diff --git a/.gitignore b/.gitignore index 73bba6cb364..28f2aca854b 100644 --- a/.gitignore +++ b/.gitignore @@ -44,6 +44,9 @@ # QtCreator files *.user +# PyCharm files +.idea + # OSX dir files .DS_Store diff --git a/CMakeLists.txt b/CMakeLists.txt index adea37be565..74fa70c9d20 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -17,14 +17,16 @@ caffe_option(CPU_ONLY "Build Caffe wihtout CUDA support" OFF) # TODO: rename to caffe_option(USE_CUDNN "Build Caffe with cuDNN libary support" ON IF NOT CPU_ONLY) caffe_option(BUILD_SHARED_LIBS "Build shared libraries" ON) caffe_option(BUILD_python "Build Python wrapper" ON) +set(python_version "2" CACHE STRING "Specify which python version to use") caffe_option(BUILD_matlab "Build Matlab wrapper" OFF IF UNIX OR APPLE) caffe_option(BUILD_docs "Build documentation" ON IF UNIX OR APPLE) +caffe_option(BUILD_python_layer "Build the caffe python layer" ON) # ---[ Dependencies include(cmake/Dependencies.cmake) # ---[ Flags -if(UNIX OR APLE) +if(UNIX OR APPLE) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC -Wall") endif() diff --git a/Makefile b/Makefile index 29827270baf..cb396794e37 100644 --- a/Makefile +++ b/Makefile @@ -261,7 +261,8 @@ ifneq (,$(findstring clang++,$(CXX))) else ifneq (,$(findstring g++,$(CXX))) STATIC_LINK_COMMAND := -Wl,--whole-archive $(STATIC_NAME) -Wl,--no-whole-archive else - $(error Cannot static link with the $(CXX) compiler.) + # The following line must not be indented with a tab, since we are not inside a target + $(error Cannot static link with the $(CXX) compiler) endif # Debugging @@ -319,7 +320,7 @@ else # 10.10 has accelerate while 10.9 has veclib XCODE_CLT_VER := $(shell pkgutil --pkg-info=com.apple.pkg.CLTools_Executables | grep -o 'version: 6') ifneq (,$(findstring version: 6,$(XCODE_CLT_VER))) - BLAS_INCLUDE ?= /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ + BLAS_INCLUDE ?= /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ LDFLAGS += -framework Accelerate else BLAS_INCLUDE ?= /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/ @@ -450,6 +451,7 @@ $(MAT$(PROJECT)_SO): $(MAT$(PROJECT)_SRC) $(STATIC_NAME) CXXLIBS="\$$CXXLIBS $(STATIC_LINK_COMMAND) $(LDFLAGS)" -output $@ runtest: $(TEST_ALL_BIN) + $(TOOL_BUILD_DIR)/caffe $(TEST_ALL_BIN) $(TEST_GPUID) --gtest_shuffle $(TEST_FILTER) pytest: py @@ -537,7 +539,12 @@ $(TOOL_BUILD_DIR)/%: $(TOOL_BUILD_DIR)/%.bin | $(TOOL_BUILD_DIR) @ $(RM) $@ @ ln -s $(abspath $<) $@ -$(TOOL_BINS) $(EXAMPLE_BINS): %.bin : %.o | $(DYNAMIC_NAME) +$(TOOL_BINS): %.bin : %.o | $(DYNAMIC_NAME) + @ echo CXX/LD -o $@ + $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(PROJECT) $(LDFLAGS) \ + -Wl,-rpath,$(ORIGIN)/../lib + +$(EXAMPLE_BINS): %.bin : %.o | $(DYNAMIC_NAME) @ echo CXX/LD -o $@ $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(PROJECT) $(LDFLAGS) \ -Wl,-rpath,$(ORIGIN)/../../lib diff --git a/cmake/Dependencies.cmake b/cmake/Dependencies.cmake index aa2dcbe1d0d..f328e8246ab 100644 --- a/cmake/Dependencies.cmake +++ b/cmake/Dependencies.cmake @@ -25,7 +25,7 @@ include(cmake/ProtoBuf.cmake) # ---[ HDF5 find_package(HDF5 COMPONENTS HL REQUIRED) -include_directories(SYSTEM ${HDF5_INCLUDE_DIRS}) +include_directories(SYSTEM ${HDF5_INCLUDE_DIRS} ${HDF5_HL_INCLUDE_DIR}) list(APPEND Caffe_LINKER_LIBS ${HDF5_LIBRARIES}) # ---[ LMDB @@ -35,7 +35,7 @@ list(APPEND Caffe_LINKER_LIBS ${LMDB_LIBRARIES}) # ---[ LevelDB find_package(LevelDB REQUIRED) -include_directories(SYSTEM ${LEVELDB_INCLUDE}) +include_directories(SYSTEM ${LevelDB_INCLUDE}) list(APPEND Caffe_LINKER_LIBS ${LevelDB_LIBRARIES}) # ---[ Snappy @@ -92,14 +92,46 @@ endif() # ---[ Python if(BUILD_python) - # disable Python 3 search - find_package(PythonInterp 2.7) - find_package(PythonLibs 2.7) - find_package(NumPy 1.7.1) - find_package(Boost 1.46 COMPONENTS python) - + if(NOT "${python_version}" VERSION_LESS "3.0.0") + # use python3 + find_package(PythonInterp 3.0) + find_package(PythonLibs 3.0) + find_package(NumPy 1.7.1) + # Find the matching boost python implementation + set(version ${PYTHONLIBS_VERSION_STRING}) + + STRING( REPLACE "." "" boost_py_version ${version} ) + find_package(Boost 1.46 COMPONENTS "python-py${boost_py_version}") + set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_version}_FOUND}) + + while(NOT "${version}" STREQUAL "" AND NOT Boost_PYTHON_FOUND) + STRING( REGEX REPLACE "([0-9.]+).[0-9]+" "\\1" version ${version} ) + STRING( REGEX MATCHALL "([0-9.]+).[0-9]+" has_more_version ${version} ) + if("${has_more_version}" STREQUAL "") + break() + endif() + + STRING( REPLACE "." "" boost_py_version ${version} ) + find_package(Boost 1.46 COMPONENTS "python-py${boost_py_version}") + set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_version}_FOUND}) + endwhile() + if(NOT Boost_PYTHON_FOUND) + find_package(Boost 1.46 COMPONENTS python) + endif() + else() + # disable Python 3 search + find_package(PythonInterp 2.7) + find_package(PythonLibs 2.7) + find_package(NumPy 1.7.1) + find_package(Boost 1.46 COMPONENTS python) + endif() if(PYTHONLIBS_FOUND AND NUMPY_FOUND AND Boost_PYTHON_FOUND) set(HAVE_PYTHON TRUE) + if(BUILD_python_layer) + add_definitions(-DWITH_PYTHON_LAYER) + include_directories(SYSTEM ${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} ${Boost_INCLUDE_DIRS}) + list(APPEND Caffe_LINKER_LIBS ${PYTHON_LIBRARIES} ${Boost_LIBRARIES}) + endif() endif() endif() diff --git a/cmake/Misc.cmake b/cmake/Misc.cmake index 608a5f13a79..39569eaf996 100644 --- a/cmake/Misc.cmake +++ b/cmake/Misc.cmake @@ -32,6 +32,11 @@ endif() set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE CACHE BOOLEAN "Use link paths for shared library rpath") set(CMAKE_MACOSX_RPATH TRUE) +list(FIND CMAKE_PLATFORM_IMPLICIT_LINK_DIRECTORIES ${CMAKE_INSTALL_PREFIX}/lib __is_systtem_dir) +if(${__is_systtem_dir} STREQUAL -1) + set(CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_PREFIX}/lib) +endif() + # ---[ Funny target if(UNIX OR APPLE) add_custom_target(symlink_to_build COMMAND "ln" "-sf" "${PROJECT_BINARY_DIR}" "${PROJECT_SOURCE_DIR}/build" diff --git a/cmake/Summary.cmake b/cmake/Summary.cmake index 3f7dff6b6e0..32931942846 100644 --- a/cmake/Summary.cmake +++ b/cmake/Summary.cmake @@ -107,8 +107,9 @@ function(caffe_print_configuration_summary) caffe_status(" C++ compiler : ${CMAKE_CXX_COMPILER}") caffe_status(" Release CXX flags : ${__flags_rel}") caffe_status(" Debug CXX flags : ${__flags_deb}") - caffe_status(" BUILD_SHARED_LIBS : ${BUILD_SHARED_LIBS}") caffe_status(" Build type : ${CMAKE_BUILD_TYPE}") + caffe_status("") + caffe_status(" BUILD_SHARED_LIBS : ${BUILD_SHARED_LIBS}") caffe_status(" BUILD_python : ${BUILD_python}") caffe_status(" BUILD_matlab : ${BUILD_matlab}") caffe_status(" BUILD_docs : ${BUILD_docs}") @@ -116,8 +117,9 @@ function(caffe_print_configuration_summary) caffe_status("") caffe_status("Dependencies:") caffe_status(" BLAS : " APPLE THEN "Yes (vecLib)" ELSE "Yes (${BLAS})") + caffe_status(" Boost : Yes (ver. ${Boost_MAJOR_VERSION}.${Boost_MINOR_VERSION})") caffe_status(" glog : Yes") - caffe_status(" gflags : Yes") + caffe_status(" gflags : Yes") caffe_status(" protobuf : " PROTOBUF_FOUND THEN "Yes (ver. ${PROTOBUF_VERSION})" ELSE "No" ) caffe_status(" lmdb : " LMDB_FOUND THEN "Yes (ver. ${LMDB_VERSION})" ELSE "No") caffe_status(" Snappy : " SNAPPY_FOUND THEN "Yes (ver. ${Snappy_VERSION})" ELSE "No" ) diff --git a/docs/install_osx.md b/docs/install_osx.md index 55b098731fc..0373a417847 100644 --- a/docs/install_osx.md +++ b/docs/install_osx.md @@ -32,7 +32,7 @@ If using Anaconda Python, HDF5 is bundled and the `hdf5` formula can be skipped. # with Python pycaffe needs dependencies built from source brew install --build-from-source --with-python --fresh -vd protobuf - brew install --build-from-source --fresh -vd boost + brew install --build-from-source --fresh -vd boost boost-python # without Python the usual installation suffices brew install protobuf boost diff --git a/docs/installation.md b/docs/installation.md index 16575b54029..144e6a34f67 100644 --- a/docs/installation.md +++ b/docs/installation.md @@ -30,7 +30,7 @@ Caffe has several dependencies. Pycaffe and Matcaffe interfaces have their own natural needs. -* For Python Caffe: `Python 2.7`, `numpy (>= 1.7)`, boost-provided `boost.python` +* For Python Caffe: `Python 2.7` or `Python 3.3+`, `numpy (>= 1.7)`, boost-provided `boost.python` * For MATLAB Caffe: MATLAB with the `mex` compiler. **cuDNN Caffe**: for fastest operation Caffe is accelerated by drop-in integration of [NVIDIA cuDNN](https://developer.nvidia.com/cudnn). To speed up your Caffe models, install cuDNN then uncomment the `USE_CUDNN := 1` flag in `Makefile.config` when installing Caffe. Acceleration is automatic. For now cuDNN v1 is integrated but see [PR #1731](https://github.com/BVLC/caffe/pull/1731) for v2. @@ -69,7 +69,7 @@ but we suggest first installing the [Anaconda](https://store.continuum.io/cshop/ To import the `caffe` Python module after completing the installation, add the module directory to your `$PYTHONPATH` by `export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH` or the like. You should not import the module in the `caffe/python/caffe` directory! -*Caffe's Python interface works with Python 2.7. Python 3 or earlier Pythons are your own adventure.* +*Caffe's Python interface works with Python 2.7. Python 3.3+ should work out of the box without protobuf support. For protobuf support please install protobuf 3.0 alpha (https://developers.google.com/protocol-buffers/). Earlier Pythons are your own adventure.* #### MATLAB diff --git a/docs/tutorial/layers.md b/docs/tutorial/layers.md index 34bb48050e8..839939f5ad6 100644 --- a/docs/tutorial/layers.md +++ b/docs/tutorial/layers.md @@ -453,20 +453,20 @@ The `SLICE` layer is a utility layer that slices an input layer to multiple outp * Sample - layers { - name: "slicer_label" - type: SLICE - bottom: "label" - ## Example of label with a shape N x 3 x 1 x 1 - top: "label1" - top: "label2" - top: "label3" - slice_param { - slice_dim: 1 - slice_point: 1 - slice_point: 2 - } - } + layers { + name: "slicer_label" + type: SLICE + bottom: "label" + ## Example of label with a shape N x 3 x 1 x 1 + top: "label1" + top: "label2" + top: "label3" + slice_param { + slice_dim: 1 + slice_point: 1 + slice_point: 2 + } + } `slice_dim` indicates the target dimension and can assume only two values: 0 for num or 1 for channel; `slice_point` indicates indexes in the selected dimension (the number of indexes must be equal to the number of top blobs minus one). diff --git a/examples/classification.ipynb b/examples/classification.ipynb index 6f8fa4252e6..0babf79f304 100644 --- a/examples/classification.ipynb +++ b/examples/classification.ipynb @@ -4,7 +4,7 @@ "example_name": "ImageNet classification", "include_in_docs": true, "priority": 1, - "signature": "sha256:918b797b1b7d78125c8f1e3c84756b0679120cbe1071ce7fee7aeafef0fbae55" + "signature": "sha256:a2b12abaa1eb252f436d59833c08ab97948c8a7a0513197f31afad0a0690e318" }, "nbformat": 3, "nbformat_minor": 0, @@ -18,9 +18,9 @@ "Classifying ImageNet: the instant Caffe way\n", "===========================================\n", "\n", - "Caffe provides a general Python interface for models with `caffe.Net` in `python/caffe/pycaffe.py`, but to make off-the-shelf classification easy we provide a `caffe.Classifier` class and `classify.py` script. Both Python and MATLAB wrappers are provided. However, the Python wrapper has more features so we will describe it here. For MATLAB, refer to `matlab/caffe/matcaffe_demo.m`.\n", + "Caffe has a Python interface, pycaffe, with a `caffe.Net` interface for models. There are both Python and MATLAB interfaces. While this example uses the off-the-shelf Python `caffe.Classifier` interface there is also a MATLAB example at `matlab/caffe/matcaffe_demo.m`.\n", "\n", - "Before we begin, you must compile Caffe and install the python wrapper by setting your `PYTHONPATH`. If you haven't yet done so, please refer to the [installation instructions](installation.html). This example uses our pre-trained CaffeNet model, an ILSVRC12 image classifier. You can download it by running `./scripts/download_model_binary.py models/bvlc_reference_caffenet`.\n", + "Before we begin, you must compile Caffe. You should add the Caffe module to your `PYTHONPATH` although this example includes it automatically. If you haven't yet done so, please refer to the [installation instructions](http://caffe.berkeleyvision.org/installation.html). This example uses our pre-trained CaffeNet model, an ILSVRC12 image classifier. You can download it by running `./scripts/download_model_binary.py models/bvlc_reference_caffenet` or let the first step of this example download it for you.\n", "\n", "Ready? Let's start." ] @@ -44,7 +44,12 @@ "# and the image you would like to classify.\n", "MODEL_FILE = '../models/bvlc_reference_caffenet/deploy.prototxt'\n", "PRETRAINED = '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'\n", - "IMAGE_FILE = 'images/cat.jpg'" + "IMAGE_FILE = 'images/cat.jpg'\n", + "\n", + "import os\n", + "if not os.path.isfile(PRETRAINED):\n", + " print(\"Downloading pre-trained CaffeNet model...\")\n", + " !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet" ], "language": "python", "metadata": {}, diff --git a/examples/filter_visualization.ipynb b/examples/filter_visualization.ipynb index 0bfdb5caf68..7125907f35e 100644 --- a/examples/filter_visualization.ipynb +++ b/examples/filter_visualization.ipynb @@ -4,7 +4,7 @@ "example_name": "Filter visualization", "include_in_docs": true, "priority": 2, - "signature": "sha256:44536e4f82eb5748b6a3bb6fcfca01bc6c5815dad2641c994dab031f452b7606" + "signature": "sha256:64c88129e2eeaa956e4c8a26467ff6119f24ea3d7ef15f8217326249973bea8f" }, "nbformat": 3, "nbformat_minor": 0, @@ -24,7 +24,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First, import required modules and set plotting parameters" + "First, import required modules, set plotting parameters, and run `./scripts/download_model_binary.py models/bvlc_reference_caffenet` to get the pretrained CaffeNet model if it hasn't already been fetched." ] }, { @@ -44,7 +44,12 @@ "\n", "plt.rcParams['figure.figsize'] = (10, 10)\n", "plt.rcParams['image.interpolation'] = 'nearest'\n", - "plt.rcParams['image.cmap'] = 'gray'" + "plt.rcParams['image.cmap'] = 'gray'\n", + "\n", + "import os\n", + "if not os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):\n", + " print(\"Downloading pre-trained CaffeNet model...\")\n", + " !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet" ], "language": "python", "metadata": {}, @@ -55,7 +60,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Run `./scripts/download_model_binary.py models/bvlc_reference_caffenet` to get the pretrained CaffeNet model, load the net, specify test phase and CPU mode, and configure input preprocessing." + "Set Caffe to CPU mode, load the net in the test phase for inference, and configure input preprocessing." ] }, { @@ -63,12 +68,16 @@ "collapsed": false, "input": [ "caffe.set_mode_cpu()\n", - "net = caffe.Classifier(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',\n", - " caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')\n", + "net = caffe.Net(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',\n", + " caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel',\n", + " caffe.TEST)\n", + "\n", "# input preprocessing: 'data' is the name of the input blob == net.inputs[0]\n", - "net.transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) # ImageNet mean\n", - "net.transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]\n", - "net.transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB" + "transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})\n", + "transformer.set_transpose('data', (2,0,1))\n", + "transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) # mean pixel\n", + "transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]\n", + "transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB" ], "language": "python", "metadata": {}, @@ -79,25 +88,36 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Run a classification pass" + "Classify the image by reshaping the net for the single input then doing the forward pass." ] }, { "cell_type": "code", "collapsed": false, "input": [ - "scores = net.predict([caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')])" + "net.blobs['data'].reshape(1,3,227,227)\n", + "net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(caffe_root + 'examples/images/cat.jpg'))\n", + "out = net.forward()\n", + "print(\"Predicted class is #{}.\".format(out['prob'].argmax()))" ], "language": "python", "metadata": {}, - "outputs": [], + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Predicted class is #281.\n" + ] + } + ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The layer features and their shapes (10 is the batch size, corresponding to the the ten subcrops used by Krizhevsky et al.)" + "The layer features and their shapes (1 is the batch size, corresponding to the single input image in this example)." ] }, { @@ -114,21 +134,21 @@ "output_type": "pyout", "prompt_number": 4, "text": [ - "[('data', (10, 3, 227, 227)),\n", - " ('conv1', (10, 96, 55, 55)),\n", - " ('pool1', (10, 96, 27, 27)),\n", - " ('norm1', (10, 96, 27, 27)),\n", - " ('conv2', (10, 256, 27, 27)),\n", - " ('pool2', (10, 256, 13, 13)),\n", - " ('norm2', (10, 256, 13, 13)),\n", - " ('conv3', (10, 384, 13, 13)),\n", - " ('conv4', (10, 384, 13, 13)),\n", - " ('conv5', (10, 256, 13, 13)),\n", - " ('pool5', (10, 256, 6, 6)),\n", - " ('fc6', (10, 4096, 1, 1)),\n", - " ('fc7', (10, 4096, 1, 1)),\n", - " ('fc8', (10, 1000, 1, 1)),\n", - " ('prob', (10, 1000, 1, 1))]" + "[('data', (1, 3, 227, 227)),\n", + " ('conv1', (1, 96, 55, 55)),\n", + " ('pool1', (1, 96, 27, 27)),\n", + " ('norm1', (1, 96, 27, 27)),\n", + " ('conv2', (1, 256, 27, 27)),\n", + " ('pool2', (1, 256, 13, 13)),\n", + " ('norm2', (1, 256, 13, 13)),\n", + " ('conv3', (1, 384, 13, 13)),\n", + " ('conv4', (1, 384, 13, 13)),\n", + " ('conv5', (1, 256, 13, 13)),\n", + " ('pool5', (1, 256, 6, 6)),\n", + " ('fc6', (1, 4096)),\n", + " ('fc7', (1, 4096)),\n", + " ('fc8', (1, 1000)),\n", + " ('prob', (1, 1000))]" ] } ], @@ -138,7 +158,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The parameters and their shapes (each of these layers also has biases which are omitted here)" + "The parameters and their shapes. The parameters are `net.params['name'][0]` while biases are `net.params['name'][1]`." ] }, { @@ -160,9 +180,9 @@ " ('conv3', (384, 256, 3, 3)),\n", " ('conv4', (384, 192, 3, 3)),\n", " ('conv5', (256, 192, 3, 3)),\n", - " ('fc6', (1, 1, 4096, 9216)),\n", - " ('fc7', (1, 1, 4096, 4096)),\n", - " ('fc8', (1, 1, 1000, 4096))]" + " ('fc6', (4096, 9216)),\n", + " ('fc7', (4096, 4096)),\n", + " ('fc8', (1000, 4096))]" ] } ], @@ -180,7 +200,7 @@ "collapsed": false, "input": [ "# take an array of shape (n, height, width) or (n, height, width, channels)\n", - "# and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)\n", + "# and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)\n", "def vis_square(data, padsize=1, padval=0):\n", " data -= data.min()\n", " data /= data.max()\n", @@ -212,8 +232,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# index four is the center crop\n", - "plt.imshow(net.transformer.deprocess('data', net.blobs['data'].data[4]))" + "plt.imshow(transformer.deprocess('data', net.blobs['data'].data[0]))" ], "language": "python", "metadata": {}, @@ -269,7 +288,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['conv1'].data[4, :36]\n", + "feat = net.blobs['conv1'].data[0, :36]\n", "vis_square(feat, padval=1)" ], "language": "python", @@ -327,7 +346,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['conv2'].data[4, :36]\n", + "feat = net.blobs['conv2'].data[0, :36]\n", "vis_square(feat, padval=1)" ], "language": "python", @@ -355,7 +374,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['conv3'].data[4]\n", + "feat = net.blobs['conv3'].data[0]\n", "vis_square(feat, padval=0.5)" ], "language": "python", @@ -383,7 +402,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['conv4'].data[4]\n", + "feat = net.blobs['conv4'].data[0]\n", "vis_square(feat, padval=0.5)" ], "language": "python", @@ -411,7 +430,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['conv5'].data[4]\n", + "feat = net.blobs['conv5'].data[0]\n", "vis_square(feat, padval=0.5)" ], "language": "python", @@ -439,7 +458,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['pool5'].data[4]\n", + "feat = net.blobs['pool5'].data[0]\n", "vis_square(feat, padval=1)" ], "language": "python", @@ -469,7 +488,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['fc6'].data[4]\n", + "feat = net.blobs['fc6'].data[0]\n", "plt.subplot(2, 1, 1)\n", "plt.plot(feat.flat)\n", "plt.subplot(2, 1, 2)\n", @@ -500,7 +519,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['fc7'].data[4]\n", + "feat = net.blobs['fc7'].data[0]\n", "plt.subplot(2, 1, 1)\n", "plt.plot(feat.flat)\n", "plt.subplot(2, 1, 2)\n", @@ -531,7 +550,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "feat = net.blobs['prob'].data[4]\n", + "feat = net.blobs['prob'].data[0]\n", "plt.plot(feat.flat)" ], "language": "python", @@ -576,7 +595,7 @@ " labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", "\n", "# sort top k predictions from softmax output\n", - "top_k = net.blobs['prob'].data[4].flatten().argsort()[-1:-6:-1]\n", + "top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]\n", "print labels[top_k]" ], "language": "python", diff --git a/examples/hdf5_classification.ipynb b/examples/hdf5_classification.ipynb index 51d854fa142..b90b79d962c 100644 --- a/examples/hdf5_classification.ipynb +++ b/examples/hdf5_classification.ipynb @@ -4,7 +4,7 @@ "example_name": "Off-the-shelf SGD for classification", "include_in_docs": true, "priority": 4, - "signature": "sha256:c3b84add3bb83e91137f396a48f46d46bf7921b242fc42c58390b30806e5a028" + "signature": "sha256:741422697d76b1667287180dc7c6360cf105ee774b1e2def800dc8fe80f78f67" }, "nbformat": 3, "nbformat_minor": 0, @@ -15,32 +15,47 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Classification with HDF5 data\n", + "# Caffeinated Logistic Regression of HDF5 Data\n", "\n", - "In this example we'll use Caffe to do simple logistic regression on a simple binary dataset, showcasing HDF5DataLayer functionality." + "While Caffe is made for deep networks it can likewise represent \"shallow\" models like logistic regression for classification. We'll do simple logistic regression on synthetic data that we'll generate and save to HDF5 to feed vectors to Caffe. Once that model is done, we'll add layers to improve accuracy. That's what Caffe is about: define a model, experiment, and then deploy." ] }, { "cell_type": "code", "collapsed": false, "input": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "# Make sure that caffe is on the python path:\n", + "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", + "import sys\n", + "sys.path.insert(0, caffe_root + 'python')\n", + "\n", + "import caffe\n", + "\n", "import os\n", "import h5py\n", "import shutil\n", - "import sklearn\n", "import tempfile\n", - "import numpy as np\n", - "import pandas as pd\n", + "\n", + "import sklearn\n", "import sklearn.datasets\n", - "import sklearn.linear_model\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" + "import sklearn.linear_model" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Synthesize a dataset of 10,000 4-vectors for binary classification with 2 informative features and 2 noise features." + ] + }, { "cell_type": "code", "collapsed": false, @@ -51,17 +66,8 @@ ")\n", "\n", "# Split into train and test\n", - "X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ + "X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)\n", + "\n", "# Visualize sample of the data\n", "ind = np.random.permutation(X.shape[0])[:1000]\n", "df = pd.DataFrame(X[ind])\n", @@ -73,13 +79,20 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAImCAYAAACB54oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmMXOd57/mrfd+33vdmd7O5kyIpkRJJiZKdyLKvk2sp\nUZwBJmPMnQBBYCeTDJB44JkAjpMbw04ugmCQwcxFPiS5jpNJcm3HjmRbJEVRIsWdTfbC3pfa96pT\np6rONh+q2WKLpERKbC5S/YBGV51T55y36lSd83/f93n+DzRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJ\nkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0qRJkyZNmjRp0uQTwHeBE8Cfv2+5Ffh/\ngJ8Bf/GgG9WkSZMmTZo0+XSwC/jr1cd/Bey5ad3vA88+8BY1adKkSZMmTR459Bu4733Aa6uPfwo8\nedO6Q8DngTeAlzawDU2aNGnSpEmTR5yNFCNeoLT6uLD6/Ab9wA+BF4H/HTBsYDuaNGnSpEmTJo8w\nGylGCoB79bEHyL9v3XGgAkwDkfdvPDIyogHNv0/R36FDhx56G5p/zfPe/Gue9+bfhv0d4w4Y77Ti\nPvA28J+A7wPPAf/1pnWngO3ABaAHSL5/4/HxcTRN28DmNXnU0Ol0zXP+kMgvLrJw/DiyKAKgN5lo\n37uX8Ojohh/7k3beU9eusXz6NKokAWC02eh+5hm83d0PuWWPFp+08/4gqBYKzL3xBpXk6i1Tp8M/\nMEDX009jMG7k7fz+oNPpDt1p3UaOjFwAqjSyaWTgLPBfVtf9KfBN4CTwf6+ub9KkyUNA0zTS4+Nr\nQgRAlSRS4+NINy1r8uFIokjy2rU1IQIgiyLpZueqyX2guLz8nhAB0DTy8/Prlz2mbLSU+ur7nv/2\n6v848JkNPnaTJk3uAlVRqJdKtyxXqlXkahWTzfYQWvV4IlerKPU6ZpcLnV6PVKmgShK1UglVljGY\nTA+7iU0eY+rl8i3LVElCqdcfQmvuL4/+uE6TJo8BqZTAzEyOcrlOW5uL3l4vNtvjceMxGI242tsR\ns9l1y60+HxaX6yG16vHE4nJB6yCTV6OIokRXZwd+TwV3S6gpRD6FFApVZmdzpNMVgkE7fX0+PB7r\nR96fIxRCp9ejqeraMpPDgfkT8DttipEmTT4mqZTAT386S6nU6J3MzeVIJgWefroLg2EjZ0LvH8GR\nEaq5HOV4HE1Vsfn9tO7ejf4xmId+lEikRN6dqLE8lkKqCFwfj7Pv2S0MbtnysJvW5AEjCHWOH18g\nHm+MZszN5VleLvLss704HOaPtE9XRwfBzZvJTU8j12qYHQ5aduzAHgjcz6Y/FJpXmiZNPibz8/k1\nIaJpGtVimWtnc/S0GOjoDWO0WD5w+2o+T3FlBblaxREO42prQ294sNnuNq+X3qNHqaTTa2LEbLc/\n0DZ8EpiezqIYbIS2jCIJAuh0ZGQPFdnE7frDqiwjJJPUBQGzw4EjEnng5/5eqFcqlFZWqObz2AMB\nXO3tH/r9/rQSi5VJJNZPq8TjZRIJgb6+uxcjkihSWFqiuLyM2enE292Nf3AQpVrF7HRi8/nud9Mf\nCk0x0qTJx6RSeS9YsRSNUlhaQqeqJAYMKEsTdB44cMcbeyWTYf6NN9amSPQmE607d9KyY8cDafvN\nGM1m3G1tD/y4nyQEYTWDxmzGaG7ccFR01OvKLa9VZJmVM2fITE6iShIGs5nA0BDtTzzxSI5ISaLI\n4ptvUlhcBE1Dp9fjHxig88CB5hTUbahWZd4fs6xpjeV3i1yrsfDmm8z9/OeUYzH0BgORbdvoOXKE\n8JYtj7RwvVcejzHkJk0+AE3TiMVKXL6cYGIiTaFQfaDHb2tzodfrqAsCxeVl1LqEL+TGplXIz81R\nWFi447bZ6el1sRo3sliq+fwdt2ny6NLZ6UanW7/M47Hg8906LlKOxchMTKxl3ij1OumJCcrx+Npr\n8nmR8fEUly8n1ob7HxallZU1IQKgqSq52dl17W3yHoGADYtlvViwWo34/XcfEF6Ox4lfvIiYTqM5\nfBQ1J7PXFsnHM1TS6fvd5IfKoye/m9zCxMQEb7zxBg6Hgy984Qt4PJ6H3aRHiomJNGfOrFCrNXqf\nfr+Nw4d7CAYfzDRDd7eH0dEQV8+V0etUgh1+9uxpQytFAaikUjAycttt3x80Co2MDEkUsXq9t9mi\nyaNMX5+PTKbCwkIBWVbxeKzs3duOxXLrpbZWKKDK63vJqiRRKxYBSCYFjh2bI5+vAWCzGdm3r51N\nm4Ib/0ZuQ61U4v1dfVWWkSqVh9KeR52WFie7drUyNpZEFGVsNiNbtoSJRBx3vQ9JEKiXSlQNLqYn\nMohCo6Nl37SCobWXwVvsQh9fmmLkEaZcLvO1r32NH/zgB3zuc58jm83ye7/3e/zd3/0dzz333MNu\n3iOBINS5fDmxJkQAslmRyck0wWDXA2mD2Wxk//4OulvNRLtVzHIZtbiCXGvcRKwfMKfrbG2luLS0\nbpnJbr8liyWTqSCKMk6nGa/XSiolMDubo1Sq097uoqfn8cneeRQQRYlsVsRg0BMM2jEa788gsc1m\n4uDBbkZGKkiSis9nveN5MTmdKKpGJiWQzYoYTQYirS5MjsbNanw8tSZEGm2WuXw5QWen56Gca5vf\nj85gQFPe+60ZzGYsbvcHbPXpRafTsXVrhM5OD5WKhMNhuqtMmuXlInNzOSRJpT9kwuz2Eb0YRxSq\naIDeaEJUjVy5lqFvtPuxCZL/MJpi5BElm83yi7/4iwwODjI1NYV79Qd/7NgxvvSlL/HDH/6Qffv2\nPeRWPnwEQbrtHGwq9WB7azqdjtbuMLpCnOJCEc3jQdM0zC7XBzpv+vv7KcdilKJRNEXB7HTSumsX\nZqcTAEVRuXgxzvh4mlpNxm43MTgYIB4vEY3eiNLPkUg8Xtk7D5N4vMTbby+Ty1XR63V0dLjZv78d\np/P+BGLq9TpCoQ/v/bpaW7F09mOUVvA5FAr5KiWDn6rB1TCiS9/6HRZFmUpFeihixNXWRnB4mMzU\nVCPGxWIhNDqKIxx+4G15nPB6rXi9d5fOOzeX48SJBWRZJeQzkdAUvJuGCMymyefK1GQdbTt3sJAx\nokoCu5YK9PQ0A1ibbBDVapUXX3yR/fv3893vfhfdTZPQhw8f5q//+q959dVXuXLlCvZPecaDy2XG\n4TCtGxkBaG11PvC2aIqCUq2Sm5+nkkph8/kawavOO7fF4nLR++yzCIkEiiRh8/mw+f1r65NJgfhy\nFodNj6LoKZXqvP76DMPD7w3VaxosLOQZGQkSiTz49/04IUkK774bXSdWZ2dz+HxWdu9+sMG7ialZ\nZs9eoxJbAU2lbcc2TIPbmZgu0NLhp6XFSSaz3gHX4TDjdDYCY+VaDZ1e/8CCRw0mEx379uHr7UUS\nxUb2TziMTt8UwPcDTdMYH09Tryt0hw3kLr/DlFile7iNLZ85xODzR5ldqrCSN7AYk+jyGZiayhAK\nOT5yqvCjRFOMPGJomsZXvvIVuru7bxEiN/jiF7/I97//fb75zW/yzW9+8yG08tHBZjOxc2cr77yz\njCBI6HQQDjvYtOnB592XYjFS165hslrxdHYCkJ6YwNPdjaulZd1rVVVjfj7P7GwOaMQadPd41o1s\n1IpFlk69Teb0OEablbaREbIWP1NTGSRJQa/XoaqNOXxJUpGkWzM2mqynUKiRz98a4Ly4WGDXrtbb\n/t42gmqxyNKZd1mZT6EoJgwGHZl3phj2tKP6G9+d4eEgqZRAKlVB08DpNLN9e4TEcobFsxfJLywQ\nCLnoe2IroeHhB5KBozcacTUzrjYERdGoVCTcbgu1lUmcdiOVXIbZ164S6Qpj3bSduNzC2GySlhYn\nw8MBYrEy+Xz1nsRINisyPZ0lk6kQiTjp7/94Rmz3i6YYecT4y7/8SyYmJnjzzTc/8ML4p3/6p+zY\nsYOvfvWrhEKhB9jCR4/+fj9er5VMRsRk0hMOP5yegpBMUo7FUCSp0WO1WDA7HNTy+VvEyNRUhlOn\nllAUFb/PwtyVLGrBTddQB0arDTSV5dOniV++QmIxg8moJ7eSYOizzxOJODCZDGu1TqrFIk4LGMQ8\n9bLhA0di7oVsVqRUqmE2GwiFHPctruJhYrEYMJkMiOL6qT2n04ymqgjpNKosY/P779kGX0gmqWQy\n6I1GnC0tH+heWy8W0ctVfF4r4uo0o6pqlGIxtj2xDUkUsShlDh9oI1tSkWWVYNBOJlPh0msnmHn7\nIgBzBh2lZIpt6HH2DKyNmtwtqqqh16+/zlQLhbXvsSMcxhn5BEVJ3kc0TSObFRHFRjaU12u758//\nZoxGPZ2dboSigM9sR1xJomllpGqO0myeYiLDs7/+P9PZ5cVo1JPP1zAYdJjNd5/eWyxWOXZsfm0K\ncGmpSCxW4tlnex96zFlTjDxCXL16lT/6oz/i7bffxvYhF8LOzk5eeeUVvvOd7/Ctb33rAbXw0SUQ\nsBMIPLwpK7lWo5rLUVxepl4uU4pGMVqteHt66D50CEWWG+l5gNnjY2oqjcmkp7/LjjB1iYXJWWJG\njatBP6GdT+AJulg8O0mhUKNalciJMj6fSmF+lr17D+B2WyiX6+SWY+iELEPbwyTfOUHB7ab7mWc+\nthHSxESac+eiCIKEyaSnt9fH/v0dWK2P9yXD5bIwNBTg/PkYitIQczabkS2bXMwfO9ZIzZZlrF4v\nHfv3425vv6v9ZqeniZ47h95kQgfk5+dp27173ZTbzRgsFopllWRKYGmpiKZptLW52T3Uht9QZvrH\nJ6iVShhX4zLCo6OIVZmVmSip6QW8kQAmqxmhKDBxLYlifRfdkAmbzcSOHS0f2tNdWMgzMZGmXK7T\n1eVhaCiI221BSKVYOH58LcvLaLXSvm8fwaGhu/+QPwUsLOR54415ZmezuFwWXC4zNpuJzZtDa5/l\nR2Fk0MPUzy+Tu3KGzPXrmOx2WreMsHjyJHazjUoqQb3eQi5XRaeDwcHQPWUNxmLlW2KRbpizPezY\nk8f7yvIJolar8eUvf5k/+ZM/YWBg4K62+d3f/V3279/PN77xDazWhz/M9mmmHIshVSr4+vsZ/6d/\nQlMU6oJA6969VAsFrv/bv1FdvcCbfQE6gwM4xSzK5CLR4ycIdLYRT9epFgVqdQ1h226uXEngsEIk\n4qRalbFajXR1uhl9oh2bzURLyErsShFjVUYrRZGrVWRRJDs9TfsTT3zk95LLiVy4EFsz8JIklevX\nM7S1uR7K9JemaSiKitF4fwyetm6N4PFYWVwsYLEY6OvzocWmyc3MrL1GzGRYefdd7MHghzqMSqJI\nYmwMg9lM7Pz5hjmVyYSQSDD8S790W8M72exC8bZhNEZpa3NRryt4W4KEejuJnn4bSRRRjHakmkp8\nfAqb34/qCKAzGOgeaid7fRoxtoQnGMHpa0eSFCRBYnGxSL2u8OyzvXcMZo5Gixw/vrAW+J3JiOTz\nVY4c6SU9MbEu3VyuVklcuYK7s7PpyLtKLFbihz+c4t13o2QyFVKpCrt3t9La6sLlMlMu1zl8uOcj\nTflVY4uULr9DdmqKxOXLmB0OzHYbvc89R2lpiVDEic0VJJ+v0d7uprvbs+44xWKVcrmOwaAnELDd\n8pu5XbC/qmrU6+otyx80Gy1GvgvsBs6zvoLv/wH8ByAH/PfV132q+fa3v01HRwe/8Ru/cdfb9Pf3\ns2vXLr7//e/z67/+6xvYuk8XN6Y/7nQxqddlFhYKLC0VsdmM9PX5oFRCEkVcHR1s+tznqGQyOEIh\nfAMDxM+fR6pU1kYrtHqV0oWTZLIy9eUZ5FSM5YUZHJ09VBJVbAaJ6sBWRIMLtZQhkSgzMtIotCZa\ngxw/Ps/gYJAWt0I8Po10U7l6aEwXfBzK5Trl8voqoJoGiUR5w8TIwkKehYWG0Vt3t5eursZFdmmp\nwPh4mmKxRlubi5GRID7fx6sibDTq6evzNc7bKpNnlm55Xa1QoFYoYPyQbJG6IKA3GklcukQllUJn\nMCAJAotvvUV461Zatm+/ZZtisYbo7WXkRT/lWAyLy4nB30ohJyBV6wh1A3MnTlFOZXGGfJjcXoZf\neBa/18T4+Bjz71wAIJe/xJYjT9B24ItcjTfOWTxeJpcTCQZvn9EzN5e/5aa0slIina40PHHeh1yp\nIFUqTTGyyvx8nkxGRJZVSqU6mgYTExn6+nwUizUURSOXE/H77/7zUmWZ3Ows8UuXWD59muzUFHK9\nTmllhVqpxPN/9mcUlqMEOloY7Lt9zM7SUoGzZ6NcvpxAUTR27Gjh8OGedSZroZADs9mwzhHYbjfd\n1pTvQbORYmQX4ACeAf4K2AOcXV2nAb8L/GwDj//YMD8/z3e/+13Onj17z2r6N3/zN/n2t7/dFCP3\nAblWIzM1RW5mBp3RSHBoCF9f3y2WyxcuxLlyJbkWPDo3l+OZ7bZGXZp8nvz8PEabjdz8PM7WVkrR\n6Lrher3RSOn6VZxtg8gBD+kzGSqlCkanE01vI70Uw6PUMfaM0uvMYhyfp26w4uwaYKlkR6iUiMcF\nnjnQjq2jB7FYwaRVqRfyaIqCYzWGqC4IjV6uToc9ELjrGAiz2YDFYrzlhvVRh57vhp//fA5JavTO\nZmZyPPVUJ16vlePHF9bs9rNZkVxO5OjRvtuaiH0cbhdnYzCbMdxF3RWzw4HF7aa4uEhhaQmj1Yoj\nEsHm9VJYXLytGLFYDBQFlYxkxxYcpqSoiAmZrlYbdYudq//6I4qxhqgsp7NMvH6c8OhmXEoBg8VK\n+3A39Wyq0VM2q2i69zLKzGYDmsZqYKMJk2n99/fG53wzqtoYfXK2tNzi7Gl2OjE77t6o65OOJCmY\nTPp1sTaSpGAw6HA4zMiyes/X8VI0SnpyEnQ60hMToGkYbXZURUWuSYj5Aj1HP0PVePs4JFGUuHAh\nxg9/OIVOp6OtzcXERAqv18Kzz/atva611cnu3Q0jtmq1YRWwY0fLXaWibzQbKUb2Aa+tPv4p8CTv\niRGAP6UxMvK/Apc2sB2PPF/96lf52te+Rk9Pzz1v++KLL/KVr3yF+fn5j7R9k/eIX7pE4tKlNZfJ\nSjKJpmkEN21ae82NSPQbQgSgXJZIVrwEOjqwuFzkZ2eplUpYvV5MdjuOcBjTzdNomoZBr8Pv0mNq\n6yV/OYRxJY5Jp6K3WbD1DZGLpynWPRT9I2z+wlauTeXJ13WEK40bjt1u4tpkjnzcTGJiAX/AzrbN\n3biMVfyDg5TjcZZOnaKSyaDT6XCEw3QeOHBX1T1DIQf9/T7Gx9Nr7zMUstPdvXHOvzffICVJZW6u\nkW57c90faPT6U6kKHR3312grMDREaWVlzU1Up9cT2LQJ6x3cjrPZ90zN9AYD9VIJIZVCzGbRG43I\n1Srujo47BhMHgw4GBnxcu5ZeG4UKBu209LUzMzuxJkQAbB4nZVGlGE9iMUJri4OsaEEy+VEUlWw0\nRY9SxWSyYzYbCAbtnDy52DDashvZvj1Cb997572ry8PMTHYtZgbA57MSCNhRbcOUk8nGCImmYXI4\niGzffs/BvJ9kOjs9+P1p/H4bpVKNel2gp8eL12vDYNATiTjuylekVpPJ56vYbCbSU1Nc+fu/Z+ur\nr+IIh0ldvYrF48Xq89GycxeaBoo7wvj1EpH2wC1TcIIgMTaWxGw2MDDg59q1FMlkhWRSIBJxMjra\nGN27YcTW1dUwYnM6zbhcG9fJUGQZTVHuqpjiRooRLzC7+rgAjN607r8A/ycwAPy/NEZPPpWcOHGC\ny5cv873vfe8jbW8ymfjlX/5l/uEf/oHf//3fv8+t+/RQK5XIz86us7tWZZnM5CSBgYE1L4V6Xblt\nzzKeqrH1+X3MTcZxHwlSmJ/DYQPvwCCOngEu/9sxdJqC12vFYTQS3rKlEVdSyNN94CkKS0u42jvQ\nu/wkczKaScdnPjPAykqJ2ZUql8Yy+Owa1WQcf8CB19XBsWPLbNoUxNLeS14QmMzY+fwX92Fx25l9\n/fW1Hq6maZTjcZJjY/QcOvShn4Ver+OJJ9pobXWRSJRxucx0dnoeaPpfva5Sq92+B6+9v/rYfcDd\n1kbv0aPk5+ZQajXcHR14biPuazWZ8+djzM7mkGUVn8/Gnk1mZFGk58gRpv/935HKZVRFQanXCQwO\nAo1pmeXlIoJQJxx2rAVcd3a6yWZFuro8bNkSxuOx4uvtJTLUR61QwOJyYPIFKYgG9HodznCEWqFA\nPdc4tzpNw+v3U81l6WgL4fbaGRtLItVlyvE4QjLJ/LsOPv/L2wi1+dGbTHR2etmzp42JifSaoNqz\np60RnGz103/0KEIy2cgqCgQ+EeXp7yednW5GRoIUizUcDhNPPtnB3r3tqKqG02lmdDR825GRVEog\nGi2h04HRaGBysjH92NXlxnDpKkIiQfb6dUa/9CXig4PUhQqRbVup12ScXX1cy9qQlMb00PvFiMmk\nQ9MaU5xvv73M0lKjpIBer+PkyUWCQfs6DyKPx7qhv2dVlslMTZGenESVZbzd3YRGRz9wm40UIwXg\nRvfFA9xc+Su3+n/6g3bw1a9+Fe9qfY7h4WH279+/1vufn58HeKyfa5rG17/+db7xjW8Qi8U+8v5+\n5Vd+hT/+4z/m5ZdffqTe30d5/rDQFAVVuU1lVUlC0zRuXFq8Xisej+UWh9feXg8zMwVOnUmjKEbc\n/i0IZgNyyU6hUMWxZT/FxQXKFiMDmzbT/oSD6NmzJK9cIXHlCr7ubmShTPStt4ns3MHAoaMIkkQc\nFaNOYfeQjQuvvwNeGy3uThYmNKxGI9msSDpdxWAwouWhKGqYjI3pGZ1ej85gIJsqkkwK2NIKcssQ\n7V2BD03jM5uNt8RVPEjcbvPqZ5pdJ/58Pus9FRq7F1wtLbekYMP63t3iYoF4vIzFYqBWU4jHyyzZ\n9KixOFKpROuOHeTn59dGFBRJolCocvz4PJmMiCSp+P1WNK0RKGww6LHbTVQqEhcuxKlU6nS3+ujZ\nu5Pk/ArZgkKhqDC0vZNQbycWp4Pwli3Uy2UkQcAWCNC6cyeKWmV0Z4DllIKiaJQTCfJzc2iqRjyb\nZeJtyNtFbH4/FpeL4b17GRjwU63KeDxWjEY91UKBermMyW7H19d3m0/o8eCGYL1fbsSaprGwUGB2\ntvFd9HgaI3b9/T6MRgP1uoSiaASDNsJh521tBZaXixw/Po8gSIRCds6fj2GxGAmHHRTyVQIGA9Vi\niav/7b8x8h//I672dmqCgKbX0/3cUaaFAMl0mS1bwredovR4bOzb186VK8k1IWIy6Wlvd6FpjRHF\nB2mImJ2ZYentt9dKB8RzOeTqBxcw3Ugx8jbwn4DvA88B//WmdS6gBAQ/qA1//ud/fsedv39K4nF8\n/tprr5FKpfjyl7+M4X1xCfeyv2eeeYZXX311XSDjo/D+Ps7zj4okNW4Q+XwVl8tMa6vrruILLB4P\nzpaWdRkV6HT43xczYrUa2bOnjfHxNIJQRxAkOjrcdHa6+elP55Dlxo2zUKhRqdS5eDHO9u0tzOUs\nOFu3UAOWSzaeGG6l97nnEDMZrD4f5ViM6PnzBAZ66dy1g8LlMyyPLyCIJvr27sYcNGO37OPs6SWi\neQO9I17Ks0mWlmREUcFg0CMIEvl8lUjQgzncTiEnkc+LVC0uarpl9JqZS2Np4qkaBw50PTCDr7uh\no8NNItGwtw+HHWzb1oLPZ2Xfvg6uXUtSrSr4fFZ27Wq9bx4y1apMLFaiXK7j89loaXGu81JZ17tT\nFDybt3PuUoUrY2nsdhObNgUaQYyyAZsGC8ePo9br2INBVFluVOV1OlE7zKhqY2rN4TBht5v44Q+v\n097uIhCw43ZbeOedZQqFGkcOtjB35hpGnQ2r3YpbEnBuGcE1sgXVZMdgMq1NuaFp6PR6asUiJocD\nu8uOPtMYlRESCbTVKTZVqmNyuBDECm67ndzsLCabjc6nnsLhMKNpGsmrV0lcvoxUqWC0WgmPjhLZ\ntu2xcleVZZXp6SxTUxkURaW/38/QUOBjxxfNzuZ4881F6nUFVdUYH0/x9NNd2Gwm5ucbwcCplEip\n5OLixQRHjvQCGsViHbfbTDjsZGwsuZadBg1xYrMZ8fmsKPUaztY2/IObyF2f5No//RN9R48yePAg\n5mCEpaUCdau2VpDzTjz1VCc6HZw6tYSqarS2OhkY8KPTNaY+BaH+wPyXMlNT62oYARSWbg0Sv5mN\nFCMXgCpwYvXxWRrTM78N/BmwBdAD/9sGtuGR5lvf+hZf//rXbxEi94rBYOCll17iBz/4Ab/zO79z\nn1r3+KEoKmfPRhkfTyPLKnq9jt5eL0891fmhIwE6nY7W3btBa/QqdXo93p4eAjf5KyiKysREmvHx\nFOVyo/DVU0910NPjo1aTb0mPq9dVKpXGyIqqahSLjaJn2WzD4rteLhM9f57omTM4W1pwRiK0bNvG\ntX/8R2yBAJrBRm6mhFWp4Nv1FKd+dAZFbyFXL9EVNpLPVGjrCJJLFqkUBDYP9SFXq4h1D1diFq4c\nv0p0MYus6njm+RE6tnUzGZOoVPIMD9+bP8FG8/zzfWQyDafRQMCG2dy4NG3eHKK310u1KuNyme9b\neq8oSpw8ucjCQgFV1TAa9YyOhtizp22tR31z787iD3Dy51OcOFekKDXmvxcXC7zwwgA11UDftu3k\nJ66Rn58HnY7wli0UFhfxbN/HyZ9PcfnMHBYTuIMentjXzZM73FjtNiz1LJpYpRBLEewMoSXmuPiT\nt0gkKzx1eAiDz4WrpYXFrJ5AtMTQUBB/fz/FpaW1+Ba9yUR4dBSTzUZLC3i8VuKrM1l6mwOrx8/i\nUoGlqRTbTJ0MhDsorqwgiSImmw0hlSJ2/jyy2PheSoJA7MIF7OEw7sfIbXV6Ostbby2uxcKk0xVq\nNZknnrg7r5jboaoaExPptewTVVWx200sLxeZn89z7lwMWdbYtatlTZy+8UajU6IoGgaDjt5eH+/X\n/SaTgXq94ZpsqFXRTCqOoJ9KshGjlJubwxWJ0N7ejrWa5cCzT+Hz2z/w+2+3m9m3r5NkskIiIWCz\nGRFFiXSn7nLUAAAgAElEQVS6QiolMDOTZWDAz9at4bXf10agaRqaeu+pwhud2vvV9z3/7dX//8sG\nH/eR5+LFi1y/fp2XX375vuzvpZde4jvf+c6nWowkkwITE+m10QlV1ZidzdHT46W///bmUzdj83ob\noxW5HHqD4ZbgxaWlAqdPr6ztv15XuHIlSXu7G5vNRHu7a53VuNVqpL/fj16vQ6d7LxylpWW1CJ4k\nEd66ldjZs5RjMcxuN4nLl1ElCb07gN5gY+CJTqrlMgvLAunFODodmPwmpk/E2PHSZ6iJdWoLSbr6\nQkT0KYSpKhPydlay4B8cQmCFak1hoWAjrLqQ5dJqT2njrOMVRaVeV7BajXc9+mIyGWhpuX2mgM1m\nuu/ukDduJjfOiSw3hGZ3t2etHdlYBtXXjoU6stnB3PgMXoebck5B1RkQBInFxTyHD3fjsqmERkdx\nd3Y2RkUSCWyBAEvxGlePnUVI5ojFExitVnS1/ewcsmGXNMbPTOIaGCF+7RpP7T2EOL+Ex21BECTS\ny0l0eh1ipYZv37NrTp/ujg76X3iBwtISqizjbm/HtWrO5vPZOHy4F5sqsDSxgMUfQMkluXLsHLZw\nK5fOzCFtibBn1Id+taZNNZdbEyI30FSVarGEySfd03l8WCiKyuRkmmpVplaTMRoNWK1GZmZyjIyE\nPrIzqqqq69x6jUYDvb1ejh1bwG43oqqNjkY8XiaZFHA4zJw4EWuk4ht0KIrG3FyOgQE/fr+1EUzu\nMLN5c4iZmSxGnUo4YGXhBydQy3k6n38RGRNqPkFqchLfpk1E+toJhe/s5nszTqeZo0f7GBtLkkwK\nQCOOJJWqUK024p1umLNtFDqdDv/AAJVUap0ocbW2fuB2TdOzh8Rf/MVf8Fu/9VuY7lORq+eee45f\n+7VfI5fL4fuY7puPK+Vy/Zbg0hspjneLTqfDfgfXzIWFwpoQuUEmI5LJiLS1udi6NYIoykSjJQC2\njvgI2WssXo/h8tsRdE6sDiv9/avnR1UJDg4y+vLLZKancbW1YfV6kdq28tbbswjlIoHOVp48uhtE\nGy29bWjlHGoxjRLsIZ8uMuQv4/XnsDkMCCtlJmI25LSbd99N09XlITjQy+Jigflole2rvTuvd+Pi\nLhYW8oyNJSmX64RCdrZujTwSaYPvJ5er8v442FpNWRvJGh9P88aJGPlYGm/AyY6nWrHYzNTLZYaG\n+8jmJep1hUjEwchICL3iwdPZyfwbb1CMRtEbjQy+9AV+9m6cQl5ElhXMdhtisURybhHnnu0kz76N\nJ9yKzaxy6MXdpNIi+ZkcicU8Ho8Vf8BGqVTH4TTjclvX+YY4wuHbVsutFgrY6nmOHOmmuq+NN14f\n58p0DFukHZvPS61UYnkxz4EXtmFYrWVjtFjQ6fVrNw6j1UrV1cbJc3mkS5P4fDa2bQvfUSw+Ctyw\nZr96tTGlZzDoaG9343CYUJSPbuhlNBro7vasjWZCw/bdZjNiNhtxuy1YLEYiESfxeJn2dhcOhxmD\n4T3xpigaOp2OdFpkZiZLMGhn//4O9u/vIJ8rY1XjtIwOsZJW+enrk8Rmlgl1t/KZV49QXFwkNDJy\nT20OhRwcOdJLKiXwzjvLJJPC2miRpsHMTPaexYhcr1NJpVAVBZvP94GlDgD8g4Mo9TrZ69dRFQV3\nezstO3Z84DZNMfIQyGaz/PM//zMzN8cnfEzsdjvPPPMMP/nJT/jVX/3V+7bfxwmn03yLoY9er/vY\nJlk3uF1tFr1ex41pdbfbwpEjPWSzIjpVoXjtHOWJKG4ZKjmJSFc7gwefxupoDPM7wmEK0Si2PUfR\ndRykbtbhDli4/Ff/SmIpTSWVInp5HFmBz/xPLzF8cAfF5RWMlq0YLFYCXiPlyUuIK1GMlq2MT+So\nKXr279iPzyYj5nKU8mZAT1ubG0VRUVWVlhYnb7+9RDYrYreb6O310dvrxWQyUMlkUCWpkZZ8j+mc\niUSZEycW1nqShUKNQqHGCy/0P3JVRX0+K6JYJ5msUCrVcTrNdHa6cTjMxGIlzpxZoapaEIUqlZKI\nhIneLT2MX14hEHYTiugwGHQ88UQ7VqsJMNH/wgu4u7spzM9j8gXJiGaU8hK5dJl6qYTDacEf9hIM\n2PAFXaibt+Boa8NlUTlxReb82WV2DfYRX0wiywpGvUbIrad/ay8OTxV9OUlVtHJtPM3ERAa73cjw\ncIihoQA6nY7c3Bwrp09TK5XQGwwERjZj9EZo2+ekLlQQ4nHMbi/29k4Umw9RlLDZTDgiEVzt7RRX\n5/RVd4TT5zIYQjZM1trqeazywgv9j0RBtdtRqUiYzQZKpTqqCuVyjYWFAt3dHpLJ8pp4gIZp4dxc\nnnS60kjdD9oZGPDfcQpkZCSEomgkEmWKxRqRiIMnn+ykUKjS1uYklxPJZquN1OwWJx0d7wkXRdEo\nlWokk2XK5TrBoB1RlDl7NsrBg51s39FG9koCoW8f16bGsA/tYNvWrSxenuTidJU9vUa87xu1uluM\nRv2aCdvN3Gtgb61YZPHUKcrRKKqiYHG76XzySTxdXXc+ttlM686dBIeHUWX5Q8ULNMXIQ+F73/se\nn/3sZwnc55S5G3Ejn1YxEg47GB4OMD7eSFm8MV/b1nZ/enTd3V6mp7Nr5lLQ8N8QRZlTp5Zwuxsp\nsKGQg8LiIkKpSkwOEIsW8XjduFQ9tVwaq6MDAL3BwHItwL/8f1dZnEliMJvo6Q0ycuhpUtFsQxT4\n/chGO/Vigf1PDzA+7iWfzNHa6mTXsJ0LP5vG7vGRTZUoZfJs2txGxCFhrWY4dXyKtq4g3bu30N7u\nwuezsrRYYOxyHB0q755P0t3tQSjXMShVTOlZ8gsLjdosHg/t+/bddW0WgGi0dEsBunS6QjpdeeTE\nSDBox2w2Eo2WkCQVUZTYvDmIw2FiaipDva5gD4dQFRkhkSCXzHHghW1YAiGiiSrlskRnp5taTaFQ\nqOLxWNEZDBQWFqgViyREOxPji7SFLQwMR5i8JFIpV+nsaWf/C7u4Op7h6oU4Dm+FruFO7CaF1oAR\nW9cAL/yPQZSV61TTCbq2DbL05gmSk1O079mFPHCAN84LFMsKFoPKpYtRvvTyVgZ6nETPnaNWbGRS\nqLLM/NnL+Hv3MDYp4XQ6sHf1kUoLWH1+roylsM/m6Oz0Eg7b6Xr6aXKzs4iZDEk1iD5gX+eNk8tV\nSaWER1aMZLPV1RiuTs6fjyEINUZHQ/j9Nt59N0qpJLFrV2Oa4OLFOPF4mbGxFPPzeUwmPQcPdvHZ\nzw7c0nFRFJVkUqBcrmM06tm2LUJrqwubzcj4eJpaTSEQsOP1Wjl4sBOr1UgiIXDlSgK73UShUKOn\nx8ulSwmi0RKRiJNCocr0dJa+Pi8eLUe8bOJf/+UyE2MxqvkcLe1+jn7uMMvj81S7g3g/YnC/12ul\nq8vD+Ph7JnZGo/6eXZQzU1MUFxfXnldSKRbefJOhz3/+Q0XGvXRommLkIfA3f/M3fOMb37jv+33x\nxRf5wz/8QxRF+dhBsY8jBoOePXva6ez0UCrVsdmMtLQ475tbZ0eHm2ee6ebatRSVikR7uwuTycDP\nfz631vsIh7McOdJLVaxxcUJg6moUh8tKdCnPypIdf18Png4orqwQnZrnx38/TjZapKWtnbJqZSUu\nYDLpaBvqIeVwYrBY0WQZfVUg5IH6cBtL1KnmcsxeL9L/i79IMZ4kO1egrSvI8IEdJFcybNvRxtCW\nViqFMh29NuYKdc6eWUZMxHh7IsfI5hC9AQM9gTq6+fMspzTK4+fxd3dicbmopNOsnDmD7bOfpVYq\nIZXLGCyWD6xme7MR3M1sgC3IxyaXqxKJOPjc5zYhitKac2YiIaxVQTUYjXg6O1er1mqEu1sYCdga\noyZVBUGoc+rUEi0tTp57rhcllyQ/NweqSsHqJr6SJRhoYe8OH1t3tCOWKozu6kZCz/i1JGavn9jE\nBKlYjv4dmwi2+qkqRozt3Wi1Mv5whOs//THzp86g0+lpe+ZZ/u3v38LbP4C5lKeUziHMG7jYZqQz\nuJl6qYTBYsHg8pEp60jlsoRKaZ7c183khRnysTSj/X4GW2VSNYl//dcZnE4zW7aE2bYtwuatW9Hp\ndFSuJjHP1G/5zB7F83gDg0FHJiPi8VgZGQnR0+OlWKyRy4no9XquX88wNNQIME2lKszN5deybioV\nOH16hdZWF4cP96zb78REei1OLJsVee21GQ4c6MTpNLFpkx+Hw4LTaaalxUGhUOP11+cwmw3s2tW6\n6pUj4/fbOHlyEU2Dyck04bADnQ68dtCqIhd+fhGDpCEkkzhCQTJFmVhOw+OzEd66lbo9uCZ47wWd\nTseuXa3Y7Sbm5vKYzQaGhgL09nrvaT/F5eW1x+VEguLyMkarFXswiH9gAH9//z3t7040xcgDZnJy\nkoWFBZ5//vn7vu+Ojg4ikQgXLlxgz549933/jwOKKGAV4hjrVeyeEGbz/XUN7e310d3tRZYVisUq\nr78+t1aG3eez4nboySVzyJKZclli584WjGoVq9uN4vCRLhuIFAosvvUWBdlOOpqlmCpRFUSCIyPU\njA6qso6Ax002VcZotdDWHcKmE4nGdSzXK+QFEAsqizNJPv/KbgZGKnh2Ay4/7xyb5OqFGWamswxt\nbuPpA63Mn3oH346ncLW4UVu6MLk9GHQqAyGFqX//MW39HdTFJLpMGp1cJzgygtFioZrPk56cpByN\nUoxGETMZAoODdB48iPM28QptbS6uXk2ts5H3+22PVNYONGzy1Xwcr76MoNkQVG11yB5EUaatzY3H\nY6FQaGQ/GcxmWludhMMOkvEiWi6Okk7jdjhwhgKsxPPMTyxjSV9HzOXIz8/j2B1EEkWujSXp39pF\nR1cQg0FP60ArP31tGld7O5VUisimfoKdrYS6I9jMGg63A4Mqkjc78LV5WBAaGTMGA8hKo6demJkm\nmxVQtIZomrk0jfhMBHswSKZm4+y7UeKxMm0DbdgtYXxmie29eqbLAuWpZcamFPRdIyiKnXS6Qi4n\ncv58jFDITjjceJ8Oh2ldKqrbbSEUerTO482EQg4iEQdLS0UmJzMIQiNmyeu1kUwKmEx6FKWRvWKx\nGBqVmreEMBj05HJVMpkK8Xh5XfprrSYzOZlBllXqdZmlpQKRiANBkFZHQCps2+Za8+I5fXplzU3X\n5TJTKNS4eDHGc8/1EQzaSaUaU4J9fT6G+xz0hDSKC2lChjz9ezrZtecwb/xshkTJSKmisuPQPtI1\nO5d/urAqJIJs2xa57XTxnbDbTQy0aIS1KqgqLqsVHfcWU2jxehGSSWrFYsMUsF7H7HQiCQLL77yD\nxePBEQze0z5vR1OMPGD+9m//lldffRWjcWM++ueff57XXnvtUylGxFyO+ePHqawWijNYLLTu2kVk\n69bbvl5RGrn3VqvxrlPdCoUq2YyAVJepiAr1ukJrqxO/pUp1+hz5t6dZ7G4jvPcAYb+R6Jl3WJzP\nEF/O0DbUy+5X/gP2movs9evo3X7aW+1USgJiRaSeyxKvWDh0eBs2xUNNgZ4eL32ddpRSHsEYInp1\niuz0NFavh9z8POd+IrOj34CldwvLBZWrl1dQJBmX08TiTIxLDhjtCqAZVC6fnmHh+gpFzU2k1cVo\nT4hKMo1t+yZCw3sQsoMYjDr0LhM6uYqqKNRKJaLnzpGZnAQgeeUKtVKJLa+8gvGmYXxNVQn5zRw+\n3M3Fi3EEQcLns7FjR+QjZzJsBKVYjIU33yR2fYmJyTTBvm5adu5nIdmoFxMM2vD7bRw+3MPERJps\nVlyrVmwyQvryOcb++RgaOqRqFU/AjW/7HpYvJvBVl2jdtQtJFKnOjzM4PMz1hSrLeRP6kJ2dO1vx\n+gwEQk7Eheu0hJ0MDoVQotPUx84T6OtCM/Xyw3+5zPLFa3RtG2J097OEKwK565Po8nG6BrqYuXid\neg3MFj0Wm4m+Xi9LV6Zx9gzy4//rGLGlDMN7hzl9OsrrxxJ0h1S8RoHNW1pJRWNImkpxbIJw/5Nk\n8o0Kr6Iok8tVCYedhEIODh7s4uLFRuVmj8fK9u0teL2PpiW8KErIssrBg11MTmZQFI16XV4rXGcy\n6env962KCAO1msyJEwtcv57DYjGwY0eE7dsjWCwGTKb3bvT1ukKt1hDWlYpMd7eHmZkcFy7Eb5r6\n1XA6TYRCjnWB8pKkYrMZqdVUMpkKzzzTTTxewuez4XYY8No16skVMmMX8LmMLL3+I3RmM7905BDX\n8l56Rrvxhdxcv96w7a/VFC5ciOHzWentvXsxkZuZYfHkSZR6QyStiCItO3bgam/HEQrdsdzBzQSH\nhylHo5RWVlDqdYxWK5Ft25BEEUkQEDOZphh5HPnRj370gWZuH5cXXniB//yf/zN/8Ad/sGHHeFTJ\nLyysqzqq1Gokx8bwdHXd8qOLx0tcvJhYDeI0smVLhIGBD07/nZ3NcuzHV1icSTK/UKCrx0/XYAQx\nI5JdOUfx2nmqmpWzJ6fYuZIDp59cWSORljDanaRX0kjJZeK2MInL1zAZNEaGD1JIGliJCtTEKi1u\nC3algsFk4tAvbMOlr+ILOBCVdk7+wyXiF6+Qm5uje+coQ09tp7XTg1xdwJhPIIjwC5/fhhhdQENH\nuqgxO5Nl6NlnuHwpQSEWR85nae/3ozPoGZ9IM/zUVnTeMOcmKyy+ew1NltjyzE6e3NuBzaggiyIG\ns5nI9u0UFhao5vMkrlyh5/BhvN3dQMPMKHX1KrVSCXsoxOF9m9HZPdjtpvvmgnk/UGWZpVOnWHzz\nTeR6nYDFTvTCJWxeL22Du+jp8a65VEYiznWOleVkksU3x0i8c4pybAWdxU6tVKK4tERwoBd/0IdS\nlqkWCnQceAajw4EsK2x7to2yYqPNXUedfZep69cJ2oLUe9oolGWm//01Zk+cpLPTw/JbJzEE23n2\ni6/wg0SC9Pwy1+QQu57YT3FuGnF5liOvPE9FqJG7ME8uL7K5J0JmOcHFjIFNLaOkFRfDT7ayGKuz\nFBOxWIyIigNdTSNfNdIy2EHs2jRyFcxGaG11odPp0Ot1WCyNkZa6IGDOzrHZnkP1WAn1ePG1P3qZ\nNPW6zNhYiunpLIqi0t7uZufOFrZuDXPtWoqpqQwWi4GWFg+zszmuXk3R0uJkbCyF223FYjGgKCpT\nU1n27+9gdHS9/0Zj+sVJqZTF5TKTyVSYnMzgcpk5fXqFZFIgl2uYK/b1+Rkc9KOqGjodlEp1PB4r\nQ0ONa8qNVPJ4bAGllOc3/odRXBRx+H0osSSugIvpt88jxKM88ZWv0Le/k3/793lEUcZsNmA2G1AU\njVisdEcxUhcEyrEYcq22ZuOfunZtTYjccOUVkknadu9GU1W6Dx1aK6x5J1wtLfQ9/zz2UAhHJIIj\nEkFTFKr5POh06O9Tx7opRh4g8Xic2dlZnnzyyQ07xqFDh3j55Zcpl8s471Ck65NGKRajuLJC9vp1\n7MEgcrVKvdRIr5WrVaRKZZ0YKZfrnDy5SDZbXXv+1luLOBwmWltvf9EVhDqnjl9n6eo00Swsz8SZ\nHZvnl351N4GwjktvXqU7YiO6UKBSrhEdv87IM3spCxJ1TYfLYsbrMiEszRNTZOyhCOmzp3CrGgeH\nR7B+7gC6YAf5eJoz//hjJKOdzb/wHKPbuunudpB76xTt7U6mjhXoGOzA7PUzPlujUBOxSBae2zFE\nMJbl3f9+AipFlJqItyXEZ754CDWf5PrPjhG7Mou7NYLPLqPXFTGavAzt282bx+cpZisER0aQymVS\nBY2cMYzTnGHs7/6O1LVrOFtb6Tp4kPTkJCarde0CJ6RSLJw4gSQ0PA2quRzVfJ7+55/HYLCsVTLW\n6fV31QvbSGqlEsmxMaq5RjUKh1miv9WBT02z86k23L7b/14USWLl9GlUWUbNxenu9hGNC1TEMk6v\nh5DPiNOicu7kGUwOJ7JQxGg2M/KFl0hNreDv6WT69AQunUBuOUpeTpFVnGzeN8KJvz2H1WYGoxmr\n20ZqcRklvUKkM8zy5CKiKNFx+CihiKuRUhn2cPRQBwN9HqS6zPLkIud/tsS+X3mJsbE0uaoFyeon\nX1wmlyoSDNqpl1Ti596BXJRfemUnttEeZEeQ+YqCbbV0fFubi0jEiaZpRN99l8zU1Nr7r8xNoj9y\n5CMHUm4U169nOXcuuhbLMjGRRlFUDh/uYc+edvr7/UiSwptvLlIsNr6v1arC+HiKTZuChEIOstkK\nZrMBp9N8S2dEp9OxY0cLoihTq0lEo8W14o0rK0WMRj2LiwXGx9N4vTYKhSpXr6aQJIXNm0NYrQZe\neWWUZLLCP/7jtYZ3TLLIkX1BWsx5Fl87Rub6FHK1iqe7h71feJb05CTmSgIxn2diIk2pVMdsNtDe\n3jg/d4p/q+bzLJw4QTmRaBTitFga1aJX/WGUep3i8jJKvY5UaWQRidksubk5pEqlkYIry3h7e/H1\n9WF4n+WEIxSifd8+lHqdciy2lgZuDwZvm2L+UWiKkQfIT37yE44ePbphUzQADoeDvXv3cvz4cV58\n8cUNO86jQm5urtHTrVYpLC5SyWToOXIEg9mMUq9jstluqZyayVTI5dZ7j9RqCtFo6Y5ipFiskV5J\no6kqhVyVUjqHKktMXpyn/akQsiSj2SMsRJOYLWZqqglZVmhtdSHVZRxGCa1SxOrxMHt5huee24yJ\nOmImg7maoSNo4NS5S1z4+UVURWXboe206BIk3xzDvuDG7HKxY9RB8Lc+TyJd5crlGP8/e28aJMd5\nn3n+srLu+z66+r4PoNFA4wYIHiABUqYl0RqNLVvhmRiNx+uYWdmxduynCX/b/TJryzEbnghvxEg7\nY8tjWaKsGzxEiSdA3EADfd9d931fWZlZ+6HBFimSNrUiAFmjJwIRlVVdeN/o7Mx83v/7f56nv0tP\nbHUTxexkJapgjq6TiuaxWnV4PF7qlTrKzhK6oJljJwcYG3GiCFps3Q4EjQZrwIertwdJjaDRaNBo\ntfinD6C3mElECvSOaOg6epRqKkU1kSC9sIBndBSTx4PpnpdNORbbIyLvoJ7JUM9mUWWZxPXrVBIJ\nBEHA0ddH8OBB9OaH03vw0wF7iiSBJKFHwmT88IbvRqFAI5/H2tVFYHoaT6tF/34tsbuLGAxawgMB\nYnOL6MwW5GKGwnaEdktG7ogMnj+PrlUid+0tmnYTotFMOlEkEdti5lA3FpOIXgOl7S0Uqx5NR4vZ\nakBoJmnk8wSGenaP3W5soRDL1xexe+2YNG1iy6vUKypjZ08zH9NgLBSYmQmQydSw2g043FZ0Qhuz\nARS/G1/ATmXpDj2PPo6trw/DnRgdp4Fwv4+BARcmk456Nvs+22613Sa/tvYLRUY6nQ5ra/n3NdXG\n4xWKxSYulwmXy0QiUdlzPr73TcxmPalUlakpP+F7FZ+BARcazfuN3VwuE+fODVIoNHG5zGQyDS5f\njuJ2mzCZdLjdRiRpdwtFoxE4dCh4L4NIYXjYzcCAm2KxRbMpUy63OHWyh19/xMj68/+D7MI8HUVF\nkVpU4zG8oyMIg72oikouXSEctjM3l0KSFDY3iwQCVnp7P5jQFzY2qCaTe8dKq0VmcRH34CDVRAJF\nklDvxYXYurroqCoanY56Ok1mfn7vs3I0ilSt0jU7+74xjHY74aNHyS4uUstksAaDeMfGPpJs96Pg\nV2TkAeLChQs888wz932cc+fO8dJLL/3SkxFVlknfvbsXwGT2+WgUi2Tm5wkcOEC7ViM4M/OBF4sg\nCPfCtHZL1O22+j7L5nfDYNBiMukoi1rCXVZ0SpB6XcLhNKGa7BhcLqrlOuVCjU6ng8Xnxdw3ij1R\nwV2q0UhlCY8NoA32M2B1snlrHqvdjdPjxWi10CoVaJWqqIrKsfOz9LpkYj/8Dk6fk9W4iVKpwdSz\n5/GGfWi8erYiNSLJGv2z+9FZbJRzJfTNOgcOBCiXGthsBhzdZmxqiUosT/XOKrLeSXi4m2b0FsUa\nWEsO9KMORk4dIhktgkaDqEjklxexe1RW1+bRaLWMf/rT7Lz5JhqtFt/kJN7RUcz39og/zPZZEEUS\nN26QX/tJFmZmfh6dyUTo0KGf46z//4feYiF44ACVWGzPSt3odOKbmnrfSvDd0IgiFp+P0vY2xUiM\n9PomRo+PvqOHENU2WpOJSq5AR2oQn19GltqYXU6Udpvc0hJSV4hKKoNSM1IvlfGPHyQWAb3bR3i8\nj1vf+A56ox6zaEdr99AqlejfN0BXv4+xo5NITRnFFiJ6e4HVS8vILRnrwCDDTz7Ba5dyXLteQavP\nMTrmIxj0Ew7b0YkdLFqZVjYFrSqDhyaZGNSSn38b4/omFruRPmuF3uMH7qmFdqF2QHZ2ozq1GI0C\nOrmGlN8llr9o+CDyYDTuuqKmUlUMBi06nYhWq9kzQ5QkhZmZIFtbhb3vBINW+vo+XGGSTNaIREq4\nXAaGhpwsLmbIZGq43UYeeaQPnU7Dvn1+mk0ZVVXJZHYN2DY2Cjgc+r1elFDIxumJDko5T+zKFZr5\nHOq9HoxWqYSo1+ObmEAw29jIdRgddeP1molESjgcRo4c6fpQA8Hau7an34HcaGDy+bD39lKORjHY\n7Zjcbjyjo9QzGQxOJ+VY7D3uuh1VJb+6imd09APvmxafD4vPtxse+jG78v6KjDwgyLLMyy+/zJe+\n9KX7PtZTTz3F5z//+fs+zsOGfK/k+A50JhPe8XE0ooh/chKT2/2BJUSfz0wgYEaWO/ea1BT8fgs9\nPfb3/ew7cLtN7D8ySGJxjfrGJqWdAsH+IMePdxOviEw8cYryxgoHT2uotgR6T53k5TmVoaEjPPO0\niXZLoq2zEllPIZVLXP/RImaLnpnjQ+w/OEt1e4OJPh39+84R9OiZ+9rXaRYKRBa3MFoMGEL93L24\nQODUo1y+tE3H4KYm6vi7b+9w/GQvwwNWTHYrumYet9jGYgbR6sDkcrDz9hUEg5Hw5ChXv/oNDGYj\nfb6+QyYAACAASURBVMdmKUdiRK9dY/r0OYyCgiK3qVc7OEaD9LvbpF7YfQhp9XqGnn4aAeh79FFM\nDgfNUol6NovWYOA9XvfsPuA1Oh3Ve0nU70ZhcxP/9E/cPx8ktAbDboy5IFC555JqCQTwjIx84L53\nu9Ggo6qY3G4QRaK3F4nmVNqyC02yCfEKE7/+a+gNuyvvbCJPuSxRr9QQMlWGzz5GcXMD78gQRrcH\ntd1E7ojIzQZDR6bYyBvpfeRRqqkMrXwat99J36OPITfr9IY9JLMpbn1tGddAH0aazN2IEQi5qZTq\n1DI5hESS8GAXeqsFm03H2JifdLrCk08NICU2GH+ul50VqMRUXDboFNJs7aTpPt4hcfUKXY88Traq\nodgu7yllri9UuHalSCRWRe3AkSNhwu4upoYGHui5+qcgCAIjI549d1FBgEDAgtNp5BvfWKDRkPF6\ndxuoJya8bG+X9hYgo6NuHn20j0KhiSCA32+mUmnuKXDebX62vp7n4sUIjYaMTqfhyJEuvF4L6fSu\nBHxnp4her+X5519hdjbEqVM9+HwmenvtFAotXntth3DYxrFj3ahqB0N7mXqlhMFiIbe4uFvBbbWw\ndXejs1pxDQxg6h3khX9Ikk6n8fvN9Pc7MRq1/2gkgsXvp7S9/Z73tCYTZo8Hx5NP0shm6T52jFIk\nsrvN0ulgcjqRm03k+nsTyFVF+SfJ5/2IB/gVGXlAuHz5Mr29vXQ9gOCpgwcPks1m2dnZofcfccn7\n5w6dyYTZ66VVKu29p9XrcQ4M4Bkb+9ALxmzWc+BAkOefX2RpKYteLzIy4mZoyI3P9+F9NhMDJuQn\n+tjwCwinwevU09ye48CRE/ztl2/RPT3KxG+cAr2Zt6+nqNUk2gE93/rmPDajjGtgiCsv3ERs1zn2\n+c/iCvkJ9gfRhUOMH9hHZmGBuinA0htXScZKNMtVKpUWwz3dTD5xnFZLJnXrNrMT3awkRez1Dsl0\nlJs3k3z6U4/SSbVYvjiH2CwRHvBhsFsx2AKUJR2KxUs5mcaoA1FQKefKmDw+1pdTBI5UWF7JcvNm\nErMBDkzYqSVzDEwcpHTnKrV0mu4TJ3BOHiBVUKmubaJmIpCLIIgi1mCQVrmMIAgYHA5CBw9isFgQ\nPsDrRqN9uDkn7qEhNDodZr8fAbCHw9h7et7zM7IkkZmfJ7+2RkdV8Y6N0a7VqHQsLC1vU28qCFo9\n6/ktpO4Ep0+HsfQO4RxIsz23gkbU4hsewOjvor2VoJivE3j8GQxSiVxdS0vvomdohHobkpEOY598\nFp0q0WnWSM3fRRS1INVZuXSXhmjF3RMgsbyM0+2j2VJpKSKKLBMWKgQPhrlxI47fbaTVkhBQuH0j\nSo/XQGlxiY4k0T0SZv0H38XZN0DP4YOYzVrykRaRtMrqwg4ajUBXl5Vw2MHKSp68bGYrkkCuN6jV\nJM6eG8OS0xAYeTjn7MMwPLzbMLq8nMVq1SNJCt///iqxWGXPDt5qNSBJMrFYBVlWGRpyUSw2mZ9P\n43Sa6HQ6fO1r84yPe7Ba9fh8Fk6d6sFs1pPL1VhezmEyadHpNMTjFTKZGuPjXvx+C9HoLsF56aV1\ntraKhEJWtrZKtNsyi4u5e1s5Iisr2V01kl2Hq+mlsV2i59RJ6tkMpe1tBEFP6NAhnH19tKpV9IKe\nVkulUGhQKDTY2ipy4kQ3er1IMlnF6zW/T97rGhigHIns9Yy8o3jRW62UIhFqqRQ6sxnv+PjuNXCP\niOeWl0lcv/6e/8vs9WKwf/jC7H7hV2TkAeFBbdEAaDQannzySV5++WW+8IUvPJAxHwYEQSAwPU2r\nUqGRzdLpdDB7PAQOHPgnH3iJRBWLRc/0dACzWYfDYWBzs0A4bMNmM3zgd+rJONZ6gpkxM7nNLeI3\ntsgn8vgnJgiMDZHMq+y8kWJywsfGcgp/yM7c9R3a2TzeYyMsLmaRDC5mTk2zURVQ1gWCtRpHTHUG\nDodxWf2s/+g2O9tF/CMDrFy8TnBsiCOfOc/aq2+gMZrpWILc+t4qY6cPMXp2ApvNwOxsiOW7UeZ+\ndJvRvjF8bg0dhxNHf4hqpUZF42ThepIjx/vIlxWCXQZ8QQf5qoTXaWR9o8hbL99FUiBbq5NZkXji\nsT7Kbj/BQ4cQtVqsEzO8PVcmEY+RujuPQZA5frIPh5Sg0WrhHR/HOz6O3mLZqzK4hoZI3ry5VzUR\nRBHv2Biah2jIJ2g0uPr7cf0j/Q+55WXi167tzTu7tITSbtNWBQxmIxIq5YqExtRhK1LlQLVDJp7H\nPHWcJyanqKZSVDJF8ukS+//lc0TWM+RXV+ib3U+5reHWSpO3v3aRM48N8ZufPUV+J0KrVia7fh2j\n1YPNbaVZbxKeGEDr9uMf6UduNFlezXP9eop6vU0gYObA2aN897uLIEvUS2a+//dXGT80RL9X5dvX\nb/PkuXFWX/4hLreFR3/3U5gtOor5GoooY+m30RZNaLUdTCYdzabC/HwaWVbJFdpY/UGUtkRTFDF7\nPWxtl9m3/8FF0H8UaLUaJid9jI662dwsMj+f2QuHU5QOBoOGq1djSJLK4cMhisUmCwsZhofd3LqV\nolqVGB/30m4rrK0VOHYsTDpdY3OziMNh4Mc/3uS113aIxcq43SZGRz1cvhzF6TSi14vEYhW++c0l\nMpk6Q0Mu/H4LX//6PP39Tl56aR2NRuD3fu8QbreZFy+scmKggeCD3PwyrqCX4aefRpHaGOw2/NMH\nSC8u7hKEbI0jR7rw+y2kUlVsNj2BgJVbtxKUyxLd3XaOH+9+j2TeeC/ks5pMorRau1XhQID8xgal\nrS1a5TJqu43e4SAwPY1Go6GRy2ENBvFPT5NfXaWjqlh8PrpmZx/KNXq/yciXgFngBu9P8BWAm8D/\nDfzX+zyPh44LFy48kC2ad3Du3DleeOGFX2oyArt7mEPnztHI5aDTweT1fqQGyXS6RrvRwCBICJKR\ny28laHc01GoSp0/3vi8UrFBokC4o3Lgew2rREwi4GDhoxj3QIDDSz2+O6ail05RrCorNjsE0zvJi\nhnxJi9HuoFmu4PS6MdvNrEQkfAEH2Wiepbsxlm5u0CgfYHzCT6WtQ28yYeua5KmD41jcLtbefItK\nIkk2lqZaVTj4uecorq9RFNzcvLyJx6xw6dVFPGaRjViL5ZUa8dg6n/mdo0weG6MkGSgW6ggGI86Q\nF5kOhVQOndzAMf0IGwkJWQWl2UJnMVNMlqm3oVpVGB3vxTM6SjTbIZGo0m7sqpOaLYmbNxM8dsyF\nkk1Q2tkhODPznu2OwP79aI1GCmtrCKKIZ2zsY3NrvF9QFYX82hqqLFPPZmnkcgiiSNeRIzitIvmd\nKIKoxePxED44QbYqUpINjJ2cYenSbXDZCOyfwlxuY+ntJxvfYv57L2JxWnnl9hr23n5CI0f5xCcC\neANWNrbKJCMya4tFThx/FLdDxmWGF//yqwQnR+lUK9SiUUzhPuT5FFJbRWrJdHQm8oIXRS5iMeuZ\nX8zR0RkR6JDdiVPMVFlazmHzeImsrFPLZmlm2jz/n/6ayf3djJ89xcDsEcy6EunVVSxuJzpLiNw7\noXLCrtnbOw+8TucX14FVqxWpViU6nQ56vbjXH2Kx6FlbS/HYY/3EYmWuXUsgigJer5nRUTeXLsVY\nWMhw5kwfb78d5cKFNXK5OisrWQ4eDFGvtxFFyGTqxGJlbDYD+/YFSKer9PY6abUUNBoBvV7DzEwA\nSVLo7XVgNGrp63OytJRhc7Ow25sm1TArNbbfXkYpF9AadJgcTgS9Dq3JTL0mIWo0mLwBYmWFdFrC\n77cQClmYn8+wupojHLYjSQobGwU8HhMHD743BVdvsbzn+mpWKsQuX2bx+eepJhJY/H76zpxBbjRQ\nZZlmPo/WtOvyOvzssyj1+u4Wzb1/D5qQ3E8ycgiwAGeA/wIcBq696/NfB9LAL+if+MeHByHp/Wk8\n9dRT/Mmf/Mn/FNbwerP5Z1ZouO0iN5eW6R4K8O2/e5tyoYp/dJBtvwGNRsP587vhblKtRilf5dU3\n41hNJkweL8mtOOVKi+FhF5pwN9Vkivnnv8nG3AaKIDJ19iShI+dRR1yst+t09w0R9mgYHfNQlIy8\n8VacpcUUb7++TsBvohBp8A+o/MHvH8LZyaN49IQCFjquEHd/9CbLl7Zo1mp0h/1Q3CK/ME87NIkd\nCX0tTTFtZfXWJtp9IXSVBHpPgHKxTq7YYiclM/TUk5x57hRKvcyhJ4+wenWBdjFHuMuKb3iQ1763\njdlhp1TPoLRlrMEgNr+f/gk34ekgRrebiy+s796g9HpEgwGlJVEu1JAIoAGMDgei/r2rZq3BQGDf\nPvxTU8D92Wf+eaEquzlDGlGkVGpSKbfo2H2019f3VotStUq72WT6c58nJ1mIrMXwjY5Qdw4xHvIQ\ncig0MkWchjYrP/oxnQ7s+41PoxFFrrx4Ha2/F7vPTKqaIhPPcfQEvL5cJZ8tQlhH2G+i57F+vn9h\ng+OnBxjoNoIjQC26zfbVOboOH0YzMEPX7CznRpvEsgpGf4iryy1sLhPdYQcbOzVkrQmdFtqSDDoD\n1aqEx2TA6HTQzKQQdAYOnN6HfyDM3bkEqfILNKxhXGZIvH6ZiUeP4HP58HrN1GoSGo3A1JSPdlul\nt9eBxaKjuLOzG6gnCDh7e7F3dz/kM7gLp9NIpwOjox5u3nxHVSIwObnbL7K2liMardBqKUiSytmz\nA5hMWpxOI/F4BUlS9iS7AwNO4vEqfr+ZwUEXc3MZEokqy8tZnn12lP5+J3a7AVlW71nC6/nEJ0Z4\n6aUNNjcL6HS799upKT8Gg45KRWJ80E4rvYpOr2fik89Qj0VQWg0cvX2Y/X6KLR3BmUlEg4mtqJ5O\np0y53KJSaRGNlnnqqSHq9Z844u7slPbIiKoouw6ppRJasxlrMIhWr6cSjbJ24QKVe3bu1WRy1wBN\nlnEPDgK7Ta655WVEnY7MwgKtchmNVouzv5/w0aM/c1jmz4P7SUaOAS/de/1D4ATvJSOfA/6O3QrJ\nLzVefPFFzp49i+4f6dj/uNHd3U0oFOLatWscO3bsgY37zwUhm0T/gJOdSJ5cIofJYsRratNMxUgY\nNCSjLuydIrVUiqqsJbcSJYKRidkTuAaTNApFArMjaKw2Fr78VyxcXiKXraPVa7n6nVf5xNQ+dnbM\nOGwi7fXbVGMS21sabD3dHJ4Y5vpbRbrD1l2JsE7DyLCL5Zd+hFzMks62aSSjGN1xvF1eNswmkhtx\nhI5Kb5cP2i1cPhtyB3TtCoIs0TMUQFY6mHRazDYTozMDdPd6MNstZBYW+cFbVyjEkhgsJh557hHG\nzj1O7EcvYM+mCDigZfSwLWioF8v0DPoYOzTM/tkuquuLJOfm0BS1pOdTOPsHsIfD5JvrWGwm9Mho\nrFZ8U1MfSjZ+EUmI0m6TW1kht7KC1mwmrwuzGpVptVXkQhWv6sUaCFJLxGk3GhhtNkrLC+x/bBbn\nyCiNhsTJIyEsVNn5/jdZ+YdvYvL5GJk9TrnSInnxVfZ/5jnkQgZVb6RpFdEobbwOLdVylcGwh+03\nrnLp1RjFbJXHnt7Hs48dYznVwGKA47/1aySXNzCPzBAeCbO0UWdxfofh2XEcbgsrawXGRi2YzRrU\ndpvhES/5bB2dwUBHb6DSFBib7qW2XsXXG8Tq87J48RZCucDGlRzWQIDsxiZNn4HVgsSJQwOoqQ2O\nPTnA8HiI9fU8BoMWg0GLw2FgejpAbmWFyMWLezLQ/OoqvadP/0JUu7q6bCQSFZxOA8PDbqLRXVKh\n0Qh85Su3yOUaiKKAKILDYWBrq7DnrDs3l6LdVrl+PcGxY2HqdZl/+IdFenocSJLM44/3sbKSY2Ym\nSLnc5NKlCJVKi099apz/+B/PEImUuXhxd/um0ZAxGnU0Gm0mJrwcOhSkUmnR1WfC5+qlnU3ygz/6\n39CoMo6Aj+4Txxh45tcQHT2UVCMWW5ADBzQ0m/KeY6zL1fseRRDs2vPDrvolcfMmmbt3USQJQRRx\nDQzQc/IkrXIZ+V2Jv4JGs9u4LYrorFYEjYYOYLDbiVy8uFf6UhSF3MoKFp8P3+TkAzuH95OMOIGN\ne69LwNS7PjsHvAoo93kOvxB4kP0i78b58+d58cUXf0VGPgBKJsKBIR16i4/YTC8GUYFiFEKT5NfX\nKG0bmP/6f6VZKmEbnsLStmJwdbO0mMHbE0YX7gWfD7OUIb2dpFJpoSgqOjpYXA7uvnUXa/9pPNUt\nsvFtknID2WMkFc8x/HQ3T5ybIJMsEduxo7aaBA1lMrdWMZl1+F0WajWJ7Ss3OPIbT2G2GPD3+qjm\nyxgdXnpmJtGOjvDKj3fIrO9QDlt47PERUjmJxJ0SzqCbJ8/sxxOw0SqVqKwvk0sVyaXKWIxVNi9e\nocupMH/hR/TOTHJ41s+ArpvUdC9Go5b9+/0MDrqoRTZJ3boFnQ69gQEiNi2FzQ18U1N0H5pmZtJJ\nV5cOi9e7J/V9UMjl6qTTNURRg9+/q6L4WZBdXCR25QodVaXj6+f2/AL+kJOg20nF5GZrLsPsxGE0\n4g0CBw4gN5tkl5cx98iI2SoBk5b2eoObr7wMjSrWQID89jbl7W1GP/VponeWMQgS0/v9FLJVXHYQ\n/CKFYg2r30fy1jo7CxvodSLlcpMrbyzj8toZPXIarU7g7RsxXv3qRZRWG29vkP/1//gdRqa6qKSy\n+FpJeic1hKZsRCMVErESU4MOHNYhSsUaBu8g+w71IFazqGg49anT6ASZwtoaBoOWQrFFrVBm37kz\nxHUG4hsxHK5uTOUMmnKG2dNjzM52Ua9LqOquE6ncarHzLj8KuOdlMT+Ps6/vY3Ph/Hmg1Yqsr6dp\ntVRGRz0cORJiaSmHz2emXm+j02nwenedcYNBK/v2+e+l9Ha4cydNMGjB5zPx3e+uMDHho1RqsrSU\npVBoMjDgpNGQ+d73Vjh2rJtsts6FC6s88siuQKCry4bPZ8Js1nLzZpLubjsDA05cLhM6EZLxKuP7\nwrz1t/+NVrGA0aChtNMAQcDWN0DwTBeb8QbJ+U0eeaSXM2f62N4u0el00Go1LC7uSnf1ehGHw8D4\n+G7ybi2TITM/v2dC2FEU8uvrOPv7MdhsOPv7qWUyKK0WCAImtxv38DCNXI7EjRuosox3fByTx4NU\nLv9Eqt/pUI5Gf2nISAl4pyXXARTf9dkXgN9ltzryofijP/ojnM5d/ff4+DjHjx+n/17j2dbWFsAv\n/HF3dzcvv/wyf/zHf8zW1tYDHf/48eP8xV/8BX/6p3/6C/P7+KeOHxSsPh+pWy/jM3pxqlkK8RyW\nQACpWiUYstBYvkF6bg4EAXMghM5mJeA3Uku2iccr2O0GvF4LupaMPeDD6U6DpgFtCZPdChYnXruA\nKZfFrqnTkCWs3jC2/Ud440qKVFXH3LUdjhzvY9gnYzFKLKbq5HYSIEtYe/oxCwqy0sHb7aOjygQH\nQxx65jD+iTGWc2ZKVZXQUIhmLofbMcHsI2M0np7CZDUS3S7g9ltpZVPo2yUOHAjSGnag1Co0MimK\n8RSh6Sny2xHCU2YOPTOBigadTtyrZMS3tn7SfJqPcuZYkEJLjznsoXswQChkfShVj+3tIm+9FdkL\nJXM6DZw50/e+Pp8PgyxJ5O5twWi0WrQeL11BmUo2h1TMoVVaDPZ7ENxuek4YyN/L9wgfPUp1Y4nQ\nwCCbb13Cc/4pmpkkJqcT0ddNYGg/UnSDVrGAIxRAFrSET5xCuniZSnyTrlCAyadmyJqt6JsFXA4D\nkZ0iAh2sVgPZRJaTow7SZRGbp8Fz/+E55l69yeC+fq5cibG9EkdRVLwOHaPhNjs/fJGrW1rowKB/\nmCeOdZMsuUjsZHHadTht3fT0PYHFbmH79ddxBT2ozQZCScLksODq72F7qYQot9AZdLuJv0bjnoeE\n2fyTbbdmtUE+XaJebGC16vZs09uNBkq7/dDJyPJyjtu3k3Q6Anq9yNZWEVlWcDiM9Pc72d4u0Wwq\n7OwUmZjw8fjj/djtu1s7J070UKlIVCotNjdLjIx4GBlxYzBosVr1iKKGkyd7+MEP1vj856eZnPSS\nyzWwWPTY7Qbm59P88Ifre6qXz352kkZDpt1WeOWVdT73qR4cqoJUqWP1unF3+ZEbdQStDlmS6Mht\nFK2JWKaO3WEklapx82Zyz5jRaBSZnPSh17RRcyl0cg4xryLZ+pBqNZRWC41Oh95iQdBqkQQj8XQT\nT8hD8PAR5FaLWioFgsDA2bNojUaWvv1tVEkCQaB4z4XV0du7504MoP+YzMw+Ku7nneQg8PvA/wL8\nJfAVfrJNcxNIAuF7c/gMsPJT3+/8tGPiP0dcvHiRP/iDP+D27dsPfOxGo4Hf7ycSieyRul9kvOMD\n8HGi0+kQiZSIRMoIAvT2OgmHbbTKZTZfeYXYtWu03YOsRproAt1YqTE9E2brm39DdmkJ39FHSEhO\n0nU9mBwMHJ5CFQ14PLs9KoODTpqrt7nx37/K9lKUcq7MoefOw9QZTA47moVXefPCTcweN5PPnufC\nyxEKhSbegR68Pitqo8rZx3twm1Re/s9fprgToZrJ4R4dx+Cws+/scdbm44wfn6Srx4MiaLi7UKBr\npBunw0g1nUavhWu387zywgINWYvTbeXcJ8Y5sM+FoRzn0le+RlvQU25pqZcq2CwCn/j950iuxzDW\nUgw/9QSDZ8++5/emyDKJa9coR6M0SyU693or9HY7g089hcXj+djO0c9y3iVJ5sKFNVKp97q+Dg66\nOHt24CORI7nVYvk736FZKGAKdXM3aeD5v/wetVqL8Egvx04NYqfE2COHqd96g8LmJp6xMfRWK6nb\ntxF1u83Kgelptm4vk9IEWb0TRTRb8YccPPHJWfQmHatRhdW5TQaGA4yOeTE6HWQLMka7jRvffplr\nL12h0VDQakUmp/wMTPYQeuwc/+n/usL6Wpq+Pje//duTNFsq3/zqNbKxDIJGoHfAy+Mn/XRJ64jd\no1y7leX8E72Qj4LZjmQNMrcDvf0eKok4PX0ehNgCLreZYiRGLlvHEgzRUkWWN2vodFpmQjWUQgpb\nVxfho0cJHz68RzDy+Tq3b6coXH+TyNwyFouO4SE3NrsBz9gY/Y8++rOfdD6+612WVb773WUymff6\nZSjKbk/HykqetbU8kUiZUMjKk08OsrFRQFU77OyUcLmMjI56UNUO7bbCtWsJSqXWvfTpDt3ddp54\nop9Uqk6j0WZgwMncXAqdTiQWK3PjRpJAwMrychaA/fsDHDsWxmAQsVh09NglGvEt+vtsbL74ItFL\nl+h0OrRrNUSzhYkv/HsuZbr49g+22b/fx759fkRR8x6/E5dDx2y4RmHhDnqbDa3BgNnnwzU8THpu\nDkWSqMTj6Fw+sPuIFPXUBAsjPQZ82hKNTGrXU2d0lPWXXiJz9y7teh291YrR7aZVLOKbmtrL9tLb\nbAyePfuxWb2/g3vX5wdepPeTzt4EmsDr915fA/4z8EV2iQrAvwJE3k9EfmnwsLZoAEwmE6dOneKV\nV17hM5/5zEOZw4OGqnbIpCuUsiX0gky9LfL29Qzy7rOU1dU8p0/3MjTkZviZZ3CPjFCORhk7bEZj\nstBMxmiU0kiqiGN0ioWEluVbdzD5fBiCfTjKMv6Ahe99bwVJUhgd9TA4EOT4F7/IxMYqWqMJa08f\nKzGVoE9PJDNApniN/ccnWd+qsjAXwRUKkIzmSW7GGA5pWbxYxBOwM3L6GOuvtqgkUpiNGibOnsDV\n182k00PP9BitRhtZ7jA666NYVogkmhyd6ef6lW2u386RKQk0m03y+SZrS2nM7TwjfhWzx8321ev4\nxye4E5M59dzjyKoWY6eJozuE3mqlnssh6yzEYhWaqRi1jSW0rQpKtYh7eBjYvZGY3G5Q1fviwPhR\n0GjIexWRd6NQaCBJyodmd7wbWoMBz+goxe1tKgY/t9+6hKAR0Or1FHI1Ll/a4tlnBnA49HT6R6mr\netqCASmZxGCzUY7FdvOPajXk7mne/MqPQKvDP+QhmhdYLtgYD3gRbBX2PeahGd/ie99fIb6dxzsQ\nxmVROfvrpwmEXUiqFlGjUIyl6D92kG9e2MRm06E06mwu1dnZ6aUmdcjlalSrLcwGDSs3V+kJGQn1\n6RCqWZ59zMfN//4V2qUcBocDvcvLE1/4N9T1Bux+LxaPm7YhQDkaxdsdQLQ2SUYLdM0ewjxoxW9q\nktyOsxrTIG50kP0F7D0pHOEwAHNzadbXC/SNTBGsN2hlU5TzRdzhYTxjYx/3Kf6ZIQjv70uq1SS0\nWs2ua3K5idNp5ODBEBoNXLoUpdFo02rJlMsSsViFdltBp9vdoiyVWvzgB6sEg1a6uqwcOBDA77dy\n+XIMjUbDzZtJrl6N87nP7UMURcxmHRaLlsOHu6jV2oTDNo4c6WJjo8DSUpaF1BZesYhV48McDGKw\n28mvr2MLhxl45llqjn4uX4iiKB1kuUOlItHf78Jk0tLpQDJZJb6VprvTwOX3U0kkKGxsIGg0jH3q\nU0i1Grf/+q8RdQYSa9tYA0Gmfvt30Ot9LG668J7sxWk1U45GKe3soBFFbD/ld2Xo7cU7Pk7N5UJn\nNuMcGPgnA/Q+btzv2tpPy3m/+FPH/+0+j//Q8YMf/IA///M/f2jjP/3007z44ov/U5ARWVa5di3G\nlR/eJL26jSPgITAYxmYWEexORK1IrdZmfj5DX58TnclEYP9+vOPjtMpltEYjaZOJ9M1lPAcOU8zV\n2HxhCYPTjcHpwRLupS3Da69tYTBoqdXa7GwXkKpV3LYeAtPHkQUdQqfBoeEa2baZa8sSpz7/Scp1\naDdVAoM9lJsiYqXOzp0Vup7Zj8WoIbMZJ50oMv3UMwRmZlD0dpZv7/CJUR+5Rptv/M3V3Sa5oJvZ\nw2GcXicarZb59RqY7IgGA9V6m0ZNItTtIpvI0fJbyVWT+HsDuLufxWjScfL3DpPO1Onk1xHqU109\nXgAAIABJREFUeZoaiXomQzFb5ta2gNdnY/uVl6lVang9Fnq7dNTzeQxWK4WNDfQ2G4XNTXwTE4Q+\noh+BLEmokoTOYvm5CYzZrMNq1VOrtd/zvtttQq//aKqxjqruZhltbbFWKe6uCj1GZK2FVltFo7ax\nOGxsr6Sp5SosvD6Py23GKufRyA0C+/dT2N5GqjeJlQWsg6NYzFoEm4dcGb765bc5fiSAy2tjdLIL\n1erg9vU7GPRaOguLFDQCwcE+SkIXa3c3kVtNDp85SBkHHTnHsZN9jI17uPbjBaqVBhq9CbPLQS2X\nR68TMJqcmGxm+g8G6Qha1r/zLZRqgY7ezNZWCWUtj9b7AvrDTzPcZ8ZezxI4cYL03ByVRAJPwIFr\ncpqlnTbZWJJtDTQzZbZXYth9Lq5eTWAJ93IwHKbZlEmna6hqh1hBZOL0SVo7y7SqNToaLfGrV+k5\nceKB9wy9G6KoYWTETTZb37OCf0dtsrSURZIUxsd9PP/8Ar29Tubmkng8FpLJCkajllZL4fbtNO22\nQixW5sSJbtxuI4uLWc6fH0arFbhyJYYoalhbyxONlrFYdKiqSjpd49atJDqdhoMHQxw6FGRgwIUk\nKSiKSq3Swu9x4NdJvPxXf8fjv/kko5/8JKgqtnCYtn+Yb/z9/G5WlFXH/v0BVFXlwoVVOp0OOp3I\nwYNBzBYdpWKRZmmH7I3Le+aBmcVFcsvL2AIBYjfnqGYLVPNlAnfnaNq7mXziUbZf+D7Zt1+lWSgQ\nmp3FPz1NKRJBZzbvuiWLIq7BQXwTE9jCYZRm81emZ79seEfSe/LkyYc2h/Pnz/OlL33poa1kHyQS\niQo3394gs7ZNR1FQOgK5gkxxo0w0GccdcDI9HUQUBSRJ2XMxFHU6EAS233yTzbvrdKplnOEgrskT\nhBImJNGEIxwkmlboMuloNGQymRobq1ncdg31LhOBoJVMoogs6Dh8rA9du04lkadUVXhzI8e+U/tY\nXNigu9fNeqRBJZdGoxHweMzYzSpOg4l0osjKRgVFNiLnoxyb9VMXbNy4scnd9SZtVWDxdhSHzcCQ\noOX67QwmvUAotLsSq+QrpPNt7HY9Vn0bpZghvnKJ5J15+k8cpeEN4Ng/SzYv0XvgEJbJIwjtOu1W\niZIssn51DsO4i8TCCoJGQGm4CHUNYHY6ya2vY3K7qcTjJG/cIHb1Ku1mE9/4+IeWcjudDvm1NdLz\n88iNBmafj+CBAz/XikunE5mZCb6vZ2Rqyv+R/74riQTZxUUMdjt+uxfrTpP25iZ2iwat0YKIjNag\n585ygUaxTizZZHUxybFZHw6jgKWri+DMDLVsFt3NBti8+A+M8tqLd9lZjRMI2qhkdMy9PsfE/n+J\ntp5hf7dK1/5hFq8uc/DJI9y6lcRo0FAuVClkKkT//hq/9W8f5/qVHb77/Q18fhuTUwMEez309Dh5\n62IEd28PBqWKWs0zM+Vi+43X8Y8Oo2nXMVpNxFJtcrk6FrOWVi6DUCnw+g93OH/CgcmRpO/MGaR6\nnUi0xsXLcUrZGvW6wt1rGzz++AAnHlHJbkaxGGrUy7sPdp1OsyvpLTaxWHREr90gMreE1arHvt+P\nrBNJzs0x8PjjD/X+MjTkplRqcvdummpV4vDhEIGAjXS6htGoRavVMDLiwes1Uyo1SadrlEotjEYt\n8XiF6Wk/Kytl/H4LX/nKTc6c6ScYtJJIVHA4DJhMWjY3iyiKit9vxek08K1vLXP8eDeBgIVcbrcy\nZ7MZmJ/PcPFihGSyypFpF0GXnvpqBm+Xn4v/798TDNkw2a0IWi2hf/HvkOs1enp76O50sFp1zM2l\n6KgqkZ0CuXyLYrHJH37xCI6mho2XbtJqSMiVNBafD1GrpbS9jcXvp6O0EXV6VFWlls4g2row1tPc\neull1NQWnrExohcvsvXaa4x/+tPUczl07Tbho0fxjI2RvHWLzOIiiiRhcDgIHz78QKXbvyIj9xEP\nQ9L70xgfH6fT6bC8vMz4+PhDm8eDQD7foFGpod7bk/GHHLz4WgStCO22QqXcIra8zb/6N4eR0jFU\nd5B0tk4xXyfy+o/JrG5gbJcp7WwhaPXM/msfjpCPdFlAwkA6ncbtNmCx6Mjl6gQCZoyaNvFUg1S2\nxVquSLNYxixlCepLNEQ34wMmfrRSo1WtUq4qGC0tfvtz+1iZs+EwjTLgVnj1by/gCbl56tOn0IcH\nKMcSOMzduJwG1isaam0t9XINjcaATuywtV3C6bFQyZURTJBS2yhSi4E+G225jMmk4eCxPtylRXZi\n2zRKZdILi4z9i/0Uc1V6x3q4tpjnzZfuYLKamT0Spn/QTLtcRKroABW5IVFNtVGFIaRGg44sU9re\nJnb5MlKthiCKBKanKSUzTPza0+gt7w/wqsRiRN56a6/TX6pUaNdqDJ0796H+BaVIhPzaGkqrhaOv\nD9fg4G7+zbvQ1+fEatWTydTRaISfWU3TKBT25uT3C4R7XLsVHkGDRhSYOTqIxmblu8+/jlbs8Mjx\nWaRMlMCREdz6BrmFRQorKwSOn+KR3xgi+j/mKRQaxDdTNKpNxsaHiG1GqaSzZKJZrKU8a6+/jbae\n4+nf/S1SxQ7Xry7hdJqQW220HRVR1PL2W5sEgzayxTKpeIFaQ+HUI/24nHpmZ0OIYgiLXKQ7OIGh\nuE3yzh1sXheWYIhcardhUyNq0OlFHEMj3N1qsbXdYGxmEF2mhM68g9xqkVgpIKoCZqcNndnEMbcD\nc2WV/NoS0eUYgnYNjSqxf7YXezDA5KSPXK6BUZTJptKIWg1dYRvae34a9UyGdqPx0NKYFUXlzp0U\niUSFoSEX2WyDdLqOLO9WFkZGvGxuFkgkKsRiFQ4f7uLSpQhdXVbq9TYazW7Ozfx8mu5uO9evx7l9\nO8nIiIf19QI9PTb27w8Qj1dYWcnymc9MYjLpyGRqvPVWhCeeGERROgwPu9jZKRGPV0ilqnjtAi9/\n/Q1+67cPYdBpqdUqiHo9cqNBPpPGPTSIQ6wzOBZkLqLS3W2jWm0hyk2CbpFmUSDksRMKG6jFoyRu\nvolYyhGY3k9lawNRr0fQarGGQqCqaLUiRpNIo7kbe5CTZNRGHaFeQms0YnQ6Wfne99CIIumhIWzh\nMKJej8ntpp7NEr9+fa83rJ5OE3n7bUaeeeYDr+37gV+RkfuIh9kv8g4EQdiT+P6ykxGLRY/WYNjN\nRFFVBFFLo9agq8dNPlullc9icJqRqlUSy3kW0wkEq5P0VoLIq/MEnBpK0QiNYhWrVc/aK68xfvwx\nHBUdqwmJ4WE3hw+HkRotXnmlTaNpoFqq0N/toNloQ7OOySjQrlQQvdCJrpC9FePR432o1Pj3XzxB\nta6STRY4/egQ5nqcF//q69TrEr1WIy6XgcjFl8gvLqJOTqIfH6LRMlPMllHbEm21g91pRe2oqB0B\nk1ah3VKwGYz4HQJHjo5yqiThsGlx6VskXklh9nrps9vxjI7iHR1FsjpZWC7y49eimEQL8Y0cgtFM\nGz2+bh+C1YnD56EQT9I/PYwn6EJrMGDv7SW/vo5Uq0GnQ1uGQrpEYTGO6h+ie2rkfYmipWh076H/\nDt5xNdV9wIqruLPD1o9/vCtDZJeYtMpluj9Amu7xmPeaiD8KJEkmkahSKDTRyib0viBSNoWSi3N0\nX4jcoBPRG8bjtaDTKNy+m6PQ0NJp1fnOd5Z4/NcOgFbP2uIm6UQdg0FLrnWdiSctfPIT/SytV6g8\nNozVpKEQTZKJ5TAa9YS7HWRXIxx/dIx8oU4iXiWZk3C5zbTrDcp1lVBPCIfdgCq1MOvhsbOD5HMN\nPD4r+XSRjtTk5MkeSoUq7o5Ke/MO2bmroCisvvIGj/yH36NebVKqrGDo99I7ewDT2EFu/PUaFoue\nufkMFsyUFi5QqbR4+3KM3hPHubkmcOV6hj/61/0k3ryDy6IwPOanUJbpFFJkF+bRGvQMDLgwGETi\n0SLaHi+iV8Tt/gmZ1JnNaH/K8E5VFJqlElqD4b4/zN7pzRAEAadToFxuEY9XGBvzMjjoJJGoMD+f\nZmurRK0mUa1KPPPMMG63iVpNIpWqkUrV+MIXDnHpUpTeXicHDgRwOAzU6236+1202yqnTvWyvJzj\nzp00n/3sFI8/PoAkKUQiZQwGDWNjbpaWslSrEmaTiNusUDTqiWyk2DcSxusxUL57jdyd2+itZkIn\nHmHt9Yuc/o3nGJ/ZdWHtaI2U40kWl3N4XXosRhASy6gJP3IuhdVpJ7+6wtBjj5JZWqKRyzH+qU8R\nu3IFayiEUZIIzBzC7PeiF/S4urvwjw1RicepxOOIul3VVLvRYPv11zG5XHs+Me8QkXfQKhZp5PO/\nIiP/3PFOSu+f/dmfPeypcP78eb785S/zh3/4hw97KvcVXV1WBifC1LIZaskUAh2CfiO9ISMBjx6p\nZkDfaaHvNCg1DcRWtlFcKn67nsGwHiWXwu41UdJpEKRdD4BadIeDJw8THrWjSBK1rUWKW5scdenw\njQ0huIf51nfWScZLeM0aAg5wCUW2XrmM3mLmiacP8+YPFxg9th+/voKYyeBxiaCxIXv6+ez/+b8j\nSlUsDgs6uUr86hWMbg8aRaJY6ZDJ5ugd7UKj07NyN4o94ObQ8UEiOwWsJgGd0YKxmaW+tIYukGTY\na0cqKhQqMvbDZ6l1Hcbp0OP36NE7XWyULMwvJlicTzE44IBGlfhKBL+pzpnzsyzejdP3yClGlQpi\nKU7y8kUsXd1kN7aw+7z4DswQv34T59Q+Uptx0Okolppsv7XD+fPD6DQqCML7Hk7vwYeU83PLy3tE\nBIBOh8L6Ot6xMYw/hxpMlhUuX46xspJDUTqochuXxsikP4BSKUA5S18oRO/pAa5djfE3/88bPPbM\nfhw+F4WclkfPzXD2mSlSi8uo7h7kdIPYRha5XkUqfAvzzEn2DfUTsozw0jfeIh9L0TcS5PBj+3AJ\nRcShPqy2FJ7x02SNbix+Aa3ZwsJyHlu5SrVQ5uDMKF6/hZuXt/n/2HuvIEnu+87zU5nlvfdd1d7O\n9HT3eI+ZwWBIDEASAkiKkERK1F5QsXtxoVhdSKd7udi4h4t72FjFRUgrKk6hoKSTyAUIkoIjMBgM\n3Hg/3dPed1eX9zbL3kMBQw5AOAEgIAW/T52Z1dm/yMyu/zd/5vttJTexKvXk4hLrhTgXVyK4B/p5\n7BvbKdyZo1GrYOnuolnIkEvlmb0+h2XPMR5+9FGKlSbZpo7nfnoXu7zMg6fGqNWbXH/hTUa6VMRS\nNRxeKzPTMVbniuwZC6Ipx1i/cYeIvIXTqqLrwC68vQHW33qL+NQUnn37ycqd5Ap1jCMTZBbnqcry\nqKgiV6txjIzcN9pbiMUIX7tGOZVCUCiwDwzgGBlpl0M/ZSwtpXjuuXmuX287RAeDZvbt8/Ozn80S\nibRLLBsbWZxOHbVak3q93edx7VqIJ54YJpEo4vUaCARM5PMSx451YTKp6O42k89X2djIcfVqiFAo\nz+nTffzZnx0km60QjxfZu9fHpUubzMwkGBy0oVCIDAy0FWCdDg1CMURXj40jj+zCIyapppr0bP86\nPPkN8tE4uXwNe0836eUVbr0xjVyhoO/AGFaXGX20hpTP4jDI0asrrP/8X6gmY6gHuzA4HUiFQrvR\nNBjENTGBweul68QJ6pJEOR5HY7ejd7vZOH8emSAgiiL+AwdIzs9jDgapv53tVJvN7ReGXzHVJBPF\nX6sk/G/IyGeEK1eu4Pf78b3dkf554sSJE3z3u9+lUqmgVn88cah/S9BqlTxwrJuuLjOR9ThOR9tC\nO56sEJ+eRiiWMDpNuKxyovESrWYTi1lJK7VGqwUb00u4LCJmtxNrIIh/716qhTw6i4mFC2lKi5Nk\n19fx+kyo5DVayS3kCgGTUUmz2sKmqXLrqZ/hOh5AioTJSRU0Bi0nH+yiJmV47f95mUxWwh7woPV1\nsl53Ick0DAw5OLxPyeI/P4V/ZJhyS8nqhcvIdVmuntlg7OgOdn1rF+nkMFaXCYfXyrPP3KGsrKKR\nVUhcuc7o4R6m/+779Dx4gt5HvsrajShv/eANBFFEUGvo3jOGwVgmHEnQ1W3l9RdvEwvD8HA33UEd\ngz16OjptOAxNysUqRp2LtZcXaLm7uDOfQVYz0EgX6dxzAHP/COHFDSKTsww/fJJiU0toNcb8pTLV\nmUsoDQZco6OYAoH3EAydw4H2fcaCa++yMgdo1us0arVf8emPjkikyOJiikaj/YUryBWkqgZa7g60\nqmUEpRJrXx/lmsCZV9dYW01z/uVbHDoURGvSotRqeOrHcyxfuoZCaHH4gV5G3BZCFy+i0QSwIjF9\nY5lgwMiJRyfIlVo4vWYszSTJG5cI37lLvZCjEA7T7D/A+dkWOouZng4t+YKSriNBhjoEwuEMOnmV\nhevT9O2fwBt0UoiESSxvsP/kOH//g1s8+Ug3Ji1UCwXkAmiSWRQWG5EbVykYtbjGJojOLtBlKmMf\ntrF67lUmjo/TcttoKRqUQ4u4x8cplk3s0uro6dOyObdGYDBAbGEJk9WKxapj4cwr6LwdpJMFsvk3\naDm6mCm6WVrO4DBq2D7gZPc2IyaPE4PnFx4pdUkidOkShUjk3r6t69dR6vX3prI+LUhSndu32+qp\noiij0WixtpbB4dBw8mQ31WoDh0NLLlchl5NwOLQsLaVRKkVEUeSVV1a4eTPMd787zrlzq9y5E0Gp\nlLN7t5dise11k0yWcDp1GI1qpqZiyOUCp0/3cfNmBK/XyeOPD7N9uwuNRo5KJdwT4YvGJfTVBmPb\nzOiyy7z5N/8dWTmPXK2k59Qp/AcOokJDtZBl+uWLRCMlDGYdokJOj0+F3eIjF9PQ022iOpfmztVl\ntPImmeVFKknTPbl2Ua1m7qc/pVGpUIzHsXR1oXO5KKdSbJw/T3ZtjUajgVyrJR8Oc+jP/5z5554j\nHwqhNBjw79uHlMth6emhks1SK/5iZN7g9aL9lEd7Pwi/ISOfEb4IJZp3YLFY2LZtG2+++SYnT578\nvMP5TKHXKxnZ5mZkmxuAQH+FubkkM0IFVSNPb6cBkpuYjV4aoopej8jP/vkCnSNB9v6n71Eu1qjU\nRQzbekg1ZagsSmoqE157nlpWRr0p485Lz5NP5hjb38PgyQd44rHjTE1FKM5NQq2KpcODeTjA6muv\nkZydJXBgPzMvvkIhV8bstJNKVbj42ktMPH6a6ekyucVpTNqj2HUa1l5/nc6Hv4LW7qDVqmI1ynnp\n78/wwFd30+GQM387StqqYt9AD3JDF+nFRTS2fnLXXoOaRCESJpWusBwq07V3Ao1exdpmmZ/+eIrj\nxztZvr3IztOHGBoL0KhIPHKyg0pZYmE6QibfZGQsgF0j0cimEY027txNs7KSoV6rs65o4NhrQBIa\n1MoVhk49gHX3YW5MpYhPTxOVqSlcu4BcraYQidDz0EMEjx4lNjlJrVRC53TiGh1F/j6E2NzZ2RZn\n+iWorVbUFssneiZKpdp9UtoA1WKRrcUCHpLUKxWKkQjG4QkaLRk6p4vFpSi1co0vP3mIv/rrG+j1\nKqxuOyu35zl7ZoE/+M44ldoF3MODFMJR5OhJxUElq6OtFBCTaWx9bqKxKCavi0IUZDoTd9+8zeHH\nv8bthSKh9QQDI27Gxz2snnkRi9/NE09OsDRsxqCTYXcpWbNYCM+bqUkS+wbl1NfnWHrzDYRaGYvL\ngn14G5GshLpZIbWWIn73Lgq9gc1ra2RtJgLHTrK0XiRbNZMK53AP70Rj0OAoRaknE6gsLlxeCwrv\nIeTUsXfZiC6uIeiMLK/mkOrQKTexMXMH1YiedLpCJgPxHAzsGsTvub8ZuZxKUUom79vXajTIrK9/\nbDJSrdaJRosUizWMRhUulw5RFO67r+VyDYNBhdutJxIp0Gi0WF5O43BocTp1FApVfD4j6+sb2O06\nJKmB3a7FZtMwPR2jq8vClStbvPLKMgaDkkymPdb76KP97Njh4rHHhjh/fo1CoYrLpWPHDifLy2l6\ne61oNHJEUaBUqpJMljEalRSLVR5/fIibN8P0d/Wyu09g5u//BrnYQtBp0NlsrJ0/j7Grh6ajk9xG\nmKXNEtW6jH3Hh4nPz6OS1WiGtrDrNcy/sYjFaWb45BHmnvkxCpXinj9UfHYWSzBIan4ec1cXgiCw\n+vrrOIaGsA8NEZ+bQ2ux0CwUEORyCpEItXKZ/kcead+jZpNSMolMJsPgdmPq6CAxN4eUzWLq6MDa\n14f4axSz+w0Z+Yzwwgsv/Fpdej8MDz/8MC+88MK/ezLybphMavbs8TE2bCI6OUlqaQkAp0PDngc7\nEQpJAn4dKqOBt66maSj1hNbjVM5EmDjYj9OlI3ktRSlbYFBT5/JPz2LWi6AXiS2uQ+U5dvaN0tdv\np6Zwos30oZK3uPkP/0CzKkGzSXJuHqQS7m4flWqL+HKESqGElM/R1e2hmUsQXo2y65vfZfXuGpOR\nIoYdD+F3KDndm8b84g22VuPUVP0M7OuhUcwyt1ZGV1zCo8xSmbuOXK1C1OlJLy3jrjbwebQoymnW\nbyyibSn48uEA5VIBk6xIbivKt35/N4Z6hs3FEBfOTCEr54jOGQmvxXjom0cY3NXL1vIW0egmjUYT\nmSBQE5WsJOXITX3s/497CedEplbyZDa3MGtaiLl2qrxeqZBdXyc5P8/AV7+Kye+nUat9qOmWrb8f\nKZcjs7pKq9lEY7W23/4+4ReiwaBELheQpDqiKNBqtShFIxh73DQy7Z6WerlMYnqK4YF+1tfzyFVK\nctUCoY0sUqkC+QRanRL/QJBSOoNgMHHsj56knMkhS0bRFVaxKJzYJ/bSrJnRyBuk8y2StnGK5Sb+\nQwfQChI9pipzcwleeTWCnDrVcgUjOSxNCVkpT/LqW0SvLaLs97I5l8c30Mu3vr2TltVDbvIak88+\nR2wtTEtQYDGGySUy6Ed2EQ2lMNrNyGkSD8UxqJo4gx7C6RaL86v4h3tYvbXEus3GwfE62dkp8mUN\n02+F0CjBNbGHwS89iMVpJHRjkmQ0TTaTQOd0kMlIlIo1tG/zgFarTQSi0QLDw/eTEZkgIBOEd9+C\nj12ikaQ6Fy9usrycpl5vYrNp6Ooy09nZlliXyWTodL8Y835nf7lco7fXSkeHiUSihF6vxG7XYrX2\nMzMTx+PRc/hwgNnZOEajmsOHA7zxxtrbfjUZVCo5lUqdy5dDnDrVy1//9VWWljJ4vXoEQc/8fJru\nbjNra2laLXjppbYAnyjKcLv1HDwYYGkphUIuo6NDT2VzkvDVa+3RXZeT2N272AYHaNRquIJ+slsx\nIutxjjy6h9i1KxSaKpZv36CQSGNzmtDZLOTCUbxH99Kxfz8yUWTo8cepVyrUJYlms4kpGKSUSDDz\n058iyGRUUimUBgMak4lWo0EpkbiXqeo6dgxLTw+phQWy6+uojEYCBw9i8HoR5PL7sly/bvyGjHwG\nCIVCrKysfK4jve/G6dOn+eY3v/mFIki/Tij1evx797bfzlotNFYrQUEkuqykub+PZMvC4uoquZKM\nxGYUjaeDy5e3ePRrQ5x/fRZvwMZoAOrFIvm6iMWkRKMWaMrk1NJR3rixxviQEXeni61r15FKEmqt\nCr3NgsqgRyYDn1vDxlYRuayFUq2iY7iH8nyCUEoiUG/yzA9vMj2dwN3lZfXVKaxWLcdPdHPsyYew\n2HSsbFZ44V+mWJ0L4w+Y2b/dQ2UrRrVUJLcZgkaDjkOHsTj0iLdnmTl/g0pNxvrcJkbbFF/5k+/w\no5deRuV0MzJwkMr8GteWQygbRVApqKRShC5f4ZrdgPexYTzD/ejeWiefl1BpVfTtG2M1q6bXqUPj\n9pKPRtGqBAYGHThpkrp04971rlcqNOt1aLUQ5PKPJBeu0GgIHDqEY2iIZqOB2mJ5T+9JLlehWm1i\nNqvuU6h8P7RaLSSpjkolcudOFK1WQYdPR/+gHYOsQLX5i4yJUmgw0GNgY8vG5maBRl2DL2jDbpKT\njjRIlksgKFHpnViDHSjlUJ++RosaiUwOa8BH9NJ5NCYdkTLciWiZPfsmlUwWUank+LcfQWv3Eb6d\nxePWYxGLrF24jDzpYv+ElfWfPEPP8QdQ2Z28dnYRpdDAHZI4/h+eQNYokc4lSa6sojaYSacr5OUy\n/AoRg0GFbt9OmqIKpBJXzv4zap0SW38fC5MpjFYjMkGGf3w7pUyBZL6Fvb+P7GISi8eIvBAh6NcQ\nWYlSzFVwjI6x/Ozr6N1ulFotMpkMT08HoVybZMhk4HBosVjUv7jGuRyCKKK12zH6fKSXl+9dV1Gl\nwtLV9aH36pcRCuVZXEzRbLZwOLTEYkUuXw7R02NhYMDOxIQHo1HF+Hh7zDufr2KzabDZbAwP27l5\nM0Kt1iQcLlCrNXG7dRw6FMBq1ZJOVwgGzVy8eJdGoz2+nEiU8PuNZLMVmk2R/n4bqVSZbFbCatWQ\nzVaZmopSLjcwGpVks1U2N3M0Gi3UahGTQUkyWeaHP5zi8EE/87MxymsLnD7mod6UkZpfoJyIY+vu\nolmt4h4eQshHCIz0curxPbjcBmYuzeI88ADhagOZIJIMJ7AF/aQ3NiknEwQfeIBKJgOtFgvPP09y\nfh5bfz+mQIDAwYPYBwcpxePIBIHs+jrlVIpCJIKoVGIKBqmV2qXpUiyGY2gIx9BQu6dnaOhzl/OH\n35CRzwQvvPACp06dQv4FuMHvYGxsjEKhwMLCAn19fZ93OJ8LZILwHo0Ld7cfoTJB5PwGRreTRrpC\nZ68LmVIglanSajSpSzVEAWRWL56BLorRKJ5OJwajhnxVoC7VGRh0E85VmNg1gbQ+j95iRKnToHe7\nyayt4x4bI7URpjNoxuIwUVLaKEqQjJcIrcd5NLifH/y3F8iWIF+RoaLC8o11+oNaJJcBqd5idT6O\nTK6g1FSyGpb40ldH6d9uotBtQxAE9D4vcrWGZjJCIGihJe5l7voiHUMKDKoGucVZHH5Twd0uAAAg\nAElEQVQn3f1OxHyU+MoGlUKZJgKNWpNEKIHRakAqFMnG06jdXTz8J99lYyFEMl1jLSnQQqC/30ZH\nhwmv10ilUiUzfYfIzeX7ekMUOh22/v73jOV+6D2SyX6lgFat1uDOnSjz80nq9SZWq4Zdu7y4XPoP\nPN/aWpZz51bR6ZQcPRqkUqnT2WnCKxNJ3Ln5zh9FY7Wi0OlQNJI8dsxKngB6owaDGhYPdPDi0xGy\n4RQGq4EjX9qFLB9jMtTi1OEJ1pEQzTZEtRKp1kQ0u0g3BHKZCBqbnapUpVZtsLUWo7e7n0IhiVpo\nUCtksbtNFFJZ9K5BGlYr67dmKTmH2AgVCPgNrK8kWNso0Ntvxze2jfzGAQrhMBpNEZVGjtQQaZo9\n6HxBrv7op/QM+Bh68BCV2Bb2gAdxbo1kosDc1RmCnRbsXQHqciXxWIxWvUa2AB2+TpyDg5i7e2hV\nytRVBvY++RgLF25RrVTpGAqg6d7Gyqvhtxd8Ld3dFjo6TFSyWcI3blAIh5EJApaeHty7dqE2m8ms\nraHU6bAPDn5svYp0ukyz2UKrbWucvPXWOvV6E4VCIJOp0Gg0OX68i0DAjMGgIpEoIYoCDoeWt95a\nZ3Y2weJiitu3o3g8erq7Lfh8Rg4fDvD666sUiwJKpYjRqGTXLi8Oh46trTyzs3HUajnj4y7S6RI9\nPVbOnl2hWm1gNKrI5yVsNi379/u4fHmLDq+WpdkMTalOaDWD0WpAr1fSG1BhaRaQyhV2fud3yIdC\nhG9cR9Ro6Pvyl1EYjJRKVWqZJO7de9HWMlh7e7C4rZjddhbeWkZvMSJTqejaPYZv924QBKRslo0L\nF4jeuYPe5UImisSnp6lXq2jsdjRWK0q9nuVXXmHbN79JfHaW1Nwcnp07sfX1sXXtGmqTiVKiLV1v\n8Pk+UXP4O6jXGzQarY+kgPx++OKslv+O8Pzzz/P1r3/98w7jPshksnulmn9PUzX5SITcxgatZhOj\nz4fB5/tQ8aVyOk0mXaZYlaEx6HD0DdKdlXPl5R+TiqRYmw8jarSMnjyA26HCZ6phFIpEC1aCRx8g\nszCD1iAjHU2i6+knr/Vx9UIUQQZWl43eR79GvVggsbxKQ8wQr6gJ+LZhODBGORFn3G8mlZZYj9QY\n2O5n25CFerFAPieB2kg+W6JzVzfRRJWF5QyrW2X2G80UsgVGRz0MDzuoV2tIpTKrdQ3+3lEUpQRS\nNsfW5Ss0FFpunb2KZ/sIo/v6Sa6FUAp1zC4bx785gFnIs/zCszT0DtwuLWvTKzSbLZotAUFvxj/Q\nwY2rW4QTK1gHh9Hr7bj6lOi9dRwOLX19NmQyGXK5DL1eTdPno5LJ0Go2SS8tIddq6Tp2DOfIyAfe\nh4+DlZUMN29GaDbbTaihUJ5GI8SpUz0f+AW4uJiiVmuSybRNx0RRxvJymu6DXrRbG5SSSbQ2G8mV\ndRLRDPEcqJRyth3aTlMnJ16pstOSx/6NPsKpBjazCp8hS2Q+itHsYe75nzP92jVsgwPYHXoknZtQ\nREEiXSNTqKOwOAj29FKv1qnpzTjcFnQmHfpmHVGuQKaxoDHpqdaa1DVmCrEERWUJgRZKjZKenaMU\n0PPimQ3U9QyuwXFKVQGhukUqW8JzZDuC2c3F63HGHz6BmNzA87WTWJ0mKpUmtmCDjdA8Uh2yxSYd\ndhtma4tr59bw2JQopBoOj49SLMztN6fwuLTEEyXMHR30nXqQfKFOR5+HjoAZo8tOKJTDbFbT12fD\natWweu4SqcXFe9c7cusWcrUa765duMfH22Wbf4UYmsmkRiYDrVbOjRtxyuU6mUwFi0XN5maOUqnG\n0JAdr9eIxaJ5230XNjez3LoVob/fRjRaoKfHQq3WIBAw0tNjRaEQOHIkyPR0nG99axvLy2lef30V\naJfz/vN/3o/RqOLGjTB9fVZyOQlJqiMIMnw+PUqlmY2NLDIZGPUKXptcp1hqELAb0WgK7Byz47Qq\n6NBrSV2+zJ2nN7EJaVR6Hf2nH8YQ6ERhdzN9dZ5KKsHY8Z2QkcgXakg6J8n1LXr3bENZzVAvFdHI\narSktk6R1m7HNjREJZPBvWPHvd6r6OoqdUnCu2sXsTt3sA8Oonc6aTYayJVK7ENDaB0ORLUajdWK\nXKNBodOhczrxTEx8ojJovd5kfj7J3FyCer1JIGBi2zYnOt0HTNO9D35DRj5lVCoVXn31Vf72b//2\n8w7lPXj44Yf5/ve//++GjGTW1lh74w3q5TLQtoX3HziAvb//V36+1WoRn5lheSHOzGwSvaqF3qCm\nc8iPCYnuLiOVZAKrTYfKoGffLifa7ApuTYmNm+usXRf5yncfZGK0F8oZVHKQRC3X724hFWsUYnFe\njiT4ym9tx7tvP6JOT0Z0kK3pmNxSsHBpGbFZ46GTemxWI8O7TGiXU5z50RvUWgKO7g4W5xOI5hbh\nWJGRsQCHdttYX8+ysZ5heGcvN69vcOapC1jsRh77vT34lTnO/39n2H1ijKmfvEC9JeLePoyo1nL7\nlcsc+QM/a/Ob+P1GrD4H6y8+S1Eqou8IsjqfZvDgGCrdbhbuhui02Oka7aFeKXP97DWc20cBGel0\nhd5eG16vHqtVc5+bK4DR57uXCWnUaqjNZvSfsq/F2lrmHhF5B8lkiVSqjMfz/u6ijUbzXdtt/w+Z\n1kTPqVMU43EK0TiT5+8SidcoptIU43E270zzlf/1O5RTEeaf+QlSuYLe5GR5q8Bmo8KB//l75Go1\nlE4fGVuFWxcjHHtyFxdfm2X30W10jxiJJiS8pjpWTZ1quY65187W7ApWs4Lbr97GatUx2G/l+MlB\npPgW9Qf2o9KquXQpRPewH4PdgrxzG0//ZI5OnxavXU9Mbse808yODi35CpyfqpB/I84Dx3twdJox\niB1k1lZ5/m+eJTI5hXfPfob6Lfi6XVBv0NnrwmuucfBID6tXbyO32dG6fWxev0n/oA+z04q/v0V0\nPYpJIdG1tx+NRsHqaoZyucbAgA2Px4BOp6ScTpMPh++/4G+PYzu3bftEY6E+n4HOTjP5vIQgCGSz\nFRwOLY1Gi0ajRaHQ9pTxeu+XLS+Xa8jlAteuhchmJfbu9eN26yiX66TTFV5/fRW9XoXXq6daFZmZ\nSdwrtSiVclZXM/T0WOjrs+LxGDh6NIhKJadaraNUylGr5bz22ioDA3ZsRpG+ASfnnruJQqwzMuxh\nfNTFxnKEk/vN+JXbMZp2k5yd4c4//YhCLMXR//J/sLKUJLMVwePWUy0UCZ8/j2TwUdfakZOFVpXg\nwQMIcjnVQoF6Lo2UyaAym9G73VQyGSI3b4JM1v5fc7sxer3INRpazSaJhQU6jxyh2WiQXl6mFIuh\nd7nQWq10HDiAd/duaDZRGY2/sr/n42BpKcXFixv3JtXS6QqSVOfw4eDHJqG/ISOfMl577TVGR0ex\nfYqupp8WTp48ye///u9TKBTQ6z84vf1FQa3WYHMzRyxWRK9X0tFhwmhU0Wo278mMv4NGtUp8agpz\nMPgrywPFWIzY8gZz8yU0lTiL565CvUZ5rBu7U89Yjx6fOUgTOQabCSE/R6vRYM+Agt0H95JMFnGb\nWnj6gyz8yy0i0SiZmpZkqMT2fTt5YblFPprln384zR/+wSH6xg/xxlubzM7kmXkphFanYf9BP9fu\n5MimI5SkJgcPBcHsYmszw85dHehsVuqiloEuPT26FKtnX2FrK4vD76RqOYg/YGH/g9u5OxXDIG/w\n1jNv4nKYyJVhYyVGU64mJS0S3DaAw6pElosxPOqje+8E2UIT+0AfsmaDrZUIky+9hZwqu07tYWTb\nODpvgPBGghefvoYgiPdk3hUKkVxOYs+e9x9T15jNaD5iureSy0Grhdpk+sjPgUr13oWt7Wz63i/T\nXE5ifj5JOJxHpRIpFCT0+l88Dw6HDqtVg1wuotTpiK6GiSQk9HolapmOeiZBLpYgsRHBpFOh9XXg\ndVrJbm4hNmsYHF5cfhsutYYzzyVYno8yvr+XSrmG1WUh11Azd3WLEw/1c+epn3Jlch5/pwOxEEPX\nNYAoiZz88jD9E73oChss/svTLNxaxtrhY/zrj9J/4gjqnhRXbyXRFGRIlTrFUpXkZp5rm2XqTZg4\nNEginGYjXMFo1hDayJFKltjWKSd84w7NFvj6/EiRFZwuNwdPHUFlNDI9GSHaVKM22QgcOojUVCAq\n1cilPJtnf07GbkPv8eCfmMCgqmM0qjh3bpVQKH/v+gUCJo4eDb5vs6rsU9Cm0GgUHDoUIBotYjSq\nyeUqlMsNisUqMhn09FgIhXKMjrruy4xFo0XW1jJ0dVkQRZF0uszu3V4WFpI89dQ02Wxb1v7hh/sQ\nhDrJZJlwuO1RY7GoSSSKVCoN1tYyHDzYQW+vlbm5BF1dbi5dCrGwkMRub/vaTF2N8fCXuvjOH+6h\nUpTo3uYnk6tzaLuKlWf+iejtW2i1CjqPHObwn/4JGzcnSWwmePEvfoDJZkY2aEIsJXF2d1BXGYln\nm1i39SMkVlk4+zrxuXmoSujUoHe7qUsSM08/jW1wkOTcHNVCgWIsRvDIEby7d1OIRLD29qI0GKhL\nEvlQCFMwiG1gAN++fZj8fkydnZ+qUu7CQvIeEXkHGxu5t7NYH9yw/m78hox8ynjuued45JFHPu8w\nfiUMBgN79uzh7NmzfPWrX/28w/lQNJstrl3bYno6fu+BdzqTPPBAF3qN7L6Z+HdQr1SoVyq/koxI\n2SylqgydssnmpUlsBoFavkIptEqmqMM3Pkp58iJ1ScLz0ENEVpZo1BrounrJJGNk51ZoukTW3loF\nuQK9P8jm3S0UcqiGNzhwaJgXnrlJbAumrq/i7PZy/lqK828so9YoMTlViCotc/NpbCY1KlWNlZlN\ndh3spVisI7TqfOfUBEqVAml9gTd/dBOdRqSSzbORL+B269H1jjG8I0Cj0SC0EiG8nqBeM6E0ZxH1\nZoRaFVldYnExidNqQ9M5SGwlzsbMCtuO7yNNgaZUZev1u1i8LnRCmalnnsV/YD+1phyjrxtXfxKZ\nSovul3o3tNpPLlhVLZWI3LpFdm0NaGdUPBMTH+l3u7utrK5m37Z1b6Ojw/geFdZqtc6FC+usr+eA\ntoGe06mnWq2jUslxOnXs3Om5r/lV63DQuW8XszMxBIea0WMPU4hFabn8aCygts6yOb9G774xXC1Y\nuz3Dxp0ZnNtHiIbSHP/KBKnpO0RzFWSCjkvnZjA6LITuziOIMnY/MIJGKbCykaMan0YRHGL22gpW\nh474+gIVuRV9t4KteJHc/3iN/b/3GDqThq8dt2HW1/A84mD6bgxBa0ZbVpMvQ6PeYCNU4Ob1TXbs\n6ebO3RgKuUiP3cb01Tk6er0kUkaWZ1bJX9ugWBUJHjuGYHEQDodpLW9Bo47eYkIm5UlO3qJZr6NQ\nq6gtL4NMhnt0lHC4wNZW/r5rvLmZIxot0NlpwRQMEp+aundMJorYBgY+FZ8ajUZBZ6f57RFd6e2m\nVDUul55CocbCQgqvN0p/v7UtrV9vEokUGBlxcvbsMpLUIJ+volK1DTKLxSqHDwcoFtvu181m656d\ngEajQKdT0NtrJRg0cenSBlevblGptDMiiUSZ69e3UKvljIw4mZ6Og6hgYSZMPRUlthEnX9zP17+1\ng7WnnyW/OEthZZGSKJBd3+DI//7nOIYHSURS7PnSXlQKGS6Hmo0bd7ANDGBx2/CKKXKLBerxDbRG\nPbagD61WhUDb2NHg8TA5O0vk1i36Tp8G2tlelcHQHqePRmlIEs7RUQxeL0avF2Qy7MPDuHfs+Ezk\n+t+drWzH1I7r4+KzJiP/DdgJ3OB+B98/A74MaID/ArzwGcfxa0Gz2eQnP/kJr7zyyucdyvvinb6R\nfwtkJJEosrCQuo95x2Il1tczjI660TmdVNLp+37nnQaud6NardMS5SiEJnqNiFaQiM/MIpXKlB1W\naiYR745tOLdvRyaTsfrGGzSrVaR8nsU7S/gOHaVvrIfQhQukV1aolCRUdgfW0d3cevYmqxsljv3h\nOHK5iEEjQ2vWI6tVeeRUgGSqzOpmmZaoIJaoEOi0o2oUSM4tEd+oQk3iS799iCvnl3n6H69i8Vix\npafRahUUskUSqQoarRIqBWy6OnK7jhd/nCCfkLPv8AjpzTCLs2H6Dx8geusmGquFu7NpBnbv59yZ\nOSrpFIf2e8nM3UXr7UBudbJHZyY3fRukPBlRzcbsGuYyOFyd9O4cYnV+i2qhgFKvR6dT0N39ybQ+\nAOJ37963cCVmZ5F9xHq132/kgQeCzM0lKRSqdHaa6e+3IQj3L3rxeImtrcK97VSqjE6nYOdOL8Gg\nGaNRhSDIqJXbCrsKtZpcU8eZC0lW7qyA3sYPn5rlt797EEupxk/+7hk8TiW1ksTkT54jeHA//sNH\nufA/XmaPRk/Xth4Kc9eIzK0weHqAFFYyMytYHAY2FjZZmUoALXweLUaThrWVDA886Mfqc2E0ybl0\nN8Lc3S1kMhlDQ3aKsQiJxWUsKoHom2fIatVEKnrEYouuEydo1OrUSmW2dwoMBwPs3+tF57Dzyqtr\n7Byzki21CPT5aDZbFHIVLB4bVp+D4K4dXJ3KsXenl1xCh6C1UI5HCHrMFDdWMHZ0tBVTRRGZINCs\n1xEUCorp2nvEOZvNFuVymxR6xsdRaDSkl5cRFQps/f335MU/LWi1CoaH20aI0WiRyckojUaL48e7\nmJqKkc1WOH68Pa1jNmu4dStCsVhFqZQTCuWQyWTEYgX27vVx+3aUGzfCjI25efDBbjQaOWq1SH+/\nncuXNykWq6ysZNBoFBgMSkKhPLdvR9m928ujj/bz7LPzbGxk0euVSGUFex8Y5NqLWboHPew90ou6\nUaC0sUytWESp11OIx2nWaoRv3mbnH32PyD/+hKUzr+F0aAhnknjHx3EO9LJ8+Tbx1RDB3TtoinJE\nuYDJaacQ2qCazaA0GNi6fIUd3/42S2dfJTI1g72/h3q5jLmzE7lWS+DAAfQeT1vtVqmkViwiqlTo\nHI6P3Uj+UdHbayMWK91HSrxew8fOisBnS0YmAB1wBPgrYBdw7e1j/xX4v98+/hL/TsjIpUuXsFgs\nDA0Nfd6hvC9Onz79b8bFV5IaSFL9PfszmfbUhnP7dqRslmI8TqvZRGuz4R4bu69WXas1mJlJsLCQ\nxGIU0TfAFXCwVikhFcuICgWCKEdtNLTHf/fvJ3L7Ns1GAymbZevmbZJbcdyFDK1YGVGjQeewE729\nRCu5gsnnZ2hHkGwZltbLPPDlEXxWGbGrb9GyaqhU6jz5UDfzmSDTs3GOHvYzd2WWQnwLT8BBoyVi\ntGgRRZHXzi4QW4/Tu6Mbi1NJLithMeuwWIrYbWqWltL0nbYhSSUCPj1f+cYEdlWJ1fMXufLqJLmC\njvHv/A4thQZbNItep8S6GEVjtSGTK6gjsLWRoDW9gMdrRrF9mGw4iVKTI7u8jFDOoKrmCFoUeHa7\nWFmM4/ZZ2baz7WD6SVCXJDKrq+/Zn1tf/8jnCATMBAIfXApq9xTc3ydSLNYolWqYzWpq5TLR+UU2\nNrOEQgWCI51cncyTbZkI7p5gbiaGwd/BzGqZTnuTza0CgsKM1tqBVKkzc22R3Z09WPUyZJkwHf5t\nTF4vUpGaTJ99i32/8zh7D/UQipRwdQeILGxQKtVQ6zRUKjX2Hu5DbdCj0tUoVGs0miAT5RQLFZbm\n4wz3m3B6Lcy89CqRW1NUKxLbv/Yo6VQZv7mKzFFlcNcA1USMteuT9Jh0pDf1PHykH4NVx8bSOvsP\n7mDlwmWya2vUkTNwcIx4RcX5F66hl1UY6jdjHdiDtDaHz2+kmqhTs9sx9/RSK0vIRdDY7bSabX0P\nhUK4TzROpRLvjfUqNBo84+P3SPxnJR/e19cWGTt3bpXhYQdud9vk7p1sSDpdxm7X4XbrSKUqiGJ7\n6sZkUpNMlrFYNG2fnjtRQEa5XKNQqLJnjw+XS8eNG2HkcpFmE2Znk4RCObZvd9Lfb6NabWdYRked\n2O06UqkStVqDHd8cRqNscerJI/T0WDFWwpSTGVq1KrV8FpPPi8ZiQZC1cAwN0KiUya0u4vKZoVyg\nEE+SmJun6+FHuPD8FZqNBtFUlT0nd6JWQHJ2BlEhx9DRgaBQcPX732f0d38XU3cfC+dvIIWLBPp8\nWLq6cO3YAfBrNyvs67NSrTaYn0/SbLbweg2Mjbn/VWvLh5GRIeCrwDvF4k3gX4CZj3DuvcDLb//8\nCrCfX5CRd1YYLZD5qMF+0fHUU0/xxBNPfN5hfCD6+/tRKpVMTk4yOjr6eYfzgdDrleh0yntW8dDW\nOHC52sZNWquVnoceophI3NMOebep0/x8kitXQlQqdZaXawQ8dvYOmBk+sY+WlEcuiBhMGjzbh1Fb\nrRj9forRKNm1NSrpNNa+fnZ0D+Ea6SeyuMHFKxG2D9uxdRTZml8jEwrjHd9LsKOf63czjG+zEr50\ngcjMAj0PbScvypFimxzbZWPbcD82ZYkOt4KQ4OGNl6eIhtLsPjKIyrrMth1+No1KRJ0Wz4iPzNo6\nAi2atQrLizn2fO1BUhUVEzuDGOxWrp2bJJMuMDS2k2/8n8dIhmIk62auX1nn0E4rubkpLHYDK4tR\n7GY5yUyL+dt30SvrpKduY91/ghuzNTamQ3QN9dHZ08XiuTeJTM+y+9g29u/ciSDGcdg/BXL9PgvV\nJ22gezcsFjUmk/re9AyAXC7g9babXJNzc9y+GWZuLo5aKaeBnPmZCptbRTqDRkp1BVuhDHK5nPyQ\njWSmRqBbAQIUsyXKJQmxVkGoFilKLfoCVurjPeQ2N2k1qtQWr3Jk92GuzwoYgzYcwUXcTi12pwFE\nOR2jQwjyFnWVhZtTaQydXRjjRRotGd5+N2OPTGB2mrFrqtTtWmoNLTplE62ljiIyS9DmJb4e4eLf\nP00pnUep09G/axCPVc7mmgWdRk4mVcC3axcnt+2m2lIiyTRMXl9Do1MBLd588RZqtZyTj+2k90gv\nxVSGW8+eZe7uJuVUEqNJw+7+IaKTk7h2jDE66mJmJkG5XEOrVTAy4sTpvJ+cftZKnTKZjI4OE4GA\niVAoRyJRupexkclkCG8/R3p9u9QSibT7QEKhPLduRfje93aytJQmGDQjijL6+qy43XpeeGGBRx7p\nJ59vC4hpNCoajfbouAwZer2CWq1BKlXhZz+bw+XS8ZWvDCC06li0LWZvrrC+kkBT0HH+rUuMHB5j\n4PGv00Agt7JMqyZh7u/DOTJCJZPF6PGQWlpCpZSj0qrReHxIxTImq4HoyialdJ7X//F5Hv/T76B3\nOankcuQ2N5l79lkqlQalTA6L2cLBP/o2lZqIzGjF4Pd8bo7JCoXI2JibgQEb9XoTg+Ffn4H5oCfo\nz4BvAT8ELr+9rwP4Z+BHwP/1Iec2A+8o32SBd8/5/RXwGPC7HyPeLyyazSZPP/00P//5zz/vUD4Q\nMpmM06dP8/zzz3/hyYjFomFszM3Nm2GKxRoKhUAwaCYQ+EXjo1ytxvQ+Ggb1epPl5TRKpUAmUyOb\nlTgzlyBdaHFq/wFsHd62K6XBQK0pkM1K2FpKjIEAtXPn2q6jDj0NjYVQVs7KVoNEpsHcYpq+gW56\nHQ66D+6hqPOzHpbYNt6Jw9KiqIWR39pDq5glu7FKrSRR1tWxj+ylUZTocCqYWijg7/bg9xkhEyUT\nsZDNNAl2WVlaSrEQ0uM7cBhTM0FJbsC7bZjJDehsNFmaXOfs02+xePkONpeZTrPEpStx3GawO+38\n9ukhonOLVDcXsDoc9HxtDw6/g431LJ6+DtLJEoae7bz03F1Udhc1uZ6VpST5isDYoBmTXiR66xYN\nScK3eze1cplCU0Gp1Jbe1uv/FWN77/i/pFK03hEak8k+db8Sg0HF/v1+rl/fIperolSKDA878PuN\nVEslUtEMlWoDaytNan6dTM7DxNghQtEyBqMamVxEoVER6HXi9NuxOQ0o5AKFooR3xzaMqgbFfBHN\n2BFCkprMpWV6ens59HCBzOI8pXic1YtXmThylKwk8lv/y9dJT90kubiExaZDnlzBHAgQlxk589I8\nO3b0su+3e+hwy2kkNiEboxFrIlJFp1OiMZtQqQTKxTpKgwHJ6mHt9WskVrdoNZrQarC5sInZIGPs\naB+paIbkwhpTFSMbGSWzC2lqtQZjuwI8+e1dzN5YJB7Lo1LKkYsCRp+P5biAfGAPlqIMjcmAKRAg\no3CjLiWJ3bnN+KlTBIMmyuU6Wq0Cm01LXZLIbm1RSafbEx0ez4cq7H4a8PuNLC+n7ysd+f1GLBY1\n5XKNGzciDAzYSCRKZDJl5ueTaDRystkKfX1Wtm930mi0KJdr/MM/3ObEiS58vnbvkctlIJutoNcr\nMRrVIGuRz9e4di3M+noWn89AOlXGZFRy7KifpalVXvynNxgc9RNbzaI0Gll+4wJWsxL/rp3oT38Z\nrdWCqFKxdfs2SoeXYiKJZ6gPmjVc20doCQrMLis7T4ySDPmYvb5AYn2LUiZHZvouifl5GrUaWrsT\njSCgNRtZe+01UKiZu7OGY3CQoX2f3gj9vxYazSfvKfsgMvIfgGHg3S5V/xWY5sPJSBZ4Z+7KxHsz\nIP8R+N+AM7SzKO/BH//xH2N+u0N/cHCQffv20dnZCcDq2ynfL8r2