAKpGVVlutReREQy0YTC63pr7XJjzFvW2mXGGA+wwVq7eLKrPBKFVxGZTMFQmKa22L22nTQmTS7VeKiDrt7+YfsV+H0U5/spys+juMAf/crPoyj5NX/4tuICP4X5eQrAk2BvX4Af7mzm6ZYuqnxuPje7mo/WluLJ4UvDrbW0dHSzO3601gm4uw+2JkyW5na5mF5ZOjhhVPwlyTOqy/B5sm9EW0REpoQJhdfvAO3Ap4AvAV8A3rXW/uNkVjgaCq8icqx19/XT2BoLs+20tHfT3TdAV18/3b1Dr529/XT39dPVN5Bwr+JICv15FBc4ATdV8C3wU1LgdwJwinb5eZrAx7Gps487dzSxqbOPeQU+vjq3hhUVetZqMmstrZ09caO1QxNI7T7YSnffwGBblzGDk6LVVpZEXytKqB2cLK2EsiLdQy4iIkfFhMKrC7gNuMQ50JPAL+xoZ3uaRAqvIjIVBIIhuvr66eodiAbauNeu3j66+gbo7o0G3eTt3X39dPb2EwyFj/g5sQAcHd31U1SQlzAiPPQ6FIBLCobaFfp9WROArbU819rND3Y0sbc/yOmlBXxtXg0nFusRS6MRu8w+PszubWrjwKHolQgHDnUmzIwM0dmRp5WXDA+3FaXUVUaXiwv0/RcRkTEbX3g1xriBe6y1f300qhorhVcRyRUDgWBCuE0c6Y0G367efrp6+1OOBHf1HTkAG2Mo9PsGw22qABy77Lm0qIAVpyzI+DASjFjub2zjZ7tbaQ+F+XBNCX8zp5o6vzfdpU1pkUiE1s4eJ8jG7iHvjAu3HTS1dRFJ+r2i0J83+Pzm+HAbH3g1SZqIiCSZ0Mjrk8BHrLWBIzY+yhReRURGLxaAh4fcofDbnfTalTQiHD/aVlzg58aLz+CTl5xJeXFmP2u1KxTmrr2t/LahDYC/mlHOrbMqKdYERUdNKBymub17MNDGZgCPhdvGQ520dnQP26+kMJ+6wWBbMnS5ctw6n1f334qI5JAJhdefAqcCDwM9sfXW2u9NVnWjpfAqInLsWGsZCIbo6u2nobmNe554hafffA+/z8v1F5zGLavPprqsON1lHlZjf5Af7Wrmz02dlHncfGZ2JR+vK8fr0r2a6RAIhjjY1jliuD3Q2kFHT9+w/SpLChPCbW1FbOQ2OopbU1asRwKJiGSPCYXXf0q13lr77QkWNWYKryIi6bVtXxM/f3Qtj726BbfbxTXnLuO2y89hRnV5uks7rPe6+vn+ziZea+9lpt/Ll+ZWc3FVsSYcykC9AwEOOs9wPtA6dJnyUODtpKd/IGEflzFUlxXHTSoVF26dy5YrSwqz5h5vEZEsN/7wOtjYmBLAWmu7JquqsVJ4FRHJDHubDvGLP7/Eg2s3ApYrzlrMZ644l7l1VekubUTWWl5q6+EHO5rY3htgcUk+fzuvhiUl+ekuTcaoq7c/4b7bg21DwTYWdPvjnncL4HG7mVZePOyeW82gLCKScSY08noacDcQuzasA7jVWvvmpJU3SgqvIiKZ5cChDu5+/GX+8MKbDARDXHr6SXz2IytZOKs23aWNKGQtDx/o4Me7m2kJhLm4qpgvza1mVr4mDsoW1lo6evoSAm1yuE01g3Ke18O0ihIqigspyPNRmO+LvvrzKPD7EtYVOOsStvl9g8sKwSIi4zah8LoZ+Btr7Vrn/Qrgv6y1iye1xFFQeBURyUytnd3c88Qr3Pvs6/T0D3DB0oXcfuVKlsyvT3dpI+oNR/h1wyHu2dtK0Fo+XlfOZ2ZXUq7JgXLC4WZQ7ujpo7c/QE9/gN6BAD19A/QOBEb1CCuIzuSdn+dNCL6xYFvoz3PC7/B1g0E4ti3PR2F+dJvX41YgFpFcMaHwus5ae86R1h0LCq8iIpmto6eP3z6znv9+8lU6evo46+R5fPYjKzn9hDkZ+4t380CIn+xu5k8HOihwu7htViU3zCgnT/dHSpJAKETvYKCNvkZD7kB0ff8APc662FdPfzT49vQntXXWjfYWLo/bFR3tzUsKvUmjvglhOW/k4Fzg9+HWn3ERyUwTCq93AgXAvYAFrgfagD8CWGs3TFqZR6DwKiIyNfT0D/C7597gV0+8TEtHN8sWzOT2K1eycvFxGRtit/cM8IOdTaw91ENtnocvzqlmdU0JrgytV6Y+ay39gWBisB0MxKnWDQwF47gR4fhR4uR7fQ/H7/MOjvAW5OdR4PPi9bgTv9yJ730ez4jbhr0fRxu3y5Wx5wgROWYmFF6fP8xma629cLxVjZXCq4jI1DIQCPLA2rf4xZ9forG1gxNn1/HZj6zk4g+dkLEzv77W1sOdO5v4S/cAJxblccOMCmbl+6j3e6nw6tJNyWyhcJi+geCwEd748DvStr6BIMFQmGA4HH2NfaV4HwiGjkr9xpjRhd4jvPcdMTB7Et67XQZjDC5jBgO0yxV9P/hqzNB6lythndsVXR87Rvz22Hp3wvbhx4h9js4xIpMw23AmUHgVEZmaAqEQj778Nj9/dC27D7Yyb3o1t19xLpefuSgjn88ZsZbHmzr5z13NHBgY+iXd7zJM93uZ4fc6rz5mxL0v9mReX0SOBmst4Uhk5IA7mhA8jjaBUGhs+4fDhMKRdH+7xsQkh2JjMK7hoTi2LiEUx9oMW5ccpKPHwYDBYEz0c43z+dFC4rbFtYmvM35bdBfnmHHHGrYt6ViDn5n0edHPiGtnUmxL+rxh7VJtS/F5w7aN1L/4bSk+63DbRvqs6LrU/TbOm4SfQVwbjBn555eiD8YYigv8rDhlwWj/OKaLwquIiKRfOBLhydfe4WePrGVrw0FmVpdz24dXcNWKpfgycKKkYMSypy/A/v4g+/qDNPQPLe/vD9Kd9EtxicflBNmhUBv7qvN7dR+tSBpEIhFC4UhCuA0kBOQQEWuJRGzCayygR6zFJm2LXxeORLDWDjuGtZHBtpHICMcd4XMjkaTjxm+PxK+LxH2eJey8Jq6L+6wUtVhrseAsR79nFguWxG3O99NaZxvR9rE8kdDOOVZsL2uTtsUdy8Yda9i2hLri6kuuy8Z9TlxdCdtG+Lzk2pM/L7l/U91x9TU89M9/k+4yjkThVUREMkckEuGFjVv56cNreHvnPqaVl3Dr5Wdz7XkfIj9vajyyxlpLZyjCvv4g++JCbSzY7u8PEkj6e7ba50kYqR1a9jEtz4NblwuKiGS8sYb+WOCPtbFJbUhxnITgnOofA5ICf6o2pPgsn8fDrGkVR/17NEEKryIiknmstbzyzg5++sgaXv/LLiqKC7npsrO44aLTKcr3p7u8CYlYS0sgFDdqG3SWA+zrD9I0ECJ+3NZjoDYvPtQmjt6W635bERHJDRMLr8aYs4E5wOA1Xdba/56MysZC4VVEJHu9uXU3P314DS+9vY2SAj83rlrOJy85k7KignSXdlQEI5YDA0MjtckjuIeCic8U9btMwkht8ghuke63FRGR7DCh2YZ/DcwHNgKxv0mttfbLk1beKCm8iohkv3d27uenj6zhmTffIz/PxycuPI2bLzub6rLidJd2TPWFIwmhdl/SZck9Sffblnpcg6G23p84glvn9+DT/bYiIjI1TCi8vgecZDPgGmOFVxGR3PFBQxM/f3Qtj736Nh6Pm4+tXMatl69gRlVZuktLO2stHaFIynttY6/BuL+2DUP32ybfazvD76VG99uKiEjmmFB4/QPwZWtt42RXNVYKryIiuWfTrpiAAAAgAElEQVT3wVZ++eeX+NNLmwDLR85ewmeuWMGc2qp0l5axYvfbJo/WxmZLPjgQIv43AI+BuhT3287M9zEzX48AEhGRY2pC4fV5YCnwGjAQW2+tvXKyqhsthVcRkdzV2NrBXY+v4/4X3iQYCnPZGSdz+0dWcvzMaekubcoJRiyNA8FhlyXH3rcl3W9b7nVHg6zfy6x8HzPzfczKjy4r2IqIyCSbUHg9L9V6a+2LEyxqzBReRUSkpaOb/37yFX777Gv09ge4YNlCPvuRlSyeX5/u0rJGbzh6SfLeviB7+wLs6XOW+wMcGAgltC3zuJmZnxhqZ/p9zMr3UeJVsBURkTHTo3JERCS7tHf38j9Pr+fXT6+ns6ePs0+ez2evXMlpC2frkTJHUX84+mzbaKANsKd/KOAmX45c6nE5gTZx1HZmvo8yBVsREUltQiOvZwI/BE4EfIAb6LHWlkxmhaOh8CoiIsl6+ga47/nX+dXjL9Pa2cOpx83i9o+s5NzFCxRij7GBSIQGZ4R2b19cwO2LjtjG/9ZR4gTb6CitdzDUzsr3UubRM21FRHLYhMLrG8AngD8ApwGfAo6z1v7DZFY4GgqvIiIykv5AkD++uIFfPraOA4c6OGl2HZ+9ciUXnXoCLj0mJu0CkfgR26Fgu7c/SGN/kPgH/xS5Xc4orXfYyG25V8FWRCTLTSy8WmtPM8ZsttYudta9bK09e5KLPCKFVxEROZJAKMQj6zbx8z+/xJ6Dh5g/vZrbP7KS1ctPxuPWpaqZKBCJPtN2MNT2B9jj3G+7P0WwHQy1fl/C/bYVCrYiItlgQuF1DXAx8AvgANAI3GytXTKZFY6GwquIiIxWKBzmydfe5aePrGHbviZmVpfz6StW8NFzluLzetJdnoxSMGLZ3x9kT38gcfIoJ9jGz4tcGAu2zoRR8SO3lQq2IiJTxYTC62zgINH7Xb8GlAL/Za3dNpkVjobCq4iIjFUkEuG5t97nZ4+sYcvO/dRWlHDL6nO49rxTyc/zpbs8mYDYI38GL0GOG7nd3x8kFPdrTr7LDF2CHButdUZuq30eBVsRkcwxsdmGjTH5wCxr7fuTWdVYKbyKiMh4WWtZt2U7P314DW9u3U1FcSE3rz6LT1x4OkX5/nSXJ5MsZC2NgzMhxyaRii7v6w8kBFu/E2xjobba56HE43a+XJR4h5Z9un9aRORom9DI60eAfwd81tq5xpilwP+x1l45uTUemcKriIhMhjf+soufPrKGdVu2U1Lg58ZVy/nkJWdSVlSQ7tLkGAhZywHnHtvo/bVDI7d7k4JtMr/LDAbbYo+LUu/Qcmx9qddFcXz49bgp9rjxujS6KyIyChMKr28CFwIvWGuXOesGJ286lhReRURkMr29Yx8/e2QNz274C/l5Pm646HRuuvQsqsuK012apEnYWrpCETpCYbqCYTpDYTpDEefVWR5cH33fFQrTEQzTFzn871UFbtdgmI0F22KPmxKvm1JPYuAt9boH3xd7XLh1WbOI5I4Jhdf11trlxpi3FF5FRCQbbd17kJ8/upbH12/B63HzsZWncuuHz2F6ZVm6S5MpJBixdDmhtsMJvNEA7IThlAE4Gn77jxB8i9xO6PUOjeSWxo3qJgfe2PtCtwuXgq+ITC0TCq+/BJ4FvgV8DPgy4LXWfm4yKxwNhVcRETmadh1o5Zd/fomH1m0E4MpzlvDx8z7E/BnVui9WjqqBSITOoBN4Q0mBN5hi9DduffAwv88ZGLykeTDweuMCb1z4LfK4yXMZvMbgdUW/fLHluFefyygQi8jRNKHwWgD8I3CJc6Angf9rre2fzApHQ+FVRESOhf2t7dz12Druf3EDgWAIgOqyYubVVTGntpJ506uYW1fN3NpK6ipLcWkSH0kTay39gyO+ETqcEd3hAXh4+O0KhQ97f+/huGHEgOtLEXaHvY9vHxeWo9tdeA14ndfo+xSBOun4PpfBYwweg2aPFpnaJjbbcKZQeBURkWOptbObjdsa2NnYzI79Lew60MqO/c109g79+63f52V2bSVzayuZW1fFvLpq5tZVMru2kkJ/XhqrFzk8ay294chgmO12RnGDEUvQWgLOa8L7uHWB2LZh7SMELQSc12AkQjACARtJ3N9ZHm+AHomBoTB7uAAdF4JjoddjDG5n2R23nLze4zK4nfWxbe6kdqNa73LWM7SceNzoska6JceMPbwaYx4+3BE127CIiOQiay2HunrY2dgaDbWNLexqbGVHYwv7mtuIxP3dWltRyty6WKitYo7zOq28RCNDIo6ItYSSw/LhAnRcm4C1KQPxWAJ4IGIJW0vYRmeiDjuBOrYcthCKtUnT98hAylA7POwaPC4nYKcIwsnrXQYMBgMYE/2c6Ff0zdD72PbEtgxuM0nt4to6jRKPNbw9qeowiceJnTYHjz/CcRlWS9Jnxh0r9rmxfUjqX+J6M/g++Qye+D0ZOiYJNScdz+nDsM9JWUfcZ6c45lAdSd+DuGMB+F0u5hdm/D+sjiu8NgN7gXuB9ckHsda+OIkFjorCq4iIZLJAMMTug4fY2djCjsZmdjW2Osst9PQPDLYr8PuYM62SudOdUFsbfZ1dW4nf501jD0TkcKwTbMNxITfshO9RrY9AiNhyNBgntwvZw69PCNijCd5HWB/tF0QA5x3WRpdjX1iw2GgbJz4MbreWWKKwg8caOm7CcSTtFhTk8YfT5qa7jCMZV3h1A6uAG4DFwJ+Be6217xyNCkdD4VVERKYiay0tHd3saGxh5/5mdh4YCrWNrR3E/j42xjC9snTYSO3cuiqqSos0WisiU14s7CYGYTsYfBODcDQwQ3IQtgkhOuKE66H94gPzUBgfDOhJnxu3ivh4FPus+PXx6Sl+n6HjDLVIDvqJ+8S1S/H5dtj/D//+DP+cpH9ISCrUAgVuw2llhWS4id3zaozJIxpivwv8H2vtDyevttFTeBURkWzTNxAYHK2NfUUvRW6hLxAcbFeUn5cy1M6qqcDn9aSxByIiIpNqfOHVCa0fJhpc5wAPA3dZa/dNcoGjovAqIiK5IhKJcLCta3ioPdDCgUOdg+1cxlBfU55w+fHc6VXMra2ivLhAo7UiIjLVjOuy4XuARcDjwH3W2i2TVo0x/xv4DNDsrPoHa+1jR9pP4VVERAR6+gfYfSA6SVR8uN11oJUB59E+AKWF+cNGaufWVVFfXY7X405jD0REREY0rvAaAXqct/ENDWCttSXjriYaXruttf8+lv0UXkVEREYWiURobO0YFmp3NLbQ0tE92M7jdjGrpmJYqJ1bV0VpYX4aeyAiIpI6vB72BhlrrZ64LiIiMoW4XC5mVJczo7qccxcfl7Ctq7d/KNAecELt/hbWbv6AYGjoASCVJYXRy4+nV3HK3BksWVDPvOnVuF36tUBERNJn1BM2TfoHR0debwY6gTeAr1tr2460n0ZeRUREJlcoHGZfS/uwkdpt+5rp7OkDoNCfxynzZrB4/gyWzJ/J4vkzqCwpSnPlIiKSpSY22/C4PtGYZ4DaFJv+EXgVaCF6OfL/BeqstbeOcJzbgdsBZs2a9aHdu3cfnYJFRERkkLWW3QcPsXl7A5u3N7BpewPv7z1AKBx9cMXM6nIWL6hnyfx6lsyfycJZ0/B5NOuxiIhM2LEPr6NljJkDPGqtXXSkthp5FRERSZ++gQDv7m5k07ahQHuwLTrzsc/r4aTZdSyZX8/i+fUsWVBPXUWpZjsWEZGxyqzwaoyps9Y2OstfA5Zbaz9xpP0UXkVERDLLgUMdbN6+j03b97JpewPv7Nw/OONxdVkxi+dF75tdMn8mJ8+dTkGeL80Vi4hIhsu48PprYCnRy4Z3AZ+NhdnDUXgVERHJbMFQmK17D7Jp+14n1Daw+2ArAG6Xi+Pqa4ZGZ+fXM6e2EpcmgxIRkSGZFV7HS+FVRERk6mnr6mHzjn3RS423NbB5RwPdfQMAlBT4WeyE2cXz6lk8fwZlRQVprlhERNJI4VVEREQyQyQSYeeBVjZta3BGaBv4oKGJiPN7yZzaSmciqHoWL5jJ8fU1eNzuNFctIiLHiMKriIiIZK6evgG27No/OBHUpm17ae3sAcDv83LynOnOvbPRr5rykjRXLCIiR4nCq4iIiEwd1lr2t7RHg6zz9d7uRoKhMAC1FaXOc2ejk0GdNKcOv8+b5qpFRGQSKLyKiIjI1BYIhnhvzwE2b9/rXHLcwL6WdgA8bhcnzKodvHd2yYJ6ZtVU6FE9IiJTj8KriIiIZJ/m9i4279jHpm17eXvHPjbv2EffQACAsqKCuHtn6zll7gyKC/xprlhERI5A4VVERESyXzgSYVtDU8Llxjv2NwNgjGFeXVXcvbMzmT+jGrce1SMikkkUXkVERCQ3dfb0sWXnfjZt3+tMBtVAR08fAAV+H6fMnTH43NnF8+upKi1Kc8UiIjlN4VVEREQEopNB7T54yJnZeC+bt+/j/b0HCIUjAJQXF1BXUUpdZfxXWfS1ooSq0iJcGq0VETlaFF5FRERERtI3EODd3Y1s2tbA7oOtNLZ2RL8OddDbH0ho63G7qa0occLsUMCtdZanV5ZSmJ+Xpp6IiEx5Cq8iIiIiY2Wtpau3fzDIDobauHDb1NZFOBJJ2K+kwJ80cjsUbusqS6kpK8bjdqepVyIiGS1lePUc6ypEREREphJjDCWF+ZQU5rNwVm3KNqFwmOb27rhA205jawcHWjvZf6iDDR/spdO5xzbGZQw15SVMHwy2JYmXJ1eWUlLg16N+REQcCq8iIiIiE+RxuwcD50h6+gYSRm4PxC1v3t7Ak693EgqHE/Yp8PuGLksedg9uKdMqSvB59OuciOQGne1EREREjoHC/DwWzKhhwYyalNsjkQitnT0jXp787q5GDnX1JOxjjKGypDAh0E6vLKWuIjp6W1tZQkVxoUZvRSQr6J5XERERkSmiPxDkwKHOuFDbPhh0Y+v7A8GEffK8noR7bQe/KoYuV87P86WpRyIiKemeVxEREZGpzO/zMqe2kjm1lSm3W2tp7+6lsbWD/a3DL1Fe9/Y2mju6SR68iD0aqLqsGK/HjcftwuOOvUaX3c6y1+3G7XLWx9q6nPaeuOXkfeKOlXBclwuvZ2jZ43bh9cR9htNeo8ciovAqIiIikiWMMZQXF1JeXMhJc6anbBMIhWhq60qYLTm23NTeRSgcJhSOEAqFCUUi0eVwmHA4QjBuOXKMr96LD7NutwtvUqj2uN1OcHZCtWuE4J3cPik4J+/jcbmc5Vj7xLZuV2Igd8eF+aHPGv4ZbldinXpusMiRKbyKiIiI5BCfx0N9dTn11eUTOk4kFmwjTtANRwhHIgTDYUIhJ+RGnMAbii6HwtHt4fBQKA6FEwNyKBwm6BwrFDtWZKht2DlGbDn5GMl1DAQHUtaR8rOdbem4rc4YEx2Fdg+F5aEgnBSg40OyJ0Xwjg/Jcfu544JzbHTb5TIYYzBODbEBboMh+r/outjId2K7xPaxdtFNTvv4Y8S1x5jh+xD3OWZon8HjJG1L+NxYvSnqjG1LWWfcZya3Sagnub6kPg5+z+Lfx30GIx3HDN8vVdtU+8UXnfwzOlxbn9fN9MoypiKFVxEREREZM5fLhc/lwgeQl+5qJldyMB8KvHGhejA8D4XroVCe2C72PhwL5rHw7Bw3HAvccZ8VC+nR/SKJQTupnoFAkJ64/YbVE9eP+BF0yU3H1dfw0D//TbrLGBeFVxERERGRONkczOOFI9Hwi43eLx0bb44tW2uj25wt1iZti2/vtIu1GWkbxC0nHSuxXVz7uHaxbanqsUMfmrIeS+rPjNU0+D6+PUn7J9QxtB92eNuRPoO49zbFfvHvk7//w2qNb3ukfjnbiwv8TFUKryIiIiIiOcjtil5CLDJV6E+riIiIiIiIZDyFVxEREREREcl4Cq8iIiIiIiKS8RReRUREREREJOMpvIqIiIiIiEjGU3gVERERERGRjKfwKiIiIiIiIhlP4VVEREREREQynsKriIiIiIiIZDyFVxEREREREcl4Cq8iIiIiIiKS8RReRUREREREJOMZa226axgTY0wzsDvddRxGFdCS7iLSJFf7nqv9htzte672G3K37+p37snVvudqvyF3+56r/Ybc7ftU6HeLtfay5JVTLrxmOmPMG9ba09JdRzrkat9ztd+Qu33P1X5D7vZd/c49udr3XO035G7fc7XfkLt9n8r91mXDIiIiIiIikvEUXkVERERERCTjKbxOvp+lu4A0ytW+52q/IXf7nqv9htztu/qde3K177nab8jdvudqvyF3+z5l+617XkVERERERCTjaeRVREREREREMp7C6wQYY9zGmLeMMY+m2GaMMf9hjNlmjNlsjDk1HTUeDcaYMmPM/caYvxhj3jPGnJW0PSv7boz5mjHmHWPMFmPMvcYYf9L2rOm3MeYuY0yTMWZL3LoKY8zTxpgPnNfyEfa9zBjzvvN9+Naxq3riRuj3d50/65uNMQ8aY8pG2HfK9htS9z1u2zeMMdYYUzXCvlO27yP12xjzJadP7xhjvjPCvlnVb2PMUmPMq8aYjcaYN4wxZ4yw71Tu90xjzPPO313vGGO+4qzPhfPbSH3P6nPcSP2O257N57cR+57N57jD/FnPhXOc3xjzmjFmk9P3bzvrs+ccZ63V1zi/gL8Ffgs8mmLb5cDjgAHOBNanu95J7Pc9wKedZR9Qlu19B2YAO4F85/3vgZuztd/ASuBUYEvcuu8A33KWvwX8W4r93MB2YJ7zZ2MTcFK6+zPBfl8CeJzlf8vGfo/Ud2f9TOBJos/Xrsq2vo/wM78AeAbIc97X5Ei/nwJWO8uXAy9kYb/rgFOd5WJgK3BSjpzfRup7Vp/jRuq38z7bz28j/cyz+hx3mH7nwjnOAEXOshdYT/R30qw5x2nkdZyMMfXAh4FfjNDko8B/26hXgTJjTN0xK/AoMcaUEP2l55cA1tqAtbY9qVlW9h3wAPnGGA9QAOxP2p41/bbWrgEOJa3+KNF/uMB5vSrFrmcA26y1O6y1AeA+Z78pIVW/rbVPWWtDzttXgfoUu07pfsOIP3OAO4E7gJEmSJjSfR+h358H/tVaO+C0aUqxazb22wIlznIpw89xMPX73Wit3eAsdwHvEf3HyVw4v6Xse7af4w7zM4fsP7+N1PesPscdpt+5cI6z1tpu563X+bJk0TlO4XX8vk/0hBcZYfsMYG/c+waGTpZT2TygGbjbRC+Z/oUxpjCpTdb13Vq7D/h3YA/QCHRYa59KapZ1/U4yzVrbCNG/GICaFG2y/XtwK9HR9WRZ2W9jzJXAPmvtpsM0y8a+Hw+ca4xZb4x50Rhzeoo22djvrwLfNcbsJXq++/sUbbKm38aYOcAyoiMTOXV+S+p7vKw+x8X3O9fOb0k/85w5xyX1OyfOcSZ6W+NGoAl42lqbVec4hddxMMZcATRZa988XLMU67JhamcP0UvNfmytXQb0EL38IF7W9d25N+CjwFxgOlBojPnr5GYpdp3S/R6HrP0eGGP+EQgB/5Nqc4p1U7rfxpgC4B+B/3WkpinWTem+Ez3PlRO91OqbwO+NMcn9zMZ+fx74mrV2JvA1nCtskmRFv40xRcAfga9aaztHu1uKdVnT92w/x8X3m2g/c+b8luJnnhPnuBT9zolznLU2bK1dSvQqijOMMYtGueuU6LvC6/icA1xpjNlFdEj9QmPMb5LaNBC9lyKmntSXJ0w1DUCD8684APcTDbPJbbKt7xcDO621zdbaIPAAcHZSm2zsd7yDscugnddUlxll5ffAGHMTcAVwo7U21Yk8G/s9n+g/1mxyznX1wAZjTG1Su2zsewPwgHP51WtEr7BJnswlG/t9E9FzG8AfiF5ClmzK99sY4yX6C+3/WGtj/c2J89sIfc/6c1yKfufM+W2En3nWn+NG6HdOnONinNv6XgAuI4vOcQqv42Ct/Xtrbb21dg7wCeA5a23yKNzDwKdM1JlELzNtPNa1TjZr7QFgrzFmobPqIuDdpGbZ2Pc9wJnGmALnXycvInoPRbxs7He8h4me+HFeH0rR5nXgOGPMXGOMj+h/Hw8fo/qOCmPMZcDfAVdaa3tHaJZ1/bbWvm2trbHWznHOdQ1EJ8A4kNQ06/oO/Am4EMAYczzRiStaktpkY7/3A+c5yxcCH6RoM6X77Zy/fwm8Z639XtymrD+/jdT3bD/Hpep3rpzfDvPnPavPcYfpdy6c46qNM2O4MSaf6ODLX8imc5zNgFmjpvIXcD7ObMPA54DP2aHZvn5EdNaut4HT0l3rJPZ5KfAGsJnoCbA8F/oOfJvoCWAL8GsgL1v7DdxL9N7eING/1G8DKoFniZ7snwUqnLbTgcfi9r2c6Mx+24F/THdfJqHf24jeA7LR+fpJtvV7pL4nbd+FMxtnNvV9hJ+5D/iN89/6BuDCHOn3CuBNojNMrgc+lIX9XkH0MrjNcf9NX54j57eR+p7V57iR+p3UJlvPbyP9zLP6HHeYfufCOW4x8JbT9y3A/3LWZ805zjiFioiIiIiIiGQsXTYsIiIiIiIiGU/hVURERERERDKewquIiIiIiIhkPIVXERERERERyXiedBcwDhOeYeriyK8no460e8b1yTHvkw19V79HLxv6DWPvu/o9tanfo5Or/Ybs6Lv6PXrZ0G/Qf+OjpX5PbeP5b3wEJtVKjbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjedJdgIiIiIiICMAzrk+muwTJYBp5FRERERERkYyn8CoiIiIiIiIZT+FVRERERERyQnt7O9deey0nnHACJ554Iq+88kq6S5Ix0D2vIiIiIiKSE77yla9w2WWXcf/99xMIBOjt7U13STIGCq8iIiIiIhlGExdNvs7OTtasWcOvfvUrAHw+Hz6fL71FyZjosmEREREREcl6O3bsoLq6mltuuYVly5bx6U9/mp6ennSXJWOg8CoiIiIikkN+8IMfsGjRIk4++WS+//3vp7ucYyYUCrFhwwY+//nP89Zbb1FYWMi//uu/prssGQOFVxERERGRHLFlyxZ+/vOf89prr7Fp0yYeffRRPvjgg3SXdUzU19dTX1/P8uXLAbj22mvZsGFDmquSsdA9ryIiIiIiOeK9997jzDPPpKCgAIDzzjuPBx98kDvuuCPNlR19tbW1zJw5k/fff5+FCxfy7LPPctJJJ6W7LED3OI+WRl5FRERERHLEokWLWLNmDa2trfT29vLYY4+xd+/edJd1zPzwhz/kxhtvZPHixWzcuJF/+Id/SHdJMgYaeRURERERyREnnngif/d3f8eqVasoKipiyZIleDy5EwmWLl3KG2+8ke4yZJw08ioiIiIikkNuu+02NmzYwJo1a6ioqOC4445Ld0kyyW699VZqampYtGjR4LpvfvObnHDCCSxevJirr76a9vb2NFY4PgqvIiIiIiI5pKmpCYA9e/bwwAMPcMMNN6S5IplsN998M0888UTCulWrVrFlyxY2b97M8ccfz7/8y7+kqbrxy51rBEREREREhI997GO0trbi9Xr50Y9+RHl5ebpLkkm2cuVKdu3albDukksuGVw+88wzuf/++49xVROn8CoiIiIyBWg2Upksa9euTXcJkmZ33XUX119/fbrLGDNdNiwiIiIiIpIj/vmf/xmPx8ONN96Y7lLGTCOvIiIiMqVoBDK36OctMnnuueceHn30UZ599lmMMekuZ8w08ioiIiKSY1LNRArRZ2AuXLiQk08+mTvuuCNN1YnI0fDEE0/wb//2bzz88MMUFBSku5xxUXgVERGRnJUqxF1//fUsXbqUpUuXMmfOHJYuXZrGCo+OVDORPv/88zz00ENs3ryZd955h2984xtpqu7oytWfueSWG264gbPOOov333+f+vp6fvnLX/LFL36Rrq4uVq1axdKlS/nc5z6X7jLHTJcNi4iISM66+eab+eIXv8inPvWpwXW/+93vBpe//vWvU1pamo7SjqpUM5H++Mc/5lvf+hZ5eXkA1NTUpKGyoy9Xf+aSW+69995h62677bY0VDK5NPIqIiIiOWvlypVUVFSk3Gat5fe//33OPANz69atrF27luXLl3Peeefx+uuvp7uko0I/c5GpSyOvIiIiIimsXbuWadOmcdxxx6W7lGMiFArR1tbGq6++yuuvv851113Hjh07puSkLuOVaz9zkalGI68iIiIiKdx77705NQJXX1/PNddcgzGGM844A5fLRUtLS7rLOqZy7WcuMtVo5FVEREQkSSgU4oEHHuDNN99MdynHzFVXXcVzzz3H+eefz9atWwkEAlRVVaW7rGMmF3/mIlONwquIiIhIkmeeeYYTTjiB+vr6dJdyVNxwww288MILtLS0UF9fz7e//W1uvfVWbr31VhYtWoTP5+Oee+7JqUuGs/1nLpINFF5FREQkZ6UKcbfddhv33XdfVl8+mmomUoDf/OY3x7iSYy9Xf+Yi2UDhVURERHLWSCHuV7/61bEtRI4Z/cxFpi5N2CQiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjKbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjKbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp4n3QWIiIhMxDOuT6a7BBERETkGNPIqIiIiIiIiGU/hVUREJE5/fz9nnHEGS5Ys4eSTT+af/umfBrf98Ic/ZOHChZx88snccccdaaxSREQk9+iyYRERkTh5eXk899xzFBUVEZXd0KsAAAlsSURBVAwGWbFiBatXr6avr4+HHnqIzZs3k5eXR1NTU7pLFRERySkaeRUREYljjKGoqAiAYDBIMBjEGMOPf/xjvvWtb5GXlwdATU1NOssUERHJOQqvIiIiScLhMEuXLqWmpoZVq1axfPlytm7dytq1a1m+fDnnnXcer7/+errLFBERySm6bFhERCSJ2+1m48aNtLe3c/XVV7NlyxZCoRBtbW28+uqrvP7661x33XXs2LEDY0y6yxUREckJGnkVEREZQVlZGeeffz5PPPEE9fX1XHPNNRhjOOOMM3C5XLS0tKS7RBERkZyh8CoiIhKnubmZ9vZ2APr6+njmmWc44YQTuOqqq3juuecA2Lp1K4FAgKqqqnSWKiIiklN02bCIiEicxsZGbrrpJsLhMJFIhOuuu44rrriC/9/e/YVWfd5xHH//TsMJuFa80LDaFEJbTMQ0O6KYwLCRjhMq64WR4IVWOk8D20WHhTUSkIKtSLCFUnVgkGF74Ai96YVpKlJaUxpCsybrnxCEOQmOZd0aAikpKXpI99tFUhdnbE1y2ufk5P26yu8P5HP1kG+e7/P95fN5MpkMtbW1JJNJstls0Jbh9xL7g/1uSZJCsHiVJGmOuro6Pv3009vuJ5NJcrlcgESSJAlsG5YkSbO+/fZbNm/ezJNPPglAW1sbNTU11NXV0dzcfLOdWpKkECxeJUkSACdOnGDjxo03r9PpNMPDwwwNDbFhwwY6OjoCppMkrXQWr5IkidHRUd555x1aW1tv3mtqaqKsbOaEUUNDA6Ojo6HiSZJk8SpJkuC5557j5ZdfJpGY/0+Ds2fPsnPnzp84lSRJ/+PAJkklxyms0sJ0d3dTUVHBli1b+OCDD257fuzYMcrKyti3b99PH06SpFkWr5IkrXB9fX10dXVx4cIFrl+/zuTkJE899RS5XI5sNkt3dzfvv/9+0E8DSZJk27Ak3YX/n8IKcOrUKaqrq9m0aROHDh0KmE5amo6ODkZHR7l27Rpvvvkmjz/+OLlcjosXL3L8+HG6urpYtWpV6JiSpBXOnVdJugvfTWGdnJwEoKenh/PnzzM0NER5eTljY2OBE0qF9+yzz3Ljxg3S6TQwM7Sps7MzcCpJ0kpl8SpJP+C7KayHDx/m1VdfBeD06dO0t7dTXl4OQEVFRciIUsHs2LGDHTt2AHD16tWwYSRJmsO2YUn6AfNNYb1y5Qq9vb3U19fT2NjIwMBAwISSJEmlz+JVkr7H3Cmsc01PTzMxMUF/fz+vvPIKe/bsIY7jQCklSZJKn23DkvQ97jSFtbKykt27dxNFEdu2bSORSDA+Ps66detCR5YkSSpJ7rxK0ve40xTWXbt2cenSJWCmhTifz7N27drAaSVJkkrXitx5fS+xP3QESctcJpMhk8lQW1tLMpkkm80G/wama5skSSplK7J4laTFmDuFNZlMksvlwgaSJElaQSxeC6Sqqor77ruPe+65h7KyMgYHB2lra+Ptt98mmUzy8MMP8/rrr7NmzZrQUSXprriuSZKkYuKZ1wLq6enhs88+Y3BwEIB0Os3w8DBDQ0Ns2LCBjo6OwAklaWFc1yRJUrGweP0RNTU1UVY2s7nd0NDA6Oho4ESStDSua5IkKRSL1wKJooimpia2bNnCmTNnbnt+9uxZdu7cGSCZJC2O65okSSomnnktkL6+PtavX8/Y2BjpdJqamhoee+wxAI4dO0ZZWRn79u0LnHLlcgqrtHCua5IkqZi481og69evB6CiooLm5mY+/vhjALLZLN3d3Zw7dy74ZzQkaSFc1yRJUjGxeC2Aqakpvv7665s/v/vuu9TW1nLx4kWOHz9OV1cXq1atCpxShVRVVcWjjz5KKpVi69atN++fOnWK6upqNm3axKFDhwImlJbGdU2SJBUb24YL4Msvv6S5uRmA6elp9u7dyxNPPMEjjzzCjRs3SKfTwMxwk87OzpBRVUA9PT2sXbv2luvz588zNDREeXk5Y2NjAdNJS+O6JkmSio3FawE89NBDfP7557fdv3r1aoA0CuX06dO0t7dTXl4OzLRaSsuV65okSSo2tg1LizDfFNYrV67Q29tLfX09jY2NDAwMBE4pSZIklQ53XqVFmG8K6/T0NBMTE/T39zMwMMCePXsYGRlxoI0kSZJUAO68Sosw3xTWyspKdu/eTRRFbNu2jUQiwfj4eOCkkiRJUmmweJUW6E5TWHft2sWlS5eAmRbifD5/y0AnSZIkSYtn27C0QHeawprP58lkMtTW1pJMJslms7YMS5IkSQVi8Sot0J2msCaTSXK5XIBEkiRJUumzeJVK2HuJ/aEjSJIkSQXhmVdJkiRJUtGzeJV017766itaWlqoqalh48aNfPTRR7zwwgvU1dWRSqVoamriiy++CB1TkiRJJSiK4zh0hoVadoGlUvH000+zfft2WltbyefzfPPNNyQSCVavXg3AyZMnuXz5Mp2dnYGTSpIkaRmbd+qpZ14l3ZXJyUk+/PBD3njjDWBmQFUymbzlnampKScsS5Ik6Udh27CWZL420iNHjvDAAw+QSqVIpVJcuHAhdEwVwMjICOvWrePAgQNs3ryZ1tZWpqamADh8+DAPPvgg586d46WXXgqcVJIkSaXItmEtyXxtpK+99hr33nsvzz//fOh4KqDBwUEaGhro6+ujvr6egwcPsnr1ao4ePXrznY6ODq5fv86LL74YMKkkSZKWuXlb+dx51aJ910b6zDPPADNtpGvWrAmcSj+WyspKKisrqa+vB6ClpYVPPvnklnf27t3LW2+9FSKeJEmSStxy3HlVkYiiKAWcAS4DvwD+AhwE2oDfAJPAIPCHOI4nAsVUAUVR1Au0xnH81yiKjgA/A87Ecfy32ee/BxrjOG4JGFOSJEklyOJVixZF0VagH/hlHMd/jqLoBDMF6x+BcWZavI8C98dxnAmXVIUy+w+LPwFJYAQ4MHtdDfwH+DvwuziO/xkspCRJkkqSxasWLYqinwP9cRxXzV5vB9rjOP71nHeqgO44jmtDZJQkSZJUGjzzqkWL4/jfwD+iKKqevfUr4HIURffPea0ZGP7Jw0mSJEkqKe68aknu0EZ6Ekgx0zZ8DfhtHMf/CpVRkiRJ0vJn8SpJkiRJKnq2DUuSJEmSip7FqyRJkiSp6Fm8SpIkSZKKnsWrJEmSJKnoWbxKkiRJkoqexaskSZIkqehZvEqSJEmSip7FqyRJkiSp6P0XLohPIVuum/UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -589,7 +589,7 @@ ").fit(sample=boston_obs)\n", "\n", "SIM_FEAT = \"LSTAT\"\n", - "simulator = UnivariateUpliftSimulator(crossfit=ranker.best_model_crossfit_, n_jobs=3)\n", + "simulator = UnivariateUpliftSimulator(crossfit=boot_crossfit, n_jobs=3)\n", "\n", "# split the simulation range into equal sized partitions\n", "partitioner = ContinuousRangePartitioner()\n", @@ -603,7 +603,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": { "delete_for_interactive": true, "nbsphinx": "hidden" @@ -611,7 +611,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAHYCAYAAACiIN65AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3TUVf7G8fdN76FDQqjSQkISICACIi7SFBUFVhHXgi4iKvaCLrr605VVbGDDtrKKioBdUERFpCiGHghSJIFQAgRISG/390dCFjCQNslM4Hmdk8N8253PTPbs7pPbjLUWEREREREREVfm5uwCRERERERERMqj8CoiIiIiIiIuT+FVREREREREXJ7Cq4iIiIiIiLg8hVcRERERERFxeQqvIiIiIiIi4vIUXkVERERERMTlKbyKiIjUEGNMojHmojLOP2yM2WGMyTDGJBtjZpec31hyLsMYU2iMyTnu+OHjnu9vjLHGmAeOO3f+cfdmllzPOO6nZe18ahERkZrh4ewCREREzibGmOuBvwEXWWu3G2OaAZcBWGsjjrtvMfC+tfatMpq5HjhU8u8zJc/+DASUPNsa2AHUs9YW1NRnERERqU3qeRUREaldPYBvrbXbAay1+6y1b1T0YWOMHzASuA1ob4yJrZkyRUREXIvCq4iISO36BbjOGHO/MSbWGONeyedHABnAHOBb4DpHFygiIuKKFF5FRERqkbX2feAOYDDwE7DfGPNQJZq4HphtrS0EPgBGG2M8HV+piIiIa1F4FRERqWXW2lnW2ouAesB44AljzODynjPGtAAuBGaVnPoc8AEuqalaRUREXIXCq4iIiJNYa/OttXOA9UBkBR75G8X/2/2lMWYf8AfF4VVDh0VE5Iyn1YZFRERqlqcxxue442uBvcASIJPi4cMRwK8VaOs64HHg9ePO9QTmGGMaWmtTHVOyiIiI61F4FRERqVnzTzpOAA4D7wPuQBJwq7V26ekaMcb0AloDr1hrDxx36QtjzDZgNPCyo4oWERFxNcZa6+waRERERERERE5Lc15FRERERETE5Sm8ioiIiIiIiMtTeBURERERERGXp/AqIiIiIiIiLk/hVURERERERFxendsqZ8iQIfabb75xdhkiIiIiIiJSM0xZJ+tcz+vBgwedXYKIiIiIiIjUsjoXXkVEREREROTso/AqIiIiIiIiLk/hVURERERERFxenVuwSUREREREznz5+fkkJyeTk5Pj7FKkhvj4+BAWFoanp2eF7ld4FRERERERl5OcnExgYCCtW7fGmDIXn5U6zFpLamoqycnJtGnTpkLPaNiwiIiIiIi4nJycHBo2bKjgeoYyxtCwYcNK9awrvIqIiIiIiEtScD2zVfb3q/AqIiIiIiJykl27dnHhhRcSHh5OREQEL730Upn3LV68mODgYGJiYoiJieGJJ54A4MiRI7z66qsn3Dds2LBaqd0REhMT+eCDD0qP4+LimDhxIgDvvvsut99+e63XpDmvIiIiIiIiJ/Hw8OC5556jW7duHD16lO7duzNw4EA6d+78p3vPP/98vvrqqxPOHQuvEyZMqK2SKSgowMPDMRHvWHi95pprAIiNjSU2NtYhbVeVel5FREREREROEhISQrdu3QAIDAwkPDyc3bt3V/j5hx56iO3btxMTE8P9998PQEZGBiNHjqRTp06MGTMGa+2fnuvfvz933XUXvXv3JjIykpUrVwKQmZnJ2LFj6dGjB127duXzzz8HintBR40axaWXXsqgQYMAeOaZZ+jSpQvR0dE89NBDAGzfvp0hQ4bQvXt3zj//fDZv3gzADTfcwMSJE+nduzdt27Zl7ty5pfX//PPPxMTE8MILL5yy5/jAgQOMGDGCHj160KNHD5YtW1bh76iy1PPqYNZajc0XEREREXGgp2ctYPPOfQ5ts1PLZkwaM7RC9yYmJrJmzRrOPffcMq+vWLGC6OhoQkNDmTp1KhEREUyZMoX4+HjWrl0LFA8bXrNmDRs3biQ0NJQ+ffqwbNky+vbt+6f2MjMzWb58OUuWLGHs2LHEx8fz1FNP8Ze//IV33nmHI0eO0LNnTy666KLS91+/fj0NGjRgwYIFfPbZZ/z666/4+flx6NAhAMaNG8frr79O+/bt+fXXX5kwYQI//PADAHv37mXp0qVs3ryZyy67jJEjRzJlyhSmTp1a2qO8ePHiMj/7nXfeyd13303fvn3ZuXMngwcPJiEhoULfa2UpvDrQ2m27eOq9+bx2zxgaBQc4uxwREREREammjIwMRowYwYsvvkhQUNCfrnfr1o2kpCQCAgKYP38+w4cPZ+vWrWW21bNnT8LCwgCIiYkhMTGxzPA6evRoAPr160d6ejpHjhxh4cKFfPHFF0ydOhUoXo15586dAAwcOJAGDRoAsGjRIm688Ub8/PwAaNCgARkZGSxfvpxRo0aVvkdubm7p6+HDh+Pm5kbnzp1JSUmp1PezaNEiNm3aVHqcnp7O0aNHCQwMrFQ7FaHw6kD+Pl5s272fSW98wox7r8XNTaOyRURERESqq6I9pI6Wn5/PiBEjGDNmDFdeeWWZ9xwfaC+++GImTJjAwYMHy7zX29u79LW7uzsFBQVl3nfySE5jDNZa5s2bR8eOHU+49uuvv+Lv7196XNZI0KKiIurVq1faC3y6usoaynw6RUVFrFixAl9f30o9VxVKVw7UPqwpk8YMZVn8dt5ZUHNjvUVEREREpGZZa7npppsIDw/nnnvuOeV9+/btKw18K1eupKioiIYNGxIYGMjRo0er9N6zZ88GYOnSpQQHBxMcHMzgwYOZPn166XutWbOmzGcHDRrEO++8Q1ZWFgCHDh0iKCiINm3aMGfOnNLPtm7dutPWUNH6Bw0axMsvv1x6fKqA7AgKrw42qn93BveI4KW5P7B22y5nlyMiIiIiIlWwbNky3nvvPX744YfSbXDmz58PwOuvv87rr78OwNy5c4mMjCQ6OpqJEyfy0UcfYYyhYcOG9OnTh8jIyNIFmyqqfv369O7dm/Hjx/P2228DMHnyZPLz84mKiiIyMpLJkyeX+eyQIUO47LLLiI2NJSYmpnSY8axZs3j77beJjo4mIiKidMGnU4mKisLDw4Po6GheeOGFU943bdo04uLiiIqKonPnzqXfS00wle0WdrbY2FgbFxfn7DJOKz0zmxGPvo4FPnliPEH+Nd+FLiIiIiJyJklISCA8PNzZZdS6/v37M3XqVKdvS1NbTvF7LnMFXPW81oAgf1+mThjF/sPpPPrOF5UeNy4iIiIiIiInqpXwaox5xxiz3xgTf9y5BsaY74wxW0v+rV8btdSW6HPCuHPkABbGbeLjxa7dUywiIiIiIq5h8eLFZ02va2XVVs/ru8CQk849BHxvrW0PfF9yfEa5cUhv+nZpx5RZ37BlV+WWnBYREREREZH/qZXwaq1dAhw66fTlwMyS1zOB4bVRS21yc3Pj6XFXEOjnwz2vziErN8/ZJYmIiIiIiNRJzpzz2tRauxeg5N8mTqylxjQMCmDKLVeyY+9Bnn5/gbPLERERERERqZPqxIJNxphxxpg4Y0zcgQMHnF1OpfWOOIe/D+vLvCWr+XrFBmeXIyIiIiIiUuc4M7ymGGNCAEr+3X+qG621b1hrY621sY0bN661Ah3p9isupFv7lvzz3S9JSkl1djkiIiIiIlIOYwx/+9vfSo8LCgpo3Lgxw4YNq1Q7/fv359h2nxdffDFHjhxxaJ1nC2eG1y+A60teXw+cfpfcOs7D3Z1nbh2Bu5vhvlfnkldQ4OySRERERETkNPz9/YmPjyc7OxuA7777jubNm1erzfnz51OvXj1HlHfWqa2tcj4EVgAdjTHJxpibgCnAQGPMVmBgyfEZLbRhPZ68aTgbE/fwwpxFzi5HRERERETKMXToUL7++msAPvzwQ0aPHl16LTMzk7Fjx9KjRw+6du3K558X98dlZ2dz9dVXExUVxVVXXVUafgFat27NwYMHARg+fDjdu3cnIiKCN954o/SegIAAHnnkEaKjo+nVqxcpKdq5BMCjNt7EWjv6FJcG1Mb7u5KLYsO5ZkBPZn6zgl7hbbkgpoOzSxIRERERcWnPbk/h94wch7bZMcCH+89pWu59V199NU888QTDhg1j/fr1jB07lp9//hmAp556ir/85S+88847HDlyhJ49e3LRRRcxY8YM/Pz8WL9+PevXr6dbt25ltv3OO+/QoEEDsrOz6dGjByNGjKBhw4ZkZmbSq1cvnnrqKR544AHefPNN/vGPfzj089dFdWLBpjPN/VcPomPLZjz81qekHEp3djkiIiIiInIKUVFRJCYm8uGHH3LxxRefcG3hwoVMmTKFmJgY+vfvT05ODjt37mTJkiVce+21pc9HRUWV2fa0adNKe1d37drF1q1bAfDy8iqdV9u9e3cSExNr7gPWIbXS8yon8vby5PkJoxj52AwenDGPtx+8Hnc3/R1BRERERKQsFekhrUmXXXYZ9913H4sXLyY19X+Lr1prmTdvHh07dvzTM8aY07a5ePFiFi1axIoVK/Dz8ysNvwCenp6lz7u7u1Og9XIA9bw6TZuQRky+7hJWbk5kxhdLnF2OiIiIiIicwtixY3n00Ufp0qXLCecHDx7M9OnTsdYCsGbNGgD69evHrFmzAIiPj2f9+vV/ajMtLY369evj5+fH5s2b+eWXX2r4U9R9Cq9OdHmfaC7tHcWrny0mbnOis8sREREREZEyhIWFceedd/7p/OTJk8nPzycqKorIyEgmT54MwK233kpGRgZRUVE888wz9OzZ80/PDhkyhIKCAqKiopg8eTK9evWq8c9R15ljfyWoK2JjY+2xPZLOBJnZuYx8bAY5efl8+uSt1Avwc3ZJIiIiIiJOl5CQQHh4uLPLkBp2it9zmWOu1fPqZP6+3jw3YSSHjmby8JufUtf+mCAiIiIiIlIbFF5dQOfWodx31SAWr93C+99prLuIiIiIiMjJFF5dxLUDz+XCmI48+9F3bNyxx9nliIiIiIiIuBSFVxdhjOGpvw+nUbA/9742h8zsXGeXJCIiIiIi4jIUXl1IvQA/nhk/kuT9h3l85lea/yoiIiIiIlJC4dXFxHZsxW1X9OerFev5bOlaZ5cjIiIiIiLiEhReXdC4S/vRs1Nrnvzv1/yx54CzyxEREREROSu99NJLREZGEhERwYsvvlh6/qqrriImJoaYmBhat25NTExMmc+3bt2aLl26EBMTQ2xsbOn5d999lz179pxw38GDB2vugzjYiy++SFZWVunxxRdfzJEjRwAICAiosfdVeHVB7m5uPDN+BD7entz76hxy8/KdXZKIiIiIyFklPj6eN998k5UrV7Ju3Tq++uortm7dCsDs2bNZu3Yta9euZcSIEVx55ZWnbOfHH39k7dq1xMXFlZ47ObzWhsLCQoe1dXJ4nT9/PvXq1XNY+6ei8OqimtQP4l9/v4Lfd6Xw7EcLnV2OiIiIiMhZJSEhgV69euHn54eHhwcXXHABn3766Qn3WGv5+OOPGT16dIXbnTt3LnFxcYwZM4aYmBiys7MBmD59Ot26daNLly5s3rz5T8+9++67XH755QwZMoSOHTvy+OOPl157//336dmzJzExMdxyyy2lQTUgIIBHH32Uc889lxUrVvDbb7/Ru3dvoqOj6dmzJ0ePHqWwsJD777+fHj16EBUVxYwZMwBYvHgx/fv3Z+TIkXTq1IkxY8ZgrWXatGns2bOHCy+8kAsvvBA4dc/xs88+W9ruY489VuHv6FQ8yrvBGHMecC1wPhACZAPxwNfA+9batGpXcYYospafUjO4sFGgQ9q7ILoDNwzpzbvfLOfczm0YGNvZIe2KiIiIiNQlT89awOad+xzaZqeWzZg0Zugpr0dGRvLII4+QmpqKr68v8+fPP2HoL8DPP/9M06ZNad++fZltGGMYNGgQxhhuueUWxo0bx8iRI3n55ZeZOnXqCe01atSI1atX8+qrrzJ16lTeeuutP7W3cuVK4uPj8fPzo0ePHlxyySX4+/sze/Zsli1bhqenJxMmTGDWrFlcd911ZGZmEhkZyRNPPEFeXh6dOnVi9uzZ9OjRg/T0dHx9fXn77bcJDg7mt99+Izc3lz59+jBo0CAA1qxZw8aNGwkNDaVPnz4sW7aMiRMn8vzzz/Pjjz/SqFGjU35/CxcuZOvWraxcuRJrLZdddhlLliyhX79+p/29nM5pw6sxZgGwB/gceArYD/gAHYALgc+NMc9ba7+ocgVnkK9S0nhsyz7uP6cJ1zRv4JA27xo1gLjfE5n89ud0bh1K80Y13x0vIiIiInK2Cw8P58EHH2TgwIEEBAQQHR2Nh8eJ8enDDz88ba/rsmXLCA0NZf/+/QwcOJBOnTqdMrwdG3rcvXt3PvnkkzLvGThwIA0bNiy9f+nSpXh4eLBq1Sp69OgBQHZ2Nk2aNAHA3d2dESNGAPD7778TEhJSel9QUBBQHDLXr1/P3LlzAUhLS2Pr1q14eXnRs2dPwsLCAIiJiSExMZG+ffuW881R2u7ChQvp2rUrABkZGWzdurXmwivwN2vtyf2/GcDqkp/njDGnjttnmUuaBvNTagZTt+8nxNvTIT2wXh4eTL11FCMefZ37X5vLzEk34unh7oBqRURERETqhtP1kNakm266iZtuugmAhx9+uDTIARQUFPDJJ5+watWqUz4fGhoKQJMmTbjiiitYuXLlKcObt7c3UBw4CwoKyrzHGPOnY2st119/PU8//fSf7vfx8cHdvTg7WGv/9Pyx89OnT2fw4MEnnF+8eHFpTeXVVRZrLZMmTeKWW26p8DPlKW/Oa2kwNcZ4H3/BGNOrpKi6syxWDXM3hic7hRIR6MPDm/cQn57tkHZbNm3A4zdeytptu3jlsx8d0qaIiIiIiJze/v37Adi5cyeffPLJCb2sixYtolOnTicE2uNlZmZy9OjR0tcLFy4kMjISgMDAwNJrlfHdd99x6NAhsrOz+eyzz+jTpw8DBgxg7ty5pbUeOnSIpKSkPz3bqVMn9uzZw2+//QbA0aNHKSgoYPDgwbz22mvk5xcvErtlyxYyMzNPW0dF6h88eDDvvPMOGRkZAOzevbu0xqoqr+f1A6BbyesVx70GePWkYwF83d14KSKM69YmcefGZP4b04rmvl7VbvfiXl34ZdMfvPnVUnqGt6F3xDkOqFZERERERE5lxIgRpKam4unpySuvvEL9+vVLr3300Ud/GjK8Z88ebr75ZubPn09KSgpXXHEFUNxLe8011zBkyBAAbrjhBsaPH4+vry8rVqyocD19+/blb3/7G9u2beOaa64pnTP75JNPMmjQIIqKikprbdWq1QnPenl5MXv2bO644w6ys7Px9fVl0aJF3HzzzSQmJtKtWzestTRu3JjPPvvstHWMGzeOoUOHEhISwo8/lt25NmjQIBISEjjvvPOA4sWj3n///dIhzVVhrLWnvmjMGmtt15Nfl3VcW2JjY+3xy0y7qh1ZudywNokGnh68G9OKYM/qD/XNzs1j1D/fIC0zm0//71YaBdfcHkoiIiIiIs6UkJBAeHi4s8twGe+++y5xcXG8/PLLzi7FoU7xe/7z+GbKHzZsT/G6rGM5Ths/b57vHMbunHzu3ZRMXlFRtdv09fbi+QmjyMjKYdIbn1DkgDZFRERERETqgvLCa5gxZpoxZvpxr48dN6+F+uq07vX8eLxjM1alZfPP3/dxul7uiurQoikPjRnCsvjt/GfBcgdUKSIiIiIiru6GG24443pdK6u8Oa/3H/f65LG6rj921wUMbRLMnpx8Xk48SHMfT25r07jabf61fywrNv7BS/O+J7ZjK6LbtXBApSIiIiIiIq6rvPA6Gwi01h44/qQxpgmQXmNVnWHGtmjI7px83tqVSqiPJ1eEVG+vVmMMT9x4GRt37OG+1+Yy74nxBPn7OqhaERERERER11PesOFpwPllnB8IvOD4cs5MxhgmtWtG7/r+PLV1HysOnX7p6YoI8vdl6q0jSTmczqPvfOGQIckiIiIiIiKuqrzw2tda+8nJJ621s4Cyd9eVMnm6Gf4dHkpbf2/uT9jNloycarcZ3a4Fd44YwMK4TXy8WKO4RURERETkzFVeeC1zieIKPlshxpi7jTEbjTHxxpgPjTE+jmjXFQV4uDM9Mgx/dzfuiE9mf25+tdu8cWhv+nZpx5RZ37BlV4oDqhQREREREQB3d3diYmKIjo6mW7duLF/u2AVTb7jhBubOnQvAzTffzKZNmxza/pmmvAC63xjT8+STxpgewIEy7q8UY0xzYCIQa62NBNyBq6vbritr6u3JtMgwMguLuCM+mcyCwmq15+bmxtPjriDQz4d7Xp1DVm6egyoVERERETm7+fr6snbtWtatW8fTTz/NpEmTauy93nrrLTp37lxj7Z8Jyguv9wMfG2P+aYy5tOTnceBjTlyJuDo8AF9jjAfgB+xxULsuq2OAD8+Eh7I9M5cHEvaQX1S9+aoNgwKYcsuV7Nh7kKffX+CgKkVERERE5Jj09HTq168PQEZGBgMGDKBbt2506dKFzz//HIDMzEwuueQSoqOjiYyMZPbs2QCsWrWKCy64gO7duzN48GD27t37p/b79+9PXFzxVMCAgAAeeeQRoqOj6dWrFykpxSMsDxw4wIgRI+jRowc9evRg2bJltfHRXcZpw6u1diVwLsXDh28o+THAudbaX6v75tba3cBUYCewF0iz1i6sbrt1Qe8GATzcvhnLD2cyZVv194DtHXEOfx/Wl3lLVvP1ig0OqlJERERE5OyVnZ1NTEwMnTp14uabb2by5MkA+Pj48Omnn7J69Wp+/PFH7r33Xqy1fPPNN4SGhrJu3Tri4+MZMmQI+fn53HHHHcydO5dVq1YxduxYHnnkkdO+b2ZmJr169WLdunX069ePN998E4A777yTu+++m99++4158+Zx88031/h34ErK2yoHa20K8FhNvLkxpj5wOdAGOALMMcZca619/6T7xgHjAFq2bFkTpTjFlSH12JOTz9u7Umnu48XYlg2r1d5twy/kt4RE/vnul3Rp25yWTRs4qFIREREREeeaE7eL5MPZDmsvrL4vo2JbnPaeY8OGAVasWMF1111HfHw81loefvhhlixZgpubG7t37yYlJYUuXbpw33338eCDDzJs2DDOP/984uPjiY+PZ+DAgQAUFhYSEhJy2vf18vJi2LBhAHTv3p3vvvsOgEWLFp0wLzY9PZ2jR48SGBhY5e+hLjlteDXGbADK6hI0gLXWRlXz/S8CdhzbR9YY8wnQGzghvFpr3wDeAIiNjT2j9oSZ0LoRu3PymZ54gBAfT4Y2CapyW54e7jxz60hGTH6N+16bw/v/uAkvj3L/PiEiIiIi4vLKC5o17bzzzuPgwYMcOHCA+fPnc+DAAVatWoWnpyetW7cmJyeHDh06sGrVKubPn8+kSZMYNGgQV1xxBREREaxYsaLC7+Xp6YkxxWvnuru7U1BQAEBRURErVqzA19e3Rj6jqytvzusw4NIyfo6dr66dQC9jjJ8p/u0MABIc0G6d4WYMj3dsRtcgXx77fS+r07Kq1V7zRvV48qbhxO/YwwtzFjmoShERERGRs9vmzZspLCykYcOGpKWl0aRJEzw9Pfnxxx9JSkoCYM+ePfj5+XHttddy3333sXr1ajp27MiBAwdKw2t+fj4bN26sUg2DBg3i5ZdfLj0+1it8tjhtt5y1Nqms88aYY6sCl3m9oqy1vxpj5gKrgQJgDSU9rGcTLzc3XogI44a1Sdy9MZmZMa1o7edd5fYuig3nmgE9mfnNCnqFt+WCmA4OrFZERERE5OxwbM4rgLWWmTNn4u7uzpgxY7j00kuJjY0tnRMLsGHDBu6//37c3Nzw9PTktddew8vLi7lz5zJx4kTS0tIoKCjgrrvuIiIiotL1TJs2jdtuu42oqCgKCgro168fr7/+ukM/syszp1soyBgTBNwGNAe+AL4DbgfuA9Zaay+vjSKPFxsba4+twnWmSc7O47q1Sfi7uzEzphUNvKo+5Dc3L5+rn3iT/UeO8skTt9K0QdWHI4uIiIiI1LaEhATCw8OdXYbUsFP8nk1Z95Y3bPg9oCOwAbgZWAiMBC53RnA904X5evFSRBgH8wq4a2My2YVFVW7L28uT5yaMIic3nwdnzKOwqOptiYiIiIiIOFt54bWttfYGa+0MYDQQCwyz1p5dg6trUZcgX57qFEr80Rz+sXkPhdXYQqdtaGMmXz+MlZsTmfHFEgdWKSIiIiIiUrvKC6/5x15YawspXhn4aM2WJH9pFMi9bZvwQ2oGL/yxv1ptXd4nmkt7R/HqZ4uJ25zomAJFRERERERqWXnhNdoYk26MOWqMOQpEHXecXhsFnq3GhDVgdGh9Zu0+zIe7D1W5HWMMj143jLAm9bn/9XkcyajeasYiIiIiIrXldOvzSN1X2d/vacOrtdbdWhtkrQ0s+fE47lgrANWwe89pQv+GAUzdvp/FqVXv8Pb39eb5CaNITc/kkTc/038JiIiIiIjL8/HxITU1Vf/f9QxlrSU1NRUfH58KP1PeasM+wHigHbAeeMdaW1DdQqvjTF5tuCzZhUX8ff1Otmfm8lZ0SyICq74h8XsLV/D0rG+YNGYofxvUy4FVioiIiIg4Vn5+PsnJyeTk5Di7FKkhPj4+hIWF4enpefKlMlcbLi+8zqZ43uvPwFAgyVp7p4NqrZKzLbwCpOYVcN2aJHKLivhv11aE+nhVqR1rLbe/+CFL47fx4eSb6dw61MGVioiIiIiIVFuVtsrpbK29tmS14ZHA+Q4vS8rV0MuD6V3CyLOW2+OTSc8vrFI7xhie+vtwGgT6c8+rc8jMznVwpSIiIiIiIjWjMqsNO3W48NmurZ83z3cOY1d2Hvdu2k1eFfdtrRfgx7PjR5C8/zCPz/xKcwhERERERKROqOhqw+labdj5Yuv58XiHEOLSsnhiy74qB8/YTq2ZMLw/X61Yz+fL1jm4ShEREREREcfzON1Fa617RRoxxtS31h52TElyOhc3DWZPbj6vJB4k1MeTCa0bV6mdWy7rx8qEHfzfzK+IatuctqFVa0dERERERKQ2lNfzWlHfO6gdqariqHsAACAASURBVICbWjRkeLNg3tyZyuf7jlSpDXc3N54ZPwIfb0/ufXUOuXn55T8kIiIiIiLiJI4Kr2WuBiU1wxjDw+2a0aueH09u3ccvhzOr1E6T+kH86+Yr+H1XCs9+tNDBVYqIiIiIiDiOo8KrVv2pZZ5uhmc7N6eNnzf3b9rN1syq7X91QUwHrh9yHh98v5JFcQkOrlJERERERMQxHBVexQkCPNyZFhGGr7sbE+OT2Z9btaG/d4+6iMg2ofzj7c/YfbBqw5BFRERERERqkoYN13HNfDyZHhlGekERE+OTySyo/B6wXh4eTL11FIVFlgdem0t+FdoQERERERGpSacNr8aYvxz3us1J16487nCAg+uSSugY4MO/w0PZlpnLQ5v3UFCFLXRaNm3A4zdeypptu3jlsx9roEoREREREZGqK6/ndepxr+eddO0fx15Yaw85rCKpkr4NApjUvhlLD2Xy720pVdoD9uJeXRjRrxtvfrWU5Ru310CVIiIiIiIiVVNeeDWneF3WsTjZiJB63NiiAXP3HmFmctX+njDp2qG0CWnEQzM+4WBahoMrFBERERERqZrywqs9xeuyjsUF3N66MYMbB/LSjgMsPJBe6ef9vL14fsIojmblMOmNTygqKqqBKkVERERERCqnvPDa1hjzhTHmy+NeHztuU86z4gRuxvB4xxC6BvkyefNe1qZlVbqNDi2a8tCYISyL385/FiyvgSpFREREREQqx5xubqQx5oLTPWyt/cnhFZUjNjbWxsXF1fbb1jlH8gu5YW0SR/ILmNm1Na18vSr1vLWWu1/5mB9Wb+a9h8cS3a5FDVUqIiIiIiJygjKnqJ42vP7pZmM8gUhgt7V2v4MKqxSF14rblZ3HdWuTCHR3492YVjTw8qjU8+mZ2Vz56OsYYN4T4wny962ZQkVERERERP6nzPBa3lY5rxtjIkpeBwPrgP8Ca4wxox1eojhUC18vXooIY39eAXdv2k1OYeXmrwb5+/LcrSNJOZzOY//5skorGIuIiIiIiDhCeXNez7fWbix5fSOwxVrbBegOPFCjlYlDRAX58lSnUDakZ/OP3/dSVMkAGt2uBXeOGMC3v23k48Xq8RYREREREecoL7zmHfd6IPAZgLV2X41VJA43oFEg97RtwvcHj/LSjgOVfv7Gob3pE3kOU2Z9w5ZdKTVQoYiIiIiIyOmVF16PGGOGGWO6An2AbwCMMR6AQyZAGmPqGWPmGmM2G2MSjDHnOaJdOdGY5vW5KrQe/00+xMd7DlfqWTc3N54edyUBfj7c8+ocsnLzyn9IRERERETEgcoLr7cAtwP/Ae46rsd1APC1g2p4CfjGWtsJiAYSHNSuHMcYw/3nNKVfgwD+vS2Fn1KPVur5RsEB/PuWK9mx9yBTZi2ooSpFRERERETKVqnVhh3+5sYEUbwIVFtbwUK02nD1ZBcWcfO6nfyRlcvb0a3oHOhTqedfnLuIN778mam3juTiXl1qqEoRERERETmLVX6rHGPMdOD4GyxwEPjRWru02hUZEwO8AWyiuNd1FXCntTbzVM8ovFbfwbwCrluTSL61zIxpTaiPZ4WfzS8o5Ian/8OW5P3Me2I8LZs2qMFKRURERETkLFT5rXKAOIoD5bGf1UAG8Kwx5i4HFOUBdANes9Z2BTKBh06+yRgzzhgTZ4yJO3Cg8gsOyYkaeXkwPbIFOYWWO+J3cbSgsMLPenq488ytI3F3M9z32hzyCgpqsFIREREREZFiVRo2bIzxBZaXBM6qv7kxzYBfrLWtS47PBx6y1l5yqmfU8+o4vx3JZMKGXXQN8uOVLi3wdCvzDxxl+i5uE3dOn80NQ3rzwOjBNViliIiIiIicZarU81oma2129WopbWcfsMsY07Hk1ACKhxBLLehRz5/HOoTwW1oWT2zZS2X+kDEwtjOjB/Tg3W+W89O6LTVYpYiIiIiISBXCqzHGwxhzI5DsoBruAGYZY9YDMcC/HNSuVMCwpsHc2qoRX+1PZ0bSwUo9+8DVg+nYoikPv/kpKYfSa6hCERERERGRcsKrMeaoMSa95N+jxpijwG5gKMXb6FSbtXattTbWWhtlrR1ura3cJqRSbX9v2ZDLmgYzY2cqX+xLq/Bz3l6ePDdhFDm5+Tw4Yx6FRUU1WKWIiIiIiJzNnLpVTlW4+pzXzJxc/H28nV1GpeUXFS/etCoti5cjW3Buff8KP/vpz2t45K3P6Na+Jd06tCS8VQjhrUJo2aQ+bm5VGpkuIiIiIiJnr8pvlQNgjPECxgARFG+Vswn4wFqb6+gKK8KVw+tvmxO5Y9pH3Db8Aq7+S088PdydXVKlHC0oZOzanezLzec/Ma1o51+xEG6t5Y2vfubblRvZtvsABYXFqxf7+3jTsWVTOpeE2fBWIZwT2rjOfS8iIiIiIlKrqrTPa2fgC2AZxVvlGIq3tukDXGatrfXFlVw5vP6x5wD/en8Byzdup21IIx4YPYR+0e2dXVal7M3J57q1SXgY+G9Maxp7e1Tq+bz8ArbtOUBC4h4SkvaRkLSXzbtSyM7NA4q32ukQ1pTwVs0IbxVC51YhdGjRFF9vr5r4OCIiIiIiUvdUKbx+D0yx1n530vmLgEestRc6tMQKcOXwCsW9kD+t28K/P/iWpJRUzo9qzwOjB3NOaGNnl1ZhmzNyGLs2idZ+XrwV3Qo/9+oN/S0sKiJpX2pxmN25l02Je0lI2ktaZvGi1W7G0DqkEeGtmp3QSxvs7+uIjyMiIiIiInVLlcLrZmttp1NcS7DWhjuouApz9fB6TF5BAR8sWslrn/9EVk4eowf0YMLw/tQL8HN2aRXy86EM7opPpk8Df56PCMPDVHwP2Iqw1rL3UBoJSfvYlLiHzSXBdt9xqxaHNqpXEmb/10vbuF4gxsG1iIiIiIiIS6lSeN0CdDl5fqsxxgfYYK2t9TGxdSW8HnMoPZNpn/zA3MWrCPTz4Y4rL+SvF8bi4e768z7n7DnMv7alMCqkHpPaNa2V0HgoPZOEpL0k7NxbOuw4cV9q6fWGQf6EtwqhU8tmdG4dSnirZrRorIWhRERERETOIFUKr/8AegG3W2sTS861BqYBcdbaJxxdZXnqWng95ved+5jy4Tf8umkH54Q25qFrhtCnSztnl1Wul/7Yz7vJh7i7TWOua9HQKTVkZueyeVdxkE1I2sempL1s372fgsLirXn8fbxLwmzJkOOWzWirhaFEREREROqqKq82fDvwAOBX0kgGMNVaO93RFVZEXQ2vUDxU9vvVm3n2o4Xs2n+I/jEdeGD0YFo3a+Ts0k6pyFombd7DwgNHeSY8lIGNg5xdElCyMNTu/cXzZ0t6aX/fuY/svHwAvDw96BDWhPCWJcOOW4fSIayJFoYSEREREXF9VQuvpTcaEwhgrT3qwKIqrS6H12Py8gt477tfeP3zJeTm5zPmonO59fILCHLRBYpyi4oYv34Xm47mMCOqBTHBrjlvt7CoiMR9qSU9tP/rpU0/bmGoNiGNiufPlvTSdmrZTAtDiYiIiIi4lioNG77ndC1aa5+vZlGVdiaE12MOpmUwbd73zFuyhnoBvtxx5V8YeUE3l5wPezi/gBvWJpGeX8TMrq1o6Vs3ejCttexJTTsu0BaH2pTD/1sYKqxx/eLe2ZYhpcG2cb1AJ1YtIiIiInJWq1J4fey4w1uAGcdft9Y+7pDSKuFMCq/HbEray5RZC4j7PYkOYU15aMwQenVu6+yy/mRndh7Xr00i0N2NmV1bUd+zcnvAupLU9IzSBaGOBdqklOMWhgoOIPyEebQhtGhSXysdi4iIiIjUvGoPG15jre3q0JKq4EwMr1DcQ/hdXALPfvQtuw8eYUC3Ttx39SBaNXXOIkmnsi49m3HrdhIe6MOMqBZ4n0Gr/GZk57B5Z8oJvbTb9xwoXRgqwNe7dEGoY3vRtg1t5JI95SIiIiIidVi1w+tqa203h5ZUBWdqeD0mNy+fmd+uYMaXP5NfUMh1g3sx/rJ+BPj6OLu0Ut8dSOfBhD1c1CiQKeGhuJ3BvZG5efls232ATUl7Sntqf9+VQk7JwlDenh50bd+SJ2++nNCG9ZxcrYiIiIjIGUHhtS45cOQoL879ns+WrqVBoB93jhjAFf264u4iPZ3/TU7lhT8OcENYA+5s28TZ5dSqwqIiduw9WBpm5y1ZjY+XJ6/dM4bOrUKcXZ6IiIiISF1XpTmvG4BjN7QDth3XmLXWRjmywoo4W8LrMRt37OHpWQtYvXUnnVo2Y9KYofTo1NrZZWGtZcq2FD7ee4SH2zVlVGh9Z5fkNFuT93PLc++TnpXN8xP+Sr/o9s4uSURERESkLqtSeG11uhattUnVLKrSzrbwCsVB8ZuVG5k6eyF7U9MYFNuZ+64eRFhj5wbGAmu5d2MySw9l8mJkGOc3CHBqPc60/3A6t77wAVt2pTD5ukv464Wxzi5JRERERKSuqt6w4dO2bMwKa+151W6oAs7G8HpMTl4+/1mwjLe+WkpBURHXDz6PWy7th7+vt9Nqyios4uZ1SSRm5fF4xxB61vMn2PPsXMAoMyeXe16Zw8/rtzLu0vO5c8QArU4sIiIiIlJ5NRpea20l4rM5vB6TciidF+Ys4ovl62gUHMBdIy9ieN9o3Jw0H/ZAbgFj1yWRnFO8iFE7P29ign3pGuRLTLAfoT6eTqnLGQoKC3nyvfl8/GMcl5zXhaduGo5XHd5SSERERETECWo0vNbaYk4Kr/+zbnsyU2YtYN32ZDq3CmHStUPp3uG0I71rTG5REfHpOaxNz2J1Wjbr07PJKNlippm3BzFBfnQN9qVrsC/n+Hmf0SsUW2t5e/5Snv94ET06tWbaxKsJ9vd1dlkiIiIiInWFwuuZyFrL179s4PmPv2PfoXSG9Izg3qsG0byRc7dtKbSWbZm5rEnLZk16FmvSsjmQVwBAoIcb0UG+dC0JtJ0Dfc6o/WKP+XrFBh5+61NaNK7P6/de6/Q5yiIiIiIidYSGDZ/JsnLzeGf+Mt6ZvwxrLTcO7c1Nl/TF38d582GPZ61lb24+q9OyWVsSaP/IygPA0xgiA31Khhr7ER3kS9AZMm82bnMit0/7CE93N167ZwyRbZo7uyQREREREVdXo+E10lobX+2GKkDh9fT2pqbx/Jzv+HrFBprUC+Sevw5k2HldnDYf9nQO5xewLr04zK5OyyIhI4cCW/yf1Hb+3sQEFQ8z7hrkR7M6PG/2jz0HuOW59zmUnsnUCaO4sGtHZ5ckIiIiIuLKqrRVzg7+t8/rsUaOHVtr7TkOK6+CFF4rZu22XTz9/gI27NhNl7bNmTRmKDHtWji7rNPKLixi49Ec1qRlsTY9m3Xp2WQeN2+2a5AfMcG+dAv2o62fV52aN3swLYMJL8xiU+JeHr52KNdcdK6zSxIRERERcVVVCq8NTzrlBvwVuA9Yba0d4bDyKkjhteKKior4cvl6np+ziANHjnLJeV24Z9RAQhoGO7u0Cjk2b3Z1SZhdnZbNwePmzRb3zPrRNah43qyXC/YuHy8rN4/7X53Lj2t/58ahvbn3rwNdskdcRERERMTJqj5s2BjjBvwNuB9YC/zLWrvJoeVVkMJr5WXm5PL210v5z4LlGGO46eI+jL24D77eXs4urVKstezOyWdNejZr04oXgdqRXTxv1ssYIgJ96Bpc3DsbE+RLoIfrzZstLCri6fcX8MH3KxncI4Ip467A26vuDokWEREREakBVep59QTGAncDS4GnrbXba6S8ClJ4rbrdB4/w3OyFfLNyI80aBHHPXwdySa8umDo0/PZkh/KK580eC7Qnz5vteqx3NtiXpt6uERKttbz7zXKe/Wgh3dq35OW7RlMvwM/ZZYmIiIiIuIoqhddkoAB4Edh58nVr7ScOqcwYdyAO2G2tHXa6exVeqy/u9ySmzFrApqS9xLRrwUPXDCHqnDBnl+UQxfNmi4cYH5s3m1UybzbE26N0mHHXYD/aOHne7Le/beTBGZ8Q0iCYGfdeS8umDZxWi4iIiIiIC6lSeH2XExdsOp611o6tfl1gjLkHiAWCFF5rR1FREZ8tXceLcxdxMC2Dy3pHc/eoi2jaIMjZpTlUgbVszchlTXpW6RY9B/MKAQj2cCO6ZK/ZGCfNm129ZSe3v/QhxsCrd11DtIsvqiUiIiIiUgscu1WOMaaptTalWiUVtxMGzASeAu5ReK1dmdm5zPhyCTO/XYGHmxt/H3Y+Nwztjc8ZOg/TWktyTj5rSoLs2rRsEkvmzXq7lcybLQm0UbU0bzZxXyq3PPc++w+n8+z4kVwUG17j7ykiIiIi4sKqH16NMcHACOAaINxa27zaVRkzF3gaCATuU3h1jl37D/Hc7O9YGLeJ0Eb1uPevAxnSM6JOz4etqGPzZo+tarz5uHmz7f29S/ea7RrsS5Mamjd7KD2T2178gPV/7ObB0YO5bvB5NfI+IiIiIiJ1QNXCqzHGF7iM4sDajeKQORxYYq0tqlZFxgwDLrbWTjDG9OcU4dUYMw4YB9CyZcvuSUlJ1XlbOY2VCTt4+oNv+H3nPrp1aMmka4YS0SbU2WXVquzCIjYctwjU+qM5pfNmQ709i8NssB8xQb609fNyWMDPycvnwRnz+C4ugb8N6sUDowfjrq10REREROTsU6U5r7OAfsBC4CPgB2CbtbaNQyoy5mmKt+ApAHyAIOATa+21p3pGPa81r7CoiE+WrOaluT9wOCOL4X1juGvkABrXC3R2aU5RYC1bMnJZm55VvBBUWhap+cXzZut5uNOrvj8PtmtKPc/qDzEuLCpi6kcLmfntCi7qHs6/b7myzm1pJCIiIiJSTVUKr+tKHvwvMNtau8sY84e1tq3DqztNz+vxFF5rz9GsHGZ8uYT/fvsLXp7ujBt2PtcPPu+s35fUWsuunHzWphWH2QX70wn18eSVLmGE+jgmaL638BemfPANXdo255W7RtMwKMAh7YqIiIiI1AFVHjbcieIhw1cB+4FOQBdr7T6HVqfw6rKSUlJ59qOF/LB6M2GN63PfVYMYGBt+VsyHrYhVR7K4e1My3m6G6ZEt6BTg45B2F61K4IHX59E4OIAZ911L62aNHNKuiIiIiIiLc8iCTbEUB9mRQLK1trdjaqs4hVfnWbHxD6Z8sICtyfvp0ak1D10zhPBWIc4uyyVsz8zl9vhdpBcU8Vzn5vSq7++QdtdtT+a2Fz6gsKiIV+66hm4dWjqkXRERERERF+a4rXJMcZdbP2vtT9WtqrIUXp2roLCQuT+tZtq8H0jLzGZEv65MHDGARsEa1ro/N5/b45PZkZXLox1CuLRpsEPa3ZlyiPHPv8+e1DSmjLuSIT0jHNKuiIiIiIiLqtKc1+nAKW+w1k6sfl2Vo/DqGtIzs3nt85+YtehXvD09GX95P6696Nyzfj7s0YJC7tu0m5VHsri9dSPGtmjokOHVRzKyuP2lD1m9ZSf3XjWQsUP7aNi2iIiIiJypqhRerz9di9bamdUsqtIUXl3Ljr0HeebDb/lp3RZ8vTzpEd6aPpHt6NulHa2bOSa41TX5RZZ/btnL/P3pjAqpx4PtmuLugO8hNy+fSW9+yjcrNzJ6QA8mjRmKh3v1VzgWEREREXExjhs27EwKr65pZcIOFsZtYtmG7SSlpAIQ2qgefSLPoU9kO3p1bkOQv6+Tq6w9RdYyPfEA7+46RP+GAfyrUyi+7tXfs7WoqIjn5yzinfnL6B/TgakTRuGnrXRERERE5MxS5dWGrwfuBDqWnEoApllr/+vQ8ipI4dX1JR84zNIN21i2YRu/bNpBZk4u7m5uRLVtTp8u7ejTpR2RbUJxd6t+mHN1H+0+zDPbU4gM9OGlyDDqe3o4pt3vV/Lke/Pp3DqEV+665qzdg1dEREREzkhVGjZ8HXA3cA+wuqSRbsCzwEvOCLAKr3VLfkEh6/9IZtmGbSzbsJ34xD1Yawn29+W8iLbFYTbyHJo1cMziRq7o+4NHeWTzHpp6e/BKZAvCfB3TU7p47e/c+8oc6gf5M+PeazkntLFD2hURERERcbIqhddfgKuttYknnW8NfGSt7eW4+ipG4bVuO3w0kxUb/2Dphm0sj9/O/iNHAWjXvEnxEOMu7Yjt2AqfM2zhp7VpWdy5MRkPU7wXbOdAx+wFG79jN7e+8AH5+QVMv3M0PTq1dki7IiIiIiJOVKXwusla27my12qSwuuZw1rL1uT9LIsv7pWN25JEXn4B3p4exHZsVdIr2452zRufEQs/7cjK5bYNuziSX8iznZvTp4FjthfafeAwtzw/i50ph/jX34cz7Lwoh7QrIiIiIuIkVQqvq6y13St7rSYpvJ65snPziPs9iWUbtrE0fjt/7DkAQLMGQfQuWfjpvIi21Avwc3KlVXcgt4A74nexLTOXyR2acXmzeg5pNy0zm4nTPuK3zYncNXIAfx92/hkR+EVERETkrFSl8JoFbDtFY22ttf6Oqa3iFF7PHntT00qC7DZ+2fgH6Vk5uBlDZNvmpasYR53TvM5tF5NRUMj9m3bzy5Esbm3ViL+3dMyWQnn5BTzy9md8vWIDoy7ozuTrL6lz342IiIiICFUMr61O16K1NqmaRVWawuvZqaCwkI079hSvYhy/nfXbkymylkA/H3p1bkOfyOJVjJs3ckxPZk3LL7I8sWUvX+1P58pmwUxq3wwPBwRYay3T5v3AjC+X0LdLO1647a/4+3o7oGIRERERkVpTpfDayVq7ueS1t7U297hrvay1vzi8zHIovAoUD5P9ZdMfxT2zG7az71AaAG1CGpUu/NSjU2uX3gPVWsuriQd5a1cq/Rr4MyW8uUP2ggWYu3gVj8/8ivZhTXj9njE0qR/kkHZFRERERGpBlcLramttt5Nfl3VcWxRe5WTWWv7Ye7AkyG4j7vckcvLy8fRwp1uHlvQt6ZXt2KKpS84DnbPnMFO2pdA50IeXIsJo4OWYvWB/Xr+Vu1/5mCA/X2bcO4b2YU0d0q6IiIiISA2rUnhdY63tevLrso5ri8KrlCc3L59VW3eW7i27JTkFgEbBAaW9sr0jzqFBUK1P2T6lxalHmZSwh8ZeHrzcpQUtHbQXbELSXm59fhZZuXm8dMfVnBfR1iHtioiIiIjUIPW8ytlp/+F0lsVvZ9mGbSzf+AdHMrIwxtC5VQh9upxD38h2RLdrgaeHcxc3Wp+ezZ3xyRgD0yLCiAzydUi7e1PTGP/8++zYe5Anxl7O8L4xDmlXRERERKSGVCm87gc+Knn4qpLXxxr7q7W21schKrxKdRQWFbEpcW9xr2z8dtZu20VhURF+Pl6cG96GviV7y7Zs2sAp9SVl5XFb/C5S8wr4d3hz+jV0zF6wR7NyuOvl2azY+Ae3X3Eht15+gUsOoRYRERERoYrh9frTtWitnVnNoipN4VUcKSM7h1827SgNs8kHDgPQokkD+nYp3o7n3PA2tbpib2peAXfEJ/N7Rg6PtG/GlSGOWUE5r6CAf/7nSz5bupbhfWP4542X4uXhmPm1IiIiIiIOVPnw6ooUXqWmWGtJSjlUEmS38WtCItm5eXi4u9G1fcvSvWXDWzXDzc0xqwKfSlZhEQ9s2s2yw5mMa9mQ8a0aOaSn1FrLq58t5pXPFnNeRFtevP0qAv18HFCxiIiIiIjDVKnn9YvTtWitvayaRVWawqvUlryCAtZs3VXaK5uQtBeABoH+nBfZlr6R7egdeQ6N6wXWyPvnF1me2rqPz1PSuLxpMI+0b4anm2OG+n768xoe+88XtA1pzOv3jqFZg2CHtCsiIiIi4gBVCq8HgF3Ah8CvJzdirf3JgQVWiMKrOMvBtAyWx29nWfw2lsdvJzU9E4Doc8J46ubhtA1t7PD3tNbyetJB3tiZSu/6/jzbuTl+DtoLdvnG7dw1fTZ+3l68ds8YwluFOKRdEREREZFqqlJ4dQcGAqOBKOBr4ENr7caaqLAiFF7FFRQVFbF5VwrLNmxj5jcryM0v4OlxV3BR9/Aaeb9P9h7hX1v30SHAh+mRYTR00F6wW3alMP7590nPyuHF26+ib5d2DmlXRERERKQaqjfn1RjjTXGIfRZ4wlo73XG1VZzCq7iavalp3DV9Nht27OaWS/tx+5UX4l4Dc2J/Ts3ggYTdNPTy4JXIFrTyc8xesCmH0hn/wiy2Je/nnzcMY8QF3R3SroiIiIhIFVUtvJaE1ksoDq6tgS+Ad6y1ux1cYIUovIorys3L58n35jNvyWr6dmnHs7eOJNjfMfu0Hi8+PZuJG5OxFl6KDCPKQXvBZmbncvcrH7N0wzZuubQfE0f8RVvpiIiIiIizVGnY8EwgElgAfGStja+Z2ipO4VVclbWWjxfH8dR7CwhpEMS0iVfTsWUzh7/Pzuw8bt+wiwN5BTwdHkr/ho5ZMCq/oJD/++9XzP1pNZf2juL/brpcW+mIiIiIiDNUKbwWAZklh8ffaABrrQ1yWHkVpPAqru7/2bvz+Liqgv/jnzNb9jRpliZp2qYrbdm3sqiI7KJsCogrKu4gygMqqwuCoiK4oagIDz/1Adk3QRAUUETKVqD7mjZp0ixNs08y2/n9MUtm0qRNM7dNMvm+X6+8Zu695545J4HbfHPOPXfZ+jq+/su/0NXbx/cvOovTjz7Q8c9oC4S4dEU9q7r6uHLeNM6rKnakXmstv3viX/z8gedYsrCGn196wV4ZQRYRERER2QU951VkX2lp7+Ky2+7jjbVbuPC0Y7j8/JPxuN2OfoY/HOHKVVt5sa2Hi2aUcHGNM8+CBXj8P29zzR2PMHPaVH57+SeYXlrkSL0iIiIiIiMw5C+1u1xVxhiTv9taR1BmF+fOMMb80xizyhizwhjztdHWJTKelBUVcOe3LuRjJy3h7r+9zOd/8kfaOnt2f+IeyHG7+On+1XyoYgp/qNvOt9c0Eow488eoM449iDu+8Ula27v46PW/Z8WmBkfqFREREREZrd0tifqoMeanxpjjjLP19QAAIABJREFUjDF58Z3GmDnGmIuMMU8Dp6Xx+SHgcmvtIuBo4GJjzOI06hMZN3weD9d+8gP88PPnsGx9Hed+57e8s9HZdc48xnDt/Aq+PKuUJ5o7uXR5HT2hsCN1L1k0mz9dexE+r4dP/eBOXli21pF6RURERERGY5fh1Vp7IvAc8EVghTGmwxizHfgTUAFcaK19YLQfbq1ttNa+EXvfBawCpo+2PpHx6Kx3H8Kfr70Il8vwyR/cyYMvvuFo/cYYvjCrlO8uqODV9l4+9/YWWvpDjtQ9b3o591z3OeZUlXHxz/6Pe59b6ki9IiIiIiJ7atzc82qMqQFeBA6w1nYOV073vMpEtaOrhyt+8wAvr9jIR953BFd94v2Or+b7Uls331i5lSKvm9sOnMHs3CxH6u3p6+cbv3mA55et5aLT38Vl552Eay88y1ZEREREhPG8YFPsvtkXgButtQ8NcfwLwBcAZs6cefjmzZv3cQtFnBEKh/n5A8/xhydf4pB5M/jZJedTXuzsot0ru/r46vI6wtbys/2rOWRKriP1hsJhfvCnp7j3H6/y/qMO4AefO5ssn9eRukVEREREkozP8GqM8QJPAE9ba2/ZXXmNvEom+NvSFVxzxyPkZfu49ZLzOXzBLEfrr/cHuHh5HU39IX6wsIoTSp15Fqy1ljuffImf3vd3Dlswk2s+cToLZkzDrVFYEREREXHO+AuvJvpcj7uBNmvt10dyjsKrZIp19U189Rf30tDazpUfO42PnrjEsUfdAOwIhvja8nqWd/XxzbnTuGC6M8+CBXjqleVc9fuHCQRD5Gb7OHhuNYfMm8Eh82Zw8NxqCvVsWBEREREZvdGHV2PMH621n9zdvj1ukTHvBv4FvANEYruvttY+Odw5Cq+SSTp7/Fz5u4d4ftlazn73IXz7wg+S7eBUXH84wtWrG3h+ezefnjGVr9aU4XIoIDe1dbJ0dS3L1m/hzXV1rK1rImItxhjmVpVx6LwZHDxvBofOn0FNRYmjwVxEREREMlpa4fUNa+1hSdtu4B1r7T5/rI3Cq2SaSCTCrx99gV8/8jyLZ1Xy80svYHppkWP1h63lR+ubuL+xndPLC/nugkq8LueDZI+/n3c2bWXZujreXF/HW+vr6OztA6AoP5dD5lVHw+y8GRwwZzq5WT7H2yAiIiIiGWHPw6sx5irgaiAH6E2qKAD8zlp7lcON3C2FV8lUzy9bwzdvfxCP281Pv3Iex+w/x7G6rbXcWdfGr2pbWFKUy82Lp1PgcTtW/1AikQibtm1n2botvLm+jmXr6tjY2AqA2+Vi4cwKDp5XzaHzZnLI/BlUlUzR6KyIiIiIwCjD67ustS8ZY26y1l6515q2BxReJZPVbtvOpb+4l40NLVx2/kl89v3vcjTQPd7UwfVrG5mdm8WvDqimPGvfrhbc3t3LWxvqWbaujmXr63h741b8/QEAyosKOGR+9L7ZQ+fNYNGsSnxeZx8lJCIiIiITwqjC6+vW2sMHTxseSwqvkul6+vq59o5HefrVFZy2ZH++f9FZ5GU787xWgJfberhi1VYKPS5+dcAM5uY5V/eeCoXDrK1vTozOvrW+nvqWHQD4vB4OqKlKjM4ePK+asiJnVk0WERERkXFtVOH1v8Aq4HTgL4OPW2svdap1I6XwKpOBtZY7n3qJW+97ljlVZfzi0guoqShxrP7V3dFnwfZHLLcurubwImeeBeuElvYulq2v48110ftml9c2EAyFAZhRVpxYBOqQeTOYX12Ox713pz+LiIiIyD43qvBaCpwE/Aj49uDj1tq7nWrdSCm8ymTynxUbuOLXDxCORPjRFz/E8Yfs51jdDX0BLnmnnvq+IDcurOTkskLH6nZSIBhi5eZG3ly3hbfW1/PGui20dnQDkJvt46A51Rwyr5pDYqOzU/SYHhEREZGJLq3Vhg+21r7leJNGQeFVJputLTu49Jd/YdXmRi4++3i+fNZ7cblcjtTdEQzz9RX1vNXp5/I55Xy8eqoj9e5N1loaWtuji0DFFoJaU9dEOBJ92tbcqrLoM2fnR++drakocez7JSIiIiL7xKhGXr9prf2xMeaXwE4FNW1YZN/oCwT53v8+zqMvvcX7DtmPm774IQpys52pOxzhmjUN/KO1m09WT+Xrs517Fuy+0tPXz/JNDYnR2TfX19HZ4wdgSl4OB8+rji4ENX8mB8yucvQeYhERERFx3KjC6xnW2seNMRcOdVzThkX2HWst//fsUn50z9+YXlrMLy69gPnV5Y7UHbaWmzc0c2/DDk4tK+D6/SrxTeDRykgkQu227Ynnzb65ro4NDS1A9DE9+82YljI6W1VapMf0iIiIiIwfo582PJ4ovMpk99qazVx223309gX4wefP5tQj93ekXmst/6++jZ9tauGIKbncsv/efxbsvtTR4+ftDfWJxaDe3lhPb1/0MT1lRQWx+2ajo7OL9ZgeERERkbE0qpHXxxliunCctfbM9Nu1ZxReRaCprZOv/+ovvLWhns994N187dwTcTs0UvpUcwffXtNITU4Wvzygmorsffss2H0lHImwLukxPcvW1VEXe0yP1+Nm/5qqWJiNrmysx/SIiIiI7DOjCq/v3VWN1toX0mzUHlN4FYkKBEP88M9P8Zd/vsYx+8/hp185j6J8Zx55s3RHD5ev3Equ28WvDqxmfp4z99eOd60d3dFFoGJhdnltA4FgCIDppUWJacYLqqeRm+0jJ8tHts9LTpaXHJ8Xn9ej6cciIiIi6Utv2rAxxgcsJDoSu8ZaG3CubSOn8CqS6sEX3+D6u5+grKiAX1x6AYtnVTpS79ruPi5ZXo8/HOGW/adzZFGeI/VOJIFgiFVbtqWMzja3dw1b3mUM2VlecrJ85MRCbbbPS25SyI1vx9/nxN4PDsLx7dwsb6LObK9HKyeLiIjIZJDWo3I+ANwObIhVNBv4orX2KSdbOBIKryI7e2fjVr72y3vZ0dXL9z5zJme+62BH6m3sC3LJ8jrq/EGu36+S08rH57Ng9xVrLY1tHdQ2bscfCOLvD9DXH8QfCODvD+LvD9IXCNLbH6AvMGi7P5g4xx97Hx/V3RPZPu+QITcagL3k+HyxsLtzCB4o60scz85KDdced+bc5ywiIiITVlrhdTXwQWvt+tj2XOCv1tqFjjZxBBReRYa2vbOby2+7n6Wra/n4yUfxzQtOxevAgkudwTCXraznjQ4/l80p45PTp2pqrEPCkUhKqI0G3WAs+CYH4oHAG9+/U0juT932B6Jl9nRRPo/bHR3tjQffLC+5sZBbkJvNZ047loPnzdhL3xERERERIM3w+qK19rikbQO8kLxvX1F4FRleKBzmp3/5O3c//TKHL5jFLRef58hCQ/2RCNetbuTvrV18bHoxl88pn3DPgp2MrLX0B0PRwBsPtbFR4JSQnBSek0NyX3/qdl3zDjp7/Vx+/sl86tRj9EcMERER2VvSCq+/AWYB9xG95/U8YA3wEoC19iHHmrkbCq8iu/fEy2/z7TsfozA3m59/9SOOjJRFrOWWjc38eesOTiot4IaFlWTp/stJpaPHzzV3PMI/3ljNSYcv4oaLzqIwL2esmyUiIiKZJ63wetcuDltr7WdH26o9pfAqMjKrt2zj0l/cy7a2Tq795Omc/74jHKn3j/Vt3LKxmUMLc7hi7jTm5vkUYicRay13P/0yt9z3dyqmTuHWi89n/9lVY90sERERySzprTY8Xii8ioxce3cv37z9Qf79znrOfe9hXPOJ08nypf/c1qebO7luTSNBa3EDM3N9LMjLYn5eNgvys9gvL4synx4bk8mWra/jf267j+2dPXzro6fy0ROX6OctIiIiTkl75HWngvtyxDVO4VVkz4QjEX710D/57eMvcuCc6fzsko9QWTIl7Xqb+oO83elnbU8/a7v7WdfTR2P/wOq5UzwuFsTC7Py8LBbkZTNHo7QZZUdXD1f+7mH+9fY6TluyP9d/9kzycybHM4FFRERkr0orvH44aTMbOAdosNZe6kzbRk7hVWR0nn1tFVf9/mGyvB5uveR8jlxY4/hndIXCsSDbz9qePtb29LOhp5++SPQ64wZm5fpYkJcdDbT5WSzQKO2EFolE+MOTL/HzB55jRvlUbr3kfBbOrBjrZomIiMjE5ty0YWOMC3jWWntCuq3aUwqvIqO3saGFr/7iXrY0tfGNC07hk6ccvddDY9ha6vyBaKDt7o+O1Pb0sS1plLbI404aoc1iQX42s3M1SjuRvLa6lst/8wCdPX6u/sT7Ofe9h+sPEiIiIjJajobX/Yg+53Veuq3aUwqvIunp9vdx1e8e5rk3VvOBYw7k+s+cSU6Wb5+3ozMYTozQRl93HqWtiY/SxkZo52uUdlzb3tnNN29/kJdXbOSMYw/i2xd+kLzsrLFuloiIiEw8aU0b7iL1ntdtwFXW2gedadvIKbyKpC8SifD7v/6bXzz4DxbMmMYvvvoRZpRPHetmJUZpk++jXdvTnzpK63Ungmz8nto5uT58GqUdF8KRCL997EVue+R5ZleWcuvF5zO/unysmyUiIiITi1YbFpFU/3p7Hd+4Pfo3qJu/fC7vPnCfT6YYkc5gODHdOD79eENvP/2xUVqPgZqcrJT7aOfnZVPqc2uUdoy8vGIj37z9AXr7Alx34Qc5+92HjHWTREREZOJQeBWRndU1t3HpL+5lbX0zX/vwCXz+g++ZEIEvbC1b/IGUBaLWDRqlLU4epc3PZkFeFrM1SrvPtLR3ccVvHuDV1bV86LhDueYTp4/JFHURERGZcBReRWRovf0BvnPnY/z1v+9w0uGL+OHnzyEvZ2Leq9gRDCemG8cXiNo4aJR2du7A4lDxYFvq84xxyzNTKBzmtoef57ePv8iC6mncesn5zK4sHetmiYiIyPg2PsOrMeY04OdE12e5w1p7067KK7yK7B3WWv74zH/5yb3PMGvaVH75tY9mTMgIxUZp1yWtdryuu5+mwMAo7VSvO2WEdn5eFnNys/C6xv8o9ETwr7fX8a3fPkQgFOJ7nz6TDxxz4Fg3SURERMavPQ+vxphdruBirW1Lq0XGuIG1wMlAPfAq8FFr7crhzlF4Fdm7lq7axP/cdj/9wRA3ffFDnHjYwrFu0l7THgyzftAo7YaefgI2dZR2Qd7AfbQL8rMo0SjtqDRu7+CKX9/Pm+vr+Mj7juDKj51Gls871s0SERGR8WdU4XUT0VWGDTAT2BF7XwRssdbOTqtFxhwDfNdae2ps+yoAa+0PhztH4VVk72vc3sHXf/kX3tm0lS+deRwXn/M+3JPkPtGQtWzuDaQ+xqe7n+akUdo8tyvxlTPoNdfjIjf+Pukrum3Idbtj5U3iPNcEuMfYKcFQmJ8/+Bx3PvkSi2ZVcuvF5zNz2tivdC0iIiLjSlqPyrkdeMxa+2Rs+/3ASdbay9NqkTHnAqdZaz8X2/4kcJS19pLhzlF4Fdk3+gNBbvjjkzz44hu8+8B5/OTL5zIlL2esmzVm2uP30nb3s7UvSG84kvLVE47gj732hiOJ59WORI7LkOdJDbupoXfgfc4Q+3I9LnJdLvI80eOeCRCG//nmGq76/cNEIhFuuOhsTjly8Vg3SURERMaPtMLr69bawwfte81ae0RaLTLmPODUQeF1ibX2q4PKfQH4AkBZ9ezDr7rzb+l8rIiMmGVFbQMvvr2egpws3r/kAEqm5I91oyYEiyUYsQTtwGsgeXvQsWDEErCWUOw1up+U4yPlNuB1GbzG4HUZfLFX7y5efcnbg46591IY7ur18/SrK2na0cXBc6dzzP5zJ80Iv4iIiAzvspMXpBVenwb+BfyJ6DTiTwDHxaf7jpamDYtMDMvW1/H1X/6Frt4+vn/RWZx+tBbb2dci1tIXsfSEIvRGIvSGdh7t7R30fvDIcG944LzecITICD/bY6JTpQs9bj49o4RzKqY49jilQCjET//yd/74zH85cM50bvnKeUwvK3akbhEREZmw0gqvU4HvAMcRDa8vAtc7sGCTh+iCTScCW4ku2PQxa+2K4c5ReBUZGy3tXVx22328sXYLF552DJeffzIet3usmyWjZK2lP2KHDb2DA7E/HGF1dz9vdfo5payAa+dXUOBx7uf/zKsrufYPj+Ayhh98/hxOyOCFwkRERGS30n9UjjEm31rb7ViTonWeDvyM6KNy7rTW3rir8gqvImMnEArx43ue5v+eXcqShTVccs77mFddTlF+7lg3TfaBiLX8b10bv65tYVqWl5sWVXFgoXP3QW9pauOy2+5j1eZGPnv6u/jah0/E62BAFhERkQkjrZHXY4E7gHxr7UxjzMHAF621X3G2jbun8Coy9h799zK++7+P0x+MrsBbMiWf+dPLmTe9jHnTy2NfZRRO4gWeMtlbnX6uWrWVlkCIi2vK+FT1VMdWTO4PBPnRPU9z7z9e5dB5M/jpxedRMXWKI3WLiIjIhJFWeH0FOJfoisOHxvYtt9Ye4GgTR0DhVWR8aOvsYeXmRtbVN7F+awvrtzazfmsL/v5Aosy04sJooK0uHwi1VWXk5WSNYcvFCV2hMN9bu43nWrs4pjiP7+9X6ejzb5/87zt8+67H8Hk8/OiLH+I9B813rG4REREZ99ILr9bao4wxbyaF17estQc73MjdUngVGb8ikQiN2ztYv7WFdVubWF8fDbUbGloSo7QAVaVFzJteFhutjX7NqSolJ8s3hq2XPWWt5cHGdm7e2Ey+28UNC6s4ujjPsfo3NbZy2a/uY219E1884zguPud43WctIiIyOaQVXh8AbgF+BRwNXAocYa29wMkWjoTCq8jEE45EqG/ZEQ219U1siI3UbmxsJRgKA2CMobqsOBpqk0ZqZ1eUkOXzjnEPZFfW9fTxrVUN1PYG+PSMqXx5VhlelzPTiP39AX7wp6d48MU3OHJhDTd/+VzKigocqVtERETGrbTCaynwc+CkWEXPAJemu9rwaCi8imSOUDjMlqa2RKiNTz/e3LSdUDj6IBeXMcyqKBl0P205NRUlWsxnHPGHI9y8oYmHtnVwYEE2Ny2qoirbuZH0R/+9jOvvfoLcbB8//tK5HLP/HMfqFhERkXEnrfD6LmvtS7vbty8ovIpkvkAoxOZt2xNhdl19M+u3NrOlqY1I7JrlcbuoqShNhNr4aO2M8mJNLR1DTzd3csO6bQB8e0EFJ5cVOlb3uvpmLrvtPjY1tnLx2cfzxTOPw+1yOVa/iIiIjBtphdc3rLWH7W7fvqDwKjJ59QeCbGxsHVggKhZq61vbiV/LfF4PsytLU0Zq508vp7qsCJeCzj5R7w9w1eoGlnf18eHKIq6YU06225nvfU9fP9+/+6889p+3OGb/Ofz4Sx+mpDDfkbpFRERk3Njz8GqMOQY4Fvg6cGvSoULgHC3YJCLjQW9/gI0NLTuN1DZu70iUyfZ5mVNZmnI/7bzqcqpKpmAcesyLDAhGLLfVtnB3fRvzcrO4aVEVc/OcWWXaWsuDL7zBjX96ksK8HH765XM5YmGNI3WLiIjIuDCq8Ppe4HjgS8DtSYe6gMettescbOCIKLyKyEh1+/sSi0NF76uNhtrm9q5EmdxsH3OrUheJmj+9nPLiAoVaB/ynrZtr1zTiD0f4xtxpnFPh3B8LVm/ZxmW/uo+65ja+du6JXHT6uzS6LiIikhnSmjY8y1q72fEmjYLCq4ikq6PHHwu00VAbn368vbMnUaYgN5t5VYOeUTu9jNIp+Qq1e6ilP8S1axpY2t7LKWUFXDu/ggKHFtvq9vfxnbse56lXlnPcwfO56Qsfoig/15G6RUREZMykFV7/DpxnrW2PbRcD91prT3W0iSOg8Coie0tbZ09KqI2P1Hb0+BNlivJzqakooby4gPKigthrIaVF+dHtogIKcrMVcAeJWMtddW38praFimwvP1xYxYGFOY7Uba3l3n+8yk3/9zdKCvP46VfO49D5Mx2pW0RERMZEWuH1TWvtobvbty8ovIrIvmStpbWjm3Vbm9mwtZn19S1sbtpOS0c3Le1ddPv7dzon2+elrKiAsqRAWxYLueXFBZRNyae8uIC87KxJF3Lf6vRz1aqttARCXFxTxqeqp+Jy6HuwYlMDl912H9vaOvif80/mwlOPmXTfXxERkQyRVnh9negCTVti27OAh7XasIhMdj19/bS0R4Ns844uWjpir+1dNMf2Nbd34e8P7HRuTpYvMXpbNiU/FnCTQm4sAOdlO7PQ0XjRFQrzvbXbeK61i2OK8/j+fpWU+DyO1N3Z4+faPzzKs6+v4oTDFnLj585mSp4zI7wiIiKyz6QVXk8Dfge8ENt1HPAFa+3TjjVvhBReRWQi6vH3R8Ns+0C4HRxwW9q76AsEdzo3LzsrMU05ZUS3uJCy+MhuUT45Wb4x6NnoWGt5sLGdmzc2k+92ccPCKo4uznOs7j8+819u/sszTCsu5JaLz+fAOdMdqVtERET2idGHVwBjTClwdKyil621rc61beQUXkUkU1lr6Y6H3CECbuJ9exeBYGin8wtysxNhNh5ooyO4hSkjvFk+7xj0bmjrevr41qoGansDfHrGVL48qwyvy5mpvm+tr+N/fn0/Le3dfOujp/Kxk5ZoGrGIiMjEMKpH5Sy01q42xgw5Pdha+4ZDjRsxhVcRmeystXT29qUE2sTrjq6UEd5QOLzT+YV5OYmAmzw9OWW68pR8fF5npvLujj8c4eYNTTy0rYMDC7K5aVEVVdnOjCK3d/dy9e8f5vllazn1yP25/rNnUpCb7UjdIiIisteMKrz+3lr7eWPMP4c4bK21JzjVupFSeBURGRlrLR09/sS05OhrJ63t3SkBt7Wji1A4stP5xQW5lE0ZCLgVUwv58HsPo6qkaK+09+nmTm5Ytw2Aby+o4OSyQkfqjUQi3PXUf/jZA88xvayIWy8+n0WzKh2pW0RERPaK9KYNjxcKryIizopEIrR3+5OmJ3fGRnO7U0ZzW9q7yMnyccUFJ3P+8UfslSm49f4AV61uYHlXHx+uLOKKOeVku12O1P362s1cftv9tPf4ufrj7+e84w/XNGIREZHxaVQjrx/aVY3W2ofSbNQeU3gVERkb9S07uO7OR3ll5SaOWjyb73/2LKrLih3/nGDEclttC3fXtzEvN4ubFlUxN8+ZFZfbOnv41m8f5KXlG/jAMQfy3U+fkXGrOYuIiGSAUYXXu2Jvy4FjgX/Ett8HPG+t3WW43RsUXkVExo61lvuff52f3PsMEWv5n/NO4qMnHonL5czoaLL/tHVz7ZpG/OEI35g7jXMqpjgyUhqJRPjd4//iVw//k5qKEm695HzmV09zoMUiIiLikLQelfME8HlrbWNsuxK4TeFVRGRyatjeznfufIyXlm/giP1m8f2LzmLWtBLHP6elP8S1axpY2t7LKWUFXDu/ggKP25G6X1m1iSt+8wA9/n6u+9QHOOc9hzpSr4iIiKQtrfC63Fp7QNK2C3g7ed++ovAqIjI+WGt56F9v8uN7niYYCvP1c0/k4ycfhdvhUdiItdxV18ZvaluoyPbyw4VVHFiY40jdLe1dfPP2B3ll1SbOfvchXPepD0yo5+WKiIhkqLTC66+A+cA9gAUuANZba7/qZAtHQuFVRGR8aWrr5Lv/+zgvvLWWQ+fN4IbPnc3sylLHP2dZRy9Xr26gJRDikpoyPlk9FZcD04jDkQi/fuR5bn/sReZNL+PWi89nTlWZAy0WERGRUUpvtWFjzDnAcbHNF621DzvUsD2i8CoiMv5Ya3n8P2/zgz8/RX8gyCUfeh+fPu1Yx0dhO4Nhrl+3jedauzi2OI/r96ukxOfM82hfemc93/ztg/QFQnzvM2fwwWMOcqReERER2WNph9dZwHxr7bPGmFzAba3tcrCBI6LwKiIyfrW0d/G9u5/gH2+s5sA507nxc2czb3q5o59hreWBxnZu3tBMgcfFDQurOLo4z5G6m9o6ufw39/PG2i2cd/zhXP3x95Pl8zpSt4iIiIxYWtOGPw98AZhqrZ1rjJkP3G6tPdHZNu6ewquIyPhmreXJ/y7nxj89SU9fPxeffTyfPf1deNzOLLQUt66nj2+taqC2N8BnZpTwpVmleF3pTyMOhcP84sF/cMdf/83CmRXcesn5e2UxKhERERlWWuF1GbAEeMVae2hs3zvW2gMdbeIIKLyKiEwMrR3d3PDHv/LMqyvZv6aKGz93NgtmOPtIGn84ws0bmnhoWwcHFmRz06IqqrKdWXDp+WVruPJ3DxMOR/jSWcexaFYlcyvLKC8ucOSRPSIiIjKstMLrK9bao4wxb1prDzXGeIA3rLWjviHIGPMT4AwgAGwAPmOtbd/deQqvIiITy9OvruD7d/+Vzt4+vnTmcXz+g+/B69DjbhKf0dzJDeu2AfDtBRWcXFboSL0N29v5xq8f4M31dYl9edlZzKksZU5VKbMrS5lTVcacylJmlE91vF8iIiKTVFrh9cdAO/Ap4KvAV4CV1tprRt0aY04B/mGtDRljfgRgrf3W7s5TeBURmXh2dPVw4x+f5MlXlrPfzApu/NzZLJ5V6ehn1PsDXLW6geVdfXy4sogr5pST7U5/wShrLa0d3WxoaGFjQwsbG1vZ2NDKpsZWmnZ0Jsp53C5mTitJBNs5lWWJgJuXnZV2O0RERCaRtMKrC7gIOCVW0dPAHXakqz3tvv5zgHOttR/fXVmFVxGRievZ11fxvbufoKO7l89/8D188czj8HmcWS0YIBix3Fbbwt31bczLzeKmRVXMzdt7wbHb35cIshsaWtjU2MrGxla2NLURjkQS5SqmFjKnsozZVaXMjY3Wzq4spXRKvqYgi4iI7Gx04dUY4wbuttZ+Ym+0KvYZjwN/sdb+aZjjXyC6YBQzZ848fPPmzXurKSIispe1d/dy05//xmP/eYv51eXc+LmzOWD2dEc/4z9t3Vy7phF/OMI35k7jnIop+zQkBkIh6pqyk9cmAAAgAElEQVR3JI3UDgTb3r5AolxhbvbA1OOk0drqsmLHHzMkIiIygaQ18vo0cIa1NrDbwqnnPQtUDHHoGmvto7Ey1wBHAB8ayUiuRl5FRDLD88vW8N27Hmd7Zw+fef+xXHz28Y4+lqalP8S1axpY2t7LKWUFXDu/goIxvifVWsu2ts7UkdqGFjY0trK9oztRzutxU1NRwuzKUuZWlSVGbWdXlJCT5cyCVCIiIuNYWuH1t8BhwGNAT3y/tfaWtFpkzIXAl4ATrbW9IzlH4VVEJHN09vj50T1P8/C/3mROVRk3XnQWB8+b4Vj9EWu5q66N39S2UJHt5YcLqziwMMex+p3U0eOPhdlWNjYO3F9b37yDSOzfamMMVSVTEqE2Pmo7t6qU4gJnnnUrIiIyDqQVXr8z1H5r7fdG3RpjTgNuAd5rrW0Z6XkKryIimedfb6/jO3c9RvOOLj516jFc+uETyHZwFHZZRy9Xr26gJRDikpoyPlk9FdcEude0PxBkS3MbGxoGph9vaGihdtt2+gLBRLmi/NzY1OOBe2rnVpVRVTIFl6Ygi4jIxDL68JoobEwhYK21XWm3xpj1QBawPbbrv9baL+3uPIVXEZHM1O3v4yf3PsP9z79OTUUJN1x0NoctmOlY/Z3BMNev28ZzrV0cW5zH9ftVUuJzbrGofS0SidC4vYMNDa1samyJjdhGR213dA1MZsryeqipjC4UNTBSW8asaVMdnaYtIiLioLRGXo8A7gIKYrs6gM9aa193rHkjpPAqIpLZXl6xkevufJTG7R184uSj+Nq5J5Lr0H2e1loeaGzn5g3NFHhc3LCwiqOLM2+67Y6unsRCUcmP9tna2k78332XMUwvKx54tE/sebVzqsqYkjc+p1aLiMikkVZ4fRu42Fr7r9j2u4FfW2sPcrSJI6DwKiKS+Xr8/dxy/9+557lXmVFWzA2fO5sjF9Y4Vv+6nj6+taqB2t4An5lRwpdmleJ1TYxpxOnw9weo3bZ90IJRrdQ2bScQDCXKlRTmMaeqjHnTyzhs/iyWLKqhrKhgFzWLiIg4Kq3w+pK19l2727cvKLyKiEweS1dt4ro/PEpdyw4+duISLjv/JPKynXluqz8c4Scbmnh4WwcHFebww4WVVGVPzpV8w5EIW1vaYwtFRaceb2poZd3WZrr9/QDMqSxlyaLZHLV4NksW1miBKBER2ZvSCq+3ArnAPYAFPgLsAB4EsNa+4Vgzd0PhVURkcuntD/DzB57jT39/haqSKVz/2bM4Zv85jtX/t+ZObli3DQN8Z0EFJ5UVOlb3RBeORFi1uZFXVm1i6apaXl+7OfGc2gXV01iyqIYli2Zz5MIaTTUWEREnpRVe/7mLw9Zae8JoW7WnFF5FRCan19du5to7HmVz03bOO/5wvnHBKeTnZDtSd70/wJWrG1jR1ce5lUVcPqecbLdW6B0sGAqzsraB/67axNJVm3hzXR19gSDGGBbOrOCoRbM5atFsDt9vpmM/GxERmZTSX214PFB4FRGZvPoCQX750D+4+28vU15cyPWfPZN3HzjPkbqDEctttS3cXd/GvNwsblpUxdw8Z6YoZ6pAMMTbG7eyNBZml22oJxAM4Xa5WFxTyVGLZrNk0WwOWzDTsUW3RERkUlB4FRGRzPDW+jquueMRNja2cs57DuVbHz2VQoemrb7U1s11axrxhyN8Y+40zqmYgpkgz4Qda32BIMvW18XCbC1vb6wnFI7gcbs4aE51YprxIfNmOPocXxERyTgKryIikjn6A0Fue+R57nzyJUqn5PPdz5zB8Yfs50jdLf0hrl3TwNL2Xk4pK+Da+RUUeNyO1D2Z9PYHeHPtlug9s6trWbGpgXAkgs/r4eC51SxZWMNRi2Zz0NxqfN6J+8xdERFxnMKriIhknuWbtnLNHY+wrr6ZM489mCs/fhpF+blp1xuxlrvq2vhNbQsRoDLLS02uj1k5vpTXcp9HI7Mj1O3v4/U1sTC7ahOrtmzDWku2z8uh82dEVzNeNJv9a6rw6o8FIiKTWXrh1RhzLFADJP40aq39f060bE8ovIqIyGCBYIjbH3uB3z/xb4oLcvn2hR/kpMMXOVL3yq4+XtzeRa0/wGZ/gM29AfyRgX87c1yGWfEwm+NjVm5W7NVHrhZ92qWOHj+vrdnM0lWbeGXlJtbWNwGQm+3jsPkzE/fMLq6pxO3S91JEZBJJa7XhPwJzgWVAOLbbWmsvdax5I6TwKiIiw1m5uZFr7niENVu2cfpRB3DNJ093/Hmk1lqaAyFqe6NhNvm1sT9I8r+qZT5PIsgmv1Zme3FrtHYnbZ09vLqmNhpmV9WysaEFgILcbI5YMCtxz+x+M6bhUpgVEclkaYXXVcBiOw7mGCu8iojIrgRCIe544t/c/tiLFOZmc92FH+DUI/ffJ5/dF45Q1xcdnU0Jtv4AXaFIopzPGGbkeGNhNisxBbkmx0ehV9Nl41rau3h1dS2vrNzEK6s3saWpDYApeTkcubCGJYtqOGrRHOZNL9PUbRGRzJJWeL0fuNRa2+h0q/aUwquIiIzE2romrv79w6zc3MgpRy7muk99gJLC/DFpi7WWHcEwtYNGajf7A2ztCxBK+qe42OtmVs7O99ZWZ/vwuiZ3QNvW1sHSVbWJe2a3trYDUFKYFwuz0XtmaypKFGZFRCa2tMLrP4FDgKVAf3y/tfZMp1o3UgqvIiIyUsFQmDufeolfP/I8edlZXPOJ0zn96APGVbAJRiwNfUFq/f1s7g2kBNy2YDhRzg1Mz/Gm3lcbC7ZTve5x1ad9pb5lRyLILl1VS9OOTgDKiwo4clENRy2M3jM7o7x4Un5/REQmsLTC63uH2m+tfSHNRu0xhVcREdlT6+qbufYPj/DOxq2ccNhCvnPhBykrKhjrZu1WVyhMbSzQxqcib/YH2OIP0J+0aFS+27XTSsizcnzMzPGRPUkWjbLWsrmpLRZkN/HK6lq2d3QDUFkyJbH405JFNVSVFI1xa0VEZDf0qBwREZm8QuEwdz/9Mr986J9k+7xc/fH3c8axB03IEbmItWzrD6YE2/hrUyCUKGeAiiwPNblZqdOQc3yUZ3lwTcC+j5S1lg0NLYlR2aWra2nv7gVgRllxLMjO5qhFNZQXF45xa0VEZJC0Rl6PBn4JLAJ8RGcv9Vhr9/nVXuFVRETSsamxlWvveIQ319fx3oMX8N1Pn8G0qZkTXvzhSMo9tYlg6w/QGx5YNCrbZaIjtLGFompyoyO1NTk+8jLwGauRSIR19c0sXb2J/67cxGtrNtPV2wfA7MpSlsTumV2yqGbM7o0WEZGEtMLra8AFwP3AEcCngPnW2qudbOFIKLyKiEi6wpEIf/77K/zsgefwetx886On8qH3HDohR2FHylpLSyC00+N9NvsDNPQFiSSVLY094qcm18fC/GwW52czLy8roxaMCkcirN68LXrP7OpNvL5mCz190WU95k0vZ05VKQU52eTnZJGXk0V+ThYFOVnkxfYVJO3Pz8kiN8unx/eIiDgnvfBqrT3CGPO2tfag2L7/WGuPdbiRu6XwKiIiTtnctJ1r73iU19du5t0HzuO7nzljUt4PGYhEqPMHd3q8z6be/sQjfrzGMC8vi8UF0TC7KMMCbSgcZkVtI0tXbeLV1bU0bO+gx99Pt78/EWp3xRhDXrYvFmazE6E2LzuLgtxY0M3OoiA3OykMD7zPz84iPzcagjP5jygiIiOUVnh9ETgJuAPYBjQCn7bWHuxkC0dC4VVERJwUiUS457lXueX+Z3EZwxUXnMz5xx+hAEF0tHZrX5CV3X2s6uqLvnb3pQTa+XlZLMrQQBsXjkTo7QvQ7e+n298Xe+0fZrufHn8/XbH98QDc5e/H3x/Y7We5jEkZ0c3PjgbfgtzspPfxYBwLybmx8JszEI5zfF79NywiE1la4XUW0ET0ftfLgCnAr621651s4UgovIqIyN5Q37KD6/7wKK+s2sTRi+fw/c+eyfSy4rFu1rhjraW+L8iqpEC7squP7vDQgXZxQTZzczMv0I5GKBymty9AV0qo7Uu8H2kY9geCu/0slzGxYJudCLbxkDs4DCePAudm+/C6XXjcbjxuF+7Ye2/Se4/LhcftwuNx4zJGIVlE9ob0Vhs2xuQAM621a5xs1Z5SeBURkb0lEolw3/Ovc/NfnsFauPz8k7jghCN1L+NuxAPtyq7oyOyqIQLtgvwsFsVGZxVo0xMKh3ca1R0yDPf1093bl/Q+dX9/MLT7DxuBncKtOxZu3W7cSUE3EXqTyqSc44q997hwu1x43e7Y8aHr9cbKRY8NOh57n1KHa9eh3Odx4/N68Hnc+n9eZOylNfJ6BnAz4LPWzjbGHAJcb60909k27p7Cq4iI7G1bW9v5zp2P8Z8VGzhyYQ1XfOQU9psxDZ/XM9ZNmzCstdT1BVnVNRBmV3UPBFqfMcyPBdr4CO0cBdp9KhAKJaZDd/VGQ29PX4BQJEIoHCYUihCORAiGw4TDsX3hSOwr+j4ciRAMhQlHUvfH34dj74PhWJmkOkPhSKLeYNL76PEIoSHq3Vc8bjdZXg8+b/TV6/GQ5Y1++TxufD4PPk/StteDz5u6nbXTPm+iPp/HkwjKWV4PWb6Bz4jv8ypEy+SWVnh9HTgBeN5ae2hsX2Lxpn1J4VVERPYFay0PvfgGP7rnabr9/XjcLmoqSllQXc78GdNYUD2NBdXlVJUWadrkCEUGj9AOE2gXJ43QKtBKnLWWcCQyZCAOhcOx0D10IE4J1LFyA6E7nNjuD4YIBEOJ10B8Xyi2Hdz1dn/snIBDo9pej3sgJHuTQnFsnzcpDMcDb3Jojm/H9/mSysbr87rd0ZRgDMaAIfZqzMB+Ytux/xXjZVKOpZRJrSN+jUw5NtTnJO8n6fMS5+98LkN8viHR0NRj8bqGq5+dP0/GTFrh9RVr7VHGmDcVXkVEZDJp7ehm6apNrK1vYl1dM2vrm9ja2p44npedlRRoy1lQPY35M6YxJS9nDFs9cUSGGKFdPSjQxqccLy6IhloFWhnvrLUDYTgUD8PhWCCObvcHQwSDqWWCSQE4EaAHheLh6ksE6eT6QuGx/lZklOFDbqJEyvaw5QcqTC2/m/PZxecPPnfYssDsqlLu+tand9/hsZVWeP0D8BxwJfBh4FLAa639kpMtHAmFVxERGWvd/j7Wb21hTd22RKBdW99MZ48/UWZacSELYoF2fvU0FsyYxpzKUk09HoF4oB08QtszKNAuzs9mkQKtyLAisWnduxpBDobCWAsWCzYavC2x1+T9RDODHVQmfswmv9p42eg2DHNsp89JrSf5PIYoHy1jd25TvJ0Mat+gdsfrj5cn+XxStxm0bXdz/k7ld3M+u/n8ndoz+PszwrIAZUUFfPVDJzDOpRVec4FrgFNiFT0NfN9a2+dkC0dC4VVERMYjay3NO7pYU9fEuvqmRKDd2NCSGP3Q1OPRi1hLnT+YeFzPyi4/q7v7E4E2y2VYkDdohDYvC4++ryIiE1F6qw3vLcaYK4CfAGXW2tbdlVd4FRGRiSQYCrO5aTtr65o09dhhA4HWnxilHSrQxsOsAq2IyISx5+HVGPPYrmpMd7VhY8wM4A5gIXC4wquIiEwWI5l6XDG1MDrlWFOPRyxiLVv8gcT9sytjgbY3FmizXdHn0MYD7eKCbGbnKtCKiIwzowqvLUAdcA/wyuBKrLUvpNUiYx4Avg88Chyh8CoiIpNZfOrx2vqmxEitph6nLx5o42F21S4Cbfw+2upsH9kuo++piMjYGFV4dQMnAx8FDgL+CtxjrV2RdmuMORM40Vr7NWNMLbsIr8aYLwBfAJg5c+bhmzdvTvfjRUREJgxNPXZexFo2+wOsigXalV19rOkZCLQQXRiq0OtmisdFoccde++m0ONiitcd3eeJ7fO6Ysfc5HtcuBR6RUTSkd49r8aYLKIh9ifA9dbaX47gnGeBiiEOXQNcDZxire3YXXhNppFXERGRKE09dlY4PuW4q4+mQIjOYJiOUJjOUCTpfZiOYBh/ZBd//AcKY4E3JeR6XYmwWxDbnpISit1aMVlEJGp04TUWWj9ANLjWAI8Bd1prt466JcYcSPTRO72xXdVAA7DEWrttV+cqvIqIiAxPU4/3jWDERoNsKLyLkBuhMynwdobCdIUiRHZRb47LJALvFI+bgljATQ65BZ7Yvng5r5scTXEWkcwyqmnDdwMHAE8B91prl++VlmnkVUREZK+KTz1eV9+cMlKbPPU4PyeL+dOTph7PqGDhzGnk52SPYcszS8RaesIROuIhNxZwO1JCbiQl8HbEQnFgF7+zeQxJU5ijU50LkgNubKS3YIgg7FboFZHxZ1ThNQL0xDaTCxrAWmsLHWmZwquIiMiY2N3UY2MMs6ZNZf+aKhbXVLJ/TRWLZlVSkKtAu6/1hQeCbkcwQlfKyG+EjlA4ui+YOvLbHd7VWC/kuwfu4S3wuPAag9dl8LkMXmPwxLa9u30Fryu1vC/peEo9SZ8R3+8GjR6LSNz4fM7rnlJ4FRER2bviU49X121jVW0jK2obWFHbyLa2jkSZmUmBdvGs6KsWhxqfQtbSFRvl7YgF3q6kqc7xsBuf1hy0lmDEErSWUOw1EHsNRiwhawnthV8fDaQEYo/L4EsJyOxBkE6qY9B+z6Cw7TOulLpTXlPOGwjnWpBLZK9TeBUREZHRa+vsYeXmaJhdGQu0DUnTjmeUFbO4por9Zw8E2qL83DFssewtERsNsdGQC4FIJLZNSvjd3WsoHozj+5MCcjCSFJoTQZoR1R2vd9djzqPnMdGwO2zQdZESlAePOsePJ5/rGWak22NSy3oGhfN4sB/63PiXRrVlwlF4FREREWft6Oph1eZtsdHZBlbWNlLfsiNxfHppUXSqcWzK8f41lRQX5I1hi2UyCQ8RaoNDjCZHwzGJQL3TOUnhOTQofO+y7DChPBgbvQ4NasPe/K08efQ4Ody6jcEQSwqGxHsTyw7xzJvYb5JThUnZl5w2TFK9JrEv6X3SuexUziSVG6p+k7Iv3vaUegfVPfgznYjy6daR7t8TzChbUJ7l4eKasvQ+fO8bsnNaJ19ERERGrbggj2MPmMuxB8xN7Gvv7mXV5m2x0dnoCO0zr61MHK8smRKdcjyrMjFSW1KYPxbNlwznNga32zBR7tAODxGM4yPaoWFC8OBR6ZAdHJIHB2xSpoSHYgNZ1kYXuIl+xWJ0yr5omfgyOMn74qE78RoL4gPbqfVaoqP3gz83fu7Q9Sft3+mc+Ocnfe7gMtikcqmL+YxGuuN/6f6pIp2za3J8aX32WNLIq4iIiOx1nT1+Vm3ZxopNA1OONzdtTxyvmFrIolnx0dnolOOyooIxbLGIiIwhTRsWERGR8aOrt4/VW1KnHNdu254YeSkvKoguCBULtPvXVFJe7MiDDkREZHxTeBUREZHxrcffz6otqVOONzW2JgJt6ZT8xCN7FscC7bTiQi1GIyKSWRReRUREZOLp6etnzZamlFWONza0JO6ZKynMS51yPLuSyqlTFGhFRCYuhVcRERHJDP7+AGvqmlixaWDK8YaGFsKR6MNRigtyBxaEit1DO720SIFWRGRiUHgVERGRzNUXCLKmrillyvGGrc2EwtFAOyUvJ2XK8eJZlcwoL1agFREZfxReRUREZHLpDwRZW9+cMuV4XX0zoXAYgMLc7MQzaOMjtTPLi3G5XGPcchGRSU3hVURERCQQDLEuFmjjU47X1jcRDEUDbX5OFguqp1FTWcLsylJmV5Qyp6qU6aXFeD3uMW69iMikoPAqIiIiMpRAKMT6rS2sjN1Du6GhhU2NrWzv7EmU8bhdzCyfSk1lKXMqS6PBtrKUmooSivJzx7D1IiIZR+FVREREZE909PipbWxl07btbIwF2k3btrOlqS0x9RhgakFeLMyWJELt7MpSppcW4XFrtFZEZA8pvIqIiIg4IRQOU9/SHg2z8a9t0dcdXb2Jch63m1nTpqYE2uhU5BIK83LGsAciIuOawquIiIjI3tbe3RsLtNvZ1NjCpm3b2dTYSl1zW2LlY4CSKfnMiU07nlNZmpiOXFVahFsLRonI5KbwKiIiIjJWgqEw9S07UkdqG1rZ2NhKR48/Uc7n9URHaysGjdZWlpCfkz2GPRAR2WeGDK+efd0KERERkcnI63EnguhgO7p6EiO1GxtbqW3czpq6Jp57YzXhyMBobVlRwcBobVUpNRXR0drKkil6vI+IZDyFVxEREZExVlyQR3FBHoctmJmyPxAKUde8I/Xe2sZWnnplOZ29fYlyWV4PNRUl0TCbFGprKkrIy8na190REdkrFF5FREREximfx8PcqjLmVpWl7LfW0pY0Wht9bWXVlkb+/tpKIkm3hU0rLqSmsmTg8T4VpcyuKqWiuFCjtSIyoSi8ioiIiEwwxhhKCvMpKczniP1mpRwLBENsaW4btBLydp54+R26kkZrs31eaiqSHu1TUcqM8mLycrLIzfKRk+UlN8uH1+PGmCFvPxMR2ae0YJOIiIjIJGCtpbWjm9pt29nY2EJt4/bY/bWt1Le2M9zvhG6Xi9xsHzk+LzlJoTY3O/o+xxfbl+1LPZ41sJ0TK5+bVD4nFoxFRIagBZtEREREJitjDGVFBZQVFXDkwpqUY/2BIFua29ja2k5vX4DevgD+QIDe/iD+/gD+/mB0X/x9IEBHj59tbZ0D+/oD9AWCe9Qmr8cdDbbxgJsUdlND8EAAjgfmlAA9qHx2llePGxLJQAqvIiIiIpNcls/L/OppzK+ellY9kUgEfyCYGnYD0WAb3Y6H4QC9SaE3UT4Qfb+jq4etLUnhORAkEAztWZ+8noHA6/MOTIXOHjQiHHvvcbswGDDgMgZjDIZo6I9+gSH66jIGhtuXtB2fbm2MiW2T2OdyDZTd6XMT9Q6cYwCTfE68zugHJM6J1hvbN+hzSDonXjfxYyOwJ9PHR1pypHXu2cz1vVFn5vB63FSVFI11M0ZF4VVEREREHOFyucjLziIvOwumOFt3KBxOhN/exGtyIA7S29efEnhTRotj5Zt2dKXs8/cHCIUju2+ASIaYX13OozdePNbNGBWFVxEREREZ9zxuNwW5bgpysx2vOxAKEQ5HsETvDY5+xd4P3kfSsaR9kdh7ks5J7IudE0k6ByyRSFL9RM+N7O6zB50TrcOCHWbfoM8h3o6kfjhtpHWO9KNj3x1n65xg6/44qTDP+f+H9hWFVxERERGZ1Hwej34rFpkAxvROdmPMV40xa4wxK4wxPx7LtoiIiIiIiMj4NWZ/YzLGvA84CzjIWttvjCkfq7aIiIiIiIjI+DaWI69fBm6y1vYDWGubx7AtIiIiIiIiMo6NZXhdALzHGPOKMeYFY8yRwxU0xnzBGPOaMea1lpaWfdhEERERERERGQ/26rRhY8yzQMUQh66JfXYxcDRwJHCfMWaOHWLpL2vt74DfARxxxBGTd2kwERERERGRSWqvhldr7UnDHTPGfBl4KBZWlxpjIkApoKFVERERERERSTGW04YfAU4AMMYsAHxA6xi2R0RERERERMapsXyi1Z3AncaY5UAAuHCoKcMiIiIiIiIiYxZerbUB4BNj9fkiIiIiIiIycYzltGERERERERGREVF4FRERERERkXFP4VVERERERETGPTPR1kgyxrQAm8e6HbtQyuRdNXmy9n2y9hsmb98na79h8vZd/Z58JmvfJ2u/YfL2fbL2GyZv3ydCv1uttacN3jnhwut4Z4x5zVp7xFi3YyxM1r5P1n7D5O37ZO03TN6+q9+Tz2Tt+2TtN0zevk/WfsPk7ftE7remDYuIiIiIiMi4p/AqIiIiIiIi457Cq/N+N9YNGEOTte+Ttd8wefs+WfsNk7fv6vfkM1n7Pln7DZO375O13zB5+z5h+617XkVERERERGTc08iriIiIiIiIjHsKr2kwxriNMW8aY54Y4pgxxvzCGLPeGPO2MeawsWjj3mCMKTLGPGCMWW2MWWWMOWbQ8YzsuzHmMmPMCmPMcmPMPcaY7EHHM6bfxpg7jTHNxpjlSfumGmP+boxZF3stHubc04wxa2Lfhyv3XavTN0y/fxL7b/1tY8zDxpiiYc6dsP2GofuedOwKY4w1xpQOc+6E7ftw/TbGfDXWpxXGmB8Pc25G9dsYc4gx5r/GmGXGmNeMMUuGOXci93uGMeafsX+7VhhjvhbbPxmub8P1PaOvccP1O+l4Jl/fhu17Jl/jdvHf+mS4xmUbY5YaY96K9f17sf2Zc42z1uprlF/A/wD/BzwxxLHTgacAAxwNvDLW7XWw33cDn4u99wFFmd53YDqwCciJbd8HfDpT+w0cBxwGLE/a92Pgytj7K4EfDXGeG9gAzIn9t/EWsHis+5Nmv08BPLH3P8rEfg/X99j+GcDTRJ+vXZppfR/mZ/4+4FkgK7ZdPkn6/Qzw/tj704HnM7DflcBhsfcFwFpg8SS5vg3X94y+xg3X79h2pl/fhvuZZ/Q1bhf9ngzXOAPkx957gVeI/k6aMdc4jbyOkjGmGvgAcMcwRc4C/p+N+i9QZIyp3GcN3EuMMYVEf+n5A4C1NmCtbR9ULCP7DniAHGOMB8gFGgYdz5h+W2tfBNoG7T6L6B8uiL2ePcSpS4D11tqN1toAcG/svAlhqH5ba5+x1oZim/8Fqoc4dUL3G4b9mQPcCnwTGG6BhAnd92H6/WXgJmttf6xM8xCnZmK/LVAYez+Fna9xMPH73WitfSP2vgtYRfSPk5Ph+jZk3zP9GreLnzlk/vVtuL5n9DVuF/2eDNc4a63tjm16Y1+WDLrGKbyO3s+IXvAiwxyfDtQlbdczcLGcyOYALcBdJjpl+g5jTN6gMhnXd2vtVuBmYAvQCHRYa58ZVCzj+j3INGttI0T/YQDKhyiT6d+DzxIdXR8sI/ttjDkT2GqtfWsXxTKx7wuA9xhjXjHGvGCMOXKIMrQt3l8AABN4SURBVJnY768DPzHG1BG93l01RJmM6bcxpgY4lOjIxKS6vg3qe7KMvsYl93uyXd8G/cwnzTVuUL8nxTXORG9rXAY0A3+31mbUNU7hdRSMMR8Emq21r++q2BD7MmFpZw/RqWa/sdYeCvQQnX6QLOP6Hrs34CxgNlAF5BljPjG42BCnTuh+j0LGfg+MMdcAIeDPQx0eYt+E7rcxJhe4Bvj27ooOsW9C953oda6Y6FSrbwD3GWMG9zMT+/1l4DJr7QzgMmIzbAbJiH4bY/KBB4GvW2s7R3raEPsypu+Zfo1L7jfRfk6a69sQP/NJcY0bot+T4hpnrQ1baw8hOotiiTHmgBGeOiH6rvA6Ou8CzjTG1BIdUj/BGPOnQWXqid5LEVfN0NMTJpp6oD72VxyAB4iG2cFlMq3vJwGbrLUt1tog8BBw7KAymdjvZE3xadCx16GmGWXk98AYcyHwQeDj1tqhLuSZ2O+5RP9Y81bsWlcNvGGMqRhULhP7Xg88FJt+tZToDJvBi7lkYr8vJHptA7if6BSywSZ8v40xXqK/0P7ZWhvv76S4vg3T94y/xg3R70lzfRvmZ57x17hh+j0prnFxsdv6ngdOI4OucQqvo2CtvcpaW22trQEuAP5hrR08CvfY/2/v/mOiOvc8jn8O0pkstda6SnvtmLhtFShTHGMDNNsKsTtE75oNWIJRa1UgWZu4sUmVkppuaxtDbZNG6zaadmslF6NtrF0oNaRRMBAjVygql9qVusRt2f6gGAjGXyP27B9DvWjBKzjwHOa8Xwlx5swhfp4c58Evz3O+I+k5Kyxd4W2mP4521kizbfsnSd9blpXQd+hpSaduOi0ax/6dpHTLsuL6fjv5tML3UPQXjePur0LhiV99f5YPcE6DpBmWZf2DZVkehd8fFaOUb0RYljVf0kuS/sW27YuDnBZ147Zt+y+2bcfbtj29b65rV7gBxk83nRp1Y5f0X5LmSZJlWTMVblzRedM50TjuHyRl9D2eJ+nbAc4Z0+Pum78/lPSNbdvv9Hsp6ue3wcYe7XPcQON2y/x2i3/vUT3H3WLcbpjjplh9HcMty/o7hRdf/lvRNMfZDugaNZa/JGWqr9uwpNWSVtt/7fb1nsJdu/4i6XHTWSM45oCkRknNCk+A97lh7JI2KjwBtEj6kyRvtI5b0h6F7+29qvAP9QJJfy/pkMKT/SFJk/rOnSrpQL/v/aPCnf3+R9IG02OJwLjPKHwPyIm+rx3RNu7Bxn7T62fV140zmsY+yDX3SCrre683SZrnknE/KekrhTtM/lnSnCgc95MKb4Nr7vee/qNL5rfBxh7Vc9xg477pnGid3wa75lE9x91i3G6Y41IkHe8be4ukf+87HjVznNUXFAAAAAAAx2LbMAAAAADA8SheAQAAAACOR/EKAAAAAHA8ilcAAAAAgOPFmg4wDHfcYeqffv1TJHIYdzBm+ZC/JxrGzrhvXzSMWxr62Bn32Ma4b49bxy1Fx9gZ9+2LhnFLvMdvF+Me24bzHh+ENdBBVl4BAAAAAI5H8QoAAAAAcDyKVwAAAACA41G8AgAAAAAcj+IVAAAAAOB4FK8AAAAAAMejeAUAAAAAOB7FKwAAAADA8WJNBwAAAAAASToYs9x0BDgYK68AAAAAAMejeAUAAAAAOB7FKwAAAABX6O7uVm5urhITE5WUlKSjR4+ajoQh4J5XAAAAAK6wdu1azZ8/X/v27VMoFNLFixdNR8IQULwCAAAADkPjosjr6elRbW2tdu3aJUnyeDzyeDxmQ2FI2DYMAAAAIOq1tbVpypQpWrVqlWbPnq3CwkJduHDBdCwMAcUrAAAA4CJbt26V3+9XcnKytmzZYjrOqOnt7VVTU5Oef/55HT9+XHfffbfefPNN07EwBBSvAAAAgEu0tLTogw8+0LFjx3Ty5ElVVlbq22+/NR1rVPh8Pvl8PqWlpUmScnNz1dTUZDgVhoJ7XgEAAACX+Oabb5Senq64uDhJUkZGhj777DMVFRUZTjbyHnjgAU2bNk2nT59WQkKCDh06pEcffdR0LEnc43y7WHkFAAAAXMLv96u2tlbnzp3TxYsXdeDAAX3//femY42abdu2admyZUpJSdGJEyf08ssvm46EIWDlFQAAAHCJpKQkvfTSSwoGgxo/frxmzZql2Fj3lASBQECNjY2mY2CYWHkFAAAAXKSgoEBNTU2qra3VpEmTNGPGDNOREGH5+fmKj4+X3++/fmz9+vVKTExUSkqKcnJy1N3dbTDh8FC8AgAAAC7S0dEhSfruu++0f/9+LVmyxHAiRNrKlStVVVV1w7FgMKiWlhY1Nzdr5syZKikpMZRu+NyzRwAAAACAnnnmGZ07d0533XWX3nvvPd13332mIyHC5s6dq7Nnz95wLCsr6/rj9PR07du3b5RT3TmKVwAAgDGAbqSIlLq6OtMRYNjOnTu1ePFi0zGGjG3DAAAAAOASmzZtUmxsrJYtW2Y6ypCx8goAAMYUViDdhesNRE5paakqKyt16NAhWZZlOs6QsfIKAADgMgN1IpXCn4GZkJCg5ORkFRUVGUoHYCRUVVVp8+bNqqioUFxcnOk4w0LxCgAAXGugIm7x4sUKBAIKBAKaPn26AoGAwYQjY6BOpDU1NSovL1dzc7O+/vprrVu3zlC6keXWaw53WbJkiZ544gmdPn1aPp9PH374odasWaPz588rGAwqEAho9erVpmMOGduGAQCAa61cuVJr1qzRc889d/3Yxx9/fP3xiy++qHvvvddEtBE1UCfS7du3q7i4WF6vV5IUHx9vINnIc+s1h7vs2bPnd8cKCgoMJIksVl4BAIBrzZ07V5MmTRrwNdu29cknn7jmMzBbW1tVV1entLQ0ZWRkqKGhwXSkEcE1B8YuVl4BAAAGUFdXp/vvv18zZswwHWVU9Pb2qqurS/X19WpoaFBeXp7a2trGZFOX4XLbNQfGGlZeAQAABrBnzx5XrcD5fD4tWrRIlmUpNTVVMTEx6uzsNB1rVLntmgNjDSuvAAAAN+nt7dX+/fv11VdfmY4yarKzs1VdXa3MzEy1trYqFApp8uTJpmONGjdec2CsoXgFAAC4ycGDB5WYmCifz2c6yohYsmSJDh8+rM7OTvl8Pm3cuFH5+fnKz8+X3++Xx+NRaWmpq7YMR/s1B6IBxSsAAHCtgYq4goIC7d27N6q3jw7UiVSSysrKRjnJ6HPrNQeiAcUrAABwrcGKuF27do1uEIwarjkwdtGwCQAAAADgeBSvAAAAAADHo3gFAAAAADgexSsAAAAAwPEoXgEAAAAAjkfxCgAAAABwPIpXAAAAAIDjUbwCAAAAAByP4hUAAAAA4HgUrwAAAAAAx6N4BQAAAAA4HsUrAAAAAMDxKF4BAAAAAI5H8QoAAAAAcDyKVwAAAACA41G8AgAAAAAcj+IVAAAAAOB4FK8AAAAAAMeLNR0AAIA7cTBmuekIAABgFLDyCgAAAABwPIpXAAD6uXz5slJTUzVr1iwlJyfr1Vdfvf7atm3blJCQoOTkZBUVFRlMCQCA+7BtGACAfrxer6qrqzV+/HhdvXpVTz75pBYsWKBLly6pvLxczc3N8nq96ujoMB0VAABXYeUVAIB+LMvS+PHjJUlXr17V1atXZVmWtm/fruLiYnm9XklSfHy8yZgAALgOxSsAADe5du2aAoGA4uPjFQwGlZaWptbWVtXV1SktLU0ZGRlqaGgwHRMAAFdh2zAAADcZN26cTpw4oe7ubuXk5KilpUW9vb3q6upSfX29GhoalJeXp7a2NlmWZTouAACuwMorAACDmDhxojIzM1VVVSWfz6dFixbJsiylpqYqJiZGnZ2dpiMCAOAaFK8AAPTzyy+/qLu7W5J06dIlHTx4UImJicrOzlZ1dbUkqbW1VaFQSJMnTzYZFQAAV2HbMAAA/fz4449asWKFrl27pl9//VV5eXlauHChQqGQ8vPz5ff75fF4VFpaanTL8MGY5cb+bgAATKB4BQCgn5SUFB0/fvx3xz0ej8rKygwkAgAAEtuGAQBAn2vXrmn27NlauHChJGn9+vVKTExUSkqKcnJyrm+nBgDABIpXAAAgSdq6dauSkpKuPw8Gg2ppaVFzc7NmzpypkpISg+kAAG5H8QoAANTe3q4vvvhChYWF149lZWUpNjZ8h1F6erra29tNxQMAgOIVAABIL7zwgt566y3FxAz8X4OdO3dqwYIFo5wKAIC/omETgKhDF1ZgaCorKxUfH685c+bo8OHDv3t906ZNio2N1bJly0Y/HAAAfSheAQBwuSNHjqiiokIHDhzQ5cuX1dPTo2effVZlZWUqLS1VZWWlDh06ZPSjgQAAYNswANyGm7uwStK2bduUkJCg5ORkFRUVGUwH3JmSkhK1t7fr7Nmz2rt3r+bNm6eysjJVVVVp8+bNqqioUFxcnOmYAACXY+UVAG7Db11Ye3p6JEk1NTUqLy9Xc3OzvF6vOjo6DCcEIm/NmjW6cuWKgsGgpHDTph07dhhOBQBwK4pXAPgbfuvCumHDBr3zzjuSpO3bt6u4uFher1eSFB8fbzIiEDGZmZnKzMyUJJ05c8ZsGAAA+mHbMAD8DQN1YW1tbVVdXZ3S0tKUkZGhhoYGgwkBAACiH8UrANxC/y6s/fX29qqrq0v19fV6++23lZeXJ9u2DaUEAACIfmwbBoBbGKwLq8/n06JFi2RZllJTUxUTE6POzk5NmTLFdGQAAICoxMorANzCYF1Ys7OzVV1dLSm8hTgUCmny5MmG0wIAAEQvV668HoxZbjoCgDEuPz9f+fn58vv98ng8Ki0tNf4ZmMxtAAAgmrmyeAWA4ejfhdXj8aisrMxsIAAAABeheI2Q6dOn65577tG4ceMUGxurxsZGrV+/Xp9//rk8Ho8efvhhffTRR5o4caLpqABwW5jXAACAk3DPawTV1NToxIkTamxslCQFg0G1tLSoublZM2fOVElJieGEADA0zGsAAMApKF5HUFZWlmJjw4vb6enpam9vN5wIAO4M8xoAADCF4jVCLMtSVlaW5syZo/fff/93r+/cuVMLFiwwkAwAhod5DQAAOAn3vEbIkSNHNHXqVHV0dCgYDCoxMVFz586VJG3atEmxsbFatmyZ4ZTuRRdWYOiY1wAAgJOw8hohU6dOlSTFx8crJydHx44dkySVlpaqsrJSu3fvNv4xGgAwFMxrAADASSheI+DChQs6f/789cdffvml/H6/qqqqtHnzZlVUVCguLs5wSkTS9OnT9dhjjykQCOjxxx+/fnzbtm1KSEhQcnKyioqKDCYE7gzzGgAAcBq2DUfAzz//rJycHElSb2+vli5dqvnz5+uRRx7RlStXFAwGJYWbm+zYscNkVERQTU2NJk+efMPz8vJyNTc3y+v1qqOjw2A64M4wrwEAAKeheI2Ahx56SCdPnvzd8TNnzhhIA1O2b9+u4uJieb1eSeGtlsBYxbwGAACchm3DwDAM1IW1tbVVdXV1SktLU0ZGhhoaGgynBAAAAKIHK6/AMAzUhbW3t1ddXV2qr69XQ0OD8vLy1NbWRkMbAAAAIAJYeQWGYaAurD6fT4sWLZJlWUpNTVVMTIw6OzsNJwUAAACiA8UrMESDdWHNzs5WdXW1pPAW4lAodENDJwAAAADDx7ZhYIgG68IaCoWUn58vv98vj8ej0tJStgwDAAAAEULxCgzRYF1YPR6PysrKDCQCAAAAoh/FKxDFDsYsNx0BAAAAiAjueQUAAAAAOB7FK4Db1t3drdzcXCUmJiopKUlHjx7VK6+8opSUFAUCAWVlZemHH34wHRMAAABRyLJt23SGoRpzgYFosWLFCj311FMqLCxUKBTSxYsXFRMTowkTJkiS3n33XZ06dUo7duwwnBQAAABj2IBdT7nnFcBt6enpUW1trXbt2iUp3KDK4/HccM6FCxfosAwAAIARwbZh3JGBtpG+9tprevDBBxUIBBQIBHTgwAHTMREBbW1tmjJlilatWqXZs2ersLBQFy5ckCRt2LBB06ZN0+7du/X6668bTgoAAIBoxLZh3JGBtpFu2bJF48eP17p160zHQwQ1NjYqPT1dR44cUVpamtauXasJEybojTfeuH5OSUmJLl++rI0bNxpMCgAAgDFuwK18rLxi2H7bRlpQUCApvI104sSJhlNhpPh8Pvl8PqWlpUmScnNz1dTUdMM5S5cu1aeffmoiHgAAAKLcWFx5hUNYlhWQ9L6kU5JmSfpK0lpJ6yWtlNQjqVHSi7ZtdxmKiQiyLKtOUqFt26cty3pN0t2S3rdt+9u+1/9NUoZt27kGYwIAACAKUbxi2CzLelxSvaR/tG37z5ZlbVW4YP0PSZ0Kb/F+Q9IfbNvON5cUkdL3C4v/lOSR1CZpVd/zBEm/SvpfSatt2/4/YyEBAAAQlSheMWyWZT0gqd627el9z5+SVGzb9j/3O2e6pErbtv0mMgIAAACIDtzzimGzbfsnSd9blpXQd+hpSacsy/pDv9NyJLWMejgAAAAAUYWVV9yRQbaRvispoPC24bOS/tW27R9NZQQAAAAw9lG8AgAAAAAcj23DAAAAAADHo3gFAAAAADgexSsAAAAAwPEoXgEAAAAAjkfxCgAAAABwPIpXAAAAAIDjUbwCAAAAAByP4hUAAAAA4Hj/D67pRHTKCCyCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAHYCAYAAACiIN65AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1jW9f7H8eeHvVVwT6xMUQRUMHOl5dbMsmVWeqxfO9udlnWy06lTtrRhy2PDyrJhpZVamrMMZyiWWrhFBJUhm8/vD5DQEBCBL+P1uK77ur/7ft2gV739LGOtRURERERERKQ6c3E6gIiIiIiIiEhpVLyKiIiIiIhItafiVURERERERKo9Fa8iIiIiIiJS7al4FRERERERkWpPxauIiIiIiIhUeypeRUREREREpNpT8SoiIlJJjDFxxpgBxRx/yBjzpzEm1Riz2xgzu+D4poJjqcaYXGNMRpH9h4rc388YY40x9xc51qfItWkF51OLvFpXzbcWERGpHG5OBxAREalLjDHjgGuAAdba7caYpsBIAGttpyLXLQHet9a+VcxjxgFJBe/PFNy7DPAruDcY+BOob63NqazvIiIiUpXU8ioiIlK1ooDvrLXbAay1+621b5T1ZmOMD3ApcCvQzhgTWTkxRUREqhcVryIiIlXrJ+BaY8x9xphIY4zrKd4/GkgFPgG+A66t6IAiIiLVkYpXERGRKmStfR+4HRgM/AgcMMY8cAqPGAfMttbmAh8AY4wx7hWfVEREpHpR8SoiIlLFrLWzrLUDgPrATcBkY8zg0u4zxrQC+gOzCg7NBbyA4ZWVVUREpLpQ8SoiIuIQa222tfYTYCMQWoZbriH/v91fGWP2A3+QX7yq67CIiNR6mm1YRESkcrkbY7yK7F8N7AOWAmnkdx/uBPxchmddCzwOTC9yrDvwiTEmyFqbWDGRRUREqh8VryIiIpVr/gn7scAh4H3AFdgB3GytXV7SQ4wxPYBg4BVrbUKRU18aY7YBY4CXKyq0iIhIdWOstU5nEBERERERESmRxryKiIiIiIhItafiVURERERERKo9Fa8iIiIiIiJS7al4FRERERERkWpPxauIiIiIiIhUezVuqZwhQ4bYb7/91ukYIiIiIiIiUjlMcQdrXMvrwYMHnY4gIiIiIiIiVazGFa8iIiIiIiJS96h4FRERERERkWpPxauIiIiIiIhUe1UyYZMxZgYwAjhgrQ0tOPYv4P+AhILLHrLWzq+KPCIiIiIiUr1lZ2eze/duMjIynI4ilcTLy4uWLVvi7u5epuurarbhmcDLwLsnHH/BWjulijKIiIiIiEgNsXv3bvz9/QkODsaYYieflRrMWktiYiK7d++mbdu2ZbqnSroNW2uXAklV8VkiIiIiIlLzZWRkEBQUpMK1ljLGEBQUdEot606Peb3NGLPRGDPDGNPA4SwiIiIiIlKNqHCt3U719+tk8foacCYQAewDnjvZhcaYG4wx0caY6ISEhJNdJiIiIiIiUiF27dpF//79CQkJoVOnTrz00kvFXrdkyRLq1atHREQEERERTJ48GYDDhw/z6quvHnfdiBEjqiR7RYiLi+ODDz4o3I+OjmbixIkAzJw5k9tuu63KMzlWvFpr4621udbaPOBNoHsJ175hrY201kY2atSo6kKKiIiIiEid5ObmxnPPPUdsbCw//fQTr7zyCps3by722j59+rB+/XrWr1/Po48+Cvy9eK0KOTk5FfasE4vXyMhIpk6dWmHPLw/HildjTLMiuxcDMU5lERERERERKapZs2Z07doVAH9/f0JCQtizZ0+Z73/ggQfYvn07ERER3HfffQCkpqZy6aWX0qFDB8aOHYu19m/39evXjzvvvJOePXsSGhrK6tWrAUhLS2PChAlERUXRpUsX5s6dC+S3gl522WVceOGFDBo0CIBnnnmGzp07Ex4ezgMPPADA9u3bGTJkCN26daNPnz5s2bIFgPHjxzNx4kR69uzJGWecwZw5cwrzL1u2jIiICF544YWTthwnJCQwevRooqKiiIqKYsWKFWX+GZ2qqloq50OgH9DQGLMbeAzoZ4yJACwQB9xYFVkqm7VWffNFRERERCrQU7O+YcvO/RX6zA6tm/Lg2KFlujYuLo5169ZxzjnnFHt+1apVhIeH07x5c6ZMmUKnTp14+umniYmJYf369UB+t+F169axadMmmjdvTq9evVixYgW9e/f+2/PS0tJYuXIlS5cuZcKECcTExPDkk09y/vnnM2PGDA4fPkz37t0ZMGBA4edv3LiRwMBAvvnmG7744gt+/vlnfHx8SErKnzf3hhtuYPr06bRr146ff/6ZW265hR9++AGAffv2sXz5crZs2cLIkSO59NJLefrpp5kyZQpff/11Yf7i3HHHHdx111307t2bnTt3MnjwYGJjY8v0cz1VVVK8WmvHFHP47ar47Kq05vcdPD3rW96492oa+Ps6HUdERERERE5Tamoqo0eP5sUXXyQgIOBv57t27cqOHTvw8/Nj/vz5jBo1iq1btxb7rO7du9OyZUsAIiIiiIuLK7Z4HTMmv3zq27cvycnJHD58mAULFvDll18yZUr+SqMZGRns3LkTgIEDBxIYGAjAokWL+Mc//oGPjw8AgYGBpKamsnLlSi677LLCz8jMzCzcHjVqFC4uLnTs2JH4+PhT+vksWrTouO7UycnJpKSk4O/vf0rPKYuqWue1Tgjw8ea3Xft5/uNFPHHdRU7HERERERGpFcraQlrRsrOzGT16NGPHjuWSSy4p9pqiBe2wYcO45ZZbOHjwYLHXenp6Fm67urqedIzqiT05jTFYa/n0009p3779ced+/vlnfH3/ajgrridoXl4e9evXL2wFLilXcV2ZS5KXl8eqVavw9vY+pfvKw+mlcmqVdi0bc+3gc/l06VrWbd3pdBwRERERESknay3XXXcdISEh3H333Se9bv/+/YUF3+rVq8nLyyMoKAh/f39SUlLK9dmzZ88GYPny5dSrV4969eoxePBgpk2bVvhZ69atK/beQYMGMWPGDI4ePQpAUlISAQEBtG3blk8++aTwu23YsKHEDGXNP2jQIF5++eXC/ZMVyBVBxWsFu/mi82gaGMDkd74mJzfX6TgiIiIiIlIOK1as4L333uOHH34oXAZn/vz5AEyfPp3p06cDMGfOHEJDQwkPD2fixIl89NFHGGMICgqiV69ehIaGFk7YVFYNGjSgZ8+e3HTTTbz9dv5oy0mTJpGdnU1YWBihoaFMmjSp2HuHDBnCyJEjiYyMJCIiorCb8axZs3j77bcJDw+nU6dOhRM+nUxYWBhubm6Eh4fzwgsvnPS6qVOnEh0dTVhYGB07diz8uVQGc6rNwk6LjIy00dHRTsco0cLozdwxbTYPXDWEawef63QcEREREZEaJzY2lpCQEKdjVLl+/foxZcoUIiMjnY5SJU7yey52Bly1vFaCAd1C6BPWjqmf/UB8UrLTcURERERERGo8Fa+VwBjDw1cPIyc3j2c++s7pOCIiIiIiUkMsWbKkzrS6nioVr5WkdZNAbhjRh29+jmFlzHan44iIiIiIiNRoKl4r0XXDetG6SSBPvDuPrOzip8EWERERERGR0ql4rUSeHu5MumY4O+ITmfHNCqfjiIiIiIiI1FgqXitZr85nMSiqI69/uZTdCYecjiMiIiIiIlIjqXitAg9cNQQXFxeefG8+NW1pIhERERGRusoYwzXXXFO4n5OTQ6NGjRgxYsQpPadfv34cW+5z2LBhHD58uEJz1hUqXqtA08B63HZxP37c8Ds/rPvN6TgiIiIiIlIGvr6+xMTEkJ6eDsDChQtp0aLFaT1z/vz51K9fvyLi1TkqXqvI1QN70K5lY/7z/nyOZmY5HUdERERERMpg6NChzJs3D4APP/yQMWPGFJ5LS0tjwoQJREVF0aVLF+bOnQtAeno6V155JWFhYVxxxRWFxS9AcHAwBw8eBGDUqFF069aNTp068cYbbxRe4+fnx8MPP0x4eDg9evQgPj6+Kr5qtefmdIC6wt3NlUfHjeCaJ2cwfe6P3H35QKcjiYiIiIjUCM9uj+e31IwKfWZ7Py/uO7NJqdddeeWVTJ48mREjRrBx40YmTJjAsmXLAHjyySc5//zzmTFjBocPH6Z79+4MGDCA119/HR8fHzZu3MjGjRvp2rVrsc+eMWMGgYGBpKenExUVxejRowkKCiItLY0ePXrw5JNPcv/99/Pmm2/yyCOPVOj3r4nU8lqFup3dhlG9I5j57Uq27TngdBwRERERESlFWFgYcXFxfPjhhwwbNuy4cwsWLODpp58mIiKCfv36kZGRwc6dO1m6dClXX3114f1hYWHFPnvq1KmFrau7du1i69atAHh4eBSOq+3WrRtxcXGV9wVrELW8VrF7rxjED+t+49/vzuN/D4zHGON0JBERERGRaq0sLaSVaeTIkdx7770sWbKExMTEwuPWWj799FPat2//t3tK+//8JUuWsGjRIlatWoWPj09h8Qvg7u5eeL+rqys5OTkV+G1qLrW8VrHAAF/uuuwCVm+JY95PvzodR0RERERESjFhwgQeffRROnfufNzxwYMHM23atMIVRdatWwdA3759mTVrFgAxMTFs3Ljxb888cuQIDRo0wMfHhy1btvDTTz9V8reo+VS8OuDS87rRuW0L/vvhd6Qcrdi++yIiIiIiUrFatmzJHXfc8bfjkyZNIjs7m7CwMEJDQ5k0aRIAN998M6mpqYSFhfHMM8/QvXv3v907ZMgQcnJyCAsLY9KkSfTo0aPSv0dNZ2rauqORkZH22BpJNdmmP/dy+eNvcNWA7jx89bDSbxARERERqUNiY2MJCQlxOoZUspP8novtc62WV4d0atucMedH8eGi1WyO2+t0HBERERERkWpNxauDJo4+nwb+Pjz+ztfk5eU5HUdERERERKTaUvHqoABfb+67cjC//rGHOT+udTqOiIiIiIhItaXi1WEX9gwjqkMwz3+yiKTkNKfjiIiIiIiIVEsqXh1mjGHStcM5mpHJcx8vdDqOiIiIiIhItaTitRo4q0Vjxg/pyefL1rH2951OxxEREREREal2VLxWEzdddB5NA+sx+Z2vycnNdTqOiIiIiEid99JLLxEaGkqnTp148cUXC49fccUVREREEBERQXBwMBEREcXeHxwcTOfOnYmIiCAyMrLw+MyZM9m7d+9x1x08eLDyvkgFe/HFFzl69Gjh/rBhwzh8+DAAfn5+lfa5Kl6rCR9PDx4aO5Tfd8cza+HPTscREREREanTYmJiePPNN1m9ejUbNmzg66+/ZuvWrQDMnj2b9evXs379ekaPHs0ll1xy0ucsXryY9evXEx0dXXjsxOK1KuRWYAPZicXr/PnzqV+/foU9/2RUvFYjF3TrQN/wdkz7fDHxSclOxxERERERqbNiY2Pp0aMHPj4+uLm5cd555/H5558fd421lo8//pgxY8aU+blz5swhOjqasWPHEhERQXp6OgDTpk2ja9eudO7cmS1btvztvpkzZ3LRRRcxZMgQ2rdvz+OPP1547v3336d79+5ERERw4403Fhaqfn5+PProo5xzzjmsWrWKX375hZ49exIeHk737t1JSUkhNzeX++67j6ioKMLCwnj99dcBWLJkCf369ePSSy+lQ4cOjB07FmstU6dOZe/evfTv35/+/fsDJ285fvbZZwuf+9hjj5X5Z3QybqVdYIw5F7ga6AM0A9KBGGAe8L619shppxAgf/Kmh68exsiHXuG/H37L87de7nQkERERERHHPTXrG7bs3F+hz+zQuikPjh160vOhoaE8/PDDJCYm4u3tzfz584/r+guwbNkymjRpQrt27Yp9hjGGQYMGYYzhxhtv5IYbbuDSSy/l5ZdfZsqUKcc9r2HDhqxdu5ZXX32VKVOm8NZbb/3teatXryYmJgYfHx+ioqIYPnw4vr6+zJ49mxUrVuDu7s4tt9zCrFmzuPbaa0lLSyM0NJTJkyeTlZVFhw4dmD17NlFRUSQnJ+Pt7c3bb79NvXr1+OWXX8jMzKRXr14MGjQIgHXr1rFp0yaaN29Or169WLFiBRMnTuT5559n8eLFNGzY8KQ/vwULFrB161ZWr16NtZaRI0eydOlS+vbtW+LvpSQlFq/GmG+AvcBc4EngAOAFnA30B+YaY5631n5Z7gRynFaNA7nhwj5M+2wxo/tuo1fns5yOJCIiIiJS54SEhPDPf/6TgQMH4ufnR3h4OG5ux5dPH374YYmtritWrKB58+YcOHCAgQMH0qFDh5MWb8e6Hnfr1o3PPvus2GsGDhxIUFBQ4fXLly/Hzc2NNWvWEBUVBUB6ejqNGzcGwNXVldGjRwPw22+/0axZs8LrAgICgPwic+PGjcyZMweAI0eOsHXrVjw8POjevTstW7YEICIigri4OHr37l3KT47C5y5YsIAuXboAkJqaytatWyuveAWusdae2P6bCqwteD1njDl5uS3lMmFoL75csZEn3pvH3H/fgqeHu9ORREREREQcU1ILaWW67rrruO666wB46KGHCgs5gJycHD777DPWrFlz0vubN28OQOPGjbn44otZvXr1SYs3T09PIL/gzMnJKfYaY8zf9q21jBs3jqeeeupv13t5eeHq6grkd3E+8f5jx6dNm8bgwYOPO75kyZLCTKXlKo61lgcffJAbb7yxzPeUprQxr4WFqTHGs+gJY0yPglA1Z1qsGsLTw51HrhnGzvgkZnyzwuk4IiIiIiJ10oEDBwDYuXMnn3322XGtrIsWLaJDhw7HFbRFpaWlkZKSUri9YMECQkNDAfD39y88dyoWLlxIUlIS6enpfPHFF/Tq1YsLLriAOXPmFGZNSkpix44df7u3Q4cO7N27l19++QWAlJQUcnJyGDx4MK+99hrZ2dkA/P7776SlpZWYoyz5Bw8ezIwZM0hNTQVgz549hRnLq7SW1w+ArgXbq4psA7x6wr5UoF6dz2JI90688dUyRpwbRqvGgU5HEhERERGpU0aPHk1iYiLu7u688sorNGjQoPDcRx999Lcuw3v37uX6669n/vz5xMfHc/HFFwP5rbRXXXUVQ4YMAWD8+PHcdNNNeHt7s2rVqjLn6d27N9dccw3btm3jqquuKhwz++9//5tBgwaRl5dXmLVNmzbH3evh4cHs2bO5/fbbSU9Px9vbm0WLFnH99dcTFxdH165dsdbSqFEjvvjiixJz3HDDDQwdOpRmzZqxePHiYq8ZNGgQsbGxnHvuuUD+5FHvv/9+YZfm8jDW2pOfNGadtbbLidvF7VeVyMhIW3Sa6dosPimZ4Q9OI7J9G167a2yxzfwiIiIiIrVRbGwsISEhTseoNmbOnEl0dDQvv/yy01Eq1El+z8UWPqV1G7Yn2S5uXypYk8AAbru4P0s3bOX7tX+fLltERERERKSuKK3bcEtjzFTyK99j2xTst6jUZALA2AHn8MWy9fzn/W/oGXomPp4eTkcSEREREZEqNn78eMaPH+90DEeV1vJ6H7AGiC6yfWz//sqNJgDubq5MGjec/UlHmD73R6fjiIiIiIiIOKK0ltfZgL+1NqHoQWNMYyC50lLJcbqd3YaL+3Rh5rcrGdkrnLNalH+Qs4iIiIiISE1UWsvrVKBPMccHAi9UfBw5mXsuH4iPlydPvDuPkibZEhERERERqY1KK157W2s/O/GgtXYWUPzqulIpAgN8ufuyAfyyJY6vVm50Oo6IiIiIiEiVKq14LWltltLulQp26Xld6XxGC56dvYDktHSn44iIiIiI1Gqurq5EREQQHh5O165dWblyZYU+f/z48cyZMweA66+/ns2bN1fo82ub0grQA8aY7iceNMZEAQnFXC+VyMXFhcfGjeBQchpTP/vB6TgiIiIiIrWat7c369evZ8OGDTz11FM8+OCDlfZZb731Fh07dqy059cGZZlt+GNjzL+MMRcWvB4HPi44J1WsY3Bzrrwgio++/4VNf+51Oo6IiIiISJ2QnJxMgwYNAEhNTeWCCy6ga9eudO7cmblz5wKQlpbG8OHDCQ8PJzQ0lNmzZwOwZs0azjvvPLp168bgwYPZt2/f357fr18/oqOjAfDz8+Phhx8mPDycHj16EB8fD0BCQgKjR48mKiqKqKgoVqxYURVfvdoosXi11q4GziG/+/D4gpcBzrHW/lzZ4aR4Ey85nwYBvkx+52ty8/KcjiMiIiIiUiulp6cTERFBhw4duP7665k0aRIAXl5efP7556xdu5bFixdzzz33YK3l22+/pXnz5mzYsIGYmBiGDBlCdnY2t99+O3PmzGHNmjVMmDCBhx9+uMTPTUtLo0ePHmzYsIG+ffvy5ptvAnDHHXdw11138csvv/Dpp59y/fXXV/rPoDopbakcrLXxwGNVkEXKKMDXm/uvHMw/X/+UOT+u4Yr+UU5HEhERERGpVJ9E72L3oYqb96VlA28ui2xV4jXHug0DrFq1imuvvZaYmBistTz00EMsXboUFxcX9uzZQ3x8PJ07d+bee+/ln//8JyNGjKBPnz7ExMQQExPDwIEDAcjNzaVZs2Ylfq6HhwcjRowAoFu3bixcuBCARYsWHTcuNjk5mZSUFPz9/cv9c6hJSixejTG/AsWty2IAa60Nq5RUUqoR53bm0x/X8MIn3zOgWwhBAX5ORxIRERERqTSlFZqV7dxzz+XgwYMkJCQwf/58EhISWLNmDe7u7gQHB5ORkcHZZ5/NmjVrmD9/Pg8++CCDBg3i4osvplOnTqxatarMn+Xu7o4x+XPnurq6kpOTA0BeXh6rVq3C29u7Ur5jdVfamNcRwIXFvI4dF4cYY5g0bgRHMzJ5bvZCp+OIiIiIiNRqW7ZsITc3l6CgII4cOULjxo1xd3dn8eLF7NixA4C9e/fi4+PD1Vdfzb333svatWtp3749CQkJhcVrdnY2mzZtKleGQYMG8fLLLxfuH2sVritKbHm11u4o7rgxxhW4Eij2vFSNM5s3YvyQnrw1bzmX9O1KZPs2TkcSEREREak1jo15BbDW8s477+Dq6srYsWO58MILiYyMLBwTC/Drr79y33334eLigru7O6+99hoeHh7MmTOHiRMncuTIEXJycrjzzjvp1KnTKeeZOnUqt956K2FhYeTk5NC3b1+mT59eod+5OjPWFtcruOCkMQHArUAL4EtgIXAbcC+w3lp7UVWELCoyMtIem4VL4GhmFhc++DJ+3p7Mefwm3N1cnY4kIiIiInLaYmNjCQkJcTqGVLKT/J5NcdeW1m34PaA98CtwPbAAuBS4yInCVf7Ox9ODh64extbdB5i1SBNAi4iIiIhI7VTabMNnWGs7Axhj3gIOAq2ttSmVnkzK7Pwu7ekXcTYvf76YId070TSwntORREREREREKlRpLa/ZxzastbnAnypcqx9jDA9dPYzc3Dz++8F3TscRERERERGpcKUVr+HGmGRjTIoxJgUIK7KfXBUBpWxaNmrAjRf25btfNrH8121OxxEREREROW0lzc8jNd+p/n5LLF6tta7W2gBrrX/By63IfsBpJZUKN2FYL9o0CeLf780jMyu79BtERERERKopLy8vEhMTVcDWUtZaEhMT8fLyKvM9JY55NcZ4ATcBZwEbgRnW2pzTSimVxsPdjUnXDuf6Z9/l7fkruGVUP6cjiYiIiIiUS8uWLdm9ezcJCQlOR5FK4uXlRcuWLct8fWkTNr1D/rjXZcAwoBNwR7nTSaXrGXomQ88J5Y2vlzHi3DBaNwl0OpKIiIiIyClzd3enbdu2TseQaqS0Ma8drbVXW2tfJ3+JnD5VkElO0z/HDMbd1ZUn35+vbhYiIiIiIlIrnMpsw+XuLmyMmWGMOWCMiSlyLNAYs9AYs7XgvUF5ny/Ha9wggNsv6c+yjVv5fs0Wp+OIiIiIiIictrLONpx8mrMNzwSGnHDsAeB7a2074PuCfakgVw3oTvtWTfjPrG9Iy8h0Oo6IiIiIiMhpKetswwElzTZcWquptXYpkHTC4YvIH1NLwfuocuSXk3BzdeXRcSPYn3SE6XN/dDqOiIiIiIjIaSmt5bWsvi/HPU2stfsACt4bV1AWKdClXWsu6duFd75bxdbdB5yOIyIiIiIiUm4VVbyaCnpO8Q835gZjTLQxJlpTZZ+aey4fiK+XJ0+8+7UmbxIRERERkRqroorX8lRF8caYZgAF7ydtGrTWvmGtjbTWRjZq1Ki8GeukBv6+3H35AKJ/28FXKzc6HUdERERERKRcKqp4LY8vgXEF2+OAuQ5mqdVG9+1K2Jktefaj7ziSlu50HBERERERkVNWJd2GjTEfAquA9saY3caY64CngYHGmK3AwIJ9qQQuLi48Om4Eh1KOMvXT8gxPFhERERERcVaJxasx5vwi221POHdJkd0LSnqOtXaMtbaZtdbdWtvSWvu2tTbRWnuBtbZdwfuJsxFLBerYphlXDejORz9Es+nPvU7HEREREREROSWltbxOKbL96QnnHjm2ocKzZrj9kvMJCvBl8jtfk5uX53QcERERERGRMiuteDUn2S5uX6o5fx8v7h8zmF//3MMnS9Y4HUdERERERKTMSite7Um2i9uXGmB4j86cE9KWFz9ZRGJyqtNxREREREREyqS04vUMY8yXxpivimwf229byr1SDRljeOTa4RzNzOa52QudjiMiIiIiIlImbqWcv6jI9pQTzp24LzXEmc0b8Y+hPXnz62Vc0qcLkR2CnY4kIiIiIiJSohJbXq21PxZ9ASuBZCC2YF9qqJtG9qV5w/pMfnce2Tm5TscREREREREpUWlL5Uw3xnQq2K4HbADeBdYZY8ZUQT6pJN6eHjw0dijb9hzgvQU/OR1HRERERESkRKWNee1jrd1UsP0P4HdrbWegG3B/pSaTSnd+1w70j2jPK18sYX/SEafjiIiIiIiInFRpxWtWke2BwBcA1tr9lZZIqtSDVw/FWsvTH3zrdBQREREREZGTKq14PWyMGWGM6QL0Ar4FMMa4Ad6VHU4qX8tGDbjhwj4s+GUzyzZudTqOiIiIiIhIsUorXm8EbgP+B9xZpMX1AmBeZQaTqjNhaC+Cmwbx7/fmk5mV7XQcERERERGRvylttuHfrbVDrLUR1k2hlMQAACAASURBVNqZRY5/Z629p9LTSZXwcHfjkWuHs+tAEm/NW+50HBERERERkb8pcZ1XY8w0wBY5ZIGDwGJrraqcWqRnpzMZdk4ob85bzoieYbRpEuR0JBERERERkUKldRuOBtYUea0FUoFnjTF3VnI2qWL3jxmMu6srT743H2tt6TeIiIiIiIhUkRJbXq217xR33BgzHVgJvFgZocQZjRsEMHF0f56a9S0Lo2MZFNXR6UgiIiIiIiJA6S2vxbLWpld0EKkexlzQnfatm/L0B9+QlpHpdBwRERERERGgHMWrMcbNGPMPYHcl5BGHubm68ti4EexPSua1uT86HUdERERERAQopXg1xqQYY5IL3lOMMSnAHmAo+cvoSBF51rIiKdXpGKct4qxWXHpeV979bhVbd8c7HUdERERERKTUpXL8rbUBBe/HXk2stZdba/dWVcia4uv4I9wWs5snt+4nO69mT3h012UD8PXyZPI78zR5k4iIiIiIOK7UbsPGGA9jzD+MMVOMMc8WbHtWRbiaZliTeoxvGcicfYf5v407OZCZ7XSkcmvg78s9lw9kze87+HLFBqfjiIiIiIhIHVdat+GOwGagH7CT/HGu/YBNBeekCDdjuOOMxvw3pDm/p2Ywdl0c648cdTpWuV3StwvhZ7bk2Y8WcCRNc3SJiIiIiIhzSmt5nQbcbK0dZ62daq19yVo7DrgJeKXy49VMgxoF8G6XYLxdXPi/jTv5eO+hGtn11sXFhUfHjeBw6lFemvO903FERERERKQOK614bWGtXXjiQWvtIqBp5USqHc7y9WRW12B6NPDlqW3x/Ov3/WTm5Tkd65SFtGnG2IHnMHtxNL/+scfpOCIiIiIiUkeVVry6FDe+1RjjBbhVTqTaw9/NlZc6teSG1kF8GX+ECet3si+j5o2Dvf2S/jSs58cT735Nbg0swEVEREREpOYrrXh9F/jUGBN87EDB9sfAe5UVqjZxMYabgxvxfMcW7EjP4qp1cfxyOM3pWKfEz9uLf44ZTMyfe/lkcbTTcUREREREpA4qbamcfwPfAkuNMQeNMYnAj8BCa+3kqghYW/Rv6M/7XdrQwM2Vmzfu4r3dSTVqHOzQc0Lp0fEMXpjzPQeP1Py1bEVEREREpGYpdakca+3L1trWQFsg2Frbxlo7rfKj1T7BPp6826UN5wX58fwfB3hoyz7Sc2tGN1xjDJOuHU56ZjbPzV7gdBwREREREaljShy3aoy5u5hjhdvW2ucrIVOt5ufmyrMdW/C/XYm8EneQ7Uczeb5jC1p6ezgdrVRtmzVkwrCevPHVMi7p25WoDsFORxIRERERkTqitJZX/yKve0/Y96/caLWXizFc17oh00Jbsj8zm7Hr4liZVDO64t54YV+aN6zP5He+Jjsn1+k4IiIiIiJSR5iyjrs0xqyz1nap5DylioyMtNHRtWfSoF3pWdyzeQ/b0jK5NbgRE1oFHte6XR0tXvcbt774AfdcMZDrhvV2Oo6IiIiIiNQuxRZEpY55LaLmzC5Ug7Ty9uCdiDYMauTPy3EJ3Bu7h7Rq3qLZv0t7+ndpz6ufL2Ff4hGn44iIiIiISB1wKsWrVBJvVxee6tCcu89ozI8HU7lm/Q7ijmY6HatED40digX++8G3TkcREREREZE6oMTi1RjzqzFmozFmI9Dh2Pax41WUsU4wxnBNy0BeC2vFoexcrlm3gyWJKU7HOqkWjRpw08i+LIjezNINW52OIyIiIiIitVyJY16NMW1Kutlau6PCE5Wito15Lc6+jGzu2byH2NQMbmgdxI1tGuJSDcfBZuXkcMkjr5Gdk8vc/9yKl4e705FERERERKTmO/Uxr9baHSW9Cp9szKqKTluXNfNyZ0Z4a0Y2qccbOxO5c9NuUqrhOFgPNzceuXY4uxIO8da85U7HERERERGRWqyixrx6VdBzpICXqwv/OrspD57VhFWH0hi7No7tadVvHGyPjmcwvEdn3vx6GRu27SIzK9vpSCIiIiIiUguVeamcEh9izFprbdcKyFOqutBt+ETrjhzl/tg9pOXk8Xj7ZgxsFOB0pOMkHE5h+APTSE3PL64b+PvQpEEATQMDaNIggCaBATQNrPfXscAAfDw9HE4tIiIiIiLVVLHdhlW81hAHMrO5L3YvG5PTGd8ykNvaNsK1Go2D3XUgiTW/72R/0hHik5KJP5TM/oL3QylH/3Z9gK83TY8VtgXvRbebBgbg560GfRERERGROqjYQsetMh8uFaexpztvhrXi2e0HmLk7idjUDJ4OaUF9d1enowHQqnEgrRoHFnsuIyubA4dSCgvaYwXu/kPJxCcls3nHPhKPpP7tPl8vT5oG/tVa+1drbr3CYwE+XphqVMSLiIiIiEjlqKiW11BrbUwF5ClVXW15LerzfYd5als8jTzceK5TCzr41fwWyqycHBIOpRQWtIVF7rEW3KRkEo6kcuKfV29Pj8Luycd3U/7rWH0/HxW4IiIiIiI1x6l3GzbG/AkUvcAU2bfW2jMrLF4ZqXjNF5Oczr2b93A4J5dJ7ZoyvEk9pyNVuuycXA4eSS1S0B5h/6Fk9if+1U054XAKuXl5x93n4e5GkwYBNDuxBTewXmE35UB/H1xcKmr+MhEREREROQ3lKl6DTjjkAlwO3AustdaOrrB4ZaTi9S9JWTncH7uHNUfSGdO8AXed0Rh3l7rdwpibl0fikdTC8bbH3uOTktlXOB43hZzc45cecnN1pUkD/8Jxt02D6h3Xmts0MICgen64qsAVEREREals5Z+wyRjjAlwD3AesB/5jrd1cofHKSMXr8bLzLC/9eYBZew7RtZ43z4S0IMijooYy1055eXkkpRwtMu72yAlFbv52VnbOcfe5urjQqL7/cQVt08AA2rVqQs9OVd4JQURERESktipXy6s7MAG4C1gOPGWt3V4p8cpIxWvx5scf4Ymt+wlwc+W5ji0IDfB2OlKNZq3lcOrR41twT2jN3Z94hPSCdW2vGtCdB64agptr9ZhAS0RERESkBitX8bobyAFeBHaeeN5a+1lFpSsrFa8n91tqBndv2kNCVg4PntWEi5vVdzpSrWat5UhaOm98tYyZ366kd+ezeO6Wy/D3qfkTaImIiIiIOKhcxetMjp+wqShrrZ1w+rlOjYrXkh3OzuXB2D38dPgoo5vV5/4zG+OhcZqV7pMl0Tzx7jzaNAnitbvH0rJRA6cjiYiIiIjUVOUf81rsjcY0sdbGn1akclDxWrpca3klLoH/7Uqis78XUzq2oLGnu9Oxar2fY//kjmmzcXUxTJs4hq5nt3Y6koiIiIhITVRs8XpKTXLGmHrGmAnGmEXA2gqJJRXO1Rgmtm3MMyHN2ZaWyVVr41h35KjTsWq9c0La8tGj1xPg480//juTL1dscDqSiIiIiEitUWrxaozxNsZcYYyZC8QAzwP/BlpVdjg5PQMbBfBel2B83Vy4YeNOZu89RHlb2qVsgps25MNHr6dru9Y88MZnvDTne/JOWHdWREREREROXYnFqzFmFvA7MAh4GQgGDllrl1hr9X/kNcCZvp683yWYng18eXpbPI/9vo+MXP3qKlN9Px9ev/dqRvftyutfLeXuVz8hPTPL6VgiIiIiIjVaaS2vocAhIBbYYq3N5eQTOEk15e/mygudWnJj6yC+ik9mwoYd7M3IdjpWrebh5sbkCSO578pBLIyOZdxT/yPhcIrTsUREREREaqwSi1drbThwORAALDLGLAP8jTFNqyKcVBwXY7gpuBEvdmrBrvRsxq6LY/WhNKdj1WrGGP4xtBfTJl7J9r0HueLxN4jdsc/pWCIiIiIiNVKpY16ttVustY9aa9sDdwHvAauNMSsrPZ1UuPOC/Hm/SzAN3F25+dddvLs7UeNgK9n5XTsw65HrALj6yRl8v3aLw4lERERERGqeci2VY4wxQF9r7Y8VH6lkWiqnYqTl5PLY7/v5/mAKgxv589jZzfB21XqwlSnhcAq3vfghMXF7ufvyAUwY2ov8v0oiIiIiIlLEqa/zaoyZRgljXK21E08/16lR8VpxrLX8b1cSL8clcJavJ891bEErbw+nY9VqGVnZPPTm53y7ehOX9O3Co+NG4OHm5nQsEREREZHqpNjitbT/a1aVWIsZY5jQOogQPy8e2LKHsevieKpDc3oF+jkdrdby8nBnys2X0rZZQ16b+yO7DhzipduvoL6fj9PRRERERESqtXJ1G3aSWl4rx+70LO7ZvIetaZncEtyQCa2CcFGX1kr11cqNPPL2FzQLqsdrd42lbbOGTkcSEREREakOii1ESh3kaIwZZ4xZa4xJK3hFG2Ourfh84qSW3h7MjGjDkEYBvBJ3kHs37yE1J9fpWLXahT3DmPnAeFKPZjJm8pus2vSH05FERERERKqtEovXgiL1TuAeoDnQArgfuKOiClhjTJwx5ldjzHpjjJpUHeTt6sKTHZpx7xmNWZqYyrXrdvDn0UynY9VqXdq1ZvZj/0fjBgHc+Nx7fLxYfwVERERERIpT2oRNPwFXWmvjTjgeDHxkre1x2gGMiQMirbUHy3K9ug1XjejDadwfu5esPMsT7ZvRv6G/05FqtdT0DO55dQ7LNm5l3OBzuffKQbi6aPZnEREREamTytVtOODEwhWg4FjA6WeS6iqyvi8fdAmmjbcHd2/ew6txCeTVsPHRNYmftxev3DmGqweewzvfreK2Fz8kLV2t3iIiIiIix5RWvKaX89ypsMACY8waY8wNxV1gjLmhYKxtdEJCQgV9rJSmqZc7MyJac1GTery5M5E7Nu0mOVvjYCuLm6srD109jEnXDmf5r9sY+++32XPwsNOxRERERESqhdK6DR8FthV3CjjDWut72gGMaW6t3WuMaQwsBG631i492fXqNlz1rLV8su8wz26Pp5mnO893aslZvp5Ox6rVVsZs565XPsbD3Y2X7xhD+JktnY4kIiIiIlJViu02XFrx2qakJ1prd5xmqBM/719AqrV2ysmuUfHqnPVHjnJf7B5Sc/J4vH0zBjVSz/HKtH1vArc8P4v4wyn85/pRDOvR2elIIiIiIiJVoVxjXr2ttTsKitT9x7YL9puddiJjfI0x/se2gUFAzOk+VypHRD0fPujSlvZ+Xvwzdi8v/nGAHI2DrTRnNm/ER4/9H53btuDe1+bwyueLqWnrMouIiIiIVJTSitcPimyvOuHcqxXw+U2A5caYDcBqYJ619tsKeK5UkkaebrwZ1prLm9Xnnd1J3PrrLg5l5zgdq9Zq4O/L2/dfy6jeEbzyxRLun/4pmVnZTscSEREREalybqWcNyfZLm7/lFlr/wDCT/c5UrXcXQwPtmtKR38v/rM1nrFr43iuY0tC/L2cjlYrebi78eT1o2jbrCEvfLKI3QmHmHbHGBrW83M6moiIiIhIlSmt5dWeZLu4faljLmpanxkRrbHAPzbsYMr2eBYkJLMnPUvdWyuYMYb/G9GHl26/gt92xXPF42/w+654p2OJiIiIiFSZ0iZsOgB8RH4r6xUF2xTsX26tbVLpCU+gCZuqn6SsHCZv3c/KpDSyC/481XdzpaO/F538vfLf/bxp5FlaQ7+UxaY/93Lrix+QmpHJczdfxnkRZzsdSURERESkIpVrtuFxJT3RWvvOaYY6ZdW5eD2amcW23QfofEYLjDntXtU1TnaeZWtaJptS0tmUksHm1Ay2p2WSV3C+sYcbnQoK2k7+3nT08yLA3dXRzDVVfFIyt774AVt27uf+MYO5ZlCPOvlnTkRERERqpVMvXquj6ly8fvNzDPe8+glNAwM4v2sHBkZ2pNvZrXFzrbsFWnpuHltSM9icksGmlAw2paazM/2vCYdaebkXtNB608nfixA/L7xdS+vNLpD/jyUPvP4Zi9bEcnn/SB6+ehjubnX3z5qIiIiI1Brlann9sqQnWmtHnmaoU1adi9cjaeksWfcbi9bEsiJmOxlZ2dT386FfxNkMjOxIz05n4Onh7nRMxyVn57I5Nb+Y3VzQShuflT9jsQtwho/nX92N/b1o5+uJh4sK2uLk5eXx4pzveWvecnp0PIMXbrucer7eTscSERERETkd5SpeE4BdwIfAzyc+xFr7YwUGLJPqXLwWdTQzixW/bmPRmliWrP+dlKMZeHt60DesHQO6hXBeRDv8vDU77zEHs3IKWmfTC1poMzicnQuAuzG08/U8rstxWx8PXNVNttDny9bx2P++olXjBrx611W0aRLkdCQRERERkfIqV/HqCgwExgBhwDzgQ2vtpspIWBY1pXgtKisnh19i41i4Jpbv124h8Ugq7m6u9Oh4BgO6deD8rh0ICtCyJ0VZa9mXmZ1fyKbkdzvenJpBWm7+CFpvF0MHP6/juhy38nKv0+M+o7fEMXHabKy1TJ14JVEdgp2OJCIiIiJSHqc35tUY40l+EfssMNlaO63ispVdTSxei8rNy2PDtt0sWhPL92ti2ZVwCBdj6NKuNQMjQ7igWwgtGtZ3Oma1lGctO9KzCgvaTSnp/JaaSVbBn+EANxc6+v1VzHby96KxZ93qpr0zPolbXpjFzgOH+Nf4C7mkbxenI4mIiIiInKryFa8FRetw8gvXYOBLYIa1dk8FByyTml68FmWt5bdd8SxaE8ui6Fh+352/bmfHNs0Y0C2EAZEhnNm8UZ1uTSxNdp5l+9HM48bPbkvLJLfgfEMPt4KC9q8ux/Vr+QzHyWnp3P3KJ6zctJ3rhvXirssG4KIxwyIiIiJSc5Sr2/A7QCjwDfCRtTamcrKVXW0qXk+0Iz6xoEV2C+u37QIguGlQfiHbLYTQts1VhJRBRm4evxUs2XNsluO49KzC8y283PMLWT8vOvp7E+LniW8tm6U3OyeX/7w/n9mLo7mgawf+e9NofDw9nI4lIiIiIlIW5Spe84C0gt2iFxrAWmsDKixeGdXm4rWoA4eS+WHtFhat2cLqLX+Sk5tHkwYBXNCtAwO6hRDZvk2dXoLnVKXk5LIlNeO4Lsf7MvNnODZAsI8HnYp0OT7bzxPPGv4PBdZa3l/4M//94Fvat27KK3eOoWlgPadjiYiIiIiURuu81lRH0tL5cf3vLIzeXLgETz1fb/p3ac+AbiH0DD0TLy3Bc8qSsnLYVLAG7bEux4kFMxy7GWjn60lHf+/Cbsdn+nriVgO7cC/dsJV7Xv0EHy8PXrlzDKFtWzgdSURERESkJOVqefWz1qaW+NQyXFOR6mLxWtTJluDpE3YWA7t1pG94O/x9tARPeVhric/ML2iPLdmzOSWD1IIZjr1cDO2PjZ8taKVt5e2OSw0oaLfujufmFz4gKTmNp264mMFRnZyOJCIiIiJyMuUqXr8H1gNzgTXW2rSC42cA/YHLgTettXMqPO5J1PXitahjS/AsKliC5+CRVNxcXTm3k5bgqSh51rIrPZvNqemFXY63pGaQkZf/98bP1YWu9by5qU0jQvyr9z8aJCancvtLH7F+2y7uuPQCbhjRR5OBiYiIiEh1VO7ZhocBY4FeQAMgB/iN/DVf37bW7q/YnCVT8Vq8vLw8NmzfzcLov5bgMcbQtV1rBhSMk23RqIHTMWuFHGv5Iy1/huNNqRn8cDCFw9m5XNS0HrcFNyLIw83piCeVmZXNIzPmMm/Vr4zsGc7kCSPxcK++eUVERESkTtKY17qi6BI836+J5bdd+UvwhLRpVlDIduSsFlqCp6Kk5OTy5s5EPtyThKeLC9e3DuKqFg3wqKYTPllrmf7lj0z7bDFd27Vm6sQrCQzwdTqWiIiIiMgxKl7rqp3xSflrya6JLVyCp02TIAZGhnBBtxA6awmeCrHjaBbP/xHP0qQ0Wnm5c9cZjekX5Fdt/5Hgm59jeOjNz2lU359X77qKs1o0djqSiIiIiAioeBUoYQmerh0YEKkleCrCqqQ0pvwRzx9Hs+he34f7zmzCWb6eTscq1sbtu7n1pQ/JzMrm+Vsvp3fns5yOJCIiIiKi4lWOd2wJnkVrYln+6zYtwVOBsvMsc/YdYvqOg6Tm5HFps/rcHNyI+u7V7x8G9iYe5tYXPmDbngQeHDuEqwac43QkEREREanbyl+8GmPes9ZeU9qxqqDitXKkZ2ax4tftLFyzmR/X/05ykSV4BnQL4bzws7UETzkczs5l+o4E5uw9jK+bCze2achlzRrg7lK9uhKnpWdy//RPWbz+N64a0J0HrhqiFngRERERccppFa9rrbVdi+y7Ar9aaztWXL6yUfFa+bJzcvllSxwLozcftwRPj45tGdAthPO7dqBhPS3Bcyq2p2UyZXs8Px0+SlsfD+45ozG9AqvXzzA3L4/nZi9k5rcr6d35LJ675TL9g4WIiIiIOKFc67w+CDwEeANHizwoC3jDWvtgBYcslYrXqnVsCZ5Fa2JZFP3XEjxd2rViYLcQLcFzCqy1/JiUyvPbD7ArI5s+gb7cfUZjgn2q13jYT5ZE88S782jTJIjX7h5LS/1+RURERKRqlat47WWtXWGMedpa+0ClRTsFKl6dY63l913xLDzJEjxDzwkluGlDh1NWf1l5eXy05xBv7kwkIy+PK5o34MY2DfF3qz7ddH+O/ZM7ps3G1cUwdeKVdDu7jdORRERERKTuKFfxusZa2+3EbsNOUvFafRxbguf7NbGsK1iCp8tZrRjVJ4Kh54Ti560upyVJzMrhlbgEvth/hHrurtzapiEXN6uPazVZWidu/0Fufv4D9iYe5okJFzGyV7jTkURERESkbihX8foTEAsMA2afeN5aO7Gi0pWVitfq6cChZL5atZHPl63nj70JeHm4MzAyhFG9u3BOSLDWkS3BltQMntkWz7rkdM729eS+MxsTWd/X6VgAHE49yl0vf8zPsX9y44V9uf2S/vpdioiIiEhlK1fx2hAYAPwXePTE89badyoqXVmpeK3erLVs/GMPXyxbx/yfY0g5mkGzoHqM6h3BqN4RtGoc6HTEaslay6KDKbzwxwH2ZeZwfkM/7mrbmJbeHk5HIysnhyfemcenS9cyKKojT/3fxXh7Op9LRERERGqt05ptONxau6HCI5WDiteaIyMrmx/WbuHzZetYuekPrLVEdQhmVO8IBkV1xNerek1UVB1k5Obx3u4kZuxKJNfCNS0DmdAqEF+Hx8Naa5n57UqmzF5Ip+BmvHLnVTSq7+9oJhERERGptcrV8nq/tfYZY8w04G8XqtuwlNX+pCPMXbGBL5atZ0d8It6eHgyO6sglfbrQrX0bTDUZ51ldHMjMZuqfCcw7kExDD1duD27MiCYBuDj8c/ph7Rbum/4p9Xy9ePnOq+jYppmjeURERESkVipX8XqhtfYrY8y44s6r27CcKmst67bu4vNl6/hmdQxHM7Jo1agBo/pEcFHvCJoH1Xc6YrXya3I6z26P59eUDDr5e3HvGY2JqOfjaKYtO/dzywuzOJKaztAeobRpEkSbJkG0bhJI6yaB+KhLsYiIiIicnvJ3G65OVLzWHkczs1gUHcvny9fx8+Y/McZwTkhbLu7ThQHdOmhcZYE8a/nmQDIv/ZlAQlYOQxsFMLFtI5p6uTuWKeFwCv+a+RUb/9hD4pHU4841qu9Pm4JCVoWtiIiIiJRDuVpev6KY7sLHWGtHnn6uU6PitXbak3Aov1vx8vXsTjiEn7cnQ7uHcnHfLoSf2VLdioGjuXn8b1ci7+1OwgDjWwVxbctAvF2dnf03LT2THQeS2BmfxI74RHbsT2TngSR2xCepsBURERGR8ihX8XpeSU+01v54mqFOmYrX2i0vL4/o33bwxfL1fLd6E+lZ2bRt1pBRvSMY2TOcJoEBTkd03N6MLF78I4GFB1No6unGHW0bM7iRf7Us8FXYioiIiEg5nF63YWOMB9CB/JbY36y1WRWXrexUvNYdaemZfPfLZj5fto41v+/AxRh6hp7JxX26cH6X9nh6ONdttjpYc/goU/6IZ0tqJhEB3tx3ZhM6+ns5HavMjhW2hQWtClsRERERyXdaS+UMB6YD2wse1Ba40Vr7TUUmLAsVr3XTjvhE5i5fzxfLN7A/6QgBvt4M7xHKqN5dCG3bvFq2OlaFXGuZu/8Ir8QlcCg7l5FN6nFb20Y09HBzOtppUWErIiIiUqedVvG6BRhhrd1WsH8mMM9a26FCI5aBite6LTcvj59j/+TzZetYFB1LZnYOZ7VozKjeEVzYM6zOrj2akpPLWzsT+WBPEh4uLlzfOoixLRrg4eLseNjKkJqewc4Dh1TYioiIiNRep1W8LrXW9v1/9u47TI7qTvf493SanpxHM9IoC0QQChgQQYgoQBhjwBjMsjbJxmEd1zbr3X2eu9f3Pvvsrr3X2Ov1OoNZew22MZhgcpQQIIKQhAAjlDXSSBM0OXU694+ununu6ZEmSd3T/X4ej7u66lT178yI0rw6Vafi3hvgxfh1x4rCq8R09fbz+Pot/OmljWzcthe3y8XKxcdx1blLOW/p8fg8U3v0cTx29wW4c0cTL7Z2U+/38rV5NVxQWZQzI9MKtiIiIiJZYULh9cfAbOD3RO95/TjwPrAOwFr7wKSVeQQKr5LKjv3N/OmljTy0bhPN7V2UFRVwxVmncPW5yzhxdl26yzvmXm3r4bvbD7KjN8DppQV8Y34NxxdNnfthj4aUwfbgIXY3KdiKiIiIZJgJhde7D7PZWmtvHW9VY6XwKocTCod5ecsO/vTSWzy74S8EQ2EWzqrlmnOXcsVZiykvLkx3icdMyFr+2NjOj3c10xWKcE1dGV+YU0W5N/dGpI8kPtjuPhgNtYcLtrUVJeT7vOT5vPh9HvK8zqvPG13v9eD3ecnzefB7h9r5fd7o+qTt/jwvfq8Hn9eTM6PkIiIiIocxsdmGM4XCq4xWe3cvj6/fwoNr32LLzv143G7OX3o8V5+7jBWnLMDrcae7xGOiIxjmJ7tb+MP+Ngo8Lj47q4rrppfjdSkkjUaqYNvS0U1/IMhAIERfEKMIbgAAIABJREFUIMhAIEh/MDT4GgiGxvVZxhjyvJ6EcDsYkr2eYWH58GHYeZ+0Pf54CssiIiKSoSY88jqs4bEccY1ReJXx+KDhIA+u3cgjL2+itbOHytIiPnLWYq4+dxnH1deku7xjYnvPAP9vRxOvtPUwJ9/H1+fXsKKiKN1lZaVwJMJALMwGQgwEnddA0Am7IfqDzmsgOLi9PxAcDMXx2/tTHKc/OLQtGAqPq874sJyf500YQY4Py35fNAwX5Pv46DlLOWFW7SR/x0REREQSTCi8fizurR+4Gthvrf3y5NQ2egqvMhHBUJiX3t7Gg2vf4oWN7xMKR1g0dzpXn7uM1csXUVZUkO4SjyprLWsP9fD/dhxkT1+Qc8oL+fr8GuYW5KW7NJmAVGG5byDIgBNw48NwXyAQF5oTt/cPxI0gx4XlWEju7O0nGApz9blL+fI1F1JTXpLurouIiEh2mrzLho0xLuAZa+2FE61qrBReZbIc6uzhz69u5oG1G3l/zwG8HjcXnXoCV61YxjmnzMedhY+ZiQlGLPfuP8TPd7fSH4lw3fRyPjurihJvblxKLePT0dPHTx5+kf95+jW8bhe3Xn4Ot1x+jiaxEhERkck2qeF1IdHnvC6YaFVjpfAqR8N7uxt5cO1bPPrK27R391JTVsyV5yzh6nOXMbeuKt3lHTWHAiH+a1cLDxxop9Tj5gtzqri6rgyP7oOUw9hz8BDf+8PTPPX6u1SXFfPlj13IVSuWZvU/+IiIiMgxNaHLhrtIvOf1APD31to/Tk5to6fwKkdTIBTixY1b+dPajazZ/AHhSISlC2Zy1YqlrF6+iOKC7HzczPvd/Xx3+0He7OjjuMI8vjGvhjPKc2dmZhmfDVv38J37nmTz9gYWzqrlm5+4hLNPnp/uskRERGTq02zDImPR3N7FIy9v5sG1b7F9fzN5Xg8Xn3YiV5+7jDNPnIsry0aZrLU829LFnTua2T8Q5ILKIr42r4aZ+bokVEZmreWJ197he79/mn0t7Zy35Hi+fv0qFszIjYnQRERE5KhQeBUZD2stW3bu508vvcWfX3mbzt5+aitKuWrFEq5asYxZ0yrSXeKkGohE+E3DIX65p5WQhRvry/n0zEoKc+TRQjI+A4Egv3lmPT99eA19A0GuPe9UvnjNBVSWaEZrERERGTOFV5GJGggEee6t93lw7Vu8vGU7EWs5/YQ5fOrSs7hg6fFZNRrbNBDkhzubebSpk0qvmy/OrebKaaW4dD+sHEZbVw8/+tML/O65N/D7vHzmihV86tKz8Pu86S5NREREpg6FV5HJdPBQJw+/vInfPf8G+1vamVtXxc2XncWVZy8hL4t+Ud/S2cd3th/k7a5+Tizyc8f8GpaWZvcjhWTidja28O+/e4rn33qfuspSvnrtxXz4zEVZ9Q88IiIictSMPbwaYw57PaS19tAEixozhVfJNKFwmKdef5e7HlvHu7sbqSwt4saLz+ATF56eNc+NtdbyeFMnP9jZTFMgxKXVxXxlbg11/uwJ6XJ0rH9vJ9+990ne3d3IKXNn8M0bLuW0hbPTXZaIiIhktnGF151EZxk2wCygzVkuA/ZYa+dOfp2Hp/Aqmcpay2t/2cVdj61j7eYPyPd5uea8U7np0rOory5Pd3mToi8c4Vd7W7mn4RAGWFKSz8x8HzP9Xmbm+6jP91Lv95Hv1uiaDIlEIjzy8ma+f/+zHGzr5OIPncjfXreKObWV6S5NREREMtOEHpXzE+Bha+1jzvvVwMXW2q9PaomjoPAqU8EHDQe5+/GXefSVt4lEIlx6xsncuvocTp47Pd2lTYr9/UHu2tPKX3r62dsXoDMUSdhe5fMMBVrndWa+l5l+HyVeTfyUq/oGAtzzxCv8/M8vEQyFuOGiM/j8R8/LmisUREREZNJMKLy+aa39UNK6N6y1p01ScaOm8CpTycFDnfz66Vf5/fNv0N03wPIT53LL6nM4d/ECTBZNfNQRDNPQH2BvX3DwdW9fgL39QVoCoYS2JR4X9f6hMDsz30u9E3KrfZ6s+r5Ias3tXfznA8/zxzUbKMrP43MfPY+/uugMfF5PuksTERGRzDCh8PoksBb4DdHLiP8aWGmtvXQyKxwNhVeZirr7+vn982/y66de5WBbJ8fV13DL6nO4/MxF+DzZ/Qt7XzjCvv5YmHUCbl+Ahv4gjf1BwnFt/S4zGGzr4y9H9nup9XvxKNhmlQ8aDvLd+57ipbe3MbO6nK9dt4pLTz9J/4AhIiIiEwqvFcA/ASuJhtc1wP/RhE0iYxMIhXhi/Tvc9dg6tjYcpKasmE9ecibXXXAaxQX+dJd3zAUjlsaBaLBtiAVcZ/S2oS9IIO785DFQl5d4CXLsHtv6fC95msV2ynrp7W18974n+aChiWULZnLHDZeyZMHMdJclIiIi6TPxR+UYY4qstd2TVtI4KLxKNrDWsm7Ldu56bB2vvruDQn8eHz//Q3zq0jOprShNd3kZIWItzYHQ4CXIsXAbuyy5Ozx0n60BanyewUmjBi9HdoJtsUf32Wa6cCTCA2s28B8PPE9rRzerly/ibz9+MTOyZLIzERERGZMJjbyeDfwCKLLWzjLGLAE+a639wuTWeGQKr5Jt3t21n7sff5knXnsHY+Dy5adwy+qzWTirNt2lZSxrLe2hMA1x99Y2xL22BsMJ7cu87mETSNX7vczK91Hudesy1QzS0zfAXY+v4+7HXyYcifDJS87k9ivOpaQwP92liYiIyLEzofC6HriW6IzDy5x1W6y1iya1xFFQeJVsta+5jf9+6lXuf3EDfQMBVpyygJtXn81ZJ81TuBqjnlCYhv7g0GhtX9C53zbAwYEQ8XMjF7hdQzMiJwXcmjwPbn3v0+LAoQ7+44/P8dC6TZQW5vM3V53PdRechlej6CIiIrlgYuHVWrvcGPNWXHjdZK1dMuGqjLkM+AHgBn5hrf3Xw7VXeJVs19HTx++ee53fPL2elo5uTpxdxy2rz+bS00/WL+6TIBCJsL8/ODRaGzdD8r7+IMG4c6LXGGb4vYOXIMcmkprm8+B3u/C7DH6XC7/b4DVG/8hwFLy7az/fve8p1r+3k7l1VXz9ulVcsGyhvtciIiLZbULh9X7ge8B/AmcCXwZOs9Z+YkIVGeMGtgKrgAbgdeAGa+27I+2j8Cq5IhAM8cjLm7j78ZfZ0dhCXWUpN116Fh8771QK/XnpLi8rha3l4EBocDbk2CXJsXtue8OREfd1AXkug9/tIs9lyHe5yHNHw21sfXzYzXNF3+c57/2x90nt4vfPc9Z7XbkV3Ky1vLBxK//+u6fY2djCGSfM4Y4bLuWkOdnx3GQREREZZkLhtYro6OjFzoGeAr480dmGjTFnAf879sgdY8zfA1hr/2WkfRReJddEIhFe3PQBdz22jje37qakwM/1F57OX69aTnVZcbrLyxnWWtqCYfb0BWgOhBiIWAYilv5whP6IpT8SiXsfSdpmGXCWByIR+sPR9v2R0U+YF88Ng2E4LykMJ6/3x62Phd8Rw7TbDK7Lc4J0Jj2eKBgK84cX3uBHf3qB9u4+rjx7MV+59iJNciYiIpJ9JhRez7HWrjvSujFXZMy1wGXW2k877z8JLLfWfjGp3e3A7QDV9XM/9Pd3PTGRjxWZsg62dfLWB3vZ0diMyxiOnzmNZQtmUl5cmO7SZFwsIRsd8Q3Z6HIoElse2haMWKcNcduG2ifsH1uOJB47PL6cjMuAxxg8BrwuFwsL8zilJD+toTYQDPHm1t1s2t6AMYalC+o59bhZeLP8mckiIiK54murjp9QeN1grT31SOvGyhjzceDSpPB6hrX2SyPto5FXEdhz8BD3PPkyD6x5i4FgiPOXHs+tq8/hQwtn615ASSlinZFiZ+R3wBn5TRg5DiePICe2b+gP8lp7L9N8Hr4wp5orppXgSuOft33Nbdz5h2d4bP0WKkuL+PI1F3D1ucvwuHVvuIiIyBQ39vDqXNZ7NvBV4M64TSXA1ROdsEmXDYtMzKHOHu599jV+++xrtHX1csq8Gdx6+Tlc/KETcbtc6S5PstAb7b3cuaOJd7v7WViYx1fn1XBmeXpH/jdtb+A7v32Ct7bt5bj6Gr75iUtZccqCtNYkIiIiEzKu8HoecD7wOeAncZu6gEestR9MqCJjPEQnbLoI2Ed0wqa/sta+M9I+Cq8iw/UNBHjopY3c/cQr7G06xMyaCm6+7CyuWrGU/DxfusuTLBOxliebu/jhziYaB0KcXV7IV+dVc1yhP201WWt56o13+d7vnmZvcxsrTlnAN66/hONnTktbTSIiIjJuE7pseLa1dveklxQ99uXA94nOQXKXtfafD9de4VVkZOFIhGff/At3Pb6OzdsbKCsq4IaLTufGi5dTUaL7YmVyDUQi/G5fG7/Y20pPKMKVtaV8fnYVNXnetNUUCIb47bOv8ZOHXqS7b4BrVi7jS9dcqMnNREREppYJhdengY9ba9ud9+XAfbHLfY8lhVeRI7PW8ubWPdz9+Dqef+t98rwerlqxlJtXn83saZXpLk+yTHswzC/2tPC7/W14jOGT9RXcVF9BYRqfS9ze3cuPH3qRe599Da/Hw2c+vIKbLjtLVyKIiIhMDRMKr29Za5cdad2xoPAqMjY79jfzqyde5qF1mwiFI1z8oRO4dfU5LFkwM92lSZbZ2xfgP3c181RzF5VeN5+bXcVVdWVpnZl414FW7vzD0zz9xntMKy/hK9dexJVnL8ale8JFREQy2YTC65tEJ2ja47yfDTw40dmGx0PhVWR8mtu7+J9n1nPfs6/T2dvPqcfP4tbV53D+0uP1i7xMqs2dfdy5o4mNnX3MLfDx1bk1nFtRmNaZsN94fzffvfdJ3t65jxNn13HHDZey/MS5aatHREREDmtC4fUy4GfAi86qlcDt1tonJ628UVJ4FZmYnv4BHlizgXuefJX9Le3Mravi5svO4sqzl5DnS9+9ipJdrLU839rND3Y2sacvyGmlBXxtXg0nFadvUqdIJMJj67dw5x+eobG1gwuWLuTr169i3vTqtNUkIiIiKY0/vAIYY6qAM50DvWKtbZm82kZP4VVkcoTCYZ56/V3uemwd7+5upLK0iBsvPoNPXHg6ZUUF6S5PskQwYnngQDs/2d1CezDM6uoSvji3iun+9N172h8I8uunXuVnj6ylPxDk+gtO4wtXna9JzURERDLHuB6Vc4K19i/GmJSXB1trN0xScaOm8Coyuay1rH9vJ3c9to6X3t5Gfp6Pj61cxk2XnsWM6vJ0lydZoisU5ld7D/E/+w5hLdwwo5zbZlVSnMZJnVo7u/nRgy/whxfeJD/Py2c/spK/XrVcVyCIiIik37jC68+ttZ8xxjyfYrO11l44WdWNlsKryNGzde9B7n58HX9+9W2shUtPP4lbVp/DyXOnp7s0yRIH+oP8aFczf27qpMTj4jOzqrhuejleV/ruh92+v5l/v+8pXty0lelVZfztxy9m9fJFab1HV0REJMdN7LLhTKHwKnL0HTjUwa+fepXfP/8mPf0DLD9xLresPodzFy/QL/QyKf7S3c+dO5p4rb2XmX4vX5pbzcVVxWn98/XKOzv4zn1P8v6eAyyeX88dn7iUU4+flbZ6REREcti4Rl6vOdwRrbUPTLCoMVN4FTl2unr7+f0Lb/Cbp9ZzsK2T4+pruGX1OVx+5iJ8Hk+6y5MpzlrLurYefrCjmW29Aywuyedrc6tZWpq+e67DkQgPvbSJH/zxWZrbu7jk9JP424+vYta0irTVJCIikoPGFV7vdhZrgLOB55z3FwAvWGsPG26PBoVXkWMvEArx+KtbuOvxdXzQ0MS08hL++pLlnHXyfKZXllJamK8RWRm3sLU8fKCD/9rdQksgxIVVRXx5bg2z89M3qVPvQIC7H1vHXY+tI+g8H3ne9Gpm1VQwe1oFs6ZVUFZUoD/3IiIiR8eEHpXzKPAZa22j874O+JHCq0husdby0tvbuOvxdax/d+fg+nyfl9rKUuoqSqmrLKW2ooS6yjLqKofe+zUJjhxBXzjCfzcc4p69rQSt5WN1Zdw+q4oKX/pG+ZvaOvnRgy/w8jvb2d/aQfzfmSUFfmZNq2BWTTTMzppWORhsK4rT+1xbERGRKW5C4XWLtXZR3HsXsDl+3bGi8CqSGXbsb2b7/mYaWztoPNQRfW3t4MChTprbu4a1rygujAu2pc5XGXXO+6rSIlwuVxp6IpmmJRDiJ7tbeLCxnQK3i1tmVvJXM8rxu9P75yMQDNHQ3MaepkPsORj92n2wlT0HD7GvpZ1I3N+nhf68wWA7u7aCWTWVzJoWHbWtKi1SsBURETm8CYXX/wSOA+4FLPAJYJu19kuTWeFoKLyKZL5AMMTBts7BMLu/tX1wubG1g/2t7fT2BxL28bjd1FaUJITbWmckd7rzvijfn6YeSTps7xngP3Y2seZQD7V5Hr4wp5oP15TgysDgFwiF2N/SMRRo4wLuvpY2QuHIYNv8PF80yMZGbGsqmF1byayaCqrL9I84IiIiTHS2YWPM1cBK5+0aa+2Dk1TYmCi8ikx91lq6evsHw2xjazv748Jt46EOmto6E37hByjKzxsata0oHbxUORZua8pL8KbxuaFydLzR3sP3djTzXnc/JxTl8dW5NSwvL0x3WaMWDIVpbO1wAm2rE3APsafpEHub2giFw4Nt/T4vM2vKmT2tMumS5Apqy0sUbEVEJFdMOLzOBo6z1j5jjCkA3Nba4dcGHmUKryK5IRyJ0NLenXBJcmz5gLPc1tWbsI8xhurSooRR2/iwW1dZSnmxJtmZiiLW8kRTJz/c1cyBgRArKgr56twa5hfmpbu0CQlHIhxo7YiG2YOt7I4bsd3b3EYgGBps6/N6mFldPhhmYwF3dk0FtZWluBVsRUQke0zosuHPALcDFdba+caY44CfWGsvmtwaj0zhVURi+gYC0dHahHtu48JuawcDcb/8A+R5PcPDbdwEU7UVJeTnpW+WWzm8gUiE+/a18Ys9rfSGI3y0tpTPz66mOi/7Ht0UjkQ42NY57P7a2CXJ8X+2PW63M2I7fAKpuspSPG5dkSAiIlPKhMLrRuAMYL21dpmz7m1r7SmTWuIoKLyKyGhZa2nv7nXusx0ebA8c6qSpvYvk82BZUUHCqG1tRQnT48JtdVmxRrnSrD0Y5ud7Wvj9/jY8xnBTfQWfmllJQZondTpWIpEIze3dwwJt7H1fIDjY1uN2MaMqfsR2aAKpGVVlutReREQy0YTC63pr7XJjzFvW2mXGGA+wwVq7eLKrPBKFVxGZTMFQmKa22L22nTQmTS7VeKiDrt7+YfsV+H0U5/spys+juMAf/crPoyj5NX/4tuICP4X5eQrAk2BvX4Af7mzm6ZYuqnxuPje7mo/WluLJ4UvDrbW0dHSzO3601gm4uw+2JkyW5na5mF5ZOjhhVPwlyTOqy/B5sm9EW0REpoQJhdfvAO3Ap4AvAV8A3rXW/uNkVjgaCq8icqx19/XT2BoLs+20tHfT3TdAV18/3b1Dr529/XT39dPVN5Bwr+JICv15FBc4ATdV8C3wU1LgdwJwinb5eZrAx7Gps487dzSxqbOPeQU+vjq3hhUVetZqMmstrZ09caO1QxNI7T7YSnffwGBblzGDk6LVVpZEXytKqB2cLK2EsiLdQy4iIkfFhMKrC7gNuMQ50JPAL+xoZ3uaRAqvIjIVBIIhuvr66eodiAbauNeu3j66+gbo7o0G3eTt3X39dPb2EwyFj/g5sQAcHd31U1SQlzAiPPQ6FIBLCobaFfp9WROArbU819rND3Y0sbc/yOmlBXxtXg0nFusRS6MRu8w+PszubWrjwKHolQgHDnUmzIwM0dmRp5WXDA+3FaXUVUaXiwv0/RcRkTEbX3g1xriBe6y1f300qhorhVcRyRUDgWBCuE0c6Y0G367efrp6+1OOBHf1HTkAG2Mo9PsGw22qABy77Lm0qIAVpyzI+DASjFjub2zjZ7tbaQ+F+XBNCX8zp5o6vzfdpU1pkUiE1s4eJ8jG7iHvjAu3HTS1dRFJ+r2i0J83+Pzm+HAbH3g1SZqIiCSZ0Mjrk8BHrLWBIzY+yhReRURGLxaAh4fcofDbnfTalTQiHD/aVlzg58aLz+CTl5xJeXFmP2u1KxTmrr2t/LahDYC/mlHOrbMqKdYERUdNKBymub17MNDGZgCPhdvGQ520dnQP26+kMJ+6wWBbMnS5ctw6n1f334qI5JAJhdefAqcCDwM9sfXW2u9NVnWjpfAqInLsWGsZCIbo6u2nobmNe554hafffA+/z8v1F5zGLavPprqsON1lHlZjf5Af7Wrmz02dlHncfGZ2JR+vK8fr0r2a6RAIhjjY1jliuD3Q2kFHT9+w/SpLChPCbW1FbOQ2OopbU1asRwKJiGSPCYXXf0q13lr77QkWNWYKryIi6bVtXxM/f3Qtj726BbfbxTXnLuO2y89hRnV5uks7rPe6+vn+ziZea+9lpt/Ll+ZWc3FVsSYcykC9AwEOOs9wPtA6dJnyUODtpKd/IGEflzFUlxXHTSoVF26dy5YrSwqz5h5vEZEsN/7wOtjYmBLAWmu7JquqsVJ4FRHJDHubDvGLP7/Eg2s3ApYrzlrMZ644l7l1VekubUTWWl5q6+EHO5rY3htgcUk+fzuvhiUl+ekuTcaoq7c/4b7bg21DwTYWdPvjnncL4HG7mVZePOyeW82gLCKScSY08noacDcQuzasA7jVWvvmpJU3SgqvIiKZ5cChDu5+/GX+8MKbDARDXHr6SXz2IytZOKs23aWNKGQtDx/o4Me7m2kJhLm4qpgvza1mVr4mDsoW1lo6evoSAm1yuE01g3Ke18O0ihIqigspyPNRmO+LvvrzKPD7EtYVOOsStvl9g8sKwSIi4zah8LoZ+Btr7Vrn/Qrgv6y1iye1xFFQeBURyUytnd3c88Qr3Pvs6/T0D3DB0oXcfuVKlsyvT3dpI+oNR/h1wyHu2dtK0Fo+XlfOZ2ZXUq7JgXLC4WZQ7ujpo7c/QE9/gN6BAD19A/QOBEb1CCuIzuSdn+dNCL6xYFvoz3PC7/B1g0E4ti3PR2F+dJvX41YgFpFcMaHwus5ae86R1h0LCq8iIpmto6eP3z6znv9+8lU6evo46+R5fPYjKzn9hDkZ+4t380CIn+xu5k8HOihwu7htViU3zCgnT/dHSpJAKETvYKCNvkZD7kB0ff8APc662FdPfzT49vQntXXWjfYWLo/bFR3tzUsKvUmjvglhOW/k4Fzg9+HWn3ERyUwTCq93AgXAvYAFrgfagD8CWGs3TFqZR6DwKiIyNfT0D/C7597gV0+8TEtHN8sWzOT2K1eycvFxGRtit/cM8IOdTaw91ENtnocvzqlmdU0JrgytV6Y+ay39gWBisB0MxKnWDQwF47gR4fhR4uR7fQ/H7/MOjvAW5OdR4PPi9bgTv9yJ730ez4jbhr0fRxu3y5Wx5wgROWYmFF6fP8xma629cLxVjZXCq4jI1DIQCPLA2rf4xZ9forG1gxNn1/HZj6zk4g+dkLEzv77W1sOdO5v4S/cAJxblccOMCmbl+6j3e6nw6tJNyWyhcJi+geCwEd748DvStr6BIMFQmGA4HH2NfaV4HwiGjkr9xpjRhd4jvPcdMTB7Et67XQZjDC5jBgO0yxV9P/hqzNB6lythndsVXR87Rvz22Hp3wvbhx4h9js4xIpMw23AmUHgVEZmaAqEQj778Nj9/dC27D7Yyb3o1t19xLpefuSgjn88ZsZbHmzr5z13NHBgY+iXd7zJM93uZ4fc6rz5mxL0v9mReX0SOBmst4Uhk5IA7mhA8jjaBUGhs+4fDhMKRdH+7xsQkh2JjMK7hoTi2LiEUx9oMW5ccpKPHwYDBYEz0c43z+dFC4rbFtYmvM35bdBfnmHHHGrYt6ViDn5n0edHPiGtnUmxL+rxh7VJtS/F5w7aN1L/4bSk+63DbRvqs6LrU/TbOm4SfQVwbjBn555eiD8YYigv8rDhlwWj/OKaLwquIiKRfOBLhydfe4WePrGVrw0FmVpdz24dXcNWKpfgycKKkYMSypy/A/v4g+/qDNPQPLe/vD9Kd9EtxicflBNmhUBv7qvN7dR+tSBpEIhFC4UhCuA0kBOQQEWuJRGzCayygR6zFJm2LXxeORLDWDjuGtZHBtpHICMcd4XMjkaTjxm+PxK+LxH2eJey8Jq6L+6wUtVhrseAsR79nFguWxG3O99NaZxvR9rE8kdDOOVZsL2uTtsUdy8Yda9i2hLri6kuuy8Z9TlxdCdtG+Lzk2pM/L7l/U91x9TU89M9/k+4yjkThVUREMkckEuGFjVv56cNreHvnPqaVl3Dr5Wdz7XkfIj9vajyyxlpLZyjCvv4g++JCbSzY7u8PEkj6e7ba50kYqR1a9jEtz4NblwuKiGS8sYb+WOCPtbFJbUhxnITgnOofA5ICf6o2pPgsn8fDrGkVR/17NEEKryIiknmstbzyzg5++sgaXv/LLiqKC7npsrO44aLTKcr3p7u8CYlYS0sgFDdqG3SWA+zrD9I0ECJ+3NZjoDYvPtQmjt6W635bERHJDRMLr8aYs4E5wOA1Xdba/56MysZC4VVEJHu9uXU3P314DS+9vY2SAj83rlrOJy85k7KignSXdlQEI5YDA0MjtckjuIeCic8U9btMwkht8ghuke63FRGR7DCh2YZ/DcwHNgKxv0mttfbLk1beKCm8iohkv3d27uenj6zhmTffIz/PxycuPI2bLzub6rLidJd2TPWFIwmhdl/SZck9Sffblnpcg6G23p84glvn9+DT/bYiIjI1TCi8vgecZDPgGmOFVxGR3PFBQxM/f3Qtj736Nh6Pm4+tXMatl69gRlVZuktLO2stHaFIynttY6/BuL+2DUP32ybfazvD76VG99uKiEjmmFB4/QPwZWtt42RXNVYKryIiuWfTrpiAAAAgAElEQVT3wVZ++eeX+NNLmwDLR85ewmeuWMGc2qp0l5axYvfbJo/WxmZLPjgQIv43AI+BuhT3287M9zEzX48AEhGRY2pC4fV5YCnwGjAQW2+tvXKyqhsthVcRkdzV2NrBXY+v4/4X3iQYCnPZGSdz+0dWcvzMaekubcoJRiyNA8FhlyXH3rcl3W9b7nVHg6zfy6x8HzPzfczKjy4r2IqIyCSbUHg9L9V6a+2LEyxqzBReRUSkpaOb/37yFX777Gv09ge4YNlCPvuRlSyeX5/u0rJGbzh6SfLeviB7+wLs6XOW+wMcGAgltC3zuJmZnxhqZ/p9zMr3UeJVsBURkTHTo3JERCS7tHf38j9Pr+fXT6+ns6ePs0+ez2evXMlpC2frkTJHUX84+mzbaKANsKd/KOAmX45c6nE5gTZx1HZmvo8yBVsREUltQiOvZwI/BE4EfIAb6LHWlkxmhaOh8CoiIsl6+ga47/nX+dXjL9Pa2cOpx83i9o+s5NzFCxRij7GBSIQGZ4R2b19cwO2LjtjG/9ZR4gTb6CitdzDUzsr3UubRM21FRHLYhMLrG8AngD8ApwGfAo6z1v7DZFY4GgqvIiIykv5AkD++uIFfPraOA4c6OGl2HZ+9ciUXnXoCLj0mJu0CkfgR26Fgu7c/SGN/kPgH/xS5Xc4orXfYyG25V8FWRCTLTSy8WmtPM8ZsttYudta9bK09e5KLPCKFVxEROZJAKMQj6zbx8z+/xJ6Dh5g/vZrbP7KS1ctPxuPWpaqZKBCJPtN2MNT2B9jj3G+7P0WwHQy1fl/C/bYVCrYiItlgQuF1DXAx8AvgANAI3GytXTKZFY6GwquIiIxWKBzmydfe5aePrGHbviZmVpfz6StW8NFzluLzetJdnoxSMGLZ3x9kT38gcfIoJ9jGz4tcGAu2zoRR8SO3lQq2IiJTxYTC62zgINH7Xb8GlAL/Za3dNpkVjobCq4iIjFUkEuG5t97nZ4+sYcvO/dRWlHDL6nO49rxTyc/zpbs8mYDYI38GL0GOG7nd3x8kFPdrTr7LDF2CHButdUZuq30eBVsRkcwxsdmGjTH5wCxr7fuTWdVYKbyKiMh4WWtZt2U7P314DW9u3U1FcSE3rz6LT1x4OkX5/nSXJ5MsZC2NgzMhxyaRii7v6w8kBFu/E2xjobba56HE43a+XJR4h5Z9un9aRORom9DI60eAfwd81tq5xpilwP+x1l45uTUemcKriIhMhjf+soufPrKGdVu2U1Lg58ZVy/nkJWdSVlSQ7tLkGAhZywHnHtvo/bVDI7d7k4JtMr/LDAbbYo+LUu/Qcmx9qddFcXz49bgp9rjxujS6KyIyChMKr28CFwIvWGuXOesGJ286lhReRURkMr29Yx8/e2QNz274C/l5Pm646HRuuvQsqsuK012apEnYWrpCETpCYbqCYTpDYTpDEefVWR5cH33fFQrTEQzTFzn871UFbtdgmI0F22KPmxKvm1JPYuAt9boH3xd7XLh1WbOI5I4Jhdf11trlxpi3FF5FRCQbbd17kJ8/upbH12/B63HzsZWncuuHz2F6ZVm6S5MpJBixdDmhtsMJvNEA7IThlAE4Gn77jxB8i9xO6PUOjeSWxo3qJgfe2PtCtwuXgq+ITC0TCq+/BJ4FvgV8DPgy4LXWfm4yKxwNhVcRETmadh1o5Zd/fomH1m0E4MpzlvDx8z7E/BnVui9WjqqBSITOoBN4Q0mBN5hi9DduffAwv88ZGLykeTDweuMCb1z4LfK4yXMZvMbgdUW/fLHluFefyygQi8jRNKHwWgD8I3CJc6Angf9rre2fzApHQ+FVRESOhf2t7dz12Druf3EDgWAIgOqyYubVVTGntpJ506uYW1fN3NpK6ipLcWkSH0kTay39gyO+ETqcEd3hAXh4+O0KhQ97f+/huGHEgOtLEXaHvY9vHxeWo9tdeA14ndfo+xSBOun4PpfBYwweg2aPFpnaJjbbcKZQeBURkWOptbObjdsa2NnYzI79Lew60MqO/c109g79+63f52V2bSVzayuZW1fFvLpq5tZVMru2kkJ/XhqrFzk8ay294chgmO12RnGDEUvQWgLOa8L7uHWB2LZh7SMELQSc12AkQjACARtJ3N9ZHm+AHomBoTB7uAAdF4JjoddjDG5n2R23nLze4zK4nfWxbe6kdqNa73LWM7SceNzoska6JceMPbwaYx4+3BE127CIiOQiay2HunrY2dgaDbWNLexqbGVHYwv7mtuIxP3dWltRyty6WKitYo7zOq28RCNDIo6ItYSSw/LhAnRcm4C1KQPxWAJ4IGIJW0vYRmeiDjuBOrYcthCKtUnT98hAylA7POwaPC4nYKcIwsnrXQYMBgMYE/2c6Ff0zdD72PbEtgxuM0nt4to6jRKPNbw9qeowiceJnTYHjz/CcRlWS9Jnxh0r9rmxfUjqX+J6M/g++Qye+D0ZOiYJNScdz+nDsM9JWUfcZ6c45lAdSd+DuGMB+F0u5hdm/D+sjiu8NgN7gXuB9ckHsda+OIkFjorCq4iIZLJAMMTug4fY2djCjsZmdjW2Osst9PQPDLYr8PuYM62SudOdUFsbfZ1dW4nf501jD0TkcKwTbMNxITfshO9RrY9AiNhyNBgntwvZw69PCNijCd5HWB/tF0QA5x3WRpdjX1iw2GgbJz4MbreWWKKwg8caOm7CcSTtFhTk8YfT5qa7jCMZV3h1A6uAG4DFwJ+Be6217xyNCkdD4VVERKYiay0tHd3saGxh5/5mdh4YCrWNrR3E/j42xjC9snTYSO3cuiqqSos0WisiU14s7CYGYTsYfBODcDQwQ3IQtgkhOuKE66H94gPzUBgfDOhJnxu3ivh4FPus+PXx6Sl+n6HjDLVIDvqJ+8S1S/H5dtj/D//+DP+cpH9ISCrUAgVuw2llhWS4id3zaozJIxpivwv8H2vtDyevttFTeBURkWzTNxAYHK2NfUUvRW6hLxAcbFeUn5cy1M6qqcDn9aSxByIiIpNqfOHVCa0fJhpc5wAPA3dZa/dNcoGjovAqIiK5IhKJcLCta3ioPdDCgUOdg+1cxlBfU55w+fHc6VXMra2ivLhAo7UiIjLVjOuy4XuARcDjwH3W2i2TVo0x/xv4DNDsrPoHa+1jR9pP4VVERAR6+gfYfSA6SVR8uN11oJUB59E+AKWF+cNGaufWVVFfXY7X405jD0REREY0rvAaAXqct/ENDWCttSXjriYaXruttf8+lv0UXkVEREYWiURobO0YFmp3NLbQ0tE92M7jdjGrpmJYqJ1bV0VpYX4aeyAiIpI6vB72BhlrrZ64LiIiMoW4XC5mVJczo7qccxcfl7Ctq7d/KNAecELt/hbWbv6AYGjoASCVJYXRy4+nV3HK3BksWVDPvOnVuF36tUBERNJn1BM2TfoHR0debwY6gTeAr1tr2460n0ZeRUREJlcoHGZfS/uwkdpt+5rp7OkDoNCfxynzZrB4/gyWzJ/J4vkzqCwpSnPlIiKSpSY22/C4PtGYZ4DaFJv+EXgVaCF6OfL/BeqstbeOcJzbgdsBZs2a9aHdu3cfnYJFRERkkLWW3QcPsXl7A5u3N7BpewPv7z1AKBx9cMXM6nIWL6hnyfx6lsyfycJZ0/B5NOuxiIhM2LEPr6NljJkDPGqtXXSkthp5FRERSZ++gQDv7m5k07ahQHuwLTrzsc/r4aTZdSyZX8/i+fUsWVBPXUWpZjsWEZGxyqzwaoyps9Y2OstfA5Zbaz9xpP0UXkVERDLLgUMdbN6+j03b97JpewPv7Nw/OONxdVkxi+dF75tdMn8mJ8+dTkGeL80Vi4hIhsu48PprYCnRy4Z3AZ+NhdnDUXgVERHJbMFQmK17D7Jp+14n1Daw+2ArAG6Xi+Pqa4ZGZ+fXM6e2EpcmgxIRkSGZFV7HS+FVRERk6mnr6mHzjn3RS423NbB5RwPdfQMAlBT4WeyE2cXz6lk8fwZlRQVprlhERNJI4VVEREQyQyQSYeeBVjZta3BGaBv4oKGJiPN7yZzaSmciqHoWL5jJ8fU1eNzuNFctIiLHiMKriIiIZK6evgG27No/OBHUpm17ae3sAcDv83LynOnOvbPRr5rykjRXLCIiR4nCq4iIiEwd1lr2t7RHg6zz9d7uRoKhMAC1FaXOc2ejk0GdNKcOv8+b5qpFRGQSKLyKiIjI1BYIhnhvzwE2b9/rXHLcwL6WdgA8bhcnzKodvHd2yYJ6ZtVU6FE9IiJTj8KriIiIZJ/m9i4279jHpm17eXvHPjbv2EffQACAsqKCuHtn6zll7gyKC/xprlhERI5A4VVERESyXzgSYVtDU8Llxjv2NwNgjGFeXVXcvbMzmT+jGrce1SMikkkUXkVERCQ3dfb0sWXnfjZt3+tMBtVAR08fAAV+H6fMnTH43NnF8+upKi1Kc8UiIjlN4VVEREQEopNB7T54yJnZeC+bt+/j/b0HCIUjAJQXF1BXUUpdZfxXWfS1ooSq0iJcGq0VETlaFF5FRERERtI3EODd3Y1s2tbA7oOtNLZ2RL8OddDbH0ho63G7qa0occLsUMCtdZanV5ZSmJ+Xpp6IiEx5Cq8iIiIiY2Wtpau3fzDIDobauHDb1NZFOBJJ2K+kwJ80cjsUbusqS6kpK8bjdqepVyIiGS1lePUc6ypEREREphJjDCWF+ZQU5rNwVm3KNqFwmOb27rhA205jawcHWjvZf6iDDR/spdO5xzbGZQw15SVMHwy2JYmXJ1eWUlLg16N+REQcCq8iIiIiE+RxuwcD50h6+gYSRm4PxC1v3t7Ak693EgqHE/Yp8PuGLksedg9uKdMqSvB59OuciOQGne1EREREjoHC/DwWzKhhwYyalNsjkQitnT0jXp787q5GDnX1JOxjjKGypDAh0E6vLKWuIjp6W1tZQkVxoUZvRSQr6J5XERERkSmiPxDkwKHOuFDbPhh0Y+v7A8GEffK8noR7bQe/KoYuV87P86WpRyIiKemeVxEREZGpzO/zMqe2kjm1lSm3W2tp7+6lsbWD/a3DL1Fe9/Y2mju6SR68iD0aqLqsGK/HjcftwuOOvUaX3c6y1+3G7XLWx9q6nPaeuOXkfeKOlXBclwuvZ2jZ43bh9cR9htNeo8ciovAqIiIikiWMMZQXF1JeXMhJc6anbBMIhWhq60qYLTm23NTeRSgcJhSOEAqFCUUi0eVwmHA4QjBuOXKMr96LD7NutwtvUqj2uN1OcHZCtWuE4J3cPik4J+/jcbmc5Vj7xLZuV2Igd8eF+aHPGv4ZbldinXpusMiRKbyKiIiI5BCfx0N9dTn11eUTOk4kFmwjTtANRwhHIgTDYUIhJ+RGnMAbii6HwtHt4fBQKA6FEwNyKBwm6BwrFDtWZKht2DlGbDn5GMl1DAQHUtaR8rOdbem4rc4YEx2Fdg+F5aEgnBSg40OyJ0Xwjg/Jcfu544JzbHTb5TIYYzBODbEBboMh+r/outjId2K7xPaxdtFNTvv4Y8S1x5jh+xD3OWZon8HjJG1L+NxYvSnqjG1LWWfcZya3Sagnub6kPg5+z+Lfx30GIx3HDN8vVdtU+8UXnfwzOlxbn9fN9MoypiKFVxEREREZM5fLhc/lwgeQl+5qJldyMB8KvHGhejA8D4XroVCe2C72PhwL5rHw7Bw3HAvccZ8VC+nR/SKJQTupnoFAkJ64/YbVE9eP+BF0yU3H1dfw0D//TbrLGBeFVxERERGRONkczOOFI9Hwi43eLx0bb44tW2uj25wt1iZti2/vtIu1GWkbxC0nHSuxXVz7uHaxbanqsUMfmrIeS+rPjNU0+D6+PUn7J9QxtB92eNuRPoO49zbFfvHvk7//w2qNb3ukfjnbiwv8TFUKryIiIiIiOcjtil5CLDJV6E+riIiIiIiIZDyFVxEREREREcl4Cq8iIiIiIiKS8RReRUREREREJOMpvIqIiIiIiEjGU3gVERERERGRjKfwKiIiIiIiIhlP4VVEREREREQynsKriIiIiIiIZDyFVxEREREREcl4Cq8iIiIiIiKS8RReRUREREREJOMZa226axgTY0wzsDvddRxGFdCS7iLSJFf7nqv9htzte672G3K37+p37snVvudqvyF3+56r/Ybc7ftU6HeLtfay5JVTLrxmOmPMG9ba09JdRzrkat9ztd+Qu33P1X5D7vZd/c49udr3XO035G7fc7XfkLt9n8r91mXDIiIiIiIikvEUXkVERERERCTjKbxOvp+lu4A0ytW+52q/IXf7nqv9htztu/qde3K177nab8jdvudqvyF3+z5l+617XkVERERERCTjaeRVREREREREMp7C6wQYY9zGmLeMMY+m2GaMMf9hjNlmjNlsjDk1HTUeDcaYMmPM/caYvxhj3jPGnJW0PSv7boz5mjHmHWPMFmPMvcYYf9L2rOm3MeYuY0yTMWZL3LoKY8zTxpgPnNfyEfa9zBjzvvN9+Naxq3riRuj3d50/65uNMQ8aY8pG2HfK9htS9z1u2zeMMdYYUzXCvlO27yP12xjzJadP7xhjvjPCvlnVb2PMUmPMq8aYjcaYN4wxZ4yw71Tu90xjzPPO313vGGO+4qzPhfPbSH3P6nPcSP2O257N57cR+57N57jD/FnPhXOc3xjzmjFmk9P3bzvrs+ccZ63V1zi/gL8Ffgs8mmLb5cDjgAHOBNanu95J7Pc9wKedZR9Qlu19B2YAO4F85/3vgZuztd/ASuBUYEvcuu8A33KWvwX8W4r93MB2YJ7zZ2MTcFK6+zPBfl8CeJzlf8vGfo/Ud2f9TOBJos/Xrsq2vo/wM78AeAbIc97X5Ei/nwJWO8uXAy9kYb/rgFOd5WJgK3BSjpzfRup7Vp/jRuq38z7bz28j/cyz+hx3mH7nwjnOAEXOshdYT/R30qw5x2nkdZyMMfXAh4FfjNDko8B/26hXgTJjTN0xK/AoMcaUEP2l55cA1tqAtbY9qVlW9h3wAPnGGA9QAOxP2p41/bbWrgEOJa3+KNF/uMB5vSrFrmcA26y1O6y1AeA+Z78pIVW/rbVPWWtDzttXgfoUu07pfsOIP3OAO4E7gJEmSJjSfR+h358H/tVaO+C0aUqxazb22wIlznIpw89xMPX73Wit3eAsdwHvEf3HyVw4v6Xse7af4w7zM4fsP7+N1PesPscdpt+5cI6z1tpu563X+bJk0TlO4XX8vk/0hBcZYfsMYG/c+waGTpZT2TygGbjbRC+Z/oUxpjCpTdb13Vq7D/h3YA/QCHRYa59KapZ1/U4yzVrbCNG/GICaFG2y/XtwK9HR9WRZ2W9jzJXAPmvtpsM0y8a+Hw+ca4xZb4x50Rhzeoo22djvrwLfNcbsJXq++/sUbbKm38aYOcAyoiMTOXV+S+p7vKw+x8X3O9fOb0k/85w5xyX1OyfOcSZ6W+NGoAl42lqbVec4hddxMMZcATRZa988XLMU67JhamcP0UvNfmytXQb0EL38IF7W9d25N+CjwFxgOlBojPnr5GYpdp3S/R6HrP0eGGP+EQgB/5Nqc4p1U7rfxpgC4B+B/3WkpinWTem+Ez3PlRO91OqbwO+NMcn9zMZ+fx74mrV2JvA1nCtskmRFv40xRcAfga9aaztHu1uKdVnT92w/x8X3m2g/c+b8luJnnhPnuBT9zolznLU2bK1dSvQqijOMMYtGueuU6LvC6/icA1xpjNlFdEj9QmPMb5LaNBC9lyKmntSXJ0w1DUCD8684APcTDbPJbbKt7xcDO621zdbaIPAAcHZSm2zsd7yDscugnddUlxll5ffAGHMTcAVwo7U21Yk8G/s9n+g/1mxyznX1wAZjTG1Su2zsewPwgHP51WtEr7BJnswlG/t9E9FzG8AfiF5ClmzK99sY4yX6C+3/WGtj/c2J89sIfc/6c1yKfufM+W2En3nWn+NG6HdOnONinNv6XgAuI4vOcQqv42Ct/Xtrbb21dg7wCeA5a23yKNzDwKdM1JlELzNtPNa1TjZr7QFgrzFmobPqIuDdpGbZ2Pc9wJnGmALnXycvInoPRbxs7He8h4me+HFeH0rR5nXgOGPMXGOMj+h/Hw8fo/qOCmPMZcDfAVdaa3tHaJZ1/bbWvm2trbHWznHOdQ1EJ8A4kNQ06/oO/Am4EMAYczzRiStaktpkY7/3A+c5yxcCH6RoM6X77Zy/fwm8Z639XtymrD+/jdT3bD/Hpep3rpzfDvPnPavPcYfpdy6c46qNM2O4MSaf6ODLX8imc5zNgFmjpvIXcD7ObMPA54DP2aHZvn5EdNaut4HT0l3rJPZ5KfAGsJnoCbA8F/oOfJvoCWAL8GsgL1v7DdxL9N7eING/1G8DKoFniZ7snwUqnLbTgcfi9r2c6Mx+24F/THdfJqHf24jeA7LR+fpJtvV7pL4nbd+FMxtnNvV9hJ+5D/iN89/6BuDCHOn3CuBNojNMrgc+lIX9XkH0MrjNcf9NX54j57eR+p7V57iR+p3UJlvPbyP9zLP6HHeYfufCOW4x8JbT9y3A/3LWZ805zjiFioiIiIiIiGQsXTYsIiIiIiIiGU/hVURERERERDKewquIiIiIiIhkPIVXERERERERyXiedBcwDhOeYeriyK8no460e8b1yTHvkw19V79HLxv6DWPvu/o9tanfo5Or/Ybs6Lv6PXrZ0G/Qf+OjpX5PbeP5b3wEJtVKjbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjedJdgIiIiIiICMAzrk+muwTJYBp5FRERERERkYyn8CoiIiIiIiIZT+FVRERERERyQnt7O9deey0nnHACJ554Iq+88kq6S5Ix0D2vIiIiIiKSE77yla9w2WWXcf/99xMIBOjt7U13STIGCq8iIiIiIhlGExdNvs7OTtasWcOvfvUrAHw+Hz6fL71FyZjosmEREREREcl6O3bsoLq6mltuuYVly5bx6U9/mp6ennSXJWOg8CoiIiIikkN+8IMfsGjRIk4++WS+//3vp7ucYyYUCrFhwwY+//nP89Zbb1FYWMi//uu/prssGQOFVxERERGRHLFlyxZ+/vOf89prr7Fp0yYeffRRPvjgg3SXdUzU19dTX1/P8uXLAbj22mvZsGFDmquSsdA9ryIiIiIiOeK9997jzDPPpKCgAIDzzjuPBx98kDvuuCPNlR19tbW1zJw5k/fff5+FCxfy7LPPctJJJ6W7LED3OI+WRl5FRERERHLEokWLWLNmDa2trfT29vLYY4+xd+/edJd1zPzwhz/kxhtvZPHixWzcuJF/+Id/SHdJMgYaeRURERERyREnnngif/d3f8eqVasoKipiyZIleDy5EwmWLl3KG2+8ke4yZJw08ioiIiIikkNuu+02NmzYwJo1a6ioqOC4445Ld0kyyW699VZqampYtGjR4LpvfvObnHDCCSxevJirr76a9vb2NFY4PgqvIiIiIiI5pKmpCYA9e/bwwAMPcMMNN6S5IplsN998M0888UTCulWrVrFlyxY2b97M8ccfz7/8y7+kqbrxy51rBEREREREhI997GO0trbi9Xr50Y9+RHl5ebpLkkm2cuVKdu3albDukksuGVw+88wzuf/++49xVROn8CoiIiIyBWg2Upksa9euTXcJkmZ33XUX119/fbrLGDNdNiwiIiIiIpIj/vmf/xmPx8ONN96Y7lLGTCOvIiIiMqVoBDK36OctMnnuueceHn30UZ599lmMMekuZ8w08ioiIiKSY1LNRArRZ2AuXLiQk08+mTvuuCNN1YnI0fDEE0/wb//2bzz88MMUFBSku5xxUXgVERGRnJUqxF1//fUsXbqUpUuXMmfOHJYuXZrGCo+OVDORPv/88zz00ENs3ryZd955h2984xtpqu7oytWfueSWG264gbPOOov333+f+vp6fvnLX/LFL36Rrq4uVq1axdKlS/nc5z6X7jLHTJcNi4iISM66+eab+eIXv8inPvWpwXW/+93vBpe//vWvU1pamo7SjqpUM5H++Mc/5lvf+hZ5eXkA1NTUpKGyoy9Xf+aSW+69995h62677bY0VDK5NPIqIiIiOWvlypVUVFSk3Gat5fe//33OPANz69atrF27luXLl3Peeefx+uuvp7uko0I/c5GpSyOvIiIiIimsXbuWadOmcdxxx6W7lGMiFArR1tbGq6++yuuvv851113Hjh07puSkLuOVaz9zkalGI68iIiIiKdx77705NQJXX1/PNddcgzGGM844A5fLRUtLS7rLOqZy7WcuMtVo5FVEREQkSSgU4oEHHuDNN99MdynHzFVXXcVzzz3H+eefz9atWwkEAlRVVaW7rGMmF3/mIlONwquIiIhIkmeeeYYTTjiB+vr6dJdyVNxwww288MILtLS0UF9fz7e//W1uvfVWbr31VhYtWoTP5+Oee+7JqUuGs/1nLpINFF5FREQkZ6UKcbfddhv33XdfVl8+mmomUoDf/OY3x7iSYy9Xf+Yi2UDhVURERHLWSCHuV7/61bEtRI4Z/cxFpi5N2CQiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjKbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp7Cq4iIiIiIiGQ8hVcRERERERHJeAqvIiIiIiIikvEUXkVERERERCTjKbyKiIiIiIhIxlN4FRERERERkYyn8CoiIiIiIiIZT+FVREREREREMp4n3QWIiIhMxDOuT6a7BBERETkGNPIqIiIiIiIiGU/hVUREJE5/fz9nnHEGS5Ys4eSTT+af/umfBrf98Ic/ZOHChZx88snccccdaaxSREQk9+iyYRERkTh5eXk899xzFBUVEZXd0KsAAAlsSURBVAwGWbFiBatXr6avr4+HHnqIzZs3k5eXR1NTU7pLFRERySkaeRUREYljjKGoqAiAYDBIMBjEGMOPf/xjvvWtb5GXlwdATU1NOssUERHJOQqvIiIiScLhMEuXLqWmpoZVq1axfPlytm7dytq1a1m+fDnnnXcer7/+errLFBERySm6bFhERCSJ2+1m48aNtLe3c/XVV7NlyxZCoRBtbW28+uqrvP7661x33XXs2LEDY0y6yxUREckJGnkVEREZQVlZGeeffz5PPPEE9fX1XHPNNRhjOOOMM3C5XLS0tKS7RBERkZyh8CoiIhKnubmZ9vZ2APr6+njmmWc44YQTuOqqq3juuecA2Lp1K4FAgKqqqnSWKiIiklN02bCIiEicxsZGbrrpJsLhMJFIhOuuu44rrriC/9/e/YVWfd5xHH//TsMJuFa80LDaFEJbTMQ0O6KYwLCRjhMq64WR4IVWOk8D20WHhTUSkIKtSLCFUnVgkGF74Ai96YVpKlJaUxpCsybrnxCEOQmOZd0aAikpKXpI99tFUhdnbE1y2ufk5P26yu8P5HP1kG+e7/P95fN5MpkMtbW1JJNJstls0Jbh9xL7g/1uSZJCsHiVJGmOuro6Pv3009vuJ5NJcrlcgESSJAlsG5YkSbO+/fZbNm/ezJNPPglAW1sbNTU11NXV0dzcfLOdWpKkECxeJUkSACdOnGDjxo03r9PpNMPDwwwNDbFhwwY6OjoCppMkrXQWr5IkidHRUd555x1aW1tv3mtqaqKsbOaEUUNDA6Ojo6HiSZJk8SpJkuC5557j5ZdfJpGY/0+Ds2fPsnPnzp84lSRJ/+PAJkklxyms0sJ0d3dTUVHBli1b+OCDD257fuzYMcrKyti3b99PH06SpFkWr5IkrXB9fX10dXVx4cIFrl+/zuTkJE899RS5XI5sNkt3dzfvv/9+0E8DSZJk27Ak3YX/n8IKcOrUKaqrq9m0aROHDh0KmE5amo6ODkZHR7l27Rpvvvkmjz/+OLlcjosXL3L8+HG6urpYtWpV6JiSpBXOnVdJugvfTWGdnJwEoKenh/PnzzM0NER5eTljY2OBE0qF9+yzz3Ljxg3S6TQwM7Sps7MzcCpJ0kpl8SpJP+C7KayHDx/m1VdfBeD06dO0t7dTXl4OQEVFRciIUsHs2LGDHTt2AHD16tWwYSRJmsO2YUn6AfNNYb1y5Qq9vb3U19fT2NjIwMBAwISSJEmlz+JVkr7H3Cmsc01PTzMxMUF/fz+vvPIKe/bsIY7jQCklSZJKn23DkvQ97jSFtbKykt27dxNFEdu2bSORSDA+Ps66detCR5YkSSpJ7rxK0ve40xTWXbt2cenSJWCmhTifz7N27drAaSVJkkrXitx5fS+xP3QESctcJpMhk8lQW1tLMpkkm80G/wama5skSSplK7J4laTFmDuFNZlMksvlwgaSJElaQSxeC6Sqqor77ruPe+65h7KyMgYHB2lra+Ptt98mmUzy8MMP8/rrr7NmzZrQUSXprriuSZKkYuKZ1wLq6enhs88+Y3BwEIB0Os3w8DBDQ0Ns2LCBjo6OwAklaWFc1yRJUrGweP0RNTU1UVY2s7nd0NDA6Oho4ESStDSua5IkKRSL1wKJooimpia2bNnCmTNnbnt+9uxZdu7cGSCZJC2O65okSSomnnktkL6+PtavX8/Y2BjpdJqamhoee+wxAI4dO0ZZWRn79u0LnHLlcgqrtHCua5IkqZi481og69evB6CiooLm5mY+/vhjALLZLN3d3Zw7dy74ZzQkaSFc1yRJUjGxeC2Aqakpvv7665s/v/vuu9TW1nLx4kWOHz9OV1cXq1atCpxShVRVVcWjjz5KKpVi69atN++fOnWK6upqNm3axKFDhwImlJbGdU2SJBUb24YL4Msvv6S5uRmA6elp9u7dyxNPPMEjjzzCjRs3SKfTwMxwk87OzpBRVUA9PT2sXbv2luvz588zNDREeXk5Y2NjAdNJS+O6JkmSio3FawE89NBDfP7557fdv3r1aoA0CuX06dO0t7dTXl4OzLRaSsuV65okSSo2tg1LizDfFNYrV67Q29tLfX09jY2NDAwMBE4pSZIklQ53XqVFmG8K6/T0NBMTE/T39zMwMMCePXsYGRlxoI0kSZJUAO68Sosw3xTWyspKdu/eTRRFbNu2jUQiwfj4eOCkkiRJUmmweJUW6E5TWHft2sWlS5eAmRbifD5/y0AnSZIkSYtn27C0QHeawprP58lkMtTW1pJMJslms7YMS5IkSQVi8Sot0J2msCaTSXK5XIBEkiRJUumzeJVK2HuJ/aEjSJIkSQXhmVdJkiRJUtGzeJV017766itaWlqoqalh48aNfPTRR7zwwgvU1dWRSqVoamriiy++CB1TkiRJJSiK4zh0hoVadoGlUvH000+zfft2WltbyefzfPPNNyQSCVavXg3AyZMnuXz5Mp2dnYGTSpIkaRmbd+qpZ14l3ZXJyUk+/PBD3njjDWBmQFUymbzlnampKScsS5Ik6Udh27CWZL420iNHjvDAAw+QSqVIpVJcuHAhdEwVwMjICOvWrePAgQNs3ryZ1tZWpqamADh8+DAPPvgg586d46WXXgqcVJIkSaXItmEtyXxtpK+99hr33nsvzz//fOh4KqDBwUEaGhro6+ujvr6egwcPsnr1ao4ePXrznY6ODq5fv86LL74YMKkkSZKWuXlb+dx51aJ910b6zDPPADNtpGvWrAmcSj+WyspKKisrqa+vB6ClpYVPPvnklnf27t3LW2+9FSKeJEmSStxy3HlVkYiiKAWcAS4DvwD+AhwE2oDfAJPAIPCHOI4nAsVUAUVR1Au0xnH81yiKjgA/A87Ecfy32ee/BxrjOG4JGFOSJEklyOJVixZF0VagH/hlHMd/jqLoBDMF6x+BcWZavI8C98dxnAmXVIUy+w+LPwFJYAQ4MHtdDfwH+DvwuziO/xkspCRJkkqSxasWLYqinwP9cRxXzV5vB9rjOP71nHeqgO44jmtDZJQkSZJUGjzzqkWL4/jfwD+iKKqevfUr4HIURffPea0ZGP7Jw0mSJEkqKe68aknu0EZ6Ekgx0zZ8DfhtHMf/CpVRkiRJ0vJn8SpJkiRJKnq2DUuSJEmSip7FqyRJkiSp6Fm8SpIkSZKKnsWrJEmSJKnoWbxKkiRJkoqexaskSZIkqehZvEqSJEmSip7FqyRJkiSp6P0XLohPIVuum/UAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/sphinx/source/_static/simulation_output.png b/sphinx/source/_static/simulation_output.png index ff640bcec..86b8e8df7 100644 Binary files a/sphinx/source/_static/simulation_output.png and b/sphinx/source/_static/simulation_output.png differ diff --git a/sphinx/source/tutorial/Classification_Water_Drilling_Simulation.ipynb b/sphinx/source/tutorial/Classification_Water_Drilling_Simulation.ipynb index 7f0206338..01c33368e 100644 --- a/sphinx/source/tutorial/Classification_Water_Drilling_Simulation.ipynb +++ b/sphinx/source/tutorial/Classification_Water_Drilling_Simulation.ipynb @@ -209,7 +209,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "no match found for docstring '[see superclass' in class LearnerRanker\n" + "inheritdoc:no match found for docstring '[see superclass' in class LearnerRanker\n" ] } ], @@ -284,6 +284,37 @@ { "cell_type": "code", "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import sklearn\n", + "import sklearndf" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sklearndf.classification._classification.GradientBoostingClassifierDF" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sklearn.ensemble.RandomForestClassifier\n", + "sklearndf.classification.GradientBoostingClassifierDF" + ] + }, + { + "cell_type": "code", + "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:33:30.629194Z", @@ -315,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:33:30.656685Z", @@ -474,7 +505,7 @@ "4 2.092908 0.0 0.052850 " ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -493,7 +524,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:33:30.665214Z", @@ -526,7 +557,31 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Weight on bit (kg)', 'Rotation speed (rpm)', 'Depth of operation (m)',\n", + " 'Mud density (kg/L)', 'Rate of Penetration (ft/h)', 'Linear4',\n", + " 'Mud Flow in (m3/s)', 'Nonlinear2', 'Nonlinear3', 'Temperature (C)',\n", + " 'Hole diameter (m)', 'Incident', 'Inverse Rate of Penetration (h/ft)'],\n", + " dtype='object')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:53:50.515286Z", @@ -592,7 +647,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -604,7 +659,7 @@ " 'Inverse Rate of Penetration (h/ft)'], dtype=object)" ] }, - "execution_count": 9, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -615,7 +670,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" @@ -666,7 +721,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:33:54.961942Z", @@ -702,7 +757,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "metadata": { "pycharm": { "name": "#%%\n" @@ -734,7 +789,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:34:04.796507Z", @@ -768,7 +823,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:34:04.806643Z", @@ -786,7 +841,7 @@ " random_state=42))" ] }, - "execution_count": 14, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -808,7 +863,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:34:04.813316Z", @@ -956,7 +1011,7 @@ "5 RandomForestClassifierDF 11.0 NaN " ] }, - "execution_count": 15, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1008,7 +1063,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T08:34:09.495621Z", @@ -1058,7 +1113,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 20, "metadata": { "pycharm": { "name": "#%%\n" @@ -1099,7 +1154,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "metadata": { "ExecuteTime": { "end_time": "2020-08-31T09:29:19.652252Z", @@ -1143,7 +1198,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 22, "metadata": { "pycharm": { "name": "#%%\n" @@ -1181,7 +1236,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1194,10 +1249,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 21, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1217,7 +1272,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": { "pycharm": { "name": "#%%\n" @@ -1257,7 +1312,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 25, "metadata": { "pycharm": { "name": "#%%\n" @@ -1313,7 +1368,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 26, "metadata": { "pycharm": { "name": "#%%\n" @@ -1338,7 +1393,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" @@ -1347,7 +1402,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHYCAYAAAB0hQTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXzU1b3/8dfJZCaZ7PtGNvaELARIIovgVhY3XHCpS1vUVq1WUVtbbeu9rbe2/bX01oqt9mq9tHWprVbttVSRKkURZSkYAmEnG1nInslkJpnl/P6YyZhACKAJkwyf5+ORxyzf7XxnEpj3fM73HKW1RgghhBBCCCGEGO2C/N0AIYQQQgghhBDiVEiAFUIIIYQQQggxJkiAFUIIIYQQQggxJkiAFUIIIYQQQggxJkiAFUIIIYQQQggxJkiAFUIIIYQQQggxJkiAFUIIIYQQQggxJkiAFUIIIY6hlJqqlNqulLIope71d3tGklJqvlJq7wjuf6NSaob3vlJK/a9Sqk0ptfkUt/+BUur5IZZvVkrlDVd7hRBCjG4SYIUQQviFUqpSKWVTSnUppRqUUquVUhGnuG22UkorpYJHqHnfBtZrrSO11k8Mcvz1Sim7t+3NSqm/KqVSR6gtfcc8XylVOwz70UqpSX2Ptdbva62nft79nuBYlwMWrfV271PnAguBdK116VDnpJRaq5RadAqHWQk8OjwtFkIIMdpJgBVCCOFPl2utI4AiYAbwsJ/b0ycL2HWSdb7hbfsUIAb45Yi36iRGMNB/VncCf+z3OAuo1Fpbh9pIKRUOzAL+dQrH+BtwwUh/gSCEEGJ0kAArhBDC77TWDcDbeIIsAEqpS73deDuVUjVKqR/022SD97bdWwWd493mVqVUhbeL6ttKqawTHVMptVQptUsp1e6tqOZ6n38XuAB40rvvKSdpeyvwKpDv3T5EKbVSKVWtlGpUSj2tlDJ7l52vlKpVSn1TKXVUKVWvlLqlX5sG3dYb6P4BpHnb1KWUSvN2r31FKfW8UqoTWK6UKlVKbfKeV71S6kmllMm7/77X7RPvPq4/tgqqlMr1vh7t3tdnab9lq5VSv1ZK/d3bvfpjpdTEE7y+JuBCvCFUKXUb8Cwwx3vsnw92Tt7NLwI2aq17vI9NSqk/eI+5SylV3O/1twPbgFOp1gohhBjjJMAKIYTwO6VUOnAxcKDf01bgy3iqm5cCX1dKXeldtsB7G6O1jtBab/Iu+y5wNZAIvA+8dILjTfEuu8+77hrg/5RSJq31hd5tv+Hd976TtD0BWAb0dZP9f3iqskXAJGAc8B/9NkkBor3P3wb8WikVO9S23orlxUCdt00RWus67zZXAK94X6cXABdwP5AAzMETBu8C0Fr3vW7Tvft4+ZhzMQL/B6wFkoB7gBeUUv27GN8A/BCIxfN+PXaCl2Yy4NZa13qP/Ts8FdlN3mM/OMQ5XQL8vd++lgJ/8p7j34AnjzlWBTD9BO0QQggRQCTACiGE8KfXlVIWoAY4Cvxn3wKt9Xqt9U6ttVtrXYYncJ43xL7uAH6ita7QWjuBHwNFJ6jCXg/8XWv9jtbagec6SjMw9zTa/oRSqh34BKgHHlBKKeBrwP1a61attcXbji/2284BPKq1dmit1wBdwNRT3HYwm7TWr3tfJ5vWepvW+iOttVNrXQn8lqFft/5mAxHAT7XWvVrrd4E38YTWPn/VWm/2vsYv0K9qfowYwHKKxz3WxXi+VOjzgdZ6jdbahadL8rFh1eI9nhBCiAA32q6VEUIIcXa5Umu9Til1HvAinqphO4BS6hzgp3i65pqAEOAvQ+wrC/iVUuoX/Z5TeKqYVcesm9b/Oa21WylV4133VN2rtX62/xNKqSQgDNjmyaO+Nhj6rdbiDX99uvGExsRT2HYwNce0YQrw30Cxd3/BeLrYnoo0oEZr7e73XBUDX5eGQdo+mDYg8hSP66OUKgA6tdb9z+vYY4YqpYL7vY6ReH9vhBBCBDapwAohhPA7rfW/gNV4KqF9XsTTXTRDax0NPI0n0AHoQXZTA9yhtY7p92PWWn84yLp1eAIv4JneBcgAjnzOU2kGbEBevzZEewd7+rzbDnbOgz3/FLAHmKy1jsLTrVodt9Xg6oAMpVT/zweZfLbXZT+el3aoLwUGO6djuw+filw8lXAhhBABTgKsEEKI0eJxYKFSqq9LaiTQqrW2K6VKgRv7rdsEuIEJ/Z57GnhYeecEVUpFK6WuPcGx/gxcqpS6yHvd5zeBHmCwsHvKvJXLZ4BfequxKKXGKaUWD8O2jUC8Uir6JLuKBDqBLqVUDvD1Y5Y3MvB16+9jPNcef1spZVRKnQ9cjuf609Pi7Zq9jqG7Lw92TpcysPvwkJRSIXhGLH7ndNsohBBi7JEAK4QQYlTQWjcBfwAe8T51F/Co9xrZ/8ATOvvW7cYzeNBG72i5s7XWr+EZBOlP3hF5y/FcSznYsfYCNwOr8FQ+L8czpU/vMJzKd/AMbvSRtx3rgFOdZ/WE22qt9+C5DviQ95zTTrCPb+EJ+xY8gfjlY5b/APi9dx/X9V/gPf+leF63ZuA3wJe9x/4sfgt86UQLBzmnLDzV1NP5ImEpnjl76066phBCiDFPaX2iHklCCCGEEJ+PUuoD4B6t9fZTWPc64Bqt9XUnW7ffNh8Dt2mtyz9HM4UQQowREmCFEEIIMSoopRYBFq31Jn+3RQghxOgkAVYIIYQQQgghxJgg18AKIYQQQgghhBgTJMAKIYQQQgghhBgTgv3dgNO1ZMkS/dZbb/m7GUIIIYQQQgghRsYJ5y8fcxXY5uZmfzdBCCGEEEIIIYQfjLkAK4QQQgghhBDi7CQBVgghhBBCCCHEmCABVgghhBBCCCHEmDDmBnEajMPhoLa2Frvd7u+miBESGhpKeno6RqPR300RQgghhBBC+ElABNja2loiIyPJzs5GqRMOWCXGKK01LS0t1NbWMn78eH83RwghhBBCCOEnAdGF2G63Ex8fL+E1QCmliI+Plwq7EEIIIYQQZ7mACLCAhNcAJ++vEEIIIYQQImACrD/V1NRwwQUXkJubS15eHr/61a8GXW/9+vVER0dTVFREUVERjz76KADt7e385je/GbDeZZdddkbaPhwqKyt58cUXfY+3bt3KvffeC8Dq1av5xje+4a+mCSGEEEIIIQJIQFwD62/BwcH84he/YObMmVgsFmbNmsXChQuZNm3acevOnz+fN998c8BzfQH2rrvuOlNNxul0Ehw8PG9/X4C98cYbASguLqa4uHhY9i2EEEIIIYQQfaQCOwxSU1OZOXMmAJGRkeTm5nLkyJFT3v6hhx7i4MGDFBUV8eCDDwLQ1dXFNddcQ05ODjfddBNa6+O2O//887nvvvuYO3cu+fn5bN68GQCr1cqtt95KSUkJM2bM4I033gA81dBrr72Wyy+/nEWLFgHws5/9jIKCAqZPn85DDz0EwMGDB1myZAmzZs1i/vz57NmzB4Dly5dz7733MnfuXCZMmMArr7zia//7779PUVERv/zlL09YQW5qamLZsmWUlJRQUlLCxo0bT/k1EkIIIYQQQoiAq8D+5IV/sKe6YVj3mZOZwsM3XXxK61ZWVrJ9+3bOOeecQZdv2rSJ6dOnk5aWxsqVK8nLy+OnP/0p5eXl7NixA/B0Id6+fTu7du0iLS2NefPmsXHjRs4999zj9me1Wvnwww/ZsGEDt956K+Xl5Tz22GNceOGFPPfcc7S3t1NaWsoXvvAF3/HLysqIi4vjH//4B6+//joff/wxYWFhtLa2AnD77bfz9NNPM3nyZD7++GPuuusu3n33XQDq6+v54IMP2LNnD0uXLuWaa67hpz/9KStXrvRVltevXz/oua9YsYL777+fc889l+rqahYvXkxFRcUpva5CCCGEEEIIEXAB1p+6urpYtmwZjz/+OFFRUcctnzlzJlVVVURERLBmzRquvPJK9u/fP+i+SktLSU9PB6CoqIjKyspBA+wNN9wAwIIFC+js7KS9vZ21a9fyt7/9jZUrVwKeUZqrq6sBWLhwIXFxcQCsW7eOW265hbCwMADi4uLo6uriww8/5Nprr/Udo6enx3f/yiuvJCgoiGnTptHY2Hhar8+6devYvXu373FnZycWi4XIyMjT2o8QQgghhBDixGw9vRxtt9DUZqGxzcLR9k7f46PtFn525zJS4qL93czPJOAC7KlWSoebw+Fg2bJl3HTTTVx99dWDrtM/1F5yySXcddddNDc3D7puSEiI777BYMDpdA663rGj8yql0Frz6quvMnXq1AHLPv74Y8LDw32PtdbHbe92u4mJifFVg4dq12DdmofidrvZtGkTZrP5tLYTQgghhBBCQK/TSVN7F03tFo72BdM2C03tfUHVc9/Sffz0k6EmI0mxkSTFRGLvHTxbjAUBF2D9QWvNbbfdRm5uLg888MAJ12toaCA5ORmlFJs3b8btdvvmr7VYLJ/p2C+//DIXXHABH3zwAdHR0URHR7N48WJWrVrFqlWrUEqxfft2ZsyYcdy2ixYt4tFHH+XGG2/0dSGOi4tj/Pjx/OUvf+Haa69Fa01ZWRnTp08/YRsiIyNPqf2LFi3iySef9F3nu2PHDoqKij7TeQshhBBCCBEoXG43rZ1Wbyj9NJh++thTPW21WI/bNthgIDEmguTYKCalJTInbwJJMZ6gmugNrMmxUUSYQwJiakoJsMNg48aN/PGPf6SgoMAXyH784x9zySWX8PTTTwNw55138sorr/DUU08RHByM2WzmT3/6E0op4uPjmTdvHvn5+Vx88cVceumlp3zs2NhY5s6dS2dnJ8899xwAjzzyCPfddx+FhYVorcnOzj5u5GOAJUuWsGPHDoqLizGZTFxyySX8+Mc/5oUXXuDrX/86P/rRj3A4HHzxi18cMsAWFhYSHBzM9OnTWb58+aBhGeCJJ57g7rvvprCwEKfTyYIFC3yvjxBCCCGEEIFGa02H1UZja+eAINp3/2ibJ6g2d3ThPqZ3Y5BSxEdHkBQTSVpcNNMnpnvDaCSJMVG+ampMhJmgoLNnbF51ut1A/a24uFhv3bp1wHMVFRXk5ub6qUX+c/7557Ny5cqzZsqas/V9FkIIIYQQo4/D6aLmaKs3iPZ14+08LqQ6nK7jto2JCPNUSWMjfUHUUzGN8oXUuKhwgg0GP5zZqHDCUrFUYIUQQgghhBBiCF02O3trGtlT1UBFdT17qhrYf+ToceE0whzi67o7c0qmN6RGDQipCdERhJiMfjqTsU8C7Bh2oulqhBBCCCGEEJ9NU7uF3VX17KluoMJ7W93Y6lseFxlOblYKX140m8npyaTEeQJqYkwk4aEhQ+xZDAcJsEIIIYQQQoizjtvtpqqxdUBQrahuoKWjy7dORmIsuVmpXHluEbmZqeRmpZAYExkQgyGNVRJghRBCCCGEEAGtp9fB/iNHPw2qVQ3srWnE1tMLeEbynTQukfkFk8jNSiU3M4WpmSlEhoX6ueXiWBJghRBCCCGEEAGjvaubPdUNAyqrh+qacbndAISHhpCTmcKyBTPI8VZVJ45LxBQs0WgskHdJCCGEEEIIMeZoralr6RjYBbiqnvqWDt86STGR5GalcuGMHHKzUsnJTCE9MeasmnYm0EiAHSZKKW6++Wb++Mc/AuB0OklNTeWcc84ZdA7WE+k/Nc4ll1zCiy++SExMzEg1WwghhBBCiFHP6XJxuL6Zin6jAFdUN9BptQGez+LjU+KZMSmDGy8qJSczhZysFOKjIvzccjHcJMAOk/DwcMrLy7HZbJjNZt555x3GjRv3ufa5Zs2aYWqdEEIIIYQQY4PV3sO+msYBldV9tUfpdTgBCDEGMyU9mcUl08jNTCE3K5XJGcmEhZj83HJxJkiAHUYXX3wxf//737nmmmt46aWXuOGGG3j//fcBsFqt3HPPPezcuROn08kPfvADrrjiCmw2G7fccgu7d+8mNzcXm83m2192djZbt24lISGBK6+8kpqaGux2OytWrOD2228HICIighUrVvDmm29iNpt54403SE5O9sv5CyGEEEIIcbpqm9p4v2w/W/dWUVFVT1VjK1prAKLDzeRmpXLjRaW+LsDjU+MJNhj83GrhLwEXYH9+sJG9XfZh3efUiFAenHjyUPjFL36RRx99lMsuu4yysjJuvfVWX4B97LHHuPDCC3nuuedob2+ntLSUL3zhC/z2t78lLCyMsrIyysrKmDlz5qD7fu6554iLi8Nms1FSUsKyZcuIj4/HarUye/ZsHnvsMb797W/zzDPP8P3vf39Yz18IIYQQQojh0utwsnVfFe9/sp/3y/ZzqL4ZgJS4aPKyU7lsTiE53spqSlyUTFkjBgi4AOtPhYWFVFZW8tJLL3HJJZcMWLZ27Vr+9re/sXLlSgDsdjvV1dVs2LCBe++917d9YWHhoPt+4okneO211wCoqalh//79xMfHYzKZuOyyywCYNWsW77zzzkidnhBCCCGEEJ9JXUs775ftZ8Mn+/lo92FsPb0Ygw2UTM3muguKmV84meyUeAmr4qQCLsCeSqV0JC1dupRvfetbrF+/npaWFt/zWmteffVVpk6detw2J/tDXb9+PevWrWPTpk2EhYVx/vnnY7d7qsxGo9G3vcFgwOl0DuPZCCGEEEIIcfp6nU62769hwyf7eL/sAAeOHAUgLSGGK+ZNZ37hZM6ZNl6uWxWnLeACrL/deuutREdHU1BQwPr1633PL168mFWrVrFq1SqUUmzfvp0ZM2awYMECXnjhBS644ALKy8spKys7bp8dHR3ExsYSFhbGnj17+Oijj87gGQkhhBBCCHFyja2dnipr2X427TqE1d5DsMFA8dQsrppfxILpU5iQmiBVVvG5SIAdZunp6axYseK45x955BHuu+8+CgsL0VqTnZ3Nm2++yde//nVuueUWCgsLKSoqorS09LhtlyxZwtNPP01hYSFTp05l9uzZZ+JUhBBCCCGEOCGH08UnB2rYUOa5lnVvTSMAKXFRXDI7n/mFk5kzbQLh5hA/t1QEEtU3wtdYUVxcrLdu3TrguYqKCnJzc/3UInGmyPsshBBCCOFfTe0WX2D9sPwgXbYegg1BzJycyfzCySyYPplJ45Kkyio+rxP+AkkFVgghhBBCCDEop8vFJwdrfQMw7aluACAxJpLFJXksmD6Z2dMmEBkW6ueWirOFBFghhBBCCCGET3NHFx/sPMCGT/bxYflBOrvtGIKCKJqUwX3XXMSC6VOYmpEsVVbhFxJghRBCCCHEWcHldtNl66HTasPSbafDasfSbafTaqOz23u/23O/s29Zt50gpUiIjjj+JyaCRO/96HAzQUFB/j7Fz8TldrPz0BFflXVXZR0A8dERXDgzhwXTpzA3bwJR4WY/t1QICbBCCCGEEGKM0Fpj63VgsQ4WNG2++x3egGrpttPR/WlI7bL1DLn/IKWIDAslKiyUqHAzkWGhJMVE4taa5o4udhyoobmjC3uv47htgw1BxEcNEnK9Qbf/4/BQ/w9q1Npp5YOdB3i/bD8f7DxAh9VGkFJMn5jOvVdfyILpk8nJTBmzoVwMZHO5qbM7aOhxUG93cHFSFOHBBn836zORACuEEEIIIc4Yh9Plq2z2VUI7vQHU4g2knd0DK6P9q6FOl2vI/ZtDTESHh3qDqJm0uGgi05OJ8j4X7Q2m/e9HhXtCa1iI6aSBTWuN1d5Dc0cXze1dNHV0ee73+znabmF3VT2tnVZcbvegbUyI/rR6e6KwGxcVjil4eD6uu91uyg/X+aa5KT9ch9aauMhwzps+hQXTJzM3fyIxEWHDcjxx5mitaXO4aOhxUu8NqH23nsDqpN058O8mP8pMToQEWCGEEEIIIQDP4D+VDS3srW5kT3U9e6ob2FPTSEtH15DbBRuCiAoz+wJnVFgo6Ymx/SqjnmB6bKU0OjyUCHMoxhGuKimliDB7jpWdkjDkui63m/aubprbjw+5fT8H6pr4qOIwnVbboPuIiQgbvKp7Cl2Y27u62bjzIBvK9rFx50FaLVaUUhRMGMfdV57P/MLJ5GWnSpV1lHNqTdMx4bTBPvCx3T1wZhlzkCI11EhqiJG8SDOpIUZSQ4O9t0YSTGM3Bo7dlo8yv/rVr3jmmWfQWvO1r32N++67D4Drr7+evXv3AtDe3k5MTAw7duw4bvvs7GwiIyMxGAwEBwfTN1XQ6tWrWbRoEWlpab71tm7dSkLC0P9gjhaPP/44t99+O2Fhnm/zLrnkEl588UViYmKIiIigq2vo/8SEEEIIMfp12ezsrWlkT1UDe2sa2FPdwP7ao/Q4nAAEGwxMGpfI/IJJpCfG+kJoVL9KaVRYKJHhoZhNxoAZHMgQ5OlWHB8VwdSTrNvrcNLc2TVk2N1xoIamdovvde3v2C7M7V3d7Dx0BLfWxESEcW7BJOYXTubcgonERoaPzAmLz8Tmcvu69tb3OGnwhtI6721Tj5Nj+x3EGg2khhiZEB7CvLhwX1jtu40KDgqYv6NjSYAdBuXl5TzzzDNs3rwZk8nEkiVLuPTSS5k8eTIvv/yyb71vfvObREdHn3A/77333nHBdPXq1eTn5/sC7JngcrkwGIbn28vHH3+cm2++2Rdg16xZMyz7FUIIIcSZp7WmrqWDPdUN7K1u8N3WNLX51omJCCMnM4UvXlRCbmYqUzOSGZ+WMGxdYQOVyRhMWnwMafExQ653ql2YjcEG7li6gAXTp5A/Pg2DVFn9QmtNh9P9aeW0XzCt91ZR2x0D46kBSAoJJjXUyKzosAHBNDU0mJQQI6GGs/f9lH9JhkFFRQWzZ8/2hbTzzjuP1157jW9/+9u+dbTW/PnPf+bdd9895f2+8sorbN26lZtuugmz2cymTZsAWLVqFf/3f/+Hw+HgL3/5Czk5OQO2W716Na+99ho9PT0cPnyYG2+8kf/8z/8E4Pnnn+eJJ56gt7eXc845h9/85jcYDAYiIiJ44IEHePvtt/nFL35BSEgIK1aswGq1EhISwj//+U/CwsJ46KGHWL9+PT09Pdx9993ccccdrF+/nh/84AckJCRQXl7OrFmzeP7551m1ahV1dXVccMEFJCQk8N57752wgvzzn/+cP//5z/T09HDVVVfxwx/+8DO9F0IIIYQYHr0OJwfqmgZUVfdWN9DZbQc8XWmzkuOYlp3G1efNJCcjhZzMFJJiIwO28jManE4XZjHyXP2693rCqfOY608d2I7p3hvar3vvtIjQAV17U0OMJIQEEyx/QycUcAH2Jy/8wzfB8nDJyUzh4ZsuPuHy/Px8vve979HS0oLZbGbNmjUUFxcPWOf9998nOTmZyZMnD7oPpRSLFi1CKcUdd9zB7bffzjXXXMOTTz7JypUrB+wvISGBf//73/zmN79h5cqVPPvss8ftb/PmzZSXlxMWFkZJSQmXXnop4eHhvPzyy2zcuBGj0chdd93FCy+8wJe//GWsViv5+fk8+uij9Pb2kpOTw8svv0xJSQmdnZ2YzWZ+97vfER0dzZYtW+jp6WHevHksWrQIgO3bt7Nr1y7S0tKYN28eGzdu5N577+W///u/B60s97d27Vr279/P5s2b0VqzdOlSNmzYwIIFC4Z8X4QQQggxPNosVioGVFUbOVTfhNPlGYDIbDIyJSOZJefkk5PpCaqT05NGxWi6QpxJLq2psNj5sM3KpjYr5RYbzoH5lBhv995ss4k5seEDwmlKaDAxwQb5kudzCLgA6w+5ubl85zvfYeHChURERDB9+nSCj+km89JLL3HDDTeccB8bN24kLS2No0ePsnDhQnJyck4Y4K6++moAZs2axV//+tdB11m4cCHx8fG+9T/44AOCg4PZtm0bJSUlANhsNpKSkgAwGAwsW7YMgL1795KamupbLyoqCvAEzbKyMl555RUAOjo62L9/PyaTidLSUtLT0wEoKiqisrKSc8899ySvHL79rl27lhkzZgDQ1dXF/v37JcAKIYQQw8zldlNztJWKAVXVRhrbOn3rJMdGMTUzmfNnTGFqRgq5WSlkJMVJF1Rx1mrqcbKpzcqHbV183NZNu9OFAnIjQrlpXBwZZhOpIcGkeEOq+Szu3nsmBFyAHapSOpJuu+02brvtNgC++93v+sIcgNPp5K9//Svbtm074fZ917gmJSVx1VVXsXnz5hMGuJAQz7edBoMBp/P4i/iB477VUUqhteYrX/kKP/nJT45bPzQ01Hfdq9Z60G+FtNasWrWKxYsXD3h+/fr1vjadrF2D0Vrz8MMPc8cdd5zyNkIIIYQYmtXew/7ao57Rf73V1X01jdi8c5gGG4KYkJpIaW42OZkpTM1MIScjhbgoGeBHnN163W52dNjY1GZlY5uV/VbP/MHxRgPnxoUzNy6cc2LCiRvDI/mOZfKqD5OjR4+SlJREdXU1f/3rX33XqwKsW7eOnJycAaG2P6vVitvtJjIyEqvVytq1a/mP//gPACIjI7FYLKfdnnfeeYfW1lbMZjOvv/46zz33HGFhYVxxxRXcf//9JCUl0draisViISsra8C2OTk51NXVsWXLFkpKSrBYLJjNZhYvXsxTTz3FhRdeiNFoZN++fYwbN27IdvS1f6guxIsXL+aRRx7hpptuIiIigiNHjmA0Gn3VYSGEEEKcmNaao20W7zQ1Deyp8gTW6qOtaO3p2xgVFsrUzBSuOX8WUzNSyMlKYVJaIiajfBQUAqDa1suHrVY2tXWxpb0bm1sTrKAoKox7xycyNzacyeEhBEnXX7+Tf7WGybJly2hpacFoNPLrX/+a2NhY37I//elPx3Ufrqur46tf/Spr1qyhsbGRq666CvBUa2+88UaWLFkCwPLly7nzzjsHDOJ0Ks4991y+9KUvceDAAW688UbfNbQ/+tGPWLRoEW6329fWYwOsyWTi5Zdf5p577sFms2E2m1m3bh1f/epXqaysZObMmWitSUxM5PXXXx+yHbfffjsXX3wxqampvPfee4Ous2jRIioqKpgzZw4AERERPP/88xJghRBCiEFordlb08jaLbvYcaCWPdUNtHd1+5ZnJMYyNTOFy+cW+iqrafHRcs2dEP1YnS62dHR7Q6uVWrunZ0JGqJHLk6OZGxdOcXQY4SM8r7A4farvmwXskvIAACAASURBVLmxori4WPfNkdqnoqKC3NxcP7Vo9Fm9ejVbt27lySef9HdThpW8z0IIIc5m+2sbeWvzLt7avIvD9c0YgoLIyfRco9pXVZ2akUyEOdTfTRVi1HFrzT5rDx+2eq5l/aTTM/iSOUhREuPpFjwnNpxMs8nfTRUeJ/zGTSqwQgghhBCj1MG6Jt76uJy3Nu/iYF0TQUpRkpvNlxfPZuGsaXK9qhBDaO118lGblQ/brHzUZqXFO9/qlPAQbk6PY25sOEVRYRiDpHfCWCIBNgAtX76c5cuX+7sZQgghhPgMKhuaeetjT6V1X20jSimKp2Zx4xdKWVg8jYToCH83UYhRyeHW7LTY2NTqGXxpT5cdjWdam9n9qqwJMvjSmDai755SagnwK8AAPKu1/ukxy6OB54FMb1tWaq3/dyTbJIQQQggx2lQ3tvLWZk+ltW8++5lTMvnuzRezuCSPxJhIP7dQiNGpzt7ru451c3s3XS43BqAwyszXsxKYGxdObkSoDL4UQEYswCqlDMCvgYVALbBFKfU3rfXufqvdDezWWl+ulEoE9iqlXtBa945Uu4QQQgghRoPapjbe9l7TuquyDoCiSRk8dOMSFpVMIyUu2s8tFGL0sbncbO3oZpM3tFbaPLEhNSSYxYlRzIkLpzQmjEgZfClgjWQFthQ4oLU+BKCU+hNwBdA/wGogUnmGxYsAWoFTn0BUCCGEEGIMqWtp94XWnYeOAFAwYRwPfnERi0vzSIuP8XMLhRhdtNYc7O7lw7YuPmy1sr3DRq/WhAYpZkWHcW1aDHNiw8k2m2Sk7bPESAbYcUBNv8e1wDnHrPMk8DegDogErtdau4/dkVLqduB2gMzMzBFprBBCCCHESGho7WDtlt28tXkXOw54PhrlZafxzesWsrg0j/TE2JPsQYizS4fDxcftVl/X4KO9nvrWxDAT16XFMC8ughnRZkKCgvzcUuEPIxlgB/sK5Ng5exYDO4ALgYnAO0qp97XWnQM20vp/gP8BzzQ6I9DWz81gMFBQUIDWGoPBwJNPPsncuXOHbf/Lly/nsssu45prruGrX/0qDzzwANOmTRu2/QshhBBi+DS1W3h7i6fS+u991QDkZKZw3zUXsaQ0n8zkOD+3UIjRw+Zys8tiY2t7Nx+2WdllseMGIoODmB3jGXhpblw4ySFGfzdVjAIjGWBrgYx+j9PxVFr7uwX4qfZMRntAKXUYyAE2j2C7RoTZbGbHjh0AvP322zz88MP861//GpFjPfvssyOyXyGEEEJ8ds0dXbyz1VNp3bq3Cq01U9KTuffqC1lyTh7ZKQn+bqIQfqe1pr7HySedNj7p7Kas086+LjsuIAjIiwzla5nxzImLIC8ylGDpFiyOMZIBdgswWSk1HjgCfBG48Zh1qoGLgPeVUsnAVODQCLbpjOjs7CQ21tMdqKuriyuuuIK2tjYcDgc/+tGPuOKKK7BarVx33XXU1tbicrl45JFHuP7669m2bRsPPPAAXV1dJCQksHr1alJTUwfs//zzz2flypUUFxcTERHBihUrePPNNzGbzbzxxhskJyfT1NTEnXfeSXW151vfxx9/nHnz5p3x10IIIYQIZK2dVt7Z5gmtWyoqcWvNhLRE7rriPJack8/EtER/N1EIv+p1u9nT1eMNrJ6fZm+XYHOQoiDKzC2Z8RRGmZkeaSbKKIMviaGNWIDVWjuVUt8A3sYzjc5zWutdSqk7vcufBv4LWK2U2omny/F3tNbNI9WmkWSz2SgqKsJut1NfX8+7774LQGhoKK+99hpRUVE0Nzcze/Zsli5dyltvvUVaWhp///vfAejo6MDhcHDPPffwxhtvkJiYyMsvv8z3vvc9nnvuuRMe12q1Mnv2bB577DG+/e1v88wzz/D973+fFStWcP/993PuuedSXV3N4sWLqaioOCOvhRBCCBHI2ru6Wbe1grc27+LjisO43G6yU+K5Y+kClpTmMTk92d9NPCu5tKbXrXG4NY6++3rg4163xtlvmWd9Nw7tCVp96/df7tSaMEMQE8JCmBAWwvgwE2aDXHt5Is29nupqmTesVljs9GrPFYDjQo2UxoQxPcrM9CgzE8NDpMJ6BmmtqW1qo+zgERaVTMM4RkdqHtF5YLXWa4A1xzz3dL/7dcCi4T7uX7bWUNtmG7b9pceaubY4Y8h1+nch3rRpE1/+8pcpLy9Ha813v/tdNmzYQFBQEEeOHKGxsZGCggK+9a1v8Z3vfIfLLruM+fPnU15eTnl5OQsXLgTA5XIdV309lslk4rLLLgNg1qxZvPPOOwCsW7eO3bs/HfC5s7MTi8VCZKTMIyeEEEKcrg6rjX9u28Nbm8v5aPchnC43GUlx3HbpPJaU5jM1I1lGQB1Cu8NFla2Xqu5eOpyukwbHwULoyQLpcaOAfk7BCoxKYQpSWF1unP1GYUkNCfYE2vAQxptNTAgPYUKY6aybusWpNQesPQMC6xG7AwCTUuRGhvLFcbFMjzJTGGUmwTSi0UMcw9JtZ+ehI5QdrKXsUC1lB4/QarECMD71DqZlp/m5hZ9NQP4WnSxsjrQ5c+bQ3NxMU1MTa9asoampiW3btmE0GsnOzsZutzNlyhS2bdvGmjVrePjhh1m0aBFXXXUVeXl5bNq06ZSPZTQaff9hGgwGnE5Plwy3282mTZswm80jco5CCCFEoLN023lv+17+8XE5G8sP4nS5SE+MZfmSuSwpzSM3K1VCaz92l5saey+V3b1U23o9gdXmoKq7hw7n4PEyWIEpKAijAqP31vNYYQzy/JiUIjI4iGBvmOwLlcHeZX3P9V/f2O+5/stN/Z47dn/G/vtWiqB+763Dram193Kou5dD1h4OdfdyuLuHrR3d9Lg/TbaJpmAmhJkYH+YJtJ6QayLWGBgfuTscLsosNso6PGG13GLD5j3/BFMwRVFmrk/zBNaciBBMMkrwGeN0udhXe9QTVg/WUnboCIfqmnzLJ6QlsmD6ZAonplM4MZ0p6Ul+bO3nExh/TaPMnj17cLlcxMfH09HRQVJSEkajkffee4+qqioA6urqiIuL4+abbyYiIoLVq1fz0EMP0dTUxKZNm5gzZw4Oh4N9+/aRl5d32m1YtGgRTz75JA8++CAAO3bsoKioaFjPUwghhAg0VlsP7+3whNYPdh7A4XSRGh/Nlxadw5LSfPLHp53VodWlNfV2hzeceoJqZbfnfkOPc8C6SaZgsswmFiZGkWU2kWU2kRlmIt5oGDQkjmbGIMX4sBDGh4VwUcKnvdlcWlNnd3Cou4fD3b0c6vaE2zca2n3BDiDWaGB8X6D13o4PM5FoCh61v09urTnc3eurrJZ12jhs6wU81wZOiQjlipQYX3U1NWT0nkug0VrT0NrprarW8snBWnZX1mPv9VS/4yLDKZw4jstmF1A4KZ2C8eOIDAv1c6uHjwTYYdJ3DSx4fql+//vfYzAYuOmmm7j88sspLi6mqKiInJwcAHbu3MmDDz5IUFAQRqORp556CpPJxCuvvMK9995LR0cHTqeT++677zMF2CeeeIK7776bwsJCnE4nCxYs4Omnnz75hkIIIcRZps1iZWP5QdZu2c2Gsv30Opwkx0Zx40WlLCnNo3Bi+ln1wVxrTZu3y+/AamovNTYHDv1pMIswBJEdZmJWdBiZ3pCaHWYiw2wi7Cy4TtSgFBlmz/meF//p81prGnqcHPYG2r5g+3ZTJ5Z+1egIQ5Cv+3FfqJ0QFkJKSPAZD/dWp4tyi90XVsssNl9bo4ODmB5l5tLkaKZHmcmLDJXrgM8gq72HXYfrKDtUyycHPNXVpnYLACZjMLmZKVx7/iyme6ur4xJiAvrfLKX1qJxW9YSKi4v11q1bBzxXUVFBbm6un1okzhR5n4UQQgyHXqeTTw7UsrH8ABt3HmR3VT1aaxJjIllcMo0lpfkUTUonKMC7P9pcbt91qb5qqvdxl+vTkGVUigyz0VdFzQoz+e7HGg0B/UF5uGmtaXG4fN2Q+1duWx0u33pmb8XX1x053BNsx4UaMQzD66215ojd4RsVuKzTxn5rD248o6pOCDP5BlqaHhVGptko7/MZ4nK7OVTX5Kuslh08woEjR3F7M1tmcpwnqE7whNWpmcmYggOyJnnCX7