diff --git a/examples/python_nets/caffenet.py b/examples/python_nets/caffenet.py new file mode 100644 index 00000000000..92c3e17c983 --- /dev/null +++ b/examples/python_nets/caffenet.py @@ -0,0 +1,54 @@ +from caffe import layers as L, params as P, to_proto +from caffe.proto import caffe_pb2 + +# helper function for common structures + +def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1): + conv = L.Convolution(bottom, kernel_size=ks, stride=stride, + num_output=nout, pad=pad, group=group) + return conv, L.ReLU(conv, in_place=True) + +def fc_relu(bottom, nout): + fc = L.InnerProduct(bottom, num_output=nout) + return fc, L.ReLU(fc, in_place=True) + +def max_pool(bottom, ks, stride=1): + return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride) + +def alexnet(lmdb, batch_size=256, include_acc=False): + data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2, + transform_param=dict(crop_size=227, mean_value=[104, 117, 123], mirror=True)) + + # the net itself + conv1, relu1 = conv_relu(data, 11, 96, stride=4) + pool1 = max_pool(relu1, 3, stride=2) + norm1 = L.LRN(pool1, local_size=5, alpha=1e-4, beta=0.75) + conv2, relu2 = conv_relu(norm1, 5, 256, pad=2, group=2) + pool2 = max_pool(relu2, 3, stride=2) + norm2 = L.LRN(pool2, local_size=5, alpha=1e-4, beta=0.75) + conv3, relu3 = conv_relu(norm2, 3, 384, pad=1) + conv4, relu4 = conv_relu(relu3, 3, 384, pad=1, group=2) + conv5, relu5 = conv_relu(relu4, 3, 256, pad=1, group=2) + pool5 = max_pool(relu5, 3, stride=2) + fc6, relu6 = fc_relu(pool5, 4096) + drop6 = L.Dropout(relu6, in_place=True) + fc7, relu7 = fc_relu(drop6, 4096) + drop7 = L.Dropout(relu7, in_place=True) + fc8 = L.InnerProduct(drop7, num_output=1000) + loss = L.SoftmaxWithLoss(fc8, label) + + if include_acc: + acc = L.Accuracy(fc8, label) + return to_proto((loss, acc), {v: k for k, v in locals().iteritems()}) + else: + return to_proto(loss, {v: k for k, v in locals().iteritems()}) + +def make_net(): + with open('train.prototxt', 'w') as f: + print >>f, alexnet('/path/to/caffe-train-lmdb') + + with open('test.prototxt', 'w') as f: + print >>f, alexnet('/path/to/caffe-val-lmdb', batch_size=50, include_acc=True) + +if __name__ == '__main__': + make_net()