z3/+c7q7uxkeHv5CxPNB26dP\nn+Yv//IvWV1d/ULE88vb78bwsAOXS0cuJ6FSiTiduo+kvPkORFHGlSshtrYKOJ06hoedrK9nKe3p\nQWVIUqtILM9HqTSU2MZ38fKZVXZss9Fx4ABSsUSibqTQ0CBTOvHsttBotpDVKhhMOpQdHuI1A6nZ\nFXq7rfgcOQS1imQrh6wCS6+80lYhFUWi1/L02IxgdiFa3Ey9eY5mS4ZJKyCngSfgRO+UsXr1FvnF\nDcLVNMFH9pMqaym6nfz4bITtOzwUc0VkyRRz52+hU7fYsdPPnR/+GJlKQ2u4g0+L4B8AACAASURB\nVGo8TOruLRomP7liE4WuhLKaRW8MkL7xPOV0Ho3VDdYxmsoQokYLKgNKnUCm0EBQa9G1itSlBqV4\nHJXFyuxSgZmZBJVKezEaH3fT3/9eYbIPg31oCJkgkFpYoNVqYe3txfY+Y9ifBB0dJpzO9jOjVsvv\nva01ZTJErY7szAUWL96iWm2gjOfZtXMPAb+BYrmBz2eko8PI0JCDly4kGH3oEOWNFZSCnIrWwNHf\nO0kilqOynqI+N0P45nkSl9TsfuI0al8nlUKZos7H3/+/F7CY1WQ7W5iFIq1MjKXLd8mHQuz4zh8g\nWbvYM+HkR0/PcPrRQdILk9QzMUZ71cz87DzmQBBbXx/5RIp0KIZ3dARzTy9rSQGzRY8MQACVXk8+\nXaRWktBplUwubNIxMELs9gojfjm79wyzHod0ooDXb+St5xM4PWZ27Axg81qpVussLKRIxlpI2MFg\nIrxcRBtb58RBB618nnqlgt3+i0xIvVpl8+JFUouLbWIpk2Hu7CR4+PD7+g59WujqMtNoNJmdTVCt\nNggGzQwPO5DJZKRSZSKRAq0WOJ06Dh7sYGLCSyxW5Ny5FU6e7OHo0SDXr28xOxtHp1MiigLr6+0e\nkAsXNrBatej1SuLxIkeOdDA/n2RxMQW0hdgEm4Zzryxy8kSAra0cao0CrcVMcMhEZW2OqtaC0Kgx\n9dpV7EEfh//TH3Lzx8+zuJgiOCRHbzOz9OZlvKPDVOslzMEgS2fOUi0W6RjqRe+0k0luQ2uzIvT3\nI9do2Lx0GZ3LhXt8nNjcIhqXm9k3LiMo1ZTjUcqxKKIyQDLZniy02zUolf/2ZlM+KOIG7fLM6rv2\ne98+9mG4CHwPeAo4AfzdLx1TARJQAd43T/sXf/EX73vydxaxL8r2q6++ypEjR+7Vyj7veD5o++jR\no3zjG9/AaDR+pM9/Htu/DJtN+56piY+CVKrE7dtR7tyJIUkNQqE8mUyFxx8fZCNW54HDR4ivh0kZ\nEsjqKjbSDWq1Kleuxzi6cxj3w1ZC18MIKgOvnF1DrdfxxKMPIc+HMSjr6CxGarU6wuICG8/McTca\nY/d3v0Pn0cPM/OMPqJfLyJVypGwag9VE+OJbbP/9PyQjN9G7vZvblxco5Jt0DAaQq5VMuMqYCwY0\noge9RkaXOkbL5cNgNVKrtR2GncYWVlHB//SnD5MLbSFvSuSdakp1AYNJg0ZZJXxrmsEntpNNpAit\np8mkiuhcLiJrEbRCnValjJRKYuzqQUKDfcCI8v9n702D5LrPc79f9+l937fpnp6efcfMYAcIEgBJ\ncAFpWhQlWVdW6ZaXG/uWJd+qVPIpNzdVzoekEldyXZWqW7E/JM61XaZoSaa4k+IGgiAG6wyA2dee\n6X3fu08vJx+apESL2kjRoFT8fcE0CoN655ya7uf83/d9nnaVWmQHrdAkl8+idzjQ2O2IJh835uM0\n6k3ESoVyTs682P5E90RQKHBNTOAYHQX4TOPJ1WoFTudH396UWi16vYJStOuNIZOBa3SEp//Lq/zu\nnzyGwWGlVGqgUinY3sohIWcpZ0FtGKNvWIfOqGU3BTrk7L/zNqn1TbQWE8mNXZ77z/+Vh7/zTba3\nIzgPjrC/m6E/GGL14jyHpq2kbt2knsvRrNVIr6+jGDQwO+JB/2+nGelVsfFsBIe2TTmSBr2NWlvO\n4Jn7Se/FkFptVD0h5DKwKitoh3s4ef4wsUiR/UiRYjKD3nOM8F4Jc8CPTmgSfvtNmnINHYWOvoOT\n6MwhBLWa3//jk6jkoDSaKbb1yOWy7nq0XCCbLJLf3kIml6MdCSKXddBYrSj/RQugkkiQ29r68QmX\nJFHY3aU0OPgr277/qgiCnJERBwMDNjqdzocfuisraba3cxQKDba3c2i1SqpV8UM7+Eqlyd/+7SJP\nPTXGk0+OMz7uIpXqpjnv75fQahU8+OAAyWTl/bVvOclklXZbolRqADJUKgGNuom/xwgygTo6LMEg\nQzMDWMVNLn3v76mm0hh7PASPnaTcgOTaFjduxEhECphVIgaNxMTvPIRnbITs1jabr75KdnMLSWdi\nrqeHgcOTpLb3yd6+iXVggImvfQ3/sWNk1taoFkq0myIKk43ohTexBXz0Tg5STOe4st4mFusObrtc\neo4fD2CzffYnVb9Ofp4Y+Q90Zz02gL33/y4ADAF/9kv83zfoio233//6KvBXwHeA/xMYpStK/rdP\nUvjnCUmSeOaZZ3j22Wfvdim/FBqNhvvuu4+XX36Zr3/963e7nM+MWKyMXq9ieNjO3l4BSeqelFgs\nGlQqgViyRiQjZ2lPQqn88QGgKLbJZyvsxNugNuDT15jxlBiYdFDY3mJnYYmgAwxGPZHLFzE77SRX\nN6mWqyx87zmO/Ol/g/vAAer5PHq7DbfTSS2fx+R109aY+dGLG8w+cAilzUWpIqI1GrBpW2y+eQGT\n08p9B43EdhMsvvgW9/+738PsM6Np5Aj5NRTCm5RrWa4//TyCUsHwvceI3Fhg7P57sNl0lPYzVPMF\nasUKib000Z00ckkkePIkkw/fT/TKPAadgNMqwyd3cWejSinXYTRkxaasYjcrMJ06hVKvZ/Chh4jU\nFeRjScRSiVajgdTpUI7HSc25PpFAhE8nQlqtNvF4hXJZxGBQ4fEYPtZr5GdhsNsYGPHQqInUqiIG\nj4fxI24SqTrff3GRAwfcSJKMhYU4r7+2gcOhZ3bGRT6d4PHzgzgMEsqOjE6jitbuoFgScY2NoVLK\n0ChBOzDF0nKaf/MHJ2nVa7RqDpTyJtTK6I0aTDYT7pAftddAYu0axw8fQSxmSS/dQTLLyRVTNGQa\n7MEelitV4uEUCjnMfcXF+qU3aTbbJCsqLD4nQw47OncVe++9aL0edrJtXCY1iduL6Dw9bG+kEIQq\n4VurzHxpkHazzcD4ILsJkd1oiZMnTUhSd/vhxuUtOnobGkcZsZBloN+CRqdGOzhFpdr6SGuuWal0\nT/x+AqnToVEsfuw1lySJaiZDs1JBodGgczg+tRDt3vPufc/laly/HqNWazI25qRabVIsNiiVugOq\n8XiZ3d08jz8+hNWq5fnn1wGJt94K0253cLv17+fXdFfAW8027XYHlUpgaMjGiRN+FhcT2O1anE4d\nh4/6SSVLDIz5CO9k8RhF4q9dQ6VVIxl1tEolihtrDD75NRpiG5tZhRmoxmNsLizQM9pPz/QkC3/3\ndxT2Y5jtZrxz06RvLZBbuYNKp6VZLmMJ9VMVwdA3QD2fxz46SrsjsTN/DYtdj9NlwGTWkqsK7O0V\nP2xdRSIlFhcTnD7d96mu8b82P0+MvASMAEfonpBIQISuqPjpFYeP5z/8i9ffef/PP/0Vavzcc/Xq\nVVQqFVNTU3e7lF+aD1Z8f5vFiEwGGo2Cvj4LarVAuy0hl0OzKbGxkWZjI4fZrGZ9PUt/vxWNpvvr\nIAgyjDYTznyZyMWrPD+/TihoJnNxDUGtZnyyF00jg6AWyG9u4vTYMNsNSO0WvqFeOqKIZeYY5UqT\nZhuWlqLozE4Cc6fYTCu4vlKh0k5w6HAPEpDNi2i0cm4tRKhWd/GHnPR49fQO+xErJbavLJFc3SUS\n22HizFEEZRO1WKCcb6FQK5g8ewxlp0Ijk6BSETENjrC3todJI5E3arC6veQqEhatDvfoMDuRKuuv\nrzD91CiZisDQoAWfV8fhqWmUhX06gwHMvb2Y+/rYeXuZzOoq2c1N2o0GBo8XS28P7UoR+NdN+BTF\nbprq+nr2w5ySkRE7hw/3oFT+ch9uBreb4IER1CoZ5UoTx3SAOy/ssXwlxvZOmf39EocP9+B06hkb\nc2DUQCe+RbGYon1Ug1hvYBocpCo3sJ3MoNNq2dopYnMYUBkMhBdyvPTPtzh00Mvjj/TRNg9T2V5F\n73LSyKYwB/wo1ErCr72IvneQjX/+J3xzs8w9cJDMrRvIFUbS0QyuwCwdg4PK/CL3/em3aOWz1NJp\n8vEUGneAWqSGOjTAkS/dz/5GlHCkyna2g3lUT7XWQWfUo9ZXaLWhWmqgUbTZDZfYDpfoHfBw6lSQ\nnh4jV65EiOzl8LuUbG2DY2KSQ+M6HFYlV9cqtFMplMosIyN2pqZcXaM4oxG5Ukmn+WMBLxOEj804\nkSSJxOIiicVFWrUaglqNbWiom7XyKWg220QiRZLJKq1WG51OSb3eIperMTvrQS6XEQxaKJcbCIKc\nvj4LMzNeLl3a5803dxgctDE35yGfr3HkiJ+RETvf+94yt24lefDBfjQqgVisjCDIePLJMe65J0in\nKWKzaRgYdpFLV3jumetMHuxDno+RWlqhns9Tz+eRCQrKsShqtYwiekx6GTdeWyA0PYTBYsQ1NoJS\nr0elUqIzG1AYDWitFrZ/9Bq+uVm0NhtqTw9vPfMWnqNN8h0Dc6M2CjdvojfqsFvVyFUqXP0BHJMH\n2KhqkKSPei4lEmWqVfGn3JI/z/yixlKbbrvlC34OzzzzDE899dTnflX2J3n00Uf5j//xP9JutxE+\nw+Pyu0nXtlqJ06lDoZCTy9Xw+020Wm0EQf6+OJHjculJpyv4/WZksq7DpK/PhRjfY3dhDbUCdhbW\nmJp2U9vfxDzmJ76yzdDpU1jdVmr5PFaPHc/UBMmqkvJOFUx6nGNHSCysYhk0IFicXN5RERpsoRVE\n3DqR8Bs/whjs40fP38H0zZN4B4Ncu7BC7HIY0wNDNGVNNHsZ7rx5lb4BJ/uFIvt31hgY9uDqdWOr\nVWnFd5l54hyxxUVaMhWagIve2Sku/sMLGA1axu8bw9jXz82re5w+7qYgtnH3WLGonVyej6JTyxkN\nWBj0NoldfJt2o4LFpKEci1FJJrGqlaibBcqRCNB9Ku4bcqERc7SbTer5PG1RRGM2f6y/y6+TWKzM\n2tqPHR+bzQ6rqxl6ey34/aaf+X1dX4wmarUCQa3G6PeTWV9HWctCs47YkqPRqPD5jCzciCI/7KNU\nrNHj1WOQ1chvFXn4G/eTyBVYWa9x0i1gtFkxpOrEE2WUCjkGlKRFLT1+iYMn+qlVWyzutHA5xhh5\nYAB30EcpHsfs72HvvUuoVQLyWg6jJFK4/DrDjz+Gsp6jVaviHOxn+KEHCd/ZYPaxs3Q6Esk7d4jf\nWUJCTlmUIxcUqKQGWZOBmszB8nYWhaxMT18f4dU2PrcGvd5HPlfB4TSiN2h46YVlvAM9qA0Ghoft\nJJMVVlYyVAslyuEo/W4jSimJUT/AtbeXWby8jv/EPRjcbq5fj2E0qhkctGHweHCOj5NeXqZZr1Op\nSZhCfVRkRrSN1kccUSvJJImFBVr17nZTu9EgvbyMqednu/n+IiTpo2aI+XydalVkZsZLMlkhne7O\nTgwO2jh0qAeXq4BOJ6DXK7Fa1RSLdS5c2KW318wjjwxisWhYWUnjcOj42tcmeOutXdRqgelpF0tL\naSbHbByaMrO9uIGhkUeKFdnblcjEMvT4JhBkaTLr63imJ2hks5QTCVR6Hba+Pt76/jKTR49SSGRQ\nCHDfd/4dCEqyW5v03XcvWz/6EQqtFq3FhNHjwuT1Us4V2b2ziNZsRm9Us3YrRTQ0zfjJ+2iXcvgO\nHUJlMGANhdB5e1h8aeunrpFGo0Cl+s16X//Nm3L5nCFJEk8//TQ/+MEP7nYpvxK9vb14vV6uXLnC\nsWPH7nY5nwlOp55Tp3q5dSuJUa9ketzCyKiLtc0CDocOkJAkiVDIDMgwGrt280NDNnQ6FTpVh/Ep\nL6lYnkRFhlqjRK5oITUbNOodqvUWE1/9Ks1iHkmuYG27QqaupL7b4NryOmOTHkbHDmK3G7j47j6X\nXprnj//9MR48YSd+dZ5SsYrW48Osgys/usmhs3OEagqy0ST+8QEUDg9XX34PkJOMl9AZVOiooTIa\nESWBZqVGI1+gsLeHe/oASoePTDxLNlVAFRym78gkmaaOmwt7TJ+aptSucmVLhqBXMHsmhCNeQyqk\nyd5cY+1KjEIkztgjD6D2+KjWJRI7cTwDPcyGwGWeIZOp4vOaCPXJEFMxYjdukFldpS2KqAwGfIcP\nY+vv/8zuZ6HQ+Cnr6Waz835P/+OJx7umVbFYGUmSGAiZMIjgOXgIuVxGUduDwVyDBpjNKgxaP9G9\nNOceHqFcrFJLJxk+/zBXfrRI7PYy+ZochdGGZWyOgHIduS7K6KSX/tkx5LImQZ+G40cP0WpJNNoC\nrUyUfLqC5J1h8IyP0u0raM1WOkBybRNLX4hOW6SUzCC3ODF5lejcHmQmB/1ne6lEdth5+wLWvl4K\n21vEt/ZQyzUUWhoCc25aGiOptAxVo8DkqQPY7DqyRg21YpnEToyJcQ9Ks47dG0t4xCyjXi9KrYL1\n9Uw3cLHVQaHRoLVa6NAmnOwgW69SV1mZefAYsUiGjsMBCOzu5hkctCEXBHyHDmH0+wmvxygXJLZF\nDTde3SEUsnLiRODDU8bG+wOwP4nUbn+YGvtJSKWqrK9n6XQk7HYtDoeWbLaORiMwMGBlb6+ITCYh\nSfDaa1vU6y28XgM6nZLV1QxPPDFKNFpiZsbDwkKc7e08CoWMra08Dz88SChkoV5vY7Xqus6ulRKp\naAup1UZsNyikRBoFicBoP1qlhM7pYOjcA2y++ho6qwXn+Dj+Y8dQaLWMz4aoV8rovH6cDh0Gj5ul\nZ5/H3t9P4OEnMIxMISZiuMeHESsVIteugsqATBAoxlMcCLhRhdusr2c5/uijOC0CnXb7I1EK4+NO\n3n1370MvmA82yH6VQf/PA1+IkU/JBy2az/ua7Mfx6KOP8vzzz//WihHoGmWZhAq5/RJSLU/p1gZq\nyc6lBbGbSaFVEQpZcDi6IVw7O3l6e02olDIEtRq700C7mEVlk5DyCZyjI8gNZsqCmZX1AhOPnEVF\nh045z9iYwOVrKS6+HaYhGHn7jQ38QRtyVRuHRYm/zwmSDIuqRbFdxN1joG/cwdrVFZqNJq+/voPa\nM447OIFytJ+FK1uItTpSs0U6XmFs2Mfu0hrOQ0dRBoZBoULtcNIoltCLItf/378jfGuZua88wclz\ncxTkNhr7FcYGzcg7Ii9+7zqlGmQSCZbupPjWnz/M8o3b5KQyUiNKMRZn67IT/ZyV6/NhBEnkpMEP\n+QSm6B52rZZ2pEVNCCIMBcmur3+YDdQoFIheuYLO4UBj+tmnFJ8Gk0mFXC77iNujQiH/qVXjer3F\nXjhPLlXi8tUYjabE1laOYlHkilbG8WktwX4HlTrEVxMgEyil0ohtOaERN+VCFbtFwCrVGD8xxNWL\n64QvXkTSGCkV2lTyeZb2wOkdZfjcOI3oFj/8mxcY8Cmp5rLIHz5JPpmhx29hJynjlX+6TLWtxhbq\n5dw9TrKZCjJBSV7lo5JqMnDwAEWFk5paRG6xofWG+Lv/6yW03gDDg1bMXj9lUY7/zP0UK69QzhVw\nTo6jG5zANTWNTdAjnZ7E41RTWlvENzWGyWGjZzpMu1xmZ3WP2t4OnYqcpWef594/+Api1YFOp0AQ\nZICAbzhAeHEDdXGf9KVV8rkKwycPMzIZIFbtgCB85ElbLgjUBBML+2mq1RbQ9QLa3MwSDJoZGLAB\noNRokCsUH50xkck+1Slao9Gi0WjhdOpZW8uwspIilarS32/l3nuDaDQCoZCFZ565QzRaZmDA9n7Y\nowWZTMbly/sEgxai0RLXrsWYnfVSLrcQBDnr6xnGxpzs7haYn49QKtSo5Ao88cQwqUQJrclIKNjD\nmEdOqCkhxDdoGIzI5HIGH3yAWjaDzuVCZ7dTzeXYffmHjJw7S82iJba4gD3gxjQ0Tts7yFtv7VJK\n5bFbzXhdQez9CWqpJLGlVbwHj6F0+YlvRQjNTiHKtSiUwsdet+FhO1qtgnC4gEwmo7fX/HNPCj+v\nfCFGPiVPP/00X/3qV3+jWjQfcP78ef78z/+cv/iLv7jbpXxmFFNZrl1YZW053o0B9xqIrd3ArvVw\nZWkfUaai0wkxO+tlYyOLy6Xn6nu7ZPciuO0qhs/eg1o7T92qpN0U8Rw9QVXvpRMUsB6Y5q//6xbb\nW2mGx30YVG3MBjUWg0BZJge0GFQdLK0UUmWdrzwWpN2ugqyDWqvE3eeBepmjj51gZTlBsaEkUWzR\nG3IT3c8xMOhCE7iXaiKGStYivLrH1OPn0HkDBF1e6sVJ7HY9uxcusPLiqwgKFce/+RSVeIzE5XeR\n27wcHBtAZXDw1//7S6Q295DrTbQbIqLYpJbLIol1rF4jYkRJx+Dg+sVVZnxjyAU59YbAjZtxDh0+\nSznyt9RyeTS+IHWTn2JDSXgpgtdr+HCjoVEs0igUPjMx4vUa6e+3srWVo9OREAQZg4PWj7jDNptt\nLryxzvzzl3AGnLzwzCI2vwdfv5diEfKlJmqTh8vX01y/FqVZLDJ37xh6u4VmukRiP8u5B0L0ejRI\nUoP84hVy+w1sg4M0OwKFZpZiWWJ82kut0WH/9iLRGzcJ9BhJxIsYNQrE2A5Oh5O2So/CrOPQ/bMk\nIzl8oz4C0/3YLUoW3rlDo1zAM9aLcvQIYnyPdq3GxvUl1LsZpk5Oc+XKPtdyFR4+P86tFy9gcDiY\n+qM/wWTRE81JaIO9/N9/v0Wt1qTXLkOW3mF6SIsQX8Xu96DyBpl/5odUKk2y6TL+A2MURDWV8Bah\nIyZMhu7129rKozXq0IoZdhaWsFmUFItt3vm75/n6f/pD8jI1MpmMUOijkQBdZ9t/McgqdS34P3CE\n17vdWPr6yG5u8sGEpdHnw/QzvIF+GYxGFTablmKxzuJigkKhjk6nxO3WE4kU6e+3srycptHoUKu1\n2NsrYDarSSSqnDwZIJmsUK+3EMU2Pp8Rm03L7dtJtrfz+P3dFtaFC7sIclCpFcTKLcoNOVpvgB/+\n41XUr21z7wNjhLwKmqUCW5dWqcTiNPJZFCoVlVQKhVqDTKXGqmrQ3F+n9+QxJh45Qy2yS3J7n9V3\nf4i9L4BeaeKNf3iNXFXGyUkdgZMnCZw8iczk4ubFZZTaCvKAFoWgZG0tQ7HYIBSyfmRouytAfrE7\n8eedL8TIp+CDFs1zzz13t0v5RBw/fpydnR2i0Sg+n+9ul/OZsHgzypsv3qbzvkX4lTeWOHQsSMAp\nMDLiIJerYVI1qdWaWK1aYrECiswuRFbY348ydHSKoYPTVHs9lNNpsrt7JAwG9kp61t7a5tr1GB2x\ngd6Yw+3UkE43GZkO8t6lMCODduy6NrWdDUhtY7S2aPumuLOa494HTpFbmCeysYF3eoKx3x1HaXOx\nGWmyvlXAb2mwuZ0jmW/Tappx2jQEzowSyYtEE2rMjQiv/tXf8uV//xirL72K0eXENjxMNZVi6/JN\nVE4vZSHD7WtbzD50gpnT04RX99EqOliG3LRVBnR6NX6fgYX31pid8YCuSjUaoVZrIlMqsPoCqMxm\ncBuY/uY3yezFqSgsaIPD5Io5wrsFms0Og4Pdp2BBpUJQfnrzo5+FWq3g5MkAoZCFYrGBxaLB6zV8\nOLwqdTokEmWuvjJP/NYtzOZDNIpFNm6UMVt06PUG6nUZcp2e9dUtGqJEo9Hm2vUEWjXc/8AQ2WQe\nuVhm6aXr6JspTDo5gUCQ5Zs7WAdG0PQNs7NXpbKa4Pd+f4ZwZQFN0EgsWkQpSAz0aHnvn17l9Hf+\nGJ1agS6yQ8itYWq0D5neyrPfvYl/wEPbN0ZgyoTG7aGT3ebO95+lWa2h0mnI7kZxOPQoVCrkRiu7\nsTr9YwES8QLvvHIb/72nUZst3L6c5PLFHUYGLWSKaRS1HLeqBX73K6dY+fv/j8FHrKilBoJWjswk\noGwUcJqcBII27Ooaa7diXLqU6Ppz7MuwWxwERwMUdnewmnXU9RqqsX2Gjw7T02P6qadtnU6JSiUg\nij92epDJwGL5sdeIoFTiP34cUyBANZVCY7FgCgR+yin5V8Fi0XLggIdnn12l0WjR12ehXBZ58cV1\ncrkG3/rWAaamXFSrTSKRIvV6i0aju/o6Pu7gsceGWF5OMz3tJp+vs7aWYXjYhtGoYm7Ox9pamt3d\nPO1WB6NJzcGjfRRyNdbWM8h1BppiDbEucvW1Rb781QMUr2xi6vGhHAhRy2aRyeS0Gg3KqRTF8A7V\n6B4Hhgao7cVZ/uHzVKstjHIlses3sIT66D88yeqFq/g7boytDPbRUSQxiqaewj11HLVHSbmtYXk5\nzdpahkajxeSk+xNfv88rX4iRT8H8/Dw6nY7Jycm7XconQqFQcO7cOV588UX+8A//8G6X82unWhXZ\n2MzRed8Pod0UaTYaLN+J0z/qxapMkS9lqMbaKBSTyGVtlM0KzZ0lwjcWQSbQfvk1tl5uMfs797P2\n1mU6Vj85QxwZWvbDpe7qnsPcTYT12UjHsgyNunH1OhkLqshfv4i2UUXSqrj4ym1GzlrwOy3sX1+A\nZofgeJDN119h/dlncU5P4ZudZebRI9yY3yW5n6Gt1LG0lEZtNCAz2NCbjER2szhGQkzffwyZDGyh\nPorpHD0jITKROFqnG41RR3Q7g2AVWLu6ytCjj9A7M04uW6bWUeEO9qK02Kk0BRpNiVimSWCgB1fT\ngsLbh86iQm81I5PJcIUCjIzMcPGdbUrxGpFkg4DDicXrIJvNU6s10epUWIJBdE7nZ3pP1WrFTz2h\n58Ph7jBltUrdOUx2d59mo5sPEuhzsLGRo5jKYQ3qMbn0CAolKrMZl1ZPXq+lXJPYWkrRG0hg0cuQ\n6k3iK2sEB1xozAZktQSTcyG2wjmUFiXHjwfw9zvIxLI43GZyOwL2wwNYdLD39pvo3S70ditr33ua\nzZvrqCxWps4/gG5uGEmTpoWC6ytV2s0Sv/8HPtZ/8BaJ7SgqlUBjP47V60DMpggMjYPZg2/YRirq\nwuCWOP6QlVSyTKlUI7xbpFnM4fL4qa+to9SrqJs8pNtW0h0zzkwJ/8QAycVF5O0CJpkOg9GE1Sin\n2pTz+rubLK115zlkLQV3Fja49+QEYq2OUiHHZzMS6LUyfaL3Y++Fy6VnMTPaSgAAIABJREFUZMTO\n8nKaVqvz/gbLT7cIlFot9qEh7ENDv9K9liSJQqE7D/STAqdaFel0pPddYZtkszXeeWePcrmB329i\nfj6KIMjp77dw/LifjY0sSqWcYrGB2azhhRfWaTTaVCoiOp2SWq1JJlPj0UeHqFZFBEGOzdw1RMvl\n66QzVexWC1aTAkVTicHhplrvUC03aMrVKKbPsvLOdRxaE54+Fzv//DSeuTmyq2tUsnlc4yPUczm2\nXniOWjJBuQqVpgzPyDB1CXoGekht7EFbpBSPM3T+PPFbtxg9PEZRDjuvv47z+Gmgm720upphaMj+\nkUHh3wZ+u36af2V+k1s0H3D+/Hl+8IMf/FaKkXZbwuKyEpwI0SiWSO6n0GsFtGYjTZkai03H4YAb\nd58HvUpCoWzQElNceu11WnURa7AXWbtJLhanUa5Q7agxtqr0uJRU02r6BrTsxlvIZXLk7QadapFD\nh/xMD6mRSy2+9z/+JRafl3C4gNdvZX8/j2UvRd+cm9Wbm/QfOcDtt29STdegVkC+uoraHUCeqHBz\npUS8rEKrE0glSpyc6kUvlWhtrNCOFqg6R7BOH8RkLjB49j5qLYGE0s1edJ9UVo5Tp8feayBXlkCj\nI1uR88gfPcbijX129yrYvBa296vI+mbplXTQrCOzeQkN9rGw02FgwIRMJsNqVuJ1d/1E0hmRXK77\n4RXNyem55z46mSg2twJnfxBLX99namT2cRSjUXbffPPDIUlB50SlkFCoVOwtbXLkyDQOjwWT04bR\nbSXYb8dgUNEXsgIyNjezNJMVXH4bQ+M9qDsVOp0GOocTg1mHQqOhmslgzoU5OTuB3OHEaJQjd5tZ\nvLTKQLAX73ETCzeitAwa/Ocexx9ykbl5jdTiDXoGhtDMnOHdhTyFjQVaSgN+lZLJUTOvPruAsj5M\nWxSRyboBdHK5Hq1KwmFTI9c00Uph9haT7GaVRONlZEKCYMiGTiNn+oCHUqmBTq+i2oGypCcXLVAu\nN7AMDLFwZYvDZ2do1WpkN7fwzc1hDgapFQq0dH7ypRIAOq2ATK7A6XPQaMuwep3oVB16gzZ8k6M/\n89oLgpxDh3z4/SZyuTpGowqv1/jh8OqnoVwWuX49yv5+t0a/38TcnBedTsn8fJStrRzDwzYSiRKv\nvbZFsVjH6dTj9RooFuusr2dQKmU0mx3Onx+iUhFRKq1UKiKhkJXbC1GuX4uxtJRifNzJkSM9KJVy\nvv/9Zc6c6cPm0JOK5dFoFMg7TUJ+Lcvv7pKNpDAr/LTUvRw/f4S1zQKrb19FYzayvrzGyPEDHPuT\n75BduMLCP/4TwVOnGDp3jkp0Hzpt6pkMJqcbqSFQyWQRehxEUi0mHj+Hz5Gn6dCgdThwj49TrzbY\neGsZsQU9iED3d6vZ7NBsdviMgnjvGl+IkU9Ip9Phu9/9Li+++OLdLuVT8fDDD/Ptb38bURRRqX5z\ndtL/Ja16ndz2NsW9PZQ6HdbBQdoaM7WGxEZKiVpmpP+wF4s7wuTREfQ6OcpEm8h+nnI7T6vdIaBM\nYzQo6DSatOo1suEIrgO9KBtF5IKc/oMT5DbW6dUVGf/qcbJVBSbHNqlYDrdVQCjE6VVIVBf2cc/O\nMXP2ENcubVPMVekb7sFkNSIYLeztZkGtR6VVk9iKYDHKie2lGP3dL3HpapKAcp/1lSRXL64zc3IU\nX9BOyNlh5cVXUdBkbyeDPLvP7LljKOwe9BYjqYKVleUUwek5tqLvkVovMTjiwhPQMnbPQTZyLeLJ\nOsFhHweOannlxWVWbmXp6THTUgY5fqafcLSGRaXjoYcsNCo11K0SDiHJ2j++i3NsjIFAkFSqgiR1\njeG2EzAxMc3YicBdE+T57e2PbGuoa2lOnJvh4gvXyEYShG8ucer8YaaODKP1BRGbbcxmDU6nnjt3\nkuh0SlqtDqGQBZtNQzZVRKXV4NE3UJe668xGrxcUarQBF1WVHvtggN35m7S2VogyxOpunbbaxF6+\nQ1RmwDkToFG8QCFdwnyklytX98lF02hGbEQLDTbeW+Br3zrCY1+epZQtMHX6IMpKilw8jcOpx2AQ\nMLpdRG5vEY7nWV9LceyJ0+zVZdy4sU0+H+C+0wMohA6zhwNEt6J4xoeJRgqcOTfKws0woaEZxkeG\niawv4xsdZ/CprxOO1Lk6v8rMg6MEPV6M9iY9rSzVRJz0Xh6L287odACbqECtEXCOjmL9BdtRSqVA\nIGAmEDD/3H/3q3LrVoKVlcyHrxcXE4hii8nJbpyDzablzTd3OHzYx/i4C4VCjr/HRDZbJZOpYtCr\n0GgU7O8Xsdv1PPnkKFeuREhE85QjYaYHu74weztpKmWRzc0cdhNMDuopRWOcOxMglnYT2c8zN24k\n5IKZKRfL7QadWhmvrkrvUD/v/PA9FCoFSo0G29AwhbqMmt6D1uVh4qkncY6OIpfDzltvYevvJ37r\nFvVsBnugl7qgxndkBlVeTnZ7m5s5NY9+6QFKkQiNfDc9xWLVUqhAo/Njke/zGT9RPtTnnS/EyCfk\nvffew2g0MjFx90OKPg1Op5PR0VEuXLjA/ffff7fLAbrT8tVqE4NB9UuZWUmSROTqVdLLyyBJ1PJ5\nEuubbIi97KdbtJETy8sot5t85al76TXViewVKMRTWG2W7lF8LsbCtXc5+uQ5Ju4/xsZ7N5ErVVh9\nLpQeA1i87C1sMzQ3x/ADJ9B7nYQvXOBbD7ooCj1Eri/QiWYpv/4yWwsL9N5zD4f/7M8QVTewroVx\nD/YQuPc+nnsljNWjY3hqnHq5hi/opJlP4R/wUlVaSUfDyKIlBvstrN7SsLsW48v/5hDZ1SsYdTIy\n8QpWPYiJfXav3mBg5itEbkS4fn2fHBZaKi8j586SXN3A6DNz9NFjvPBehZXVXYrFGgemPRw44OF3\nvzxNMl4iuRPFZLJh99gQpTK9vWYOzznJ3F4gv71NJZGgFI+TuHmTkS9/hfFBH/vJ9odx4VNT7rt6\nMviTxlsA1WSSkMtF33ceJRNJopR3cLkNOH02TD0/bh9YrVoCARPVajeJVqhm2bx0HV08jdXrJHhy\nmkrMTiEcRiaT4ZmdQ+YdoNqA8MVLPPs3LzN6IMDmcoS95X16pkYRTDZqpRoLtxIcnpxF/eobyJ0B\nYu/cRN5u4dYLNBRars8nCW8lkeoVjszNUL6xyMz500Ru3aHdkvCMjVAu16mnk4iVNm6HBqla5MDM\nMJIMpGYDXafEzkqMU08cR3fKTyWTQ64xcOvaFuG4yLuXFxk7PMwjDz+O3Sbxj3/1HJVqE9vgIDt5\nLdaajF6fjuTiIpVkFpXegMkgYNd36DtyFJPPh+IuPXpXqyLhcOHD14lEmf39IpFICbVaIJOpIggy\nVla6sfWzM262NtM06k0UCjlKBRw65CGTqWM2q1lZSRGP+xkZsaGopnn9zg71msjBk8M8dJ+H9XAN\nq65NJRrjzMlBXvvna7y0kkBjd3D6dB9SKsz/8hc/4Mj90xw71Y/ZpGR0wke1miZ29QqCWo3B46Ga\nyVDY2yPVp0GdzFCMRLH09xNdvIPnwAHQmTj63/73pG8v0qiLTD36OHmFg+iVi1TyNRpyAx1HL4pa\niQbQqLfQGTXoh4a4vVFDEORMTbk4cOC3b14EvhAjn5gPWjS/DXzgxvp5ECObm1lu3UpQqXTFyOys\n5xdOiVczGfLb2/C+7XR2bQ2twsrKnTt0jC4ENDid3QAsuaDAPzXKRmoTy2A3L6XdbNFpCFRLDeLX\nrnDk4cMEQ1aqySRGpxnfqSfA6MB3YJKeAR8mn5dOu417YoJCJIKpvMPetRfI7+5Sz+dRW20UYjGk\ndofB+++l44khyjSoLVomZ9rkKmAdGsOjqyN6VGQXb6D3uImWGqjNJmSCCpO2w3/3P50nHisyPOKg\nJVhZv1Wk4zDSKohIHSWdep3s8hKrV1fJxhQkK2kkmYItdEwfPINnyEZNq6NcWcdq1TA+7qBYrHN5\nPkJ/2oLXa6B/wEKf30SiLjAz48ZsUhK7cZPV7/4DiYUFlBoN/hMnAMivr9I7p+fA+Tk6nU432fQu\nY+7tJbu5idT+iSFKSSI0PYC/340kSahNJrRW6099bzdfBwp7e6x8//vUsll0JhNSrkX8Wp2Bc+dw\nTU3RbkssbZTZuRyn1ynRqeQ4++Xj2D0Onv/BApE76zSrZcbuO4bRbaXeUWAdn2T40UfAYUOj06A2\nW1AZjQQcWrSPzDJ5eACbsoZaLiIOHaLRllBPmDFrQKORsfnGBXw+L1pNnZrGx15OQSSSJpUsc/q+\nXpRSDUEhI769z8EjvTQqGm4uxskVOkwcGcLXm+X2UprbK3a0cy60fUMYFApURiMKtYalxX0mQwJx\nUx1ZsYnL2ebQERdiKkYposT2GWfM/DwEQf7+yjEUiw22t/OIYhu7vTtw3Ol0yOW6K+Vra1nknRa/\n//UJUpkaDVGiXLJz82qYxaUsNrsBo1HNrVtxnDYt6USZB75ynNhWnMROjNmTw5x7dBapUmDnapzC\nyk1Onuwl19LT7kh4vXreeeEWZpOCrYU1hGoWjVeHsqdF7voSsnqJzM4O5Xic3hMn0Og0mO0m0psd\nRp58CtvYFKmVFfaKGlaursNanqHpewmFLCym1CzeSTF3z2F27+zQbrWQZAr6z5yhFI2yuRJD19HS\n0loJGrutvLExO81mm729wocJyr8tfCFGPgEftGhee+21u13Kr4Xz58/zjW98g7/8y7+826Xw7rt7\n1GrddcFKpcnFi3sYjWqs1p8d+tQRRTqtFpIkUY7FaDebyBQK6o0a+4kMhUIdU08PSrWS6enuU4XJ\nokNQvG//rlRQl9npPTSNGF8lNn8ZtdmMf3YK19QU5UgUtbxD36lTCCoV+b19tt+6wP78VZwjg2hN\nBsrxOEafD6XJSksU6bREkhvb1OU6ZIKVne0c2VtZRoctnDnrJLUbIZJqEgwOozKZqeyHGRzuvgnq\nesw898MVkt9dZXjUhctlYGB0mPh2jGisRKfWwW7XMTgRoLC7haJZ4qGvf4k7awU0Bh1GjwubRY3b\nrqSaL2CT5fAFHJSaEtevx7m1mCDUb2Vk2MY3vz6O0mzBqpVz506KXCyJGNlmKDiNemeHWirF/rvv\nMvDww0iSRD2XQ6cVkAufj2Nic28vvkOHSK+s0BZFtDYbvoMH0dpsaG22j/2eTkcilapQqYjIxCqt\n3WUi8/MAKDQabIODQNc91D40xOpqmtXVNF51iVKiyaWradaubzAyE6T3wBixSAGTQUEtFSe7fIeR\ne2aRC258955FY7JwpGVnay3O0vwqkkrHocM+DFRAY+Tadod4pERiP4NCkLj33hD6wg7IBbbXEoyc\nmOHtm1WiqQx5tZp8usSdhRiOM30UIit4TvVz68oOVxYy3FipkogWCPXb+OrXp0C1i6pZohDrUM9k\n0Fqt1FMJNBYLtUyGdFNEn7zDhFmLmNln7Xu3GXv4/n/1uZ9/iVqtYHjYwfx8hHJZRBTbKBTdgLx0\nusrgoA1JAqMxTbPZJp+vsXs9ytyJfjQOD//r//wjIrEa7WZ3m7hYbFCptHj7zWWmeyXCa1EOP3CA\n+x6bJRots71bxmXXMHBwlDu34lTrYNDKia5t885+EZO/B2s4gtRqoVR0cId8FCJRMpd+xOGj93B9\nXqKYK6NRyzj91QeRR5fQPPAIi0kl5p0O+YSOZ/76NRxeK3qjjs2Xtrjn0Vmu3k7x8vNLqJWzeA0K\nFDoLTp8VtdFI1dXL3q0W8XiZcHiHbLaO12ugWm1Sq7Uol0WMRhVHj/qZmena3/+m84UY+QS8++67\n2O12xsbG7nYpvxZmZ2cpFApsbm4y8IFBwF3iAyHyAaWSSDpd/bliRGO1ojGbqSSTtMWu+ZKyWcLR\n18PKW7vQkdBpFcxMWvBoiqTW1un1WAi7dIhiB53QRJJb8B98AGtzkkoiTqfVQiwWiVy6hMHjoVUu\nU47HaVTrrF28zuL3fkglU2B7aZsHv/1v0VitNMpVipkiSB00Fiu5TJVYLMK+6ObWzTg9E0NcuxYl\nn6vx5d8J4c9luPBf/hZBkGF2mJE2FpmYPsLzF1JISi0WrwqFVsvLL63xR398mNFjU5idYVTacdwD\nvchVGmI3rjN67iyvX42ytVfB4bPTq7eQjOWZfytDS6bEbjcyPmTn2Re2uXw5gsGgopCr8fabW0yN\nWbEYZbx3cRe1zUEplScXyZOPNpibmKNx8XXEahW5QoHB50PndN71D6ufRK5Q4DlwANvgIK16HY3Z\njFzxs9/W2u0ON27EuHMnRa3WpLyzydCABWMwRGm3O39SjES6OSvv+2JEIiVseonyTpibGw2i8Tpi\ntcLCa1c4+pSFQw8dJbsTprCziS/gZLxXwcbb72KePcnFt9eZmfOTiWUYGPUhl0uMzA1z43aUnkEn\na+EsFpuLYZeNO+/c5JWXVvnaN2bxmwwkXrtCSjTSUcvpO+CmIsowqTvkCw0i0TKnv3QCl03JlSsR\nbry3TUtjRtZpsbkaZ3HRzcERHbm1DexqPy6LDI8PBLUJjB2qSgPV3DadZpPkXoxOp41SrUalVWIO\nBv+1bt/PZGzMgUIh5/LlfQCGhmyo1Qqy2Rq1WouzZ/uw23WsrmZo12vUo0WsRiUby5s8/NAAF+cT\nZLIN7C4jJ0/6UakEegIWvIN6oltRBKWCF55dYf7CClqrlZGpHnp7jGTCNaLhDBqrBY/biVel5fLF\nNAfOnsakbuEf8uMIuEh8//9B0JuQdq9x+sgQuv7juAeDaPLLNFUy3r6eIJ2t4xQVbG3WUeoN5LMV\ndrfS9A56ubNexu0z4+11sh0ucfgrY0zNBnC4uq1ESeqeAkWjZaLRMjIZeL0G3ntv/0O3WUGQE42W\ncDp1v/aZnbvBF2LkE/Db1KIBkMvlPPLII7zwwgt8+9vfvtvlfASZjF+o+pVaLT1HjhCZn+/2btNp\nzC47U0E/6XSdQqnNmXvsdHYWuf3POZrDDsxeJydm50huR8nux1AJ4NGMonZ6aTfq5DY3Ke7tUUkm\nqZXrmMamsbYk9hZXqVVEqrkSyGSI1Sbrl24w9Y1vsPPWBZrrOziHBtAH+7l9YQG5f5i1q8vUsg3S\nKjmlSpvE1j6njjjRJdfwmltUM1lSNzdICCpCniEsRjkHDwe67qu1ApVCk9s3wowErBx8fICVcItX\nF3M0M/uolW4mlG4q6StYhRZHjx/k1Tf2qBSriIUC7U6HhMPCwaN9pFNdUWc2qyjmqigFyGaqFPIi\n6c1tnCoNCq0WuUKgWpehCIzSNtxCYzRgnzqA1qDDMfqztyvuJiq9/pfyrkgmK9y+nUIU23TEJqVM\nnqV6g8MjY8j2w0jtNq16HYVWi87hAMBgUEKhQaktEN6Io7fbCB07SCWyTzKc4tSTI7gO6MluKFC3\nSrTXr9Jo6UmubrA8v0qP18CRg05qxQoao56XX1nEHvBREmUsLCTZ299gdMLL4SMH2dlKs5ZSU0jY\nCJx5GJvbzrVUjI4o0szEsRjUhEaCDI1YMaZuksqo2LidJ7+1iWN8HItNRz6eIZ0oYJr1YHU20YsZ\nBhxNrv7gWQSjFc/IIIcfOcbFpSwqew8WuZxSIo6zvwfX4ABKzc9vv4nlMqVYjGa1is5ux+D1/toF\nqlLZtTTv7TVx+XKE/f0ilUq3NWM2a7DZdASDViYmXNRqTSj3UI9sc6tQRFaXOHO6j2pThstlYGcn\nz87OPs1mB5XKwwO/d5r1lTgXXrmNXNbBb+iwenWDi8/neeKxQcRCBqPNSLWt5sCQnUIqy+ZWiqFR\nBw25BrVKTt/ZMyQ3tjA4XWiUHRTpbRQ9JmLLy7RNHnJJDRaPh0Q0RywpUlQ4CITMGFtt0qU2nUQV\npVZH/4iH8XEn04dCDA87Pvz5rVYtbreet9/eBUCrVSKXy9nbK1Iui3i9RpRK3v/Z8l+IkV+C/wM4\nCFznowm+/wl46P2v/wfg9c+4jl8bnU6HZ555hjfeeONul/Jr5fz58/zN3/zNXRcjJpOaYvHHWSM2\nmxaX6xd/yJj8frR2O57ZWQrhMG1RZGM1SX+vjuD0MK2NG+xGkljMGlRqgXI8TvG5H3ajzxMJHMeO\nEb38HpVkkkoqRXxhgeCpU5iPP8Q7r69QvX2TkYIVh1qHSlsndPoUTYURSQaNeoFyqcbMH/wB8a19\nBLWaN//6adK7EezuQeQyiWathlwhUMllcfd5KcciaKUWGqu1+8ZezFGudaBaxGYPUGs2yW+vkljd\nRKXT4T1hJ3l9hUKsl1dfvIPa7sE9MkQxleWdi/tMHRkkEq+RyYsk4kVyyTx+j5bs3v/P3pvGOHZe\naZrP5SV5ebnvO2PfMyLXUGZKKSlTUlqSJdvyomrbPRrUgmm0awboMQwU6tegFgxQmAGmMD2YqXKh\nqzHuKQNV3Xa5XJItW4u1K5XKfY+IjH1hcN/XS/Lyzg+mQkpJXiQrlbas908EGZHkiXuZ33e+c877\nvln0Oo1WvckdByMUy222Ngu0Gk1iI158PhmL1EVtKr3KgsuJ7HKTjadRBAuGod34ZyZZLLkZCzjJ\nLy1hMJmwhsO3TGn1VqJUUqhUFNLpGo1Gm24DGvUiHN6Nd3KSaiKBa3CQgWPHdto8g4MurmUzGPQ6\nvGEvudV1as0aFquEXjbRKFVJv/qv5BcXcY+N4erro7JawRlR2b8/xNyTP0JvNOB0m7nz8c9gC3bQ\nG/WcO73F5lqOekvgypU0xWKTzz40RCBg4/XX17m4IHDf/T6aHZFcTcTu6sPn0mM1donZm5z59n9j\n+J4jDAyPceXUEs1MClcsinPQzcy0n4C+QFkp0sy3yb7yUyJuO97JIGW1y/U3zrP7zl2cf+Y16nWR\n8Mx+9jxyL/mrF6gszzHx5S8jvU9y1yyVWH/5ZaqpFGgaOoOB4J49hPbvvyX3y2qV2LMniMmkJ52u\n3dA28WKz9YZr3W4ZkAE7StjDPb4Cr5+IU2kKaFqHeqVBNtNzsM1m6zz3XJ2QE6rFOrVcjsHpQeqJ\nBMlEm0K+hoYOrVFHJ+pROx3ERoGpYJs7947hsnSZe+lFfvaDFP1jYQ7/j99g+aWXKSfSxPoDFDc2\nQBR7wmeqD0VpUyppDI96mb+6TWutisVuotvRmN4T4tpCiWqtzeioG4vl5ranIAjMzoZYXy9x7VoG\nWdbT12dHUTpoGuhuCLCKoo5Op3tLrv3HjVuZjOwHLMC9wN8As8CZGz/7L8BfAA7gSX6LkpETJ07g\n9XoZHx+/3aF8pDh+/Dh/+Id/SK1Ww/JrqCP+ujh6tL83u1Bo4PWamZ727yw8vwwGWcY1ONhTe8xm\nOTKsceZSga7aIRdPI8sGorGekFdxbY1yPI5vaopqMklpbY301asYzWZESUJvMpFejSPKg2yvppCc\nbvJ5ha1CkcOHYqwtKlz4ySmUSoXxg5OMfXaKomJkK6ng9Js4/PiDPPu3/4jfYyTYH0RncYHVSrSv\nw659YZS1qxgmB1FqdbA48U756A8EGJ6dpLrc5vyLF8lcOo9okBge76N88SQmWSRfaKHW6iiNZVp2\nA1aHh3pNjyXgJ3nyJK6AE4NRj2yRadaaiKKOrY088xfX2H1onI3NMh63CZNBoz9q5o4pC7ZuCW/I\nhU6vR280Yh8cwjsYxRWSsAUeooKNxbNLFFZhb6zTmxvx+3sb9vvYxv8mQ5JENjdLbG9X0ekEPDYv\n5e11DDoN78QEwb17Ce7Z06Pz3oDPZ2H64CgZm4rkq/HKP61TqrfotoB6mbCjTUGno6V0SFxZQDTb\n8PdFaeoMbL7xBhuXFxEEgcBwjPAbp9kzMsVmXkRtVHE4TXTLKh63Ca1axGfvUrpyir39Vs6vw8pK\ngcOHo5RKTS6e2UCOuDky60K3fg5Z0hM/dYq9j42TOz7DdlrBHnIQirqY3uWhXqphCoTplPI4+vrI\n5es0OiLpTI3sXJbPHLiTQ196ALVeo1lrkrlymfLcRQwWC87+fiKHDr2HUVNYXaWaTO487rbbZObm\ncA4M/NwZnV8XXq8Zr/dm4bVms0MyWaFWa+N0mggGrUg2G+MzNpx+N8VEmtL6Ki++sko3nkMW7Qjt\nDpGQnrnXz7H7yDRqvYaotsitb2Jzx9C6MqLQQalUaJRK2F1utuaWeOWffsbdj85ybXWO+FYZyWJi\naUFPOfUMtpEJlLYd1R6gvb1C+tJVfDO7GR52M79eZnBskq1kk8ce30uh0MDpMHD3vQOkUzXQ9xKt\naNSOz/feQVSn08zRowO43TKaBhaLkakpH8vLBUSxl42Mj3vxeH5+C/u3CbcyGTkEPHvj++eBO3k7\nGVm78bUF3GzD+RuO733vezz++OO3O4yPHA6Hg9nZWV544QU+//nP37Y4QiEbwaCVTqf7K9F63w+i\nXo8tGMQGPBTxUSzUidcHaOdT6A0inWaTRj6P7HKhKgp6SaJVrVLd3sY7OYnJ6cTq91MVZLpKT/xM\nb3NgtFrpigaSBVhbLeIeH8dkNmKNBjl5scygN09pK87qi68wcGCCr/9vf4LW1ehrWjjz5hrlzTiC\nQ2K6DzzGEHqLBcfwOF13A4PZjHNymjNPv4bsCzG7x4VLHEcSu0xNO7n4j88wcGA34cEARl2H4vom\nVo8Tm0HCI5lQikWyWykKMQ+H7giylaizenUTQdSz/1AEpSOQzdfZO+Ohq7pxmjpYGin0yydRvR4e\n/uIe0i07xXILh8ONKOqo1VooikpqK0clkaCIE6G/tznV02mKKyvIt+hEfKtgMomEw3ZSqRqqqtEW\nZfY+dDdy2EXXoOEJWXfaM++ErGshC03cucs8+EA/ivkOsrkabq1A7uUfE7n7KE21519kdPkY+uz9\nXDgxT2ZlA0mWkPQQ8eiwCVUkXZ6azU8+UyEQsNI/ZEbWd6kXFIR6mbM/PYXaFbjva4+B2U61qnD2\nzXWahQIbokIi0GXA5sAWidJuNGhcOclnDsxS7HqRYmN0lCaXf/p4qjNvAAAgAElEQVQylXSO/hE/\nI26JZrFAcHI361loKSp6k4ntbAd3t0x1O0lT1eENhHBNqjSScRr5PNVkEue75kea+fx7rk2n2aRd\nr3+oZKTb1Wg02phM+p0N9pehXm9x4UKStbUS1WoLo1FkZsbPzISDeqGE0BWozZ2jkimiVWskF9eo\n1lVG7ppFUsuU4wl8Yh/HvzjL2noBrdslErZw+OgoueUVjHpwB9wMz8TYfm0Fk9dLt1kntbyBzRdC\nUXU36MerHJjegylgJ3H5KrJeY+j+Y5i8PqwtjaEj91BoGIj0t2m1OrjdJkIhG4GAhcOHTVSrLfR6\nHX6/5eeudQMDTlS1y/XrOVRV5StfmWRjo0Qu18DnsxAIWIhEfvsqlO+HW5mMOIGVG9+XgPcT5Phz\n4Nu3MIaPFN1ul3/+53/mueeeu92h3BI8+uijPP3007c1GYFeifLDJiLvhiTpCQTtSHcdYOO112jX\nagCYfT7cIyPE33yTbqeD4UZFRHa5eslIKITaENG5PRhyRpz9A4gGPSadDqPdTHT3OI16G6vLRqNY\npJ4vsHrlApdfvYjVbqaQziIZRKz77uH0hQRmoUV0XwybpBLfLLEtB5geGwG3Qmp1kcDABHNXk1z8\n8RuMHt6LrpQgYlBo16oULjqx9A9RVSUiQRfuWJj0tZ6misEk4fGZGRx08rX/+THWl7P0D9rYf7CP\nxV1B9EKXfKZMudTk7KvXuTZf4K67+5g6GsWh1NGVqoQPHMA1NMSkLFMoNHjjjU1++tMlSiWFWMzB\nnikXCbpEY3ZUpbxzbRvvszH9pqPT0ejrcxAO22g0eroUuWyVf/nuG5h1LSanQ+ydshPaNYnlhrS9\nUqmw/sor1NNpWsU81bU1nENDDO3Zw7X/9hMq+QoOwUYlcpByrYspHESR3IxM97P38ChKXcEmg0mv\nkry+wqDbxVDQy30PTvLGGxtEgxLp+QUCThOblxdoKwrBoI2xMKQ7On70k2WyiTzplU127Y4wd14h\n9MAAeqeHzOoF0qfnsF9d4rP/6//CWlGlqzfgjISJZ7pslmVmjs3iyyRRdSrUqshmO7GZ3YhWF5HB\nIE9fKXD59TlcXjNDAw7ufeA4mtalVa2+5/qZfT7yS0s3PWeQZQwf0oX3+edXyOcb2GxGZmYC9PX9\n4tmHdLrGG29sculSikjETiBgIZ2ucfrla6hxkfmXTtE3NcDmydNIdivDsTDXLkmkE2nahRwGWcfo\nqI/Uq89yV7Sfu48eoJgawEINQ6dI1mRnat8A4/fs40fPbdKWwlj9afRmE61ag+m7vKxtN4mvZRgb\njuKw6Tj1gx9TzpbR6QXUSoHpf/M4Vm8Mz/gQmUydF19cJZmscPlyB1Xtcv/9gzzwwCCxmIPt7QqL\ni1n0epFOp3tDQ0XE5zPT19ezmRgf9zI25gF6RpD9/U5yuTqSJBKJOG60qn77cSuTkRLwVsrmAIrv\n+vmXABfwTz/vBb75zW/ivFEGnpiY4PDhwwwMDACwtrYG8LE+vnLlCg6Hg8nJydvy/rf68ezsLP/x\nP/5HNE1jfX39tsRzq+Ds78dgNvdKzIJAu9EgfekS1kCAei6H2ukw+aUvoSoKjUYLzRVhYHaITTWI\nkxYmuVcR8HrNBII2cvne4tDtapQzBexyk/WFNTqtDvVqA7vDxfbiJrFYhq1UC52i0ey00JltdA0G\nrF2Fiy+eY2Q8wPgRK1euZdGatZ4fRrbK6Pgg688/iy9go1RuoQhWbC4/z/znp9h3/0Gm9vVTbYJ3\nbJTVc9f4/n9NUGsbCPklfvD3z3Hsy3dx4NgMTruBy2dr1Ast3nx9AbPPg9bV6CoKZpMOvTmEe3gY\nvcmEpmlcu5YhlaoRidhRlAIbGyWsFpF990wx4FJopd7eoCyB3z7xJafTRKfTpVpVCARsPPvsEpQz\nUEiis0pcObNGNDBB9/RpRh58EJ1eTy2Vop7JAGByu5ErFaqJBO6REcIHDmAYnOapJ+e5eGKhJzd+\ncA/JtptDBwKMHT1IdWme9QtzJLJFQv1+RKef4txZjt37IIoSRK/X4+j68FlV4peuMjXpI7OdJ75R\noOX1kErXQRNxuCzs2RsksbxFtd6hXr2hhVJrETl0iPObJq7N58jl6rRKBcJeBy8+fYlatcW//cpx\nTIJCeG8dU3SIjOalWOlwYaFKuiFj9riQrSKFushSRs++ARWT472JgXNggPLWFpV4HK3bRS/L+Hfv\n/tDturW13rZQLisUi03uuaePQqG5M6QZjdowGvU0SyWSmzmef26ZzUST7ULPo2V62s9gzMyVEwuE\nLX3k02WiYyr1YhGjWaK1epXHvjzL6TMJ3ANhpveEKZx+hcT8MtL6BiOSSMws0dWJlFIJwqEoer+L\nZgc6bZWXThWIBMfx7vWzX2yjq2aI2tvYdwXZ89ARslevklpPopfNeLxuJG+A9PIG9vAeBu0SJ05s\notMJeL291nel0uLixRQHD0ZZXi6yvl6gVGoiCDp++MN5KpUWo6Mejh7to1hsMjsbRhCEHWFBo7Hn\nzfRuf6ZPAm4lOXkf8O+BbwD/D/D/8nabZjfwfwCP0mvVvB80TfvN6uB861vfwm638+d//ue3O5Rb\nAk3TGB4e5sknn7wt5n+CIPBx3fN2o0H6yhWKq6tomoZ7dBTv+DilRJrrVzZpdCXqOiuaIFIo9Kh0\nwaCNqSkv7XaXl15ao1ZrU6u16NRrTLorPPt//38YjXqcATe5QguLy8HMFx6moPPw+uubHJwN0VHq\nbJ94nWsnriDqYHDUx9f++CE6Dj9nTqxhrW2ipJOMTQXQCxrZjTjGQAxddJLNrQrr81s4vA7uv9ND\nWxN55WKTyy+fp23xc/lKisERL0NRGUsghEXWcfdBLy//+BxbGyUMLi9mp4Mv/94M4e4m1WSSyMGD\nBHbvplxWmJ/PcPJkHIdDwmIxkExWqVbbuN0mHjnqo3D2dVrVKoIoYo9EiB05gmSz/dr34lbe93y+\nwfp6kWq1RTBopa/PQSpV5cKFFJWKwptvxjHkVjHSRCf02gT3PTRBwFBk+PhxzF4vmbk5Fp56ikau\nJ0+uE0UKKyvE7r4HpdmiIMU4cSbDyrVNgmND1EQHme08v/9HB+gP6KktXGD99RMEBiP4xkbZvnwV\nySQx9rnPcWJJpFlroCyc4el/eImAz4TTJqLqzez9yqOYw328+toGmxtFvvj5Ear5MpfObfLZL0wR\nJM21p58lcMdhrpec/Oina/iifhYWsph0HabGbHTyGSx2mYePBZkcc1BPpRD0elyH7mM72+GZZ5bJ\nZxt47F0o5+jUa5itEl/5t3cwuG/ifV2Y240GtVSKjqJgcrmw+HwfSoVXEAT+7u/O7Dyu1VpEoz1V\nXEVR0ekEdu3ysWdUZvPkSVYzIq/+bIFqXUVz+KjpesnSg/dFmHvpFNO7PLSKRayxAdZefZVcPIPb\nJeF36vCPjxA8cIDC6hqoHSSLmfzCPM1SiYG7j9DQjJhlA6lSlyvnt3GFvYzvH+HMxTxvvrrI+KiL\nvYMCpmqcxtJVzP0jqK4YGy+/TKNQwOJ2YPG6MFosmJxODv33/wbBKPH886v8y7/M3Wh5dohG7Rw8\nGOUznxni9OltdDqBQqHB88+vcPp0AovFgMMhsXt3gM99boxDh6J4vZ8cYbMbn5P3/bDcysrIeaAJ\nvHLj+zPA/wX8B+B/B/zAM/QqKF+8hXF8JHiLRfPb7kXziyAIAo888gg//vGPf2udiH9VGGSZyB13\n4J+eRtDpdgb1ipqdxaKNdruLpjURBHC5TNx1V4xw+O3e7IMPDhOPl2k0OrRaHRzdAv6+IAa9jvnr\neaxOG0abjeubbTZzSUZHPRgkA+1UlpWz19B3m6B2SaymWD0/x/3/bhqh1cLQddHZtrD4/EvY/D5C\n9x7nynyZ0nqH1HaTRqmO0WYFs4P50yuUyyYCuybJ5BS6apJUssqDX9hLvtQmeeo1lP7dzA7rmJkc\nQnbaGdk3gkOoUs8K9N19N66RESoVhR/8YI5z57ZZXS1RKNQ5dmyQXbt8eDwQDRjxhDx4Hn6Yei6H\nXpKwBAIfWC68Va9TyZUw2OzYnbd+SDqfr/PCC2vk8z1K6Px8lqkpH3fdFcPns7CyUqBYbFK4nqGR\nu6FPY9RjNeuhDbp3bMTV7W3q2Sx62UIlEcdgsVMXbSSzaRSLgqpqTB0/QmIjh1or0alViS9vs3S2\nyOe/uAejqKIDXvk//4Z2qYAt4KNUruPZdy9NXwx33904nBZyG3G66PDPzHAtLnAgBl/83DBz19Kc\nOZ9i7mqaYNDKayfTjI57OfD7f8DiUoGFpTQWScBAi0quiOC0Umro2Dc7QXlzA8x2OrXaDm3Z7TAQ\nGQyQTteJxyugdWnZTZhlkWDMS9cRJJ1t4veL75nlMMgyzhsVzY8SmUwdt/vtjbfb1UgkKrjrqyil\nEo1mL/E1GaGUy2COOihWVPR6kb139KEVUkihPtaWkgzdfQjPZpxCKkdwxIbVLrHy46ewuJ3YojG2\nzp4nH0+j14u8+eQrWPuHmH7sUU489VNatSYWu4zHqefwuMigI0SrKyILDfwjAxhGo7SKBRShi+HQ\nbpKLq1jdDhwOE0ajnsj+GTAYOXlyi6eeWuDEiS3abZWxMQ/z8zkOHYphNvfYM6VSk1qtTTpdR68X\nMBp71zuVqlKrtWm31fe9Vp9E3Gpq7zff9fg/3Pj68C1+348cp0+fxmKxMDU1dbtDuaV49NFH+au/\n+iv+9E//9HaH8rHAIN/cb63V2rRab1PlNA3y+SaVys0FPJ/Pgs/X21DPnt0mmbHyyDd/n/mXT9HQ\nbxOMeXGMT/PcWYX19SJ79gTo73dwda6EUi6jdlSMRhHZqKHWK5SXF4j/039BcvvoVCsMHT5AVxCI\nL6f4yXffILxnN7bBEbRihUq1Q6msIEf6kYUulaKK3w4TbSN6XRen20olGyc2HEJIrSKmVrBJEmJG\nwnfvCP5dh276W1ZWsrz88iqlUgu320Sh0OD11zc5fDCAmFqCYoHljIxraIjAzAz6X6JD8W5omsb2\nxctcfO5N0okiVo+TiWN3Mrx/HFl+78n7o8LqanEnEenFAcvLBUZHPfj9FkZH3eRydS7WyyjlMqIA\nU3tjWLQK7uFhTA4HWrdLJZEgcOAOrr/yJs1Wh65kx7N7L0o2TXnuEt47bLTTWzQNerLLCaqpNKOz\nExh0GplChWalhmewn9WfvYAr7CevEzH4Iqydm8dc0AjdeS/XdH6uF0IMjfej1iqcvlykUGwT9Rs5\nn6xx5P5xNhN19uwNgSBSqXd443Sa4fEZjB4Jp7vGxvVtuooJh81IrVzF6QoRHQ6SVBv4PTKN7BYI\nAs6BAcweD4IgsHt3gEKhSbPZwRfzo6oac4slttMKRqPI8LCLgwcjO3b17bZKIlGhVFJ2XHo/Kit7\nk0mPw2Ekna7f9HwlnUXXaBD0BzBKvc+Lyy5g95sYGXeydzaGsFWmmNdx9c15kq9fJH1KYvrRB7jz\n6EGKl88w/7PXWF1IUKt3ePAPHkZoNbE6zGznYXW7Tl97i75ECos/gC6dZNfsEIntKnM/eZHp3WGM\neh317U3e/E8/Qi8Z8Y6PM/Lgg4zf9zC5+Xkq29sA2CMRxNAQL7ywzupq/oZsux5FESiVFGZm/HQ6\nKna7hMEgYjYbKZUUfD4z1WqLWq3V001BQ6cTcDpvv+XCx4VPRc9+RXzve9/j937v926rKdjHgWPH\njvHVr36VQqGA6338PD7p8Hhk9Poed7+3YOgwGnXvqwDbaLTJ5xv4fGbsdolUSsJ/zwMYx4sYLFYy\nxQ59fRXsdiO7dvkIBi3o7hji6tNWGrUmdruR/j4nbpuud/LejmOUjGy98jJbr77EyOP/HZnl6xw6\nNslWUaNa62AdHOXQPg9to4rH72azkmImZkJrtxCVMh6PGSW5RcjS4I4HdlO9eILqDaqyPRJ5X8bD\n9naF1dUijYaK1WogEunZwJvUGrrSJma7EaXUInnhAjpR/MCaEpV4nDd/8DM2VrIAFNNFasUqosXK\n5N6BD3WffqX3rby3A9xqqShKT+XXaNRz+HCUgQEn6c1+DJ0qNqGO3e/BecOtVu10qGWyLFxLou+b\nwh9y00wn2JxfhHKOUqqEbekCd953mPPnE8T6vZRNXcYiIiN9Mn7Zz8aJE4SCZmqJbexeJ9ZgkEw8\ng0UCn03D2C7h9IZ56KER5t+4SHojg6iTmRo0cf6nr4E9wGWnmWKmQsTZYXD3KBoCrVYHWdIhBSwM\n91mYP68nsZmlr99NvqAwNmwnU2iz//49hFwVmvogzv5+3CMjKEqHfL6BwSDywAODrK8XAYEzZ7Z3\nqPStlsrCQo5w2MbwsJt2W+XUqTgLCzk6nS6iKDA46OLIkdiHTkj6+x0UCk1sNiP794dYWMju/EwQ\negJnTmOY/JU01m6Bg3cPcfVSgg46hsaDHLyzn4EBJ0pgP83nX2D78jyVahvBZOD0U69i6RSpbm+T\nT+bR6QSCQSvZy5ewBfw0slu4FJX+mRi4HYh0OPLILJraodtuUc7ViU0MUVy8jKC2uP7DH2Jy2pGd\nTnQ6HclLl+i75x4G77uvN8wtCFRViTNn4mxvV9jY6FVORVGH221EFAX8/t5aIUk9UbeVlQKNRpuJ\nCS+lkrIzVL1vXwiv10y1qtzShP03CZ8mI78CNE3j+9//Pk8++eTtDuWWQ5Zl7r33Xp599lm++tWv\n3u5wPnaEQjamp31ksw2Wl/NsbZXo73cxOFjF7e4lKtBzEj1xYpN8voFOJxAIWLnrriiVipPvf79M\n8loao1HE5ZLZvz/E4cMxJEmkmQnyhT+4n7XTFyin89hkAd/wINmlxR6Dp93GGg5T2tyiWa1RWt9E\ns9Z57H/4fSpSiBde2uDslRKCACsrm2iagCSJ7J208+CxKH0BHfV0iuZWhtQzZ3ry7QYDtlAI79TU\ne2irmqZhNusxGvU0GirVaptarcTsPh/GVhGL3fjOXya/vIxv164P1KLJrW+R2r55fr2QzFHYztCa\nin74m/VLEApZWVzM8c5xFKvViMPxduxGo56+PufPNWPUG43oXT4y25dQ1TyptRR9ExFcATfLq+sY\nJT06TcVvKHP3uIAQClLMGElcmiMXcnLq1DYjgw76QxGcfUk2T5zAOz5OKGhFlGSC+yaRvVZsu6Nk\n1uJE6tcY2D/B6deWuPjmKmqni33QTLerYXdIDIz5uHZxi5MvL9BstLj/4Skefmwauxk+89AYly6l\nMJok/uAP9+GSVVomD4GQHWffIO1hFVk2cHUhx7lzSSRJ3DmhHz4coVhUMJlu3hK6XY10usbwsJtU\nqsb167kdkS1V1VhZKTA46PzQA5XHjw/RaHQwmfS02yqVisL6eglV7RKJ2KhUWsTNNipNGf3iNpF+\nL9HP9GOODREeiSLLhp4/TblFvVTBPxQhWU2hKCqyXiC3vIJvMEpKEDGbDdjEJu2qAOEgSqlCenGJ\nVqnI8EMRNKuHp55cYHW1iMWiZ9++EPtGhrnw7E+QxTaVUp12o46m9P7Pi04f8bU02cUmwaCVaNTG\n+sUUuVwDq9XA1laRAwfCPPPMEg6HEbPZiN9vYWLCiyjqmJjw4vWaKZUapFJeHA6Jer1DX5+dWMzB\n5mYJj0fG5/twTKXfNnyajPwKOHHiBBaLhZmZmdsdyseCtyi+v4vJiF6vY3Y2zA9+MMfmZolarc25\nc9skEhW+/vUZpqZ8N/xNkmQyvXKyqmpsbZVZWSliMOiIRu2UywrVagtJEtm924/JpGd5OY8mQHBq\nFIvXib7bQegodHV6kvPLWO0WGtk0nrExRMmE7HJhtNvx7ZlmebvLYjJOJlNncNDF008v0u1qtNsq\nhw6GSVxfYzIUpbkWp7i4SC2Twezx4BoYQG02sQQCRA4efM9AYqulIggCjz02zlNPXadQaOLzmTl8\nZwxzd+0910fQ6XpH1g9yTY0G3q3oL4o6dKJ4Sw2++vudjI9Xd1xfbTaJ2dnwB3Ybdo5NEp5cI7W8\nSVft0lJFxh75HMbQAEaDgF5rs/jUUwjtKpHjn0PJNFnbLBM6ZKCSzXMhm8Pq93Lk6DHq2SzmUISG\nLUa+YUAwBPHKDjrlNnZjm/ziInajja3FTUwGgY7Wxe02oe8q3H80RjxZ56WfXgZBINLnJrm8xUv/\n2uIrX9/L0qVVrLNeZElg7ifPEhwbpeESqTU6LC3l0et1FAoNTp6M76gcj4562LMnwLVrWQYHnRiN\nIq3WzXMKdnsveavVWrTbN6t9drsapZLCh4Uo6rBaewmvXq/jnnv6mZiooapdTp3aJputk9UJ+Pv3\nY9LVsEatBAdDmD09Nls+X+eNN7ZAbdPerlGvtxkYcJHJ9Cj8gYEQXcmMPRqlnU3QyhVwRMP4p6bZ\nePMszVoTBAHvzG6eO5Nhc7NMvd7CYNBx6lQcpzlCdM80Qr3A5okTmIM+dF0Foy9MoqJHt9VgLdPk\n2rUMQ0NO2m2VM2cS7NsXxO+3YTaL/OmfHqFSUXYG4IeH365O9gTdzIBANGrHYBBRFJXl5cLO9fld\nwafJyK+Af/iHf+CJJ574xLdo3sIjjzzCn/3Zn6GqKuJvkCnax4VEosqlS2nm5rJkMnU0rTf8+Nap\nplJp7fD83yppC0JPjOnq1Qz1epuxMQ9Go4iqdkkmqzidMufOJfB6zMgthaUXXqNZLOKPeokdnEWO\nDKDr1nGYTaDTccc3/j3y4CSWA/exkNLzL/+yiM9n4dix/necTLs4HBI6sSfCVC7WiHoNNItFVEVB\n0OuxBIMYLBZEo3GHtfLOz7HRKNJudxkZcfPNbx6mVuuJSEUiNnztNulLuR3DOAShRwM2fjDHXs9g\nP/1jYeYvbexIHPqH+/D2h9Drb93ny2TSc+RIH+PjXlqtXp/e4fjgPXhP2Ivv8L04xnPoBIGaZiLb\nMeDy2cmtbWBoVXF4bWgdEza3g+TJVSYOTdMwumiLJkySyPZ6jsqEg4kvfZmVioNTLy1QrdQRNlIM\nzpjZY2lRTdew9/ejZeNMHxhi8eIKRlnCEQlhstvYPdtH6icLTO+JQLdDp1qlnC6yVK+iPXEHsZCJ\nysY8+VKNkb3jFKQwc3MZdu3ykcv1ZmfOnk2wvl7E6TQhCAJLSznGxtykUlX27QsyPOxifj67c8sD\nAcuO74nNZsRg0N2UkPTmGj7YIPMvgl6vIxSykUxWdhKmblcjmW2REgzo3FaGbiQimqZx/XqOQqHZ\ni7VvCHEtST5fYaDfgaAXce3ah85goFZqYOyP4vaYEY0Sy6+9SXDPbvruuhNJNtK1eMmnU1gsRlS1\nSyJRpVhsMjXh4ejMNOVEktHPPkr8wgWCQReaO4J3ZJpqV8br7VFv19aKTEx4d1yhR0ZcOBwmTp+O\n75jaFYtNDAY9sVjv761UWphM+h3hs7fuE4DDIREK/W5UReDTZOSXQlEUvv/973Pu3LnbHcrHhv7+\nfvr6+njxxRc5fvz47Q7nY0e93rPofucgXbvdq34UCg3MZgNms4FqtbUj2mS3Gzl8OEaz2eH8+SSy\nrGdw0InbbcZuVyiXFfR6Hc89v8L+cTs1OUBbs7NWVCm/cg6r183U5x7CZjdhDQYx+YK8fjLBWqFD\nqdZg9+4gNpsRUdQxPu5he6tEq9FElnRoOhXv5CDhqJHK6hKtSoV2s4lnZITE4gbFShu330X+X3+K\nxazHPzaKZ3wcgywjCAIzMwEuXdymUm3T6XQRhN6JLeTfg95gIL+8jKDT4R4exvshnKrNXi+HvvYo\nzug5EqsJ7JEIg7O76Rvxf5S37X0hijoCgV9vQTca9eyaCbG2oFLP5hh0dhAaWaSgE12rTiGh4b7r\nM0SnhhG1FnfYB3jjbIbUhRTeiA99p4Gm0XOCdnpZmFdYKVopFBtUqwo5JYlJMjAUsGMfGqeR3GLK\nZSMydIRCSyI8Ncqe2X7CMSde9zql9fWbqNB2txWDpKfsHUM3YqUWrzK/pmCzNTh4MMK1axnW10vc\ndVcMVe2iaaAoKiaTHk2DSkXB57MgSXoOHowQDttIp2vY7RKxmH2nMuL3Wxkf97CwkKPd7s2MDA+7\nCYV+fXr3++HddG9NezsvbuTzJK7Okzy5iMvlReeLUldD7Hr4PtLzCwiCgGdsDGN0iOERD7ZYj2Uj\n66vUFy9Rz2aIr66hNFvs/erjKA0Fr89OMldgZaVXlQh5DYj1PKV4gW4pz9Dx+xg9fhSLrKNmChBv\nONCJIufPJ9jYKJHJ1Pn858f4whfGOXNmm7ExD2fOxLFYJKxWA6VSkzfe6Bn2eb1mPB6ZZLJ6wxTQ\ny5EjfczPZ8lkathsRiIRG9vbPcn7UMj6ia+SfJqM/BL85Cc/YXp6mr6+vl/+y58gPPHEE3z3u9/9\nxCYj3a5GNluj1epVF97pf+NwGAmFbqaeSpLI4KCTWq2F3S7h9Zr54Q/nmZ/PIQi9U6PTKTM46ESS\nRGq1NqurRaxWI+GwDUHoLa6bm2VsVgP2UJQLP3qJRqXCkfsmcPT1obPY8U+PYbLb6XS6NBodgkEL\nQ0NO0uk6qtolm63hkDpMRbosXdqilVMwmc2M75+lb0gikXPT98CDdGpVtq8tUNOsOGIRNs5coNA0\n4nSZGCsUaNVq9B05QqtWo7M5jyezhK0r4h4dxzs2uDOwG9q/H9+uXSAIH7gi8k64YlEOfz1Kp9Nr\nC/22LaxGpYi0eR6dCoVraxRXV9AHYlSwYzJbcYxMcnmpzJC/C7UK9a113A43stOK3uxndNzP4L4o\nJdVK/MfnWV4p0O1qjAzYECtp4pfKeIdEghE3aU2gVqmye78P3/go3qGBnWrWrr0xZu4c59KJeQDs\nLgsPPX6IhmrkZz9b5tVXN7BYDHi9ZhKJPA6HDPQ+d4lEBbtdIhKxUa3eoDIbdPj9VkZG3Oh0ApKk\nZ3jYfVMr4a1qml6v4447IvT1OSmXFaxWA8GgFaPxo99GPKEErPAAACAASURBVB4zfr+lRzu+AYNB\nx8CAk2a5zNpLL1FOpEgvpajXrhMcG8A8fYiVip3RYw+zZ08ATWOnBeSYidBVmpSuraIU8/TP7mXk\nwQfpIKJ3+clk60T6Q5y9mAEEomGZPksVYy3Fj374M4b7rNiWtzj6776O0CjTlJ2oDYG5K2mWlwuo\nahdV7XLhQhK9Xsfu3YEbw+8ikYidubnsTjurx0ZqkkwaGRpyoWkaGxtl/H4Lx44NUCw2uXBhmzff\njKOqGq2WyvS0nzvuCGO1fnRVqN80fJqM/BJ897vf5YknnrjdYXzs+NrXvsZf/MVfUK/XMZs/OaI7\nAIrS4fTpOCsrb80SGJmdDe8swE6nicOHYzeGWAuYTHpmZvx4PDIWi5FksqcB4HCYGBx09obZRIFW\nS0VVNYaHXVy9mkHTNCIRO0NDLkRR2HHmXLieZ2Kkj+mvPIYsqgxPhfE5DTht+h0nXL1ex8yMn2vX\nMjz77AoLCzn8fjPHjw+TnV9AKia4/4ERavUOdruEy5Ln+ptpVq6kwWAiEnOimX1Ex0doZLOU2xKt\nVo9BUa0oSOvr1KemSF+6RG5hofeeQPXaGbx+K7gGd67XB9UT+UW4lW2ZW4WuqpK8eBGlVMLs87G1\nsoxSqVGqbZDWPKwsZhneaKDvm8DYKGCrrXP3vQNsJDsoSoeRCQ9HH7uj1yLKN5AkAxaLAb1eQCgn\nSWxuMxwZ59obC+SDVmYePkq1bcA5EcU3FLoploERP0/8T8e5fnSSWqmGfzBIOqPwn/7zRdLpGmNj\nHk6dipPPN/D7LTSbHYzGXuK3vJxndjbC8nIBTdNQFJVdu3w71ZB3o1hsMD+fIx4v43SamJz0EQ7b\niEZvvReKwSBy550xLl1KkUxWkSSRyUkfsZiDwvJST/PFIBIKWVldLZJe3mTX1C7ymozPZ36PC26r\nXqdy9QwXX72G3SxgMzSgmSJ091HKipFKw4TQ1Xj00VHW1oqMD8i01udYfPUUFpuMbDHSzmyz9Oxz\nhPbuYXB3kKZY49VXN4CeiV0kYqdUarK6WsTlkmm3u0Qidmq1Ns1mZyeWQMDCxkYZnU7AbNZz+vQ2\nuVyDZLLKww+PUCo1eeaZVZrNNpVKi2q1xeJinmazw8iIm9FRzy2//rcDnyYjvwC5XI7nn3+ev//7\nv7/doXzsCAaDHDx4kKeeeuoTN8i6vl5ibu7tvnippHDmzDZ+vwWbTcJo1DM15aNYbN7o2fb64hMT\nPjweM+l0pmc/39WwWo1omkY8XkYUe4vLyIiLiQkfBoOOgwcjO6ez3qBgmKWlHOU66C02JKlL34Ab\nj0tCJ4okzp9HL0nYIhEsFgNra0UqFWXnJHvlcpK7BvXQbeOkgNfSRa0rpJbyKAYn2+tZ8vkGmwsy\nTp8Dw6CZfLZNo9FbDLWuhtrV6KoqrXKZ8ubmTdem226TX1rCNTjIp+ihXa/TLL7NBuqqKhoa+WSB\nmmymK4hogp5ksoYiNLh7zIVDqjNwwENXE7Da2zutDrdb5t57+0ina3TqNUpLJe59YBJTt4zJ70A0\nSSRW4sjj+3GF3mvYBzAwEqBvyE9qdYurJxfIrxcZi9qYm2uQzdaZmfFz9myC/ftD+P0Wut1eW0DT\nBKamfNx9dx+tVq9N4/NZ3neIWFE6vP765k5lIpdrkErV+Mxnhnb0dW413G6Zo0f7qdXaGI0CzUya\n1MULNIpFLH4/zWLxRmVGJJtt4HLoGT04uDPj8k7UMxkMrTJDQ06ymTrJKuRyFeRphWTXQaPRQZYF\nwmEb7bZKyNXh3NOX0apFwkEr5k6RXHILTZtBNVppCUZ27bIwPZ0hk6n3qPAmA9lsDbdbJhCw3Ghf\n+TlxYhNJElFVjaEhF8GglQsXUhw8GOHVVzdYXy8BPYbeK6+s43RKxONlZFnPtWsZBKFXyW02O5w5\ns43PZ8bp/GT40bwTnyYjvwDf+c53eOyxx3b8cX7X8MQTT/Cd73znE5eMbG9XeLf6eKXSolhs7rRr\nPB4zDz88QipVQ1E62GwSLpeJVKp6Q/9AYnLSy8mTW2ga2O0mYjEHHo+Zzc2emdyuXb6bpJyDQRtf\n/eouLl5MUi4r+P0WZNlAw2Ags7lKdekaqD0zLcwOTOMHaDQ6jI97EQSBclmhVG6BO0xpo8K1pIGh\nAQc2MUdHaqMzylQqLTStx3zw+DrUOiK4wmhrcQRNw2wxYrEYsPj9GCwWtO7N7AjoJSSf4m3oZRmj\n1UqrUkHTNGzhMLmlZXSSREsFg2TAMTTI6qqGRTIhB3x0cklauTRoGuahO24aGj54MIIgCHSbDSpr\nJqROGb1tgPnFEsliE6fNy8xM4BfqS5Q3Nzj//R9z7uQq6XQNs8PG1x85xrf/cZNg0IbHU8ThMOHz\nmclm60xP+9izJ4jNJtFodHA6Tb/QYC2TqZFM3myUV6222Noqf2zJCPRUoa1WI+mrV9k+fRq11aJZ\nLNIoFokePIiayeD1Wgj1+RjeOwhmM9ev56hUWni9MuFwz9tGU1XQNLxeC16vhVKpSaul0mq04Ubh\nT6cTmJnx4/WaycYziHY3znCXoE+mkhfx3hHDObWXcluiVOp5Gx04EObcuQSqqtHtajeSzX5GRtw7\n98/tlpma8rG9XaHV6pJOV5mZ8WOzGXfWCru91+ZNpapIkh6HQyKTqaOqvYVKknoVxUqlRbmsfJqM\n/C5B0zT+7u/+ju985zu3O5Tbhscff5xvfetbLC0tMTIycrvD+chgs7139sFoFDEab24hGAziTkm6\nXFZ44YVVkskqnU6XVqvD9LQPt1smHq/Q12dn//4QpZKC3S4Rjdrp63O8h4EVDvcsxHO5njvu4mKe\nqFdH6rXXsRja9PU5WF8vksttM9i2kkhImEziDounUGhQqGikkxU2qzWW55Pc99Ak0UOjpHNtYuOb\nJNfTGE0SI3cdwBAKU+wU2fvgXRTXVjEZdVgi/YRnZzE5HJi9XspbWzvxCTodrhuCX5+iB1GvJ7B7\nN0q5jFIq9czxLBaMFY1WUmNgeJTNkgmj1GF4/xiWiEhWtKEh4PHb8YyN3fR6druJw4ej5DNVNjNX\naetdPPmjZTLJIjpRh2p2YwomeeCBofedrel2OqSvXCGXKJBMVimXFTY2yhhs5/nSF+/C57cyMDDN\nsWP9VCotHA4T0aiNxcU8ly6lgN6A8p49QQYG3v+g9dbm+m7cDnlypVIhfeUKaqtXHZQcDlq1GtVU\nCtnjQVNVgnv3oskOXn5pbeewIYoC4+Me7rwzhuzxINntKOW3Nn+J0Ykg5kiQbFrD7Taxd28Ih8PE\n2bMJ4tttBo7ey9orrzO3kmB8Vz+24XFyxgiBsAezuZdo9JIKiaWlHNlsHYfDxPx8lqWlPIcORQmH\nbTidMvv3ywwM1Emna0xP+3E4JFZXC/h8ZmTZgNcrI8t6ms02kiQyMuLeqWY6nSb27w/faLmJH5mj\n+W8aPk1Gfg5efPFFTCYTd9555+0O5bZBlmX+6I/+iL/5m7/hr//6r293OB8anY7K+nqJra0ysmzA\n5zMTCJhJpXpsGUGAwUHnLzzxXbmS3imn9iCQzTY4fLgnvOTxyL/yIiGKOrLZOqlUTwtBT5t6uUpN\n7WCWDSSTtZ6zbq2EzzfAwkIWp1PG4ZBQ1S4mq4x7fAKlVKLbVUkqdsYGoly4dB5TbISZXTPorA4s\ngyE6nS733DdCodDE4ozSaXdYF80IiQ7THj2Rw4cRzpyhnsmgE0Xco6M76qOf4m3suD6nUgiCQOzu\nu8nl6hjniyRyHWJab4OfnvYxP59ldamIBnjreuRoh9i7PloWixGLxY37cw/w5H89QyZdRWeUsAWD\npKsGTp2Ks2dP8H2ZQB1FoZwtoHW7yLKBZrOD2WygnC0w5DWye3/4hgX924nGxYtJ4vEKLleP0ru6\nWiC1lefOfQ6srQyOWAxHfz+ivrcluN0ydrt0k4aIwaC7ZcyZX4ROo0Gn2dx5LAgC9kgEyelk4OhR\n9CYTks3G/Hz2poFXVdVYWircYPw4iB05QuLcOVqVCnpZZuDYNKbIAGO1NjZbT5Rsba3A9XNLlJMp\nik4HndB+XJE2asDBU69tU24scfCQwhNP9Fpoen0vcVDVLoVCk2SyupMIXb2axuORKRabJBIVOp0u\nXq+FaNSOXq/DZOopAL9FTQYIBq1YrXpiMQfj4x727w/SbKrIski12mJ01P2xVqY+TnyajPwcfPvb\n3+Yb3/jG74y2yM/DH//xH3PgwAH+8i//Eqv1t5Pzfv58kosXUzsnPavVyMGDESKRt6zKrQwMOH+u\nAFer1SEeL9/0nCjqUBQVt1v+UNoVxeLbC1ALCavLTiGRpdFso92I0+j2sdsTQNM0rFYDAwNOhodd\nJBJVjBYzRouZdlslla5z9fQS4bCD/j4H1UoLnd1OOl0nFLKwsJDj+vUs4bAds1kmk6hRKvcs2j0e\nN0MPPEBqPUWp2qFkkDGWO3i9H54580mFxefD4vPtPDZ7NHQWB/JSgUajRbOp8vLLGwgCxEZCZLN1\nKpUW584lCAQsO6yTWq1FPN5jVHg8JioGN46xKTR0NDoCzVqHVKr2HvGxt2CQZQw2J/VGh/ExN8lk\njXJFYfLwCINjQfr7HTuW9W8hkahisRio1Vq88soGlWyBVjFPIT3GXYdCXHhujthkk4kDo1itRmw2\niSNH+jh7dptyuafMOjXlIxK59cOr74bRZsNgsaAqN4uruQYGbrofpVLz3f+UVkvdqTA4YjEsgQCt\narV3DW/4Ur2ToVLaTpJZuI7W1Wi0dWxni2wXBT7zkJ2RqRDxeBlN4z3tqqWl/I79gNNpQqcTWFzM\nY7UaSSQqxOMV6vU2/f1Odu3yMTMTwOEwcc89/Vy5kiafb+B0mpie9qPTCZw6FadUajI25qHT0dDp\netUci8XAxkaJSOSj8wT6TcEn66/5iLC6usoLL7zwOzm4+m4MDAxw/Phx/vZv/5Y/+ZM/ud3hfGAU\nCg0WF/M3lZyr1RaJRIV77un/lV5DFHXIsp5C4ebnjUbdTmunVmuRSFRp/P/svXmQXPdZ9/s5ve/7\nPvtopBlZ+2o5kiw7JPFCChPIUgnJLeAm5IbVcAPckPu+RfGmKhAIwQRC2F64EByomBCcgLFlvFu2\nbMnaR6PZ96339fTp093n/nFmWmrNonU0WuZT5bK6+/Tp35zfWZ7fs3wfUcbrtRAK2ZZVF/X7LXPl\nvpDMQ3jnDoRjxzCbQKvXEuxopWwPMTWVpbPTx86dIWw2A8ePT9VEp+bluP1WmVOTMeLTKXYc3ERF\no+PMS2+y7UP7+cEPLjA1lcPns3D69Cy7d0eIROwkk0U1r8RroX8gyVtvzSJJ6sPPZjNw6FDLqjx4\n7iQEQWB8PEMqVeT06RkuXIiRSBTnvGwWtm8PEY2qBomahKmjUCjx2msjjI+rD7VQyIrBoCddUKhW\nLxof8+GTM2dmMJv1hMO2OQXVIjqdhqZd2+k9Pcr08BTBkI2uHW2E778fq9u8wBABtfN0Pq8aRpIk\nU8yk8QVc9PWlyCZy+C0lTp+cZCol8P4PdGC1GmhsdBAIWMhkSpjNugUVKrcKvdlMeOdOJt5+m1Iu\nh6DRYA2F8FwW/vL5Ll5T85jNurqwrM5gQLdIfyYAWRTRZKM43DbS8SxaKuiMelx2BatVz9NPn0WW\nq5w/H0OrFejq8mE26ykU1HJ/Saqg1QqkUkVee22ESMSO223kn//53Fxyu4Hu7ii5nERLixOHw0Qo\nZCMYtCJJFYxGbW3x+9hjHTUjUBBUsbqBgQR6vQ6DQcvkZJb772+4q0I2K22MfAPYBbxHfQffnwf+\nX+BN4DMrPIZr5utf/