iAPFshhBBCiD5aa6oaW9i48yAflh/k4z2H6bb3EmwIYvrEDO656gLm5k8kb3wahgALrQ63pq7HQXW3N5zaeqn2BtajvQO7/KaEBJNtNnFpcpSvmpplNpE6TKFJgFKKBFMwCaZgSmPDByxrczg9Ydbaw2Gb53ZzezdvHu30rWNSiuww08DuyOEhZISaMAad+D3qcbup8FZX+376AnO4IYiCyFC+mhnP9CgzBVHms24wKn9qard4g2otOw8dYefhI3TbPV21o8LNFE4YxxeKc72BdRwxEWF+brH/SYAVQgghRMDptNr4aPdhNpYf4MPygxxpbgcgIymOpXOnM69gEufkZhNhHvvXhWmtae51UWXr8Qya1K+qesTeO2D03JhgA5lhJs6JDRtQUc0INREqXUL9KtYYTGx0MDOjBwYUi9NFZb9uyIe6e9jZaeftJotvnWAFGeZPQ+34sBCCFb7qakWX3fd7kBFqZG5suGfeVe9UNvIFxZlh73Wwq7LOO9DSEcoO1VLf0gFAsCGInMwUrpxX5B1oaRxZyfFS+R6EBFghhBBCjHlOl4vyw3V8sNMTWMsO1uLWmvDQEGZPG89tl8xjbv4kMpPj/N3Uz83h1mxut/LPZgt7uuxU2Rx09+vyGxKkyDSbmBQewhcSIj3VVG+33xijVNbGmshgAwXeymh/Npf7uGB7wNrDe80W35RCIUGKaRGh3JweR2GkJ7DGyVQ2Z4Tb7aaqsdVXXS07WMu+2kac3r/VcQkxFE3K4MuLZlM4MZ3crFRCTUY/t3psCJjfYK21fEMRwMbatdpCCCFG3pGmNjaWH2Rj+QE+2n0YS7cdpRQFE8Zxx9IFzM2fSOGEdIwB0B2yL7S+02RhfYuFDqebCEMQhVFmiqLCBlyXmuyHAYDEmWc2BJEbGUpu5MBeBL1uz7XNvW7NlPDQIbsWi+HTZrH6qqp93YE7u+0AhIeGUDBhHLdeMs937WpCdISfWzx2BUSADQ0NpaWlhfh4KbMHIq01LS0thIaO/W5eQgghPjurvYfNFZW+bsGVDS0ApMRFsah4GvMKJjF72viAuUbsRKH1vPgIFiZGMic2XObZFMcxBQUxOVw+M40Ul9tNzdE2DtU1cai+ib01jZQdPELN0VYAgpRickYyi70jmE+fmM6E1ISAHxTuTAqIAJuenk5tbS1NTU0nX1mMSaGhoaSnp/u7GUIIIc4gt9tNRVUDH3gD6/b9NThdLswmIyW52dxwUQnz8icxPjUhYL7AltAqxOjQ63BS2dDCwbomDtY1eQJrXTOHG5pxOD8dMTolLoqCCeO47oJZTJ+QzrTxaYSFmPzY8sAXEAHWaDQyfvx4fzdDCCGEEJ9TY2snH+46yMadB9i0+xBtlm4AcjJTWL5kDnPzJzJzciYmY0B8hAEktArhT1Zbjyeg1jdzyBtWD9Y1UXu0zTd1jVKK9MRYJqYlML9wEhPSEj0/qQlEhkm1+0wLnH/9hRBCCDHm2HsdbN1b5ZuT9cCRowDER0cwv2Ay8womMSdvQsBdLyahVYgzq7XT6gmo9Z5K6sEjni7ADa2fTlMUbDCQnRJPbmYql84uYKI3qGanxMsAS6OIBFghhBBCnDFaa/bVNLKx3DMn69Z9VfQ6nJiMwcyakskV507n3PxJTMlIDphuwX0ktAoxsrTWNLR2+q5PPXDEE1YP1Tf5enMAmENMTExLoDRnPBPSEpiQlsikcYmkJ8YSbBj7g74FOgmwQgghhBhRLZ1dbNp1iI07D7Cx/CDNHV0ATExL5IYLS5ibP5HiqVmYA/C6MQmtQgw/p8tFbVO7r8tv3/WpB+ub6Lb3+taLDjczcVwiX5iZy4S0BCaOS2JCWgIpsVEyqNIYJgFWCCGEEMOq1+Fk+4EaX2CtqKoHPB8m5+ZPZF7+JObmTyAlLtrPLR0ZQ4XWL3hDa4h8eBbipHp6HVQ2tHCovtkXVA/WNVHZ0DJgIKXk2CgmpCVw1fwZTExL9Hb9TSAuMjzgenIICbBCCCGEGAb2Xgfvl+1n7ZbdvLdjL932XoINQRRNyuDeZRdybsEkcrNSMQRocJPQKsRnp7XmcH0zZYeOeELqEc+1qicaSGlB4WQZSOksJgFWCCGEEJ+JraeXDd7Qun7HPmw9vcREhHHJOfmcXzSV0txsIsyB+8FysNAabgjifAmtQgypL7Bu3lPJlj2VbN5TSYv30oLBBlKa6B1IKUQGUhJIgBVCCCHEaeju6WXDJ/t5e/MuNnyyD1uvg9jIMC6bU8Di0jxKc7IDehAUCa1CnL6hAmtybBRz8yZQmpPNjMmZZCbHBfS/IeLzkwArhBBCiCFZ7T2fhtay/dh7HcRHhbN03nQWl+ZRPDUroD9wSmgdPg2tHRxts+DWGpfbjcvlxuX23vc+drs1Ln38Mvdg67s9j91uN86+bX3ra5ze7QZd5nLj1kMsc7u922uiwkPJzUplWlYq07JTyUyKk0GAhqC1prKhhc17DrOlwhNYmwcJrCU548lIipXrVMVpkQArhBBCiONYbT2s37GPtVt3seGT/fQ4nMRHR3DV/CIWl+Qxa2pWwF7PChJah0t9Swdb+lXdao62jujxDEFBBAUpgoOCCAoKwmAIwhCkCAoK8j7Xb1mQwmAIOuEyk9Ho219Lh5U/rv3IN3BQWKiJnMwUb6BNY1pWKhPSEgL6i5yhnCywzp7mDay52WQmxUlgFZ+L0t4Lo8eK4uJivXXrVn83QwghhAg4XTY7723fx9otu3h/5wF6HU4SYyJZWJzLkpI8ZkzJPCtDa/8pbyS0Du1EgTUq3Ezx1CxKc7LJSo73Bst+4dIQRJBSntu+cOkNk57nFAb1aSD1bOt93ruvIKVGNBj1Op0cPNLE7qp6KqrqqaisZ091A7ZeBwAhxmCmpCeTm/1ppXbyuKSAvG5zqMCaFBNJae54Cazi8zrhL40EWCGEEOIsZum28972vby9ZRcbyw/S63CSFBPJwpJpLC7JY+bkjIDtKunUmgPWHnZ22vik08YHrV0SWk9TQ2sHmysGCaxhoRTnZHu7iWYzNSM5IH+PXG43lQ0tVFTVs7vSE2x3V9Vj6bYDEGwIYmJaoqf7cXYq07LSmJqZTHhoiJ9bfnoksAo/kAArhBBCCI9Oq21AaHU4XSTHRrHIG1qLJqUHXNjQWtPQ46TcYmOnxU55p42KLjt2t+dzUKzRwJzYcAmtJ3GqgXVKRnJAV+uHorWmtqmNiqoGdlfV+YJtS6cV8EwHk50Sz7SsVF+wzc1KJTrc7OeWf0oCqxgFJMAKIYQQZ7MOq413/72Ht7fs4sPyQzhdLlLiollcMo3FpXkUThgXUKHV6nSxu8vOzk67L7Q29zoBMCnF1IgQCqLMFESaKYgMJS3UKB/CByGBdXhorWlqt7DbW6ntu21o7fCtMy4hxhdmp2WlkZuVQmJM5BlrX1Vjy4D3uqndAkhgFX4jAVYIIYQ427R3dfPPf+9h7ZbdbNrlCa2p8dEsLsljcck0CgIktLq05lB3Dzs77ey02CjvtHOouwe3d3mm2UhBpJn8SDMFUaFMCQ/FGCQfwAfT0NrBlj1VbNlzmM17KqlulMA6ktos1mMqtQ1UNbb4lifGRPqup831VmzT4qM/d4A8WWAtyc32jRKclSyBVfiFBFghhBDibNDe1c0/t1Xw9pbdfLT7EE6Xm3EJMSwuzWNRsSe0jvUPo0d7HJRbPg2ru7vsdLs8cTUqOMgTVCNDyY/yhNYY49k5MuypaGzt9M7NeXxgneUddKkkdzxTJbCeMV02O3uqGnxV2orqeg4eacLt/cweHW72Xk/rGQE5NyvlpNP6DBVYE2MiKZXAKkYfCbBCCCFEoGqzWFm3rYK3N+/m44rDuNxu0hNjfd2D87LTxuwHUpvLTUWX55rVnRY7OzttNHq7AgcrmBIeSkFUqLe6aiZTugIPSQLr2GTr6WVf7VEqKuu8oyA3sK+20TetT3hoiGdaH2+wzc1KxRhsGDAitARWMcZIgBVCCCECSUtnly+0btlTicvtJiMpjsUl01hSmkduVuqY+1Dq1ppKWy87Oz8daOmAtQeXd3laiJGCqFBPd+AoMzkRITLY0klIYA1cJ5vWp48EVjFGSYAVQgghxrrmji7Wbd3N21t3s6WiErfWZCXHs7jUM3pwTmbKmPpg2trr9HUD3mmxsctip8vbFTjCEEReZF9Y9dzGmYL93OLRr7G1ky17K30jx/ZdTxkZFuqbh1UCa+Dqm9Znd2U9vQ4Hs6ZmS2AVY5UEWCGEEGIsamq3eCutu9i6twq31oxPTWBxyTQWleQxNSN5THw47XG72dPV4+0KbKPcYueI3VMpMgCTwkPIj/Jcu1oQZSbbbCJoDJyXv0lgFUIEqBP+ByBfZQohhBCj1NtbdvHtp1/F4XQxIS2RO5YuYHFJHpPTk0Z1aNVaU21zeIOqjZ2ddvZZ7Ti935knm4IpiDJzXWoM+VFmciNCMRskXJ2Iy+2moaWDww0tVDY0U9nQQmV9C4cbmqlv8UzDEhkWSvGULK6/sJjSnGymZqZIYBVCBCQJsEIIIcQo9PoHO/j+s69TNCmD/1x+OZPTk/zdpJNyuDWvNbTzbHULTd6BlsxBirxIMzenx3mnsgklKcTo55aOTm0WqyecNrRwuL6ZqkbP/arGVnodTt96EeYQslPimTklk2lZqZyTO14CqxDirCEBVgghhBhlXvrnZv7rD39nTt4EVq24gbAQk7+bNCStNe80W3jycBM1dgczoszcmZVAfmQoE8NDMIziavGZZu91UN3YymFvJbXKG1YrG1rosNp86wUbDGQmxZKVEs/8wslkJ8eTnRJPdmoC8VHho7oCL4QQI0kCrBBCCDGK/O7vH/CLP7/DBUVT+e+7ryXENLqrlZvbrPzqcBO7u+xMCgvhifx0zo09uwOWy+2mvqXDW01tprLeW1VtaKahtZP+448kx0aRnRLPktI8X0DNTolnXEIMwQaZv1YIIY4lAVYIIYQYBbTWPPnaezz1xr+4+Jx8fnr71RiDR2+A2dtl54nDTXzYZiUlJJhHp6ZySVLUWVNt1VrT3tXt7e7rCapVjZ771UeP7/I7PiWBWVOyGJ8aT3ZKAlkp8WQlxxEeGuLHsxBCiLFHAqwQQgjhZ1prfvbS2/z+7U1cvWAGP7xl6ai9nvGIrZffVDWz5mgn0cFBPDAhievSYgJ2PlZ7r4OqhhYqG73XpfZdo9rQQucJuvwumO7t8uutpkqXXyGEGD4SYIUQQgg/crndPPr7N/nL+m3ctPAcHr5xCUGjMAy29jr5XU0Lf65rI1gpbs2IZ3lGHJGjuEp8OpraLeytafSF1L5rVPtG+e2THBtFdmo8F5fmMT7VU0mVLr9CCHHmSIAVQggh/MTpcvHdZ17nzU1lfO2y+dx3zUWjrlJnc7l5vraV39e2YnO5uTIlmjuyEgJmJOH6lg6e/tu/eO397ThdbmDwLr/ZKfFkSpdfIYTwOwmwQgghhB/0Opx866lXWLetghXXXMQdly/wd5MG6JsS53+qmmlxuLgwPoJvjE9kfFhgBLimdgvPvPk+L7+3Fa3huvOLPQMpySi/QggxqkmAFUIIIc4wW08vK1a9zAc7D/DwTRfzpUWz/d0kH60165otPFnZRLXNMyXOL/KSmB5l9nfThkV7Vze/+/sHvLBuMw6ni6vmF3HH0vMYlxDj76YJIYQ4BRJghRBCiDPIauvh6798gW37qvmvW5ey7LxZ/m6Sz5Z2z5Q4uyyeKXF+lZfO/LjAqEZ2Wm38/u1N/OHtj+ju6eWyOQXcdeX5ZCXH+7tpQgghToMEWCGEEOIMae/q5o5fPM/uynp+dscyLp1T4O8mAcdPifPDKalcmhwYU+JY7T08/87H/O8/PqTTamNRyTTuvvICJqcn+btpQgghPgMJsEIIIcQZ0NzRxdd+/gcO1Tfz+D3Xc9HMHH83iTp7L7+p9EyJExkcxP0TErk+LTYgpsSx9zr407tbePbND2i1WDm/aArfuPpCpmWl+rtpQgghPgcJsEIIIcQIa2jt4Laf/YH6lg6euv8m5uZP9Gt72hxOflfdwp/r2glSsDwjjlsy4gNiSpxep5NX//Vvnv7bBpraLczJm8C9V1/I9EkZ/m6aEEKIYSABVgghhBhBNUdbufX//Z72Lhv/860vUTw1y29tsbncvHCkldU1nilxrkiJ5s4AmRLH6XLxxsZPeOqNf1HX3M7MKZn8/M5llOaO93fThBBCDCMJsEIIIcQIOVjXxG3/7/f0OJz870NfIX/8OL+0w+HWvNHQzm+rm2nudXGBd0qcCQEwJY7L7eYfH5fz69fWU9XYQv74NH6w/HLm5U8MiMGnhBBCDCQBVgghhBgBFVX1fO3nf0QFKX7/8C1MyUg+423omxLn15XNVNl6mRFl5ue5iRRFh53xtgw3rTXrtlWw6q/vceDIUaakJ7NqxQ1cOGOqBFchhAhgEmCFEEKIYfbJgRru+MXzhIWG8Nx3vkx2SsIZb8NW75Q45RY7E8NMPJ43jgVxEWM+3Gmt2VC2nydefZeKqnrGpybwi7uuZXHJNIICYPApIYQQQ5MAK4QQQgyjzRWH+fovXyQhOoLnvvMVxiXEnNHj7+2ys+pwExvbrCSbgvnhlBQuTY4OiClxPtp9iCdefZcdB2pIT4zlJ1+7ikvnFBBsGPuDTwkhhDg1EmCFEEKIYbLhk/2sWPUn0hNjee47XyExJvKMHfu4KXHGJ3JdWiyhhrFflfz3vmqeePWfbN5TSUpcFD9YfjlXzZ+BMQBGTRZCCHF6JMAKIYQQw2Dtlt1866lXmJyexLMPjH1BvAAAIABJREFUfonYyPAzctxjp8T5SkYct6THE2Uc++Gu/PARnnj1XT7Y+f/Zu+/wqMr8/ePvk55MeiEFCL2GKkiRbhcLiGXtrg3rWtZdy379bW/23hBRdO0FRLFLR1BAkCq9JCQkpE2SSTL1+f2RgKFHyWRS7td15ZqcM2fm+SQRZ+552haS4qK5//KzuHjsIMLDmv+qySIi8usowIqIiBynWYt/5E8vzaB/l3Y8//vLibVF+r3NKq+PN2u3xKn0+jivdkuc1BawJc6m7Hye/nAO3/zwE3G2SO6++DQuPXUIUeFhgS5NREQCTAFWRETkOLw9Zxl/n/4JQ3t34pk7LsUW4d+taTzG8NEeOy/sLKTQ5WFsUjS3dUyhi635b4mzPa+QZ2fM5bPv12GLCOO288dx1RnDiI6MCHRpIiLSRCjAioiI/EqvfLaYh9/+kjH9u/PEbRf7dWirMYY5RRU8vX0vO6tcDIiN5OFeGS1iS5ycvSU8N3Mesxb/SHhoCNefPZJrzjqJ+Ojm/7OJiEjD8muAtSzrTOBJIBiYaoz572GuGQs8AYQChcaYMf6sSURE5HgZY3hu5jyenTmPM07M4sGbJhEW4r+X1OWllTy1vYA15dV0bkFb4uwptvPirAV8sOAHgoKCuPL0YVx/zkiSYqMDXZqIiDRRfnu1tSwrGHgWOA3IAZZZljXLGLO+zjXxwHPAmcaYXZZltfFXPSIiIg3BGMMj73zJK599y8SRA/jHdRMI9tP+o3a3lz9vzGVBcc2WOH/tnsY5LWBLnEJ7BVM/Wcjbc5fj8xkuGjuIyeeMJjUxNtCliYhIE+fPHtghwBZjzDYAy7LeBiYA6+tccxnwoTFmF4AxpsCP9YiIiBwXn8/HP16bzTtzl3PZKUP40xVnEeSn8Fru8XLzmmy2OJzc0SmFS1rAljilFZVM+3Qxb3z1HU63hwkjB3DLhDG0TUkIdGkiItJM+DPAtgWy6xznAEMPuqY7EGpZ1jwgBnjSGPOaH2sSERH5VTxeLw9M/YhZ3/7I9WeP5K6LTvXbEN4Kj5db12Sz2VHNo73bMTqpeQ+pLa+sZvoXS5j++RIqnS7GD+vDrRPH0jEtOdCliYhIM+PPAHu4V3VzmPYHAacAkcASy7KWGmM2HfBEljUZmAyQmZnph1JFRESOzOXxcM/zH/Dl8vXcfsHJ3HjuaL+F10qvj9+tzWFDRTUP9WrbrMNrpdPFG199x7RPF2N3VHHa4F7cdv44urVLDXRpIiLSTPkzwOYA7esctwNyD3NNoTHGATgsy1oA9AcOCLDGmCnAFIDBgwcfHIJFRET8ptrl5o6n32Hh6s3cd9mZXHXGcL+1VeX1cfvabFaXVfHfXhmMS47xW1v+5HS5eWfucl76ZCFFZQ5G9+/G784/maxOGYEuTUREmrl6BVjLsoKoCZYZQBWwzhiTf4yHLQO6WZbVCdgNXELNnNe6PgKesSwrBAijZojx4/UvX0RExH8cVU5ufeJNlm3cyd+uOZeLxg72W1vVXh93rcthpb2Kf/ZM57SU5regUbXLzXvzVjDt08Xkl5QxtHcnnpp0MgO7afSUiIg0jKMGWMuyugD3AqcCm4G9QATQ3bKsSuBFYLoxxnfwY40xHsuybgO+oGYbnWnGmHWWZd1Ue/8LxpgNlmV9DqwGfNRstbO24X48ERGRX8fuqOLGR//Huu25PHjjJM4Z3s9vbbl8Pu5ev5vvSyv5a/d0zmoT57e2/MFR7eSdOct55fNvKbJXMKh7B/4z+XyG9e4c6NJERKSFsYw58ohcy7LeAp4HFpqDLqzd8uYyoMQYM92vVdYxePBgs3z58sZqTkREWqGisgquf/h1tuXu5dFbLuLUQb381pbbZ/jD+hwWFDv4f93SmJQe77e2Glp5ZTVvfP0dr32xlNKKSoZndebm88YwuGfHQJcmIiLN2xEXmjhqD6wx5tKj3FcAPHEcRYmIiDQ5+cVlXPfQdHKL7Dx752WM7NvVb225fYb7NuxmQbGD+7umNpvwWlpRyetfLuWNr76jrLKa0f27cdN5YxjQtf2xHywiInIcjjkH1rKsOOBMarbFMdQsxPSFMabUz7WJiIg0qpy9JVz74HRKyiuZcvcVfu1J9BjDAxtzmVNUwR+7tOHijKa/F2pRWQXTP1/Cm998T2W1i1MH9eLGc0drcSYREWk0x5oDexXwF+BLahZiAhgH/NuyrL9pz1YREWkptucVcu2D06lyuZl279X07dzWb215jeEvG/P4cm85d3VK4bK2iX5rqyHsLS1n2qeLeWfucpxuD2cOyeLGc0fTvb22wxERkcZ1rB7Y/wMGHdzballWAvAdoAArIiLN3sZde7j+4ZqXtOn3/ZYemWl+a8tnDH/ftIdPC8q4rWMKV7VP8ltbxyuvyM7Lsxfx/oIf8Hp9nD2sL5PPHUXnjJRAlyYiIq3UsRZx2gScaIyxH3Q+DlhujOnm5/oO0aV3P3Pbk+83drMiItJC5ZeU8fGS1YQGBzNhRH/io6P81pbBsLCogg0VTgbHRzEozn9tHY8yRxUrNu3ip+w9APRsn8YJ3TOJs0UGuDIREWkN7jqt+69bxAn4F/CDZVlfAtm15zKB04B/NEx5v0xCVBh3ndY9EE2LiEgLs/ynHdz0/he0i7Ex7d6raZviv3moxhj+uyWfHeGG29pncmvHZCzriK/PAbE9r5ApHy/gkyVrCAqyuHLMCVx39kgykprH4lIiItLyHWsV4umWZc0CzqBmEScLmAfcb4wp8X95IiIi/rFozRZuf+ptMpLjmXbPVbRJiPVbW8YYHtlWwLt5pVzVLrHJhdfNOfm8OGsBn32/jvDQEC4/dQjXjh/h19+JiIjIr3HMVYhrg+rbjVCLiIhIo/h6+QZ+/9x7dG2bwtQ/XkVirM1vbRljeHL7Xt7cXcJlbRO4s1NKkwmv63fm8cJH8/l6xQaiIsK4bvwIrj5zOEmx0YEuTURE5LCOGWCPxLKsKcaYyQ1ZjIiIiL99/O1q/vTSDPp0yuDFu68g1o/zOo0xPLejkOk5xVyUHs8fOrdpEuH1x605vPDRfOb/uImYqAhunjCGK08f5tf5vyIiIg3hVwdY4MUGq0JERKQRvDt3OX+b/glDenbkmTsvxRYR7tf2puwqYmp2EeenxXFf19SAh9flG3fywkfz+XbdVuJskdw+6WQuO3WIX0O8iIhIQ/rVAdYYs6IhCxEREfGX/OIyHn33Kz5ZsprR/bvxxG2/ISIs1K9tvryriBd2FnJuaiwPdEsjKEDh1RjD0vXbeWHWfJb9tIOkWBt3X3wal5x8IrZI/wZ4ERGRhqYhxCIi0mK53B6mf7GEF2YtwOvzcdN5o7lpwhjCQo5nANKxvZZTxDM79nJWSix/6Z4ekPBqjGHB6s28OGsBq7ZkkxIfw32XnclFYwcRGR7W6PWIiIg0hKO+gluWlXiku4DxDV+OiIhIw5i3aiP/eeNzsguKOeWEntxz6Rm0b3Okl7WG89buYh7ftpfTkmP4e890ghs5vPp8Puas3MiLsxawbkcu6Ulx/Pmqszl/1EDC/dzrLCIi4m/H+gh6L7CTmsC6j6k9buOvokRERH6tHXsK+e+bn7Pgx810Tk/mpT9cyYi+XRul7fdyS3hoawHjkqL5V88MQhoxvHp9Pr5ctp4XZy1gU04+7VMS+Me153HuiP5+73EWERFpLMd6RdsGnGKM2XXwHZZlZfunJBERkV/OUeXkhVnzmf7FUsJDQ7jn0jO4/NShhIYEN0r7M/JK+feWfEYl2niwV1tCgxonvHq8Xj5dupYpHy9gW14hndKT+e/kSYwf1oeQ4Mb52UVERBrLsQLsE0ACcEiABR5q+HJERER+GZ/PxydL1vDIO19SaK/g/FEDufPCU0iJj2m0Gj7Ot/OPzXs4KcHGw70bJ7y6PB4+XvwjUz5ZRHZBMd3bpfLoLRdx+om9CQ4K8nv7IiIigXDUAGuMefYo9z3d8OWIiIjU37rtufzrf5+yaks2fTu35Zk7LqVfl3aNWsNnBWX8dWMeJ8ZH8WjvtoT7OTw6XW5mLFzJS7MXkVdkp3eHdJ66/RJOHtiDIAVXERFp4Y61iNNIY8yio9wfC2QaY9Y2eGUiIiJHUFzm4Mn3v+H9BT+QGBPFP6+byMSR/Rs9wH21t4z/91MuA+IieSKrHRHB/mu/yunivXkrmPbpYgpKy+nfpR1/vvocRvfrFvD9ZUVERBrLsYYQX2BZ1kPA58AKahZ1igC6AuOADsDdfq1QRESklsfr5e05y3jmw7lUOl1cdcYwbpkwlpioiEavZW5hOX/6KZe+sZE83ac9kX4Kr44qJ2/PWcarn39LUZmDE3t25D+TJzGsdycFVxERaXWONYT4LsuyEoALgYuAdKAK2AC8eLTeWRERkYa0dP02/v2/z9iyu4CTsrpw/xVn0SUjJSC1LCyq4J4Nu+kVHcHTfdoR5afwun5HLpMf+R/F5Q5OyurCTRPGMLhHB7+0JSIi0hwcc119Y0yJZVnTjDEvNUZBIiIide0uLOXht7/gy2XraZscz1O3X8IpJ/QMWO/jt8UV3L1+N91s4Tzbtz3RflrleHNOAdc//DpREWG8def19O/a3i/tiIiINCf13Rhui2VZ7wPTjDEb/FmQiIgIQLXLzbRPFzN1ds1gn9snncxvzzqJiLDQgNX0fYmD36/fTaeoMJ7vm0mMn8Lrzvwirn/4NUJDgpl2z9Vkpib6pR0REZHmpr4Bth9wCfCyZVlBwDTgbWNMmd8qExGRVskYw9crNvDgW1+QW1jKWUP7cPdvTiMjKT6gda0oreSOdTm0iwjl+b7tiQv1T3jNK7Jz7YPTcXu8vPanaxReRURE6qhXgDXGlAMvAS9ZljUaeAt4vLZX9h/GmC1+rFFERFqJzTkF/OeNz1i6fhvd26Uy/f5rOLFnx0CXxSp7Jb9bm016eCgv9sskMay+n//+MntLy7n2welUVDl55d6r6dq2jV/aERERaa7q9QpsWVYwcDZwDdAReBR4AxgFfAp091N9IiLSCpQ5qnhu5jze+Pp7bJHhPHDleC4eN5iQYP/0cv4Sa8uquG1tDinhIbzYL5MkP4XX0opKrn/4NQpKy5n6xyvp3THDL+2IiIg0Z/V9Fd4MzAUeNsZ8W+f8+7U9siIiIr+Yz+djxsKVPP7eN5RUVHLR2EHcccHJJMTYAl0aABvKq7l5TTYJocFM6ZdJSrh/wmtFVTWTH3mdnfnFvPD7yxnYLdMv7YiIiDR39X0lvurgLXMsyxphjFlsjLndD3WJiEgL9+OWbP71v09Zuz2XE7plMuXKK+ndIT3QZe23saKam9fsIjokiBf7ZZIa7p/Fo6qcLm5+7E1+2rWHp26/hGG9O/ulHRERkZagvgH2KeCEg849fZhzIiIiR7W3tJzH3/uamYtW0SY+hoduuoCzh/UN2LY4h7PF4eSmNdlEBAXxUr9MMiL8E15dbg+3P/U2Kzfv4uGbL2TsgB5+aUdERKSlOGqAtSxrOHASkGJZ1u/r3BULBH5ikoiINBsuj4f/ffkdz380H5fHw/Vnj+TG80ZjiwgPdGkH2F7p5MbVuwixLF7sn0m7yDC/tOP2ePn9c++xeO1W/nX9RM4a2scv7YiIiLQkx+qBDQOia6+LqXO+DLjQX0WJiEjLsnD1Zv7zxmfs2FPE2AHduefSM+mYlhTosg6xs8rF5NXZAEzp154OfgqvXp+PP02dwZwffuKBK8dz/qiBfmlHRESkpTlqgDXGzAfmW5b1qjFmZyPVJCIiLcSu/GIefOtz5q7cSIfUJJ7//eWM6d80F67PqXJx44+78BjDS/0y6RTln55hYwx/e/VjZi9Zw+8vPpXLTh3ql3ZERERaomMNIX7CGHMn8IxlWebg+40x5/mtMhERabYc1U5e+mQhr3z2LaEhwdx98WlcecYwwkL8s4rv8cqtdnPD6l1U+XxM6ZdJV5v/wuuDb37O+/N/4KbzRnP92aP80o6IiEhLdax3Eq/X3j7i70JERKT5M8bw6dK1PPLOl+SXlHHeSf35/cWn0iYhNtClHVG+083k1buo8Ph4sV8mPaIj/NbWMzPm8tqXS7nq9GH8btLJfmtHRESkpTrWEOIVtbfzG6ccERFprn7atYd/vf4pKzbtpHeHdB679aImv59pQW14LXV7eaFve3rH+C+8Tp29kOc/ms+FY07g3svObFKrLouIiDQXxxpCvAY4ZOjwPsaYfg1ekYiINCulFZU89cEc3p27nLjoSP52zblMGn0CwUFBgS7tqIpcHm5anc1ep4fn+ranT2yk39p68+vveOzdrzl7eF/+8ttzFV5FRER+pWMNIT6nUaoQEZFmx+vz8d7c5Tz5wRwqqpxcduoQbj1/HHE2/wXBhlLs8nDj6l3kOd0806c9A+Ki/NbWjIUr+efrn3LyCT359/XnN/lgLyIi0pQdawixVh4WEWmFnC43dkdVzVdFFaV1vt93fuXmXWzOKWBor0786Yqz6NYuNdBl14vd7eXmNdnkVLt5Mqsdg+L9F14//34d/+/ljxjRpwuP3XIRoSHaQl1EROR4HGsI8SJjzEjLssqpGUps1b01xjTdVTlERFo5YwyV1S7slQcGz/p8X+1yH/F5Q4KDiLNF0iYhlsdvu5jTB/duNkNiyz1ebl6zi+2VLp7IasvQBJvf2pq/ahP3vPA+A7tl8tTtlxAW2jRXYBYREWlOjtUDO7L2NqZxyhERkYP5fD7Kq5yHCZuVRw+kjio8Xt8Rnzc8NIQ4WyRx0ZHE2SJp3yaBPtEZNef2n4864Jp4WyRREWHNJrDWtaG8mn9v2cNmh5PHerfjpMRov7W1dP027njmHXpmpvH87y8jMjzMb22JiIi0JvX+ONiyrBOAkdT0wC4yxqz0W1UiIi1cldNFXpGd3CI7uYWl5JeUHbFXtKyyGmOOuJ4etojw/QEzzhZJt4TYA47rhs9938faIokIC23Enzgw7G4vnxbY+WiPnY0OJxFBFg/1asuoJP+F15Wbd3HrE2/RITWRKX+4kuhI/61sLCIi0trUK8BalvVn4CLgw9pTr1qW9Z4x5p9+q0xEpJkyxmB3VJFbWEpuoZ284prb3KKfb0vKKw94jGVZxERFHBA0M9skHhBAD/d9bFSk5lUexGcM35dWMnNPKXMLK3AZQ8/ocO7rmspZKbHEhvrv97V+Ry43PfYGbeJjmPrHq4iP9t/8WhERkdaovj2wlwIDjTHVAJZl/Rf4AVCAFZFWx+vzUVBSTm5RaU0vamHp/p7U3CI7eUV2qpyuAx4TGRZKenI8GUlx9O6YTkZyPBlJ8WQkx5GeFEeb+BhCghVEj0detZtZ+XZm7bGT63QTExLE+elxTEyLp2e0/3tBt+wu4IZHXicmKoJp915NSrxm34iIiDS0+gbYHUAEUF17HA5s9UdBIiKBVu1y7w+mNcN8f+45zSuyk19Sdsjc0oSYKNIT4+icnszIPl32B9T0pDgykuOIj45qlvNGmzqXz8f8ogpm7rGzpMSBAYbER3FbpxROTo4mvJG2rNmVX8x1D71GcFAQL99zFelJcY3SroiISGtzrFWIn6ZmzqsTWGdZ1le1x6cBi/xfnohIw9o/vLe2p7Sm17SUvEL7/rBaVOY44DFBlkWbhFgykuMY2C2TjOS4OuG05jZKi/Q0qs2OambusfNpfhmlHi+pYSFcn5nEhNQ42kY27t8ir8jOtQ9Nx+3xMv3+a+iQmtSo7YuIiLQmx+qBXV57uwKYUef8PL9UIyJynDxeL0V2xwG9prmFpeQV2/cfV1YfOLw3PDSktsc0jp6ZPfcH04ykONKT40lN0PDepqDc4+WLgjJm5ttZV15NiAXjkmKYmBbH0AQbwQHo4S60V3DdQ9Mpc1Tx6n2/pVu7No1eg4iISGtyrG10pjdWISIiR2KMoayymkJ7Rc1XaQWF9vKfj+t8FZdXHrJib5wtkozkeDqkJjKsd6dD5p8mxtg0vLeJMsbwg72KmXtK+bqwnGqfoWtUOH/o3IbxqbEkBHBv1dKKSq5/6DXyi8uYes9V9O6YEbBaREREWov6rkLcDfgP0JuaubAAGGM6+6kuEWkFqpwuisocB4TSvYcJpYX2Ctwe7yGPDw0JJjkumuS4aDKS4+nXpR3JcdGkxMccMP/UFhEegJ9OjkeB083H+WV8tKeU7Go30cFBnJ0ax8TUOLJiIgL+gUNFVTU3PvI/duQX8fxdlzOwW2ZA6xEREWkt6vvR9SvAX4DHgXHANYC6K0TkEB6vl+IyB4VljtpQeuTe0ooq5yGPtyyLxJio/cG0c3ry/u+T42JIjo/efxwbFfggIw3H7TMsKq5g5p5SFhc78AInxEVyQ4dkTk2OITK4cRZkOpYqp4ubH3uTDbvyeOr2Sxiepc9yRUREGkt9A2ykMeYby7IsY8xO4K+WZS2kJtSKSAu3b+Gjw4XQn0NqzVdJxaFDeAGiI8P3B8+emWkHhtK4aJLjo0mJiyYhJkrzTVuZ7ZVOPtpj55N8O0VuL8lhIVzVPpEJafF0aOQFmY7F5fZw+1Nvs3LzLh6++ULGDugR6JJERERalfoG2GrLsoKAzZZl3QbsBrRShUgLti13Ly9/upgl67ZRVHbsIbxtU+Lp37V2CO9BvaVJsTYitUqv1FHp9fHl3jJm7rHzY1kVIRaMSoxmYlo8JyXaCGmCPetuj5e7n3uPxWu38s/rJnLW0D6BLklERKTVqW+AvROIAm4H/gGcDFztr6JEJHBWb81h6uxFfPPDT4SHhnDywB6kJ8VpCK8cN2MMq8urmbmnlC/3llPp9dExMow7O6VwTmocSWGBW5DpWLw+H3+aOoNvfviJ/7tiPJNGDwx0SSIiIq1Svd4tGGOWAdT2wt5ujCn3a1Ui0qiMMXy7ditTZy/iuw3bibVFctN5o7n81KEkxtoCXZ40c8UuD5/k25mZb2d7pYvIIIvTU2KZmBZH/9jIJv8hiDGGv7/6CbOXrOGui07l8tOGBrokERGRVqu+qxAPpmYhp5jaYztwrTFmhR9rExE/8/p8fLV8A1M/Wcj6nXm0iY/hnkvP4KIxg7BFauVe+fU8xrCk2MHMPaUsKK7AY6BfbCR/7pbG6Skx2EKaxzxnYwwPvvk5781fwY3njuaGc0YFuiQREZFWrb7jtaYBtxhjFgJYljWSmkDbz1+FiYj/uNwePlq8ipc/Xcyu/GI6piXxj2vP49yT+hMWwH01pfnLrnLx0R47s/Lt7HV5SAgN5tK2iUxIjaOLrfl9KPLMjLm89uVSrjx9GLdfcHKgyxEREWn16vtOtXxfeAUwxiyyLEvDiEWamYqqat6Zu5zXvljK3tJysjpm8MRtv+GUQT0JDmoaW5RI81Pl9TGnsJyZe+wst1cSBIxItHFfWiqjEqMJDWraQ4SP5OXZi3j+o/lcOOYE7rvszCY/1FlERKQ1OGqAtSzrhNpvv7cs60XgLcAAvwHmHevJLcs6E3gSCAamGmP+e4TrTgSWAr8xxrxf7+pFpF6Kyir435ff8dY331NWWc2w3p357+RJDOvdSW/KpV6MMXgMuI3B7TO4jSGv2s2sfDufF5RR4fXRPiKU2zomc25qHG3CQwNd8nF565vvefTdrzh7WF/+8ttz9e9ERESkiThWD+yjBx3X3ff10I0e67AsKxh4FjgNyAGWWZY1yxiz/jDXPQh8Ua+KRaTedu8t4ZXPvuWDBT/g8ng5bVAvrjt7JH07tw10aXIQh8eL02fw1AmINWHx59B4wH0H3R71Pt+BwbPu87kOufZIz3/4uiOCLE5JjmFiWhwnxEUR1AKC3sxFq/jHa7MZN7AH/77hfI1OEBERaUKOGmCNMeOO47mHAFuMMdsALMt6G5gArD/out8BHwAnHkdbIlLHpux8ps5exGffrcWyLCaM6M+140fQKT050KVJLY8xrLJXsbC4goVFFWyvcjXo84daFqFBFqEWhAZZhFhWnXM/34YFWdisoEPOhxx0vO956t4XHRLMyEQbMc1kQab6+Pz7dTwwdSYnZXXhsVsuIrQF/WwiIiItQX1XIY6jpvd1dO2p+cDfjTH2ozysLZBd5zgHOGDvAcuy2gLnU7OvrAKsyHH6YdMups5eyLxVm4gMD+OK04fy2zNOIjUxNtClCWB3e/m2pIIFRQ4Wl1RQ7vERYsGJ8TbOTo0jOiSoJiAeFD4PDp4hBwTLQ+8LsdCQ119h/qpN3PPC+wzo1p6n7riE8LDmPQxaRESkJfolqxCvBS6uPb6SmlWIJx3lMYd793TwILQngHuNMd6jvdmyLGsyMBkgMzOzniWLtA7GGBb8uJmXZi/kh027iI+O4neTxnHpKUOIj44KdHmtmjGG7VUuFhZVsKC4gh/tVXiBxNBgTk6KYVRSNMPio5rNljIt2dL127jjmXfomZnG83ddTlR4WKBLEhERkcOob4DtYoy5oM7x3yzLWnWMx+QA7esctwNyD7pmMPB2bXhNBsZbluUxxsyse5ExZgowBWDw4MFHnXsr0lp4vF4+/34dUz9ZxKacfNKT4vjTFWcxafQJevMdQG6fYYW9kgVFFSwsriCn2g1AD1s412QmMToxmqyYiBYxV7SlWLUlm1ufeIsOqYlM+cOVxERFBLokEREROYL6Btgqy7JGGmMWAViWNQKoOsZjlgHdLMvqBOwGLgEuq3uBMabTvu8ty3oV+OTg8CoiB6p2uZmxcCXTPl3M7sJSumSk8J8bzmf8sL6arxcgxS4Pi4orWFDsYGmJA4fXR3iQxZD4KK5ul8jIxGjSIjQctSlavzOPGx/9Hynx0Uz941UatSAiItLE1TfA3gS8VjsXFqAEuPpoDzDGeCzLuo2a1YWDgWnGmHWWZd1Ue/8Lv7JmkVapzFHFW3OW8foXSykud9C/Szvuv/wsxg7oTpBWSW1Uxhg2OZwsLK5gQVEFa8urMUCbsBBbsrvNAAAgAElEQVTObBPL6MRoToyPIjJYf5embMvuAm54+DWiI8OZdu/VpMTHBLokEREROQbLmKOPyLUsKwi40BjzrmVZsQDGmLLGKO5wBg8ebJYvXx6o5kUa3d7Scl77Yglvz1mOo9rJqH7duOHskQzq0UEL9TSiaq+PZfuGBhdVkO/yANAnJoJRidGMToqmhy1cf5NmYld+MVf+exrGGF7/v2vpkJoU6JJERETkZ0d8Q3XMHlhjjK+2J/XdQAZXkdZmZ34R0z5dzMxFq/B6fZw5JIvrzh5Jrw7pgS6t1ShwullY7GBBUQXflzqo9hkigyyGJ9i4KSmakYnRJIfVdyCLNBV5RXaufWg6bo+X6fdfo/AqIiLSjNT3nddXlmX9AXgHcOw7aYwp9ktVIq3Y+p15TP1kIV8uW09ISDCTRg3kmrNGkJmaGOjSWjyfMWyoqN6/ANOGCicAGeGhTEyLZ3RiNIPiIwnTkO1mq9BewXUPTafMUcUr9/6Wbu3aBLokERER+QXqG2CvpWYLnFsOOt+5YcsRaZ2MMSz7aQdTZy9i0ZotREeGc+34EVx5+jDNy/OzSq+P70oczC+qYFFxBUVuL0FA/9hIbu+UwujEaDpHhWlocDNXUu5g6frtvDBrPvnFZbz0x6vI6pQR6LJERETkF6pvgO1NTXgdSU2QXQhoESaR4+Tz+ZizciNTZy9i9dYckmJt3HXRqVxy8onaysOPcqtdLChysLC4gmWllbiNITo4iJMSbYxOjGZEYjTxoVrRuTmrcrr4YdMulqzfxpJ129iwMw+AOFskT995KSd0157iIiIizdExF3ECsCzrXaAMeKP21KVAvDHmYj/WdlhaxElaApfHw+wla3h59iK25RXSPiWBa8aPYOLIAUSEabuVhuY1hjVlVSyoXTV4a6ULgA6RYYxOimZ0oo3+sVGEBqmXtbny+nys257LkvXbWLpuGz9s3oXb4yUkOJiB3dozvHdnhmd1JqtTBiHB+nBCRESkifv1izjV6mGM6V/neK5lWT8eX00irU+l08UH81fwymdL2FNsp0dmGo/cfCGnn9hbb6obWLnHy7fFNb2si4sdlHq8hFhwQlwUE9PiGZUYTYeosECXKb+SMYad+cUsWbeVJeu28f2G7ZRVVgPQIzONy08dyvCszgzq0YGocP2dRUREWor6BtiVlmUNM8YsBbAsayiw2H9liTRvlU4Xe4rs7CkuI6+olNwiO3lFduau3IjdUcXgHh3462/PZVS/rppb2QA8xrCz0sUWh5MtDic/llWxsqwSj4H4kGBGJNoYnRTN8AQbMSH6oKC5KrRX8N367SxZXxNa84rsAKQnxXHa4N4Mz+rM0N6dSIqNDnClIiIi4i/1DbBDgassy9pVe5wJbLAsaw1gjDH9/FKdSBPk8XrZW1rBnuKaUJpXZCevzvd7issorag84DGWZZESF82JPTtyzVknMbCb5t/9GsYYClweNtcG1S0OJ5sdTrZXunDXTocIArrYwrmyXSKjE6PpGxtJsD4kaJYc1U5WbNzFkvVbWbpuGxuz8wGItUUyrFcnbjhnFMOzOpPZJlEfBImIiLQS9Q2wZ/q1CpEmwhiD3VFV23NqJ6+otM73NUG1oKQcr893wONioiJIT4wjPSmO/l3akZ4UR3pSPOmJsaQnxdEmIZZQ9fz9IuUeL1trA+q+oLql0km55+fffUpYCN1s4QxLsNHVFk43WzidosII1zY3zZLH62Xt9tz9w4JXbcnB4/USGhLMCd0zueuiUxme1ZleHdIJ1t9YRESkVapXgDXG7PR3ISKNwelys6ekrE5vad1e1JrzVU7XAY8JDQkmLaEmiA7p2ZG02qC67zY9KZboSK0Y/Gu5fYYdVXVCau3tHqdn/zW24CC62sI5PSWWbrZwukaF09UWTpxWCm7WjDFsyyvcH1iX/bSDiionlmXRKzONq88YxvCsLgzs1p5IzWMVERER6t8DK9Lk+Xw+isoc++eb7jlgWG/NbVGZ45DHJcVFk5EYR9eMFEb26bK/9zSttvc0KdZGkHp7jpsxhjyn54CgusXhZEeVE0/tYughFnSMDGdAbNT+HtWutnDSw0M0RLSFKCgpY+n67ftDa0FpOQDt2yQyfljfmnmsvToRHx0V4EpFRESkKVKAlWbHGMOC1ZtZuXnX/jmn+249Xu8B10ZFhO0f2tsrM702nMaRlhRHemIcaYmxhIXqn0FDs7u9NQG18uewutXhpML78/DftPCa4b+jkmz7g2rHyHBtZdPCVFRVs+ynnfsD69bcvQDER0cxrHcnhmd1ZnhWF9qlJAS4UhEREWkO9M5dmpXvN2zn8fe+5setOYQEB9EmIZb0xDj6d23HmYlxZNQJp+lJccRERajnzo+cPh/bK12HLKq01/Xz8N/YkJrhv+PbxO7vVe1iC9dqwEBpRSULftzM3JUbWb8zj8iwUGwRYdgiw4mKCMMWEV5zHBGOLTKMqPB958KJijzo/trHBXpuqMvjYfXW3SxZV7Pw0uptu/H6fESEhTKoeyYTRw1geFYXerZP1cgGERER+cUUYKVZWLc9lyfe/5rFa7eSlhjL3685jwkjB2hhpEbiM4bd1e5Dhv/uqnKxr8871LLoHBXGkPio/T2q3WzhpIRp+O8+xhi25u5l3qqNzFu5iVVbsvEZQ3JcNIO6d8Dj9eKodmF3VJFbZKey2omj2oWjyomvdpXlY4moDcFRB4XfumE36pDzh14bFR5GZHjoMUOmMYbNOQU1Pazrt7Hsp51UOV0EWRZZnTK47uwRDM/qwoAu7QgPC22IX6OIiIi0Ygqw0qRtzyvkqQ/m8MWydcRHR/HHS07n0lOGEKE3wn7n9hnezi3hy71lbHU4qfL9HKDaRYTS1RbOKSkx+8NqZmQYIQqqh3B5PCzfuJN5Kzcyf9UmsveWANCrQzo3njeacQN70LtD+lGDojGGape7JszWhtrKKmed45+DbqXTtf98ZVXNbZHdwa784p/PV7uO2FZdlmURGR56aE9vbQ+w1+tj2cadFNkrAOiYlsTEkf0Z3rsLJ/bqSJwt8vh/gSIiIiJ1KMBKk5RXZOe5mfOYuWgVYaEh3DxhDNecdZJW+20ExhjmF1fw2NYCsqvd9IuNZGJa/AHDf6OCNfTzaErKHTVDg1dtZPGarTiqnYSHhjCsd2euPXsEY/v3IDUxtt7PVxMkw4gMDyM5Lvq46/P5fFQ53T8H3zoBuG4orjzkXM1tbrGdytpe4WG9OzG8dxeGZXUiIyn+uGsTERERORoFWGlSSsodTPlkIW99swxjDJedOoTJ544iKfb437TLsW1xOHlkaz7flVbSKSqMZ/u046RE/e6PxRjDlt17mf/jgUODU+JjGD+0D2MH9mBY705NZiuYoKAgbJHh2CLDA12KiIiIyC+iACtNgqPKyfQvlvDKZ99S5XQxYeQAbpk4lrbJ6tFpDKVuLy/s3Mv7uaXYQoK4p0sbLkxP0IrAR1F3aPC8VZvIqR0a3LtDOjdNGMPYAd2POTRYRERERH4ZBVgJKKfLzTtzlzPl44UUlzs4bXAvfjfpZLq2bRPo0loFt8/wXl4JL+4sxOHxcWFGPDd1SCE+VItjHc6RhgYPz+rMdb9iaLCIiIiI/DIKsBIQHq+XWYtX8+zMueQV2RnWuzN3XngK/bq0C3Rprcbi4goe3VbA9koXw+Kj+EOXVLrYNKS0rn1Dg2tWDd7Iqq05mCY8NFhERESkpVOAlUZljOHrFRt48v1v2JZXSN9ObfnndRMZntU50KW1GjsqnTy2rYCFxQ7aR4TyRFZbRidGa6ubWi6Ph+U/7WTuqppVg+sODb55whjGDehBrw5pGhosIiIiEgAKsNJovl23lSff+4Y123fTOSOFJ3/3G04d1EvBqZGUe7y8uLOQd3JLiAgK4q7OKVyakah5rkBxmYMFqzcz7zBDg68/eyRj+nfX0GARERGRJkABVvxu9dYcHn//a75bv530pDj+df1EzhvRn2D1YDUKrzF8mFfKczsLsbu9nJ8Wx60dU0gMa73//GuGBhcwb9WmA4YGt4mPYfywPowdoKHBIiIiIk1R630HK363ZXcBT30wh69XbCAxxsb9l5/Jb8adSFio/rNrLN+XOHhkWwGbHU4GxUXyxy6p9IhunXvputwelv20g3k/1oTW3YWlwIFDg3t3TNeIABEREZEmTElCGtzuwlKenTGXWYt/JDI8jN9NGsdVpw/XnpONKKfKxePbCphTVEFGeCgP98rglOSYVhfO9g8NXrmRRWu3UFnt2j80+IZzRmlosIiIiEgzowArDaaorIIXZy3gnbnLsSyLq84Yzg3njCQhxhbo0loNh8fL1Owi3sgpIcSC2zomc0W7RMJb0XDt/OIyPlq8inmrNvFjnaHBZw/ry7iBPRjaS0ODRURERJorBVg5buWV1bz6+be8+vkSXG4P548awM0TxpKeFBfo0loNnzHMyrfzzPa9FLm9nJsay20dU2gTHhro0hrN3tJyXvpkIe/OW4HL7SGrYwa3TBjDWA0NFhEREWkxFGDlV6t2uXnz6+956ZOF2B1VnDkki9svOJmOacmBLq1VWWmv5OGt+WyocNIvNpIn+7QhKyYy0GU1mqKyCqbOXsTb3yzD4/UxceQAJp87ivZtEgNdmoiIiIg0MAVY+cU8Xi8zFq7kuZnzyS8pY2Tfrtx54Sn07pgR6NJalbxqN09sL+DLveWkhoXw757pnJkS22p6GkvKHUz7dDFvfv09TreH80b056bzxpCZquAqIiIi0lIpwEq9+Xw+vli2nqc+mMPO/CIGdG3PQzddwIk9Owa6tFalyuvjlewiXsspxgJuzEzi6vZJRAa3jnmupRWVTP98Ca9/tZQqp5vxw/pw68Sx6vkXERERaQUUYOWYjDEsWrOFJ97/hg078+jWrg3P3HEp4wb2aDW9fU2Bzxg+Kyjjqe17KXB5ODMlljs6pZAW0TrmuZY5qnjty6W89sUSKqqcnDkki1smjqVr2zaBLk1EREREGokCrBzVqi3ZPP7e1yz7aQftUhL47+RJnD28L8GtaFXbpmBtWRUPbc1nTXk1vaIjeLBXBgPiogJdVqNwVDl5/aulvPrZt5RVVnPa4F7cOnEc3dunBro0EREREWlkCrByWJuy83ny/W+Yu2ojSXHRPHDleC4cO4iwEP0n05gKnG6e2r6X2QVlJIcF87fuaZyTGkdQK+j5dlQ7eeub73l59mLsjirGDejBrZPG0btDeqBLExEREZEAURqRA2QXFPPMjLl8smQN0ZHh3HnhKVxx+jCitG9mo6r2+ng9p5hp2UX4DFzbPolr2ydiCwkOdGl+V+V08facZbw8ezHF5Q5G9evGbeePo2/ntoEuTUREREQCTAFWgJo9NF+ctYB3560gJDiI68aP4NrxI4iPbh3DVJsKYwxfFZbzxLYC8pweTkmO4a5OKbSNbPkfIDhdbt6dt4KXPllIob2Ck7K6cNukcQzo2j7QpYmIiIhIE6EA2wwYY3B7vLg8nppbtxe314vLXXvs8R54/75jtwe314u79tblPvx1jmonXy/fgNvr5YLRJ3DzhDG0SYgN9I/d6mwor+bhrfmsLKuiuy2cv/dIZ3C8LdBl+Z3L7eGDBT/w4qwFFJSWc2LPjjx2y0UM1urWIiIiInIQBdgG9vLsRTjdnqOEySOEzTrHBwdTj9fb4HWGhYYQFhJMaEgwYSEhnDKoF7eeP5YOqUkN3pYcXZHLwzM79vLRHjvxocE80C2NiWlxBLfwea4uj4eZC1fxwqwF7Cm2c0K3TB686QKG9uoU6NJEREREpIlSgG1gz8yYi9PtITgoaH9ADA0NITQ4mLDQ4NrbkNrgGExkeChxtsj9x/sCZc3jDr2+7v37b49wXWjIQY+rrSMkOEjb3zQBLp+PN3eXMHVXEU6fjyvaJXJDZhIxLXyeq8frZdbi1Tz/0Tx2F5bSr0s7/nndBIZnddZ/lyIiIiJyVAqwDWzJc/cRGhKsbWbkiIwxzCuq4PFtBWRXuxmdGM3vO7ehQ1TLnufq9fmYvWQNz300j135xWR1zOCBq85mdL9uCq4iIiIiUi8KsA0sIiw00CVIE7bZUc0jWwv4vrSSzlFhPNenPcMTW/Y8V6/Pxxffr+PZmfPYnldIj8w0nrnjUsYN7KHgKiIiIiK/iAKsSAMzxlDi9pJb7WZ37VdutZvsahfLSyuJDgni3i6pXJgRT0gLDnA+n4+vVmzg2Rnz2LK7gK5t2/DEbb/h1EE9CdIIBRERERH5FRRgRX6Fck9NQD0wpLr2h9Uqnzng+vjQYNpGhHJZ2wSuy0wmPrTlznM1xvDNDz/x7Iy5bMzOp3N6Mo/echFnnNhbwVVEREREjosCrMhhVHt95Dl/7j09OKSWeXwHXG8LDiIjIpT2kWEMS7CRERFKRkQobSNCyQgPxdbCF2aCmuC64MfNPP3hHNbvzKNDahIP3ngB44f10ZxwEREREWkQCrDSKrl9hnznz+F0f0h11oTUQteBWxeFWdb+UNonJvLncBoRStuIMOJCWu/KzsYYFq/dytMfzmHNtt20S0ngX9dP5NyT+hES3PKDu4iIiIg0HgVYaZF8xlDo8hwQTn/uSXVR4PRQN6IGA6nhNaF0REJ0nXBac5scFkJQKw2oR2KMYen67Tzz4RxWbskmPSmOv19zHhNGDiC0FfQ4i4iIiEjjU4CVZskYQ6nHe0g43XebV+3GZQ6ch5ocFkLbiFAGxkXV9KbWBta2EaGkRoS26AWVGtryn3bw1IdzWL5xJ6kJsfz56nOYNHogYSH6X4qIiIiI+I/ebUqz4jGGzwvKeHlXETuqXAfcFxcSREZEGN1s4YxNij5gHmp6eCgRwZqHebxWbt7F0x/OZen6bSTHRfOnK87iojGDCNf2USIiIiLSCBRgpVnwGMNnBWVM3VXIrio33Wzh3NU5hfYRYftDarSGrfrN6q05PDNjLovWbCEp1sa9l57Bb04+Ufsei4iIiEijUoCVJs1jDJ/m25m6q4jsajc9bOE82rstY5OiNSe1EWzOKeDx975i3qpNxEdHcffFp3HpqUOICg8LdGkiIiIi0gopwEqT5PYZZhfYeXlXETnVbnpGh/NYbXBtrav9Niavz8ern3/LUx/MITIslDsuPIUrTh2KLTI80KWJiIiISCumACtNittn+DjfzrTsInZXu+kVHcETWW0Ynajg2lhy9pZw/5QZrNi0k1NO6MnfrjmPxFhboMsSEREREVGAlaZhX3CduquQPKeH3tER3JuVyshEm4JrIzHG8OGCH/jPm59jYfHvG85nwoj++v2LiIiISJOhACsB5fYZPtpTysvZRexxeugTE8H93dIYmaDg2pgK7RX8Zdos5q7ayJCeHfnXDefTNjk+0GWJiIiIiBxAAVYCwuXzMXOPnVdqg2vfmAge6JbGSQquje7rFRv46ysfU1Ht5J5Lz+Cq04cRFKQth0RERESk6VGAlUbl3BdcdxWR7/LQPzaSP3dLZ1hClIJrIyuvrOY/b3zGzEWr6NUhnVcmT6JbuzaBLktERERE5Ij8GmAtyzoTeBIIBqYaY/570P2XA/fWHlYANxtjfvRnTRIYTp+PGXk1Pa4FLg8DYiP5a490hsYruAbC9xu2c/9LM8gvLuPGc0dz88QxhIXo8ywRERERadr89o7Vsqxg4FngNCAHWGZZ1ixjzPo6l20HxhhjSizLOguYAgz1V03S+Kq9Pj7cU8qr2cXsdXkYGBvJ33ukM0TBNSCcLjdPvP8N079YQmZqIm88cB39u7YPdFkiIiIiIvXizy6XIcAWY8w2AMuy3gYmAPsDrDHm2zrXLwXa+bEeaUTVXh8f5JXyak4RhS4vg+Ii+VfPdAbHKbgGyvqdedz7wgdszd3LJSefyB8uOZ2o8LBAlyUiIiIiUm/+DLBtgew6xzkcvXf1OuCzw91hWdZkYDJAZmZmQ9UnflDl9fF+XinTs4socnsZHBfFf3omMThe+4gGisfrZersRTw3cx4JMTZevPsKRvXrFuiyRERERER+MX8G2MN1s5nDXmhZ46gJsCMPd78xZgo1w4sZPHjwYZ9DAqvK6+O9vBKmZxdT7PYyJD6KBzOTGRQfFejSWrUde4q4f8qH/Lg1hzOHZPHnq88hPlp/ExERERFpnvwZYHOAupPr2gG5B19kWVY/YCpwljGmyI/1iB9UeX28m1vC9JxiStxehsZHcWOHZAbGKSQFkjGGd+Ys4+G3vyQ0JJiHb7qQs4f3DXRZIiIiIiLHxZ8BdhnQzbKsTsBu4BLgsroXWJaVCXwIXGmM2eTHWqSBVXp9vJNbwms5xZS6vQxPsDE5M4kBCq4BV1BSxgMvf8SiNVsY0acL/7xuIqmJsYEuS0RERETkuPktwBpjPJZl3QZ8Qc02OtOMMessy7qp9v4XgD8DScBztQv7eIwxg/1Vkxw/h8fL27ml/C+nmFKPl5MSbEzukEz/2MhAlybAZ9+t5W/TP8Hl9vDAleO59JQhWjRLRERERFoMy5jmNaV08ODBZvny5YEuo9Wp8Hh5J7eE13OKsXt8jEiwcWOHZPoquDYJdkcV/3xtNrOXrqFv57Y8eOMkOqYlB7osEREREZFf44g9MP4cQiwtQLnHy9u7S/jf7mLKPD5GJdqYnJlMHwXXJuPbtVv5v6kzKSqr4HeTxnHDOaMICQ4OdFkiIiIiIg1OAVYOq9zj5c3dJbyxu5hyj4/RidFM7pBEVoyCa1NR5XTx6Dtf8eY339M5PZln7riBrE4ZgS5LRERERMRvFGDlAOUeL2/kFPPG7hIqvD7GJEUzOTOZ3jERgS5N6vhxaw73T/mQHXuKuOr0Ydx50alEhIUGuiwREREREb9SgBUAytxe3thdzJu1wXVcUjSTOyTTM1rBtSlxe7y8MGs+Uz5eSEp8DNPuvZphvTsHuiwRERERkUahANtKGGMo9/godnsodnspcXspdtV8X+B08+Xeciq8Pk5Orulx7aHg2uRszd3LfS9+yLoduUwY0Z/7Lz+LWJuGdIuIiIhI66EA24xVeX37Q2ix20OxqzaYuj0HBNQSt5cStwfPERacjgkJYliCjRsyk+iu4Nrk+Hw+3vj6Ox5792siw8N44rbfcPqJvQNdloiIiIhIo1OAbULcPkNJbQ9p3WBa4vZS4vLu7z0tdtWcq/YdPpFGBlkkhoWQGBpMWngovaIjSAwLJjG05lxiWAgJocG1XyGEBmmf0KYqt6iU/5s6k+/Wb2fsgO787ZrzSImPCXRZIiIiIiIBoQDrR15jsLt/7hUtrhNCa0Lpgb2nFV7fYZ8nxKImfNaG0I6RYSTUBtHE0OD99yWE1gTTyOCgRv5JpaEZY/j429X88/XZ+Izh79ecxwVjTsCy9GGDiIiIiLReCrANyGcMN6/Jpqg2mNrdXg4XSYOAuNDg/eGzZ3QEibXhM7FOME2ovY0ODlJwaUVKyh389dWP+Wr5Bk7onsl/bjif9m0SA12WiIiIiEjAKcA2oCDLIsSy6BAZxoC42hBap4d0X0iNCw0mWIFUDmP+qk08MO0j7BVV3H3xafz2rJMIDlKPuoiIiIgIKMA2uGf7tg90CdIMOaqdPPTmF7w3fwXd26Uy9Q9X0iMzLdBliYiIiIg0KQqwIgG2YtNO/jRlBjmFpVx/9khuO38cYaH6pykiIiIicjC9SxYJEJfbwzMz5vLyp4tpmxzPa3+6hkHdOwS6LBERERGRJksBViQANu7aw31TPmRjdj4XjRnEPZeegS0yPNBliYiIiIg0aQqwIo3I6/Px6mff8tSHc4i1RfLcXZcxdkCPQJclIiIiItIsKMCKNAKX28OGXXt45O0vWbFpJ6cN7sVfrj6XxFhboEsTEREREWk2FGBFGpjb42XL7gLWbc9l7Y5c1m3PZWN2Ph6vl+jIcP47eRLnntRPe/uKiIiIiPxCCrAix8Hj9bI9r5C123P3B9afdu3B5fYAEBMVQe+O6Vx9xjCyOrXlxJ4dSIqNDnDVIiIiIiLNkwKsSD35fD527CmqCau1PasbduZR5XIDEBURRlbHDC47ZQhZHTPI6pRBZpsEgoKCAly5iIiIiEjLoAArchg+n49dBSW1vaq7Wbc9l/U786isdgEQGRZKrw7pXDh2EFkdM+jTKYOOaUkKqyIiIiIifqQAK62eMYbdhaW1w4B3s3ZHLut35FFeWQ1AeGgIPTPTmDhyAH06tSWrYzqd0pMJCQ4OcOUiIiIiIq2LAqy0KsYY8ortNT2rtfNW1+3Ixe6oAiAkOJiemamMH9qHPp0yyOrUli4ZKYSGKKyKiIiIiASaAqy0aAUlZfvnrO4LrMXlDgBCgoPo1i6V/9/evUdXVd95H3//IIBUUEAIhEQaKheBABEQa8dGrANVh8GCFoZaxcGp1dX2sVZkeJZrWqiLKfUyWuuMWpczjdrR6lMVyvBYUYRx9KGUakB6kYtkhmAkUFAU5BLYzx85pIDnhItJ9t7J+7XWWZzsszfnw1kn/PZ3/y573KjBDO5bQElxIf2L8mnfzl8LSZIkKYk8U1eLse39D+sXVzq0IvDW9z4AoE0I9CvM58LSAXU9q8W9GXhmTzq0bxdzakmSJEnHywJWqfSnnR/yh/9+lzUbN2eGAVfz7vb3AQgh8JmC7pw/+DMM6Vu3wNLZfXrRsUP7mFNLkiRJ+iQsYJVoO3d9xPrNW1m/uYZ1m2tYX1XDuqqa+mHAAMW9zmDkwD6UFNfNWR3UpxenduwQY2pJkiRJTcECVomwe+8+3n5nK+syBer6zXWPd7fvrN/nU6e0p39hPhedM5D+RfkMOLMnQ4p70/lTp8SYXJIkSVJzsYBVs9q3v5bKd/9UV6hu3lJXrFbVULXtPaIoAqB9uzzO6t2D0Wf3pX9RPv0K8+lXlE/vM04nhBDzv0CSJElSXCxg1SRqDxxgU82O+t7UumEiIwQAAB98SURBVIK1hv9+908cOHgQqFsF+NM9z2BI39586fOl9C/sSb+iHpyZ3422bdrE/C+QJEmSlDQWsPpEDh48SPWf3mfdoSI1U7C+Xb2NfftrgbpFlc7M70r/wnzGjhxE/6J8+hfl8+leZ9A+z6+gJEmSpONj9aDjEkURW9/7gPWbt7Kuakt9wbrhna3s3rOvfr9e3U6nf1E+nys5i/6FdcN/P9O7uysAS5IkSfrELGD1Me99uDvTm7olU7DWDf/dueuj+n3OOL0T/Qp7MOnz52R6VHtyVu8eLqgkSZIkqclYwLZy23fu4r/eXM/vKt+pn6u67f0P618/7VOn0K8on0tHD6FfYX79okrdTjs1xtSSJEmSWiML2FYmiiL++D/vsmzVWpZVrGX125uJooiO7dvRrzCfzw/rX9ejmhn+m9+1syv/SpIkSUoEC9hW4KO9+1j++40srXiLV1avq7+36tC+hXzjS2O4cPgABn26F21c+VeSJElSglnAtlCbt+6o62VdtY5f/2Ej+/bX8qlT2nNBST++OXEAnx/Wjx5dOscdU5IkSZKOmwVsC1F74AAV66v4z1VrWVqxlvWbawDo07Mbf3PRKC4sHcjIgX28bY0kSZKk1LKaSbH3PtzNf725nmUVa3nlzfXs3PUReW3bMHLgp7mi7ItcWDqA4l7d444pSZIkSY3CAjZFoihi/eYallasZdmqtVSs28TBKKJb51P5wjkDubB0AJ8bcpa3spEkSZLUIlnAJtyeffv59R821g8Nrv7T+wAM+nQBX59QRtnwAQzt29sFmCRJkiS1eBawCfTu9vfrb3Oz/Pcb2bNvPx3bt+P8krO4YUIZZcMG0LPbaXHHlCRJkqRmZQGbAAcOHuTNtzeztOItlq1ax1v/8y4Ahd27MKnsHMaUDuTcgZ+mQ/t2MSeVJEmSpPhYwMZk566PeHXNhswCTOvY8cFu2rZpwzn9z+SWKWO5cPgAzurdgxBC3FElSZIkKREsYJtJFEW8Xb2NZZkFmF5f+z8cOHiQ00/tyOeH9WdM6QD+Ymg/Tj+1Y9xRJUmSJCmRLGCb0L79tfzmj5X181k3bd0BwICinky/7C+4cPgAhvcroq0LMEmSJEnSMVnANrKt731Qv2Lwa797m4/27qNDuzw+O/gz/O2ln6OsdAC9z+gSd0xJkiRJSh0L2Ea0e+8+/vKWe9hfe4Be3U5nwueGMaZ0IKMHFdOxQ/u440mSJElSqlnANqJPdWjP7dMvZ+CZPRlwZk8XYJIkSZKkRmQB28gm/MXwuCNIkiRJUovk6kGSJEmSpFSwgJUkSZIkpYIFrCRJkiQpFSxgJUmSJEmpYAErSZIkSUqFJi1gQwiXhBDeCiGsDyHMyvJ6CCHcl3l9dQhhRFPmkSRJkiSlV5MVsCGEtsA/A5cCg4GpIYTBR+12KdA/87geeKCp8kiSJEmS0q0pe2BHA+ujKHo7iqJ9wJPA5UftcznwaFRnOdAlhFDQhJkkSZIkSSnVlAVsIbDpsJ+rMttOdB9JkiRJkpq0gA1ZtkUnsQ8hhOtDCCtDCCu3bt3aKOEkSZIkSenSlAVsFXDmYT8XAe+cxD5EUfSTKIpGRVE0qkePHo0eVJIkSZKUfE1ZwP4G6B9C6BtCaA/8DbDgqH0WANdkViP+LPB+FEXVTZhJkiRJkpRSIYo+NmK38f7yEC4D7gXaAv8aRdHcEMINAFEUPRhCCMD9wCXAbuBvoyhaeYy/cyvw300WunF0B7bFHeIEmbl5mLl5mLl5pDEzpDO3mZuHmZuHmZuHmZuHmZvGtiiKLsn2QpMWsK1VCGFlFEWj4s5xIszcPMzcPMzcPNKYGdKZ28zNw8zNw8zNw8zNw8zNrymHEEuSJEmS1GgsYCVJkiRJqWAB2zR+EneAk2Dm5mHm5mHm5pHGzJDO3GZuHmZuHmZuHmZuHmZuZs6BlSRJkiSlgj2wkiRJkqRUsIA9ASGEfw0h1IQQ1hy2bXYIYXMIoSLzuCzHsZeEEN4KIawPIcyKM3Nm+7cyeX4XQrgjx7GJyRxC+Plhn3FlCKEiBZlLQwjLM5lXhhBGpyDz8BDC/wshvBlC+GUI4bSEZT4zhPByCOEPme/uTZnt3UIIi0MI6zJ/dk1K7gYyfznz88EQQs6VABOW+c4Qwh9DCKtDCM+GELqkIPPtmbwVIYQXQgi9k575sNdnhBCiEEL3pGdOclvY0OccEtoWNvA5J70tzJU7se1hA5kT2x6GEE4JIawIIazKZJ6T2Z7ktjBX5iS3hbkyJ7ktzJU5sW3hSYmiyMdxPoAyYASw5rBts4EZxziuLbAB+AzQHlgFDI4x80XAi0CHzM/5Sc981Ot3A99NembgBeDSzPPLgKUpyPwb4MLM8+nA7QnLXACMyDzvDKwFBgN3ALMy22cBP0xK7gYyDwIGAkuBUTmOTVrmcUBeZvsPU/I5n3bYPv8LeDDpmTM/nwn8irr7nndPemYS3BY2kDmxbWFD343D9kliW5jrs05se9hA5sS2h0AAOmWetwN+DXyWZLeFuTInuS3MlTnJbWGuzIltC0/mYQ/sCYii6D+B7Sdx6GhgfRRFb0dRtA94Eri8UcPlkCPzjcC8KIr2ZvapyXJo0jIDEEIIwGTgiSwvJy1zBBy6Yns68E6WQ5OWeSDwn5nni4ErshwaZ+bqKIpezzz/APgDUJh5//LMbuXAl7IcHkvuXJmjKPpDFEVvHePwpGV+IYqi2sxuy4GiFGTeedhup1L3e5nozJmX7wFm5sgLycx8LEnLnNi28Fifc4Lbwly5E9seNpA5se1hVOfDzI/tMo+IZLeFWTMnvC3MlTnJbWGuzIltC0+GBWzj+GamW/5fcwzXKAQ2HfZzFcff4DeFAcDnQwi/DiEsCyGcm2WfpGU+5PPAliiK1mV5LWmZvw3cGULYBNwF/O8s+yQt8xpgQub5l6nrBTpaIjKHEIqBc6i7utgziqJqqDsZAfKzHBJ77qMyH48kZ54O/N8shyQucwhhbub38Crgu1kOSVTmEMIEYHMURasaOCRRmTObEt8WHpU5FW1hjt/BxLeFR+VORXt4VOZEt4chhLaZIeQ1wOIoihLfFubIfDySnDlxbWGuzGloC4+XBewn9wBwFlAKVFM3pOdoIcu2OJd/zgO6Ujek4FbgqczV3MMlLfMhU8l+xRmSl/lG4OYois4EbgYeybJP0jJPB74RQvgtdUOp9mXZJ/bMIYROwC+Abx91VbHBw7Jsa7bcLSlzCOE2oBb4WbbDsmyLNXMURbdlfg9/Bnwz22FZtsWSmbrP9Tayn1wccViWbXF+zolvC7NkTnxb2MD/G4luC7PkTnx7mCVzotvDKIoORFFUSl3v3+gQQslxHmrmE9BQ5qS2hbkyJ70tPBEWsJ9QFEVbMl+Ug8DD1HW/H62KI6/cFZF9+ExzqQKeyQwzWAEcBI5eJCRpmQkh5AGTgJ/n2CVpmacBz2SeP00KvhtRFP0xiqJxURSNpO7kaEOW3WLNHEJoR91Jxs+iKDr0+W4JIRRkXi+g7qrj0WLLnSPz8Uhc5hDCNGA8cFUURdkatsRlPsy/k30YYJIynwX0BVaFECozWV4PIfQ66tAkZU58W5jju5HotrCB38FEt4U5cie6PczxnU58ewgQRdF71M0fvYSEt4WHHJX5eCQuc5LbwkMa+JwT1xaesCgBE3HT9ACKOXLRm4LDnt8MPJnlmDzgbepOSg5Nih4SY+YbgO9nng+gbrhASHLmzLZLgGUNHJOozNTNoxmTeX4x8NsUZM7P/NkGeBSYnqTM1F0dfBS496jtd3LkwhV3JCV3rsyHvb6U3AtXJCpz5nfw90CPBo5NWub+hz3/FvB/kp75qH0qyb6IU6Iyk+C2sIHMiW0LG/pukOC2sIHPOrHtYQOZE9seAj2ALpnnHYFXqCumktwWZs182OtLSV5bmOtzTnJbmCtzYtvCk/p3xh0gTQ/qrsBVA/upu0pxHfAY8CawGlhAphEHegOLDjv2MupWttsA3BZz5vbA49TN73gd+ELSM2e2/xS44ah9E5sZuAD4beY/gF8DI1OQ+aZMlrXAPDIncwnKfAF1w1lWAxWZx2XAGcBLwLrMn92SkruBzBMzn/teYAvwqxRkXk/dSf6hbQ+mIPMvqPu/bjXwS+oWdkp05qP2qSRTwCY5MwluCxvInNi2sKHvBsluC3N91oltDxvInNj2EBgGvJHJvIbMatQkuy3MlTnJbWGuzEluC3NlTmxbeDKPQ7+MkiRJkiQlmnNgJUmSJEmpYAErSZIkSUoFC1hJkiRJUipYwEqSJEmSUiEv7gAnoclXnfrLg4819VuckBfbXH3MfdKWOW15wcyNwczNw8zNw8xNL215wczNxczNw8zNI22ZjydvIwi5XrAHVpIkSZKUChawkiRJkqRUsICVJEmSJKWCBawkSZIkKRUsYCVJkiRJqWABK0mSJElKBQtYSZIkSVIqWMBKkiRJklLBAlaSJEmSlAoWsJIkSZKkVLCAlSRJkiSlggWsJEmSJCkVLGAlSZIkSamQF3eAJHqxzdVxR5AkSZIkHcUeWEmSJElSKljASpIkSZJSwQK2Cdxzzz0MGTKEkpISpk6dyp49e+KOJEmSJEmp5xzYRrZ582buu+8+fv/739OxY0cmT57Mk08+ybXXXtuk7+u8XUmSJOnY0njenMbMTcUe2CZQW1vLRx99RG1tLbt376Z3795xR5IkSZKk1LMHtpEVFhYyY8YM+vTpQ8eOHRk3bhzjxo2LO9bHTJ8+nYULF5Kfn8+aNWsA2L59O1OmTKGyspLi4mKeeuopunbt2iTv71UkSZIkpUHc580nI42Zj5c9sI1sx44dzJ8/n40bN/LOO++wa9cuHn/88bhjfcy1117L888/f8S2efPmcfHFF7Nu3Touvvhi5s2bF1M6SZIkKRnSeN6cxszHywK2kb344ov07duXHj160K5dOyZNmsRrr70Wd6yPKSsro1u3bkdsmz9/PtOmTQNg2rRpPPfcc3FEy2n69Onk5+dTUlJSv+3pp59myJAhtGnThpUrV8aYTpIkSS1RGs+b05j5eFnANrI+ffqwfPlydu/eTRRFvPTSSwwaNCjuWMdly5YtFBQUAFBQUEBNTU3MiY6U7UpSSUkJzzzzDGVlZTGlkiRJUmuT9PPmbNKYORvnwDay8847jyuvvJIRI0aQl5fHOeecw/XXXx93rBahrKyMysrKI7al5eKAJEmSpE/OArYJzJkzhzlz5sQd44T17NmT6upqCgoKqK6uJj8/P+5IieLCU5IkSUdqredHaTxvTmPmbBxCrHoTJkygvLwcgPLyci6//PKYE0mSJEnJk8bz5jRmzsYCtpWaOnUq559/Pm+99RZFRUU88sgjzJo1i8WLF9O/f38WL17MrFmz4o4pSZIkxSqN581pzHy8HELcSj3xxBNZt7/00kvNnKRly3YPrkPuuusubr31VrZu3Ur37t1jSihJktS80nZ+lMbz5jRmPl4WsEqNqVOnsnTpUrZt20ZRURFz5syhW7dufOtb32Lr1q381V/9FaWlpfzqV7+KO2q9a6+9lm9+85tcc801R2zftGkTixcvpk+fPk36/q11XookSUquuM+PlG4WsEqNXFeSJk6c2MxJjl+2lZMBbr75Zu64447Uzj2QJEk6WZ4f6ZNwDqzUzBYsWEBhYSHDhw+PO0pW06dPJz8/n5KSkiO2//jHP2bgwIEMGTKEmTNnxpROkiS1REk/P1Jy2AMrNaPdu3czd+5cXnjhhbij5JRtWM/LL7/M/PnzWb16NR06dEjtja8lSVLypOH8SMlhD6zUjDZs2MDGjRsZPnw4xcXFVFVVMWLECN599924o9UrKyujW7duR2x74IEHmDVrFh06dABI7X3DJElS8qTh/EjJYQErNaOhQ4dSU1NDZWUllZWVFBUV8frrr9OrV6+4ozVo7dq1vPLKK5x33nlceOGF/OY3v4k7kiRJaiHSen6keFjASk0o2z240qi2tpYdO3awfPly7rzzTiZPnkwURXHHkiRJKdRSzo8UD+fASk0o18rJh2RbgS+JioqKmDRpEiEERo8eTZs2bdi2bRs9evSIO5okSUqZlnJ+pHjYAyvpmL70pS+xZMkSoG448b59+xJzc3FJkiS1HvbASjrC1KlTWbp0Kdu2baOoqIg5c+Ywffp0pk+fTklJCe3bt6e8vJwQQtxRJUmS1MpYwEo6Qq5hPY8//ngzJ5EkSZKO5BBiSZIkSVIqWMBKkiRJklLBAlaSJEmSlArOgZWUKC+2uTruCJIkSUooe2AlSZIkSalgD6ykVNu0aRPXXHMN7777Lm3atOH666/npptuqn/9rrvu4tZbb2Xr1q3eu1aSWhFH9EgtkwWspFTLy8vj7rvvZsSIEXzwwQeMHDmSsWPHMnjwYDZt2sTixYvp06dP3DElSZLUCBxCLCnVCgoKGDFiBACdO3dm0KBBbN68GYCbb76ZO+64gxBCnBElSSmwadMmLrroIgYNGsSQIUP40Y9+BMDs2bMpLCyktLSU0tJSFi1aFHNSqXWzB1ZSi1FZWckbb7zBeeedx4IFCygsLGT48OFxx5IkpUCuET1Qd0F0xowZMSeUBBawklqIDz/8kCuuuIJ7772XvLw85s6dywsvvNAs7+08K0lKv4KCAgoKCoCPj+iRlBwWsJJSb//+/VxxxRVcddVVTJo0iTfffJONGzfW975WVVUxYsQIVqxYQa9evWJOK0lKusNH9Lz66qvcf//9PProo4waNYq7776brl27Nsn7ekFUOjbnwEpKtSiKuO666xg0aBDf+c53ABg6dCg1NTVUVlZSWVlJUVERr7/+emKK11zzrKZMmVI/x6q4uJjS0tKYk0pS63P4iJ7TTjuNG2+8kQ0bNlBRUUFBQQG33HJL3BGlVs0eWEmp9uqrr/LYY48xdOjQ+oLvH//xH7nssstiTpZbrnlWP//5z+v3ueWWWzj99NNjTClJrc/RI3oAevbsWf/61772NcaPHx9XPElYwEpKuQsuuIAoihrcp7KysnnCHKdc86wGDx4M1PUqP/XUUyxZsiTOmJLUqmQb0QNQXV1d/3/2s88+S0lJSVwRPybXvdArKiq44YYb2LNnD3l5efzLv/wLo0ePjjuu1CgsYCUpRofPszrklVdeoWfPnvTv37/J3td5VpJ0pFwjep544gkqKioIIVBcXMxDDz0Uc9I/yzWiZ+bMmXzve9/j0ksvZdGiRcycOZOlS5fGHVdqFBawkhSTo+dZHfLEE08wderUGJNJUuuTa0RPkqek5BrRE0Jg586dALz//vv07t07zphSo7KAlaQYZJtnBVBbW8szzzzDb3/72xjTfdyePXsoKytj79691NbWcuWVVzJnzhy2b9/OlClTqKyspLi4mKeeeqrJVueUJOV2+Iiee++9ly9+8YvMmDGDgwcP8tprr8UdT2o0rkIsSc0s1zwrgBdffJGzzz6boqKimNJl16FDB5YsWcKqVauoqKjg+eefZ/ny5cybN4+LL76YdevWcfHFFzNv3ry4o0pSq3P0iJ4HHniAe+65h02bNnHPPfdw3XXXxR1RajQWsJLUzA7Ns1qyZEn9bXMWLVoEwJNPPpnI4cMhBDp16gTU9R7v37+fEALz589n2rRpAEybNo3nnnsuzpiS1OpkG9FTXl5e//zLX/4yK1asiDOi1KgcQixJzayhlZN/+tOfNm+YE3DgwAFGjhzJ+vXr+cY3vsF5553Hli1b6udfFRQUUFNTE3NKtTYuSKbWLNeInt69e7Ns2TLGjBnDkiVLmnRRQKm5WcBKko5L27Ztqaio4L333mPixImsWbMm7kiS1KrlWjn54Ycf5qabbqK2tpZTTjmFn/zkJzEnlRqPBawk6YR06dKFMWPG8Pzzz9OzZ8/6eyRWV1eTn58fdzxJajUaGtGTtMUApcbiHFhJ0jFt3bqV9957D4CPPvqofrGpCRMmUF5eDtTNubr88svjjCkdlz179jB69GiGDx/OkCFD+N73vgfAP/zDPzBs2DBKS0sZN24c77zzTsxJJUlHswdWknRM1dXVTJs2jQMHDnDw4EEmT57M+PHjOf/885k8eTKPPPIIffr04emnn447qnRMh1bV7tSpE/v37+eCCy7g0ksv5dZbb+X2228H4L777uP73/8+Dz74YKO/v/N2JenkWcBKko5p2LBhvPHGGx/bfsYZZ/DSSy/FkEg6eblW1T7ttNPq99m1axchhLgiSpJysICVJEmtTrZVtQFuu+02Hn30UU4//XRefvnlmFP+2Z49eygrK2Pv3r3U1tZy5ZVXMmfOHGbPns3DDz9Mjx49gLoFfC677LJGf397jSUlhXNgJUlSq3NoVe2qqipWrFhRv6r23Llz2bRpE1dddRX3339/zCn/7NCw51WrVlFRUcHzzz/P8uXLAbj55pupqKigoqKiSYpXSUoSC1hJktRqHb6q9uG+8pWv8Itf/CKmVB+Xa9hzUuVaKAvgxz/+MQMHDmTIkCHMnDkzxpSS0sgCVpIktSq5VtVet25d/T4LFizg7LPPjitiVgcOHKC0tJT8/HzGjh1bP+z5/vvvZ9iwYUyfPp0dO3bEnLJOrh7jl19+mfnz57N69Wp+97vfMWPGjLijSkoZC1hJktSqVFdXc9FFFzFs2DDOPfdcxo4dy/jx45k1axYlJSUMGzaMF154gR/96EdxRz1CtmHPN954Ixs2bKCiooKCggJuueWWuGMCuXuMH3jgAWbNmkWHDh0AvHe0pBPmIk6SJKlVybWqdpKGDDfk8GHPh/dgfu1rX2P8+PExJjtStoWy1q5dyyuvvMJtt93GKaecwl133cW5554bd1RJKWIPrCRJUsLlGvZcXV1dv8+zzz5LSUlJXBE/JluPcW1tLTt27GD58uXceeedTJ48mSiK4o4qKUXsgZUkqYl46xE1lurqaqZNm8aBAwc4ePAgkydPZvz48Vx99dVUVFQQQqC4uJiHHnoo7qgfc3iPcVFREZMmTSKEwOjRo2nTpg3btm2rvw2QJB2LBawkSVLC5Rr2/Nhjj8WQ5ti2bt1Ku3bt6NKlS32P8d///d/TqVMnlixZwpgxY1i7di379u2je/fucceVlCIWsJIkJcyBAwcYNWoUhYWFLFy4kO3btzNlyhQqKyspLi7mqaeeomvXrnHHlHLK1WO8b98+pk+fTklJCe3bt6e8vDzRtwOSlDwhhfMOUhdYkvTJ/eXBZPU0NeXw4H/6p39i5cqV7Ny5k4ULFzJz5ky6devGrFmzmDdvHjt27OCHP/xhk7x3kj5nh2BLUquV88qWizhJkpQgVVVV/Md//Ad/93d/V79t/vz5TJs2DYBp06bx3HPPxRVPkqRYWcBKkpQg3/72t7njjjto0+bPTfSWLVsoKCgAoKCggJqamrjiSZIUKwtYSZISYuHCheTn5zNy5Mi4o0iSlEgu4iRJUkK8+uqrLFiwgEWLFrFnzx527tzJV7/6VXr27El1dTUFBQVUV1eTn58fd1RJkmJhD6wkSQnxgx/8gKqqKiorK3nyySf5whe+wOOPP86ECRMoLy8HoLy8nMsvvzzmpJIkxcMCVpKkhJs1axaLFy+mf//+LF68mFmzZsUdSZKkWDiEWJKkBBozZgxjxowB4IwzzuCll16KN5AkSQlgD6wkSZIkKRUsYCVJkiRJqWABK0mSJElKBQtYSZIkSVIqWMBKkiRJklLBAlaSJEmSlAoWsJIkSZKkVLCAlSRJkiSlggWsJEmSJCkVLGAlSZIkSamQF3cASZKUHC+2uTruCJIk5WQPrCRJkiQpFSxgJUmSJEmp4BBiSZL0iRQXF9O5c2fatm1LXl4eK1eu5NZbb+WXv/wl7du356yzzuLf/u3f6NKlS9xRJUkpZw+sJEn6xF5++WUqKipYuXIlAGPHjmXNmjWsXr2aAQMG8IMf/CDmhJKklsACVpIkNbpx48aRl1c30Ouzn/0sVVVVMSeSJLUEIYqiuDOcqNQFliSpJevbty9du3YlhMDXv/51rr/++iNe/+u//mumTJnCV7/61ZgSSpJSJuR6wTmwkiTpE3n11Vfp3bs3NTU1jB07lrPPPpuysjIA5s6dS15eHldddVXMKSVJLYFDiCVJLVZxcTFDhw6ltLSUUaNGATB79mwKCwspLS2ltLSURYsWxZwy/Xr37g1Afn4+EydOZMWKFQCUl5ezcOFCfvaznxFCzovpkiQdN4cQS5JarOLiYlauXEn37t3rt82ePZtOnToxY8aMGJO1HLt27eLgwYN07tyZXbt2MXbsWL773e8C8J3vfIdly5bRo0ePmFNKklLGIcSSJKnxbdmyhYkTJwJQW1vLV77yFS655BL69evH3r17GTt2LFC3kNODDz4YZ1RJUguQxh5YSZKOSwhhI7CDutE7D0VR9JMQwmzgWmAnsBK4JYqiHbGFlCRJx80CVpLUYoUQekdR9E4IIR9YDHwLeAvYRl1ReztQEEXR9BhjSpKk4+QiTpKkFiuKoncyf9YAzwKjoyjaEkXRgSiKDgIPA6PjzChJko6fBawkqUUKIZwaQuh86DkwDlgTQig4bLeJwJo48kmSpBPnIk6SpJaqJ/Bs5vYtecC/R1H0fAjhsRBCKXVDiCuBr8cXUZIknQjnwEqSJEmSUsEhxJIkSZKkVLCAlSRJkiSlggWsJEmSJCkVLGAlSZIkSalgAStJkiRJSgULWEmSJElSKljASpIkSZJSwQJWkiRJkpQK/x/i7Sm9AkBN8QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHYCAYAAAB0hQTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVyU573//9cFzDAz7JsIgoKIgKwquGs0jUtMYpqYrqY9Wdo0SZutp2mb9qSnJ9+m7e8cT5smaZt+05Ov57RJm57sJzWN8TRGY9xQUVBAUJBVZJFtmIFZrt8fM46oaDQBR+DzfDx8wMxc931/5kYT3nNtSmuNEEIIIYQQQghxtQvwdwFCCCGEEEIIIcSlkAArhBBCCCGEEGJUkAArhBBCCCGEEGJUkAArhBBCCCGEEGJUkAArhBBCCCGEEGJUkAArhBBCCCGEEGJUkAArhBBCCCGEEGJUkAArhBBCnEMplaGU2q+U6lFKPejvekaSUmqxUqpyBM+/XSk10/u9Ukr9P6XUKaXU7ks8/sdKqT9e5PXdSqns4apXCCHE1U0CrBBCCL9QStUqpWxKqV6l1Aml1AalVOglHpuilNJKqaARKu+7wBatdZjW+ukhrr9FKWX31t6mlHpNKZUwQrWcvuZSpVTDMJxHK6WmnX6std6mtc74tOe9wLVuAnq01vu9Ty0ClgNJWus5F3tPSqlNSqkVl3CZ9cATw1OxEEKIq50EWCGEEP50k9Y6FCgAZgKP+bme06YAhz6mzbe8tU8HIoFfjnhVH2MEA/0ndS/wh0GPpwC1WmvrxQ5SSoUAs4EPLuEabwHLRvoDBCGEEFcHCbBCCCH8Tmt9AngXT5AFQCl1g3cYb7dSql4p9eNBh2z1fu309oLO9x5zl1Kq3DtE9V2l1JQLXVMptUYpdUgp1entUc3yPv93YBnwrPfc0z+m9g7gVSDHe3ywUmq9UqpOKdWilHpOKWX2vrZUKdWglPpHpdRJpVSzUurOQTUNeaw30L0DJHpr6lVKJXqH176ilPqjUqobuEMpNUcptcP7vpqVUs8qpYze85++bwe85/jCub2gSqks7/3o9N6fNYNe26CU+rVS6q/e4dW7lFJpF7i/RuBavCFUKXU38Htgvvfa/zbUe/Ie/hlgu9a63/vYqJT6L+81DymlCgfdfzuwF7iU3lohhBCjnARYIYQQfqeUSgKuB6oHPW0Fvoqnd/MG4D6l1Ge9ry3xfo3UWodqrXd4X/sBcCsQB2wD/nSB6033vvawt+1G4H+UUkat9bXeY7/lPfeRj6k9FlgLnB4m+//h6ZUtAKYBk4AfDTpkIhDhff5u4NdKqaiLHevtsbweaPLWFKq1bvIeczPwivc+vQi4gEeAWGA+njB4P4DW+vR9y/ee4+Vz3osB+B9gEzABeAB4USk1eIjxl4B/AaLw/LyevMCtSQfcWusG77X/A0+P7A7vtR+9yHtaDfx10LnWAH/2vse3gGfPuVY5kH+BOoQQQowhEmCFEEL40xtKqR6gHjgJ/PPpF7TWW7TWpVprt9b6IJ7Aec1FzvUN4Gda63KttRP4KVBwgV7YLwB/1Vq/p7V24JlHaQYWXEbtTyulOoEDQDPwbaWUAr4OPKK17tBa93jr+OKg4xzAE1prh9Z6I9ALZFzisUPZobV+w3ufbFrrvVrrnVprp9a6FvgdF79vg80DQoGfa60HtNZ/B97GE1pPe01rvdt7j19kUK/5OSKBnku87rmux/Ohwmkfaq03aq1deIYknxtWe7zXE0IIMcZdbXNlhBBCjC+f1VpvVkpdA7yEp9ewE0ApNRf4OZ6huUYgGPjvi5xrCvArpdS/D3pO4enFPH5O28TBz2mt3Uqpem/bS/Wg1vr3g59QSk0ALMBeTx711RA4qFm7N/yd1ocnNMZdwrFDqT+nhunAL4BC7/mC8AyxvRSJQL3W2j3oueOcfV9ODFH7UE4BYZd4XR+lVC7QrbUe/L7OvaZJKRU06D6G4f17I4QQYmyTHlghhBB+p7X+ANiApyf0tJfwDBdN1lpHAM/hCXQAeojT1APf0FpHDvpj1lp/NETbJjyBF/Bs7wIkA42f8q20ATYge1ANEd7Fnj7tsUO956Ge/y1QAaRrrcPxDKtW5x01tCYgWSk1+PeDyXyy+1KF59Ze7EOBod7TucOHL0UWnp5wIYQQY5wEWCGEEFeLp4DlSqnTQ1LDgA6ttV0pNQf48qC2rYAbmDroueeAx5R3T1ClVIRS6nMXuNZfgBuUUp/xzvv8R6AfGCrsXjJvz+XzwC+9vbEopSYppVYOw7EtQIxSKuJjThUGdAO9SqlM4L5zXm/h7Ps22C48c4+/q5QyKKWWAjfhmX96WbxDszdz8eHLQ72nGzh7+PBFKaWC8axY/N7l1iiEEGL0kQArhBDiqqC1bgX+C3jc+9T9wBPeObI/whM6T7ftw7N40HbvarnztNav41kE6c/eFXnL8MylHOpalcDtwDN4ej5vwrOlz8AwvJXv4VncaKe3js3Ape6zesFjtdYVeOYBH/O+58QLnOM7eMJ+D55A/PI5r/8Y+E/vOT4/+AXv+1+D5761Ab8Bvuq99ifxO+ArF3pxiPc0BU9v6uV8kLAGz569TR/bUgghxKintL7QiCQhhBBCiE9HKfUh8IDWev8ltP08cJvW+vMf13bQMbuAu7XWZZ+iTCGEEKOEBFghhBBCXBWUUiuAHq31Dn/XIoQQ4uokAVYIIYQQQgghxKggc2CFEEIIIYQQQowKEmCFEEIIIYQQQowKQf4u4HKtWrVK/+1vf/N3GUIIIYQQQgghRsYF9y8fdT2wbW1t/i5BCCGEEEIIIYQfjLoAK4QQQgghhBBifJIAK4QQQgghhBBiVBixAKuUekEpdVIpNeTG4srjaaVUtVLqoFJq1kjVIoQQQgghhBBi9BvJRZw2AM8C/3WB168H0r1/5gK/9X69bA6Hg4aGBux2+yc5XIwCJpOJpKQkDAaDv0sRQgghhBBC+MmIBVit9ValVMpFmtwM/JfWWgM7lVKRSqkErXXz5V6roaGBsLAwUlJSUOqCC1aJUUprTXt7Ow0NDaSmpvq7HCGEEEIIIYSf+HMO7CSgftDjBu9z51FK3aOUKlZKFbe2tp73ut1uJyYmRsLrGKWUIiYmRnrYhRBCCCGEGOf8GWCHSpt6qIZa6/+rtS7UWhfGxcUNfTIJr2Oa/HyFEEIIIYQQ/gywDUDyoMdJQJOfavlU6uvrWbZsGVlZWWRnZ/OrX/1qyHZbtmwhIiKCgoICCgoKeOKJJwDo7OzkN7/5zVntbrzxxitS+3Cora3lpZde8j0uLi7mwQcfBGDDhg1861vf8ldpQgghhBBCiDHEnwH2LeCr3tWI5wFdn2T+69UgKCiIf//3f6e8vJydO3fy61//msOHDw/ZdvHixZSUlFBSUsKPfvQj4PwAeyU4nc5hO9e5AbawsJCnn3562M4vhBBCCCGEEDCy2+j8CdgBZCilGpRSdyul7lVK3ettshE4BlQDzwP3j1QtIy0hIYFZszy7AIWFhZGVlUVjY+MlH//973+fo0ePUlBQwKOPPgpAb28vt912G5mZmaxbtw7PWldnW7p0KQ8//DALFiwgJyeH3bt3A2C1WrnrrrsoKipi5syZvPnmm4CnN/Rzn/scN910EytWrADgX//1X8nNzSU/P5/vf//7ABw9epRVq1Yxe/ZsFi9eTEVFBQB33HEHDz74IAsWLGDq1Km88sorvvq3bdtGQUEBv/zlLy/Yg9za2sratWspKiqiqKiI7du3X/I9EkIIIYQQQoiRXIX4Sx/zuga+OdzX/dmL71BRd2JYz5k5eSKPrbv+ktrW1tayf/9+5s4dekegHTt2kJ+fT2JiIuvXryc7O5uf//znlJWVUVJSAniGEO/fv59Dhw6RmJjIwoUL2b59O4sWLTrvfFarlY8++oitW7dy1113UVZWxpNPPsm1117LCy+8QGdnJ3PmzOG6667zXf/gwYNER0fzzjvv8MYbb7Br1y4sFgsdHR0A3HPPPTz33HOkp6eza9cu7r//fv7+978D0NzczIcffkhFRQVr1qzhtttu4+c//znr16/n7bff9tU/lIceeohHHnmERYsWUVdXx8qVKykvL7+k+yqEEEIIIYQQI7kP7LjT29vL2rVreeqppwgPDz/v9VmzZnH8+HFCQ0PZuHEjn/3sZ6mqqhryXHPmzCEpKQmAgoICamtrhwywX/qS53OCJUuW0N3dTWdnJ5s2beKtt95i/fr1gGeV5rq6OgCWL19OdHQ0AJs3b+bOO+/EYrEAEB0dTW9vLx999BGf+9znfNfo7+/3ff/Zz36WgIAAZsyYQUtLy2Xdn82bN581tLq7u5uenh7CwsIu6zxCCCGEEEKIy1PT3Ma7ew7x930VPP/oV4kIMfu7pE9kzAXYS+0pHW4Oh4O1a9eybt06br311iHbDA61q1ev5v7776etrW3ItsHBwb7vAwMDLzhn9dzVeZVSaK159dVXycjIOOu1Xbt2ERIS4nustT7veLfbTWRkpK83+GJ1DTWs+WLcbjc7duzAbB6d/1iEEEIIIYQYTY42tfLu7kNs2nOYIw2ezqeCacm0dvaM2gDrz0WcxgytNXfffTdZWVl8+9vfvmC7EydO+ELf7t27cbvdxMTEEBYWRk9Pzye69ssvvwzAhx9+SEREBBEREaxcuZJnnnnGd639+/cPeeyKFSt44YUX6OvrA6Cjo4Pw8HBSU1P57//+b997O3DgwEVruNT6V6xYwbPPPut7fKGQLIQQQgghhLh8WmuqGlp49vX3uemxZ7npsWf59RtbCLUE89i6Vfz9l9/mpce/xrRJE/xd6ic25npg/WH79u384Q9/IDc3l4KCAgB++tOfsnr1ap577jkA7r33Xl555RV++9vfEhQUhNls5s9//jNKKWJiYli4cCE5OTlcf/313HDDDZd87aioKBYsWEB3dzcvvPACAI8//jgPP/wweXl5aK1JSUnxzU8dbNWqVZSUlFBYWIjRaGT16tX89Kc/5cUXX+S+++7jJz/5CQ6Hgy9+8Yvk5+dfsIa8vDyCgoLIz8/njjvuYObMmUO2e/rpp/nmN79JXl4eTqeTJUuW+O6PEEIIIYQQ4vJpramsb2HTHk9P67HmNpRSFGZM4YvXFrG8MIsJUedPbxyt1OUOA/W3wsJCXVxcfNZz5eXlZGVl+aki/1m6dCnr16+nsLDQ36VcEeP15yyEEEIIIcRgWmvKjzfz7p7DbNpzmOMt7QQoRVFmCiuLZvCZ2VnERY7qdWbUhV6QHlghhBBCCCGEuMpprTlU2+Sb01rfeorAgADmZKVw5/UL+MzsTGLCQ/1d5oiTADuKXWi7GiGEEEIIIcTop7Xm4LFG3/DgxrZOggIDmDdjKl+/cTGfmZ1JVFjIx59oDJEAK4QQQgghhBBXCbfbzcFjjby7+xDv7jnMiY4uggIDmZ89lftuXsq1szKIDLX4u0y/kQArhBBCCCGEEH7kdrvZX13Pu7sP8V5xOS2nujEEBbIwJ42H1l7L0pkZo3bbm+EmAVYIIYQQQgghrjCX282+I3W8u8cTWls7ezAagliUO41HPncdy2ZmEGYx+bvMq44EWCGEEEIIIYS4ApwuF8WVx9m05zDv7S2nvauXYEMQS/LTWVGYzTUF6YSaJbRejATYYaKU4vbbb+cPf/gDAE6nk4SEBObOnTvkHqwXMnhrnNWrV/PSSy8RGRk5UmULIYQQQgghRpDT5WJ3RS3v7j7E/+6toKPHisloYEl+OiuLslmSn06IKdjfZY4aEmCHSUhICGVlZdhsNsxmM++99x6TJk36VOfcuHHjMFUnhBBCCCGEuFIcThe7ymvYtOcQm/dW0NnbhznYyNKC6awomsHivHQswUZ/lzkqSYAdRtdffz1//etfue222/jTn/7El770JbZt2waA1WrlgQceoLS0FKfTyY9//GNuvvlmbDYbd955J4cPHyYrKwubzeY7X0pKCsXFxcTGxvLZz36W+vp67HY7Dz30EPfccw8AoaGhPPTQQ7z99tuYzWbefPNN4uPj/fL+hRBCCCGEGK8GnE52HDrGpj2H+d99FXRbbVhMRpbNzGBlYTaL8qZhMhr8XeaoN+YC7L8dbaGy1z6s58wINfFo2seHwi9+8Ys88cQT3HjjjRw8eJC77rrLF2CffPJJrr32Wl544QU6OzuZM2cO1113Hb/73e+wWCwcPHiQgwcPMmvWrCHP/cILLxAdHY3NZqOoqIi1a9cSExOD1Wpl3rx5PPnkk3z3u9/l+eef55/+6Z+G9f0LIYQQQgghzjfgcPLRoaO8u/sQf99fSU+fnVBzsCe0FmWzMCeNYAmtw2rMBVh/ysvLo7a2lj/96U+sXr36rNc2bdrEW2+9xfr16wGw2+3U1dWxdetWHnzwQd/xeXl5Q5776aef5vXXXwegvr6eqqoqYmJiMBqN3HjjjQDMnj2b9957b6TenhBCCCGEEOOew+lix6FjvLOrlP/dV0GvrZ9wi4nPzMpkZVE287OnYjRIzBopY+7OXkpP6Uhas2YN3/nOd9iyZQvt7e2+57XWvPrqq2RkZJx3jFLqoufcsmULmzdvZseOHVgsFpYuXYrd7ullNhgMvuMDAwNxOp3D+G6EEEIIIYQQLrebvZXH2birjE17DtPZ20eYxcTywhmsLMpmXnYqxqAxF62uSnKXh9ldd91FREQEubm5bNmyxff8ypUreeaZZ3jmmWdQSrF//35mzpzJkiVLePHFF1m2bBllZWUcPHjwvHN2dXURFRWFxWKhoqKCnTt3XsF3JIQQQgghxPijtebgsUY27izlb7sP0drZg9lo4NpZmVw/N4dFudOkp9UP5I4Ps6SkJB566KHznn/88cd5+OGHycvLQ2tNSkoKb7/9Nvfddx933nkneXl5FBQUMGfOnPOOXbVqFc899xx5eXlkZGQwb968K/FWhBBCCCGEGFe01lTWt7BxZynv7Cqjsa0TQ1AgS/LSWT0vl2sKpsvqwX6mtNb+ruGyFBYW6uLi4rOeKy8vJysry08ViStFfs5CCCGEEGIk1J5oY+POMjbuKuNYUyuBAQHMz57K6nm5fGZWJmEWk79LHG8uOMdSemCFEEIIIYQQ405jWyd/213Gxp1llB9vRilFYcYUbl8+lxWFM4gOD/F3iWIIEmCFEEIIIYQQ40JrZw/v7jnEOzvL2F9dD0Du1El8/8urWFmUTXx0uJ8rFB9HAqwQQgghhBBizOrs7WNzcTkbd5Wxu7wGt9ZkJMfz8G2f4fq5OSRPiPZ3ieIySIAVQgghhBBCjClWWz9/31/JO7tK+bD0KE6Xi8nx0XxjzRKun5vDtEkT/F2i+IQkwAohhBBCCCFGPfuAg20Hq/jrzlI+KDlCv8PJxOgIvrpyHqvn5pA1JQGlLrg2kBglJMAKIYQQQgghRiWH08VHh47yzs4y/ndfBVZ7PzHhIay9Zhar5+ZSMC2JgIAAf5cphpEE2GHyq1/9iueffx6tNV//+td5+OGHAfjCF75AZWUlAJ2dnURGRlJSUnLe8SkpKYSFhREYGEhQUBCntwrasGEDK1asIDEx0deuuLiY2NjYK/TOPp2nnnqKe+65B4vFAsDq1at56aWXiIyMJDQ0lN7eXj9XKIQQQgghRhOX201x5XE27ixl057DdFlthFtMrJqTzep5uRRlTiEoMNDfZYoRIgF2GJSVlfH888+ze/dujEYjq1at4oYbbiA9PZ2XX37Z1+4f//EfiYiIuOB53n///fOC6YYNG8jJyfEF2CvB5XIROEz/6J966iluv/12X4DduHHjsJxXCCGEEEKMH1prDh5t4K87S/nb7kO0dfViDjbymVmZrJ6Xw4KcNIxBEm3GA+lPHwbl5eXMmzcPi8VCUFAQ11xzDa+//vpZbbTW/OUvf+FLX/rSJZ/3lVdeobi4mHXr1lFQUIDNZgPgmWeeYdasWeTm5lJRUXHecRs2bODmm29m1apVZGRk8C//8i++1/74xz8yZ84cCgoK+MY3voHL5QIgNDSUH/3oR8ydO5cdO3awZ88eFixYQH5+PnPmzKGnpweXy8Wjjz5KUVEReXl5/O53vwNgy5YtLF26lNtuu43MzEzWrVuH1pqnn36apqYmli1bxrJlywBPD3JbW9t5Nf/bv/2b77z//M//fMn3SAghhBBCjE1aayrqTvCLv7zHiu88xZf+z+/5y5a9zExP5hff/DwfPvMo/3rvWpYWZEh4HUfG3E/6Zy++Q0XdiWE9Z+bkiTy27voLvp6Tk8MPf/hD2tvbMZvNbNy4kcLCwrPabNu2jfj4eNLT04c8h1KKFStWoJTiG9/4Bvfccw+33XYbzz77LOvXrz/rfLGxsezbt4/f/OY3rF+/nt///vfnnW/37t2UlZVhsVgoKirihhtuICQkhJdffpnt27djMBi4//77efHFF/nqV7+K1WolJyeHJ554goGBATIzM3n55ZcpKiqiu7sbs9nMf/zHfxAREcGePXvo7+9n4cKFrFixAoD9+/dz6NAhEhMTWbhwIdu3b+fBBx/kF7/4xZA9y4Nt2rSJqqoqdu/ejdaaNWvWsHXrVpYsWXLRn4sQQgghhBh7aprb2LizlHd2lXGsuY2gwADmZ6fxrVuW8ZnZmYSaTf4uUfjRmAuw/pCVlcX3vvc9li9fTmhoKPn5+QSd8ynQn/70p4v2vm7fvp3ExEROnjzJ8uXLyczMvGCAu/XWWwGYPXs2r7322pBtli9fTkxMjK/9hx9+SFBQEHv37qWoqAgAm83GhAmeJcQDAwNZu3YtAJWVlSQkJPjahYd7NnTetGkTBw8e5JVXXgGgq6uLqqoqjEYjc+bMISkpCYCCggJqa2tZtGjRx9w5fOfdtGkTM2fOBKC3t5eqqioJsEIIIYQQ48TxlnY2F5fz152lVNSdQCnFnMwUvrpyPssLs4gKC/F3ieIqMeYC7MV6SkfS3Xffzd133w3AD37wA1+YA3A6nbz22mvs3bv3gsefnuM6YcIEbrnlFnbv3n3BABccHAx4QqfT6RyyzblLhCul0FrzD//wD/zsZz87r73JZPLNe9VaD7nEuNaaZ555hpUrV571/JYtW3w1fVxdQ9Fa89hjj/GNb3zjko8RQgghhBCjl8PpoqS6nvf3V/LBgSPUNHummOWnJfHYulWsLMpmQlS4n6sUV6MxF2D95eTJk0yYMIG6ujpee+01duzY4Xtt8+bNZGZmnhVqB7NarbjdbsLCwrBarWzatIkf/ehHAISFhdHT03PZ9bz33nt0dHRgNpt54403eOGFF7BYLNx888088sgjTJgwgY6ODnp6epgyZcpZx2ZmZtLU1MSePXsoKiqip6cHs9nMypUr+e1vf8u1116LwWDgyJEjTJo06aJ1nK7/YkOIV65cyeOPP866desIDQ2lsbERg8Hg6x0WQgghhBCjX2dvH9sOVvNBSSUfllbT3WfHEBTI3KxUvvyZOSwtmM6kuCh/lymuchJgh8natWtpb2/HYDDw61//mqioM//4/vznP583fLipqYmvfe1rbNy4kZaWFm655RbA01v75S9/mVWrVgFwxx13cO+992I2m88KxR9n0aJFfOUrX6G6upovf/nLvjm0P/nJT1ixYgVut9tX67kB1mg08vLLL/PAAw9gs9kwm81s3ryZr33ta9TW1jJr1iy01sTFxfHGG29ctI577rmH66+/noSEBN5///0h26xYsYLy8nLmz58PeBaU+uMf/ygBVgghhBBiFNNac7SplQ9KjrCl5Aj7q+pwa01MRCjXFWaxND+D+TlTCTEFf/zJhPBSWmt/13BZCgsL9ek9Uk8rLy8nKyvLTxVdfTZs2EBxcTHPPvusv0sZVvJzFkIIIYS4ug04nBRXHmdLSSUflByhvvUUAFlTElhaMJ2lBRlkpyQQECCboYiLOn8+o5f0wAohhBBCCCE+sfbuXrYeqGJLSSXby47SZx8g2BDE/Oyp3H3DIpbkpzMxOsLfZYoxQgLsGHTHHXdwxx13+LsMIYQQQggxBp3en/WDkiNsOXCE0mONaK2ZGB3OTfPzWFqQwZysFMzBRn+XKs7h1pomu4MEk4HAIRZtHQ0kwAohhBBCCCEuyj7gYNfhGs/Q4ANHONHRDUDu1Ek8cMsyrimYTubkiUPuZCGuPK01zf1Ojvb1c9Tq/dM3QE1fP3a35vXCVFIso3PusQRYIYQQQgghxHlaOrr54MARtpRUsvNwDfYBBxaTkYU5aXzrlmtZkp9ObESov8sc17TWnBxwUm3t52hfP8esA56vfQP0udy+dnHGINIsRtYmRDLVEkykYfTGwNFbuRBCCCGEEJdAa02/w0mffQCrvR+rfeCs7632ft/jvnNe67MPEBgYwMSocCZEhTExOpz46Ajio8KIjwonzGIaM72ObrebQ7XNbCmpZEvJEcqPNwMwKTaStdfMYmn+dIoyUzCO4vAzWmmtaR1wcqxvwNub6ulRPWbtp3dQUI0xBJIWEsya+AimhQSTZjEy1RJMuCHQj9UPL/nbJ4QQQgghripaa2wDDqy2fvr6BzxB0taPtd8bLn3PewPooHZnwugAfYO+d7ndH39hwBAUiCXYSIg5mBCTEUuwEYfTxeHjzbR39Z7X3mw0EB8dTnyU589QITcmPOSqXXXXau9nR9kxthyo5IMDVbR39RKgFAXpyXz789extCCDtMS4MRPSr3ZaazocrvNC6tG+frqdZ/4ORxoCSbMYuSE+nKmWYNIswaSFBBM5hoLqhUiAHSaBgYHk5uaitSYwMJBnn32WBQsWDNv577jjDm688UZuu+02vva1r/Htb3+bGTNmDNv5hRBCCCFGSnt3L5X1LRypb+HkqZ6hezr7PUH09PeXutVjsCEIi8lIiMkTOENMwUSEmEmIiSDEFOx9zfP8ucHU973p9FcjxqAL/3o84HTS2tlLS0c3Lae8fzrOfC0+cpyTp7pxus4Oy0GBAcRFhvlCbnxU2JnQGx3OxKhw4qLCLnrt4dTYeootJUf44MARdpXX4HC6CLOYWJw7jWsKMlicN43IUMsVqWU8O+VwctQ6wLHT81T7+jlqHaDT6Urb8KMAACAASURBVPK1CQ8KIM0SzIq4cG9INZJmCSbaOH5j3Ph958PMbDZTUlICwLvvvstjjz3GBx98MCLX+v3vfz8i5xVCCCGE+DQGHE6ONbdxpL6FiroTHKlvobKh5ayeS7PRgMXsDZPeYBkdHkKyKeq8wHk6XJ4OqGeFUW8INQRduR4nY1AQk2IjmRQbecE2brebjp6+s0LuiY5uTp7q5sSpbo40tLD1YBW2/oHzjo0JD2FCVLhvuPLgkBvvfT7EfPkL77jcbg5UN/iGBlc3ngQgZWIM666by9KC6cxMn3xF7+V40u1w+RZTqh40T7XDcSaohgYGkBYSzLWxoaSFBPt6VWONgdL7fQ4JsCOgu7ubqKgoAHp7e7n55ps5deoUDoeDn/zkJ9x8881YrVY+//nP09DQgMvl4vHHH+cLX/gCe/fu5dvf/ja9vb3ExsayYcMGEhISzjr/0qVLWb9+PYWFhYSGhvLQQw/x9ttvYzabefPNN4mPj6e1tZV7772Xuro6AJ566ikWLlx4xe+FEEIIIcYerTWtnT1U1LVwpOGEr3e1prnN1/toNAQxLTGOJXnpZCTHMz05nulJ8USHh/i5+pEVEBBAbEQosRGhZKcmDtlGa02vrf+sYDs48DZ1dLG/up7O3r7zjg01B58VcidGh3sen/4aFU5UmIVeWz8fllazpaSSbQer6eztIygwgNkZU1i7ZCXXFEwnZWLsSN+OcaXH6Tp7jqp35d+2AaevjSUwgDSLkcXRnqCaZjGSFhLMBGOQBNVLJAF2mNhsNgoKCrDb7TQ3N/P3v/8dAJPJxOuvv054eDhtbW3MmzePNWvW8Le//Y3ExET++te/AtDV1YXD4eCBBx7gzTffJC4ujpdffpkf/vCHvPDCCxe8rtVqZd68eTz55JN897vf5fnnn+ef/umfeOihh3jkkUdYtGgRdXV1rFy5kvLy8ityL4QQQggxdtgHHFQ3nvSF1CP1LVTWt5wVrhJiIshIjmfZzAwykicyPTmeKfHRBAVKj95QlFKEWUyEWUykJ024YDv7gIOTp3qGDLktp3o4eqiV1s4e3OcMtzYEBaK1xulyExlqYUleOtcUTGdR7jTCLKaRfnvjQo/TRXFnH/u7bb5taloGBVVTgGKqJZj5URbSLMFMDfH0qCYES1D9tMZkgP3v4noaTtmG7XxJUWY+V5h80TaDhxDv2LGDr371q5SVlaG15gc/+AFbt24lICCAxsZGWlpayM3N5Tvf+Q7f+973uPHGG1m8eDFlZWWUlZWxfPlyAFwu13m9r+cyGo3ceOONAMyePZv33nsPgM2bN3P48GFfu+7ubnp6eggLC/vE90EIIYQQY5fWmqb2Lm9APeELq7Un2n0ByWw0kJ4cz/LZWUxPjicjOZ705HgiQsx+rn5sMhkNTI6PZnJ89AXbOF0u2rus5w1XDgoMZHFeOvnTkgi8SheQGk0G3G4OdNvYfaqPXZ1WDvXYcQPBAYpUi5HCSItn2G+IkWmWYBJMBgIkqI6IMRlgPy5sjrT58+fT1tZGa2srGzdupLW1lb1792IwGEhJScFutzN9+nT27t3Lxo0beeyxx1ixYgW33HIL2dnZ7Nix45KvZTAYfJ/iBAYG4nR6Pvlxu93s2LEDs1n+hyKEEEKIs1nt/VQ3nOlVrag/QVXDSXr67L42yXFRTE+OZ+WcbDKSJ5IxOZ7kuKirdjXd8SooMNAzRzY63N+ljClurTli7WfXKSu7OvvY39WH3a0JBHLDzXx9cgxzo0LICTNjCJCgeiWNyQDrbxUVFbhcLmJiYujq6mLChAkYDAbef/99jh8/DkBTUxPR0dHcfvvthIaGsmHDBr7//e/T2trKjh07mD9/Pg6HgyNHjpCdnX3ZNaxYsYJnn32WRx99FICSkhIKCgqG9X0KIYQQ4urmdrtpaO309apWeof/1p/s8LUJMQWTkRzPDfNyyZgcT0byRNInTfhEiwUJMZo12gbY1enpYd3d2Uend5GlNIuRWxMimRsZwqwIM6Gy2JVfSYAdJqfnwIJnCM5//ud/EhgYyLp167jpppsoLCykoKCAzMxMAEpLS3n00UcJCAjAYDDw29/+FqPRyCuvvMKDDz5IV1cXTqeThx9++BMF2KeffppvfvOb5OXl4XQ6WbJkCc8999ywvmchhBBCXD16+uwcaWihsu7MokpHGk76VrtVSjElPpoZUxK4ZVGBbwhwYmykzMkT41Knw8WeTiu7vMOCG+wOACYYg1gcHcLcyBDmRIYQFyyR6WqiLnWPratFYWGhLi4uPuu58vJysrKy/FSRuFLk5yyEEEJ4WG397CyvoexYo2+rmqa2Tt/r4SFmMr0r/3pWAJ7ItElxmIONfqxaCP+yu9yUdNu8w4KtVPT2o/FsYVMYaWFuZAhzoyykmI3yoY7/XfAHIB8nCCGEEEJc5bTWVDe2svXgET48WM3eI3U4XS4CAwJITYhl5rRkvrCs0BdY46PC5RdwMe65tKai187OU33s7rRS0mVjQGuCFOSHm7lvSixzo0KYEWYiSP69jBoSYIUQQgghrkJWez87D9ew7WAVWw9UcaKjC4DpSfH8w8p5nhVm05IINhr8XKkQVwetNXV2h6+HdU9nHz1Oz77E00OC+cKkKOZGWpgVYcEcKIuRjVYjGmCVUquAXwGBwO+11j8/5/UI4I/AZG8t67XW/28kaxJCCCGEuBpprTnW3MbWA0fYdrCa4srjOF0uLCYjC7LTuO/mJSzKTSchJsLfpQpx1WgfcLK7s88XWk/0e3bkSAgO4rrYMOZGhlAUaSHaKP12Y8WI/SSVUoHAr4HlQAOwRyn1ltb68KBm3wQOa61vUkrFAZVKqRe11gOXez2ttQyVGcNG21xtIYQQ4lL09Q+w63Qv68Eq3zzWaZMm8JUVc1mSP52Z6ckYg+SXbyEA+lxu9nZ5Auvuzj6qrP0AhAcFMCcyhLuTLcyNCiHJZJBsMEaN5H8N5wDVWutjAEqpPwM3A4MDrAbClOdvVyjQATgv90Imk4n29nZiYmLkL+oYpLWmvb0dk8nk71KEEEKIT0VrTU1zG9sOVrHtYDV7KmtxOF2Yg43Mz57K129cxOK8dBJjIv1dqhBXBYdbc6jH5tne5pSV0h4bTg1GpZgZYebB1DjmRoaQERpMoOSAcWEkA+wkoH7Q4wZg7jltngXeApqAMOALWmv3uSdSSt0D3AMwefLk8y6UlJREQ0MDra2tw1O5uOqYTCaSkpL8XYYQQghx2Wz9A+wur2XrQc/Q4IbWUwBMTYzjy9fNYUnedGZPn4zRIL2sQmitOdY3wC7v9jZ7u/qwutwoICvUxFeSopkbGUJ+uBmTzGMdl0byv5RDfQRy7jjQlUAJcC2QBrynlNqmte4+6yCt/y/wf8Gzjc65JzUYDKSmpg5L0UIIIYQQn1btiXa2eQPr7opaBhxOzEYD82ZM5a7rF7A4L51JcVH+LlMIv9Nac9w2wP4um2docGcfbQOeAZnJJgPXTwhnbqSFosgQIgyBfq5WXA1GMsA2AMmDHifh6Wkd7E7g59ozwbFaKVUDZAK7R7AuIYQQQohhZR9wnNXLWn+yA4DUhFi+dG0Ri/PSmT19sqwYLMY9h1tT3munpKuP/d02SrptdDpcAEQZApkzaD/WRJPsWyzON5IBdg+QrpRKBRqBLwJfPqdNHfAZYJtSKh7IAI6NYE1CCCGEEMPieEu7b4ubPRW19DucmIwG5malcseq+SzOSydJelnFONfjdFHSbeNAl4393X0c6rHT7/YMqJxsNrAkOpSCcDMzI8xMMRtlPRvxsUYswGqtnUqpbwHv4tlG5wWt9SGl1L3e158D/g+wQSlVimfI8fe01m0jVZMQQgghxCfVP+BgT+Vx3zY3x1vaAUiZGMPnlxWyOC+doowp0svqB1prBrTG5tLYXG5sbrfnq0tjH/J7Nza3xu5rO/i4M8/bXRqb2405MIB0SzDTQjx/0kOCSQsJxiJzMM+itaa530FJl83Tu9pl42hfPxoIUpAZauJzCZEURFgoCDcTI1vbiE9AjbbtSQoLC3VxcbG/yxBCCCHEOFB/ssO3xc3u8lrsAw6CDUHMyUplSV46i/PSmRwf7e8yRw2HW9PpcA0KmG7sbu39en6QtJ0TJM89ZvD3560C+jFMAQpTYABm39cAzIEKs+977+OAALqcLqqt/VRb+7G5z/zunGQykD4o1E4LCSbZbCRonPQiurSmytrP/q4+SryB9aR3/mpoYAB54WZf72p2mBmzBH5x6S74j0g+9hBCCCGE8OofcFBcedyzzU1pNTXNnoFhk+OjWXvNLJbkpVOUmYJJelkvyqU1jXYHR639VFn7OdrnCX91tgGcl9h3EqTA5A2SpgBvsAwMICQwgFhjgC9omrwh0zQocJrP+d501vOe8wV8gpDp1pomu4Mqb5g9/fWD9l5fgDYqxdQQ45lgazExLSSYWGPgqB8ea3O5Ke0+3bvaR2mPHavL887jjUHMirBQEOEJrdNCZFubq4XV3s+R+hYq6k5QcfwEFXUn+PUjXyY2ItTfpX0iEmCFEEIIMW653W6ONrWyp6KWD0ur2XW4BtuAA6MhiDmZKXzRuwBTysQYf5d6VdJac3LASbW1n6PWfqr7+qm2DlDT14/9nJ7KtJBgro0JY0JwkC9Imr3B1DRE76ch4OoLPwFKkWQ2kmQ2siw2zPd8v9tNTd/AWcF2x6k+/qflzMYakUGBvlA7WoYht/Y7Kenu40C3jf1dNip77bjwdI1NCwnmhgnhvuHACSb5UMfftNa0dvZQXnfirLBad7KD06Nuw0PMZE2eSK/NPmoDrAwhFkIIIcS44XK7qaxvobiiluLK4xRXHqeztw+A5LgoFud7hgXPyUzBHCwroA7W6fAMoz3a5+1V9Ya1XteZwbtxxiCmhQSTZjH6gtpUS/C4HTrquWd2qgb11l6tw5DdWlPTN+ANq54hwQ12B+AZbp0T5ulZLYgwkxduJixItrTxJ6fLRe2Jdk9QHRRWO3qsvjbJcVFkTplI5uSJZE5OIHPyRCZGh4+WkQAXLFICrBBCCCHGLIfTRfnxZvZU1rK38jh7j9TR02cHICkuisKMKRRlplCYMYWkuKjR8ovdiLI6XRzrG/CF1dNf2wZcvjZhQQFMG7SoUZr3e9mn8+MNHoY8ONQetw1c0WHIA243h3vsvsWWDnT30eX0VBBlCGRmuNnXu5oZaroqe8THC6utn8r6Firqmn2BtarhJP0Oz3xjQ1Ag6ZMmnBVWM5LjCbOY/Fz5pyIBVgghhBBj34DDSVlNE3sqaymuqGVfVT22/gHAsydr4fQpFHoDa0JMhJ+r9a8Bt5vavgFvSB2g2mqn2jpAU7/D18YUoJg6KKhOswSTFmIkzhgkYX+YnR6GfKT39FBsT8Bt8y6KBJ5hyIN7ai9nGHKXw+XpXe3uo6TLxuEeOwPeHJBiNpLvXWypIMLCZJNBfr5+oLXm5KkeKupOUD4orNa1dPjaRISYfUE1y9urmpoQi2Hs9YhLgBVCCCHE2GMfcHDgaINvSHBJdb2vVyI9aQJFGSnMzphCYcYU4iLDPuZsY5NLaxpsDl8oOj1Xta5vgNN9qkEKUsyecDq4R3WSyfCJFjsSw+eUw8lRaz9HBvXWDjUM+XSgPR1ug5Q6a//VY32eD3KCFGSFmpjp7V3NDzcTLdvZXHFOl4ua5tNDgM+E1VM9fb42yROiyZrs7VWdMpGM5FE1BPjTkgArhBBCiNHPau+npKqe4srj7KmspfRYIw6nC6UUmZMnUpTh6WGdPX0yUWEh/i73itJa09LvpLqv/6zVf2v6Buj3hh3FmQWVPL2pnrAzxWyUIaKjyKUMQz4tNDDgTO9quIXsMBOmcTon2V+GGgJ8pOEkA94P24yGIM8Q4LPCajyh5lE9BPjTkgArhBBCiNGnp8/OviN17KmsZU9FLYdrm3G53QQGBDAjJYGizBSKMlKYmZ5MeIjZ3+VeMW6tKeuxc6jHxlHrgC+0DrWgkmfor5G0cb6g0ngweBjygNtNfoSZNEuw9KJfIVprWk51n7WoUkX92UOAI0MtZ4Lq5IlkTZlIysQxOQT405IAK4QQQoirX2dvn2d14Ipa9lQep7LuBG6tCQoMJC9tkmfRpYwUCtKTCTEF+7vcK6rf7WZ3Zx9b2nr4oL2XdodnAHB4UMCg+alnFlWSBZWEGDlut5uaE+0cqmk6sxJw3QnfquZw/hDgzMkTiY8aN0OAP60L3iQZ8C6EEEIIv2nr6mVPhWeF4D2VtVQ1nAQg2BBEwbRk7rv5GgozU8hPS8JkHH/7THY7XHzY0cv77b1s7+jF5tZYAgNYFB3C0pgwZkeYZUElIUaY1pqm9i7KahopO9ZI6bFGDtU2Y7X3A54hwNOTJnDd7EzfKsDTkyeM9yHAI0YCrBBCCCGumBMdXeypOE5xpWfRpZrmNgDMwUZmpSezel4uhRlTyE2dhNEwPn9NOWF3sKW9l/fbe9jX1YdTQ6wxkNXxESyNCWVOpAVjgAwDFmKktHf3UnasidKaRm9obfLtrxoUGEjm5HhuWpBHTuokclITmZoYS1CgjHi4Usbn/xmEEEIIMeK01jS2dbKnotbXy1rfegqAMIuJWemTuXXJTIoyUsiakjBu54Bpranu6+f9tl62tPdS3uvZpzbVbOT2pGiWxYSRE2aSeYxCjIBem51Dtc2+ntXSmkaa27sAUEqRlhjHkvx0cqdOIid1EhnJ8eP2w7Wrhdx9IYQQQgybnj477xWXs/PwMYoraznR0Q149i4szJjCuuVzKcxMISM5nsBx3Ivo0poD3Tbeb+thS3svDXbP3qu5YSYeTI1jaUwoqZbxNcdXiJHWP+Cgou6Ep2f1WBNlNY3UnGjn9JpASXFRFExL5vblc8lNnURWSsK4m2s/GkiAFUIIIcSnorWmuPI4r23dx7t7DmMfcBATEerZ0iZjCkWZKaQlxhEwjgMrgN3lZmenlS1tvXzQ0Uunw4VBKeZEWrgjOYYl0aHEBcuvZkIMB6fLxdHGVspqGjl4rJGymiaqGlpwelfqjo0IJTd1EjfMz/UNBR5vW2+NVvJfSSGEEEJ8IidPdfPGhyW8tm0/dS0dhJqDWbMwn1sXzyR36iRZWAjodLjY2t7LB+09fHTKit2tCQ0MYHF0KEtjQ1kQFULoOB06LcRw0VpzvKXDt8hSWU0Th483Yx/wjGwIt5jITk3kzusXkps6iZypibIa8CgmAVYIIYQQl8zhdPFByRFe3bqPbQercGtNUWYK9625hhVFMzAHG/1dot812Qc8izC19bK/qw8XMMEYxJr4CJbFhjE7woIhQH5x9jeH04V9wIGtfwDbgAN7v8PzeMD71fvYPuAgMtTC/OypRIZa/F22AFo6un3zVctqGjlU00R3n2fuuMloIGvyRD63dDY5qZPInTqJyROixv0IkLFEAqwQQgghPtbRplZe/WAf//PRAdq7rcRFhnH3DYu4dclMpsTH+Ls8v9Jac8Taz/ttPbzf3ssRq2drjTSLkTuTY1gaG0pWqCzCdKm01vQ7nGeFSJs3aNr7zwTMs74/J3D29Q+c3+ac9qeHkl4qpRQ5KYksyEljYe408tOSxu3CY1dSZ28fZTVNnkWWajy9q62dPQAEBQaQnhTPyjnZ3p7VSUybFCcrAo9x6vSk5dGisLBQFxcX+7sMIYQQYsyz2vp5Z1cZr27dx4GjDQQFBrC0IIO1S2axMDdtXP+S6NSa/V193pWDe2jud6KAgnAzS2NCuSY2jClm6Y0Gz1zEmuY2ymqaOFTTxMnOHl/gtHmD5rkh83IppTAZDZiNBkzBhjPfGw2Yg8/5em6bYANmoxHTEO3NRgPBRgONbZ1sL61me2k1B4814nK7CTEFM3dGKgtz0liYM43J8dEjcPfGF6u9n/LaZl9QLTvW6Fu5HCA1IdY3BDg3dRIZkyeOy/2hx4kLfuInAVYIIYQQPlpr9lXV8eoH+3h39yFsAw6mJsaxdslM1izMJyY81N8l+o3N5WbHKSvvt/WwraOXLqcbo1LMi7KwNCaMJTGhxBjH9+A2l9tN7Yl2DtV4Vng9XNtM+fFmXygNMQWTGBuBOdjoC5hDhsyzQqjRGzK97YPPDqdmowGjIeiKzWfsttrYXV7Lh2WeQNvY1glAclwUC3OnsSAnjXkzUgk1m65IPaOV2/t35cDRBkqq6zl4tIGqhpO4vdkkISbCF1ZzUieRnZJImEXu6TgiAVYIIYQQF9ba2cNb2w/w2rb91DS3YTEZWT03h1uXzCI/LWncLnbSMeBka4dnPuuuTiv9bk14kGcRpmWxYcyPCsESOD7n1rndbupOnvKE1VrPPMTDx5vpsw8AYDYayEpJICclkWzvKq9T4qPH1FzE04sHbS+t5qOyo+wsr8HWP0BQYAD5acme3tncacxISRjX20aBJ/iXHms8E1iPNdJttQGefaHz05LInTqJvKlJZKcmEhsxfj8sE4AEWCGEEEKcy+F0se1gFa9u3cfWA1W43G5mTZ/MrYtnsXLOjHG7/2G9bYD323vY0tbLgW4bbmBicBBLY8JYFhPKzHG4CJPWmsa2Tu8w4EbKaps4XNtMj3fhnGBDEJmTJ5Kdeqa3bGpi7LgLbQNOJweqG/jQG2gP1TYBnn2QF+SkeebP5qQxMTrCz5WOLLfbzdGmVg5UN1BytJ4D1Q0ca25Da41SimmT4ihISyZvWhIF05JJnRgzpj7YEMNCAqwQQgghPGqa23ht6z7e3H6Atq5eYiJC+ezCfG5dMovUhFh/l3fFDbjdVPT2s62jly1tvVT3eRZhSg8JZlmMp6c1IyR43PRCa61p7ujyDgP2zFs9VNtEl7e3zBAUSGayJ6xmpyaSk5LI1MQ4WdBoCB3dVnYcOsb2smq2lx31LT6UlhjHIu9w48KMKaN+9e7O3j4OHG3goLd3tfRYI702z7+jyFAL+WlJnj/TksmdmijDq8WlkAArhBBCjGdWez/v7j7Ma1v3sa+qjsCAAJbkp7N2ySwW56WPm/ChtabB7qCsx0Zpt52yHhsVvf04tCYAmBlhZllMGEtjQpk0ThZhOnmq2xNUa88E1o4eK3BmlVfPMOBEclITmZY0AWPQ+J7r+0loralqOOkJs6VHKT5ynAGHE6MhiNnTJ7MwZxoLc9KYnhx/VX9Y4nS5qG5s9c1bLamup/ZEOwABSjE9OZ6Cacm+wDolPvqqfj/iqiUBVgghhBhvtNYcONrAa1v3sXFXGX32AVImxrB2ySzWLMwnLjLM3yWOuG6HyxNWezxhtazHTqfDBYApQJEVaiI33ExOmInCSAtRhrEdzNq6ejlU6+1VrWmirPbMliSBAQFMmxTHjBRPUM1OSSQjOZ5gWeV1RNgHHBRXHvcF2urGkwDERoT65s7Oz57q94XT2rt7OVDdwIGjDRyorqe0pglbv2eec0x4CHlpSb7Amp2aOG6nHohhJwFWCCGEGC/au3t5a/sBXt26n2NNrZiNBlbNzeHWJTOZlT55zPaGONyaKms/pT02Srs9YfW4zfOLtgJSLUZywzxhNTfcTFpIMEFj9F4AnOqxcqi2mbKaRt8w4BMd3YBn25mpCbGeoOqdt5qRHD/qh7KOZic6uviozDPc+KOyo74h2zOmJLAgJ41FudMoSE8e0d5vh9PFkfoWSqrrfYH19DY2QYEBZE6eeFZgTYqLGrP/PRF+JwFWCCGEGMucLhfbS4/y6tZ9bCmpxOlyUzAtmVsXz+T6uTmEmMdWr4jWmuZ+B6Xddkq9PasVvXb63Z7fa6INgeSEmckNN5EbZmZGmImwMTxMustq43BtM4dqG33DgE9v7wKQMjHGN181O3USWVMmSk/ZVczldnO4ttnXO3vgaD1OlxtzsJG5WSm+QDslPuZTBcjWzp6zFlo6VNuE3bvlUVxkGAXTkshPSyZ/WhLZKYmy56q4kiTACiGEEGPR8ZZ2Xtu6nzc/LOFkZw/RYSGsWZjPrUtmMm3SBH+XN2x6nC4OeYcBn5672uEdChwcoMgMNXl6Vr2hNSHYMGZ7hgacTsqPn2B/VR1lxzwrAte1dPheT54QTXZKgq9ndcaUBNk/c5TrtdnZVV7LR2XVfFh6lPqTnp/3pNhIX5idm5VKeIj5gucYcDgprzvBAW/vakl1Pc3tXYBnYa4ZUxJ881bzpyWREB0xZv8NiVFBAqwQQggxVtj6B9i05zCvbdvPnopaApRicZ5nQaYlBemjfoEdp9ZUW/t9w4BLe2zU9g1w+jeWFLPRNww4J8xMekjwmN7Wpstqo6Sqnn1VdeyvqqP0WCP9DicACTER5KZO8q0IPGNKApGhFj9XLEZaXUsHH3lXNt55uAarvZ8ApchLS/LNn42LDPPsu+oNrIePNzPg/XszMTrC27vqGQ6cNSUB4xif/y1GHQmwQgghxGimtab0WCOvbdvPxp2l9Nr6mRwfza2LZ3LzwgLio8P9XeInorXmRL/zzEJL3TbKe+3YvUOBIw2B5IaZPMOBw8xkh5kIN4zdocBaa+pOdrC/qp79R+rYV1XH0aZWwDMHMWtKArPSJzMzfTIz05PHxUJc4uIcThcHjzWwvdQTaMtqmhj8+32wIYjslETyTw8HTksatf+9EOOKBFghhBBiNDrVY+V/PjrIq1v3UdVwEpPRwP/P3n2HV1nf/x9/3klOcrJ3yGYm7B2GCspQBNy4dx212rpqta1tf9rWfrusrdYOV2ldFXDVBSgCgjiQpRD2zmBk75yc9fn9cUIMyIiQ5GS8HteV66z73PfbCOS88v6Mc8cMYtaZo8jp37PTDfGrdXvYVONoNne1nhKnbyiwzbIYEBHS1FkdGmknzd51hwLD4cOB123PY+32fEorawCIDLMzol8GI7MyGJWVydA+aVpkSU6ooqaOzzbuoqKmjqF90sjO6NHpR2VIt6QAKyIi0tm8XO1vAwAAIABJREFU+fE6fv38uzS43Aztk8asM0cyc9zQTjOf0WMMO2sbmoYB51Y52FnX0DQUOMNua9rCZmhkKNkRIQQHBPi15rZ2vOHAGYmxvs5qti+w9k1NJKCLfz9ERI7hmAFWv44RERHpYJxuN3/470JeWbyKcQN78+C1M8jO6OHvslqkuMHNq/vLWVtZx6ZqB/WNQ4GjgwIYHBnK1IQIhjR2WGO68FBg8A0Hzi8q93VWjzYcODOFKyfnMDI7k1FZmRoOLCLSAgqwIiIiHUhxRTU//Ns81m7P46YZp/PDy88mKLDjB719DhfP55fyvwOVuI1hYKSdC5OjffuuRoWS2cWHAkPLhgOfd9pQDQcWETkFCrAiIiIdxLrtedz7t3nU1Dl47PuXM2PcEH+XdEJ76538O6+U94p823Fc2COa72TEkxHa9cPZ8YYDpyfGcvrgPozM8nVX+6VpOLCISGtQgBUREfEzYwxzlqzidy8vJCU+mmfvv77DDxneUdvAv/JK+aC4CluAxWUpsdyYHkey3ebv0trEYcOBt+exbns+OwqLAA0HFhFpTwqwIiIiftTgdPGr59/lfyu+5MzhWfzhe5cSHR7q77KOaWN1Pf/KK2VpaQ1hgQHckB7HdelxxAd3rY8UJxoOPLxvOjPHD2FUViZD+qQRpuHAIiLtomv9tBEREelE9pVWcO+Tc8ndvY87LjqLH1w8qcMOM11XWcdzeaV8Wl5LZFAAt2XGc3VaXJdZiKmqtp51O/KbFlzK3b0Ph9MFaDiwiEhHogArIiLiBys37+a+v8/D6fLw5D1XM3XUAH+X9A3GGFZW1PFcXglrKuuJtQVyV69ErkiNISKo8wfX2voGFq/dwoKVuXySuwO3x9s0HPiKSaM1HFhEpANSgBUREWlHxhief/8zHpu7iJ7J8Tx591X0Tknwd1mHMcawvKyG5/JKya12kBgcxAN9k7gkOYbQwM7deXQ4XXy8fjvvfb6BZV9uo8HlJjkumhvOPY2Jw7IYquHAIiIdmgKsiIhIO6lrcPLQv95i/spczskZyG9vvYTw0BB/l9XEYwxLSqp5Lq+UbbUNpIbY+Hm/HlyYHE1wJx4y63J7+GzjLhas3MCHa7ZQ62ggPiqcS88axcxxQxnRL11DgkVEOgkFWBERkXaQd7CMu/86h+2FRfzw8rO59bwJHWZfVJfXsLC4itl5peypd9IrNJhf909hemIUtoCOUeO35fF6WbN1L/NX5vLBqk1U1NQRFWbn3LGDmDl+KGMH9OoU++uKiMjhFGBFRETa2PKvtvPjp14Dy+KZH13HGUP7+bskAJxeL28fqOQ/BWUUOlxkhYfwh4GpTE2IJLCDhOtvwxjDhl2FzP98Awu/2EhRRTWhwTamjBrAzPFDOWNIX4Jt+ugjItKZ6V9xERGRNuL1ennmnY958s2lZGf04Mm7ryI9MdbfZVHv8fLmgQqezy+jyOlmSKSdB/omcWZcRIfpCn8b2/IPMn/lBhZ8nkt+cTm2oEDOHJbFzPFDOWtEtua0ioh0IQqwIiIibaCm3sFPn3mTJWu3cP5pw/jVTRcQ6ucgVeP28Or+Cl4sKKPc5WF0dCi/6p/CuJiwThdc9x4sZcHnucxfmcuOwiICAwIYP6g3t190FlNHDSCqA++lKyIiJ08BVkREpJXt3FfM3X+dQ97BMh68djrXnTPerwGx0uXhlcIy/ruvnGq3l9Njw7klM55R0WF+q+lkHCirZOEXG5n/+QZyd+8DYHR2Tx664TzOGTOI+KgIP1coIiJtrUUB1rKsAGA4kArUAxuNMQfbsjAREZHO6MPVm/nps28QGmxj9k9uZMyAXn6rpdTp5qWCMubtr6DO42VyfAS3ZMYzOLLzdCfLqmr5YNVG5q/MZc22PIwxDO6VygNXTWP62CGkxEf7u0QREWlHxw2wlmX1BX4CnA1sB4oBO5BtWVYd8DTwvDHG29aFioiIdGQer5cn31jCM+98zNA+aTxx15Ukx/knXB1scPF8fhlvHKjA5TVMS4zi5sw4ssLtfqnn26quc/Dhms0sWJnLZxt34fF66ZuayF2XTGb6uCH0So73d4kiIuInJ+rA/gb4J/A9Y4xp/oJlWUnANcD1wPNtU56IiEjHV1FTx4+fep0VG3Zw2Vmj+Pl1MwkJtrV7HQX1Tv6dX8rbBysBOC8pmpsy4ukZ1vEXMapvcPLRl9uY//kGlq/fjsvtIT0xlptnnsF544eSlZ7U6ebpiohI6ztugDXGXH2c14qAx1u9IhERkU5kS94B7v7rHA6UVfHL71zAFZNz2r2GXXUNzM4rZWFRFYGWxazkGG7MiCfV3v4h+ttwut18smEn81duYMnardQ3OEmMieTqKWOYMX4ow/qkKbSKiMhhTjgH1rKsaGA6kAYYYB/wvjGmoo1rExER6dDe/Ww9D81+m6gwOy/+7CaG98to1+tvrXHwXF4pi0uqCQmwuDotluvT40gK6bjB1eP18sXmPcz/fAOLVm+iqs5BTEQYF5w+jJnjhjC6f08CAwL8XaaIiHRQJ5oDewPwMPABUNj49GTgt5Zl/coY80Ib1yciItLhuNweHpv7AS988Dmjs3vy5x9cTmJMZLtdf31VPf/KK2F5WS0RgQHckhHPNemxxNo65uYCXq+Xr3YW8N7nG3h/1SZKK2sIt4cwddQAZo4fymmD+2ALCvR3mSIi0gmc6Cfdz4HRR3ZbLcuKBVYCCrAiItKtlFbVcN/fX2XVlj1ce844fnzVue0SvowxrKms49m8Ur6oqCMmKJAf9ErgytRYIjtg+DPGsDnvAAs+38D8lbnsL60kxBbEWSOymTluKGcOz8Luh3nCIiLSuZ0owFr4hg0fydv42vHfbFnTgSeAQOA5Y8zvj3LMJHxzaW1AiTHmrBOdV0RExB827CrknifnUF5dx+9vm8WFZwxv82saY/ikvJZ/5ZXyZVU9CcGB/LBPIpelxBIW2PGG2lbXOXh50Ure+Ww9u/eXEBQYwOlD+nLPpVOZMqo/EaGdYyVkERHpmE4UYP8PWGtZ1gdAfuNzmcA5wCPHe6NlWYHA3xuPLQBWWZb1tjFmU7NjYoB/ANONMXmNKxuLiIh0OK8vX8sjL7xHQnQEL//iFgb1Sm3zax5wuLh/cyEbqx0khwTxYL8eXJQcTUgHnCPqdLuZu2Q1/3xrGRU1dYwb2Jsbzz2NaWMGERMR5u/yRESkizjRKsTPW5b1NnAuvkWcLOAj4EFjTPkJzj0W2GGM2QVgWdYc4CJgU7NjrgHeMMbkNV6v6GT+I0RERNqK0+Xmty8vYN7S1Zw2uA+Pff/ydglkRQ0ublufR7nLw0NZyZzfIxpbQMdbkdfr9fL+qk08/uqH5BeXM35QH+6/8px2CfgiItL9nHC1h8agOuckzp3G111b8HVhxx1xTDZgsyzrIyASeOJoC0NZlnUbcBtAZmbmSZQiIiLy7RWVV3HPk3P5amcBt543gXsum9ouK+SWON3ctj6fMpeHfwzNYFhUaJtf82Ss3Lybx+Z+QO7uffTPTOaZ+6/njCF9tfWNiIi0mZNertCyrGeMMbcd75CjPHfkfNogYDQwFQgFPrMs63NjzLbD3mTMM8AzADk5OUebkysiItKq1mzby71/m0edw8lf7ryCc8cMbpfrljnd3LY+j6IGV4cNr9vyD/LnVxex/KvtJMdF8/vbZnH+aUMJ6IBDm0VEpGs5lfX2nz7B6wVA8w3x0vHtIXvkMSXGmFqg1rKs5cBwYBsiIiJ+YIzhvx9+wR9eWUhaQiyzf3wjWents0RDucvN99bns9/h4skhGYyI7lhzRw+UVfLkG0v534oviQwN4f4rp3Ht2WMJ0WrCIiLSTk46wBpj1pzgkFVAlmVZvfHtIXsVvjmvzb0F/M2yrCAgGN8Q47+cbE0iIiKnwuF08av/vMNbn3zFpBHZ/P62WUSFt08HtNLl4fb1+eQ7nPx1cDo5MR0nvFbV1vPceyt48YPP8RrDjeeexm0XTNTiTCIi0u7abAixMcZtWdadwPv4ttGZbYzZaFnW7Y2vP2WM2WxZ1kJgPb6teZ4zxuSebE0iIiInq7Ckgnv+OodNe/fzg4snccdFZ7XbkNgql4c7NuSxp87J44PTGRsb3i7XPRGny82cJav451vLqKpzcP5pQ7l71hTSEmP9XZqIiHRTljHHnlJqWVbcsV4CvjLGpLdJVceRk5NjVq9e3d6XFRGRLuzTjTu5/x+v4fF6+cP3ZjFpRP92u3a128MdG/LZVtPAnwenMSEuot2ufSxer5f5K3N54rXFFJZUcPrgvtx35TkM6pni79JERKR7OOZqgCfqwBYDe484gWl8rD1bRUSkUzPGMHvBJ/xl3of0SU3kr3dfRa/k+Ha7fo3bww825LO1xsGfBnWM8Pr5pl38ac4HbNq7nwGZyTz3wA2cPqSvv8sSEREBThxgdwFTD+3T2pxlWflHOV5ERKRTqHU08Ivn3uL9VRs5d8xgfnPrRYTbQ9rt+nUeL3flFrCp2sEfB6VxVnxku137aLbmHeCxeYtYsWEHqQkxWllYREQ6pBMF2MeBWOAbARb4Y+uXIyIi0vb2HCjl7r/OYde+Yn505TncPOOMdt27tN7j5e7cfDZU1fO7galMSfBfeN1fWsmTbyzhrU++IjLMzgNXTeOaqVpZWEREOqbjzoHtiPoOGmbufOI1f5chIiKd1J4DJXy4ZguWBdPGDCIj8VjLPbQNtzEsLKpin8PFlIRI+oW3X9e3uQaXi7Xb8vhqVyEAw/qkMTo7kxCbgquIiPjXD8/JPrk5sJZlTTDGrDjO61FAZnuuHBwbFswPz8lur8uJiEgX4fF6eeqtZSz68CMG9kzhr3dd2e6r6TZ4vfxwYyHldsOf+qdwXo/odr0++FYW/u/iL3jq3eVU1zmYdfow7rp0CqnxMe1ei4iIyLd1oiHEl1qW9UdgIbAG36JOdqAfMBnoCfyoTSsUERE5RdvyD/LQv99m/c4CLjx9OL+86QLs7TxE1un1cv+mQj4rr+WX2cntHl69Xi/vfZ7LE68vZl9JBROG9uO+K85hQGZyu9YhIiJyKo4bYI0xP7QsKxa4DLgcSAHqgc3A08frzoqIiPhbg9PFU28v51/zVxAZZuePt1/KeeOHtut8VwCX1/DApn2sKKvl/2Ulc1Fy+3Y7P924k8fmLmLz3v0M7JnCr2++kNMHa2VhERHpfE7UgcUYU25Z1mxjzLPtUZCIiEhrWLVlDw//+232HCjl4gkj+PHV5xITEdbudbi8hp9uLmR5WQ0P9uvBrJT2C69b8g7w2NwP+CR3J2kJMfzx9kuZOW6IVhYWEZFO64QBttEOy7JeA2YbYza3ZUEiIiKnoqq2nsfmLuLVZWtIT4z16z6mbmP4+ZZ9LCmt4YG+SVyR2j5zbveVVvDk60t4+9P1RIXZ+cnV53L11LEE21r6Y19ERKRjaulPsmHAVcC/LMsKAGYDc4wxVW1WmYiIyLdgjOGD1Zv4vxfnU15dx80zz+AHF08iNCTYL/V4jOGhLftZVFLNfX2SuCat7Vc7rqyt55l3lvPyh18AcMvMM7j1vAlEhYe2+bVFRETaw7feRseyrDOBV4AY4DXgEWPMjjao7ahycnLM6tWr2+tyIiLSCRwoq+SRF95j6bqtDOyZwiM3X8igXql+q8djDA9v3c97RVXc3TuRmzLi2/R6DU4XL3/4Bc+8+zHVdQ4uOmM4d82aQkp8+69yLCIi0gpObhudpndbViBwHnAT0At4DHgZmAjMB7SvjYiItDuv18ucJav4y6uL8Xi93H/lNG44dzxBgYH+q8kYHtl2gPeKqvh+z4Q2Da9er5d3P9vAE68vZn9pJROHZXHf5WfTXysLi4hIF9XSIcTbgaXAo8aYT5s9/1pjR1ZERKRd7Sgs4uHZb7NuRz6nD+7Lw985n4ykth+mezxeY/jt9oO8dbCS2zLj+W7PhDa71icbdvDYvEVsyTvA4F6p/N+tFzN+UJ82u56IiEhH0NIAe8ORW+ZYlnWGMeYTY8zdbVCXiIjIUTldbp5+ZznPvruCiNAQfn/bLC44fVi7b41zJGMMf9hxkNcPVHBLRjy3t1F43bR3P4/N/YDPNu4iPTGWR2+/jBnjBmtlYRER6RZaGmD/Cow64rknj/KciIhIm1mzbS8Pz36bXftLOP+0Yfz0munERYX7uyyMMfxpVxHz9ldwY3ocP+iV0OqBurC4nCdeX8K7n60nJiKMB6+dzpWTx2hlYRER6VaO+1PPsqzTgNOBRMuy7mv2UhTgvwlGIiLSrVTXOfjzvEXMXbqa1IQYnrn/eiYM7efvsgBfeH18dzH/LSzn2rRY7umd2KrhtaKmjmfe+ZiXP1xJgGXx3fMncut5E4gMs7faNURERDqLE/3aNhiIaDwustnzVcBlbVWUiIjIIR+u3sxvXnyPksoabpx+GnfNmkKYn7bGOZIxhif3FPNCQRlXpsbwoz5JrRpeN+7ex62PvkBVnYOLJ4zgrlmTSY7TysIiItJ9HTfAGmOWAcssy/qPMWZvO9UkIiJCUXkVv3lxPh+u2Uz/zGT+du/VDOmd5u+yDvPPvSX8O7+MS1Ni+EnfHq0aXnfvL+G2x14kIjSE5x+8ieyMHq12bhERkc7qREOIHzfG3Av8zbKsb2wYa4y5sM0qExGRbsnr9TLvozX8ed4iXG4P911xNjeeezq2oI41c+WZvSU8m1fKxcnR/Kxf64bXA2WV3ProCwRYFs8+cAO9ktt2H1kREZHO4kRDiF9svP1TWxciIiKya18xD/37bdZuy2PcoN788jsX0LNHxwtvs/NK+efeEi7oEcX/y0omoJXnvN766ItU1zn4z4M3KbyKiIg0c6IhxGsab5e1TzkiItIdOd1unnt3BU+/s5zQkGD+79aLuXjCCL9vjXM0LxSU8uSeYmYmRfFwdkqrhtdaRwO3//llCorLefb+6xnUM6XVzi0iItIVnGgI8QbgG0OHDzHGDGv1ikREpFtZtz2Ph2a/zc59xcwcN4SfXjuDhOgIf5d1VP8tLOMvu4qZlhjJr/qnENiK4dXpdnPvk3PJ3VXIE3dfxZgBvVrt3CIiIl3FiYYQn98uVYiISLdTU+/g8VcX88qSVfSIjeKf913LWcOz/V3WMc3dV86jO4uYmhDJb/qnEtSK4dXj9fLgM2/ySe5OfnPLxUwdNaDVzi0iItKVnGgIsVYeFhGRVrdk7RYeeeE9iiqqufbssdxz6VTCQ0P8XdYxvb6/gt/vOMik+Ah+NyAVW0DrhVdjDL99aT4LVubyoyvPYdaZI1vt3CIiIl3NiYYQrzDGTLAsqxrfUGKr+a0xJqodahQRkS6iuKKa/3tpPh+s2kR2eg8ev+tKhvdN93dZx/W/AxX8ZvsBJsaF84eBrRteAf725lJeWbyKW2aewS0zJ7TquUVERLqaE3VgJzTeRrZPOSIi0hUZY3h92VoenfsBDS4391w2lZtnnNHhtsY50jsHK/n1tgOcHhvOo4PSCA4IaNXzv7Toc/751jJmnTmS+644p1XPLSIi0hWdaA5sE8uyRgET8HVgVxhj1rVZVSIi0mXsOVDCw/9+h1Vb9jB2QC9+edMF9EpO8HdZJ7SgqJJfbt3P2JgwHhuURkgrh9d3P1vPb19awNRRA/jldy7okCsui4iIdDQtCrCWZT0EXA680fjUfyzLetUY85s2q0xERDo1p9vN7Pmf8NTby7Hbgnjk5guZdeaoThHUPiiu4hdb9jMqOoy/DE7HHti64XX5V9v52bNvMmZAL/50x2UEBXbsTrSIiEhH0dIO7NXASGOMA8CyrN8DawEFWBER+Yavdhbw0Oy32F5QxLljBvOz62aQGNM5ZqMsLqnmZ5v3MTwqlCeGpBPayuF13fY87v3bXLLSe/D3e68mJNjWqucXERHpyloaYPcAdsDR+DgE2NkWBYmISOdVW9/A468v5r8ffkGP2Ej+fu81TB7Z399ltdhHpdX8dHMhQ6JCeXJIOmGtHF63Fxzkjj+/TFJsJE//6DoiQu2ten4REZGu7kSrED+Jb85rA7DRsqxFjY/PAVa0fXkiItJZLPtyG796/l0Olldx9ZQx3Hv51E4V0D4uq+GBTYUMiLDztyHphLfyAlOFxeV899EXsQfb+NcDN5AQHdGq5xcREekOTtSBXd14uwZ4s9nzH7VJNSIi0umUVNbwu5cXsGBlLv3SkvjzD25hRL8Mf5f1rXxaVsP9GwvJCrfzj6EZRLRyeC2prOGWR1/A4XLz4s9uIi0xtlXPLyIi0l2caBud59urEBER6VyMMbz58Zf8cc771Dc4uWvWZG45bwLBQS1e4L5DWFley32bCukdFsw/h2YQ2crhtbrOwfcee4ni8mr+9ZMbyUrv0arnFxER6U5augpxFvA7YBC+ubAAGGP6tFFdIiLSDowxuNweHE4XDqeLeqeLBqeb+sbHh758zzlxNLhwuNw4Glys3Z7Hqi17GJ3dk1/ddAF9UhP9/Z/zra2uqOXejQVkhgbz1LBMom2tG14bnC7ufOIVthcc5O/3XtPpOtMiIiIdTUt/Tf5v4GHgL8Bk4Cag4++DICLSSXm83mYB0t0YIn0Bs3mIdDidTa/XNz+mWRD9xvua7vtuvcZ86/oCLIvYqHAe/s75XH7WaAJaeY/U9rCuso67cwtItdt4amgGMa0cXt0eDz/652us2rKHP95+KROHZbXq+UVERLqjlgbYUGPMYsuyLGPMXuCXlmV9jC/UiojIt1Bb38COfcXsKCzyfRUUUVBcQX2DsymIutyekzp3iC2IkGAbocE27ME27MFBvtsQG5Gh9m88Z7f5bkODbYQEBxEaHIy96b7tmOeyBQZ2iv1cj+WrqnruzC2gR4iNp4dlEhfcusOejTH88j/vsGTtFn523QzOP21Yq55fRESku2rpT2yHZVkBwHbLsu4ECoGktitLRKTzq2twsmtfMTsKi9lecJAdhb7Qur+0sukYe7CNPikJDOqVQrg9uDEo2g4Lkfbg4BOETl/QtNuCOmUntL3lVtVz54Z8EoIDeXpYBgmtHF4B/jxvEW8sX8cdF53FdeeMb/Xzi4iIdFct/al9LxAG3A08AkwBbmyrokREOhOH08Wu/SXsKCj6uqtaWExhSQWmcXhusC2I3ikJjMrOJCstiX6NX2mJMQQqdLabTdUO7tiQT4wtkGeGZZIUYmv1a/xr/gr+Nf8Trp46hjsvmdzq5xcREenOWhRgjTGrABq7sHcbY6rbtCoRkQ7I6XKze3+Jr6Na+HVHtaCovGkeaVBgIL1T4hnaJ41ZE0f6gmp6IumJsQQFtu4cS2m5XXUNLCyqYu6+cqKCfOG1RxuE19eXr+WxuYuYMW4IP7tuZqceZi0iItIRtXQV4hx8CzlFNj6uBG42xqxpw9pERPzC6Xaz90BZs26qr6Oad7AMj9cLQFBgAJk94hmYmcIFpw2jX7qvo5qZFIetlbdhkZOzz+Hi/eIqFhZVsa22gQBgbEwYv8hKJsXe+uH1wzWbeXj225wxpC+/u+0SddZFRETaQEuHEM8Gvm+M+RjAsqwJ+AKtVqUQkU7L7fGQd7CM7Y0LKR3qqO49WIrb4wuqAZZFZo84stKTmD52cOPQ30R6Jsd3uv1Ou4NSp5tFxdUsLK7iq6p6AIZG2nmgbxLTEqPaZL4rwBebd3P/P19jSJ80Hr/rSv3ZEBERaSMt/QlbfSi8AhhjVliWpWHEItIpeLxe8ovKvzFHdfeBkqbVfi3LIj0xlqz0JKaOHtA0R7V3cjwhwa3frZPWU+32sLikmveLqviiog4vkBUewp29EpmeGElaaHCbXn/T3v384PFXSE+M5an7riXcHtKm1xMREenOjhtgLcsa1Xj3C8uyngZeAQxwJfBR25YmIvLteL1eCksq2F7wdUjdUVjE7v0lNLjcTcelJcSQlZ7EmcOzmjqqvVMSCA1p26Ajrafe42V5aQ0Li6v4pKwWlzGk223cnBHP9KQo+oa3T4jcc6CU2x59kahwO889cD0xEWHtcl0REZHu6kQd2MeOeNx831fTyrWIiLSIMYb9ZZVNQXVnYTHbC4rYta+Yeqer6biU+Gj6pSVx2uA+TR3VPqkJ6pB1Ui6v4bPyWhYWVfFRaTX1XkNicBBXpMYwIymKQRH2dl006WBZFbc++gIGw3MP3EByXHS7XVtERKS7Om6ANcZo/X8R8RtjDEXl1U3Dfrc3dlV3FhZT62hoOi4pJpJ+aUlcMTmHfmmJ9EtLom9aIhGhdj9WL63BYwxrK+tYWFTF4pJqKt1eooMCmJkUzfSkSEZGhxHoh5V+K2rq+O6fXqSipo7nf3oTvVMS2r0GERGR7qilqxBH4+u+ntn41DLg18aYyrYqTES6D2MMpVW1XwfVAl9XdUdhEVV1jqbj4qPC6ZeWxMUTRzQF1X5pSUSHh/qxemltxhg2VjtYWFzF+8XVlDjdhAZYTE6IZHpiFONjw7EF+G97mroGJ9//y3/Ze7CUp390HYN7p/qtFhERke7m26xCnAtc0fj4enyrEM9qi6JEpOuqqKljR8Ghbqqvo7q9oIiKmrqmY6LDQ+mXlsTM8UMPC6pxUeF+rFza2o5a316t7xdXUeBwYbMsJsSFMz0piolxEYQG+n9bGqfbzb1PzmX9zgL+cucVjB/Ux98liYiIdCstDbB9jTGXNnv8K8uyvmyLgkSka6iuczR1U5uCamERpZU1TcdEhIaQlZbEOaMH0i89kb5pSWSlJZEQHdGucxnFfwrqnY17tVazo863V+u42HBuzYxnSkIkkR1oT12v18vPn/0fKzbs4Fc3XcA5OYP8XZKIiEi309IAW29Z1gRjzAoAy7LOAOrbriwR6SxqHQ2+RZQKD19Q6WB5VdMxoSHB9EtL5MxhWfRLSyQrvQf90hLpERuloNoNFTe4WVRSxcKiKjZU+4aIj4gK5afGuUBBAAAgAElEQVT9enBOQiRxbbRX66kwxvDblxfw3ucbuPeyqVw+KcffJYmIiHRLLf2UcDvwQuNcWIBy4Ma2KUlEOqL6Bie79pV8Y0GlfSUVTceE2ILom5rIuIG96ZeeSFaaL6imxEcTEOD/4Z/iP1UuDx+WVPN+cRWrG/dq7R8ewj29E5mWGEWqvWPvtfvPt5bx3w+/4Mbpp/Hd8yf6uxwREZFu64QB1rKsAKC/MWa4ZVlRAMaYqhO8TUQ6uZp6B+98up4VG3awo7CYguJyjPHtnmULCqRPSgIj+2Vw2Vmjmjqq6YmxBCqoSqM6j5dlpdUsLKrm0/Ia3AZ6hgbz3cx4zk2KondY59jOaM7iL/jbm0u56IzhPHDlNI0aEBER8aMTBlhjjNeyrDuBeQquIl3f1rwDzFmyinc+W0+dw0nPHvEM6pnChacPawqqmT3iCArsOHMTpeNwer18UlbLwuIqlpfW4PAaegQHcU1aHNMToxgQEdKpAuCClbk88uJ8Jo/oz69vvkgjCURERPyspUOIF1mWdT8wF6g99KQxpux4b7IsazrwBBAIPGeM+f0xjhsDfA5caYx5rYU1iUgrcbrcvL9qE3OXrGLt9jxCbEHMGDeEq6eOZWifNH+XJx2cxxhWVfj2al1SWk2120uMLZALekQzPSmKEVGhBHSi0HrIJxt28JOn32BUViaP/eBybB1oQSkREZHuqqUB9mbAAN8/4vlj7h9gWVYg8HfgHKAAWGVZ1tvGmE1HOe4PwPstLVpEWkdBcTnzlq7m9eVrKa+uo2ePeH589blcPGEEMRFh/i5POgBjDG4DbmNwG4PL+/VtkdPNB8XVLCquotTlITwwgMnxEUxPimJsjH/3aj1VX+0s4O6/zqFvWiJ/v/dq7MEde46uiIhId9HSADsIX3idgC/Ifgw8dYL3jAV2GGN2AViWNQe4CNh0xHF3Aa8DY1pYi4icAo/Xy8frtzNnySo+Xr+DAMti8sj+XDVlDOMH9dYQST9weQ37Gly4vL5g6GoWFl3NQuPXAZLDnj/ae9xeX+g87LjD7vP1eb3HOs53neMJtiwmxkcwPTGSCXER2DvAXq2nakdhEbc/9hIJMZE886PriAoP9XdJIiIi0qilAfZ5oAr4a+Pjqxufu+I470kD8ps9LgDGNT/Asqw04BJgCscJsJZl3QbcBpCZmdnCkkWkudKqGl5ftpZ5H61hX0kFiTGR3H7hmVw+aTTJcdEnPoG0mnqPl/VV9ayrrGNdVT3rq+pxeI8fFFvCZlnYAixsFtgCLIIsC5tlEdTsvu95CAuwsAUF+J4PaDyu8djmx3193zrsfpBlEREUwNiYMCK60NDawpIKvvvoi9iCAnnugetJjIn0d0kiIiLSTEsDbH9jzPBmj5dalvXVCd5ztLFjR35Cexz4iTHGc7xFPYwxzwDPAOTk5Jz6pzyRbsIYw5ptecxdsor3V23C7fEwblBvHrhqGlNGDtCcvnZS4fI0hdV1lXVsqXHgNr5/JLPDQ7g4OYaBEXZCA78Ok7ZvhMlD92kKkE3PB1gEQqdaHKkjKquq5buPvkBdg5MXHryJjKQ4f5ckIiIiR2hpgF1nWdZ4Y8znAJZljQM+OcF7CoCMZo/TgX1HHJMDzGn80JUAzLQsy22M+V8L6xKRozi0Bc6cJavYXlBEZJidq6eO4crJOfRJTfR3eV3efoeLdZV1rG0MrLvqnICvmzkk0s4N6fGMjA5leFQokfolQodQW9/A9x57if2llTz34xvon5ns75JERETkKFoaYMcBN1iWldf4OBPYbFnWBsAYY4Yd5T2rgCzLsnoDhcBVwDXNDzDG9D5037Ks/wDvKryKnLwjt8AZ1DOFR26+kBnjhxIWEuzv8rokrzHsrnOytrKOdZX1rKuq40CDG4CIwACGR4UyMymaUdGhDIq0E6I5xh1Og9PFnX99hS15B/jbPVczOrunv0sSERGRY2hpgJ3+bU9sjHE37h/7Pr5tdGYbYzZalnV74+snWgRKRFrgWFvgXDVlDEP7pGlYaStzeQ1bahxNHdYvK+uodHsBSAgOZGRUGDekhzIqOox+4SEE6vvfoXm8Xn789Ous3LSb3982i7NGZPu7JBERETkOy5xghcmOJicnx6xevdrfZYj43aEtcN5Yvo6y6loye8Rx1ZQx2gKnldU1X3Cpsp4N1V8vuJRhtzEqOoyR0aGMjA4jw27TLww6EWMMD//7bV5btpafXjOdG849zd8liYiIiM8xP1C1tAMrIh3AkVvgWMDkkf25eupYbYHTSspdbr6srPcNCa6qZ0u1Aw8QAGRHhHBJckxTYE0I1j+hndnjry3mtWVrue2CiQqvIiIinYQ+fYl0AkdugZMQHaEtcFqBMYb9DS7WVtb7QmtVHbsbF1wKtiwGR9r5ToZvwaVhWnCpS/nPwk959t2PuXzSaO65dKq/yxEREZEWUoAV6aCMMazdnsecxc22wBmoLXBOhdcYdjVfcKmyjoPOrxdcGhEdynmNCy4NjrQTrI52l/TWii/54yvvM23MIB668XwN+xYREelEFGBFOpja+gbe+fQrXtEWOKfM5TVsPrTgUmU9X1U1X3ApiFHRoYyM8s1h1YJL3cPSdVv5xb/eYvygPvzxe5cSqF9SiIiIdCoKsCIdhLbAOTXGGIqdbrbUNJBbXc+6ynpymy24lBlqY1J8pC+0RoeRrgWXugWny03u7n2s3b6Xtdvy+CR3JwN7JvPk3VcRbNOPQBERkc5GP71F/Ehb4JwcrzHkO1xsrXGwpcbB1poGNtc4KHd5AC241J1V1tbz5Y581mzdy9rteeTu3ofT5Rsm3jslgUsmjuSeS6cQHhri50pFRETkZOgTnYgfHG0LnAeumsYlE0dqC5wjuLyGXXUNbKlxsKWmga01DrbVNlDr8Q0FDrKgT1gIE+Mi6B8RwoAIO/3DQwjXHOFuYV9pBWu35TV9bS8swhhDUGAAg3qlcs3UsYzKzmRkVgbxURH+LldEREROkQKsSDtxezx8smEnryz5QlvgHEOdx8u2xqC6pcbB1loHO2uduBr3qw4NsMiOsHN+jyj6h9sZEGGnb3iwFlvqJjxeLzsKili73RdW12zL40BZJQBh9mBG9svg3LGDGJXdk2F90gjV0HsREZEuRwFW5BQYY6ipb6CksqbZVzXFFTWHPVdcWUN5VS1eY5q2wLnsrNGkxHffLXDKXW621hzqrPqGAe+td2IaX48JCqR/RAjXpMXSP8LOwIgQMkKDtdBSN9LgdLFhVyFrGgPrlzvyqa5zAJAYE8no7ExGZZ/OqOyeZKcnERSorruIiEhXpwArchROl5uSqhpKjgiiR/tyOF3feH9QYCAJ0REkRkeQEhfN0N5pJMRE0D8jmckj+3erLXB8e626m+arHhoGfGj7GoDkkCAGRNiZnhTlGwYcbqdHSJDmAHczFTV1rNuez9ptvgWXcvfsw+X2zWvum5rI9LGDGZ3dk1HZmaQlxOjPh4iISDekACvdhtfrpaKm/ojOaPXhgbQxsFbW1h/1HLGRYSRER5AQHcHIrIym+wnRkb7AGuN7HB0e2i0/XHuMYW+9szGsNg4DrnE0bV0TAPQMC2ZUdBgDIkLoH2Gnf4SdGFv3CfTiY4yhsKSicSiwL7Du3FcM+H4BNKR3KtdPG8/o7J6MzMrQ3HAREREBFGClC6hrcFJS0SyMHqNrWlpVg7tx4Z/m7ME2EqMjSIyJpG9qIuMG9v46mMZENN2PiwonOEh/ZQ5p8HrZUdtw2DDg7bUNTdvW2CyLfuEhTEmI9C2sFGEnOzyE0EDNV+2OPF4vW/MPNnVX127Lo6iiGoDIMDsj+mVw/unDGJ2VyZA+adiDbX6uWERERDoifRqXTsXr9fLZxl28tmwtm/P2U1JZQ53D+Y3jAiyL+Oivw2d2Ro+m7uihbumhIb5h9uBu2S39NqrdHrY2Dv31La7UwO66BtyNE1YjAgPIjghhVkpM4+JKIfQOC8EWoO9rd1Xf4GT9rsKmwPrljgJqHQ0AJMdFMWZAL0ZlZzIqK5N+6UkEaiEuERERaQEFWOkUSqtqePPjdby6dA35xeXERIQxflBvkmIiG7ukkSQ265rGRITpA/EpKne5eSG/jMUl1eQ7vp7nmxAcSP9wO2c227YmzW4jQL8E+NZcbg/LvtzGvI9Ws3LzbmxBgdhtNuwhNuy2IOzBNuzBNkKCv77v+woixGYjNMRGiC2o8dZ22PGhwTZCghvPE2I77LzBttafX1xWVdu0OvDa7Xls2rMPt8eLZVlkpSVxwenDfIE1O5PU+JhWvbaIiIh0Hwqw0mEZY/hiyx7mLlnFh2u24PZ4yOnfk7svnco5OQMJtumPb1uodnt4saCMlwvLqfd4mRgXwYXJ0fSPsDMg3E5iiL7vp6qguJzXlq3hjeXrKKmsITkuiqumjCHAsnA4XTS43NQ3uGhwuah3uqhvcFFWXUeD04XD6fYd4/S9djIsy8JuC/IF3EOBONjWGHobw6/N93zz4HxkkHa7PXy1s4C12/PYvb8EAFtQIEP7pHHTjDMYlZ3JiH4ZRIeHtua3T0RERLoxfRKVDqe8upb/rfiSVz9aw54DpUSF2blm6hgun5xD39REf5fXZdV5vLxSWM4LBaVUub2cnRDJ7T0T6Bse4u/SugSX28NHX27l1Y/W8EnuTizgrOHZXD55NBOHZZ3UiAFjDE6XG4fLjaPBhcPlarx1NwXchsbA2/zrsIDc4Hvc9JrTTVWt4/D3N57Xa8w3aogKD2VUVgaXTBzBqKyeDO6VQojmr4qIiEgbUYCVDsEYw5ptecxbupr3V23E5fYwsl8G3/vumZw7drAWdGlDDo+X1/ZXMDu/lHKXhzPjwrmjVyIDIuz+Lq1LOFq39fsXncWlZ40iOe7U9gG2LIuQxqHCbd3lNMbg8nhwNAu8xkB6YgwBGq4vIiIi7UQBVvyqsraetz/5knlL17BzXzERoSFcftZorpicQ3ZGD3+X16W5vIY3D1TwXF4pxU4342LC+H6vRIZFabjnqTrUbZ23dDWfbtzl67aOyOaKSTlMGNavU87PtiyL4KAgrcQtIiIifqVPItLujDF8tbOAeUtXs2BlLg0uN0P7pPHILRcxY9wQwkKC/V1il+Y2hvkHK3l6byn7GlyMiArltwNSyIkJ93dpnV5+URmvLVvLGx+vo7SyhuS4aH5w8SRmnTnylLutIiIiIqIAK+2ous7Bu5+tZ97S1WzNP0iYPZiLJozgisk5DOqZ4u/yujyvMXxQXM1Te0vYW+9kYISdn2X14PTYcG0jdApcbg9L123l1Y9W80nuTgIsq9N3W0VEREQ6KgVYaXO5uwuZu2Q18z/fQL3TxcCeKfzyOxdw3vihhIdqgaC2Zozho9Ia/rm3hO21DfQLC+HPg9KYFB+h4HoKjtZtvWvWZC6ZqG6riIiISFtRgJU2Ueto4L3PNjBv6Wo27d1PaLCNmeOHcsXkHIb0TlVwagfGGD4rr+Xve0rYVOOgZ2gwvxuQyrTESO3ZepJcbg9L1m3h1aVr+HTjTgIDAjhrRDaXTxrNhKHqtoqIiIi0NQVYaVWb9+5n3tLVvPvZBmodDWSn9+AX18/kgtOHExmmVW3by+qKOv6xp5h1VfWkhATxy+xkzusRTZCC60nJO1jGa8vW8OaKLymtrCEl3tdtnTVxFD3iovxdnoiIiEi3oQArp6y+wcmClRuZu3QVG3YVEmILYvrYwVw5ZQzD+6ar29qONlTV8/c9xaysqCMxOIgH+/XgkuQYbAH6f/BtOd1ulq7zrST82cZd6raKiIiIdAAKsHLSthccZO7S1bzz6Xqq6xz0SU3kwWunc8Hpw4mJCPN3ed3K1hoH/9hTwvKyGmJsgdzXJ4nLU2KwBypkfVtN3daP11FaVUtKfDR3z5rCJRNHqtsqIiIi4mcKsPKtOJwuPli1iXlLV7N2ex62oECmjRnElZNyGN2/p7qt7WxXXQNP7SlhUUk1kUEB3NkrgavT4ghTcP1WnG43S9b6VhI+1G2dNCKbyyflcMbQvuq2ioiIiHQQCrDSIrv2FfPqR745gFW19fTsEc8DV03j4gkjiI3U/qHtLb/eydN7S1hQVIU9MIDvZsZzfXockUGB/i6tU9l7sJTXl61Vt1VERESkk1CAlWNyutwsWr2ZeR+tZtWWPQQFBnL26AFcMTmHcQN7q9vqBwccLp7LK+WtgxUEWRbXp8dxY0YcsTb9VW4pp9vN4jVbePWjNXy+6etu6xWTczh9iLqtIiIiIh2ZPvXKN+w9WOrrtn68jvLqOtITY/nh5WdzycSRJERH+Lu8bqnE6WZ2Ximv7a/AYLg0JYZbMhJIDNFf4Zbae7CU1z5aw5sff0lZdS2pCTHcfekUZk0cSVKsuq0iIiIinYE+/Qrw9f6Wc5esbupKTRnVnysm5XDa4D4EqCvlFxUuD88XlDKnsByX13BhcjS3ZiaQarf5u7RO4Wjd1skj+3P5pNHqtoqIiIh0Qgqw3YzL7aGovIr9ZVUcKKvkQFklhcUVfLh2S9P+lnfPmsKsM9WV8qdqt4eXC8p4qbCcOo+XGUlR3NYzgZ6hwf4urVPYc6CU15at4X9HdFsvPXMUiTGR/i5PRERERE6SAmwX4vF6Ka2s+TqcllZyoKyK/aWV7C/z3S+prMEYc9j7osLsjM7uyRWTc5gwTPtb+lO9x8srheU8X1BKldvL1IRI7uiZQN/wEH+X1uEVV1Tz/qqNLFy5kbXb85pGEVw+KYfTNYpAREREpEtQgO0kjDGUV9dxoKzSF1BLKxs7qFVN4bSovAq3x3vY+0JDgkmJiyI5LpqsYUkkx0U3PU6OjyY5Lopwu8KRvzV4vby2r4LZ+aWUuTxMjAvnjp6JDIy0+7u0Dq2sqpYPVm9i4cpcVm3dizGG7PQe3HvZVC6ZOFLdVhEREZEuRgG2AzDGUF3naBZGKzlQWnVYQD1YVkWDy33Y+2xBgSTHRpESH01Odk+S46MaA6ovmCbHRxMVZtdqwR2Yy2t460AFz+aVUuR0MzYmjO/3SmR4VKi/S+uwKmrqWLxmMwtWbmTl5t14vF76pCRwx0VnMWPcEPqmJvq7RBERERFpIwqw7aCuwfn1cN5mQ3ubuqllldQ5nIe9JzAggMSYSFLiohjcK5WpowZ8HU4bg2pcZJiGRXZSHmOYX1TF03tLKHS4GB4Vym8GpDAmRnvqHk11nYMla7ew4ItcPs3dhdvjISMpjlvOO4MZY4eQndFDv6gRERER6QYUYFuRx+vlufdWfCOgVtXWH3acZVnER4WTEhdN39QEzhjS19cxjYsmpXFYb2JMpOaidkFeY/iwpJqn9pSwu97JwIgQfjoknTNiwxXAjlDraGDZl9tYsDKXjzfswOlykxIfzQ3njmfG2CEM6pWi75mIiIhIN6MA24oCLIvn3l3hG9obF0VqfAyjsjN9800PzT2NjyYpNpLgIH3ruwOX17CvwUV+vZO8eif/O1DJ9toG+oYF89igNCbHRyiENeNwulj+1XYWrMxl2VfbcDhdJMVEcuXkHGaMG8Lwvun6fomIiIh0Y9aRK9J2dDk5OWb16tX+LuOYnC43wTaF0+6kweul0OELqfn1jbeNj/c7XHiaHZsZauP2nglMS4wiUEEM8P2dWbFhBwu+yGXpuq3UOZzER4UzbcwgZowdwqjsTA2VFxEREelejvlBWUmrlSm8dk31nuYh1UlevYt8h6+rerDBTfNfA0UEBpAZGszgSDvTk6LIsAeTGWojIzSYOFugOoj49iP+fNMuFqzMZfHaLVTXOYgOD+W8cUOZPm4IYwb0JCgw0N9lioiIiEgHo7Ql0qjW7aHA4SLvUCfV4WzqqhY5D18BOiYokIxQG6Oiw8iw+8JpRmgwmaHBRAcFKKQehcfr5YvNe1i4MpdFazZTUVNHRGgIZ48eyPSxQzhtcB9sQQqtIiIiInJsCrDSrVS7PV8H1HpnY0j13S91eQ47Nt4WSEZoMONiw8iwBzeGVBsZ9mCibApaLeH1elm7LY8FX+TywapNlFbVEhoSzJRR/ZkxdggThvbTqAURERERaTF9cpQuxRhDhdvzdUBtNh81v95FhfvwkJoUHERGqI2J8RGNIdVGZmgw6XYb4eoGnhRjDOt3FjB/ZS7vf7GRoopq7ME2zhyexYxxQzhzWBahIcH+LlNEREREOiEFWOmUatwettc2NAXTvGad1BqPt+k4C0gOCSIjNJipiZFkNhvum2a3ERqoxYFagzGGTXv2s+CLXBZ+sZF9JRXYggKZOCyLGWOHMGlkNuH2EH+XKSIiIiKdnAKsdCoF9U5eLiznrQMV1Ht9SycFAqmNwXRYVNRhw33T7DaCtYJtmzDGsC3/IAu+yGXByo3kF5URFBjA6UP6ctclk5kyagCRYXZ/lykiIiIiXYgCrHR4xhi+qqrnxcIylpbUEGjB9MQopiVGkRkWTGqIDVuAFk1qLzv3FbNgZS4LV+aya38JAZbFuEG9+e55Ezg7ZyAxEWH+LlFEREREuigFWOmw3MawuLialwrLyK12EBUUwM0Z8VyRGkNSiM3f5XUreQfLfMODV+ayNf8glmWR078n150zjnPGDCI+KsLfJYqIiIhIN6AAKx1OtdvDmwcqeKWwnAMNbjJDbTzYrwcX9IjWnNV2tmBlLrPnf8LGPfsAGNkvgwevncG5YwaRFBvl5+pEREREpLtRgJUOo7DeySv7ynnzQCV1Hi850WH8tF8PJsZFEKB9VdtVdZ2DR154j3c/W09WehL3XzmN6eMGkxof4+/SRERERKQbU4AVv/uqqp6XCspYUlJNgAXTEqO4Ni2OQZFaAMgfVm/dy0+feYODZVX84OJJfO/CMwkK1JZCIiIiIuJ/CrDiF25jWFpSzYsFZWyodhAZFMANGXFclRpLD81v9QuX28Pf/7eU595dQVpCDC/9/GaG98vwd1kiIiIiIk0UYKVd1bg9vHWgkv8WlrOvwUWG3cZP+vbgwuRowjS/1W/2HCjlJ0+9zobdhVwycSQ/u3YG4aHat1VEREREOhYFWGkX+x0u3/zW/RXUeLyMjArl/r5JnBkfQaDmt/qNMYbXlq3h9y8vxGYL4i93XsG5Ywb7uywRERERkaNq0wBrWdZ04AkgEHjOGPP7I16/FvhJ48Ma4A5jzFdtWZO0r9zG/VsXF1cDcE5iFNelxzI4MtTPlUl5dS0PzX6bxWu3MG5Qb3733UtIjov2d1kiIiIiIsfUZgHWsqxA4O/AOUABsMqyrLeNMZuaHbYbOMsYU25Z1gzgGWBcW9Uk7cNjDB+V1vBSQRlfVtUTERjAdem++a3Jds1v7Qg+2bCDB599k8raeh64aho3nnsaAQEawi0iIiIiHVtbdmDHAjuMMbsALMuaA1wENAVYY8ynzY7/HEhvw3qkjdW6Pbx1sJJXCsspcLhIs9t4oG8SF/WIJjxIq9h2BA1OF39+9UNe/OBz+qYm8sz91zMgM9nfZYmIiIiItEhbBtg0IL/Z4wKO3129BVhwtBcsy7oNuA0gMzOzteqTVnKwwcUrheW83ji/dXhUKPf0TmRyQqTmt3Yg2/IP8sBTr7G9oIhrzh7L/VdOwx6sjriIiIiIdB5tGWCPllzMUQ+0rMn4AuyEo71ujHkG3/BicnJyjnoOaX8bq+t5uaCcRSVVeA2cnRjJtWlxDIvS/NaOxOv18tKilTw2bxFR4aE8dd91nDk8y99liYiIiIh8a20ZYAuA5ptIpgP7jjzIsqxhwHPADGNMaRvWI63AYwzLS2t4qbCMtZX1hAcGcFVqLFenxZJqD/Z3eXKEovIqfvbs//h0404mj+jPr2+5kPioCH+XJSIiIiJyUtoywK4CsizL6g0UAlcB1zQ/wLKsTOAN4HpjzLY2rEVOUb3Hy9sHK3m5oIx8h4uUkCB+1CeJi5OjidD81g7pw9Wbeejfb+Nwunj4O+dzxaQcLA3pFhEREZFOrM0CrDHGbVnWncD7+LbRmW2M2WhZ1u2Nrz8FPATEA/9o/GDtNsbktFVN8u0VNbiYs883v7XK7WVopJ27Gue3BikMdUi1jgZ+//JCXl++lkE9U/jj7ZfSJzXR32WJiIiIiJwyy5jONaU0JyfHrF692t9ldHlbahy8VFDG+8W++a1TEiK5Lj2O4Zrf2qGt31nAj59+nfyicm6ZeQZ3zppMcFCbbvcsIiIiItLajtkp0ydbaeL9/+3deXxU9b3/8fc3TBKWJJCdLMRwlT1AZNVeb0QRqhRRUOEiaryxbr/WWhQwffhrBX1QEbWut2p9eGtcquJVASk/ZLdevAiokVJFkTKaQMxCApGwJjm/P2aICcyEgMmcc5LX8/GYR07OnOO8MyZ8z2e+y7Es/U9ljV4urtSW/QfVtVOYpqXGanpqrNK6ML/Vyerq6/X8ux/oPxevV2KPaL2Yf6NG9s+0OxYAAADQqihgoYN19fpr6X69urtK3xw6qp6RHs3snajJKT0UzfxWxysur1L+c2/rkx3fasLoLP02d6K6d6OnHAAAAO0PBWw7ZVmWDtTVq+JobaNH3Qnf+x7VtfWSpIFRnfVg/1SNTYhWeBjzW53Osiy9++FWPfDSX2WMtOCWKbr8J0NYqAkAAADtFgWsy9RZliqPF6LHalVxxFeE7j1Wq3J/kbrXX5geqT95fnNkmFFChEfxER5ldo3QyB5dFR/u0YgeXZUd04XixyWqaw7p/oJlWv7RNg3rk6GHbp2itMRYu2MBAAAAbYoC1iEO1dU3FJ7lR2u1N0hvadWxOtUHOD/GE6aECI8SIjwaGtPFX6R2UqJ/X3yER4kRHkV1CqNIdbnN272657m3Vb7ve/1qysX6+cQL5OnEUG8AAAC0fxSwbciyLO2v9RWm5f4CtOn2D0XqgbqTy9JOkuL8BWhypEcDozs3FKmNH/ERnRQZFhb6HxAhdbS2Vk+/vd/AZWwAACAASURBVE4vLN+gXkmxevX/3qQhZ6fbHQsAAAAIGQrYVlRvWZr1+e4mBeqxALcp6uIfxpsQ4VGfbpE6P7abv4e0U5Pe0h7hnRRGbykk/XNPueY8+5Y+/6ZEV184TPdce6m6dY60OxYAAAAQUhSwrSjMGFUdq1O0p5Myu0QoIdJXiMaH+3tLIz1KCO+kbqzsixayLEtvrNuiha+9p84R4Xryjn/XJSMG2B0LAAAAsAUFbCv7c/ZZdkdAO7G3+oB+98JSrSv8Uj8ZdLZ+f/OVSoqNsTsWAAAAYBsKWMCB/vbZDt37wmJ9f/Cw8q+9VNeNG60w5jkDAACgg6OABRzk8NFjeuSNlfrL6k3qk56kF2bfoL69ku2OBQAAADgCBSzgEF98U6I5z76lnXvKdf3483TXNZcoMiLc7lgAAACAY1DAAjarr6/Xiyv+V4//9xr1iOqi52ddr38dfI7dsQAAAADHoYAFbPRd5X795vl39NHnuzR2WH/dnzdJsdHd7I4FAAAAOBIFLGCT9zb/Q/f9+V0dO1ar+/9jkq66cJgM9/0FAAAAgqKABUKs5tARzX9luRb/T6EG907TQ7ddpcye8XbHAgAAAByPAhYIocKvi3TPs29pd8U+3Xp5jv7PlWMU7ulkdywAAADAFShggTZgWZYq9h/Qt2WVKiqr0rele7WrZK9Wf/yFkuNi9OJv/kMj+p1ld0wAAADAVShggTNUV1+v7/bu1zdllSoqq9S3pceL1UoVlVfp0JGjDceGGaPUhB6a8m/nata/j1d01842JgcAAADciQIWaMbRY7UqLq/y96RW6ht/kVpUVqni8n2qratrODYi3KP0xFhlJMXqvIG91SspThnJceqVFKfUhO6K8PDnBgAAAPwYXFGjw6s5dETfllU2FKlFpVUN339XWS3LshqO7dY5UhnJcerbK1mXDB+gjEZFanJstMLCwmz8SQAAAID2jQIW7Z5lWdp34KC+La3Ut/75qEVlP/Sq7q2uaXJ8XHQ3ZSTHaUS/s5SRFNfQk5qRFKfY6K7c6gYAAACwCQUs2oX6+nqV7fvePw/1h6G+x4vUA4eONBxrjFFybIwykmJ10bn9mgz1zUiKVVQX5qcCAAAATkQBC1exLEu7K/Zp0xde7Sgu9feqVqq4vEpHjtU2HOfpFKa0hFj1SorVuX16NRnqm57QQ5ER4Tb+FAAAAADOBAUsHG93eZU2bfdq0xe7tGm7VyV790uSOkeEKyMpTpk945UztE+Tob4942Lk6cT9VQEAAID2hAIWjrNn7z5t/sKrj77Ypc3bvdpdsU+SFBvdVSP7Z+qmCf+qkf1765y0ROajAgAAAB0IBSxsV7J3vzZv92rT9l3a9IVXxeVVkqQeUV01sv9Zyr30fI0e0Ftnpyayyi8AAADQgVHAIuRKK6ubDAkuKquUJHXv1kUj+2fq+vHnaVT/TPVJT6JgBQAAANCAAhZtrqzKV7Bu/sKrj7bv0relvoI1pmtnjeifqRmXjNKoAb3Vl4IVAAAAQDMoYNHqyvd9r83bf5jD6v1uryQpumtnjeh7lqZfPFIjB/RWv17J6kTBCgAAAKCFKGDxo1XsP+Cbw+ovWP9ZUiFJiuoSqRH9ztI1Y4Zr9IDe6pfRk4IVAAAAwBmjgMVp21t9QJu3f9Mwh/Wfe8olSd06R2p4vwxNyRmmUQMy1T+jJ7eyAQAAANBqKGBxSpXVNdr8pW8O66btXn29u0yS1LVzhIb3PUuTL8jWyP6ZGpiZQsEKAAAAoM1QwOIkVd/XaMuX3zSsFLyj2FewdomM0PC+Gbr8J0M0akBvDTwrReEeClYAAAAAoUEB28Edq63T3uoD2rZrT8Mc1i+LSiVJXSLCdW6fDP3svMEaNaC3BmWmUrACAAAAsA0FbDt06MhR7a2u0d79B3xfqw9o7/4a7f2+8T7f9v6aQw3ndY4I17l9eulXV12s0QN6a1DvVEV4+BUBAAAA4AxUJy5gWZaqDx4+qfjcW930+8rqGlVU1+jQkaMB/zvRXTsrPqab4mOidE5qokYPyFR8TJTiYrqpT3qSBv9LGgUrAAAAAMeiWrFJbV2dqr4/qL3VNb7C01+QVvoL0or9P2zvra5RbV3dSf+NMGMUG91V8TFRiu/eTelJsUrwb8dF+74m+AvU+JhuigjnfzcAAAAA96KiaUWWZWnP3v2+3tAAw3V9Q3h9Q3r3HTgky7JO+m+EezopPiZKCd27KbFHtPpl9PT3mnZTfPcoX7Ea003x3bupR1RX7qsKAAAAoMOggG1FlmXpsjlPqLauvsn+qC6Riovx9YZm9ozX8L4Z/mK0W0Pv6fHtqC6RMsbY9BMAAAAAgHNRwLaisLAw/f7myYrqEtkwtzQ+pps6R4TbHQ0AAAAAXI8CtpVNPH+I3REAAAAAoF1iAiUAAAAAwBUoYAEAAAAArkABCwAAAABwBQpYAAAAAIArUMACAAAAAFyBAhYAAAAA4AoUsAAAAAAAV6CABQAAAAC4AgUsAAAAAMAVKGABAAAAAK5AAQsAAAAAcAUKWAAAAACAKxjLsuzOcFqMMeWSvrE7xykkSKqwO8RpInNokDk0yBwabswsuTM3mUODzKFB5tAgc2iQuW1UWJZ1aaAnXFfAuoExZotlWSPsznE6yBwaZA4NMoeGGzNL7sxN5tAgc2iQOTTIHBpkDj2GEAMAAAAAXIECFgAAAADgChSwbeNPdgc4A2QODTKHBplDw42ZJXfmJnNokDk0yBwaZA4NMocYc2ABAAAAAK5ADywAAAAAwBUoYE+DMea/jDFlxphtjfbNNcbsNsYU+h8Tgpx7qTHmS2PM18aYfDsz+/ff4c/zD2PMwiDnOiazMeaNRu+x1xhT6ILM2caYjf7MW4wxo1yQeagx5n+NMX83xrxrjIlxWOZexph1xpgv/L+7d/r3xxljVhljdvi/xjoldzOZr/F/X2+MCboSoMMyP2yM2W6M2WqMeccY08MFmR/w5y00xqw0xqQ6PXOj52cZYyxjTILTMzu5LWzufTYObQubeZ+d3hYGy+3Y9rCZzI5tD40xnY0xm4wxn/kzz/Pvd3JbGCyzk9vCYJmd3BYGy+zYtvCMWJbFo4UPSTmShkna1mjfXEmzTnFeJ0k7Jf2LpAhJn0kaaGPmiyStlhTp/z7J6ZlPeP5RSb9zemZJKyVd5t+eIGm9CzJvlnShfztP0gMOy5wiaZh/O1rSV5IGSlooKd+/P1/SQ07J3UzmAZL6SVovaUSQc52Webwkj3//Qy55n2MaHfMrSc86PbP/+16S3pPvvucJTs8sB7eFzWR2bFvY3O9Go2Oc2BYGe68d2x42k9mx7aEkIynKvx0u6SNJ58nZbWGwzE5uC4NldnJbGCyzY9vCM3nQA3saLMv6m6TKMzh1lKSvLcv6p2VZRyW9LumKVg0XRJDMt0taYFnWEf8xZQFOdVpmSZIxxkiaKum1AE87LbMl6fgntt0l7QlwqtMy95P0N//2KklXBTjVzswllmV94t/+XtIXktL8r1/gP6xA0pUBTrcld7DMlmV9YVnWl6c43WmZV1qWVes/bKOkdBdkrm50WDf5/i4dndn/9GOS5gTJKzkz86k4LbNj28JTvc8ObguD5XZse9hMZse2h5bPAf+34f6HJWe3hQEzO7wtDJbZyW1hsMyObQvPBAVs6/ilv1v+v4IM10iTVNTo+2K1vMFvC30l/Zsx5iNjzPvGmJEBjnFa5uP+TVKpZVk7AjzntMy/lvSwMaZI0iOSfhPgGKdl3iZpkn/7Gvl6gU7kiMzGmExJ58r36WKyZVklku9iRFJSgFNsz31C5pZwcuY8Sf8vwCmOy2yMme//O5wh6XcBTnFUZmPMJEm7Lcv6rJlTHJXZv8vxbeEJmV3RFgb5G3R8W3hCble0hydkdnR7aIzp5B9CXiZplWVZjm8Lg2RuCSdndlxbGCyzG9rClqKA/fGekXS2pGxJJfIN6TmRCbDPzuWfPZJi5RtSMFvSIv+nuY05LfNx0xX4E2fJeZlvlzTTsqxekmZKeiHAMU7LnCfpF8aYj+UbSnU0wDG2ZzbGREl6S9KvT/hUsdnTAuwLWe72lNkYc6+kWkmvBjotwD5bM1uWda//7/BVSb8MdFqAfbZklu99vVeBLy6anBZgn53vs+PbwgCZHd8WNvPvhqPbwgC5Hd8eBsjs6PbQsqw6y7Ky5ev9G2WMyWrhqWQ+Dc1ldmpbGCyz09vC00EB+yNZllXq/0Wpl/S8fN3vJypW00/u0hV4+EyoFEt62z/MYJOkekknLhLitMwyxngkTZH0RpBDnJY5V9Lb/u035YLfDcuytluWNd6yrOHyXRztDHCYrZmNMeHyXWS8alnW8fe31BiT4n8+Rb5PHU9kW+4gmVvCcZmNMbmSJkqaYVlWoIbNcZkb+YsCDwN0UuazJfWW9JkxxuvP8okxpucJpzops+PbwiC/G45uC5v5G3R0Wxgkt6PbwyC/045vDyXJsqx98s0fvVQObwuPOyFzSzgus5PbwuOaeZ8d1xaeNssBE3Hd9JCUqaaL3qQ02p4p6fUA53gk/VO+i5Ljk6IH2Zj5Nkn3+7f7yjdcwDg5s3/fpZLeb+YcR2WWbx7NGP/2WEkfuyBzkv9rmKSXJOU5KbN8nw6+JOnxE/Y/rKYLVyx0Su5gmRs9v17BF65wVGb/3+DnkhKbOddpmfs02r5D0n87PfMJx3gVeBEnR2WWg9vCZjI7ti1s7ndDDm4Lm3mvHdseNpPZse2hpERJPfzbXSR9IF8x5eS2MGDmRs+vl/PawmDvs5PbwmCZHdsWntHPaXcANz3k+wSuRNIx+T6luEnSy5L+LmmrpKXyN+KSUiUtb3TuBPlWttsp6V6bM0dIekW++R2fSLrY6Zn9+1+UdNsJxzo2s6QLJH3s/wfgI0nDXZD5Tn+WryQtkP9izkGZL5BvOMtWSYX+xwRJ8ZLWSNrh/xrnlNzNZJ7sf9+PSCqV9J4LMn8t30X+8X3PuiDzW/L9W7dV0rvyLezk6MwnHOOVv4B1cmY5uC1sJrNj28Lmfjfk7LYw2Hvt2PawmcyObQ8lDZH0qT/zNvlXo5az28JgmZ3cFgbL7OS2MFhmx7aFZ/I4/scIAAAAAICjMQcWAAAAAOAKFLAAAAAAAFeggAUAAAAAuAIFLAAAAADAFTx2BzgDbb7q1CX1L7f1S5yW1WHXn/IYt2V2W16JzK2BzKFB5tAgc9tzW16JzKFC5tAgc2i4LXNL8rYCE+wJemABAAAAAK5AAQsAAAAAcAUKWAAAAACAK1DAAgAAAABcgQIWAAAAAOAKFLAAAAAAAFeggAUAAAAAuAIFLAAAAADAFShgAQAAAACuQAELAAAAAHAFClgAAAAAgCtQwAIAAAAAXIECFgAAAADgCh67AzjR6rDr7Y4AAAAAADgBPbAAAAAAAFeggAUAAAAAuAIFbBt47LHHNGjQIGVlZWn69Ok6fPiw3ZEAAAAAwPWYA9vKdu/erSeffFKff/65unTpoqlTp+r111/XjTfe2Kavy7xdAAAA4NTceN3sxsxthR7YNlBbW6tDhw6ptrZWBw8eVGpqqt2RAAAAAMD16IFtZWlpaZo1a5YyMjLUpUsXjR8/XuPHj7c71kny8vK0bNkyJSUladu2bZKkyspKTZs2TV6vV5mZmVq0aJFiY2Pb5PX5FAkAAABuYPd185lwY+aWoge2lVVVVWnJkiXatWuX9uzZo5qaGr3yyit2xzrJjTfeqBUrVjTZt2DBAo0dO1Y7duzQ2LFjtWDBApvSAQAAAM7gxutmN2ZuKQrYVrZ69Wr17t1biYmJCg8P15QpU/Thhx/aHeskOTk5iouLa7JvyZIlys3NlSTl5uZq8eLFdkQLKi8vT0lJScrKymrY9+abb2rQoEEKCwvTli1bbEwHAACA9siN181uzNxSFLCtLCMjQxs3btTBgwdlWZbWrFmjAQMG2B2rRUpLS5WSkiJJSklJUVlZmc2Jmgr0SVJWVpbefvtt5eTk2JQKAAAAHY3Tr5sDcWPmQJgD28pGjx6tq6++WsOGDZPH49G5556rW265xe5Y7UJOTo68Xm+TfW75cAAAAADAj0cB2wbmzZunefPm2R3jtCUnJ6ukpEQpKSkqKSlRUlKS3ZEchYWnAAAAmuqo10duvG52Y+ZAGEKMBpMmTVJBQYEkqaCgQFdccYXNiQAAAADnceN1sxszB0IB20FNnz5d559/vr788kulp6frhRdeUH5+vlatWqU+ffpo1apVys/PtzsmAAAAYCs3Xje7MXNLMYS4g3rttdcC7l+zZk2Ik7Rvge7Bddwjjzyi2bNnq7y8XAkJCTYlBAAACC23XR+58brZjZlbigIWrjF9+nStX79eFRUVSk9P17x58xQXF6c77rhD5eXl+tnPfqbs7Gy99957dkdtcOONN+qXv/ylbrjhhib7i4qKtGrVKmVkZLTp63fUeSkAAMC57L4+grtRwMI1gn2SNHny5BAnablAKydL0syZM7Vw4ULXzj0AAAA4U1wf4cdgDiwQYkuXLlVaWpqGDh1qd5SA8vLylJSUpKysrCb7n3rqKfXr10+DBg3SnDlzbEoHAADaI6dfH8E56IEFQujgwYOaP3++Vq5caXeUoAIN61m3bp2WLFmirVu3KjIy0rU3vgYAAM7jhusjOAc9sEAI7dy5U7t27dLQoUOVmZmp4uJiDRs2TN99953d0Rrk5OQoLi6uyb5nnnlG+fn5ioyMlCTX3jcMAAA4jxuuj+AcFLBACA0ePFhlZWXyer3yer1KT0/XJ598op49e9odrVlfffWVPvjgA40ePVoXXnihNm/ebHckAADQTrj1+gj2oIAF2lCge3C5UW1traqqqrRx40Y9/PDDmjp1qizLsjsWAABwofZyfQR7MAcWaEPBVk4+LtAKfE6Unp6uKVOmyBijUaNGKSwsTBUVFUpMTLQ7GgAAcJn2cn0Ee9ADC+CUrrzySq1du1aSbzjx0aNHHXNzcQAAAHQc9MACaGL69Olav369KioqlJ6ernnz5ikvL095eXnKyspSRESECgoKZIyxOyoAAAA6GApYAE0EG9bzyiuvhDgJAAAA0BRDiAEAAAAArkABCwAAAABwBQpYAAAAAIArMAcWgKOsDrve7ggAAABwKHpgAQAAAACuQA8sAFcrKirSDTfcoO+++05hYWG65ZZbdOeddzY8/8gjj2j27NkqLy/n3rUA0IEwogdonyhgAbiax+PRo48+qmHDhun777/X8OHDNW7cOA0cOFBFRUVatWqVMjIy7I4JAACAVsAQYgCulpKSomHDhkmSoqOjNWDAAO3evVuSNHPmTC1cuFDGGDsjAgBcoKioSBdddJEGDBigQYMG6YknnpAkzZ07V2lpacrOzlZ2draWL19uc1KgY6MHFkC74fV69emnn2r06NFaunSp0tLSNHToULtjAQBcINiIHsn3geisWbNsTghAooAF0E4cOHBAV111lR5//HF5PB7Nnz9fK1euDMlrM88KANwvJSVFKSkpkk4e0QPAOShgAbjesWPHdNVVV2nGjBmaMmWK/v73v2vXrl0Nva/FxcUaNmyYNm3apJ49e9qcFgDgdI1H9GzYsEFPP/20XnrpJY0YMUKPPvqoYmNj2+R1+UAUODXmwAJwNcuydNNNN2nAgAG66667JEmDBw9WWVmZvF6vvF6v0tPT9cknnzimeA02z2ratGkNc6wyMzOVnZ1tc1IA6Hgaj+iJiYnR7bffrp07d6qwsFApKSm6++677Y4IdGj0wAJwtQ0bNujll1/W4MGDGwq+3//+95owYYLNyYILNs/qjTfeaDjm7rvvVvfu3W1MCQAdz4kjeiQpOTm54fmbb75ZEydOtCseAFHAAnC5Cy64QJZlNXuM1+sNTZgWCjbPauDAgZJ8vcqLFi3S2rVr7YwJAB1KoBE9klRSUtLwb/Y777yjrKwsuyKeJNi90AsLC3Xbbbfp8OHD8ng8+uMf/6hRo0bZHRdoFRSwAGCjxvOsjvvggw+UnJysPn36tNnrMs8KAJoKNqLntddeU2FhoYwxyszM1HPPPWdz0h8EG9EzZ84c3Xfffbrsssu0fPlyzZkzR+vXr7c7LtAqKGABwCYnzrM67rXXXtP06dNtTAYAHU+wET1OnpISbESPMUbV1dWSpP379ys1NdXOmECrooAFABsEmmclSbW1tXr77bf18ccf25juZIcPH1ZOTo6OHDmi2tpaXX311Zo3b54qKys1bdo0eb1eZWZmatGiRW22OicAILjGI3oef/xx/fSnP9WsWbNUX1+vDz/80O54QKthFWIACLFg86wkafXq1erfv7/S09NtShdYZGSk1q5dq88++0yFhYVasWKFNm7cqAULFmjs2LHasWOHxo4dqwULFtgdFQA6nBNH9DzzzDN67LHHVFRUpMcee0w33XST3RGBVkMBCwAhdnye1dq1axtum7N8+XJJ0uuvv+7I4cPGGEVFRUny9R4fO3ZMxhgtWbJEubm5kqTc3FwtXrzYzpgA0OEEGtFTUFDQsH3NNddo06ZNdkYEWhVDiAEgxJpbOfnFF18MbZjTUFdXp+HDh+vrr7/WL37xC40ePVqlpaUN869SUlJUVlZmc0p0NCxIho4s2Iie1NRUvf/++xozZozWrl3bposCAqFGAQsAaJFOnTqpsLBQ+/bt0+TJk7Vt2za7IwFAhxZs5eTnn39ed955p2pra9W5c2f96U9/sjkp0HooYAEAp6VHjx4aM2aMVqxYoeTk5IZ7JJaUlCgpKcnueADQYTQ3osdpiwECrYU5sACAUyovL9e+ffskSYcOHWpYbGrSpEkqKCiQ5JtzdcUVV9gZE2iRw4cPa9SoURo6dKgGDRqk++67T5L029/+VkOGDFF2drbGjx+vPXv22JwUAHAiemABAKdUUlKi3Nxc1dXVqb6+XlOnTtXEiRN1/vnna+rUqXrhhReUkZGhN9980+6owCkdX1U7KipKx44d0wUXXKDLLrtMs2fP1gMPPCBJevLJJ3X//ffr2WefbfXXZ94uAJw5ClgAwCkNGTJEn3766Un74+PjtWbNGhsSAWcu2KraMTExDcfU1NTIGGNXRABAEBSwAACgwwm0qrYk3XvvvXrppZfUvXt3rVu3zuaUPzh8+LBycnJ05MgR1dbW6uqrr9a8efM0d+5cPf/880pMTJTkW8BnwoQJrf769BoDcArmwAIAgA7n+KraxcXF2rRpU8Oq2vPnz1dRUZFmzJihp59+2uaUPzg+7Pmzzz5TYWGhVqxYoY0bN0qSZs6cqcLCQhUWFrZJ8QoATkIBCwAAOqzGq2o3du211+qtt96yKdXJgg17dqpgC2VJ0lNPPaV+/fpp0KBBmjNnjo0pAbgRBSwAAOhQgq2qvWPHjoZjli5dqv79+9sVMaC6ujplZ2crKSlJ48aNaxj2/PTTT2vIkCHKy8tTVVWVzSl9gvUYr1u3TkuWLNHWrVv1j3/8Q7NmzbI7KgCXoYAFAAAdSklJiS666CINGTJEI0eO1Lhx4zRx4kTl5+crKytLQ4YM0cqVK/XEE0/YHbWJQMOeb7/9du3cuVOFhYVKSUnR3XffbXdMScF7jJ955hnl5+crMjJSkrh3NIDTxiJOAACgQwm2qraThgw3p/Gw58Y9mDfffLMmTpxoY7KmAi2U9dVXX+mDDz7Qvffeq86dO+uRRx7RyJEj7Y4KwEXogQUAAHC4YMOeS0pKGo555513lJWVZVfEkwTqMa6trVVVVZU2btyohx9+WFOnTpVlWXZHBeAi9MACANBGuPUIWktJSYlyc3NVV1en+vp6TZ06VRMnTtT111+vwsJCGWOUmZmp5557zu6oJ2ncY5yenq4pU6bIGKNRo0YpLCxMFRUVDbcBAoBToYAFAABwuGDDnl9++WUb0pxaeXm5wsPD1aNHj4Ye43vuuUdRUVFau3atxowZo6+++kpHjx5VQkKC3XEBuAgFLAAADlNXV6cRI0YoLS1Ny5YtU2VlpaZNmyav16vMzEwtWrRIsbGxdscEggrWY3z06FHl5eUpKytLERERKigocPTtgAA4j3HhvAPXBQYA/HiX1Durp6kthwf/4Q9/0JYtW1RdXa1ly5Zpzpw5iouLU35+vhYsWKCqqio99NBDbfLaTnqfGYINAB1W0E+2WMQJAAAHKS4u1l//+lf9/Oc/b9i3ZMkS5ebmSpJyc3O1ePFiu+IBAGArClgAABzk17/+tRYuXKiwsB+a6NLSUqWkpEiSUlJSVFZWZlc8AABsRQELAIBDLFu2TElJSRo+fLjdUQAAcCQWcQIAwCE2bNigpUuXavny5Tp8+LCqq6t13XXXKTk5WSUlJUpJSVFJSYmSkpLsjgoAgC3ogQUAwCEefPBBFRcXy+v16vXXX9fFF1+sV155RZMmTVJBQYEkqaCgQFdccYXNSQEAsAcFLAAADpefn69Vq1apT58+WrVqlfLz8+2OBACALRhCDACAA40ZM0ZjxoyRJMXHx2vNmjX2BgIAwAHogQUAAAAAuAIFLAAAAADAFShgAQAAAACuQAELAAAAAHAFClgAAAAAgCtQwAIAAAAAXIECFgAAAADgChSwAAAAAABXoIAFAAAAALgCBSwAAAAAwBU8dgcAAADOsTrsersjAAAQFD2wAAAAAABXoIAFAAAAALgCQ4gBAMCPkpmZqejoaHXq1Ekej0dbtmzR7Nmz9e677yoiIkJnn322/vznP6tHjx52RwUAuBw9sAAA4Edbt26dCgsLtWXLFknSuHHjtG3bNm3dulV9+/bVgw8+aHNCAEB7QAELAABa3fjx4+Xx+AZ6nXfeeSouLrY5EQCgPTCWZdmd4XS5LjAAAO1Z7969FRsbK2OMbr31Vt1yyy1Nnr/88ss1bdo0XXfddTYlBAC4jAn2BHNgAQDAj7JhwwalpqaqrKxM48aNuF8tzAAAAflJREFUU//+/ZWTkyNJmj9/vjwej2bMmGFzSgBAe8AQYgBAu5WZmanBgwcrOztbI0aMkCTNnTtXaWlpys7OVnZ2tpYvX25zSvdLTU2VJCUlJWny5MnatGmTJKmgoEDLli3Tq6++KmOCfpgOAECLMYQYANBuZWZmasuWLUpISGjYN3fuXEVFRWnWrFk2Jms/ampqVF9fr+joaNXU1GjcuHH63e9+J0m666679P777ysxMdHmlAAAl2EIMQAAaH2lpaWaPHmyJKm2tlbXXnutLr30Up1zzjk6cuSIxo0bJ8m3kNOzzz5rZ1QAQDvgxh5YAABaxBizS1KVfKN3nrMs60/GmLmSbpRULWmLpLsty6qyLSQAAGgxClgAQLtljEm1LGuPMSZJ0ipJd0j6UlKFfEXtA5JSLMvKszEmAABoIRZxAgC0W5Zl7fF/LZP0jqRRlmWVWpZVZ1lWvaTnJY2yMyMAAGg5ClgAQLtkjOlmjIk+vi1pvKRtxpiURodNlrTNjnwAAOD0sYgTAKC9Spb0jv/2LR5Jf7Esa4Ux5mVjTLZ8Q4i9km61LyIAADgdzIEFAAAAALgCQ4gBAAAAAK5AAQsAAAAAcAUKWAAAAACAK1DAAgAAAABcgQIWAAAAAOAKFLAAAAAAAFeggAUAAAAAuAIFLAAAAADAFf4/Yuj79NQ0wdUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1397,7 +1452,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -1409,7 +1464,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -1555,7 +1610,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -1575,7 +1630,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -1614,10 +1669,8 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "raw", "metadata": {}, - "outputs": [], "source": [ "```\n", "# simulate data and save for use in example\n", @@ -1644,6 +1697,13 @@ "\n", "```" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/sphinx/source/tutorial/Classification_simulation_example_Facet.ipynb b/sphinx/source/tutorial/Classification_simulation_example_Facet.ipynb index 61fab24e8..1f8984b45 100644 --- a/sphinx/source/tutorial/Classification_simulation_example_Facet.ipynb +++ b/sphinx/source/tutorial/Classification_simulation_example_Facet.ipynb @@ -31,21 +31,21 @@ "\n", "**Context**\n", "\n", - "With the advanced capabilities FACET provides by extending SHAP-based model inspection, it is important to gain some intuition for how the newly introduced measures for feature redundancy and synergy can vary. As SHAP values represent post-processing after data preparation, feature engineering, preprocessing and model selection/tuning, minimal simulation studies offer a way to make the connection as direct as possible.\n", + "With the advanced capabilities FACET provides by extending SHAP-based model inspection, it is important to **gain some intuition for how the newly introduced measures for feature redundancy and synergy can vary**. As SHAP values represent post-processing after data preparation, feature engineering, preprocessing and model selection/tuning, minimal simulation studies offer a way to make the connection as direct as possible.\n", "\n", "In this FACET tutorial we will conduct two simulation studies to gain intuition about synergy and redundancy:\n", "\n", - "1. explore patterns in synergy and redundancy as a function of the individual and joint contribution of two continuous features in predicting a binary target where the features have varying degrees of correlation.\n", - "2. explore how overfitting affects the accuracy of redundancy and synergy estimates for a random forest classifier by varying the `max_depth` parameter.\n", + "1. Explore patterns in synergy and redundancy as a function of the individual and joint contribution of two continuous features in predicting a binary target where the features have varying degrees of correlation.\n", + "2. Explore how overfitting affects the accuracy of redundancy and synergy estimates for a random forest classifier by varying the `max_depth` parameter.\n", "\n", "***\n", "\n", "**Tutorial outline**\n", "\n", "1. [Required imports](#Required-imports)\n", - "2. [Redundancy, Synergy and SHAP](#Redundancy,-Synergy-and-SHAP)\n", - "3. [Data simulation](#Data-simulation)\n", - "4. [How redundancy and synergy change with feature correlation and interaction](#How-redundancy-and-synergy-change-with-feature-correlation-and-interaction)\n", + "2. [Simulating data](#Simulating-data)\n", + "3. [Redundancy, Synergy and SHAP](#Redundancy,-Synergy-and-SHAP)\n", + "4. [Understanding how redundancy and synergy change with feature correlation and interaction](#Understanding-how-redundancy-and-synergy-change-with-feature-correlation-and-interaction)\n", "5. [How overfitting affects the accuracy of redundancy and synergy estimates](#How-overfitting-affects-the-accuracy-of-redundancy-and-synergy-estimates)\n", "6. [Summary](#Summary)\n", "7. [What can you do next?](#What-can-you-do-next?)\n", @@ -153,7 +153,7 @@ "\n", "1. Common packages (pandas, matplotlib, etc.)\n", "2. Required FACET classes (inspection, selection, validation, simulation, etc.)\n", - "3. sklearndf a BCG Gamma package that simplifies pipelining (see on [GitHub](https://github.com/orgs/BCG-Gamma/sklearndf/))." + "3. sklearndf a BCG Gamma package that simplifies pipelining (see on [GitHub](https://github.com/BCG-Gamma/sklearndf/))." ] }, { @@ -188,17 +188,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "no match found for docstring '[see superclass' in class LearnerRanker\n" - ] - } - ], + "outputs": [], "source": [ "from facet.data import Sample\n", "from facet.crossfit import LearnerCrossfit\n", @@ -213,7 +205,7 @@ "source": [ "**sklearndf imports**\n", "\n", - "Instead of using the \"regular\" scikit-learn package, we are going to use sklearndf (see on [GitHub](https://github.com/orgs/BCG-Gamma/sklearndf/)). sklearndf is an open source library designed to address a common issue with scikit-learn: the outputs of transformers are numpy arrays, even when the input is a data frame. However, to inspect a model it is essential to keep track of the feature names. sklearndf retains all the functionality available through scikit-learn plus the feature traceability and usability associated with Pandas data frames. Additionally, the names of all your favourite scikit-learn functions are the same except for DF on the end. For example, the standard scikit-learn import:\n", + "Instead of using the \"regular\" scikit-learn package, we are going to use sklearndf (see on [GitHub](https://github.com/BCG-Gamma/sklearndf/)). sklearndf is an open source library designed to address a common issue with scikit-learn: the outputs of transformers are numpy arrays, even when the input is a data frame. However, to inspect a model it is essential to keep track of the feature names. sklearndf retains all the functionality available through scikit-learn plus the feature traceability and usability associated with Pandas data frames. Additionally, the names of all your favourite scikit-learn functions are the same except for DF on the end. For example, the standard scikit-learn import:\n", "\n", "`from sklearn.pipeline import Pipeline`\n", "\n", @@ -236,34 +228,27 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Redundancy, Synergy and SHAP\n", + "# Simulating data\n", "\n", - "Redundancy and synergy are part of the key extensions FACET makes to using SHAP values to understand model predictions. \n", + "When analysing data, features are often [correlated](https://en.wikipedia.org/wiki/Correlation_and_dependence) (degree to which two features are related) or [interact](https://en.wikipedia.org/wiki/Interaction_(statistics)) with each other (the combined features improve prediction performance). As part of a robust data science process, identifying and understanding the impact these data characteristics have on a predictive model, and hence conclusions, is important. \n", "\n", - "The [SHAP approach](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions) has become the standard method for model inspection. SHAP values are used to explain the additive contribution of each feature to the prediction for a given observation. SHAP values are computed for every feature and observation.\n", "\n", - "The FACET `LearnerInspector` computes SHAP values for each crossfit (i.e., a CV fold or bootstrap resample) using the best model identified by the `LearnerRanker`. The FACET `LearnerInspector` then provides advanced model inspection through new SHAP-based summary metrics for understanding feature redundancy and synergy.\n", + "To demonstrate how the capabilities of FACET’s novel algorithm can help with this task, this tutorial uses simulation to control the characteristics of our data and then see how these are reflected in our inspection using FACET.\n", + "We use the following data generating process to simulate data for this tutorial.\n", "\n", - "The definitions are as follows:\n", + "- Step 1. Generate a pair of features X1 and X2, from a standard normal distribution with linear correlation ($\\rho$). Importantly rho controls the extent of linear correlation between the two features.\t \n", + "\t\n", + "- Step 2: Generate the linear predictor $lp$ using pre-defined coefficients $\\beta_0$, $\\beta_1$, $\\beta_2$, $\\beta_3$. Importantly $\\beta_3$ controls the contribution of the interaction between the two features (X1*X2).\t\n", + "\t\n", + "- Step 3: Generate the probability of the outcome using the [expit](https://www.rdocumentation.org/packages/rgr/versions/1.1.15/topics/expit) transformation of the linear predictor. \t \n", "\n", - "- **Redundancy** represents how much information is shared between two features contributions to model predictions. For example, temperature and pressure in a pressure cooker are redundant features for predicting cooking time since pressure will rise relative to the temperature, and vice versa. Therefore, knowing just one of either temperature or pressure will likely enable the same predictive accuracy. Redundancy is expressed as a percentage ranging from 0% (full uniqueness) to 100% (full redundancy). \n", + "\t\n", + "- Step 4: Convert the probability of the outcome to a 0/1 target variable (y) by simulating from a uniform random variable and comparing with the probability. Where U is less than p we set a value of 1 for the target and 0 otherwise.\t \n", "\n", "\n", - "- **Synergy** represents how much the combined information of two features contributes to the model predictions. For example, given features X and Y as coordinates on a chess board, the colour of a square can only be predicted when considering X and Y in combination. Synergy is expressed as a percentage ranging from 0% (full autonomy) to 100% (full synergy).\n", + "This process provides a dataset with two features and a target binary variable which we can predict using a classifier. Further, the simulated dataset will have a determined amount of correlation and interaction between the two features $X_1$ and $X_2$.\n", "\n", - "In brief, redundancy represents the shared information between two features and synergy represents the degree to which one feature combines with another to generate a prediction. It is also important to recognize:\n", - "\n", - "- that any pair of features may have both redundancy and synergy\n", - "- that SHAP values are dependent upon the model, so under or over fitting will influence redundancy and synergy" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data simulation\n", - "\n", - "For the simulation studies we generate data as follows:" + "The function used to simulate data according to the above specifications is `sim_interaction()` and can be found in the [Appendix](#Data-simulation-code)." ] }, { @@ -272,8 +257,9 @@ "source": [ "$$ (X_1, X_2) \\sim N\\left[\\left(\\begin{array}{c} 0\\\\0 \\end{array}\\right), \\left(\\begin{array}{cc} 1 & \\rho\\\\ \\rho & 1 \\end{array}\\right)\\right]$$\n", " \n", + "$$lp = [\\beta_0 + \\beta_1 X_1 + \\beta_2 X_2 + \\beta_3 X_1 X_2] $$\n", " \n", - "$$p = \\cfrac{1}{1 + exp(-[\\beta_0 + \\beta_1 X_1 + \\beta_2 X_2 + \\beta_3 X_1 X_2])}$$\n", + "$$p = \\cfrac{1}{1 + exp(-lp)}$$\n", " \n", " \n", "$$U \\sim \\textrm{U}(0,1)$$\n", @@ -289,23 +275,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Importantly we use the correlation ($\\rho$) between features to induce redundancy, and the balance between an interaction ($\\beta_3$) and main effects ($\\beta_1, \\beta_2$) to induce synergy. For example, as the correlation gets higher, we expect higher redundancy, and as the interaction gets stronger and the main effects get weaker, we expect higher synergy.\n", + "# Redundancy, Synergy and SHAP\n", "\n", - "The function used to simulate data according to the above specifications is `sim_interaction()` and can be found in the [Appendix](#Data-simulation-code)." + "Redundancy and synergy are part of the key extensions FACET makes to using SHAP values to understand model predictions. \n", + "\n", + "The [SHAP approach](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions) has become the standard method for model inspection. SHAP values are used to explain the additive contribution of each feature to the prediction for a given observation. SHAP values are computed for every feature and observation.\n", + "\n", + "The FACET `LearnerInspector` computes SHAP values for each crossfit (i.e., a CV fold or bootstrap resample) using the best model identified by the `LearnerRanker`. The FACET `LearnerInspector` then provides advanced model inspection through new SHAP-based summary metrics for understanding feature redundancy and synergy.\n", + "\n", + "The definitions are as follows:\n", + "\n", + "- **Synergy** is the interaction of two or more real-world factors towards an outcome. In a predictive model, factors are represented by features. **FACET quantifies synergy as the degree to which the model combines information from two features to predict the target.**\n", + "In this context, synergy is expressed as a percentage ranging from 100% (full synergy) to 0% (full autonomy). For example, given features X and Y as coordinates on a chess board, the colour of a square can only be predicted when considering X and Y in combination.\n", + "\n", + "\n", + "\n", + "- **Redundancy** occurs when two or more factors stem from a common condition and, hence, can be substituted with each other when predicting or explaining outcomes. **FACET quantifies redundancy as the degree to which two features of a model provide duplicate information to predict the target.**\n", + "Like synergy, redundancy can be expressed as a percentage ranging from 100% (full redundancy) to 0% (full uniqueness). For example, temperature and pressure in a pressure cooker are redundant features for predicting cooking time since pressure will rise relative to the temperature, and vice versa. Therefore, knowing just one of either temperature or pressure will likely enable the same predictive accuracy. \n", + "\n", + "\n", + "In brief, redundancy represents the shared information between two features and synergy represents the degree to which one feature combines with another to generate a prediction. It is also important to recognize:\n", + "\n", + "- that any pair of features may have both redundancy and synergy\n", + "- that **SHAP values are dependent upon the model, they represent what the model catches about reality, not the reality**. As an example, under or over fitting will influence redundancy and synergy\n", + "- If two variables $X$ and $Y$ both contribute to predictions of a model, then correlation translates to redundancy (but not vice versa) and interaction translates to synergy (and vice versa).\n", + "\n", + "In our dataset, we build synergy and redundancy as folllows:\n", + "- We use the correlation ($\\rho$) between features to induce redundancy\n", + "- We balance between an interaction ($\\beta_3$) and main effects ($\\beta_1, \\beta_2$) to induce synergy. For example, as the correlation gets higher, we expect higher redundancy, and as the interaction gets stronger and the main effects get weaker, we expect higher synergy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# How redundancy and synergy change with feature correlation and interaction" + "# Understanding how redundancy and synergy change with feature correlation and interaction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "For this first simulation case study, we use the following parameters for data generation:\n", + "Now that we have a methodology to build a dataset with more or less correlation, main feature effects and combined (interactive) effects, we will evaluate how FACET's synergy and redundancy values will change depending on the dataset. We use the following parameters for data generation:\n", "\n", "- intercept ($\\beta_0$) = `[0]`\n", "- main effects ($\\beta_1, \\beta_2$) = `[0, 1, 2, 3]`\n", @@ -325,7 +336,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -346,9 +357,11 @@ "source": [ "# load simulation study data\n", "sns.set_style(\"darkgrid\")\n", + "\n", "sim1_data = pd.read_csv(\"sphinx/source/tutorial/classification_sim1.csv\").set_index(\n", " [\"main effects\", \"interaction\", \"correlation\"]\n", ")\n", + "\n", "long_sim1_data = sim1_data[[\"redundancy\", \"synergy\"]].stack().reset_index()\n", "long_sim1_data.rename(\n", " columns={\"level_3\": \"FACET metric\", 0: \"Redundany / Synergy\"}, inplace=True\n", @@ -378,12 +391,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are several interesting patterns we can observe from the plot:\n", + "Key take-aways from the plot above:\n", "\n", - "1. In general, the larger the interaction the higher the synergy.\n", - "2. The greater the individual contributions of the features the lower the synergy.\n", + "1. In general, the larger the interaction the higher the synergy will be computed by the model.\n", + "2. The greater the individual contributions of the features the lower the synergy will be computed by the model.\n", "3. As the correlation increases, redundancy increases and synergy reduces.\n", - "4. Redundancy increases with increasing individual contributions of the features." + "4. Redundancy increases with increasing individual contributions of the features\n", + "\n", + "\n", + "\n", + "Additional learnings:\n", + "- Removing a redundant feature is unlikely to significantly reduce predictive performance, whereas removing a synergistic feature could significantly reduce predictive performance.\n", + "- The example here uses linear correlation and interactions for simplicity. However, if the correlation or interaction between two features is non-linear this may not be identified through a typical exploratory data analysis.\n", + "- For both correlation and interaction, the extent to which they are reflected in the redundancy or synergy for two features depends upon the fitted model. For example, if there is an interaction but the model does not learn this during training, then synergy will correspondingly be minimal.\n", + "\n", ] }, { @@ -419,7 +440,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -428,7 +449,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAHsCAYAAADvm5FaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hT1f8H8Hdyk+5FaakUbJCyFURAkFGWAmVaLNJSpowvIgrIEFA2yBJBQJaI4E9BUNQiyJJRRhkqyJ4iBKFlFOweWef3R22kdNBCkts079fz8EiSc+/5nBvMySfn3HMUQggBIiIiIiIiIjuhlDsAIiIiIiIiouJgIktERERERER2hYksERERERER2RUmskRERERERGRXmMgSERERERGRXWEiS0RERERERHaFiSw5LKPRiNWrV+O1117Dq6++ig4dOuCjjz6CTqeTO7RH+uGHHzB48GAAwAcffIBDhw7lKXP69Gm0bt36kef67rvvsHbtWgDAN998g88++8yywRIRlXInTpxA79690blzZ3Tq1AkDBw7E5cuX5Q7LZgYPHowffvghz/M//PAD6tevj1dffRWvvvoqunTpgtatW+O9995DVlZWseooap8m1/lKqoMHD6JVq1bo1q0bMjMzLXruCRMm4MyZMwAK/i5iadZsjyW88MILuHHjxmMf/+B3ssWLF2PatGmWCq1UUskdAJFcpkyZgqSkJHz55Zfw9PREeno6Ro8ejQ8++AAfffSR3OEV2YcffvhExx87dgxVq1YFAPTo0cMSIREROQydTofBgwfjiy++wLPPPgsA2LRpEwYNGoTdu3dDkiSZI5RXgwYNsGLFCvPjrKws9OjRAz/++CMiIyNljMwx/Pzzz3j99dfx1ltvWfzchw4dQkREBIAn/y5SVNZsT0nw4HcyejQmsuSQbty4gc2bN+PgwYPw8PAAALi5uWHq1Kk4fvw4AGDcuHFITEzE33//jZYtW+LNN9/E1KlTceHCBSgUCoSEhGDkyJFQqVRYtGgRfvnlF6jVapQpUwazZs1CuXLlCnz+QRs2bMDevXuxfPlyAMCVK1fQr18/xMTE4Mcff8SGDRug1+uRlJSEQYMGISoqKtfxvXv3Rs+ePREaGop169bhyy+/hIeHB6pVq2Yuk5CQgEmTJuHevXu4e/cuKlSogE8++QTHjx/Hnj17EBsbCxcXF9y/fx///PMPJk2ahMuXL2PatGlITEyEQqFA//79ERYWhqNHj2LBggV4+umncfnyZRgMBkydOhX169fPc503btyI1atXQ6lUokyZMpgzZw6uX7+O6dOnY8uWLQCAo0ePmh8vXrwYJ06cwJ07d1C1alUcO3YMS5YswXPPPQcAGDFiBBo2bIioqCgsW7YMO3fuhMlkQoUKFTB58mQEBARY6F8IEVHRZGRkICUlBenp6ebnunTpAg8PDxiNRkyePBlly5bFu+++CyA7yd25cyf69OlT4GepTqfDvHnz8Ntvv8FoNKJWrVqYMGECPDw80Lp1a9SpUwcXL17EyJEjERAQgClTpkCv1yMoKAhxcXEYN24cNm/enG+9S5YsyRX/3r17sWLFCuh0Oty/fx9hYWEYMWJEoZ/1t2/fxrhx43Dnzh0EBgbi3r17Rb5eiYmJSE1Nhbe3NwDg9u3bmDZtGuLj46HX69GxY0e8+eabAFBgn7Z48WJzX/Xw4969e6Nu3bo4fvw44uPj0bhxY0yfPh1KpbLYfWTZsmXRunVrdO3aFYcPH0Z8fDxeffVVjBgxAkD+fdySJUue6LqnpaVh/Pjx0Gq1UCqVePbZZzFt2jQolcoiHf+gzz//HLt374azszNSUlLg5ub2WNdt7969+OSTT2AymczflbZt24Y7d+5g9OjRmDt3LubNm2f+LrJr1y58+umnMJlMcHd3x/jx41GnTh0sXrwYN2/exN27d3Hz5k0EBATgo48+yvO9SK/XY/bs2Th8+DAkSUKdOnUwfvx4rF+/Pld7xo4daz7mxo0b6Nu3L5o2bYozZ87AaDRi2LBh2LBhA/766y8899xzmD9/PpRKJZYvX47du3cjMzMTGRkZGDt2LNq0aYPx48cjPT0dCxcuxOXLl9GnTx98/fXXCA4OLvDf8++//47p06dDoVCgdu3aMJlM5tf27NmDZcuWQa/Xw8XFBWPHjsULL7yAxYsXQ6vV4tatW7h79y5q1KiBDz/8EIcPH871nQwA/vrrL/Tu3Rt3796Fn58f5s+fn+d6OTRB5IC2b98uwsPDCy0zduxY0bdvX/Pj9957T0yfPl2YTCaRlZUl+vfvL1asWCHi4uJEvXr1RFZWlhBCiFWrVolffvmlwOcflpKSIho0aCDu3LkjhBBi7ty5Yv78+SI1NVV0795d3L9/XwghxB9//CHq1q0rhBDi+++/F//73/+EEEL06tVLbNu2TZw7d040btzYfJ6JEyeKVq1aCSGEWLNmjVixYoUQQgiTySQGDhwoVq1aZW7n559/LoQQYtGiRWLq1KlCr9eLl19+WezYsUMIIcStW7dESEiIOH78uDhy5IioWbOmOHfunLldPXv2zNOu8+fPi0aNGom4uDghhBCrV68WEydOFEeOHBEdO3Y0l3vw8aJFi0S7du2EXq8XQgixcOFCMXXqVCGEEImJiaJhw4YiOTlZ/Pjjj2LEiBHmcuvXrxcDBw4s9P0kIrKWL774QtSpU0e0bt1ajB49Wnz33XciPT1dCCHEuXPnRNOmTc2fV1FRUWL//v2FfpYuXrxYzJ49W5hMJiGEEB9//LGYPHmyEEKIVq1aiU8//VQIIYRerxfNmzcXMTExQgghDh8+LKpXry6OHDlSYL0PMplMolevXuLq1atCiOzP+po1a4p79+4VGt9bb70lFixYIIQQ4tq1a6Ju3bri+++/z3Ndvv/+e1GvXj3RpUsX0a5dO9GoUSMREREhvvnmG3OZ3r17i927dwshhMjMzBS9e/cWP//8c6F9Wk5flePBx7169RLDhg0TRqNRpKSkiGbNmonDhw8/dh/ZqlUrMXv2bPP1qV27trh+/XqBfdyTXvcff/xR9O/fXwghhMFgEB988IG4du1akY9/WH59fHGu2927d0X9+vXF2bNnhRBC7NixQwwYMMB8bU6dOmU+ftu2beLPP/8UTZo0EdevXxdCCHHo0CHRtGlTkZKSIhYtWiRefvllkZKSIoQQYvDgwWLhwoV5Yl64cKF4++23hU6nE0ajUYwbN05MnDgxT3se9Pfff4tq1aqJXbt2CSGEmDRpkmjVqpVISUkRmZmZomnTpuLYsWPixo0bonfv3iIjI0MIIcSWLVtEp06dhBBCpKWlibZt24offvhBdOzYUWzatClPPQ/KysoSTZo0EYcOHRJCCLF582ZRrVo18ffff4urV6+KTp06mb/DXbp0STRt2lSkpaWJRYsWiebNm4u7d+8Ko9EoRo4caf439vD71bp1a/P7OmTIEPP/+5SNI7LkkJRKZa5fzQry4Cjj/v378c0330ChUMDJyQmRkZH48ssvMXDgQNSoUQNdu3ZF8+bN0bx5czRu3Bgmkynf5x/m4eGBNm3a4KeffkK/fv2wefNmrF27Fu7u7li+fDn27duHa9eu4cKFC7l+8X/Y4cOH0bRpU/j7+wMAIiIicPDgQQBA37598fvvv2P16tW4du0aLl++jOeff77Ac127dg1ZWVlo27YtACAgIABt27bFgQMH0KhRIwQGBqJmzZoAgFq1auHHH3/MN55mzZqhfPnyAIB+/foByB6BLUzdunWhUmV/NIWHh6Nbt24YN24ctmzZgtatW8PT0xN79+7F6dOnER4eDgAwmUzIyMgo9LxERNbyxhtv4PXXX8dvv/2G3377DStXrsTKlSuxceNG1KxZExUrVkRMTAyeeeYZ3LlzB82aNcOvv/5a4GdpTEwMUlJSzPcc6vV6lC1b1lxfgwYNAACXLl0CALRo0QIA8NJLL5mnJRZU74MUCgWWL1+OmJgYbNmyBVeuXIEQwvx5WlB8hw4dMo+GaTQaNGrUqMBrkzO12GQyYenSpdiyZQtCQ0MBAOnp6fjtt9+QlJSEhQsXmp+7cOECbt26VWCf9iitWrWCUqmEh4cHNBoNkpKScO7cucfuI19++WUA2X1h2bJlkZSUhN9++y3fPg7AE133+vXrY8GCBejduzeaNGmCvn37QqPRFOt9e1z5Xbfjx4+jatWqqFWrFgCgbdu25u8G+Tly5AheeuklPP300wCAxo0bw9fX13wvbcOGDc0z4WrVqoWkpKQ859i/fz/effddqNVqANkzz4YOHfrI+NVqtfm+56CgILzwwgvmusqVK4ekpCTUq1cPc+fOxebNm6HVanHy5EmkpaUByJ6Zt2DBAnTv3h1dunRBly5dCq3v0qVLUKlU5u92nTp1Mo92x8bG4s6dO7n+XSgUCly/fh0AEBoaCj8/PwBAt27dMHPmzFwjzDmaNm0KX19fAECNGjVw//79R14HR8JElhxSnTp18NdffyE1NdX8IQdkT3GaOHEiFi1aBCD7Qy2HyWSCQqHI9dhgMECpVOLrr7/G6dOncfjwYcycORMhISF477338n2+fv365vOXK1cOK1euRPfu3TFx4kQEBwcjODgYTz/9NG7duoWIiAh0794d9evXR2hoKPbu3Vtou4QQ5r8/eF/WRx99hFOnTiE8PByNGjWCwWDIVfZhRqMxV1tzzm0wGADAPOUFyP5gzu9ckiTlOkdmZiZu3ryZp7xer8913IPXvEKFCqhVqxZiYmLwww8/4P333weQfe0HDhxonmat0+ny7QyJiKzt2LFj+OOPPzBw4EC0atUKrVq1wsiRI9GpUyfExsYiNDQUPXv2xPfff49KlSqhe/fu5s/Ggj5LTSYT3n//fXOCmpaWlmtxpJzPSUmS8nz+PvjZX1C9OdLT09G1a1e88soraNCgAcLDw7Fr1y7zOQuK7+HP8ZwfHwujVCrx9ttv448//sC4ceOwfPlymEwmCCGwfv16uLq6AgDu378PZ2dnbNiwocA+7VH9SEFxP24f6ezsnOd8BfVxwcHBT3Tdn376afzyyy84evQojhw5gjfeeAPTpk3LtTDVo963gjzOdVOpVLniF0Lg4sWLqFGjRr51PPxdKeeY4nx/yO/71sOx5ketVuc6LicRftDZs2fx1ltvoV+/fmjatClefPFFTJ061fz61atX4ePjg/Pnz0On08HJyanQOh+OP+f/BZPJhMaNG+OTTz4xvxYfH49y5crhl19+yfXvz2Qy5Zk6/vD5gIKvlyPjqsXkkAICAtC5c2e8//77SE1NBQCkpqZiypQp8PHxyfVBm6NZs2b4+uuvIYSATqfDt99+iyZNmuDChQvo1KkTgoODMXjwYPTr1w+nT58u8PmXX34ZmzZtwqZNm7By5UoA2aOQALBkyRK8/vrrAIAzZ87A19cXb731Fpo1a2ZOYo1GY75tatq0KWJjY3Hr1i0AyDVKevDgQfTt2xdhYWEoW7YsDh06ZD6PJEnmDiZH5cqVoVKpsHPnTgDZCf6OHTvQpEmTIl/jRo0a4fDhw7hz5w4AYP369fjoo4/g6+uLuLg43Lt3D0II/Pzzz4Wep3v37li5cqX5l2og+73YuHGj+b1buHAh3nvvvSLHRkRkKb6+vli2bBl+//1383N3795Famqq+T7Mdu3a4fz589ixY4d5JklhmjVrhrVr10Kn08FkMmHixImYP39+nnLBwcFwcnLC/v37AQCnTp3CpUuXzF/mH1WvVqtFamoqRowYgdatW+Po0aPmOgsTEhKCDRs2AADi4uIeOdPmQZMnT0ZsbCx27doFDw8P1K1bF6tXrwYAJCcno0ePHti9e3ehfVqZMmVw9uxZCCGQmpr6yB95gcfvIwtSUB8HPNl1X7duHcaPH49mzZphzJgxaNasGc6dO1fk4wvzONft+eefx5UrV8yrcO/evRtjxowBkP/3h8aNG+PgwYP4+++/AcB8b3Fhs8AeFhISgm+++QZ6vR4mkwlr165F06ZNi3x8YX777Tc899xzeOONN9CwYUPs3r3b/F7fuHEDH374Ib744gtUrlwZ8+bNK/Rc1atXhxAC+/btA5B9bXJ+VG/cuDFiY2Nx5coVAMC+ffvQpUsX80rLu3fvRkpKCkwmE7799lu0atUKQP7XlArGEVlyWJMnT8bSpUsRGRkJSZKg0+nwyiuv4J133sm3/IQJEzBjxgx07twZer0eISEhePPNN+Hk5IT27dsjPDwcbm5ucHFxwYQJE1CjRo18ny/I66+/jqVLl+KVV14BkN3pbty4EaGhoVAoFGjYsCF8fX2h1WrzPb569eoYM2YM+vbtC3d3d9SpU8f82tChQzF37lwsXLgQarUa9erVM09vad68OWbPnp3rXGq1GkuXLsWMGTOwePFiGI1GDB06FC+99FKRv7DkxDNw4EAAgL+/P2bOnImAgABERkYiPDwc/v7+aNmyJU6fPl3geVq3bo2pU6di0KBBua7V7du3zb90ly9fPk8biIhs4ZlnnsGSJUuwYMEC3Lp1C87OzvD09MTMmTNRuXJlAICTkxPatWuHhIQE8zTBwrz11luYM2cOunbtCqPRiJo1a2LcuHF5yqlUKixevBiTJ0/G/PnzUalSJfj5+Zl/jH1UvdWrV0fLli3Rvn17ODk5oVq1aqhSpQq0Wm2hI1GTJ0/G+PHj0b59ezz11FMFjs7lJygoCIMGDcKsWbMQEhKCefPmYfr06ejcuTN0Oh06depkntJZUJ/WpUsXHDhwAG3btkVAQAAaNmz4yJGqx+0jH3W+h/s44Mmue1hYGH799Vd06NABrq6uKF++PHr37l3k44OCggqM+XGum5+fH+bNm4exY8fCaDTCw8MDCxYsAAC0adMGY8aMwZQpU8zlq1SpgsmTJ+Ptt9+G0WiEi4sLli9fDk9Pz0LredCQIUMwZ84chIWFwWAwoE6dOpg4cWKRjy9Mp06dsHPnTrRv3x4mkwmtWrVCUlISUlNTMWrUKAwYMADVqlXDpEmT0LlzZzRp0gQtW7bM91xqtRpLlizBlClTMH/+fNSsWdN8C0CVKlUwbdo0jBw50jyyvWzZMri7uwPIvq6DBg3CP//8gxdffNG8wFl+38moYArBMWoiIiIiq0lPT0evXr0wadIk8wwcS5kzZw4GDBgAPz8/86q6u3btgpeXl1XrpYLxulNhHl51mx4fR2SJiIiIrOTAgQMYNWoUevToYZWkpkKFCujXrx9UKhWEEJgxYwa8vLysXi/lj9e9dPnpp5+watWqfF/r3LmzeUSe5MERWSIiIiIiIrIrXOyJiIiIiIiI7AoTWSIiIiIiIrIrTGSJiIiIiIjIrtj1Yk8mkwlGY+m8xVeSFEVum3T9GgDAGFTJegHZSHHaXVo4YpsBx2y3I7YZsK92q9XSowtRodg3/1uWfbNdc8Q2A47ZbkdsM2Bf7S6ob7brxZ70eiMSE9PlDsMqfHzcitw277AOAICk6K3WDMkmitPu0sIR2ww4Zrsdsc2AfbXb37/oex1S/tg3Z2PfbN8csc2AY7bbEdsM2Fe7C+qbObWYiIiIiIiI7AoTWSIiIiIiIrIrTGSJiIiIiIjIrtj1Yk+UzdCgodwhEBER0QPYNxMRWRcT2VIgbcIUuUMgIiKiB7BvJiKyLk4tJiIiIiIiIrvCRLYU8HqjF7ze6CV3GERERPQv9s1ERNbFqcWlgOKf+3KHQERERA9g30xEZF0ckSUiIiIiIiK7wkSWiIiIiIiI7AoTWSIiIiIiIrIrvEe2FNCHtJA7BCIiInoA+2YiIutiIlsKpI8aK3cIRERE9AD2zURE1sWpxURERERERGRXmMiWAt6Rr8E78jW5wyAiIqJ/sW8mIrIuJrJ2TpIUMKWnwpiWgszMZEiSQu6QiIiIKDMz+w+RHZAkJQwKE+4kpcCgMEGSCk8RcspnCr1VytuiDmu32ZZteJyYStJ7/bh4j6wdkyQFrl//E5l//IHMrCz0C2mK6OhoBAVVgdEo5A6PiIiIiJ6QJCmRZTLAYDJCpZTgrFTBaDRZtPztlGS8s2g94hISEejng8XDIhHg6ZXvcdYuXxJiEkJACEAg+/u0UqnE7eRkvLP4gfLvRMLXzQ16w8Pnzz5GpZKQkJya65hF70SijKsbDAZjnphUKgl301IxLFf5CPi4uEGfU148WF6JpLQMDFu8IVd5L2dX6PV5zw8AarWE5GIcU5Ty4oGg1GoJKWmZuco/6r1+EgohhN1mPHq9EYmJ6XKHYRU+Pm4Ftk0IgT//vAxXVwldu4ZhjVYLAGgFQKPR4MCBWLi4eNkwWssprN2llSO2GXDMdjtimwH7are/v6fcIdg9R+2bH+Yd1gEAkBS91Zoh2YQ9/T9sKdZsc3ESTUskaIveiYCLpEZqWiZ0RiP0BiN0eiP0BgN0RiOqPF0Oby1ch7iERPN5Av188MnQ7th77CIMRhMMRiOMJhP0BiM6NauDMcu/z1N+1qCu+HLbYQghYDKZYBQCJpPAoM7N8MGqTXnKT3ujCxZ8uwtCCBhNJggBmISASZgwNioUU7/ckueYib07YuqazTD9m2gCAiYhMH3Aq5jx1dY85d/v2R5jV3wPU3ZWmh2bAD5+qxtmrduep/y4qFAMW7Q+z3VdNCwSs4tR/nGOsXZ5OWP6anx/qMTjj8wW1DdzRLaEkSQF0tKScPPmfUiSCu7u3sjIyMLp0ydx9OgRHD16GL/+ehj37t1DTEwMtP8msTm0Wi0MBr1M0RMRERE5DouMfr4TCU9nFySnZSAjS48MnS77v1k6VKv0lLksAMQlJOKdResx+3+vYfXPscjUZZfL0OmRodNjXM/2mPHVz7nKD1u8odDk5svxb+RKPHKOy9DpsWzLPvNzCgWgliS0b/JcvuUlpRKXbtyGUqmAUqH4979KOKvV+ZZ3d3GGi5MaklIBheK/YxQKBXw83PI9pqyXO+oGP/1vPNnHQAH4e3vkW/4pXy90eLE2kF3s3/IKlC/rnW/5Cn4+6NumMRT/nj+nngp+PvmWr+jng0HtQ6B46M4+BYCKBR5TBoM7NsfDCis/pNN/23nlVFXRv0z+5f3LYGiXlnnO/zjHFLW84t+oCipvNJmgUlh+ijET2RIkZ6pwWFgYtFotNBoN/u///g8TJ07E/v37AQCVKj2DNm1C0ahRYwQGVoRGo8GWB5JZjUaDxMREeHiUlasZREREDk/XJlTuEOgx5CSmd5JSoFQoij1auvDtCGRl6hGXkITk9Ewkp2cgOS0DSemZSEnPRFSbhpjwxabcieni9QUmmgUlmQoFcCXuLlyd1XBxUqOMhxvKO6nh5+2eb/mny5XBuIhQqFUSnFQS1JIEJ7UKapWEsp7uCHwoiQr080F5Xy9smzEMkqSESlJCUmYnIgaFqYDy3lg7bkCeNhRUvpyPJ+YPfj3fa1vQMWW9PDA+sn2Ry5fxcMfbr7Yqcnkfdzf0b9e0yOW93d3Q6+VGxWqDt7srolo1LFb5yJYvFr28myu6N29QvJgKOMZS5SWlMte0aEuxytRik8mEKVOm4OLFi3BycsKMGTOg0WjMr//0009YvXo1lEolwsPDERUVBb1ej/fffx83b96ETqfDkCFD8PLLLxdaT2mbvpSZmYyQkKa5Rlk1Gg3WrVuHCxeuoGHDlxAQ8JT5tYIS3/feew+vvx6FPn3ekKMZT4TTlxyHI7bbEdsM2Fe7ObX4yZW2vvlB9vRv2ZIcpd0FjZa6qNSIT0jCveRUJCSn4l5yGhKSU9G1+Qv4YFV0kaZderg6w8vNBfOGvI6oGZ/nqfuH6UMQe/JPuDo5wc1ZDVcnJ7g6qxEU6IuB874q8lRNg8KE3rO+KNbUTrnvR7WHmEpDG0pqTEVRUN9slUR2586d2LNnD2bPno0TJ05gxYoVWLZsmfn1Zs2aYcuWLXBzc0PHjh2xceNG7Nq1CxcuXMAHH3yAf/75B127dkVMTEyh9ZS2zjIlJQHBwZXzPP/XX1cLHGHNmYpsMOihUqmhUrmiT58e2LVrJ2bP/hj9+w+ydtgW5Sid5YMcsc2AY7bbEdsM2Fe7mcg+udLWNz/Inv4tW5I9t/tRU3+z9HrE30/GrftJqPy0P4Z/uqFIiam3uyuWvhuFnjNW5anzpw+H4u/4+/Byc4WXmws8XF2gkv4bzSxOommrRCLnOpkgoEThI9EPljeaTJCUSouXt0Ud1m6zLdvwODGVpPf6UWx6j+yxY8cQEhICAKhbty7OnDmT6/Xq1asjJSUFKpUKQggoFAqEhoaiXbt25jKSJFkjtBJNrXaCRqPJMyKrUqkLPMZoFAiIjATw34ISq1evxaBBfTFu3CgYjQYMGjTEuoETERFRLqVpsSd7JUl5V5r96M1w7Pn9Ao6cv4r4+0m4n5JmLl/QNN6n/ctget9XUdbLHX5eHvD1dIdaJRU4jdLdxRnPVaqQb0zOShUWD4vMk2gW9GXfaDQhwNMLX43vX6TEoLjlHzxOBaX5R4uillcpsqeMWrq8Leqwdptt2YbHiakkvdePyyqJbGpqKjw8PMyPJUmCwWCASpVdXdWqVREeHg5XV1e0adMGXl5euY4dNmwYRowY8ch6JEkBHx83yzdAJkK4Yt26dYiKijJPFd60aRMCAgLMN5znR1Jl/4L337Vww8aNG9GzZxQ++GAsnJwkDB/+6OtZEkiSslS9p0XhiG0GHLPdjthmwHHbTUSWV9AIqxACdxJTcPVWAq7dvoertxIQ3rIeJq/ZnOt+1DHLv8fE3h1x/PJ1vFTzGZT39Tb/eaqMV76JqZebK5rXrponluImpcDjJZolOZEgkpNVElkPDw+kpf33C5fJZDInsRcuXEBMTAx2794NNzc3jBkzBtu2bUP79u0RHx+PoUOHIioqCp07d35kPUajsNupLgVZuHARPv98FapWrQKlMnvV4qSkjEKP8f53/6qkh67F0qWrYDIBY8aMRnJyOt55p+Qns/Y8felxOWKbAcdstyO2GbCvdnNqMVHJld8I65zBr+G7Pcew6/h5pGfpzGV9Pd3Rt0OTfEdYgwP98cmQiHzPb83R0gePY6JJ9OSsksjWq1cPe/fuRYcOHXDixGPqlAsAACAASURBVAlUq1bN/JqnpydcXFzg7OwMSZLg6+uL5ORkJCQkoH///pg0aRIaN25sjbBKvKtX/8K3325A7dp10aJFy3+H+x//Fma1Wo0VK76ASiVh+vRJMBoNGDFitAUjJiIiIno8j7p/VQiBu0kpuHjjNi7duI2W9arnWfF37IofMP2NLpCUSjwTUBaVnvJDpYCy8HZ3LfYKqg8mpkW9f5BJKZF8rJLItmnTBrGxsYiMjIQQAjNnzsTmzZuRnp6OiIgIREREICoqCmq1GkFBQejatSvmzp2L5ORkLF26FEuXLgUArFy5Ei4uLtYIsUTasSP7Ppp27TpY7JwqlQpLlqyEUilh5sxpMBgMGD16nMXOT0RERFRcBW1dcyshGb+ev4qLN27h0o3bSEzLnpUmKRVo99KzBWwt44sRXfPudPG4U3+Lc/8gEcnHKomsUqnEtGnTcj0XHBxs/nuPHj3Qo0ePXK9PmDABEyZMsEY4dmP79q2oWbMWKlV6pljHZXXpWujrKpUKn366AiqVCnPnzkRgYHm89lpX6PU6qNVOcHf3fqKRXyIiIsrtUX2zo8sy6s0JJpCdkA7/dAPGRYVi3d6jqBTgh8a1glG9YgCqVQxAlUB/SE7SY4+wWnIFVSIqGaySyFLx3b9/D0eOHMLw4SOLfWxmEbbYkSQJCxcuRfXq1fDcczXN+9VqNBpER0cjKKgKk1kiIiILKUrf7Gj+SUnDb5e0+PXiNfQJfSnf0dXK5f2w7cNhcFbn3bFBUhbvHlaAU3+JSjMmsiXErl07YTKZEBrasfgHp/+7iIpb4auCKpVKDBw40JzEAoBWq0VYWBgOHIiFi4tXoccTERFRERWxby5NHr7nVRIKnLxyA79evIbfLl7DpZu3AWTvwdqrbaN8R1ddnZzy3U8V4AgrEeXGRLaE2L59KwICnsLzz79Q7GO9o7oBKNpedXq9Ltc+tUB2Mmsw6ItdLxEREeWvOH1zaZDfPa8zBryKVTtjcfbqTTyrqYCBoc3QsEYlVA0MgFotFXt0FeAIKxH9h4lsCZCZmYk9e3ahW7cIKJX5/wppKWq1EzQaTa5kVqPRQKXKO4WHiIiI6FESklJhVJowYsm3ue55nbBqE5YM7wEnqODh6pzrGI6uEtGTsm7WREUSG7sf6elpCA1tb/W63N29ER0dDY1GAyA7iV2zZg0UCiayREREVDT/pKQh+tAJDF+6Ht1mLEeGTp/vPa/uLs55ktgcRqMJKqGEs0IFlVAyiSWiYuGIbAmwbdtWuLm5o1mzFlavy2gUCAqqggMHYmEw6JGRkYGBAwegTBk/fPHFV1YfESYiIiL7kHPP652kFCgVChh0Ruw+fgF7Tl7A8cvXYRICQeV80a9NE/h7exRrRWEioifFRFZmJpMJO3duQ+vWr9hsz1yjUZgXdvLwANq374xJk97HwoUf4913x9gkBiIiIiq58r3ntf+r2H78LO4lpiKqdUO0fr4GKpf3g0KhgCQVf0VhIqInwURWZidP/oFbt+LRrt3jTyvOjOz5RDEMHjwUJ0+ewOzZM1C7dh288kq7JzofERGRo3vSvlluKbrMPPu8TvhiEz4b1QseKmcoFIpc5XnPKxHZGhNZme3YsRVKpRJt2jx+8pj1hJ2lQqHAxx8vwsWLF/DmmwOxc+deVK5c5YnOSURE5MietG+Wy6Ubt/FNzK/o275Jvve8OqlUeZLYHFxRmIhsiTdEymzbtq1o1KgxfH3LPvY5FPfuQXHv3hPF4ebmhjVr1kKSlOjbNwqpqSlPdD4iIiJHZom+2VaEEPjt0jWMXPEdBn3yFY5euAq1pESgn0+ucuZ7XomISgB+GslIq72G8+fPIjS04xOdx2tAb3gN6P3E8QQFafDZZ2tw+fIlDBv2FoTg6gxERESPw1J9s6VIkhIGhQmZQg+DwpT92GjCrj/OY+CCrzD6s424djsBgzs2x7cfDEZQ2bJYPCzSnMw+eM8rEVFJwE8jGe3Ykb1JemhoB5kj+U+LFq0wadJ0TJnyARYtmo/hw0fJHRIREVmAyWTClClTcPHiRTg5OWHGjBnmrdgAYPXq1di4cSN8fX0BAFOnTkWlSpUKPYbsQ34LN308pBtW/LQfMScvIaicL97r3g5t6tWEkyr7q+GD97yaIKCEgve8ElGJwkRWRtu3b0X16jXwzDOV5Q4llyFD3sbJk8cxc+Y01K5dB61bt5E7JCIiekK7du2CTqfDhg0bcOLECcyePRvLli0zv3727FnMmTMHzz33nPm5nTt3FnoM2YcskyHPwk2jlm3EtDe6oG29Z9G4ZmUolXnve82559XHxw2JielMYomoROHUYpkkJv6Dw4djn3hasTUoFArMn/8patZ8FoMHD8DVq3/JHRIRET2hY8eOISQkBABQt25dnDlzJtfrZ8+exWeffYYePXpgxYoVRTqG7IPBaMx34aagcr5o+mxwvkksEVFJxxFZmezatRNGo/GJtt2xJnd3d3z55Tq0bdsC8+fPwpw5c2E0GqFWO8Hd3RtGI++fJSKyJ6mpqfDw8DA/liQJBoMBqn+nknbs2BFRUVHw8PDA22+/jb179z7ymPxIkgI+Pm7Wa4iMJElZ5LZJquyxArmvxY27/+BOYjIC/XxyJbOBfj5wVqvg4/Ho+IrT7tLCEdsMOGa7HbHNQOloNxNZmWzfvhXlygWgXr0GT3yuzH4DLBBRXhpNJXz77Q9QKIxo0aI5tFotNBoNoqOjERRUhcksEZEd8fDwQFpamvmxyWQyJ6RCCPTt2xeenp4AgBYtWuDcuXOFHlMQo1EgMTHdCi2QX84U26Jw7vUGACBLpmthMBrx7f5jWLPzEOoEV8C8Id0wetlG8z2yi4dFQhLKIrWnOO0uLRyxzYBjttsR2wzYV7v9/T3zfZ6JrAyysrKwZ88udO0aDqUFlrHPCgu3QFT5q169KkJCmkKr1QIAtFotwsLCcOBALFxcvKxWLxERWVa9evWwd+9edOjQASdOnEC1atXMr6WmpqJTp07YunUr3NzccPToUYSHhyMzM7PAY6hw1uybH+XMtTh8/P1O/BWfgJDnqmJYWGuU9/XGV+P7w2gyQVIquXATEdk9JrIyiI09gNTUFItNK1bevAEAMFWoaJHzPUiv15mT2BxarRYGg97idRERkfW0adMGsbGxiIyMhBACM2fOxObNm5Geno6IiAi8++676NOnD5ycnNC4cWO0aNECJpMpzzFUNNbsmwuSkpGJlVsP4KcjJ+Hn5YkP+4Wh2XNVAPy3cJNKoQQEmMQSkd1jIiuDHTuyf/EOCWlpkfN5Dv0fACApeqtFzvcgtdoJGo0mVzKr0WigUqktXhcREVmPUqnEtGnTcj0XHBxs/ntYWBjCwsIeeQwVjTX7ZiD7/rYskwEGkxEqpRJnrtzE1K9+RmJqOro1q4/+7ZrCzcXJKnUTEZUETGRtTAiBHTu2oUWL1nB1dZU7nEdyd/dGdHQ0wsLCzPfIfvfdd1zwiYiISCb57Qs7o/+raFyrMl5t/DyqV3xK7hCJiKyO2+/Y2KlTJxAXdxPt25e8bXfyYzQKBAVVwYEDsfjzzytYsmQpPv54AXQ6g9yhEREROaT89oWd8MUmvPv6K0xiichhMJG1se3bt0KpVOKVV9rJHUqRGY0CLi5e8PLyx61bCdiw4Rt8/fWXcodFRETkkAraF9YkOFOKiBwHE1kb2759K158sRH8/PzkDuWxdO4chpdeaoLZs6cjKSnx0QcQERGRxRhNJtxNTEGgn0+u5wP9fCBZYCcEIiJ7wU88G/r77+s4e/Y0QkMtO604Y8g7yBjyjkXPWRCFQoEPP5yD+/fv4+OP59qkTiIiIntjjb5ZbzBixrqfMXfDTnw0ONyczObsC+us5NInROQ4+IlnQzt2ZK9cGBpqmW13cugstI1PUdWu/Tx69uyDzz9fjj593kCVKlVtWj8REVFJZ+m+OSNLh0n/9xN+vXgNgzs2h8avLPeFJSKHxhFZG9q2bSuqVq2G4GDLJn7Sn5ch/XnZoud8lHHjJsLFxRWTJ79v03qJiIjsgSX75pT0TIxeuRG/X9JizOttEdWqYfa+sEIJZ4UKKqFkEktEDoeJrI0kJSXi8OGDFp9WDAAeo4fDY/Rwi5+3MOXKlcOoUWPxyy87sGfPLzatm4iIqKSzVN98LzkV7yxdj4t/38aU3p3RqVEdC0RHRGT/mMjayO7dv8BgMKBduw5yh2Ixgwa9iWeeqYyJE8dDr9fLHQ4REVGpcjMhEUM//Qa37idh9oDX0KJONblDIiIqMZjI2siOHVvh5+eP+vUbyB2KxTg5OWHatFm4fPkS1qz5XO5wiIiISo0rcXfx9pJvkJ6pw4I3u6NBNY3cIRERlShMZG1Ap9Nh165f0LZtKCRJkjsci2rbNhQtWrTC3LmzcO/ePbnDISIiskuSpIRBYUKm0CM5KxMrtu6DpFRg0dBI1AwqL3d4REQlDlcttjJJUiAx8TY2b/4Jvr5+kCQFjMbSs2G5QqHA9Omz0apVE8yd+yHmzJkvd0hERER2RZKUuJ2SjHcWrUdcQiIC/Xwwc2AYyri6wcfdTe7wiIhKJI7IWpEkKXD9+p/o2LEDWrZsic6dO+L69T8hSQqL1pP+7hikvzvGoucsjho1aqJfvwH48ssvcO7cWdniICIiKimK0zdnmQzmJBYA4hIS8f7n0fDwcLFmiEREdo2JrBWlpSUhLCwMWq0WAKDVahEWFoa0tCSL1qNv0Qr6Fq0ses7iGjNmPLy8vDBx4jgIUXpGnImIiB5Hcfpmg8loTmJzxCUkwmjiljpERAVhImtFer3OnMTm0Gq1MBgsu8KvdPoUpNOnLHrO4vL1LYuxYz/AgQP7sG3bz7LGQkREJLdi9c0CCPTzyfVUoJ8PJCW/phERFYSfkFakVjtBo8m9yqBGo4FKpbZoPR4Tx8Fj4jiLnvNx9O07ANWr18CUKR8gKytL7nCIiIhkU9S+2WQSWL01FjMGvGpOZgP9fLB4WCSclVzKhIioIExkrcjd3RsbN240J7MajQbR0dFwd/eWOTLrUKlUmD59Nq5du4rPPlsmdzhEREQl3vqYX7E+5nfcupuEr8b3x86PRuCr8f0R4OkFo5FTi4mICsKf+qzIaBS4ffseFixYgJo1a8Hd3QPu7t6latXih7Vs2RrDho1A/frPIzHxNlxcXEt9m4mIiB7H6as38fn2g2hZpxqa1AyGQiigUigBASaxRESPwBFZKzt9+gxee+01GAwSXFy8Sn1CJ0kK9OnTC8OHD0O1alUREtLUKis1ExER2bOktAxM/XoLAsp4Yczr7aBQsJ8kIioOJrJWFh8fB5VKBX9/f7lDsYm0tCSEh4dbfaVmIiIie2UyCcxavw2JqemY0rszPFyd5Q6JiMjucGqxlcXF3UT58oFQWnHlwbT3J1vt3MVlq5WaiYiISrLC+uZv9/+Ow+f/wvCw1qhe8SkbRkVEVHowkbWyW7fiUb58oFXrMDRsZNXzF0fOSs0PJrPWWKmZiIioJCuobz6rjcNnWw+gee2q6Nr0BRtHRURUenBqsZXljMhak+rXo1D9etSqdRSVu7s3oqOjc63UvHr1aqhUrjJHRkREZDv59c3J6RmY+tVmlPPxxHvdeV8sEdGT4IisFQkhEB8fh7Zt21u1HveZUwEASdFbrVpPURiNAkFBVXDgQCwMBj0yMjLQv/8beOWVUAwfPkru8IiIiGzi4b5ZCIHZG7bjXkoaPh3aA56uLnKGR0Rk9zgia0WJif8gIyMDgYHWHZEtaYxGARcXL3h4lIW/f0X4+vrjk08+xu3bt+QOjYiISBbfHTiG2LNX8GbHFqgZVF7ucIiI7B4TWSuKj48HAAQGVpA5EnlNnjwdOl0WZs6cJncoRERENnf+ejxW/LwfzZ6tgm4h9eQOh4ioVGAia0Xx8TcBAE895Vgjsg+rXDkYgwYNwfr1a3Hy5B9yh0NERGQzKRmZmPLVZvh5eWBcRCjviyUishAmslYUFxcHAA43tTg/I0eOQdmyZTFx4ngIIeQOh4iIyGokSQkBAZMQSEhNxVNlvTG5V2d4uvG+WCIiS+FiT1YUF3cTCoUCAQHW3SMudfpsq57fEry8vDFu3ESMHj0cW7ZsQufOYXKHREREZHGSpMTtlGR8Uvkl3E1MQfKqaMx7sxuCyvrCaDTJHR4RUanBEVkrunUrHuXKBUCttu4eqsbadWCsXceqdVhCz559UKvWc5g6dSIyMzPlDoeIiMjiskwGvLNoPQ4o3XHB9ynEJSRi9PKNyDIZ5A6NiKhUYSJrRdl7yFp/ZUL1vr1Q79tr9XqelCRJmD59Fq5f12LFiiVyh0NERGRxBpMRcQmJaBz3FxrH/QUAiEtIhNHE0VgiIktiImtF8fFxKF/e+isWuy34CG4LPrJ6PZYQEtICoaEduR0PERGVSiqlhEA/Hww+fQCDTx8AAAT6+UBS8isXEZEl8VPViuLi4rjQUz6mTJkBnS4Ls2ZNlzsUIiIii3JWqjBn8GtwVmcvQxLo54PFwyLhrOSyJERElsRE1kpSU1ORnJxkkxFZe5OzHc8333yNU6dOyB0OERGRxdy8+w8+3vALKgf64/ngivhqfH8EeHpxoSciIgtjImslt27FA4BN7pG1Rznb8UyYMI7b8RARUamxft/vOP3XTSgBKKCASiiZxBIRWQETWSuJi7sJAAgM5Ihsfry8vDF27AQcOXIIW7ZskjscIiKiJ3Y/JQ0/Hz2Ndg1qQa3iVGIiImvip6yV5CSy5ctb/x7Z1HkLrV6HNfTq1RerV3+OqVMnok2bULi4cKN4IiKyX9/tPwa90YCoVg2RWs8++2YiInthlRFZk8mESZMmISIiAr1794ZWq831+k8//YSuXbsiPDwc69aty/XayZMn0bt3b2uEZVP/TS22fiJrrFIVxipVrV6PpXE7HiIiKi1S0jMRfegEWtapjqf9fe22byYishdWSWR37doFnU6HDRs2YNSoUZg9e3au1+fOnYvVq1fjm2++werVq5GUlAQAWLlyJSZMmICsrCxrhGVTcXE34evrC1dXV6vX5bRjG5x2bLN6PdaQsx3PwYP7kJJyDzdv3kBmZjIkSSF3aEREREX246E/kJ6lQ6+XGwGw776ZiMgeWCWRPXbsGEJCQgAAdevWxZkzZ3K9Xr16daSkpECn00EIAYUiO2kJCgrC4sWLrRGSzcXHx+Gpp2yz9Y7rssVwXWa/123u3HmYOHECWrduiWeeqYSQkKa4fv1PJrNERGQX0rN02Lj/OBrXrIwqgeUA2H/fTERU0lnlHtnU1FR4eHiYH0uSBIPBANW/Cx9UrVoV4eHhcHV1RZs2beDl5QUAaNeuHW7cuFHkeiRJAR8fN8sGbyG3b9+CRvP0Y8cnScoiHyupsn+PKKnX4lEMBm907hxqnoKu1WoRFhaGw4cPw8+vnMzRWV9x3uvSxBHb7YhtBhy33eQ4thw9haT0DPNoLBERWZ9VElkPDw+kpaWZH5tMJnMSe+HCBcTExGD37t1wc3PDmDFjsG3bNrRv377Y9RiNAomJ6RaL25Ju3LiB2rXrPnZ8Pj5uRT7W25C9rH9SCb0Wj5KRkZnnPmqtVovMzKwS+/5aUnHe69LEEdvtiG0G7Kvd/v6ecodAdkZnMGBDzO+oG/w0nqvEnQqIiGzFKlOL69Wrh/379wMATpw4gWrVqplf8/T0hIuLC5ydnSFJEnx9fZGcnGyNMGSTlZWFhIS7CAy0zdRie6dWO0Gj0eR6TqPRQKVSyxQRERFR0Wz//SwSklM5GktEZGNWGZFt06YNYmNjERkZCSEEZs6cic2bNyM9PR0RERGIiIhAVFQU1Go1goKC0LVrV2uEIRtbrlhcGri7eyM6OhphYWHQarXQaDRYu3Yt3N29YTQKucMjIiLKl8Fowjd7f0X1igFoUFXz6AOIiMhirJLIKpVKTJs2LddzwcHB5r/36NEDPXr0yPfYihUr4ttvv7VGWDYTHx8HwHaJbMqSz2xSj7UYjQJBQVVw4EAsTCYDbty4iVGjRqJPnwF4/fVIucMjIiLK196TFxF3Lwkz+rU0L1yZw977ZiKiks4qiayji4u7CQAIDLTNvTKmChVtUo81GY0CLi5e8PFxg1rtCUlSY9SoYahevQbq1Kkrd3hERES5mEwCa/ccRaWAsmhaq0re10tB30xEVJJZ5R5ZRxcfnz212Fb3yDpHfw/n6O9tUpctqNVqrFz5JcqW9UO/fj2RkJAgd0hERES5HDp3BVdvJaBn60ZQKvNuF1fa+mYiopKGiawVxMffhLu7Bzw9vWxSn8uaVXBZs8omddmKv78/Vq/+Gnfv3sH//tcPBoNB7pCIiIgAAEIIfL37CMr7eqN13Rr5limNfTMRUUnCRNYK4uLiuGKxBdStWw/z5i3EwYP7MXXqBLnDISIiAgAc//M6zv99C1GtGkIl8asUEZEceI+sFcTH30T58txLzhIiIqJw6tQJrFixFLVrP4/u3fNfJIyIiMhWvtp1BGW93NGuwbNyh0JE5LD4M6IVxMfHc0TWgqZM+RBNmjTD6NHDcerUCbnDISIiB3bmWhz+uPI3Ipo3gLOa4wFERHJhImthBoMBt2/fQvny5eUOpdTg4k9ERFRSrN1zFF5uLujc+Hm5QyEicmhMZC3s7t07MBqNNp1anLzqKySv+spm9cnB398fa9asRULCXQwa1Bd6vV7ukIiIyMFc+vs2Dp27gvBm9eDm7FRoWUfom4mI5MRE1sL+20PWdlOLRdmyEGXL2qw+uTz//AuYN28hYmMP4MsvP0dmZjJSUhKQmZkMScq79QEREZElSJISBoUJQiHw6fAeiGz14iOPcZS+mYhILry5w8Jy9pC15Yis8/q1AICsyJ42q1Mu3bv3QHJyIho2rI+QkKbQarXQaDSIjo5GUFAVGI1C7hCJiKgUkSQlbqck451F6xGXkIhAPx8sHhYJdxdnGI2mAo9zpL6ZiEgOHJG1sPj47BHZ8uVtNyLrsn4tXP7tMB1Bz55RGDBgALRaLQBAq9UiLCwMaWlJMkdGRESlTZbJYE5iASAuIRHvLFqPLFPh+5s7Wt9MRGRrTGQtLC4uDk5OTijL6URWYzDozUlsDq1WC4OB980SEZFlGUxGcxKbIy4hEUZTwaOxRERkfUxkLSx7D9lAKBS8Z9Na1GonaDSaXM9pNBqoVGqZIiIiotJKpZQQ6OeT67lAPx9ISn6FIiKSEz+FLSx7D1nb3R/riNzdvREdHW1OZjUaDX788Ue4u3vLHBkREZU2zkoV5g5+zZzM5twj66zkMiNERHLip7CFxcXdRP36DeQOo1QzGgWCgqrgwIFYpKWl4Pz58zh06CgqVqwid2hERCWWyWTClClTcPHiRTg5OWHGjBl5ZrcAwMSJE+Ht7Y3Ro0cDAMLCwuDp6QkAqFixImbNmmXTuOWm0xuwfNM+zBwYhgr+ZaCEAs5KVaELPRERkfUxkbUgIQTi4+NsumIxACSt22jT+koCo1HAxcULLi5eWLVqLGJi9qBlyzYoV66c3KEREZVIu3btgk6nw4YNG3DixAnMnj0by5Yty1Vm/fr1uHTpEl58MXt7maysLADAV1857n6op6/exMEzV/By3Zp4oUoQEhPTi5TEOmLfTERkS5xabEH37t2DTqez6R6yAAA3t+w/DmrChMnIysrEvHmONUpARFQcx44dQ0hICACgbt26OHPmTK7X//jjD5w8eRIRERHm5y5cuICMjAz0798fffr0wYkTJ2wac0kQc/IinFQqvFSzcvEOdPC+mYjI2pjIWlB8fBwA2+4hCwAuX6yEyxcrbVpnSRIcXBV9+ryBr75agz//vCx3OEREJVJqaio8PDzMjyVJgsGQvYXMnTt38Omnn2LSpEm5jnFxccGAAQOwatUqTJ06FaNHjzYf4whMJoF9py/jpZrPwM3ZqVjHOnrfTERkbZxabEH/7SFb3qb1Ov/0IwAgs/8gm9ZbkowaNQ7ffrse06dPxpdfrpM7HCKiEsfDwwNpaWnmxyaTCSpV9teA7du3459//sH//vc/3L17F5mZmahcuTI6deoEjUYDhUKBZ555Bj4+Prh7926h/ZwkKeDjUzpGIo9f0uJ+Sho6NK4NHx83SJKyyG2Ttm4CALiMHG7NEG2iOO0uLRyxzYBjttsR2wyUjnYzkbWguLjsEVmuWmx7/v7+eOedEZg1azqOHDmMl15qLHdIREQlSr169bB371506NABJ06cQLVq1cyv9enTB3369AEA/PDDD/jrr7/w2muvYd26dbh06RKmTJmC27dvIzU1Ff7+/oXWYzQKJCamW7UttrL50Ck4qVR4PqgiEhPT4ePjVuS2eRuy76NNKgXXojjtLi0csc2AY7bbEdsM2Fe7/f09832eU4stKD7+JiRJQrlyAXKH4pAGDx6Kp54qj6lTJ0AIIXc4REQlSps2beDk5ITIyEjMmjUL48ePx+bNm7Fhw4YCj+nWrRtSUlLQo0cPvPvuu5g5c6Z5FLe0M5kE9p+6jIY1KsHNpXjTiomIyPocozeykfj4eAQEPAVJkuQOxSG5ublh3LgJGDFiKLZs2YTOncPkDomIqMRQKpWYNm1arueCg4PzlHvttdfMf3dycsLHH39s9dhKorPaOCQkp6Jlnepyh0JERPngiKwFxcXFoXx5G69YTLlEREShZs1amD59MnQ6ndzhEBGRnYo5dRFOKglNa+VN9omISH5MZC0oPv6mLIlsUvRWJEVvtXm9JZEkSZg0aRquXbuK//u/L+QOh4iI7JDJJLDv1CU0rP7MY08rZt9MRGRdTGQtKC4uzvZ7yFIerVu3QUhIS8ybNxvJyUlyh0NERHbm3PU43E1KRYs61R5dmIiIZMFE1kJSUpKRlpZq8z1kAcB1ySK4Lllk83pLKoVCgcmTp+H+/ftYvPgTucMhIiI76PwdtQAAIABJREFUE3PqEtSShCZPMK2YfTMRkXUxkbWQ/7besf2IrNMv2+H0y3ab11uS1alTF926RWDFiiW4efOG3OEQEZGdyJlW/GL1SvBwdX7s87BvJiKyLiayFhIXdxMAuNhTCTJ+/EQIITBnzodyh0JERHbi/N/xuJOYgpbPc1oxEVFJxkTWQuLjs0dkmciWHE8/HYSBA9/Ehg3rcObMabnDISIiOxBz8iJUkhJNa1WROxQiIioEE1kLyUlkn3qqvMyR0IOGDx8Jb29vTJ8+Se5QiIiohBPi32nF1Z5sWjEREVkfE1kLiYuLg5+fP5ydZej4XFyy/1AePj5lMHLke9i7dzdiYvbIHQ4REZVgF/6+hduJKWhpidWK2TcTEVmVSu4ASgu59pAFgKT1P8hSr714441B+P33X+Hp6YKUlASo1U5wd/eG0SjkDo2IiEoQ87Ti5558WjH7ZiIi6+KIrIVwD9mSy83NBe+/Pw5vvjkYwcGVERLSFNev/wlJUsgdGhERlRBCCMScuoQGVTXwdOVIKhFRScdE1kJu3YqTbUTW7eM5cPt4jix124O0tCRERERAq9UCALRaLcLCwpCWliRzZEREVFJcvHEbt/5JRgtLTCsG+2YiImtjImsBGRkZuH//PgIDK8hSv/rAPqgP7JOlbnug1+vMSWwOrVYLnS5LpoiIiKikiTl5EZJSiWYWmFYMsG8mIrI2JrIWwBWLSza12gkajSbXcxqNBhcunMfevbtlioqIiEqKnGnF9asGwcvNVe5wiIioCJjIWkBOIivXiCwVzt3dG9HR0eZkVqPR4LvvNmLNmjWIiOiKESOGIikpUeYoiYhILpdu3kb8/SS0fL663KEQEVERcdViC2AiW7IZjQJBQVVw4EAsDAY9VCo13N29MX/+UlSooMGnn36CPXt2Yd68T9C2bXu5wyUiIhvbd+oSJKUCzZ61zLRiIiKyPo7IWkBcnLxTi0UZX4gyvrLUbS+MRgEXFy94eJSFi4vXv49d8MEHk7F9+x6UKeOLXr0iMGTIQNy/f0/ucImIyEaEEIg5eQn1qmjg7W65acXsm4mIrIuJrAX8P3t3Ht5Ulf4B/JvcpGmbtE1LV6AUChRR0VIRBUVERRABWQpFVFBwBZGfVAVBsSIUBAHZhEEEFBFQRBZHRUAUhnGZYcQBBtnXtjQtbWhu9yy/P0qjtU33m3vTfD/P40OT3OU9ZYaT955z3pORkYbAwCAYDAZZ7p+35mPkrflYlns3BTff3Bm7dv2Al19+Fdu2bcGdd3bFjh1bIQgqFBXlwWLJRlFRHrfrISJqgk6mm5B2xYy7b26casXl2DcTEUmLiWwj4B6yns/Hxwcvv/wqdu3ahxYtWmLlymU4evRX9OhxB/eeJSJqwr7/7dq04kaqVkxERO7BNbKNICMjTbY9ZAFAPzMFAJD/WopsMTQVN9xwI77+eg8uXTqFYcOGVdp7dv/+A/D1DZQ5SiIiagxl1YqPI75tKxj1/o16bfbNRETSYiLbCDIyMnDDDZ1ku7/m37/Idu+mSKPRoFmz0Cr3nrVaS2WKioiIGtvpjCykZZsx4u5bG/3a7JuJiKTFqcUNVFpaCpMpk3vINjGu9p7VaLQyRURERI2tfFrxXTe2lzsUIiKqIyayDZSZeRkOh4Nb7zQxVe09u2bNGhQWlsgcGRERNYY/phVHw2ho3GnFREQkPU4tbqDyrXdY7Klp+evesyUlJXjmmWdw+fJlbNv2NUJCmskdIhER1ZMgqHG1qBAznxwEvc4HgqCGzWaXOywiIqoDjsg20OXLZYlsVJR8I7L2qOawy1hsqqn6896zISFRmDjxJZw7dxYjRyZCFEW5wyMionoQBDUyLXl4av46jJ69Bi8s3YRMSx4EoXG/ErFvJiKSFhPZBkpPTwMAREXJt0bWsnwVLMtXyXZ/b3HnnXdh5cq1+O23Qxg9eiSKi4vlDomIiOqo2G7FhMUbkZ5tBgCkZ5sxYfFGFNutjXof9s1ERNJiIttA6enp8PPzg9EYLHco5AYPPPAgFi5civ37v8ezz46F1dq4X3yIiEhaVrvNmcSWS882w2bn1GIiIk/CRLaBMjLSERXVHCqVSrYY9K9Nhv61ybLd39uMGPEIZs6cg7//fTteemkiHA6H3CEREVEtadQCmocaK7zXPNQIQd24X4nYNxMRSYvFnhooIyNd9orFmiOHZb2/N3r66XHIycnBggVzERRkRErKTFkfZhARUe3o1Bq881wiXlq+GenZZjQPNWLJCyOgU2sateAT+2YiImkxkW2gjIx03H57d7nDIBlMnjwNZnMuli9fgpCQEEycmCx3SEREVAObzY7vDv6O1x7rh3bNwyGo1Y2exBIRkfQ4tbgB7Ha7c2oxeR+VSoXU1HkYMmQYZs16E9988yWKivJgsWSjqCgPgsARWiIiJdpz8BjWffMTdCoNNA5uvUNE5Ik4ItsAWVlZsFqtTGS9mFqtxpIlK9CiRRSaNw9Hjx534Pz584iJicHWrVvRqlU72GxcQ0tEpBRFJaU4b8pBj07t5Q6FiIgagIlsA5TvISv3Gllb23ay3t/babVaJCe/hJ49e+D8+fMAgPPnz2PQoEHYv/8AfH0DZY6QiIjKncnIht3hQFzLCEnvw76ZiEhaTGQbID29PJGVd0RWnL9Y1vsTYLNZnUlsufPnz8NqLZUpIiIiqsqJtEwAQPvm4ZLeh30zEZG0JFkja7fbMX36dCQlJeGxxx6r9AV/+/btGDx4MIYOHYpPPvmkVucoUXp6GgAgMpJTi72dVuuDmJiYCu/FxMSgsLBQpoiIiKgqJ9NMCPT3RUQwZ8sQEXkySRLZ3bt3o6SkBJs2bUJycjLmzJlT4fO5c+dizZo12LBhA9asWYOrV6/WeI4SZWSkQ6PRICwsTNY4DMkvwJD8gqwxeDu9Pghbt251JrMxMTFYu3Ytxox5Aq+9NpkJLRGRQpxMy0T7FhGSb5nGvpmISFqSTC0+ePAgevToAQCIj4/HkSNHKnzeoUMHWCwWaDQaOBwOqFSqGs9RovKKxepG3kS9roTTp2S9PwE2mwOtWrXD/v0HYLWWQqPRQhB0uPHGm7Fy5XLs3bsHS5f+DZ073yJ3qEREXstqs+FMRjaG9kiQ/F7sm4mIpCVJIiuKIgwGg/O1IAiwWq3QaMpu1759ewwdOhR+fn7o3bs3AgMDazynKoKggtHoL0UTaiUr6zKio1tKEoMgqGt9XUFTlkjL+btoLHVptxIFBPhVeL18+XtITByCp556Ev363YcpU17F1KnToNVqncd4epvryxvb7Y1tBry33aQ85zKvoNRmQ1wLaQs9ERGR9CRJZA0GA/Lz852v7Xa7MyH9/fff8f3332PPnj3w9/fHyy+/jK+//rrac1yx2RwwmwukaEKtXLhwEZ063SxJDEajf62vG2Qt2//uqoy/i8ZSl3Z7iltu6Y69e/+JqVNfwaxZM7Fjx5dYtmwlOnS4DkDTbHNteGO7vbHNgGe1OywsQO4QSEInLpUVeoprKW2hJyIikp4kc2ITEhKwb98+AMChQ4cQFxfn/CwgIAC+vr7Q6XQQBAEhISHIy8ur9hwlcjgczqnFRDUJCjJi2bKVWL36Y6SlXcR99/XAtm2bUVSUh7S0SygqyoMgSLtei4jI251IM8FPp0WLZsFyh0JERA0kyYhs7969ceDAAYwYMQIOhwOpqanYsWMHCgoKkJSUhKSkJIwcORJarRatWrXC4MGDodFoKp2jZFevmlFYWCj71jsAYL2xk9whUC317z8QXbvejvffX4o2bVqhR487cP78ecTExGDr1q1o1aodbDaH3GESETVJp9JMaNc8HGq19A8O2TcTEUlL5XA4PPZbc2mpTbbpav/731HcfXc3rFr1IQYOHNzo1/ekqXiNyVvaXVSU50xiy8XExODTTz/DuXNpiI/vjODgkArnCIIK+flXUVpaAq3WB3p9kEcnvd7yd/1n3thmwLPazanFDSdn31wdm92OB19bgn5dO+GFQffU6xqe9L/lxuSN7fbGNgPe2W5vbDPgWe121TdLMiLrDTIyuIcs1V9paUmlvZLPnz+PwsICJCWVPRhp3boNEhJuQXx8Anr2vBsBAb4YPHgwR3CJiOrhUnYuCktKEdeC62OJiJoCefeN8WDp6ekAoIipxQHPPYmA556UOwyqA63Wx7nnbLmYmBjExLTBZ59tw7Rpb+D662/ETz/9iOnTp+LKlcvOJBYoS3oHDRqE/PyrcoRPRORxTqaZAADt3VSxmH0zEZG0OCJbTxkZ6VCpVIiIiJQ7FKgz0uUOgepIrw/C1q1bMWjQoAojrIGBIejZsxd69uzlPDYz8zJUqtIqR3Dz8y3w9Q10d/hERB7n5KVM+GgExESE1HxwI2DfTEQkLY7I1lNGRjrCwyMq7AdKVFs2mwOtWrXD/v0HcO7cOezff8DlNOGIiEgEBgZVOYJ77NgxDBzYF3v2fAsPXu5ORCS5E2kmxEaFQSMIcodCRESNgIlsPaWnpyEqKkruMMiD2WwO+PoGonnzlvD1Dax2rWv5CG55MhsTE4MvvvgCZrMFFy9ewMMPJ+Lee3tg27YtsNls7moCEZFHcDgcOJlmQnuujyUiajKYyNZT2R6yLeQOg7zEn0dwz5w5i/37DyAmpj369x+Mn38+hEWL3kNRUSGeeupx3HFHF6xf/xFKSkogCCoUFeXBYsnmXrVE5LUu5+bBUliEODetjyUiIukxka2njIwMRRR6AgBrl66wdukqdxgksfIRXIOhWYURXB8fHzz88KPYv/8XfPDBOgQEBOLFF5/H00+PxvHjR9Cjxx1o2zYWPXrcgQsXTjGZJSKvczItEwDcOiLLvpmISFos9lQPoiji6lWzYkZk819LkTsEUgBBEDBgwEPo338gvv/+O4SEBODhh0dUqnS8f/8BFogiIq9y4pIJglqF2Kgwt92TfTMRkbQ4IlsPly9nAADXyJIiqVQq9Op1L2JjY6usdHzu3Bk89lgSFi9eiJ9++hFFRUXOzzkVmYiaopNpmYiJaAadls/viYiaCv6LXg/p6WkAgObNlTEiG/jEowCAvDUfyxwJKUn5XrV/TmbLikWpcPr0Kezc+TWAsqnJN90Uj2HDknD33Xdi+PDhFbYEclVNmYjIU5xIM6Frh9ZuvSf7ZiIiaXFEth4yru0NFxWljDWyqtwcqHJz5A6DFKaqSsdbt27FDTfE45//PIj//e8MPvxwA5566jmoVCrExcU6k1jgj6nIZnO2nM0gImqQK3kiciz5bq9YzL6ZiEhaHJGtB6UlskRV+XOlY6u1FBqNFnp9kHN0NTQ0FA888CAeeOBBAEBeXlaVU5EvXjyPJ5+8H92798Add9yJ7t3vREREJICyqcj5+VdRWloCrdanwvWJiJTgZJoJANCeFYuJiJoUjsjWQ3p6GoKDg+Hn5yd3KETVclXpuCo+Pjrn6G25mJgY+Pvr0aZNLLZs+QzPPDMGnTrFoXv3W/Dee4tw8uTROldFLl+Hm5Z2qVbrcLlul6iy7GzOlKitE+UVi5tzD1kioqaEI7L1wD1kqSkqn4o8aNCgSmtk16//DFarFUeO/BcHDvwD//znfnTufBOSkpIqTUVev349duz4GmFh4QgPj0BYWBjCwsIRFhYOg8EfFy6cqvIeVSXZgqCq0/FE3mLChAkICQlBYmIievbsCbWaz6VdOXHJhJahwfD39ZE7FCIiakRMZOtBSXvIAkBpj55yh0BNQE1TkTUaDeLjExAfn4Dx41+AxZJd5VRku92Ot9+eVeU9tm3bhhdeeKFS8rt27Vq8++4SaDQaaDQaaLVaaDQaPPnkGDzyyMg6bSHE6c7kDTZs2IDTp09j8+bNWL58Obp164bExERER0fLHZrinEzLxPUx7t9lgH0zEZG0mMjWkSCoMHPmDERFNUdRUZ4iviQXJE+W9f7UdJRPRf7za1dcVUVu3ToWFy9mITs7C1lZJmRlmWAylf3ZokXLKpNfHx8fHD16GFar9U//lWLMmNFVHn/27Gm8+OIkxMVdh7i469ChQwfExV2H1q1jcOHC6TqP4NY1+WWyTEoQHh6O6OhoHD16FCdOnMCsWbPQsWNHTJw4Ue7QFCOvoBCXc/PwUPd4t9+bfTMRkbSYyNaBIKhw/vwpTJgwgdMcyeu5mopcntS1aNESLVq0rHBOUVFelclvdHQM/vnPg5Xu4ep4QdBArw/A3r17sHHjeudnW7duxcSJEyuN4H711de4fDkHzZo1Q3BwSIX17XWdvlyf6c7liW9aWs612Bs/UZY6uW5ITLVtN9XexIkTcfLkSQwcOBDz5s1DRERZIaMhQ4Ywkf2TPwo9cX0sEVFTo3I4HB77raK01AazucBt9ysqykOPHndU+lJd3TTH+jIa/WvdtqARQwAAVzduadQY5FCXdjcVntzm8kSlqqnIro5v7KTRbM7F8ePHceLE77j77jtwyy23VLrO999/j7vvvtv52s/PDyEhZUntu+8uwNixYyv9/3rDho345JNNUKvV1/5TQaVSY9iwIUhKGl7p+O3bd+DYsZPw99fD39/f+afRGIScnEwMHixtolzf5Lo2iakSY6rP8bURFhbQoPPd5cCBA7jjjjsqvV9cXAydTidDRH9wd99cnY3f/wvLv/wB294cB6Pev8HXY9/sPbyxzYB3ttsb2wx4Vrtd9c0cka2D0tKSKqc5Wq2lMkV0TVGRvPcnr1WXqcjln5evw7XbrVCrqx+lq2ndLgAYjcG47bbbcdttt7scwQ0Li8Dq1R8jJ+cKcnNzkJOT4/zZ319f5f+vS0tLsGrVCtjt9gr/DRjwQJXH5+bmYMSIoZXasGXLFrz44ouVRomXLl2KcePGQxAE55pgjUaLd96Zi6effrrS8WvWrMH8+e9Co9FAEAQIguBcU/z000/i0UcfqXTO559vwfff/wM6nQ5+fn7Q6Xyh0+kQEREOf38tEhMTnUnm5s2fw2ZTwWy+CqvVBrvdBput7L/rrmvrTEj/fP0dO77Er78eqfLvrnPnG6s855tvdiItzQSt1gc+Ptprf/rAYNDDbDZh8ODBzpi++GIrmjePQWmprcK1HQ4HNBoBly5dqPUDgqZmxYoV+Nvf/uZ8rdVqERkZieeeew4tW7as8hy73Y6UlBQcP34cPj4+mDlzZqVK5QDw+uuvIygoCC+99FKtz1GqE2mZiDAGNEoSW2fsm4mIJMVEtg5crQnUaLQyRkXkWcqT3/IngbVJfmubLLua7hwZ2RL9+1ddadxV8tumTVtcuGCq9fGRkc3x5Ze7UFCQj4KCAuefsbFtq0x8IyOj0L37nSgtLYXNZrv2pxVBQUFVHq/T+eLMmVPONcQ2m83551NPjanyHFG04KWXKk8z3bJlC0aNqphcJyYOxcKFCzFkyJBKx3///fdVXj8n5wpGj364yt+rq3MyMy/jvvvurjKmvyb8gwcPchmTqwcEUsyQUaKWLVsiISEBt9xyCw4dOoS9e/ciPj4e06ZNw4cffljlObt370ZJSQk2bdqEQ4cOYc6cOVi+fHmFYzZu3IgTJ07g1ltvrfU5Snbykon7xxIRNVFMZOtArw/Cp59+iuHDh1e5JpCI5FWbEdy/qmmtb22PDwuLQkhIZKXjXSW+ERGRWLJkRa2Pj45uhR9++KnKNrg6p1Wr1vjtt99RVFSEoqIiFBcXoaioGG3bRleZZHbo0AHr1396bcT3j5Hf8PBIl8n7nj37q4wpMjKiynNCQ8Pw0UcbUVpagpKSEpSWlqKkpARt21ad8LdpE4tp096odP02bWKVOUPGTdLT0zF79mwAQGxsLHbs2IFhw4Zh27ZtLs85ePAgevToAQCIj4/HkSMVR9N//fVX/Pbbb0hKSsKZM2dqdY6SFRSX4GJ2Du7tfJ3coRARkQSYyNaBzebAuXOXsHDhQtxww43w8/NnEkukMA2Z7lyb5LeuxzdWolyfewQFNYPBUPkcV4lvQEAQevfuW+l4QVDVKXmv7pyoqFbo27fyFjGuYmrWLBQTJybX+nhvmSFTWlqK/fv3o3PnzvjPf/4Dq9WKixcvorCw0OU5oijCYDA4XwuCAKvVCo1GA5PJhKVLl2Lp0qX4+uuva3WOK4KggtEow1Tevzh7MhsOB9C5Q6tGi0cQ1LW+lqAp29tXCb+LhqpLu5sKb2wz4J3t9sY2A02j3Uxk6+js2XOYMiUZR46cQnBwoCKS2JIqvngSUe3VJ/mt7fFSrAtu6Dl1TZYbGlNt2u2OhL8pmTNnDubOnYvU1FTExcUhNTUVhw4dwquvvuryHIPBgPz8fOdru93uTEi/+eYb5Obm4umnn0ZWVhaKiooQGxtb7Tmu2GwORRQQ+c/xCwCA5sagRounLsVR/HrdDwAoVMDvoqE8qShMY/HGNgPe2W5vbDPgWe1msadGIooiAFR4Qi23wvEvyB0CEVVDynXB9TmnvolpfWOqTbulHhlvatavX4+lS5dWeC86uvJI958lJCRg79696NevHw4dOoS4uDjnZ6NGjcKoUaMAlK0/PnPmDIYMGYKdO3e6PEfpTqaZEGzwR2igPP01+2YiImkxka0jUbRArVZX2IeSiMjT1CcxlZqUI+NNzenTp5GXl4fAwNoXturduzcOHDiAESNGwOFwIDU1FTt27EBBQQGSkpJqfY6nOJmWifYtwqFSqeQOhYiIJMBEto5E0QKDIUBRHWPQoH4AgKtbv5I5EiIicofTp0/jtttuQ3BwMNTqsrWY//jHP6o9R61WY8aMGRXea9u2baXj/lwluqpzPEGJ1Yqzl6/gtutiZYuBfTMRkbSYyNaRKIoICKh6njYREZE77N27V+4QFO3s5WzY7HbEtQiXOxQiIpIIE9k6+msFRyIiInc7efIk3njjDVgsFgwYMADt27dHr1695A5LMU5cKtsDOq4l95AlImqq1K4+KC0txYIFC1BcXAygbHP7d955B1ar1W3BKVHZ1GImskREJJ+ZM2di9uzZMBqNSExMxJIlS+QOSVFOpGXC4KtDVEiQ3KEQEZFEXCays2fPRlFRkXMtaHx8PIqKijBnzhy3BadEoihCr+fUYiIikldMTAxUKhVCQkKg1+vlDkdRTl7KRDsWeiIiatJcTi0+evQoNm3a5HxtNBoxbdo0DBs2zC2BKZUoWhAerqypSsUDB8sdAhERuVFQUBA2btyIwsJC/P3vf69T9eKmzmqz43RGNgZ1v1nWONg3ExFJy2Uiq9PpKr2nUqm8ftsZJa6RLRrzlNwhEBGRG6WmpmLFihUIDg7GkSNHMGvWLLlDUowLpisosVrRvoW8D53ZNxMRSctlIhsSEoLDhw+jU6dOzvcOHz7MRFa0KK9qcUFB2Z/+/vLGQUREbmEwGPDEE08461gUFBTAaDTKHJUynEi7VuhJ7orF7JuJiCTlMpGdMmUKxo0bh6ioKERHRyM9PR1paWlYtGiRO+NTFIfDcW1EVlmJbNDIRADcq46IyFukpKRg3759CA8Ph8PhgEqlwsaNG+UOSxFOpZmg02oQHR4iaxzsm4mIpOUykY2MjMTmzZtx8OBBmEwm9OnTB/Hx8V5dOKG4uBhWq1VxU4uJiMi7/Pe//8Xu3buhVrus2ei1TqRlom3zMAj83RARNWkuE9mtW7dWeJ2ZmYlLly4hOjpa8qCUShRFAGAiS0REsoqJiUFxcbHXL/f5K7vdgZNpJtx/y/Vyh0JERBJzmciePn26wuuCggK89957GDVqFBITEyUPTIksljwAgF7PRJaIiOSTkZGBXr16ISYmBgA4tfia9BwzCopLECdzoSciIpKey0Q2OTm50nvFxcV47LHHvDaR/WNEVllrZImIyLvMmTMHWq1W7jAU58SlTABAe7kLPRGRR7HZrMjNzYLVWiJ3KG6TmamCw+GQO4wKNBofBAeHQRBcpqgVj6/LxXU6nVd3nPn5ZYms0qoWF414RO4QiIjIjSZMmIDbb78dw4YNQ1xcnNzhKMbJNBM0ghqtI5vJHQr7ZiIPkpubBV9ff+j1kV5TD0gQ1LDZ7HKH4eRwOJCfn4fc3CyEhkbV6pw6JbJZWVkoLCysV3BNgShaAChvjWwxO0siIq+ybds27N+/H0uXLkVubi4GDhyIfv36Qa/Xyx2arE6mmdAmMhQ+mjp9vZEE+2Yiz2G1lnhVEqtEKpUKen0gRNFc63Nc/ks/adKkCn+ZxcXFOHbsGKZMmdKwKD2YUqcWq65cAQA4msn/BJqIiKSnVqtx1113AQA2b96MdevW4fPPP8fgwYORlJQkc3TycDgcOJGWiTtuaCt3KADYNxN5Giax8qvr34HLRHbEiBEVXvv6+iI2NlZxo5HupNSqxYFjHwPAveqIiLzF3LlzsWfPHnTt2hVPPfUUbrrpJtjtdgwZMsRrE9msqxZczS9UTKEn9s1EVFsZGekYPfphxMV1cL53yy234oknngIA7NnzLWbPnoGNG79AaGiY85h9+77HZ59tgMPhQHFxMUaOfAy9et2Hr77agVWrVqB58xbOY9u2bYeBA4dg4cK5AID//e8IOna8ASqVCiNHjkL37nc2uB3btm3Bgw8OhOYvs2LeeONVvPbajEZfouoyke3atWuF16Io4osvvsCGDRvw1Vfe+Y+yxaLMqcVERORdWrdujS1btlSYSqxWq7F06VIZo5LXyTQTAKC9QhJZIqK6aN26DZYuXVnlZzt2bMXQoUnYtm0Lxo59BgBw+PBv+PTTTzB37rvw9/fH1atmPPPME2jdOhYA0Lt3Xzz33IRK1yq/R2LiACxYsBQ6na7R2rBu3Rr07ftgpUT2zTdnN9o9/qzGRSSnTp3Cxx9/jK+//hp9+vTBnDlzJAnEE5SvkeX2O0REJIfi4mJs3LgRo0aNgslkwquvvgofHx9MnjwZYWFhaNmypdwhyubEpUyoVEDbqFC5QyEiajTp6WnIy8ssMy85AAAgAElEQVTDY489gTFjHsHo0WOh0WiwY8dWDBv2MPz9/QEAQUFGrFz5IQICAnDs2NEG3TMpaRBuvPEmXLp0EQkJXZCfL+LYsaNo1SoGr7/+FjIzL2Pu3FSUlBTDx0eHV16Zin/96yfk5FxBSspUDBv2MJYvXwKtVouBAwdj1aoVWL9+M0ymTLz99kyUlpbC19cXKSmpCA4OrnecLhPZnTt3Yv369SgtLcWQIUNw9uxZzJgxo943agpEUYS/v3+lpwxERETuMHPmTPj7+8NutyMlJQWdOnVC+/btkZKSgmXLlskdnmwEQY2eCXHofdv10PpqIKiVVY2TiKgm586dxfPPP+18/cYbMxEWFo4vv9yGBx8cCIPBgBtvvAk//PAd7r33fmRnZ1WYOgwAgYGBzp937foGR48edr7u3/8h9O37YK1iuXw5A4sWrUBoaCgeeOAerFy5Fi+++AqGD38IFosFy5YtQmJiErp1uwP//vcvWLFiKd54YybWrv0AKSmpOHr0MEpKSvD++x8CAFatWgEAWLbsXTz66OO4/fbu2LNnF06ePI6uXW+v9+/MZUY2efJkjB49Go8//jiCg4Px7bff1vsmTYUoihyNJSIi2aSnp+ODDz5AcXExDh48iMWLF0Or1WL16tVyhyYbQVAj05KHaR9sQ3q2Gc1DjVjywghEBAQymSUij1HV1GKbzYZvv/0aUVHNceDAflgsV/H55xm49977ERERBZMpE+3b/7EF23//ewghIWUF5lxNLa6NwMAgREZGAgD8/PzQpk3ZdGW93oCSkmKcOXMK69atwfr1ZYlqVYN8rVrFVHrvwoXzuPHGmwAA997bu16x/ZnLRPbbb7/Fli1b8MgjjyAuLg65ubkNvpmny8+3KHJ9bNHjY+UOgYiI3KC8ouN//vMfdOrUyVk4o7i4WM6wZFVst2LC4o1Izy7bsiE924wJizdi3atjoIFatrjYNxNRQ/344wFcd931mDnzbed7I0YMwalTJ/HggwOwYsVSJCR0gZ+fH3Jzc5CaOqPCsfVVU/XgVq1a4+GHH0WnTjfj/Plz+PXXg9fOU8PhcAAA1OrK14iJaYNjx47i1ltvw7fffo28vKtITBxR6bjacpnIhoeH49lnn8Wzzz6LH3/8EZ9++inuuece9OnTB5MnT673DT2ZKIqK23oHAIoHDZU7BCIicgN/f39s2rQJO3fuRP/+/WG32/H5558jKqp2m8c3RVa7zZnElkvPNsNmt0Ojki+RZd9MRA21Y8cXGDBgUIX3Bgx4CJ9//ikmT56GgQMH48UXx0Oj0aC4uAjPPjse7dq1x4kTv1eaWmwwGDBnzoJGiWv8+ImYP38OSkpKUFxchIkTXwIA3HxzPF566QWMGfO0y/PmzUvFhx9+AF9fX0yf/laD4lA5ytPmWsjJycH27dvx+OOPN+imjaW01AazucBt93vooQcAANu2fS35vYxG/1q3TZ12CQBgb+H5RT7q0u6mwhvbDHhnu72xzYBntTssTHkPK/8sJycHH3zwAZo3b46RI0fip59+wkcffYQZM2YgLCys5gu4gbv7ZqvKjsdmr66QzDYPNZaNyDoaN5Fl3+w9vLHNgHe222j0x++/H0NkZOWpsE2ZICizlsDly+cr/V246pvrVLUoJCREMUmsHERRVORT74DxZU89uFcdEVHTFhISgpdfftn5ulu3bujWrZuMEclPp9Zg3rOJeHnF5gprZHVqjaxf0tg3ExFJi+V360AULTAY2ssdBhEREV1js9nxz8OnMO3RfmjfIhyCWi17EktERNJzOedm8+bNKCoqcmcsildWtVjZ086IiIi8zcHj5/HuZ7uhU2mgcShzuhwRETUul4ns8ePHMWDAAKSkpODYsWPujEmx8vNFRVYtJiIi7/D8889j9erVOHPmjNyhKEqm2YIIY2DNBxIRUZPhcmrxtGnT8Morr2DPnj1YuHAh8vLyMHToUPTv3x9+fn7ujFERrFYrCgoKmMgSEZFsFi9ejIMHD2Lz5s04c+YMYmJicPfdd+PWW2+tch8/b2Ey56Fzu2i5wyAiIjeqttfTarXo27cv+vbtC5PJhI8++gh33303fv75Z3fFpxj5+SIAKHL7ncJ6bnZMRESeRa1W49Zbb8Wtt94KALh48SL27t2LDRs2YPHixTJHJw+xsBj5RSUID1JW/8y+mYhIWjU+vi0uLsauXbuwdetW5OfnV6iW6E1EsSyRDQhQVkcJACV9HpA7BCIikkF0dDRGjRqFUaNGyR2KbEzmPABARLCyphazbyYiKZw/fw7z5qVi6dKV9b7GTz/9E999twtTp77RiJG5n8tE9ueff8bWrVvx888/495778Urr7yCuLi4Wl3UbrcjJSUFx48fh4+PD2bOnImYmLL9gLKysjBp0iTnsceOHUNycjKGDh2KV199FRcvXoTBYMD06dPRunXrhrWuEZUnskqcWiycOgkAsLVjRWUiIvIuJrMFABCusDWy7JuJiKTlMpFdsmQJkpKS8Oabb8LHx6dOF929ezdKSkqwadMmHDp0CHPmzMHy5csBAGFhYVi3bh0A4Ndff8XChQsxfPhwbNiwAf7+/vj0009x5swZvPXWW/jggw8a0LTGJYplHaUSE1nDSxMBcK86IiJvkZ2djdDQULnDUITM3LIR2XCjsmZMsW8m8ky7zAXYeTW/Ua/ZJ0iP3kZ/l59/9dUO/P3v22G325GYmIRPP90AtVqNm26Kx3PPTUB2djZmzHgNDocDISHNnOclJg7A+vWbodPpsHz5EsTEtEZkZBTWr/8IWq0GGRnpuOee3hg9eizOnTuL2bNnwNfXD35+vggMDAIAfP75Jvzww15YrVYYDAbMmjUPu3Z9gx9/PIDi4iKkpV3CI4+MRr9+A3D06BEsWvQOHA4HwsLCMXXqGxgz5hFs2LAFgiDgvfcW47rrrsc999zXqL8/V1xWLf74448RHBwMrVYLAPj999+xb9++Wl304MGD6NGjBwAgPj4eR44cqXSMw+HAW2+9hZSUFAiCgFOnTuGuu+4CAMTGxuL06dN1boyU/hiRVVZHSURE3mfChAkYP3489u7dC7vdu7eaMV21QFCr0CxQL3coRET1FhAQgLffXoA1a97HokXLsXz5B8jONuFf//oJGzd+jPvu64MlS/6Gu+66u8ZrZWZmYObMuVixYg0++eQjAMCqVcvx5JPPYNGi93DjjTcBKJtFe/XqVbz77nt4771VsFqtOHbsKICy+kBz576LOXMW4OOP1wIA5s6dhalT38D773+ILl26Ii3tEm66KR6//PIjbDYbfv75n+jRo6ckv5+quByR3bBhA7Zt24b4+HjnKOSyZcuQkZGBpKSkai8qihW3qREEAVartUJFxe+++w7t27dHbGwsAKBjx47Yu3cv7rvvPvz222/IzMyEzWaDIAgu7yMIKhirebrRmOz2EgBAZGSoW+4pCOpa30fQlD2PcNfvQkp1aXdT4Y1tBryz3d7YZsB72y2lDRs24PTp09i8eTOWL1+Obt26ITExEdHR3le5NzPXgrCgAAhql8/miYhqrbfRv9rRU6m0ahWDS5cuwmzOxUsvvQAAKCgoQFpaGs6ePYM+ffoBADp1uhlffLG50vkOh8P5c2xsO2g0Gmg0Guh0vgCAs2fPoGPHG69dIx4XLpyHWq2GVqtFSso0+Pn5wWQywWq1AgDatStbUhoeHoGSkrI8KDc3B61btwEADBkyDAAwYMBgbN68EXa7A126dHUOgrqDy0R2y5Yt+Pjjj6HT6QAA1113HVavXo1Ro0bVmMgaDAbk5/8xJG+32yttC7B9+/YKxSmGDh2K06dPY9SoUUhISMANN9xQbRILADabA2ZzQbXHNJbMzGwAgMOhccs9jUb/Wt8nyFr2NP6qm34XUqpLu5sKb2wz4J3t9sY2A57V7rAwz5l1Ex4ejujoaBw9ehQnTpzArFmz0LFjR0ycOFHu0NzKZM5T3PpYIqK6UqnUiIpqgfDwCLz77nvQaDT46qsdaN8+DhcunMPRo/9F+/ZxOHbsf85zfHx8cOVKNqKimuPUqRPOJFOlqnz9Vq1a48iR/+L227vj99/LRl1PnTqJffu+x/vvf4iioiKMHfvon+KpfJHQ0FBcvHgB0dGt8PHHaxEdHYOePXth0aJ38OWX2/DUU8818m+lei4TWV9fX2cSW06v10Ovr3nqTkJCAvbu3Yt+/frh0KFDVRaJOnr0KBISEpyvDx8+jFtuuQVTp07F4cOHceHChbq0Q3Ll2+8EBLCzJCIieU2cOBEnT57EwIEDMW/ePERERAAAhgwZ4oWJrAU3xDSXOwwiogYLDg5GUtIjeP75p2Gz2RAV1Rz33NMbTz75HN5441Xs3v0tmjdv4Tx+5MhRePnliYiMbF7jzirJyVPwxhuvYsOGdTAajdDpfNGyZTT8/Pwwduxj8PHRolmzUGRnZ7m8xssvT8Xs2TOgVqvRrFkzDB8+EgBw//19sXfvHsTGtm2cX0QtuUxktVotcnJyEBIS4nwvJycHNputxov27t0bBw4cwIgRI+BwOJCamoodO3agoKAASUlJyMnJgV6vr5Dpx8TEYNGiRVi9ejUCAgIwa9asBjatcSm5anHBi965JRIRkbcaPnw47rjjjkrvb9iwQYZo5GOz25F11YKIYOWNpLNvJqLa6tdvgPPnPn36OacR/9m8eYsqvde//0Po3/+hSu8nJHRx/rx9+04AZaOpy5a973xfENSw2exYvHhFtbHpdDps3rwDANCx4w14771VlY6x2WwYMGBQtdeRgstEdty4cRg7diwGDRqE6OhoZGRkYPPmzbXaR1atVmPGjBkV3mvb9o8MPSQkBNu2bavweUhICNauXVvH8N1HFMVr88x1NR/sZqU9e8kdAhERuVFISAhSUlJQXFzsfG/27NmK7KOklGspgNVmV+TUYvbNROQNZs1KwdWrZsyaNc/t93aZyHbp0gWLFy/Gtm3b8P3336NFixZYunQpWrRo4eqUJk0ULTAYDFXOF5ebcPi/AABbp5tkjoSIiNxhypQpePTRRxEZGSl3KLLKNCtz6x2AfTMReYdp01Jku7fLRBYAoqOj8fzzz7srFkWzWCyK3XrH8PoUANyrjojIW4SGhmLYsGFyhyE7k7lsj/cIBY7Ism8mIpJWtYks/eGvWwoRERHJpUWLFli5ciU6duzonCl05513yhyV+5lyr43IKnCNLBERSYuJbC2VJbLsKImISH6lpaU4e/Yszp4963zPGxPZTLMF/jofGHy9a20wERHVIpEVRRH79u1zboQLAIMGub8qldzy8y3ceoeIiBRh9uzZFV6bTCaZIpFXpjkP4cYARdavICIiadWYyI4bNw7h4eGIiooCUPXmuN5AFEVERXlnoSsiIlKWxYsX45NPPkFpaSmKiorQunVr/P3vf5c7LLfLMlsUWeiJiIikV2Mi63A48M4777gjFkVT8hrZ/KlvyB0CERG50b59+7Bv3z6kpqbiiSeewJtvvil3SLLIzM1DXMsIucOoEvtmIiJp1ZjIdujQAb/99hs6duzofM/Hx0fSoJSorGqxMhNZa9fb5A6BiIjcyGg0wsfHB/n5+YiJiUFhYaHcIbldcWkpzPmFiqxYDLBvJvJU3/z7KL7+5XCjXvOBrp3Qt8sNLj+/cOE8UlPfhEajgSAIiIiIRIcOHTF06HDk5eXh//5vHJ5//v+wfv1H0Go1yMhIxz339Mbo0WORmXkZc+emoqSkGD4+OrzyylTY7XZMnvwiAgOD0K3bHejc+RYsWDAX/v7+CA4Oho+PDjfddDMuXLiA8eMnwmaz4YknRmLVqnUelefVmMj+8ssv+O6775yvVSoV9uzZI2lQSuNwOCCKFgQEKHP6kuaXnwGw0yQi8haRkZHYvHkz/Pz8MH/+fIiiKHdIbpdlLmtzmEKnFrNvJqLa+te/fkaHDtdhwoRJ+O23XxEUZMTbb8/E0KHDsWvXN7j//r4AgMzMDKxduwGlpaUYNKgvRo8ei2XLFiExMQndut2Bf//7F6xYsRRPPz0OOTlX8MEHH0Or1WLMmEfw2mszEBvbFn/72zJkZ2ehd+++ePzxkXj22efx888/IiGhi0clsUAtEtnt27e7Iw5FKywshN1uh16vzM5Sn1o2pYx71REReYcZM2YgIyMDffv2xRdffIGFCxfKHZLbZZrLtt6JUGgiy76ZyDP17XJDtaOnUujf/yGsX/8hkpMnQK834JlnxsPfX4+zZ89g165vMGfOApw5cwqxse2g0Wig0Wig0/kCAM6cOYV169Zg/foPAQAaTVl6FxXVHFqtFgCQnZ2N2Ni2AICbb+6MPXu+hV6vR3x8An755Ud89dV2PP74U25tc2OoMZHds2ePs6CEw+GA2WzGjh073BGbYpQ/6Vbq1GIiIvIOW7durfReQEAAjhw5gnbt2skQkXwyr+0hGxGszKnFRES19Y9//ICbb+6MMWOexq5d32D9+g8xcOAgfPjhBwgLC4fRaAQAVFVzt1Wr1nj44UfRqdPNOH/+HH799eC1Y9XOY8LDI3D27Bm0aROLo0f/mDY9YMBgrF//Ia5eNaNdu/bSNlICNSayy5Ytw+uvv46NGzfitttuw4EDB9wRl6KIogUAE1kiIpLX6dOnAQCHDh2Cn58fOnfujMOHD8NqtXrd1ngmc1nfHBrEvpmIPNt1112PGTNehyAIUKvVmDBhEmJj22Lhwrl4/fW3qj13/PiJmD9/DkpKSlBcXISJE1+qdExy8mTMnj0Dfn7+0Go1CAsLBwDccMONSEu7iMGDh0nSLqnVmMgGBwejc+fO2LhxI4YMGYItW7a4Iy5Fyc8vH5FV5vQlIiLyDsnJyQCAsWPHYuXKlc73x4wZI1dIsjGZLQgJ0MNHU+NXGSIiRWvRoiX+9rc1Fd4rKipCZGRz3Hpr2Tr7hIQuSEjo4vx8+/adznMXLFha6ZorV651/vy//x3F228vRHBwMFaufM855dhut8PX1w+9e/dp7Ca5RY3/+mu1WvzrX/+C1WrF/v37kZWV5Y64FMVi4YgsEREpR05ODvLy8hAYGIjc3FyYzWa5Q3K7THOeYtfHEhE1xOHDv2HevFQ8/fQ4qNXqmk+oQUhICCZNGg8/P38YDAZMm5aC9PQ0TJ6cjIceGgK93jNznBoT2TfffBNnzpzBc889h0WLFuGFF15wR1yKUj61WKlVi8W35sgdAhERudGzzz6LoUOHwmAwQBRFpKamyh2S25lyLWgTFSp3GC6xbyai+urU6WZ89NGmRrter173oVev+yq8FxISgrVrP2m0e8ihxkQ2IiICZ86cwX/+8x+MHz8ebdq0cUdcivJHsSdlJrK2TjfJHQIREblRnz590KdPH1y5cgVGoxGCIMgdkls5HA6YzHm4raNyv5OwbyYiklaNieyCBQtw+fJlnD59GlqtFitXrsSCBQvcEZtiKL1qsfaHvQCA0p69ZI6EiIjc4cCBA1i7di2Ki4ud73300UcyRuReeQVFKCq1IsKo3IrF7JuJPIvD4YCqqrLA5DYOh6NOx9eYyB48eBDr16/HY489hsGDB2PDhg31Ds5TKT2R9V84DwBwlZ0lEZFXmD17NqZOnYrIyEi5Q5GFcw/ZYGXOlALYNxN5Eo3GB/n5edDrA5nMysThcCA/Pw8ajU+tz6kxkbXZbCguLoZKpYLNZmuUBceepnyNrKcuhCYioqYlKioK3bt3lzsM2Zhyy/rlsCDlJrJE5DmCg8OQm5sFUfSewnkqlarOI6BS02h8EBwcVvvjazpg9OjRGDJkCHJycjBs2DA8/vjjDYnPI1ksFvj7670yiSciIuVp1qwZpk+fjuuvv945epCUlCRzVO5jco7IKndqMRF5DkHQIDQ0Su4w3Mpo9IfZXCB3GA1SYyL7wAMPoHv37jh//jyio6MRHBzsjrgUJT9fVGzFYiIi8j4tW7YEAGRnZ8sciTwyzRb4aAQY9f5yh0JERDKpMZH97rvvsGXLlgoFJd5//31Jg1IaUbQodn0sERF5nyFDhtT5HLvdjpSUFBw/fhw+Pj6YOXMmYmJinJ/v3LkTK1euhEqlQlJSEoYNGwYAGDRokPNhbsuWLTF79uzGaUQDmMx5CDMGQK3mWjYiIm9VYyL79ttvY8aMGQgKCnJHPIokiqJit94BAPGdRXKHQEREbvTiiy9CpVLBbrfj0qVLiImJqbEY4+7du1FSUoJNmzbh0KFDmDNnDpYvXw6grB7G/Pnz8fnnn8Pf3x/9+vXDvffeC71eDwBYt26d5G2qi8xcC8IVvj6WfTMRkbRqTGTbt2+P2267zR2xKFZZIqvcEVlbu/Zyh0BERG60adMm5895eXmYPn16jeccPHgQPXr0AADEx8fjyJEjzs8EQcBXX30FjUaDK1euAAD0ej1+//13FBYWYsyYMbBarZg0aRLi4+MbuTV1ZzJbcEv7VnKHUS32zURE0qoxkb333nuRlJSE2NhY53tKmFbkThaLxbkeSYl8dn4NACjp84DMkRARkbsFBATgwoULNR7314eygiDAarVCoyn7KqDRaPDtt99ixowZ6NmzJzQaDXx9fTF27FgMGzYM586dw1NPPYVvvvnGeY4crDYbruSJCDcqe0SWfTMRkbRq7InWrVuHJ5980quLHYmiRdFb7/gtXwKAnSURkbdISkpybp2Qk5ODbt261XiOwWBAfn6+87Xdbq+UkN5///247777MGXKFGzduhUDBgxATEwMVCoV2rRpA6PRiKysLERFua7uKQgqGI3SFWFKv2KG3eFAm+ahkt6nKoKgrvU9hfeXAQBsSUOlDMkt6tLupsIb2wx4Z7u9sc1A02h3jYlsaGgo+vXr545YFKusajFL/BMRkTIsWLDA+bNOp0NoaGiN5yQkJGDv3r3o168fDh06hLi4OOdnoiji2WefxerVq+Hj4wM/Pz+o1Wps3rwZJ06cQEpKCjIzMyGKIsLCqt/jz2ZzSLqlw6kLJgCAQadz+9YRddmuIshqBwBc9fDtLYCmsU1HXXljmwHvbLc3thnwrHaHhVU9oFpjIls+rejPe9VNmjSpcaNTOKWvkSUiIu+wdOlSl589//zz1Z7bu3dvHDhwACNGjIDD4UBqaip27NiBgoICJCUlYcCAAXjkkUeg0WjQoUMHDBw4EDabDa+++ioefvhhqFQqpKamyjqtGCgr9AQA4UY+YCYi8mY19ka9evVyRxyKZbVaUVRUxESWiIhkVz7yunv3brRs2RIJCQk4fPgwMjIyajxXrVZjxowZFd5r27at8+ekpCQkJSVV+FwQBMyfP78RIm88JnMeACh+jSwREUmrxkR28ODB7ohDsUSx7MkvE1kiIpLbiBEjAAC7du1CSkoKAGDgwIF44oknZIzKvTJz8xDg5wt/nY/coRARkYzknR/kASyW8kRWuU9+LctWyh0CERG5UW5uLi5cuIBWrVrhzJkzEEVR7pDcxmS2ICJYuX1yOfbNRETSYiJbg/IvB0qu2mxvodytgYiIqPFNnToVkyZNgslkQmhoKObNmyd3SG5Tlsgqf30s+2YiImkxka2BJ0wt1m39HABQPMjzS/wTEVHNunTpgjVr1iAtLQ3R0dHQ6/Vyh+Q2meY83NSmhdxh1Ih9MxGRtJjI1qB8RFavV+6IrO/aDwCwsyQi8hY7d+7E8uXLYbPZ0LdvX6hUKowbN07usCRXUFQCsbDYIwo9sW8mIpKWWu4AlK48kVXyiCwREXmXNWvW4NNPP4XRaMS4ceOwe/duuUNyC2fFYg+YWkxERNJiIluD/HwmskREpCxqtRo+Pj5QqVRQqVTw8/OTOyS3yDSXLfeJ4B6yRERej4lsDSyWsqe/Sq5aTERE3qVLly5ITk5GZmYmpk+fjk6dOskdkltkcg9ZIiK6hmtka8CpxUREpDSTJk3Cvn370LFjR8TGxuKee+6ROyS3yDJboFap0CyQfTIRkbdjIlsDURTh4+MDnU4ndygu5X2wTu4QiIjIDaxWK7777jsEBgbirrvuwl133YWsrCz83//9H9599125w5NcZm4eQoMM0AjKn1DGvpmISFpMZGsgihbFj8Y6mjWTOwQiInKDl156CYIgICsrC6dOnULLli0xbdo0jBo1Su7Q3CLTbPGY9bHsm4mIpMVEtgaiKCp+faxu43oAQPGIR2SOhIiIpHThwgVs2bIFJSUlGDp0KLRaLT766CO0bdtW7tDcwmTOw3XRUXKHUSvsm4mIpKX8uTkyE0URer2yR2R9N66H77UOk4iImq7yGUI+Pj6w2+1YvXq11ySxdrsDWWYRER5S6Il9MxGRtJjI1sATphYTEZH3adasGYxGo9xhuE2uWIBSmw0R3EOWiIjAqcU1EkULgoND5A6DiIgIp06dQnJyMhwOh/PncvPnz5cxMumZnFvvMJElIiImsjUSRRHR0TFyh0FERFShMvGIESNkjMT9MnO5hywREf2BiWwNyoo9cWoxERHJr2vXrnKHIBvTVQsAICKYiSwRETGRrZEnJLJXP9ksdwhERESSMuVa4OejRYCfr9yh1Ar7ZiIiaTGRrYbD4fCMYk/+/nJHQEREJKlMcx7CjAFQqVRyh1I77JuJiCTFqsXVyM/Ph8PhgF6v7GlMvqvfh+/q9+UOg4iISDImswURHlToiX0zEZG0mMhWIz9fBAAEBCg7kdVt/wK67V/IHQYREZFkTOY8hHvQ+lj2zURE0mIiWw1RLCssofipxURERE1YcakVOZYCjxqRJSIiaTGRrYYolo3IGgye8wSYiIioqcm6VrGYW+8QEVE5JrLV+COR5YgsERGRXEzma1vvcESWiIiuYSJbDYuFU4uJiIjkZsrNAwCPWiNLRETS4vY71ShfI6v0Yk9Xt34ldwhERESSybw2IhsWpOz++M/YNxMRSUuSRNZutyMlJQXHjx+Hj48PZs6ciZiYGLRniXkAACAASURBVABAVlYWJk2a5Dz22LFjSE5ORmJiIqZMmYK0tDSo1Wq89dZbaNu2rRTh1RrXyBIREcnPZLYg2OAPnZbP34mIqIwkU4t3796NkpISbNq0CcnJyZgzZ47zs7CwMKxbtw7r1q3DpEmTcP3112P48OH44YcfYLVasXHjRowfPx7vvvuuFKHVSXkiq9cre2qx37LF8Fu2WO4wiIiIJGEy53lcoSf2zURE0pIkkT148CB69OgBAIiPj8eRI0cqHeNwOPDWW28hJSUFgiCgTZs2sNlssNvtEEURGo38T11F0QKVSgW9Xi93KNXy2fUNfHZ9I3cYREREksjMzUNEsGcVemLfTEQkLUmyRVEUKxRIEgQBVqu1QnL63XffoX379oiNjQUA+Pv7Iy0tDQ888AByc3OxYsUKKUKrk/x8EXq9ASqVSu5QiIiIvJLD4YDJbMGtHVrLHQoRESmIJImswWBAfn6+87Xdbq80wrp9+3aMGjXK+Xrt2rW48847kZycjIyMDIwePRo7duyATqdzeR9BUMFo9G/8BlxTXFyIwMAASe/hiiCoa31fQVM2sC5HnI2tLu1uKryxzYB3ttsb2wx4b7upcYiFxSgsKUU4t94hIqI/kSSRTUhIwN69e9GvXz8cOnQIcXFxlY45evQoEhISnK8DAwOh1WoBAEFBQbBarbDZbNXex2ZzwGwuaNzg/yQnxwy93iDpPVwxGv1rfd8gqx0AcFWGOBtbXdrdVHhjmwHvbLc3thnwrHaHhXnWOkxvkGku23onwsPWyBIRkbQkSWR79+6NAwcOYMSIEXA4HEhNTcWOHTtQUFCApKQk5OTkQK/XV5iy+/jjj2Pq1KkYOXIkSktL8eKLL8LfX94n+KJo8Yw9ZH195Y6AiIhIEpm5ZVvveNoaWfbNRETSkiSRVavVmDFjRoX3/ryVTkhICLZt21bhc71ej0WLFkkRTr2VrfVV/hPgqxu3yB0CERGRJEzXRmQ9rWox+2YiImlJUrW4qRBFUfFb7xARETVlJrMFGkGNYIOydxAgIiL3YiJbjb9WX1Yq//lvw3/+23KHQURE1Ogyr+0hq1Z71g4C7JuJiKTFRLYaopjnEYmsdv8P0O7/Qe4wiIiIGp0p14LwIM+aVgywbyYikhoT2WqIooiAAA8rLkFERNSEmMx5CPe0Qk9ERCQ5JrIulJSUoKSkxCNGZImIiJoiq82O7DwREdxDloiI/oKJrAuiWFbun4ksERGRPHIsImx2B8KDPW9qMRERSUuS7XeaAlEUAcAjtt9xBIfIHQIREVGjK99D1hPXyLJvJiKSFhNZF/5IZJU/Ipu35mO5QyAiImp0JnNZIhvhgWtk2TcTEUmLU4tdsFjKpxZ73lNgIiKipiDTnAcACDeyLyYiooqYyLqQn+85a2T1M1Ogn5kicxRERESNy5SbB4OvDnpfndyh1Bn7ZiIiaXFqsQuetEZW8+9f5A6BiIio0WWaLR5b6Il9MxGRtDgi64InrZElIiJqikxmC7feISKiKjGRdYHb7xAREcnLZM7j+lgiIqoSE1kXPGlqMRERUVNTWFyCvIIihHNEloiIqsA1si5YLBb4+vpCq9XKHUqN7FHN5Q6BiIioUZmulm+945kPlNk3ExFJi4msC6Ioesy0YsvyVXKHQERE1KhMuWWJrKeOyLJvJiKSFqcWuyCKFuj1npHIEhERNTXle8hGcI0sERFVgYmsC/n5osesj9W/Nhn61ybLHQYREVGjyczNg0oFhAZ55kNl9s1ERNLi1GIXPGlqsebIYblDICIialQmswWhgQZoBEHuUOqFfTMRkbQ4IuuCKFo8JpElIiJqakxmi8eujyUiIukxkXXBYrEgIMAzphYTERE1NZncQ5aIiKrBRNaFsqnF7ECJiIjczeFwIMtsYaEnIiJyiWtkXRBF0WOqFtvatpM7BCIiokZjFgtQYrUhPNhzpxazbyYikhYT2SrY7fZrVYs9I5EV5y+WOwQiIqJGIQhqaHQCPnz1CQT5+0IQ1LDZ7HKHVWfsm4mIpMVEtgoFBfkAwKnFREREbiQIamRa8jBh8UakZ5vRPNSIJS+MQERAYLXJrCCoUaLTwIqyLzY+xVaPTH6JiKj2uEa2ChaLBQA8ZkTWkPwCDMkvyB0GERFRgxTbrc4kFgDSs82YsHgjiu1Wl+cIghomjRpjjlzCgINnMebIJZg0agiCvF9x2DcTEUmLiWwVRFEEAI+pWiycPgXh9Cm5wyAiIgWz2+2YPn06kpKS8Nhjj+H8+fMVPt+5cyeGDh2KxMREfPbZZ7U6p7FZ7TZnElsuPdsMm9316GqJToNJx9KRUVwKAMgoLsWkY+ko0ck76Yx9MxGRtJjIVkEUPWtEloiIqCa7d+9GSUkJNm3ahOTkZMyZM8f5mc1mw/z587F27Vps2rQJq1atQk5OTrXnSEGjFtA81FjhveahRghq119XrIAziS2XUVwK12O4RETUFDCRrUL5iCzXyBIRUVNx8OBB9OjRAwAQHx+PI0eOOD8TBAFfffUVAgICYDaXjYjq9fpqz5GCTq3BkhdGOJPZ8jWyOrXr0VWL1YYonbbCe1E6LYuAEBE1cfx3vgp/JLIckSUioqahbH/0P/o1QRBgtVqh0ZR9FdBoNPj2228xY8YM9OzZExqNpsZzqiIIKhiN/vWO02DQYcNrT6LEZoOPICBI7weVSlXlsWcLSvDO2UzM7BCF145nIKO4FFE6LRZc3xwhPgJUPvWPoyqCoK512wRN2VhBQ34XSlGXdjcV3thmwDvb7Y1tBppGu5nIVsHTphZbb+wkdwhERKRwBoMB+fn5ztd2u71SQnr//ffjvvvuw5QpU7B169ZanfNXNpsDZnNBg+P1gQBYgf9v787jq6rv/I+/zjl3SXKzQRZICESCoLQMQ6m1dlqc2ik/HX6jpVYFBgdbXKaO1Sooi3Vh+wEOi/ZHK6VOaSt1a53WgmOXB8oMLdOxrUoriFoUQQxLgAC59yZ3PfNHFrPcQAK5nJx738/Hgwfk5nvu/XxzSD753O924kRjys9Hkzbz3zvM0XiSAdE468dUEcFmT2OMH79/lH8uLcTspgA+U8XFeT3uW+DCjwIQ6oOvhdN60+9MkY19huzsdzb2GdzV77Ky1LNkNbU4hQ93LXbHQeyhJQ8RWvKQ02GIiEg/Nn78eLZu3QrA9u3bGTVqVNvngsEg119/PdFoFNM0yc3NxTTNU17jtO8ePsG7kTj3VA4g3zCwwlHywjH21Yf42ZEgP68Pnf5J0ki5WUQkvTQim4KmFouISKaZOHEi27ZtY+rUqdi2zdKlS9m0aRPhcJgpU6Zw5ZVXMn36dDweDxdccAFXXXUVhmF0uaY/2NbQyMb6EF8amM/F+TkdPndFUR7bTjbyvcMnuCjgZ2in9bMiIpIZVMimEAo1tL0j7QYFt94EQMPaf3M4EhER6a9M02TRokUdHhsxYkTbv6dMmcKUKVO6XNf5GqcdjsVZXVvPyBwvM8u7zpwyDIO7KgZwy7uHWHmgntXVZVh9PMW4J5SbRUTSS1OLU2je3KKg280l+hvzQC3mgVqnwxAREUmrhG2z/IN64sC9Qwbi7SZPl3gtvja4mF2NMX5yNHhug2yh3Cwikl4qZFPovEujiIiIOO+JIw3saIxyx+BihvhOPanss4W5XFqQy+N1J3m3KXbKtiIi4j4qZFNQISsiItK//CkU4ckjDUwsyuPvik5/ZIRhGNw+uIh8y+Rfa+uJ2fY5iFJERM4VFbIpNDScpKAg9TbPIiIicm6diCdYXnuMSp+Hrw0u6vF1RR6LuyqKeTcS44m6hjRGKCIi55o2e0ohGAwSCLinkI1fdLHTIYiIiKSFbdusOnCck4kki4eWkGv27j34TxXkMrEoj6ePNnBJQQ4X5vrSFGlHys0iIumlQjaFUChIefkgp8PosdB9C5wOQUREJC2eqw/xP8Embh1UxPk5Z1aE/sugIraHIqyorefR4eX4zfRv5qjcLCKSXppanILWyIqIiDhvd1OUfzt8gkvyc5g8IHDGzxOwTGZXFvN+NM736070YYQiIuIUFbIpBIMNripkC79yPYVfud7pMERERM6aZZkk8nw05flI5Pm5uDCX2RXFZ30k3vhADlcOCPCzYyH+HIr0UbTdU24WEUkvTS3uxLbttnNk3cKoP+Z0CCIiImfNskwOe0xm7djPgUiMCr+XFaMrGRhPkkgkz/r5byov5JVgE5tOhrmwNB/bMPAAvki8T56/PeVmEZH0UiHbSSQSIRaLaddiERGRcyzq97QVsQAHIjHu2VXL+jFVWOHoWT9/rmmy8LxSEjk+bt75QVuxvHp0JeXQ58WsiIikj6YWdxIMBgFcNbVYREQkE8ShrYhtdSASI96Hr1FVmMfCtw92KJZn7aol6td7+yIibqJCtpNgsPmcuUBAhayIiMi55AEq/N4Oj1X4vX06fexcFMsiIpJ+evuxkw9HZN0ztTg24W+dDkFEROSs+SJxVo+uZNau2g7Tfn2ROIk+eo3WYrl9MdvXxTIoN4uIpJsK2U7cOLU4PHuu0yGIiIictUQiSTmwfkwVcUjLRkypiuVFFwzGbjr7NbjtKTeLiKSXCtlOQqHmqcVuKmRFREQyRSKRxApHsVo/TsPzty+WmxJJFr9ziJykzcKhJVhnecyPiIicG1oj20lDQ3MhW1BQ6HAkPVc09WqKpl7tdBgiIiKu0Fos+8NRiiJxLgvk8PtQhDUHj2Pbdp+8hnKziEh6aUS2EzdOLaapyekIREREXOv/DghwKBbn6aNBBns9TC3tg30ylJtFRNJKhWwnrbsWu6qQFRERkbPy5bJCDsUSrK87ySCvxWVFeU6HJCIip6BCtpPWEVkdvyMiIpI9TMNgdsUAjsYTrDxQT4nXYmye3+mwRESkG1oj20kwGCQ3NxePRzW+iIhINvGZBg9WlTDY62HB+0fZ1+m8WRER6T9UyHYSDAZddYYsQHTiFUQnXuF0GCIiIq5XYJksGVqC1zD4xvtHqY+f2b7Jys0iIumlYcdOgsGTrlsf23jbHU6HICIikjEqfB4WDy1h9t4j3P/+UVZUl5Jr9u69f+VmEZH0Skshm0wmWbBgAW+99RY+n48lS5ZQXV0NQF1dHbNmzWpru2vXLmbPno3f7+dnP/sZAJFIhF27drFt2zYKC8/tMThuHJEVERGRvjUq18e9QwawcP8xnqoPMWNoCXXxBGaeD18kTiKRdDpEEZGslpZCdvPmzUSjUZ555hm2b9/O8uXLWbt2LQBlZWVs2LABgNdee42HH36Y6667DsuyuPrq5vPWFi5cyJe+9KVzXsRCayHrrhHZosmTADjx3AsORyIiIpI5PlWQywPDShhclMeNO/ZzIBKjwu9l9ehKyuGUxaxys4hIeqVljewrr7zChAkTABg3bhw7duzo0sa2bRYvXsyCBQuwLKvt8ddff53du3czZcqUdIR2Wm4sZEVERCQ9PllWyMK3D3KgZeOnA5EYs3bVEvVrdZaIiJPSUsh2LgYtyyIej3do89JLLzFy5Ehqamo6PL5u3Tpuu+22dITVI8FggwpZERERASAObUVsqwORGPHUzUVE5BxJy9uJ+fn5hEKhto+TyWSX42w2btzIjBkzOjx28uRJ3n33XS655JIevY5lGRQX9+2B5aFQkJKSgX3+vL1lWWaPY7A8ze9HOB1zX+hNvzNFNvYZsrPf2dhnyN5+S2bwABV+b4ditsLv1W6ZIiIOS8vP4fHjx7NlyxYmTZrE9u3bGTVqVJc2O3fuZPz48R0e+8Mf/sDf/M3f9Ph1Egmb48fDZx1vew0NDXi9OX3+vL1VXJzX4xiK4s1rdE44HHNf6E2/M0U29hmys9/Z2GdwV7/LyrTZn3Tki8RZPbqSWbtq29bIPjhqMG8cC/FXOV6nwxMRyVppKWQnTpzItm3bmDp1KrZts3TpUjZt2kQ4HGbKlCkcO3aMQCCAYRgdrtuzZw9VVVXpCKlHEokE4XDYdVOLI1d90ekQREREMlIikaQcWD+miqRpQCLJd/Ye4YWjQRZUlfDJgpyU1yk3i4ikV1oKWdM0WbRoUYfHRowY0fbvgQMH8vOf/7zLdTfddFM6wumxUCgI4Lrjd5pm3ux0CCIiIhkrkUhihaOUFOdxPBhhZkkBb4YiLPrgKIuHljA+0LWYVW4WEUmvtGz25FbBYGsh664RWcLh5j8iIiKSdgHLZNnQEqp8Hh58/xg7wpGujZSbRUTSSoVsO24tZIv+8RqK/vEap8MQERHJGoUei+XDSinzWtz3/lHeaox2+Lxys4hIeqmQbaeh4SQABQXumlosIiIi594Aj8W/Diul0DK5d98R3mmKnf4iERHpEypk2/lwRFaFrIiIiJxeqdfioWGl+E2TefuOsC+iYlZE5FxQIdtOayEbCLhrarGIiIg4p8Ln4V+HlWACc/YdoTYadzokEZGMp0K2nWCwAXDfGlkRERFxVpXfy/JhpcRtWH+0gaRpYJsGiTwflqVft0RE+lpajt9xK7dOLW6aOt3pEERERLLe8Bwv/7+mnEiOl0c/+w8cjyf44479rB5dSTnNx/iIiEjfUCHbzofnyLprRDaiQlZERKRfGFSYy8wd+zkw8armByIxZu2qZf2YKqxw9NQXi4hIj2muSzsNDQ14PB5ycroebN6fGUePYhw96nQYIiIiWS8OHIjEKD5eT/Hxemj5WKtmRUT6lkZk2wkGG8jPz8cwDKdD6ZXCG/8JgBPPveBwJCIiItnNA1T4vSx68OsA3PzNx6nwe4kkk/idDU1EJKNoRLadYDDouvWxIiIi0n/4InFWj67E1/KmeIXfy6ILBrNo9yF+fTzkcHQiIplDI7LtNBey7lofKyIiIv1HIpGkHMgP+LGB9WOqSDRGsZI2Kw8c52AswT+VFrhu9peISH+jEdl2gsEGnSErIiIiZyWRSELSxkjaWOEoPhuWDC3h/xTl8aMjDaw4UE/Mtp0OU0TE1TQi204wGKSgQFOLRUREpG95DYPZFcUM9lo8fqSBI7EkD1QNJF9nzIqInBEVsu0Egw1UVFQ6HUavNX35RqdDEBERkXZS5WbDMLi+rJDBPg+ra+u5a28dS4aWMMirX8dERHpLPznbcesa2cjkLzkdgoiIiLRzqtz8+aI8SjwWi/Yf5et76lg8tISRub5zGJ2IiPtpPks7bi1kzQ/2Y36w3+kwREREpMXpcvPHAn4eOa8Mr2kwe+8RdkViJPJ8RPJ8JPJ8WJpyLCJyShqRbWHbdss5su5bI1tw2y2AzpEVERHpL3qSm6v9Xr55Xhk/PNaAP+Bn5o79HIjEqPB7WT26knJaNo4SEZEu9HZfi6amJhKJhCtHZEVERMSdBnosvlZdxsK3D3IgEgPgQCTGrF21RP0abxAR6Y4K2RbBYBDAlSOyIiIi4l5Jw2grYlsdiMSIOxSPiIgbqJBt0dBwEkAjsiIiInJOeYAKv7fDYxV+L0dicSJJnTcrIpKKCtkWoZBGZEVEROTc80XirB5d2VbMVvi9LL2wgtV76rh1z2F2NUYdjlBEpP/R4osWH04tdt+IbOOttzsdgoiIiLTTm9ycSCQpB9aPqSJO8y9nvkic6wcEWFV7nLveq+O6knyuLy3EZxrpCllExFVUyLYIBhsAdxay0cv/3ukQREREpJ3e5uZEIokVjmK1fgx8LJDDuppy1h06wdNHg/w+2MQ9lQMZkeM91VOJiGQFTS1u4ebNnqzdf8Ha/RenwxAREZEWfZWbA5bJrMoBLK4q4Xg8ye17DvPkkQawDJ07KyJZTSOyLRoamkdkCwrcV8jm3/11QOfIioiI9Bd9nZs/WZDDd3PL+fahE7zSFOUzpsH9OndWRLKY3r5r4eY1siIiIpL5Cj0W84cM5L4Rg7j/LZ07KyLZTYVsi9Y1soGAClkRERHpv/IsU+fOikjWUyHbIhgMkpcXwDT1JREREZH+q7tzZw9F4xyNJZwJSkTkHNMclBahUFDTikVEJGMlk0kWLFjAW2+9hc/nY8mSJVRXV7d9/vnnn+eHP/whlmUxatQoFixYgGmaTJ48uW3/iKqqKpYtW+ZUF6RF67mzs3bVtq2RXXZhBY+8e5i3QxGuLy1g8sB8PIaO6hGRzKVCtkUw2ODaQjZ81z1OhyAiIv3c5s2biUajPPPMM2zfvp3ly5ezdu1aAJqamnjkkUfYtGkTubm5zJo1iy1btvCZz3wGgA0bNjgZuiulMzd3d+7sneVFPHrwON89fJJfnwjztcHFjM3zpy0OEREnqZBt0dDQQEFBodNhnJHY317mdAgiItLPvfLKK0yYMAGAcePGsWPHjrbP+Xw+nn76aXJzcwGIx+P4/X7efPNNGhsbmTlzJvF4nFmzZjFu3DhH4nebdOfmVOfOVvo8LB5awu+CTaw9dIK79x7h7wpzuam8iBKvdaqnExFxHRWyLYJB904ttl7/MwCJvxrrcCQiItJfdc5zlmURj8fxeDyYpklpaSnQPPoaDof59Kc/zdtvv82NN97Itddey3vvvcfNN9/ML3/5Szye7n99sCyD4uK8tPfHCZZl9rxv27c3/+1A4T9pQIDPVQ7gBx/Us6G2nv8JRbi3poyLBuQTt228pkGRaWDQs6nHvep3hsjGPkN29jsb+wyZ0W8Vsi2CwSBDhgxxOowzkn//PEDnyIqISPfy8/MJhUJtHyeTyQ4FaTKZZMWKFezZs4c1a9ZgGAbDhw+nurq67d/FxcXU1dVRUVHR7eskEjbHj4fT2henFBfn9bhvRXfeCTibm6cW5jIhx8sLJ8OU5Pj48p/2dTx3Np7s0bmzvel3psjGPkN29jsb+wzu6ndZWUHKx7VFb4tgsEFH74iISMYaP348W7duBWD79u2MGjWqw+cfeOABIpEIjz76aNsU42effZbly5cDcOjQIYLBIGVlZec2cDkrQ3weZg4rZeHbOndWRDKLfoK1aJ5ylbraFxERcbuJEyeybds2pk6dim3bLF26lE2bNhEOhxkzZgzPPvssF110ETfccAMAM2bM4JprrmH+/PlMmzYNwzBYunTpKacVS/8Uh5Tnzh5NJElE41T4dE9FxH30k6tFKBRsO15AREQk05imyaJFizo8NmLEiLZ/v/nmmymvW7VqVVrjkvRrPXe2fTFb4fdyOBpnzjuHmDQgwD+WFjDQow2hRMQ9NLWY5t0ZGxsbXbvZk4iIiEh3Ws+drfB7AdrWyJ6XtLmiOMB/1Ie4Yfch1h8+QbAHa2ZFRPoDjcjSvD4WcG0hG7r3QadDEBERkXb6U27u7tzZhGFwR0UxXyrJ5/G6kzx9NMjz9SGuKylg8sAAAa+HqN9DXTyBmedrvkaFroj0EypkaV4fC7h2jWz84k86HYKIiIi0099yc6pzZ1sN8XmYP2Qg15XE+EHdCdbXneTNaIx/Pq+MeTv2d9zpuOW5REScpkKW9oWsO0dkPb9/Geh/SVNERCRbuTE3j8jxsnhoKTvCEXILcpj35oEuOx2vH1OFFY46HKmIiApZwP1TiwNLFwI6R1ZERKS/cHNuHpPnJ9JpcyhoLmajQK4zYYmIdKDNnmg/IlvocCQiIiIizmvd6bi9Cr+XdxqjfOvgcWqjcWcCExFpoUIWaGhw94isiIiISF9KtdPxytGVvHEsyC+Oh/jKO4dYtP8ouxo1zVhEnKGpxTSfIQsqZEVERESg407HSdPATNr4InGuG5DP3+Xn8vP65h2Of9vQxJhcH9eU5PPp4jzifm/HnZG1MZSIpIlGZGm/RtaduxaLiIiI9LXWnY7LPBZWONpWlJZ4LWaWF/HEyMHcOqiIuniCfz8R5j3TYOaO/Vz5yh5m7tjPYY+JZelXTRFJD43I4v5di4OLlzsdgoiIiLSTDbk51zT54sB8rhoQ4GSOlzt31WqXYxE5Z1TI0lzIer1e/H6/06GckcRfjXU6BBEREWknm3KzZRjkWWbKXY4PxRO8fCzI5wpzKfJY3TyDiEjvab4HzVOLCwrcO63Y+19b8P7XFqfDEBERkRbZlpu72+U4nEiy9tAJpv3lIIv3H+UPwSYStg2AZZkk8nxE8nwk8nyahiwivaIRWZp3LXbz+ti8h1cAcOJvL3M4EhEREYHsy82tuxzPapleXOH3snp0JeXxJOuGl/OrEyFePNHIbxqaKPWYzBhUzMfLCrh7x/6O7UEbRIlIj6iQpXlqcSDgzvWxIiIiIk5rv8tx512Lh+d4+WpOMTeWF/E/DU386niIIUW53K01tSJyFlTI0lzIunWjJxEREZH+oHWX49aVsIlOn/caBhMKc5lQmEtjri/lmtrjySR1jVFG5XgxDeOcxC0i7qRCFgiFGigqKnY6DBEREZGs4KN5DW37YrbC76U2Emf2e3UUWSafyPfziUAOH8/PobBl/axlmUT9Hp1VKyIqZKF5RHbIkKFOhyEiIiKSFbpbU5sXiTGvcgC/Dzbx+2CEzScaMYHRuT6uLM1nTEkB92hdrYigQhZoLmTdvGtxcOU3nQ5BRERE2lFuPrVu19Ri8LmiPD5XlEfCtnm7KdZS1DZRVpDLPSnW1X5vTBUerasVyToqZGndtdi9a2QT5490OgQRERFpR7n59E63ptYyDEbn+hid6+OGssJu19UeiCdYu+8IH83zMSbXzwW5XnJMTUUWyXRpKWSTySQLFizgrbfewufzsWTJEqqrqwGoq6tj1qxZbW137drF7NmzmTZtGuvWreOll14iFosxbdo0rr322nSE14Ft24RC7t7syferXwAQvfzvHY5EREREQLk5HbpbV2skbY7EE/ywrgFowAJG5niZODCfT5QVMFdTkUUyUloK2c2bNxONRnnmmWfYvn07y5cvZ+3atQCUlZWxYcMGAF577TUefvhhrrvuOl5++WVee+01nnrqKRobG1m/fn06QusiHA6TTCYJBNw7tTh37RpAyVJERKS/7C9T4AAAEaZJREFUUG7ue6c6q/a7NYNoSCTZ1RhlRzjCjnCU4cV5zH3zQJepyI+MriTcGKXCa3XZGbl1BLcunsDM82kEV6QfS0sh+8orrzBhwgQAxo0bx44dO7q0sW2bxYsXs3LlSizL4re//S2jRo3itttuIxgMMmfOnHSE1kUwGARw9YisiIiISKY71Vm1AAWWycX5OVycnwNAUzdTkRuSNje9c4hc02C430uN30tNjpe/Lsghz+9hlkZwRVwhLYVs53NZLcsiHo/j8Xz4ci+99BIjR46kpqYGgPr6empra/nOd77D/v37ufXWW/nlL3+JcYozxCzLoLg476xirauLAzBoUOlZP1dfsiyzx/FYnuZ1IP0p/jPVm35nimzsM2Rnv7Oxz5C9/RaRvne6dbXteUk9FXmgZXDX4GLejcR4pynGSyfDPH/cZtXAIdyXYjOpNR+ppKkpSqmn+xFcrcEVOffSUsjm5+cTCoXaPk4mkx2KWICNGzcyY8aMto+Li4upqanB5/NRU1OD3+/n2LFjlJSUdPs6iYTN8ePhs4q1tvYwAKbpO+vn6kvFxXk9jqco3vwD80Q/iv9M9abfmSIb+wzZ2e9s7DO4q99lZe5dZiIiHXU3FbkoluTvBwTa2tm2zaFYgrwcb8oR3OMJm5t2H8JrQKXXQ6XPwxCfh7EFOQwfkMecXo7gqvgV6RtmOp50/PjxbN26FYDt27czatSoLm127tzJ+PHj2z7++Mc/zm9+85vmHyaHDtHY2EhxcXE6wutAU4tFREREMk8ikaQ8nmT9mCo2fXw468dUUR5PdikaDcNgsM9DwDCo8Hs7fK7C76XYMrhjcDFfGJBPpc9DbSzOxvoggYCfObu6rsF9x7D51sHjPHWkgV8fD/HHYBN7mmKcTCQxLYPDHpOZO/Zz5St7mLljP4c9JpbV/a/klmWSyPMRyfORyPOdsq1INknLiOzEiRPZtm0bU6dOxbZtli5dyqZNmwiHw0yZMoVjx44RCAQ6TBu+7LLL+MMf/sA111yDbds88MADWJZ1ilfpG5lQyDZ8+7tOhyAiIiLtKDf3D72ZitzdCO6AWJJ/aDeCC5C07W7X4PpMky0nwjQk7S6vsfojQ1iRYvry8gsG85vDDQRMk3zLIGCaBCyTUr8Hw+9hdi9Gfc9kxLe3m1xpVFn6A8O27a7fZS4RiyXOarqaZRm8//67HD9eT2VlFSUlg0gk+seXw01T8fpSNvY7G/sM2dnvbOwzuKvfmlp89s42N/dnbvq/3Jeyqd+tBVrSNDCT9ikLtESej5ktBWarCr+X9WOqsMJRIkmbY/EER+MJjsWTHI0nuLSimGnb93Z5rn8bO4yb/ryvy+OrPjKEle8c7vIa948cxA/fqyPfNCmwTPKt5r+r83wMKcxlTstuzRV+L6tGV5IfjWMmbLwGXfafsSyTwx4z5W7Qqfre2/btv65nUlz39Jozbd+Te93f+3AmMaWr3+l4k6O73JyWEVk3sCyDfft2M3nyZPbu3Ut1dTXPPfccw4ad32+K2Z7yP/fvAEQmf8nhSERERASUm92qdQS3pKV4P5MRXF8kTgLwmwYVPg8Vvg9/3U5YZsoNqIZ4LX5+QQWhhE0omSSYSBJK2gzzp163m+8xORpL8l4y3tYWmgvfOZ2OHJq9q5a7R5Qz+63a5rgN8BkGPtPAZxjcN6qC/5dilHjRqMH8uLYerwFew8BrNLe/YsgA5qZo//DoSnbUh/AY4DEMLJr/LvZb5PpzuKfdqPLK0ZVY8TjRWBLTAAuj5W8wDYMcr8lRj9llB+kybJIpfk9vK657OHKd7vaK6dzs/J21I7JNTSeZMOHT7N374bti1dXV/OY328jJKeyrEM9YrzZ7mjwJgBPPvZDOkM6JbHrXt1U29hmys9/Z2GdwV781Inv2NCLbTLnZ3Xra5zMZrerNaObpRn3b2tk2oUQST2EOk195r8vzPPOxan65v56YbRNJ2kTtlj9Jmy/XlPNPKUaJv//Xw5i78wNitk2spX3Mhse6GT3u7ajy3SPKmf3GBym/Tqe7xoC2P6YBD40ewooU7eeeX86Dbx7AAgwDDAwsA+4bVcHS3Ye6tL/v/EGs3n2opW3zZkIGcMf5g1j8l67tHxg5iLXvHk7Zh1tryll0ims6F2D/0k37B9u9hoFB63j6P9eUsTBF+wUjB/HdPXUpY7pleBkLenFNX7Xv/P+1tzQi20ksFu1QxALs3buXeDzWzRUiIiIiIh/qzRrc1vanOgu3s9ON+rayDINCj0UCI+WIb6FpMq00dTHQ3SjxYI/Fj0YO7tDWtm0SXitl+1KPybrh5cRtmzjNxXXchupudoMe6vcyu6KYpN38dUvadsvfMMTvSXlNpd/D9NICbBtswMbGBip8qduXez1MKMgl2dIuaUMSGOC1UrYv9FqUey2SLX1tfg3I95gp2+d5ut94K+8017QW4q0C3bTP9Zi0DkLbLeWvDeRaqdvnWCbhZOr/Tzm9vKav2seBdOx8lLWFrNfro7q6usuIrMfjPcVVIiIiIiJnrjfFb7oK3zO9xjAM/N20L4g2H2HUpQ9G6uK6wDS4vDjQpT1AwkxdXBebJjeUdZ052V0xPsAyuaOi6yko3bUvtUwWDu169GfCSl28l1sWK6vLUvehl9ecqv3q81K093TT3mPxzfPKU8fUy2v6qn26Cs6s3b87ECjiueeeo7q6GqBtjWwgUORwZCIiIiIizVoLX384ihWOnnLqck+PHOrumv/4RM1pr+nta7QWyq1HG7UvlLvT22v6W3vF1POYzkbWrpGF5g2fQqETxOMxPB4vgUBRv9noSetwskc29hmys9/Z2GdwV7+1RvbsaY1sM+Vmd8vGPkP6+t2fd/zVrsXOx3Q6WiObQiJhd9jYqb8Usb118nsbnA5BRERE2lFuFvlQb9cSn8k1Z9q+JztUn8nzn01M6Wrf/pp09ftMYjpTWV3IZgq7pOtcfhEREXGOcrOISHpl7RrZTOJ/+gn8Tz/hdBgiIiLSQrlZRCS9NCKbAXJaEmVk6nSHIxERERFQbhYRSTeNyIqIiIiIiIirqJAVERERERERV1EhKyIiIiIiIq6iQlZERERERERcRZs9ZYATTz7rdAgiIiLSjnKziEh6qZDNBHl5TkcgIiIi7Sk3i4iklaYWZ4Cc9Y+Rs/4xp8MQERGRFsrNIiLppUI2A/g3/gz/xp85HYaIiIi0UG4WEUkvFbIiIiIiIiLiKipkRURERERExFVUyIqIiIiIiIirqJAVERERERERVzFs27adDkJERERERESkpzQiKyIiIiIiIq6iQlZERERERERcRYWsiIiIiIiIuIoKWREREREREXEVFbIiIiIiIiLiKipkRURERERExFU8TgcgXU2ePJmCggIAqqqqWLZsmcMRpc+f/vQnVq5cyYYNG9i7dy/z5s3DMAxGjhzJgw8+iGlm5nst7fu9c+dOvvrVr3LeeecBMG3aNCZNmuRsgH0oFotx77338sEHHxCNRrn11ls5//zzM/5ep+r34MGDM/peJxIJ7rvvPvbs2YNlWSxbtgzbtjP+Xkt2UG7O/O9h5WblZsi8e53JuVmFbD8TiUQA2LBhg8ORpN9jjz3Gxo0byc3NBWDZsmXceeedfPKTn+SBBx7gxRdfZOLEiQ5H2fc69/uNN97gK1/5CjNnznQ4svTYuHEjxcXFrFixgvr6er74xS9y4YUXZvy9TtXv2267LaPv9ZYtWwB4+umnefnll9uSZabfa8l8ys2Z/z2s3KzcnKn3OpNzs/tK7wz35ptv0tjYyMyZM5kxYwbbt293OqS0GTZsGGvWrGn7eOfOnVx88cUAXHrppfz3f/+3U6GlVed+79ixg//8z/9k+vTp3HvvvQSDQQej63tXXHEFX//619s+tiwrK+51qn5n+r3+/Oc/z+LFiwGora2ltLQ0K+61ZD7l5sz/HlZuVm7O1HudyblZhWw/k5OTw4033sj3vvc9Fi5cyN133008Hnc6rLS4/PLL8Xg+nBRg2zaGYQAQCARoaGhwKrS06tzvsWPHMmfOHJ544gmGDh3Kt7/9bQej63uBQID8/HyCwSB33HEHd955Z1bc61T9zvR7DeDxeJg7dy6LFy/m8ssvz4p7LZlPuTnzv4eVm5WbM/VeQ+bmZhWy/czw4cO56qqrMAyD4cOHU1xcTF1dndNhnRPt5+aHQiEKCwsdjObcmThxImPGjGn79xtvvOFwRH3vwIEDzJgxgy984QtceeWVWXOvO/c7G+41wEMPPcSvfvUr7r///rYpmZDZ91oym3Jzs2z6Hs6Gn9fKzcrN4O57rUK2n3n22WdZvnw5AIcOHSIYDFJWVuZwVOfGRz7yEV5++WUAtm7dykUXXeRwROfGjTfeyJ///GcAfve73/HRj37U4Yj61pEjR5g5cyb33HMP11xzDZAd9zpVvzP9Xj/33HOsW7cOgNzcXAzDYMyYMRl/ryXzKTdn3/dwpv+8Vm5Wbs6Ee23Ytm07HYR8KBqNMn/+fGprazEMg7vvvpvx48c7HVba7N+/n1mzZvHjH/+YPXv2cP/99xOLxaipqWHJkiVYluV0iGnRvt87d+5k8eLFeL1eSktLWbx4Mfn5+U6H2GeWLFnCL37xC2pqatoe+8Y3vsGSJUsy+l6n6vedd97JihUrMvZeh8Nh5s+fz5EjR4jH49x8882MGDEia76vJXMpN2fH97Bys3JzJt7rTM7NKmRFRERERETEVTS1WERERERERFxFhayIiIiIiIi4igpZERERERERcRUVsiIiIiIiIuIqKmRFRERERETEVVTIimSZp556ijVr1vT6umeeeYZYLMbLL7/MXXfdlYbIREREspNys0jvqZAVkR5Zt24dyWTS6TBERESkhXKzZDOP0wGICPz0pz9ly5YtNDU1UVdXx4wZM3jxxRf5y1/+wpw5czh48CC//vWvicfjFBQUsGbNGn7yk5/w6quvsmrVKubOncvYsWOZPn16yuf/4x//yNKlSykqKsI0TcaNGwfAhg0beP755zEMg0mTJjFjxgzmzZuHbdscOHCAcDjMQw89xKuvvkpdXR133XUXN9xwA3v37uWmm27i2LFjXHbZZdx+++3n8sslIiKSdsrNIv2bRmRF+olQKMRjjz3GzTffzFNPPcW3vvUtFi1axLPPPsvx48f5wQ9+wJNPPkk8Huf1119n+vTpNDY2Mm/ePGKxWLeJEmDZsmWsWrWK73//+1RVVQGwe/duXnjhBZ588kmefPJJNm/ezLvvvgvA0KFDefzxx7n99ttZsWIF1157LWVlZTz88MMARCIRHn30UZ544gl+9KMfpf+LIyIi4gDlZpH+SyOyIv3E6NGjASgoKGDEiBEYhkFRURGxWAyv18usWbPIy8vj4MGDxONxAG655RamTJnCT3/601M+96FDhxg+fDgA48ePZ9++fbz99tvU1tby5S9/GYATJ06wb98+AC655BIAPvaxj7F06dIuzzdy5Eh8Ph8AHo9+jIiISGZSbhbpvzQiK9JPGIaR8vFYLMbmzZt55JFHuP/++0kmk9i2TTQaZenSpSxatIgFCxYQjUa7fe6ysjLeeecdAF5//XUAampqOP/883n88cfZsGEDV199NaNGjQJg586dALz66quMHDmyLb7WdTjdxSoiIpJJlJtF+i+9XSPSz3k8HnJzc7n66qvx+XyUlZVx+PBhVq5cyWc/+1mmTJnC4cOHWbVqFfPnz0/5HCtWrGDu3LkEAgECgQBFRUVceOGFfOpTn2LatGlEo1HGjh3LoEGDANi6dSsvvvgiyWSSZcuWAXDRRRdxyy23cNttt52zvouIiPRHys0izjNs27adDkJE+o958+YxadIkLr30UqdDEREREZSbRVLRiKxIhqitrWXu3LldHv/EJz7BHXfc4UBEIiIi2U25WSR9NCIrIiIiIiIirqLNnkRERERERMRVVMiKiIiIiIiIq6iQFREREREREVdRISsiIiIiIiKuokJWREREREREXEWFrIiIiIiIiLjK/wLrtkn5khdqvwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAHsCAYAAADvm5FaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXxMV/8H8M/MnezbJIJSEhVLaauKUiKIVm1BSEmkQmyPrn5V1FJ7VVGlqKKqeLSVKIqk1YWKJZZaaq+lWrHEnpmsksnMPb8/0swjsiczmUzm8369+qqZOefe77nDPfc759xzFUIIASIiIiIiIiIrobR0AERERERERESlwUSWiIiIiIiIrAoTWSIiIiIiIrIqTGSJiIiIiIjIqjCRJSIiIiIiIqvCRJaIiIiIiIisChNZslkGgwFr1qxBv3790KdPH/To0QMff/wxdDqdpUMr1pYtWzBq1CgAwPvvv48DBw7kK3P69Gl07ty52G199913+OabbwAAGzZswBdffGHaYImIqrgTJ04gIiICvXr1QlBQEEaMGIFLly5ZOqwKM2rUKGzZsiXf+1u2bEHLli3Rp08f9OnTB71790bnzp3x3nvvISsrq1T7KGmfZqntVVb79+9HYGAgXnnlFWRmZpp021OmTMGZM2cAFH4tYmrmbI8pPPfcc7h+/XqZ6z98TbZ06VLMmjXLVKFVSSpLB0BkKTNmzEBycjLWrVsHNzc3ZGRkYNy4cXj//ffx8ccfWzq8Evvwww/LVf/YsWNo2LAhAGDgwIGmCImIyGbodDqMGjUKX331FZ566ikAwLZt2zBy5Ejs2rULkiRZOELLatWqFVauXGl8nZWVhYEDB+L7779HWFiYBSOzDT/88AP69++PN954w+TbPnDgAEJDQwGU/1qkpMzZnsrg4WsyKh4TWbJJ169fR0xMDPbv3w9XV1cAgLOzM2bOnInjx48DACZOnAitVotr166hU6dOeO211zBz5kycP38eCoUCAQEBePfdd6FSqbBkyRL8+uuvsLOzg6enJz766CPUqFGj0PcfFh0djd27d2PFihUAgMuXLyMyMhJxcXH4/vvvER0djezsbCQnJ2PkyJEIDw/PUz8iIgKvvvoqunXrhm+//Rbr1q2Dq6srGjVqZCxz7949TJs2Dffv38fdu3fx+OOP49NPP8Xx48fx22+/IT4+Ho6OjkhKSoJGo8G0adNw6dIlzJo1C1qtFgqFAsOGDUNwcDAOHz6MRYsWoW7durh06RL0ej1mzpyJli1b5jvOmzZtwpo1a6BUKuHp6Yl58+bh6tWr+OCDDxAbGwsAOHz4sPH10qVLceLECdy5cwcNGzbEsWPHsGzZMjz99NMAgHfeeQetW7dGeHg4li9fjl9++QWyLOPxxx/H9OnTUbNmTRP9DSEiKpkHDx4gNTUVGRkZxvd69+4NV1dXGAwGTJ8+HdWqVcOYMWMA5CS5v/zyCwYPHlzouVSn02HBggU4cuQIDAYDmjZtiilTpsDV1RWdO3dGs2bNcOHCBbz77ruoWbMmZsyYgezsbPj4+CAxMRETJ05ETExMgftdtmxZnvh3796NlStXQqfTISkpCcHBwXjnnXeKPNffvn0bEydOxJ07d1C7dm3cv3+/xMdLq9UiLS0NHh4eAIDbt29j1qxZuHnzJrKzs9GzZ0+89tprAFBon7Z06VJjX/Xo64iICDRv3hzHjx/HzZs30bZtW3zwwQdQKpWl7iOrVauGzp07o2/fvjh48CBu3ryJPn364J133gFQcB+3bNmych339PR0TJo0CQkJCVAqlXjqqacwa9YsKJXKEtV/2Jdffoldu3bBwcEBqampcHZ2LtNx2717Nz799FPIsmy8VtqxYwfu3LmDcePGYf78+ViwYIHxWmTnzp347LPPIMsyXFxcMGnSJDRr1gxLly7FjRs3cPfuXdy4cQM1a9bExx9/nO+6KDs7G3PnzsXBgwchSRKaNWuGSZMmISoqKk97JkyYYKxz/fp1DBkyBP7+/jhz5gwMBgNGjx6N6Oho/P3333j66aexcOFCKJVKrFixArt27UJmZiYePHiACRMmoEuXLpg0aRIyMjKwePFiXLp0CYMHD8bXX38NPz+/Qv8+Hz16FB988AEUCgWeeeYZyLJs/Oy3337D8uXLkZ2dDUdHR0yYMAHPPfccli5dioSEBNy6dQt3797Fk08+iQ8//BAHDx7Mc00GAH///TciIiJw9+5deHt7Y+HChfmOl00TRDbop59+EiEhIUWWmTBhghgyZIjx9XvvvSc++OADIcuyyMrKEsOGDRMrV64UiYmJokWLFiIrK0sIIcTq1avFr7/+Wuj7j0pNTRWtWrUSd+7cEUIIMX/+fLFw4UKRlpYmBgwYIJKSkoQQQvzxxx+iefPmQgghNm/eLP7zn/8IIYQYNGiQ2LFjhzh37pxo27atcTtTp04VgYGBQggh1q5dK1auXCmEEEKWZTFixAixevVqYzu//PJLIYQQS5YsETNnzhTZ2dnixRdfFD///LMQQohbt26JgIAAcfz4cXHo0CHRpEkTce7cOWO7Xn311Xzt+vPPP0WbNm1EYmKiEEKINWvWiKlTp4pDhw6Jnj17Gss9/HrJkiWia9euIjs7WwghxOLFi8XMmTOFEEJotVrRunVrkZKSIr7//nvxzjvvGMtFRUWJESNGFPl9EhGZy1dffSWaNWsmOnfuLMaNGye+++47kZGRIYQQ4ty5c8Lf3994vgoPDxd79+4t8ly6dOlSMXfuXCHLshBCiE8++URMnz5dCCFEYGCg+Oyzz4QQQmRnZ4sOHTqIuLg4IYQQBw8eFI0bNxaHDh0qdL8Pk2VZDBo0SPzzzz9CiJxzfZMmTcT9+/eLjO+NN94QixYtEkIIceXKFdG8eXOxefPmfMdl8+bNokWLFqJ3796ia9euok2bNiI0NFRs2LDBWCYiIkLs2rVLCCFEZmamiIiIED/88EORfVpuX5Xr4deDBg0So0ePFgaDQaSmpor27duLgwcPlrmPDAwMFHPnzjUen2eeeUZcvXq10D6uvMf9+++/F8OGDRNCCKHX68X7778vrly5UuL6jyqojy/Ncbt7965o2bKlOHv2rBBCiJ9//lkMHz7ceGxOnTplrL9jxw7x119/iXbt2omrV68KIYQ4cOCA8Pf3F6mpqWLJkiXixRdfFKmpqUIIIUaNGiUWL16cL+bFixeLt956S+h0OmEwGMTEiRPF1KlT87XnYdeuXRONGjUSO3fuFEIIMW3aNBEYGChSU1NFZmam8Pf3F8eOHRPXr18XERER4sGDB0IIIWJjY0VQUJAQQoj09HTx8ssviy1btoiePXuKbdu25dvPw7KyskS7du3EgQMHhBBCxMTEiEaNGolr166Jf/75RwQFBRmv4S5evCj8/f1Fenq6WLJkiejQoYO4e/euMBgM4t133zX+HXv0++rcubPxe3399deN//YpB0dkySYplco8v5oV5uFRxr1792LDhg1QKBSwt7dHWFgY1q1bhxEjRuDJJ59E37590aFDB3To0AFt27aFLMsFvv8oV1dXdOnSBdu3b0dkZCRiYmLwzTffwMXFBStWrMCePXtw5coVnD9/Ps8v/o86ePAg/P39Ub16dQBAaGgo9u/fDwAYMmQIjh49ijVr1uDKlSu4dOkSnn322UK3deXKFWRlZeHll18GANSsWRMvv/wy9u3bhzZt2qB27dpo0qQJAKBp06b4/vvvC4ynffv2qFWrFgAgMjISQM4IbFGaN28OlSrn1BQSEoJXXnkFEydORGxsLDp37gw3Nzfs3r0bp0+fRkhICABAlmU8ePCgyO0SEZnL0KFD0b9/fxw5cgRHjhzBqlWrsGrVKmzatAlNmjRBnTp1EBcXhyeeeAJ37txB+/bt8fvvvxd6Lo2Li0NqaqrxnsPs7GxUq1bNuL9WrVoBAC5evAgA6NixIwDghRdeME5LLGy/D1MoFFixYgXi4uIQGxuLy5cvQwhhPJ8WFt+BAweMo2G+vr5o06ZNoccmd2qxLMv4/PPPERsbi27dugEAMjIycOTIESQnJ2Px4sXG986fP49bt24V2qcVJzAwEEqlEq6urvD19UVycjLOnTtX5j7yxRdfBJDTF1arVg3Jyck4cuRIgX0cgHId95YtW2LRokWIiIhAu3btMGTIEPj6+pbqeyurgo7b8ePH0bBhQzRt2hQA8PLLLxuvDQpy6NAhvPDCC6hbty4AoG3btvDy8jLeS9u6dWvjTLimTZsiOTk53zb27t2LMWPGwM7ODkDOzLM333yz2Pjt7OyM9z37+PjgueeeM+6rRo0aSE5ORosWLTB//nzExMQgISEBJ0+eRHp6OoCcmXmLFi3CgAED0Lt3b/Tu3bvI/V28eBEqlcp4bRcUFGQc7Y6Pj8edO3fy/L1QKBS4evUqAKBbt27w9vYGALzyyiuYM2dOnhHmXP7+/vDy8gIAPPnkk0hKSir2ONgSJrJkk5o1a4a///4baWlpxpMckDPFaerUqViyZAmAnJNaLlmWoVAo8rzW6/VQKpX4+uuvcfr0aRw8eBBz5sxBQEAA3nvvvQLfb9mypXH7NWrUwKpVqzBgwABMnToVfn5+8PPzQ926dXHr1i2EhoZiwIABaNmyJbp164bdu3cX2S4hhPHPD9+X9fHHH+PUqVMICQlBmzZtoNfr85R9lMFgyNPW3G3r9XoAME55AXJOzAVtS5KkPNvIzMzEjRs38pXPzs7OU+/hY/7444+jadOmiIuLw5YtWzB58mQAOcd+xIgRxmnWOp2uwM6QiMjcjh07hj/++AMjRoxAYGAgAgMD8e677yIoKAjx8fHo1q0bXn31VWzevBn16tXDgAEDjOfGws6lsixj8uTJxgQ1PT09z+JIuedJSZLynX8fPvcXtt9cGRkZ6Nu3L1566SW0atUKISEh2Llzp3GbhcX36Hk898fHoiiVSrz11lv4448/MHHiRKxYsQKyLEMIgaioKDg5OQEAkpKS4ODggOjo6EL7tOL6kcLiLmsf6eDgkG97hfVxfn5+5TrudevWxa+//orDhw/j0KFDGDp0KGbNmpVnYarivrfClOW4qVSqPPELIXDhwgU8+eSTBe7j0Wul3DqluX4o6Hrr0VgLYmdnl6debiL8sLNnz+KNN95AZGQk/P398fzzz2PmzJnGz//55x+o1Wr8+eef0Ol0sLe3L3Kfj8af+29BlmW0bdsWn376qfGzmzdvokaNGvj111/z/P2TZTnf1PFHtwcUfrxsGVctJptUs2ZN9OrVC5MnT0ZaWhoAIC0tDTNmzIBarc5zos3Vvn17fP311xBCQKfTYePGjWjXrh3Onz+PoKAg+Pn5YdSoUYiMjMTp06cLff/FF1/Etm3bsG3bNqxatQpAzigkACxbtgz9+/cHAJw5cwZeXl5444030L59e2MSazAYCmyTv78/4uPjcevWLQDIM0q6f/9+DBkyBMHBwahWrRoOHDhg3I4kScYOJlf9+vWhUqnwyy+/AMhJ8H/++We0a9euxMe4TZs2OHjwIO7cuQMAiIqKwscffwwvLy8kJibi/v37EELghx9+KHI7AwYMwKpVq4y/VAM538WmTZuM393ixYvx3nvvlTg2IiJT8fLywvLly3H06FHje3fv3kVaWprxPsyuXbvizz//xM8//2ycSVKU9u3b45tvvoFOp4Msy5g6dSoWLlyYr5yfnx/s7e2xd+9eAMCpU6dw8eJF48V8cftNSEhAWloa3nnnHXTu3BmHDx827rMoAQEBiI6OBgAkJiYWO9PmYdOnT0d8fDx27twJV1dXNG/eHGvWrAEApKSkYODAgdi1a1eRfZqnpyfOnj0LIQTS0tKK/ZEXKHsfWZjC+jigfMf922+/xaRJk9C+fXuMHz8e7du3x7lz50pcvyhlOW7PPvssLl++bFyFe9euXRg/fjyAgq8f2rZti/379+PatWsAYLy3uKhZYI8KCAjAhg0bkJ2dDVmW8c0338Df37/E9Yty5MgRPP300xg6dChat26NXbt2Gb/r69ev48MPP8RXX32F+vXrY8GCBUVuq3HjxhBCYM+ePQByjk3uj+pt27ZFfHw8Ll++DADYs2cPevfubVxpedeuXUhNTYUsy9i4cSMCAwMBFHxMqXAckSWbNX36dHz++ecICwuDJEnQ6XR46aWX8PbbbxdYfsqUKZg9ezZ69eqF7OxsBAQE4LXXXoO9vT26d++OkJAQODs7w9HREVOmTMGTTz5Z4PuF6d+/Pz7//HO89NJLAHI63U2bNqFbt25QKBRo3bo1vLy8kJCQUGD9xo0bY/z48RgyZAhcXFzQrFkz42dvvvkm5s+fj8WLF8POzg4tWrQwTm/p0KED5s6dm2dbdnZ2+PzzzzF79mwsXboUBoMBb775Jl544YUSX7DkxjNixAgAQPXq1TFnzhzUrFkTYWFhCAkJQfXq1dGpUyecPn260O107twZM2fOxMiRI/Mcq9u3bxt/6a5Vq1a+NhARVYQnnngCy5Ytw6JFi3Dr1i04ODjAzc0Nc+bMQf369QEA9vb26Nq1K+7du2ecJliUN954A/PmzUPfvn1hMBjQpEkTTJw4MV85lUqFpUuXYvr06Vi4cCHq1asHb29v44+xxe23cePG6NSpE7p37w57e3s0atQIDRo0QEJCQpEjUdOnT8ekSZPQvXt3PPbYY4WOzhXEx8cHI0eOxEcffYSAgAAsWLAAH3zwAXr16gWdToegoCDjlM7C+rTevXtj3759ePnll1GzZk20bt262JGqsvaRxW3v0T4OKN9xDw4Oxu+//44ePXrAyckJtWrVQkRERInr+/j4FBpzWY6bt7c3FixYgAkTJsBgMMDV1RWLFi0CAHTp0gXjx4/HjBkzjOUbNGiA6dOn46233oLBYICjoyNWrFgBNze3IvfzsNdffx3z5s1DcHAw9Ho9mjVrhqlTp5a4flGCgoLwyy+/oHv37pBlGYGBgUhOTkZaWhrGjh2L4cOHo1GjRpg2bRp69eqFdu3aoVOnTgVuy87ODsuWLcOMGTOwcOFCNGnSxHgLQIMGDTBr1iy8++67xpHt5cuXw8XFBUDOcR05ciQ0Gg2ef/554wJnBV2TUeEUgmPURERERGaTkZGBQYMGYdq0acYZOKYyb948DB8+HN7e3sZVdXfu3Al3d3ez7pcKx+NORXl01W0qO47IEhEREZnJvn37MHbsWAwcONAsSc3jjz+OyMhIqFQqCCEwe/ZsuLu7m32/VDAe96pl+/btWL16dYGf9erVyzgiT5bBEVkiIiIiIiKyKlzsiYiIiIiIiKwKE1kiIiIiIiKyKkxkiYiIiIiIyKqYZbEnWZYxY8YMXLhwAfb29pg9ezZ8fX2Nn2/fvh1r1qyBUqlESEgIwsPDjZ+dPHkSCxYswPr160u0H4Oh6t3iK129AoVCAX1d3+ILVzGSpKiS32lRbLHNgG222xbbDFhXu+3spOILUZHYN1c91vRv2FRssc2AbbbbFtsMWFe7C+ubzZLI7ty5EzqdDtHR0Thx4gTmzp2L5cuXGz+fP38+YmNj4ezsjJ49e6Jnz57w8PDAqlWrsH37djg5OZVoPwaDgFabYY4mWJTH4EioVEpoN8VaOpQKp1Y7V8nvtCi22GbANttti20GrKvd1auX/FmHVDD2zVWPNf0bNhVbbDNgm+22xTYD1tXuwvpms0wtPnbsGAICAgAAzZs3x5kzZ/J83rhxY6SmpkKn00EIAYVCASDnIdlLly41R0hERERERERURZhlRDYtLQ2urq7G15IkQa/XQ6XK2V3Dhg0REhICJycndOnSBe7u7gCArl274vr16yXejyQpoFY7mzb4SkBSKaFQVM22FUeSlDbXbltsM2Cb7bbFNgO2224iIiIyH7Mksq6urkhPTze+lmXZmMSeP38ecXFx2LVrF5ydnTF+/Hjs2LED3bt3L/V+quz0Jb2cM32pCratONY0zcFUbLHNgG222xbbDFhXuzm1mIiIyDqYZWpxixYtsHfvXgDAiRMn0KhRI+Nnbm5ucHR0hIODAyRJgpeXF1JSUswRhtXSt2oN0eYFS4dBRERE/2LfTERUuZhlRLZLly6Ij49HWFgYhBCYM2cOYmJikJGRgdDQUISGhiI8PBx2dnbw8fFB3759zRGG1UqfMgN2amfASkYwiIiIqjr2zURElYtCCGEd6y4XIDvbYDXT1UrLmqbimZItttsW2wzYZrttsc2AdbWbU4vLj31z1WOL7bbFNgO22W5bbDNgXe2u0FWLqXzchw6CNKC/pcMgIiKif7FvJiKqXMwytZjKR6FJAlT8jYGIiKiyYN9MRFS58IxMREREREREVoWJLBEREREREVkVJrJERERERERkVXiPbCWUHdARkqOdpcMgIiKif7FvJiKqXJjIVkIZYyfAns+qIyIiqjTYNxMRVS6cWkxERERERERWhYlsJeQR1g9Sr56WDoOIiIj+xb6ZiKhyYSJbyUiSAnJGGnRaLTIzUyBJCkuHRERERJmZwIMHlo6CyCwkSQm9Qsad5FToFTIkqegUIbd8psg2S/mK2Ie521yRbShLTJXpuy4r3iNbiUiSAlev/oXMP/5AZlYWIgP8sXXrVvj4NIDBICwdHhERERFVMElSIkvWQy8boFJKcFCqYDDIJi1/OzUFby+JQuI9LWp7q7F0dBhqurkXWM/c5StDTEIICAEI5Fx/K5VK3E5JwdtLHyr/dhi8nJ2RrX90+zl1VCoJ91LS8tRZ8nYYPJ2codcb8sWkUkm4m56G0XnKh0Lt6Izs3PLi4fJKJKc/wOil0XnKuzs4ITs7//YBwM5OQkop6pSkvHgoKDs7CanpmXnKF/ddl4dCCGG1GVJ2tgHaKrToQmZmCgIC/LE2IQEAEAjA19cX+/bFw9HR3bLBVRC12rlKfaclYYttBmyz3bbYZsC62l29upulQ7B6Va1vzuUR3AMqlRL3N8VaOpQKZ03/hk3FnG0uTaJpigRtyduhcJTskJaeCZ3BgGy9AbpsA7L1eugMBjSoWwNvLP4Wife0xu3U9lbj0zcHYPexC9AbZOgNBhhkGdl6A4LaN8P4FZvzlf9oZF+s23EQQgjIsgyDEJBlgZG92uP91dvylZ81tDcWbdwJIQQMsgwhAFkIyELGhPBumLkuNl+dqRE9MXNtDOR/E01AQBYCHwzvg9nrf8xXfvKr3TFh5WbIOVlpTmwC+OSNV/DRtz/lKz8xvBtGL4nKd1yXjA7D3FKUL0sdc5e3ZEzrJw2DSpR9ZLawvpkjspVIdrYOCf8msbkSEhKg12dbKCIiIiIiKoxJRj/fDoObgyNS0h/gQVY2Huh0Of/P0qFRvceMZQEg8Z4Wby+Jwtz/9MOaH+KRqcsp90CXjQe6bEx8tTtmr/8hT/nRS6OLTG7WTRqaJ/HIrfdAl43lsXuM7ykUgJ0koXu7pwssLymVuHj9NpRKBZQKxb//V8LBzq7A8i6ODnC0t4OkVECh+F8dhUIBtatzgXWqubuguV/df+PJqQMFUN3DtcDyj3m5o8fzzwA5xf4tr0Ctah4Fln/cW40hXdpC8e/2c/fzuLe6wPJ1vNUY2T0AikfuBFQAqFNoHU+M6tkBjyqq/OtBHfNsGwDqVPcsuHx1T7zZu1O+7ZelTknLK/6NqrDyBlmGSmH6KcZMZCuRzMxM+Pr6IvahZNbX1xcqFZ9bR0REZEm6Lt0gObE/rupyE9M7yalQKhSlHi1d/FYosjKzkXgvGSkZmUjJeICU9AdIzshEakYmwru0xpSvtuVNTJdGFZpoFpZkKhTA5cS7cHKwg6O9HTxdnVHL3g7eHi4Flq9bwxMTQ7vBTiXBXiXBTpJgb6eCnUpCNTcX1H4kiartrUYtL3fsmD0akqSESlJCUuYkInqFXEh5D3wzcXi+NhRWvobaDQtH9S/w2BZWp5q7KyaFdS9xeU9XF7zVJ7DE5dUuzhjW1b/E5T1cnDHoxTalaoOHixPCA1uXqnxYp+dLXt7ZCQM6tCpdTIXUMVV5SanMMy3aVDi1uJK4ejUBkya9i8mTJyMyMhIJCQnw9fXF6tWr4ebmiSeeaGjpECsEpy/ZDltsty22GbCudnNqcflVpb75Udb0d9mUbKXdhY2WOqrscPNeMu6npOFeShrup6TjXkoa+nZ4Du+v3lqiaZeuTg5wd3bEgtf7I3z2l/n2veWD1xF/8i842dvD2cEOTvb2cHKwg09tL4xYsL7EUzX1ChkRH31Vqqmdlr4f1RpiqgptqKwxlURhfTMT2UogIyMDQUEv4+rVBOzffwhqtRtkWQ9ZBt566038+eef2LVrH1xdq/4Flq10lg+zxTYDttluW2wzYF3tZiJbflWlby6INf1dNiVrbndxU3+zsrNxMykFt5KSUb9udfzfZ9ElSkw9XJzw+ZhwvDp7db59bv/wTVy7mQR3Zye4OzvC1ckRKul/o5mlSTQrKpHIPU4yBJQoeiT64fIGWYakVJq8fEXsw9xtrsg2lCWmyvRdF4f3yFZSQgiMHTsaZ8+extdfR+Oxxx7Ps6DEqFFvoW/fnhg/fgw+/3yVcb4+ERERVRyP4B6QVErABhd7slaSlH+l2Y9fC8FvR8/j0J//4GZSMpJS043lC5vGW7e6Jz4Y0gfV3F3g7e4KLzcX2KmkQqdRujg64Ol6jxcYk4NShaWjw/IlmoVd7BsMMmq6uWP9pGElSgxKW/7heioojT9alLS8SpEzZdTU5StiH+Zuc0W2oSwxVabvuqyYyFrYqlXLsXnzRkyY8D66dOmW7/O2bf0xbtxEzJ8/Bx07BiIs7FULRElERERkeYWNsAohcEebin9u3cOV2/fxz617COnUAtPXxuS5H3X8is2YGtETxy9dxQtNnkAtLw/jf495uheYmLo7O6HDM/lv8SptUgqULdGszIkEkSUxkbWg+Ph9mD79fXTvHoQxY8YXWm7MmPGIj9+HiRPHomXL59GwYaMKjJKIiIjI8goaYZ03qh++++0Ydh7/ExlZOmNZLzcXDOnRrsARVr/a1fHp66EFbt+co6UP12OiSVR+TGQt5Pr1axg5cgjq1/fDZ5+tgFJZ+JLUkiRh+fIvERjYDiNHRnO9IqcAACAASURBVOKnn36Do6NjBUZLREREZFrF3b8qhMDd5FRcuH4bF6/fRqcWjfOt+Dth5RZ8MLQ3JKUST9SshnqPeaNezWrwcHEq9QqqDyemJb1/kEkpkeUwkbWABw8eYOjQQcjMzMK6dRvg5uZebJ3HHquFpUtXIDy8P6ZPn4x58xZWQKREREREplfYo2tu3UvB73/+gwvXb+Hi9dvQpj/IKa9UoOsLTxXyaBkvvNP3xXz7KOvU39LcP0hElsNEtoIJITB+/Ds4efIP/Pe/UWjQIP89F1m9+0Jyts/3/ksvdcXrr7+N5cuXIiCgE4KCeldEyERERDavsL6ZyibLkG1MMIGchPT/PovGxPBu+Hb3YdSr6Y22Tf3QuE5NNKpTEw1qV4dkL5V5hNWUK6gSUeXARLaCffXVF9i4cQPGj5+Ebt16FFgmc9hIOKqdgQKWun///ek4dCgeY8a8hWefbY66dX3MHTIREZHNK6pvppLRpKbjyMUE/H7hCgZ3e6HA0dX6tbyx48PRcLCzy1dfUpbuHlaAU3+JqjImshXo4MF4TJ06CV27dsfYsRMKL5iRARTyo6+9vT1WrlyDF18MwKhRw7Bt2w7YFXCyJyIiIhMqom+mHI/e8yoJBU5evo7fL1zBkQtXcPHGbQA5z2Ad9HKbAkdXneztC3yeKsARViLKq/AVhsgkJEmBzMwUaLW3oVBko3fvPli27IsiF3fyCH8FUu+gQj+vV+8JfPLJYhw9+jvmz59jjrCJiIjoIcX1zbYu957XiI++QtfxixHx0Vf4++49rP4lHlFxv8PR3g4jurXHF+8Mwtbpb8CvZnUsHR2G2t5qAMgzuloUg0GGSijhoFBBJZRMYolsGEdkzUiSFLh69S8EBwcjISEBvr6+2Lx5Mzw91TAYCriZoxSCg0Owd28cDh3ajzt3rsHJyQl2dvZwcfEo97aJiIiISupechoMShnvLNuY557XKau3Ydn/DYQ9VHB1cshTh6OrRFReTGTNKD092ZjEAkBCQgJCQkKwb188HB2LX6m4OPPmLcDFi2fQs2cPY6K8detW+Pg0YDJLREREZqNJTcee05ew+8R5nPznOtZOHFrgPa8ujg5wUBR8ucn7V4moPJjImlF2ts6YxOZKSEiAXp9tku0bDFmIjIzMkygHBwebLFEmIiIi25V7z+ud5FQoFQrodQbsOn4ev508j+OXrkIWAj41vBDZpR2qe7iWakVhIqLyYiJrRnZ29vD19c2TzPr6+kKlMs3iTOZOlImIiMg2FfSc19nD+uCn42dxX5uG8M6t0fnZJ1G/ljcUCgUkqfQrChMRlQcTWTNycfHAli3fo1+/vnmm/hZ3H2tm2KtwLsGz6sydKBMREVGOkvbNVUWqLjPfc16nfLUNX4wdBFeVAxQKRZ7yvOeViCoaE1kzMhgEHBxcsGjRIjRo0BBqtWeJFmPKCnsVTiV4Vp2Liwe2bt2aZzGpLVu+54JPREREJlbSvtnaXbx+GxvifseQ7u0KvOfVXqXKl8Tm4j2vRFSRmMiaWWLiTfTr1w/r10eja9fuJUowFffvA/oMQOVcZDmDQcDHpwH27YtHRkY6zp07i1OnzqJu3QamCp+IiIhQ8r7ZGgkhcPRSAjbsPoJjlxLg4miPEUHtec8rEVVqTGTNLCkpCQCgVnuWuI778AhIKiWwKbbYsgaDgKOjOxwd3TF16iuwt7dDz559yhwvERER5Veavrkyyl24SS8boFJKcFCqkKXTI+7UBWzYfQR/Jd5BNXcXjOrZAb1feBYerk6855WIKjUmsmam1WoAAF5eXmbfV1hYOKZOnYQLF86jceMnzb4/IiKyHrIsY8aMGbhw4QLs7e0xe/Zs+Pr6Gj9fs2YNNm3aZOyvZs6ciXr16hVZh6xDQQs3ffL6K1i5fS/iTl6ETw0vvDegK7q0aAJ7Vc6l4cP3vMoQUELBJJaIKhWlpQOo6jSanES2NCOyZdWv3wCoVCpER39r9n0REZF12blzJ3Q6HaKjozF27FjMnTs3z+dnz57FvHnzsH79eqxfvx7169cvtg5ZhyxZn2/hprHLN2HQyy9gztC+WDduKHq2fsaYxOYyGGSohBI1PNygEkomsURUqTCRNTONJndqsdrs+6pevTpeeullfPddFPR6vdn3R0RE1uPYsWMICAgAADRv3hxnzpzJ8/nZs2fxxRdfYODAgVi5cmWJ6pB10BsMBS7c5FPDC/5P+UGpLHjxJiKiyoxTi81Mq9XAzc0ddnYV80icAQPC8dNPP2Lv3t3o3LlLheyTiIgqv7S0NLi6uhpfS5IEvV4P1b+jcD179kR4eDhcXV3x1ltvYffu3cXWKYgkKaBWV70FkSSVEgqF9bXt+l0N7mhTCly4ycFOBbVr8e2RJKXVtbu8bLHNgG222xbbDFSNdjORNbOkpCR4epZuWnFm5HA4OzuUaX9dunSFp6cnoqK+YSJLRERGrq6uSE9PN76WZdmYkAohMGTIELi5uQEAOnbsiHPnzhVZpzAGg4C2Cj6ixmHQUDg7O1hN2/QGAzbuPYa1vxxAM7/HseD1VzBu+aY8CzdJQlmi9qjVzlbTblOxxTYDttluW2wzYF3trl7drcD3mciamVarKfX9sVnBIWV+Vp2DgwP69euPr79eh+RkLTw8zD+lmYiIKr8WLVpg9+7d6NGjB06cOIFGjRoZP0tLS0NQUBB+/PFHODs74/DhwwgJCUFmZmahdWxNefrminbmSiI+2fwL/r55DwFPN8To4M6o5eWB9ZOGwSDLkJRKLtxERFaPiayZaTSaUo/IKm9cB1KdALdqZdpnaGg4Vq/+Atu2fY/Bg4eWaRtERFS1dOnSBfHx8QgLC4MQAnPmzEFMTAwyMjIQGhqKMWPGYPDgwbC3t0fbtm3RsWNHyLKcr46tKm/fXBFSH2Ri1Y/7sP3QSXi7u+HDyGC0fzrn2fIGgwwVlFApcp4DyySWiKydQghhtY+1zs42VPoh8RdeeA7Nmj2LL75YW+I6HsE9oFIpcb+Mz6oTQqBjxxfg6uqGH3/cWaZtWIo1TXMwFVtsM2Cb7bbFNgPW1e7Cpi9RyVlD31wW5e2bTS3vc2GVOHP5Bmau/wHatAyEtG+BYV394exob5J9WdO/YVOxxTYDttluW2wzYF3t5tRiCynL1OLyUigUGDAgHLNmTcXly5fg59ewQvdPRERE5lPQc2FnD+uDtk3ro0/bZ9G4zmOWDpGIyOz4+B0zkmUZWq3W+HD5itS/fyiUSiWiozdU+L6JiIjIfAp6LuyUr7ZhTP+XmMQSkc1gImtGKSnJkGW5wkdkAaBmzccQGPgiNm7cAIPBUOH7JyIiIvMo7LmwsvXeLUZEVGpMZM1Io9EAADw9K35EFshZ9Ckx8Qb2799rkf0TERGRaRlkGXe1qajtnfepBLW91ZCUvKwjItvBe2TNSKvNTWRLNyL74PW34eJS/gUaunXrCXd3D0RHf4uOHQPLvT0iIiJbZaq+uTyy9QbMifoR91LT8fGoEIxfuTnPc2H5SB0isiVMZM1Io0kCAKjVpRuR1XXtDmcTPKvO0dERwcEh+O67DUhN/QRubu7l2h4REZGtMlXfXFYPsnSY9t/t+P3CFYzq2QG+3tX4XFgismmcg2JGuVOLS7vYk/TXJeDCBZPEEBYWjgcPHiAmZptJtkdERGSLTNk3l1ZqRibGrdqEoxcTML7/ywgPbJ3zXFihhINCBZVQMoklIpvDRNaM/jciW7qpxa7j/g/Sm6+bJIaWLZ+Hn18DREV9Y5LtERER2SJT9s2lcT8lDW9/HoUL125jRkQvBLVpVuExEBFVRkxkzSh3RFatVhdT0nwUCgXCwl7FoUMHcOXKPxaLg4iIiErnxj0t3vxsA24lJWPu8H7o2KyRpUMiIqo0mMiakVargbu7B1Qqy96K3L9/GBQKBTZu5DNliYiIrMHlxLt4a9kGZGTqsOi1AWjVyNfSIRERVSpMZM0oKSnJIs+QfVTt2o8jIKATNm7cAFnmPTRERESVjSQpoVfIyBTZSMnKxMof90BSKrDkzTA08all6fCIiCodrlpsRlqtBl5elk9kgZxFn954YyQOHTqAdu3aWzocIiIi+pckKXE7NQVvL4kyPk5nzohgeDo5Q+3ibOnwiIgqJY7ImpFWqynTiGzGmPGQJ002aSw9evSCq6sbF30iIiIqA3P0zbmyZL0xiQWAxHtaTP5yK1xdHc2yPyKiqoCJrBklJSXB07P0iWx2x0CIF18yaSzOzs7o06cvtm/firS0NJNum4iIqKozR9+cSy8bjElsrsR7Whh4OxARUaGYyJqRVquBp2fpniELANLpU8CJEyaPJzQ0HBkZ6fjhh+0m3zYREVFVZq6+GQAggNreeZ9wUNtbDUnJyzQiosLwDGkmBoMBWq22TFOLXadOhDTuXZPH1KZNW/j61uPqxURERKVkrr5ZlgXW/BiP2cP7GJPZ2t5qLB0dBgcllzIhIioMz5BmkpKSDCFEmaYWm4tCoUBoaDjmz5+Da9euom5dH0uHREREZNOi4n5HVNxRNKtfB+snDYNBliEplXBQqmAwcGoxEVFhOCJrJhqNBgDKNLXYnAYMGIg2bdpAr89Aauo9ZGamQJIUlg6LiIjI5pz+5wa+/Gk/OjVrhHZN/KASSjgoVFAJJZNYIqJiMJE1E40mCQAq1YgsADzxRD3Mnz8fAwb0h59ffQQE+OPq1b+YzBIREVWg5PQHmPl1LGp6umN8/65QKNgPExGVBhNZM9Fqc0Zky3KPrDmlpydj8ODBSEhIAAAkJCQgODgY6enJFo6MiIjINsiywEdRO6BNy8CMiF5wdXKwdEhERFaH98iaSe7UYi+v0k8tTp88HW5u5unUsrN1xiQ2V0JCAvT6bLPsj4iIqCowZd+8ce9RHPzzb/xfcGc0rvOYSbZJRGRrmMiaSe7UYrW69ImsvnUbCLUzoM0wdViws7OHr69vnmTW19cXKpWdyfdFRERUVZiqbz6bkIgvftyHDs80RF//50wUHRGR7eHUYjPJHZFVq9XFlMxP9fthKA4eMHVIAAAXFw9s3boVvr6+AHKS2K1bt8LFxcMs+yMiIqoKTNE3p2Q8wMz1MaihdsN7A3hfLBFReZhlRFaWZcyYMQMXLlyAvb09Zs+ebUycAGD79u1Ys2YNlEolQkJCEB4eXmwda6PVauDhoYYkSaWu6zJnJpQqJbAp1uRxGQwCPj4NsG9fPK5fvwatVoO6df1gMAiT74uIiKiqKG/fLITA3OifcD81HZ+9ORBuTo4mjpCIyLaYZUR2586d0Ol0iI6OxtixYzF37tw8n8+fPx9r1qzBhg0bsGbNGiQnJxdbx9okJSWVaTS2IhgMAo6O7jh+/BR69OiBuLg4S4dERERUpX237xjiz17Gaz07oolPLUuHQ0Rk9cySyB47dgwBAQEAgObNm+PMmTN5Pm/cuDFSU1Oh0+kghIBCoSi2jrXRajVlWuipIvXu3RdeXl5Yu3a1pUMhIiKqsv68ehMrf9iL9k81wCsBLSwdDhFRlWCWqcVpaWlwdXU1vpYkCXq9HipVzu4aNmyIkJAQODk5oUuXLnB3dy+2TkEkSQG12tkcTSi3lBQtqlf3LlN8kkoJhaIi2uaMyMhILF68GBkZWtSuXdvM+yueJCkr7XdqLrbYZsA2222LbQZst91EAJD6IBMz1sfA290VE0O78b5YIiITMUsi6+rqivT0dONrWZaNCen58+cRFxeHXbt2wdnZGePHj8eOHTuKrFMYg0FAa4aVfU3h3r378PGpV6b4PPQyVCplhbRtwIAILFy4EMuWLcf48ZPMvr/iqNXOlfY7NRdbbDNgm+22xTYD1tXu6tXdLB0CVQGSpESWrIfeYMC9tDQ8Vs0Do7p3gJsz74slIjIVsySyLVq0wO7du9GjRw+cOHECjRo1Mn7m5uYGR0dHODg4QJIkeHl5ISUlpcg61kir1cDTs2xTi9M+mAs3t4rp7OrX90OnTp3x9dfrMGbM+GJ/PCAiIrJFJe2bJUmJ26kpeHtJFBLvaVHbW40Fr70Cn2peMBjkCoiUiMg2mCVr6dKlC+Lj4xEWFgYhBObMmYOYmBhkZGQgNDQUoaGhCA8Ph52dHXx8fNC3b1+oVKp8dayVwWBAcnIy1GrPstV/phlgpufIFmTo0JEYMmQgfv55B3r27FUh+yQiIrImJe2bs2S9MYkFgMR7WoxbsQnrJw2Dik89JCIyGbMkskqlErNmzcrznp+fn/HPAwcOxMCBA/PVe7SOtUpO1kIIAU/PsiWydnt2Q+HqALRsZ+LICtalS1fUrv041q79koksERFRAUraN+tlgzGJzZV4TwuDLEOlYCJLRGQqPKOagVarAYAyTy12XvQxlB9V3Ii0SqVCREQk9uzZjb///qvC9ktERGQtSto3q5QSanvnffxebW81JCUvuYiITIlnVTNISkoCgDKPyFrCoEFDoFKpsHbtV5YOhYiIyGo5KFWYN6qfMZmt7a3G0tFhcFByDQoiIlPiWdUMyjsiawk1az6G7t2DEBX1NSZNmgonJydLh0RERGR1btzV4JONv2L+qBDUULtBUirhoFRxoSciIhPjiKwZaDS5iaz1jMgCQGTkcGi1WmzbtsXSoRAREVmlqD1HcfrvG3BQSHBQqKASSiaxRERmwETWDDSanKnFZV212FLat++ABg0aYt261ZYOhYiIyOokpabjh8On0bVVU9RQu1s6HCKiKo1Ti81Ao9FAoVDAw0NdfOECpC1YXGHPkX2YQqFAZORwTJkyEadPn8Qzzzxb4TEQERFVRiXpm7/bewzZBj3CA1tXUFRERLaLI7JmoNEkwcPDA5Iklam+oUFDoHFjE0dVMqGh4XBycsLatRyVJSIiylVc35yakYmtB06gU7PGqFvdetbIICKyVkxkzUCr1ZRrWrH9zzugiI0xYUQl5+GhRt++r2Dz5o1ISUm2SAxERESVTXF98/cH/kBGlg6DXmxTgVEREdkuJrJmoNFo4OVV9l9jnZYvhfLTRSaMqHQiI4cjIyMDGzdusFgMRERElUlRfXNGlg6b9h5H2yb10aB2jQqOjIjINjGRNQONJsnqFnp6WPPmLfDccy2wdu1qCCEsHQ4REVGlFnv4FJIzHnA0loioAjGRNQONRmNVz5AtSGTkCFy8eAEHD8ZbOhQiIqJKS6fXIzruKJr71cXT9R63dDhERDaDiawZaLVaq3uG7KP69OkHDw811q790tKhEBERVVo/HT2LeylpHI0lIqpgTGRNTK/XIzlZa9VTiwHA2dkZYWHhiI3djtu3b1s6HCIiokpHb5CxYffvaFynJlo19LV0OERENoWJrIklJ+es9FuexZ5Sl30Bw5p1pgqpzIYMGQ69Xo9vv/2vpUMhIiKyqIL65t0nLyDxfjIiXnoBCoXCQpEREdkmJrImptUmAUC5RmTlx+sAdeuaKqQya9CgIQICOmL9+rUwGAyWDoeIiMhiHu2bZVngm98Oo17NavBv2sCCkRER2SYmsiaWlJSTyJbnHlmHrZuh2LjRVCGVS2TkCFy/fg07d/5i6VCIiIgs5tG++cC5y/jn1j282rkNlEqOxhIRVTSVpQOoarRaDQCUa9Vix7WroVQpgZeDTBVWmXXr1gPdu3dH7dreSE29Bzs7e7i4eMBg4GN5iIjIdjzcNwsh8PWuQ6jl5YHOzZ+0dGhERDaJI7Imljsia+2LPeVydLTHlClTMGzYMPj51UdAgD+uXv0LksRfn4mIyDYd/+sq/rx2C+GBraGSeClFRGQJPPua2P9GZKtGIpuenozw8HAkJCQAABISEhAcHIz09GQLR0ZERGQZ63ceQjV3F3Rt9ZSlQyEisllMZE1Mo9FAoVDAw0Nt6VBMIjtbZ0xicyUkJECvz7ZQRERERJZz5koi/rh8DaEdWsHBjndoERFZChNZE9NokqBWq6FUVo1Da2dnD1/fvM/G8/X1hUplZ6GIiIiILOeb3w7D3dkRvdo+a+lQiIhsWtXItioRrVZTroWeACBl9XoYoirHqsUuLh7YunWrMZn19fXF1q1b4eLiYeHIiIiIKk7K6vW4+MkyHDh3GSHtW8DZwd7SIRER2TTOiTExjUZT7vtjRbVqgNoZ0GaYKKqyMxgEfHwaYN++eNy8eQN3795FnTr1uWoxERHZDElSIsvbE3oHO3z2fwPR8LEalg6JiMjmcUTWxDQaTblXLHaI+gaK/64zUUTlZzAIODq64/ff/0BQUBCOHj1q6ZCIiIgqhCQpcTs1BesHvYZvB72BOd/sQFp2FiSuVkxEZFE8C5tYzohs+aYWO0Z9A2UlSmRzde3aHXZ2doiJ2WbpUIiIiCpElqzH20ui0OnEQQRfPonEe1q8vSQKWbLe0qEREdk0JrImlnOPbNV49M6j1GpPdOjQCbGx2yAEpxYTEVHVp5cNSLynzfNe4j0tDLJsoYiIiAhgImtSer0eKSnJ5Z5aXJn16hWMq1cTcOrUCUuHQkREZHYqpYTa3nkfqVfbWw2pijydgIjIWvEsbEJabc4vtl5e5ZtaXJl169YDkiQhNna7pUMhIiIyOwelCvNH9TM+M7a2txpLR4fBQcn1MomILIlnYRPSaJIAoEqPyHp5VUP79h2wffv3mDx5GhQKhaVDIiKiEpBlGTNmzMCFCxdgb2+P2bNn53tOOABMnToVHh4eGDduHAAgODgYbm5uAIA6dergo48+qtC4LU2XrceKbXuwoJY3HOxUWD9pGByUKhgMnFpMRGRJTGRNSKPRAEC575FN/nYT1GpnQGeKqEwvKKgPxo9/B+fOncVTTz1t6XCIiKgEdu7cCZ1Oh+joaJw4cQJz587F8uXL85SJiorCxYsX8fzzzwMAsrKyAADr16+v8Hgri9P/3MD+M5fxy9SP0adDc6h0YBJLRFQJcGqxCWm1OSOy5V21GM7OOf9VUt27B0GpVCImZqulQyEiohI6duwYAgICAADNmzfHmTNn8nz+xx9/4OTJkwgNDTW+d/78eTx48ADDhg3D4MGDceKE7a2PEHfyAuxVKjz/XNNK3TcTEdkaJrImlJRkmqnFjl+tgnLF8uILWkiNGjXQtq0/YmP5GB4iImuRlpYGV1dX42tJkqDX5zxC5s6dO/jss88wbdq0PHUcHR0xfPhwrF69GjNnzsS4ceOMdWyBLAvsOX0JLzR5Al7frKvUfTMRka3h1GIT0mpzphaXd7Enh+3fQ6FSAmFDTBGWWQQF9cGkSeNw4cJ5NG78pKXDISKiYri6uiI9Pd34WpZlqFQ5lwE//fQTNBoN/vOf/+Du3bvIzMxE/fr1ERQUBF9fXygUCjzxxBNQq9W4e/cuatWqVeh+JEmRc3tMFXD8YgKSUtPRo+0zcJk8GgqFAurXXrd0WBVOkpRV5jstKVtsM2Cb7bbFNgNVo91MZE1Iq9VAqVTCzc3d0qGYXc+evTB58njExm5jIktEZAVatGiB3bt3o0ePHjhx4gQaNWpk/Gzw4MEYPHgwAGDLli34+++/0a9fP3z77be4ePEiZsyYgdu3byMtLQ3Vq1cvcj8Gg4BWm2HWtlSUmAOnYK9S4VmfOtDrZahUyirTttJQq51trt222GbANttti20GrKvd1au7Ffg+pxabUFJSEtRqNZQ28Gy5xx6rhdatX0BMDKcXExFZgy5dusDe3h5hYWH46KOPMGnSJMTExCA6OrrQOq+88gpSU1MxcOBAjBkzBnPmzDGO4lZ1siyw99QltH6yHpwd7S0dDhERPcI2eqMKotVqyr/QkxUJCuqNqVMn4fLlS/Dza2jpcIiIqAhKpRKzZs3K856fn1++cv369TP+2d7eHp988onZY6uMziYk4l5KGjo1a2zpUIiIqABVf+iwAmk0mir9DNlH9ezZGwAQG7vdwpEQERGZVtypC7BXSfBvmj/ZJyIiy2Mia0Iajabcz5AFgOStP8Kw8zcTRGRederURcuWrTi9mIiIqhRZFthz6iJaN37COK3YWvpmIiJbwUTWhGxtajEABAUF49SpE0hIuGLpUIiIiEzi3NVE3E1OQ8dmjYovTEREFsFE1oSSkpJMMiLrtGwJlAut456koCBOLyYioqol7tRF2EkS2j00rdia+mYiIlvARNZEsrOzkZaWapIRWftff4Lixx9MEJX5+frWQ7NmzREbu9XSoRAREZVb7rTi5xvXg6uTg/F9a+qbiYhsARNZE9FqtQBgU4s95erVqw+OHTuK69evWToUIiKicvnz2k3c0aai07OcVkxEVJkxkTURjSYJAEwytdja5E4v/uEHTi8mIiLrFnfyAlSSEv5NG1g6FCIiKgITWRPRaDQAYHOLPQGAn19DNG36NFcvJiIiqybEv9OKG+WdVkxERJUPE1kT0WpzE1kTjMg6OgJOTuXfTgXq1asPjhw5jFu3blo6FCIiojI5f+0WbmtT0amg1YqtsG8mIqrKmMiaSO7UYlPcI5sctQWGGOtaUKJXr2AIIfDDDzGWDoWIiKhMjNOKn84/rdga+2YioqqMiayJ5E4t9vKyvanFANCoUWM0atQYsbGcXkxERNZHCIG4UxfRqqEv3JwcLR0OEREVg4msiWi1SZAkCW5u7uXelvMn86D8cLYJoqpYQUF9cPBgPO7cuWPpUIiIiErlwvXbuKVJQceCphXDevtmIqKqiomsiSQlaaBWq6FQKMq9Lbt9e6DY/ZsJoqpYvXoFQ5Zl7NgRa+lQiIiISiXu5AVISiXaFzCtGLDevpmIqKpiImsiWq3GJlcsfljTpk+hfn0/Ti8mIiKrkjutuGVDH7g7c0EnIiJrwETWRJKSkkyy0JM1UygU6NUrGPv370VS0n1Lh0NERFQiF2/cxs2kZHR6trGlQyEiohJiImsiWq3GZhd6elivXn1gMBjw008/WjoUIiKiEtlz6iIkpQLtnyp4WjEREVU+TGRNRKvVmGxE0PahCQAAIABJREFUVnh6AV7VTLKtivbMM8/Cx8cXMTFbLR0KERFRsYQQiDt5ES0a+MLDpfBpxdbcNxMRVUVMZE0kKSkJnp6mSWRT1nwNw8bvTLKtiqZQKBAU1Ad798ZBq9VYOhwiIqIiXUq8gxv3tej0bMGrFeey5r6ZiKgqUlk6gKpAp9MhPT3N5hd7yvXqq6/ipZc6ITMzBZmZElxcPGAwCEuHRURElE/cyX+nFReyWjEREVVOHJE1Aa1WCwAmm1rsMnsGlO9PNsm2KpokKeDkZI8xY8agWbNnEBDgj6tX/4Iklf+xRERERKaUs1rxBTT384HaxbnIstbcNxMRVUVMZE1Ao0kCAJNNLVYd/R2Kw4dMsq2Klp6ejL59g5GQkAAASEhIQHBwMNLTky0cGRERUV6Xb97FjXvFTysGrLtvJiKqipjImoBGk3MvKKcWA9nZOmMSmyshIQF6fbaFIiIiIipY7rTiDk83tHQoRERUSkxkTSB3USNTjchaMzs7e/j6+uZ5z9fXFyqVnYUiIiIiyu9/04rrQu1a9LRiIiKqfJjImsD/phZzRNbFxQNbt241JrO+vr7YunUrXFw8LBwZERFRDklSIl2vw+wRwZj0andIEi+HiIisDVctNoH/TS02zYisXKs2YG+dX43BIODj0wD79sVDo7mPy5cvw87OmasWExFRpSBJStxOTcHbS6KQeE+L2t5qLB0dhppu7jAY5ELrWXPfTERUFfEnSBPQaJKgUqng6upmku2lLv8ShnX/Ncm2LMFgEHB0dEd6uh79+vXDjh07LB0SERERACBL1huTWABIvKfF20uikCXri6xn7X0zEVFVw0TWBDQaDdRqTygUfMTMw/z8GqBOnbrYvXuXpUMhIiICAOhlgzGJzZV4TwuDXPhoLBERVT5MZE1Aq9WYdKEnlykToBz7rsm2ZykKhQKdOnXGvn17oNcX/Us3ERFRRVApJdT2Vud5r7a3GpKy6EuiqtI3ExFVFWZJZGVZxrRp0xAaGoqIiIg8j2O5e/cuIiIijP+1atUKGzZsgE6nw9ixYzFgwAAMGzYMV65cMUdoZqHRJEGtNl0iqzpzGoqTJ0y2PUsKDHwRqakpOHbsqKVDISIigoNShQWvv2JMZnPvkXVQFn3/a1Xqm4n+n707j26qWv8G/s3UtElnOjCVQBkUFYWKDHpBEBFEwFKGFpRBQC8IiAwqk1ILtIgCMiMCggilULGAogwKgn2dfihe4CJQwCAFG6BJk87N8P5RG+wtHaBJzknz/azlWs1pztnPBuzuk733s4nqAqdULTh06BCKi4uRkpKCEydOYOHChVizZg0AIDQ0FFu2bAEA/Prrr1i6dCmGDBmC5ORkqFQq7NixAxcvXsS8efOwYcMGZ4TncHq9Ho0aNRI6DFHq0uVxSKVSHDnyNTp27CR0OERE5OEsFiu+Of475gzvgxYNwyCTSqGUyqss9EREROLjlBnZ48ePo0uXLgCAtm3b4tSpUxXeY7PZMG/ePMTHx0MmkyEjIwNdu3YFAERGRuLChQvOCM0pDAa9Q2dk65LAwCC0a/cwjhzhPlkiIhKHr4+fwZavfoBSIofcJmUSS0TkhpwyI5ubmwtfX1/7a5lMBrPZDLn8VnPffPMNWrZsicjISABA69atcfjwYTz55JP47bffkJWVBYvFAplMVmk7MpkEgYHCH2Ku12ejfv1Qh8Uik0shkYijb47Qu3cvJCUlwmotRHBw1WftymTSOtPvmvLEPgOe2W9P7DPguf0mcSosLoFWl40ubVoKHQoREdWCUxJZX19f5OXl2V9brdZySSwA7NmzByNGjLC/HjhwIC5cuIARI0YgKioK999/f5VJLFB6zIvBkO/Y4O9QUVER8vLyoFL5OywWX00klF5ywfvmKJ06dYXVOh9ffPEV+vWLrvK9gYGqOtPvmvLEPgOe2W9P7DPgXv0ODXXMMWokXhev3YDVZkOrxuF3dJ+leQvIeY4sEZFoOGVpcVRUFI4ePQoAOHHiBFq1alXhPadPn0ZUVJT99cmTJ/Hwww9jy5YtePLJJxEREeGM0BzOYCgt4e/IpcW5i5fDsmatw54ntIcfbg8/P38ew0NERII7l5kFAGjZMOyO7qtrYzMRkbtzykeLPXv2RHp6OuLi4mCz2ZCYmIi9e/ciPz8fsbGxyM7OhlqtLnfuqkajwbJly7Bx40b4+flhwYIFzgjN4fT6bACodsmsJ5PL5ejS5XEcOfINbDYbz9slIiLBnM/UwV/ljfAgf6FDISKiWnBKIiuVSpGQkFDuWvPmze1fBwcHY/fu3eW+HxwcjE2bNjkjHKcyGPQAHDsj6zvtFci85EDSEoc9U2jdu/fAvn17kZFxHi1bVpyhJyIicoXzmVlo2Sj8jj9UrYtjMxGRO3PK0mJPkp1dOiMbFOS4RFZ2IQM4f85hzxODbt2eAABWLyYiIsGYLRZcvHYDLRvd2bJioG6OzURE7oyJbC2VzcgGBXFpcVU0mqZo1iwSR458I3QoRETkof7IuokSiwWtGt1ZoSciIhIfJrK1pNeXJbI8R7Y63bv3QHr6MRQVFQkdChEReaBzV0oLPbVqfOczskREJC5MZGtJr8+GXC6HWu1b/Zs9XLduPZCfn4+ff/5R6FCIiMgDncvUwUepQKN6/PCZiMjdMZGtJb1ej6CgYIdW4jU/0Aa2h9o67Hli8a9/dYFcLucxPEREJIiMTB1aNAyDVHrnY3ZdHZuJiNwVE9laMhj0Dl9WnDf/HVgX172qiL6+fnjkkY7cJ0tERC5nsVqRcVV31/tj6+rYTETkrpjI1pJen+3Qo3fquu7de+Dkyd9w/fp1oUMhIiIPcuWGHgXFJWh1FxWLiYhIfJjI1pJer0dwsGMrFvuNHwvZyBEOfaZYlB3D8+23nJUlIiLXOZ+pAwC0vMsZ2bo8NhMRuSMmsrVkMOgdPiMrvXYVyLzi0GeKRZs2DyE4OJjLi4mIyKXOX8mCl1wGTfjdffhcl8dmIiJ3xES2lvT6bJ4hewdkMhkef7w7jhz5BjabTehwiIjIQ5zL1CGyQSjkMpnQoRARkQMwka2FwsJC5Ofn8wzZO9StWw/odFn4739PCx0KERF5AJvNhvOZOrTk/lgiojqDiWwtGAx6AGCxpztUtk+Wx/AQEZEr/KU3wlRQeNcVi4mISHyYyNaCXl+ayDq62JO5fQfYOnZy6DPFpEGDhrj33tbcJ0tERC5xPjMLAGo1I1vXx2YiIncjFzoAd+asGdm8OfFQBKoAQ75Dnysmjz/+BDZtWo/8/HyoVCqhwyEiojrs3BUdZFIJIhuE3vUzPGFsJiJyJ5yRrYXs7GwA4B7Zu9C9ew8UFRXhhx/ShQ6FiIjquPOZWdCE14NSwc/viYjqCiaytVA2I+voqsX+LzwP2ZDBDn2m2HTq9CiUSiUOH+byYiIicq5zmbpa74/1hLGZiMid8KPJWijbI+vopcUSfTYgr9ufMahUKnTq9CiOHGHBJyIicp6bxlxkm/JqXbHYE8ZmIiJ3wp/ItaDXZ8PLywtqtVroUNxSt249cPbs77h6NVPoUIiIqI46n6kDALRkxWIiojqFiWwtGAx6BAYGQSKRCB2KWyo7hufbbw8LHAkRkXu5ceOG0CG4jXNlFYsb8gxZIqK6hIlsLej1ehZ6qoX77rsfYWHhOHz4kNChEBG5lUmTJmHChAk4fPgwrFar0OGI2rkrOjQOCYLK20voUIiIyIG4R7YW9Ppshxd6AoCSLo9D5q1w+HPFRiKRoFu3J3Dw4FewWCyQyWRCh0RE5BaSk5Nx4cIFpKamYs2aNejcuTMGDRqEiIgIoUMTnfOZWbhP06DWz/GUsZmIyF1wRrYW9Hq9wws9AUD+tDdgnT3H4c8Vo+7de0Cv1+M//zkhdChERG4lLCwMERER8Pb2xrlz57BgwQIsW7ZM6LBExZhfgL/0Rofsj/WksZmIyB0wka2F0hlZLi2uja5duwMAjhzhMTxERDU1efJkxMbGwmg04t1338WaNWuwdu1afPvtt0KHJiq3Cj1xfywRUV3DpcW1YDDonbK0OCAuBjKFDNiy0+HPFpvQ0FA8+GBbHDnyDaZMeU3ocIiI3MKQIUPw2GOPVbienJwsQDTi5chE1pPGZiIid8BE9i4VFBSgoKDAOTOyhYWA2XMmy7t1ewKrVy+HyWREYKBK6HCIiERv7dq1+OCDD+yvFQoF6tevj/Hjx6Nx48a3vcdqtSI+Ph5nz56Fl5cX5s+fD41GU+F9b775JgICAjB9+vQa3yNW5zKzEB7oh0C1A8YWDxubiYjEjj+R75LBoAcAp+yR9TTduj0Bs9mM9PTvhA6FiMgtNG7cGP369UN8fDyio6OhUqnQtm1bzJ49u9J7Dh06hOLiYqSkpGDatGlYuHBhhfds374d586du6N7xOz8FR3PjyUiqqOYyN4lvb40kQ0OdvzSYk/zyCMdoVKpeQwPEVENXb16FYMHD0ZkZCRiYmKQm5uLwYMHw2KxVHrP8ePH0aVLFwBA27ZtcerUqXLf//XXX/Hbb78hNja2xveIWX5RMf68kc39sUREdRSXFt8lzsg6jlKpxJgxY9C7d29kZl6BTCaHWh0Ai8UmdGhERKJUUlKCY8eOoV27dvjll19gNpvx559/oqCgoNJ7cnNz4evra38tk8lgNpshl8uh0+mwcuVKrFy5El9++WWN7qmMTCYRxTaRS+dvwGYD2t3TxCHxyORSSCTi6JuryWRSj+u3J/YZ8Mx+e2KfgbrRbyaydyk7OxsAnFLsqbhnb8h8POesOplMgmHDhiIuLg5arRYajQZpaWlo0qQFk1kiottYuHAhFi1ahMTERLRq1QqJiYk4ceIEZs6cWek9vr6+yMvLs7+2Wq32hPSrr76CXq/HSy+9hOvXr6OwsBCRkZFV3lMZi8UGgyG/lj2svV/OXgYANAwMcEg8Pt2fgo+PQhR9c7XAQJXH9dsT+wx4Zr89sc+Ae/U7NNTvtteZyN6lshlZZxR7KpjwCpSBKsBN/nHVVl5ejj2JBQCtVovo6GgcO5YOb29/gaMjIhKfrVu3YuXKleWuRUREVHlPVFQUDh8+jD59+uDEiRNo1aqV/XsjRozAiBEjAAC7du3CxYsXERMTg/3791d6j9idz9QhyFeFEH/f6t9cA542NhMRiR0T2btUNiPLpcW1V1JSbE9iy2i1WpjNJQJFREQkbhcuXIDRaIS/f80/7OvZsyfS09MRFxcHm82GxMRE7N27F/n5+eX2xVZ3j7s4n5mFlo3CIJFIhA6FiIicgInsXTIY9FAqlVCpHL+2PCC6D2RyKZD6ucOfLUYKhRc0Gk25ZFaj0UAu95zl1UREd+LChQvo2LEjgoKCIJWW1m387ruqK79LpVIkJCSUu9a8efMK74uJianyHndQbDbj0l830fHeSIc909PGZiIisWMie5cMBj0CA4P4Sa8DqNUBSEtLQ3R0dLk9siz4RER0e4cPHxY6BFG79NcNWKxWtGLFYiKiOouJ7F3Kzs52yv5YT2Sx2NCkSQscO5aOa9cycf36dTRq1IxJLBFRJc6fP4+5c+fCZDKhX79+aNmyJbp37y50WKJx7ooOANCqMc+QJSKqqyo9R7akpARLlixBUVERAODIkSN47733YDabXRacmBkMeqdULPZUFosN3t7+yMi4iL59++Lo0aNCh0REJFrz589HUlISAgMDMWjQIKxYsULokETlXGYWfL2VaBAcIHQoRETkJJUmsklJSSgsLLQvnW3bti0KCwuxcOFClwUnZnq9noWenKBfv37w9w9ASso2oUMhIhI1jUYDiUSC4OBgqNVqocMRlfNXstCChZ6IiOq0ShPZ06dPY9asWfDy8gIABAYGYvbs2Thx4oTLghMzvd55S4uL+g+AbdBgpzxb7Ly9vfHsszH44os9yM3NFTocIiJRCggIwPbt21FQUIAvvvjijqoX13VmixUXrt1w+P5YTx6biYjEqNJEVqlUVrgmkUjg4+Pj1IDchTOXFheOfhHWceOd8mx3MGTIUOTn5+Pzz3cLHQoRkSglJibiypUrCAoKwqlTp7BgwQKhQxKNy7qbKDab0bKRY/fHevrYTEQkNpUWewoODsbJkyfRpk0b+7WTJ08ykQVQUFCAwsJC5xV7ys8HvJzzaHfQoUNHNG3aDDt3bkdc3HNCh0NEJDq+vr544YUX7HUs8vPzERgYKHBU4nAu8+9CT46uWOzhYzMRkdhUmsjOmDEDL7/8Mho0aICIiAhcvXoVmZmZWLZsmSvjEyW9PhsAnDYjGzBskEefVSeRSDBkyFC8+24Srlz5E40bRwgdEhGRqMTHx+Po0aMICwuDzWaDRCLB9u3bhQ5LFDIydVAq5IgIc+wY7eljMxGR2FSayNavXx+pqak4fvw4dDodevXqhbZt27JwAkoLPQFgsScnGjw4DosWJSI1NQWvvjpd6HCIiETlP//5Dw4dOgSptNIdQh7rXGYWmjcMhYx/NkREdVqlP+XT0tKwZ88eZGZmoqSkBFlZWbhy5YorYxOtWzOyTGSdRaNpis6dH8OOHcmw2XieLBHRP2k0GvuyYrrFarXhfKYOrRy8P5aIiMSn0hnZCxculHudn5+P1atXY8SIERg0aJDTAxOzshlZniPrXEOGDMWUKRPxyy//h4cffkTocIiIROPatWvo3r07NBoNAHBp8d+uZhuQX1TMRJaIyANUmshOmzatwrWioiIMHz7c4xNZg6EskeWMrDP17x+NmTOnY8eOZCayRET/sHDhQigUCqHDEJ1zV7IAAC0dXeiJiOo0i8UMvf46zOZioUNxmawsiehWPcrlXggKCoVMVmmKWv79d/JwpVLJgRO3lhY7a49sYdxzUKlYGtHPzx99+vTFZ5+lIiEh6bZHQhEReaJJkyahU6dOGDx4MFq1aiV0OKJxPlMHuUyKpvXrOfzZHJuJ6i69/jq8vVVQq+t7TD0gmUwKi8UqdBh2NpsNeXlG6PXXERLSoEb33FElhOvXr6OgoOCugqtL9Ho9vL29oVKpnPL8orjnYBsx0inPdjdDhgyDwWDAwYP7hQ6FiEg0du/ejX/9619YuXIlhg8fjp07dyIvL0/osAR3PlOHZvVD4CW/o8/pa4RjM1HdZTYXQ63295gkVowkEgnUav87mhWv9Cf91KlTy/1lFhUV4cyZM5gxY0btoqwDDAa9UysWS27eBMz