zq/8Au/gMOxdjMG+J//83/y/ve/ny984Qt3nHdEkiqLrjDn1R2vhCyKpIaH\nCeiz9I6NobO7MLlc6HSa2s0ok5F47bVhpqZUF63BoGX79hDbt4eW3G9Tk5OODs9cg7oyWW+AB/6P\nn8ZhLBGcKDCV1jERUxNJ9XoNfX0JJiYyNSNHEFSPTShoI2DM0jekhpCy+TIX+mME/Q5mo3nicRFR\nlGsNuHp6YjQ3O+ey/3UUi2XOno3WDBFQjbXu7uicPsq97Rlcjni8wOBgCoNBy8BAAkEQkOUKyaSI\nLFe47z7/3ENIX0tmnJjI1gwRgFxOxuMxsXt3hP5+tWlaa6uL3bsjvPHGKLGJOIVEDH+Dj3DExcSM\nhNFqYuNGLzs/8QSTfWOUShVkvY28xsaW9sUftB0dHpLJouolqIJOq8EVcDHYPYpF7ybs1FMtVxgb\nTTI5ma2VjxoMOny+1V+zetrbMbtciMkkGq0WazC4oON2Y6ODDRu8DA4mkeXqXEl+sC6JfDkqsoy+\nmGT3zgBvv54hEx2nvXMrwbYQL786iixXMRg02O1GJiayTE3l0Gjg2LFJxsczjI9n2b+/iYGBZE3V\neHAwxfR0HptNj8VioFJROHcuOieUqHpUBUFY0BNIr9fi9arjfvnlIf7lX86Sy8kIgjqXO3eGiUbz\nRCJ3zzNqJc+ynYAVeBD4FrAbODb32b8DrwK/u4K/f11Eo1Gefvppuru7V3sotw2bNm3i4Ycf5pvf\n/CZf+tKXVns414TLZcLhMBKL1bclb2q68kWsKAqTx44R6+nBbLPxvu1+xqZF7KEAGzY30tKilhAO\nDSWZnLxYeVAqVZiYSKPVakgkClgsaojlUreuyaTjwIFm1q/31qp1VG+JgK2phGM8Qygt4XQaGBlJ\nMzSklpaOj2fxeMysX+9Bp9Nw7twsw6dma2qVglZLKlmgtTVErqi+Z7GoK0ONRqBYLKPRCGzYoMae\nU6kihcLC6pl0WqJSqd6RuiC3AklSQ3cXLsQIhWwUCmWMRi1Op3FOxVY91largc2bA7WHTSYj1a3c\nc7kSBoOGhx5qZefOMIKgdpZ9770p4lMJYj3nQWfgv09Huf/+BirFIuXGVk6cmOHBB1vYdGAbqZSI\nTqclELAueKjN4/Va2Ls3wsREhoGBJIZmI4VsHlks0dTkJJ+JYXS50BlNtTLy2w2zx7No1+l5jEYd\n+/c30dHhoVgsY7cb8PutV21QG+12NFot8qmX2NsaotLlxxksUQg6eDZbqiWbut1GAgEriUSB0dE0\niUQRi8VAMGglGi0gCLB+vQen08jUlJqALMtVqtUqhYKq+xKLqeXAodDyOTiplMi7706Sy6nXqKJA\nX1+CpibnkmG8O5WVNEbuB16Y+/eLwANcNEbiwK3PhLoK/viP/5iPfexjhEJLr2rvRb7yla+wb98+\nPvOZz9DYuHKdVm82JpOOPXsiHD06TiqlSrI3NTnqFCaXohCLkRoeBkWhlM1i0OTZ6LXhjkg0tF/s\nUnppPwlQy37Hx7N0d8dq+ST9/Ql+7MfaCQQuGiSXVutcitVqoLNTTZAbGUkyOJiqhXxU5dgCbreJ\nrVuDHD9ewRIIUhKLFBNJlIpMe1cEweKk0efgzJkZNBpVPVYQBJxO9XtNTY5a2aTaLVRGq1V7bJTL\nVQIB65ohsgTVqsK776pNC0ulCvm8jCSpDwuzWU9zsxO328S2bUHCYXtdEqrHY0arFWolmwD5vEww\naGPrVvWeMz6eUdvJJxJqBYnFQ74YJ5Eu49SVkLJZzC4XAwNJOjt9y5boXorHY+Hxx9fz1lvjzE6l\nSU7D/Qc78Lp0TOWMuJqa0GoFvN47t2xUp9Ned3hREATsDQ3YQiFSw8MIGg2KrgN/63oe3N9IMlNG\np9PgdBpxuUyYzXqyWakWGnI6TXi9ZqrVKhqNhnRaorPTS3OzA1Esk8/Lcx4TL5OTWXp64jz0UOuy\nInL5vIyiqAuJeV0jh8NIpVJZtCrwTmYljREXMDj37zSwaQV/66YwMTHBX/3VX3Hy5MnVHsptR0dH\nB1/4whf44he/yD//8z+v9nCuiaYmJx6PuRZv9/ks6HQacrkSGs1Fz8HlVMtlquWLyolKtYqUyVC8\nLHnE77fQ35+ovdbrtfT1JWhouGhvZ7MlBgYSdcbIUqTTRRIJkURCJJ+X6e2NYzLp5jQTVANBreCx\nsH17kFOnQGtYj6ZSYv0mP3t9Dk6fnsVo1HLgQDMzM3lCISsul4m9exvqqiz0ei07d4Y5e3aWVKqI\nokAgoFaFAJTLVYaHU4yMqB2J29rci4pK3e1IUpnp6VzNaIvHRTIZid27I/T1xdm/v5nBwSRer4W2\nNhctLc65hMYcZrMeh8OIoig4nUa2bQvS358gk1GbpG3a5Mfvt9ZaFIiiTCRiIz+lo2r1kspWSKTK\n6C1msoUqzjnXitW6tA7JUoTDdh57rINEQjWg47MZjh0bx2cLYTLr2LDBu6ga60oiSWUkSX24rnZY\nsJTP425vx9PRgQIolQrKzAD79mxmcFwNc5lMOjo7vRiNOgwGHTabek0mEiLptMTu3Q2MjaVJJESq\n1SqPPLKOqakck5NZGhsd7NkTmfOa6RkYSCxrjFitamuKWMxaa9EwNZXFZjOyiETQHc1KGiNpYP4o\nO4HUZZ8vLGK/jCeffLImONbV1cW+fftobW0FYHh4GOCmvv6jP/ojPvvZz9LU1LQi+7/TX//Mz/wM\njz/+OD/84Q/ZsmXLivzeSqGWUqpGRzYrcfKkWuqo0Qh0dHjYtMm/IDvd7HZjcrkoRKMX3xQEnPMt\nN+dobXUxNpapZdrrdBpcLtOChL+ryVPp6Ylx4sQU58/HSKXURmc7dgQ5fHiw9ltWq572Oc/M5s3q\n6lt196uueq1WQ2Ojk0xGwmJRm6GVSlXcbtOiQlparYbZ2RxjY9laLkpHhxePB86dm+XYscnaSn5o\nKMWDD7bQ1uZesJ+7FVGUOXJkjOHhFJWKQj5fwm43YrcbyOVKdHb6MJl0PPxwGz6fWS2bnSmQy6l5\nPBMTGfbsiXDmzCyzs3m0Wg2trW5CIetcqbm11qJgeDiNLFcQRZlgeyMnT01TFGUOPtRGMVugp3uW\nPQ/78Zh1dHRc2bu3GGaznoYG9TyIROyEG90UCvKyiqwrxfnzUc6fjyFJZXw+Czt2hK86x2MlcEQi\nxHt66sQATS4Xe/Y2sn6Tei6YTDqi0TyvvjpcM+I3bvTT0eFBliu0takVM7FYgaGhFA6HkZYWJ7GY\nSDwu8r3vnaNcVggELBw61LrseFSNkTAOh5Hu7ijHjk3i81mYnc3z8stDfOAD7Xg8d0e7jpU863YA\nnwf+L+DPgb/jYpgGoBX4XyydwKpc3rVxJTlx4gSPPvooPT09uN33zo32Wnn99df5+Mc/zsmTJwkG\ngzd13/Mt7lcSRVF47bURLlyIX/K7sG9fI1u2LPx7spOTjL/zDlIqhUavx93eTnjnzgX9WkRRZno6\nhyiWcTqNHDkyVqcfALB/fxObNi3dqTYWy/P88wMkk2p1RqGgCiB97GObiMdVXZKdO0N0dfmuGGu+\nWhRF4aWXhhgYqPf2hMM2Dh1q5rnnBuq0JkDNt3n00Y6btoq9FfN+I/T1xXnlleGLHWNFmeFh1SiL\nRi9q1Tz0UCuKAq+8Mlz3fUVRaGtzMzKSqu1Dp1PzROaNyu7uKG++OVr7XFEUyuUqDQEDyckodruO\nZKbMVFzhvm2NvO99jXd88qIgCPzv//1erToMVJ2NRx5Zt2plq5VymekTJ0j09VEplTA6HIR378Z1\nSaPU2dkc//VfAxSLau+hWKxAKlXkiSe62LLFj9+vhuVisTzPPdePKJYJh21MTmb4+78/jdmsq3mf\n9u5t4HOf27ms2q6iKPT1xfn+989TqaiNPOfLxPfujbB9e3jJ795uzN0zFr1xrOSMnwCKwGtz/z4G\n/Cnwq8CHgd8G1gHfAz62guO4IpVKhc997nP8/u///pohcgUOHjzIz/3cz/HZz36WZ599dtXdqtdK\nJiPVCSOBGu8dGEjOVT/UK17aIxHWP/YYxWQSrcGwZAKd2ayv8xbs3dvA0aMTZDISer2GlhYnbW3L\ntxVIpyXyeTVjfv6wSlKF0VFV2nvTJj/79jViMl27e34pSqXKgpwXUMNK2WyJcnmhL7hQUPvyaLV3\n1txfL4mEeFm5qNoVV6/XotWq3Wzb2900Nzvp6Ykt+H4mo7Ya0Ggu5oqo4a9kzRiZ96rNIwgC+XwJ\n9A5EwUw2XsLqcrKxwcq2bcE73hCZ51JDBCAWKxCLFVatrFyr09GwZw+ejg4qkoTR6VxQtVMolGuN\n74xGHQ0NDhoaHFgs+pohonLx+pDlCpKkeidlWS0BdrtN6PVqufZyxsh8tY3Xa1nQxmKx5PM7lZU2\nP5+87PWvzv3/R3P/3RY89dRT2O12fvZnf3a1h3JH8Lu/+7scPHiQr3/963zxi19c7eFcM4vZT6oB\nsPjDVWc0YrvGhOaWFhder4VkUsRg0OLzWRaV9r4Ug0E794BXty8U0iiKGmISRZmODs9NNUTmf9Pt\nNtWJsAG1NvRer4V8Pl33WXOz84p/y92E221eoF/R2Ohg82Y/27cH5+ZXDW/4fBYMBm1dpYPVqsds\n1i04xpeGQxbT8PB4zJhMWnQmMzqTmYqiPryvNmH1TkQQuKVhoqUwL7MoNZt1GI3aunJ4QVC1XC7F\n41F74wwMJJGkCgaDhtZWF16vqm5rsxmw2QwL2lAshtNpwm431oV6tVphVRRxV4rVLyBfZY4fP87v\n//7v89Zbb91xq/zVwmAw8L3vfY+9e/eya9cuHn744dUe0lXjdJpoaXFy9uzFPBCtVmDDBu9NvwnO\n32yulkDASlOTg+HhdE3jw2zWEQhY8XjMy4Z4rhdBENi8OVBLvgP14bltWwijUc+uXeE570kBjUag\nocFBV9fi3WTvVhob7bS0OBkdzVCtKuh0Gjo7vTQ1LTTKwmE7O3aEOHcuSrFYxmxWtS4SiQJTUxfL\nv+eTgedZt87N8HCqVlYrCHDffWoegiAIc00cDWzZEqzpT9wNXP5QDwZtt301j99vpavLx7lz0bky\nbjVJ/vJEVI1GYM+eBkwmHRMTGTo6vBSLarfkea2gOC4VSwAAIABJREFUdevcV/X3Op0m9u6NcPz4\nFNmsmh+2YYPnqiQK7hRu56fviueMpNNpdu3axVe/+lU+9rFVjRTdkbz44ot85jOf4d13370p5b63\nKnegUCjR3R1jaCiJTqdhwwYvnZ3eayplVRSFVKpItargdptvmiGTz5cYHk4xM5PH5TLR1OTA4TCu\neAw9mVRbxFcqVYJBW10SYalUJpEQ0WgEvN4re3iulds9ZwTUPJGpqRy5XAm3W1XOXE79MpkUEcUy\nNpseh8NEOl3k7NlZJiaymEw6Nm701QyNeWZn8wwNJcnnZRobHbS0ODEadXPt42WMRt1NP/aZTJFS\nqYrLZbzlpdyCINDfH6e7O4oololE7Gza5K9VjdzOlMtVpqdzJBIiNpuBcNi2bKhFFGWq1Sqzs3km\nJnKUSpW6Ob5a8vkS6bSqzHonesiWyxm5Z42RUqnE448/zqZNm3jqqadW7Hfudr761a/y7LPP8uqr\nr2Iw3Fjd+61+KElSeS7mf2034XlZ7dHR9Jykt409eyLX1aNmjTvDGLlZqOecBp1udcNcpVKZ06dn\n6OtLUC6roZ89eyIEArdOYXl+3iuVak0x9W5ldDTFe+9NkcmoxmxX10Jj9F5gzRhZuGN+9md/llQq\nxfe//3202jVxp+ulWq3ykY98hIaGBr71rW/d0L7ulIfSsWOTvPfeVN1769d7eOihVgRBoFAoMTyc\nZno6h8tloq3NdUes9laLO2Xeb5RKpcrYWJqRkTQ6nYaWFteyGhMryYULMV5/fbSuZ1MoZOPRR9fV\nKjVWmjth3uev5ZkZtb9Tc7Pzmhcd6XSR557rr8v3MBi0fOAD7as2/6vFalXT3JYoisJv/MZvcOHC\nBV566aU1Q+QG0Wg0/MM//AP79u3jL//yL/n85z+/2kNaUWS5wvDw5ZI5MD2dI5uVMJv1vPXWeF2p\n7NBQkh/7sXZcruVvYuVyldHRNMPDFwXG7rWb1d1MT0+Mo0cnahVK/f2JVdNsGRlJ1xkioFYNpVJF\nBEFgcDBJNlsiErHT1uZaNgRxt1IuV3jrrXGmpnLYbHrOnYsiCPDggy10dnqv2mhLJMQFGkOlUoWZ\nmdza9X0J95QxoigKv/7rv86bb77J4cOHsVjunkSw1cTpdPLss89y4MABurq6OHTo0GoPacXQaAT0\n+oUudo1GmBMPyzMyUl99Eo+LjI+nr2iMXC4wNjiY5NCh1loH1zXuXERR5vz5aF2ptCRVOH8+SkuL\n65ZXkBgMC89hrVZAFMu8/fZ4LZl5aCjJ7GyOgwdb7qkKKlBzeMbG0jidJl58cahWDRWPF3jkkQ7u\nv//q8uS0Wk1Nzv1SFruP3MvcM0dDURR+7dd+jSNHjnD48OGasusaN4f169fzne98h0984hMMDQ2t\n9nBWDK1WQ2enry7mrzbG8mK1GpDl6qLaHPn88noA+XyJnp5YXc+S+YfVpa7s6eksr78+wn/8Ry+n\nTk2rWhRr3PZIUqWuamSefF6mUrmyrne1qjA4mOTw4QGef76fvr74oufZ1bJunQejUbvgvVisUCdy\npygwPJwmGs1f92/dqZRKVcxmPcPDqbqy7EKhzMBAkmSyXp9nfDzDK68M8Z//2ce5c7M1LRK/30Io\nVN8Gwm43rJqWyu3KPeEZqVQq/NIv/RInTpzg8OHDOJ33Xm+NW8EHP/hBfud3focnnniCN998E7v9\n7qmBv5T16z1otQK9vXEqFbVV+Lw097x+wKWdT7Va4Yo9aUqlypICY5WKgk4nMDub46WXhmv7npjI\nEosVOHSoddUTItdYHrvdsKhmS2OjY9mqnHn6+uIcOTJWEwkbH88gimW2br0+FeSmJicPPdRKT0+M\nQkGmtdVFZ6eX48enFmwry5UF4mT3Ag6HEbvdSDZ7Ua1ZoxFwOIzIcqVOS2Z8PMPLLw8hiqoBMjGR\nIZUq8r73NWE26zlwoJkLF+JMTGTxeNQE1rupRPtmcNcbI8VikU996lNkMhkOHz6Mw7Fmja4kv/Ir\nv8K5c+f4yZ/8SX70ox9hNt99iZtarYb1672sX+9d8JnHY2bXrjAnTqheC1UPwHtFPQCHw7jow6qp\nyVkzNEZG0gvau4+NZYjF8jdNHn6NlUGr1bBzZwhJKhOPiwiC2hfmvvv8V/xuuVylpydWZxBUKgq9\nvTHWr/dcdz5HS4uLlpZ6D3E4bOfChXhdSMHhMOJ0Gi//+l2Px2Oms9NDJiMxMJBAq9UQDFpxu021\nzr3zDAwkaoYIqB6loaFUzehwuczcf38jiqLccxU0V8tdbYzE43F+6qd+ikgkwn/8x39gNN57F9St\nRhAEvvWtb/HpT3+aj370o/zbv/3bDZf83ml0dvoIhWxksyVMJi1er+WKN6BLH1bzmh6RiL1OYGze\n7Xsp5fLiYaE1bj8CARuPPtpBLFZAqxXmukdf2StSqVTrVuHzyLJaEnsz7f3mZgebNvnp708gy1Vs\nNgN79kRwOO7NsvV167w4nSYsFj0TE2kMBh1ut5k9exrq9EEuNUTmKZerCzxKa4bI0tzOR+aGSnuP\nHz/OT//0T/OJT3yCr371q2g0a27sW4ksy3z84x8nl8vxzDPPXFVo7E4o9Vtp5lfOWq0qMHZp+GVw\nMMnLLw/V5ZV4PCYee2z9AjnxXK5EqVTG4TDd9iGce3XeC4USxWIZh+PKgmNvvTXGmTOzde9dWk5+\nM1EUhXi8gCRVFu0+fbO4k+a9WlWIxQqUy4t3v7680SFAMGjl0Uc7rluwMJ8vIUllnE7TXZM8fE/p\njJRKJb72ta/x1FNP8Rd/8Rd89KMfXYGhrXE1lMtlnnzySV555RWeeeYZurq6lt3+Tro5rQblcoWT\nJ6fp7U1QKlVwOIzs2ROhqcl5yTZVzp2brbn1PR4zu3eHb6mY1bVyr817tapw/nyU7u4oklTB6TSy\na1ek1sl1MbJZiXfemWByMouiqA+6vXsb7mj9mrtp3iWpzPHjkwwNpeYMFjN790auK3wqyxXOnYty\n4YJ6Dft8FnbtCuP3L593didwTxgjoijyj//4j/zhH/4hGzdu5M/+7M9ovqTt8xqrg6Io/PVf/zVf\n/vKX+Z3f+R1++Zd/Gb1+8Rj33XRzWkmSSbG2ar1ctXIx78mNrtBWmntt3sfG0rz44mCdC38pD9el\nVKuqx0JR1HyG293jdSXuxnlPJERkuYLbbbpu8bj+/gSvvjpcdw3fakG6lWI5Y2Slz+ZvAK8Bf3LZ\n+xHgKJABTgN/ca07lmWZEydO8Fd/9Vd8/OMfJxwO8+yzz/K3f/u3/Pu///uaIXKbIAgCv/ALv8CR\nI0d47rnn2LRpE08//TSl0lpJ6vXidpsJhWyLymePjKTqbmKg3iATCXHBtmusDhMTmQW5BMlk8Ypz\npNEI+P1WAgHrHW+I3K14PGaCQdsNGQ3Dwwuv4Xi8QDx+d1/DK3lG7wSswIOAAdh9yWf/D/B/A2Eg\nDhiBHUvtSFEUBgcH+e53v8uv//qvs3//ftxuN5/+9Kd56623ePTRR+nv7+dHP/oRDz744FqS0G3I\n+vXreeGFF/jzP/9z/uZv/obW1la+/OUvc+bMmbtudbSaLCXIdju0ZV9DZTFDYm2O1phnsWtYq9Wg\n1d7d58dKGiP3Ay/M/ftF4IFLPtsMvAHkgSxgBxZqbAN/8Ad/gN/v59ChQzzzzDOEQiG+8pWvMDk5\nyblz5/i7v/s7fv7nfx6f795qa36n8sEPfpCXXnqJF154AUmS+PSnP40sLy8ItsbV09rqXiBmFYnY\n1zQNbiOampxYLPWhynDYXtcpeY17l/b2hddwQ8Pdfw2vpKn1JeA94Hngx4D3Af9r7rNXgUPATwD/\nH6rR8onLvq/Me0RMJhORSGQFh7rG7cDdGENeDUZGUpw/HyOfL9HU5GTjRh92++1b1n4vzvv4eIbu\n7ijZrEQkYmfjRh8u152bjHo93IvzfrUMDSVrgnQtLS66urzYbLfvNXy1rFajvDQwr/TkpN7zMR8w\nfRY1pyQBfBA4PL/Bxo0b18It9xiHDh1am/N7kLV5vzdZm/d7kvRSH6ykMfIW8Hnge6iekb+75LPT\nwAHgBKrBcgY1r6TG+fPnV91qzmYlBs+OkJqcRqPV4W9roH1jw4plNCvVKkMvvURycPDim4JAw549\nhLZvX5HfvJ1YWyndm9yp816tVMjPzFBMpdBbLNjCYXSXCStmp6YYeOEFKtIl7ePtdjoeewzzMv2x\nYrECJ05MEY0WMJl0dHX56Ory3VV5JSsx72IySSEaBcASCCx7jFeK5NAQwy+/TLV8UQjN4vOx7tFH\nMSzTnHV8PMOpU9Ok0xJWq56tW4Or0tF5JREEYUnBqZU0Rk4ARVTPxwngGPCnwK8CXwP+E2gFhoFG\n4LkVHMs1oygK/cfPc+IHh8nEUiAIeBr86D75YTq2rVuR3yym0+RmZi4fCMmhIYJbtyKsCbetscZt\ngaIoTJ04QfTsWSqlEoJGg7OlheYDB9BfIomam56uM0QAStksYiKx5INSksocOTLG9HRO3UeuxNGj\n41it+gXy7WtcJDMxwejrryNlMgAYHQ6aDx7E0dBwy8dxqSECqpFUTCSWNEZSKZE33hglk1HPlVyu\nxJtvjmGzGe4KfZGrYaWLlp+87PWvzv1/Ati2wr99Q6STeQbefEc1RAAUhcT4LP1vvUfb5rYVUcQT\ntNpFDQ6NXq+2hl0CMZFATCbR6HRYA4G6m+FylPJ5BI3mqrdf49YjyzJ/+Zd/ydtvv83Bgwf57Gc/\ni1Z7ZQnxNW4uUjZLIRYDRcHs81EuFol1d1OZK1FXqlVSw8O4WlrwbthQ+55mMU0dQUBz2RyWJYmq\nLGOw2YjHRWKxQt3nslxldDS9ZowsQbVSYebUqZohAiBlMsyeOYMtFFpwvFcS7SJzLmg0CJeMYX6+\n9VYrgiAQjRZqhsg8hYLMzEz+phgjdeev14vpNmwWe2crqKwg1WKBQiq74H0xFkMpy6C9+clEJocD\nd3s7M6dPM68rrNHp8HV2LhlbTQwMMHH0KKVcDkGjwRoK0XLw4LInWymfZ+bUKdJjYwiCgKejA/+m\nTQtczGusLsVikSeeeIJqtcqnPvUp/vZv/5bDhw/zL//yL2sGyS0kPzvLyOuvIyYSAJhcLnwbN1Iu\nFus3VJTaNvPYw2GMTidS+mKo3BYMYvGrDfKqlQqxnh6i58+jlMvYwmFMLZ1otQKXLa6XW4/c85RF\nsc4QmaeYSlEuFjFYb513wdnSQry3l7J4URfEHolg8ftr8x2/cIFKqYQtFCK4bduS4bebMee5mRlG\n33hDPTcVBZPbTfP+/dhvs6KQNb//Ejh8LsLN9R01BY1A4/pGtCvY+C20fTuN+/ZhDQSwNzTQfPAg\nnnWLh4VkUWTqxAlKOdWdq1Sr5CYniff2LvsbUydOMHv2LFI6TTGVYvL4ceIXLtz0v2WNG+O3fuu3\nsFgsPPfcc/zcz/0cL730ErFYjK985SurPbR7BkVRmD59GjEeVxcIikIxmaQQiy28DwgCJnd9jN/i\n9dJy6BCe9esxe70ENm+m+cCBmrs+NTTE+NtvU0wkkDIZ4hcukOk+ybq2eg+I0ahd84osg85sxmBf\nKL1udDrRmW5tkz97KETbww/jamvD7PUS2rGDpgceQKvTkRoeZuLoUQqxmDrfvb2MHz1KwGfC46kf\np91uIBS6sTYOiqIwe/bsxfMXKCaTTJ08SbWysPniarLmGVkCncHAtkfeh1zIMT44i0YjsG5TMxsO\n7F7RDHCd0UhwyxYCmzdf8XekTAY5n1/wfm56esnvFDMZMmNj9W8qComBAfz33YdGt3ZK3A689tpr\n/Nu//RunT59GNzcnBoOBp59+mq1bt/LJT36SDZeEA9ZYGcqiqN7IL6OUy+Hu6CDR10dVlhE0GhxN\nTTgaGxdsaw+FsIdCi7aPTw4Oolz2UBBjs3Ru2gIaP1NTWcxmHRs3+ut6EK1Rj0arJbh1K1ImQymr\nerQNdjvBLVtuaYhmHkdjI47GxgVznhoaWpBPkp+ZQZByHDzYwtmzs8TjIk6nkc2bAzesLVIuFtXw\nzGVI6TRyPo/R4VjkW6vD2pNnGQIbOnjo/3SRmZpGo9Vgj0RuWXb21Rg8eosFndG4IEHO7PEsvd+r\n+G1FUZidzZNIiBiNOoJB64p17lxjIYqi8Ju/+Zt87Wtfw33ZSjsSifDbv/3bfOlLX+Jf//VfV2mE\n9w5aoxGj3V4XZgGgWiWyZw/u1lbEZBKD1YotHF42/2rRa3qJ69xiMXDggB9JKqPTaW5519ZSqcz0\ndI5cTsbhMBIMWtHrb+/QoLOpiXUf+hD5WbW7sS0YXPZeeCuYn3NZrhCLFYjFCqQTqrExP6eCICAA\nwaCNQMBKqVRBr9felMoprcGA0eFYcP7qLRZ0t1mu4JoxcgUsPh+W20zdVVEUpEwGrcFAcPt2Jt5+\nu5ZIZ3K76xLoLsfocOBqbWX2zJnae4JGg3fDhppX5Pz5GMePTyKKZQRBvUgefLAFl+vWujvvVb7/\n/e8jyzKf+MTlOoAqv/iLv8jXv/51zp07x6ZNm27x6O4tNFotgc2bEZPJmhdSZzYT2LIFvdGIfm4F\nfL141q0jMzZWXwYaDKLR66nIMkbj4k0lVxJJKvP22+P09yeoVBT0eg2dnV727m287XviWLxeLF7v\nag+jDlmucPToOAMDSRosXvqHTuJ26Glvd6PVqnl+5rkxC4KwoKFlKZ+nWqlgug4vRu38TSTqzt/g\nli2LJtquJrdzStQ1de29VyjE40y88w7ZyUkMNhv+jRux+P3kpqfRGgzYGxqu6L0pFQpEz50jNTys\nGiLr1+PbuBGtXk8mU+Q//7N/QWb37t0Rdu4Mr+SfdsfqTdxMFEVh165d/N7v/R4f/vCHl9zuq1/9\nKhcuXODv//7vb93gVog7Yd7z0Si5qSkURcEWCmELBm/KfpVqlXhvL9GeHqqlEnqrFb3VSnZyEqPd\nTnDbNlxX0fRTURSkdBqNTofBdmN5BkNDSV56qb7zs16v4UMfWkdDw81z698J834zGBtLc/jwIOVy\nFafTgLsaJ95znpZGC40b1xHYsqVWcFCtVGoLTY1Ox+yZMyQGBlCqVeyRCOEdO64rtLJS5++1sloK\nrGvcZMqlEr0//CFjb71FtVxGb7GQnZyk8yd+gvCOJfsMLsBgsdCwZw+BLVsQUynkTIb06Ci2UIh8\nvoooLuwVMzu7MDdljZvPa6+9RqFQ4PHHH192u8997nN0dHSQSCTwrLIr+l7A6vdj9fuvvOESlCWJ\n3PQ0pVwOk9OJNRhEq9cjaDT4urpwd3RQiEaZePddEn19oCjIuRylXA6j3Y7ZvbT4lZhMMnX8OLmZ\nGTQ6HZ6ODgJbtqC7zkT7TEZa0DVWlqtks2udtq+HTEaiXFZFx9PpEkWjC8e2B4ls8eCxC2TGxykm\nk+jMZqZPnqQQi6G3WjHabCQHBmqhvPiFCyjVKq0PPXTNeYs3ev7eCtaMkTuI5OAg40eP1txtFUki\nfuEC8d7eJStuliPR18fUe++pOSeCgC0cxr9rHyaTDlmuv/H4/Xd3k6bbhW984xs8+eSTaK4gcOfz\n+fjwhz/MP/zDP/Dkk5fL+axxO1GWJMbefJPk0BBKpYJGr8fX1UXD3r215EqtToeYSJC/LPm8lM1S\niEaXNEaqlQoT77xDemSk9t70iRPoLRb8Gzde13gdDiMajUC1etEg0ek02GxreWPXg91uQKsVagae\nJFVQbDryQ70kJwapyjLVOQ+R1e9HzufRmUyMvP46Wr0eayBQ21d2cpJiKrWscXqncnsHAO8ySvk8\nyeFhkoODFC9PiLsKpFSqVp41T6VUonIdXW+LqRSzZ89eTH5VFHKTk0jTY+zYEap1jVRzRqy0t999\nJ//tRn9/P2+++Saf+cxnrmr7z3/+83z729++J1zdt4JCPE5iYID06Cjly5LCb4TsxERd1UxVlon1\n9JC/TG153jARNJr6xNZlDFMxmawlbM6jVKskBgaue7yRiH0un0Edg1YrsGGDh1Do3lACvVmUCgVS\nIyNYK1lam6x1x3NdSIM4NkB17t4tZzJMvvMOSrlcE0cTNBoKl1VyCYJw1ypxr3lGbhGFWIyRN95Q\n+yYoCkank+YDB65JqlhntdZE0UxuN/rG9chmD5VQJ6IoYzZfOSGpLElUSiWkfB65UFjweSEWo/MD\n23G5TMRiIkajlnDYvrYqugX86Z/+KZ/97GexXqVA04EDBwA4evQo+/btW8mh3fXE+/qYfPddVTxQ\nq8UeidC8f/9NKX0splIo1Wrde1VZrukDzWMNBtFF2knnquj0WmyaArpqaVn3ukajWdRlr72BEn2j\nUcf+/U20t7vJZiWcTiPhsB2d7vauprkeKpUqMzN5crkSNpuBQMB6U5J0C4kEo6+/rhqKikJjUyuN\nezopCSYcDiOW4iyjlTKVUgmlWlUNEEVBTCbRWyyUslm8GzYwffJk3X6dLS23pXrqzWDNGLlFzJ49\nS+GSFYyUTjN98qQaO77KG4fV7yeweTMWv5+YZOWddyap2iqM6dOMxod44IGmJduQX6r0WJVlHC0t\ni25n8fkQBIFQyE4otFBEaI2VIZVK8Z3vfIczl1Q5XQlBEPjUpz7FP/3TP60ZIzdAKZdj6r33LooH\nVipkxsZIDAxcUy7WUphcLgSNps4g0ej1dYmmuWiUC6fHePPdFFO9w2j1Otbv6uJDP7l32YePye3G\n0dxMvKenbt/LVdRdDUajjtbWu1tkTZYrHDs2SU9PDFmuotdr6OrysXt35IbLmGPnz9d5vnJjw1jL\nEhsfeQSdwUB6Ik8hFiM1MoJSqWCcyyMyu92Ucjmq5TJGp5Ouj3yE/MwMVVnG1daG7zpDb3cCa8bI\nLaCQE5kZGkfKl+r0OoqpFHIuh/YqtUvsoRCVzZvReUO888oEhkgLgbYGGv06yEwyfraAZcf6RaWP\n0yMjTBw9WishzAwPY/Z4EJNJlHJZzRkJhXC3t9+cP3qNa+Jv/uZveOyxx2i4xqZen/rUp9i/fz/f\n+MY3auJoa1wbUja7qJdwOfHAK6EoColYFjEWxYCMxecjNzuLgNriwdvZWcsFkEWRidPdvPXSGLNj\ncYwOBxqdjrRsYDJWIbz4ugFQDdLIrl0YrFZSw8NojUZ8nZ24Wluve+z3CjMzec6fj9WSS2W5yvnz\nMRobHdclMJdMihSLZVxOQ925I2g0aulupcLsmTM4GhqolsuYvV6Sg4OUi0Wq5TIN+/YR2LyZaHc3\nepsNX1cXrpYWlEoFRVFuu1Lcm81q3r3uB/4YqALvAr+ximNZMcbHM5w/HyUbqzJ9fha/30JzsxOd\nXovebL5m4RlXczOS0Y3Br9DcaqTFFGf81ZcoJNLkwkEMmUmaHnhgQYJTdiZKxd1IBQ1milQycbQm\nEy0HDlCRZXRGI7Zw+Jb2cFhDpVwu881vfpNnnnnmmr/b0dFBW1sbL774Io8++ugKjO7uR282ozOZ\nKF2We3W9gln5fInzZ6eYOf4uoye7MRsEtu3vwtfVhcnlwux2YwuHa7o+YjxOLiORTuRRqgpyvkCw\nwUOrSyI3cJ64I6/2EdEbicdFqlUFn89S06MwWK1Edu2a63GiuWtzCm426XSxZojMUy5XSaclmpqg\nWCyTSBQQBAGfz7Kkt6RcrnDixDS9vXFKpQoNDXb8wkVNJrPPR7S7m8z4OIH77sNgt2O023E0NmLx\n+5FzuZoImSUQoL2hgfzMDFI6TXZyElsodENhtzuF1fwLh4GHgRLwHWAzcHYVx3NN5KaniV24QDGV\nwtHQgHfDhgXxZVGUOXp0nFSqSPO6TpLjM0xMprC7LLR0Bgls3boglnw1WCwGrDYjrd4qvd/9AbHB\nMZq2bcRqVEgND2Px+Wjcu7duHCf6ipw9MkhJknH7ndx/fwPaUgyjy4XtkmztNW49P/jBD2hqamLP\nnj3X9f2f+Zmf4emnn14zRq4Tk8uFf+NGpk6cqCUUmj0ePB0d17W/3t44qfFJBt89Q0UuUyoKnD/W\nR2chy/pHH1mYJyYI6IUyFpuJQlbEG3ThNxcYeuVlGttCDGeGsHRspi9pI56SURTw+Sw88EBjXUfX\nyx9Y1UqFsiiiM5uvKIleiMeJ9/aSn5nBGgzi7ezEsoQxVojFyM2FIGyh0G0nMna1OBzGuioXUJNL\n7XYDs7M5jhwZI5Eoqkn8AStbOwyIA90AeDo6cLe3o9HpGB3NcObMDGazHr2myshQEktLBLMxgZYq\nUiZDoq8Pd1sbWoOBiiQxPThIaPt2xHgcndmMLIqUi0UqksT4kSPq8VUUNHo9oe3bbyhcKIsiuakp\npGwWk9uNPRy+Lb0sq2mMXJpKLgPlpTa8XqpVBVGUMZl0N1VOuRCLMfTyy7UeCPmZGfLRKG3vf39d\n59tkskg6rdbsT+dNND38Y5jJ49RLVHJxpo4fZ3YyQbZiwezxEG5w4fNduYTWYNCye3cEcaSXYipN\n+/3biZ56j9mZMUxWM6nhYUxOJ77OTgCGhlIMT0iIooxSqRCdTPDuMYHHf3wDFo+HcqlEbmqKYiqF\n0eHAHg7f8uZS9zJPPfUUv/Zrv3bd3//4xz/O//gf/wNRFDHfZhLPdwqBLVvUUMrMDDqTCUdDA6br\naP1QLleQ5Qpmo4CvrRmdUqISG0ecHGG6Eiew6b4FxojF58Ni0bF1e4i3siJNzU7KqRLeLbsxeS0Y\nW12cOx+nf2gEncWCRqNBzDoxm3V84APtiyawZiYmmDl1CimTweBwENq6taYUW60qZDISBoMGi8WA\nlM0y8uqrtR4m+dlZctPTtH/gAxgvaz6XGh1l7I03avk1BpuNlgcfvCEV2ltNKiUyPZ2nWCyzZUuQ\nRKJANFpAkiq0tbkJBKy8+uoIs7MXQ3c97/UjzZrZEDajZKKMvPEGFVkmsGkT8XieRmuB+PlzKKKI\nv7GZ0XEfDz54CJMiMvXee/jvu69usaozmdDc98sNAAAgAElEQVTo9Vj8fsqFAggC3q6u2rGfpyrL\nRLu7cbW0YPZ4UBSFQkHGaNReVUKxLIqMvP66WvqtKAhaLb6uLhrvv/+260N2O4xmK+AHeq604bUw\nNZXl9OkZkskidruBLVsCNDdf+81lXnpdo9fXOm2mx8drhsg82clJCtGo2hypWkUWRbQatT6/XK4i\nimVmBT1hTZHhM0cxSAl07dt46z9eQbF5MXs8NNzXwYEDTcuOc2goyfnzMbrPzRC0lWh+6CGqU/3I\ns2PodRqqlQpKpcLM6dNYAwEqksTg+WkMDieejg5y01NUZRlZa8EQaUMBJo4eZeKdd8hMTFAtl2na\nt4+Oxx+/ZX147mWOHz/OyMgIH/nIR657H8FgkJ07d/LCCy/wxBNP3MTR3TtotNpac7N5FEWhEItR\nymbRmkxYAwG0Oh2lQgExkUDQaLD4fOgMBsZGk7x3pJdsLIUr6CU6I3Khv4jXIdDkCiD2DyDqJfKz\nsySHhnA2NVGWpFp/qcju3ZiHhgiEXVRNDv7rX3Nkx5JoemNEUxWmYzKZyUn0ZjNlsYjBZsNm1ZPN\nNuBw1C8cxESCkddeq92jpEwGKZ2m45FHyFdNHD8+SSxWQK/X0tXlo8EuLighnfd+XGqMVMtlZs+c\nqasCKuVyTJ8+rYadVqEh3aUoioJcKKAzGpd80M7M5Hj11WGSySKxWIFstsTu3REiETttbW4iETvF\nYpl4/KIhIhVLTE7nyWaKmI1eink7bQGHqu/U0YFZjHLyv55FyKcABXG0n8j7DiKXW2i8r5OyJNU9\nL5RqFbPbjT0S4cIPf4iUSiEIAvnZWfQ2G1Iuh/GS5OZysah6N6J5Tp+eIRotYLHo2bTJz7p1y4cS\nsxMTNUME1OTseG8v7vZ27OGVVdS+VlbbGPEA3wQ+ttiHTz75JK65B2JXVxf79u2jdS4xa3h4GGDR\n1+l0keefP0Y2W8Jo9JHJSExOjrF3bwPbtnVd8fvzr6VsFv3sLPmZGWLFIo6mJrY/9BAVSSImSQga\nDZFAkKpGTzyXYnR8nBatlmh3N5PRKAaHk7C3keFJKBZj2M1aCoPdFAbOkXI7GTvWy9CxUfybtyBY\nq0RnDJw+bSQSsTM+PrZgPIlEgfFxLS++OEBDQCRXytLgM6EPhrHt3UN6eBivwYA9HGZ0fJzUf/83\nzkoFOWlltm8MR0MDgc2bUapVdIY8yWwCx1iezPg4s/k8eUnCnE7T//zzZE0mwtu30zaX0Ho1x+tm\nvL7XeOqpp/jlX/7lG04+/ehHP8ozzzyzZozcRGbPnmXm1CnkQgGNXo+7rQ3P+vVMHD1aM0ZsoRDW\nzffzo39+h/EzF1i3tYNnvvsedpcVh05Hz3sXmHCaef/e3QQ8eqRCkbGjR8mMj5OdmMAaChHcsgW5\noOYmeBxa+kdjJAYGkMQStnCYQqFEJi1iCYYp53MgqEaAUsgs6GMCqvT35YulUjZLLpHiaI/M5OS8\nMSHz7rsTsMmKRqut7yarKFRL9cKH5WIRKZNZ8HulTIayJNUWa6tBbnaWmdOnEefUSwObN+Nua1uw\nXXd3lFRKIhYr0Nsbp1JR0GoFdu2KMDWVpb3djaIoGI1a8nk1ZJecTRG70Iel0Ub81BAGt5dpx3q6\nWtxUKxWIjkBijInuQaqVChaXneauJoyyWvnibm0lPTpKbmqKiiyTn57Gd999RLu7Ucpl7A0NVCSJ\nUi6HLRwmNz2NoNHUjqfeYkExWHnzzdGatyaTkUgmRcxmHZHIRY9LMZ2mIsuYXC60Oh3FRbSpqrJM\naZFu76vNahojOtRckS8Cs4tt8Cd/8idLfrn1smzxS1/HYgVKJQeXRExQFBdarXvR7Rd73dzUxOB/\n/zfJuYekAxBGRkgODGCPRIh4vYhmP8d6kiQTKQKNHto8zcR6eijE4yhDQ1QtFtq3WAjtaWdi2kmT\nDyZ73yA+O4XT7SE9lqUsihRiUdytLRj0HrJZCVEsLzo+SYoxPNxPa8SI3HeO06d6mXBouK8RIu0N\nNM5JTBtsNuyZDG6NBjGZpDnsYeCCkeJMAatTi6DTct99HUQMBS786EeMvv46equVts2biV+4gFwo\nYMlmCVyyKlrqeI2PZxgYSCBJFVpanJRKZQwG3RWP75Ve3wtMTU3xwx/+cNnz/Gr5yEc+wpe//GUk\nScJ46Ym/xnVRiMdrhgjMCZXNXRvzuiFKtapud36MxOgEJrORqs6IkRIzpwcwro/gb2tBZ9Tj3b2N\nVH8vx/7zPbw+K1t+vAXB5mYiIdD/ry+RHh7G7zUiTk8wnTOxeU8H7xw+SaKvD7vfw64H1pGYSZGZ\nzFHQ2hGUKh2t1kWNkaVI5xViMbHuvUpFYXymRLvXW1eKqjObMV/WIFRnNmNyuRYYOia3G/0qhnVL\n+Txjb7xRCzNJmQzFVAqd2Yw9FKptVy5XicfVv39mJl9rAmg263G5jExP50gmRdxuMxs3+jl6dAJJ\nLDFzoZ+KmKcl4mPoRDc5sZdHvtDCzKTIyNkfUIzO0rhnL0arnWhvLyaDgDQ5jFJShfOMDgdtDz9M\nbmqK3Ows+WgUg9nM6JEj2EIhLvz7vyMmEmi0WnybNtFy4ADFOaNvviljVhIWzJ0kVRgfzxCJOKjI\nMtOnTpHo66NaLmNyu2nYswezx7OgrFxrNN5w/6KVYDWNkY8Bu4Gvzb3+EvD26g2nHjGZXKCQOK9s\nGDr4foybHuDUq+cZHowhaA3oS2bGh2K4MkmSfX1oTSbSo6Mk+vrY8bnPseXRbZRLJcTjYaJ2O5V8\nGl+glelBtSGWzmxGazDgdBpr4mWVSpXBwSR9fQkURcHtNhEIWMkOjHPi7ACCVksiW6Ggc5ONxmh9\nYC+J3l5KuRzBbdsQ43FQFLSpSd5/qInpNJgaHDQ2unBq0sS6L2B0OqnIMunubqqyjLeri2R/P0a7\nvZbMtxSjo2leeWWYYlFdUY2MpEini+zde+fEj1eTb3/723zyk5+8Kb1lwuEwW7Zs4cUXX+THf/zH\nb8Lo7m1KudyCcl+5UCA9NobBZlN7Q1mtmFwuxMw0Wza6sHvdSForx0p5tBqBQiyGTikhaLTkshvp\nOz1MLp7BGQ7TN1KgWNJSSU0x/fZrGJ0e9DoXGlGklBGxywUat3YhV7X4AnbSiTwFsYzG6mDbVjdN\nTS7cDl3N+L8UayCgto2/xIthsNsxOe0IQr0hAWB12Qk0b2Xq2DHkQgG9xUJw27YFie0arZbg1q1I\n2ayqBg0YXS6CW7euagVPIRZbEGYqiyLZiYk6Y0Sn0+D3W0gkRCqVKk6nkZYWF9msxLvvThKJ2JEk\n9V7W1eXDajXQ1z2BJh7EuTdA9OxppqYLNHU2k37vTU5PFEilJbylccolifDOnYTlLOLECGaHDdMl\nFY1aoxGt0Ugpk0Epl6lWKoR27CA3OYnOYsFhsVAplSjM5Yyse+QRDFYrJrcbayDAxMTFuZSyWaRM\nBkGjodSpliCnhoeZOXmyZnTkRJHxt9+m7f3vx71uXU0BWGsw4Nu48bbsU7Oaxsh35/676fh8Ftxu\nE8lksfae1aonGLx6a3AxZcOyXGF6pkD/G2OcPx+jVLSy5QPvI56UaAkbiR99hd4jL1JNzWJ0OGh9\n6CFy09PkJieZCrQzNpYm6d5C5CNe8ideY1PQh2y6n7LRidnjweEwsqnLjZRKgMNB30CaI0fGatne\n/f0JWlpciMpFI8FsNaKz2nH4rNjmYtqCTke8pwdXaytyLqdKvs8O0bVuHZE9QSbefZdzr75KbnIS\nWzhM+4c+RM8zz5AeGaHh/vsJ79iBweG4Ymljb2+8ZoiA6g3s70/S2enD6VxLgF2OYrHIt7/9bV59\n9dWbts/5UM2aMXLj6OYeHpVLZOE1ej1mrxc5n0drNKLR6+l//nk0ngbQmBh+/Xka9h+A5BQOqw1n\n0EdVEjFqqlgECYPZSNPWTgRPhFSyyMBIjt2dRoKbNpFR7EyWFZo6gjQnx5ieHqeYNuDrWMfwaA4x\nF6U80U+1WmW2x4H7o7so6to49Vw/O3eG63QxzG43zQcPMnvmjJqU7nQS3LIFa9hHQ0OOwcFkbVuD\nQUtbmwtPs1pVJxcK6K3WJUMujoYGOj70IfLRKAgCVr//jlIEve8+P/G4iM1mwGTS8/zzA/j9FioV\nhUgkSyRiJxCwodVqaG11EbBXMI2f4MSRXrJZGY3JTMv6EJnRbhIpE+m0hD/sh6khdFoBxR0iHPTS\nuG9f7YFfLZeZeOcd4j09pEZGyM/OEn7/jyPaW+ifmMHQvA2mLlAVRXwbNpCPRjE6HHjXrwfURbBN\nX8FpExgfmCU5MEilVMJiM2EpOMlOWUmPji6ozBQTCUr5PE379+Pp6EDO5zE6HFiDwVXP71mM1c4Z\nWRGcThMHDjQvSGC9tAzuSpjcbhyNjcR7e9U3BIFMUUATDDE9nSebLdHfn0ARNGzdGqA83UduZrbW\nV0BKp5l8911aDh0iqTh56/AgxWKZYkainFJ43+OfJmQtsv6QCVHvwuRyYyolqQyeYlwU0TncnBo2\nUKlcPGmMBg2ZVIHtBzcxfPQYGkEgHLLS6NeSm5pidmSKqaEpLFYjxqqIbnoao8OhJuAZjXg3bCA9\nPIyUSqmJcMUiqaEhtAYDnU88QXp0lPDu3VRlGavff8WeJ/n8wi6e5XKVUqlyVcd4XmzKYLPdc/om\n3/3ud9mxYwddXV03bZ8/9VM/xe/93u8hyzL627B0706hlMsh5XL/P3tvFiTHfd95fjLrvu+7qu+7\nG2g0boAHSBAkBUoiacvWWDP22Duy17G7sfOwYUdo7Y1wbNiOVYTtJ9t6mJjwhNY7trzWTck6SJEA\nCQIgDgJoAN3o+6r7vquyMrNqHxpqmeYhSsvLlL8ReChEITOR1fXvb/7+3wOtyUQ1HsfgcKDV63H2\n9eEaGSFz6xaWUIjk1auIOh3hsRir5y+TW1nFZtHx2ONTbOy0MEZCuD0WhvssmB1mZj/zaWqtLouX\n72L3auhICjpXhBvnN9hcjWMy6bD1KsweCHLi9CyjGieiM8CL/3QHjV6l4/PRQ6RWa1OSTQRMFkqb\nOS5e3OHsWcMbhKz2SARrMIjSbu86N+6vS8eORbDZ9OzsVDGZtExMePeIjN5ieVffQ6PT+XM5jd4v\nmL1ezB7P3jYN7LpVbOHwm97r81k4ciSMx2Pi3r08waCVUqmFxaInFLKRSNTI55v4/bv3weh0Euz3\nM5zOsrFRAsGJ32+lXHfTSjYIDYfx9Tsw7RvBNzaC3m7HrFRwDg1hdDh2p+GFAoWlpb3tE8PAFK/e\nKFMqZ1AkhdJKhf0HDhGw3UNutYgcOoTtvpC6VS6TvHqVVqHAVHCI1mYF1aHHbLYyOeFGzK6TvdN+\nwxTmxxA1GkRRRKvX44jFaJVKVHZ2KG9uYg0GscdiHymL78eSjACEQjYsFi31uozbbcZo3P2vKopK\nu61iNusQxbevYRYEgfCRI/R0BrKJIk3BSsNqQu5ZMJu72O0GDAYN8XiVkydjSAYDholD2AaHEXOb\nlG9fRZYkHKNj3MlCu6OgygqNTIZaIsHFap5Th+0Ep8YZmI6x+eKL3P3BD1DbbWyRCOGHHqGwtY3g\nCiOIGqqJBK1CHrffge/IQX7td8+QX99CLWdRFQlD3yiXv3eNcraILRQkFHUzPWjDNzWF3GrhHBig\nqpi4dmWBzGYVj7MPx6SW5uYyglaHd3qG8JEjVLa3aVcqFFdWyC8tETt58m1zSAYGnGQybxRCud1G\nXK53nor0ej3yi4tkbt/ey0EIHjjwM37C/3rR7Xb5sz/7M/7yL//yPT1uNBpldHSUl156iSeeeOI9\nPfYvCjrNJluvvEJ1ZweT2413fBxVlgnOzqL1hulp9eibIjubWcp4UTQdGrUWnWqJgdEgSA1cnRRW\nRxurz4ZBV0LftKN1DbP58mXa1Sphv4/QuB93xE+uJKHa/KhCiUqtg9EE27keJ2wBcl/7Mt7Hfont\n8y+htCUMTiemcD+GyDAbWQFZiDMUNCELWioV6U2uGlGjeRO5sNkMHDsW5dAhFVEU33ENfDu0WjK1\nWgeLRfeGROkPC3qLhdgDD+wKWAuF3cbimZm3dYuUSm02N8v3tYUqLpcJg0GDLKuoancvCO3H+r3Q\n4aOIRjM94wL5soI+OoJeEXhyn53S0l2yV19F1AgYbBZGxobxBkYoS1qe/6c7ZLNNXG4z0eGD6HOr\nWIJBVjIiq6+9TCObvU/sXCwtpvEfiKLvlBl87DH0JhO9Xo/U9euUNzYAMGp3GNQk6I/p6TazNC9d\nptHtEjp4kNGpKfJGI0r7J7sB9lgM833dT6tYZOPFF2kViwDkFhbwTU8TPX78La3hHwY+lmREUVTm\n57MsLe12DjidRo4cCSNJCrdvZ2k0ZNxuE7OzgTds3aiKgqjRIAgCitJlYaVKU4jw8rrMynKBUlmi\nWGzz+ONDjI15kCTl/hSgx+uLdbL3VtAJCjaTgWOPPYOmsIUt2o9SkWlXJTqlAqJUx+q00dVoES0O\niisraA0GNs+doxaP01UU5FYLSyjM8NgEC6sVavEE2YW7mKxmjp44RSGewjM4Qmj/NOkbN9C4g1z6\n+o8oJnY1Lu1KhbzJhM4fITg7C0A+3+DKK6ssLpXotXvIXZWWLcrA6Unu3s6ytaol6FYJGGwIQpWe\nqtLMZsncvInlzJm33BMeHXVTLrfZ3q6gqrualiNHIj/V/97IZEheu7b3xVE7HRJXrrxHn/5HH889\n9xxms5nTp0+/58f+8VbNv5GRnw/1ZJJqPA7sLuCiTodjYJCsZCF9u0C73uL5v38JQYBaPIHXY+TJ\nMRvtloxG6BKIeFFaTfJ372Ky25CMRswuJ/EfPEct2aSYLaNWQ3gH++jg4d56gVrPxugDh9ELMqIi\noXTapFe36coq9cUbuNwWUps1BMHIxo0NXIMCoaiTr/7DXU4/NkI45tnrV4lGbW/SkMiySqUiYTBo\nsNl2xc0/b+nd2lqRmzfT1OsdzGYd+/YFGB/3fOi/0KyBAJbHHkNuNtEYjXsBcIrSJZGokk7XMZm0\nxGIOTAaBVLKGwaAllaohy11MJg0DA06cTiNOp4GbN9Pcu5dHFKG/34HBMYzngSjaqsROSaKq6adw\nfRWzasIzNI5WrqEVuuiVOnXCvPjD23zl/7nB+nIKg8XCqUeH+NxnxwhoyyTvLSK3WgiiSHFlBbPP\nR+z4UbyzURyaBsb72+NSpbKXOZLPN5DLIppqnfXnn8cVi+w9YKuShN5mo/+RR3YNCI0Gjv5+PGNj\ne+t2aWNjj4jAff3j6irukZGPjH7kY0lGtrYq3LiR2tNapNN1XnhhDbfbRCq1a2urViVqNYknnxxB\nq7bILSxQSyTQW614JyepCg42N8vU6x2+851Ver0esZidTkfl3LlNRkc9eDxmDhwIEo9XsPq8yJUy\nUrVCU1FJSk7O/vsHMPcP07l5j0Kuxqi9STVTxO6xEZoYwKRp0ajXqSWTu4K5dhu9J0AiL7H93asc\n+Z39xAY8LCW2cffHOHzmENvJEjevbGD3ZTj65CHsOgPJdANzpB9XJEM1X6TX7eEbjGIID+zdkxs3\n0vzDly/TqO6m8fkCdp74laOsJppURRddWcf5564wPOxmJizQldpoDQaahQJSvY7xLdpLzWY9Dz/c\nT6HQRFF2yci7Ufc38/k3MHjYFZz9IqDX6/HFL36RL3zhC+/LAv6Zz3yGo0eP8qUvfenfump+DnQa\njT0rpMZgQHFEeHWxy/zSLSZno6TWU9y+vonRZGByJsLm7UWWVyMMHDpEev4uZp+PwvIyvqkpggcO\nIDeb1FMpSou3iU1M4faEMI3M8tzfXyQ8d5C5/UG+/9XXyO2UsFj0WHwefF4b1fUFTFYL6QsvcuzE\nJ7gbDLKTauPyGzl2OEAmU8QfcHDxtSzixR32Hxlia6vCxISHEydieyGP8Z0SF3+0RHItgcGsZ/bo\nIAcO9yOo8p4+5F9WR7wdCoUmly/H9yyvkqRy5UoCp9PwkSjVFEQRvdWKqnZJJmu02zJbW5Xd7fTe\n7vabKFWZHTVjzS/j37efs2dHuHo1idmspb/fwYkTUXK5Jq+/nsJs1mI26/nWt5ZZWysSDts4c2aI\njY0Ki3fSyNsJtGqbU5+cYywkoG3mKK6soJEN3LmdYnUxAWqXdq/BhXNr7Nvvxz7QwufRI2pE9BYL\nVUWhnkqhlZsItRymwQjVnR2EXg9Rr0fUaKhW26yuFrF4YGx8CKPHS7nUwuO34Bnoxx6L0S4WcQ4M\n4Ozre8t781aWbLXTeYMm6sPGx3K12tmpviHiF2B9vYzV+kbLY7HYolys01q4QnV7G9h9Gmpks4gj\nh9BotBQKLWS5e//9bcbHPVQqEqK4u/8aDttYWytisJjxTowjVat0FQVN0Ifi6uPFFzdR1S4D5iJ3\nv/M8jWR81zFTGsE4PYnaUXAbDJhnTlD1zlBHT3C8h0Ujo6NDxG8j9uwhKuksN15fY/4Hr6LttjE7\n7dQaHc5+eh9OQ4ubr4PvwByhXgezz4c2NLi3yDSbHW7eSFGvNKHXwxoO05BlFleqnHooSkOv0iqV\nkGo17l5MEDnTj7x5D8/o6G6o0ztYRXd7G342vYdG/xaj3Y/IqPD9xiuvvEKhUPj/FXL2ThgYGKC/\nv5+XX375fZm8fNxhcrsRtVq6ikLPEeDVKxlW4go7BRCNJsrpKlabgcROBY/PgntskpbOyfCZw8RO\nnKCdidPqdNGazSRu38U32L9LvHUG8iUZUSOycmUVgwai/S5MQouZ/SFef6VEKZlGruT51KefRlpI\nYDU4kIoFqpd/wIGHHmdsoo/N9RxCNUup5MBst7Fwd5u5fW4EunS7PdbWSoyOeggErDTqEj/82hXu\nvXKdRiaDKssk7o6gaR9Hk7iDKIrozGb8+/bhn5n5qeS4UGjtEZEfo91WyGQaHwkyArsOxKtXd5t4\nHQ4DL7+8hU4n0hexkLx7j/hqGqE9itgss/GjHzH51CcYGZnB4zExMOAkGLRx8eI2itLF4zHxd393\nl/X1IlqxR3w9w+ZqjjNPjJBJ19HUVbQIdFsNls/dwIiEweWmNx9nun+MxdlBNlZzdOo12s0W2UIH\n8/Ew4XSW2WOjLN2J44xFsdmNPPbMQfT5Ne784z/iHR3FHovhm5rCOz3N2mICudNFqjdp1NsMPfEk\nKlqcbjMWm4l2tfpT01StwSDF1dU3ZI7oLRb0b/GQ+WHhY0lGDIY3jyC12re2nqm1MvVU6g1/p7Tb\nKKkEihijv9+JXi/S6XSp1SQaDSNTU16OHo3Q1+dEUVSMOkhlsvRUFZ3VisVnwxO0k0hUWVkp4LF2\nEQs7HJgLU/Xt1pNvvnSOriwz8MgjFLRBfnTuAtVGFxkdTpPKmdMDLH/1K5j7hghPDOGNRNn6b+dp\nlKsYDBqsOh3p+TtszkQYHfcyfXiQu6/cIrWZwuLrcDwU2xNhtVoKeoMWo81Ks1ACRUFnMiF3xV0O\n0OtSjcex+P004k3UnkA5XcDg9TNydvodycjPA2sohNnrfYPgzPIL0o/zxS9+kd///d9H8z6q2T/z\nmc/wta997d/IyLtApdKm0ZAxm3U4nUZsoRC+mRlKa2vkmiLFfB2zK0AjWaXRkKnLWjwRP9l0HVnu\ngdLB1Gtw64evYtUpuMcncIxNc/G/fJmuLDN9SiY8M0ElX6FZrmILRug/8ijxwq52YXFpjWatyelP\nzhLyaEheuUpvZ4HAyAClxTt4x8fJ3rmD5u5tGuYCnboGy75D9CptJEnG6TLh9lr2CjclSd1zuGXi\nebbvrNIqFlFlGQQBWepw58I8I9YCFo9nN0H1xg0sfj/WQOAd75VOt7te/Etd+8+SdfJ+I52us7iY\nQ5a79HpQq3XQaASsI1bCQ2E8ET9Wt5FiJkE5k0Go5NB4B8hkGuzfv2sD1us16HQijYbC8nIem0mg\nXihjsluIxyuUym20GgiN9WHu1imv3MNnEllfr2Ks6NAZ29RWaoyPzZDeziM6ndj0XbxO/Z7de8CY\nZ+iTE9QLAaxGMJQ2ef1v/gZHNLq7Vd9okLl1i4HTpxl+5CGw3EHUaonOTbL24ktkltfoxDy4wn7C\nhw4haDQ0crldMv0Wa4tzYIB6KkV5a4uuLGNwOAgfPvyWE+8PCx+dn6L3EAMDTlZXi7RaP7Gdzsz4\n+ZeyB4/HjMWkofAWZXU2ixZRErBYdDz77ATPP7+OKApEIjZOnRogFNp9EuhUysQsNVbzScqFGjqL\nmb7940xMDBKPVxkbddPM5bhzL4NJLhEJmHFHAmhFP66BfkyxQV54LYMYHsXaapK+u0Sh3uPW6zsY\nMkV0Fiul2xUcs3poVHC4rZg9brqKRKPSopQt8dLyFoVql+jYGM9+4giaVhmHuQSqDDoN+p6Ez6oy\nMOwhqdfQrjdxOE08+ugALaWHKtVR2m00Oh1DJw9jtDcxju7HOrmPkujFpXbf024fw/39zeLyMo18\nHqvfj/u+je3jjBs3bnDz5k2+/vWvv6/n+aVf+iUee+wx/uqv/upD38v/oNBVVbqK8q6Jc6/XY2Eh\nx/x8hlZLwWTSMjPjZ2bGT+TIEZyDg0jLZXwTBjroMW+02Nwss2+fH0G1ojFZsZkEHNoGXqeGbqbC\nwvI21XOLHP/1zzD3m/+R3PxNRLON4OwszXaPytY6pr5RXr2Y4Btfm8doMTE44qcv4OTl717nN/7j\nIXyaIrV7OdzuY9ijUUStlkf/9P9CbtQolhVGfQM89/0tquUWDz05jV4v4vZY91wRFotuTxci9LoI\nqrKXF6TR61HaEmK3g3q/tl7U6WhXqzQLhZ9KRvx+C36/5Q2idbfbRDD40QnQqtU6KEoXs1mH0agh\nEDDj8Vi4cTPDtXO3UWSVJz89w5G5cfLxNJVSA4sHjhwJ7z289fU5WF0totWK6PUi3U4bWQVRUugf\ndGO1GQjHXGTSDR4+PIivVKFRkBAtLmyfg70AACAASURBVKRajXqiQvjQHKpRg8utR+lqeOSJKfZP\neyhc+x7u/QeJDI5Ti29j6OoxWU10ajXcw8PorVakWg2L30+90iC/k0EM9FMO6HBYtGwuLGL0B/Eq\nKgZtB9/UFO1ymfUXXgDAEggQPXbsTXZrnclE38MP483lUDsdOvU6nVqN8tYW1lAI7VtNqz9gfCzJ\nSChk49FHB1laylOrdejvdzA66iGfbyKKWWq1Dh6PidnZIA6biMm9Sxh+DFGrJTwxhFPvYWkpz4kT\nMR54IIaq9ohG7UQiNjQakXalQvrmTXT5JJ96dpKiakfpiVhMIl2phV3Nc/VWllyujtViYvv1ZRTZ\nTbAvQjJbRdPzUo93yBU63FutMxQzUZfAgERiq8RDhybJ3JoHr4XA9CRjc8PcfHUBUYCeRovW5sIX\ncnHhYoJCtkaupsFpUplw1xC6ZuKXL+/qMySJIYeHqr2GZ8TI0PggQZdI/6CGtta+G56TcWC16fFb\nVDaW0siyiKEmsnk9idGofUOOwXsBs9uN+fjx9/SYH3X8wR/8AX/4h3+I8X1OqxwfH8dms3H9+nUO\nHz78vp7rw0av16O0vk5ucRGl1cIWDuObnv6pvUrZbIPr11N7U4RarcPrr6fwes2EQjasPh99PRP3\nNlo0mzJHj0bQqBIjoR79USeKPgJoqK7cobSxRSHb4PbNBBqhy87iBis7Mo9/8mFcJpl2pUKr2SZ6\n5AjPfWuBhR2QGhKdtspKq43Lv5/Q+BDbRYG+iYO4DBIGm41Kvcu9ezWa3S4ev4WQx4jYrnHm0Riq\nrNA/7iUaMHDnwm2MXjORsSjhsG3PzebzWxma6aeUziG22yCKeGIBBgYsSGvbqLJMcX0dpdXCMzKC\n1mDAPTz8tvfMYtnViC0tFUin63i9ZiYnveiUOvl7mwhaLdZA4E3leh8k7HY9gYCVQmG3d+app8b4\n0Qtr7OxUsNqNWK0mUutp7qhmjj4yTeTIJCNzQ9jtPymY9PutnDo1QC7X4OjRKNcubZBN1+h2K0xO\n+xkZcrG6lCESteGNBZicmuOH//1FUpkGotLCSBddT+LIsSgPnh7HZhKxO00YlBLt0REqm2vYw2Hc\n0TCNco1CPI03uBul0Gk0sIZC7OxUSKcbFJ01bmwuMjzsQi7nuPDVV5kc9zB9sB9PxE/lfm6J3mpF\nEMVdd6LBwMCpU2+6NxqtFqPTyfaFC1S2tuh1uwgaDZ6xMaInTryp9fnt0FXV3V4lo/E9Dbv7WJIR\ngGjUTjT6xhGU1aonGrUjSQpms27vqTF28iSp69dplUp7CXX2WAynRkM4/OYvllStsnP9Okq7TWZ+\nHq0nwEayx7VbmxTybWL9Dg4dDqHpalDVHqpoIDB3kJBXi6DIpLJNTJEB7sZFbN06rbaKN+JF0KsM\nTPahtpoM91mweVS6EReFfIvXvnOB8cMHMOinKVY62Fw2QoNhsoU2TVVPp9lkbSGO265h5pNe4hdf\nxez1UkxmMfv9mCwtDvSLWKNhEjdeJ7cmsX2hx8iolxMPnGTfyFEqWzvc+MFFtu6uEZ6ZIK/Y2V4u\nMjrqfs/JyC8azp07x/LyMr/zO7/zgZzvmWee4Zvf/ObHnoxU43G2L1zYE+K172ufhs6cecfFtVhs\nvSGwD6DTUSmV2qTTdRKJKj6fhX37/KytlRiJ6shfvYi0kGXh9Q6BvgCDR/dxb3mbbqtFJtfC5XdS\nL5ZpdaDbg1atxnDMTzmRxh32srmcYmO1gNbsxWDU0pG7CBotiUQNt1mlWm3zarrJw0/MoJR2ePGF\nZe68fAu9yYizvw/BYOLZX91PefEW+dUtmqMxDvzK00x+/hQ37pS59OoOWi0sL3o4+WA/6YzE+Gw/\nakdiayWF32fm0MNTqDuLdIxWaqkUzWwW39QUnWaT5PXrKDoLGG3YbPq9JOh/DpfLxPHjP0lYLq2v\ns3bpEnKjAYKAye2m/+GHPzSHRqulMD+fYWkpTzbb4InH+hHpMj7ioNtvolcrUS9VaUlmwocP4x3s\n2yMi7bZMMllDFAUMBi3Npswv//IELqeBmx4DfQNuHjo1xLXLmwQCVh58eBjkFomkRHisn514Daku\n4xqNYR2fZfW1Wxx7cJibr26TSlZwRiNMDFnwe/xc/Mr3aFYb9I1HcUcDmLwBvJOT1FMplK5Is1Ag\nMjrCdl7g7s0dmrUGn37YRcBnRlFUkJoorV0zQuW+3hFBwBoIoLNYkGo1DDYb7UqF8tYWUqWC3mZD\nazBQ2tjgx/PSnqpSXF3FNTj4rpqXq/E4mdu3kapVjPfTd9+rwr2PLRl5O2i1IrIssL1due8xN+IN\nBBh+4gmahQJyu43Ban3HhLr0zZuU1tcx9o3S9Q6ynBe4sJjg4qU49bpMVxB4Jifx+BMj2Pwubi+u\nMTY5grv/CaRSiX6li2i109lpoOnJnD7pY+VejvhaksrmDgG/kaGIA0fQS/KOnoWbS3Q7HUSzjaGx\nKAf2e3ANDHBtReG/fukack9DOBrDolUQBIGOIiJotaTSdQyuMLd/8BKtXI4Dv/osmYUXKKYL1LVe\nHHYtm9fnKdcUCpYB4jsNBNc0j/7nx8gkS2xuFdgpiCjKO4ef/RveGb1ejy984Qv88R//MfoPaBz6\n7LPP8tu//dv8yZ/8yQdyvg8KsqySzTao1ztYrXq6meybHAH1VIpmPv+GKPB/CYNB+yb9g8dj4vbt\nDJXK7vGSyToej4mHH+4jd/UircI9zEoHQSMiFlpUFuGhTx9lc36VfKGJXuMjONLPzAMzBBcWqNyd\nJ0EfOhT8Bw6hy3VwRfxk8h0GxiPsbOSwucwMDPuJxay06i061gCXzi9z7HCQra06llAEpV6mEk/i\nHJ8kWzdw7eV7tBotDIMTZCsi2wtZvvGNZdR2C6XZ4MZFK8Vim3Sqys5mjlNHPfzKbwxQ2dpi9dvf\nxDMQBasHhytG8MABdGYzqiSRUZxc+uotDN4gVqueAweCDA29vdNGkSTSN2/uEhGAXo9WoUB+cfF9\nJSPttsLGRomdnSoWi47hYRfBoA1V7XLvXp5WS6bb7eF2GdhajiPJIqok0avm0Op1+MbGcATcJKo6\nVi/tUKm0cbuNfP/7a9y9m0OSFEZHPZw8GUWjtjl93M0Tj/gp1wXK5TZdQUOp2OHipR1iYTMv/XCb\nJ548zpnxfUhthfWNAgnJzehckG99Z4mFu1miQwHUnRRF/wjJK/NsbRRpFEskNrMceHAaV8jH6Cc/\nSS2RYPvmEraQA4Pdilis0cykWcxnOfvQA9hdFlBker0eepsNqVajVSyi+3Gj/PY2tkgEjU6HVK2y\nee4c1XicajxOu1zGOz6O3G6j0Wox3NeLdGX5TdUHb4VmocDWK6/8pA26UqF9vw36vUjh/YUjI9Wq\nxCuvbJFK1el2e1gsOo4fj+AWqySvX6dTraLR63GPjhI6ePBNCXVSrUY1mcTUP8K9lIAnMkGlkGZ9\nc7dR0WIzYbMaWFwsMD0TYGomSCJeY3GpiJxLs3l3g0aljsfv4PP/21luf/8cK+sdxqaCxPbbMZ46\nTWN5nsS55xn4nz+Pc3Ifw4UKgagHs1HCINfwHXiUsmxE1ecJ9nlZvhNnbVPkgQdiHDreR7tVRBca\nIOYPUt3aInZgH/6JEbqOEMvzm9iMJkJ2gWImjynoIbmRQuz30u6o7OR6bGSSeFwadBqRhx4awGzW\nUSy2aDQ6GAxafD7zL4wW4b3AN7/5TVqtFr/2a7/2gZ3z6NGjFAoFVlZWGP2Y6HFkWeW11+KsrBSR\n5S46nUjI0iHictMpFd/45rfQgf1zhEIWhoddrK2V9giJw2FkZaWAKIr0ej2kapWNZJKJQSPNrTWU\nehWtyYQoCuQWFqju7GCLRAiFrJz81HEyRZXBA6NU1tbQarqMPXqY0tY2itTg1qt3cPZFOfKYn7/9\n8uu4/Sb+p//lONQKhEIygk3DrXUD2m4Vow4EnR5Nt40qarBHYhhNIrOPTGPXSZw4e4RkokKp5yKZ\nqnPhwg6VUoNOuYjBZkXu6Lh0OcGjpyLce32dhXsCuRtX0TYLtJI7rF69g2VslrFDo+yfHSJ/+zaq\nd5BLL62idXpwmT2UUjmya1t84hMjBGJedFY76XSdYnE3Sj0UstJr1t+y/bWRy9FV1fclcrzX63Ht\nWoLFxfze57a5WeaxxwZxOIxUq21qtQ6y3EWRZJoamJrxsbyYRtUbUXtdtrcrDE7GKBTayHKXxcU8\nsqxy/vwW3W4XQRCoVNq0cjmU5Bq1ZIJqTcY/PYklPILDbWVs0oKiKAR9Zv7T/3CAZqOD1DVi0erx\n9gfJbOUopEukSgKR4Qh9Y2EsNgOD/SLLV/JE3D00oeBuuJnSoVOtsXPxIlK1iqNvkMxilrWvfI/g\nocOEIi5KhTrZXIvB44fRtQo4A2Y0JhPhI0d225Qrlb1tF2swiNZopLS+TiOToVUoUI3HEQSB4vo6\n7uHhXfv59DQarRaNXo/+XWytNTKZN5UkSuXybnjbv3IyEgK+C0wCFuCdV4/3AL1ej9XVApKk4vGY\nUJQupVKb7dU0lcwtavkikqSg1Yp0mrcwe71v2kMVtVrM/SNcW+3y8rkN/IHabtyyVovDa0MQRBLJ\nOmq3x8pyAafDwKnTQ/z3/3oJJbmNy6RS2KrQMmm59sNLxKwygiqTu3SecqmBfnCGuqJHawiR3c7h\nmxjD49LT3FmntLmDde5h/vHLL5ONl/CNDPDomREeOTPG9laZw4f8GIxart8sMTkT49o/vcLa5dex\nO4xIV7bZ/8nHcEWCrP/oRxj1InKrTWHVwOzTT7BZbdCpymhlgVJDRzTqZ3Upw8xxHfl8g/n5DM2m\njMGgZWzMzeHD4Z87OOkXCYqi8Id/+If8+Z//OeIHWCYmiiJPP/003/rWt/i93/u9D+y87ydSqRpL\nS4U9274sd1nbbuIedaMRSntjDrPHg8njectjdFWVyvY2la0tol0IzwbISWYcDgN2m55apUWjpZJa\n3qSyvU046iJ39TLdRGJ3Gup2I9fru845826nST6eY+SJx7G39WzeWkFsymjrec79n/8NncWK3u7E\n98gnSNWNXDq/xqHjg0wMmIhfuojNCF/9RhKnx8oDv/wod5s24qke1fMb9B07ipRP0ZYFDh3pI3f7\nOo1mnna5gm//ARrhEDqzCbPNitRMoLM5yBVbtJMZbBYd7XaXgwcDlDc2SCzeZXTEhXc4xPKtFvlk\nAVVV6T84g95mI17qIEkKdo+HWjJBeWubnqqy069FSa6RMQ6xvF5HlrsIwu42+APHw+gtljdlBJm9\n3vet+6RQaLKxUX7DRKvRkFlfL3HyZB8mo4ZEokoqVUduSxR1KkceGOKZz+ynXKwjClAqt8hmG7hc\nJur1DlqtyO3bGXQ6kUjESaHQZG0xxe0fvsLsbIhYyMP8taskvr3AwV/9FFp3kMFBB/HtMquLCV74\nwRJqR+bg4TBqR+bomVlyqSJGQUIspxibmyOdqzI+EiG7skxqM4W1W6WcTOLqi1KWBWKjEUxWM+7h\nYVaefxHX2KFdV2cxzcj4ERD8eGxgEXq4/R4EUaCRSlFaWyN06BCdapVOo4FraAjz/alUp76bqdUs\nFBBEEY1Ot9tzEwySX1xEaTTQeb27xXnvws34tvUgP6U25N3iwyQjReA08I0P4mTdbo+bN9N87WuL\nbG1VsFh0HDgQxOezIEh1ttdSJOMVOpKKVrfb7uge29kjI+1KhUYuh1Stkixr+PrfvUY608RgtfCr\n//4ggaCNttTl3lIeVe1y6FAYs0XHCy+s8dnP7sNhgZogU8nl8PvNOAN2RFnCblBB0LFd7aChh65V\nxOweQurJ6J1ulGwck91GtlTFEo2yHW+QuXGTeq2FWddj8foqR84e49TDUXTNPJ1MnWMPj5Jd3uDq\nS3fwe60oooalO0kMrpuc+exDrJ9/hVyugtMMWrMZrclE+e4KmR2JakdHZHqUoX4bqDKlUotEoobZ\nrKPXA41GIJ8uk97SERkK/NuE5Kfgb//2b/H5fJw9e/YDP/ezzz7Ln/7pn35syEi5LL0pP0hrdSC6\nLJi7FZRWC7PPR/DAgbd11eQWF0leuUJX2dWLaAxbTD/4ID1VInn9DvLdNPZAGK1XQ8DkY3TITuG1\n89i9DpyDgyiyQvLOMo6hYcxTR9heSaLpdXn9yhZr8TYbdzbweCx4ETF5vRRXlgnOuillyqylE3zv\nBxuc/eVZPCtrLN5OEg6aiPi0tBpV6utLxAYPE0/USGxlUNEwPBXl4LiX2sodTCYNPZ2Hnmhj9V6S\nA7F+3N4BhkZcNCthtEqDoqPLdqrDwf0ekitbrC9niDkULF4PUqlAKZFnaHaa1++UGDs8yU5WYdzv\nw1LdFa9q9HpqySQ9VUXUiGg0AuWWyPXXFjAGdzUFvd5ullNy0EVwbo6dV1/dG/Ob3G68k5Pv289A\np/OTuPYfQ6cTMXQbbJw7j70pMdvfw2k00uw6GBq0o9GK3LgRp7S+xfHH95PMSRjMWpLJKrlck17P\nSbfbw+k04vOZefnlLWyaFq1smZtX2yw77HhNNoReiVoqQ6msZ24uQD5T4Rv/7y3u3YmjqhDfLvDZ\n/3CIjY0SLo+F8tI2n/tfz/LqlSxL9wpY2zmq2xs8+NhJ0hdeQm42KW7H2ffsp2ikkiy+fJ4Tv/d7\nRA/OYomEqRydQOdwMvdgFL9Lx865F2k1KyR6Pcqbm4Tm5tDq9excvMjQmTMEw2HalQqOWAwAs8+H\noNGgM5uRGw2kahWb1YotHGbs6aexBYNYg8F3XZxnCQTQW617JAfAYLdjfo9iGT5MMiLd//OBIJtt\ncPt2BkEQMJm0yHKXK1cSfOpTY6g9kWarS0faLXhT5C7VqoQkdWnkcnQaDRKvvUb27l3o9VgSJjDr\noduocfSxCbRakc9+Zpy7iwXCYQuDgy4MBh0IsLFZoVhq8eDpSc6nNih2OnTVNj7/EIcfnaBTLiHo\n9Iy4vCz88ByRaABdNEI7p6EVX0PogaZvEMPUcewWLdU7y5x4cAgxOMi122WGwlZGB50EtHkacont\nG1dpLplRpQ5TE06aXQNSq0NH6dEoVylmy/hPPEJAaRPwmdDo9Sy8dBlLcIh6NkHoyFFiQ0EaHQGt\nw83EhPe+lU/AadehrSTYuniTOytGlCMTBOfm/lW1dn6QaLfb/NEf/RFf+cpXPhTSdvr0aT73uc+R\nzWbxfwxyXGw2PaIo0O3+hJBodSL+gRDho4MonQ6G+66Ct4LcapG/d2/P0qrR61E7HeKXLqGzWJAr\nJfxuLet35omNhqm0GtTXEmSvX6ZqtzNw5nFEuxuNN4ItHGYnWaextkD/Qw9xez5NNZ2hvROnIvmo\nqjJH9x0jM38bx+Ag5rk5lq5V+Q+fP4bHayPz6k0iIQt9PoFWOk29VaGTMnPozHHKNRcrwjBmbQet\nQc/+IwMsZJbo6Q2kUxKhkIVIS0bMLmMouDgxE6RfVbj8/XksSpdf/s2T6DxmvvKlVwgf2M/IPi9B\n537a118gfSOPxmJj6kQMY/84gt1L5GgUlwRpeZP0VnaPqEUGfVjFJk2slLNFgsE3ChyLxRYTJwfR\nW627QZFaLdZg8H1dD9xuI4GAlXj8J4mifqdIY+Eaqtpgc6HAsNfPgakoltgA339+m3PntpkcczIw\n3U+x2uXgkQHK5TbFfAOzUcTrMXH4cIQLF7ZZXi4wOekl4NawLGUp5GuUq0VGToYo78RxeW1U2wLF\nosS9xTwaswWj2YQsddCZTGSTZSZcRg7MRdDtc1CvFBHWr3P6QBS3oc3L14psJBzs+8STBKanELRa\nYnMznP8//neCs7N0qlVyi4tYcznGZiJ4p2dIra6x/MoKi9/8FsGZSXQ9GVGE7N27jJw9i8HpJP7a\nNbo6A1qHG9HhxxIKY49G8U5MUFheJr+0hNntxj0yQmVnB8/oKN6pKXQ/g7PP4vUSe/BBsvcFrAaH\ng+Ds7E91rr1bfKQ1I/V6h2KxiSjupnz+OIv/50G1KlEuSyiKSr3eQa/XYLHoqdUkhmdD1DeiqPES\nGlHAYddi0XWo5MrEL12isLxMr9ejkcmgs7tAaEKrxqOfnqNS7RBfjrPeUZicG2RifAqp0WBrq8r8\n0m4ltUYjILe7fPq3z5JcWmNzfoOjTx1gaSVPbjPFxLgHYxdO/ebTBKYm2bh+m1QyS6duQpU65Ovz\nmA0CV56fx+6xc/faGq3OFfqf+CQvXIzTF7XhCTaZ//KXKceTDJ56kJ7ZTWllGdvwOBafA3vAi28g\nSkc08fy3bhAKmBFmXBjKWwSDXpSwj5kHrYw9vB+11aTZaeJyuXnllR2y2Qblcpt+b49hn4rc7qC2\nuhSWl+kqCoOnT7+nFq+PC770pS8xNzfHyZMnP5TzGwwGnnzySZ577jk+//nPfyjX8F4iHLYxOOhk\nY6NMt9tDFAWGh90Eg1a0ei3an7Kwqp0OaqeDzhuk1DFRKDRxuUxYlQIGm5OmYqMst4gdiSDm1wl4\ntOgQEO5/99N37yEHJ9BbnaTXkggdCW/Uj+ofYuXVJZS6itXmppnP0SpX0Dz8KLO/9VssFyyoFxdx\nBMa5u1pl/k6BuUCAbn6DretxtHINuavB5nMjV8ocHbcip2votAKDU2HsPhc+e49qtUAs4qSwtEx8\ndYuBB0/SVTrU716lMX+D0ZiNarHGwje+Tf+DD2Jz7+oAVu5l2Om1eODIMXzHTpGpiaytNXn+H5aZ\nOdJleMzPyIibRx4ZYOGOkWW5jN+lYyCsp5PdBkcUV+iNglRB2BX8Alh8vvfdPdPr9UgkaiQSu6GP\nAwNOSqUWsqwSc/dopRpotCI2s4bM5jalzW18R3qYLUa8fhvlRo/+kTCxmIPLl3e4dW2LaJ+TWJ8T\no0Ekk65hteq5fj3JykqRx04PMHFsghsv3UQVdHTaHaJjfei8IdLX8ruuq0wTVeni8LlQpSaC1KCn\ndIgNeKiXq2Ru3GD15irJrSo7d1d47NOHmJ7yInW6aEQRlDZqsUzxnsDg6dMonQ6l9XVEUcQcDNO2\nhygpVjo9PRqtBoPXR6XSwdhrYDZqEDUajA4HW9dusrWwgXN8ily6yMrad3lca2Ds+H7cIyPEHniA\n4OwsPUGglc+zde4cla0tqjs7hA4fftsI+beCs68Pezi82wZtMr2n23EfaTLy67/+O6iqAUEQmJ2d\n4rOf/QT79o0DsLm5CezGX7+b17lcgnh8i1RKS7fbQ5YLdLsGJiZmkRVYV8w4D+/D3VXwOjUkilW2\nt7ewj/dR3tqiYTbT0Wqx18r4Y9A3asRkV7A6HLzwnXl6VFjf3KbRdnDigX46jSThsJmJ4Sim/DJr\nN++QEnscPLqPo8cf4TvP36Utw+iAlfmvf4+OSWRkOsJErki62GWnJmGlx50LcT79G31sJzYp9AR0\nHQFVY6Sta9JT8xw5HObOuas4nxqm1G5Q3kmiefUSsV/7LL6TB9E1JGRBYfbxCayDoxQVK/uPDuMO\n9Og0yvhDAQKT4xQQ8O2fQq/TsHZngbLSxjU8SnJLRGM043S2KCQT5FcFHn8kRldNk5cktKkUrVKJ\n7H1h07v9PN7u9ccFlUqFL37xi7z00ksf6nU888wz/P3f//3HgowYDFoeeKCPwUEXlUobp9NIOPzm\nYri3/fc2G9a+QV69lGRpfoNer4cgwNjhMYJmIxe+cxVV7aLKEiGfgQeP+6ncu03k+HEyt27RaTRp\nlqoETx4marfQWl9kKaenXlJYuXwLX9RDYMRP36FhNi9dwRvxU9bpWHjxEuGpUQ5OB/nGP22iqj3O\nPDSOWUyw+IM1Jo4dwOG1Q6PEva//I/59+7FKMt//x3lMT09T8XfRmkx0Wm3q6Q0WLt1GZ3eSq0H6\nOxcIORTUdpNarcHScglVljEurzIxd5RQv59X/u9vUdraxq49DZ4oGwmJfKVL/1gMh8PI3btZYjE7\nfr8V/+kRDk6YSV69SnJ5iWSqQWDKTf/UGMtrNex2A6Io0NdnJxb74NI7l5YKXL4cv19MuuuK3K3j\nsNIrJNlYEhFEkaGZPuyVLtubRSxuF1e/s04m00CrFUmna5w6NcD6YpLBqImt7RLf//YC++ZibG0V\nefJT05w6NYAsd7n8WpLP/btJQpMNRoYcaLsSksHFd19IcOxomEKhgc1loat06EgyWquIWkxz9JFp\nWi2ZpSvzxM+dxz82hL/PTyFdQtEamTk4wL1XrlFeThOcGsUWDLHx4o9o5HL0Pfggla0t3LOHeX0D\nEsk1AiMdzE4H03PHMdy+RzlVwBbzINcKWC0WZEli69YKeqebaktAVbqoSpfVawsMHppGabVopNMI\noojJ5WLj5k1USUKqVGjm88QvXdptDv4ZklhFrRa99b0PuvuokJG3nGE/9dR/fsPravUnwTQ//iX2\nbl+HwzFCoQaZTBqdToMguAmH3UiSgiyrTIwMUNrcxODQ0ihsosnmGZodxWC3E5idpVUs0nW5Kclm\nunoLp8/O0RKsXL64Rb3SRKPRsXy7hjeopV7r8IlPHENrsdG89zqXn7tMuVBHK3S5Va7z+H96GkEf\n5vCUhdXvfZdWq00j04KYn/idFUyBECGrhZ1kg30PzmDVdug0KuybGkIWDDjzDXT5Hi6tDkGv0lBU\nzFobhmKBgYNTGGKjOK1u+h8aweLzUqyD6PDR6IBFD/tnP0MjX8CiVmnvrFHJFmnhQGPS8Xd/812i\nY1EOzPbz+q0che06kQMz+PwxMvkyClV8ES/G0i75EEQRBOFn/jx+2ut/7fiLv/gLzp49y/T09Id6\nHU899RS/+7u/S6PRwGL52TqEPoowGrXvaDd9K9RqEqlUnU5HRbXESOY2QRQRBTA4HGwXRJReFUEU\nQAWNTofW5kbrDeOdkNGazUSOHgWdjoY5RryspSd00UUneP3bL9A/LvHvfusE1Y1Vyju3aCkeHn96\njpF9MV46D0OnH8EfdqHTaXjollrVwwAAIABJREFUgQilsoSEDl/fEHO/HiTi07H8ne9S2dnGZNTR\nkSFy+CTP/I9nMdVTrL/wI1xD/Yx+6tOsXJ5nn7eflgy3Xr5N/3Q/+Z0MkeEIgljkxEOjFMptHGEP\noWMTJFN1ovvH0RiNGEMxmhobwahK/6QVo0lPsdjkzp0MYZ8WXT2HQa5g93vw7p+laooQGlZoCBYk\nRWR83E0gYMXvtxIKWd+TGPhEokq1KmGx6AgGrW8ilj9uRt/YKO0REYBmpcbCa/ewjIoYbVZ0Fgt4\nIsRzPUpqE+uQn2RJwGDQoNeL2O0GzGYd8/MZhse8dNUeyy/uYHWYabRUGvUO8zeSHDvZTyhkxes1\n4/Xb6B4YYWjYST7fQq0rHD2mo15rsblVYf+Mh4zLwNikQChgJuYVCPfZefGHS/idFsaPz2CzCBi2\ncsw9M4fV1GPj6i1CQxF8fT6a+TT1ZBKD3cG+x86g6izovEE2NiosXNym78gc127kWV5e4pFH+jnx\nwGk01y5SKxaYOnkURyyG3JJwxMI0eyaa/6w3qCcIqGoXg92+e2+AenbXBi+I4p6tV6pWaZdKH4lY\n+A+TjGiB7wOzwA+APwDesUc+laqjKOrP5eJotRQGBhxEInby2Rp2mxZRFKlWJRRJoj7/GonFNSpB\nH0F9lYDXQieXZvX1q3RVFZ3FgmbuCV7+u1fpqHVcBQeHT1qot3tYnHYMegGfUQf0EHoKClo2bm+x\n8fw1dL0uTqNCq1xFlfQkF5aZGh9FU83Q3lmjP2qla4pidVnJrO4QNBhxx/oYfHCA5RfOs3NrGzWf\n4ua3r/LI5x4nMhwl2arjH+knfjODxWHBYdcx9slP0rBEydZgu25D39UwGvJgDJkRVYmtW0u8tpRm\ndMzLxLib5O0V3HYN6VKXbGYHS6LAyP4BLry0gmgw4PY7uHJxk9Bkm1bLSHR8gE4ugVH7EwGZPRJ5\n162fvyjI5/P89V//NdeuXfuwLwWn08nBgwc5f/48Tz311Id9OR84isUWL7+