5gNw5ibI76dq1G8LD62PHjmT07dtf6HCIiERBKpWia9euAIDU1FRs2bIFn376KQYMGIDY2FiBoxOGzWbDucwsPHZ/c6c8n2MzUd3GJFZ4d/p3UGkiGxcXV+61t7c3IiMj4evre3eR1SHZ2dlOLfTkP2Y4z6r7m1wux8CBQ7Bu3WrcuHEDISEhQodERCS4RYsW4euvv0aHDh3w4osv4sEHH4TVakVMTIzHJrLXc0zIyStwWqEnjs1E5CzXrl3FyJFD0arVPfZrDz/8CF544UUAwNdfH0BSUgK2b/8MISGh9vccPXoEO3eWnvBRVFSEYcOGo3v3J7Fv316sX78WDRs2sr+3efMW6N8/BkuXLgIA/Pe/p9C69f2QSCQYNmwEHn30X7Xux+7du/DMM/0h/59VMXPnzsScOQkO36JaaSLboUOHcq9zc3Px2WefITk5Gfv27XNoEO7GYNCz0JMLxcYOw+rVy5GWloqxY8cJHQ4RkeCaNm2KXbt2Qa1W269JpVKsXLlSwKiEdT5TBwBoyYrFROSGmjZthpUr1932e3v3pmHgwFjs3r0LY8b8GwBw8uRv2LFjGxYteh8qlQo5OQb8+98voGnTSABAz569MX78pArPKmtj0KB+WLJkpUNr0GzZ8hF6936mQiL79ttJDmvjn6rdRJKRkYFPPvkEX375JXr16oWFCxc6JRB3YjDo0ayZc5YuUUWtW9+HNm0eQkpKMhNZIvJoRUVF2L59O0aMGAGdToeZM2fCy8sLb7zxBkJDQ9G4cWOhQxTMuStZkEiA5g24coeI6o6rVzNhNBoxfPgLGD36OYwcOQZyuRx796Zh8OCh9po9AQGBWLduM/z8/HDmzOlatRkbG40HHngQV678iaio9sjLy8WZM6fRpIkGb745D1lZf2HRokQUFxfBy0uJ11+fhZ9//gHZ2TcRHz8LgwcPxZo1K6BQKNC//wCsX78WW7emQqfLwjvvzEdJSQm8vb0RH59Yq8nBShPZ/fv3Y+vWrSgpKUFMTAwuXbqEhISEu26oLsnOzuZxMC4WGzsUc+bMwO+/n8G997YWOhwiIkHMnz8fKpUKVqsV8fHxaNOmDVq2bIn4+HisWrVK6PAEI5NJ8XhUK/TseB8U3nLIpOKqxklEVJ0//riEiRNfsr+eO3c+QkPD8Pnnu/HMM/3h6+uLBx54EN9++w169HgKN25cL7d0GAD8/f3tXx88+BVOnz5pf92377Po3fuZGsXy11/XsGzZWoSEhODpp5/AunWbMGXK6xgy5FmYTCasWrUMgwbFonPnx/B///cT1q5diblz52PTpg2Ij0/E6dMnUVxcjA8/3AwAWL9+LQBg1ar38fzzo9Cp06P4+uuDOH/+LDp06HTXf2aVJrJvvPEGRo4ciVGjRiEoKAgHDhy460bqEpvN5vRiT1TRgAGDER8/Bzt3bsebb74tdDhERIK4evUqNmzYgKKiIhw/fhzLly+HQqHAxo0bhQ5NMDKZFFkmI2Zv2I2rNwxoGBKIFa/EIdzPn8ksEbmN2y0ttlgsOHDgSzRo0BDp6cdgMuXg00+voUePpxAe3gA6XRZatrx1BNt//nMCwcGlx49VtrS4Jvz9A1C/fn0AgI+PD5o1K12urFb7ori4CBcvZmDLlo+wdWtpovq/S4kBoEkTTYVrly9r8cADDwIAevToeVex/VOlieyBAwewa9cuPPfcc2jVqhX0en2tG6sLSkqKkJycjGbNIlFYaIRaHQCLxbGHCReOGgOVimem/lNoaCh69OiJnTu3Y9astyCTyYQOiYjI5coqOv7yyy9o06aNvXBGUVGRkGEJqshqxqTl23H1hgEAcPWGAZOWb8eWmaMhv7NTBqvEsZmIXO3779Nx7733Yf78d+zX4uJikJFxHs880w9r165EVFR7+Pj4QK/PRmJiQrn33q3qqgc3adIUQ4c+jzZtHoJW+wd+/fX43/dJYbOV5kVSacVnaDTNcObMaTzySEccOPAljMYcDBoUV+F9NVVpIhsWFoZx48Zh3Lhx+P7777Fjxw488cQT6NWrF9544427btCdyWQS/PXXn5gyZQq0Wi00Gg3S0tLQpEkLhyazRdED4ROoAgz5DntmXTBkyFDs3/8ljh37Ft26PSF0OERELqdSqZCSkoL9+/ejb9++sFqt+PTTT9GgQc0Oj6+LzFaLPYktc/WGARarFXKJ4xJZjs1E5Gp7936Gfv2iy13r1+9ZfPrpDrzxxmz07z8AU6ZMgFwuR1FRIcaNm4AWLVri3LnfKywt9vX1xcKFSxwS14QJk7F48UIUFxejqKgQkydPBwA89FBbTJ/+CkaPfqnS+959NxGbN2+At7c33nprXq3ikNjK0uYayM7Oxp49ezBq1KhaNeooJSUWGFw4oBQWGtGly2PQarX2axqNBseOpcPb27+KO++MNPMK/P19YPCr57BnuovAQFWlf6dFRUV44IGWePLJp7BmzXoXR+Y8VfW5LvPEfntinwH36ndoqJ/QIVQpOzsbGzZsQMOGDTFs2DD88MMP+Pjjj5GQkIDQ0NDqH+ACrh6bzRIrhidtLJfMNgwJLJ2RtTkukeXY7B7/DzuKJ/YZ8Mx+Bwaq8PvvZ1C/fsWlsHWZTCbOWgJ//aWt8HdR2dhcbdXifwoODhZNEiuEkpLickksAGi1WpjNJQ5tx2/CSzyr7jaUSiWiowdix45tyM01wddX3L9wEhE5WnBwMF577TX7686dO6Nz584CRiQ8pVSOd8cNwmtrU8vtkVVK5Q79JY1jMxGRuDjuo0oPoFB4QaMp/wmBRqOBXO7Yw32pcrGxQ1FQUIC9e3cLHQoREYmAxWLF/zuZgdnP98GBd1/FlpmjWeiJiMgDVJrIpqamorCw0JWxiJ5aHYCUlBR7Mlu2R1atDhA4Ms/x8MOPIDKyOXbsSBY6FCIiEonjZ7V4f+chKCVyyG3iXC5HRESOVWkie/bsWfTr1w/x8fE4c+aMK2MSLYvFhjNnzmHp0qU4fz4Dx46lO7zQE1VNIpFgyJChSE8/hj//vCx0OERELjVx4kRs3LgRFy9eFDoUUckymBAe6LhaFUREJH6VJrKzZ8/Gvn370KlTJyxduhRxcXHYuXMnCgoKXBmf6Jw7dx4xMTHw9g6At7c/k1gBDB5cWqZ7587tAkdCRORay5cvR5s2bZCamopx48YhKSkJ33//Pcxms9ChCUpnMCIsiHUTiIg8SZXFnhQKBXr37o3evXtDp9Ph448/Rrdu3fDjjz+6Kj7RMRqN8Pb2hlLpvLPkCsZPglrt5bTnu7uIiCZ48cWX0LXrozCZbkCh8HLKeb5ERGIjlUrxyCOP4JFHHgEA/Pnnnzh8+DCSk5OxfPlygaMTRm5BEfIKixEW4NxElmMzEZG4VFvsqaioCJ9//jlmzZqF48ePl6uW6ImMRiP8/Jy7fKm419Ow9e3n1DbcmUwmwejRozF+/Hg0bx6JLl0ew+XLGZDJqj68mYioromIiMCIESM8NokFSmdjASA8iGMzEdV9Wu0fmDjx9ue01tQPP/w/zJs310ERCafSGdkff/wRaWlp+PHHH9GjRw+8/vrraNWqlStjEyWTKQf+/s4dLGUZ5wE/byA8wqntuKu8vBzExcXaj0LSarWIjo52+Hm+REQkfjqDCQAQ5uQ9shybiYjEpdJEdsWKFYiNjcXbb78NLy8upSljNBqdnsj6Tp/Ms+qq4KrzfImIxOrGjRsICQkROgxRyNLr6nfFAAAgAElEQVSXzsiGBTp3aTHHZiLPcNCQj/05eQ59Zq8ANXoGqir9/r59e/HFF3tgtVoxaFAsduxIhlQqxYMPtsX48ZNw48YNJCTMgc1mQ3BwPft9gwb1w9atqVAqlVizZgU0mqaoX78Btm79GAqFHNeuXcUTT/TEyJFj8Mcfl5CUlABvbx/4+HjD37/01JVPP03Bt98ehtlshq+vLxYseBcHD36F779PR1FRITIzr+C550aiT59+OH36FJYtew82mw2hoWGYNWsuRo9+DsnJuyCTybB69XLce+99eOKJJx3651eZSpcWf/LJJwgKCoJCUXpG6u+//46jR4/W6KFWqxVvvfUWYmNjMXz48HJJx/Xr1zF8+HD7f+3bt0dycjJKSkowbdo0xMXFYdiwYbhw4UItu+YcpUuLedyOkHieLxF5ukmTJmHChAk4fPgwrFbPPmpGl2OCTCpBPX+10KEQEd01Pz8/vPPOEnz00YdYtmwN1qzZgBs3dPj55x+wffsnePLJXlix4gN07dqt2mdlZV3D/PmLsHbtR9i27WMAwPr1azB27L+xbNlqPPDAgwBKc7acnBy8//5qrF69HmazGWfOnAYA5OXlYtGi97Fw4RJ88skmAMCiRQswa9ZcfPjhZrRv3wGZmVfw4INt8dNP38NiseDHH/8funR53Cl/PrdT6YxscnIydu/ejbZt28LX1xcAsGrVKly7dg2xsbFVPvTQoUMoLi5GSkoKTpw4gYULF2LNmjUAgNDQUGzZsgUA8Ouvv2Lp0qUYMmQIDh8u/SRg+/btSE9Px/vvv48VK1Y4qp8OYzIZUb9+A6HD8GhqdQDS0tIQHR0NrVYLjUaDzz5LY8EnIvIYycnJuHDhAlJTU7FmzRp07twZgwYNQkSE5y17zdKbEBrgB5m02rIfRETV6hmoqnL21FmaNNHgypU/YTDoMX36KwCA/Px8ZGZm4tKli+jVqw8AoE2bh/DZZ6kV7rfZbv0OHBnZAnK5HHK5HEqlNwDg0qWLaN36gb+f0RaXL2shlUqhUCgQHz8bPj4+0Ol09ir4LVqUbikNCwtHcXExAECvz0bTps0AADExgwEA/foNQGrqdlitNrRv38E+CeoKlf7U37VrFzZv3mxPYu+9915s3LgRO3bsqPahx48fR5cuXQAAbdu2xalTpyq8x2azYd68eYiPj4dMJkOzZs1gsVhgtVqRm5sLubzKgsqCyclx/h5ZqprFYkOTJi1w7Fg6Tp06haVLl+Kvv64ziSUijxIWFoaIiAh4e3vj3LlzWLBgAZYtWyZ0WC6nMxidvj+WiMjZJBIpGjRohLCwcLz//mqsXLkOgwbF4v77H4BGo8Hp0/8BAJw581/7PV5eXrh58wZsNhsyMs7941kVn9+kSVOcOlX6jN9/L511zcg4j6NHjyAhIQlTprwOm836j2dUfEhISAj+/PMyAOCTTzbh228P46GH2iIz8wo+/3w3nnnm2dr/QdyBSrPF2x0xo1aroVZXv3QnNzfXngADgEwmg9lsLpecfvPNN2jZsiUiIyMBACqVCpmZmXj66aeh1+uxdu3aatuRySQIdPEnJiaTEaGhwU5tVyaXQiJxfd/EQCaT1rjffn4+qFevHnr37o17770X+/Z95eTonONO+lyXeGK/PbHPgOf225kmT56M8+fPo3///nj33XcRHh4OAIiJicHkyZMFjs61dAYT7tc0FDoMIqJaCwoKQmzsc5g48SVYLBY0aNAQTzzRE2PHjsfcuTNx6NABNGzYyP7+YcNG4LXXJqN+/Ybw86u6TsC0aTMwd+5MJCdvQWBgIJRKbzRuHAEfHx+MGTMcXl4K1KsXghs3rlf6jNdem4WkpARIpVLUq1cPQ4YMAwA89VRvHD78NSIjmzvmD6KGKk1kFQoFsrOzERwcbL+WnZ0Ni8VS7UN9fX2Rl3drk7TVaq0ww7pnzx6MGDHC/nrTpk3417/+hWnTpuHatWsYOXIk9u7dW+V5rRaLDQZDfrXxOIrZbEZeXh68vFRObVcxaRp8fZUu7ZtYBAbe+Z/tiBGjkZiYgJ9++hWtWt3jpMic5276XBd4Yr89sc+Ae/U7NNS5BYMcZciQIXjssccqXE9OThYgGuFYrFZczzEhPMj5f2/5U16Dr6/zzpAnIs/Vp8+to7169epjX0b8T+++W3HFTd++z6Jv34qzoFFR7e1f79mzH0DpbOqqVR/ar8tkUlgsVixfXvXkoVKpRGrqXgBA69b3Y/Xq9RXeY7FY0K9fdJXPcYZKE9mXX34ZY8aMQXR0NCIiInDt2jWkpqbW6BzZqKgoHD58GH369MGJEydue2zP6dOnERUVZX/t7+9vX1MdEBAAs9lco6TZlUym0sqIAQHOLfZU8nh32AJVgJv84ie0558fhcWL38GGDR/gnXeWCB0OEZHTBQcHIz4+HkVFRfZrSUlJVX74WxfpTfkwW6wuWVrMsZmIqKIFC+KRk2PAggXvurztShPZ9u3bY/ny5di9ezeOHDmCRo0aYeXKlWjUqFFlt9j17NkT6enpiIuLg81mQ2JiIvbu3Yv8/HzExsYiOzsbarW63NrrUaNGYdasWRg2bBhKSkowZcoUqFTiWopmNJYmsmXlqp1FdvI/pWfVNeW5vTUREhKCmJjBSElJxqxZbyEgIFDokIiInGrGjBl4/vnnUb9+faFDEVSWwTVH7wAcm4mIbmf27HjB2q6yolJERAQmTpx4xw+VSqVISEgod61581trpoODg7F79+5y31er1aIvUlGWyPr5Ofkc2Tdn8Ky6OzR27L+RnPwJkpM/wbhxd/5vlojInYSEhGDw4MFChyE4ncEEAAh3wYwsx2YiInFhrfo7ULa0mFWLxadNm4fQsWNnbNiwTnRL0omIHK1Ro0ZYt24djh07hu+++w7fffed0CEJQqf/e0bWBXtkiYhIXJjI3oFbS4uZyIrRiy+Og1b7Bw4dOiB0KERETlVSUoJLly5h3759+OKLL/DFF18IHZIgsgwmqJRe8PX2rL3BRERUzdJioPQonaNHj9oPwgWA6GjXV6USA6MxB4DzlxbT3Xn66b5o2LAR1q9fi169nhY6HCIip0lKSir3WqfTCRSJsLIMRoQF+t32vEMiIqrbqk1kX375ZYSFhaFBgwYAbn84rqe4tbTYucWe6O4oFAq88MJYLFjwNs6e/R333HOv0CERETnF8uXLsW3bNpSUlKCwsBBNmzb1yFnZ6waTSwo9ERGR+FSbyNpsNrz33nuuiEX0cnJKZ2SdvbQ4b9Zc+PlxmdTdeP75UXjvvYXYsOEDLFq0VOhwiIic4ujRozh69CgSExPxwgsv4O233xY6JEFk6Y1o1TjcJW1xbCYiEpdqE9l77rkHv/32G1q3bm2/5uXl5dSgxMpoNMLb29vp/Td36Miz6u5SvXr1EBMzGDt2JGP27Lk8ioeI6qTAwEB4eXkhLy8PGo0GBQUFQofkckUlJTDkFbikYjHAsZnIU3z1f6fx5U8nHfrMpzu0Qe/291f6/cuXtUhMfBtyuRwymQzh4fVxzz2tMXDgEBiNRrz66suYOPFVbN36MRQKOa5du4onnuiJkSPHICvrLyxalIji4iJ4eSnx+uuzYLVa8cYbU+DvH4DOnR9Du3YPY8mSRVCpVAgKCoKXlxIPPvgQLl++jAkTJsNiseCFF4Zh/fotbpXnVVvs6aeffsKUKVPQu3dv9O7dG08/7bl7D00mo0v2x8p/+hGS7/+f09upq8aO/Tfy8/OxbdsnQodCROQU9evXR2pqKnx8fLB48WLk5uYKHZLLXTeU9jnURUuLOTYTkbP8/POPuOeee/H++6sxYsRoDBkyDF99Vbpd5ODBr/DUU70BAFlZ1zB//iKsXfsRtm37GACwatUyDBoUixUrPsDQoc9j7dqVAIDs7JtYunQVnntuJN57LwmzZs3F8uVr0bBhYwBAz569cezYEVgsFvz44/eIimrvVkksUIMZ2T179rgiDrdgNBpdUrFYnfg2pDyr7q61afMQOnV6FBs3rsNLL42HTCYTOiQiIodKSEjAtWvX0Lt3b3z22WdYutTztlJkGUrrVoS7KJHl2EzkGXq3v7/K2VNn6Nv3WWzduhnTpk2CWu2Lf/97AlQqNS5duoiDB7/CwoVLcPFiBiIjW0Aul0Mul0Op9AYAXLyYgS1bPsLWrZsBAHJ5aXrXoEFDKBQKAMCNGzcQGdkcAPDQQ+3w9dcHoFar0bZtFH766Xvs27cHo0a96NI+O0K1iezXX39tLyhhs9lgMBiwd+9eV8QmOkZjDgICWOjJHbz44jiMGTMChw4dYAVjIqoz0tLSKlzz8/PDqVOn0KJFCwEiEk7W32fIhgfxJAEicm/fffctHnqoHUaPfgkHD36FrVs3o3//aGzevAGhoWEIDCzdKne7mrtNmjTF0KHPo02bh6DV/oFffz3+93tvLbwNCwvHpUsX0axZJE6fvrVsul+/Adi6dTNycgxo0aKlczvpBNUmsqtWrcKbb76J7du3o2PHjkhPT3dFXKJkNLpmaTHVXtlRPB9+yKN4iKjuuHDhAgDgxIkT8PHxQbt27XDy5EmYzWaPOxpPZzABAEICfAWOhIiodu699z4kJLwJmUwGqVSKSZOmIjKyOZYuXYQ335xX5b0TJkzG4sULUVxcjKKiQkyePL3Ce6ZNewNJSQnw8VFBoZAjNDQMAHD//Q8gM/NPDBgw2Cn9crZqE9mgoCC0a9cO27dvR0xMDHbt2uWKuETJZDKiYcNGQodBNSCXy3kUDxHVOdOmTQMAjBkzBuvWrbNfHz16tFAhCUZnMCHYTw0vebW/yhARiVqjRo3xwQcflbtWWFiI+vUb4pFHOgIAoqLaIyqqvf37e/bst9+7ZMnKCs9ct26T/ev//vc03nlnKYKCgrBu3Wr7kmOr1Qpvbx/07NnL0V1yiWqLPSkUCvz8888wm804duwYrl+/7oq4RMlVe2TJMZ5/fhSUSiXWr/9A6FCIiBwqOzsbRmPp0lq9Xg+DwSBwRK6XZTC6bH8sEZErnTz5G156aSRGjRoDqbTadK1awcHBmDp1Al5+eSwyMs4hJmYwrl7NxOjRz6N372egVrvnypZqP8Z8++23cfHiRYwfPx7Lli3DK6+84oq4RMlVS4tz5y2En5+309up6+rVq4eBA4dg585kzJnDo3iIqO4YN24cBg4cCF9fX+Tm5iIxMVHokFxOpzehWYMQl7XHsZmIXKVNm4fw8ccpDnte9+5Ponv3J8tdCw4OxqZN2xzWhhCqTWTDw8Nx8eJF/PLLL5gwYQKaNWvmirhEx2w2Iz8/zyUzspY2DwI8q84hxoz5N7Zt24Jt2z7B+PEThQ6HiMghevXqhV69euHmzZsIDAz0uOrsNpsNOoMRHVu77ncSjs1EROJSbSK7ZMkS/PXXX7hw4QIUCgXWrVuHJUuWuCI2UTEacwDAJYms4tvDkPgqgYcfdXpbdV2bNg+iU6dHsWEDj+IhorojPT0dmzZtQlFRkf3axx9/LGBErmXML0RhiRnhga7b7sOxmahus9lskNyuLDC5jM1mu6P3V5vIHj9+HFu3bsXw4cMxYMAAJCcn33Vw7qxsL5K/v/OP31EtfZdn1TlQ2VE8Bw/uR+/efYQOh4io1pKSkjBr1izUr19f6FAEYT9DNsh1e2Q5NhPVXXK5F/LyjFCr/ZnMCsRmsyEvzwi53KvG91SbyFosFhQVFUEikcBisThkw7E7MplKB00ev+N+/nkUDxNZIqoLGjRogEcf9dyZQZ2+9Oid0AAWeyKi2gsKCoVefx25uZ5TOE8ikdzxDKizyeVeCAoKrfn7q3vDyJEjERMTg+zsbAwePBijRo2qTXxu69aMLBNZdyOXy/Hmm3MRHh6C7OxrUKnUUKsDYLGI639eIqKaqlevHt566y3cd9999tmD2NhYgaNyHZ19RpZjMhHVnkwmR0hIA6HDcKnAQBUMbr7nv9pE9umnn8ajjz4KrVaLiIgIBAUFuSIu0SlLZAMCnL+0mBxLJpOgQ4f2iIkZAK1WC41Gg7S0NDRp0oLJLBG5pcaNGwMAbty4IXAkwsgymOAllyFQrRI6FCIiEki1iew333yDXbt2lSso8eGHHzo1KDEqK/bEpcXuJy8vx57EAoBWq0V0dDSOHUuHtzf/PonI/cTExNzxPVarFfHx8Th79iy8vLwwf/58aDQa+/f379+PdevWQSKRIDY2FoMHDwYAREdHw8+vdAlv48aNkZSU5JhO1ILOYERooB+kUu5lIyLyVNUmsu+88w4SEhI8fiaybI+sK4o95b63jGfVOVBJSbE9iS2j1WphNpcIFBERUe1MmTIFEokEVqsVV65cgUajqbYY46FDh1BcXIyUlBScOHECCxcuxJo1awCU1sNYvHgxPv30U6hUKvTp0wc9evSAWq0GAGzZssXpfboTWXoTwly8P5ZjMxGRuFSbyLZs2RIdO3Z0RSyi5so9spYWLXlWnQMpFF7QaDTlklmNRgO5XCFgVEREdy8lJcX+tdFoxFtvvVXtPcePH0eXLl0AAG3btsWpU6fs35PJZNi3bx/kcjlu3rwJAFCr1fj9999RUFCA0aNHw2w2Y+rUqWjbtq2De3PndAYTHm7ZxKVtcmwmIhKXahPZHj16IDY2FpGRkfZrYlhW5GpGoxE+Pj5QKJyf/Hjt/xIStRfwrx5Ob8sTqNUBSEtLQ3R0tH2P7JYtW1jwiYjqBD8/P1y+fLna9+Xm5sLX19f+WiaTwWw2Qy4v/VVALpfjwIEDSEhIwOOPPw65XA5vb2+MGTMGgwcPxh9//IEXX3wRX331lf0eIZgtFtw05iIs0LUzshybiYjEpdqRaMuWLRg7dqx9f4ynMpmMLtsf67NmRelZdRwsHcJisaFJkxY4diwdZnMJsrKy8Oqrk5GQsBDt2j0sdHhERHcsNjbWfnRCdnY2OnfuXO09vr6+yMvLs7+2Wq0VEtKnnnoKTz75JGbMmIG0tDT069cPGo0GEokEzZo1Q2BgIK5fv44GDSqv7imTSRAY6LwiTFdvGmC12dCsYYhT2/lfsg9XQSKRILBvP5e1KRYymdSlf9Zi4Il9Bjyz357YZ6Bu9LvaRDYkJAR9+vDsTaPRyKN33JjFYrMXdrLZFMjIyMD8+fFITd3Dg6+JyO0sWbLE/rVSqURISEi190RFReHw4cPo06cPTpw4gVatWtm/l5ubi3HjxmHjxo3w8vKCj48PpFIpUlNTce7cOcTHxyMrKwu5ubkIDa36jD+LxebUIx0yLusAAL5KpUuPjggwWyGXS93+uIq7UReO6bhTnthnwDP77Yl9Btyr36Ght59QrTaRLVtW9M+z6qZOnerY6NxATo6BiWwd4efnj6lTX8fs2W/gyJFv0L07Z76JyD2sXLmy0u9NnDixynt79uyJ9PR0xMXFwWazITExEXv37kV+fj5iY2PRr18/PPfcc5DL5bjnnnvQv39/WCwWzJw5E0OHDoVEIkFiYqKgy4qB0kJPABAWyDGZiMiTVTsade/e3RVxiJ4rlxaT840YMRoffLAG8+bNxeOPd4dUKhU6JCKiapXNvB46dAiNGzdGVFQUTp48iWvXrlV7r1QqRUJCQrlrzZs3t38dGxuL2NjYct+XyWRYvHixAyJ3HJ2htPiiq/fIEhGRuFSbyA4YMMAVcYie0WhEw4aNhQ6DHESpVGLmzDkYP34sPvssFQMHDhE6JCKiasXFxQEADh48iPj4eABA//798cILLwgYlWtl6Y3w8/GGSukldChERCQgTkPVkNFodNlZuqZV62D5aLNL2vJkAwYMwgMPPIikpHkoKioSOhwiohrT6/X2SsUXL15Ebm6uwBG5js5gQniQ62djOTYTEYkLE9kacuXSYmujxkBEhEva8mRSqRRz5sTj8mUtPv54o9DhEBHV2KxZszB16lR07doV06dPx8KFC4UOyWV0BpMg+2M5NhMRiYuwFRvcRElJCfLz811W7EmZ9ikkKiXwVF+XtOfJunfvgS5dHseSJYsQF/cc90ETkVto3749PvroI2RmZiIiIgJqtVrokFwmy2DEg80aubxdjs1EROLCGdkaMJlKC0u4KpH13rQB0nVrXdKWp5NIJJgzJx43b97E6tUrhA6HiKhG9u/fj+HDh+O1117Dpk2bsHr1aqFDcon8wmLkFhQJUuiJYzMRkbgwka0Bo7E0keVsXd3Urt3DePbZGKxZsxJZWVlCh0NEVK2PPvoIO3bsQGBgIF5++WUcOnRI6JBcwl6xOIjjMRGRp2MiWwO3ZmRdU+yJXG/mzDkoLi7CkiXvCB0KEVG1pFIpvLy8IJFIIJFI4OPjI3RILpFlKD1DNpxnyBIReTwmsjVQNiPrqqXF5HqRkS0wfPgobNmyCRcvZggdDhFRldq3b49p06YhKysLb731Ftq0aSN0SC6RxTNkiYjob0xkayAnJwcAE9m6burUN+DlpURS0nyhQyEiqtLUqVPx7LPPYvDgwejWrRtmzJghdEgucd1gglQiQT1/X6FDISIigTGRrQGjsTSRddUeWeOGLbBs3+GStuiW8PBwjBs3Abt378Kvvx4XOhwiogrMZjMOHDiAH374AV27dsXYsWPRpk0bvPrqq0KH5hJZeiNCAnwhl7n+1xeOzURE4sJEtgZcvUfWVq8eEBLikraovAkTXkG9evUwf348bDab0OEQEZUzffp07N+/H6tXr8Ynn3yCI0eOIDo6Gq1btxY6NJfIMpgE2x/LsZmISFx4jmwNuHqPrHL7VkhUXkD/wS5pj27x8/PH1KmvY/bsN3DkyDfo3r2H0CEREdldvnwZu3btQnFxMQYOHAiFQoGPP/4YzZs3Fzo0l9AZjLg3ooEgbXNsJiISF87I1oDRaIRKpYJCoXBJe97bt0L68WaXtEUVjRgxGk2aNEVaWioKC40wmW6gsNAImUwidGhE5OF8fUv3hnp5ecFqtWLjxo0ek8RarTZcN+QiXKBCTxybiYjEhTOyNWAyGXmGrAdRKpVYsuR9BAb6okuXx6DVaqHRaJCWloYmTVrAYuGSYyISXr169RAYGCh0GC6jz81HicWCcJ4hS0REYCJbI0ajkRWLPUyHDu3tSSwAaLVaREdH49ixdHh7898CEQkjIyMD06ZNg81ms39dZvHixQJG5nw6+9E7/BlMRERMZGvEaMxhIuthSkqK7UlsGa1WC7O5RKCIiIiA999/3/51XFycgJG4XpaeZ8gSEdEtTGRrgEuLPY9C4QWNRlMumdVoNJDLXbNPmojodjp06CB0CILR5ZgAAOFBTGSJiIjFnmqkdGmxa47eAYCcbamw7PncZe1RRWp1ANLS0qDRaACUJrGffroLarXr/h0QEdEtOr0JPl4K+Pl4C9I+x2YiInFhIlsDOTkuXlqsUpX+R4KxWGxo0qQFjh1Lx7lz57B8+QosXboUeXkFQodGROSRsgxGhAb6QSIRqII8x2YiIlHh0uIacPXSYu+NH0Kq8gLiRrqsTarIYrHB29sf3t7+yMn5BVu3fgK5XIl3310qdGhERB5HZzAhXMBCTxybiYjEhTOy1SgpKUFBQYFLZ2SVez6DJHWny9qj6vXu3QcTJ76KzZs3IDU1RehwiIg8js5gRJiA+2M5NhMRiQsT2WoYjaVVElm1mGbNegudOj2K6dMn4+zZ34UOh4jIYxSVmJFtyhd0RpaIiMSFiWw1jMYcAHBpsScSJ7lcjnXrPoJKpcaYMcORm5srdEhERB7h+t8Vi3n0DhERlWEiWw2TqWxGloksAfXrN8DatRuQkXEe06dPhs1mEzokIqI6T2f4++gdzsgSEdHfmMhWg0uL6X917doNr78+C7t27cTmzRuFDoeIqM7T6UvHYiH3yBIRkbiwanE1hEhkc9L2ITBQBRjyXdYm3ZlXX52On3/+EXPmvIF27aLw0EPthA6JiKjOyvp7RjY0QLhElmMzEZG4cEa2GmV7ZF15/A6Jn1QqxapV6xAaGoYxY0bAYNALHRIRUZ2lM5gQ5KuCUsHP34mIqBQT2Wrc2iPrukTWZ9VySJcsdll7dHeCg+vhww834dq1q5g0aRysVqvQIRER1Uk6g1HwQk8cm4mIxIWJbDXKlha7ckbW6+BXkOz7wmXt0d1r374D4uPnY//+L7Fq1XKhwyEiqpOy9EaEBwm7MopjMxGRuDCRrUZOTg5UKhUUCoXQoZBIjR07Dv37D8ChQ1/i+vVMmEw3UFhohEwmETo0IiK3Z7PZoDOYBJ+RJSIiceFmk2qYTEbuj6UqSSQSrFy5BhcunEGfPr2h1Wqh0WiQlpaGJk1awGLhET1ERHcrt6AIBcUlCOPRO0RE9A+cka2G0Wjk0TtUA2aMGjUKWq0WAKDVahEdHY28vByB4yIicm9ZhtItPuGckSUion/gjGw1jMYc+PsHuLZRb29AIXNtm1QrJSXF9iS2jFarhdlcIlBERER1Q5a+9OgdoffIcmwmIhIXJrLVMJmMCAgIdGmbOdt38aw6N6NQeEGj0ZRLZjUaDeRy7q0mIqoN3d8zskLvkeXYTEQkLlxaXI3SpcUunpElt6NWByAtLQ0ajQZAaRK7bds2qNX8t0NEVBs6gwlymRRBvmqhQyEiIhFhIlsNIfbIqha/A+mC+S5tk2rHYrGhSZMWOHYsHRcvXsKWLZ/gtddew6lTp4UOjYjIrWX9fYasVCpsJXiOzURE4uKUpcVWqxXx8fE4e/YsvLy8MH/+fPtM1fXr1zF16lT7e8+cOYNp06ZBqVTis88+AwAUFRXhzJkzSE9PF7zQkhBVixXHvoVELgUmTK3+zSQaFosN3t6l/1ZCQ0v/bb/++hTs3v0lpFJ+ZkREdDd0ehPCAoQv9MSxmYhIXJySyB46dAjFxcVISUnBiRMnsHDhQqxZswYAEBoaii1btgAAfv31VyxduhRDhgyBTCZDTEwMAODtt9/GwIEDBXwiEjsAACAASURBVE9iS0pKUFBQIHgc5H7q1auHt96ahylTJiIlZRuGDn1e6JCIiNySzmDEQ80jhA6DiIhExinTRMePH0eXLl0AAG3btsWpU6cqvMdms2HevHmIj4+HTHarCuDJkyeRkZGB2NhYZ4R2R4zG0gITTGTpbgwd+jweeaQj3n57DrKzbwodDhGR2zFbrLhhzEU4z5AlIqL/4ZRENjc3F76+vvbXMpkMZrO53Hu++eYbtGzZEpGRkeWuf/DBB5gwYYIzwrpjOTkGAHD50mKqG6RSKRYtWoqcnBzMnx8vcDRERO4n25QLi9WGsCDhlxYTEZG4OGVpsa+vL/Ly8uyvrVYr5PLyTe3ZswcjRowod81oNOLixYvo1KlTjdqRySSlpfCdphgA0KBBmJPbKU8WFgqJxNl9EyeZTFqn+v3YYx0wefJkLFmyBGPHjsajjz5W4T11rc815Yn99sQ+A57bb6q9sjNkxbBH1hYUzHNkiYhExCmJbFRUFA4fPow+ffrgxIkTaNWqVYX3nD59GlFRUeWu/fzzz3j00Udr3I7FYoPBiee5ZWbqAAAymdKp7VSwbjMCA1WubVMk6mK/J06cjpSUHRg//mUcOnQUCkX5s2XrYp9rwhP77Yl9Btyr36GhwidMdIvOUJrIhgcJvzLK+NEnPEeWiEhEnLK0uGfPnvDy8kJcXBySkpIwc+ZM7N27FykpKQCA7OxsqNVqSCTlS+lfunQJjRs3dkZId+XWHlmeBUp3z9fXF/Pnv4MzZ07jww/XCh0OEZHbyDKUjsNhgfyAgYiIynPKjKxUKkVCQkK5a82bN7d/HRwcjN27d1e4b+zYsc4I566ZTMIUe1LPj4dUKQdem+PSdsl5+vTpi549e2HRokQ8++wANGokng9siIjESqc3wtdbCbW3UuhQODYTEYkMD7esgtGYA8D1iaz8/36C5McfXNomOZdEIkFi4ruw2ayYM2eG0OEQEbmFLINJNIWeODYTEYkLE9kqlC0tZtVicgSNpimmTn0dX3yxBwcPfiV0OEREoqczmHj0DhER3RYT2SoYjUaoVOoKFZeJ7tb48ZPQqtU9mDnzNeTns2AIEVFVdAYj98cSEdFtMZGtgslkdPmyYqrbvLy88M47S3D5shbvv/+e0OEQEYlWQVExjPmFCOOMLBER3QYT2SoYjcIkstYGDQEWA6qzHnusCwYPjsOqVctw7txZocMhIhIlXU7Z0TvimJHl2ExEJC5cM1uFnJwcQfbHmtas51l1dVx8/ALcvHkdBQU5yMy8AplMDrU6ABaLTejQiIhEQacvTWTFMiPLsZmISFw4I1sFkymHS4vJKerXD8OCBfMxduwYNGvWFF26PIbLlzMgk0mqu5WIyCOUnSEbzj2yRER0G0xkq1C6tDjA5e2q57wB6bSpLm+XXCcvLwdxcXHQarUAAK1Wi+joaOTl5QgcGRGROGTpjZBIgJAAX6FDAcCxmYhIbLi0uApCJbLyUychkfMzhrqspKTYnsSW0Wq1KCkphre3QEEREYmIzmBCiL8v5DKZ0KEA4NhMRCQ2/IlcBVYtJmdRKLyg0WjKXdNoNPjjj0vIyTEIFBURkXjoDCbR7I8lIiLxYSJbieLiYhQWFjKRJadQqwOQlpZmT2Y1Gg22b9+ON998E0891Q1nzvxX4AiJiISVxTNkiYioCkxkK2E0lhaZYCJLzmCx2NCkSQscO5aOP/74A8eOpaNVqwcwY8Zc5OXl4emne2DPns+EDpOISBA2mw3XDSYWeiIiokoxka2E0VhadEeI43cszVsALVu5vF1yLYvFBm9vfzRs2Bje3v6wWGzo1KkzDh06itat78PYsSMxb95cWCwWoUMlInIpQ24+is0WhAWJ58Nkjs1EROLCYk+VMJnKZmRdX+wpd/FyyHlWnceqX78B0tL2YfbsN7BixVKcPPkb1q7dgODgekKHRkTkdDKZFHKlDJtnvoAAlTdkMiksFqvQYXFsJiISGSayleDSYhKSUqnEe++9j7Zt22HGjGl46qnuSE1NQ/36ISgpKYZC4QW1OgAWi03oUImIHEYmkyLLZMSk5dtx9YYBDUMCseKVOIT7+VeZzMpkUhQr5TCj9BcbryKzKJJfIiJyHi4trkROjnBLi32nvQLZ+HEub5fE5/nnR2L37i/xwAP3w2i8gS5dHkPz5pHo0uUxXL6cAZlMInSIREQOU2Q125NYALh6w4BJy7ejyGqu9B6ZTAqdXIrRp66g3/FLGH3qCnRyKWQyx/6Kw7GZiEhcmMhW4tbSYtcnsrILGcD5cy5vl8Tp4YcfwYoVKzFmzBj72bNarRbR0dHIy8sRODoichdWqxVvvfUWYmNjMXz48ApnWe/fvx8DBw7EoEGDsHPnzhrd42hmq8WexJa5esMAi7Xy2dVipRxTz1zFtaISAMC1ohJMPXMVxUrHLjrj2ExEJC5MZCtRVuyJS4tJHGwVfoHUarUwm0sEioeI3M2hQ4dQXFyMlJQUTJs2DQsXLrR/z2KxYPHixdi0aRNSUlKwfv16ZGdnV3mPM8ilMjQMCSx3rWFIIGTSyn9dMQP2JLbMtaISVD6HS0REdQET2UqU7ZEVYmkx0f9SKLzsZ86W0Wg0kMsVAkVERO7m+PHj6NKlCwCgbdu2OHXqlP17MpkM+/btg5+fHwyG0hlRtVpd5T3OoJTKseKVOHsyW7ZHVimtfHbVZLaggbL8z8IGSgWLgBAR1XH8OV8Jo9EItdoXcjn/iEh4anUA0tLSEB0dDa1WC41Ggw0bNuA//zmFDh0eFTo8InIDubn/v707j4+qvvc//jpzZkkyM0kgCwQCkbAoSr0WrdpaKrZS+/PWFq0CFsUCypVLpQgqYNUi8AMsAlZvXSu1UnequLS1/WmxUuy196q0ZVGLQhDDErZM1lnP748skGTCEjI5k5n38/Hgkczke875fHPIfOcz360an8/X/Ng0TSKRSHM753Q6+eMf/8j8+fO58MILcTqdxzwmHtM0yM3N6nCcPp+HZ+64nlA0its0yfFmYhjx1wPYVhvi3m17WHhqEXd8tItdwTBFHhfLT+9DT7eJ4e54HK2ZTgeGcXJ1665M05F29U7HOkN61jsd6wypUW9lae2oqgrYNqw4MuwLmB71tMlh0ahF//6DWLduPZFIGIfD5M4772D16hdYs+Z3fPGLZ9sdoogkOZ/PR01NTfPjWCzWJiH95je/ycUXX8ycOXNYs2bNcR3TWjRqcagTtqhxY0IEKivr4v48FLOYu30v+yMxeoQirBxWTBCLbXVhnv9sP/+Rn42jnQS4I7ynnYHH4+qUunU3ublZaVfvdKwzpGe907HO0L3qXVDgj/u8hha3IxCwL5GtWXgPsWXLbbm2JK9o1CIjIxufL4+srFxmz76LgoJCxo8fQ1nZdrvDE5EkN3z4cN5++20ANmzYwJAhQ5p/Vl1dzTXXXEMoFMLhcJCZmYnD4TjqMXZ7dG8lnwYj3NqnBz7DwKwNkVUbZsfBGl7aV83LB2uOfZIToLZZRCS5qEe2HYFAQPNjJakVFhby9NOr+fd/H8X3v38lv/3t/yM3t4fdYYlIkho1ahTr169n3LhxWJbFokWLePXVV6mtrWXs2LFcdtlljB8/HqfTyamnnsp3vvMdDMNoc0wyWF9VxysHa/heTx/n+jJa/OxbOVmsD9Tx+N5KzvF66KcRTiIiKcmwLMuyO4iOCoejCesSv+SSkfTo0ZNnn30xIec/Gv/U63G7nez/2cNdfm27dadhDp3lZOv8zjt/4aqrvsuXvnQezz33Eh6PpxOjSxzd6/TRnerd3vAlOX6JbJsB9oYjTP10L73dTu47pQBXnOHD+8NRpny6h2KPk+UlBZidMMRYbXP3+BvuLOlYZ0jPeqdjnaF71VtDi0+QnUOLHbvK4fOdtlxbup+vfOWr/OxnD/LOO39hxoxpdOPPpkREjipqWSz5/CAR4Pa+PeMmsQB5LpMf9s5lS12YF/ZXd8q11TaLiCQXJbLtaBhanGN3GCLH5corxzJ37p385jfPc889C+0OR0QkIZ7aV8XGuhDTe+fS13302VEjszP5mj+TJysCfFqvPbdFRFKNEtl2BAKVtvXIinTEjBm3MH78BJYvX8rTT6+yOxwRkU7195ogT++rYlROFt/IOfaWEYZhcFPvHHymg5+WHySs0SoiIilFiWwcwWCQYDCoRFa6FcMw+OlPVzBy5NeZNWs6a9e+aXdIIiKdojISZUn5Afq4nfyw9/GPlspxmtxclMunwTBPVVQlMEIREelqSmTjCAQCAPbtI3vOuVjnnW/LtaV7c7lcPP74kwwZchqTJ0+grOxT6usDVFXto74+gGl23p6KIiJdwbIslu06RCAa4/a+Pch0nNhbly/7MxmVk8Wz+6v4sC7U4TjUNouIJBclsnFUVVUCkJ1tzxzZmjvmEfu/ybHFgXQ/fn82zzyzmhEjRlBVdYARIy5g4MBSRoy4gB07tiqZFZFuZc3BGv67up7rC3MYlOHu0Dn+s1cOeU6TpeUHCcY6NsRYbbOISHJRIhvH4R5ZLfYk3VOfPn1ZseI+Jk6cSFlZGQBlZWWMHj2amppKm6MTETk+W+tD/GJvJef7Mhjdw9vh83hNB7P65PJZKMIvK/QaKCKSCpTIxmH30OLsiddgjrnKlmtL6nC5nM1JbJOysjIiEa3eKSLJyzQdRLPc1Ge5iWZ5ODc7k1lFuRgnuRfscG8Gl/Xw8tKBGv5REzzh49U2i4gkl6OvXZ+mmhJZv9+eRNY4eACc+oxBTo7L5aakpKRFMltSUoLDYdoYlYhI+0zTwV6ng5kbd7IrGKbI42Lp0D70jMSIRmMnff7rC7N5r7qeVwO1nJbvwzIMnIA7GDnm+dU2i4gkF70ix1FVZW+PrEhn8HpzWLNmDSUlJUBDEvv444/zox9N5513/mJzdCIibYU8TmZuKWdXsGHkyK5gmFu3lBPydM7n7pkOB3efks/V/fK4YdPnXPbeNiZt3MlepwPT1FsiEZHuRK/acQQCTYs9KZGV7isatejffxDr1q3n00+3sW7dekwzgw0bNjB69KXMnXsL1dXVdocpItIsAs1JbJNdwTCRTrxGcXYWd3+8u0WyPLMTk2UREekaSmTjsHtosUhniUYtMjKy8fnyyMjI5owzzuStt/7KlClTWbnyMUaO/Ap/+cvbdocpIgI0zHcq8rhaPFfkcXXqPKiuSJZFRCTxlMjGEQhU4vX6ME175hKGR1yIddHXbbm2pD6v18vChffw8su/xzQdXHHFt5k9e6Z6Z0XEdu5ghOVD+zQns0UeF8uH9sEd7Lw0s6PJstpmEZHkonE0cQQCAVuHFdfOmo07NwsO1doWg6S+88//CmvXvsPixQt49NEHefPN/8cvf7mKwYNLCYdDuFxuvN4cotGO7bkoInKiotEYhcDKYcVE4LgXYjoRTcly01zcIo+L+af2xqoPHfU4tc0iIslFiWwcdieyIl0lKyuLBQsW8+1vf5eVKx/GskKMGHEBZWVllJSUsGbNGvr3H6RkVkS6TDQaw6wN0TQmKpqA8x+ZLNdHYyz4ZA8ZMYu7++VhnuQ2PyIi0jU0tDiOhkQ2x7br54y7AvOyf7ft+pJ+zjvvfFasuI/Jkyc3b9dTVlbG6NGjqa4+aHN0IiKdqylZ9tSGyAlGuMibwd9qgjyw+xCWFf+DO7XNIiLJRYlsHFVVlfb2yNbXQ12dfdeXtBSNRlrsOQsNyez27du48cZJ/Pa3r1Kn/5cikoL+vYeXcXk+fneoluf2t7NegNpmEZGkokQ2Dg0tlnTkcrmb95xtUlJSgsPh4K23/sTEieMZOrSUKVN+wKuvvkxtbS2maVBfH6Cqah/19QFMU0PyRKR7+kFBNhdlZ7KyIsDaSs2DFRFJdkpk4wgEAvj99g0tFrGD15vDmjVrmpPZpjmyp59+Fhs3buWFF17me98bw7p1f2by5GuZMGEsmzZ9wIgRFzBwYCkjRlzAjh1blcyKSLfkMAxmFfXgzCw39+46yD9qg3aHJCIiR6HFnuKoqlKPrKSfaNSif/9BrFu3nkgkjNPpal612Ol0cuGFF3HhhRdxzz3L+Otf11NY2INrrhnfZk7tCy+sZuvW7Zx++jCKivpgtFo4xTQNamoq+fzzA5imUysji0jScDsMflKcx4ztFcz7bD/3nVJA/1Zb9YiISHJQIttKMBgkGAzamsiGRn0LM1MNp3S9aNQiIyO7xePWnE4nI0ZcSFXVvrhzamtra/j+968CICcnl9NPP4OhQ09n6NAzOP/88/F63Vx++eVaGVlEkpLfdLCwX0My++PP9nP/KQX0cJpqm0VEkowS2VYCgQAAfr99iWzdtOl4tFedJLmmObVHJrMlJSWUlAzglVf+wObNG9myZTObN2/k+eefpbq6ihdffJFrrrm5TS/uunXrWyTQIiJ2KnI7WdAvj1ll+7jzs/0sLckHtc0iIklFiWwrgcAhAA0tFjmGpjm1o0ePbtG7mp3dk/PP/zLnn//l5rKWZfHZZzvIyHC024urRFZEksmQTDe39+3B3TsP8MzBGib0y6MiEsWR5cYdjBCNxuwOUUQkrWmxp1aaemRt3Ud29KWYF3/dtuuLHI8j59R++uk21q1b3+4QYcMw6N+/hOzsnLgrI2/evIkxY0azdu2b7e7hKCLS1b7sz+Su/nmM7JVDxYivUf6VrzJp4072Oh2Ypt5CiYjYSa/CrRxOZNU7JHIsTXNqfb48MjKyjznPNd7KyC+++BK7d1ewefMmxo69nJEjv8Kzzz5FMNiwYqi2+BERO51XkM3dH+8m1Pgh265gmJlbygl5NKhNRMROSmRbSYY5siKp6she3O3bt7Nu3XpOOWUwV155Ne+9t5H7738IgOnTp3L22cN44YWn2b79X9riR0RsE6EheT3SrmCYiD3hiIhIIyWyrVRVNSSyOTnaR1YkEZp6cfv0KW7Ri+vxeBg3bjxvvfUOzz+/hjPOGEZRUSFXXHF5m8Whamoq7ayCiKQRJ1DUagueIo9Li4yIiNhMr8OtBAINb5A1tFjEHoZhMHLk1xk58uscOLAr7uJQgUAl4bBGTohI4rmDEZYP7UPIMAhZFkUeFz8Z0pvNB2r4Qoa24xERsYsS2Vaahhb7fH7bYgh+53LMLLdt1xdJFllZ3rhb/Hz88UeMGTOG88//Ct/4xje5+OJvMmTIqRiGgWka1NRUEg6HcLnceL052qNWRDosGo1RCJjXjscy4Bdn9OXhsn38bn8184rzOM+fYXeIIiJpSUOLW6mqCuDz+TFN07YY6ifdQOzGqbZdXyRZxFsc6qWX1tCzZy+mTr2J/fv3c/fddzBixLmcc84XeOih+9m6dcsJz6k90QWlOlr+8893JuT8XVEHkXQWjcYIXTMR77RpuOrCTMrzU5rhYv7n+3m/pt7u8ERE0pIS2VYCgYD9w4praxv+iaS5eFv8lJQM4vTTv8Cdd97Nn//8Vz74YDPLlt3PsGFn8m//NowxY65qM6f2X//azK9+tZLf/vZV3n33v/n000+oqgpgWRamabBjx9bjTn5PpvyAAae0KR+LxaitreXgwQPs3r2LvXt3sW3bRy3Ov23bRxw8uI9Dhw4SDAbbbFGU6Do0HdPR5DpRCbyScelSR7TNXtPB4n55FLud/OSzA2ysDdocnIhI+jGsbrxpYzgc5dChzk34Jk68hk8++Rdvv/1up573ROSMvhSn08H+1a/ZFoNdcnOzOv2eJrt0rDMkpt6BQAWDBg1s8/xbb73FyJEj2zyfkZHB6tWrmTZtWpvhy4899gt+/OM7iEYjRCJRotEo0WiE5cuXMXXq1DblH3zwQaZN+yGGYWAYDQmVYRg88MD9ccvff//9XHXVVYRCoRYxvfjii9x8881tyq9YsYIrrrgCAIfDQWZmFpmZmWRlZfHIIw9z4403tjnml798gp/97AFM08TlcuF0OjFNJ1OmTGb8+O+3Kf/CC7/hjTf+hMvlxu1243K5cLvd9O7dm4KCHs0fEpSUlLB69W9wuTIJh6O43W7cbg8eT8PXhms52LFjK6NHj24+Zs2aNe3uNdyUXCeq/PEqKLBvWkmqSETbnAzitc0HI1Fmle3jQCTKPf3zOTUzNacFpWM7lY51hvSsdzrWGbpXvdtrmzVHtpVAIKAFZES6KbfbE3dO7YABA/nHPz6iomIvFRUV7NtX0fy1V69ecReU8vv9ZGZm4XSamKaJaToxTZP8/Py45QsKChk+/BygIYmyLAvLstotX1xczI03/hCPx4PHk0FGhoeMjEwGDRoct/ygQYNYuHAJtbW11NXVUltbR11dHXV1teTl5cU9xuNxs3nzRsLhMNFolHA4TCQS4frrfxC3fG1tNbffflub3+uLL77ImDFTWvR0X3nl91ok16299NJLzJgxo03v+IMPPsj06T9q8Tt1Ok3uuWcJU6ZMaVP+4Ycf5qabpjfHHgqFiETCPPHEE0yfPr1N+XXr1pORoddw6Ro9nCY/7Z/PzLIKbt+xj5+WFDBQC0CJiHQJJbKtBAKV5Ofn2x2GiHRA05za1r10Pl8umZk59O5d1OaY+vpA3OS3b99iVq9++bjL9+5dxMMPP37c5QsKenHHHfOOu3xubk+mTPnPuPVu75h+/UpYv/5/j7t8SckAtmzZRjgcIhQKNX4NU1iYGzfxHTx4CPff/xDBYJBwOEQwGCIUChIMBunfv6TdhP8LXziTaDTW3MsdjUbJycmJW75nzzzOOOMLOJ1OXC4XLpcbl8tJcXFx3PKRSMv9PkUSLd9lck//fGaV7WPOjn0sK8mnv0fJrIhIoimRbSUQqKS0tNTuMESkA46cUxuJhHE6Xcdctbi95Le945KtfGdeIzu7J15v2/LtJb45ObmMGzc+bkxHS/gfffSJ4y5fVNSHxx47/vJOpxII6XpFbic/7Z/HrLJ93LZjH8tLCujj1lssEZFE0qtsK1VVAfz+HLvDEJEOikatFkNLjzVf8kST35MpH4tFcDicnXr+rqiDncl1Zyb8IolU7HGxpH8+t+7Yx8r9VdxSWohhGDhp2Is2Go3ZHaKISEpRIttKIBAgJ8feRLZ+3HiytI+sSJfpSPLbkfJNCyt09vlPJqbjKX+yyXUiEviOxCRyMo6nbR6Q4eL+0kKCGS7+Y9Pn7AqGKfK4WD60D4WgZFZEpBMpkT1CfX09oVDI9u13guPGk5mbBd1kJTERSX0nk1wnKoHvSEwiHXW8bXOv7EwmbdzJrmDDfO1dwTAzt5SzclgxZm3oqMeKiMjxUyJ7hEAgAGD7qsXG/v0QqQVnlq1xiIiISIPjbZsj0JzENtkVDBMBzMSFJyKSdhx2B5BMqqoqAWzvkc2efC3muDG2xiAiIiKHHW/b7ASKWq1aXORxEYxpWLGISGdKSCIbi8W46667GDt2LNdee22LVSUrKiq49tprm/+dc845PPPMMwA88sgjjB07liuuuIIXXnghEaEdVVOPrN2JrIiIiHRP7mCE5UP7NCezRR4X80/tzfyte/jjoRqboxMRSR0JGVr8xhtvEAqFeO6559iwYQNLlizhoYceAqCgoIBVq1YB8MEHH7BixQrGjBnDu+++ywcffMAzzzxDXV0dK1euTERoR3U4kdWqxSIiInLiotEYhcDKYcVEaHijFa0LYcYs7t11iN3hKNfm+zEMw+ZIRUS6t4Qksu+99x4jRowA4KyzzmLjxo1tyliWxYIFC7j33nsxTZO//OUvDBkyhGnTplFdXc1tt92WiNCOKlnmyIqIiEj3FY3GMGtDzXNiTWBhvzx+tusQv95Xxe5whJuLeuBSMisi0mEJSWSrq6vx+XzNj03TJBKJ4HQevtyf/vQnBg8eTGlpKQAHDx6kvLychx9+mJ07dzJ16lRef/31Lv3EMhBIjjmyIiIiklpchsGsolx6u0ye3FfFvnCMu4p74jO1XImISEckJJH1+XzU1ByeBxKLxVoksQCvvPIKEyZMaH6cm5tLaWkpbreb0tJSPB4PBw4cIC8vr93rmKZBbm7nrewbDtcB0K9f704974ky/vM/wdG5desuTNORdvVOxzpDetY7HesM6VtvSS31P5hMVpbnpM5hGAbXFGTT2+1keflBbi6rYGG/PHq5tImEiMiJSsgr5/Dhw1m7di2XXnopGzZsYMiQIW3KbNq0ieHDhzc/Pvvss3nyySeZOHEie/fupa6ujtzc3KNeJxq1ONSJe63u2bOv8bxmp573hH3z2837LqabdKx3OtYZ0rPe6Vhn6F71Lijw2x2CJKng6O912h7vF+dkkec0mb9zPz/aVsGCfnkMznR3QpQiIukjIYnsqFGjWL9+PePGjcOyLBYtWsSrr75KbW0tY8eO5cCBA3i93hbDhi+66CL+53/+hyuvvBLLsrjrrrswza7dca2qKoDfn93l123N8flOqMoEf/u90SIiItJ1Ortt/qLXw32nFHDHZ/uZVbaPewYUMKSHt3mBKHcwQjSqLXtERNqTkETW4XAwf/78Fs8NHDiw+fuePXvy8ssvtznOjgWejhQIBJJifqx/2hRMpwNWv2Z3KCIiIkJi2uYSj4ufnVLArw5U4fF6mLRxJ7uCYYo8LpYP7UMhKJkVEWmHVhg4QrIksiIiIpIeejpNflhSwN0f72ZXMAzArmCYmVvKCXk0d1ZEpD1KZI/QNLRYREREpKvEDKM5iW2yKxgmYlM8IiLdgRLZI6hHVkRERLqaEyjyuFo8V+RxsS8cIRiz7AlKRCTJKZE9QiBQqURWREREupQ7GGH50D7NyWyRx8Wi04pYvq2Cqdv2sqUuZHOEIiLJR5MvjtAwtDjH7jCom3oTXq+W4RcREUkWiWybo9EYhcDKYcUtVi2+poeXZeWHuHl7BWPyfFyTn43bYRzjbCIi6UGJbCPLsqisTI4e2dAl/4esTtqrTkRERE5eotvmaDSGS95yTQAAG2pJREFUWRuiaQPAKPBFbwaPlBbyyJ5Knt1fzd+q67m1T08GZriOdioRkbSgocWN6uvrCYfDSZHImlv/BR99ZHcYIiIi0siuttlrOpjZpwcLivM4FIlx07a9PL2vCkyDaJabYJabaJYb09RbOhFJL+qRbRQIBACSYtVi3y0/0j6yIiIiScTutvk8fwaPZhby8z2VvFcf4qsOgzu176yIpDF9fNeoqqohkc3JsX+OrIiIiEhr2U6TuX17csfAXtz5kfadFZH0pkS2USBQCZAUQ4tFRERE2pNlOrTvrIikPSWyjQ4PLVaPrIiIiCSv9vad3ROKsD8ctScoEZEupjEojZqGFqtHVkREUlEsFmPevHl89NFHuN1uFi5cSElJSfPPX3vtNX71q19hmiZDhgxh3rx5OBwORo8ejd/vB6C4uJjFixfbVQVp1LTv7Mwt5c1zZBefVsR9n+7l45og1+T7Gd3Th9PQVj0ikrqUyDZq6pFNhkS29uZb8fk8dochIiIp5I033iAUCvHcc8+xYcMGlixZwkMPPQQ0rNx/33338eqrr5KZmcnMmTNZu3YtX/3qVwFYtWqVnaEnhWRqm9vbd3ZGYQ4P7j7Eo3sD/LGylh/2zuXMrOSIWUSksymRbZRMiWz4wouwtI+siIh0ovfee48RI0YAcNZZZ7Fx48bmn7ndbp599lkyMzMBiEQieDwePvzwQ+rq6pg0aRKRSISZM2dy1lln2RK/3ZKtbY6372wft5MF/fL4a3U9D+2p5JayfXwjO5PrC3PIc5lHO52ISLejRLZRIFCJYRj4fH67Q8H85z/AnwGnDLE7FBERSRHV1dX4fL7mx6ZpEolEcDqdOBwO8vPzgYbe19raWi644AI+/vhjJk+ezFVXXcX27du54YYbeP3113E623/7YJoGublZCa9Pl9uwAdN0kPuFM+2O5Jgu7eHl63168MTnB1lVfpD/rglye2kB5/TwEbEsXA6DHIeBwfENPTZNR2re06NIxzpDetY7HesMqVFvJbKNqqoC+Hx+HA7717/y3TlH+8iKiEin8vl81NTUND+OxWItEtJYLMbSpUvZtm0bDzzwAIZhMGDAAEpKSpq/z83NpaKigqKionavE41aHEqSXsvOlDNjBjgdHOpGbfO47ExGZLj4XaCWvAw3P/j7jpb7zkZix7XvbG5uVkre06NJxzpDetY7HesM3aveBQXxOxrtz9qSRGVlZVIMKxYREUmE4cOH8/bbbwOwYcMGhgxpOernrrvuIhgM8uCDDzYPMV69ejVLliwBYM+ePVRXV1NQUNC1gctJ6et2Mql/Pnd/rH1nRSS16BWsUSAQUCIrIiIpa9SoUaxfv55x48ZhWRaLFi3i1Vdfpba2lmHDhrF69WrOOeccrrvuOgAmTJjAlVdeydy5c7n66qsxDINFixYddVixJKcIxN13dn80RjQUociteyoi3Y9euRpVVQXw+5XIiohIanI4HMyfP7/FcwMHDmz+/sMPP4x73LJlyxIalyRe076zRyazRR4Xe0MRbvtkD5f28PL9fD89nVoQSkS6Dw0tbhQIBMjJybE7DBEREZFO1bTvbJHHBdA8R/aUmMW3cr389mAN123dw8q9lVQfx5xZEZFkoB7ZRoFAJYMGDbY7DABqbv8Jfr/2fRMREUkW3bltbm/f2ahhML0ol+/l+XiyIsCz+6t57WANY/L8jO7pxetyEvI4qYhEcWS5G45RoisiSUKJbKOqquSZIxs597yk2qtOREQk3XX3tjnevrNN+rqdzO3bkzF5YZ6oqGRlRYAPQ2H+45QC5mzc2XKl48ZziYjYTYksYFlW42JPyTG02Pm3dzH8HhianpvOi4iIJJt0aJsHZrhY0C+fjbVBMv0ZzPlwV5uVjlcOK8asDdkcqYiIElkA6uvrCYfDSdMj6110Nw7tIysiIpI00qltHpblIdhqcShoSGZDQKY9YYmItKDFnmhY6AnQqsUiIiIiHF7p+EhFHhef1IX4r92HKA9F7AlMRKSRElka5scCSdMjKyIiImKneCsd3zu0D5sPVPP7QzVM/GQP83fuZ0udhhmLiD00tBiorDwEKJEVERERgZYrHcccBo6YhTsYYUwPH9/wZfLywYYVjv9SVc+wTDdX5vm4IDeLiMfVcmVkLQwlIgmiHlmOHFqcHIs9iYiIiNitaaXjAqeJWRtqTkrzXCaTCnN4anBvpvbKoSIS5TeVtWx3GEzauJPL3tvGpI072et0YJp6qykiiaEeWZJvaHH1giX4/Rl2hyEiIiKN1Da3lelwcHlPH9/p4SWQ4WLGlnKtciwiXUaJLId7ZHNykqNHNvqFM6Eb71UnIiKSatQ2t880DLJMR9xVjvdEorx7oJqvZ2eS4zTbOYOIyIlTIsvhRDZZemRdf16L4fPA2V+xOxQRERFBbfOxNK1yfGQyW+RxURuN8dCeSh7bU8mX/Rl8K9fLcK8H0zAwTQchj1NzakWkQ5TIAoFAJYZh4PX67A4FgKwVS9NmrzoREZHuQG3z0TWtcjyzcXhxkcfF8qF9KIzEeGRAIX+orOHNyjrWVdWT73QwoVcuZxf4uWXjzpblQcmsiBwXJbI0zJH1+7NxOLQggYiIiMiJOnKV49Y9rAMyXNyYkcvkwhz+u6qePxyqoW9OJrdoTq2InAQlsjQMLU6WYcUiIiIi3VHTKsdNM2GjrX7uMgxGZGcyIjuTukx33Dm1h2IxKupCDMlw4TCMLolbRLonJbI0JLJ+vxJZERERka7gJv6c2vJghFnbK8gxHXzJ5+FL3gzO9mWQ3biNj+bVikgTJbI0DC1Wj6yIiIhI12hvTm1WMMycPj34W3U9f6sO8kZlHQ5gaKaby/J9DMvzc6vm1YoISmQBqKyspHfv3naH0az63p9przoREZEkora5c7U7pxaDr+dk8fWcLKKWxcf14caktp4Cfya3xplX+/iwYpyaVyuSdpTI0rBq8eDBQ+wOo1l00GDtVSciIpJE1DZ3vmPNqTUNg6GZboZmurmuILvdebW7IlEe2rGPM7LcDMv0cGqmiwyHhiKLpDolsiTf0GL3H36P4XXDV79hdygiIiKC2uZk0N68WiNmsS8S5VcVVUAVJjA4w8Wonj6+VOBntoYii6SktE9kLcsiEAiQk5NrdyjNMh96oGGvOjWWIiIiSUFts/2Otlfto6W9qIrG2FIXYmNtkI21IQbkZjH7w11thiLfN7QPtXUhilxmm5WRm3pwKyJRHFlu9eCKJLG0T2Tr6uqIRCJatVhEREQkiR1tr1oAv+ngXF8G5/oa5jLXtzMUuSpmcf0ne8h0GAzwuCj1uCjNcPFv/gyyPE5mqgdXpFtw2B2A3aqqAgBJNbRYRERERNpqmlfrqQ1h1oaOmmC6aBh6fKQij4uepsHNvXP5Zk4WDuBPgVru332IQy6zubcXDvfgHnQ52BuOELOsNtcwTQfRLDfBLDfRLDemmfZvrUW6TNr3yAYCSmRFREREUk17Q5FzwjH+Tw9vcznLstgTjpKV4Yrbg3soanH91j24DOjjctLH7aSv28mZ/gwG9MjithPswdUCVCKdQ4lsoBJQIisiIiKSSo41FLmJYRj0djuJGkbcxaRyTYPpvXMpD0X4PBShPBzhvZp6vtw7h9u2tJ2De/eQXry2+xB5TpM8p4OeTrPhe5dJrttkr9NxQsOXlfiKxKdEtrFH1u/PsTmSw6p+/ijZ2Zl2hyEiIiKN1DZ3T8fa4udI7fXg9gjH+PYRPbgAMctqdw6u2+FgbWUtVbG2Q5GXn96XpXGGLy85tTfr9lbhdTjwmQZehwOv6SDf48TwOJmV4MT3RBe5UnItySCtE1nTNDjttIG89dZbFBX1xTQNotG2LzpdLda3WHvViYiIJBG1zanvyB7cmMPAEbPaTdAchoGH+NsB9XKa/ObUPgRjFgciUfZHohyIxNgfiVLkdsZNfsMY/GJvoM11lp3el3vjJL53Du7Frz7bh8/hwG868JkNX0uy3PTNzmwx3HnZ0D74YjEcUQuX0dADfSTTdJxQL/GJlm86pqPJ9fEe09HyiUzeu6oOyfShRVd+yJG2iaxpGuzYsZXRo0dTVlZGSUkJa9asoX//QbYns541v8HI8sA3v21rHCIiItJAbXN6aOrBzcvN4tCh2g714LqDEaKAx2FQ5HZS5D78djtqOuImv31dJi+fWkRN1KImFqM6GqMmZtHfE3/ers/pYH84xvZYpLksNCS+t7XacmjWlnJuGVjIrI/KG+I2wG0YuB0GbsPgjiFF/N84yfL8Ib15vvwgLgNchoHLaCj/rb49mB2n/Iqhfdh4sAanAU7DwKTha67HJNOTwa1HJL73Du2DGYkQCsdwGGBiNH5t+JAgw+Vgf5xkuQCLWJz36YlOxjuavCumxK78bVhWnCXYuolwOMqhDn4yWl8fYMSICygrK2t+rqSkhHXr1pORYe982ZzRl+J0Oti/+jVb47BDbmPDkU7Ssc6QnvVOxzpD96p3QYHf7hC6vZNpm5OZ2ubUu6dHc7x17khv1V6nI+5euPGOi2a5mdSYFDQp8rhYOawYszZ0uJxlURON4czOYPR729uc57kvlvD6zoOELYtgzCJkNf6LWfygtJBrN5S1OeaX/9af2Zs+J2xZhBvLhy147Mz+XP+PHW3K/6Kd55ed3pd7P9nbpg63DCxk1ubP4/6ejnWMAc3/HAbcM7QvS+OUnz2okJ98uAsTMAwwMDANuGNIEYu27mlT/o5BvVi+dU9j2YbtXQxg+qBeLPhX2/J3De7FQ5/ujVuHqaWFzD/KMa0TsP9sp/xPjriGgUFTf/p/lBZwd5zy8wb34tFtFXFjmjKggHkncExnlW/9//VEtdc2p22PbDgcapHEApSVlRGJhNs5QkRERETksBOZg9tU/ngWoGpyrF7fJqZhkO00iRJ/wapsh4Or8+MnA+31Evd2mvx6cO8WZS3LIuoy45bPdzp4ZEAhEcsiQkNyHbGgpJ3VoPt5XMwqyiVmNfzeYpbV+BX6euIPwe7jcTI+349lgQVYWFjQ7pDtQpeTEf5MYo3lYhbEgB4uM275bJdJocsk1ljXhmuAz+mIWz7L2f52S1nHOKYpEW/ibad8ptNBUye01Zj+WkCmGb98humgNhb//1PGCR7TWeUj0Pw30pnSNpF1udyUlJS06ZF1Ol1HOUpEREREpONOJPlNVOLb0WMMw8DTTnl/qGELozZ1aGc1aL/D4JJcb5vyAFFH/OQ61+HguoK2IyfbS8Z7mA6mF+Ued/l808Hd/fLilI+fvBeaJveWFMSvwwkec7Tyy0+JU97ZTnmnyc9OKYwf0wke01nlE5Vwpu2uzV5vDmvWrKGkpASgeY6s15s8qxeLiIiISHprSnw9tSHM2tBRhy5HozEKIzFWDivm1bMHsHJYcbvDluMd89svlR7zmBO9RlOiXORpSHKPTJTbc6LHJFt5xXT8MZ2MtJ0jCw0LPtXUVBKJhHE6XXi9ObYv9ASah6N5OOkhHeudjnWG7lVvzZE9eZojm3q6099wZ0nHOkPi6p3MK/4ea4Xq7lCHjsSUqHonYtVizZGNIxq1WizslAxJLEDg8VXk5GivOhERkWShtlmk4050LnFHjulo+eNZoboj5z+ZmBJV/shjElXvjsTUUWk7tDiZWXl5kJ9vdxgiIiLSSG2ziEhySese2WTlefYpjCw3fOcqu0MRERER1DaLiCQbJbJJKOPZp3A4HWosRUREkoTaZhGR5KKhxSIiIiIiItKtKJEVERERERGRbkWJrIiIiIiIiHQrSmRFRERERESkW9FiT0mo8unV5OZmQcjuSERERATUNouIJBv1yCajrKyGfyIiIpIc1DaLiCQV9cgmoYyVj+HIcsO46+wORURERFDbLCKSbNQjm4Q8r7yEsfoFu8MQERGRRmqbRUSSS0J6ZGOxGPPmzeOjjz7C7XazcOFCSkpKAKioqGDmzJnNZbds2cKsWbO4+uqrGT16NH6/H4Di4mIWL16ciPBERERERESkG0tIIvvGG28QCoV47rnn2LBhA0uWLOGhhx4CoKCggFWrVgHwwQcfsGLFCsaMGUMwGARo/pmIiIiIiIhIPAkZWvzee+8xYsQIAM466yw2btzYpoxlWSxYsIB58+ZhmiYffvghdXV1TJo0iQkTJrBhw4ZEhCYiIiIiIiLdXEJ6ZKurq/H5fM2PTdMkEongdB6+3J/+9CcGDx5MaWkpABkZGUyePJmrrrqK7du3c8MNN/D666+3OKY10zQalsJPMabTgWGkZt2OxTQdaVfvdKwzpGe907HOkL71FhERkcRJSCLr8/moqalpfhyLxdokpK+88goTJkxofjxgwABKSkowDIMBAwaQm5tLRUUFRUVF7V7H4XDgSMXlqv78ZwBcNodhF4fDtDuELpeOdYb0rHc61hnSt97pyOUyKSjw2x1G51u/DoACm8OwS0re02NIxzpDetY7HesM3b/eCUkDhw8fzttvvw3Ahg0bGDJkSJsymzZtYvjw4c2PV69ezZIlSwDYs2cP1dXVFBSka3MhIiIiIiIi7TEsy7I6+6RNqxZ//PHHWJbFokWL2Lx5M7W1tYwdO5YDBw4wceJEXn755eZjQqEQc+fOpby8HMMwuOWWW1okuiIiIiIiIiKQoERWREREREREJFFScYapiIiIiIiIpDAlsiIiIiIiItKtKJEVERERERGRbiUh2+/IyRk9ejR+f8Ny2MXFxSxevNjmiBLn73//O/feey+rVq2irKyMOXPmYBgGgwcP5ic/+QmOlNxfqWW9N23axI033sgpp5wCwNVXX82ll15qb4CdKBwOc/vtt/P5558TCoWYOnUqgwYNSvl7Ha/evXv3Tul7HY1GueOOO9i2bRumabJ48WIsy0r5ey3pQW1z6v8Nq21W2wypd69TuW1WIptkgsEgAKtWrbI5ksR77LHHeOWVV8jMzARg8eLFzJgxg/POO4+77rqLN998k1GjRtkcZedrXe/NmzczceJEJk2aZHNkifHKK6+Qm5vL0qVLOXjwIJdffjmnnXZayt/rePWeNm1aSt/rtWvXAvDss8/y7rvvNjeWqX6vJfWpbU79v2G1zWqbU/Vep3Lb3P1S7xT34YcfUldXx6RJk5gwYQIbNmywO6SE6d+/Pw888EDz402bNnHuuecC8LWvfY133nnHrtASqnW9N27cyFtvvcX48eO5/fbbqa6utjG6zvetb32LH/3oR82PTdNMi3sdr96pfq8vvvhiFixYAEB5eTn5+flpca8l9altTv2/YbXNaptT9V6nctusRDbJZGRkMHnyZB5//HHuvvtubrnlFiKRiN1hJcQll1yC03l4UIBlWRiGAYDX66Wqqsqu0BKqdb3PPPNMbrvtNp566in69evHz3/+cxuj63xerxefz0d1dTXTp09nxowZaXGv49U71e81gNPpZPbs2SxYsIBLLrkkLe61pD61zan/N6y2WW1zqt5rSN22WYlskhkwYADf+c53MAyDAQMGkJubS0VFhd1hdYkjx+bX1NSQnZ1tYzRdZ9SoUQwbNqz5+82bN9scUefbtWsXEyZM4Lvf/S6XXXZZ2tzr1vVOh3sNcM899/CHP/yBO++8s3lIJqT2vZbUpra5QTr9DafD67XaZrXN0L3vtRLZJLN69WqWLFkCwJ49e6iurqagoMDmqLrG6aefzrvvvgvA22+/zTnnnGNzRF1j8uTJ/OMf/wDgr3/9K2eccYbNEXWuffv2MWnSJG699VauvPJKID3udbx6p/q9XrNmDY888ggAmZmZGIbBsGHDUv5eS+pT25x+f8Op/nqttlltcyrca8OyLMvuIOSwUCjE3LlzKS8vxzAMbrnlFoYPH253WAmzc+dOZs6cyfPPP8+2bdu48847CYfDlJaWsnDhQkzTtDvEhDiy3ps2bWLBggW4XC7y8/NZsGABPp/P7hA7zcKFC/n9739PaWlp83M//vGPWbhwYUrf63j1njFjBkuXLk3Ze11bW8vcuXPZt28fkUiEG264gYEDB6bN37WkLrXN6fE3rLZZbXMq3utUbpuVyIqIiIiIiEi3oqHFIiIiIiIi0q0okRUREREREZFuRYmsiIiIiIiIdCtKZEVERERERKRbUSIrIiIiIiIi3YoSWZE088wzz/DAAw+c8HHPPfcc4XCYd999l5tvvjkBkYmIiKQntc0iJ06JrIgcl0ceeYRYLGZ3GCIiItJIbbOkM6fdAYgIvPjii6xdu5b6+noqKiqYMGECb775Jv/617+47bbb2L17N3/84x+JRCL4/X4eeOABXnjhBd5//32WLVvG7NmzOfPMMxk/fnzc8//v//4vixYtIicnB4fDwVlnnQXAqlWreO211zAMg0svvZQJEyYwZ84cLMti165d1NbWcs899/D+++9TUVHBzTffzHXXXUdZWRnXX389Bw4c4KKLLuKmm27qyl+XiIhIwqltFklu6pEVSRI1NTU89thj3HDDDTzzzDP813/9F/Pnz2f16tUcOnSIJ554gqeffppIJMI///lPxo8fT11dHXPmzCEcDrfbUAIsXryYZcuW8ctf/pLi4mIAtm7dyu9+9zuefvppnn76ad544w0+/fRTAPr168eTTz7JTTfdxNKlS7nqqqsoKChgxYoVAASDQR588EGeeuopfv3rXyf+lyMiImIDtc0iyUs9siJJYujQoQD4/X4GDhyIYRjk5OQQDodxuVzMnDmTrKwsdu/eTSQSAWDKlCmMHTuWF1988ajn3rNnDwMGDABg+PDh7Nixg48//pjy8nJ+8IMfAFBZWcmOHTsAOP/88wH44he/yKJFi9qcb/DgwbjdbgCcTr2MiIhIalLbLJK81CMrkiQMw4j7fDgc5o033uC+++7jzjvvJBaLYVkWoVCIRYsWMX/+fObNm0coFGr33AUFBXzyyScA/POf/wSgtLSUQYMG8eSTT7Jq1SquuOIKhgwZAsCmTZsAeP/99xk8eHBzfE3zcNqLVUREJJWobRZJXvq4RiTJOZ1OMjMzueKKK3C73RQUFLB3717uvfdeRo4cydixY9m7dy/Lli1j7ty5cc+xdOlSZs+ejdfrxev1kpOTw2mnncaXv/xlrr76akKhEGeeeSa9evUC4O233+bNN98kFouxePFiAM455xymTJnCtGnTuqzuIiIiyUhts4j9DMuyLLuDEJHkMWfOHC699FK+9rWv2R2KiIiIoLZZJB71yIqkiPLycmbPnt3m+S996UtMnz7dhohERETSm9pmkcRRj6yIiIiIiIh0K1rsSURERERERLoVJbIiIiIiIiLSrSiRFRERERERkW5FiayIiIiIiIh0K0pkRUREREREpFtRIisiIiIiIiLdyv8HzIKWX6GkyC4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -478,9 +499,9 @@ "source": [ "We can observe the following from the figure above:\n", "\n", - "1. Based on the cross-validation curve, the best choice of `max_depth` is 6.\n", - "2. The value of synergy at the best `max_depth` of 6 is around 47% which is lower than the largest estimate of 52% when we overfit (right of `max_depth` = 6), and much greater than the smallest estimate of 30% when we underfit (left of `max_depth` = 6).\n", - "3. The value of redundancy at the best `max_depth` of 6 is around 27% which is higher than the smallest estimate of 23% when we overfit (right of `max_depth` = 6), and lower than the highest estimate of 30% when we underfit (left of `max_depth` = 6).\n", + "1. Based on the cross-validation curve, the best choice of `max_depth` is 5.\n", + "2. The value of synergy at the best `max_depth` of 5 is around 46% which is lower than the largest estimate of 53% when we overfit (right of `max_depth` = 5), and much greater than the smallest estimate of 30% when we underfit (left of `max_depth` = 5).\n", + "3. The value of redundancy at the best `max_depth` of 5 is around 27% which is higher than the smallest estimate of 23% when we overfit (right of `max_depth` = 5), and lower than the highest estimate of 30% when we underfit (left of `max_depth` = 5).\n", "\n", "This suggests for a pair of moderately correlated features with a moderate interaction and limited individual contributions, overfitting might cause us to over-estimate synergy (i.e., the model interprets noise as an interaction) and under-estimate redundancy, while underfitting can cause the opposite. As with all machine learning, identifying a well-tuned model is critical to obtaining appropriate estimates of synergy and redundancy." ] @@ -493,7 +514,7 @@ "\n", "We conducted two simulation studies using a simple controlled setting where we knew the amount of correlation, individual and combined contributions to a binary target.\n", "\n", - "- In the first simulation study we saw that the amount of correlation between two features as well as the strength of interaction and degree of independent contributions drives the balance between synergy and redundancy. \n", + "- In the first simulation study we saw that the amount of correlation between two features as well as the strength of combined and independent contributions drive the balance between synergy and redundancy. \n", "- In the second simulation study we saw how both synergy and redundancy changed as a function of the `max_depth` parameter of our Random Forest classifier. For a pair of features with correlation and interaction, as `max_depth` increased synergy increased and redundancy decreased." ] }, @@ -510,9 +531,9 @@ "source": [ "There are several next steps that could be taken to gain further intuition regarding the capabilities of FACET:\n", " \n", - "1. Explore further values of main-effects, interactions and correlation between the two features used in the simulation studies.\n", + "1. Explore further values of main-effects, interaction and correlation between the two features used in the simulation studies.\n", "2. Add further features to the simulation and explore what happens when you have features that are correlated but only one contributes to prediction (i.e., a purely redundant feature).\n", - "3. Try different learners and hyperparameters and see how the redundancy and synergy results change. Remember, the contributions of features to individual predictions is through the \"eyes\" of the model." + "3. Try different learners and hyperparameters and see how the redundancy and synergy results change. **Remember, the contributions of features to individual predictions is through the \"eyes\" of the model.**" ] }, { @@ -543,7 +564,7 @@ " corr: float = 0\n", "):\n", "\n", - " # two standard normal features for interaction term in the linear predictor\n", + " # two standard normal features for the interaction term in the linear predictor\n", " # mean and standard deviation of each feature\n", " mu = [0, 0]\n", " sd_mat = [1, 1]\n", @@ -673,7 +694,7 @@ ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": { "scrolled": true }, @@ -714,14 +735,12 @@ ")\n", "\n", "# grab data for the plot\n", - "val_df = pd.DataFrame(\n", - " data=[(evaluation.scores.mean(), evaluation.parameters['classifier__max_depth']) for evaluation in ranker.ranking_],\n", - " columns=[\"score\", \"max_depth\"]).sort_values(\n", - " by='max_depth'\n", - ")\n", + "result = ranker.summary_report()\n", + "result.columns = result.columns.map('_'.join)\n", + "result.rename(columns={'roc_auc_mean': 'score', 'classifier_max_depth':'max_depth'}, inplace=True)\n", "\n", "# save dataset for plotting\n", - "val_df.to_csv('sphinx/source/tutorial/classification_sim2_cvcurve.csv', index=False)\n", + "result.to_csv('sphinx/source/tutorial/classification_sim2_cvcurve.csv', index=False)\n", "```" ] }, @@ -733,7 +752,7 @@ ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": { "scrolled": true }, diff --git a/sphinx/source/tutorial/classification_sim1.csv b/sphinx/source/tutorial/classification_sim1.csv index f5174e10d..cf746d9c5 100644 --- a/sphinx/source/tutorial/classification_sim1.csv +++ b/sphinx/source/tutorial/classification_sim1.csv @@ -1,16 +1,16 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects -0.0,0.0,0.0,1.0,0.0057748992612175944,0.6920704042167314,0.483,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.01195415235017764,0.719803220023516,0.4965,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.005774899261217594,0.6920704042167314,0.483,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.011954152350177641,0.7198032200235159,0.4965,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.0077771919783761,0.7025778373328969,0.502,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.0022438480887508193,0.7053246840907224,0.491,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.00036315983280727827,0.7223790098371949,0.5175,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.007949938247617212,0.6848879107651268,0.505,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.0022438480887508197,0.7053246840907224,0.491,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.0003631598328072783,0.7223790098371949,0.5175,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.007949938247617213,0.6848879107651268,0.505,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.004118340197822719,0.7238331816718554,0.5095,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.003033760766062897,0.7140417937069752,0.5085,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.01131838795517382,0.7211395088870549,0.499,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.004893331590681971,0.7221045574963474,0.4995,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.006030683001785081,0.7053250960891948,0.4885,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.0015287992809376468,0.7360286052978774,0.487,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.0015287992809376466,0.7360286052978774,0.487,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.00638496224983075,0.6876223618995733,0.4975,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.009154762190790122,0.7282560101548461,0.537,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.008556563714503914,0.7047321812365829,0.495,"(0.0, 0.0)" @@ -18,145 +18,145 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 0.0,0.0,0.0,1.0,0.006323190979644736,0.7071988813052061,0.4835,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.005704728987642597,0.6973893558147188,0.4785,"(0.0, 0.0)" 0.0,0.0,0.0,1.0,0.0003357105570485026,0.7360851658467606,0.4915,"(0.0, 0.0)" -0.0,0.0,0.0,1.0,0.0005866862002576486,0.6949166553510058,0.5045,"(0.0, 0.0)" +0.0,0.0,0.0,1.0,0.0005866862002576487,0.6949166553510058,0.5045,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.01828292356813834,0.6923452895028023,0.5495,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.03769566491553325,0.6777504892688411,0.542,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.01979126580368981,0.6824270306643635,0.5115,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.019791265803689808,0.6824270306643635,0.5115,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.027838194373746704,0.6904876145524346,0.5315,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.020484742740486395,0.7005710182586509,0.525,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.012087810246112773,0.670840872412925,0.5515,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.0204847427404864,0.7005710182586509,0.525,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.012087810246112772,0.6708408724129251,0.5515,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.03547478472083822,0.6969548651213926,0.544,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.006104085085776761,0.6596036130711391,0.5205,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.017658233875595467,0.6758504717414968,0.537,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.01765823387559547,0.6758504717414968,0.537,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.028228576958591593,0.683653504692044,0.5595,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.011424931950022043,0.6732926931021008,0.5255,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.03041127260190012,0.6801711297713131,0.552,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.011857061267872577,0.6836333108392321,0.536,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.02034823666876949,0.6836148580518597,0.5285,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.014489989837775134,0.6772148818267199,0.5175,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.028579681501305278,0.681222835380064,0.544,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.000961942943778079,0.6875748706659098,0.5225,"(0.0, 0.0)" -0.0,0.0,0.2,1.0,0.039140824701820454,0.6691875921271174,0.528,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.02857968150130528,0.6812228353800639,0.544,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.0009619429437780787,0.6875748706659098,0.5225,"(0.0, 0.0)" +0.0,0.0,0.2,1.0,0.03914082470182045,0.6691875921271174,0.528,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.0426951519080149,0.6645190397680393,0.5445,"(0.0, 0.0)" 0.0,0.0,0.2,1.0,0.027926878645535242,0.6673135341745158,0.5385,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.10730955124371887,0.5746343563941583,0.5805,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.08655409066686146,0.6407283740016214,0.5645,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.055480548023190204,0.6213390109757828,0.571,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.07356647837675548,0.6021030062912119,0.572,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.10730955124371888,0.5746343563941583,0.5805,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.08655409066686147,0.6407283740016214,0.5645,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.055480548023190204,0.6213390109757828,0.5710000000000001,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.07356647837675548,0.6021030062912119,0.5720000000000001,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.11009499766530678,0.6181979448566526,0.584,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.09397196667459672,0.6206795914807368,0.5785,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.08570987751686732,0.6329753768776123,0.575,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.07159276434455361,0.5762857096846505,0.566,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.09397196667459673,0.6206795914807368,0.5785,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.08570987751686733,0.6329753768776123,0.575,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.07159276434455361,0.5762857096846505,0.5660000000000001,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.050473167948556635,0.6253145576261473,0.551,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.08302794924565138,0.6429052932811548,0.5665,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.09878655478094439,0.5952465256537707,0.557,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.0987865547809444,0.5952465256537707,0.557,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.0677914807567465,0.5961567398335172,0.5615,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.07993342574021851,0.615658901543287,0.565,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.10459882332197189,0.6055809046927185,0.576,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.10459882332197187,0.6055809046927185,0.5760000000000001,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.08016094693602231,0.6202085664226327,0.5635,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.07179679015368862,0.6100682434672716,0.594,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.07179679015368863,0.6100682434672716,0.594,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.057205361385517024,0.5999826259382864,0.569,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.06731302562598651,0.6428608994504373,0.5825,"(0.0, 0.0)" 0.0,0.0,0.4,1.0,0.09990301622156132,0.615381925380641,0.5685,"(0.0, 0.0)" -0.0,0.0,0.4,1.0,0.07025786541034133,0.59808821021995,0.5805,"(0.0, 0.0)" +0.0,0.0,0.4,1.0,0.07025786541034132,0.59808821021995,0.5805,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.1760487852690848,0.5304921695283575,0.598,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.14000356314231677,0.5318788989463012,0.6105,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.14507818950659523,0.5460237368710706,0.6065,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.15246480379107563,0.5087767874756468,0.6045,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.14000356314231674,0.5318788989463012,0.6105,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.14507818950659526,0.5460237368710706,0.6065,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.15246480379107566,0.5087767874756468,0.6045,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.1742694038585308,0.5407092037505308,0.6095,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.18937694671793676,0.517610819695884,0.596,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.1893769467179368,0.517610819695884,0.596,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15358025681863707,0.5028576896216597,0.607,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.12845734903198502,0.5398424404492858,0.612,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.14188042062732506,0.5241504986391918,0.6,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.16899619726671739,0.5445991304946326,0.606,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.1689961972667174,0.5445991304946326,0.606,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15020192589122044,0.546296787221587,0.613,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.18637954100648635,0.512144180363253,0.628,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.18637954100648635,0.5121441803632529,0.628,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.17692497993736556,0.5004739005197784,0.611,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15729521257776352,0.5385411282761502,0.61,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15175947863513062,0.5410243864770727,0.594,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.16628602157229544,0.5411596845901911,0.6035,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.18990487868860378,0.49788504462967237,0.602,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.18990487868860376,0.4978850446296724,0.602,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15569550758739975,0.5295466650994283,0.595,"(0.0, 0.0)" 0.0,0.0,0.6,1.0,0.15425674927744398,0.534679224916828,0.608,"(0.0, 0.0)" -0.0,0.0,0.6,1.0,0.20063236364151743,0.534853168295613,0.6065,"(0.0, 0.0)" +0.0,0.0,0.6,1.0,0.20063236364151746,0.534853168295613,0.6065,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.3327757377775473,0.4393683918534472,0.631,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.3082894723211583,0.45781528985887776,0.6365,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.3082894723211583,0.4578152898588778,0.6365,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.2911340170529019,0.4270908771327463,0.6235,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.317887030493928,0.4204456880323225,0.6445,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.308779855519437,0.45306376530239606,0.631,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.308779855519437,0.4530637653023961,0.631,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.2921302359663238,0.4388728159058385,0.647,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.2895734076660947,0.4753916922932293,0.6375,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.263450522770251,0.4393038002014815,0.6355,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.32839689705406155,0.43601171811294454,0.637,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.23692508374722326,0.4576901469827076,0.631,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.24044115589334858,0.4504602791352539,0.634,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.32839689705406155,0.4360117181129445,0.637,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.2369250837472233,0.4576901469827076,0.631,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.2404411558933485,0.4504602791352539,0.634,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.2891562332393863,0.4671855951043013,0.635,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.297164494238552,0.4627596498599737,0.63,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.3265013583701699,0.45428448304478614,0.6495,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.33986165894353254,0.43255768545457074,0.645,"(0.0, 0.0)" -0.0,0.0,0.8,1.0,0.3209780454685185,0.42779239866721586,0.6315,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.3265013583701699,0.4542844830447861,0.6495,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.3398616589435325,0.4325576854545707,0.645,"(0.0, 0.0)" +0.0,0.0,0.8,1.0,0.3209780454685185,0.4277923986672159,0.6315,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.3104817175480643,0.4708119470882669,0.6405,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.33756651577964913,0.4334374180880328,0.6365,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.2369720043557072,0.4367544918481434,0.654,"(0.0, 0.0)" 0.0,0.0,0.8,1.0,0.31372747333957784,0.4520073909240787,0.6335,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.010355312710519506,0.772744914742671,0.49,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.010355312710519506,0.7727449147426709,0.49,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.0003662323168609012,0.7730971189899153,0.501,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.0018206668682344963,0.7658133820835666,0.4705,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.0018206668682344965,0.7658133820835666,0.4705,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.005346861109745112,0.7839352147848961,0.5115,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.01359068566318182,0.7857677293268763,0.5005,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.010207490549014674,0.775527045630708,0.4895,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.010207490549014674,0.7755270456307081,0.4895,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.0009876672476297561,0.7628966140722799,0.4945,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.004945720383702398,0.7691361296554666,0.4785,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.0007439546756089562,0.792196065564367,0.4865,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.0007439546756089563,0.7921960655643671,0.4865,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.004274729689577471,0.7779032375650841,0.483,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.0018229132103773594,0.7809499162268101,0.4815,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.003379422024858103,0.7776809186709397,0.493,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.00022264082793158974,0.7725735237383363,0.499,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.008285967936596982,0.7805110337922343,0.504,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.0002226408279315897,0.7725735237383363,0.499,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.00828596793659698,0.7805110337922343,0.504,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,3.931357013081586e-05,0.7741546880213306,0.506,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.00843164578746599,0.7487332219424081,0.493,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.008431645787465991,0.7487332219424081,0.493,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.005579464603881602,0.7894363780626844,0.5175,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.0036433742880416908,0.7920771513169933,0.493,"(0.0, 0.0)" 0.0,0.0,0.0,2.0,0.0014780139649820322,0.7822249863669959,0.502,"(0.0, 0.0)" -0.0,0.0,0.0,2.0,0.0075842309759657466,0.7558214191001469,0.502,"(0.0, 0.0)" +0.0,0.0,0.0,2.0,0.007584230975965746,0.7558214191001469,0.502,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.026176375829397087,0.7316745337407349,0.55,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.04442802394130364,0.724456542077338,0.5565,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.024282055819920774,0.7526587427194742,0.537,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.044428023941303636,0.7244565420773379,0.5565,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.02428205581992077,0.7526587427194742,0.537,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.04786515283370418,0.7251733186719395,0.563,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.03834990528215938,0.7384906614146273,0.5605,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.05795706487287618,0.7047962390410036,0.549,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.05795706487287618,0.7047962390410036,0.5489999999999999,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.03313079313929093,0.7255844596021379,0.53,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.03927445664019366,0.729402098597971,0.542,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.030207561451828298,0.736969266200596,0.5445,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.03568596210017727,0.7049893145482194,0.554,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.03927445664019366,0.7294020985979709,0.542,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.030207561451828294,0.736969266200596,0.5445,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.03568596210017727,0.7049893145482194,0.5539999999999999,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.038412109779896036,0.7492949537857813,0.5475,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.038199466526271805,0.7209322352103015,0.553,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.03504747619320008,0.7222732306748997,0.554,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.03446499067614721,0.7302000708584393,0.524,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.038199466526271805,0.7209322352103015,0.5529999999999999,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.03504747619320008,0.7222732306748997,0.5539999999999999,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.034464990676147216,0.7302000708584393,0.524,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.025143759015670702,0.7126064398695515,0.5405,"(0.0, 0.0)" -0.0,0.0,0.2,2.0,0.05145835750033467,0.7208467515304113,0.5535,"(0.0, 0.0)" +0.0,0.0,0.2,2.0,0.051458357500334666,0.7208467515304113,0.5535,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.03142979180586769,0.7446704165655036,0.5355,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.03688815034205538,0.7311621155618371,0.5575,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.03605001030639991,0.7325937548622794,0.5545,"(0.0, 0.0)" 0.0,0.0,0.2,2.0,0.027350430956334788,0.7473329472445442,0.5305,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.09078530091139791,0.6799264133501365,0.5745,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.10909765329371685,0.6567953541512548,0.592,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.11064495787503859,0.6542553629029788,0.588,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.09078530091139793,0.6799264133501365,0.5745,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.10909765329371683,0.6567953541512548,0.5920000000000001,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.1106449578750386,0.6542553629029788,0.588,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.1067538425078649,0.6173853880311602,0.584,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.11040066568450789,0.643584434778227,0.6145,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.11040066568450788,0.643584434778227,0.6145,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.11212588340654622,0.6451715128554593,0.594,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.0927664151068978,0.6297046175461046,0.5815,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.12135349813953802,0.6083669037997184,0.583,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.08050219148269303,0.6704422607651118,0.567,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.08050219148269303,0.6704422607651118,0.5670000000000001,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.0991950253363613,0.624719905863554,0.585,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.11400922381101096,0.6214699466076636,0.5925,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.11400922381101095,0.6214699466076636,0.5925,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.12254364508930213,0.6272452457808096,0.6055,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.12221530309641501,0.6491944920849033,0.5925,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.061312750834673656,0.645421194268972,0.558,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.10351046991931705,0.6491101223406716,0.5815,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.12221530309641498,0.6491944920849033,0.5925,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.06131275083467365,0.645421194268972,0.5579999999999999,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.10351046991931703,0.6491101223406716,0.5815,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.139087985738173,0.6204608594141479,0.615,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.11339871236925093,0.6241196362189102,0.601,"(0.0, 0.0)" -0.0,0.0,0.4,2.0,0.09834607126887267,0.6705340717778485,0.587,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.11339871236925092,0.6241196362189102,0.601,"(0.0, 0.0)" +0.0,0.0,0.4,2.0,0.09834607126887268,0.6705340717778485,0.5870000000000001,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.07377213566089891,0.6464431498643021,0.5925,"(0.0, 0.0)" 0.0,0.0,0.4,2.0,0.1397791905326313,0.624376422635136,0.6015,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.2119041371162244,0.5481009613399517,0.6465,"(0.0, 0.0)" @@ -166,79 +166,79 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 0.0,0.0,0.6,2.0,0.1869988876931192,0.5618678944329741,0.6375,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.23364007325761346,0.5287220552938308,0.6525,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.23094909809894104,0.5224846323619318,0.639,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.21291891223530685,0.5175592358389222,0.656,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.23040772881936641,0.5436639185118035,0.649,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.23226549259100443,0.5175777112150444,0.6445,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.19438506966964908,0.5465776970317694,0.656,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.20784835631222698,0.5350755213356024,0.6345,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.22128048146524498,0.5446056932100438,0.6535,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.21291891223530685,0.5175592358389222,0.6559999999999999,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.2304077288193664,0.5436639185118035,0.649,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.2322654925910045,0.5175777112150444,0.6445,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.19438506966964908,0.5465776970317694,0.6559999999999999,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.20784835631222692,0.5350755213356024,0.6345,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.22128048146524493,0.5446056932100438,0.6535,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.22022568337745874,0.5330692603225093,0.638,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.19427882533465934,0.5579856839383199,0.633,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.1942788253346593,0.5579856839383199,0.633,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.2310785779046271,0.5417478618607716,0.6435,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.21883835244078692,0.5289342017483577,0.637,"(0.0, 0.0)" -0.0,0.0,0.6,2.0,0.23405827740933327,0.5453027081039333,0.651,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.21883835244078687,0.5289342017483577,0.637,"(0.0, 0.0)" +0.0,0.0,0.6,2.0,0.2340582774093333,0.5453027081039333,0.6509999999999999,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.21800552370967227,0.5298743171006514,0.653,"(0.0, 0.0)" 0.0,0.0,0.6,2.0,0.17263086746413905,0.5541420624901691,0.631,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3240404315018248,0.43467806820349975,0.7,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.34944436821224745,0.4495913045075412,0.701,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3884009488878852,0.3902144523370564,0.693,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.3339351615754098,0.44148695685402006,0.6725,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.3338516789806155,0.45395945151845746,0.6645,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3339351615754098,0.4414869568540201,0.6725,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3338516789806155,0.4539594515184575,0.6645,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.382444625492138,0.4126483529176628,0.706,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.3627317177623236,0.44979105118732565,0.6845,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3627317177623236,0.4497910511873257,0.6845,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3506808486502446,0.4493898739338018,0.6785,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.36026871691325985,0.44539798829285876,0.6745,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.33223876601065994,0.45386906415157585,0.686,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.36026871691325985,0.4453979882928588,0.6745,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.33223876601065994,0.4538690641515759,0.6859999999999999,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3410458987593977,0.4482620066058649,0.696,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3621128504753025,0.4136692168439392,0.695,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.3539826002690377,0.45723655927405504,0.7035,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.31939624421588775,0.44109983864777347,0.696,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.35938294920443836,0.4503712657143294,0.708,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3539826002690377,0.457236559274055,0.7035,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3193962442158877,0.4410998386477735,0.696,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3593829492044384,0.4503712657143294,0.708,"(0.0, 0.0)" 0.0,0.0,0.8,2.0,0.3262250381521068,0.4455419991143105,0.6895,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.37240021076503926,0.4121486162715854,0.717,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.3681373038397849,0.4604354351972208,0.683,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.37411035243843593,0.4456658835212472,0.689,"(0.0, 