8STbbRKsVsVp1NI0B\n/PuC0OuhM1soltoYXWbGjkxSL1XxBaxIO+ssfPu72IXdaO7osWMEDhyg1DGRvpXCpP3/2Huz4Mjy\n88rvl5k3l5v7viORSOwooFbU3l1V3dUbqebSYpMiNWNJY0vDcVhy0NKEw69+sib04JA8YY1GdtAh\ncWSyOaLIJpu9L9Vb7YUqFPYtASSA3Pd9uff6AcUiaTbJJt1UNTk+TwhUJeKL+8977/l///Od06Td\nAqvTiiwr9FtqrFUTSIKM0yTTSayQTUQJj0VRhCSLd5PE13KUKwr9/Q40UgfR4aBezpN47yo7V65g\n7wuhG5hgbbvBavYmjumH8LvC2BsNOqKb9WSPjd0me5s58qkCzXIP7W6Vc48c2jcpmzq9HwgaFug/\nPMz/9dwK2VyTz3/+OHpvGBU9rNSZu3mHwKHDdHtO0okc58/3U12YYeXaPG67gNeuRrC50IydJlHR\n0Ol07l/PYNBKNPrRaAQAXnllnW5XRqPZP3I7fTqMXi/QavVYWMiyvl6g1eqhKODxGMlmG3SbTfLL\nK0h2PU2vm2Yui23yCO9czXP98iaSouKhxyZILJeIRGw4HCKiqGFgwImiKAzHzGyvZbAaZFD16AuZ\naTW79CQFm82A2y3isOkZG3Gwfv0u33nhDbz9PkzhKLtbZRpthVqjx5X3KkT6nTz2xCi9SoHMlbcx\nGs+hFs2YQ24EXZfV736HVqmE0ykiWrV4AjaMbiuZ27eJv/4q9v4IlomjXP/rbzP02EU2dxq4Qz7G\nztp549I2dbUFo8PC1SsJ7M5hTn36c1g0DRzefet50eHAMTjC5tuziLb9ddGJesKToxgMWjA4CRw9\nSm5pCandRqPVYvR60d/TeajU6p8bsvfPhQdZRQ947Bf5gNWq/6UzUpxOA9Vqh1q+gFQuklgtI0lw\n+ukTpLZSXH9zFmSZSq3HyKePoa7ssHnpEnqLBUEUsYwd4u2317GOHaTZU5NPFrh9qc7JE6PsJkqs\nLaVAaTI44sPksLOwVKRebJDN1mnmchyZsGGRSyiVXVTlAAajlZW5TTDZCMR82J1GdEYjGp2B/uNH\n2Mqr2F7aYmV2k1DUS6AvRn9NprC2yuHPfRpXyEsy2cDtsTF2wkdmfRP3o88w/84W88t7dCgQ6HfT\n1KQJBa00mx1e+s5t0okcqZ0QYsuBsZqj1jNQrSsIOj3F3RQD58d4qyezPJfkM89McuLhIXL1HtV2\nheB0gOFjQey6LK2eA3t/P557O/9fla/AryP+4i/+gi984QsMDAw86FIAeOqpp3j55Zf/iyIjiizT\nqlRYuJsjna6jUqno9WS0Wg2lchun00a3lKeWK1DuijR8RlbiPbxeDzG7luytHGG3HYMsIEsS3VYL\nk8eDRaNBo4FEPE8xXcN38ACHh0V2X/422laRvqAf0WZgZqHESu5txn7rKTqNNn3WFvVKAf9gBK3L\nSi5dZa6iYiLcTz0Txzs2jDk6RDyjkE2X0Tp0kK2wvVLm2d85wUayR2EvSeTAMNffWaZcaGEyasns\n5HEf/z26ipZ/+up7LC9l8cbCWLa2ifWbic+tk9txo6rm0clton0WMk4t5fgajoEoU1GBiUCX5cs3\n8GmatNNtMlmZVmWWgCQQHZpmbU/5MdHwR4kfJKJLksLaWoH+fhsDAw7m5zPcupVEUfYnIRcXsxw8\n6MNk0pJOpeg2G4SOD5Jpq8mle+jp8f7NPMW6Fhk1L722zdiYm1SqxuCgA0mSefPNOKJBTbdmx+m1\n0egJlPM1gsUaR44G2Es3yefr3Ly8uU/Qdndo5PNoNCoKqQLJoopjFw6gqNSs3l6nUawTC/mR6nW+\n/fUZPvmZU9ycSZFKN9mZzSAVkpx9/JPoqruEhvtpZNOYjBYQtJTi66g0ApJaT3xpl835HdwjIyiG\nPu4slPjEs8cJ74HbYyLgM9HMZfG6FDR2J067lfzcHIosU0ulGJw+gMpoIZ/MoxUNRKcPEjv6w4km\nz/g45kDgvv+Lcs9LBcASCmF0u38la/uL4uNBiX4KdDrN/dacyaRlYsLzS08l+HxmRoftvDK3ye5O\niVDIztmzfWzNbWAyqJC6++y7Wm5SKLXwqfeFWVqTCaPLhdYXxpKro3N7qGYL5FYKvPLWBodPxQj5\n9FRKdrq9Hla7GbNVJJWukUo1GT4wzPaVIjsbKfocPZqlAs1aA2ltkchQFMsBDwvf+DrpbGp/LPHI\nUfQeL7ff3+LCsJWyT6CyEydRtjD10GE0chtPnwe9U8LX7GKxipiMAlWnmvlUh3dulGi0DJTyFe7e\nzVA7P8jRoyGe+w+v4POZcDhNOGxaKrkCtXwFh09DpSzRaPawGE0Ighq7w8BAzIHd2OUzn51gKyOB\noOPwyX6iUSdazT75EPR6Stvb5N59l06thjUcxjM+fr8F+F8i0uk0f/u3f8vs7OyDLuU+nnzySb70\npS896DL+2dAql9m7cYNes8nKfIdCroMtEkHQ6+l0JA4f9lNM5amms7QMLgSNxPV3N9jerTEy7qOb\nrXHs0DA2qYAgOJEliUYut5+4anOxtJTnrbc2oVXh9AEjS5euUt3Yo52vopK6yArU2gI2jYzT0OG1\nbz0P3TZaeowczuEKnmel0ELbq7GtNxOdOokgmukoAt1cHp3ZQv+RCRLlNmq1hrraxo1//BrlYp2D\n/+5POPelT7Jy7S4Wh42RU1PUsHBzJo0xOkLIGKbT6pDcSGETfZw6FSbgVBOOOTFLZXbfeZ3jQ2NY\nRkZB6lKOr1NYylLY3MJgMaG0WmgdFszRMDqVhLGbZSgSZCvZuRcU+qu7t2VZoVRq0Wr12Nj4oRmd\nWq0iHLaxs1NhasqHSpGJTg2i0ah49du3CUQ9rNxZYW+vjdtnIR4vUomXGB52MDHhodXqcft2BllW\nOD0dIJ0qsbCwziOPjzBzeZ25a6u4/HZOnQyxG0/RHzSQ3ExyvbLL0797hhdfjNPsQjTkIjbgQJ3f\nxBiW6AVEhqxFtq/HOTzdx/s38ghSC005Sa1UJbmcIDwW5aGxCJtvvI5GpdBpNBj/7c9h9nhol4uI\nvgDr81kcYT96hxNF5cA1oMeoh0BzEXdBhappptdQmL1TwNw5QOBoDOUHpn6yTHV9iYPnTqP1hlFp\nNNgdxp/YtIt2O6Ldjt5iIb+8TKtUwhoK4RoZ+chT2X9ZfKzJyGOPxdjbqyAIasLhfYHVL4tarUNm\nt0DACeFAAKndoZwv4/OZKRQa+CNeytkidpuBbq0Gdg3B6Wn0Ntu+Ct/iYGk9w9Jrd9hbjBMZ9PDU\n504xc3ULbS3LJx7fT1yU2y3e+P4djk37qWdztA9EOPiIRHd3nT6nhOA4SiVbYOPKDNNf/iOW3ngb\n0eXBNzyARq+nUShRXV/lzJkhlPQSnUoZum06+Rb5JeibGKRTqTH/t/+RejqFa3AQczBM+Nx5Eokq\niixTyNeoFurY7CK5ZIFauU52cxerETpdhao2QNvnQNDm0ZpMOJ1d0ks5wiODtEU3/n4v02cGkUpb\nvPHKVdKFLqcfjpHRFSmXJtDpdTgcBsyaErvvvrt/vYBmPk+rVGLg4sUPHbr0m4Z//+//PV/84hcJ\nf4ich38uHD58mFKpxObm5m+cNueDkJqZobi+jtZkwuOwsX53G7VWiyMapVxuE/AbmR7yUGv7iG9X\nef+tFVSdHl5NkepaHr1VwHnxDOqdGqWtLao7O1hCISo7O3RKPXZ2KsTjJfr77WzdXULudBg5eYj0\nzWtIXYmNu3EET4zokUlSs3dJLa0jGnU4xS71lEjz2g18vjF2L99lYU1FczxCLDiEo1fC2xAYfuQs\nNSwIy7vQUSHotSiKTKtQZOnGKlsphYOf+QSekJfCXpbV2U0qJYXETp3VlRI6TY9g0Irda+fiaTem\ndpqFr38L8fzDAKilNrW5a9SKVVJ7JfQWC71GjWa7SSmZwRvx0TWK2AcGmPuHf8B58ChjJ84SGB34\nlSb0qtUqbDYDiqL8hI+WzaYnGDQzPR3g0LiV/PYeL3z9yr4IWaNBpdGwm6xhsYskEpV7br27/Omf\nnqZabZNIVIhG7eh0MHttnVymht+t5eQxD/qH+7AHXOhFDXffm0dqdxiZDFGuSmSyTcbGXaRLCgvz\nKYb8Cje/+RoD42H6AwbKS2vY1WqGLkwizSusv/0e1d1dXLEoks9Kp9kmtbBF6s5trMEAtlCI3NIC\n3oOToFah9vgwF/V0NQaqion3XrlDMGyhFGwScatZfvs67VqdA5+8iCZgo5TK0q770ZrN95+7gihi\ndjux+PZHqmVZIZ2uUat1EEUtXu/+JhPA4vf/zJiEB4mP9Rvjg8Luflns7VWJbxTILm6h3Gs57ug0\nPPmFs+Trai783qdo7qwjt9o4g04csSHmb26QWakQ7A9SXS+h1unRatu02z0217KcPTeIz23gjbc2\naMsaBLlLIVcFrDRKVYprqyTtRjpaHSdPTaOsXCNx6y5atUzfkUl8QSdFiwrR7ELSWkglK3RaGizF\nAlpNio25LXxHjrJzYwZadQxGHeHTp0jdvkV2fh73yDC7165hGShgO/kIo+MekjtF1Go1q9UmBp0K\nj1OPwaDBNjhEciuDyajDrNOxttvli//ys+RWVgmYWgxOT6D1RSiUu3zuv7mIoVfhe9+4SaenIhxy\noJa67KUarC0ssJXqMDHhxa2vMxl0wY+Y4LRrdRIbGSSNAaNx/0b4ZY/Wft3QbDb5m7/5G959990H\nXcqPQa1W88QTT/Dyyy/z5S9/+UGX8ytFu1KhmkwC0K3X6fO52R3ykUkXkMJhzBYDQzEHQmKGQlVP\ncrNCo9amvr1OvVzD6HRg1xmoJ/cwSRKppXXQm/DFxtndyiL4Texu52k2u6hUUMiUuHvpDmefmGT8\n/ENs3JrHoVfwnj4NjgDp61ew2gxotFr0VuO+zXy5iH1QzYZaJFdoU5wrYfYPc+7UEOIxB+tbNap7\nOaiXoF5AszfP5IXjbDlW6PNoGBgLE0/1KK/k8LsEJg+Fqc4UqM8kGBlx0mz2yKaKlJM6XvnabYIu\nFeFIGK3RiH1oCGd/P5vvvossOmiWa+gNOvrOPERyfhHTsB+9z4rDLtIuFXF7jDitKszVOEHfxEe+\nXhqNCknaH9MeGLATDFrui5RnZpL3SYlKBaOjbiIRO4piY2czCxoBlQyNnoA/bMe+WkOr1aDRqNBq\ntZw8GebNNzcZGLBjsehZWcmhUdnRm0Sq5TSpnSLxTArfYB8NtQlJqiO4AthNWjo6PbaAlWpLTb4m\nIMldut0e64tJwsN9BMNOqqu3qe0kqBb3RaDBh54hJQqY+1w4Qk6iYxcwCRLt629jMFtQqQUyCwu0\nq1XO/NmfohYECjspgmMDVAQ3t5eqREZDRFwy7e1VrDYjXruack+hl9ri0IVzrCylURuMhCcPUE/v\n+2bZotH7BEOWFWZmkszPZ2m1emi1akZGXBw/HvzQU2cPCh/v6j5CNBpddGYLerudVqGIzqDFHXQi\naAUe/eQEmdl5qoUMOtpozQO8c7NIfF0iv1VhNSkTGgwTGQ4gGAy4jV2kdptOqcDQ8THUXzyPwWqn\nurdHKV/l9LQXp0lm164QsnU4dCRG/eqLrL/xHhabCcvQAAPHD1DbjqOR2qQWd2ipRPaSNbpocR8+\nxmDIw2t3ltG5A4xcuEi4z4au10Ct1dIqluHebsB74hRJbYzv/tMs2v4esiDy1KciWBwidpOaU8f9\nzL51i8GYnZ3NPMuLGY4/epCHPjlJSjay0lUwigpOk5VhTRWLagcUhWouT3/IhMFkwOY0oXE6uDKb\npqay0u4Z99upzTxG2cCw00KnWkVndxAviey+uIpKNKPTaRgZcXL8eAit9jdfT/L3f//3nDx5kpGR\nkQddyk/gySef5Fvf+tZvPBlRCcKPed7IuR3OHPLR0kexRAdwuU143CLxjB5SJTx2LV6njrszZbRG\nEbVazeDkAGKvjMrsQApOoHL4ubahxqAkCTt28dv6KSb2SFoFjvX3oVXfoLixiTw6TejMw0z1BUl0\nXKTTJSStiaNnR+l2epR3d5AqeaYunGKpAT1BZORQANFqxRvykG8bWFrJsrSYpYfA8YtncWRusfL1\nv2P6v/vvcXYsZO/OkszexGAxIfYN8tKruzz9pTOMDDtZWnCg0WpJJyvEghqMcoX4whZb3Raf+u1J\n2s02ssWLMRjCPTJCYjOPymSjo2h4+ZvvcfDRE7iiMYqZMka3CXn1OtZQCJ1eS7dapV0uI3zE5nmP\nPx6jVGpjsegIBi33J3QOHPCgKArxeAmAgQE7Bw7se5moVCoGDkQJbjRoN1rU2mq6XXjqqUHK5TZn\nzuyPLFerbW7eTDI87OTcuQhmsxa1SuGhR8dQqdWY9AqhqX5kq5fRUQ/f//4qq2slGpU6R07FcPjU\nGKxmVm/EQaXiqU8dIhw0kl2Lk7n1Htpchu21JM1ag2qty9mzFzj4xBle/MZlLj8/T/TAAM/87jRi\n7yBqlUJuZZVOMY9KUSht79vthw8dIBg9ypUrSUKBDNE+K9b2Hqvff4OR6XFkWaZTyqGRImhFPUMH\no9R3E3SLOQw2G97JyR/rdGQydebmMjRqbXqtJl1BYHFBxusQCHp1iA7Hx1bb92tFRhRFIZutU612\nEEXhXvvpw11Yj8eEwajDOTiI7CthtYusbda5MV/FulEmYuvRF3WDSsXyRpG1Wym6jgiCL0K1I3H9\ndo6TJ0O0eyqsRhXF1B7Rx85y68oGpaaGSrcJvTbP/N5D9NZnmH/lCgd8bqantKhrG6gdVuw+J9V0\nlpHhIbJz85h9PkInT7D33AvEb93EOzVJUzbQlAQy+TZnHptkfa3A3toOcrVAtVjBdegoaq323vFM\niLKxn7tvrOI6fZHEegFZo8dZtPHF3z2CVWhS2Uty+e1ZzH4/R44FOfvICM6wn2yxy//xF2/x+OMx\n/HYV737nfarDIgd9NbStOn2Dg9RcUNpaZm9dxn3iYZqlHtqgD7m8v10xOBwk0znGAnqoVmlqHcwv\n7GEdGEbDfiT74mKOUMhKf/9Hp8D/OEJRFP7qr/6Kv/zLv3zQpXwgnnjiCf74j/+YXq+H8Bt8hKYz\nGnEND5O8dQtFllEkiV4hTeyhYdyj+y/S1O3bdBsN7GKXQk3m/MNhRPkA9a6asXEvh8ctFBbm6TpN\nbNVM7K7lqGRWKO/u8MX/+iwWd5lPfWqU2cUiPUuAZ/7bp1GVUhQ6IoWWjtuZOianwIGpAObRp0i8\nc4mNS+8RcBkx2yyE+u10uy5qtSGuX45jtnTZ3i4RHPBilGvsvn2J8NQ4mwsNzAETKp2R2uYaQiNL\np2NEKzepbu6iU/UQtUZe/Pp7XHj6CANBHUOHhqiUAiRuz3Pz0hwauUu7JVPXuqgVS7jPfRLcNjyy\nzNr6JVSimXypTn43R77Y4ebaCigyK/Myj54doXvv8arR6dD8Am6dHxaRiJ0P8twSRS3Hj4eYnNxf\ns25XolBoYjL1sNtFgkErR0/0s7ycw9DoUii0OHjQx61be0xPB1layrG8XOSxx2IkEhVu3UqSTNaw\nGeHxxwZw2saZuZFgYDKM0WqiXm8zNuZGp1OjVqvp77eh0ah47/1dJg8G+Po35lhdK3HiRIiLZ/1Y\nMxZmb6TY28ygNxpwBPU0K2VSHTO+fj8mUYNO3eTGa7d49OEjZL7+ddSKjN5mJXbxUaRGk1J8k/jr\nrxP91330WRto4nGSN1o0DT124xmsNpHQ5DjVXAnbyDiy1kRlaQaxz4vS7dAul2kWiww+8QTGe1lM\nlUqbUipHaWuLXrOJ3mqlW6+zJgzQNlUw2O2ETpz4yFxTP0r82jyVFGU/W+bu3cz99tPgoIOTJ8Mf\nat49EDBz6JCfxcUs5qiba9d20ZqsaPR6thaW2G7XefzxGMZeiUqlTbfZRDL3mJnJARCN2qjVungt\nMo22jkO/cwG1aKLZzEGrh8/jIbvbYO7aCr56gqOPHUPvCWHpH6C0nUAMCbhOnMdr0GMKeqhsblC6\nehmDy0v4+DHCJ05g8Aa4enmTt1+4wfFPWzl94RwrW6+RWNvCFfZy4l88QXy3TeDYGbZSPXRRP+Wy\nlcAjQ6xtVJEV0Bg0xONlTp6KMDzi4M3NHIWawubVJbxDbcqSiNbdZGDITTZbZ+bmLp8678QgSJTV\nTjZbBjJrWR6OWbD4vTSyGVzRQVyjY0QMCpWWio5q/wxXqxOJDjvRmfNI7TZVwYToD6PR6e5fd0lS\nKBZb9Pf/qr4ZHw/cuHGDVqvFo48++qBL+UB4vV7C4TC3b99menr6QZfzC0GWFXo96UO3mT2Tk2gM\nBgpra6g1GpzDw/czppqFApn5ebr1OnqbjckxB7LBgrllR6vXYhC6SNkEisFEqa5iJ54D0UwtlwcF\nRF+YeqPL2JCVRx+LYXbYSW27aDc73LqT5+adPUqlEsX8Kg89Ns7nnu4nduoojoAPtUomu7RM4up1\n2rFzrC/uompWSGcyeAYjvPL9ZX7v94+g2MOkigoqqwz+Yc78j/+WbL6NYBvGU8jQfPMN5PQeWo+J\ng0cf4p+eu4No0CCrBHK5GqtLGQpbFaxeJ+VMAcFkoNPuYQ55oddi5U6ekfEhrINJ1OIuPUOL81+e\nIlWC6nYKW8CH3CnT0drYWNxg8mCA4PGxB+JFYTAI3L2bYW4uQ7PZRRS1TE56mZryMj0dxOkUWVrK\nAvueJF6vmdXVArGYg0cfHWBtrUAmU6fblSmXGiSXU5T20jx0NszZsxEiUSevXdrj/WtpcrkGweC+\nf0ouJ9Bs9tBp1bz00iqtZg+VCm7c2MEoqvns1CjXnvseE489TOzxi+itNnQ2Bxt//y5avQ6jDgxm\nK6LXQ0U28eSf/zmdahVZltAaDJR3dykn05gDQUIhG916k9vvzNOotTj25ElO/e5nyC8tobG5OfWV\nr6By+BBNAvWOBkH8od9Wp1qlnk7fJyN6QaaZzyHLoBVFGrkc5c04urNBOtUq7VIJQaej//z5j12u\n2K8NGcnlGszN7RMR2B8JW1kpEA7bPpQJkkaj5ujRANGone3tEpubJURRu/9vWi3VbJNsoYNDaeJ2\nOTFYjOwUW4CCSqXCatVz6piH3GaDnkki4u/y7jt3ya1sg1qF1qDF6vfRkWuMXDjL8luX2XpjDtFq\nZuDMKcotI5mVDFvzG3zp336BzMYO6kaBVrlK/LXrOKJ9hJ/4NLffmccUDOLvc3F9ucVszsqZZ55G\n53Bw6UaVgQE7t/MupIFj1M0qXG4n828n0GjVFIsdeg01EbuK+EaRdquDb7APx8QU04MuYgN2JElG\nLZrQWmwIgorcXoFCuoBOFCnk66iqdfbiRbJ/9z5PPn2MgSMXuHotyc5SBdFiJp/M43Rb2dnMYzCL\njI/HIBxm6ISeTElhMRNHrVahUqnodCRUqv2R7N90fPWrX+UP/uAPPnY3+I/i/PnzXLp06deKjGxt\nlVhczFGttvH7zRw44MXpFH/mZwSdDu/EBN6Jn9Q4dBsNeq0WAL1mk25iC43BQGg4TLtSoVuvY/D5\ncJ0cJXUlw8HzR5BUAkOjfgwWI/M7EF8vES3qCBTUCIY6boeOrizw7e/fQqMGUa/FHXBS3kuzeLmO\nEr/J+pXbDJ85hiviRynu0Wu1yGbqGJxeRLGD1iCiEhok0zXUei1SJc/auxtMxfRsNRXSNZGXn3sX\noyBz+NAU5bl1NPFdRg51OHA0RnFtlbMPnaDS1lJvynRbbYyqDr6BMD67CqmYQjYcJXn5XbwTE3zv\nP19nN61hbGiK8EEn12ayyFRQ22Vk0cbE+cP4+tVorTbcU4P4Dv7wWjbyecrb23TqdSx+P9ZIBOFH\nNiAfJVKpGjMzSdr3csNqtQ4zM0m8XiOg4sqVHer1LtVqh/ffT+DzmZEkiffeS/CD07ofxIiYzTqk\nmojBZqFvrJ/562tIjRpDse97AAAgAElEQVTVGpSKTTptiTt3MrTbPf7wD49iNsmIRoHr15MoQMBv\nBkUhk66ie6KfT/wv/zM3Zsu8OZMhNTfDuWfOUsWCejdOr14hcvoMqYVVDg4eJDkzQ3V3B2tfBGsk\nQt9DD2MdnSIzO0d+fYvI8ABT01GK6RJUc1TVVnSDU+gmppnfbpOcT3PxtIdSrvKB16mez9MqV6jk\nJIxOF3NLJZxuC0ZVnQOnD+CyKGix0czn2X7/fTQGA9ZQ6H6o3scBvzZkpFpt02z2fux3sqyQyzV+\nLhmRJJl4vMTaWuFepoLxx7opRo+HXq1CvSGxu7SDNSgxfGSY/N0GKlUNu11PKGSlnk5jM6nRDwbR\niRp06i5bly9jDQZo1ttogjEmTh2guLfO3etx1EqXWrFGsXqF2BOPM/rMswxfSNKTu5hiE5DbhF4b\nm62O2edD1hkxev0cfeI0keEQ3/l3L2G0Wbhyq0ilnKJdLWP4win+7/90hwNDJk4esuK3Sli8bqh3\n6RsygCzTP+hCliU0GhVGk5ZnPz+FupoluTxHrdZEJ6ixDo1hFkWsMQdOoc7C7A6xkMzu2g7WSBSd\nycROXiG7lKRSqLNz7Ro2m8jUhYfQO13UilV8gz4SiTKJRJnHHosRCBqZmPCwuVmi15Pxek04HAYC\ngV+dAv/jgFarxTe+8Q1mZmYedCk/E+fPn+drX/saf/Znf/agS/lQSKWqvP321v37vlhsUSq1ePzx\nwQ+dU1UqNUkkKtRqnX33UKuI0e2mJotkqzJavQa72MPi9xN56CF6jQaC0UhXUuHa1TCzUGEvUWRq\nyk+u0kORu4yOeYhv13jvWoa+qJtMusYf/esjfPozo/TqDdq1OnK3Q3onj6KyYO6PMSHq6bWa2AaG\n2FM7CI/38+TnnTQaEiqli9yT0Io6VL0OWrrsrW8yODmAQd3jrf98mdjhEQJhB/OX5zFadPQfO4zN\n5yKzss6Z08fpFPPMLhR47/Ief/hfjeFSdGQSFQZjdsI+HT1dPxvz6+TffhGLUcBqDbO+nSddhmKn\nzt3ZFIOjPlLtLoaKDkeqy8q2xOHDQ3RE132dQSOfZ+P112mX9rUc+aUl3BMT9J0+/Ssh4oVC8z4R\nAXA4DAiCmp2dyv7GSn3PL8OiJ5vd37CePdtHsynRaknIskwu12B7u4xWq8bqcqDRa5m5mSC5mmJ4\n6gSGdInTZ/q4eTNJMGRhbMxNNGqn3e4RDln59rcWCQattKo1qjUJq0VLQ9KR6jp492YcVaVIJlVh\ney2NJ+yirlcoL9xGarfQWcwY5Bo3Xr5CqN9De3mFSjJFu1rD5PMTnj6C4AlCq4rVYSa9sIxi7Ucy\ne3BE++mZvBhsFaw9AYPNxujRARLrKSRFhc1pwRv2oADx118nLzt47YVZ3EEnFx8foVBoMDQcI6JJ\nsv3K9+k1mxjsdnyHD1NLpcgvLxO9cAH7x6Rt/WtDRgwGLVqt+r5JDuwrrG22n7/rXlnJc/nyzv3o\n6R8lNRaLDo8nQMFmxuwWsDkMaHRazOEo1kCLsTEX5XKLRqNDvqHj6gu3sTtFzKKawdF+xp98hFq5\nTqXUJCT2ODhmYeW7CerNLlargUyuRWl3B8Ngkt2CmoGIF4e0jTvWh2ksiNSTGHzaQbPWRIwF+MJX\nPot3IIwvaORf/v4xJLWBtXiZhZkt7t7IojPoabd6dCQZv0ekk0nyW589x3P/cId3Lq1htejZSRQ4\ncTqKyWCnsBFnNAC3vvcihc1dtGYzlkPHWL98i5PPPMGt+TLHL4xjoMnM996i3uhi9PgwxWKoDTqq\n9RrVZJJ2pUayo6JwdQt/uIq+V6PV02ByOwFIJquIBjWFQpPt7TLlchuv18j4+ND9DtRvKp5//nmO\nHDlC5BcInHoQOHfuHF/+8peRJAnNx1TE9qNIJCo/sQHJZOrkco0PNWVXLDZ54404+XwTgPn5LMeP\nB5FdI7z2zfep5quo1Cr6xqN86pgPQadD0O1bpKdSNeLxIoJej9Fuwep2sLwSJ+RWoxYMvP/uJkaL\nEZPFRCBoIblT4b1XF7j+zhKBkI1nPz9FLKzj6HSIpW/fpLGzhTs2QLnYJFtV0Zjf4+7tKgvLRTw+\nM4cmXTzz2XGa5TKUUgxFDjM+6mLx/Vs0Gj121pIMHDrMXqqOrDcz/TvnKCzMou01cLr0MHqKO68l\nOXTIx61/eoXFmTgaQU36joaQ38DQ2RP4nDpkt5W5l95Ac/AikWgIlcHE3l6FZ549QDTq4uqVbXZT\nDa5e3cXlEqnXOxw/HmJvr0qr1aO3vUSzUEB9r+2gyDLF9XVcw8M/NSyvWSySX16mureH6HLhHhvD\n7PN9qO+AwSCgUoGi7Afz7exUmZ9PE4s5aLV6DA46MZu1pFI1Mpk6arUKq9VALGYnn28yMuKi25Vo\ntXrU613KpS6nz/hYv7tJKl0nX+qhFQTarTanT4eYmvLx3nsJbt7cQ6fTkExW+f1/dZS11QJrq1lk\nZOwOEcVgYS++RHY7RcCjI3ZwkOzGNqOH1Bx+dIzKpBeX345WapK99gaSokYjipgdZvZu3CS3vEzw\n6FEiD5+jrm+zFy8x/tlPM/7EOW7dyrC6XqSWLTDcdTJ1MMDZc3qkQpKyOUxmJY/UbNDVWggOTFLd\n20Ot0bCyVECSVazfWMSRqWHzudheqqNqze/75GQyKLKMNRLB4vcjtdvklpb+fzLyi8LrNTE05GR5\nOY8s7wdcBYOWn/lQ2jfRaTI7m75PRGD/ITU46MBgEMjlGty4sUe3K3FjpoPbbWR42EH5ZgpR1NFs\ndrlxI8nkpJcbdwrIag3lTJG2RkLXLvG5f/MJ0ts5CqkCJr1MwCazJghgcoCoxerU4e03Eh1w0bO7\n6BX3yGzNs3H5BqHBIKWmisETh9F6w2yVjaAXWVivsrldI2Dt0aqksIt6Dp8exul3otNrGJ3wMjLu\noaXSUa3ukrmzw8p8AjpttlfzpHZNWK0iZ0/68Q1Yib/1FvlUkW67S3JtgdxOlvDFT9ApFzk85cOk\n1LDbjcgGC56oH9fwML4+L+E+M7l8i+qWCkm0kcs18Hi7tBttkvE9+uwhRKeC166mvbnIjfcS1Otw\nbGSUbNdLtdphcTFHNOr4SHIsPq745je/+WthKub3+/H7/czOznLkyJEHXc7PxQe5fsqygvL/NqH4\nKYjHS5TL7fvpsrBPmjOZNsa+GDpXA5UgIFusrMVrBPtcpNM1rlxJkE43qBRrjPQbUDVLGHQgtRo0\nWibK8QLZZAFzo8PQRBC/38zltxZxWDUMjwdAVrh7N8u/+aODJC69QTGxg8tpptVsk33/KgOPXOB7\nL26gdQUYn/CgM2ipNBSMFpFGqcqBAT3JxW023l6k3dGhVilIikKxrrCb7uDtt5BaXIPdLZxHDtFU\nGUmsV9jaLHJ80sxGIo1R06XR6NCUBEwxM2ahQ9s7Rn1Uw8iomw4GvvNmHo2hg2gUKOQbRDxqRgIy\n9ZKE07k/mj8+7mZ5OUcqVUMUtRiSW/QyZSIR2/2RfanTQWq3P3ANOo0G2++8Qy2VAqCRy1FLpxl8\n/PEPtYZ+/34OTibTQJIUbt3aw2LRYTLp6HRk3n8/waFDPprNLpGIDYtFh8Gwn8heKLRIJEr4/RbU\nag3FYpMLF/qxWvUkdmr4hgy0Oz3OnAnznedX0Ok0fPWrtzGZdBgMAul0nZERJwNRB+NjTtrNFgfG\nIthEhXyqhEGvQdDpcPhctLeWsXlNqHUCfX4DjrAVwWxkd24Hnc9D33ANq8/L7b/7O9rNNrZgAHnm\nDt2uhOX0J7h6dQ+pVODQI4dZWEjTrZQJHxihtbvJjY05vE8N0Wp32d2rYpk6Sast0TNbiKcV+o0a\n1IAky6hUakweD5Ik01Xr6RTyOA+Noq7lUKlUiE4n9XQa6Z6Gqtto3AuMfPDHy782b4gfpDSGw1Zy\nuQZWq55w2IrJ9MFnlYXCD0iGzNzcvvteKGRBEDR0uzKFQpPHHovx6qvrRCI2EokK1WqNzc0yrVaP\nU6fCvPjiGuVyi/FxD9NHPHz32xl8g0Mo9TITMQONpVvM/cPX6RSzGENhuu4Qid0GsckYrXqLRqNL\nqqegNtvItETIN3DKbQo18AzHyKeyVKptksvr9I1Ms7na4O7dLQ6OmKnevcpip4rHZwXRjOXACY5M\n9zHz9jyPX4zh8lq4+85dDg65WEgWqe3sIFhs+P1WOl2JeqmC0awjPZvm8mt32V7YwOq2E47FUNcL\nuPUN9J0S66/dIfz0cQ5MuunwKJWGwtCoDaW0hl/xMzzsplKIkUiUUAsdHGY1sZiDVHyPbElGtDdQ\nNpZodLMkk1XUKhWF7V2Gnnicel1Lvd6l0ej+xpKRRqPBK6+8wl//9V8/6FI+FH6gG/m4kxFFUQiF\nrCwu5n4sIM3lMv5czYii7B/fNptdwmErs7NpdncrWK16zpzpo1Jp74sxf0SQmcs1kCSZS5e2ePPN\nOBajivmbcfrCZoJuHeXNOAcP+dndrRMIWjGZ9KiR6QuZqNXadBstWqkdxmIeuooGldTFpG5SLGWg\nuEdyu4reE8ASiODoC5Jq59i8tIZgEDlyIkI1l2N1Totb7NEzWKimM7RaEn0DNlK5Nr7xEZKKlTNP\nHeH4pAX17gLWiXFWltJc+vPnOfsHz3LsyCCVQhmrTc/2bAqLw0xswIla6ZHYqbB14yrbd5eJ33Zz\n/HNPMDEV4PnvrXHiiAdtapHFlQyqXheXWseppx4h0zbj85lZWckjilpUqh5OX4CVO4s47Absjv11\n0JnN6G22D1yLRjZLPZP5sd+1SyWqe3sf6ntgMuk4dy5KIlHmzp00kYgNt9uEXi/c65TsG1dubpbI\nZBqIokC3KxGLOVhd7SDLAn/zNzcJhSy4XSJbaoX1jRKlYpNStkyu2GZi0s/5C1F6PYWdnSprawUW\nF3O4XEbUKNgtAs/+VoiI3CY5+zqlpoy9HCEyNsmRM0PUciWixyZ5/+1VHK0q/f4tVpZm8DoEOrkM\n3slJDEcPk711E3pd9AYBs8dFbS+Fye0hpJeYPn+AuZfeYua9BRRUaLo1crO3EUwmurUaxWNuaiuz\n9B15lJde3aRWbVFpyPhjYf7VvxiD9DZDQ34Sa2naXXAEfdj7+3GpbTjsRQxTUxSMxn1L+E4HjV5/\nv0v1YYhIZWeHwsYGUruNvb8fWzT6keuEHvQb4n8FjgG3gK/8vP+s0wkMDDgYGPjZGpFeT+bq1V0K\nhSZWq55g0MLlyzvo9QJ+vxlBUDMw4CCZrLG1VUatVuF2i6TTNer1DtlsA0HYTz1EUTgYbKLObdPa\nmKdSczB+ehJR3iOTyeKwaKjlChiGD9Gy9XN1tsypc0c44vawPbeO4pIQQ1HuLGSp1ns8Mm3B5LBw\n4/UN+gbD9I2YaauMrKyXSKV6qBQFQ2Wb2ZkF/H0elubTOJ0GhjGwV5ji6ENj+HwizUqN5PI6NuMA\nff0RRg5GSO2V0erA77dy8kSQRq1NudjYN8bxOskli5gsIv02HQaTSK9SopfdYf3tLpMXTzE9IaJ1\n+sjOzSPbnCyvFNDZ7Fx4fJyBqI1uvUHIL6KoBWqc5PZilaMmiepyioYgI0kK9VYXjUZNdTuO2T+J\nKAqYTL+5xzQvvfQS09PTuD8m+Q4/D+fPn+e5557jK1/5ubfbPzsURaEYj5NfXkZqt3GOjnJi2sfS\nSolms4vDIXL0qP+nbkB+8DdmZ9P3u6FvvBFHkpT7mgKXS8Rs1tHr/Xh3xeczkc83WFrKosgyNpOO\n4w+PkM3UGDgYorqxgkFdZOxsgPReif/hf7rInZsJkmu7nLg4hbrToCqXScyvU0wXMZhFVH80SSWd\nRW41QS0gtdvkl5YZ6TZp5POopA6Rfh+ZZBnUGuxOK35LHcvkJBNHByjH16llsoyGR6hr7XhUIjoh\nSCe/R9MUJdOEVreK2QCtnQ0C4TA1owOL8wi59U0sZgGXTSBXg36Hg603rtNDS7PVpVqXuXF1B0WW\nMbdTXHn+bSx2kQsXYiQ2UmRv38R79iKCoLqvz+l0JFo2N+HDB+i1c6BSobdY9p2qLZYPXA+51/uh\ndfmPQPqR8L2fB6tVz4ED+yO+tdoPPydJCkNDDur1LqVSG7NZh0aj4s6dNDqdwJNPDnH9+h4njgfJ\nbu7itxuYuRFHQYXHaSbg8WCziawtpjjzUJTvvLCOz2fmrbc2sZj16HVqOp0uY/168nN3ee1/+yqN\nQpnoWIiiRU0pX+HY1ClEa5AX/mkOfzTA9EE766++wPbtBU48eQKbTkN2aZHxz38BnUamsrmG1mim\nUSrTUwvUu2qKlQ6vvrXIiTOn0Bl0vPbyCp6pEOW7N6DVwep20ErtkN9MYIsUsdoMSIIR74AJm9dB\noa7CZzRibZYYnQqzvFFBbXVhNms5NT1M9vKbqDQazH4/vXabwLFj9JpNStvbaE0mDDYblmDwp17/\nciLB5ptv3hd+l7e28JXLhI4f/9Br+GHwIMnIUcAEnAP+d2Aa+NAxp5Ik02z2EEXhJxw+y+UWvZ5M\nudwmn28yOurCYBBYWysiivvufuvrBfR6gXK5TTJZpb/ffi/7BqamfDgcBiIRG0eGBFa/+Z+QO12G\n+2PcvTLHY48N0JhbxCyXEdVm3M9+kee/PU+9XcA+doD/8z9e47c/f5B6wEyxmue1F1Zp11v4Qk7y\nZRGdpMJsM1Ir12m1JR56dhrDyBjdy7s4TbB36xoen41Mukan00Nn0LKzvInNEmH2WoGRYSf+sAOd\nWuLlb17mk39gIxC2o1X1cLit2A0SB4eNXHn+XXRyC/9QGIPVjNntRtAohE4ewhoM8MZ/+BpWiwFR\nDKEStIRPn2Lv6lWaBhfvvBanVqmjSDJaucmFTx5h/ep7bC1p8Z17DHQi58+78Fo6rKdrdJotRkZc\npJLV/fXpdDGbdUxNeT/2zn//X/CP//iPPPvssw+6jA+Nc+fO8Sd/8icfm9bsj6K0ucnWpUvI3f0o\n9Ho2i+/gQX7rt47RavXuvWx+tptvNlvnzp00nY6ExaIjna7RaHSZnPQhigLttsT0tJt4vES9vu+i\n6nYbGR1102zuv9RMRg2zs0lWlvOgFshmGjx63EJETFO98yp62czomZNEAkN0FS2BiAu3x0Rh0Ekw\nusnsu3eZODqAIIpIZi/miJpSIoFSL+MeGKZbrXD0aIi1zSq7u1UK2RLTZ4dpN1os7+Yxzy5Ta8pU\n2hqsniADFjvajsTNd+6wfmcdbbOARpGwRGMEw05UBiNyt8f8O7ewhYKc/Mwhon1mNm/exREK4jV4\nefubbyHodfTaMirRgs5kYH0xia/fR2VrlXq5itLrIHU6RGNuenQIezRUZYFyuYXdvt8FSWU7hIYP\nMzm8r5vTW60YfkpXBEB0OtFZ9k0RfwCNXv+hNSM/ir4+G35/kVTqng26oGZkxM2tW8l71ucCjUYP\nnU5Do9aiW6lg76Xpi/Qo2A3UJAmjUYfFbkRQJPaSFWbeX2X1jgmt1ODIVJh6W2FpKc/6Wh6NGi6e\nD2NoZWhWkhjoIOlU9Nod9jbS1NopHjl2DK3JSa9SoJguYpzSU8/msDisVOsSys46nWqFwLETOCcO\nEzqZIDlzG/vQICaNEWtflJ1UB4vdzLeeu8PTnxpDQOL21XXcdi8Bu8zAoI3a0jt4Dx3l2nyZF747\nD4IeYzDC2UdM6IwiNleU7NVZxqI+Dj08wV5ZoFbr0FCZ6H/4YfLLy/TabSLnz9MulUjPzqIzmahs\nb9PM54k9/jjmn2Jol19evk9EYF8nVFhbwzUy8jPX/hfFg3xLnAReuffza8BpPiQZSSar3LmTplRq\nYbHomJryEYn88KKk03Vefz1OLtcA4O7dNE8+OcjTTw8zOupiZSVPtdqh15N5+OEI83MZ8oUmgiBy\n8mT43lFQk2DQgo0UUn4PZAWfVc+Jr1zEqm+wXckhdOt02gZuvzpHKV1AsDgxWc3spPJ8/7vzeLwW\nXv3ePLHxIH1TIkadjKQSsMcGkZdzuGP/D3nvGSTJed55/jKzvPeuu6raezs9Mz2uB2YwMDQ4iNJK\nS1EnyqxOp927jY3buI8XQd6ni71QaLUKKbQX0koh7ylBADUACDMw423PtPddXd57m1X3oYEBQQAk\nQPA4xN4/oiO6Kyu73+g3K/N5n/dvPIzP+jFoRVrhNaZ6TOypjbSqXZQSKro7UC03UGuU2AMe6g49\ni3eiGLQCOrOB88/NIX17kTsX73DimWMsPDaMXq/ALJXpVEpMnhyhsLOF2tuL5oSBQqFGtdLA4rfy\nrf/0x7TrVbRKgWalyvZ+mZQ+jbrQ4P79FMVMHrnRILO5SSWVwu4y4XVY2VveRbmxTmD8NOVyg1xD\nydB0L/GtPVqtNoNDDixWLb1np3AM+X9gS/3zjHq9zre//W1+8zd/82EP5ROjq6sLvV7PxsbGT5xT\nbHp9/UEhAkCn8+CmZ7Z+sBvaarXJZqsIgoDNpn2gqigU6tRqh54QkiTgcumpVlvodAoCATM6nQqX\nS0/QpyZ+kEGhFPH67TgcOpLJEkajClFQc/tWlGqhhMVuwKRps3n5FoFTbjS+IEurVYqLMTxeI2aH\nhTf/ZZ+SrCGVa6HqGPjl/+PnSe+FiWRFqj0naJXLeGY6mOQUFqeFZCJDb8DI1HwvS/eS6Ixa9Hol\nq7e32bp2j+OTRiqhbWZ+7qfZjtRRaDQIQoPl6xuYjWqUopZGLkNxdwvNyFnG53qwDA6xfnGHoRkt\n9b1V7v/5X6JzOJFsGg4OZArFGqJKh95ioFLr4LCqGB7zoDSZMbTsmBwWPG49SpWCfK5ES63m7v0M\nSqOMxaKl0ZCxWjW49Q0MzRhCyYLC2vWxD6NGqUQtl0NSq+manyd+5w6NUgmFVotrYgKD1/uprw+T\nSc0jjwQJh4uk0xU0GgWiKHD/fgKDQYVaLVGttqhWmmze2yN0a5HwTpwjxwMYKhE8E5M8+WQ/giix\nux4hH6tQLRTpOuZjZyWEvduNICh49tlB4FCNMupXcO0v3uDUqQBqrRKtTonDbSYPqNVKUqky9WoF\njcvHaMCFwetC4Q4gNBrozAYUDSMCHRrZJOtvJrEE+pgYHaVRrqI0WdB2Bbny7SsM2n3UutTUK03G\nutrMTU/SEpRMTPuQVy+xdjWN7qiddLGO0WpCVKmw+sxEIgVa5SI79+6wsZqieTeMWrdC75NPUkJB\nLFZm6Gw/tv5+Op0OpViMjcXFD3SymuUyhVDoY4uRRrn8odfazean6m59EjzMYsQCbL/7fR4Y/yQn\n5fM13nprj1zukDBVKNTJ5+s8+WQ/Dsdh9sPubu5BMBAcqmdu344xN+fDZtORTh+g0SjwGhpUN1YY\naOWZHvLRc2wQd8BNLFZibS3N9LQbW6XC8NwIjVIRk9OGUU6x953buEcGePPGKmML/TSLIkqFhH1o\nEFlSE4lWaFRqHJsPUi2VuXt5ja7npmnls0yMD5NuKrHNP0qXOc/6tWVsZonoXpLxLzxJvqRBaekh\nsxmnWq7hcuqotwRUvn5eeeuAaqHM+o0VjhclfuqcjflRJWqLE60Qxi4XUbT0XHtpkVJLhdOqZOmt\nW9h0bTpI9J85Rt+JY+y/8iJKmhjsOvR6BaVSHUmhZXnxgAGPmVRi55DYxGHWh0KnI7UfY3CwzXC/\nEZWihH/MztZWjldf3cFj6qahKKChSVevm/75aVxT4//dh+VdvHiRsbExPD+hwVMfh1OnTnH58uWf\nuGLko25unXabtix/4LVstsrVq2ESiTKCAF1dJo4f92EwqNFolCgUIq1WG0kSCQQshEJ5LBbtg0JE\nTO2y9cYrZEMxlEqR2mA/ncceQx/s5+TJbm7ejGKymtBrBLq7LTQKeYq5MoIzwOv/cBm9WYcqWyae\nUbBYN7J6ZwdHwIt7dJi7lw+4UMlz5pF+/vnFLfI7mxikGrTbjI27GVPksPd3c/fFe8SSDd58eQPJ\nYEYptrEaBCSjGWevj51wiPBOnMUtgZoYY+GEm56gmVgohcasQ6xUaDcbdHcZcHUPYhkeIjjRx8bl\nO9xZ3kPV1Ue9WqYld5hfGEAWJEJr+8iSmkC/B4ppJqa7uLeawzw4QHcoRLtWotZok8m3sU8GWNqq\nkkymOXs2wMKCH0UpQeLGLQSFTDQhkVo5XHWbv0dFltvbI3z1KvViEVGhwDYwQO8TTyA3Gii1WlR6\n/ae+NprVKum1NbI7OwgqLRq1i/ubh8ecTh0HB8UH5OZ0PMfIEQtLl3cpl+rsbyZ4+sl+PF4Fm4UO\nF1/fJLST5Oh8kL4RL2a9SKEo87d/cx+T3QSCgE6nJBi0kiq06RvykM63cQa8NJIRlM0i3h4/iaaF\nzYMm4fg6x04PsbOb48I7WbyuIGtvXKVRazAx7MfZK9KqVUldvY7t6WfYeulNJKuL5H6MTDzD6Bef\n5ubFyxh0Ovr9faxlOkQjWaLxGrFIFqdCYPLnvkZFYUbZ2UejkJFpoVGJ2MxKhHoZ2m2alSqNhozT\n70JXCJELpaFmoRBRYvL5EAQBudmk024jiCIqgwFBFGmUy8jfvQj4HliCQcrx+Ade01itaH7ELq4P\nU983BcjAMjALqIBr33X8G7lcjitXrvDGG28Qi8UwGAyUSgIrK2nq9RSyXEGh0NFoyLRaGQShjsFg\n4t69OJ1OFo2mRaulQq9X4vXK+P1q3G7HoVQ3s8P+9Uuk1kLkknkyuTgaqcTA1BhOtwm1uoQk58he\nucTm898inoiQCu0RmJ4hen+Fdv8Qks+PXG3gm5pCcFnQ+900GgoymSp9faCQcwyM9mJ1Wxka09E/\nYsKo05HIygT7RGLrK9TTRSRRRHCZuHLrgNhuAdHipmvciWRQY3H5OPqlBV65EUVrlHC6XQiSRFuq\n4u7W0drdQNkoUGhWSWeyCDoPb1/coGfCwebly1BvIxnMuMY9tKmjU6nJ10Qkh5aGJOHr9uI+coxL\nb98lvrfHwMwEej8/gZ4AACAASURBVIsRWVFDa1bSKLcRRInucQcaRRU9Mn1nTxKLx9m+fp1hj5K+\nPgvGgAXLYA+Dp04SmBxif3+fXC6H2WymnEyyvrRENpPB8W57dnd3l1wuh+XdC3p3d5ff/u3f5hvf\n+MaP9SL8LPjd3/1dpqamOHv27MMeyqdCJBLh1q1bfPnLX37YQwHgm9/8Jt/4xjdot1oUDg4+cMzg\n9eKamHiQN9PpdLh0KfTAy6bVOiSjS5JIV5cJrVZBsVgnmz28MQ8M2LDZtLjderxeI5N9SnZe+heu\nv3yL7bUIyWSZVr2G1WHC7PMgNCr4nRJOrwWDWU9bbmG165HqRQKDXl7+67c5fX4CZSGCza5jc7cE\ncot2rUyn3UGlViLRwmQzsbGRYvjIEEpJoFkuUq22mfvyWTqZCI6hQfJViY3tAnqLkXIqQy5dZPJY\nPz22JomDFN2jvaitNgRBIBXJMn+6n53NBGajGv9IgKFjw0xOdxO+cYuV1y/RNTbIznYGuVzk4O4S\n/rkZTH0DNOMHjE14OPLEcTw+E1aLgrWDNn3jQZKxIvuRKifPTzI21UW+rmDokVNs5PTsh0p0OpBM\nVjj3aID23j2EWolWpUyzXKZVq9Fut7H29T2Yn0a5zO7Fi9SyWeh06MgylVQKrcWCJRj8gDvze/P+\ng9DpdDi4u0x4L0NJVhMLpbn4929idtlYXC/jdOoxm9U4nXq0WiXDAxYi6ztsrkRoNmRMRgXjEx5S\n+3FC+zm0Rh0KtYZ8rsaxYz7SiRy3F1O0RA2NWgOzWcfOTo6BfhuSSkWhAmIhTlefh2q1ic5mpWd+\njr6FU6TyHVRKkdEJLwfhEqFwGW+/j5kTQ7TqdXrmjzD21OOklhYR1FrKsSiJpSVMdgupvQj5ZB6d\nUYc92I2iWaSr10VZYWNpMYZSqcBkNdLRGhH0FgJ+I2uLu5itBrx9fuw2NYOjHnpMFTTtMjq7Dc9g\nAE2rxMGNW+RyVczKOo1kDJ3TidpoRBBFqpkMkkpFMRymkkxi8Hhwjo19bJdLZTIh12o0K5XDQs3p\nPHQM/wFbNJ1Oh2omQ6NUQlKrEUWRb37zmwDf/Kj3P8yl62Xg14G/Bc4Bf/S9b/jP//k/f+ikzc00\nAGr1BwmDLlcXPT2HbaauLhPZrBuDAbq6DmXAh5yQPoDDZMsdkXCiiCgJSJJAj9OEuVGnnExi9vvp\n6elh7623WFtcxD0xjmp7m2o2SyEcpf/Rs1x6Z5daQ8Zk0tGvVzA2O83ORhJdp8rcpI2hQSvr60k0\nkszRcQOPPDJEtaXg26/FKBVl8vEMqy+sUy+XOT4fYHasl1u3t0kXUsgGB+ubQFPHyGyQIYOLteX7\nFJIZdOoozm4HLpcTZUXGNztGuwO3/+EFXD1+IskGVn8Xjf0oyWv3EVUqZK+b8UkPyys5HH6Z0H4e\njcbF5MI4nn4fr3zrJtHVKCPHR0mma0SKKnazbqxGBfM/P0Xs1k0mgxpC//gvmE+epByJULhzH593\nhOTdq4Rf3Mc7Okjb6acY9AM+enp6kJtNDq5cIbOxQatep6PXk5AkXGNjH4qy/zxG21+4cIE/+ZM/\nedjD+NQ4deoUf/AHf/Cwh/Eh2AYGaJRKZLe3abda6J1OfMePfyDYq1CoE49/uG28t5djZsaNSqXg\n5En/A9WdxaLhiSd6kSQRpULg4MZN7l3dJLJzKDUtFypUynWmnlWw+/rrlLIFYpE8ppqCYxOj3FYo\nMKrqDEzOYbXrmTh/itGZIK/9p+dp6Ww0RD/htT0cXXY8Jg2aepP+US86o4KRARPVyB6SUom1tw+1\nyUit1iS9uorhqB+9tsEzz81y916CTkmDVq3l5KkgmTtX2NjM0AlUeftWlPPn+xE1Mmazkq/92hnW\ntsrsb6fQNNXcee0WYipFs1wivbuP68gczVwvp37+WeL3Frn5B3+ExaZH++RZdO4e1mMCkTgcRKuI\nmjDh9T1MJiVvv11mZCZAXmkkExLYD73v9Gm1alBJbYrFIvm9PUqxGHKziaRSIUgSrUcfRaXTAVDP\n52kUvscltNOhGIng/AhH3E+CeCjNyy9vElqPkMtVkNQaBoYGKYV2UakGuHhxD7fbwLPPDiGKAi/8\n0zKpWBGVSsRoUNMWFKgNepqilnY+jyBJ2F1Gbr6zya2bEoNDDgwO6Op1k4nn2N3JsLySYmDARrsN\nN25k+Y2fHqGcj+B/9BzVRpuSyskr/+0tWnonqWQFl88KHRmDUGb9VoSoUYWn/xgZnYt4ooRnagrW\ntlh75SL5dAmfJGG2aFFq1WilJha/neuru3SUWpKRDOmlu5isRuJREcfQINuxBt2SmblpJ5vRDpVG\nC6mWZsDTjdtrpKb2kHn7HQSjlfDly1j8frxBKyazlla1SmZzE5PPh9poxBwIsPinf0ollTqcv0YD\nS0/Px7qxqnQ6gmfPUkmnabdaaG02FOrv7+/VqFSI3LhBYX+ftiyjczjonp//vuc8zGLkNlAD3nz3\n+0/EF3E69Vgs6gfbNHBo8+t2v+/yOTbmIJerEY+XaLc72GxaZmc9D8hvZrOWbp+ebNBCrS5jMqpw\nOHUPgrXkVotaLkcpHj+sJLNZzIEA1r4+qpU65uNTmLfKxC/dpGHQM7UwQY+1iFLaQTPQRbWtYnl5\nk+zV24cEuflBVv7uPl3HjtDX182f/9ldxofMuPxOMvsN9rbjzJwYYGzUSaymQ9IIJBfjJGN5Bkc9\nVMtVVK0i1UwaSSdxkIrjc85iO+pk/1sv0nfuHDavC/fMDGqti7WlMM6pcXwTa5SyRRQaLTSqjI87\nsPT10WPuxWkW6HIoufhPV9lfDWG0GfFOTfKXf3YbtdmCwaThIFLCaFbz5V86R/LNCww89RR6t5v1\nF15A0Bqwu/PEMlFUSoHCwQGtqkR+9R7t+UFESaJwcEByeZnOu232RqlE7NYt9C4X+s+J+uTjsLe3\nRyqV4siRIw97KJ8a09PTbG9vk8/nMf8ICWifFQq1mu75eRwjI7RbLTQWy4cSRpVK8QNbsO9BrX6f\nyN5qtanVWlSrzXcdl7W4XAbqxSLVRgdZeN9IC0Bt0NEoVwitbVOTRUxGFRaTgKRJMvTVk5TLDcyd\nDOSTjE76aFSqZPJ1qqFNxp8bp1Zyk4mmERQqavvbDD7Vj6RVc/+tKOnNbQqRKK1Gg54jE4izcww8\n+zOs7Ld45XIElVrFxKSHricCZPfD6KiyX5aZ/eLjrMSViK0G3/mbN/m5X1nAZDdz+1aYrTubBAc9\nqDUi6ZSJvqPnCCpLGKwGhEKC9WiO5UyY7P372AaHMNuNrC3HGDKvcGJhjo2tPFJ7m06lSDSUIdSU\nMevBpGpg6fLR5dBzsF5Gozfg9FqZmHBh81jJKpUUwuEHn2e5XqfTbtOsVB4UI6JKhahU0m590KxO\nZfjhXZiXV1Psb0Rpt2SKhTqNZoVmq8OxWQdSRSSXq727AK1hMqkZm/ShEpp49vZp1mqMHwni7XWz\nEldhokYkUqQtdxibH+HIcR8ej5FQbp9isYFCpcRsFfEHLXR3GREkiWSyTDKeR05kiF+4RO/cBOH7\nOW7/yzsEjx9h89YOk9Nu5GqHVjpGaCeJ26GmFg1xdPwpSIRQ2A0MPH4WrdlI/N4SereHWCiFTtdG\n7XCxu3qAUjw08cweRLF7bLRzcdBYCV26xNCjJ4ncWaSRCDN3YgG1N0hmfY3ivaschCW0JiO1bAa7\n24Vep6RdSKNouejIKqq5HMLmJgavF4PbTSkaRd8dQLK60OhUqLWHOU724eGPzR8SRPFjTe0+Cum1\nNdKrqw9+LobDRG58/0f8Zy1GfpmP6Gh8CnxqfaHZrGFhIfghAqvDoXvwHotFyxNP9JJKVWi3D29G\n3+0CWq02yct6Ioka9XKNhEKkWmsxNBk8DM67cpWyrKHREqnVZTR2B51GnUI4jNsXoKYyk1N5CTz+\nJM5uNxpDh/t/8ReEF5fRujxMPvs089Nuep0zGLQCte1lIneWUKkl+h7vwSOlye1mePQLp4ncuEk5\nlaaQLTD5yEnKS1VCmzHG5vrY3UwwPGTl1ht3mZtxo5VkUnsh/IM+5o4H8E90U7gZpJItcPrf/RtW\n37yB2IiQ29nlXqPI8PlH2b56GKKVztQIDE9jdxgYmXWhMxtY+8s/pd8DLIwTHO+n2JHQyQUMgohK\nUtBQqFi8fcDjJ53k9vYoHhxg7e2lnssx9MgjJFbWaOfiCJIKtdWITIdUKMruWpjeUT+VZPLBjes9\nNCsVGoXC574Yeemll3jyyScfOFF+nqBUKpmbm+PatWuc/4TmUz9OfL/2r06nYmjIzo0bkQemaEql\nyOioA0kSaTZlLl8OPYieB9jby3PuXB9Ws4aOQoN/bppCNI7RZsLe7WT07HHyiSSbO3kQJHg3MmJg\nRItcLmFql8hvrlPIlhgY7KWczjB8boHQlesUFq/w+JkTiK4TmAJB5Ckz8UgGZ5eDo4+O8/r2Biql\ngH9kgJMLQVLrW7SMPmRRyfmnhrlxM8bF17fxefWcP9dD15CeeL7D25fCrL9zk3o+j0KjRanVUM9n\n6aDg2a+dJLS4THQzhCfYTXCyn+W/+xvqqSSSxYFQaGEc7+fORpTASIC2qkM2WcC4tkO95qSuMKGW\nOlRqMo99YZLFa9s4LApUjSKjvSosigxJfRbBCMMzvRw/04NWq8La34/B46EYiRzmdfn9WHt7qWWz\nDz7POrsda38/yaWlB9WeymjE0tf3Q10LzaZMKttEZTRSz+WQlEokuUO9WscUCJK5lMfrNXLkiBet\nVsHmZoZQqIDebsPitjE5aiUYNLG+U2Fr+1B1Mzxg5sa10KEVvyCyvpljetrN/fsJEgmZYqlOMGjB\n7tRRr7c5dbKbai7LwUacriPHGT0zyJ0/fAeVTkuz1WH0SD+NdIq+gAXztAerHlqlAhNzPbjdWg42\njTSbetShGHqrGUmC9MYmXf1eFDoDbVc32bVFRs6dJroRYmbCyhuhEHKzRatSRaFWMTHbQ/3qPcqV\nKnvP/y2+02dpVmUaghanTk0ul6X71CkklQr74CDZ7W0a5fJhkF4qdZhkff065kCA8HaM9eU09UYL\njUaBv9uMW6ul/SMipHY6HXK7ux96vZxMft/zPmsx8n/y2YqRHwper/EBS/6jpL1w6Eni8310lRcO\nF1mPifQtnCJ27z71YpmWxoJ1+uihZ39Zwfqrr0OrjsbqopmO4ZuaZjDgR+d2Y+i20nl8mM2lME6X\njsiVV2nXq+jUAkK7STFXoHMQQp1Lc//NaxQKDXwD3URv3cI+fxartk0xleHW2zVmHjmNr8tIvthi\nPdLGQJGAR0nPqIuv/MwExVKD3c0UlfgeJ47Y8f3MGOWawMa9PeKhFL6hLzFwIkBse4cX/+YqVpuB\ns+cGyZbAEAjyzJmjJLZ2ydcUvLXeJnflGr/4b04wddxI9+nTyBcvMj9pAClDZjdOKxMnlc+j0Sew\nDQ6RyDSQ221K4TCVRAKN2UxgYYHc7i7NQo52KU+xUEOtkvB0+6nUYH2rgM5W+sjVkKhUIv2AFt/n\nARcuXOArX/nKwx7GD42TJ09y6dKln8hi5AdhYsKJVqtgZyeHKAoMDtoIBg+5R8lkmYODD24T5PN1\nQqE8DocXV7eDdW+Q8//7/0zmzg0ye/tkI1Fa1Rp2s4JMCeSWTHQnhsupoW9O5CAs8up9kbU7KYID\nCp77uRna9zYZfHwBg0lHqVClngijHwzw//z286gdLrq6TIwN6DnzSB80vTQTYXJXXqdh76XsypIt\ntekbcqM47mN2yonVKNAsl4lmtKwuhjArmgxM9ZFPZPAEnQz2GLB3eZjRl3npv/wpS+/cRWu1snp9\njXoyxuj8LDvX7qKVWth1AjqpzOM/NU85GqEk1+kbPezYmp02PBYDbscoq8txfHYdC48NIBRSNPaW\n8eoyNDJp5rprKG1NvNY8Nuvh51VrsdB94sQD3xBBFKkVCh9o2QuCgG9uDr3TSTEcRqnXY+np+VSr\n6u+GQiFitmgx+/0URRG3pKLWEvCPBPAN+HlEaSEYNONy6Vlfz/DOOyEODgp4PHoEQSASLTM+7mB/\nLYJWpyZfLXPjao5TC31E9pLsrB4wOttDvdEhGLRgMqlZWAig0Sh48cU1fvZfjfPSv6xjMasQVRpu\nX97A5nNw7PQAOocTUaOjFtpEKxhQVRrMB6HgtqEUbSj1Bv7pzy5RSmcZGzSx8eobHH/qGF3Hj1Op\ngdpkwDs+ypW3NtEPz/DO1RgLx51UVm9z4kQP4bAFSRLp6zXR62xzbWcLo9OB4LRg9ncTXTygy68D\nQaZZqaDUaqkXCnjeNTSU1GpatRre2VlajQYCUENNXtY+8GtpNhpsbWfxDPei/hERUgVBQKn9sIpS\n/AGChk9SjNz7Psc+Wgv0Y4AkiRgMP5wDXDpdIZ+v09A6sM0/iqLTpI6GqmQinS6SjuSIrO/j8Jrp\nmhzDYDxCJZlk/eo98tVlJN11Rs9M4XcpiNy6g17ooNFrkXwOFAYj+8t7zD1zmvXnn8fkcaOyQ0tU\nYjDrKWysMTLt586rccK7aQrVu/TMHyEWzhNdXEIqJ7EGfNy/H2e0Tw8qLfZuN+FdLcnwoWPra69s\nMDLmISG22VoKoTAYsJbSZCKpQ6dEnZlCPEPxXpi22sT2QYdLV0JEwjkMBg0vPL+KQq/HqNbTkVTU\nsllit26h653FYVOTq4rUSlVq6SRTcwPYTQrKs7NsvfQSud1d+s6fZ+355+k6fpx8PEVHWaHegkq+\niPfxBSI5mWi0xFh/N3q3+30mtiBgCQbR/xAeAz9JaDQavPbaa/z+7//+wx7KD41Tp07xe7/3ew97\nGJ8KkUiBjY0M5XKT3l4Ljz4aRKP5oKHee6TW78V7ad/Wbh+PfFHD1htvUc1m0bndFNJFDC4nUjOM\nVmskuZ+iVS5i7F5A1Oj4q798h3tX1qgXCkR2E9i7nZw8dZw3/+uf0GqD2eXgyFd/it3NGLKoRmmy\nUqk2yGeqRC6/hV3IktyL4pkYxdSt5GAjRDhaodhQsXIvxMxsF//19y8RD2c4/9wcHr+H3P4BvUET\nZWOTowt9aDxevnNhjUKxQcPkwztcYufWEl1jAyy/fZvxhRlCuxmquTy9QSMdrQnr7EkERwwPRQqF\nJnr/MCqzkY2NNP/wN3eQ81kcdjU6VYeTk3oG1Um2XnibVqWC/8wZ2rkk5ZgeudFA1GoxeL0kV1cp\nRaOH/9ROB0tv74c+zwq1GvvgIPbBwc8854IgMNRnZOXNJOVUCrleR2cwMjvXRb3VYXraTX+/DaVS\nIp8/ND7zeo28Z6FzZNrB0qX7yPkMDWTahSKu/hGK+Sp0OsQSFeJv7HHtepRMpsrkpJOtrQy/8AvT\nzM56SabKWA0CW3fWGRhxY5c7RFIy554aY3v1VRwuC7jGSJcllC2B5l4Yc/0ArdPG7eU0paJIJR4j\nLWUoZUus3d5GJba5eWMPp0mi3mjz1uv7bG8ksVo1mLwTbH8njbC3i8tuwaRXYKo5Sa80kMtFMvk8\nw1/6Ao22iEVRRlVpoDB7sQ8O0pFl2s0mtVyOrhMnMHV1Eb5+nfT6OqVIBFGlwjhdRukcpmdugsTG\nDnJLxuJzYhqe/JGqH+3Dw4fcove6LYKAbWDg+57zSf66C3gayH7EsUufcow/EbBYNAjCoeS3WgUQ\nUKlapLM1Lr6xg7qW4ua1PRa+dJzdN9+h5+wZ3vr7t6lLOtbX0ggaHWvrac790pcYGCshVnXkNmoo\nvU7qpRJCTo3W34tjZo7itTsUozkGxgfwjfYSXrrLwInT9HztFGubWbwBO7s5qJdK7G9GGBtxUG4o\nWL+/w0DXMMm9JB2lhvlHhnDbFLz92gYTM124/S7imSYHoRz37sb44hkfvYNORr94npdf26ctg9Xa\nIfxWFK1Bh0qroiMoqAlaDhJVbt+JMeaosPHWLfrGAoeMd3GRs6fnWYt0SCSrDI47efqr04jhZYKP\nPYbJ7ye7vY3GasV79Chaq5WZr/8iodV9GrUGgRPzJNQ+qrEKSuWhIVLPo4+S29ujns+jd7kwBwKf\ne8nv5cuXGRgYwPUxuvzPA06cOMHXv/512u3252KrKRIp8uqrOw+C88LhAqlUhTNnAh8wb7NYNJhM\navL59zllarWEzablzTf3CO8mULVKuGiiaWaR5DySt5fwboLeo8dAqUJtNmH2dWEOBNndzRMO5ZFo\no7dZMdrMXP7Wm0wNf4Ev/MdfpQ2Iah2likxL0jP26DF2N+JIFgtFRPrPnkKR2EDXHcAeDGAcn+T2\ny3sYnXYK5SYOi5LLb22TjGRAbnHjzRX+1VdnGFoYQm/SoqQFOgvP//0S2eW7iCY7y28v8ciTYzgT\nCYRmHYVSolauETnIolHCblwmrWihVmUIH1Tp67Wz8MUZQhkJvVImlSghqbV0DB2KlQr5dInkWDdj\nfgO5ly6AIKAyGNB4u8HiJV9uY9d0UOn19Jw9S25/n1omg87pxBwI/EAy42eFphxl4ZiNeJ8BWe7g\ndmowt0L0zD4CKi1ra2m2t7Nks1VGRhzs7+cIhQqH14KqRT4ax6hX0m7J1LNZ4itrDE8HEAQjx7qd\nXHwrRE+PBa1WQSRSwmrVceNGhJMnuwkfFKmVyjicOsKJBoW8REsso9aoeOYXzpKtKPinv7iKQmjR\nKkgsr4c4cqKPniEvQrFEZukW1VSBM888RjmdpZIrkg9H8FlE9HYLka0oXlMT3xOjRA7yJJNVRs4/\nQimVg1oRs1lLq1ZFpdXSPX8cjc2GbWCAdrNJqZ6lHO9g6elh4KmnKMXjFEIhNFYr9uFhipEI4atX\naR0+5OjIMqm1DQzWXlrdkwSCQ4i0qaJFMNp+pHNm6elBEEUyGxvIjQbWvr4fuFX3SZ4KLwIGDkmm\n34uLP8Q4Hzr8fhN+v5lQKE+nc9gKDATMJJMVWqIKvcGMqFIhiAJtlZbEQRJRo2F3PU2l2kTRqbFy\nN8RUqs7w9HHk1St452aRRBGlwUDA3M39O/vY3EFUAzA4paZRqbB1/T59xyYJ3VmimK+wvlWEk9OY\nB6bQ6lWASKkloRRUDE8FqJdKaMxmdg5qROL7/Pt/e5Qtt47+fhu5gwiNUoTghIdmu0ZDaeD0LzzH\n3/7jFq+9eA+lWsnkwhS9owZuX9tkdtZLLNMmcpDjsSdHCO9n0EXDbKwn8fV50NrtZNZWsbdlzp15\nFMHoIzgxgGfQRStooZpK4RodRW0y0W61kGs1arkclUQCUa0FtYWy0kYsXsFoPFydwOH+v2dq6uFO\n+I8YFy5c4Omnn37Yw/hMcLlcOBwOVlZWGB//RBY/DxVbW5kPJPh2OrC7m2N01IHD8b5vhcmkYX6+\nmxs3whSLDdRqBRMTTu7fT5BKVUitrtGsVtF0ahwbGCd/9ypGcwaz3kI0lMR2dIGqQcZpMkA2DKIf\npcGA1mal2QS1TkOjJFBKZancvIuuy8/lG0nSmQo1fTeiUsmTP3cGuVblxtvrzDx3BrdigtReBJPX\nQ7iiZ2/zKgFBZGZ2mMVkgmy+jiSJtKpNrDYdq5cWaWV9fPXfnieWavJHf3SHdrNJOV3AH+xBJbbZ\nWIkyOeAnfG+Z/ifOoFAradVqmD0uEpkG1rle9nczYLARly2U21qUifscbOyi3C/y2GSQzZybbLJA\nNQVIChSKNrbBQRBFZPcgl5eLtPVl9Ptb9PZaOHrUh9pkwj0x8WOd+2I4DIkwXVotgiDQTFWpKBS0\najWWVgrcvRuj0zlUWi0tJfD7TRQKdaxWDZpWnr5BN5lYlmKtQ6kqoxKrBLsN3FpMk87U2VjPEIkW\nsVi0WCwaKpUmoihiNKrp67Px4nqEnXtRavkiarsLi9NDpq5idzNKNi+T3T+gmi+Qt+qx+Xwk21bs\nsyfoqW1x84U3OPHlBUxmFQOjXjQmE2qhTvyd64x94QlWbm+ze/U24wsw3mtFIbRIhVPEYmW63Gr2\nb9wmH01g/6WfQVQoqKQP1aSBU6cYefZZOoBKr0fv8WB496tZLiNwSDA2BwLk9/YeOKgaDErMVgPh\naJ0MoNGoGOwCIbFFJHUopTd6vZ/ZnVl4twv+aRKBP0kx8ivf59hPflTpR0CnU/HII0EikSKlUuNQ\nuqaS+Od/XiNZlNB6HZz46ScQWyUU6NA6nCg0asqVFnKrjUqS0JiNlCoy6zdWCCibpLJNmuYuzEYX\n3VYLzq4KsWQNQZNmZ3EFjUJmbOEoLYuTwvVNJJ2O4Hg/CcEDByVmj/XQTCfIp/IMjHow6QSiuxH0\n3UGqyRIOk0QxkWBq3MJbf/c6l56/AgKYHGa+/OvPUcyVKAo20CTwj/WjNuhoyiKlQoXZ+R66fXoi\nsQpzJ3rJl2X6PBKVfJ10LEezo8B79gkEi4d2uQC1EvZgF9bgodRLoVI9yC54z0bce/QoG9/+NuVw\nCJVSjXfmGLis9JskRked2O267zcFn2tcuHCB3/md33nYw/jMeI838nkoRr67EHkPrVabZvPDWzI9\nPRbcbj35fB21WiKXq5HJVJHrDRrFInKzRVWlpNDRoNTpqKZS9J4YwHlkHtHqot+noL67Qi2Vxdnf\nRW+PmZBWSzZbp62TGDqqx6iSSRcKhOtF4ntxLL19ePxuDlZ2ufrSTY6O6nnq8W5qa7d58YWXcXY7\nUdg9CCYHI6MuNDqRXjeUB5xEki3k/gA6RQuHETQqiYFTR3jnZo5yW43Kaqcjyxh0MzSKWUYWjlHL\nJjE62sw8vcDEkwuoLRbGzi/QNdhNa6XAOzdS9I10Uao0UDdFolthLOktxFIGdaPO9pXLHPvyU7xZ\n1iKrJYYGrOjVMXxHj6JyeLkXl2jqnSjUaiqVJsvLSfR6JcGg5d3O8o8vSuA9/sl7K3zgkB/RUbK9\nHafTOUxzDocPuyE2m47f+I2jSJKIV53CZhC5fF0isxila7iP6RkPBr3E+nqGVLbG5JSb/VCBRKJM\nV5cJu13LNyu/NQAAIABJREFUqVPd9PZayGSqDI51Ua/WSe2GOXKmh5OPj1KuyoxM+bn45gH2vgB7\n1+9QKjXQVBo0RC2vvRPjxPwQz/6vP0vq1lVe+L9eYmRukC5vGePIAI/+x39PRZbomZsim8gR3gih\n0qVw9vkJnj5J45+f5+D6fYZm+hg8c5TU8n0K+/to7Xa6jh2jnEw+sNgXfT467TaRmzdJra7SbjaR\nNBqs726hqQwGWtXqYT6N14tnMkDTUCeXq9HvbFNZvUGyfdhJlL5L0fZpUCo1kOU2JpP6h742Pt/9\n8s8ArVZJf//7ralKpYFOp6ZUanB3ucbw0AiBHjV+TZZaR03f0Wlu30nSpoXKYGT6/DypXBOXq8lm\nWslKRM3yC8u0pU2e+NIEx+Y8/NMr9+nUdATHjuPpthKpt4mvVOibPY7SYCKWhXuXUqiNNYxihV/9\nD+epJqKIHZnlzTKN/n52Em0qpRaDvSaSuRbdxiZOfZu+UR+iUoXLYyaxtITN7yGV0TJ2pJelzQrN\ntkw7lSbRLDHzZA8TAZn+nhGu3i3SqFYop/PsLIV57Nd/nlC+zp1X1ug/MkX3cBBnwE7P1BCS8v39\n+FisyOpqikymRk+PBWs9hfHdKhpBoFWpYGiEOfr4oz/+yfwxIhqNsru7y4kTJx72UD4zTp06xaVL\nl/i1X/u1hz2UH4hAwMzeXu6BHBcOt2Ss1o+OG9BqlQ8UdOl0hU4HBIWEqFLRqtUBJaZgD0Z9GbXZ\njL2/n9LuBq31JbQ2G0aPm1JbRtsu8PVfnefyzTSL95N4PAaeecxDbfMOiuF+YjE9kuKAajpJ6WAP\no8OJRiFhsmiRs3FKoT3sY+OEDvK08iWczhZf+dqXuH3hbW7/xV8y94v/I4HRAG9f3KFWq2M2KPF2\nW9neyfPKS+tYA36OHfPxykubmPQqlA0tLpvI2efOMDtmpFausnl9ibTk5eZymaZF5MLLW/TPDLMT\nl0mnKqiiEQZ7h7A5e1FvbGHVKhkK6lAU4xybHyfYNcKEr0Zps4mpqwtF/wzyrTwK4bDQq9db7O/n\nKZUaDAzY0OtVHD3qw2T68RDRbYODFCIRKskkdDooNBpck5NIas0DRVW12qRabSHLbTY3M+h0SpLJ\nMuZ5O3YxybgfPLZuFBJ4/Q5aKgMag46D+xlGrUaefLKfRKLM0JCNiQk3zWaL117bxeHQUa40Of+F\ncSyWI1SqLdLpCpVqm+XlKnqTjkxNg3NyGgQwepwY7VZsNi2376UZGrAjbYvoHhlHqBdp5hvsv35A\nUFKSjmawzZ3kS//bL9Nstbm/lELvsLB3+U0Ksg7HzFFs436kchKlVos5GKT3scfQezxkNw/tZ0Wl\nEufICOV4nNTKygNJtVyrUUmlsPb0UIrHket1lHo93tlZHD0+PD2H+W57r79Gs/3+lqZcrxO/fx9z\nMPiRJNTvRb3e4t69OJubWdrtDm63nrk574Mso0+D/98UIz8oGEynU3HqVDd7ezlWV1Ns7+RRqhyY\nZwdwmtoYPB5+cWCUrdUostpEW2vCrqihMwpcvbTDylaZaqWJwelgdT132PIzSNRaTaRqkd231/GP\n+Jk/OkRoP0eqoESphl/5taMYdBI+XYl6aptGSyCWg/7JHjphmXQtTbfPx0EsSyKaZWGogdOppbfH\nQqsjUa+USSYrHHdYqERr3Lu5wdS4lYOtOIVcmdFTfsa8HRa/9c+c+OknOT4X5I3vbLAVyWPSmZDc\nASzKOFJBTW5rk0atSTQLucYedm0Li01HW2fl9dd3KRYPyUhip8X+6i3c5g4q1fs+EOVolHqhgPpj\ntOr/PeDll1/m3LlzKD7nvBeA06dP81u/9VsPexifCL29FrLZKtvbWZrNNhaLmuPHux8kyn4/2O06\njEYVxSIYvV6ylQp6gwaL3YDKdRyLRUvyzvUHuTj1fB6Dz4dreprs5iZmTYR//VPDPPn0AM1CnvL2\nCnI2ibPbTUCnY/WqSD6cohyLYLAlOf4zzyA0KtTyefKRGKGqibXFEHaXhcReDe9sGO+RWWrZAvFY\niXSlyuSkA4NGxKAV0Og0/Lc/3EBUqrFZVBQLNbxdJirFCjIiKp2eLreaV//v/4KoVDPx7BewuIfI\nVBWkk2l+6T88w5VrMdaWUjRkgaP9Jm7dDJNwazlz5DjylTcx2ywEJh0EH59AljuEQznafSasPisq\nrRaFoki9fijLj0RKRKMlgkELpVKDaLSEQiFy9uwnb8F/FmitVvrOnTskRNbraB2OB0F7Xq+BjY0M\noiigUkksL2dYWAiwuHho/VAuN/lf/qd5BFuYg3e2qMh6tlY7dDZDiAqRmRkPuXwDjVbJkSMepqc9\nbGyk+Ou/XubkST+Dgzb8fjNLS3EmTTreeGsPtUrixW9volaJfPVfTzAw5CAZL9Lba2V61oOGOvdX\nQkSyAq5ZBZ1mnfzuNkarkfjaNs1sGs/MJL7BXsRiiNhrd2iLKiz2ATqlFpmNNVQKAVWhQ/jFy8it\nFhM/+7NY+/vRuVw08nlEpRK9y4VzbAxLTw/JpaUPebtUkkmcExN4Zmdp1WofCjUU6FDL5T5wDoJA\nu9mkWa1+omJkczPD7duxB4uEUqlBu93h3Lm+B3lRnxSf/zvqD0AqVWF1NUU8XsLtNjAy4viAJ8l3\no7fXyte/Ps3SUpJqtYksdyhV2kzN+LHbdchaC1XdYXZNuyUT39rENuVHVhmxdRlQJVIoqKGQRLb3\nipw4O0R28Sav//nb0GmjbecxiyUaqiB//w/3kAT42tc6mDQxbr3+Mh0EAueewmjrIxRr8Kd/co9c\nsYFSkHFaJI7NunD1+0iEluntsxKJlimE0wTG+1FpVDhtHSKRMt3eDuMDWmwnxun3Cmy9+h1UCiWl\nSBjLUDdGkwoRC6dPT2NUtbj2Vxeo1toUGkoKF9fomVhHr/4CV1dDnD5mpy2qEMX3yZodBGqNDqVS\n4wNBeIIoIkgPM2Hg/3tcuHCBZ5555mEP40eCsbEx4vE4yWQS5w8pvfxxQa0+dFYdHnY8CG1Tq7//\n7asty9DpYLVqOXXKz+3bUbTaLrx+B06njuWNBEa7BfvWIsn765TKMpWWhNVpxp7MQ6dDKRqlFI2S\n392l6/g8919+gct/+x1K5TrHzo6h7xrAP9bH+uU7aAx6zE4rowMGtIUsJreBWLtDPZXA69ZjtOvo\nNJVkirC1d0DXWD+h3RqlVIYjk1YOrt4iFU7TO2DnK2f7uZey0Vao+NY/rjE54eLMvAe5pKGYyrKx\nuEvP8TksXheWbjeFg7vMj1iJp22olBWOzLhwd9uoVVtkMmW+8/oafX02Zv7dDJLyMnIli3eoh1Kp\nyRtv7D1QG0krJR59NIjBoOLKlQNUKolYrITNpqW720gyeRg+Gg4XKBbrGI0/nu6I2mj8QLjbezhy\nxEuncxieWi430euVSJJIPl9DoRDRahUkch3aei8XNw6o12vkMmWiB3lOnQlSKNTotDusr+eJx8tY\nrVr++I/vcPy4n8ceC1KptHjppU16ey1cuxZhby+PQiEhCFAuNXjppU2e+x9GGBjxMNsL0ZuXCe+G\nqSRauDx+2opZRLlB79FJBLmJnE2A6VDu3CyXuf6Hf4BraoZCPIGk1nHsN36d5lg3zUyCZmyfeqOB\nxmolv79POZGgls8fBkcGg6i0WgweD8K7hGNBkhAE4dC8s91GkCQUKtXHyqrFd7dtqpkMCAJa2+FO\ngahU0qpWP1Gy9+Zm5gPdSjgMqs1mq596q/5zW4wUi3V2dnKkUhXsdi29vdYPtQ0LhRoXL+6STh/u\nNabTVeLxEufP92EyaT7y9x7uGerI5w8JPxbL4U0vlSqzuZkhHi+TTJbZ2soQsBooV9vYutzsLl2l\nUijTFhWg0tHfO0o5laaRijE+3U2jXCbQbWTz1jrdCz4ee3oSlUZJYfUWy8UwFkFALhZY/Ku/ZujZ\n53DZexkfs/PGq1vUmzUCXg9Bu0wxtI/Z4yK5soJbBcGFQdyzs1x74R3iDTNnFwLYXEY66TCl2D5X\n31jEZxMpS3os2Rb5lQTaZg6zVUn4/hrD/Wby6SIKq4tCpkKn0ya+uYdGqBHdS5EZddKIbmLpO0yq\nBCiUWniGhhHCS7RqNRqlEoIk4Zqa+qFCsD4vkOX/l7s3C5LrPq88f5n35r7vmZVLVda+oYDCvgME\nBIqULFGSLavDUozd7bElhyd69GBPTEdMhMMRfpiwI9o9bzM90zMxbffYrZZsa+MGbiAJgthRQKEW\n1J5Vue973tzuPCRYIsRFlE0RIs8TcJG36p83E/ee//ed75wOFy9e5K/+6q8e91I+FgiCwNGjR3nr\nrbd45plnHvdyPhI+Sgp0p9Uit7JCdmWFbqeDfXAQ//g43qdHqFabNBptXn99i67ejlMvUVrNcOfm\nNp2OjKhWUcxXyWiVBA4d2P2ZolZL/OYN4rduIXfbPaJSKFFdfp6z3/gWswe+SCOXo53Yors1T3Rh\nDuvgIDO/+WW2/49/oh5NYAxY6Tt6gILUZvZgEM+Qh/WNVSweB2/9wyuoOxVsijI7b6+xdfltJr76\nVRSBMdQqBbWqRDaaITY3h8PvJbAviDKdZuvSaxTW/LhGh7n1g+dwT4xREMzkBS+vvrRONi9h0Iko\nNDr0Zh3bsTqzR4+itVqxhsNceiu5S0QAVCqBW7cSgMzx40EymRpOp56+PhPlcnP3wSMI7++E+0nD\nYtHyxBMDFAoN0ukqL764xvp6HoejF4xoNKrR69VEIgXcbgPLy1ky2Qa1eptrVyP80R8fpVSWeMqq\nR1SJlEoNvvOdQzSbHS5fjiCKIsWihNWqJZGooNGISFKbWrFKo96k7TOy+iDFqQMWNl64zO1nL2G1\n6rA5bKSXsxjOT6IbDrP4j/+AotvB5PcTPHaMSjJN7sEDujLI7RbKlkRpc43tV14kNDvL2sVFHGOj\nKJRKKqkUjtFR4rdv067Xid+4gc5moxKLYXkoEjX6fDjHxihFoyiUSgS1Gq3VivEXhHi6JiepZ7PI\n3S6Z5WUKm5tYBwZo5PN49+3Du3fvh57/ft8BpVLxS1dF4FNKRur1Vm9ML9oT8KyuQiRS5Ny5MAbD\nz7xHksnqLhF5Bz1CUv1AMgI9VfbiYoZstkYgYEavV3HnToIXX1wjEikyM+Ph7Nkwd++mEKxOZr1m\n0ksW4psNNHotR870I6haGNRK7s5vEt9K4g04UGq0eA4cQra4MYo6hrwKNtcqNJttBLVAaiuC2uYi\nevc+FV2OE2PT3LkukEp0mZm0kbl9Ba0mR//kAP4D+3s32uERkisbbC9HcE5M8tLFO/hCDiYDsHTp\nOv19WnQmPRVJR6ZlJh5vUIjVaORzzBwbQW82IDr7KFXa1BpdtIKAL2ClWe3tgOq1FiaNAtTyw1Tk\nnlJaY+1ncNhI5NJrtCWpJ3iSZaLXryOo1RjcboxeL5V4nOzqKu1abddSX9R+8LX/dcaNGzfw+XwE\nAoHHvZSPDSdOnPhUkZGPgtzKCttXruy6/0azWTqtFv5Dh9BoRBYW0pRKTdwONbE7d/GPjNHgLvlC\nBQUd7F0R60SAaleLUhRp1etUUym63S4olL0k4XabbqsNyMTn5pEEI4ZmmnYmg2H4KEW1BqnexKg1\nMfWlL9Ktl2krVBRVLpwuI46AHbfPysCgHb2UodHNYTfKpNfiaNRKRNok5u7hVop863f2sL6RQ2cC\njcnI9KSF7I3L1Lce0KlXUEpVRDrMfu4wGytJps4dQKMVMSq8bMTaXH07AgKMjbtR6oy0+iZY2Gqw\nfS2NQtEbfX6nJWM0qrh3L4XFosFm0zEw0DPCevHFVSYmXKjV4q7R3LtdrT9pSFKb7e0SyWQFo1FN\nKGQhFLLi85mYn08/NPWqo9EICILi4YayRjpdBYUSd5+VbrfL3L3eff7IkT4OHHBSLErcuBEjn69z\n7FiIt9/eJpWqkExWCIUs3LubZGrSyeJcFLVFh8WsoZDOMeKz8ubf3SQbz1LJCfgqJRx9Psoba+gF\nBYPnnsDkslPa2aHZaCArFLSlBjqHk06zSaNcxtTXR6fRwDowwOgXvkBubQ2N2YzB7Sa/sdHTgaTT\nqI1GmtUqok6325op7eyQW1ujvLNDq9HANjhI4OjRXzh2rbPZGLxwgeTcHOmFBZzj46h0OjqSRGp+\nHnMggN7h+MDzR0cdJJPVR7x9+vstH6jl+jB8KslIIlEhFiu/51g8XmF4+Gei1PdT2n/YcUlqE42W\nefnldRqNNhqNiEKh4P79JFarjr4+Ey67hoC1iaO5wzOnbPjHXFQXbjIV1jA8MIggd9Em7zJ49ADG\nkI/CoRH0WgVGDZgGBim3XOSK0G7VKRWVqLUa/C4bxftb6CwWWu0mRosBSWqhzG/xnT86yFtvx9g7\nbqBa7CCtbJDXdll98UVKOzH6T59E6/Jw+slpbry9ydNf3c/Keomu3czv/Ltv0YqtkS20CLrCLKVE\nitkiKrMLs8mMaPWwkW0SGvLQ7cpYbUUsJgGTQUU6IyGqRRx2DbqGAdFn580XoiSTVex2Lc98eZR2\npoQ5EKBV7QWX3f0v/wVBFHFOTCBqtbgmJylubfXKgEBxe5taPk/o+PFPVI3/ceG555771I/0/jyO\nHz/On/3Znz3uZXxs6LbbZJaXH40hkGXya2u4JiZQG43odL1sGiVdWrUGVZUN94HDKO8v0mlKeCaG\nEPsHiEfzeJFpFIvYJ6eQOzLuyQqm0ADprTiVZBy9P4xlcg8rNxZotGTCx08ha0SajRZL3/shg4k0\n9jO/wd3VKqLZyt4zfXisoGrmiby+iF2CqqTAbBBopiPoNeBw6ZHbLQZmgkitIrPDApJkotlRcuyr\n53DV19iZL9OWFWQKHdrqFrpsmuEjh7DY9aTvXydTqWIstPGVm/zhNw8QTbfptiQEpcy1KztU6l0K\nkppyucnIiJ1Uqrf5UKmUWAxKWrk0qUyHotmMd8DDuXODgIwoCgwP2xkZ+Xh9KX4ZdLsy169HWVzM\n7FZqVldznDsXJhAwc/iwn3i8gtPZS2t++eV1JiZc7NvnIRIpkU5XMJvV7N8fwGjUMDPjQa1WEouV\nGRmx8+STQ7RaHZxOPZFIEanRZsAq4fEIVI7Y0Zn1/P63DxGLFhkMW5kIKBGbeawOI5MHh9lZjdFp\nSjQSUcwWLfVoguhbb1KO7mDp78cSDBE6exad0cjOrTnahSxqkwlBrcJ34AC1XA6FSkUtl0NtMLDy\n7LM0SiUsgQDNSoVyNIr/yBFMfj9aq5VWvU5ybq5nCPewJdNttcivre1qaz4MKp2OTquF/uciOlq1\nWu/e/iFkZHDQhizLLC9nabU6DAzYGB//4Nd/GD6VZKTRaL+nTyXLvYrJu+F06tHrVdRqLTqdLuWy\nhFarQqd779vO5+tcvbpDLlfnjTci6PUqhoZsOJ16dnbKCILAnmkX7a37LL95k7Io43FqkePD+CeG\nWbn4vyN3ZUZPHiQw0Y+6lsLY0HHyS0dRVPMU8zVK2hA//fE8O4km1XKdr//OfvZODELkHsVEGiUy\nBo8Hh99NM16hIwMKgS89PciYr8vl/7aIUqWiuL1No1RBbTKh0ulYffElRr+k49BhP/pBByfPDKEx\nm0lEc8QUPuqWOsV8A5dfRzDsZnOrREsSuPRWjNPH+5g6PktxZZHwsIua0ohgcRLZzHPo+CBmsY5x\nbIrbOy2MRjUajYBGIxKPZChvb1JcuI1Kp0OWZeI3bmAKBLANDaFQKNi6dAnbQ6MbtcWCpLYRy7SR\n15IEw+73tfH/dcbzzz/PX/zFXzzuZXysOHLkCLdv30aSJDSfAZt+GXbtyh85Lsu9ygbg9RoJBMyU\ny03sA0FK+Spzax08ob0IdLiXFzB0uzwzoGXlTo6pkwfYWtwkc/cOUiZJo1AgsG8a98hx9P3DPCjb\n0e5x4DdUqCSjmGwmzAefIOQbx2jRosms8NT5YUSDEUVnm+zNbbqihmp0C93QXnxDPjzqWXLzAvVC\ngZWFGO5wEI3FxuZrV6i0BIwtAc/UFPawk8LdHbKSFqPRSbPTm3Kpl3sPjsrGBp14HKPRhCTVqNbq\nCPFFQv5xpK5APZthY2GLbrWEoNGiNtsBBSaTmkajTZ9Vpmurc31uHVkGpapXGTp2YYZjx3qj/o97\nI9Frk+cfeQbs7JS4di3K4mKvKhIImFGpBNbXe6+LRksIgpJvfWsP6+s53G4jxWKDtbUC169Habc7\nnD0bJhar4PEYGBqyUSw2GBtzMGirc+uFK2x02+w9OobJq8fo9WJQu1C1q1z7/rNUFBKyQqC2tcbY\nnjEK2zt4x4exBzxEyhKa2XPoJiu0thZAqaSLkuAT5xGMZuqpBHKnl1JtHx2lkkyyc/kyq889h2fv\nXhyjoyz96EcoBBFzfxhTMITc7WJwONA7HFQzGZqVynuuU+Ud5+uPgHf0Iu+GqNUi/gIRqyAoGR11\nMjzsoNuV/0Wtu8dJRp4G/j2QAU79MifabLpHSosAarXwHsGM223g6NEAN27EWFhII8u9/IE7dxLU\n620mJ38m7FlYSJNMVul2ZbrdnjgzEikyOGjHaFTT6XRx6prcub9EOpbF51QTX0mR2Ihx8psmnvzO\nN9he2sTt0DL/t/8PRouRRj5L3759HPntf0VZsPJf/3GTUq6K3WpAb9Ty1mtL7P3DWcITAbQGDaXt\nbXx7Z0hn6rz5wh0OfO0pqJaIpCQ89hDhs6cprq8TvXWLdkfG3h/EPbOX5PI6gqjCaLPQzUcI7w+Q\nTeaoNAW05QS5WzewqWHy+AwFfYhWy8zGepapCRfdyAL/+Ldv0+dWo1K26Z+dZvqJwxw4a8SgaqM2\nGEhXRRI319BoxF3RYL2lRCl1adfr6Ox2ipEIyHIv9bjVQtRoaBQKyLKM2mJlq2xk7uYG9VqT4JaC\nPQebHDrkR6X6dAheM5kMCwsLnDr1S31Vf+1hNBoZGxvj1q1bHDt27HEv518MQRR76dq5HO9+Wpn9\n/t1EUp1OxcmTIba2CigkHZEHUY6fDHH7RpRorILV62DQrUdpsuE8dJKWWsn85Xu0cxnsVj2mfivN\nVoexUyf44fduUKtucuYLe+jEEnTVKt6erxOLNakmJPpGvZy5ME5l7TqJlS1kvZWW2kzoyB68Y3u4\n+jff595LVzj6W5/H6Quhtdk4MLkfSann5k9fJ7hnhDdeuk8hW0b38l2+8Mf/ilxdR0fUEklUMdpc\nNKolDP4ASkGg3WhQjsdBmcQSGqBdryLWs/icUG93ef21Fco1JY1iE0Msjt/jJhAwEQpZkGUo3H6L\nfnONzrFBNlazdLsyA16RiVHrYych76DZ7NBsdh75+8pKFq1WRKcTuXEjzvZ2mYkJB0qlEoNBxRtv\nbBONllCrBcJhK6IIXq+JN96IUKm0OHDAx9///Tw2m45z5wbY2irQ12fCYlbxYDVDWWFmbI8PW78H\nrUFPc3uV/PoS5Y1VCvEyYtCNbWgY/54JlM0Kw4dnsA4Pk25b+OEP7pDfjqMSFRx+YpqR2RDp2zfp\ntNpYA35qiVjP2A0o/PjHBI4fRyGKyJ0O2eVlzKEQY1/5Gp1WG8fsIaSOQIf6bvaX2mBA1Ot3jc3e\ngd7pRO52KUWjlKJRBFHEHAy+b7XE4HajEARiN28iqtWYQyG8s7PvqZZ8EP65OpF343GSkSvAXuDl\nX/ZEj8fA/v0+7t1LUa+30GpFpqbceL3vDWYbHrb3HohqJaCgUmlSLErU6wn6+oxYrTparU4vVror\nEwpZGB93EImUqNVaD/uJfjKZGo1KleROFhUddGoFW1tFHG4La7eW2XPhOPv6g9z5T/8RpaCi0+7Q\nlSTWXnqJ0BPnaLkdDI/YEWixcGMNrUrL4VkH9e0NclUl9r2HsY7PEL1+g0zbyOyXziPpPfzj39xC\n0GiYe1Dld377AkN70nQAWVDjnZlhcyWBemgP2pE9bCSaaN0+ggorhUaNsCHHa5d+jJQrkcuXWb/0\nBie+9WWmDn0ehdxmwKfm4r9/i8x2CmXXTrtapt28R/+YH8WR85jtRvQmDVR7gWTvzPQDFMttwpMT\nxLfu06xUMPp8FCMRjG73bh6BOdSz6m6obdy+tkqjJqE2GekKahYXM/j95t2As193XLx4kbNnz34m\nqgc/jxMnTnD58uXPBBkBcI6P02k2KWxsIMsypr6+3fCwd2AyaZie7t2ULW47qecXOXpGTzYvkU0U\nqRUrPLi9jqDRULcpqGaylHcSFFJatAYtCkHAczxDajPJqaf3sfTCayTSEsGDs7z9wtuYPG5c0wco\n1SrMzWcZ0ekQAuPcupdjZ2kZ10aHg6d6InetVuTmxWsIehOnv3iAwN4Ztu4sYQiP0dWYSEVuozIa\nadbrtLMx5retnH7yPLeefQOrs5+x/cN4pycQpRLi6iru6WkEjY5KJos94EVns5B8+UeoA8N4R6dI\nvLlApdqlUm6gVivp6zNj0XbJrqyQuH6VYiSCd2KCgaNDKAQRnSjRqVVYWmoiSW3cbgNer/GxkROz\nWYPRqN61GiiVJOr1Dj6fCYtFTTRa4e7dJBqNwJ49Lur1Nul0lUKhQSZT4+bNGN/85gx6vcjcXJLT\np/uJRAq7FfdMprYbvOe0q3nlufso5DahiQHuLEs4HQritzYZmxqEzTUMjQSh8UOodRrK21vYx8Yw\nhAYpVOHVl9fQ9/VTl5SotWpSsotcXdlzSZVqzP3nn1LY2MDk8yJodQhKBfHbt/Hu28fmK6/QrNbI\nb0ZIr28z+sWn2Uy0Wbl5nxNnR9DabECvzeLZs4fotWu7xnA6ux3n+DjpxUWi167tjq1nlpYYOHsW\n87t0b3K3S2p+Hp3dTvjMGZq1GnqHA7Pf/4l+xo+TjBR+8UveHwqFgj17PASDZiqVFnq96kNV9vF4\nhUzmUSFrtdqkXG5iteoQRSVutwGlUsH8fAqNRuTAAR/tdgeDQcWxYwE6HZnIUoT9h/vZurdKbDMJ\nXZl2OzI3AAAgAElEQVR6VcIxMkytXENnlCklM6j0WlQqJZIsEzz/JPfjatYfpLhzLYJSqWDfyQns\nGonI65cIz9jYvhMlG89w5Pd+h+mv/xZrKZlKrsLcXBytGqRmg8hKgu//XY2v/+5xgk99jfjdee68\nucTLLyzRPzNCxNYglyrRoIHF68LqNBG7fJG1q3N0OjIoBVAoWXnjKof3HeXOXIrpgT5MRpG8SolC\nqWAg7MBuFcmnikTvp1lZyfHEE2HcbgNut4FE4melQI1GwDk0gOaJJ6hnMhg9nl6FZHMTUa1GbTLR\nd/AgjUKB9FZPpKs2GbGFwwgqFZ2OTC5X/9SQkeeee+4zM9L78zh+/Djf+973+JM/+ZPHvZSPBSqd\njsCRI7gmJ5G73Ue8Fd4PgaCV008Mc+faOuVqG3/AjFkHm/Pr6M0GxkZH0BqNtJ0upGqd9HYKe58T\ns93AwMwwjVyOlfkIjoF+VtdyVNtq6okShv4mar2FpXs7TH9liK2lDMViHJ3FhMFiJp8qkEjWsLqt\nFKoKysUab72xxvmJgyiHZll68x/o7yshatUUkxlC/Ta6jQa1aoO1jIOBs2dBoeBWRub6//ICx08N\n8cT5L7Pyg++x+PwPcXosNEolhp/8HN5DR+jUKhze6yObyFPMNwhOj3LgQB9er4GtS5eoJBLonU6y\ny8skbt/GVixi9vup6i3ElyusbPR0elqtwIkjXqzKMvVsFq3NhjkQ+MQm6SwWLfv3+7h1K95zPdWK\nHDzoI5mscOtWmaEhG8PDdrrdLuGwjfX1ng/JO7EfExNO7HYt4+MORkcdCEKviNbzrOmNs3Y6XWq1\nJtFGG6vbxuGTA2ynWrz11jpGgwptJYMzPIB3cASNRsXqixcRRSVSuUxhfZ3g2XPEOh4e3FnH7TVT\nbSpoyU02r88RNA4zNhCmUS4jAy2pgcHlQqlUINNrj9gGB5n+xjfIrG9QrXUYODeEoX+YN398H7XB\njHZo+pGRXefYGFqrlWoqhaBSYfT5UKpUpBcWdokI9HQg6cXFR8hILZOhtL1Nu9FAIQgoRZFKMklu\nbW3XefuTwKdSM/IOrFYdJpOGfL5n92yzvb9NscXy3t3su1sOCoUCjUbglVc2yOcb+HxG4vEKhw71\n0ddnIhrtCZskwcDoqYMsXV9Cb9RiG7LTf2AaSyjEyLgTSlk8YT+NQh61Tovs8dB2j7O4UqbYahIY\n9pJPFRH1ekLmGpYJK63tFdau3qXdhfnv/4AD3x1keaNDPlnAYlHzr//gCGubZebuxOl2Zd6+so1W\nrjM1vp99U9Moh/eTl1RUGkpEsw2v2Yha0Ual6KJExmg1kcvVaNYktFoRrajAqBdRdRusrmSY2NvP\n0KANvUGDoppFARgHhokVGrRaXZLJntnRqVMhlpYyxGJl7HYdExNObEYlzYiJdq1Go1TCPTXFwJkz\n6BwO9HY7OnuvKiWZE/i2FSjUOgTVO9ecT8yj4F+KbrfLCy+8wJ//+Z8/7qX8SnDixAm++93vfiRf\ngV8l5IdtlY9rDe/nS/HzqFQkNjby3LuXYnsxQa0BOq0Sk1pJq9VGUKlw9VmZeuIwi69fp1SoYrQa\nOfTl06RXNuj3aDBoRCw2AzqdgGhRUynVQJZpSB2Uqg7Hz47g9ZtYvL1Ou5SnmEii0ojsOXKBaF8f\nA/1mKhWJ1Y0SDr8TCTVv30wze3wUZSWN267G67Dj8pgptVQoGmX2zYxQTBX46ffexuBw0D89zHqy\ng/9uhHymjM4/QNdswD/jIraRwHPwOKUH96ks3OILv3GAdENDpS2yuJghl6ngF7S063VMfX3YR0bI\nr69TS6dxjo1BcJyttdruNTMbBJYuvopNLqDRCKBQYAkG6T9z5iMZZX0cGBtz4vEYKJUk0ukazz+/\nytJShlary6uvbnD+/CCnT4dYXc3hcPSGDw4c8FGrtbh0aYsHD3I0Gm2++c09JJMVBEFJKlXF5dIj\niko0GoEjRwLk83W8rsMEAwb+7795ARkFNoeZXKTBT//xFv/T/3yWKhLLP/0J5tAAstqE3hdg4+JF\nJr/9PxKYGqKSKWAP+RHo4A062Ht+GEV2G7odXGMjbFy8SDkQoJbLYwsFMPn9qCxW9EOT+PyDFIsS\napePTNdC4IybiiSQU7y3fWL0eB5pwdRyOTrSz9xV3/ESkbtdCpub6BwONCYT3W6358lDL0yv8/DP\nj5z7CeCTICMe4O9/7liCj5Br893vfhertbdzHh8f5+jRowwMDACwublJpSIRj4skEhUajQwul4EL\nF/ZjMKjZ3NwEYGBggP5+K/fuLZPPN9BonAiCAodDolpNAWGKxQavvnqHcjlNtaonFivTbGZRq8to\nNFNkMjUSiSgmk4qqOczX//zfMn9vkWxeYrViop7u0G0vIRdTjDz9eZZ+8APysozt4EGq5gDNikA8\nEUVZyJHNqvGGHMguCa1dSX2rjifsIy9oEIYGWZmPYjN4MTkLLF6ZZ/X5IgeOhjl1vI/bD5qYbToc\nOhVLsQyBIS81g4pUrkqXMm6viXpNyeKDIo5SHvvoMIGwE0jTNNgxW7UMHZpE7/Hg99wilSgyNTLJ\ng9eu0Cjl0BmNHD11kKrWTWlnBwBJ6rksFotJfD44cmSCYrHBG2/Mkc83mBwbwj8bJp2L09Hr8e/b\nh0Kh6F3/UomBgQECYRe+gU2i0QICThQKsFgadDo5wL77ef664tatW9hsNsLh8ONeyq8EoVAItVrN\n2toaw78g5vtXhYWFNCsrvRCwkRE7IyOOX7meqN3ucOtWnJWVHK+/voXdINPOJVEbDZhNbs59YQ++\ngJ3ClZfo87kI/dv/jnJJwuYys3N/hcvPXqfZhqd+8xD+fhdX3o6w93NevCE39baC2cP9tDfvo4lv\n8eDBNuqGiemTe7hzw4IYGOT2YoX+/XvZunUTQaPlyKlh3FNTxCUFT14YJNg3RebmNZR0KZS7mMJD\nbKfbXPjcIIpcjKuvrFKqwep2HLWxTFdQM+mz0kZDvKqhkmzgKORQ1Ms41lN0ZAvhkVE2ijqu3epl\nupTLTTqtJueOu5gJDdFIbeLZswfPnj2o9Hr8R47wxvUszWbPZUihAJOiwoO7D9CP2npkRJbJb0Ww\nRaM4PsHvj9Wqw2LRMjfXE2rq9SpKJQmdTkW53HxoDy9Tq7U4dSpEu93h7/5uHoNBhdGo4o03IszM\neDh4sI9UqsrXvjbBwkKa0VEHktTm9u04t24l0GoFnnlmDN9QH8l4hXKti9YXIpdLkKspMBmMTH7p\nN6g0IF9qkigq6BsaQimVmZ3tY3nVSG47hlZoc/xEP5EXfkJq6QGiANNfeooj/8Mfk1pcoLm9g6DR\n4BifJF3X0XENIzdqNIQmr9wuUyqn6XS6OBz6j2QopjGb0VgstGo9Iql3ucivriKVyxQjETRmM4Gj\nRzF6vejsdqrvErwqlEosv0TI3ceBT4KMJIEn/jkn/of/8B8+8N/6+/t57bVNNjZyD49YSaXg/v00\nhw/7d0kL9IzLvvzlo2xv95TnbrdhV20NvTZOsaij27Xi86nZ2SmRy4l4PLrd3VqtZuD48TA7O2Vi\n8RarCRudpoTJomd7aZvt3DYjxgIth4mZf/P70Gpi8HhYzuj40VtzRKIq2q025Uwcm1nNV48NkF26\nQ7FWx+x1YxK1aI0OVrcKHDvjZWMlhcegpyAlaRRLJNayHPz8k4wFFJDewe/WYjarCZ7185//dh6z\n1cv8fIZ2PU8qIjC+tx/9niGO/ve/x/ILF2lVK3jGR/AePgaZLU4M6dEHJrmzUGTkiZOoaCNarEQ6\nViySEo3GidWqQa8X2dwsIAg2XC4D1WqTV1/dJJNRASpu382yYdXw5JP7H8kjePf1V6tFnn76ENFo\niWy2jtWqJRAwoder3/f1v274LLdo3sHx48e5fPnyYyMjb721vatJSqdrtFpd9u79cMOmfylyuTqd\njszWVpFORyZfU2Ky9WEygahS0ec1IG3MYw2FKOzEubtSZyNWp3/PKHLXjn5ogqBNizI4yojJTanz\nJvm1Nb76jePYh0fQlHZIbSXQdJXcu/oAg8tDy9TCPznC5asp7I4KJ799gsNPTFLN5hEUIGpVpG7e\nZelyAs9vnWLgyF4cQ/3Eo0VWFhL0WZQM2+qUYnGeOB3EvCzx1lvbSG2ZeCxHtePBaDKTLeyAQqDV\n7BAI9xGYHqUpCxgHAqQuRdHpVEQixYcaXyVzd9PoMDHmslLPZ1AIAq7JSXQ2G1ZrDR5aHgqCkk6j\ngaCQ0WrFnj18rEypLNFy7xA2eHYTuz8JyDJ0OjIulwGLRUO93iKRqCLLXSSpjd2uRalUMD7uZG0t\nx9SUm2azTanUJJer8+BBFlmW+clPVpicdLJnjwe/38QLL6ySSlXR6UTq9RaFgoTNpiMSKdHJ16Al\nse/gDN4BH0p9jehKhFIuTSmRwTDST1fjQak3EWoWcE2pKIaDjM6E2XjhWQSjhdDBvVR3tlj+8U84\n8sd/hMpgIHjsGDqbDamrQqjnyW7nSGZbVDBi0KvRCG3GRq2YjCr6+n5xS0wQRfyHD5N4sE69o6Ih\nNWkrNtE5nSDLSMUi0evXGf3iFwkcPUrsxg3quRxKUcQxOor1E74nP842zQHgfwWmgReBLwEfuS5U\nLkuPaBjewdZWgX37PKjVj741s1nD1NS7LM1leTdAq9XqEA5b2dkpAT323+nIBAJmOp2fjQlqNCL7\n9/v44Q+LuPy9nVsqmiW7FaUUiTDyuTCLL73K9o07zH7xNHq3G7tWwu23c38hS7vZwmAxMTHlpdNV\noLE7aZQrxNejBA8fYuTcGViIkbt5mdyd23iGBvB9YZZOOY/VqmF2TM0L/9v/idcuUkkk0OjUjD3z\nVZ45HSLTtbBwd4e21GKj1MIWbKJ8UGDmG8cZOr6fYq5Mtdbh/rMXEbMR4qvbOPcdxOkb5/nn1mi1\nu+w9NoLBrccC2GxaBgdtXL68TakkoVQq8HgMjI46yWZrj1zbQkEikah+aDiSVisyNGRnaOijfsK/\nPnj++ec/U14c74fTp09z6dIlfvd3f/ex/P53i6O7XZmVlSzj485faPn+z0Gt1mRpKcvdu0mazQ56\nverhQ6dNvgwagxEFMlI2TbtWQ263sew7Am9H6bPpqQtGEokC82tqhoetiGsl7i6W2Hf0DKMGGZNJ\nS+zGVXTFLeIbCQS1jnJJIpNeo39Wx8kzw+htNg7M2Khv3efmj++ys7yFp99HMZ3FMzqMf7CP1Rdf\nwqTp0lGKWCdn6TSqWIU6az+5QyqeQ+cfQFHUMLt/nPtrVQI6HR2DHdvENAOpOsVskYMnhlA6A9xe\nayF1OrgreYaG7OzslB8ZjdVYLQgmE2qHBZWo6JX8H+oFRkbsJBI94692u4vGYiE80ruXrq5mKZea\niBoVNVnHa69tcuHC0AdGbnzcUCoVDA3ZSKerqNXiw/u+AqtVi16v4saNGKKoJBi0YLVqqdXa5PM1\narU2Ol2vklIqNUkmK9TrLQYGbMzPp8nnJVqtLrlcHZWoZG0tx8iInUpJQu52MIoSs1M2pEYDldqE\ne8BHaW0FRbOOWtnBv2eC+EqEnRu3CA66GZjZRyWboyrr6FQy6LtV9HY7BreXlRdfInP/Ht1mk6Pf\n/S5Svcza9bvcvBGjVJLw9HsxTx/AHtRhamUYNJswtzLAe1s17XbnoZdKFYuyTO7+PVbvR0ApYPIH\nqAthpkIa2skIAM1ymUahgMnnY+jzn0cqFBA0mo/U4vy48TjJyE3gwj/3ZFFUvq9PhVotoFR++Kxz\ntdrk+vUYOzulh5M2AqOjDur1FltbRUZGHIyM2BketlEs9vhRMGjGYuk5h5pM6t2qSjVfQqHWojXq\nkds9dXetXKNZ7fVf6w/WePJzYRRSlVy2wtCwiwOTBq794EccOtLPgX/ze9TKdVI7GdSyRHl1gUYi\nSmo9Qn4nxtDhGZwDflS0aWaT2FQSykadSr5MPqtEfP0ylpk2Wt8gRruF+HaBitSlWu2lKZ45049k\n01FuGmmu3cBlAllhRqo56Bod/NP/e4kKRtKxHNFEnad/+ygzT09is2l4/fXI7vvvdGRisQoKheIR\nJfs7aLc7fBaRy+W4d+8ep0+fftxL+ZXi3Llz/OVf/uVj1428g05HfmQj8HFBlmVu3oyzuJih2eyw\ntpYjGDSj1Yo0mx1kuResNzphRpm/37PVttkori2jjEYw+4dJlruoFS36gyZaUguDQY3VJDB/ZQGN\nSom1EaFeKLDvQIhaeRNLn5Xw/inyWxHSkTi1bIbBkJHl169hNYosX5lDqVRQESSMTieNYhGDtsv2\nm29hMmuQzW7y8Syf/4N/zd2/+6+o9Dqq6Fm+8gCD3cbg+BDFuonjZ0e5ej2OGPRy4ve+jl7VpVyX\nebDTQVQJGFQC1WqLcrlJX59x1zhSEBTMzPhw6SvklxfolvPk19cpx2IMnDmDzW7nc58Lk0xWabW6\nOOwaJK/MgzdvUC430Rp1BPZNU+zoKZebxGKlT4yMQM8FtNFos7bWS44dGbEzMGDl2rUd+vutiKKS\nO3cSDA/b0Wp7+S0qlRIQOHRoAKtViyxPsrKSpVisMzBgRaGQ0elUpFI1ut0O0WiJ73znAOGwBSVd\nwq4u2mYGUk0Sy0skF5fpP3mcaZeDSkfF9maW8PEjZCUDLZNAQVJhMynYfP0Nits7CHKTPqcatU7N\nxFeeYfvSq/QdOoTB7SZ3Z55yqUH3YcZM9P4D9h8bIrF0j5WtLZRBNVmPC93v//57BKa3bye4ezeJ\nz65k684bLN3ZQqUS0GlFcls7+A4dYTMhMGgy0qxUENTqXUdsQRQ/8ijvrwKfWgGrXq9mdNTBjRux\n3V2VKCoZH3d+oPHKOzfa+/fTPHiQ3T1eKklIUpupKRehkBWrVYPRqCIarWCxaOnvtzA9/bOqysiI\ng+3tEs1mB6vDQCMrcuw3jiFGbqLW67D63fSfOoFjeBilKJK+n8GubyN2RMqZLLmVLKpanvU3EijV\nImZ/AIXWSGJlC4XcRWt34ur3UcsXKEUiBGcmMDksZHbS2AeCxO4vIXUUVKpt7lxdZW//DDqiSA0N\nDo+FgK43b98zbCtx9WqUQJ+B8p0NmqU8I0NWvEMa3l7N0ChX0TitPYMbtZpUoozZrKbb7V2Xn0cu\nV8fp1D9CRnQ6EZfrs5lJ8+KLL3Lq1Cm0n1IL+4+K8fFxWq3WY9WNvBvBoOWRNt7HhUKhQSTSazmo\n1QJ9fSZUKoELFwaJx3uV1uPHgwz4tSSuRhFUKrbefJNqNk8hJbL29ibhvaPUZDdyvc3nnh5nIKDH\nZRP54X+6i97nod1oUk5lCRz4MhuraVZXs+SyNSb2DvLUl0/TtPgxiG3uvFihKvYyVWx2HXq9CqvT\ngmVggPzSIqIIkiTTrneIbEaYTKXpiDqS6zGqTR2tZptUoohuZYOueoQrb+/gcBroH7Dx45c3GRqy\nMzeXoN2WGRy04vf3fFa0WoHpaRfpdB2QGR114LaLNBfvUdlYQCr1KsTlnR30Dgf9p0+j16sJh3/2\neciO/bR0DrrBGB2lmkJTSz7/s43Lx4FOp0sqVaVeb2M0qnC5DO9LlDUakUOH/IyPO3efBd///gK3\nbsURRSVjY07Gx51Uq02+8IVh7t1LUau1aDTaKBTw1399heFhB4cPB7h1K8bnPz/MwICVRKLC8LCN\n1dUs58+HuXhxjWS8xOxeN9HVOFMTdiKXXsXps6Fp5Fl5/Qr5fI2+6SlKHS0NnZe5uwnazSY2l5UL\nJ52YDQoyDYmO3CKXbeHpU2EJBhh5+mlUZjMolWiNeozGBk6ngXJRwu0xUFpbopGXcFhUdOpVipE6\nyfn5R8jIz9pOoOlUiaVyFIsSGk2PjLTaQKNMtiUw6tLSqtdxjI6iezgi/LjxqSUjAFNTLrRakbW1\nHIKgZHjYTjj83lHRej5PdnmZciyGPtDPyv02737rKpXwMG/BiSzLmM0aHA49zWabbpf3xJQHgxYu\nXBhkZSXHllpJKGjGY+4iaSexDA7hCrrw7Jmm3WiQvn+f+vU5hixmqkY1rqCHfp+OiqGElMug93jY\nSUjEM1UMAYG1jSLlTIF9M0M4KnmatQquiXFsY+NkX3iDZHqJ1aUkokaFyaTDZHeRSlYZ9bp45ivj\nXLsWe5jLAKdPhx6avUGzDQa3k+xOkkKpRf9YAOV6jNCwB6UniNFVw2bT4+/rebVotSJaba90/W70\n9ZkYG+sJvMrlJgaDmpkZDx7Pez1ePgv44Q9/+JnKbfkgKBQKzp8/z8svv/xYyMj4uHO3TRoImJiZ\n+cU21v8cdDry7gOrWm0+1ALAiy+uMTTUi4uvVJooRCNdR4hcPEVLqcfoUjJs11FuJMls7bDnqVFy\npS6Re6uINTsjM/2c/9oRHiwmCY/NElfWKdfBMH0EW/c+oQMWFEY7L99ucO6cjJYGh/Z7sQd9GJp5\nyokEKys5Rmx9mFQ6VCYTGlGB3uOkWKwzMjtCsdJBMnhoqmvYTSqabZluF0J7J0juGHA6DVy4EOaV\nVzbw9xnx2sB01MuNOxkSiQputwGVSsBs1nLwoJ/+fgs7O2WKxQYhr8DmpW1q6fTutaokEiTv3aP/\nfaqCCoUCq99L+l7lYfW0R0Q0GuF9/Z5+WTSbba5fj7GykqPZ7KDVikxPu5md9X5g5e6d6bw334w8\n9KBqI4pKfvKTB8RiZfr7LXQ6MgaDmlSqyt27KbRakaeeGiESKaDVCnzrWzN02x1Ghm14vSamprr8\n5m9OoFYrERQyalFG2W0ze24/+0b13Ny5hyU8SKtawdBS4CxX8e2dZm01RyoSZ3tuEZ3FhFKlotly\nYQ/4EXRGSvEkNqcRg7JB9MoV1i5eZPLrX8ccCFBLJunv7zzMB9KiaJQxOyx02jmsohKtwYUl2HPD\n7bRaCKpeRpAktR9W9x5OpaFArRZ2409UWi1GtweL3YNlQMC7bx/mUOhf/Fl9XPhUkxGVSmB8vMd6\nPwitep3Im29SiccB6MhQi8s0tc5dBzvoiSzd7t5YVzJZpVjModeLOJ3vv+Mvl5tsbhaQpC6ZfJOd\njSJHZkO4LeCfGkNnsRC9u8D8G7cpra0gizr0Kh02S5FKVUFu/i7ZyA7VphLL5Cz+vftpWhxI7Tmy\nxQ5b0TpjITMGt4voeox4SaCq96HvH8Ee2iG9lcDgMjH2xEmuXo9z5KtDxKMSFouG4WE7zWab+bkY\nfS4ViY0YcanM5NgotmSaer2O3Gqx98QE9RtJuq0GFrcCUdNlcMKPzaZDEJRMTrq4di26+2U2GtVM\nTrrw+Uy4XAYqlR4Z+Xmy9lmBJEk8//zz/PVf//XjXsongvPnz/Pss8/y7W9/+xP/3adP91MsNpDl\nnuD8VwWbTYvbbWBzs0AkUsTtNnD1ahSzWcPdu0kSiQpKZYDt1STrt+apZPJQrXDkWD/GVoaBfgtS\nq8vQiJPctR0aUpuRCS/p7SQ+r5FQ0EKjXCEUfJqNTIe17QrqwB5K3SbRhW0OHQsjb81x7cYKa1du\n0jc6wL6nTvKj/+s5lPouBn8QvT9EeiOGaWya1RtL6B0OsskuiqIObd8gtXsPqOUaeLwmzIEApmCI\nSbOSmRkPdruO2TE9W2/fYPlWjFDYyf5QiLWikXZbxmgUdjdxwaCVYLC3eatmMkQU761oCGo1bUl6\n38A1i0XLiRMhbt+O706xTE+7PxYBayxWYWkpQ6cj0253qNVk7t1L4vebPnTjU6s1iUZLOBw6ms0O\nDx5kKZebLC9nmZlx8/zzq0xPu7lxI0Y8XsFs1hAImAkGLeTzDer1Jt/7/+5TLjex2Ax4fUb0Bg1j\nYw7CYSsXngih04lsx2psJxoo9GZ0Bh1yu8X9//YT6uUy3XqFwVPneP16jlypSzefJbKZ48tfP4jJ\n7SCWrCKbHFgCTsR6Dp3Lxf4/+AMGPvckLaMHfXicVmMOh6DE4TQgmKwIooiQfw1rOEw1mSS7tESr\nVsPU14drYgKlIGCxaDCZ1ORyDRpKI0aPC3+jRSHf89gyO60YgyHG9oXxej95TcgvwmfzKfIuVFOp\nR0aW2pUyI2Efc2sVeEhGlEoFo6M96+DLlyMkElXW1/PEYmXGxhw89dQIIyP2XUbeaLSZn0/t2tGr\n1QItrZZsXc3ktJ12vUZbkli5s0apocI5McnW7UUMqjIm4wCRK29TLtbp2IOY1Srq1TpqlZkfPxvl\nS184S3D+NsN+NYJKgWwNsHpriZazw81rEU5+7Qx7/3ACoZ6nVKjTUakYOBaipXdw+/Z9QEG12kRb\nz1De2UaYDjAc1BLPZllelhk6doZhL1gtGsION/qBHEv3duh2wR/2cOzkwK4WZ3LShcWiJR4vo1Ip\n8fvNu+2Yd/u0fFbx6quvMjk5ifcXxHB/VnD+/Hn+9E//lG63+wt1V78KvKPJ+lVCEJQcPuyn3e6y\nuprD5dJjMPQ0YJVKk0ajTb0q8eaL9/HoJIJjITQ1LW1ELOFBmmKKRFqi2NRiGQgzHehSWp5j4eoW\n9Vobz2AfwxfOU5RUlPIJNmMxgmGBTjyGUyvB9n1inQJSU0DrC1EuVNi4s8SX/t0f0RG0ZGsCy9kG\n7gMnMdV2KDUETIEAsaaDVy6ncdjUHDp3rvf/sd/N5laO7QfbjM8MMGBtYDAoWVid485rdyiVJDaW\nYoSHY5z/5jNIWgvBoJVw+L0mcGqDAe/sbC/npNzTkpiDQWzhMArhg0esAwEzXq+BcrmJTqf62DYm\n2WyNSqVJLFamUGigVvcqLsWi9KFkRBSVqFTCbitZktqIogKHo9cGSyarjIy0CQTMCHKnF5YoSQiC\nklarQ1vqsLyYIhR2sLWZo1Yooui0mB4/gs6mR9Tr+fsfLFKttjh0wMPw6BjF7U3iN2/g2zOF3mHD\n4PEy99JVFKZBmlKTdktGUIvkcjX6Tz9BR32VVqVCX8BC38HfxNzXR1NjYWVui+byIqLJjG3sCBDV\nyCIAACAASURBVE5TF61Bh9HrpRyPIyi6JO/epbS9vZsZE7t2DbVej21wEL1ezcGDfq5e3SFdahE6\ncIS+wQjUi6DW45qexjXY/5HGgh8HPttPE3omLu8OzupIEg5dkdNnJklUepkzw8MOhoZsRCJFlpdz\nLC9neOutns/GwkKaSqXF178+iSgqKRYl9HqRSkVClmXK8TiFzU1K29s0+t2M6oZRdNvkIjFsPhft\ngJFGfJuhPf2YfV4EtYjKaKaSqLC+EgeNDt9IP914hma5QhcrzpAPUSyzNf8AU1+bwZkhck0tOrFL\nPFrmeraDQqGlP+RmYtyDqd6GbherRYvLraddyJC4twDtJmLHQfHBOiabl05bg85sIjTbv0skTrod\n7JkN0m53sVq1j4iCFQoFgYCZQMD8yX5ovyb4p3/6J77yla887mV8YggGg9hsNubm5pj9Ofv0zxJ6\n+SNhRFEBKLBYUmSzvd2j1aolnqigVomEx3wI+R22bs/xIJVEODvFyOnDTH1hgrrGwX6dgvgrP6W4\ns41JC5VSh8xOCtNWkjfuNRjziyjqRRbejOL3qLE5VGjUXfKrCTRWF22VjobWjv3/Z+89g+Q4r7vf\nX/fknPPuzOaEsMgEwJwpKvmVr2RJVr1OJdmSryzLZd2SZVt6ZZe/yFWW6y2VZdnWdb2uUskqOcm6\nFCVmUARJgCDyZmyOk/P0zPTM9P0wwBCLBUASALkAyF8Vi9iZ2d7T093Pc57nnPM/A0NkYynmZ2KE\nuoI4tQYmxpMMbe9EM2QGn5+X//UMNSpUyzom9QbquRQuv4tIl5twrYYmM0bunI283kR2bg6f14gk\nyVQqdVaXMuSXl1B3Ojl3rin2dccdbeu+E43BgKu/H0GlopzJoNJo0JjNWNvaUKmvPk2o1aprahl/\nOS5USVarNcbGEuTzVQQBikWZarWOLF89UV6rVdPf7yKdviAhYEWlErnrrnbK5RqplMTKSp6BTiPn\nXh+jWq7SEzHS3emkb7iDeKzI4FY/TpeZSjpFeiGNUleYOTOLoNFSLodbi9DTp6O03efHWktiDwUR\nzXZimTr52WWMBjPmiAsFMNn0fOTTB3GbZKZPTBDu7cJqEtBaregtFkSzg9d//BTzJ8aRK1Wsbgft\nB/Zh29WLnhK587k7vuFhkpOTOHt60NntKPU66dlZVFotGpMJk9dLR4cdl8tAJlNGrRZxu7cjNOqo\ntNqbIjH9atz2zoje6URrsbS8fYB6qUh3t4Odl2QiR6NFymWZ8fE3kltLpRqJRIlDh+aw2w2kUhIe\nT9PrrkslyrFV1I0K9UoZj0vH6mtHmjLo2TT1YomVlw6xNrNMOlWibWsPj/4//zcLY4tYQiJurUw8\nKRNPVXh0uB1nSKJ09gg+p4a1iXOsHh+hnlgj1G6nVi/j8FhYnouxklSw2I30PNzNHfuCSCuL5PNJ\nguYSibUS1bVFSokEyBJ+YztE53D4Tey4axeRHd4NOxpvd0WqKApyqYRKp3vTgepWpdFo8JOf/IQX\nX3xxs015V3nsscd48sknb2tnBJrN8oJBK5OTSXp6nGQyK6hUzfJ1u12PUvFCOcGhfzuESq3C7fEg\n6nRU83m8HUHUBgOrJ08SPXmCYiyGyeEhFPZhD0dIZUu49HVGfn6IA7u7WY1bsHqdbIlocDQSvPTK\nKyiZMkN7hnFEOpAWp0jkBWLzKRZ/8VPCO7ew55FHSKZLnHhliqE7DZTKdeIpiZ4eHWqjGYEGC7MJ\njj97jLokEeoO8PCHXditWlIrcUw6A4MDbqRyjXS6zMpqEZ2xiNNp4Ny5FH19rg0OhKuvD0EQSM/P\ng6Lg7O7G+S7W4mezZV54YY5YrEhXlwONRiSbLZ9fJAkMDropleQ3Pc7AgButVsX4eAKzWYvPZ0YU\nYXExx4EDbTQqErOvT/LYY71orXZCIRNWq4Ezp1fR6FTo9FoK+TJOl5G1bBqnx4zLoWNpJY8auZVz\nJAowf24NR8SJyeOhEIthrckoBhuuLhfqTge/9jv3YjZp8JiqHP7BTyml84xXMrRZJAZ/9VcRtm9H\nypVYOjmCUqtjMog0ihnKkydYq2eI51ZBUdCazfiGh7EEg9QrFaR0mtTUFLVyGYPDweLhw7gHB/EM\nDmKx6C5Rt741xuhbw8rrwGC3037wIKsnTlDN5VAbDHi3bMESCGz4rNmsPS+ic7G2iApQiMVKrUk7\nkynT0WFHlBRKDT3FeJ49u/bhtqtYefYonqEhTD4Ls889T0XrwBBSoXZWqNTUzEys0HfvfuZfO45g\nyFFvpOm9ew+nJvJ0exXU6jJKchWHXY8SNqNSlamm4ugENb/yawdJNFzEkhV0GhWFZIrUApTGTxJL\n1RjsDDMXrbMUl7HYjWzd1glzp0hPjKG3mrEYRPTm60suKyUSrJ06RSkeb32Xju7um97rfrscOXIE\np9NJb2/vZpvyrvKhD32Ib3zjG3zta1/bbFPecYaGPBiNGgIBC/t2e6GQwiDKWEJ2XlEaLD57klq9\nQb0BJpuJfEWFLJUpxmJI6TS5xUUMLhcNWcbW0UZ+dRX5XByVMUCPv5O8UcvxnzyDO+TGYuulp3sb\nGo2TO37n18nLOvIVEY3bRHZxEbtNwdCuIY0ZSzWBoxFH57QQ6g1x8vUFdu1pY365iFWvYDBq8UeC\nnH7yBRBEanKN+fFFxoc6uT/spnv3AEeeHSFf05JMltCZjAQHupmOS7hcRmq1xrqutxdQaTR4hobw\nDA29+xcDmJ1NE40WASgUqoTDNiIRO1qtSCBgQaUSKRarb3KUZiiuKc/gIpstMzGRZHk5h9WqY9eu\nAIVYjJGXE7SHbRQLZQwNOPr8NHNzafxdIR5+uIszJ5eR7Wra/fqmIms+y85tbhRqqFQCSkOhPWLH\n6xMw9XgRDUa0CxOkzp4kObfI9v/ro1SMHkrH5/C1dTN38nXWVvJ4zTVoVCmsrhIfGcHZ08PK8Zew\nC1kEjUJ8IYqAQr60SniomwtnWy0UyK+uYnS7yS8vU1hbo1YuozYYsEUiSKkUsZER7B0d75ok/43m\ntndGAOyRCGa/n0o+j8ZguGJDp+5uBxMTFrq7HRw/voZKJRAO29BoRLq7Ha0qFVluoBcqGNPjFOfP\noitLFOZfwzTUjzUcRq3TkZycJJ8ucuqlMyiAM9xGpVTEePQs9o9/iD2/+gEajQalCqwmawRkgZC1\nwviRZZRaDbXdTvu+fcRHR9HoNBi87YyOZzl5apKVrJq6oOHBB5pdcRtylezIKaTZCe54/GH2DO5k\n7lCB+sIpMsuLIIrY2tuxRSLX5TTUymUWX36ZwtoaAJVcjoVMBrVev67x0u3AD3/4Q37t135ts814\n17n33nsZGxsjFovh9Xrf/BduYVQqke5uJ5E2E4svv0x6cQa5Xie7MklPYCvuuwdR8nFsVh0ajYpU\nuows10nPzbF4+DC5pSVcfX1Yw2FiZ8+yePgwrr4+dL1Gzj37HB2dncwelVganSE81ENuZhLX1u2s\nGgd57fmzSPkibpeB3nAvgdI4KyfOYCgWKawUSPZ1I+qMPPChezlxbAVBq6M7YqSSL9A7YOfEK1OU\nKwpaowm50CxJzkoq0mtxhu7ZgznYxpmj5+hUaQnvHiZRNdLWpqNQqGK363E4br5S9VSq3Pp3s1Gd\nzPJynuFhH7lcBUEQ2Lnz7eVv2Wx69u0LASFGR2O8+uoSXfY6EUeVXDSJVCiSKwucPXSaclWksBbD\npN7O/jtCaBplhvoHKaYyUDUgxWMYh7rJVtUUkln6ug3MLRaY/+lpVCoBq6OPXb9+kGFVkbnDhykX\nT7DzsY+QiuaQpTIhr5ZqSSbU7kRaSNKQZaKnTqHWamnkkqyOnUNtcdJAIF/J0ihl0dlsVDLNnrKF\n1VU67r8fnc1GfnUVnc2GZ2CAuiyjNBrUJAlZkt53Rm521DrdZTPCL8Zk0nL33R34fGb6+lwt6fLd\nuwOkUlKrqkSvV1NPrlJOp7Ho6hTSKaRsipVjx9j6qU9RSiaplUoYPW4EpU5dKpNfWcXi92ENhynU\ntAR37wYgEc1S1sQoZYsYQz4GP/YxoqdPozGbKcXjGD0eDA4HybqB//y7n6Cz2fHvuYPV5QynX5vj\nwFYjK8eOkV+ONZ2bRJw9n/gQJqeNasmNqzOCZft+BE+Y1YxA0NisgLkWSskkxYtK/6CZg5NdXLyt\nnJFarcaPfvQjDh8+vNmmvOvodDoeeughnnjiCX7rt35rs815V8gsLjJ19AyFXBmDXo3dUWP27DNs\n/eAjhPvbSCzGqFRkzFY9tqCfUiKBWq9v3vsLC7QfPEhifBzP1mbTTLWhgdcmotFB755BPJEAPb4G\nCy88R9nRxfhLM9TyBQRBT70Bo0fGCN7tb4Y9ZRn30BCOoa1kawaqdTWlTJrFpSK5ZB63XY3F7WhW\nVZTqSLk8Rr8Kg82CxapDbMjotCL3/eavMPholky+xtJyEV2lRqVSQ69Xs29faINC9c2A12vk3Llm\ne490usyOHX5sNh16fbNSZHDQQzh89Q7MVyMSsRONFqmWSphddop5AZtQIjOfxOa2U41L1OQasZkF\nDA4HkYAWITaNGI8jqtV0bO3Duz2ET5NBqjo5NS2TWkuDoMHptiPr9Bw/J7PHnWbsp0/i6urEYHgS\nb6QHQ7eTaCWGqBMxed1oQl3Ydm6nVq8T6vSTnJpCQxWjAdRmM+HhQbJzs3gGBlr2q/V6DE4ntrY2\nNEYjmdlZqvk89WoVQaXC2t5Odn6e+NmzmLxerOEwWuPNmax6OW6+O3KT8fvNuFwGhoY8FIsyLpcR\nrVbkyJFlcrmmRLDRqMZcqaCxGlBM3RicTqqlEqIo4t26lbnnn6ewtkZ4z37659PMvn4Wk9tN9wP3\nkNL46fV5yWQkqtU6LxxaJJM5X6O/muWu/Xeyfdu2ZmLs/DypqSnmXngBqfMgZouBfL6AGpn8yjJt\ngV6i5+bIrsWpKGqqxQJmZ5304grmUBjXYJh03cpzz0ygGCVs7UXaurzcc08Ep/PWuUnfbZ599lk6\nOjpuCvGvzeDDH/4w//3f/31bOSNLSzkmJ5sJkeGwjb4+FyaTllqtzvTIEmMjMZSGAgI4nQZ8PhOZ\nVBHPvruxda4gF0v07+nFrm+wcuwYOosFk89HYW2N1PQ0SqOBWqulXm6u7k2VOO2RbfTv6kEnyEz8\n5Cc4u7pIpitkZqcpJ5MYXC7qDSsNlQ7MDmzt7eidTvSD+3jxpSVi8QoqwwxaiwWnvoaxzYnBpKNh\nsDPY52VuuUxJzqC1gjVoYecdEYLtFqzBIKJaTTDsJggMDDZbX8hyA6fTcNOW4kcizZYcS0t56nWF\nQqHKBz/Yh9drQqtVYTBoruv4JpOWe+6JkEyWaGzzkE3mOfbvP6NcKLLn4DAvPj9NTZZRUcdsVrP3\n/q1YxBKVQgGt0YjJ621WZ8ZiNFwdHHl1htFTi6hUIsHeNrbs6qRWyRNfy1EoC/idHkZ++iTqRoU9\nv/kZhHY3k0fOUEGHEo4wdSxPuSZwn1VNcP9dmP1+NHo9zu5uapUKsZGRlu0qnQ7ftm0t58LR2Ul+\neZlGrQaCgLW9ndziIqnJSQASExM4uroI3303au2NFw98J7g578pNplkaZuJiZdwDB9ro7HRQLFax\nWnWoUgKzz81TWF2lWiyComDv7MTW1oYl0sXS5BKNiRnu+ORHidx3P7mqiqzoxOV1Mjufo3A+EeuC\nIwJQqdQZmchw7wEvTpMJUaslPTuL1mJBZzfi8Rpx662YbQaGDw5iMamhVqGYTOPv7yOZ1GPv7ETn\ndNF3107WRkY5fmSJutaEqDTIra4yUW42uLrrrjBm89V3ii7F6HI1E7XOh2mg+ZBcEOC5XfjBD37A\npz/96c02Y9N4/PHH+dKXvkSpVMJ4C62srsTqap7nn59tCfhFo0VSKYn77usgGi1SrGsRRZF6ow5K\nU8nSH7TR2e/nXFREY3UQDje1KHJzMyAICKKIo6MDg7OZvKizWEhNTyOXStTzeexd3ah0WlZPnia4\npb+pl1Gt4nAYqFcq1CSJSjZLJZejc+cg7cODuB/eh1SF0ZEY3Vs0uDNFFpcK5KsK/Xu2EF+M4ds6\nREeni0Khyu4dXhYmKgiKgtshUiukycwlsV2ySymKwmUVkrPZMisrecrlGh6PiWDQgihuXu6XxaLj\nvvs6iUYLVCp17HbdFVVXr0QyWWoptl6uV5ZKJeL1mqnLOixWHfWH7uClH/4MbTHKr3xsCLkOdpeV\nwTv7qTcgKmlxOENYnAZyy8vMvvhLlk6MILtiBIMepsZUyJU68WiBeLxIf1iP3+bEHQ7g7Q4j5mPk\nZs6x/NoxLDv20/fRHqSaitlakJf/8zW8bW5eeOYcj93tIB3N0HXHDqqFAo1aje5HH8XW3k4lm8Xg\ndK5rXGdwOOh66CFKiQRKo0E5kyF7cedzRSE7P0+pv/+W2bXeTGfkc8CFpdf/Bn54o/9AqVRFpRLf\nVA9DkmRisSKKAk6nHqt1YzxVrVatK3EtqNzUZZno6dPUazXcAwPYwmGy0RRJQ4SqM8Lo6Qns0SLD\nH7gPbd2GXjFQLteRpCoul4Hl5fy6v2GxaDGVVjn3i1OY7SYyMzPoz7d5VjR6hvb0EM+L6PQK6XQG\nm9+HLJVJSWocWguyzYmsNtC9dxsGixGVw4dUiREbGUVtspAVHBQaeUoVBVEU6Oy0o9WqmZ3NoNOp\n6OiwX1WwSK3X037wIGunT1OKxd5IBg6F3uaVuXnJ5/P89Kc/5Vvf+tZmm7JpeDwe9u7dyxNPPMHH\nP/7xzTbnupmby2xQEl5aypFIlCiVZPKKmbbhQZZOj1OXa6i1Guw9fQR7w7QPrV+N29rbcfb0kJmd\npQFoHU40bh+iVUYbTyKKIuaObgzd2yg3NKQWapACxRGiodZiKEfpHe7i6H/NYvZ52bK7i54uG9W5\ncWqmIWqVBsuvHGZ1ZByzw8aWXbuYi9awm1XseqyH9p2DRGNFRkbipGdmUAppGg2YmC7hs/Wj0WUp\nJRKYzuf7KIrC0lKO+fkMigLhsI32dhuZjMTzz8+1Spo1GpHdu4PvmPLt1ZDleqthoV6vJhLZqKJ9\nJVZW8szNpVGpRAqFKsvL+daxtm/3smWLd50zoygK2YUF1k6eRC4WsbS1ceCBLWSiCbRCFEvIg73P\nz/hMgdnZRep1BbNZy8FddlJHDjE9MkcxmuXUL37B9v/xOJ09HqbGY2iNBmq1Orv2hjEXBfZ/8oNk\nFhbwDfThHeijLtcZOzqOJOgwD+zily9PUW2oySSLuPQygnMrkUc/iCClUKsEHN3d6CwWVl8/TnIt\nhSKqad+xlY79u1uKqxqDobUQXLkkfA7QqNWoVd5y79lNZzOdkV8A/3Dehle5gc5ILlfhzJkoS0s5\nNBoVfX1OBgY8l+1Zk0qV+OUvF4jHSy0p+DvvDF9VW6NRr7P4yivIxSKdDz7Y1DERBESNhvFXTpC0\nbaUa3I7PFUYAzuVsRDrsUGxgMmkRRYHp6RSK0iw38/tNaLVq3IYKay+/jv+ObmaefprE/BI1qYyr\nrxff1i189DcfIFszsHB6EvU2O+OvTxIvC/Q9eC+VmoBUqtNx4A7cAwMU43HEcp5KbIV6pULD0cbM\nyXm0Viv2+wdJpcqMjEzR1eVoZbCfO5fi/vs7r3ruRrebzvvvv21Le3/wgx/wwAMPvGeEzq7Epz71\nKX74wx/eFs5IuVzb8FpT2bOBxaIjW2xgDW9lMByhViyisVgJ7uptDfoXo9brCd91F67eXnKpPInV\nJMeeeY3k/DKegI3e/gG0oW7i6gDPPTdPvRqkx21nyyNBJp58ivLxk+wd3saWnb+NoNRR4nOUzr5C\n3Okgt7RIKVfC4Q2xeKJOYm65mfh49/1YdXUcZhVWm55UuowoCtQqVUqZZgdtUSViMmqolSrU5TfK\nX6en07z00kKreubcuRQHDrRTLFZbjgg0k/JHRmJEIrZ3RXzuAlNTSUZGYpTLdXw+E8PDvrccQl5Y\nyHDo0Dzlcg2Xy8DPfz6Nz2dqSfqfOLGG12vC42kq7k5MJMkmstiVFB4dJOZirC3EadvSw9AHHkIQ\nRXQ2G3PRBufOLQJNR2l2No2htErq+DS1WgOXz4fZUWDymRd5+Hf/J1v39aLS6RkYcDO0o53ppyeI\njYwgF4uo9XoElYrgvjuISpO4B7fw/z27zNLEEg0E2jt7Mbm1aOxuljMO7n1kPyaThnq1yth/P8HY\nyTmSiRL1usLEyAr3ac3037F1w3dh9HgQVCqU+htVUhqjEZ311tGI2syZZP78/+vAxtHiGlEUhWPH\nVlqJUADptIRGo6K/f6Ns/OhoojUZA2SzFU6cWMXnM7U6816KlEpRWFkhMztLXZYRRBGlXqdWklBC\nWxBEAVljoSIaqUkSpZk4hXiSoy+MYol0kCuLbNvmJxg0s7ZWYGEhx8CAC1UlR1vESXF1mfj8KmvL\neQTqGIsyi7MxbHt1DO0I4yTFyIuvo+SSREsCWx6+m6KkI6hT49k+gFqnQ2+3U4mvMDzso1yts5Bp\nirRFuty0BQysxppyyx0db6xCJKnGxETiTUXOBEG4YkXSrYyiKPz93/89f/3Xf73Zpmw6H/vYx/jy\nl79MNpvFZrv2pMGbgfZ2GzMz6XUN3Ox2PU6nAZ1OzdCQh5GROPGqDoPBRNhlw+O/8jOg0miwhEKM\nLy8w9cvnyKwmUGl15PNVZqfjGBsuXpwscerkGhZNhdmTVRL7wux54BHcujILL78MCnTu6GN5fhJq\nNRr1OtV8nvz8HN47O7C3B0nPL5FPpAn6jITarLj6+gAIBMxEIjbyaw5KiTgC0DUQwKoqoTKZMDid\nQLOT9uhofF0Zryw3GB2N4/FsnPDL5RqlkvyuOiOHDy+27MvlKhSLVR55pPstJdiOjSWQpBo6nYpM\npkKpJLO2VsDjMbX6amWzFSSpxosvzlOp1MktLXF0dJJwXxBHQyS1HGV+PsNjkS7atg8CMH90svU3\nlpfzxONFQrqmfbOzGXbs8NPW2870dJJEvEBFZyJg09HbZSMxOUn01Cm056+D1mxGLpUop5IMP/4A\nE7N59HotZpsOrcGA1QAemwrKeUwmG1ZnM1RWjMdZnY8SixXh/G0rFSpMnzqHt697g0aMJRTCu3Ur\nyclJauUyWpMJ3/AwJo/nBl2pd56bYVn7e8B/3aiDpdPlVmvsC9TrCufOpTY4I7VanbW1woZjZLMV\nCoXqlVUFBQGNyYTebqdRq2H0NrcCLcEgmt5OFs5Vz39MpBCNUawKiMUySqPO7NgSxZqOYNBKKGRh\n2zYfarVAV5cdh2IkM5EkNRUlnSw0S8qUBrlcmcTSDNYdK/g62wju2UPd7MGyNUVV0XBuUUJvUeHx\nmbFYmslKOrO5WdI8+iQPP9jPWsNLPFbAZNKSTBSRZfVlna2Lu/G+1zhy5AiFQoEHH3xws03ZdOx2\nO/fffz//9V//xW/8xm9stjnXRUeHjWzWz+RkElluKg3v3RtsJUTu2hWkrc3akjT3+02o1VeWQIdm\naDeTqSBcpFis06mJxcv4I1rKpTIkF5k4t4TDZSI1OUlP4DFUbgO5RJbUuVmsNh1SOt2sknA4qJXL\nNKpVDKLM9t0R0u02dBqB/l1dePvf2KnR6dTceWc7bSEz82cdGIQyTl0FdV0itH9/q7RTlhtIUnOX\nxGjUYDWCihoqg4jdvjFfzGjUXCKW9c5zqd5JPF4ikZAIBq/eO6XRUFpSC/W6gtGoQRDe2PECUKkE\njEYNExOJlmqqgkAqJZE/ucQD97bBUpRyuUGu1KCUTqPWaPD7LSwtNXNp4vFm12BMbpw+F+fOpZif\nz9LT42DXwV4cXW1YvG4G+l0UxpsCeKnpaar5PFqzGUtbG8mxMSzt7c1dNbMNx30eHv3QEOlkAVGW\naGTjTeXY4WArZ0dUq5EqSssRaaHWXXZuUqnVhPbtw9HV1XRGzOabphvvW+XdcEZ8wL9e8toq8Gng\nDuAx4LKa23/4h3+I3d5cuQ8MDLB//346zifxzJ1P1rn0Z6u1GfOsVBIA6HRNBySXizI3p219fnp6\nBlEUsNt1pFLSus8bDGpisWWyWfVl/57R6UQym1EPDmLM51l5/XVyWi0hu53hoAPjSo58PoosSQhK\ng55uN4vnRukasqJZ0bK4lEeS4hQKApWKBYNBjSQlQdNAazRibWujbNKjeB3YBRXlmog+4mJpdYVh\nqYLgMFBR11lKppk7uQZ1GdHYwGmJ4Hb3tuyt2O14t28nt7CAO6BnLZolGjXh7PGjVpIMDqpbD+6F\n849Eglf9ft/pnzeTb3/723z+85/flL4sNyOf+tSn+P73v3/LOyNqtYrdu4P09DhbiZEXr7xFUcDv\nt/B2InNarRoEEVdvH8n5Veq15mSXzcv0uBwYdatko3EUmpoZWquBSj5HWShg79+C0W7DGgzSyKXQ\nW61oTCakbBZFUaiVJapLi4TCYZw9PXh6ulBpNOcn4Ao6nRqjUcvgkI/BIR+lVIp6pYLebl+nMWEw\nNAXdREHBUl4jdmSUqlSmZ1cvoe0H2brVw9RUikqljsmkYedOP2bzrVF5IYpNDahkUqJWa6DTqejq\ncpBKSRgMzWsbCllxu42cOdMc48rlGoLehKDVUZPrIIioNGq23jPM2omTSOOvozPosLd30hWxMzLe\nDKUbDGr0Die+e+6iIKupFPLY29uw9m0h0N9OX5+bQixGenq6Kcvu81HN56nk8zTm5iilUgT37kOu\nyphMNXKjp9HbbPS43RQqEu49fXQf6Eerf8MRNHk8tA12sTj7hhq43e9G7wug1V7eURYE4ZbaCbmU\nzZTNDNF0Uj4CpC/zvnKhFfLbQVEUnn9+bl2YRqUSuOuuMP39bmKxAqOjCRKJEm63gVDIysmTa6TT\nzZI8nU7F/v1tlw3pXEylUGD12DFG/u3faMgylkAAs9/f3C47cC9LqxKlbAF9JUWq0KBaAfeuSQAA\nIABJREFUKFLPpckXq6wVdNQsfjo67ESjBSwWHcGghXq9QcABViXL7AsvMntyHFlRI6uM+Hbupqa1\n8OHP3InJYaecyTD38hFyFRWVGtisekyqMs7BrQgmO0ajGq1WjZROk5mfRy4UUJwhojmRotQgGLRg\nNms5cmSZdFpCrW42wtu/v23TBiRBELiWa34jmJqa4uDBg8zMzGCx3HwdLTeDcrlMW1sbx44dazmN\n7wSbed2vh/n5DCOnV1Fll0lMTGIyiAjOIK6hrTz9n0eZPtrs/qo3aPCHbNy9143NZaFYBX9/N91D\nbUizEywcPkxhdRWtxYJv+3YAsotL2PsG6LzrAAa7nViswMmT0aai6vnQUn+/a0OliSQ1e7iYzVpU\nKpFMRmLu1ASn/vNJ6rKMf6AbWWsjmpJx9/YS7nDgchmxWnXvegM1QRD4538+sW53JBg0v+UwTT5f\n4dVXl0gkSphMGlwuIwaDmny+WSDQ0eHAbNZy+vQa//qvZ4nHS1itOuqFHAGHwmCgjslhRY6vEF+M\nMjDgplqtI6hURO65h4zo5uzZWOveLJVqWEwqusJGfCEXOoMGt7tZ7ZNdXOTcz3+OqFajt9tZOXaM\n1NQUBpcLQ/cWchoPY8dn6B0MMry/G71GAEXB4HQil0o0ajXMfj/WtjbE83l4mViasZdPE52aRTRZ\nMbV1YPF72bMntKlVT9fD+fv1ssZvZpjmzwEv8B/nf/4AUL7yx98agiCwZ08QnU61LoG1u9tJLlfh\nxRcXSKWaiVuplEQiIXHgQDvJZIlarUEgYCEQeHPJdJ3ZTKNWa7ZvFkUElQpZrhOfX8W7I8+2bSGU\nhofJ10osja3y6hOvIgqwdTiEtRFn6M5OkrKacNh2fju1uSX4xBNr7Nrl566HHsU4uJv4app8SUFG\nYHibC72laZuUSlFcmsdgs1HXeJiczlDTWjBnV6mrm4p9w8N+Ojoc67brIpecxwc+0Oy3o1aLuFzG\nyyb5vhf41re+xRe+8IX3HZGL0Ov1/Pqv/zrf//73+cu//MvNNuddIRYrEIuV0GhE/H7zVfMnIhE7\ner2aeNxJZOdWPB4jC8tFpqaS7L+7l8LiImZrlWDIztbtXuqJVaxdu2nUjXi6nNSTy+RWVnB0daEx\nmZqVOIEAaxmFBY2Bs6ckZuvLbNsJZ85EWV5uhpTz+Srj43EkqUo2Wz1fgWJrJe5XKnVcLiO7d/up\nVhusTUwTj+YIdQVIlHRMHJlCEEUk0UomJ3PPPZvXyfXgwXZGR9cnsL5VQbZmKXAHZ87EOHMmSjpd\nxu83s3NnAK/3jZw2WW7Q1+dGFFPUag26tkfoiFhRajW0Opm5Y6cJek3Mz2dJJJoJwTXzGGL3btra\nLMzNZVldzePxmAi12xnaEdigeaKzWNCazc0dkWyW4O7deLZuQwz18/TT08yMr6CuCaz87CQqh5cP\n/9aDyLkcM88911JYjY2M4BseJrRnD42GQlYSkJ0dWHe3Y7frcbuN+P3mW9YReTM20xn5vXfqwBcq\nYi4t7V1bK7QckQukUhKlkszw8NuvnhA1mlYcNx4vsrSYw2Q3wWiCxZdSBAIWqpKG+TNTKBWJYlXh\n7Nkov/rJXThJow34+Pd/HyOVklhczGGz6dm5089LLy3gMrURFAuEvFrqDbCa1fj7wq3qFUGlQmM0\nEq/Z+eXTY1Q1FsYnp7F4XDz+sZ0Ui1UOH17AYtFedaAxGDSEQtcnJnSrMzc3x3/8x38wMTGx2abc\ndHz2s5/l0Ucf5Rvf+Abq26xy6lKmppK8+upSqwzY6TRwzz1hvN4rL058PvO6lvY2pwmHw0CpUOY3\nf+8u0surxOZWSY1PEL5jN6LNyZ2DHjRKlamfjVLJZmnU68RHRqgWCtRdHRx6NU4unkZjMlK3BYgm\nmyv9C1itOuJxiaNHl+noaC40XnttmUjETjpdRlGgWMyi0Yjk8xW0qLDb9dT1Fn55aAaxIeNymxFE\ngVqtwcREgp4e5zv0rV6dvj4XnZ32Vjnu221XEY0WOX062tpdmZ/PUirJPPpoN0ajttUF2GrVEQiY\nqdUaGAxqLFY9ZrMWo1JCGHCTXM2wtJgDwGjSEIuXwVRkba1ItVqns9NBX5+TbdsuP0/o7XYCO3ey\nevx48zrKMhVHJ0/+bJGjhxeoZnNY7Eb6B4dJVo3kCzVK09MtRwSaHeaTExM4u7qYjzV45ZXFluq3\nTqfirrvCN6Vy7o3i9j0zwGhcH264uAHeW3n9zXB0dZGZmyObzDMzk0atFhFtHn7xYozl1RKdnXZi\na1n2bOmllJdQEBBFFfFkmfawnfHxRGvwyGQqxGIl2tosuFwm5tZquHcMMNShRWk0MLhc6ypYTF4v\nxrYORp+eQ5YblBGo1qDSUDM2lmDrVg/JpEQsVty0Vc+twp/+6Z/yxS9+Ebf76qG59yJbt24lEonw\ns5/9jI985CObbc47hiTJnD4dXadHkkpJjI0lruqMXIparWpVqNX63Zx4aRy70Yt5m4FkRcv8ySgG\ng4ZOn0j9vAaEqFJh9vkoqdUsLWWQpCqCKGDy+lBptSQSxXXOiFarYmQkhl7/Ru7AwkKWel0hEDCT\nzTaPWyjITE8nObg9wtEnj2DXlUmnSpQKEia3C8358aRWa6AoyqY1u9RoVFesXHwzlpdzG5Jgk0mJ\nZFLCaNS2zulnP5taV+K9spLnD/7gDswmH6rELKOn3mj9oDcZsHd28k8/HgUE1GqREydWufPOML29\nLvT6yy/e3AMDmHw+Krkcsqjj1ddi5NJ5lHodnd2BrBKRRAtaq5VGQ6F8kSNygXq1SrlQYnQ033JE\noCmIOToaJxKx37a717fnWV0Bj8eEybT+RjKZNJdVJ3wrWNvaiNxzD1q3H6vPQ89d+0jowkxPxpFK\nZSqVOtl8jVhKxuFxIIrNB04UBRpGK9VqA5/PjCCAWt18aOLxEj5fU3ekUhextrVhC4c3lNJqDAZs\nfYOorQ50Vgs6qxWDxURDKpCJZ5raJzQVB9/nyhw7doznn3+eP/7jP95sU25aPve5z/Hd7353s814\nRymV5Mu2p08kStecz5LNVRlfqjOTNrCQaIZXFAVGTy5QSiQo5/OtCcns82Hv6MDs8aAxGHB0d2MJ\nNjuLWyy6DeNWrdaUdr+AKArkcpV1z7sgKHR0OFhKQN8Dd+MLWNm+r5tAXyc4gkjlOoIAXV2OW7br\n9uXMFoRWbgJmsxZJkqlU3nBERFFohkGyFUSViuC+fXTftQ932E9goIuBRx9gMqpiebnQOr6iwMxM\ninT6Im0WSaIYjyNd5FQYHA7skQgNrZl8WWDr3h70NhsqjbqpipqRcJhE7Hb9ZTvHa81mBL15nb0X\nkKRaq+DgduS23hm5FLfbyIEDbZw8GaVUkjEaNezY4cPtvradA0EQcHR2EhTtrJlXKCoyz/3sl0jF\nMiq1CnVPU0CoodZjsJoglcdoMdA14Mcd8mOcWcXjMSGKzVXM3FyGvj4XDoceUWx2FL0aLr+T7l0D\nyBoztbU0Rktze7i3y4qcTWK3u/D53tzRatTrlBIJ6tUqWosFg/0N7ZF0WmJ+PkM+X8XvNxMO295U\n0fZWoV6v88UvfpG/+Iu/wGx+66vf9xqf/OQn+epXv8ro6ChDm9Re/p0gmy2zsJAlk2nmGmi1qg1K\nrc3FwrVN1KIobFgMFGMxNBqJpEWFxe9n9dgx6rUaZp8PTyRCeHCY5eIkhaxEQ64hqlQEAma2bWvm\nUqytFXC5DOzeHaBcrpFKlSgUZNRqkaEh97pJrD1kpLY2z3MvzzFxeomOgTaG7tyCabnM0lIOi0XH\n8LCPvj7XNZ3fzUB7u42JieS66+bxmNaN6aGQlUjE3soH8flMBAIWVKrmdTU5bAT37KVgjiDXIV7T\nUK0msdm0reunUglNKf/zmzCpxRUmT82xNJ/EbNHTu7WNju29rTC62axFoxHROSw8+PgWTrw0TqVU\nZfdODz2uEpmZaXQ2G0aPh1IiAYqC1mIhsGsXNo8NjydJPl+lUqmRyTQXtqGQ5bbdFYH3mDMC0NXl\nJBSyUiw2u9feiInV4TAg5UsUVpfxeU3EYgoOtwVVOU9HyM2OvRFScRehwW4GBz30DQVQ63QMDzc4\nenQFlUrAZtNz8GAbAwNuGg2F3l7Xm4qPiaLAjh1+lqdXOTYVo1AR8AXsVKs1NDoTB/b53lTAqFap\nsPzaa6Snp5vOiNlMYNcu3P39pNMSzz4728qzGR9PMDjo5uDB8G2RRPV3f/d3aDQafvu3f3uzTbmp\n0ev1fOELX+Bv//Zv+Yd/+IfNNueGkMuVeeGFuZbg4exsmmDQSqVSb5aACuByGRkYuPbQncNhIBKx\nMToaR1GaTn85FadnfwApudhsZrdvH1qzGXd/PxqrldiZM2z1y4yk05QSKcK7B9lzZwS324jP11wx\nq9XNhcq//dsI586lUKlE+vvdmExavF4N0WiR9nYbPn2BhZVJ+nu9jJ2cZXFinkqxyLaH7mD7dh+7\ndgVu+RBuIGDh7rsjjIzEKBZlfD4T27Z51zUD7OpyMDDgJpcrIwhNB/FC2e8FenqcKIrC6moBtVrg\nwIF2crkq8XgRURTwes10dztxOPRUCgUOPzPCa4fGWyXdY2dX+FWjifBAGGg25du+3cfRo8s0klH2\nbrfj9NnZ2mNESa9x9sWnMPl8WAIBXL29WIJBjF5vayG4Y0eATKbMyy8vks9XiUTsKIrC8eMr7N0b\numV3sq7Ge84ZgaZo0I1c3Vuteg7udnHqlQQf+8Q2jr98juzyKupSmeHBLu6+O4yigFotrlsp9fW5\ncTgMJJNSK3vfZHp7ZbUej4mONgP33t2GgEC1XCa6tES0bEZ7b+eb/n52YYHE2FhzHxKo5vOsHj+O\nyedjbk5al/CrKE156d5e17qkvSvRaCjUavWbMulqfn6eb37zmxw+fPh9XZG3wOc//3n6+/v5q7/6\nKzy3sJbBBZaX8+uUl8vlOolEiYMH26jXFdRqEa/XdN0iYLt2BTCZtMzOplFRZ1ugA2t5lWqt1uwd\nUi5Tr1YxeDwkx8dJjo3RKJXo1zWQVQqeioBebEeWdWg0qta4pdOJ9PQ4W31c6vVmD5oDB9rYv78N\nrVbN3AsvoFHqdHsVPvyxHUyNRZHlGopcZWjIc8s7Ihfo6LDT3m5FlhuX7Ujs85m5774Oxsbi5HIV\n2tqsDAy4141LarVI0FhCXZ2klpVwDAzx4P1h5haavW5sNj179gQxmbQsTsUYPTHfckQAEitpxs8u\nt5wRgP5+NzaLhilTFqFexaqWULIFVo8fJ7+ygt5moxiNUoxG0VnfUNiF5i7+tm2+1nzRaCjkcs1c\noGSyhNt9+ylg33yzxC2KzQhbIirio4fZ66xT9ZoQ61V8xQnqxa4rquF5PKZrzlm5wNJKkenjk+te\nK2hEauLVB1JZkpDOtzKv5nLUq01Fw2qhQCWXI5/fGCuvVusbEsYux8JChtHRBPl8hUDAwtCQZ12M\nezOp1Wp85jOf4Stf+Qr9/f2bbc4tgcfj4eMf/zjf/e53+frXv77Z5lw3l1MazuUqiKJIT8/1KVdW\nSyVq5XIzj8ugYccO//kGdApzL7xAOpZd93mjx4NGrye3tES1UCA+OkqtXMbcFmZG4+Ho/3kVUyBE\nd6+bwUE3RqMWSaqxsrJRPTqTqbQmWfV5AbRqYo1+t43OB9ppqLV07+3EEbh1epa8FVQq8ar5cW1t\nVtramomjl9vVzS4sMHfoUCupWHrpEB27djHw2BDVah27Xd8q563VBcrSxvyiYmnjuOgP2pD9auKj\nk8iNBmq3m1I8jtHtxnqh27kgkF9b49IMklisSDzeDC25XAZkucGRI0skEhJ79gTo63PdlAu9a+X2\nOZNNxuTzkZyaYu3EiVazIq3VSskwQH5l5ZqleavFInKphNZsXqeueDEdg+0sjC9SSqZQGnXUej1t\nQ93YXVfWzEhOThI9c4bUuXPIxSK+4WHkUomaJKHSalFrtfj9TSnli/P3zGYtVuvVnZy1tTyHDs23\n4rjpdJl0WuKRR7pvinyT//W//hcGg4GvfOUrm23KLcWXv/xl7r33Xv7oj/7ols+x8XqNqFTCun41\nRqMGq/XaBf+URoP42Bjx0VHqlQo6m43g7t1YgkEacpVKLod7YIB6pUJ+eRkEAaPbjX/7dgRBQGe1\nImUy1Mpl1AYDZUcXh56dxBquYq+oyeRkyuUad94ZxmjUYDRq1iXdCgLres44Ojtbz3clmwWyuHp6\nsHlv3RyR6+VK4eXU9HTLEblAcnycns5OXIH135cr6MTfHWLh7EzrNY1BR+dg27rPlbNZ6rKMa2AA\nKZulsLKCKIo4e3owejysHj9OJZtF73DQef/9G2zyeEyMjycwGjVkMmUOHZpHoxFxOIy8+uoyjQab\n0mX5nWLzZ4bbBK3JhCUUwhoKUcnn0ZnNGL1e1Ho9DXmjF/1mKIpCcmKC6Jkz1CQJjcmEf+dOnF1d\nGz67ZaufRGInSzNRanINp9fOgfu6NwjzXKCwtsbSq69SK5dR6XRkZmdZPHyY8N13UyuXsXd2YvR4\niDgU+vtdzM5mWqqOe/YE3zQPZXExtyER8IKX/2Z5MO80Tz/9NP/8z//M8ePH3w/PvE0GBgZ44IEH\n+M53vsNXv/rVzTbnugiFrAwNXZBDr51PZvdf1/Z3bnmZ5aNHW8+7XCqx8PLLBHfvZu3ECaqFAiqd\nDld/P77t21EUBaPL1VpkuPr6WD5yBGiW7p+azWJwe2nIMkqj6TTNz2fZsqWM293MjTh1Kkq5XEOl\nEohEmuGKC5i8XjoffJDU1BSVfB5bezuOri5E1bWV0d7O1Msb9TYb9TqN2saqFqvVwAP/4w4O6Y1E\nZ5cx2iwM7eujb0uzlUZdllk7dYrU1BQNWUbvdBLYsQO2bwdBwBIKcepf/oVyuik8LksSyakpfMPD\nGF1vOD7hsJWODjvFYpVTp6KtXBezWUujoTA1lWRg4PbZHbk9zuImwRoM4t22jWr+jUZ9Kp0Ok+/t\ne6+FtTWWjhxpeeu1cpnlV19Fb7Otu2GhmSj38CM9xGKBVsnf1eLBhWiU2vmHT2s04urvR0ql0Nls\neLdtw9bejqhSoVPBnXc2ZfSr1TpWq+4tdfRsNDaGdxoNZdMlv6empvjMZz7Dj370I3zXcE3eB77+\n9a9z77338vu///u3tFqtRqPijjva6O52UC43He3rDSPmlpc3LDwKq6skxsebFRM0n+O1Eyfofvhh\nbG3rV9KWQICBX/kVDC4XGqMR67yB3GwMpdFAY2o+z4qi0Dhftr99uw+/v6kroter8flMG3YeLX4/\nlrfTdOc9ir2zk9zyMhdvAxtcLgyuy+8i9fb78AVsZLMVNBoRt9vUqnTJzM4SPXmyJa9QWFlhpV6n\n57HHUOt0SIkElkAAjcGAqFZjcDoRBAEpmVw3thuNWu65J8Lqap7l5fz5HKY3du6aY+o78W1sDu87\nIzcQg9NJ2/79rVWQ2mDAt20b5msYDIqx2IZtw2qhsOGGvYDJpKWz861tMYuXKGlqTSa0ZjOOzk4c\nneuTXlUq8S0lq15MKGRlbCyxLrfE5TJuas5IOp3mQx/6EH/xF3/Bfffdt2l23OoMDg7y0EMP8Z3v\nfIc/+ZM/2WxzrosLVRI37HiXUaitSdKG57ghy+TX1rBe4owAOHt7URSFzNwcXYKa1aUUllBba/fE\n7ze3OrYKgrBBAfZ9rg1HVxeVfJ709HSzE7vLRXDv3lap7uWwWvVYrRsXZ9mFhZYjcgEplUJKp7H4\n/ai0WoxuN8aLRRYFAeEyO1Y6nZqODge7dgU4cya27r2ODvtNEfa+Udw+Z3KT4OjsxBIIUCkU0BgM\nG8TK3ioq7WUcC0FA1Fy/dLslGERns52PIzcxejyYvN7rPjZAKGRh//42RkfjSJKMw6FvVRVsBrIs\n84lPfIIPfOAD/O7v/u6m2HA78fWvf5177rmHz372s++r1l6Erb2d5Pg4cqnUes0aDm/oAg9XeL5p\nOhju/n6sbW14imXMnX3MzmVpNBQCAQs7d/pvy7LOzUat09G2bx/u/v5maMVuv6xz+VZQ6Tbm1Ikq\nVSs8ZvL70dnt66TgjS7XVcff7dt9NBoKCwtZBEEgErGxdeuNGa9vFjbzrv6fwO8AOuAfgP/3kvev\nqWvv7YKUyTDz9NOtuCI0k2S7Hnromh2ci8mvrREfHaWcSmH2+3EPDKz31G8A5XKNSqXW6iD6ZrwT\n3VsVReFzn/scS0tL/PSnP73t+6u8W/zBH/wBsizfEGXWW7Vr7+XILS0RHxujksthDYVwdHezcuwY\nucXF1me0Fgvdjzxy2R3Oy1EoVGk0GlgsutvKEbmdrvvF5JaWmH3uuVYoHMDZ10fHPfcgnM9TK0Sj\nxEdHmzvdXi+ewUFMb6FkPperIAhcd8n5ZnG1rr2beWergRpNSfqjwJ5L3n9POyMAxXi8FW82+/24\n+/sxOG9sQ6tGvX7TJLS9E4PT1772NZ555hmee+65W74C5GYinU4zMDDAU089xfDw8HUd63aclC5+\nrsrZLMmJCXLLyxicTtz9/dcUur3duB2v+wWyCwskJiaQi0XsHR04e3svu4i8mcbfd4Ob1Rm5gAH4\nOXDvJa+/552R9xo3enD69re/zfe+9z1eeuml98MJ7wD/+I//yPe+9z1eeeUVNNcRPrydJ6X3uTLv\nX/f3HjezM/J14LPAnwH/55L33rPOSDJZ4ty5FKmUhN/flCF+M22P24EbOTj9y7/8C3/2Z3/GSy+9\nRDgcfvNfeJ+3jaIoPP744+zbt49vfvOb13yc9yelK5NINMeCdFoiELDQ3e24ZbfoL+X9635lisUq\n09NpVlbyWK06enocNzTZerPYbGfEB/zrJa+tAZ86/28t8CzwAeBiSUHlS1/6EvbzWv0DAwPs37+f\njo4OAObm5gBuu58dDj/PPDPDykozxqzTuWlvt9LdLaLVqjbdvnfy587OzhsyOP34xz/mi1/8Is8/\n/zyDg4PXfbz3uTKrq6vs3r2bf/qnf+Lxxx+/pmO8PyldnkxG4plnZte1ZAiHbdx/f8dtUUXx/nW/\nPLVanRdemGdm5o18QatVy0MPdV9zU9ebhc12Rq6EFqiet+EF4ENA/qL335M7I6OjcV56aWHdayqV\nwMMPdxMO2zbJqneHGzE4XXBEfvGLX1x3LsP7vDVeeeUVPvrRj/LEE0+wd+/et/37709Kl2dkJMbh\nw4vrXlOpBB55pJv29lt/LHj/ul+e1dU8P//5OWR5fXnwnj0Bdu0KbpJVN4arOSObKUH5J8DzwGHg\n31nviLxnKZc3qrXW6wqy/Ob9YN7r/OhHP3rfEdkEDhw4wPe//30++MEP8tRTT222ObcNkrRe6l2n\nUyEIwoZJ6n1uL2S5Qa228Rpfqmp9u7GZe33fPP/fbcPaWoFotIBGoyIQeEOc6O3g9ZrRaMR1A47J\npMFuf3Pl0/cqiqLw7W9/m7/5m7/hqaeeYvv27Ztt0nuOD3/4w/z4xz/m05/+NJ/4xCf48z//c5w3\nuPLrvYbP1xwLTCYtarVAJlPGZtP//+y9aYwc53nv++uu3vdtept9575TokSRErVQsrM6RozEH2Ij\nyLEdI7GViyBGhMQJnFwguQFu7HsAx3EQGIgNO+fmHOUYtnUdWZaolaS4DoecjbP0LL3v+1JVXfdD\nk0MOh6RIihKH5PwAAepiV3VNv13v+7zP8n8wGu//EM3DRipVIRZr7bd9PstNm6M6nQZsNj35/BWx\nPEFQEQzev4rHt8K9TmC9GfdVmGZqKsWxY2FqtZb16nDoefLJnttWR2w2FUZH44yNJanVWj0zdu5s\ndWh80LkTt221WuXFF1/k3Xff5ZVXXllPVr3HpFIpXnrpJV5++WV+53d+h89+9rPs27fvpn2A1t31\n10eWm0xMpDhzJsbbb88D0NlpZ+tWL0891XNLrRnWMg/LuC8s5Hj77QXK5Zany2zWcuBAF11djhue\nEwrlOHkyTLHYQKcTGBpys3OnH43m/i4DXqs5Ix/EfWOMVKsir7xykXS6uuL44KCLQ4d6b3DWzcnn\na1QqIlarHovl3iiXftzc7uR0/Phx/uAP/oAtW7bwne98B7v9/o+jPyiEQiF+8IMf8KMf/YhkMsnh\nw4d54YUXOHz4MN5rlCYflkXpTshkqrz88jjZbBWDQbOcuLp3b5CdO69tOn9/8TCMuyQ1+a//miYc\nXpmF0N5u5fnnB5b72VyPSqWx3HfoTrzsa5G1mjPywFCpiCtaeV8mk6let2ncrWC3GwgErA+NIXKr\nKIrC22+/zWc+8xk+/elP87WvfY0f/vCH64bIGqOnp4e/+Iu/4MKFC5w4cYKDBw/y8ssvMzQ0xN69\ne/mP//iPe32L9wWViohK1ZoPrq6gyWZXd5ldZ+1Rr0sUi41Vx4vFxrIX/UaYTDoCAesDY4h8EOvB\nx7uAxaLDatWtSjDy+Syo1WvZ+bR2kWWZcDjM/Pw8oVCIUCjE+Pg4b7zxBg6Hgy9+8Yt873vfw3wX\npPHX+Wjp7u7mC1/4Al/4whdoNBocPXp0XQ33FrFYdJhM2lULWlvb/V3i+bBgNGpxOg0UCiubJTqd\n67k/17KWV8r7JkwDrRjf0aOLFIsNVKrWZHHgQDdu9/qkcatcdtuWy2VcLhdtbW10d3fT09NDT08P\nAwMDPPXUU/T23lnoa521ycPgrv8wXLiQ4PTpKNWqhFqtoqPDxv79nfe9+NnDMu7RaJF33llY9mY5\nnQaeeKKLQODBTki9HjcL06xZ0+zJJ598oJpCrfPBXDvm4XCYcDjMe++9dw/vap2PmvVn/eFkfdwf\nSvI3+oe1/Eu4rzwjt0opkSB05Mhy+2hBrye4Zw/ezZvv8Z3dex6WndLtED1zhtjZszTFVk6SyeOh\n56mn7nrDxHvJ+rg/nDwo4y6LIovvvktmehql2QSVCnt3N90HDqA1Phz5HrfKWk1uTplyAAAgAElE\nQVRg3UxL8Owt4MP3Ib9PSE9OLhsiAHK9TuL8eRql0k3OWudhpJrLkRofXzZEACqpFJmZmXt4V+us\ns87VlGIxsrOzLUMEQFHIz89Tikbv7Y3dZ9xLY2QS2A8cBPTAznt4Lx8b1XR61TGpVkOsVq/z7nUe\nZqRKBam2umqimsncg7tZZ511rodYLtOUrqmMURTqhcK9uaH7lHuZM3L16BmB3I3e+CBhDQYpJxIr\njuksFnS3UV3QlCTyCwvkQiFUGg3O3l7snZ13+1bX+ZgpRqNkZ2eRqlXsXV0Y29rQms3U8yvDrBa/\n/x7d4TrrrHMtersdQadDblypeFIJAgan846u1yiVyM7NUYrFMDqdOPv6Hqiw7I241wmsvw78n8BJ\nYO4e38vHgmtoiFI8TjkeR2k20VmtBHbuvK3YYnJsjPCJEyhyq19Nbm6O7oMHca5Xmdy3FCIRQq+/\njlipAJCdmyOwezf+HTuInDyJWC6jEgSswSDOvr57fLfr3A3m5+d59913CQaD68mc9zFmr5e2zZtJ\njo0h1+uotVrcQ0NYg7ff1E6q11l4913y8y3F3dzcHPmFBXqfeQbDA66ltFZ+/f8P8BPgF1cdU776\n1a/icLQkczds2MC+ffvWVMv7O30tVqtMjozQlGUGN27E6HLd8vlBr5eLP/0pS/E4AB59q7yvYrXS\nsW/fctnrWvp7b/V1b2/vA5HQdieE3nyT9OTkimNas5mhX/kVmrJMNZtFo9Nh9vnQ6O/vks5reVAS\nGW+VRqPBSy+9xPe+9z2efvppJicncTqdvPzyy7jdD37bh8s8SOPelGXKySSNYhGt2YzF60Wtuf29\nfn5xkZlXX13eaF6m64knaNu06W7d7j1jrcrB64DLfq2/BY4CP7vq3x/IapoPSzWb5eIrryCWyyuO\nG10uhn/zNxHu4AFYKzxIk9PtMvWzn1EMh1ccE/R6Bl54AYvPd4/u6uPhYRr3er3Opz71KQC+//3v\n43a7aTab/Mmf/Alnz57ltddeQ6vV3uO7/Hh4mMb9VsnMzDD3y1+uOh7YvZvg7t334I7uLmu1muYF\n4AjwJtAB/H/38F7WPIqioCgKepsN03V2T7bOzvvaEHnYsV+nwZ/ebsfguHEzrQ9D85qd1zofPYqi\n8LnPfQ6j0ciPf/zjZS+IWq3mH//xH9Hr9Xzzm9+8x3e5zt1mucrmFjA4HGivUZVWazSYr+nn9CCy\nVsI01+OB84wUCnWWlgpUqyJtbSaCQdtNGyVBq9ImPTVFdnYWlUaDZ3gYo9PJ4nvvUUmnUanVWINB\nOh59FL3N9jH9JR8N98NOqdlUiESKJBIl9HoNweDd6R3RqFSInDhBfn6epixjsNvp2LfvjuLON6MY\niZAcH6eWy2ENBPBs3IjxDhPt7hb3w7jfDb71rW/xb//2b7z77rsYDKs77k5PT7Nv3z5GR0cJBO7v\nJni3wr0Yd0VpPb/xeAmdTqC93faR9X4phMMkx8ep5/PY2tvxbNx4S3kfqclJYmfOIFYqCHo9ng0b\n8O/YgVq4vzv2wtoN03wQD5QxkstVeeONEMlkK0FRo1GzbZuXPXvab3re4rFjJEZH4dJ3odZo6Dpw\nAHtXF9VMBpVajcntvqP45FrjfliURkfjnDwZQRRbux2Xy8BTT/Xg8Xz4HjlKs0kllaIpSRiczrsu\nmFRJpZh59dUVmjaWQIC+Z5+9p+JM98O4f1jGx8c5cOAA77//Pn03SUD+6le/ik6n4x/+4R8+xru7\nN9yLcb9wIcGJExEajZZn0OHQ89RTvXi9d7fHVSkeZ/a111aE020dHfQ+88wt5XzVi0XqhQJao/GB\nqqRZq2Gah4q5udyyIQKt1tJTUxlSsSyZmRliIyPkFxeRrxK4quXz5Obmlg0RaJX1piYnEXQ6rIEA\nFp/vgTBE7geKxToXLiSXDRGvS4dTVWDu2Cmyc3NI9foHXOHmqNRqzF4v1mDwIzEOCuHwKnG9cjxO\nJZW665+1zhUUReEP//AP+au/+qubGiIAf/qnf8q//uu/kr6OHtE6H45SqcH584llQwQgl6szOXn3\nf/+FpaVVeX3FaPS6z1qjVCJ98SLxc+cohMMozSZ6qxVbe/sDZYh8EOur2IdAURQqqRRyvY7ebkdv\nvXHjo+u1/HaaFRbeehMlnwRFQa3R0LZ5M+1796JSq1GazevGGxVJahko15QCSo0GiiyvSxB/RFQq\nIvV6Sx7H49KhCo8zdvYCFpOAEGuV3Hbu3/+RVbvU8nkaxSIao/G6eUMfxNWG7mUURVmVuX8jmrKM\nVK+jNRhQqdf3MbfKj3/8Y3K5HF/+8pc/8L2dnZ38xm/8Bt/97nf58z//84/h7h4eqlWRWk1adTyd\nvnPByaYktbyZsozR5Vqee6/7rDWbq561Wj7P/JtvUorHQVEQdDp827cT2Hl3NUCXn12jcc2WkK8b\nIzehXG4QiRSpVETcbhN+v2U5x0NqNIieOkVmehq50UBnsRDcvRvXwMB1r+XzmZmevqKcqdWqMYpZ\nKtEwRmMre74pSaQmJnD09GDx+TDY7Vh8PrKzs1cupFLh6O1dsRhc9pakJydpShK2jg6827aht1hQ\nmk2keh2NXn9PFhCp0aAcjyNVq+hsNixe7327kNlsesxmLY2GjE1dYeLcGLIoYbebUZpNsrOzOHp7\nb1vvRaxWKcfjyKLYmtBMplXjlRwbIzYyglipoNHr8WzceNtxZGsgQPIacSa9zYbB5SKTqRKLlZDl\nJj6fGa93pQhffmGB+PnzNIpFjE4n3m3bsK6Lr30giqLwjW98g7/+679GuMWx+vKXv8xnPvMZ/uzP\n/uyWz1nng7FYdFiteur1yorjweDqTeTlub9cFnG7jQQC1lX5ffVSifCxYxSWllCaTQxOJx2PPYbV\n78fW3r6qlYPB6Vz2dEj1OqhU5JeWKMViy++RGw2SY2M4uruX39uUJErxOI1SCZ3Fctve8Nz8/HLL\nEaPLhW/btjVZobdujNyAQqHOW2+FiEZLKErLeNi61cvu3UFUKhXFpSWSFy4sey7q+TzhEycweTzX\nrYDo6XEQDhdYXCwgywp2uwG7NkPTuLKMT67XkS5Jw6vUagJ79qAoCuVEApVajaO3F8/w8IpzMjMz\nLB07tmx113I5mrKMs7+f5PnzVLNZDA4Hvq1b73pC5M2QajUWjx4lNzdHU5IQ9Hq8W7YQ2LVrzVrn\nN8No1LJrV4BTp6LI1RiyKOFwGvD6WvFmpdmkUSze1jXrhQLzb79NLZtFazaTnZlBYzTiHhzEu3Ur\n1kCAcjJJ9PTpZUE0sVIhPjKC2eu9LeVdazBIx2OPET93DqlWQ2+zEdi1i1xFzRtvTFMstowUk0nL\n44930tfXSmytpFLMv/32stu5ns9TKxToP3wYw32eNP1R8/Of/xxJkvj1X//1Wz5n7969uN1uXn31\nVT7xiU98hHf3cGE0atm508+xY0sUiw3UahV+v5mhoZWhkFKpzptvzhOJFJfn/i1bvOzZE1wxb6Un\nJlZsFCvJJJGTJxl44QVs7e20P/IIybExpFoNg91OYPdu1Fot0TNnlvtLqQUBk8ezInwj1WqIlQpG\nlwtZFImcPElqYoKmKC4LqrU/+ugtVU+WEgkW3n57ee6o5/PULz27N/Pk3wvWjZEbsLCQIxK5El8X\nxSbj4ym6ux20tZkpxmKrQiiNYpFaoXBdY8Rs1vHkkz0kEmUaDRmHQw9pgVBsdkVOiMZoRGsyLb82\nOhz0PfMMtXy+JTFssxGNFllcTFOtinR02GBxcYX7r9GQKWdyZGZepXlpF1zP56nlcvQfPvyxVU8U\nlpbITE8v/31yvU7ywgVsnZ1Y7tNStb4+Fw6HkcKSDm08iEmvoikrFAo1TGY9+htky5fLDRSltTu7\nmszMDMVwGJPXy8Lbb1OOx9EYjSiyTDWXY+DwYWr5/PJkcpmmJFFOJm/JGCkW6ywuFsjlang8Hrqe\n+wSCXEdntSJotRz/xeyyIQKtcNToaJyODis6nYZiNLoq/l3LZqmmUuvGyAfwz//8z3zlK19BfZve\nwC996Ut85zvfWTdG7jK9vU4cDgPZbBVBUOP1mpc905dZXCwQj5dxOo2o1SpAIRotkk5XsNsNVKsi\nJpOW/OIi0MpFyWSqSJJMWw3aM1ks3ja8mzfj6OlZNvwFrZbo6dNETp1anhOL0Si2jg60ZvPyM6Y1\nGtFeag9SjseXDRGApiiSnpzE3tV1S89+KRpdNXdUMxkqqdS6MXK/kMmszvGo1aTlmKPOvDr7Wq3V\nItxEsEiv19DZeWWxEk2dOHt7yc3Po8gygl5P26ZNmNrakCSZaLREqdTAatXj99vQaARmZzO89toc\n4+NJ8vk6Xq+JQ9s02GQVAjKRSJF0tkGfykR+YRFP0LX8sNXzecqJxMdmjFQzmRWGFlyy+ksluE+N\nEQCXy4jd2oO6uJ0Lb55iYS4Ngobe3ZvJy2auNkWrVZHR0QRzc1kUBbq77Wzb5sNsbhklpVgMtVaL\nVKlQvqSqKzcaSPU69VyOfCRGTVITT1Yx6FTYrHpU6tbuTHeV0XojyuUGb701Tzjc8tioVNDf7+KJ\nJzrR6DTU6xL5/OrfeqnUoFKR0OluMEVc0r1Z58bEYjHefPNNvv/979/2ub/7u7/L1772NRYXF+lc\n7zt1V3E6jTcs500myywu5vH7LaRSZU6ditJsKuzY4WdhocDi4iKVikh7uxVbU0s+X2NyMk390rpQ\naeoJxGsMX5redGbz8loh1Wotj8hVz43R6aQcj+PZsAGxXEZjMODduhXjpQ1tvVBYEeqB1kaklss9\ncP3I1o2RG+DxrJ7oTSbt8iJi7+oic/HilQ6qKhWOnh7MbW23/Blao5GuAwdwDw0hViroL+WISFKT\nY8eWuHgxgyQ10WjUDA+72b07wPnzSWZmMsuVObFYmXGbkc12A/VUgvn5PBqtFq3ZTCInU27kGN7g\nueJe/BgXEL3d3lr9rvpMQadD8wAk2ApaLYb+rRjTOnq6iwhGMwXFzDtHI1jsJtzu1u9nbCzJyEhs\n+SsYHU2gUsG+fa2JxOTxUIrFVizsglaLoNNRr0uEQjnSkoWKYGd2bIaODhudnXZMXi+WWwi5LS0V\niESuhI4UBUKhHIODLjo77eh0Am63cVWCtc2mx2JpGbEWv3/Fzg1a8W+Tx3NnX95Dwg9/+EM+9alP\nYb2DHajZbOazn/0s//Iv/8I3vvGNj+Du1rmWyckU778fZmEhz9mzMaxWHRs3tjEyEqdYbPDTn07i\n97fG8uLFDFu7g6TzF5cNEUGrwbtxA5NzFQLdNWy2lVoyiqKsmn81BgNGtxv/rl3ItRoGp3OFwJnO\nYkElCCs83ypBuGWvhsXvR2syrfCOrNVn96E3RhoNiaWlloiV1aqno8OG3W6gu9vO0pJ9OcfDYNCw\ndasPl6u1kBqdTnqefprc7Cz1QgFLIICjp+e2y2w1ev0q9c3oUo6pqTSy3PrhSlKTyck07e1W8vna\nioVDkpqkKxqcj2wmlC5h96pwdnei6xxEcy5EPlegXBaxWHTorFZMt2EsfVhsHR3YOztb7kxFQSUI\nuIaGHhg1wWi8wsW4GkFwIleaKEqrtDedruJ2m6jXJWZns8vzj0rVCtNkMlXK5QZmsw5Xfz+FxUVQ\nqzF5PC0xskulvfmqmkZDTzhZJ7hhFwPBduqZFM4t/QQ2DV03RKIoLZdyOFxErxfI5eqr7E9Jai57\n+FQqFVu2eMlma2QyVRSlZYjs2OFHo2klT5rb2uh64gni5861kuCcTnzbtz/wjbs+LP/5n//JSy+9\ndMfnf+lLX+K5557jL//yLx8aifh7Rbnc4OzZGNWqhF4vUKtJLC4WCAZt9PU5UakgEinR1mZBEFTI\nskKqYaXt0QPo/PPIYgNbRyd57JSyVWo1mWsfT63RiKO3l9iZMyuOu4eGcF7q0QUr1ySPS4+pvYvK\n0jxKs4lKrcbZ24vlFkXxLD4fnfv3r0xg3b59zYVo4N4aI48C/zfQBE4A/8fHfQPNpsKJExHGx1M0\nm60Z2+s18dRTvTgcBp58sodYrEStJuFwGFYJ45hcLky3WQcuSU0WFvKEQjk0GhW9vU46OmwrEqMK\nhcayIXL1eZLUxOezYDZr6QwacRplapIaq8eOYvfifeJZdNkKVUlgKirTuf8JihfHMNoFrD43vm3b\nMLpcFAp1dDoBg+HGw59Mlslkquh0An6/ZVVc9VbQmc10HTxIKRKhXixidLmwBoMPhJIgtMJuitIa\nm8uoVK2Et8s0GjKNhozLZcRo1LCwkCeVqtDb62Rw0IXR5aLv2WcpxeNY/X6ys7MoioLB4UBj62Jk\nromiNAknRPT6NozBALquLoyOKzNdLZdDFkUMDgezoTzvvbdEvS6jVqvwes0UCnVstivlxgaDBrv9\nymuv18Lhw/0kEmWaTYW2NhMOx0rvlaO7G2t7O3KthsZovOEYNhoSsViZSkXEbtfj81kuxd0fLhKJ\nBKOjozz99NN3fI3NmzczMDDAT37yE37rt37rLt7dOtcSjZYYG2uFvq1WHT09DrRaAVGU2bHDT6Mh\no9GoVqgp5HI1tG1O0iYBo1HDfEFElht4PKYVz5eiKJSSKfL5Goq7C1NfFTEZRn2pIMG7Zcvye5tN\nhZMnI4yNtdYklQoGe7sZ3t8DtRIGux1re/ttyQc4e3uxdXYi12poTaY1W814L42REHCIVrO8HwBb\ngPO3enI6XaFSETEYNHg8pjuqzkgmy8zMZJcNEYBEosLCQg6Hw49er6G7++72BhkbS3LiRHjZ2Jib\ny3HwYDe9vVfyOKxW3bL1fRlBUKHTCezc6UNVSnH+1bdIRNO426xs6N+L096F3W7g4lwRWW7tepdE\nPVufeZYtww60JhP5QoPXX58jkSij1aoZ6nfgMxTJz86gs1pxDw5iDQSYmEhx4kSYalVCpWqVvj3x\nROv616NRKiFeStLS6FYmaOpMphuWO9/vBAIW3G7jsk6BwaCht9OIQ1cjnSgwOZ1HpVIxNZVix44A\nb70VolwW6ey08+67i1SrErt2BdDbbC0p/8FBnFu2k43nkFRasskahUIEna618F82MPT61mup0SB2\n9izZ6WmakoTGYqNg6V3+PTebCrLcpK/LzMLEPIVEGnewjV1Pb6GtbaVhbbXqsVpvPsEJGg2CxXLD\nf69WRY4eXWJuLossK+h0Alu3etm1K3BfVk99GH7yk5/w/PPPo/+QmjNf+tKX+Kd/+qd1Y+QjJJks\nc/FimnJZJJWqkE5XMBg0eL1mhofdOJ0GrFY9yWSFXK6GyaRFrxcolUR6e3Vks1XGx0v4/RY6Omzs\n2RNAr28trY1ymaX33+f8uxdIxIs4OoIE9j6CdbCLrk4TlViUuddfx+Tx4BocpCzrmJ7OotGocdkE\ntEqdYqFKNhhg087BO/4bP+jZXQvcS2MkftX/i8BqNZrroCgKo6MJRkfjy8bIxo0edu4MIAi3Z/HV\n6/KyiNXV5PNXlDRTqQrhcIF6XcLvt9Debrvtz7lMtSoSi5UABVkUUQsa6nWZsbEk3d0OlKaMXKvh\n91vo73cxM5NBlhUEQcXAgAu328j0RIzyxFkMUpFAm442j4C0MI5jdx/Ovj4kSWFyMoUkNenqsrNx\nkxeDWYcoyhw/Hl7+zhRF4dzxCfr9Avp0DCUcprC4SODJw5w9G6dalS593xAOF5mdzbJz50rXYFOW\nSV64QHJ8HLnRQG+zEdy9G1tHxx19P2sdWRRRFGXZ4LLbW96zqak05XIDnzaHuHiKeMnKqVkViZJA\n14Yunnmmj+PHlyiVRHp6HAQCFppNhampNAP9Tow6BY1eTzxR5o03Qpw6FaFQqHPwYDcqFRQKNSwW\nPY2GTH+/k2KxpYGgzYfJnDmJ0dh6jIvpPAUpSfeOg8yEWiXpehoI2Ske22RF2dqDViViL00jVtqu\nm4T9YVhaKjAzk1kOCzUaMhcuJOnosOHzre2J8G7zi1/84q5Uwnz605/mxRdf5OLFiwwO3vlitM6N\nmZvLkU5X2bHDz7vvLlAsNhBFmT17gnR22i9VoiUxGjWEwwUqlQYbN7ZhMqgJL+V49NEOFEVBqxXo\n67HS5m2FQAqFGnPvnGDyzeNMT2daBky2hFqjIdKxBTkTpzl/DhSFYjhMMRzGvvNx1GoImqvEz5yh\nlM5hsJoJmB5B2dh2x0a9WK22CizWsFr3WrizbUAbMHErb04kypw9G1uOeVerEqOjCfx+a6vM9Taw\nWHSYzTpKpStljSoVyxNnPF7i9dfnlssetdoku3cH2bbt9gRjxGqV9NQUCyOTiNkGAx2dRBJ1QlMJ\nTD4/VZeR3GKY5EhLS8Lo8bBjy3Z6ehwUCnWcTgM+n5n5+TypxRiLFyOIDZF6vkApFsM46CB2+hS2\n9iCbNrUxNORClpVl6xwgk6kuL4DT0xlqpQp2bQ3HrwzT53BQTacRy2VS4QTV6mr1wHi8vOpYMRwm\ncvIkTak1FlK1yuKxYwy+8AK6NW6F3w5So0Hm4kUK4TC5S7oCvu3b8W7ejMdjw+MxUYrHmXn1PahW\nKZmdzE/OU6u31HB7h/1YLHqCQStdXVfyLEqZHEtnz9GMzWFp7+RM2MjoaIZYrPVdv/baHL/2a0N4\nPEZKJZFmU+HChQQ//ekUhw71wswEsYkEw8NuVNUChaUw2XKTjcN99Ld7WUhI6Bp5UtPTeHV+BIeX\nkmwgngNjOEX70N01Ri7nnFxNrSZRLq/+PT3IKIrCkSNH+Lu/+7sPfS29Xs/nP/95vvvd7z4U/Wru\nBZWKSKUiYrXqOHy4n0KhgdGoYetWL2NjSVQqOH06hk4n0NFhZfNGN816mUgoQW+/m4u/PIO+msJg\nEGCwi7zHjH1wIwvJJpELs6A1IisqqhURh9NIbjGC3dVBqlHFo9EsV8tUUimshTSdbQKzr75HPt4q\njqgWy6TPnaa4tQtb+817mV1LNZcjMTpKMRJBYzDQtmkTroGBNempvNfGiAv478BvX+8fX3zxRRyX\nSpw2bNjAvn37qNUs1GoS9XpLJEav9yCKTSYmppEkFz2XEoFCoRDAB77escPPmTNRMpkoGo2ajRsH\n6ey0EQqFGBmJUSxeKoutp6jXYWxMS2+vg0R0nkomg89qxeBwkKrVUAvCqut3d3cTOXGCo0eOEQnn\nCZ1aApXAjt95BpOlyvybb7Jp8NcYffs0oizQZrVQSSaJv/sW9u5uur1exFqBs69dJF8TsNn8aLQa\nivUCNaVKm1ZAatRZjEQo/fKXbD/4JAablaWl+RV/bzS6SCi0yIULLe0Una5EOp3i3KiTwYM2UpEI\nAH1KA4NBQ6kUWf5+G+UytXyWs29FGNiwAYvXSygUInHhAsIlQyR1qS+LJ5ulms0SuSTic7vjsRZJ\nT0yQnZsjdOQIlWSypZy4sEAtl6Pr4EEKCwskx8ZYOnYMi8+H2dWBSqVCrjdolEpks3W8XjOJxBWD\nTqxUsDRzNNNNsnNz5AsNZi5CMmXich8pr9dEPZfB4nGSqTUJRyuMjMSp1STOn09waGMQVVOk0chR\nX1zE0dODx2KjNHsRwRhl4/BupHyJYLsdxdnBWyfixBbSgEJfVM1hk/OWDXhFUSjF49QyGTQGA2af\nb5VnxeEwXFs8hV4vYDLd62nm42ViYgKj0bj82/6wfPGLX2Tfvn38zd/8zXW7/a5z6yhKK3R5OTkb\noL3dysWLaYrFBsViA51OQKNpNfFTlJbuCEC1VGX8bBZ1OY3ZqGHT1gDTR95GpwW5XmJ+YpLY6TPs\n//ynWTwdwmTS4vI7yYk1HtvfQyGRIbMYxu10IRh1mLUizUxr/rzcGM+ZjtPlcjFZbs3TgqDC7TFh\nM6kpxWK3ZYzIksTSsWMUFhZan5HPU81kEHQ6HN3dd+srvWvcy1lCQytX5E+BxPXe8M1vfnPVsfn5\n3KW4+ZXSJJWqtej39Fzp13HtRHCz1z6fmWKxC51OwOs1odG0jIqRkRrQWkAuf169LpFKFBFjOTSZ\nGOloFJVajTUYxH9VP4HL16+kUiSmZskvlhGTRewWgXS6RuzURYJ7H2HbIwIdXg3vv9YgnpbQGhs8\n9kQv6qUxCouLHI9EMHs8uIeHiZwbh44KA49v5/z/foVOnxUKSWrpMv5tWzj/P18nOhrDs3MPbR4T\nHV1X8l22bBniF7/IAK0feV2006jXkEWJUqWJ55L8eFvAxRazgVOnWomXtXwefS1Nj8GGPDHB7MIC\nnY8/Tk9fH9pUilg4DIDnUmxcLQio1Gp6rqmBv53xWEtIjQa5hQUqqVTLEAFQFMrJJLn5eUxjYyTO\nn0drNFIvFFpy6W1euvt9XDgzDyoVyWSZnh4HBw50USo1kKUmZlOTDT4T1cgUakGgnk4g5QQESYVB\nb6G/14atFCJ/Ms7Zs000ZiuBTbt4PVtFFFvJzGNhFeffmMeklXn6uf2U585RHhvD6HKTCccZFCQ2\nPHuIhJLmzGyR6HzLQFTrtJTqKkZGYvj95hUT841InD9P9PRp5Esy1pZAgJ6DB1u5Lpe4XHa8uJhH\nUVqdqYeG3KvyUx50jhw5wqFDh+7a9fr7+9mzZw///u//zuc///m7dt2HjVAox/h4knK5JRbZ22vH\nYNDS1WVn8+Y2ZmayiGITi0XL7t1BFAVkuYndrkctN1CqOfQqFYV4hYHdnXjsAqNYiIcyxGfj9AwM\n0d2rR63VkDjyJsmxcQyChLs7SGQpjs3roSk3EdTQ7tNjE5rkMq01IjMzg6DVUs/nEapVBrsMiCo7\nRpsFl9/ZagugUiGL4k21rK6mmkpRvkpqHlqiablQaN0YuYbfBvYA/9el138OHPugk/x+C11dNkKh\n/PKxQMBy3f4C11KtikQixUuhDyPBoAWdToPbfUUX4mra220rwhONhkytJjJyMsT08TF6hgN06tIk\njh5Bo9dTikbpOXSISipFYWkJtVaL0eWi2pCpSSokUYZGBY/biMNpQmOxsrXeREIAACAASURBVGOb\nnYnJNO//8hwGh5PgUBfTR8+gSoXwunSUIhFKkQiCTkd7j5+xkUl2feoF1If2UFkKUW1W8A/1sXBu\niky6wsIrb7BVa+L9SJUnD3TQvbGbto0b0WgENm1qI5mskM/X0Gj0DPYP4TZV0WkVsFhwDQ5ibW9n\nS5eA220imSxRizbRV2so6ZbRIVYqxM6dw9rRgb2ri/Tk5Ar9CUsw+LGWD3/kXFaPvaqfy2WkWo1K\nMklTFNE4ndg6OigsLpI8P8rmZzvRmzcynzdQKjVQqWDPngAGg5Z8OELx/Dih//cVcnNz2Lu66D50\niD2PBfE3XKTyMkOuMmf/9wiBNj16s57Q2UWs2QrtbYMIRjNnz0ZJWqporS4KqSjxVB1tvo6YL6Ax\nmtBbTDTSCaRSEfeW7WTOnECtEVBrddg7OzDYrOTzdUolEYfj5sbIZVevfLkrsaJQikTIzs3h3759\n+X0tleFuIpEipVIDp9NAMGi94xyr+5UjR47wyU9+8q5e8ytf+QovvfQSn/vc59aki32tEw4XeOut\neSqVBpVsgbdePU+g3c6GTT50JhPbt/vo7nagUqlwOPSYTDoqlQYOhx6Px4TVCGKjicGkRVMv0OmB\nRlPgzdcmsepl8pE0uUiCnoFnSIyeJzN+gchECKfXTi0Roe/pQ6RnZtj76U+RvDhL7fxRTP2tKpfU\nxAQGh4PAzp2tnjWKgtFswGm3ozWbWXrvPeqFAr5t26im03Q+/vgt5XvdSFFqrYoV3ktj5EeX/rst\n9HoN+/d30dHRKpF0OPQ4nUbK5VZi5o0mvmpV5J13FgiFcshyE6QGG7YEeOKJ7hvuDIeG3CSTZSKR\nIrKsIIoyXV125kanKFVEjr1ynOyQm163h8LiAk2VwPzJs6TmlpClJkajGsUtk9N3gF+Ht72TxLlz\nhOeTOFQmCuMh5IyRcMnYqvtWmthsejJjIbRqGbet5cJryjL5xUV8vgBOmwZBqpJO5BnYuY2Z//o5\nE2+8R7Um42jvJp8UKScTxKeSzHmgGZ9DFkXqhQKDAT/JDU5KFRlBENDrBXbt8NLXoW0ZTlcpswaD\nVrxuHRdnjq5qey2Wy0jVKhavl56nniI1OUk9l8PW2YlneHhVRc1aplCoLeuwXK+aRKPXYwsGaTYa\naAwGpFpL48XodKK2OJHNbgyeOrVCgY59+8gFAi3viMVEd1sATbpV+pvP13njjXmefypAY+o0jXRi\nuZ2AoNdjaAswF9OwFM6gNpgIn5+kq8uBILR2Z52DQfLFCo/utTMdU5gTRUrJDKpqFptFj9VuJjpS\npByKgs6IYHUSz8oE0ln6Dm6md3eVpsWDoNNdUoKcxdDlRlULADd3/YvlMmJ1dWfTZU/RVRiNWvr7\nH56259fj+PHj/O3f/u1dvebzzz/Piy++yDvvvMOBAwfu6rUfBJLJ8qXigNaG9VpvXCiUa1XKxNKk\nEmUWQmmioQQWoU4o0mBmpoOhIQ9btngxmXQ0SiU0ajVbtvj46U8mOPruAqHZLC63iWcOBrBqJcrZ\nHO1dTsqZPDa7kWIyhUCTSqGMWK2gNeiRGyKpVBb7Ugx7wE+jkCN+/gJSuxejzYJ/5076nn0WqVpF\nrFRoFAqIgoB/504MTidzb71LTdYitHVSrSvk5uaw+Hz4tm37wO/E5HZjamujeMl7DaDWaNakVwTu\nfc7IHWE269i0qY1crsqJExHOnImhUqkIBq088kj7Ck2Fy0QiRUKhHNV8gcLiImK5THZmhnanisHt\n1++yajZrefLJbjKZGo2GxMxMttU4T91SyKzWJCancwQe7STY1UMhX2PkX35EqVDG3d1J4Llf4/X/\nMYraZCaXyFGr1XnqyQNY+5NUtE6cVgFRbSAayeMe3oJSzIBWh9HlRFAktMYmpXgcuVZDMJhIRXMU\n6wLlYg2VLJJNFbl4YYlSvgJqDdu3WWlXa7G4HZSyM8hNFdmpKZr1OiqNlrJ4gZ7ODaQsTlSChm3b\nfPT1OZcNuGKxvkJrwm43oHc4VhkjepsN7SXLXGXzoB+2YtUJd1xifS9QlFYy6OhoglpNwmTSsn27\nnw0bVisTejZuRCUI9D37LPHRURC00NaNFNzM+bkaGslMX7uDSmQWi9dL29NPIzq6eOvnF7mmfRHZ\nRA6pXsfa3k77879BUG5SW5hk/mKMsyNFZKOd/h0b8JqcvPm/LtBswlIoiSfgYue+AdqCTty9VhKp\nKmZZhVdjQJVdorQYQqc00HcFUesNGCwmwqkaDW1Lw2bH7g7yJZnIVIjcXAizRU9vm4Olt15H9fjj\nN62A0prNaI1GGqXSiuNrUcXxXpNMJsnlcvT399/V66rVar7yla/wrW99a90YuYb5+RzvvLOwnCht\nNms5cKB7RbJ4Pl/j/GiMRjbNUrRKLlPGH7RTr8sk5hbR2lo9x2YmYxCfIT83g9ZoZK7hI5WqUMoU\nselFSrkip0a0dP3mMGK2RmC4j3w4jOg04en0Y/X7aEai+Pq7qFVn0KhBYzNisRioVhqMHp/m1JGL\nPPa7G9Dmm1iTSQS9viV8CKBStcQP02miY1PMj17E3tNLoaZmYTzG8LAbeyRyS8aIoNXS8dhjxM6e\nbfW8utTte90YucsoisLJk1Hm5nLLx2Zns1gsOvbtWz2x5vN1xFqd3MwsFpOA3m+nXm0QuziH32vA\nepWinSw3mZ7OMDeXpVqV6O52MDTkXl64DC4X2XyddKaOtaEQixZwBAeZ+K8jZJaiqLV6FLWGt356\nmnxdj5KvYx/agF1ukNM4GHxuG/lUlsWxELpqgd4eOxVJg2eoF0EDHb1umDlNI7WIyeWilExiau+k\nEo+y9eABUKtwdfhZijcYeO4wc0ePk1hMkcwr+LbvJtO0Mrx3E+3tVhqmQcr2VtJTMpwi/V9H2PYb\nnyRcUpNIlBgcbOXZxOMl3nlnYYUK5/79nXi3bm01RbvUZ0ZnteLfsQNBo2F2NsOJExFKpVbSV3+/\nk927gyuqeNYSiqIsG0uxWIlTp6LU6y2Z5Xy+zokTYVwu4ypxO63RiH/7dlyDg/Q+8wyLC3niuSah\nWI3z4xmkUgFRE2BX/yAaTUshMZmT0ek0y1VflxGMZkz9mzg1VmJ2voBarNNp6cHp7yL61iix8TCi\nxox+kxf0JuKhBNVKg3y+StMR5NhIls6gzPhohGee6cOeifD2T14jv6Wf/c9tZunYcQRDA0GvY+Ou\nnVQEO5LUpL3dxtNPdTKuSVPvHsDj1GCoZ1DrdCQnJmiUyxhdruu2MzA6HAR27yY5NkY1k0FpNrH4\n/Tj7+j6ikbp/OXHiBHv27Lntxni3wu/93u/x9a9/nfn5ebrX6ILycSNJTUZHEysqtsplkfPn47S3\nXwkRGgytqhVFlhEEFZLUxO4wUCzU8PltWMxajh9fQs5EGerQsf9RH3qbmXOvx5kLVcmUVagwEItk\nMZgMLCwVURQ1F5caWDQu2vr96DSgdbjw6LooRiPodw2QC8cx93lp372DQlGkMhNn868+T8nSwXsn\nY/Ts2Ii7v4daQ0GrNFCaTaRKBbEhUiiIxC+GWDo3xdDzz6I1mYlFSwwduHXlY5PLRe+hQ4jlMmqt\n9rbE0j5u1uaqcQtc3sVfy+Jinp07/asWRKfTgLpZp3PQz1K0ytxCmWC7DZPTSTEaXWGMzMxkGBmJ\nk8tVcTqNzM1lqdcltm71kUrNUVfUZKo6PEMDDHdqsetL1ApFsukKVl8b5UwBwWQhPhlHH+hGa7eT\nStdQFBCMItZ4GVHUYOnsQa7XGBz2YXeYiUaLCIKK3k09GPtMhN54A6O/g97uXhroUWplkufPEwtn\nyM7MgNWDbvNWbDseZ/NnOghXrBRMZl790Tv83n/bB9o677+fJDz+JorZgafDz5bBAcqZHLWmllAo\nz6ZNVRwOAxcuJJbFu5pNhWy2ytmzMT7xiQH6Dx+mnGiFFUweD0ank0KhxokTkWVNlmpVYmwsRVub\nednAWStUKg2mplrGpdGoZcMGD9WquGyIXKZalchkqquMkcvoTCbQ6JiNZ1lcLPDOOwuXUkrUvPp2\nnL7Ne9mxq51IpEg4XMBm02Gz6cleSjo1m7V4O1z87HSM//Xv55AkBalUYGC4jV/Z4SWWqpOvgFhv\n8NbpIruefQbH1BSldB73QD8LopdioUZTVvjkJ4cY7DEy/UqBbYd243FqSc7HMPZtYPjxHVh6hzi3\nqOH9I0vEUg22bPHisUG7o0FdztFIFNH4fETPnKGSSODbtg2dxUL7I4/gHhpa/pubTYX5+RxzYS0N\nzQAdW/S0+/SY2zx3XafkQeDEiRPs3bv3I7m21Wrlc5/7HN/+9rf5+7//+4/kM+43ajWJYrG+6nih\n0KBelzCZdMhyE1Fscui5QU6/M4HLL9Dd46Czw0p0LsbA1h7eH4mj1yhUQ4s0khrMDgv9G6yIlRqq\npoRWr2V2NoNaraerv40zJ8O0+aw88sQgEyOLZKpw6AkfbqeWutqPa2c3umYVo1mHpi1IKA5jmQyW\nDUO4TRqO/OwsKlMbCdHGqbdiWAxt2IqzKLFZchPnaYhNDN3D9O1/hMlfvkNqahLb4FZUiozzNkUk\nVSrVfSG1cN8aI1qtgE63eveh12vQaFYfb2+3snV7O//je0eZnohjsBqRNXqOnUzwq796RUyoUmnw\n6qszvP9+hGazJTi2c6cfk0nL8LCH/fu7OHMmitdnYdOT+xgIwOLZcQwOA7LBisntRqVaQK4UaO/1\n0bDYqepc1LMSarWKnh4HwaCVhYU8glaDyWKns8vJ1q0+Go3WezQagdRkFk1bOwtzObK/PI+7w0vo\njTew+b1kGgbcbZ1EZyP0P2GioPXyP49WmZ2P8t/+YDvbHuklW2gi2S0oYp3+HQMoGiPVagPZ5MDk\nbUNcbO0QasUy2XKe2FJLifZy7FWSFAqFOo880o7PZ13VyyCfr69oOw+thSsaLa0pY6TlQYswMZFe\nPhaPl9i2zbdK5ValYlnt9EYIghqjUcvUVHpFCataoyWerDIyEmNkJI4oNimXW9/P1q1eFAU2b26j\nUpGIxGtY/AHqlTolUaJUVxGJldi2t593XhujWBQxehycnW2i1g8SlbMUT0uYLGna2234/Vbiiwmq\n2QbeNhMF2UilVEYu5bG6HZRyJd5/M8JUQk17l5vZ2Syjo3F2bWtDzhnoCvbT1qeQHB0lOz2NraMD\nlVrdSk4eGcHa3r5saExOpjh6dGlZ8j6aktA6XAyvGyLX5cSJE/z+7//+R3b9P/qjP+LRRx/l61//\nOub1McBo1OB0GlfNRS6XEYOhVXUiCGosFh2CIPDYwUGUahFRgoszGfbuHyBT01Kvp0FSsNsMyLLI\n/GIZwZCjs8OMyqql1Mhy/rxEX5+Tnl4n46NVRs9GyWYusnmDAzUKbp+TQjaN2ugFt5+tW72k01X+\n+3dOcvp0jKXFHIosc+ipbjbt2cCF83GyhQbZVAm7W+bsL0/R4TcgqNWo5Drz759i46/9CsHtW9Cb\nDQR2bsbR0Y7lNgsEZFFEuiQFv5Zbcdy3xojRqGVoyLNCWl2rVbNxo+e6Saw6nQZXmw27y8TmPT3U\nJRXZeJZf/DxG+0AQnatIIGAlHC4yMZFeltSW5Zbi68CAC5UKNmzw0N3dkvOu10VOTxUxGHw4rVp2\nH36M8dPTdBx8DpPTxobeASYjMotLJaymIv42A08+6ibQ3cbmzW3U6zIWiw6nU8/YWJJUooBFVSEy\nn8Rm1bEwEWNxJolGLdPZ40YsFUhn7RicJgqVJpLWzPx0gvFkgWykzv59Q0iyCpvXg7fDgTYfY9tm\nD7pmldT8LEuxEvo+I/7gFirlBDZDlXponFwmDTmBas2CoDRxu/TE4lUqFZH5+RxerxmVStXK9KaV\n1KnVCmi16lXeBbN5bTX0ikaLnD+foF6XMejUNEolaiqIR4309jqYns4uv9fvt+D333yCFwT1qsot\ntboV1qqU6rz202kSUyGsdhO29gAmtxuzWceOjVZyczMsjodwF7Mc3BXgvfMashkr8XiZVKKMy6Lw\n27+7HbXJStdggMnRRc6eDpOOpBje2sm2ne1MXohQSGbJJIqcr+p5tKsdlVhHr7Gg13gR5CrW7j6K\n75fp7mvDZNIyNZEksRBj35Ca5MUL/Ow/Z9j51E5MUhVLMIg5EEBuNFBrtYjlMo1SCZ3ZTL0uMT6e\nWtF7RxSbjI8n6etzotWu3YntXqAoCidOnODb3/72R/YZfX19PP744/zgBz/gi1/84kf2OfcLgqBm\n+3YfxWKdbLaGStXSu9m2zbuiJ9LGjR6SyTJTUwXSiRo+t4ZP/vo2mhoNk5NZDjzqpcOjolGyMDcV\nQ2820NHrxWLR016T2b+/m09+cgBQtTwtElw4F8HjszB+LgKo2P7YEG5vkGZ6icrcBAndLo6Ni8xP\nx9E1q5jUdWRFYfpiS6hw9yPdVCsSZlUZTbmEupIln9Dh0mloFPI4zQYapRIFrAxs3YHi6aF94Paa\njGZmZ0mMjrbENC81ybP6/Xd3EO4S960xArBpU2uynZvLIghq+vqcdHffOJ6mqAR8nV4WQynmzi2i\n1gjoHW5KVYXTp6M8+6xxuSQxHr8sDtaSbNdqBRwOA01JQi7l6PBqSWdlQpOnmRyZYlyjsO/xbg78\n1pMcO52hFFZoNzXZvMXPzs016ukUZlUVJTXPmfk4sbIBq93E8LCbRKLEyEicHnuF196YYuT9Wbbv\n7WHD5i2oE2cQGnl0ZhMdO7Zx+myc3RvtmLRN4vU0bR1u0k0Rj0PDcLdMWWnSMRAkoI0xMjqGw2nk\n2H/8GJVKhWt4A9HRcZzaGuqmQCG5gNrnwrvnEfYGzbz30/cJXQhhtlt5csdWXIPtpNNVIktZmpk4\n1aVZpFoNV38/ruEN9PQ4VngIHA49PT13t5fPhyEUyjExkeTChSRGQUJJh9GrRdRqFS5jg1/97b04\nnUZKpTpWq57eXicm05VKoFpNIp+vXWosd6XipLPTxic+McjISIxotIROJ1CriZi1EhePXSCXymK3\nanFFw3i3bSPjbDK7dIzpV1+lafFQjMnMRc+x8fEnWAobQaVh564gb/w0hrohMDueRJAq7Oo3s3nj\nNnIFkUalit0GffvtxBcSuDZ5UBTY8olHkBaDJM6dJTszg62zE1FqUlicx20yUFYcxJZS7NnqZObN\ndxg7PoZer2Xy1BR9PTZ0Rgv5+Xl0l5JULcEgWlOrzF0UmzQa8qrvtV6XkaTmujFyDUtLSwB0XqOx\nc7f56le/yh//8R/zhS984b5JGP8oaTU17aZYbKBSqfB4jNhsKyvEXC4Thw/34/GYmJ3NEgrl+feX\np3G5jDy2WUfh2ClO/jKM02lkx74NGId6OXoiSTaextdmoFKus3PfIK8eCdM34EGl0eLr9mI3q2g2\ntBx8biO5skKfUeTkkTfZuaeLqgilTJ70QoRqNo9Rb6KOCr1WRZtbT2fQRDGVRhMdx9DnxVJPICha\nmg4TOosFRVHo3thFz14nzg2bcXnt6HQalGaTYjRKOZFAYzBga29H0OtRC8KKrvHFWIzFd99FrFSo\nViWKySz1YnHNKmTf18aIRqNmYMDFwMCtlRJ6PCYcXieTc2VsHe2gVuNyGbFYtCuaIMlyE5NJSzxe\nRq+X2bTJw/Cwh1o+T/j4cUqxGHq7HYveSXpqEptZjcGgJZsqEP35UWybHkUuQ6mqcPSNCXb0gjEz\nw//P3nvGSHbeZ76/OnUq5xw7VefcM8MJPYHkcGaYRImStbIsy1rJlrW+Nu4H+9PC/mLAhgFf4AIX\nuGvsDYvFtbUrrS050AyimIfDiZzUcTpWd1dXzjmn+6GpkShRwVqRQ0t+gP5QB3X6PXhPnfM+7z88\nj+ByEfAXyGSqqPtHiEbb7O/n6O014nGqKEcTLN8J0G53SETyDM4N0XCNo9cJFJQKvI+4YCBLPlui\nSQ3v0cOopHUmbVUi4TyRW2GO/9Zn8Hh1ZG/eoW/Iwc6125TLLbrdDqZSDrtDz8abl5l65jwydQ/Z\nVIHWyhYaixFFK49R2UTaLdHZX8Uy28/d9QrbdzdpZpOMjNroM4uEb96k2+1y7NgUDoeWSKSITidn\nYMD0gXotHzXarRapSIq3X9tFrdfgduvYvLZAai9Mb68Ri02NVdtl8bVrlMyjtFod3G79+wjH/n6O\nW7eiFIsHDsdjY1ampmxsbmZYW0tSKDTQ6RRMTtpYWUng67WgpYTJrKLTqCPXqhG0MnQq6HWK1Dbz\nSEURSTWPWaOh41IgyYU5c3qG3j4THamcseMTtBotJLIEXn2dd69E8W/E0CqhXS5gtOg498k5wrdf\nZu6zn0RqcbO2lmRi7hAOiQSdy0Vma4vqzjrKdpHE8jKmmSO4rTKGvHKq2SKHp0z4FzbJrcRQTj6N\nRmeg2BxgdzeDFDUzngkk74VyNRoZTqeWQuH9OXm3W/dzuTj/smNpaYnZ2dkPnSCcPXsWQRB44403\nOH/+/Ic61scZzeaB99H2dppWq0tPj56ZGcePNXwUBAmlUoPV1eR77b9qtIou6aWb2HVtVEMmqtUG\nS28vMSwaWbgRxu7Qk6+JdJGwsRbnNz8/wcJqht/+7TlWluKk0yV8/TosQpFCcBNDTssnvnASudCh\nKMgwyWt4XBqW90O0s3mkCgVjvR5cuiaKcgK5UCZaTNMtq3DPTrJ/+QpKqYl2vY7v/Hm8D/2o11di\nZYXk2hqCXI5CpzuQVigWUer1WMfGsAwPIxEEStEohXSe/f0ChUIdQQK2RBnnoQSWfyMjDxZ2u4YT\nJ7zE4yXa7S5Go5LZWQflchOZTEAQDgpjh4bMtFpdNBo5KpXI6dN99PToCb5ziXzgQGa902hQ2l9F\nJzZQm80YVG2k7TI7a3uM9Q2QWE3cFwXTJKT49AX8l64RykpJ5DoojPfoPfc4m4EGOmWHo0fsrAW7\nlMoNJg4PIZEp2NnJMjzVQy5TJZdPk6vriCahmmvSrLURw3Xm+qsUtrcw9/XSO+NkasKKRBDItNtY\nLRpyFjU2m5pOu40oaeNf3CKbLjMm07L3xitE7m0yMDuK0mTEO32EZldGKhinKyq4dWWHaEmBkAzR\nrte4U2qifWwUt0tKIRzGNjHB2Jj1A9thHxTqhQLBa9fI1BT4ry6DTMmhc4cp7WooJpQIcjmTc73U\nUzFi8Rzmk73EUy3y+SBqtQyXS0exWOfatRDNZgedTkG322V/P3/fo+IH0xaFQp2nznkp+jco+bd4\n5nOHeffaPtlQmKHDQygMJu5u1JA0B+h9fBxFcgPJ4gJakxWJUYHrrI9ytUU5W0DRLDA47KGSLyCq\nRIL+e9BuEQ0WEGlRzJQJ7OWQd5vc+dbzDD/1OI4jpygk0qRXt5GWUxSCQQQxyiPnzrOVVVNqg8+r\nwK5pcevGJZQGAyOHRoj4g2QjMZSPXODqP9+lkMwhVVTZC99AojtoI5ZIJMzOOqhUmiSTB8XiTqeW\n6el/Waj4VwXLy8tMT09/6ONIJJL7bb6/ymRkczPNrVuR+yn1tbUUnU6X06d7f4QQtlodtrbStFqd\n91S2BarVFg5Nm3ff9dPr1jI+YWVnI8bueobYhp+x8X6WV9O88OIWs4e8JMNJulIZR+Z9DHjkdItS\nShYFBmkG/2tvImnV2Ljix9TXS/9j51ArZTQSYR4/34deKyUeLtDrs3D+rBerrIxK2iRw9y7Rm9dI\nXq9h7u9j5nOfQSqXUctmye7vE1tcRCKVonO5aFar1HI5qtksrXqd7Noa1XQaqUyGbWKCSjJJMJ1G\nEEXMg4N0u1329vKkU5X78xAKFchka3xUVX2NUolOu41Cr/+pJP1XiowADA2Z+fznJ7l7N0qz2aFY\nbNBotBkaMrO0lOC559axWFRMTNiw2dQ0mx0EQUK1UKIUiyHIZKgtFmQaDc1qlbEhA9VqldT6BsgU\nCA2BeqmMqFBSSSbJB4OMPPkI8Vf/gUoiSaeqwKq3EIjn4OYCobyBIw+5WFmOo7a5+Np/fJblpQj/\n/A8rSCVw/jMKZofVKO1Wvv31a1TiccxWLdaBHoK3F2iMH8U91kKtEtDo1YgqFTK1GqXRSC2XwzEx\nyvr1ZfK5KvbZXobG1DiGBxDaDdQOF2MOK3VDD1ev79LaXGT0xCyOcT21RpdYNIdloJ9c+qAauxSL\ncfutKqpJEa3DTrf9oyH8B43U+jr5QACJbQBRJmXXH0Vv8TPeL+LQuXDaVbQTeySzBdQOB21EoEWt\n1iISOagbymarCIKETqfLzk4ao1GF16vH789QLNYRReF+iiK6n8YhZklu7KFr5mktvY2PNoozU4Sz\nDXb3Q0hkCtZXY7RaLR4728fRU4/QSkVpO4col2pU9zYobG+ikXeRqnM8fGqEVrmC0KjQbbRRq6S0\n6m0GjkzhnR6hpjhHsSlH63DT3LhNPp1Fa9Yhs/pQ2Z0gU7C6lUawqlHVszRSMdq9HlyHDxPZSyI0\nQOnup+ehOS6/ukhqL0S72aTdaFCQSFi6NcHEoX4UioPiwMcf9xENpGiUihh1IkpJA1A90Pv8ccTy\n8jIXLlz4SMb64he/yJ/8yZ+wvb3N0L+wu+KXAd1ul+3tzP0mA7NZRavVIRIpsrubY2DAeH/xi8dL\nbGykePHFTeLxMqFQgUSixMSEDe1JK+OTLmqFEvVqA5lCjlytQm0xUxPVLC+t4HAb0Zq06I0qEukW\nxVyVF68vMXVogD6blI3vXKYeDeD0eZDqfOTiWaIbOwwNTmCyG8lsLPLYmJ7mlAV5u4ahvM/WUpip\nx09S3vcz+cjRA1VUqUglX8Q1O0tqJ0xhf59Wrcb+lSvYJiZIrqzQKJeRKhTk9/Zo1+skVlZoVSoI\noojn2DGqmQyZ7W3Mg4OIJgcdUQF8n4xYvE4SJZEP2/+5Va+TWF4m4/fTbbfRuly4Dh/+ief8ypER\nAK/XgCBI8PuzaLUKensNVKsNrlwJ0Wi02d7Osr2dZWrKzsiIBUGQvfLO2wAAIABJREFUIFPKkdtc\n5IsS9kJ5VGIet8NOPXGRZrGIyayiXixz6MknuL20ByY3jUqN/lE3KirsvvkWCpOFTF5KS8zQNzOD\nqVfPEV8PlVSQYKFNtiwlly6hVUl5+LidoalelPUUqy+tceJzT1GrtwnspKjVW9hnZrDPHabcVVKM\nNxBkSrRzQ4TuLOIYHcJz7Bh7l69SSVY49Ou/hlqnIB9L0iyVqdZaiEqR9Poq7vPPcO1iiNB6lFYb\nqoKWgQEzR04MkNxoIZHK0NgdxBcXEDs1PCOTZMUWpbyAOZLCNdT7oG/nfXxPqRZA1S7gG3GwtZHE\nfy+E6+wwuVtX0NXVZLNV7C4DtvEJwoXv6xN8j7iLooBUKtBsNBkwN4mub9BsGFGZXYRCJYrFBm63\nDpNJiUreQSZABxHL1BwF/xqdnXUUvhGkbaDT5sXntmlJRCTNGiPjTsx2N0anG+9wD7Jals3oFjIa\nbC2FqRUK+PIxRHsPntFetq8vYXWZmDs5Sy2boR3coCo1YPdaWLl0C7ndi1Kup7gXQ9MukA+FMJ77\nLMlyA0HWYeeNy+RDEZrKZxl76Dyp7ZeI+DP0Hz2E3Owgmzl4WXxP6l2Qy6lW6tTr7fvt8cX9ANnr\n12iWy+QApclE/yOPoLH/W4TkB7GyssIf/dEffSRjqdVqfvd3f5e/+qu/+kAPr18FKBRStFo5er2c\n27dj+P0Z5HIpuVyN06d78PnM75GTLLlcnVarQ7FYJ5Op0elAsdhAYTShbPUjdLe4dTuGQSugtZpR\negeoR9r0DdoplttsrCfxDVm5fDWEzSKnmytz859fR90tI43uIMgVyLQ6FFotbWMv+aaM6H6KyfkJ\ndmRtavEwNjOolDqKsRh6vQKpVIbG7WHx6/8N97ETuM89TTzTJHQ7ikrtYPRzs4hKGdndXUSVilou\nh9bjIbezQykeR+d203v6NOEbNyiEQnhPnAA4UHAOF0jkBAYefxJHwE98awet3YZ+aJxS/cO3Z8hs\nbxO9e/e+nUZma+u+4vSPw4MkIy7gJWAc0AA/+Up/wXC79bjdByZfzWabf/7nDVQqkclJO41Gm06n\ng8ulw2hUUK228O8WWEvoWL+xSi6ZI19sMjBk4+nf/Brpy6+i0GnptNuonAZOOXsoCTr0FgNmsiRv\nXMI2MU61UMaqUpArwcC4l1Y9ycar22xupNDq5IyfPUlekLOyHOWLXxgn8M7bbAbT7C1v09NvwWKU\nURrwYveaiW3uUC5UmBufRHd4mkBRzZU7OY7MWmjduYPe5UI5PIegzODrMbP0wiusXN0kuh2iW68y\nfmKCY7/xBW68tU5HpsI0fYhKQ0JNoSZZkWMcGMDdKBEMFVFr1Cg1Slwjo6xu5KiEAih0WvayCp79\nihWr9cHXiQBIBAG5Vks1naaezTA75EL+a7MEwmXU3j6e/H0PSf8uvUoRq6+f9ahA4z3PGZVKvP97\nsNk0KBQCqkqM5/7L81hNMhZfb+AbcTJ8+DjvZg9E8eaPO9EX9rn2NzdJB6MUBs24h7wYvR5i715D\nprPjMh/kbwWpjOOnBwkmmqz/4xZzc04W1pZxiVkGdDJie3EMdhMKKay8fJGBC+d59NwoKqVA36CT\n5RdfxWFVci+4T7MDzk8/Srhm5PY3b9OtlfBapZx5coaZz53m1mYL0e7F7DJTHPAiUyoo1ETiBSkd\n+yBKpYLdpg1nrInb56SYztJptZDK5aisNjw+FzrdQSFvq14ntrT0Pv+hWjZLYnWVgX8jI/fRbDbZ\n3NxkYmLiIxvzD/7gD5idneXP/uzP0Ot/NvflXxYUCnWUSpFisY5MJtBstqjXWzidWoxGJel0lZ2d\nHRYXYyQSFfr6DLRaXe7ciVGpHGgMpVIVnnlmhJrKy+AJB7H6CjqnntGJEf7p9RiHD7kZnvKwt5vF\n7dJRrrRRyqvkkxn6HVpuv7rIyENjnPz0M4SuvsPit59DIojIzFYmnn0G/2aSfCLD2JyPbFRHZnmB\nlWvXkSjUNEQt7WIWjUGL1uPF/eSneeG/v0MsEMfQP0A1V+ST/8uz+IYs7Fay9HSt2EbNVPY22Xnt\nNdKbm+g9HkSVCu/8POV4nC6gMFsIlA3sveqn0Wizv5+nt9fN8IVx0rkm4VyT01Mfrl1Dt9sls739\nfvtuoBSN/sTzHqSDVQZ4jJ/BHO/DhigKWK0qDAYFUqmESqWBRiOnWm3wwgsbpNMVQvtZ/MES7okh\nVFYHhWyJV/7xNpcu7hJumFEaTZTjceKRAst3A+wEStxaSJNtKAmGSgw89SnMvR469RqeIQ8GrZRG\nuUI8VgRBIB5IEF1aZtinQyJAt5hl9+46HQSsThPJ9U0G7BIOnRlHKWmglLaYmXWT2t1ja2ELURR4\n50qQb/6PVS4t1MjWZGTDMRKJGploksuvr4FMiWukH/NAP4GNIK2uFLleR0uuZWMrRyzTYT9cJZSR\nkMtW8YhJjk1pcbgNHD7/EFXU0KiiNBiQCFLisQLr66mfOr8fFSQSCdbxcUSVCrpdGokIveocZx8b\nolKHq6s1JL1TzD5zDu/kEA6HBoNBgcej4+GH+3A6D4q6ZDIpbruSnRsLtOoNTCYVuVydnc0Y6nKY\nuVkboihh1CulEQ8TChWRak0YLHruPff8QetfNkl2d4f8+iJzR3poNjuoNHJWFmPUSlUy+xEKqQJ+\nf46qoEdPiVIqSz5bJFeoIeisZG5f5sgAiLkgDrOMRLLK4lKMZLbFXqhCuiSBTgeFSk5DIieWl1KQ\nWllcTvLc3y/x3HMbjJ07xZHPPE6u3GZxJUu0osLQP4B/O8PVO1kOPzzJ7NnDWAcHsA75mH70IY6f\nGbof4m5WKjR/SAYeoJpO0261fuT4ryo2Nzfp6elBrf7oiHlPTw/nzp3jG9/4xkc25scB+XyNt97a\nZW0tRTRa4pvfXKJQaDA5aWN83EokUuDv//4eb7yxi9msQi4XcDk16NQSxsYstFodlEopHo+Ovb08\nNqeBeNNAWjfE6xsqXrmSobfHiMWq5ty5QdweA7FEBUEq4cR8D9lMBZVWycipo+znFJS7SgJrQdpy\nLSqjFrPHTiWVRqxlSGaaRN+9TnprkzvPvUJoM8T6pZt0SnkapRLtaoWRp58kngel2cL042fom/Ch\ntFp582KApY0CK6sZXvj6RfZDRbKRGMaBAcyjo8h1OiTvuaR75+cPOuIGptiNNmk2O0gkElwuLeFw\nkWrjQA5jft7LwMC/vOMxHwyye/Ei26+8Qmp9ndYHGId+DxKJ5H4R/PuO/xRV4gcZGam/9/fAIZFI\n0GrlvPbaDsVig3C4gFotMjXlYHJQA6F7yEyjlNIF7i2XKeUqOH392D1WcqkiiVic8SMnMZ9yE85I\ncRgkvHMtwX4gQK3Uw3hvP7feXmX26BF6Hn6UrtZMPhRjbSWCu8dF6k4QmVyklknRjAeZm3PTKqRR\nKKTo9Er6+ocohcOU717jC//bf8R/p0MxmiB27waFSh3zqfO88/oanbaCoREzOoPA+l6NwVEnlWiK\n6H4az+w4lYYU/70QDqeXsWNztJAy99hhbn5jm4ZERTqSx+E2YlB2WLvtx0aCPneUiSOHqLT0bC5d\nofO9cL4oRW21Eo+X3iez/qBh7O1Feu4cuUCAdrOJzOIkUlaia1TR6RTodArkcilGo4qzZweoVlso\nFNIf0aYxagWk3RZWqxrle0J6lUqLSCCJ2yfjoYfciJ0G168FKOUaNBot4ns1NCYjkm4bi12PqiUj\nLxEYcyjY8isP3DgVEuwOLWpVG2k1h8trwtxrpRiwsH/1Duq5XiY+8RSx5RVym+vU83lKHSUbqxEy\nhTa1jpR8qcvGRgpRrUFjNlAvlxk8PkmipeXSzTQKrZazT9oJxupYrWpuL/spBvapFCrMPvYQRqed\nT/w7K4l0DfNAD5891E8yUUSQyXH1Wu+LRQHI1GpkWi3NSuV986OyWJCKv5JZ3g/ER1W8+sP46le/\nyp/+6Z/y+7//+x/52A8KwWCeRKJykEpttrFYNGxvZzh1aoaXXtqiVmuTSJTpdrt0Ol3OHlIQu/U2\nzmqVx8dMzIwMc3u1yMyMg1qthShKeP75TXw+E4uLccbGrOwF8mSyVU6d6kUUBSYn7UxO2viHby9T\nTOZ4+OwgwaxAPJrn7qVlCh0tznEPJredbX+O6q0IZ37rMCqzEXm2gNJtxjPuo10p0ZUIaO02NEYt\nlUIJ79gEyaaLcCVI6m4eT7+D6QunufnOJp0ulGIxTCYl0lKawNWbyKkjUyrRejx0Gg30PT2MfOpT\niAoFe6EKrfb3Nw9yuYjXa8Dh0HLokPPnctDO7e+z99Zb91O5+f39A2PQY8d+7DnW0VEqiQSdH9iw\nGH6KhcGv/Nuk1Wqzt5fjO9/Z5vLlfYrFBlarCodDS73aQFrcot6WsBuu8cLza1QrDXRmA6H9Oicf\nsuF0S6mbh4kJbu4uJtncSOIbcTJ/dpjWi+9y/eIa01+ZRLq6jv/mKspqgolf/zyO4R6m9sM0pQoG\nR53UCgUkjTLFfIW+ATUuu4kj8wOUm3IkopSKxU3vmB5JvcSN//evaTWaCFIBqcFCeSvG0Gg/x6Z1\n5JbepbQWRebzIfZeYHUlwqPHnYSSO1y7uIZGbBLeiZLO9DD35ClatTrzj44hKlU0ml1senBZpET3\n48ydtiCpZkivruB5+DEcvh5qtT2kcjlapxOVyYTZrCKbrSKRSDCZPh5FjTq3G53bTbfb5eLFPba2\nvu8uG4uVkEgkPPxwHxKJBLX6g1tUPf1Wpg73UQgFkXQb9PfryWbrWPp62NopUijUGfVY0BlUlFJZ\ntBo5pVwGSbGKQqslubqMY3ISeVfOzKkeKi05FquKbNpCq1QimM5z4pCZZmCVVEuGxarn4S8+RR0F\n1hEfb/+XbzL58BEqsQi+Zz7LxZdXyOdr2LxO6rUGngEXdzdrdBVa5g4PsrJVJJKvY92vUSuVGJnt\n48vPOtl44TnEbIlH50fRDY1yZzXPc89v4HTqefiRXqxWDXqTGr3tg0O3okKBc3aW4NWr91M1KrMZ\n2+Tk/e90Wi2yOzsHoVmJBPPQECaf72Ot9viLxvLyMlNTUx/5uBcuXOB3fud3WFtbY3x8/CMf/0Gg\nUDjYlddqLRKJMnL5gQAjSNjby2EwKHE6NUQiRXpNDdZfuUJoL4XXq0ciyXB4VsrYzDR3F1P09Bh4\n441d4ODdcOSIi2q1hU4n59TJXna2UxQyJdaWw0QjBWbnPCTCShpNkFsc2FodlGaBcLGGtu1g8Z0w\nxVwZk1XHdqjBkMPCbjxGdiGCUuZEEBLoxDqZSIq6VEv/mccptGBhIc7WegxBriR1J0SxreChk2Mk\nd/eJ+UMc/dIj7N1ZAUGkVckj12holsvYJifpmZ8n5/eTCwRomvpoFnKIuu8X8EokB3YoPw8RAUhv\nbt4nIgB0u2S3t7GOjqI0fLCul8nno9tuH5zbbGIaGMAyNvYTx/lYk5E//MM/xGg8CCmNjY1x4sQJ\n+vv7Adjb2wP4n/4slZpIJssolSUeecSA399lczNDs5nGqtWQuxfHc+wEb1xZYGxcwepym3ymxOC4\nGrlZxDncS6YIb715l8BuhtW7eW7dCPHwYzaGZq3EghliiSq64ycwmVW4OkX8V25gOHWKll5BO99k\noF9HS2XEOjZCO9eiGvKTs/tQjw2Suemnki/S89AQ1uFBEqEkaqeLbCmDrceCx2IlYzbhmVCw9vpL\nRC8v0m63UYWjVGoZTs49RSzdQDCITB23U8t0kKsUOMas7EQzjIyPUN0OYnVJMBrVNCJZNm8HeegR\nD9V2CRkHi008FWPosAPBYKNWa9Nopul2c4Dlvd1ICpdLy/nzR1AqxZ/7fvwiUSo17tuK/yCi0SLV\navO+VkajVKKWP9AAUFsstBsNIjdvMnpkiEY6zt7qLuMjTgx9A9A7SWKnwtxcL3c30xy6cIL+vjUa\n+TxauR6zY5ZqOolUFKkXCqi9LurVJuZmmF7bMM0JE9/+rwt86ulBtl57E6ddRbYNBquRSEpKyTiI\nPFrHPjlNoyNl+jOfRtE3wqO//Swb11cpFusMDHnpm+gn3s6j0KkwDZqJLq5itusIhTIMDlpJ+AOE\nvSUygSB7m1HahTQ+k5nnvrVGS5BTq7XIxZPYbBrOXRgmna5QqTRRKmXYbO93XzYNDCDX6aimUkgE\nAa3TieIHahSS6+uEb9y4311VjEToNJvYPsL6iQeNlZUVvvSlL33k40qlUr70pS/xN3/zN/zlX/7l\nRz7+g8CBIvSB8rFEcqAdMj1tx2xWMTpqobfXiFQqYLOpkZYTmIf7MY6M43GpyYeibC9u49b14bCr\nkcuE++Smr8/AyZO91OstwuE8l797h2SyTKPcZXbGickoZ3DIxJHDDvp7NMRjBfbrTroWFUc+fYHF\ny6u02x0MFgMT505QU9l49fVdbEKDZKjIeL+DbCZPC5FmJYvZYifZMVGVqDC5MoyfnScTzZCLRCnl\nq/QNOnjpH59DpVORCwbJBSKc+cTD5Fbv0mk2EUQRx8wMhWCQ3HvvT3kHXFolkWIeud74PguSnxc/\nHBWFgzWh/RNSNYJUinVsDPPwMN1u92eKon5cyMgHxvh/UpX49xaxn/ezRmNjfz9HNhVnZztBLivn\nxZf26e83cvSoG78/w68/1UMoESaTqZCJtSmVGsxM2RAUKhodAY3ShEKtoJqqEt6pU6so0dtklEp1\nlhbK2M1WLjx7iHqzyaWXd+h1a1DVExyem8ZqMNPzud8kuJOgkC6hpEMl3yAdiDJ85BhL9zLorW7c\n50Yx60UUWjV6rQz/mxcZf2weoZondW+VRrHAQ58eoxoJk3x3lXyhgQQwFMs0N7bwnDlPU2ai1LTS\nVOlpmevUkVLc6zB+2MDf/d0yc4e8JBJmbt5MYVe3GRx1cWTMDakAXQ66J4YmJxkXRUZGSiSTFQSh\nl2Sywu5u7j2VTiPRKGxvp5macvxP35+fF8VinWDwQFjOZFJit2vodLooFCLN5sE9VKlk7+2kDuSS\no7du0ahUkKlUGPr60DgclNNpBLmK4595jNkLNbrtJo7pSQJJMLtrvPrqDuVyg7bFjtQpR+eto7dq\nGZryEPvut7GOjSHXaFB4HCy8/hZ6nY5KoURyO8y//+oJLEKOjl1JJpFF0lSisZrRq2BozklB0NI2\ne1G69CzudigsL6JyD6Kes+DSy4jnBf76b9f59V+fJmZWoFbL8A1aKVeatLoyZHKR4FKIzhkzDoeG\n3W0BtUHL7e9cpa/HSyTVoVXIUapJWL2XxuUxcOdOjGq1hUolMjZm5dAh1/s8njRWKxrrj+rJtOp1\n0hsb72vz7rbbpNbXMQ0NIcrlP3LOLyMeVJoG4Mtf/jIXLlzgL/7iL5D+kkejGpUKHqeS6Wk76+tp\n7HYNpVKd8XEbgiBhfr6HVKpKNlthfr4XfVfH5e8uEQmGUShkTB32cvrCNHKnktArG8S6GkSp4n6U\ndGMjiVIp4rKruLge4PHfeJhvf3uVcrGC063lnUt7IEiZP+Fh4tAA4fAyLz6/xtlHexi+cI5uo4bK\nZGIvCXv3kmQyFTxHzMgUCe5c38HcN4B31oNBbHDz0j36jDlW9tK0qiWKqSK+6T6k43aK0RgaeRvX\n+AjFTB65Wo1GLVLa36P39OkD3Q5BwNDbS+jq1e/PTzbNsNXK4LgHiemgEN3l0qFU/vxLvbGvj3Is\n9r5jSrMZpcn0U8/9l0RHHyQZEYHvArPAK8CfAO9+FANns1Vu3AhhkuRZefEy/o0oLp+H//Bb43z9\n7wP09xt45JE+nD43lo6PzWiXh455eefNbTLRNKJGRwcJhw+NYu1EWA4kKKfSFNIFjE4PolyF3W3E\n7jIw0G/k//vfX8BsVFCKRSm222wm5Ez/2iTPf+Ma4XARmdHEcI8Kl03HxNRRotESerMOlc3Bu/ey\nFApZHj7Tx7BJT0PnJLiwSl+PHoXRTK1apezfRK1ToRLb2J1aVAoRrVqgUcxDrYDDZAFByu5+iVis\nhLRRRK+Vo1Yfxu3SceXKPmq1jE99apSRYRMWIU89sE5LFFGZzXiOHr3PbB0OLSYN5LJltrdrtNsH\nTVAajQyVUiSVqn4Ut/ADUak0uHQpQDhcBEAqldDTo0cQJNy7l8BsVtPfb2Biwo4oSqkVCkRv36Yt\nU1NSmanWWlCBVKDA4o6UUiGPTV9gxKdDJW1SLlRJpeD11/3Uay1mZ2z81//7Gul4AW+/lbFhKYl0\ngCeeeJpK6IDIiSqRvkE7Kxdv89DMKHKjmVtvLTHdJyUSSCFVKFCajJRrQDmNU9eiHVjjkU8cJl+T\n8nf/12t4+ix4hjzkNVquLWfwDRiZP+pAJ29yayuEXienXqlRzpQYGzVjt6swzLrxONQEFwtMTdrR\n6DRISy1sRgOlRol6qYDO5KDZ6hAMFqhWD3K71WqLlZUELpcOr/end2h0Wq335YW/h/Z7du2/CigW\ni8RisQem9zExMYHX6+W1117jySeffCDX8GGjXigQX1qiEA4jlcnoHx7G95SPUrmXcrlBJFJCJhPo\ndqFcbhAI5FGr5cg7VVr1Oi6nlkazzfbtDfrdM/S0S0grWRpI6LQlTIzbqdfbXLwYoNvt8plPj/Bb\n/+t5bl4LcGJGj9pk4JVX1zFbdUzMeAgurVMIannqqUEUCikStRLjgIu713dop4ps75Yw2Q34Bq1U\ny1VKxSrlGgTe3aNabeGVJejWW0TCedpd7YGhpT/H4u0wR4846Os3Y9SJzH/qFHTaDPRo2fynIl2F\nFFF94J+l0OuRKZU/0jLbyKQwGvUMzsz9QubePDxMLZ8nHwjQbbd/ZE34ReFBkpEW8EDkA0OhAspW\nkb0rl9i66yebrRLcinC8WeGZJ47QFuR84fNjNAolpP0jTDrrtO6GeOrTM+wGyxSyJeaPudAXtnn1\n//g/Gf3Sf+CORiC6kaKSyWHy+Tg23c/8MScbK2EGBs3E1raRGDRIdFYqGgehQJ7121uYvG586jxe\nnYTM0l1SlwvItRpszn62w2pW7yVxO1XU6m3uLceI5TSc+Mx5ohffoJDM4vY52VrYZuqxE/SNeSln\nCihkHUq5KtpBH4W2ilwgytyUGblCjnoziVph5dCcnXCkwMZ6ip29AodmrJR3t9jeyWCYH8Z5+DBK\noxGlXn9/d9tqNEgsLZHZ3qaFiF1Q4/GY6MoUtMt5wsv3wGEi1w/GX1Ck41+CSKREJFK8/9loVHL7\ndpRKpUmt1qJUaiCXC8zPH3iH1PN5Wgod1+5kCfn9SAQJo8fGiSbTZLf9ZP1+up0OkUODPDzvYHsx\nTSDRIZWqoOxWefv1NDarBqHdQNJuIBMl3Ly5z9lHe9m58i71TBKVToPa4eTMM8eQUuDwvA+vTeDE\nyX4OPzpFp9VGpVXSyOcILNyjmEjhf+0N0qtODn3pNzh5po+Mf4/QxTcwD43y+NkRxoe0bL31DrE7\nIieODFFrtBme6mFzK0MxW8Lm1HP83HHqS5cxuuxIIjEUYp0TnzjFty5WaNbbKIwWZGolY4M6gpsh\nUOpp1mq063UqCOztZel2u5jNKjSaHx/dkGs06Nxu6vn8+47rvV5kqo9HDdGHjdXVVcbHxx9oVOIr\nX/kKf/3Xf/1LSUa6nQ7hmzepptM0ZVpa3S7ptTWcSiW+4QP5romJDktLcarVFt1ul8OHXWg0Mt54\nI8pEbx+ScgZJuYpM0JOriniS+5w/76NhGSSZa3F7Mc0//tMGI6NWvF49e3s5Rkd8xDcv4nTrMQ25\n6e01Uy1VyITi5PcDtKoVJvqknHQk8J0+TiYUxakqced2hF67gfmzk2gtBl7+26u0pUqarQ4Op4HR\nUQuL/3iNuSdOEVPoGLJKmRrT4raOkco28fabmB2QInaraBol/CsBbq+2mf/cZ8nt7hC6+S5yhQzj\nwABapxOl6aCT83uQCALGn1As2u12aTebdBCQy386BZCr1fSdOUNlYoJuq4XSbP5QIp4flzTNR4p2\nu0MtGaNaKqPXK6jVWkilAplQnNmjAo4hF9e+u8DbLy/QbLSYPTnOqSdmyeSaOPrKdLIJFJlt9lZ2\nqGaydLZv89lPHuN6r4lUrMDMyVG8LgU2q4agyURFMOCaP00uWyWdqyPNtBE1Guz9XsaHNMikcO+d\nO9x4+TquXhs6gxb3cAfHgJJjx71cfnODTruDzarkzKyaUjCEXKPEOneYlkJJrxcygQAzv/ZJ9t+5\nTDWTweAbouexJ/jP//kGfWM9CFoTg0N2PG4N4UCKeKKMQqMmk6mikndRZ7a4/dY9jj89z/XbaSIv\nBZg+PcPMMR/9/Qc/vO8J2ci1WiTNClsvv4wgVyJTyuiojZQEI6n9KJJylrlfexrDh2wY9sMolxvv\na20XBAmbm2kGBkz09Hy/0CoSKWKxqJEqFESzEoLbBw+y0XzQ6pevdGnnv09q9rejVJ84wt69ML0D\ndtQ9JWIbfiZ8AwRyGq5F4jRLDVpVLYcfnWX/1l2Wrq6hUsvQ6+voM1k6opLeRx5Ffe8eNkmZYlzD\nwms3CK0eFH3OPHaCsc98lvDqJkazDrPXRm5lgdzmBusLAaStOrUry3z1P/0JjZAfpc3JpUv77PzD\ndxgYdfLMFx/moUkN/vUKY3M2hFqaQqFOfDuCc9CLZWwM9fg4h6o5zC4LrXKZx875GOlXsfBWAIXF\nRiZVJpOu0AVmJsws3inTaEs4daoHh+PHe1k4Z2dpNxoUIxEA9B4PjgeUsngQWFlZYfIHCnofBD7/\n+c/zx3/8x2SzWUw/Q/j8XxOqmQyVBqxG5QT34kgkEoZGbSjjKSzvkZFotMQrr2zzyit+KpUWer2C\nL395BhDItTTozHpQ16hGQ4gqJTsZJbe/s4RruonF18/i3SiPnRtgbS3F66/v4HBosFg0nP30Ca6+\n46exneK1l+9htuo4fXaYrs5OKpMArQm1KkIjuElueQMHSj7unkTOAAAgAElEQVT9ZA/VepvO/grW\nwYd56jOH2FjcRT7joM8poxLwc+SpUzhPnKLhT9PnVLCxEiK0l2Fg3MtMHyTfvUL45i3kGg2uYydQ\narXEd/ZpJlPILC4MJhXdVovI7dv0zM+TUSiopFIIMhmW4WGMAwMfOJf5YJDdd+8S3I4hN9twTE3i\nGfJgs/1kt3KJRPKBadpfJP7VkZF2u0O53ECpFH8mVvdBsNk0RKUSGvU2PV491WqTTqeLzaZmcNhM\noV7n+W9codPuIEgFVhbDNKVKTp+fQKOV0yHJ+ht36JkaIm3Vk9veQBrc5dHpWZRH+7FM9rK3k+Ta\nZT9Gtx2T28qtazvsrQVRmG1MTrtR1jJMeTuo6gkMQ2MsfSeL2WmGRo3Ebppms8HRHivhPZHN5SAG\no5Ixr0Dy+rtUAtsopV06UiljT15g9+YSxWCAxHWRvvmj2A4fA42exG6Q80+McPVGjNPPTrEbqpBJ\nVyhXO7jcesYn7cTCORRdCaEba4w8NM6tu0lqxQDVaov9UBl/uMEXvjCN06kl6/dDt4uoVLJ79SpK\nakhlItHtINFElaNf+CzBHNxbjmAb2fjIyYjZrEIUBVqtDhLJ9zV3ftjUrVY7SCuoLRaKTdlBxVL3\n4IHrClLqzQZytRaNQ0KzXEaqkCGIcuw6SF6/iH9pl2QkQzm0j75/kJOn+tla3qeSy2NWd9i4HkBQ\n6ygXMrSrFSQ6ECNRoguLbF+5zcmv/Xsuff15tq4voDBZ6YpK3n7hBiq3l3trKYYmjuA9NsvGWgSJ\nT8OIYwx5JYFeI8DOHdLBMJEUPHx0hJFBPRv34vzT19/h/GdPYPVYCS+u8fJ/+u/0jXhw2BxEi1I8\nNiftVJi5mV76ejR0mw0cdiWdZoOxo2O89eYum9sZCvkaR4568W/GmZh2sbbXYGEhxoULgwe2CNUm\nrVYHrVZ+v8hVodczcPYs1UwGJBJUZvPHptX7o8Dq6uoD6aT5QZjNZh5//HG+9a1v8Xu/93sP9Fp+\n0ZBIpazv1li6uXf/2M1kAY3ZyCAHO/1795J0Ot9XUS4UaiwsxHnssX5u3YrQaIi029DX7wCk/MN/\nu4ZaLSOdusNTkyNMTDtYWU1y61YUq1VNPl8nsJ/D7XTj3ysypdcxPOogkW2yvpZEQQ29Qcm7byxz\n9ISXzNYCybs3URv1VEKbdA0O0hUZ6t4I40M6VNtBZAoRpUZHY8hFQ6rFPuLEYFRxbzPP4kaFeqbE\nqTNy9t54i9CVS8Tv3EGh05Ld3eXI177GzvWrGKwmrMM+WoUsAK1KhWalgu/CBWr5PKJc/mMdeUvx\nOKsvvcLty5tUSjWkcgXZSJJc+VGOHO/7sQaDHxX+VZGRaLTI3bux99x1RaanHQwO/nQ1uU6ny95e\nDr8/Q7cLw8NmBmaGiK+s0qxU7vdfe0d7GZzu53/8P2/Rea8WQmezEk21CH1nFb3VyPWbcZ54xMXw\nw8eJLK1gGx9FpENqa5PtS1d46GuTLCzGuPvWAiaPA1bC+MYGUCkGcXuMTM84OTKuIXTnLq29VbLF\nPPV6m+FBI+vFHOGNEKIopZzOUa80mBnTEQq4GfHp6FNnufW3b2PUieTzdUxmFbFbt3AMDdFKhKjk\ncuxcvIznyByuY8cpRSLIpTFOTtkwmpRUtorI5SJPnTajqcXI3PAz7bSgtVtZ3lWh0BvYfWMJq+3g\nx9xuNtjezhAI5HA6tUhl7y3q3S61bBapVIIgCAgSCXq1jGYug1KjppTJk8/+aBfLhw2XS8fUlI31\n9TS12oF+yPS0A7VaRiZTJZutolBIOXXqgCQJUimDcyPshyvUcjm6ajUjEwOUF2KInRyFdBy9Xsn4\n6UM06k1cTg2hS1Ek3Q7ybo16ocCopox5RkM1peKRTx0lFs4RjldRaaw4HQaEchqpKGAfHyMZiqFQ\niIhyGY1WF/f4MPsbQbLxfSx9PaT2QpgsZnKigStvrXLrxSsIShX6Ph9zxydxVjeJrqwid/Sj6MZZ\n+9bf4hzzMWa3gaefTEmCx6Vl6YVX6AoyQv4otYzI2OFh9t+5hEylounMk2jqyQWC5ORFNJIyY//u\n84TidTqAViOjWqpx8aIfb7+FsTEL8k6VwM077IVr7AYryPRGegZszM05MBoPUjESQUD9Ie+cPq5Y\nXV39WBjWfeUrX+HP//zPf+nISFNQEc/8UF2SBKLZA/VsOBBCM5tVjI3ZuHs3SqHQYGMjxYULPvR6\nBclkmU4H5masvPrNi8j0RhRCjZYA+UiYk/P9rN1LMjJixunU4nbrkMtlLCwlUZlMBMJlnv3cDIlE\nlcBOikOzfXSKGWKbe4hiHyp3H4axKplQlO07O8g1MXpPzqPpFtm/e5DSyW4FKYb2kSqV9D/7eaKb\n++T9m8Tu7DHa08PIhVkcmgaXnn8BahXMfV7azRb7V2/gPnYMpUZN8J2LGOxGFHo9jWIRJBJEpRJB\nKkVt/slrYdbvJ7i8RWI7AN0ugkxGqNvGPjtHImH9NzLys6JYrHPlyj6ZTA04aNu8ciX4ns35T25b\n2txMc/Vq8L7bajCY5+zZfp742qeJLCwjadYwuOw4ZmeR6nToTQf/TypK6YgKYuEwvhEHglREoRC5\nuxDlwqOH0CscWM0KhGKCvkceoWHuZzstZT8U58jjx2jmM6C3kkhVcNjUmEwq5DKBzPYm6y++QiWV\nwuU1Ud7YxNLrweXWs3+vi0whYvXasY+NQENkaNCCt9+GshRDa9RQyhcoFhtIZCLpSBLd+Cxyg4lK\nQ0LvM88SzCm4+N003aqXYZ8Os6JKem+flZUix4YFvvEXL+JxanA51Wg0+8jq/fgmByjSRa0SaFZr\niColGpuNQqV1/4E3Dw9TjEZBEJCp1TQrFWR6HTK9AYoplEYDzb0MUlGKoefn86zJ52vs7ubIZKrY\nbGr6+40/80MiigJHj3ro7zdRqzXRaORMTFh59dUdAoEcKpWMiQkbW1sZ1GoZAwMmhkZsROMjRCJF\nul2w2HVceELH2oL8QK/A52brXpC9rRgDPWryhQZOlxaFwo1e3qays8nwsSmefmaUrkFDMVDj+LOP\nsvHaW9TEDjqZgNpmo24aIJdSMva5C9xczLIaEWk3NYyceRTVyl3y0STu4R62dksUCnlktTISmQwa\nVUrBXeTzfZQqbaR9Mxh7XWzcWCYdiiNpN2lq81jlGjpmF5lolUIqT7nSxtujY+70EOsvfYeaQ4dj\ndoblW28z/ZCPfDrHwvI6IyMWVBshrr21gdGkpJiuYnMZ6BlysBus4i3uYlXVSWgNXHp5iUa1jsJo\noFQeo15vcf687+fWL/hlwerq6gNP0wA8/vjjfPWrX2V9fZ2xn6Lp8K8JglTA0OOhWKhRzeYQpFI0\nTgcaiwmJRIIoCrhcOlKpCkajkpERC5lMlf5+I/v7OdrtLtevh+9HwCMlJeaxCVSNNH0zI4TTHURL\ng6eeHmF9PUUsXsHvz1Eo1HniCR+5YptmrcrOTo4u4O01Mjxq5drrMY5+4jQVqci9WINoVIdWq6P/\nlJPVN69xdm6Ixcv3OPPUHJFKi/V8AdRTjE67Uej03Pq7FxA6LfaXwwwU4gRTm3h+42nqxRKtchGp\nVoZMrUaQSpDSQaGVY+71kNnexjs/D8UiGrsdrdP5M81jOZ2mUaneDxl3mk0qqRSdVvO+8/GDxL8a\nMpJOV8lma+87Vqu1iEZLH0hGut0usViJfL7GlStBcqki0m4DQRRRaHXcuRPlk58cxT7so12rIdNo\n7oeWj5weZfmmn3gwRb3RRquVc+zMMN1WA4VCYH09jdCoktrbZ8Bn4+iZYZptCUvLOdK5JhuLEQL/\nP3lvFuTYfV55/u692Pd9SwC5Z1aute8LWdyKorhKdlvulmWpoy33jMPu1kzERMf4aSIc9uM45sER\nE+2wrbEdHssamRJpkRTXWsjal8yq3PcEkNj3HbjAnYcki6JJmrQsm8WZ84REAsh/4n9xce73ne+c\nzSIT037e/uE9TF43x48GMZpUqDs1rGKN6socVq+TSqGGx90mHS8w+cyTiK4QHURGjk3RFHScf2eL\njZ0WuUSOhydFHL1BiuvrKArUi2UsoSO0Wh10Hh/W3mkWd1T87V9cRBa0yK02qWPDTA6bGQw3GNvj\nJD77Hvl0BQmFgQEbSrtFdWOFia8+Tr3ZZXUpRTmTw+S1YTAbMJuN92fU7f39KN0uxViMnqNHKW5v\no7LYKct6nENDSCYrenOTwPQYntEhqtUWjcaugdDnbamdP7913xtkdTVHNFpi/34ftVobjUaF12u8\nn5j78+h0uhQKDdRqEY/nw/6nyaRhcNCOy7XrnfGBUdL8fJpw2IrFouXs2T4SiSrd7u5kycZqAou6\nzcixEW7PZtBY7LsnB40GSZERuh2c2jqhQR9d2Yze5WZ9W+HCq7eR1SaSDj0Tp87i0dUQ5CaZksJr\nr63hcJuY+8k6UreF3uVh6b07RCN5zj21j9BwBntfmPiFC0wcG+fW61sYPD7alQrNWgOTy0FNNcHF\n92Io791Gq+ph5LkhWlsLNPVOWpUSvQ6BOzNZRo5OUkhlcQdd0Kggdlp4BsN0dFZcziLxG9foPXKM\nzLoe7+ggSlfA5zUwEtJAMUVN0nD7wjbBPb3MLM7Q4zczeWoSQa2BepNWqUSjVCaZNLxPGv/pfvP/\nl1EoFCiVSoTDX3xgpEql4pvf/Cbf//73+aM/+qMvejm/NJhMGkbH/dRbAu1mC0EQ0ejU7Bnz3B8/\nHx93sbVVIJGoUKu16euzcfx4iKWlNO22QixWolBoYjSqGRzyUUnG8Q2GefHFZZaXUzz5wgHiiTr7\nDvYgdxSuX48BMDho59KlbRqymnhGpq/PysSkh+s3IuQrAsWGmp/89QydegW/306x0sQx2cvD/+Mo\nstlHeuc22YaOl384Q3ZtHUkSSRdkzvWPUkmksHgcBPs96IQay+/eYP9zj9N/+jiRt99CFAQklUTP\n3gmcw0NU02lso2MIChjcbrRmM5JazeY772ANh3GNjqLS6T71fdQYjdgcRnQGDY3arkeIPeClI+ke\niHyxLw0Z+bQW9Kfdv7CQ4fr1GCaTmtnrG6SjafZOudB069TKJszmAdrtLlqtBukf9dgm9of5rf/2\nHPfubFNtgNLpQqNCdD1Go6ZBlqF/yE2rJXPxVoqaNguiGlFQKMUTGC16rl/bpokWUFhf2MHt1PHC\nM0P83f/2f/G13ziGSiNRz6SwOi00o118U9MYrCb8B/Zi1ikohRR3VluYLDYsRZlWo0Hb0o9tuIZc\nyJOPLxGemsB16DiFtgG73Ua5YmDtVhatw4WcL9MRVUS3C/hcGkYGzPgtbSoOiVW9Bq1WhdWig66a\ndq1CIVdh/NgenhLVXHprhXgkgyq2ztf/06MMDOyW/wRRxDk8jGNwEPnoUSrxONV0mh60lBQjhVyN\ngTENA2M9JFJ15ua2abU6WK06Dh7009Pz2aOiyeRH2zs3buzQbndJJitIkvj+SSb4ER1INlvjxo0d\n0ukakiQwOGhn714fWq3qffJRo1L5qEFPrbarfZAkEYNBw8CAhky6yqUL60RuzVFOZ6nvH2JxPke1\nCRJdmuiZ/so52oktVBUtrWoN0dPLjcsbxPIChwbVmFUFJEMLyenHMTTB/EyEaxd3rZT7Jvq4sRDF\nrBfwGlUcfPYslVwJ2/Agx471cOVanP1nJgh4dLxTk2lW6mjNVtCYUSwe3n1jnYXZKE6jTGVnh1a7\nl8cffYjkyiZ6k0Qnt4PPJjF2YD9ep5r01g42S5t9Zw9iDPWyvV3CbNLQ7toxB3s5+huDODRNBG2T\nZ88FOf+XL2MLh7l8aY5WuQpuEZvDQi6RZSdeQ6dW6BoNuyO7yq4u5/9H0pBPxNzcHOPj44ifkbvx\nb4Xf/M3f5Mknn+QP/uAPvrSeI7lcjVari82mu++PMT3tRa2WWF/PIUkiw8NOhoc/bEs4HAYeeqgX\ntVoimayQzzd48cVFZmYS/MZvTPPIIwOsreUwGFScfWyIcsbJwnyafKHBvkN9lPJ1drbS9A04mZry\n0mp2MZk1vPzyCmNjbnp6zHQ6CqOjDpYXU1x5b4tf+8YUr76+QrHapZ6pkM9UEDQaLD4PtmELt5Zb\n7Dk2wcytCJJWg8XrArmF1mIkkaoTmBgiOruM02dHrzGTFrtkNiP0PXwWh89JemEB18gwlmCIer3N\n6mKKYk1h8itnyUg+jEqU2vsOp4k7d8iOjuIaG0NrtyNXq2QWF9FaLLj27MHs96Oz2Rg4fhC1xcH2\nehKt1UbP4UMMTQYfCPfsLw0ZcbkMuFwG0ukP3eCMRvUnOstVKi3u3k3SbHYQ5Ca9AS0Oi5+WpKbR\nAq9RSzigw2T65PEkSRIZm+phZNxPdCPJlUubXJmt0umIqFUCx073Uap3ee3VZWqVJsE+N6WmCr/f\nBM0KzkAfwUoXp0vP6KCJlY0SzXqTcq6A160jl28x/eyTJK9fpVWt4AgH0GoEzLouA06Z7Nw9FI2O\nPeP96DMiSreL0IJMpoZg9jP9qy/g2ruB2hng1obCeqrFb37rKOl3t6hpujS6aUpVGUQJuS2jN2gR\n9QbWbt5hasTNoQMurDYjlWIVlVriyEMTeCcCbL/2MtWVVY4E+mHEg5o2jTvvkNsXpljfjea2WnUE\nAmYa+SL5dBFRY8QR8BF22qlU2uj1KpLJCtev75IIgHq9wuXLEZ58cvhT3/MP8PPTMB/4BQwNOZCk\nXWHq2lqOnh4zo6O7+gRZ7nLtWoxIpHT/eTMzSUwmDePjHkwmDU6n/mNkxOs1odXuHv71XI7sygr5\nukji3jz1hkw6LzNlsZAupEjGS3g9RpKZGu0hD+GxPiyWEQwOB3//F+/gGdLSY66QvHad69tFGl0N\neouBp7/3LRI5mfDBfdQqdUSjBUVroqVV0VWXidyawe6xYTarMVkMHBw3onU4KSZzfO1bp3jtR9fZ\nidc4dHaSQqGBORDg7FeM2EwiK7dM5PINDL4gjpWbYBzkvZeuEJlb40ZPgP1PnmTk1AGCFpmVVxKo\nGgV8PQ5SmQZdi5dkCW6fv41aUvj6rx+kFtsk4JRw9Dmx3k2hMhioRjaxBIMIgoDWoEdQeWmmStTT\nSdrVGl63Dofj811RdbsKkUiR7e0ioijQ22v7XD4mDzoehEman8fk5CR+v58333yTJ5544otezj8L\nrZbM7dsJVldztNtdLBYtR470EAxa0GpV7NvnY3LSgyDwia1Bl8uIouxWNSKR0v1zRrHYpNtVePTR\nfiwWDZIkMjTeQ77cZWzSSyaWQ2/UUGvu2j5MT3vp7bPw5392B7tDz9pqjvFxF+NjLpYWM2yuZhEB\no82MWq0mmarisDnQim1y6RItRY0lPEBjJsPex4+Q/NE1DC4XeqOW6WN7UDfzaKsxwodH0UoKCxdv\nMHF0jFPPncKkbhO98A6B/XtxT+/F4vNSL9e4+splojs1glN7yLbNXP3by0yNOxiwmEnMzNAsFjF6\nPGycv0BqbgH/gX2Y3G7y6+uUd3YYfPxxbOEwpWiUvv2jDBzfT1elw+Zz4xv2/ttv9ifgS0NGjEYN\np06FuXcvRTpdw2zWMDHhweP5uHK4Wm3dN3HKJfMMDzt5+dUtlha3cVoELFYtgT4vnU73n+x3z82l\nefPFG0hqFT6vAb1BzdSBEO9d3OSVN2NYAn6sShej047fbmRjPY/T48WoaWOqbtNn0aMqxjkz3c9S\nRr9rzTvsIbqwzvBIkOApFbVMDu/BA8iCjlKhQn72NqVoFJXJxPzbi3StfpqGAWqKmVoeXH4n7nEH\n+kCIZF1H526SXr+KV19dpqfXiVZbRmWx49HrqJfKOHx2BibD2ANWwv1u0Aocf/IwpfUVmoUc/vEJ\nDH2jFCMR6oUCq2++g6h6D1lUAyKDZ0+RTRZY227SbHdpygJhc43E9SskI1mM6jZWu4mJpx7FM9SH\n1uZlZ6d8n4h8gHy+QS5X/0wyshsHvvvcZrODViuh16spl3fJhKJAMlm9T0by+TqZzC5BbVWrtOt1\nREliZVnP+LgHSRKZmHADH0zRCGg0AlNTHgDa9Trbs0vEYiUqshZf2Es9O4/T76DWkBkesNGo1DHo\nREasJdZfvkzHI7J4c5l9x4c5dfZRGmiZeeUOO7ECiXgFk9NOJVukuLqMqPhJVwS2ozKpWgGtSU+9\n1qbt9mIcEnEPeBiZHmBtIcL6dpVuM0Wr3UXQ6Pj13/kK1UqTVqNJo9PAI0dJrawja1VMTQZQuXrQ\n6yX0E+MYeodIyHZqxQoGuwm714mhXaCaKOGbnKQjd2gUFDRmDWZvD++9fJ5iIoO9N0SurBA0C6Sq\nMYxNPz1eLZGZeUSrFY3ZTFNjw2DWYhINRLfyOPp6GenV028u0W23ELWfrelZXMxw9Wr0/t6uruY4\nfTp8v+r2ZcWDohf5eXzgOfJlIyNbW0Xu3k3d1y9kMjWuXInw1FPDtFodEokqnU4Xj8f4kdagLHdI\np6s0Gh0OHw5QqbT4yU+WCIWsHDvWcz