0.0)" -0.0,0.0,0.8,2.0,0.31671174775250505,0.4457956419621252,0.699,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3724002107650393,0.4121486162715854,0.7170000000000001,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3681373038397849,0.4604354351972208,0.6829999999999999,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.3741103524384359,0.4456658835212472,0.6890000000000001,"(0.0, 0.0)" +0.0,0.0,0.8,2.0,0.31671174775250505,0.4457956419621252,0.6990000000000001,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.007946878815740275,0.821287561112537,0.51,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.004968877281420037,0.8091807014914433,0.4875,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.001212874760223106,0.7967651563292688,0.505,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.005292257930772102,0.7983700105444593,0.5205,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.005292257930772103,0.7983700105444593,0.5205,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0020951566891593307,0.7899946059440379,0.478,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.007611715704802098,0.8001582716184614,0.505,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0033876989720380553,0.7932206705019071,0.5035,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.0023365559111274935,0.7950514710392109,0.5185,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.002336555911127493,0.7950514710392109,0.5185,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0029319389475316983,0.8083042642112174,0.5095,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.003189715659805434,0.8316578042817325,0.4885,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.0008355952593179011,0.8072037322118639,0.502,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.0008355952593179013,0.8072037322118639,0.502,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0011416947926644679,0.7982000590769716,0.485,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.006020352630769051,0.7733600670305751,0.4745,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.0029252843291340046,0.8168866129590835,0.506,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.00602035263076905,0.7733600670305751,0.4745,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.002925284329134005,0.8168866129590835,0.506,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.00035660114681211234,0.8102665416868904,0.5,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.01263661447887521,0.7801304540888792,0.503,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0015948191751074333,0.807270977221989,0.491,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.006552941250371301,0.8052790845746829,0.4885,"(0.0, 0.0)" -0.0,0.0,0.0,3.0,0.0003247158588901374,0.799190100093886,0.5055,"(0.0, 0.0)" +0.0,0.0,0.0,3.0,0.0003247158588901373,0.7991901000938859,0.5055,"(0.0, 0.0)" 0.0,0.0,0.0,3.0,0.0016135055497932256,0.8069566520130678,0.4915,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.044702679909416496,0.727840841841506,0.576,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.044702679909416496,0.7278408418415059,0.5760000000000001,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.05293340482835181,0.7545572145766978,0.5545,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.04876731050955495,0.7617733155106259,0.55,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.05082379929880916,0.7422856727141861,0.563,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.03896351632475978,0.7606014867265298,0.54,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.0295982863438356,0.7528966321652748,0.5505,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.0726395158862013,0.7345248373051323,0.5535,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.04220726406872234,0.7449464741507459,0.551,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.042207264068722335,0.7449464741507459,0.551,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.03351619444312877,0.7601981915548781,0.552,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.054787844388189975,0.7344828971822972,0.557,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.05191794893366684,0.7399064875839185,0.588,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.03600636122281238,0.7543700994078905,0.56,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.03381556977166508,0.7646077642718927,0.5525,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.03772643987719376,0.7571849070030294,0.548,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.04980140864901671,0.7531807783603109,0.557,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.04749109981993199,0.7451521957499683,0.554,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.03358594777267494,0.7509721592276897,0.546,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.03772643987719376,0.7571849070030294,0.5479999999999999,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.04980140864901672,0.7531807783603109,0.557,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.04749109981993199,0.7451521957499683,0.5539999999999999,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.033585947772674936,0.7509721592276897,0.546,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.03965896662920047,0.7684472755020575,0.5595,"(0.0, 0.0)" 0.0,0.0,0.2,3.0,0.016844562342833887,0.7712911228771451,0.555,"(0.0, 0.0)" -0.0,0.0,0.2,3.0,0.020444450757596034,0.7754590772247021,0.5345,"(0.0, 0.0)" +0.0,0.0,0.2,3.0,0.02044445075759604,0.7754590772247021,0.5345,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.1271635736886425,0.6365899048745578,0.6255,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.110394027310657,0.6635754518896688,0.604,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.1173625755355352,0.6705986780066472,0.6095,"(0.0, 0.0)" @@ -248,276 +248,276 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 0.0,0.0,0.4,3.0,0.09239615488916386,0.6680869927150652,0.602,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.1307289135862894,0.6665830741114573,0.6105,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.13450816530257706,0.685382724708861,0.619,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.10508575262648359,0.6810986218106432,0.607,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.12441484887688356,0.6608678086158983,0.6035,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.12005521518792309,0.6625202399896799,0.6285,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.11777824299926531,0.6537296616790527,0.617,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.1050857526264836,0.6810986218106432,0.607,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.12441484887688355,0.6608678086158983,0.6035,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.12005521518792307,0.6625202399896799,0.6285,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.11777824299926533,0.6537296616790527,0.617,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.16157701353392373,0.6407117197418725,0.6275,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.11277685268192991,0.6973982703731669,0.605,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.12645610151863618,0.656162292510078,0.607,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.11277685268192993,0.6973982703731669,0.605,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.12645610151863618,0.6561622925100781,0.607,"(0.0, 0.0)" 0.0,0.0,0.4,3.0,0.12421547349291374,0.6653252902959335,0.595,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.11275962687068661,0.6604356290258716,0.593,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.11059298899355119,0.6653099644257918,0.61,"(0.0, 0.0)" -0.0,0.0,0.4,3.0,0.11907113194667243,0.6457175597185987,0.5955,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.23663479215691935,0.5581544212136541,0.657,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.1127596268706866,0.6604356290258716,0.593,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.1105929889935512,0.6653099644257918,0.61,"(0.0, 0.0)" +0.0,0.0,0.4,3.0,0.11907113194667245,0.6457175597185987,0.5955,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2366347921569193,0.5581544212136541,0.657,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.17883511284804288,0.5658560612621915,0.669,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.210809857457154,0.572690145853215,0.6555,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.23053499410401407,0.5544568348908754,0.662,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2305349941040141,0.5544568348908754,0.662,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.23708471423852684,0.5450434809018896,0.672,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.22784180350783612,0.5804012604758433,0.678,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.22455362425675318,0.5774718171847094,0.672,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2278418035078361,0.5804012604758433,0.6779999999999999,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2245536242567532,0.5774718171847094,0.672,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.2393590300391876,0.5477995899999599,0.664,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.24015851913370137,0.5533158711470827,0.6685,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2401585191337013,0.5533158711470827,0.6685,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.22243811044481407,0.5605011315325725,0.657,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.23209380210822061,0.5737478653361752,0.6545,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.23804194153593394,0.5399021311421754,0.666,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.23674060927629043,0.5724642078810659,0.6605,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.22597538614688006,0.5385651180783624,0.6455,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2320938021082206,0.5737478653361752,0.6545,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.23804194153593394,0.5399021311421754,0.6659999999999999,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.23674060927629045,0.5724642078810659,0.6605,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2259753861468801,0.5385651180783624,0.6455,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.2268995828274568,0.5472176946095734,0.6715,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.2505929112872703,0.5453823746771449,0.6635,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.22612275765310103,0.5702954342037357,0.6765,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.22612275765310105,0.5702954342037357,0.6765,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.2372539517078918,0.5820355336786144,0.659,"(0.0, 0.0)" 0.0,0.0,0.6,3.0,0.23862979512776994,0.5568199474666922,0.6555,"(0.0, 0.0)" -0.0,0.0,0.6,3.0,0.24775658259137767,0.5700186317793909,0.657,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3612698158552079,0.43040148193056005,0.7125,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3706691948966089,0.44860108442656677,0.7195,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.33967788945345023,0.47112810704684643,0.7195,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3432595844103783,0.47430133736635005,0.7185,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.37091733855733283,0.46177648959891004,0.7055,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.38409256424044774,0.44753504149109424,0.7255,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.36275424526923716,0.483051492668483,0.7295,"(0.0, 0.0)" +0.0,0.0,0.6,3.0,0.2477565825913777,0.5700186317793909,0.657,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3612698158552079,0.4304014819305601,0.7125,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3706691948966089,0.4486010844265668,0.7195,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.33967788945345023,0.4711281070468464,0.7195,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3432595844103783,0.4743013373663501,0.7185,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3709173385573328,0.4617764895989101,0.7055,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3840925642404477,0.44753504149109424,0.7255,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3627542452692372,0.483051492668483,0.7295,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.34091464916376657,0.4719715880431899,0.7155,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.3668891611884507,0.4535116941096877,0.711,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3263247175008454,0.46386101870927343,0.7115,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3723277022687393,0.46456397018628925,0.7455,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3263247175008454,0.4638610187092734,0.7115,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3723277022687393,0.4645639701862893,0.7455,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.36599290333742657,0.4689138906673317,0.7245,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.3694607874175714,0.4563941027872059,0.726,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.3881129047958255,0.4400735404999856,0.722,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.36700294841725745,0.4577027941437448,0.7115,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3670029484172575,0.4577027941437448,0.7115,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.3633260715643432,0.4719822887828031,0.713,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.31531503524006566,0.4606793860614295,0.712,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3672960152473553,0.45465575232185435,0.7175,"(0.0, 0.0)" -0.0,0.0,0.8,3.0,0.3393932128994231,0.446668225147603,0.705,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3153150352400657,0.4606793860614295,0.7120000000000001,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3672960152473553,0.4546557523218544,0.7175,"(0.0, 0.0)" +0.0,0.0,0.8,3.0,0.3393932128994231,0.4466682251476029,0.705,"(0.0, 0.0)" 0.0,0.0,0.8,3.0,0.3500925987252811,0.4780325259431334,0.727,"(0.0, 0.0)" 1.0,1.0,0.0,1.0,0.00688202675347202,0.4430329688497076,0.4615,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.01789005286055876,0.43398578776784086,0.472,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.01789005286055876,0.4339857877678409,0.472,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.029704232915896217,0.4660027315993744,0.4755,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.02923294344542725,0.4252605926398403,0.467,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.03952930561134339,0.4304629630570368,0.47,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.03952930561134338,0.4304629630570368,0.47,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.03789898363031091,0.41453496185461947,0.478,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.006348610924344516,0.44356506848714966,0.47,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.002004387399848472,0.41133665556436866,0.48,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.0025371049804127264,0.38827602140187734,0.467,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.006348610924344516,0.4435650684871497,0.47,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.002004387399848472,0.4113366555643687,0.48,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.0025371049804127264,0.3882760214018773,0.467,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.011426753609795587,0.42105072227728185,0.471,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.03662848358519173,0.433872844104961,0.472,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.009354644368562481,0.4174451594555457,0.495,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.014345889546433385,0.43340617030212913,0.4745,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.00935464436856248,0.4174451594555457,0.495,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.014345889546433385,0.4334061703021291,0.4745,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.023357092940765024,0.4291235487558691,0.4565,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.0030179499693108137,0.44656002378224224,0.4755,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.005822730330537375,0.42275439056004643,0.454,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.005822730330537375,0.4227543905600464,0.454,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.023546392908484804,0.4214065369079836,0.488,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.0042830721420858186,0.403534452517287,0.4695,"(1.0, 1.0)" -1.0,1.0,0.0,1.0,0.01254468278141861,0.43796269847059355,0.465,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.0042830721420858186,0.40353445251728703,0.4695,"(1.0, 1.0)" +1.0,1.0,0.0,1.0,0.01254468278141861,0.4379626984705936,0.465,"(1.0, 1.0)" 1.0,1.0,0.0,1.0,0.03495426062499528,0.4203557025929369,0.455,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.11392467937875869,0.40512555035445524,0.4885,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.11392467937875868,0.4051255503544552,0.4885,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.15790196887728514,0.384650581899847,0.5045,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.14970364103956546,0.4017991893284766,0.4795,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.1519371316146054,0.3962444652470562,0.5065,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.13005334183358325,0.4060643450508178,0.481,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.1789053951539853,0.40220383142618465,0.494,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.1789053951539853,0.4022038314261847,0.494,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.141842468101837,0.3962511989217353,0.4805,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.14657728946129928,0.4077538939497004,0.4965,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.1207545453587948,0.4014249450215046,0.4845,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.14365387659424972,0.39454640287026277,0.4885,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.14365387659424972,0.3945464028702628,0.4885,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.14333783979797365,0.4027129664517728,0.501,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.13271067084587107,0.40209834800386224,0.5045,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.16063508081856706,0.38698963071130077,0.4995,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.16063508081856706,0.3869896307113008,0.4995,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.11720502915584174,0.4027678748254828,0.5,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.1263551076515359,0.4195666717680876,0.493,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.149773719720106,0.4066244345303686,0.5165,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.13627715401613472,0.39196186012932466,0.503,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.13627715401613472,0.3919618601293247,0.503,"(1.0, 1.0)" 1.0,1.0,0.2,1.0,0.15738038543724334,0.3720224466920429,0.486,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.15638952561430602,0.38051023485413604,0.4835,"(1.0, 1.0)" -1.0,1.0,0.2,1.0,0.14530367161839675,0.4007178652453801,0.492,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.26745339050301514,0.38598724891826475,0.518,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.15638952561430602,0.380510234854136,0.4835,"(1.0, 1.0)" +1.0,1.0,0.2,1.0,0.14530367161839675,0.4007178652453801,0.4920000000000001,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.26745339050301514,0.3859872489182648,0.518,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.30678381056769943,0.385380629892044,0.5175,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.2916563208460038,0.3803598546375257,0.509,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.2680277930826308,0.3803565010258425,0.4965,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.28163591741154687,0.371259365646041,0.518,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2816359174115469,0.37125936564604106,0.518,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.252820176399149,0.3837008912281345,0.503,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.3349000225025496,0.3497350402613,0.5235,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.27314522750191644,0.3587359559971805,0.5245,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.3276910350510015,0.3799717701777522,0.5215,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.26056817780696373,0.38502160514637673,0.519,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.27450400524741203,0.37002316061310514,0.5195,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.2873336147722653,0.39853802449442355,0.5215,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.2686438908463629,0.39551228942579836,0.513,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.2720874130987973,0.38800904134235836,0.5215,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.28707823557796797,0.36227034984556167,0.5025,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2605681778069637,0.3850216051463767,0.519,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.27450400524741203,0.3700231606131051,0.5195,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2873336147722653,0.3985380244944236,0.5215,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2686438908463629,0.3955122894257984,0.513,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2720874130987973,0.3880090413423584,0.5215,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.287078235577968,0.3622703498455617,0.5025,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.28011201852702355,0.3959562978757538,0.5365,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.3097025556041373,0.38861121562688045,0.529,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.3097025556041373,0.3886112156268805,0.529,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.2260891511620517,0.3850841753678423,0.5245,"(1.0, 1.0)" -1.0,1.0,0.4,1.0,0.2800323865371383,0.36376447593702077,0.5205,"(1.0, 1.0)" +1.0,1.0,0.4,1.0,0.2800323865371383,0.3637644759370208,0.5205,"(1.0, 1.0)" 1.0,1.0,0.4,1.0,0.3508473114553561,0.3661575736878243,0.525,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.4265179634961285,0.37104668463070356,0.53,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.44456243606695045,0.34968717498235996,0.539,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.44170073473740024,0.3495056031651414,0.5385,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4265179634961285,0.3710466846307036,0.53,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4445624360669505,0.34968717498236,0.539,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4417007347374001,0.3495056031651414,0.5385,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.438656754533275,0.3358389076258417,0.5535,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.46661896825978033,0.3368040643509138,0.5495,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.42424499467884413,0.3602738548933402,0.5335,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4666189682597803,0.3368040643509138,0.5495,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4242449946788441,0.3602738548933402,0.5335,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.4445900204899723,0.35334463405044736,0.5725,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.4738517650372121,0.34027855583236766,0.5535,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4738517650372121,0.3402785558323677,0.5535,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.4538015201208097,0.332575906650826,0.5415,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.43414059358207946,0.3683731272092258,0.54,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.4353276947511153,0.33334578251960495,0.5365,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4353276947511153,0.3333457825196049,0.5365,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.4658428257598987,0.35005704056663545,0.541,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.45063444035859884,0.35438021309488416,0.55,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.42306886357502793,0.35637130663410943,0.531,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.40483855089708104,0.35103049929281926,0.528,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4506344403585989,0.35438021309488416,0.55,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4230688635750279,0.35637130663410943,0.531,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4048385508970809,0.3510304992928193,0.528,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.4509372200728382,0.34719046448779023,0.5365,"(1.0, 1.0)" 1.0,1.0,0.6,1.0,0.4197076425555632,0.3603334029963932,0.5535,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.46282194221679146,0.33733568623598587,0.533,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.429833249730389,0.3427998825827643,0.538,"(1.0, 1.0)" -1.0,1.0,0.6,1.0,0.40223976349483165,0.3537183317880296,0.553,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4628219422167914,0.3373356862359859,0.5329999999999999,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.42983324973038894,0.3427998825827643,0.5379999999999999,"(1.0, 1.0)" +1.0,1.0,0.6,1.0,0.4022397634948317,0.3537183317880296,0.5529999999999999,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5930724308841733,0.32772901137667965,0.5435,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5659918332087142,0.3291441380375027,0.564,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.6027020659353668,0.3142821010278971,0.562,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.6048475002204764,0.306170506215802,0.5755,"(1.0, 1.0)" -1.0,1.0,0.8,1.0,0.5676243656211714,0.32833371786944215,0.571,"(1.0, 1.0)" -1.0,1.0,0.8,1.0,0.5965198025149135,0.33016871107577445,0.566,"(1.0, 1.0)" +1.0,1.0,0.8,1.0,0.5676243656211714,0.3283337178694421,0.5710000000000001,"(1.0, 1.0)" +1.0,1.0,0.8,1.0,0.5965198025149135,0.33016871107577445,0.5660000000000001,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5854237245214464,0.34155806402771016,0.5605,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5459903337419861,0.32642389340475475,0.5535,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5991386027747396,0.3259284372439425,0.5575,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.6145512322306643,0.32323220125927704,0.5475,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5753637033153615,0.3426209421800804,0.565,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5478742264157518,0.3238922706993957,0.555,"(1.0, 1.0)" -1.0,1.0,0.8,1.0,0.5423937028992942,0.3389384294151405,0.571,"(1.0, 1.0)" +1.0,1.0,0.8,1.0,0.5423937028992942,0.3389384294151405,0.5710000000000001,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5637944399126694,0.3221176332016822,0.5635,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5729068521191375,0.32423058738867416,0.556,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5544544458377884,0.3429534676660676,0.5675,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5972533020282452,0.3311110932995244,0.55,"(1.0, 1.0)" -1.0,1.0,0.8,1.0,0.5878742873264179,0.3305157280694033,0.559,"(1.0, 1.0)" +1.0,1.0,0.8,1.0,0.5878742873264179,0.3305157280694033,0.5589999999999999,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5821586296079118,0.3095808833389635,0.5685,"(1.0, 1.0)" 1.0,1.0,0.8,1.0,0.5625080213641603,0.3250227891114845,0.556,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.011837421222670508,0.573027762142616,0.484,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.018816961321886864,0.5864994580029991,0.4535,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.01881696132188686,0.5864994580029991,0.4535,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.004502475876310397,0.5912852680017514,0.478,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.01898595346406256,0.5856752321671738,0.4725,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.007648050983771737,0.5585067339473269,0.46,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.007648050983771738,0.5585067339473269,0.46,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.008232815709710678,0.574751013440709,0.466,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.00862906832943907,0.5690879462309846,0.4925,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.0067226499607598925,0.5580604547045744,0.467,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.006722649960759893,0.5580604547045744,0.467,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.02118877216511343,0.5610331254135275,0.462,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.0017358586660844494,0.5546115696364137,0.4745,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.014682784229863303,0.5427311908425039,0.4665,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.014577978059219353,0.5729144897847396,0.4675,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.013184656621611328,0.568953226319331,0.4655,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.013184656621611328,0.5689532263193311,0.4655,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.0024966949519328856,0.5828397498691208,0.4675,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.01716791780059243,0.5662319423436281,0.4775,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.013221124088858298,0.583299594756766,0.4785,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.00404249007376382,0.5386450359775766,0.476,"(1.0, 1.0)" -1.0,1.0,0.0,2.0,0.000769531076738736,0.550941702591561,0.466,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.004042490073763821,0.5386450359775766,0.476,"(1.0, 1.0)" +1.0,1.0,0.0,2.0,0.0007695310767387361,0.5509417025915611,0.466,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.025830350335367395,0.5618419093844963,0.47,"(1.0, 1.0)" 1.0,1.0,0.0,2.0,0.00964627605658585,0.5511020073402902,0.4785,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.1108138924943867,0.5443946679182142,0.5405,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.0671964192258272,0.5469750975338625,0.512,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.11370820181889013,0.5364936166673112,0.5115,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.10979609166708221,0.5373177528462063,0.5245,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.1097960916670822,0.5373177528462063,0.5245,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.08569890809106026,0.5379327408955729,0.5355,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.08172687246000039,0.5606974589536071,0.496,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.09554804770464756,0.5361752701950182,0.514,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.10411004767949064,0.550541968454017,0.515,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.10411004767949064,0.5505419684540171,0.515,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.07957650649027835,0.5336696548588155,0.509,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.11546881902848506,0.528547528390064,0.5015,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.10526314955382915,0.5462849393044049,0.5055,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.11546881902848505,0.5285475283900639,0.5015,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.10526314955382916,0.5462849393044049,0.5055,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.08835692929217834,0.5420404149157017,0.5085,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.10434225459000152,0.5407252786138188,0.516,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.10205324389655356,0.5209969270162362,0.52,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.10434225459000153,0.5407252786138188,0.516,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.10205324389655357,0.5209969270162362,0.52,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.1075401900280996,0.5442718630463228,0.5315,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.0868769776460489,0.5369597082257249,0.503,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.1055229168972065,0.552799867116401,0.5185,"(1.0, 1.0)" -1.0,1.0,0.2,2.0,0.09788689060872578,0.5084587369313074,0.4965,"(1.0, 1.0)" +1.0,1.0,0.2,2.0,0.09788689060872577,0.5084587369313074,0.4965,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.09715160766322856,0.5379761621932666,0.522,"(1.0, 1.0)" 1.0,1.0,0.2,2.0,0.09081831158663532,0.5413647743513027,0.5165,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.22019154818715447,0.5056830395737694,0.5615,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.22254137452872483,0.450969825789477,0.537,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.19165208237362164,0.49331369117738694,0.54,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.18812801554517977,0.5134761505397629,0.5665,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.22318970533652097,0.47240746832901703,0.5565,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.23312213305990645,0.49080852036702394,0.57,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.22254137452872488,0.4509698257894771,0.537,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.19165208237362166,0.4933136911773869,0.54,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.18812801554517972,0.5134761505397629,0.5665,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.22318970533652094,0.47240746832901703,0.5565,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.23312213305990645,0.490808520367024,0.57,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.23971549965123234,0.482443042419189,0.556,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.21339492253929243,0.49725797181529297,0.5755,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.2133949225392925,0.49725797181529297,0.5755,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.21194056004673706,0.5064609788482898,0.565,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.22184438435472648,0.47360489632648106,0.5625,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.22148863888848044,0.4718017761433167,0.566,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.22184438435472648,0.473604896326481,0.5625,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.22148863888848044,0.4718017761433167,0.5660000000000001,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.19762722770209634,0.5158598483210102,0.556,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.20177251433370408,0.5017768033357083,0.5495,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.24154355189773158,0.49245178898915676,0.562,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.2105182107836187,0.49337782471601677,0.5395,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.2415435518977316,0.4924517889891568,0.562,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.2105182107836187,0.4933778247160168,0.5395,"(1.0, 1.0)" 1.0,1.0,0.4,2.0,0.2486831594646041,0.464384224439093,0.561,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.22659508180183158,0.49808217694695844,0.5645,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.19523511125542162,0.49033692903041914,0.543,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.23965117716230275,0.48854559564371025,0.5805,"(1.0, 1.0)" -1.0,1.0,0.4,2.0,0.21115226049789262,0.49552794432548186,0.5645,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.34371306834991544,0.44149951588933045,0.5885,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.34119980391557175,0.44797955581502524,0.597,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.3323341943300059,0.4313027582655864,0.592,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.2265950818018316,0.4980821769469584,0.5645,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.1952351112554216,0.4903369290304192,0.5429999999999999,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.23965117716230275,0.4885455956437103,0.5805,"(1.0, 1.0)" +1.0,1.0,0.4,2.0,0.21115226049789265,0.4955279443254818,0.5645,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.34371306834991544,0.4414995158893305,0.5885,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3411998039155717,0.4479795558150253,0.597,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3323341943300059,0.4313027582655864,0.5920000000000001,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.3516734714942025,0.4277898338998113,0.6085,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.36168338407640965,0.42480322599792264,0.5995,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.33285628511364873,0.43911158692731334,0.581,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3616833840764097,0.4248032259979225,0.5995,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.33285628511364873,0.4391115869273133,0.581,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.3049639432366962,0.45163915366504603,0.5885,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.3287734360252027,0.4332159498296989,0.583,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.3454339296275976,0.45438015125729636,0.6065,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3454339296275976,0.4543801512572964,0.6065,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.37338320365881306,0.40929465351446137,0.591,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.32213634403232067,0.46275687435277923,0.594,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3221363440323207,0.4627568743527792,0.594,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.33621248276614063,0.44534572477927065,0.5975,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.31982422773734037,0.4727930012468847,0.597,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.30284976245615647,0.45380657486754206,0.588,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3198242277373404,0.4727930012468847,0.597,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3028497624561565,0.4538065748675421,0.588,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.31201029610878833,0.4551210432042043,0.59,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.32123164408855864,0.4648900446019582,0.597,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.3365958647813049,0.4424216380056795,0.61,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.3156871700351402,0.46174503863833904,0.606,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3156871700351402,0.461745038638339,0.606,"(1.0, 1.0)" 1.0,1.0,0.6,2.0,0.3394862638240271,0.42568242025182135,0.599,"(1.0, 1.0)" -1.0,1.0,0.6,2.0,0.33177088061386406,0.43448174493325303,0.5875,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.4638998012707081,0.37884010588561207,0.6465,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.49802348984270034,0.36268479027938083,0.6315,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.4858476597945488,0.3814111239648701,0.651,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.47377708414917574,0.39065154715907324,0.645,"(1.0, 1.0)" +1.0,1.0,0.6,2.0,0.3317708806138641,0.4344817449332529,0.5875,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4638998012707081,0.3788401058856121,0.6465,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4980234898427003,0.3626847902793808,0.6315,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4858476597945488,0.3814111239648701,0.6509999999999999,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4737770841491757,0.3906515471590733,0.645,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4810197067841942,0.3833711786288688,0.647,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4759381120377681,0.37900613936571137,0.6265,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.4956604778699083,0.38049651899740355,0.6545,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4956604778699083,0.3804965189974036,0.6545,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4801789552172764,0.3757350324595454,0.6405,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.44490504786174406,0.40892299319054637,0.6575,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.49928636818339556,0.38443849692523174,0.6465,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.46782805984512943,0.3934361176905318,0.635,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4449050478617441,0.4089229931905464,0.6575,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4992863681833956,0.3844384969252317,0.6465,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4678280598451294,0.3934361176905318,0.635,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.487330445009605,0.4036862273446307,0.64,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.510494980950497,0.38736564054693723,0.649,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.5104949809504971,0.3873656405469372,0.649,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4484599510956721,0.4103349099228892,0.6375,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.46927779499111594,0.3677988206748378,0.6355,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.469277794991116,0.3677988206748378,0.6355,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4870117357433018,0.38265811873201466,0.621,"(1.0, 1.0)" 1.0,1.0,0.8,2.0,0.4848446743717511,0.3867860028326481,0.6365,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.48106149054616915,0.3773611316033496,0.6395,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.502626235736659,0.36814272366846573,0.638,"(1.0, 1.0)" -1.0,1.0,0.8,2.0,0.48964417572073515,0.3842282297116548,0.633,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.01743453094402596,0.674471773449798,0.498,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.011727049661815207,0.6813968039024275,0.479,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4810614905461692,0.3773611316033496,0.6395,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.502626235736659,0.3681427236684657,0.638,"(1.0, 1.0)" +1.0,1.0,0.8,2.0,0.4896441757207352,0.3842282297116548,0.633,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.01743453094402596,0.6744717734497979,0.498,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.011727049661815208,0.6813968039024275,0.479,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.010493773107265358,0.6447001046895697,0.4855,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.00015669399325854712,0.666359116548889,0.4725,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.010135015953129784,0.6466746539496696,0.4685,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.0016204330663024172,0.6608054467881278,0.4835,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.010309084383149456,0.653575660963079,0.478,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.007514614953602021,0.6673662285814945,0.484,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.005767848467502392,0.6614113633830956,0.492,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.007514614953602019,0.6673662285814945,0.484,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.005767848467502393,0.6614113633830956,0.4920000000000001,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.013910893024209382,0.6554843930837546,0.511,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.003953228631619545,0.6539801453639239,0.477,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.016608682296773567,0.660940253854715,0.4955,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.0027134901578301706,0.6559967005722214,0.4975,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.0005747985571592864,0.676833063928888,0.4765,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.016608682296773567,0.6609402538547149,0.4955,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.0027134901578301698,0.6559967005722214,0.4975,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.0005747985571592862,0.676833063928888,0.4765,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.001714971719975891,0.67576601195953,0.4755,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.0017989966901581778,0.647822181652299,0.476,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.004672490931062636,0.6836178945256177,0.4725,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.002089721296702908,0.650990673149002,0.4715,"(1.0, 1.0)" -1.0,1.0,0.0,3.0,0.00291294196194433,0.6306562773097362,0.46,"(1.0, 1.0)" +1.0,1.0,0.0,3.0,0.0029129419619443307,0.6306562773097362,0.46,"(1.0, 1.0)" 1.0,1.0,0.0,3.0,0.0072540978266813876,0.639366953163591,0.4885,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.05625680325752806,0.6254335939621883,0.5135,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.05381336312610488,0.6288392528272788,0.532,"(1.0, 1.0)" @@ -533,140 +533,140 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 1.0,1.0,0.2,3.0,0.06843731436651405,0.6400361937259134,0.524,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.07258159005516779,0.6374623092660743,0.526,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.07590980147791689,0.6388188654063769,0.5325,"(1.0, 1.0)" -1.0,1.0,0.2,3.0,0.06471508979460605,0.6386868529002916,0.533,"(1.0, 1.0)" +1.0,1.0,0.2,3.0,0.06471508979460605,0.6386868529002916,0.5329999999999999,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.06489276374985066,0.6414418111071056,0.5175,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.07984185293636488,0.6367648133756134,0.53,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.07420418059551798,0.6590599780328379,0.537,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.05211943527125519,0.6403631485932195,0.53,"(1.0, 1.0)" 1.0,1.0,0.2,3.0,0.08800935764167747,0.6187815999548819,0.5535,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.18335307091501907,0.5433349237379146,0.5835,"(1.0, 1.0)" -1.0,1.0,0.4,3.0,0.19790136738456415,0.5427426513273035,0.5895,"(1.0, 1.0)" -1.0,1.0,0.4,3.0,0.1493502920589182,0.576583752726368,0.577,"(1.0, 1.0)" +1.0,1.0,0.4,3.0,0.19790136738456413,0.5427426513273035,0.5895,"(1.0, 1.0)" +1.0,1.0,0.4,3.0,0.1493502920589182,0.576583752726368,0.5770000000000001,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1524108896861624,0.5842355105988091,0.5775,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17876577278555925,0.5780829839229856,0.5825,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17429549033448954,0.5550351963352965,0.5635,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17524789520209588,0.5845934390568066,0.583,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17822023665941833,0.5808090833767562,0.5965,"(1.0, 1.0)" -1.0,1.0,0.4,3.0,0.13723977298484943,0.5778634220925112,0.5665,"(1.0, 1.0)" +1.0,1.0,0.4,3.0,0.13723977298484946,0.5778634220925112,0.5665,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.16337329899453445,0.5864720257604445,0.5835,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17398393647110655,0.5805104797786099,0.5785,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1767318629826421,0.5715987567088631,0.5725,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.17754950450071955,0.5697224309138427,0.578,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1884845476347482,0.5635675343129037,0.5785,"(1.0, 1.0)" -1.0,1.0,0.4,3.0,0.21201812782545904,0.5581279715135777,0.608,"(1.0, 1.0)" +1.0,1.0,0.4,3.0,0.21201812782545906,0.5581279715135777,0.608,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1963189566497259,0.5482275774314271,0.5775,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1552246856552455,0.5591982113310326,0.5525,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1577023432962526,0.5752076798212804,0.562,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1707928801820638,0.567575072305011,0.578,"(1.0, 1.0)" 1.0,1.0,0.4,3.0,0.1860341967714153,0.5551999800470788,0.5715,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.3016172503246647,0.48223072487003027,0.644,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.3016172503246647,0.4822307248700303,0.644,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.2922369758878316,0.5105664339582936,0.6405,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.2900855041307239,0.49497233014957587,0.6245,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.283701526486071,0.5082682367932738,0.635,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.26010131512322615,0.5096757040325098,0.6135,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.2900855041307239,0.4949723301495759,0.6245,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.28370152648607105,0.5082682367932738,0.635,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.2601013151232261,0.5096757040325098,0.6135,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.27722631758413696,0.5031118889317028,0.614,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.28434303713315306,0.5078257369606418,0.6365,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.28380025784914675,0.49437476366939137,0.6245,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.28214364696472705,0.49183718027858686,0.626,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.311768175452461,0.47822264936262426,0.6255,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.29169082316570155,0.49245162002740045,0.622,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.29312423978860447,0.4830774205095146,0.62,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.28380025784914675,0.4943747636693914,0.6245,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.28214364696472705,0.4918371802785869,0.626,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.311768175452461,0.4782226493626242,0.6255,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.29169082316570155,0.4924516200274005,0.622,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.2931242397886045,0.4830774205095146,0.62,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.2998575025195115,0.4885253876266737,0.6145,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.29709455043204325,0.4972775448281429,0.623,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.2741688827345391,0.5036490584870306,0.617,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.31455119457745295,0.494605403943602,0.6265,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.2801514486541209,0.49797048960675744,0.6255,"(1.0, 1.0)" -1.0,1.0,0.6,3.0,0.30944662595349404,0.48624323092375404,0.621,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.3145511945774529,0.4946054039436021,0.6265,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.2801514486541209,0.4979704896067574,0.6255,"(1.0, 1.0)" +1.0,1.0,0.6,3.0,0.30944662595349404,0.4862432309237541,0.621,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.30445910948064303,0.4987027288965328,0.627,"(1.0, 1.0)" 1.0,1.0,0.6,3.0,0.3265187957865069,0.4760696890949797,0.631,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.47145208578214115,0.4040217679032679,0.6885,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.4477546048284007,0.41602840000556857,0.681,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.4474385988400912,0.4224033717901071,0.692,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4714520857821412,0.4040217679032679,0.6885,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4477546048284007,0.41602840000556857,0.6809999999999999,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4474385988400912,0.4224033717901071,0.6920000000000001,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4459015436515659,0.4214899172909583,0.69,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4422180987514956,0.4144960702284438,0.68,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.44896852602801607,0.41542177975354466,0.688,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.43109941188767287,0.39734726616821187,0.684,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.43843002639943407,0.4090286908729112,0.7025,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4489685260280161,0.4154217797535447,0.688,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4310994118876729,0.3973472661682119,0.684,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4384300263994341,0.4090286908729112,0.7025,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4134092457845062,0.4353654634232317,0.7,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.43553272753426475,0.4264050275684149,0.6965,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.42515201065101993,0.42990423418143525,0.691,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4355327275342648,0.4264050275684149,0.6965,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4251520106510199,0.4299042341814353,0.691,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4243288742599066,0.40950554244461096,0.6955,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.4354051811834708,0.41459969446808276,0.6765,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4354051811834708,0.4145996944680828,0.6765,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4457379600826662,0.4264711514327616,0.6935,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.4814320790281156,0.4128716087558221,0.68,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.4086699496799246,0.42023376862156486,0.664,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.43860636264667907,0.4311623491487413,0.6995,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.4454089254841511,0.41181197999737074,0.6895,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4086699496799246,0.4202337686215649,0.664,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4386063626466791,0.4311623491487413,0.6995,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.4454089254841511,0.4118119799973707,0.6895,"(1.0, 1.0)" 1.0,1.0,0.8,3.0,0.3758449643206363,0.4240916480873731,0.6745,"(1.0, 1.0)" -1.0,1.0,0.8,3.0,0.44172917125225597,0.40296106824361944,0.695,"(1.0, 1.0)" +1.0,1.0,0.8,3.0,0.441729171252256,0.4029610682436193,0.695,"(1.0, 1.0)" 2.0,2.0,0.0,1.0,0.02019491245110907,0.32331056744230663,0.454,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.017858992148507828,0.3340791200766515,0.451,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.0031576949751510796,0.3264158272758325,0.462,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.00315769497515108,0.3264158272758325,0.462,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.017440493989227715,0.3158690205743952,0.4615,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.011231289950405138,0.32275907081245936,0.4665,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.011231289950405137,0.32275907081245936,0.4665,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.006244275528894689,0.3207056294048123,0.469,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.014564684483244602,0.3204579062065873,0.4625,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.01130451118282238,0.32484173318192877,0.4665,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.017079973375339987,0.31062147951461627,0.476,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.014564684483244604,0.3204579062065873,0.4625,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.01130451118282238,0.3248417331819288,0.4665,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.017079973375339987,0.3106214795146163,0.476,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.01120861101477204,0.3294748771938129,0.443,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.0019549664949083815,0.32790074227838073,0.4655,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.004128178511870627,0.3181428491358086,0.4775,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.0282569886393191,0.3295444812082114,0.4625,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.03247936928701341,0.3289181427344119,0.455,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.017999176047809793,0.32639348567967574,0.4485,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.002493655702838179,0.3153207919735581,0.4565,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.008524575907412926,0.3194943022695462,0.4685,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.032479369287013414,0.3289181427344119,0.455,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.01799917604780979,0.3263934856796757,0.4485,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.0024936557028381787,0.3153207919735581,0.4565,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.008524575907412927,0.3194943022695462,0.4685,"(2.0, 2.0)" 2.0,2.0,0.0,1.0,0.027676804718074054,0.3182771927326729,0.475,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.0030848374276538455,0.3244531191988916,0.4505,"(2.0, 2.0)" -2.0,2.0,0.0,1.0,0.01660778832651382,0.32862081230789775,0.45,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.21256076988231815,0.28933410263162784,0.46,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.003084837427653845,0.3244531191988916,0.4505,"(2.0, 2.0)" +2.0,2.0,0.0,1.0,0.016607788326513818,0.3286208123078977,0.45,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.21256076988231806,0.28933410263162784,0.46,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.18662327489250985,0.2919309460005378,0.478,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.19874500918219817,0.29324018957626874,0.4795,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.19874500918219812,0.29324018957626874,0.4795,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.13108763594880793,0.2999233031002517,0.457,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.19446756781312566,0.29549971458620516,0.4685,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.14195349776897598,0.29893184962659086,0.4705,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.19446756781312569,0.2954997145862052,0.4685,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.14195349776897598,0.2989318496265909,0.4705,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.1507440368364011,0.2989407901958202,0.465,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.1884589490382698,0.28953556557480353,0.4815,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.15754826960848664,0.29747002110532805,0.4645,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.15786447115719518,0.29388533259591554,0.4845,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.14391166836125577,0.29276782143687974,0.4685,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.14391166836125574,0.2927678214368797,0.4685,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.19220102396199207,0.28598618524030983,0.4755,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.16795928433916782,0.2864571279185277,0.468,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.17316506526340905,0.297737232417705,0.4845,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.13433420487415437,0.30524610823720494,0.4535,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.13433420487415434,0.3052461082372049,0.4535,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.1498494398857289,0.28797868495151197,0.4725,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.19145285625573744,0.2875593700033544,0.4705,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.20664624961475817,0.3007970346353693,0.468,"(2.0, 2.0)" -2.0,2.0,0.2,1.0,0.18915141151719778,0.2984807016172176,0.481,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.19145285625573746,0.2875593700033544,0.4705,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.20664624961475814,0.3007970346353693,0.468,"(2.0, 2.0)" +2.0,2.0,0.2,1.0,0.18915141151719772,0.2984807016172176,0.481,"(2.0, 2.0)" 2.0,2.0,0.2,1.0,0.16538668681076446,0.291852292536969,0.481,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.323956347264638,0.283383454198981,0.51,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.3594503227949792,0.2803436336429175,0.492,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3594503227949792,0.2803436336429175,0.4920000000000001,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.31152970901799665,0.28432571043462684,0.49,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.40431937654782846,0.27280180500788304,0.4715,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.3423303785663696,0.27869041595592214,0.476,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.36058572154412594,0.2774165132840148,0.487,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.4043193765478285,0.27280180500788304,0.4715,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3423303785663696,0.2786904159559221,0.476,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3605857215441259,0.2774165132840148,0.487,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.33381790527328664,0.27696379530075005,0.489,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3299715668761017,0.2745204800008196,0.4835,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3690224119665166,0.2820053739846576,0.4955,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3425902313911072,0.27924318744817744,0.4865,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.3488931214526778,0.27836882689655007,0.5045,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3488931214526778,0.2783688268965501,0.5045,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.31379266396992883,0.2704833208404239,0.468,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3374395141912694,0.29244454338068565,0.468,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.35416758777334095,0.27487685702877274,0.495,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3541675877733409,0.27487685702877274,0.495,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3355146429415433,0.2861860319748911,0.483,"(2.0, 2.0)" 2.0,2.0,0.4,1.0,0.3638100066899538,0.277395181336106,0.483,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.35886228794320674,0.28153295992204397,0.493,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.37142861542335115,0.2779101114205855,0.468,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.39488147355732134,0.28126202038377823,0.4945,"(2.0, 2.0)" -2.0,2.0,0.4,1.0,0.3818445396235668,0.26825168105843367,0.499,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.35886228794320674,0.281532959922044,0.493,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3714286154233512,0.2779101114205855,0.468,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3948814735573213,0.28126202038377823,0.4945,"(2.0, 2.0)" +2.0,2.0,0.4,1.0,0.3818445396235668,0.2682516810584337,0.499,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5380113930513571,0.2805313319675346,0.4775,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5572949852701607,0.2691044442348046,0.4905,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5397138454011837,0.27354825609473343,0.487,"(2.0, 2.0)" -2.0,2.0,0.6,1.0,0.5685452103558907,0.27758802531718574,0.496,"(2.0, 2.0)" +2.0,2.0,0.6,1.0,0.5685452103558907,0.2775880253171857,0.496,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5277922673224502,0.28296062059103744,0.5,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5628580764400796,0.2668145464443533,0.5065,"(2.0, 2.0)" -2.0,2.0,0.6,1.0,0.5302140279329737,0.27396603903583316,0.486,"(2.0, 2.0)" -2.0,2.0,0.6,1.0,0.49648416712802973,0.2709802315830928,0.4865,"(2.0, 2.0)" +2.0,2.0,0.6,1.0,0.5302140279329737,0.2739660390358332,0.486,"(2.0, 2.0)" +2.0,2.0,0.6,1.0,0.4964841671280297,0.2709802315830928,0.4865,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5498003998910369,0.27382399464079793,0.509,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5345212718338374,0.2676449184666786,0.4785,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5339525312440732,0.2730655225732117,0.4875,"(2.0, 2.0)" @@ -680,55 +680,55 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 2.0,2.0,0.6,1.0,0.5393131835587244,0.270852210857956,0.5045,"(2.0, 2.0)" 2.0,2.0,0.6,1.0,0.5690408469712516,0.276336163130534,0.508,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7568750525994937,0.26388614353274364,0.506,"(2.0, 2.0)" -2.0,2.0,0.8,1.0,0.7219330006419452,0.26974563796782147,0.5045,"(2.0, 2.0)" +2.0,2.0,0.8,1.0,0.7219330006419452,0.2697456379678215,0.5045,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7231664285784837,0.2688369394913584,0.5055,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7252713942143446,0.27502560092564154,0.4995,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7210785270334049,0.2661852884191876,0.5065,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7437557166185994,0.2703612443869262,0.4965,"(2.0, 2.0)" -2.0,2.0,0.8,1.0,0.743960308154421,0.26580352499853066,0.5105,"(2.0, 2.0)" +2.0,2.0,0.8,1.0,0.7439603081544208,0.26580352499853066,0.5105,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7211514917070818,0.2683447233915319,0.52,"(2.0, 2.0)" -2.0,2.0,0.8,1.0,0.7351469210012225,0.26464168331312055,0.509,"(2.0, 2.0)" +2.0,2.0,0.8,1.0,0.7351469210012225,0.2646416833131205,0.509,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7169199055078116,0.26992589064159056,0.5105,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7087353330074114,0.26710546686200465,0.496,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7296981676296703,0.27412339064201396,0.508,"(2.0, 2.0)" -2.0,2.0,0.8,1.0,0.732623894287742,0.2653159079644164,0.514,"(2.0, 2.0)" +2.0,2.0,0.8,1.0,0.7326238942877421,0.2653159079644164,0.514,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7429178103809799,0.2715655056255451,0.488,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7401864195412907,0.26863050013974976,0.5115,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7193769246659751,0.25623526977163186,0.5045,"(2.0, 2.0)" -2.0,2.0,0.8,1.0,0.725357900405255,0.2701790730528192,0.515,"(2.0, 2.0)" +2.0,2.0,0.8,1.0,0.7253579004052549,0.2701790730528192,0.515,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7347382365777876,0.2655326520761671,0.4905,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7318242941138431,0.2672069356440177,0.4975,"(2.0, 2.0)" 2.0,2.0,0.8,1.0,0.7496725523693623,0.26530453363317197,0.491,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.020058697001862413,0.3826948083650305,0.4465,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.018386160311074966,0.37830721144363677,0.41,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.019545395151378316,0.36591584538990624,0.434,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.01838616031107497,0.3783072114436368,0.41,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.01954539515137832,0.36591584538990624,0.434,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.03376977854471536,0.3895827200889145,0.425,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.004166940782253184,0.35980971674096646,0.4565,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.010292865128433488,0.37959144988376514,0.4325,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.0029113033584403643,0.37716660235824684,0.434,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.02719486276327609,0.37432775335488605,0.458,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.004166940782253184,0.3598097167409665,0.4565,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.010292865128433488,0.3795914498837651,0.4325,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.0029113033584403643,0.3771666023582469,0.434,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.02719486276327609,0.3743277533548861,0.458,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.059690061116422076,0.37243105132835935,0.4525,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.02280502276263307,0.36489547500229613,0.453,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.02280502276263307,0.3648954750022961,0.453,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.004739698595766739,0.3689762883580189,0.4385,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.009099152785556097,0.37387630532835764,0.4365,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.007120909371340501,0.38297274295450073,0.4265,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.005628233186416492,0.36392243575217886,0.444,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.0030218066568738116,0.36282549284155863,0.447,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.007997685948792995,0.37850632351619523,0.445,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.009099152785556095,0.3738763053283576,0.4365,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.007120909371340502,0.3829727429545007,0.4265,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.005628233186416492,0.3639224357521789,0.444,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.003021806656873812,0.3628254928415586,0.447,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.007997685948792995,0.3785063235161952,0.445,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.004789539667331794,0.3675415616181613,0.4505,"(2.0, 2.0)" 2.0,2.0,0.0,2.0,0.04243778517226946,0.3878839886922866,0.4335,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.01914029725862337,0.38625847243519407,0.419,"(2.0, 2.0)" -2.0,2.0,0.0,2.0,0.0048042849458361705,0.3655730261320259,0.437,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.15915862291173957,0.3394721411850733,0.473,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.01914029725862337,0.3862584724351941,0.419,"(2.0, 2.0)" +2.0,2.0,0.0,2.0,0.0048042849458361705,0.3655730261320259,0.4370000000000001,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.15915862291173954,0.3394721411850733,0.473,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.15896336203370404,0.3549286961059872,0.462,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.16251375047123218,0.36078614353104926,0.4625,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.13815844306625932,0.34007095390904996,0.4695,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.16251375047123218,0.3607861435310493,0.4625,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.13815844306625932,0.34007095390905,0.4695,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.1678003099684149,0.34634368320721376,0.478,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.13884878190802327,0.34862069102173643,0.46,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.16379817769324878,0.34469908232803825,0.483,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.15926748421000722,0.34427166141539894,0.439,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.14218929313758472,0.34236946540580293,0.4575,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.13820512918775704,0.34202996863582347,0.4655,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.15926748421000722,0.3442716614153989,0.439,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.14218929313758472,0.3423694654058029,0.4575,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.13820512918775704,0.3420299686358235,0.4655,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.15832119265160896,0.3376161844669291,0.4475,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.1560719112601679,0.35229535471798074,0.473,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.13828599077143774,0.3471822707068035,0.461,"(2.0, 2.0)" @@ -736,46 +736,46 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 2.0,2.0,0.2,2.0,0.15492726343320032,0.3409032431437771,0.4655,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.15277400439654032,0.34881127793808475,0.48,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.14905185348654507,0.3375539800761853,0.4715,"(2.0, 2.0)" -2.0,2.0,0.2,2.0,0.11738484406776706,0.3500168203969555,0.455,"(2.0, 2.0)" +2.0,2.0,0.2,2.0,0.11738484406776704,0.3500168203969555,0.455,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.1799839672992332,0.3382793248931609,0.452,"(2.0, 2.0)" 2.0,2.0,0.2,2.0,0.1588123324612197,0.3494188776331515,0.4595,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.3040353179790554,0.3309521898201031,0.486,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.31403234110636274,0.3231190043408312,0.488,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.2919499865843163,0.3223068628318019,0.475,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.32700759771556587,0.3254859858997873,0.491,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.3270075977155659,0.3254859858997873,0.491,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.3094381191736184,0.3265631978620793,0.5065,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.3393297778344308,0.32671617602078806,0.514,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.28282360474068935,0.34196324942821654,0.472,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.3393297778344308,0.3267161760207881,0.514,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.2828236047406893,0.3419632494282165,0.472,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.28851775351987125,0.3397550688080315,0.476,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.2998579042041281,0.3347273160607188,0.4895,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.28942838077990335,0.3466927241890909,0.493,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.2894283807799033,0.3466927241890909,0.493,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.3117704287448431,0.3212034330498323,0.4905,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.31454600941745176,0.33975167285069563,0.4785,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.31935192441336907,0.3105456121510281,0.479,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.3193519244133691,0.3105456121510281,0.479,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.29693473315683344,0.33574298665497826,0.4905,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.2971088250989534,0.33248289678380666,0.4885,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.2884293088951654,0.3207010954036129,0.4825,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.29955243557170996,0.3185096779535186,0.4825,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.28516966252471,0.3284157794862383,0.4735,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.29955243557171,0.3185096779535186,0.4825,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.28516966252471004,0.3284157794862383,0.4735,"(2.0, 2.0)" 2.0,2.0,0.4,2.0,0.31803970183743113,0.3434444015997402,0.4685,"(2.0, 2.0)" -2.0,2.0,0.4,2.0,0.32133715616190817,0.32141027649667486,0.487,"(2.0, 2.0)" +2.0,2.0,0.4,2.0,0.32133715616190817,0.3214102764966749,0.487,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.5047336777272496,0.31653102750844664,0.51,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.4773970846799991,0.32214957970312347,0.496,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.4773970846799991,0.3221495797031235,0.496,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4937676763714973,0.3179505873509283,0.5395,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4969639761294855,0.3054865117717822,0.5035,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.5281739009791092,0.30075288850038556,0.512,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.5281739009791092,0.3007528885003856,0.512,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.5027206345777283,0.3110077756892183,0.5125,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.46726824553090296,0.32205398117747763,0.5005,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.505888795741846,0.3130324778208215,0.5275,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.5176657355594249,0.30983347499906494,0.523,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.5058887957418461,0.3130324778208215,0.5275,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.5176657355594249,0.3098334749990649,0.523,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4942867369777262,0.3132007696821365,0.515,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.5047044368615093,0.3141285428419486,0.5295,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4818332600810095,0.31467739462067124,0.514,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.51381810921378,0.3155786669119582,0.538,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.51381810921378,0.3155786669119582,0.5379999999999999,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4727176201295885,0.3103164632794486,0.509,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4798421759011148,0.30918527685379776,0.5035,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.48596206841858847,0.31473329604458794,0.527,"(2.0, 2.0)" -2.0,2.0,0.6,2.0,0.48672408944630935,0.3110145152952291,0.521,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.4859620684185885,0.31473329604458794,0.527,"(2.0, 2.0)" +2.0,2.0,0.6,2.0,0.4867240894463094,0.3110145152952291,0.521,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4667868046445238,0.3108114526049312,0.4995,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4760726293673431,0.3187588742454337,0.503,"(2.0, 2.0)" 2.0,2.0,0.6,2.0,0.4967270536835914,0.30260961050883073,0.5225,"(2.0, 2.0)" @@ -785,104 +785,104 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 2.0,2.0,0.8,2.0,0.6799569951012502,0.293288466090068,0.539,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.668982792905348,0.288687424758064,0.5435,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6905055301011263,0.30148428769677404,0.541,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6611864195908852,0.29648159690093207,0.527,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6611864195908852,0.2964815969009321,0.527,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6693274734914174,0.29208212297520386,0.531,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6549557352577412,0.3038494598023988,0.5185,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6541025137857368,0.2988804960187581,0.5445,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6931130111558699,0.2947717021673631,0.554,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6931130111558699,0.2947717021673631,0.5539999999999999,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6935664169102932,0.2958972473896613,0.5465,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6638500112422266,0.29439749710126867,0.544,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6630098049227893,0.29664040433571,0.5525,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6638500112422266,0.2943974971012687,0.544,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6630098049227893,0.29664040433571004,0.5525,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6624666083863842,0.2956461233533517,0.537,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6833793965184687,0.2963534733193984,0.5235,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6643682895307809,0.28762860287665515,0.5615,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6846363505883674,0.29797621871107693,0.5295,"(2.0, 2.0)" -2.0,2.0,0.8,2.0,0.6546578391288531,0.31713933465930566,0.5355,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6846363505883674,0.2979762187110769,0.5295,"(2.0, 2.0)" +2.0,2.0,0.8,2.0,0.6546578391288531,0.3171393346593057,0.5355,"(2.0, 2.0)" 2.0,2.0,0.8,2.0,0.6665958430744894,0.2934179382489208,0.561,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.01618486382156006,0.45821205561865863,0.434,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.01618486382156006,0.4582120556186586,0.434,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.009963591333245059,0.4558192210984794,0.4395,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.002944739746071073,0.4861755605178096,0.419,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.019161351814522214,0.47560931836483245,0.4485,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.02949709484822291,0.436885104091838,0.436,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.028415583012837278,0.4529584295415455,0.433,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.00513285382034137,0.48261566216164936,0.431,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.005338307679192823,0.46429668587011824,0.436,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.019161351814522214,0.4756093183648325,0.4485,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.02949709484822292,0.436885104091838,0.436,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.02841558301283728,0.4529584295415455,0.433,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.00513285382034137,0.4826156621616494,0.431,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.005338307679192822,0.4642966858701182,0.436,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.010703968642205249,0.4316843361533411,0.436,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.027032695767107828,0.46509250368344357,0.4405,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.027032695767107828,0.4650925036834436,0.4405,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.010902315113178948,0.474867642065317,0.445,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.009328621569091318,0.46630959948059625,0.4605,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.009328621569091318,0.4663095994805962,0.4605,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.02029891907746179,0.4463030316506552,0.449,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.02867820651090341,0.43032552106099353,0.453,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.02867820651090341,0.4303255210609935,0.453,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.0030685758953760012,0.44900272508775135,0.439,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.009628484259164405,0.4726127912424249,0.4505,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.008905610709101125,0.4766081548854706,0.4395,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.0114750257165332,0.45712797532636906,0.4625,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.0114750257165332,0.45712797532636895,0.4625,"(2.0, 2.0)" 2.0,2.0,0.0,3.0,0.001137309426095803,0.4903065834268003,0.45,"(2.0, 2.0)" -2.0,2.0,0.0,3.0,0.01652963009615626,0.45584582039917976,0.437,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.1344624133249686,0.44633660115826285,0.4715,"(2.0, 2.0)" +2.0,2.0,0.0,3.0,0.01652963009615626,0.4558458203991798,0.4370000000000001,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.1344624133249686,0.4463366011582629,0.4715,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.14406455450812702,0.4223310664770488,0.482,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.1630480560700106,0.4188020353399082,0.493,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.10767832893377313,0.4556477877312776,0.4655,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.10406880172651364,0.43127187102167475,0.4825,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.12295257510531397,0.4359638481080717,0.468,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.10767832893377312,0.4556477877312776,0.4655,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.10406880172651364,0.4312718710216748,0.4825,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.12295257510531395,0.4359638481080717,0.468,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.13779356901159204,0.4364934142227246,0.4765,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.11546532850013089,0.4489544839365584,0.4705,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.11546532850013087,0.4489544839365584,0.4705,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.13435905624749886,0.4214542908259278,0.4655,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.12447775208725992,0.4344209580897021,0.4685,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.14700236349488258,0.4264962100121913,0.491,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.1299569215892887,0.43549333862812134,0.499,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.1366090973028446,0.44174719800337436,0.491,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.13150404264820514,0.44181537567001133,0.4755,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.09064539317757445,0.46453401523446575,0.46,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.1299569215892887,0.4354933386281213,0.499,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.1366090973028446,0.4417471980033744,0.491,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.13150404264820514,0.4418153756700113,0.4755,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.09064539317757443,0.4645340152344658,0.46,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.11950256105095028,0.4341252089144711,0.485,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.11420044010520525,0.4503990444345803,0.457,"(2.0, 2.0)" -2.0,2.0,0.2,3.0,0.15409366124476523,0.43434919479220135,0.483,"(2.0, 2.0)" +2.0,2.0,0.2,3.0,0.15409366124476526,0.43434919479220135,0.483,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.11402017092328393,0.42421987264742655,0.4715,"(2.0, 2.0)" 2.0,2.0,0.2,3.0,0.138854169309758,0.4315055373863834,0.4825,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2601982293322672,0.4098271306379622,0.529,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.29546248711240486,0.416419308629384,0.544,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2954624871124049,0.416419308629384,0.544,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2870467366715761,0.4114473743069317,0.5175,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2420692069287727,0.4295128879678172,0.535,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2462468695848137,0.4214129963613896,0.5325,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.24484191305091108,0.4097613729129664,0.501,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2448419130509111,0.4097613729129664,0.501,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2398912383588674,0.4215998842613934,0.5025,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2954941417939203,0.3962559346825369,0.5325,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.2477637505738276,0.42270501500708035,0.502,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.27932671685681604,0.40710979791875523,0.513,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2477637505738276,0.4227050150070804,0.502,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.27932671685681604,0.4071097979187552,0.513,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.26731966424991016,0.3957199141963189,0.5145,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.26689066692695734,0.4115514684907496,0.488,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.27009655133706717,0.39759408434011456,0.491,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.2772928848947528,0.41157574754011317,0.518,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2668906669269573,0.4115514684907496,0.488,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2700965513370672,0.39759408434011456,0.491,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2772928848947528,0.4115757475401132,0.518,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.26562088558678165,0.4105005246056322,0.5235,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.22962266614971066,0.42467784086115656,0.5105,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2506366681440224,0.4179831370186916,0.499,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.2546573959665861,0.411137005910461,0.5285,"(2.0, 2.0)" -2.0,2.0,0.4,3.0,0.24313382153594973,0.4393551009300893,0.5285,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2546573959665861,0.41113700591046093,0.5285,"(2.0, 2.0)" +2.0,2.0,0.4,3.0,0.2431338215359497,0.4393551009300893,0.5285,"(2.0, 2.0)" 2.0,2.0,0.4,3.0,0.2460595265644446,0.4113066624213654,0.512,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.4191313153950624,0.38354325201541384,0.556,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4191313153950624,0.3835432520154137,0.556,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.4062782017819117,0.379493468399544,0.5605,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.40818469401562435,0.3782938993884722,0.5645,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4081846940156244,0.3782938993884722,0.5645,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3947099637052297,0.38720072515722254,0.5495,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.38334685214435754,0.3865223266433061,0.5625,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.4127322511695087,0.37656317161298286,0.5475,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.3833468521443576,0.3865223266433061,0.5625,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4127322511695087,0.3765631716129829,0.5475,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3749911291112913,0.389591559379635,0.5445,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3776866031401655,0.38678335012207343,0.551,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.40674241081908574,0.38063008877494386,0.562,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.40674241081908574,0.3806300887749439,0.562,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.41161564623723657,0.3812410939001586,0.5685,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3977822440827503,0.379222509906302,0.536,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3877164322309095,0.3678686180150403,0.5465,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.40508696960784274,0.3884918085142436,0.56,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.34366343915835473,0.39975903393513873,0.542,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4050869696078427,0.3884918085142436,0.56,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.34366343915835473,0.3997590339351387,0.542,"(2.0, 2.0)" 2.0,2.0,0.6,3.0,0.3950364672911702,0.3786778035960344,0.5565,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.4298549144963491,0.3734354609898512,0.567,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.4093072375065505,0.37775769641210466,0.5435,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.40583758007197146,0.38111613952475304,0.547,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.37993487431957795,0.39025668091461285,0.5415,"(2.0, 2.0)" -2.0,2.0,0.6,3.0,0.3911554918555308,0.3914932370100514,0.577,"(2.0, 2.0)" -2.0,2.0,0.8,3.0,0.6100956526271128,0.33678754429278557,0.587,"(2.0, 2.0)" -2.0,2.0,0.8,3.0,0.5558571084104182,0.34683002271452046,0.585,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4298549144963491,0.3734354609898512,0.5670000000000001,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.4093072375065505,0.3777576964121047,0.5435,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.40583758007197146,0.3811161395247529,0.547,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.37993487431957795,0.3902566809146129,0.5415,"(2.0, 2.0)" +2.0,2.0,0.6,3.0,0.3911554918555308,0.3914932370100514,0.5770000000000001,"(2.0, 2.0)" +2.0,2.0,0.8,3.0,0.6100956526271128,0.3367875442927856,0.5870000000000001,"(2.0, 2.0)" +2.0,2.0,0.8,3.0,0.5558571084104182,0.3468300227145205,0.585,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5685919336300345,0.3440993597021014,0.5805,"(2.0, 2.0)" -2.0,2.0,0.8,3.0,0.5903120098474227,0.33769592836088613,0.5835,"(2.0, 2.0)" +2.0,2.0,0.8,3.0,0.5903120098474227,0.3376959283608861,0.5835,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5703881475854861,0.35435050468254314,0.5905,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5779007188053471,0.3435707353130463,0.62,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5860452920129251,0.3363973660255949,0.6025,"(2.0, 2.0)" @@ -890,74 +890,74 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 2.0,2.0,0.8,3.0,0.5644149433468187,0.3502838780658327,0.5935,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5535172885556864,0.3510852029138291,0.5745,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5944450266405303,0.34155989220338423,0.618,"(2.0, 2.0)" -2.0,2.0,0.8,3.0,0.550160674313027,0.36288440822487084,0.5985,"(2.0, 2.0)" +2.0,2.0,0.8,3.0,0.550160674313027,0.3628844082248709,0.5985,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5528005781489688,0.3440675649375846,0.5885,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5475682609329956,0.34741627681820303,0.585,"(2.0, 2.0)" -2.0,2.0,0.8,3.0,0.5576474940436227,0.35597540696658336,0.582,"(2.0, 2.0)" +2.0,2.0,0.8,3.0,0.5576474940436227,0.35597540696658336,0.5820000000000001,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5612910771591619,0.3546460522513436,0.5965,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5643527413948274,0.3471737291510629,0.61,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5802106288806113,0.3380236119000411,0.6005,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5945769706101045,0.3440420071155787,0.598,"(2.0, 2.0)" 2.0,2.0,0.8,3.0,0.5828292913302693,0.33450592023312675,0.6025,"(2.0, 2.0)" -3.0,3.0,0.0,1.0,0.018640720103624598,0.32270038067295415,0.4725,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.015618312141825408,0.3170749164914812,0.4595,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.0186407201036246,0.3227003806729541,0.4725,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.01561831214182541,0.3170749164914812,0.4595,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.0005129381703595327,0.3311701661220955,0.464,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.03068469327143769,0.32928553357772494,0.4725,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.030684693271437687,0.3292855335777249,0.4725,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.04817526867775,0.3085464137697833,0.481,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.0034998692895098055,0.31955844597208655,0.459,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.003499869289509805,0.3195584459720865,0.459,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.017707416024127863,0.3282115007586029,0.4645,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.023669341370753216,0.3232678038972053,0.446,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.029115718217988678,0.3245376532502074,0.448,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.03942848815511804,0.3346586460355354,0.4525,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.02911571821798868,0.3245376532502074,0.448,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.039428488155118034,0.3346586460355354,0.4525,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.010239883150268936,0.3290912813067695,0.474,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.0070135542868625155,0.32072262211462055,0.4635,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.024160853498539105,0.32688089064897075,0.4545,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.02990145709728569,0.33926506284790886,0.4285,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.028822029989892896,0.31685292043090446,0.477,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.0070135542868625155,0.3207226221146205,0.4635,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.024160853498539102,0.32688089064897075,0.4545,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.029901457097285686,0.3392650628479089,0.4285,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.02882202998989289,0.3168529204309045,0.477,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.020982855796402498,0.330066894276144,0.48,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.019142036252113512,0.3335737798337988,0.483,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.015117089378326166,0.3228123126842151,0.463,"(3.0, 3.0)" -3.0,3.0,0.0,1.0,0.033317415651369885,0.31571998977618854,0.454,"(3.0, 3.0)" +3.0,3.0,0.0,1.0,0.033317415651369885,0.3157199897761885,0.454,"(3.0, 3.0)" 3.0,3.0,0.0,1.0,0.012826850077393969,0.32778639577969765,0.4515,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.1836451126317514,0.29428405522828494,0.478,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.1836451126317514,0.2942840552282849,0.478,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.17120868353744792,0.2942828134559129,0.4905,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.1835877910739108,0.2950672686911713,0.4935,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.18450045986688793,0.29462158474613076,0.481,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.184500459866888,0.2946215847461308,0.481,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.1900425261991667,0.2948589743268819,0.485,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.1790543616778486,0.29242248209952626,0.4635,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.2303167743824015,0.289763701544643,0.476,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.1969836245402901,0.29352488869715787,0.496,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.1969836245402901,0.2935248886971579,0.496,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.16516556638782698,0.2947297110951902,0.4765,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.12083643382215087,0.29785475452209315,0.4865,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.15605675418284753,0.29796001991277576,0.472,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.20039173958880427,0.2887710335687674,0.49,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.16192968087855128,0.28997604138045985,0.481,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.18082921336879876,0.29051548134332206,0.477,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.1808292133687988,0.2905154813433221,0.477,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.17830518562217013,0.293751269383703,0.4765,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.1612725661733734,0.29828280062274803,0.444,"(3.0, 3.0)" 3.0,3.0,0.2,1.0,0.15776960172398433,0.30337381099085664,0.447,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.19223511712046723,0.29878422624732354,0.481,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.1679096274986294,0.29493029384866387,0.47,"(3.0, 3.0)" -3.0,3.0,0.2,1.0,0.2075741757048969,0.28758552218029887,0.475,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.33966523700671375,0.27786892552287634,0.4805,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.36869344451805286,0.278616116831051,0.4895,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.19223511712046729,0.29878422624732354,0.481,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.1679096274986294,0.2949302938486639,0.47,"(3.0, 3.0)" +3.0,3.0,0.2,1.0,0.2075741757048969,0.2875855221802989,0.475,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3396652370067137,0.27786892552287634,0.4805,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3686934445180529,0.27861611683105103,0.4895,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3476602440172982,0.28266504918959884,0.479,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.33341910907895267,0.2866961011669279,0.4695,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3334191090789527,0.2866961011669279,0.4695,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3417041974658105,0.2834396667798408,0.47,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3441377405195513,0.2856910610306458,0.4785,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3448794667599238,0.27861626377220283,0.485,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.3943791648187023,0.2798481917304,0.48,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.342792755267207,0.2860311252148973,0.446,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3943791648187023,0.27984819173040004,0.48,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3427927552672069,0.2860311252148973,0.446,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.35336507412913337,0.2800135868272683,0.4965,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.35163315043865745,0.28826203437602643,0.483,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.37286705609765036,0.2822137691812274,0.487,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.3526626980233877,0.28408973106681334,0.478,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.35931463105095895,0.28033594055676225,0.4705,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3728670560976504,0.2822137691812274,0.487,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3526626980233877,0.2840897310668133,0.478,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3593146310509589,0.28033594055676225,0.4705,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3829332999231067,0.2794317242535914,0.479,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.36328192751314214,0.2822698284597682,0.484,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3632819275131421,0.2822698284597682,0.484,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.3529558674039263,0.27993632622935244,0.4855,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.32077694164972154,0.2871642566551854,0.4775,"(3.0, 3.0)" -3.0,3.0,0.4,1.0,0.3385828003887556,0.28297207219093373,0.5065,"(3.0, 3.0)" +3.0,3.0,0.4,1.0,0.3385828003887556,0.2829720721909337,0.5065,"(3.0, 3.0)" 3.0,3.0,0.4,1.0,0.33542424873629484,0.2818790473939193,0.4665,"(3.0, 3.0)" 3.0,3.0,0.6,1.0,0.5316648992298266,0.2763057285369652,0.473,"(3.0, 3.0)" 3.0,3.0,0.6,1.0,0.5529359108339109,0.2797619658453139,0.501,"(3.0, 3.0)" @@ -973,19 +973,19 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 3.0,3.0,0.6,1.0,0.5300974609781146,0.2773569293809972,0.4785,"(3.0, 3.0)" 3.0,3.0,0.6,1.0,0.5450974923401736,0.28197584922626223,0.4915,"(3.0, 3.0)" 3.0,3.0,0.6,1.0,0.5588864990915339,0.2774315913827541,0.5,"(3.0, 3.0)" -3.0,3.0,0.6,1.0,0.5675122296841467,0.271871893019088,0.4865,"(3.0, 3.0)" -3.0,3.0,0.6,1.0,0.527465401456849,0.27842374217266086,0.4885,"(3.0, 3.0)" -3.0,3.0,0.6,1.0,0.5622468144463745,0.27762863332784,0.505,"(3.0, 3.0)" -3.0,3.0,0.6,1.0,0.564862875445459,0.277971073619295,0.492,"(3.0, 3.0)" +3.0,3.0,0.6,1.0,0.5675122296841467,0.27187189301908804,0.4865,"(3.0, 3.0)" +3.0,3.0,0.6,1.0,0.527465401456849,0.2784237421726609,0.4885,"(3.0, 3.0)" +3.0,3.0,0.6,1.0,0.5622468144463745,0.27762863332784005,0.505,"(3.0, 3.0)" +3.0,3.0,0.6,1.0,0.564862875445459,0.27797107361929496,0.4920000000000001,"(3.0, 3.0)" 3.0,3.0,0.6,1.0,0.5551123092526952,0.2755987792546018,0.474,"(3.0, 3.0)" -3.0,3.0,0.6,1.0,0.5188227429849427,0.27679752929301926,0.4885,"(3.0, 3.0)" +3.0,3.0,0.6,1.0,0.5188227429849427,0.2767975292930193,0.4885,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7522625933974654,0.26659307698290136,0.496,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7302301536244346,0.27035299252802697,0.4885,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7588440807610031,0.26765064080048284,0.505,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7566320205731486,0.2683251101475484,0.511,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7715359499275792,0.2735702490268489,0.4795,"(3.0, 3.0)" -3.0,3.0,0.8,1.0,0.7480686024247832,0.271664221042168,0.497,"(3.0, 3.0)" -3.0,3.0,0.8,1.0,0.7281213044169341,0.27035671900170655,0.4995,"(3.0, 3.0)" +3.0,3.0,0.8,1.0,0.7480686024247832,0.271664221042168,0.4970000000000001,"(3.0, 3.0)" +3.0,3.0,0.8,1.0,0.7281213044169341,0.2703567190017065,0.4995,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7430170008737136,0.26831779754031265,0.5045,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7529130640962208,0.2732574737842487,0.506,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7345754982932161,0.27270436967540035,0.526,"(3.0, 3.0)" @@ -998,75 +998,75 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 3.0,3.0,0.8,1.0,0.7490131136086905,0.27280487111938345,0.47,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7596025447911977,0.26624797707820025,0.4895,"(3.0, 3.0)" 3.0,3.0,0.8,1.0,0.7402202852931573,0.26553007693275543,0.5065,"(3.0, 3.0)" -3.0,3.0,0.8,1.0,0.7220793900249802,0.27811966639891494,0.4955,"(3.0, 3.0)" +3.0,3.0,0.8,1.0,0.7220793900249802,0.2781196663989149,0.4955,"(3.0, 3.0)" 3.0,3.0,0.0,2.0,0.018346862875577248,0.3218115634967929,0.4275,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.0005563159995870868,0.32994651748668224,0.428,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.0005563159995870869,0.32994651748668224,0.428,"(3.0, 3.0)" 3.0,3.0,0.0,2.0,0.030823771290439738,0.3396291642205365,0.4485,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.0033592920891961607,0.3363254553380097,0.4365,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.021956026720855427,0.34127198854110014,0.432,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.003359292089196161,0.3363254553380097,0.4365,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.021956026720855427,0.3412719885411001,0.4320000000000001,"(3.0, 3.0)" 3.0,3.0,0.0,2.0,0.017575130489843747,0.333329763479712,0.4475,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.02579401951342082,0.34556692241742115,0.427,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.023915069442379495,0.34120674752061675,0.426,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.017759190383257167,0.3331980365241474,0.4275,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.011891802671769983,0.3285788432070036,0.4475,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.006885502204362246,0.32983034239575426,0.437,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.0070213416242306,0.33622300430028407,0.427,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.010484437227184621,0.32800923434535517,0.433,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.025794019513420814,0.34556692241742115,0.4270000000000001,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.02391506944237949,0.34120674752061675,0.426,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.01775919038325717,0.3331980365241474,0.4275,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.011891802671769985,0.3285788432070036,0.4475,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.006885502204362246,0.32983034239575426,0.4370000000000001,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.0070213416242306,0.3362230043002841,0.4270000000000001,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.010484437227184621,0.3280092343453552,0.433,"(3.0, 3.0)" 3.0,3.0,0.0,2.0,0.0335092851303274,0.3477923748456462,0.4235,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.007909829894228643,0.33818697094883277,0.452,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.011484237221659924,0.34111031768772637,0.4455,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.021724386605336304,0.34531239298171634,0.432,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.028468977005026055,0.3419228355975608,0.4365,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.007909829894228644,0.3381869709488328,0.452,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.011484237221659923,0.3411103176877264,0.4455,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.021724386605336304,0.34531239298171634,0.4320000000000001,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.02846897700502605,0.3419228355975608,0.4365,"(3.0, 3.0)" 3.0,3.0,0.0,2.0,0.002618937659672522,0.3363029027586476,0.453,"(3.0, 3.0)" -3.0,3.0,0.0,2.0,0.02700122809670528,0.344691753540128,0.445,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.14390527145023138,0.3096383019102087,0.427,"(3.0, 3.0)" +3.0,3.0,0.0,2.0,0.02700122809670528,0.34469175354012804,0.445,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.14390527145023138,0.3096383019102087,0.4270000000000001,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.17546642978315996,0.3068716818412355,0.452,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.17322696729327802,0.3040210596370023,0.445,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.17766761563334887,0.29741169608654905,0.4655,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.18034598597691526,0.3090137553332511,0.448,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.13370261846947698,0.31423540886068335,0.4365,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.15471999702390854,0.30367859779305895,0.451,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.18578943972209677,0.30249592679382953,0.4575,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.1517152160132124,0.30525083520639695,0.467,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.18034598597691529,0.3090137553332511,0.448,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.13370261846947698,0.3142354088606833,0.4365,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.15471999702390854,0.3036785977930589,0.451,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.1857894397220968,0.30249592679382953,0.4575,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.1517152160132124,0.3052508352063969,0.467,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.11952526992268032,0.32421182585179004,0.4505,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.1853738963753957,0.3026026876630864,0.433,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.16588043543911835,0.30423720180431235,0.4735,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.19499273219949298,0.3058918536464969,0.4525,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.19499273219949292,0.3058918536464969,0.4525,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.17040957655440392,0.31005334981638955,0.439,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.18329437282496408,0.30376930385890133,0.455,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.21916257139063997,0.29508887982430726,0.4535,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.18329437282496408,0.3037693038589013,0.455,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.21916257139064002,0.2950888798243073,0.4535,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.1843955267271039,0.3081638936968707,0.4555,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.15871938822309972,0.3083922282847219,0.4435,"(3.0, 3.0)" -3.0,3.0,0.2,2.0,0.18434966579321171,0.2989766632703934,0.4725,"(3.0, 3.0)" +3.0,3.0,0.2,2.0,0.1843496657932117,0.2989766632703934,0.4725,"(3.0, 3.0)" 3.0,3.0,0.2,2.0,0.1766101452780266,0.3063809936741946,0.434,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.3857845511910949,0.27829042626454314,0.4675,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.34564438218849836,0.29610645053082474,0.4835,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3456443821884984,0.29610645053082474,0.4835,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.30380779112535755,0.2930718021272418,0.469,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.34478742752537206,0.2895584553938038,0.48,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.34166778799874853,0.29311615398078517,0.4645,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3447874275253721,0.2895584553938038,0.48,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3416677879987485,0.2931161539807852,0.4645,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.3585054753514024,0.29371617419960505,0.4525,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.3533877101035183,0.2875605962979584,0.4685,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.37891170328656704,0.28161213688740827,0.4795,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.37891170328656704,0.2816121368874083,0.4795,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.33790210287779715,0.29256862907153824,0.456,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.34983061555129324,0.29206599627092417,0.449,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.37833815016401373,0.2842571578698819,0.453,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.3343356232942196,0.28946260549855574,0.488,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.32649779246828387,0.2906358786062804,0.4695,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3783381501640137,0.2842571578698819,0.453,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3343356232942196,0.2894626054985557,0.488,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3264977924682839,0.2906358786062804,0.4695,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.34213000344797884,0.2935060491184386,0.472,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.317398620291616,0.29590234632848667,0.4525,"(3.0, 3.0)" -3.0,3.0,0.4,2.0,0.35726837116140686,0.28886905781970484,0.475,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.31739862029161603,0.2959023463284867,0.4525,"(3.0, 3.0)" +3.0,3.0,0.4,2.0,0.3572683711614069,0.28886905781970484,0.475,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.3216553999490369,0.2850863872958421,0.4615,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.3449802849358758,0.285416128380628,0.472,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.33079927796982794,0.2885178439856804,0.468,"(3.0, 3.0)" 3.0,3.0,0.4,2.0,0.34418646295268096,0.2847027268989842,0.482,"(3.0, 3.0)" -3.0,3.0,0.6,2.0,0.5489512138238288,0.27864728702286246,0.497,"(3.0, 3.0)" -3.0,3.0,0.6,2.0,0.5064955819436425,0.28318701786302836,0.481,"(3.0, 3.0)" +3.0,3.0,0.6,2.0,0.5489512138238288,0.2786472870228625,0.4970000000000001,"(3.0, 3.0)" +3.0,3.0,0.6,2.0,0.5064955819436425,0.2831870178630284,0.481,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5485456296783455,0.27786751127535303,0.479,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5396878746800747,0.27535208756962865,0.4775,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5780685770902834,0.28111425070562873,0.496,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5208719358299189,0.28005214353035,0.5075,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5214477295922959,0.2780695652443075,0.4905,"(3.0, 3.0)" -3.0,3.0,0.6,2.0,0.5548779191638663,0.2823121532293108,0.497,"(3.0, 3.0)" +3.0,3.0,0.6,2.0,0.5548779191638663,0.2823121532293108,0.4970000000000001,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5560855947404997,0.28308186539982394,0.482,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5232433199029881,0.2826406831273095,0.4805,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5466525232534206,0.2754876000912064,0.482,"(3.0, 3.0)" @@ -1075,8 +1075,8 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 3.0,3.0,0.6,2.0,0.5617321745709084,0.2810291621071027,0.471,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5428981226088353,0.2804889406481267,0.4915,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5228741857395476,0.28823020249839243,0.483,"(3.0, 3.0)" -3.0,3.0,0.6,2.0,0.5544802244669528,0.28070024779114533,0.505,"(3.0, 3.0)" -3.0,3.0,0.6,2.0,0.5390333673491978,0.28002030477185735,0.492,"(3.0, 3.0)" +3.0,3.0,0.6,2.0,0.5544802244669528,0.2807002477911453,0.505,"(3.0, 3.0)" +3.0,3.0,0.6,2.0,0.5390333673491978,0.2800203047718573,0.4920000000000001,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5744661363990602,0.2795445245942177,0.4955,"(3.0, 3.0)" 3.0,3.0,0.6,2.0,0.5629722697289556,0.2767821179089115,0.4685,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7351499469695844,0.2790946810350562,0.4905,"(3.0, 3.0)" @@ -1087,60 +1087,60 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 3.0,3.0,0.8,2.0,0.7531103031721603,0.2733816070653525,0.4985,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7414809442837293,0.2711770932014376,0.504,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7262188563624513,0.2794352133781307,0.5035,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.7715216263525329,0.26959660947837893,0.5155,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7715216263525329,0.2695966094783789,0.5155,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7182325409329318,0.27315337732111833,0.51,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7374636971958023,0.2810019438385882,0.518,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.708081254498439,0.2730669943346133,0.47,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7080812544984392,0.2730669943346133,0.47,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7200817354674673,0.2848187863232806,0.495,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.726948847314724,0.2740043804169564,0.522,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.7356288781973149,0.28011586014939527,0.4935,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.7346474857111857,0.27529903807639916,0.5,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7269488473147242,0.2740043804169564,0.522,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7356288781973149,0.2801158601493953,0.4935,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7346474857111857,0.2752990380763992,0.5,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7353301258796641,0.27531175158068744,0.496,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7383506049662698,0.2759711974887987,0.4795,"(3.0, 3.0)" -3.0,3.0,0.8,2.0,0.7534073995453148,0.27017547842804407,0.48,"(3.0, 3.0)" +3.0,3.0,0.8,2.0,0.7534073995453148,0.2701754784280441,0.48,"(3.0, 3.0)" 3.0,3.0,0.8,2.0,0.7588912974969578,0.2725918341998251,0.521,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.015127109353434058,0.3483335855748643,0.436,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.005294158885691945,0.37027817436582877,0.426,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.01512710935343406,0.3483335855748643,0.436,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.005294158885691945,0.3702781743658288,0.426,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.021256828344234587,0.37578861540225306,0.422,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.030127935252905882,0.37136669853708837,0.4015,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.0010262629405557143,0.34941499863101844,0.419,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.030127935252905882,0.3713666985370884,0.4015,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.0010262629405557145,0.34941499863101844,0.419,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.00783830446566676,0.3698642401425542,0.41,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.0012596012037059826,0.3642465921366206,0.4225,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.0074812915285039925,0.35526477468305095,0.419,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.0012596012037059824,0.3642465921366206,0.4225,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.0074812915285039925,0.3552647746830509,0.419,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.009352736658610259,0.35833992530837,0.423,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.004351315300362387,0.35791449726102453,0.4055,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.004351315300362387,0.3579144972610245,0.4055,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.01871291372575428,0.3630756253718459,0.4365,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.02952556779275867,0.3621541000525691,0.4035,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.011012990589944966,0.35303037511119784,0.413,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.006264998118447324,0.3601799206569177,0.4115,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.0019476125451123637,0.35686101841020507,0.42,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.015385412444900473,0.3647559068457917,0.421,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.0019476125451123641,0.3568610184102051,0.42,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.015385412444900472,0.3647559068457917,0.421,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.017710358973084227,0.3543854470552841,0.445,"(3.0, 3.0)" 3.0,3.0,0.0,3.0,0.01751222116976562,0.3656148539484306,0.425,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.010705632857064433,0.36639256859267877,0.4255,"(3.0, 3.0)" -3.0,3.0,0.0,3.0,0.012475791458526047,0.356495521374937,0.431,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.010705632857064431,0.3663925685926788,0.4255,"(3.0, 3.0)" +3.0,3.0,0.0,3.0,0.012475791458526049,0.356495521374937,0.431,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.2015907245285128,0.32952483009121536,0.4555,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.12468838597208406,0.3392992590137871,0.458,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.12468838597208405,0.3392992590137871,0.458,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.09826864862806993,0.34318300936802426,0.4375,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.14136345878417197,0.33765863590145906,0.4305,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.14136345878417195,0.33765863590145906,0.4305,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.15906367651739264,0.3236227863611396,0.453,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.19011174374316483,0.3338123259970748,0.4405,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.15210936384962356,0.34246101814000196,0.445,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.1620351507859623,0.33021770124208116,0.455,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.1335613564277986,0.33848385010149495,0.4365,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.14299542521226197,0.3378143008684078,0.4295,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.19011174374316486,0.3338123259970748,0.4405,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.15210936384962356,0.342461018140002,0.445,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.1620351507859623,0.3302177012420812,0.455,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.1335613564277986,0.3384838501014949,0.4365,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.14299542521226194,0.3378143008684078,0.4295,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.15374549914464136,0.32692743145337755,0.425,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.14846833414718655,0.3324602073002616,0.454,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.1280089342903427,0.3477707736209271,0.451,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.14995406793152033,0.3429943068068028,0.4295,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.13219482346746136,0.3298902910702588,0.4325,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.138690697089364,0.33003221732741383,0.4535,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.19922746962598295,0.3295952151605348,0.4605,"(3.0, 3.0)" -3.0,3.0,0.2,3.0,0.19657590587409624,0.3285831163365028,0.4655,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.13219482346746134,0.3298902910702588,0.4325,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.13869069708936402,0.33003221732741383,0.4535,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.19922746962598287,0.3295952151605348,0.4605,"(3.0, 3.0)" +3.0,3.0,0.2,3.0,0.19657590587409626,0.3285831163365028,0.4655,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.1893166318580456,0.3193320425987266,0.4385,"(3.0, 3.0)" 3.0,3.0,0.2,3.0,0.151306344048107,0.33321136131035384,0.442,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.325842771352489,0.3145109601475927,0.481,"(3.0, 3.0)" -3.0,3.0,0.4,3.0,0.3172555382227452,0.31809020463226956,0.468,"(3.0, 3.0)" +3.0,3.0,0.4,3.0,0.3172555382227452,0.3180902046322696,0.468,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.32031996009065594,0.3195713861387204,0.474,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.2910074970921067,0.3128120579583765,0.4545,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.2958907565988782,0.3168865723649767,0.467,"(3.0, 3.0)" @@ -1151,51 +1151,51 @@ coef_1,coef_2,correlation,interaction,redundancy,synergy,y_mean,main effects 3.0,3.0,0.4,3.0,0.32801775914643017,0.31604817123970114,0.468,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.3098216981561538,0.3180864458737197,0.48,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.3568698317355204,0.3251216082350131,0.4755,"(3.0, 3.0)" -3.0,3.0,0.4,3.0,0.301636624513342,0.31035247520263276,0.48,"(3.0, 3.0)" +3.0,3.0,0.4,3.0,0.30163662451334194,0.3103524752026328,0.48,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.3096838150240479,0.3159957507466049,0.467,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.3155420965400116,0.30972667377850543,0.465,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.3046742081825558,0.3117578460621045,0.4705,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.310977954808359,0.31257245347941426,0.4755,"(3.0, 3.0)" -3.0,3.0,0.4,3.0,0.3020548659274832,0.32356339816770907,0.4675,"(3.0, 3.0)" -3.0,3.0,0.4,3.0,0.31370840079870954,0.31613410188535446,0.4515,"(3.0, 3.0)" +3.0,3.0,0.4,3.0,0.3020548659274832,0.3235633981677091,0.4675,"(3.0, 3.0)" +3.0,3.0,0.4,3.0,0.31370840079870954,0.3161341018853545,0.4515,"(3.0, 3.0)" 3.0,3.0,0.4,3.0,0.2935503139042038,0.3112123454818101,0.467,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.4869195676502032,0.30735008705517575,0.4985,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4869195676502032,0.3073500870551757,0.4985,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.4720235178741484,0.3208550240489199,0.4955,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.49526647643612093,0.30696107965036784,0.4885,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.48478859081064873,0.2961721410874626,0.4835,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4952664764361209,0.30696107965036784,0.4885,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4847885908106487,0.2961721410874626,0.4835,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.4995027833928817,0.30067536054524674,0.478,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5011660965026085,0.30194888419176624,0.5135,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5013606192936704,0.3149644383931288,0.4975,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.4982448131778424,0.30209506853646295,0.482,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.5028257774111183,0.30576937293161227,0.4925,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.4967589278466235,0.29597131894296214,0.5035,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4982448131778424,0.3020950685364629,0.482,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.5028257774111183,0.3057693729316123,0.4925,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4967589278466235,0.2959713189429621,0.5035,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5239592535679761,0.3063948905481605,0.489,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.4894936175664457,0.3116371385888317,0.506,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5065833664163072,0.31002083449068146,0.4995,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.4984507993632382,0.30642928570144823,0.504,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5019018849137061,0.3120016017479246,0.512,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.5284215856097115,0.29518188578120547,0.4995,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.5284215856097115,0.2951818857812055,0.4995,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.5102780937367297,0.3021574826023548,0.5125,"(3.0, 3.0)" 3.0,3.0,0.6,3.0,0.4877490916853625,0.3061288281460208,0.483,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.47817702238242127,0.3134155965700942,0.471,"(3.0, 3.0)" -3.0,3.0,0.6,3.0,0.5054612637369537,0.3049149370292129,0.492,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.6933762980403673,0.2987806230852148,0.538,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.4781770223824213,0.3134155965700942,0.471,"(3.0, 3.0)" +3.0,3.0,0.6,3.0,0.5054612637369537,0.3049149370292129,0.4920000000000001,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.6933762980403673,0.2987806230852148,0.5379999999999999,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.7223566454412756,0.28542973752567696,0.5265,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.7085963903468588,0.30014684369059286,0.5295,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.7085963903468588,0.3001468436905929,0.5295,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6946123596490793,0.28952911124678266,0.5245,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6733047094116414,0.2875613348346576,0.5165,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6832661512168322,0.29501471663662393,0.5175,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6989316198382886,0.2838437458466565,0.518,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.6809578431694854,0.30096277280633,0.515,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.6809578431694854,0.30096277280633005,0.515,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6768429840085256,0.29506779161293945,0.539,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.6945909868939373,0.294728813651585,0.5395,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.6945909868939373,0.29472881365158504,0.5395,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.7137959561464721,0.29438033354320176,0.5295,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.7126760461304683,0.2943536625837032,0.5335,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.6935963572510124,0.300042474279816,0.524,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.6935963572510124,0.3000424742798161,0.524,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.671006708552235,0.2933358513139058,0.5225,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.7111976856547423,0.2908148365248005,0.5045,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6960655804492102,0.301255550826912,0.508,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6992399918037557,0.2948053427737529,0.5495,"(3.0, 3.0)" -3.0,3.0,0.8,3.0,0.7056428706354521,0.29619460056010927,0.533,"(3.0, 3.0)" +3.0,3.0,0.8,3.0,0.7056428706354521,0.2961946005601093,0.5329999999999999,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6726700662463663,0.29665019972152484,0.513,"(3.0, 3.0)" 3.0,3.0,0.8,3.0,0.6907612614031934,0.28818210530954635,0.512,"(3.0, 3.0)" diff --git a/sphinx/source/tutorial/classification_sim2_cvcurve.csv b/sphinx/source/tutorial/classification_sim2_cvcurve.csv index bc9678bc2..18430a4f2 100644 --- a/sphinx/source/tutorial/classification_sim2_cvcurve.csv +++ b/sphinx/source/tutorial/classification_sim2_cvcurve.csv @@ -1,32 +1,32 @@ -score,max_depth -0.7589662278627626,2 -0.7963618870392979,3 -0.8141118166094382,4 -0.8203792853841678,5 -0.8208316223939346,6 -0.8189386818475733,7 -0.8165272149829389,8 -0.8131856746885187,9 -0.8098169240962005,10 -0.8074139215800931,11 -0.8039080685925046,12 -0.8026440936460665,13 -0.8005723964146262,14 -0.7992516534041338,15 -0.798852097798449,16 -0.7979396796096665,17 -0.7974957410898306,18 -0.7970145370800484,19 -0.7968393490297491,20 -0.796805284879142,21 -0.796489093655083,22 -0.7963435280745504,23 -0.796328090166839,24 -0.7962460602148851,25 -0.7962119757082223,26 -0.7961832919494555,27 -0.7961207854536702,28 -0.7961455095284576,29 -0.7961457174946115,30 -0.7961003694573894,31 -0.7961018993508187,32 +ranking_score_,score,roc_auc_std,roc_auc_sem,classifier_type,classifier_n_estimators,max_depth +0.7544600669559121,0.8076839673323422,0.026611950188215078,0.0037634980877371002,RandomForestClassifierDF,250,5 +0.7535849145974948,0.8053599497812719,0.025887517591888582,0.0036610478474620916,RandomForestClassifierDF,250,6 +0.7524765195018459,0.8055396003064844,0.02653154040231925,0.0037521264267609605,RandomForestClassifierDF,250,4 +0.7504886563927018,0.8007732372204478,0.02514229041387302,0.0035556568092422283,RandomForestClassifierDF,250,7 +0.7479379995272998,0.7966097991625051,0.02433589981760263,0.0034416159574606566,RandomForestClassifierDF,250,8 +0.7443053369970055,0.7913857782070444,0.023540220605019445,0.0033290899240873083,RandomForestClassifierDF,250,9 +0.7395099098909284,0.7851678642367507,0.022828977172911182,0.003228504913303679,RandomForestClassifierDF,250,10 +0.7339428239550789,0.7805316413634589,0.023294408704189987,0.003294326871692735,RandomForestClassifierDF,250,11 +0.7308883386786094,0.7765436739315372,0.022827667626463946,0.003228319715469055,RandomForestClassifierDF,250,12 +0.7278752700842132,0.7733675209255781,0.022746125420682512,0.003216787906136863,RandomForestClassifierDF,250,13 +0.7257968511984316,0.7711268191532654,0.022664983977416897,0.003205312773183187,RandomForestClassifierDF,250,14 +0.7215331882218012,0.7683417774364323,0.023404294607315544,0.0033098670851441133,RandomForestClassifierDF,250,15 +0.7212790980666017,0.7817006414718484,0.0302107717026233,0.0042724483071607195,RandomForestClassifierDF,250,3 +0.7187169284259656,0.7669810085860378,0.024132040080036096,0.0034127858368918156,RandomForestClassifierDF,250,16 +0.7164355782793369,0.7650141355669163,0.02428927864378972,0.0034350227278306597,RandomForestClassifierDF,250,17 +0.7159527100282351,0.7638787259512203,0.02396300796149259,0.003388881085439727,RandomForestClassifierDF,250,18 +0.7155121730687298,0.7633123034538053,0.02390006519253771,0.0033799796336887963,RandomForestClassifierDF,250,19 +0.7148252944785483,0.7630088651309168,0.02409178532618426,0.00340709295500709,RandomForestClassifierDF,250,20 +0.7146773342276553,0.7622418693427992,0.023782267557571946,0.003363320532390391,RandomForestClassifierDF,250,21 +0.7139860458146171,0.7617485645716158,0.023881259378499352,0.0033773200899623454,RandomForestClassifierDF,250,22 +0.7139157332635105,0.7616183405532307,0.023851303644860093,0.003373083709483998,RandomForestClassifierDF,250,25 +0.7138631570236527,0.7616055947794648,0.023871218877906074,0.0033759001487511423,RandomForestClassifierDF,250,27 +0.7137795780755781,0.7615352836370312,0.023877852780726537,0.0033768383242851587,RandomForestClassifierDF,250,29 +0.7137619204587299,0.7616722959240758,0.023955187732672953,0.003387775138073968,RandomForestClassifierDF,250,26 +0.7137274746405281,0.7615018307938958,0.02388717807668382,0.003378157120286752,RandomForestClassifierDF,250,32 +0.7137018542745314,0.761466939559648,0.023882542642558287,0.0033775015709059707,RandomForestClassifierDF,250,31 +0.7136783005281727,0.761623584378254,0.023972641925040627,0.0033902435336306313,RandomForestClassifierDF,250,24 +0.7136661294356043,0.7615754979581029,0.023954684261249286,0.0033877039364624065,RandomForestClassifierDF,250,28 +0.7135755462679997,0.761599695997938,0.02401207486496917,0.0033958201934757505,RandomForestClassifierDF,250,23 +0.7134683911640938,0.7614900356651374,0.024010822250521827,0.003395643047041765,RandomForestClassifierDF,250,30 +0.6883884043104713,0.7527013348953894,0.03215646529245901,0.0045476109334575245,RandomForestClassifierDF,250,2