91OxIpkU5XaTY72Gw6xsZcmN1OrG4nxVITXw+YTCpUEmTT\nVZ766jDpVAWPx0Rvn5U7txP0BCwEQzZWZtfJp0sMDlh559U5BMWEO+DEFDAzOh1C0OrYO+GmXJHx\n9/vJxLIMjrioLd4iMrfM8P5hkjs1PDY7/d95CrVOjbWvn4WXX6MQi6M2W/G5Q9RqbfLZCnXnCB05\nwN1oG31xDaNZT2SnymCPnVomg2t0lJU330ERJXbmVpAFDb7pCZx9QdqFPIWtLXoOH6b39GlKsRhy\nvY7R68XS0/NFbffH8KUhI7A7kvvww300mx00GglR/OQascmkwWhU02p1MFoMrK5kKKZz7N/vw6hu\nI7WqRLeyZDK1T/VPKJfq3Lm2Ti1fIr+TpFSREQ1WOnKXfQf93FssEG0phIJmxqcCtNsdNjYKiBo9\njeQWI4MW1Jl1VueitG5vcugbz6M2WRF8w+yfVlFfvUu11iZ48hTFZIqNK5fo3TtKPZ7E4HJSb3QJ\n9xmJZRtMTvn4/g+36OuzYXWYWFop0h/Q0o1EuPbiBXLFLuG9I+zd9zDPPz/G8eNhZu7E0etVDIYN\nrF69w42flnj6iTBL71zG+tgh9BNjFHcStCQDGquNrs2BTedmtC0SuXKVUjyFIIJvbJTc0iL52Q06\nXRg8vp+Vi7dpFfKYxDrp+WV26i067TYjx/fSc/jQJ2o6RFFAkj67pr93r4+FhTSNhozDoae310q9\n3v7IY2y2D7/8did6BCrJFMWtTRBERJVE0yHSLIfIVeDKlSjJZJVarY3PZ+Lxxwex2/W0ajVSS2tE\nNzPEEzWiiSrJgoDN4iKoU2iWqzQLWV54ZgCn20Tz3nvslHeodgScXhuVbIH6xjyeIyexW1V0FBGT\nzYRcLRMY7EHTrfPwYSuX7qi5cCnKdqTC818bQ1EE0skyokbD6YcGmLk0y/l3tpi/uoDFZeWJXztD\nswZXbqQ5uM+FgIKYibNz+zaNpgIItCtlHvsPISyGLldeeQ2N9Dp7/923GDv52yidNoZWhvr8HFVF\nYejJpzCE+nFlC1y/uMyN8/PIggq6HfKbm6Qy+xkYNFNauINQy7N331kaGRfVpoLaZMNq7FIrlMln\nKoR69FgtOob7DJQXZ6mGvFjf10vU83lq6TQIAkaP536IVrMps7iY+QhBbTY7LCxk6O3958eZP0iY\nm5vjqaee+qKX8RF84xvf4Pd///cpFAr3s72+DIhGSx8TUpbLLSKREjMzCQqF3bA2o1HN8eMhBgbs\n5PN1bt2Kk0hUMBjUdLtdenrMfO97x0gmq3g8Bq5e3UGnE9+PruiyE83jdhmw27X09Tu4dy+Nwajl\n1HEzU5NumrksD58OUCzJIPkI99p45cf32Jpbx6IOcvBoL0fPjFIvVzDoVXz7P58gHi9TztWYPhJm\nbMiKwaDi4vVFxJCeXkuDqK6FSd1icWkViw6sUo1moUB5J8ah06doW3wsL8YgOIbfuesDFJtfZuTk\nIdq5NHatjrwooxIFKpEtKt0OXYeGak8I/4ED1DIZqvkyWrudoYdPU0/Gmf2/Fwgf2ot/YhSNyUQt\nl0NSqfBMTDyQo/dfKjICu14Qn+WzbzRqOHQowNxcGkEwklaJ6A1JTGKdbj6HZLUg6E3vZ6p8HF1Z\nJrW2xc7MPSLXblOr1JEFLe6hfhxOA+2WwrPPjNBstLAaBLbidZLpOuce78cmlUneTeEzCGzNx7BY\ntVgcZnw2uHEzTn4zx9JMiZNnxggPN1l7510WLt3GPz2O0mlTz6ZpZhKsLURptzqMf+URekacPP6E\nil6vxObrrxJZ3GLvgRDjR0Z48leOsZ1okq8oJJJV9BWZnWgRUWlj1GtRCQqrd9Zo1hpkJwysX3yP\ngf17iK/HiK/tMHF0lHikwFs/uUGr2caod7D32W8Qfe3vCe6bQlKr2Lxyi2x+lxCkFxaRs3HUGh2V\n6A6t+m7FohBPUa82SM7MEDx4hsXFDNXqhyTC7zd/LpHUgQN++vps1GptjEYV6+sF7tz5MBfB6zV+\n5AvMbtfT4zOwcn4bQaWiVakgl/JYx7WsvVlmuR0ml++iVktYrRLlYo25uztYNC62L15k4fI9br09\ngyPoZejESSrFHM2qyOPPHINOm1w0wcLlWY49NEp+dRWlWcfkMtNOpEHQQKeFI+Snd7wPRaWlkG8Q\nGu2lnY2Tnb2BXmoTFMz8z787xdJGg421LNW6wlNPDjDs85PaSTN7ZYXEdhG52aRrcPLWW2ucOt3H\nwmyEdj5FsMeMPr1E0GsgmqhjclgYPr6PzViDgmLD8fBzqDotXvyb6+iCGRrFMqJK5NjJSZTkBpde\nvIR9usbCUpF2rYpW6pCrtZFMFmqJOGZVk2axytjXvkZ2eZna9Z/xxOPnMA5P0TF5mLm8wM56kuS9\ne7jHxoh3Ovhcw6SX0jQ8MXQZFT0OSF+9eN+JVWe3EzvFZr8AACAASURBVD59GrPPR7Mp02x+3DL+\nA93OlxkPYmXE6XTy2GOP8YMf/IDvfve7X/Ry/klsbRXI5xtYLFpsNu1H/IFgN212aSlzn4gAVKtt\nZmcTWK1aXnppibfe2qDb3b0IPXEiRCpVZXDQiUol0Gm1ye2k2HcoTCZZIpavoVULtNpd/uT/uMy/\n/+Y+Rkac2K1a+vtMbL17haVrc4yd2s/dpQqHvnKY9aUUDreZc8/uQ2yVmbtwm69++zHMJjWVqszd\nmRgWo8joniEGw0aKhTqzN7I0S2V8fi/JV16lV2ngtYzR6TOglTrUtlbpdDoogorNjTyvvvgmGrub\n9Moa+48P4ZFkrLoy2+ffZuPCJWRrAHfPAAa7k5m5NAabiYnpPrZef5XeM2cwh3rRODYwelwUN1Yo\nRWPUajL1Yj+x69cRRJFiJILJ7cY9PY1rdPQzR4H/rfFFk5H/HTgI3AL+6y/rRUulJmtreba3C1Qq\nLawWLU8+f4Dt+Q0Ejx293U5P2IkkCUQiRfR69f0vynK5SX57m0Yiik7Y/QBIKhVagw53f5B3L67j\n77EzGhAwtss4TE42q22Wlwqkdwo8dURL9NpNZIeEN+imJZfQ2Cw0W23IJxGaNepthYXVKs8+t4fI\nnUWmvnKWTrVMcGqMyuoitWQG3fs5CyCxtpYnE8vSuHWXVqkIgsjWahKvVWH8zFdZez1GW+pw7Xqc\nu7MJTp3o4eobM+RqKo6c6OfAYwe5+cYtJJXIxBOnScWy6Lo17IYuGo3E7TeukFzeQtJoqGh0rHnc\nPPK//Dey0QTbt28hmu1YLCL5fINuR8GkF5G0EsX6hycIi8+LqHRpVSo4rCrOnu1jYSFDodAgGLSw\nZ4/rvkbjs+Bw6HE4dgVV09NanE496XQNo1FDMGjBYvmwMiIIAlOjZlpnBtnYLFDfKTO8LwybM6S6\nQ2ylG2j8fYBCObZDLZPGLAdZL81RjcdotruIGjW5aBLd7Aw94QlW53doZ5PUV2Z46PQoO7kebB4r\ntpOHKC7OUlqah65IPlfFLaspxFN4Dp9kdfN1thNFtPoEcjbO3seOUUlnSMwtEj4GzYqNyGqCTqOB\nTd+Hz6Nnc1PA4vVgzomUyw369gQImpv0Gss4BwVcXj3xeJZxv4f3XpvBHbATPDDGT/9+hnK5xdCJ\ng1jMVvpGe+gaS3RQoWj0GM1qEnkFncrJG393nifsYfKZJontBHsmeoktb6OxWDnwiJ8+nxql1kVt\nMuE/eIj85hbl5bvI2R10B8+RXV5F7w8CUEkk0Pv8ZJIlUtEculSJ7aUl3Pomk74P96WRz5O6exeT\n14vJpMXlMtxvtX0Av9/8uY+JBxHZbJZ6vU4wGPyil/IxfPvb3+YP//APH3gy8sYb63Q6CoIAbreB\nQMB8P1vKatUSDlu4eTNBpdL6SIu3Wm2zvV1kfj7DB9Es+Xydt97aYGLCjVrs4teVqW9HePygEcku\nUcxVSO3kQaUhlS1TKjXJpMtksnWcTj3rq0keOjRCp17B57ew79wJrtxIc+vmDipJxGLTcvz4CPaA\nj/W1NOsrWbKZCk+cG8KrbiK2oty51OHmW7eQTDYEi5u3XltknydM9NU/w2TWUo+soe8NY/R6kVtt\n2noHW+tJivEU+qaMe3yca5fm+ebvPE707/+SwPQEqm4Lq6GDKNUIDA1SrQ0z0m/E3klSczrpdjo4\n9+yh+dKbeB12SqsyersdtU1AJQkUNtYRAI3ZzNbiIq1qlW67TejEiV96vsy/BF/kSg4ARuAM8CfA\nIeDGL+OF5+fTrK/nUakkbDY97XaHaktg9NgkqVQVt9uAXq/iT//0FplMnd5eKydPhujttTE7m4D0\nFp10hIGAhtJgDyv3thndN0Ik1cTvNTNoKXP+T18lHDRyuy1RaoocOnWWe2sNyoqBw4/uJTtzk+JO\nkoOPn6FTrVCJzREW2oxO9VBsikQXN6A7TO9EPytvXySfKrJ58x5ahxOt1Yq2V6TQ0eE8fIqZpMTh\nfS7O/2madKKIqJKwjrtQW52sL8VoFovotEai0RLFbJmV9RIHTo/x+itLLMynOH1imtO/asMdlli4\nMo+nGiE8GSQ86EHXN0xBW6avUgeTnfhajIV37zB9qJeOoEa0OLl+LYrTqSeZrLCTrPPUrx2lVcij\nMRmpl2u4h3oJTI7SbZQwBAZQ6XQEAnoCAQvdrvKp7bTPA7Vaoq/PTl/fp1tcGwxqBjxd3O0yuVqG\nysIczWYT68AQGlWXdq1Ks1ikGNkGBSwWNdmF28j1Oq5AEFuwh1I8QTlfILTfRLDHiLpZoNpqYhFr\n1KxWbt+IMj46QE21jePAYZqFIoZAiJpk5d0fX8L3yFdZbgd5+DsHKc1eQRfay92X30Cq56kUmiwn\nopz45m8QWRE48tQk1UKJH/yflwhMjFEpNwj0WHCFfPToisy/dRm514KWNikUAkeOYR8ZR616HZ3N\nzu07caIrMTwjg8S3Usg2Fem6DvfoOH63luLcLbZuLaNN2hh6ZC9nHhul2VaoKRqkThNFkPjO//pr\nKHIbM0XMVgOyTkDt9BJfWqdm8OCYOoVnIEAnGydkaWB2g+fRfczPRLA7zMiFFL6JPazNxag2BbL1\nMoPPjCORur8vjUKBVrWKXKsxNaRDpbKzublbOfF6TUxOun/h4+JBwAdVkQex5H3u3Dm+/e1vs729\n/UCMHX8aOp3dMoiiQDpd48iRHmw2HbLcpVRqsr5eoFxucu9emmDQQk+PGUEQMJk01Ou7gvnd1+mS\nSlVRFHj+uWHE5BLrN2eRFJlkqoposnHusTP8uKWwE69SKNZ5+tk97Nsf5Pr1HVZX8xw86MfkceI9\neJTNaIGlCxH+8q/nkCQBg0HFnhEHb7+xTrjPxsiQjVSsiEZfRZuYp1jJYugd4upL52nXGnQSKZwj\nUJYNtIdDePdO03fyKD0TI2y8/TbdVhNzIIT71GO88U4UrcWKIEoYnQ40NgeS0YLRbqES2aRRKFBM\nZhk+a8BGngl7EWVjnoK8ezGoqPXIJi97f/UF2uUigtGOomoTGBtFziXoyjKSVns/uDK/vo59eJh6\nNovJ+2CIV+GLJSNHgZ+9f/sN4Di/BDLSbneIRksfuU+tltBqJfbu9e5m0OTqfP/7d0gmq7tlQblF\nI5Xg8H4nzWya0HCQ7bhALbLJuFdiZGACQzBI4q11BvoCbLz5Oj6PDkmjpZAqI6i17AmrCY33067X\n0feP4RQErHYD2fm7xO7Mksy0QaOnprax95knOPP0QVJ3brL6yius313H4PZTS6dR6kWm//1/oC7o\nKWbL5FI59o16aHdVBEeC9Az6sdiNaOQq0c0kDb+XuTffY//zT+DxGFlblsikypw508ueqQoOl4mJ\nfUF2NtJk2l1O/w/fwk2GnUvv0KhWkVU6+u1W+k/30e5KtI6P8u75Vaw+N1lbD+Tq1OsblEoivWEr\njZaCYvXTd+gw4YNTlKI7iEoXsV1D53RiHZ3k7t0k0WgJp9PAUK8BoZqn02yidzoxejy/9JO33uHA\nHAiQXVykuL0N7M7US0KXqSkf83EVxUgZjdGE0aylN2hGUPdSz+dRaSUOnhknnRmgWq5jD3jpMdbY\n+MH3KUYixEcO0LQE6DvwMDlZR++pEzSSO+jdZXZWImgdYHYHyGUqnDzsQSu0GTkyxea7V8jFEnh9\nFrrIoCgUVlf47u9+ldu345z/wVu0Wh3UrgDmUIjaTpTDR3vYubrJYy8cQm8xU20opNcj2B0aFK2R\nyeefQWhV2Zqr0DM1Rq2pQKVCPJbAfypAz2AQMTbH9s0ZOvUailUhc+0ie0+fRAp4kc0KS6gotiVu\nXtmko9Zx6qFBypHbJBeWsUweQDN5irVL68zcrtP92XlG+3X4PXq27t3G5PPzzH98AovTyuK1eba2\nihSyZdQmI616ky4CH6iFBFHE5PezfeEC1XQaQRQJ+vyMPTqNotbjchk+UVv0ZcKD2KL5AGq1mqef\nfpoXX3yR3/u93/uil/O5oCi7U1cnT4bZ2irwxhvrdLsKAwN20ukasVgJi0VLIGBm717f+66ruxOW\niUSFel3mwAEfDl2LKz+8xs5WmqFBO3q9mnq1QtjW5rf+035WVnPUmwJGk4a/+P4dtjaL1OoyBqOa\nyUk3itpAoV6i3mqxHSnTlTv4/Ub6nhwmn6+ztJhDbrbptFpMTAVQGgmsVj3Rewvs3L6L0WHH1t9H\nJRrBtWcMtdXJ2f/yXTbefofo1av49k6j9/golVqUyw1qghnb2BRqQaZdrTBydBJfn5em00pxO4LR\nbkHXlqmlU0xO7EFWR2l3+pGaJcRqFtueKW795A3kZhvX2Dia0YNsvnuLdrKJrtbCtWeSnqNHqSQS\nGNxu5GYTQVEQHpBx9A/wRZIRG7D+/u0i8Ev5VEuSeJ8t/zw0Ggm324BGo2JmJk4yWQV2xVByOsrq\nUhq7ehBVbot6bJvw/nHyEhSW7lFcuYLBoMYV8iNKGnRaNfPzJfrHzfTsm6RnYoSsbGBtLk0+nuZW\nJcUzz41RjsyRXFqlVGpTKtZpVnOE99upxzbJymUcQgFBEHH7bNRKOQzmSXC7SGwmyBZlls5fpVZt\n4t+zxumvP8Sx/Q7u/MM7mBQbvYcmEbUGxKEh1jfKpBJlNAYdo4MmuorC1lqSIyf6OHfWj6rbpNGG\nre0ynT4L3UaFSrGKQa+GWonLf/GXGJxOKrUuvccO8fS/+xXyDS2bm0VMrn5GT1Rp51IE+52YegfI\nYcfY1HD4oROkomky2wmQJAx6iYVLt0jFC1iCIWSdk0vf/xlOfQO9ToVKp8N/8CCef4UTuPt9x8lm\nuUyn1UJntyOqVPSHTQSng8zpKzRLBYIhGzZDh6KisPnWW6h0OgSNBvvIGId+/RlQFOb+/DL1XA6t\n2UwuVSS7muPYiTMYtCq2371NI53EblXTLpcoJrOce+5xomsJbvz9NWq5AifOjqCTy/QOeoltpmi0\nBbQmGxvraVzFKtlUiUpXRzzbYO6vbnDysSme+MYZvFawG45SbOu4enmL2MIaQrNO8LibXCSOyukF\ntY4DXpn5hTQqrRaP20ApmcI76GUgqOXWhXWsPg9aGgTsCoWlOVJWM4OhMI8esqMVu5QbkEvKiIKB\nt386w8lJA422QnI+waWb8/imphBEgVQkSTmn5Zmv76Mnl0SvqzI6YCISybE4l6D9vg5ErjfonRrG\nqJL5oBFjCgSopdO7gtb3UdpYx2C10HPkyC99/78IPGhjvf8YL7zwAn/8x3/8pSEjoihgt++admUy\ntftVk0KhyZEjPbRaHUKh3dRbp9NAsdhgcHB3VNxs1hAKWTh2LEg6niEVL2Iy61jbKnPgkYO0GhJ3\nl8qYAyaMYoupg34uvJfC4zFhseg4fjyIw2Hg3lyGvl4bw2M+AgEzyVSNa9diaFQiOr2at/6feVwu\nIzqlSnQ7h15yc3jASGllk3okgX+kl2YbsktLaK02KvEY2rqDSlKgsL5Gq1wmduMWuVwDUyCAT+4w\nNTzMT/76DiapjtGk5cjJR7AZBYRHHmH2r/4KAQF7bwjH+BSbBR3X5xoUEhkcIR+nn/46ikVPcmUb\n954RXvybawRDNnwHD+H3GekdOo3QrlONx8guLVGORhk8dw5LOIz+F9SMyI0GrWoVjcmE6nNM0n1e\nfJFkpAh8YDRgBQr/+AG/8zu/i0az64y6f/8kp0+fpO/9aPrNzU2AT/x5zx4Xkcg27XYHrdaFJAk4\nHE1SqR0CgSCiKGI215DlLjrBRDqRxuJSkAwyle0GhWIDVX+Jjt3NyHPPYTJp2S7W8adkItEOFpeD\nji2Fc+8Qt66XubqyDAYFjVHPqWNjXPzBHFdn9PQZWkgqiVK+gq7Xj9CUaTebOD1moqk4HacWlV6P\noDfT9YTYUXSUIzLT/UYuvvsusiwRcLnI76R498WX6ZkcxeaxI9RyzF+7Qf+jj6BaW+DQ0RDJap2t\njRyj4z6On+yl28mgrqWY+cFVMqkijiE3HrufN99M8/xXwuR1VjR+CzsvvYRaaSNbDFjCDiorc5h5\ngrsrCQrJPJG8mnRWxZFj4xQlkXsbGlqtJHZHmxs3iiwtyTQaMjZ1hI0rN9BWW6jUEtH1ZfrHe8nG\ns6gcElW7GppNpLt3sYRCJHK5T9y/XxSiSoV3chKd1Up2ZYV2tYqttxdzMMjWhQtYM0sUt7eJ3iyi\nOnuW7PIy7okJJJWKbreLVqfGaFDTabep53JoLBbodnH4QhQTHZKbSfr2SFx8/V1UtKHXtvt/9w3S\nqtZIzi+SjecpRSNclpucODOIwVFDvZPH1xdiO69mdMxDtihTqirEUm22FmNIGg0/+ZsrHDnRRywC\nuUiFn/1slmKxTu+gn8GQjq7BTkIWqFQbjE77yaaKbMaiLC9FUEvwzHMTjA3oMVNgaNBGxSHSSW6T\nmb+LpNGgMppYevMCrVoTmy9MoH+UedyoRRn0HmJdI/4TLlQ1gdqFt6gXi6hMVtJtE9aOlkRJxGoP\nonObEEQRt1Xi2Okh5u8mqNeaONxmTj08xMCon0oiiCCKaM1mti5c+PiHfnsb3/79H+YcfYkxNzfH\n888//0Uv41PxxBNP8K1vfYtMJoPrAc0N+mCUX6USGRqy4/fv+kbtBjHuVktarQ7pdA2NRiQctuB0\n7ur7rFYdjzzSTyJRpVBoUKu1uHw5iqbbIdDnJrqeZPTkQd64EGfuTgTv6BClTpTnnh1mUFSRieeo\nlBoMj7pRFPiTP7mGz2dmYsIDdBkZcTE87GBgwI4oQixWZnzCS63aopAro+k2aHdVNPIZNAY9NpPI\no79ymstv3aNVqaI3atl/ag/N9bvkixYQRURRJLsVJZ8soFGBVpygU0/z+JOjmE0qTFIdq0lmLQGr\n9xqEXvhtjNUYjegmjhOP8Xd/fpFGuYpaqwWDjfm1CvtNehAEBJWaaqXJnRvbHDkzTFivZvPGLPnb\nV+mWs3gmJvAfPEg1k0Gt1yP+AqZ4udVVkrOzu2TEbMa3dy/2T0kI/ufiiyQjl4HfBv4OeBT483/8\ngLNn/zOFQhNBAIfDhM32YX/rgy+xT/p5YMDOU08dYmOjQLvdpb/f9v4EhkI6XcNi0eL3h1haymKy\ndOl0OoR6woSsOlacfioNNSvrIsGJILLDjmLVE7Q1SWQS9I9osI8eRzKZWVhooNbqkEQTWzsNSqUm\nDkeRA2cPUCuWCAwGgTo7kTzJtSRKt4v2wASG0ABBgwWnqoLp+ee4+dI7lOcjyKoWrj17KDVFNu9m\nkBtNmv4W+ydt1Ja3sB8/Rvf4WTrNFupkHE2xTLHYwnNkgKWbHQpZifLyOtGVKF/7lUk23lukkMix\nspRGvrrBua8f5/DBCW7eznBszzRWocC9nTyVYgWXPoNc6yJKkF6PoAjD2M0iPodI/7CWUirLjXdX\n8E9PEujzoFY7SKdbVKv13auZzRy1WIl0tc3wkAOppVCZncMWHEZuFPFpd0eo2/U67Wr1n9y/fwms\noRDWUAhFUWjX65R3dqil02jMZvQOB0q3i1yv05VlLMEgrXKZdqGwK7icn0dxhDAdfQJrvUg7n6TU\nVNMj1Qn1O5AUeXd+36VldTWPVifRNRWplWrEIzn6e01s5ESqySSV1ijeiWnWo02yFRHFaMO6Z5pG\nV9gdPVY0aIwGul0YHu+hUu9y8XKCh04HqTVXUWk0ZIpdTj4xzI9eWkclqdCKLebX63icGgYHbIgC\ntGpVohtJYn0GStkKJtGAVswRX12ikkgROnmCtqLizo9fxdkbIr1UwjCf4NS3XmB2pcbCSo50ps7r\nC6s89OwxZI2JSqmB1eZFQaLRkOl2YWsjj8ZgwOByYXC5GCzfxm/zIisSVoeBnrEe9HY7BqcTgFat\nhvgJ4jhJq33gysO/CBRFYXZ2lunp6S96KZ8KvV7PY489xksvvcR3vvOdL3o5n4hz54Yol5sYjZqP\nRD309Fjw+UzE4xUURaFabdHXZ0OjkVAU5X6r9wP3ZEVR2FxJ0qhUiWTqPH7mKCrDHDvpFgtzCUYO\n7aGhtiHmGkTjuxduAZeKZY2C02ng/PlNfD4LWq3EzEwClUpEo1GztJRheMjBof0uRvv0zN+pUutY\n2Ikp1FMxXB4jtj1BBFHANJ4nde8uh6bs6B/dg8liIDlzm7W5OcJTw/gPHCT63nu0qy2a1RoKoNLp\nKUTibMyuMRJUoeoJcn22SMOQ4+arl+m0mpx97jAHw15iqzFarQ6tpkyrVELvdFI2mxG0vQzuH6ZU\nruL2W0nHcgS9Olau3sGua9GsN9Cp1eQ3NvDt34/caNDI5z+yD4qiwGe0biqpFJHLl5HrdQDkep3o\n5ctoLZb7n/t/CT4vGRkDAsBV4Of9up8EXv0F//ZtoAFceP/2x/QiH4TiwS4rnZ/PcOLER2Pp2+0O\nKpX4ER2CIAiEwzbC4Q9HQJtNmcuXo6yv53E69UxO7lr80mlzYtqI19iiUKgTzynM3lwhfGCK5eQG\niiwz6m6gbaQx5aqoHD6Kejfm8QOY2zG0XYmNeznKxQa1apN7M3F6nhzEJraROhUwGJl65hzSu3ex\n+V2EzjxEW9TSSWyyuXoXg7eH0KlTDD3tYLuoZTHSxZ1K4LAbqJR3DxK720I4OEbX5ObyazeJr27j\n8Lt4dN8xQoddvPH6Grdvx3d7o/kMBoOPSz+7y9HxAG//9B65TAUEkbdfmeHZ/2kauWsHU4NOvY5k\nttLNV1Bb7MQjWQxWM2M6E8XlCIntFI8+e5CAscpiR+Dck6OEpvvJ1iSSySq53O5BKUkijXIJjUai\nUmmhoCC3uwgGFWqNgFHzYSlPpdOhNvzr5iBUEgmSs7M0SiXUBgP1bBa9w4E1FMLk92PyeGhVKtQy\nGQobG6h0OrqCip1EnfdeukQxlUejhqljkwjbd/G6NLQySTIba/zqf/0Vrv7odQrFND69mZ6hEEaX\ni1algs/lwGaEQqrI5R++xn/873+Er6LH6HSynFJx7XqCqeNWjp8Ms76cQG/S4XLoOf3oMMlch/hO\nmUSmhXsgRLVUp9OWSSar3L2+wd4jg5jcdqrVFrPxMhOjVnKJHK18BpQelhYzzN1c5cheO3uGxnEW\nC7gmpwidPMG9V89jMGgw2i2U61py6TJio8TqRo1SQ4VFpadvTy/r9zY4dHaaldUcpZaK/r3DGDtF\nxFKSbquOpb8fSadDb7XS99BD1LJZBEHA4HJ9rFyrMRhwjoywc+MGyvvjDqJajXts7Be6InvQEIlE\n0Gq1eB8gAeAn4ZlnnuEf/uEfHlgysuug/XEXbZNJw0MP9bK1VWRxMfN+NUTgZz9bY2zMzb59vvuG\nlYqikJydpZNMcua4j5+9vkG6ZWb03CMUrkSYfNRKuiCzuphAUkkUC3VESUQldDnz8CCyItLfb2d+\nPkO53KDd7pLPNxgddXHkSICVe1Gy5hKhfjuVlXm8w32EjwaRD/nZiBTIFrKsLMQxSG2+/rUDaLZW\nqFbqpGJb3P2HN1GUDpPPnKPZajHy1adJLizh6AgMPf442WgCg9GEx2/BoK1SwEqxIZBNxCnlKmhN\nem5cWiX89QncagkFFeViHb3FjMpgQK3VYHcY6PvqSfKRGCNHNFy7voPVqSctimg1Ah2pS7u8K0so\nbGzQrFbx7t9Po1hEYzKRW1sju7REV5axDwx8asZNLZW6T0Q+QKtSoZ7N/puRkd8DfgdYAP4M+C/A\ni+//7o/4xckI/DPHeXd2yshyB5VKIpWqMjeXIpOp4XDomZhw/5PpvbFYmdXVHN2uQjJZxWbT0dNj\nZnrai7Fb4tqP3yHfMLAwl8Q73E+6oqJaq7BwbYHQ2SDtWITa0iblronRJx8j0tXTqLdZXk1j1Kox\naRWErkAwbCWbKDBx1IvZZqHSCtKI5Tn83cMUOwbanRbxN3+KnIvjNlqQGw0Ss3fpf+brXHlnm0uX\nd/jVF4YZPDBCZWcHq1WLxurAu2+cH/3tFeSWQr0tsbqcRn47xsRkh0S6icGkZ3MlQajHg8GkRaMT\nKNc6iKKATq/B4TKhN+qIxKoMTPXjdEmsXUxz5Le+w9bF94itxtCYrfQ9fJq62kopu04zHWdtIYZn\nv516PEajWkMeDpHNqjAY1PfH8Or1NrZwL7r1GMGgBZ1ORaPRxDk8hKs3QCcVAXavij1TU/fNsP41\n0CiV2Lp0icb7bSBRkqhls0gaDRqTCUmlQlCpCBw5wtKPf4zcaOxWTcJ7uDsbZ2d+HWs4TMfoYDXa\n4vjhY9QSCa68dRddYYt6ocTBb7yAYr9KeDSI2e0kWVXhmZ5mfXaOeldPaNKJ0Rcgu7GNzaYnK9pp\n1DLYfC6cehmjXuD0cT+xSBEEgRvXIhw9O44nYGXuXpK9Ux5++qPb2MwqSvkq3qCTdqPJnVtFRkdc\npJMlNPu9qDRq1GYdjXqLbCyJ0mqyeHsTS/gsrgNnqSWiROM1Vu+sYnfb0Dg8iNkukwMWYtES81dX\n6bTaRBZkpg4PYteIHDzai38kzOpagZE+Fy5Dh0YmieTqQWO2kpmfJ3T8OGq9HutnjLS6JydRGwzk\nNzYQJQn74CC2X1IF7IvGzMwM+/bt+6KX8Zk4d+4c3/ve95BlGdUDNMb5eWCx6HC5dr2KyuXmfdO8\nu3dT+P3m+1Eg9WyWQiJNvOUgGsuzd3+ARLICYSfOgJvb82XeuxxFI4Fe16FcaqDR6UjHc7gDAgeO\nj7G1VWB7u0i73aHZ3M3TMpnUtNtdmuUK2UiTwSEH5r5B/l/u3jRIris903tu3tz3fV9q3wv7DoIA\nCBAkmy02W+xF3S2NRh0jyxGKGMszCtshhUNWOBThHwp7RrZlSzEzYbU1bknN3tjsbi4gCZIAsQMF\nFAq1V2VVZmVW7nvmzd0/EgQbJFtNUE2xOe+firyVVflFnnPP/c53vvd9z18Is+e4BbPHwXY2i1Sv\nsb6coJLNI5fD8T1G5q/eRitvYfa5cA6GEG1eP3ullgAAIABJREFUlLIWXRSM79yNQqFk4coduo0W\nA3sGMGtaiI0qRbkRucuEUIsjiDKqhQoyQaAlqtBpZFhMItFbWexBDyqLjdCQEyG5RnR5HgCDzcZX\nf+cI5VwZdX6FRnwTLCaK5SLtZhOZQoHKYKAtScx++9vYhodpViqUEwnodqmm07QkCf/Bgx8Yjw+r\ndCIICL+kzcVHmZ3/FT0tkDLQBzx/7+e/+6VE8BAwGHq+AoWCxFtvbdzfmedyEplMlTNnBu9TedfX\ne5NLpRIZGLBQLNYfUPfL5yXyeYmRERveAT/BE4+RuRbFPFwnmm5SLJbpD2pplEtUEkmka1dIb+Zp\ny5Q05/Uc/9wTjLj7+P5LW8zfijA9aUVl0HHwUBBBKuPUN4lu17l5aRXBYOONv/wpw/tGOTylIbaR\nwK5pkw+v49u/l1a5Tnb+DicPDyAT4PrtDGdOH2NUIWHUQiEvsVHSki4KGExa9B4FZpOVy1fjBIIm\ndDoFzY4Ms0GBTKPB3+fAH7LSWLqGwaDCYtES364weLCfpUiDrjrLzRs1hgcmKCvrjH05wECpQE00\ns7BRIzu7icpkwjY8TDGRohgpou8WGXxkHxsVBdVqA4WiJ7OuVIpEo0VEZ5CRQ0W0rQJqlQy53kjf\nsaMY7RZK2z1tDY3d/olTyaqp1AMlyGa1inf/fmqZDHK1GrlGg3VkFHRmLJMbKGxuXOPDrG+3Wbnz\nDt12m0apRLVtoJCvkh/U09gM06nVQG1g9dodfPv2kK0oMBaa2Hb08b//u3PsPz7O7ucGSG7EcQbs\nBEMmts/+GP/Ro+zZ2Ud62sbN61Gk2AbrN2fY97WvoHfa2dwo4e4TGfAoKE45uXEtgkNb59kvjNJq\ntwkMelhb3GZ9PoLKaESjljE2akMu9HYlHr+dwVEPC1cXMWlBJSpZWM7h8xnp9/fTKpcYPXWMWDjN\nVqZLdKuCyWVDJtdTKdZo1huAjPBqiumv7KVYaZOKpDl4oJ9qvshrb6yi06vYOe1E1y1S2pLotFoP\nLEztZpNKIkGzVkNlMPQYUzIZolyObWQE28jIJzrmnwZmZmY+E8mIx+MhGAxy5coVjhw58mmH8wEk\nkxVWV7OUSg38fgP9/ZYHTDALBYlqtfmAem+j0SaXq91PRqSqxOxGlx++eK1n5ul34Q+YgQ6Tk3ZW\nVjLEYlbK5QahoJHTT4ywNBelmJeYuXSF4Kgfv0+P32cgco+JOTZmw2JRE93I43AbCQyK3LoeYf7i\nPCa9Ab2yzcpSCptFCbUS7XabbLrM9StRAr4xVINTTB8YxG6AeHibm1fC7D4+xe0bM+Q332F4yIJW\nLeDZuQNHvxeNWkTQ6DBbBrj7D3NILTmh6RFK2QIWrwOtUY8tFOT0E3J2HhxmYynG2IiWgClP+sbs\n/fuxGI2i0OkIHj1KN7eL+e+tobXbUZvNaB0OHBMT1ItFVn7yE1qSxMabb+LeuRPrPaov3S65tTXs\n4+OojQ96R+ndblRmM/X8e+2d2nsMyV8GPkoyIvDe0UwYOAF8Fwjd+90nhp/1KdFqFUxMOBAEgWTy\nvSOCd5HP19nermA2a7h1a5uZmcT95GN9Pc/UlBNRFO53aL/7/9+d+FanCa2lREumpNWqI4pgs2qw\nqJvIKym67Q5yrRa9osvKiy+gtxqIz87z9KlnGPaJlBpyatUGseUoGkWTmkFDqiwi0xoI9pl55PEJ\nwptl6pIct9eKohjFvXOa/MoygtaEza5jceYSTx2YQOmbQJTBRjjLnbktYnNLBCYHyeTqqHz9NFt1\nig0RrVkPCg06bReH08DG4hbFgkS11sbu0GANHEaqd6mWa4w97kfSutBVu2yE09yZy3Biv5WLf/si\nqZUN9GYDnp2TOPqG2Mq2UVoN1NIpDj8+gckAmNyUy3VK9Srb2xJTU04CARN+v5FUqkq73cHy2DDd\ncp5Op9MT3dH0hMtsQ0Of2BwpJ5OUYjG6nQ4Gj6d3U/6MhGO70UBlNOJ5/HHUJhMKrZbVzSqFuTVW\nrt0lubDCmExNW+cmu7KKxmqlnEigHnKhNhlQdSqs3JhlaLCPWluPb8hNaMcwluERoltl3nw7QqMF\nuWict66uYQ4E2VxfxPsb+9EGQujsDmJrMfKpIrGFVXyHQqgsJs5+5wKlhgyj1UhkNY/VMIXLquNr\nXxxA0y7SqNW58sot6jYVQ/0GqqUaZo+NTjrCo2cmCQ7ZcCuH0JhNdBVq9LpJlArIlbok8l0klKxV\nVAgqN6qpAK3OHGKjwN7Hx9D5Q7xxPk6gz87mcoxGs0W9VsdmUnD5Oy8hqtTYdhkxWlRMTzrpttso\nxS6i0YJeIz6QiLTqdaIXL5JbW7uvZ+CcmsKzZ8+HUrgb5TKVewwbrd2OyvDzq5m/ypiZmeErX/nK\npx3GR8ITTzzByy+//CuZjLz22tp9MbyNjTypVJVHHgkiijJSqQrJZBVBEHA6tZTLTarVJjKZgFb7\nXsKSq/Rc2utSE4vPzUs/WaJcbvA7v7uf/QdDjI3Z8ftN91k3K3c2qGxvs3e/H5tFRSFbwagXOXzE\nz0m1ArkosLFZoC61GBiyoulq6BvS8+r3v08ukUNrbFAtV5G11YRXYvS7RZxOA+lICqNJxdZKlGyy\nwL4zh4hVqtxNGzAO2UjWtAyePkl67g4KRZvgmJdqLs/b//e3SG+lcY8NEnpCxdSUi8hSlGwJpo/u\n4cCxYZqNFrWWyOorZ8lvJ1HrNBhGRLaXY3RaLUyBXvtCS5LILC1hn5jAd+AAKqOR5OwsMoWCai5H\no1Ihdv06nWYTuUpFq1YjvbiIdWSEdzuGu53OfU2Sn4XabKb/xAmSc3PUsll0DkfPJdhgoFSq02r1\nnJY/rnTDR0lGksAuYObe6zLweeA/Ap9o99bp0wNsbfXcFwMBE253rwny/f4F76Ld7lAoSCwvZx94\njyS1SCTKjIzYWFhI0+32PE2Gh633DZccDh2HDvmp11vcvBlHEARCPi2jHieNSy+gtphwqDps3bxN\no5Drcc937aK1eo1hS4DNsoaFZINmLs3up/dw7ieXiSWbXDt3h9E9g3zhG0cwmtKYnTocln7WXlvv\naW/YHVhCIXIzV1Cn88gTCgLDTrZyAqKs54GSS7tpydQM75+i3pahVki4bCInDoZw2ASuXiuwa4+P\nZiXI2JSP7eUNvv/vv8tjXzvF7i8+yXY0Q6dWRspmGbIbWIx2mRyQU1hdwiNL49vlJZ1rYO1mCXlk\ndI17qOYKPPKVg8QjGd7+8SyVOniGQhw5YyXQL+8p1eZq2O26+x3wAOjdn9yEeB8KkQgbb71Fs9I7\nD02p1bj37EHrdFJNJlFarGTbJm7OlTBXS0zsNONViYTDeWp3lzEMjVGv1ujUJRwegZ2fO0FkKYpc\nrcbq0DN9bBrl+jsInQbNfAqXz41/7xTxsohcJqKTVTl8wE1XqpBYWKG0skC71aWaybDxThufz0BN\npuHOXIxqvojdrqOaL7H7yWPM/4e3Ca/nGZrw0R8yopO38DkFrLouyz98Fc+uHZx8eppctsDo43ae\ne6YflBqyGxGW7q6hrycwhG+gMhjw7tuHQpZg4fo6BpeLkX37iOVlFHIVFldiLK9k6etzc+rkQW7P\nbuPqlMkkcli1HSYmnSDI2HOwD5ehhcupZWpPkFvffRHPvn3k4jU8TjXZ23PM3W0ycaBnqvju4lfa\n2iKzvHw/AWzX66Tm5jD6/R+ogpWTSSLnz1PNZIDe4hZ85JF/tvnyy8TMzAx/9md/9mmH8ZHwxBNP\n8Md//Mf86Z/+6acdygfws6q83S6Ew3nGx+1IUou3394kl5NYWurNl+PHQzSbbTwePR6Pnmq1gVwu\noy1TodBosLrMpLMSggCHjvYxNOKkVmsAArFY7zkyN1dDWS+xf8pCdf4GYqFOI6Vja72Eq3+AN96K\nkMtW2bfXy6nTAywupPBa1Uj5FCOTPoy7HYidBhaLgGfATr1aoVXL4rUKaA4PsP9QkMJmhCOPDlG/\nex7fnv3IBpRUlu4gJGoYhvsY+vwjNFsdlM0SK29dpFGpUisUWD73DjqnC+3IUf7tn3ye7UiaXCyJ\n3aIgEy+RX46goElLqhOc6MfkdqI16ihFowiCQCkepxCJoHO5iN+4gSUUwjU9jc7pJL+5SRfotlrQ\n6dBpNmkLAqZAgFo+T6fRQJDJ6Lbb6N1u1D/H00jndNLvdNJpt5GJIvV6i6tXt1hdzdFud3C59Ozd\n68Fi0Tz0XPgoyci/AJrvu9YEfhv464f+xIdAIGAiEPhgf4HdrkWvVz5gC6/TKXA6dTQa7Q84xkKv\ntLdvnxe3W3+P9aLB5zMgl7/XPex06njuuQkefTREKV9GiqyirOeZWV+nns+jD/ZjdFrouF3I1Wpm\n/v67GJ0WnKMSupaOrz7zCCu3mnz/P56lIajpGwtQlxuoVFvcWcjTzGRRdCQGH53Gixa3sU1+M0Ls\n+jUyK+sUUhkS16/h2rmTelZi843rLN+NMzbpps9uJhC04OzzkdhMoqjnKW0ss3Q5wpPPHqdUqzAy\nZEHRKDF3/iZKnYH5pRzTExaqiVtcfvE8KqudZLZJYDRIaGInlfUbVDfXUKmVjO2cotvKo+8UefLX\njpOLbrF2c5nXnj9PJVegmCmT3UqhMNsIjflJpaoUi3Xsdt0Hvut/DnQ7HVJzc/cTEejtCrIrK/j2\n7yezuEg4LXDxUgSty02r0OH8+U0O7PdgFkrINCKttobgk89gNwiEX3+FE48donxqF8ViHYdVRWhQ\nQdU8hlanYn0+SlmmYC6tJ7Me41Bfg/N/+Xf4x/qwCFpc+0LcLmURNRpCE/2I1Qzu8X3MRapItRba\naoylC7eYKdSYPjjMnkkPJ587gqqUIH7nLrmry5hzLhSDQ9iPPo5MJdKeuYDdZGH+b39APpXDPjZO\nsaFk4sRRDGrI5jxUigXufOe7RLdrKI1Wmpt58kKVmmGCZLqDzaZmZVXAZFSwvpLilR/N8uvPDvP1\nb+ziytmbFBMpJnb42O2vU5p5C4+sRHkhRz6exJRMsvPRRwi/+hKJlTA2t41ut8v2zAzl7W1MgQCV\nZPJBMxHe0yF4YLy6XZKzs1TT6fvXpFyOxK1bn+xE+QRQKBTY3t5meHj40w7lI+GRRx7h7t27ZLNZ\nrL9ifiTvR6vVodXqMjubpFJpolSKDA9byWRqJJNlHn98EINByZUrMeLxEkqlyOCgFceAH0Ffxt/q\n8mtfnOLqlS2uXInyzjtRvvnNXRw8GODs2VVEUeit79feoL56B6fViKuzRTvoYyNf4dChAJLUxO3U\ncf7Ndcq1Dm6PD6NLIGCa5fprNxFEkcrZyzzy66f4zd88ya23bqE36xkdd6OUd6k1g7TKeaTtAmaD\nnKXLr7Jw7jKh6RFqq3PEzp3FMjhI9PxbDD31FFpXjdhiGElqkdqIsxK5TWp9i065xIhfwFCXs5mt\nokzOYLRoGTjxHIm7i6xeuIysXqbbbmMMBilcuUKn1cI2MkI1maSaTKK2WnuWDC4XBrebxO3bQE+U\nUK7RYOrrQ1uroTKZ6NxLRLz79v3C6sa7TejLyxlmZrbvLwFrazm63S6nTg08tPL2R0lGIj/nehc4\n/1Cf9kuCzabl6NEAMzM9zwKdTsGOHW4cDh3NZhuLRU083jtZkstltNsdQiEzGo2C4eF/vOtXJhNw\nufQ04+vkiyU6Gi07f+u3WH/9dar5Av69u3FMjLP8xgVyuRpau40b55eJplvU6i1Eux+lSk4plUNs\n2fHpahRlXRSdOl/8zb1IyTivvLRAOlXjX/+bR1h69Sz58DqIIiqjCa3XR3pxmaXlMs1Sgb6Ajm45\nRyW8RCewi/MvvINSytM36sFnEzGHBJo3X8O/7zDf/+sf4BkdZHDfFFfPr2CplFCLHQrzN7FYtcRS\nRbRaDfmVJY594TBbWzUaZiOirIuMDsa+EKb+AcLhPJWNOJfeXGQznEdvVKHUaqiXy6STefrGA/eo\nb//0hrh2s/mxNCfazSb1YvED11vVKkq9Hu+RR7j2g3mso7r7N47JqCB+9TLZtTVUFhuFCuhkdVoy\nA6myiObOTcR2A6MoEn9jDe1TT6PzBdlumomUs5SKEpVElD6PiluvLaBTNAnfuI1vpB+TU8fU0Un0\nTjuWTppOZIt6o8PsuZv0B7SEZ+aQqVSg6JJO1zDqtgkYhlh4+yKlxRXMbgelTj9n/9+L2KZ2k5m9\nyfCkF08hihTfQK0x0tiOYA+GaK3eZHErh85px+r1kA+HqdUFMls5WlKFTqxK6JgDk97BkZNDHH80\nxNztLaqlKl/76jg7dvuxKcucORmgVbXSP+Zl9ezr1MpV6CrRq7qYnWbUJhM6dZdaWULvcDC0Z4j8\n+jqxW7MYvD48UxMYg4EHqJYAolJ5/4ju/rhI0gOJyLuovY9i+FnA7du3mZ6eRvyMsIJUKhXHjh3j\ntdde48tf/vKnHc4DeL8xntGoQqmU3a+YvNdQ2ut9czp1vPNOhM3N9+59rVaO12ukXG6yuZQhulWi\nWGxgsagZHraxuVnEZFLz7LOjaBRdpEQMlc9Obh6ahTSZ65c59t/8awI1G5ubJaxWNe12F7tdS7Xa\nJB7JUG1l2V6LYrKbKObLmPUKmrFl9FkvzsxNbLYR5KZRzr2yQPjWEhqtkkNP7qUQDhO/8BZquQql\n2CZ28w6NQp4jE6MUIxFufetbHPnv/nuarQ6Vagtz/wDFW1XK200iK0kUgo+dQS0Wg4QvuB+53c/S\n2xdZm4khyAQCARNOq4JqKoVv/35UZjMyuZzavXutlk6jv9fTYQoEUBoMiCoV6fl5BFFEYzbjnJ7G\n1NdHt9VCbTY/1DHL6mru/XsREokKuVztvh7MR8Vnq736ZxAKmfF49FQqTXQ6xf0Ho0Ihsn+/j7m5\nBJVKE0lq43brGBh4sOxULjdoNtsYjar7FDG4t4NLVnj1bJjYyhZypcjQqJuBg0dp5jPoAiGK0S2S\nkSQOv5N8qc3i7CZtQUExU8EXUmIw69Gb9UQuvI2UL6DQ6rA6xihdi6L0DRC7s0wqVSWf24ulL0R+\ndY12tYbG6cI4OMr2ZgqjyUJ8HRSyNt6gjuXby/RbfcQXw+QX77J+Vcc3/tsvEHnh2yj1evR9A+i1\nCi7/+BK7vuygVKrT12ciF09TzWTxD08gMzQwmlRsL6wSvrmI2hGgs7RMo1ztdZirbDR0Tu7eSOFX\ndzHajXQFgVKxjsNtBpkcEBEECAZNOJ0PN9nK5QblcgOtVo4oFUncudOjhdntOB5SyVKuUqF1OJDy\nD2rlqcxmlDod9WaXrkyOTHzPLdYkr7J58w6GgRHOvrHGykKcdqPJ53/3afY9eYboyy+gqKUQAOuB\nk5y7kMDobBIrq4in2+j0eoJDftqRuyzPp9g5GqJ8e5FmPoVT6WT/F08TX0vQTufRjg9RzaShUaVV\narC9vI7c6iIRLdA/YKUWi1BOJMmurpNYWMY2PsGFs3fYWtpE1z9CuSQxeyuO7ZEA9YaA2MwjSCVE\np5XMWg6Z0cnKpRn2/NopSuUGep+frVubNFtyjHoFOqOObFYivBQlPjOLzWHgwJ4g27dmUG4XKSvV\nTB4cpRTZJL4SxTY+QXL2Nq1ImEK6w+DkTvyHJmhLVaZPH6LWVaLSykldirCdqFETy2TbEXboDGht\ntl5S0e0iiCLW4WF0jgd9Z0SlEqXBcN/V91180jTvTwIzMzPs3Lnz0w7jofD4449z9uzZX7lkZGrK\nyepqjmazjcGgZP9+H1arFotFzeZmoXekWmsiijLMZtW9I/eejYfRqEKhkNHpQKXSIBotMjnpYHY2\nxczMNkajiv5+M/F4CZNJRSLRUz8WagUO7t+B76QcixaarTbheIsfnZ3h6u0COp2cqSkXjz4aJLKZ\np55O4e3rsB3L065W8ASsKFtdtK08jVKJ2LVrBE88xkt/8zort9eJRzL07xji4g/fwvLUEDIZONxW\nVEoZ3UoeWbdJU6qhc9hpSxJSPodjqI/B0ACSOYTbESWxuo7BHUBw9tFuNyETRTIEaEkypHIdnVGH\nVMixtpzEdHQcQSbDPjFBo1ik2+1iHhigmk4jKpXUSyVq2SyCTIbO4WDg1Cncu3bRqtVQ6vVoLD/f\n9+sX4cMsHWQy4YFn6kfFZzYZAVAq5R+6O3c4tKjVCu7cSd03XAI4dMiPTCZw506KxcU0rVYHu13L\n3r1edGKd9MICUqXG5cUOsa0iuWyZYqHOyswyJ5+YRFMt0DdgxTrtZmA7SzuX4trlTbqCnEZNot4V\naSmNPPlckMtnZ4iXq3TlCvwjfrymNrMvvc3oMyY8fU469Q1q5Trakd048xXanS4dmYqO1oxvapyz\n379CeD2P0ajE51aTiucZFEV0ZgOFbodqoUQqXUPv9yOqtcgEGZP7Bth55ihan5/gxAAGvZyNSAmF\nM8TWRoZ8TUaj2aZWlTA4LAj1ElNffo5qsYy9P0hDbeHumsT26hY6VxuPVY6n300mWUZtNKLRq9i1\n18+uaRt2l+mhKiNLS2lu3tymWm0i0sKvq+DspqgXCki5XK+T+yHhmp6mXi73zkEFAYVGg3N6Gplc\njkYOgYCRfL6nVSOKAu1SEXvAzdVbcRLxAvliC7lc5OL5NZzBgxin9hFwKRHocvZchKsvvMHQgWnK\nWj+xdIepiRHKVQlZsYjZrKar1BLaNUlo2EUJLRevZ7h1NcrYDj87Rw0UZi8xuaOfRgs0ZjNyJUzs\n7sfl1BCfXcMW9KLSqHAEXMhtHrZX30auUiHKZBh9PsqZHLmaAkvQSyWygcJoI52p4BgZoWNw4Ot2\n8O2YoJwrkNjK0mw0qFVb2IcMYLQz5JCzsZpma24Z55Fhapd/SjeyRXpFRt/h/aRmKmgddkYOTfeS\nO5VAwWlBaTCgdThox1fJtM28/HfvILVAbbbSykvsP3iEZi5DMlnh1jvzPPX7X73PQtJYrei93g/Q\nAGWiiGtqCimXu3+0JtdocP0Ki4b9PFy9epVjx4592mE8FE6fPs1f/MVffNphfACHDvkZHrbRaLQx\nm1VotT1n3vFxO5cuRSmVemu306nDYtESi5V6sgKmNuXwHarpDJYDB1iKSmxvV9izx41er8DvN+J0\n6qlUGuj1ItFoifPnN+m2mgz4lMxci/CbXxnk8gs/wtIfopDdxunUcfCgnkikyA9/uECt1uLXnx3m\nW28tYTdbCQy4oNVCr1fQH/ChUsmR+cfY/z//byi0KjZnX6Zbb+L0mKHdJLeVo6k/isI7RHQ1jN7l\npIMM58Q4apOJgVOPobHZ8OyYxnPoKGubFWYuLJHbjGL0BwlMjeJxa6G0RWZ+Dsk6zM0L88jWoqSi\nabw+A2aDjM2FdbwDh4hducKdv/97FFotoWPHCJ04gahWs/LSS0j5PIIgoHO7CR49iu7nKPK2Gg06\njQYKne4jVUhGRmwkEuUHWiNCIRNm8wd1Sn4RPtPJyM9DMllheTl7nynT6XRZWsoSDJpotTrMziao\n19t0Ol0qlQJStc6UOU1+eZGOPUT49hoyo5VaU067WabTEVkKV5gY7+Pbf3ORvokg+w8dJ3vzCkpF\nDIVaTmjPOHJnkO/+zZs8+ztnOHk8yKD9KFIuD6kN8lfDNGtNaDfp2zHM5JgFCRV5mQO5d5CFK4tk\n0mkOPTuJKjjEduI1jCYVuWyNZkckuGuKjWiFTruF0eOi06ijVkJdpcS9cxrDxBSNgJJ0uozR4cKo\nlWh35UTu3uCRYwdYevMSqXyFtsXGmX/7u3SzCRbffIOs2YB5YJCa00kmvIxzxz7eXFyCvJGRAT1P\nPDHEZqyG2e1gaNSJx9KlHZ6loxknl6iRWV6m2+lgGRjAMjj4oZbUqVSFK1diVKu91qPcdpKN6CZP\nPDWMKBSh26V2TxfkYaC12/Hu3cva2bOU43GUej3NWg3x6FF0DgfT007q9TZbW72SrtNjp9CpEHs5\nQrXa8wsSRRluFKws5wi0ishzOWzjk2QjcUS5nFQ0xeQTE2zFK0TX0wSdAqF9u6nMXSW/FcdiN1Cu\ntEiIRubvVtA7vWys5yhsJRhR1ZBWzzH4xd/A83tfYO7Fn6JQltEp9Ux/4Wm2Khq6vkky2w18KjVm\npx1BZ6RZq6ELDRLdvNaj0mmt2EeU6F1OZDYP3qPHuXYpjHrcTUPnxHP4URI/fIUDj47hnhzFNTlJ\nqirHZDNBrcyu3z5Ge/UGs9/+DmqDAYM/gMruotFq4HC5iW+mSc9cRyF2cQ4P0AWyy8vo/EFWkgra\noop2OU+n2yGTKpJqhLCaRSgkkBrQQoFzeOAXjpcpGGTwzBlK8Th0u+jd7l8p19CPisuXL/OHf/iH\nn3YYD4XJyUkkSWJ1dZXBwcFPO5z7EAQBu/2D1TGFQmT3bg+Tk70KmyjKyOclUik5o30aZp4/S3ar\n5xCtdW2iEczI6KBSydHplITDeeRyGfF4iWeeGb23MW2TzdYJBfSk0xWqbSUqo4GpU0dYzqhIZFqY\nzb2j/eXlDDqtnHpN4olndtBtt/Dt2Ul2aQm7uQsGGwVTiO88nyCfr/Nf//YoBp+f+vIqjewWKqUM\n/fAkWwU5g7/2DKXnf0RbbWL8S8/hmhijuLlJfm2NdrNFemUVmU5Pt2Oi0Wxz4HOHUHZqpGbPYdSM\nYPQ6GXz8DK9cTbE4t82x3WNkY+eJRkqYJqyYrHrURiN3/+EfAKhls0TeeQfr0BByleq+1EG326Uc\ni5GenyfwPmZVt9slu7JCcm6OVq2G1uHAvXPnByqc78fAgIVut8viYppGo01/v4WxsY9nPfBfZDJS\nLNZpNB6kJvUSj8Y9A6YeBUkmE8hkqsTCCbyhFjJApIsol1HMV5E7PBw/NUm3mMKgU6AwGAiOa2gj\nkGlqcZ94iqemd7I6v4VMoaBbr/HsV/YTHLDTDN9F2LhN+KevIGs3MTotjB0/iW/Ej61URa3SERf1\npHJV/IERlAUTGkeVCzcKHA82ePRfPketZieOAAAgAElEQVR8bpFyKoNtehy72cGF1+YRRDX2sVG8\nfiuDUyHE0W9QkOT8+KV13vjOeQS5iD3g4cmvn0Cm1TGyaxC7X8D5O19ilyQj3dDQ7lTZmrtA39GD\nVKIbxGduU08nGDj+KIKUoN+vIxbLcafexBcwc+bZPQipMNG3v0tEq8Xo91NNJknevYtcpaKWzdJu\nNBh++mmCx46h0j3Y1JrLSfcTkd5YdJCqdbL5Bm6lkna9/rHGudvtkp6f72mY3Cs1VpNJtm/dYuDU\nKfR6FcePh8jlanS7YDLIuVEpotWpMJvbaPUqHEEPmbIMhVbL6PgEytQKrVyK8UkX/aNeVtfyxJbC\nPP21E3RlSnT1JD6PBvXEaSLXb9FpSFh2HyW2JdKKRal1mxiNBjZvXMI9riR67i30FgMag4Ydn3uM\nRKKM3m6hY3TxwvO36HO68Bw8iqBQceJffYmZ83dRWW3cno3jm57COxLAuftf0pQk6HYpNBT8+Hs3\n2Yg3kelNLOWiPHLEj3LXSdwOFY3EJpe+8xIo1Dz5mycZeqyPpTtRcp5Jhr7+TQo330FGF43dzt03\nr5PqWLHajWQTOVKLK+zWabH3h2jX61TrUCxUEZQqmoISjajENTZCPNPC4lOiUCsJ7plG8xC+JzqH\n4xcucL/KyOVyxGKxX2mDvA+DIAicPn2as2fP/kolIz8PoiiQz0v31/F32ZE2mxalUMM6PIjB46aR\n2cZMAWt/gKIkY24uxfXrcZ55ZhSPx8DmZo+d8/rrYUBArVag1GronxpEZTQx9aUvEqmoeOtChO1U\njXq9jc+n5zd+YxK7XYtSrWHu4hrb22UefaSfI18bxahuEi/IuXy5wNXrq5RKdS5N2xje2+sDKZdL\ndOoVjH4/60tJwm0Z09/4HeQ0GZweQCwlaFYqCIJANZ0mNTuLfWyMkV1BbCo3ubUVMitr2BQiq2df\nQ6FRMfTrX2c7vILBpOHabIH9T52hK1UIBE3s3N9P/J03kbJZRIWiV11VqUgvL2Pq70dlNCKTy2lJ\nEs1qlVIs9gGtoGI0yvJPfkI1lUJUKqkmkzQrFYaeeOJD1VjfhUwmMDxsY2jISqfT/VjHM+/i00xG\nngL+VyAN/FJrnjqd8gGNEgCrVU04XODixQjJZBXolZgGBiwkywVk9N4rlpP4HEpSd3MERwykbl5l\n5foSk7t8lDVeNtIwv1zCf6fIU5+f4vDeAbQaOXdePkc5U8Rg1pLp5Aju2YnR78M2PkFhaQ593xDm\noVEyG1uotUrWVzK4T+/m//rBHY4c9NDuiLx+dol9hwfRiRLXl7JspXXIFQZit9v43TmOPDZBZDnG\ngE3CTB5Zt8VGOE9R5ebm+QVQqnGHnLhDTrbjOZ54JkRjJcrN//A8tXIN/cQ+vEeOsXLxJnIE3vw/\n/xONYgHfcID07Awagw7PoaP0q+IMHR2hIdfh8JqR5aLM/ue/xTo0dN+PoFEq0ahWEejteOvFIuHX\nX0dl7Lmy/myFRKmUPdCopjIYEJVK1Go5Xan3vSv1+oce52at9uFNkek0zXuukoIgYLW+t/NS+wc5\n8w01Vy+t4tujpCJ1MFkNHDroQVUKk1nuOVtKMhtFSeTgk6eYj8lY3Gzy9NN9sLDG1f/8U2LRPAan\njekzR8li5rX/7wVK2ynMdj0Otxlbfz8mdwPlo4cob0WoK0Q0bi9qi4V6V0ltO8meIyPcvboE1Tbx\nQo4nvjKG50v7iKbaOFwGdDoFiWiOly4scP2teUaO7KYkddm904lT0WRmocLMzC36ggbsLiOp2Rss\nX5yhIxMxaWH5xy+iDI7zg2+9SastYA14GN15Bo+xwcZyHKXDxWuvb2CzaTmxbz/bC2sIciXhN94g\nPT+P57BIcV1BPt0km6mRr8RxTkxw+EgAnxVcu3dj7w9gMD48je+ziqtXr7J3797PTPPqz+L06dO8\n8MIL/N7v/d6nHcovhM2mJRAwsrz8XsXU69WzvV1h5eYSifkVNAY1+w+NYlfmkLWiPPOFQ3zvh6sM\nDFgQBPB49HQ6Hba2SgSDRorFOu12B41Wid2mQq3TkKu3WQkXGBi2MzjS0yuJRkvs3Onh0CE/f/1X\n17n0zgbjY1beeP5tztPkt7+5l/MXoqxGGtRrHYqFOj98YYn/6X/YR//vf57w3TD+qVF0Lg8/fGGB\n61dy/ODlOA6XCcN3o/yPf7iLYiTCyssv0ygWsfQPkA+vo9CoKcW3Wfre92hLEt49uzE7zFRLNUpb\nEUwmNa1Wl7pCx+2VGv4BL/snQzQy67Sl3nF0p9kEQUCUy9GYzSg0GiqpFLVcDqPXi87lQqHTfeAY\nNX79OvEbN+7riygNBriXLBl/gdIy9JJdUfynyY59mo5VF4FPpAvM7dYxNGS9/+XIZAIOh4719Ty1\nWotMpooktQiHewJdgxNezA4TcpuLYjJDUF/gc782Rr+9QzOzzf5jIxgHR7j09iqx+TU8fU5MehVv\nP/8mkTsrLH7vO1jECv1+FTZ9B5nawNmza7x4ocRcvR/nF/8VbZWBl/6X/4Nrf/s8tVQaW8iPXOxi\nMGn40YvLWEMBfv9PvsSp04OEX3+No/vsaFQC6/NbNMtlXD4bue0UQb8Gr7GFStaiLqgpFiU2lrep\nFCqM7R+lo7dx+XqKazfTrK1maLdb6N1u/IcOUq3Uufv97xMYDyHlC5TTOVrNFo1SAZVOTSWTRaNV\n0kpEaNx6A3crgqmZphqPIVMo0NjtbN+8iQDUSyU6zSbVdJpGpYKoVPYcb9PpDyQILldPF+BdqAwG\nRo/sxOXSISqV6FwuAkePPvQ4fxhrA3q9COLPsbZWadU0FTqeeu4Axw44OLFLw+FQBYu0SXXpFlI2\ni97lIhQyE/AbaCU2CTjlnNilQSNIKCwOnHsPYA14UZvMWAaGqEXWkXVbdOnS7nTJR7boH7Lj8JoI\nnjiF98gxTOO7KGr8LG3LuXAlycxSHZVey/ZWnlJLRWQzS347TavRoJwrcvPCEjevxbD43Ny9skqt\nWqcrKlhbTvOD788jE0WarQ52p45aLo9X2Gb7whso82Em/TAyZCYaq7JwbZHhk8eQq9UIKj2Jjo22\nJYDN78YQHGA0qCRkB8Hk4MjvfoNqKkmrXse1axcyocPwgIlOuYDVbcfo8VDKl3C6jYjOIM6hPsbG\nfznqi58VXL58mYMfIpX9WcDp06d5/fXXaX+IoNWvGkRRxsGDPg4d8uH16hkbs+HzGXtHriodgsVJ\nU21jdr1B19GP0O0Q9Gh59NEQJ0/2oVYrePPNMO12l/5+C1//+jSf+9wQzz47yq5JK4cn1FTiUbbW\nEszdibO8nEGS2thsWkRRIJutsrFRpNnqIirk5OMprr21wOzMFqUaWK1a1m8vM+DXoJALGLUyXnlh\nhr7xAPv2eBA2Z4nfuIpK3kFqdKhV6lTLNYL9dlqSRGJhEVEuR1RrKSeTSPk82dVVVFo1CqWCeqHA\n9q3bVLJ56sU8emWbwyfHqJar6JQdRsfsjATVuPQNHCMjOCcn0TqdIJOh1OvReTwEjhwhfuMG8evX\nyS4tET53rudWPj7+wHct5fNU0+kHhM4apVJvHf+YAmYfB59mZST/i9/y8SCXixw86CMYNJHLSZhM\nKkqlOvPzKQqFOu12l0ikgMWiQatV4A9aeOtcisjdPFadhX6PyHDAQl1Tw3lmB/lklo7Lhr3PTypR\nwGrT0dgOs3l7mdgxL/m5RbTKLo7hART+Ic798DJtjQXbzt0srxXJJ/OEZGl0WjmmwQmuvL2E1Zsj\nZBvn5OkhNkZcmOR1aktz6LRNdPUU2evneWTvTnx2kWIyzeKVu4idOv2HzMQW13GF3HQ6IBNleL0G\nxnYGyNRlnHt1AYfbwpAaXv1PL7B70oxqZZXm1WsMfunrXPvBWYYUSjRWK6JKhUbVk+12jY3SbnXp\nSFX6TpwgvbCAIIqoTSbUVitb164hk8t7BnOZDPaxMTILC9Dt0qrVUBmNmAIBWs3mB9T7NBoFx46F\nWFnJkkiUsdm0DA9bMepEmtUJFDodcqXyocdZlMtxTE0h5fO07u0MRJUK5+Tkz6UL9/WZKRYlwm++\nzfzFWxj1SjxONXW5g0osgiAItOp1up0OjZUVbNO70XTMLL10kepIkODucdZSAh33BKWyRLVU5far\n5zn12BSFcpBSpcXYiBWXukg8JvVYAW+eRzOyi9f+8sc0qjWcU1PkKhJvvLxA/7CThbevYzKraCPy\no//nHBpfkHpHRmojz9nXw+w6Oc2tdxah3UQQZWxtZlEbDTRbeVwuDZpWkVJCwmaSIygVlDbDCN0g\nW+t5BF2DkpRH0Joop5I0FBrk+8ZQOx28+e+/ReTOIu12h+SdYZ78vS8i9vcj6dRUUimyaxtoDEW+\n/C8O0rD0s71dRmjUyMYzPPfU9ENRAOulEsVIhHqxiNbhwOj3f8Bc77OAy5cv881vfvPTDuNjwev1\n4vV6uXHjBvv37/+0w/mF0GqV7NjhZseOnpDixYsRJKnF5naDsqRmayNLtdqkfyzA0MBuRJ0eh7HI\nq9+bo5AsodOb2NoqYrNpOHGiD61WgU7Zprpyl1Q8z8UbBWKJGtWGgnhbx9mz6/zWb+1gc7PIoUMB\nymWJutSi0+nSqUuoNUoEAbY2MowNm7FY9Rj1MsxGBT6vjqOP+li/PsvSGxeZvTDL5KlDWL07OXbI\nRSLnYGTYgkXIE10Io9DoKEQiqM0WlGY7BreLWjaLTKnEFAqSDW8iV6vpNiRK20lkShXT00HsIR/l\nuozBQStepwqjzdgzq3Q6MXi9pBcWkKtUePbu7XnGdLvYx8epFwo9iwZlz+H4Z9GsVtE6HCj1ehrl\n93xwNVYr2oc4gv2n4r/InhHoMW1CITNWa51IJH/fvwYE9Holen3P58ZgUHH+/Aa35oooxZ6ink60\n0wpXGTTJWX/heVrNDvYzZrRClcm9/YhGLTfe3sBs1qBTC5SVClq1PPnNTdSuCfKZMraJPqRsFpVR\nTy67zdDUEOYdDa68EyYQNCNTKNAquwwE9OwKQa1co2Mbpry2gKzb5sKLl3EOJ/HsmKLelhja1Y9e\nI6My/zp9Rw+RmruDJF2hrg7h9eo5cGYv3/m7WUxWPYMTPgxijWa3xWa0zL6BQeJvn6OwOMfkyUNE\nFqPYRicZOfkIjVwGV5+bcrmBQdYlvbiI1maj/9QpnJOTaKxW6sUihY0NmpUK5r4+pHwe69AQOqeT\nyDvvYPD7MXg8WAYH6XY6aD5EWMlkUrN3r/cD1/+pDyTrwAAKtZpCNArdLsZAAKP3g5/zLlQqOX6n\ngnApjdfZq6okkxW6goBNrekpGcZiNCoVcmtrePYfYGstTLPRILq8Sf/BHQwO2bn0yk0UFgf5ioDW\noOf2a5cY3xmgXWkQvhqm/6kdNFUmls+/iXd4iJzSQj55g5ZUx5TP4dt7kLWFLUZOTjA86qR/xEki\n08Q0Mk5bkrAauoQmQmwl60zsnSS2kSa7lWB41Iu/3wVyJaJc5PDhIPrKGkqZjMHdY2xcuU46WUKu\nzWDSq+l6fczciOEO2HBabQR2DOGfHubOS2/Q6XTQmo0UMiX0yja51VVs/X3c+fFZlLIWMpnA6sWb\nhDoi1kddxOaWadSbPPbVkw+diITPnaMcj/cuCAK20VGCR458uPnWryi63S6XL1/mr/7qrz7tUD42\nTp8+zauvvvqZSEbeD4NeSS5Todlss7Utka8IGIx6cuUOL70Ro10pMH9zk+jsIhqNHGo5gpNjgEAy\nWWVuLom5ESd5/QoDB3Yxd2uObhfs/QE6LQWtVodIpMAXvjBCqVQnm63j8xtoNJpYlDqy6+u4/RbU\n3RryYo1/8ydPEysqOPJYi/ExG/pOntnnX2MrmqdabVGMp1Aac8TvpvDtnETelpi7cJ3msJWxyUlk\n7QaCKKJzOFHbbegcLqLXrmIfHun1k2SyyOQKvAcOcuf1y2gWk2woRth7uI/xCecD7tdGjwejx0Pf\n8eP3r0WvXEEQBDQWywP03W6rRbfbpZbJ0Gm3e8c2CgV9jz1Gen6eRrmM3uOh7+TJf9YNwz/HSuAC\n/u5917aBr/2iP/yDP/gDzPdkacfGxjh06BB991w/w+EwwD/6WpKarK1BIlFGpSoxNCTj5k0Jo1GF\n2SwxMGBBklqUSg08TgmzvEZ1M00jWkCxy8vi/DKCQo1Mq6arajI0aWT55ipab5PpR/swm5Q4zHKc\nzz7F0swNFBYLtuFhtN4MhXwMaWsdz/h+sk2IFUrUpTY6k55KQ6SNEmN4gfN/fwm/W0NbVqPTFTj9\nlc/TyKZRe4qU6yUWfvoyg/sm2Zy/RbXSYIehSyGRZjORQtVo09Tb2OgI2AfMHDwzwMCOQcxGke3Z\nd2g081DTQqOOYmKcTLnI8RMHyWbrLM4vYT9xGPlWDLlag8qsweh20W2pycp0VNDRzBUZcTh6k3nP\nHjqpFJN9g6QX5kk3W+j8fvb//u+jUKvZjMVIVavsOn4chUbzkcbnw15/HBi8Xgz/SALyfiRTNarV\nFuWfkaJORHJMf/VRCmtL1AsFRLUak8+HSq/DmI0jsxmpNmXUKxJ7Dg9gcdt569I2t5dKnH7uGHd/\n+jqJ6DalQo2J3X20rQGSW3VqSjM1jbO3AzJZUFtliAoFpfU1jFKOwdBBSukmm5euUpObmH3xdQx2\nC0qdhka9iXtoBLPTimFwlPpWBqVex2OnJjBbtIxPunHqJBKvJ3jzrQ0840M4du0h37iDtb+PQN8Q\ns5uQT0cJTg1jsMsZCmqwKmq47Wo2lEr0bg+juwexWrVU6gI+kwHX1Djbt2fRG1QMHdmDwtNHo1Sk\nI8jp3zvC5L7+hxqfYjT6XiICPTOu1VVsQ0MPNW6fNubn5zEajfh8vk87lI+Nxx9/nD//8z/nj/7o\njz7tUD4y3mV6KDIpVJVtxGIDk05NPi8wMGhjfj5FMV/DW12grTFRyEuACqdehZRK0HXb0WjkJBIV\ndAZQKkREGThdeqIbWWTNGnt39eHzGRgZcyIIMl55ZYUDu2186biOBW0U+f/P3psFR3Lfd56fzMrK\nuu8bVQUUrsaNBtAnm2yySapJkZRkyYcsjaSRZ3asmN31ju1d27H7ug/WTsRsrNYbfrBjxjuODYW1\nkmxLYw0PiVezye5mn+xGN+6jgAJQ930fWbkPIEFRJCVKpthsxn5fgMxIVPyQlcf3/zu+X4uVJx75\nbdR6mdr2Oi39IJdfWCCba9HpQj7Zx1OfGUHUasmliuiNeraWYpw+eZzO4TDpVptCokynK+L1WzE5\nzWhmZojfuEFX7WL2+VER8M0eobixRs+RIxg9XjKb22zcXCUZTWGoahj69CQeC2SWlvD+giZqs99P\nWqvd7yN5EzqrFa3JxNb58xS3tvYXjy4X9khk/zMnJxFEEYPLhaP/l7vP/7n4KMhIEnj4V/nDb33r\n/Y2B33qJ/bztjY08u7sbqCrY7R70epVHH93PirhcRiRpf3Vns8rIe1kWXruB2lUxyDAQ1CK2Ougn\nD2Pt7WXt2Z/gC4YIPDRGpWsg4PfhNCjc/Ou/oO++k4ROPUWyoqXYlrGE+7jz4uvkd3ZpNQ2M3D9H\nj6XKVr6K12/hjVspPnv2FDtXV8inS2jVNv0hIysXrrLgdjPxyAPMCkbisRz6gSEEdw8L33uVB8+O\ns3P9OiP3H8FvtdIS9chyBUkno600mZ4Y4IfrS+Q291DSLZRCjZGTg5TnX8Lh9dH38CMIoVEEY4vj\nkQFsFolurYhSq9GqVtlcjlNVoC4bqTc1tLoifX0ddDqJnr5h5ktW4rUGhpEAfoNCuN+NKxygXavh\nmZxEb7MdlEc+yPfz87Z/nWijxT0yTCGZQ+3uN9B6h/tAFNCaTLhGRnAMDJDf2KCwuYlSLtM74cXg\nD2J0Wli9GSU0GmFytEWzo2LwmJl4cI7heoNcvolks/Pyf73J0P1HGDk6QmVjBe9AkMjMGKnNGO1a\njUomy9DhQSS1xdW/+3uGjo6jb2Qx2cykd9IERyMk1mIMHR4kGDTTPxZGY7Jgsxl46dw21WqLf/21\nSfQGHQ3ZydraG6xGb3HmqRkch0/gO32UV5+7g8ms59/8L1/A65BQ91bpbtwgmpYJBP3MnuhnL5rC\n5jCjcfrYKaks/9cNHLogg58dQq/W0Blkdpe38PbYeWxwgKGpPry+X87c7r2Ucrvt9kFp7V7Byy+/\nzEM/tfK8F/HQQw/xpS99iWq1isl0d6wcflkUolG2X30Vtdtlut9EPmCl0NQyd7yXWKzElStxpsds\npGMpwuNmgn1Ocuky7baC1GrisOno67MRCtlo1wV0NiuNXIapmRAWuwk9LWJXryO7/XhNDpZX83zx\nt0YIqTG2zm+yvZShUWsyNNVL5NQJxmd6efrZdfbWE9QLBUSNyF45w+2Ig9HHzrC+lsMa8KF1uHnj\ndpbjT97H0R4fjUyCbXGP7PwbWA8PolYbhE89gAokVqMIQO8DDxCcmaa8E2PxB/+FZLqOqNUy+dj9\nYHHRP+xCVJrU8i06zebPzVxYg0ECc3OkFxb2DUMtFgJHj+77SS0tHRxX2dtDFEUiZ87QyOfRyDJm\nn+/nTtH8OnA3c6RHgP8NmAR+DHwW+NVmPN8H9frbjLDR6BCJOLhxI47fb8ZqlRkZ8SLLGpRilkvr\nm7hdeiQBXB4z1UoTv8/BXlJPKVOikKuQTizgrTQw9Q5hSG+jWsw4e7wUdEEuf+8KOpeXVj5HaHyA\n+77wENs37uAOeRkO6zAaTBx+ZI69nSJDjmFaOjsri3E0GolOo0mlqOAK+qgWimzsNTn85MOY1gts\n75SJrcZ48uufImJrIgw9hXdmhmS8iMVippHPk7j4Kna/k6nf/R2+8uUJXv2HHMbxKfzGOsryBRRR\ng9bhxDZ9nL//x3VSqQpBh0pv2MLsjJedF39EZi/H7dtJlLbC6NkHcc70sLmZJxKxU6+3ee21GO22\nQjBoJVNUWGsqVCWF0xENOovlnnJf9fnMJL39jDyqJbu6hihpmDw1QW1zkUYmQ2Z5mWoqdZBxkfJ5\nbH0Rao4h/vHbV7C7LbSNVV65lMLuMFDfXGbn9jL3PT7HTqbB7qVbRMYjhNUYu9cvUdtep7Z+m/sf\nfpLisTPsbCYwKhVGhmy06zUq+SKyViL66nlO3H+c+TsZrC4LwWEHhyccrNzeYf7iCv7+HpYWk3Q6\n4HAaqDZVBobcZK0j3PcVC/nYLqLFhe9QPzeX6hSzRTLxHG67SPn2TQqZIgP3H8MV8iKKIoNHR9mN\n5bEN9PPyC+sUGhKIGtJ3bjMx08dMbwd9u4BWo8GurVNL3KQqZVF9ZxDED977bvJ49k24um9Pt0kG\nA7qfsSj/uOPcuXM8+eSTdzuMfxbMZjNzc3OcP3+eT3/603c7nA+E/Pr6wepeW04iFlqINYGyfpjV\n1cr+5KQq0TsSohTb4ujRflbXi2hEGD86xAOPDOJ2mzh2rIdUyoZt3EFzZx3ZIzI0GebWhaX9rOGw\nA3snwf3jJsaPWrjxD1ss3klTr+975GwsxXGO1VC6KunoLpV8kVyySEcBb0ikXKignRji8f/uS9y4\nvsvLP17EHQlx8Y0S4o0cs8MyaqvBbjTJ5OMPIRoliqks0dtRNq7OMzgSoGdylGqrgmNggOCJEwix\nHNZwL61cBjGxTPbVEnqXm1yrjc6oxz87+74lU1GjwX/4MPb+/oO+Pq3BwNL16+86tpbNIgCuu+i3\ndDfJyDXg7K/rw1utzsEUjaqq1GptBAHOnIkwPOwkELBgs+lptxXEioWcXyG9EUcrdHHiwSI48E8e\noyntkNncRtQIBPrc+KfG0NvtSJUU9r4+TMFefvxynFq+SKcLjVKFV/6fH/LoVz/Nk5+bYPHyIunF\nBvrRI5hd4xya83LnB0vECyKRIS+p7RS1Ygm9pKVcr+EeHaEQ22MjcRODxcJEOMTDD56irXTZ2shR\nESRiN0qM3P8Q6YvnufbD5zFZjLSRWHnmOcbOnORTMxLl3U10Jgvy6fsQ9CYki42ddAdNu4I5Oc/C\n+S1SLgOmeASbxUa1FKNZqaG320lv7zE5V6Njs3D58i7pdJVbt5LU6x08HiNnzkRIJqvs7ZWp19sH\n4nL3CkIhK81mgLU1Ga+/H7fHhFVJ0Yruy8mbvF6q6TSdep1Dn/kM5p4euq4+Lj+zhs1rp9KWeOX5\nJRRFx8Z6AbO7iV6nQd+t8ujZYYpHA/jDbpZ//Dy1+C4mrw+NVkLdWWX6AS+2YpHc1i6lPTfOgQg0\nmrQ7CrlEnr2NHzIwOszwuJe9dIF8poRZb6KjCHz3/76ARqvF1eOkWjbSrgcpZ0tcvJLA7nbi7u9j\nU1XZvl3k/pN+5sZOodOKVJeus60ImIYn0Cgtln/wA9Rul97Tp3not88QqxipiimyqRRGk0zvzAR7\ne3FOnBzD3EzgHBqilsnQaTQo7exQy2Z/Ka0Qo8+HPRKhuL1Nt9NBazTim57G4Pr5PlEfJ6iqyrlz\n5/j3//7f3+1Q/tl4q2/kXiEjP01iHQ4Doiig06nYww5yDRmv14jNpsce7mFlfoe9a68SHuphYLqf\n8dk+Op0u5XKTwX4LzVIJVbKx0u5lctqNmN7E/OAAeqMek1gjt5mmsLVHMexkbTlFOlkinyzgcOoJ\n+E20qxW6Jj1Oj4WLT1/BYjdx8oFBbBYNowFILq9RU2QyTQO9s1NUyg10OomN9QImg42xE2eY/vRD\nKDtLbL58jlK+imt8Ao08S30nimzQYR8YwDsxgTUUwnpzhc3zr1LeXEVVFFZ+8iJas43Zr36J5Pw8\n5p4eLP6f75Sut1rBui+m2K7Xkd5jAlGUJMRfwSPsw8S90z32S6BabXHx4g7RaIGtrQKNRoe5uQA6\nnYZw2MahQ+4DR0GtVoPTrsNlVNE6RVRVRGwWaCe2aUiP0gpOcSgSopXeQ5X0dEsZ9q6c3x//WlvD\nfmgMj9fGYrNFt6Vi8PphJ8PijWiSi90AACAASURBVE2s2iAby0m+9GcP07H4WFxI8/r3buL02tiK\nZjh1dAa9dBWlrkdoFBk4dQzR5MBRjxG7fJWW1ooiL3Pic6exBnowCnWa5So9vVZqDYG6Lczhr3yZ\n3NoaK/M7mK1Zcgu3MHu97F15nWKrhWQwUC036HnoU9y+dQdNapvk4gqVUgej0GT5ldeZODpMYGyY\nWLKNxmRBVQCljVYrsrVVRK/XHIjZpNO1/dqrSYssa97henyvQBAEhoacRCI2Wi0Fo1Emv9EkIwho\ntFocg4MYPR66ioKttxfP+Di376QJeTRYe0IsLaZIJaG3x0LNr8HvdtB/PEBxK8oL/+n/wGizMDLm\nRWfUIVqcLNyKIkkSGl0Cz8QklmAYwROhVBfI1bQ8/O/+FVtXbzF0+iTLL11AauQpJxLojR62NzIc\nPW5gbLqH8y+tUqs2MVt1DM/5WFuK49HbmByx8dLLUbKhHnQ6DaOjLlwhP+1SgY5Gi2loHGljlx6P\nlo0fP4vcbaA1mShsbpItqeinHqBU6RLdSKMoKqFeB0OjvbgODeOSg5RisYOVqdrtvmta6v2gqiq5\n1dV9cTxZ3j+vbjcmnw+jy/VLNcHebSwvL6PX6z/ScuKvC2fPnuUb3/jG3Q7jA8Pe308xFju47mw2\nPb7hALVABK29gtW671nz6rU9DCMnmDvSwWzSspZUef6vFnjwwT56rXWkzCYGTYuuZOCBqVFyXZHd\nopbla5v4+nzozSYCo8fw5pMUmlqsLivZvQxqu0m10KZuk+kiIhn1DA3YiIyHmTkcIHnlIopGpWBt\nsLaSpf+RR7h5aZN2W8FpERBMCv0BGclgwGi3cO1HP8BEFb1WRzW+QiWRZOJLv4s4OYjebscwOMHK\nTgew4BwZInHtMm27jc1XXkNRuiBUaOZztM0y9UzmF5KRTqNB8vZtChsbIIqY/X4QRXiL5AkCzqEh\n9Dbbr/mb/Pn4RJKRaLTAxsa+BG44bKNSaVEsNvnsZ4cJBt99wquJBMETxxCuQC2TQWswYBs8RKUp\n0m21WLi6iKl/BIO2S+z55zCZtLjHp6mm02Tv3MI/cwZBq0OQDXR0VhxDQ4weDuBya/nd//G3cfSF\nSK5Eia4WSe3kkIp7hO0GSjUHZ/7lb+DQtShVFWodLZ1SjlpNIfyFz9ASZLrtNuvPv4iEwvZmhpP/\n7g/40fNxFt64RDcbR2fS88SnB7E5srTbCo1cDq3JhK23l2oyic5mw390gK1YBoe9jxsvLKJWq1gs\nduqVKsYBJ4Wt6L6MuM9EIlnGGA6gaPfNqoxGCQEVj1OmUqqDqKFa3XfEHB11v6dR0r0CSdIgSfvx\nmwMBbOEwxe1tRI0Gx8AAJq8X2WKh3WhgaqTYe+UFdupVVtZLhMcGaOkC2L1GtJoG7oid5/7iP1NK\n5TFaTNSKFZJ3luh/8AGSGzEknRatXod5YAhFcPLsX7/IxhuraPU6HvytBzn1mccpbaww8cgJREnL\n/NUNdrbzGO1Z1s9tY3eN8/XfP0k6VWFwyEmt0mR3K0vMVGE8bMb7xQkyVQ29ERfhsJWePievvVZH\np1GwN9qYHXYyKyvU9nYwRkI4+vupl2sUK3uMzrZwhAOMvTm2WynW0ekkvCE3hRsXEUQRrclEp9HA\n4HZ/4IxGeXeX2IULKK23G4Xr+TyOgYF7iogAvPjii5w5c+Zuh/Gh4OjRo8RiMRKJBP5f8CL7OMAe\nidCp18ksL9NttzH5fARmZ2lLJoxmPfl8g+FhJ4VCg5s3k2zudlDVNrduJfF4TBg0Le48+xK06kxO\nejEYGqg7CzgOneJOWcQ72MsrL66Ry1awuq2c+dQIXqudntlpTDroarS0OzD44H3U2iLesI9aMsG/\n/MZpiou30PXsa42Uouu0CgqF1QUeeHiK15+5THp+G5ImZIOB0//2SQaCEtlOBtotSvkKllAYo9WM\nzW3H5LTTaCqsLGVYWc3RViUme0WKlQ6dtopss6MgUa60KZZaqPkWEe0vlkRILyyQuHHjQHWy227j\nGRtDabVQmk3skQj2gV9s5/DrxieSjCST1Xds74/xCqjqez8AO80mSrP5Dr3+SrVFpdpGqBWJr2yh\nNxuZPjWK1ubE5DSAKOIcHqaRz2O3SZz+8uNcuxilWigyevQQM/eFEB1+nD470Vcv0ZEMtCplPFaV\nO6/epNtqYXfbsAhHGfYraAZn6SoCHkOH1/5hkcUb6wwdHqJvtJe+qSHmn7+I5PZzdb7A5XOryGYT\nVpuJnfUkl6+aeeToKKZuEYPPy9qzzyEbDXjGx8lvblKObePz96KL+NkNutnM5rGYNHQ1WmSzEXeP\nG1EQ8NshNHyI0EOPYB8ewmzWsr2eZPP6IlK3S9BupNKCiXEPw4dc9PbeXSb9YUJrMNB7+jSlWIxW\nrUZ2Y5P47UVyq2to9DpkiwWvU0smpUGnVVm/eocH/kWERFlhd2eHgMGHZLJicnWpFMu0PAb0dis2\nr52+AQ96i4HgsRMI3j7+y7eXiVeNyIFe2vUm3/3LZ6h+6SSPnnKyvKNw88Id1q/MM31sgJlBJ7VU\nFoPPzJ2tDLJOIpuuoCDRP+zGamtRj8fo85g59qn7cLpMBPq8yLLEkSMB0sur3HnxGna/m3AkgKae\nR2k06Ha7iKIIGh3R7TKCzkjbFiLk76G318aRk/04ekPo1RnSi4s0i0Uc/f34Z2ffV8PlZ1GMxd5B\nRADq2Sz1bBbtB1B1/DjhmWee4atf/erdDuNDgSRJnDlzhhdeeIGvfOUrdzucXwiNVotvehrn8DBK\nu43OYtkfWQUmJt4W3UskKrz2WoxOp0ul0qLb3fdOoVqkmM4jCPuZXY1GwCPIFKNpvCEnF14tUdeY\nEKw6Ck2RrWQHi6eDZPGjHTXw8OwJGm0Vo8NOK5dCok1blbAa9WTW1slFt8gnsgxNDeB1OmmVShx/\nxEHsikRRsWGz6fAGHChLF9AGTlDbWAJRxD00SHl3j26rDs0KtVSdqmhj87m/xTc7x/pOk7RlAMHi\nwq7t0Cj3sn5rA73ZhMbqIFfVUOqa+XkF006zSW5j4235a/YFzcp7eww/9RTyx8g1+xNJRt7LMVCn\nk/Znz9/r+EiEwuYmtXT6YJ/JF6CityCUywA0KjXy6SKSrKFVqSAIArLRiGwy0TM1Smsthf64B7Xr\nwihDQ9VTyrbp7+silRM0VQPd7C4Wr4tw2E49n8dgBKPdTLxYR4gVaTXaXHzlZewGGwaDjNqss/7y\nKxz/+pfRiR08/V6u7JVpVmpodHqMwR76dEZq9Q4Wvw+j3s9uMkVDa0fSqOhsNgJzc+TX1mjtRXH1\nuPmNf/MEN5/RUe3ImKQ2ZrGOd3ICrdGIc2gIayhE8NgxSqUGqWSFgbAJuRlkfX4TvVzlwRMRjo4Z\ncPb+6rbTH1fIJhOmvkH2XrvG68/f3k+zOnSYtQoCXXomxzBrWthtftYX47R319Gbe/GGDdhdZoxW\nI2qzRj2Xo1jrEugN4hoaRNaKWAIBAkePEa8bSKWqlCttWrkaSrVMu91hfTnJjDvD7NFZwoEZKo9P\noJO6tOKbGANBdtNZ/F4zCwtJJJOZSFhGbub4j//rj9Cb9PzW75/Fm4wiSQ46FT1ahwO3rk45t4Gp\nsIHYSaJxjEO3Sz2bxeh2IxjMyJ4AN1YarK8X6O21YTBoCR/yotHpEDpNcmtr1FIpuopCIRrdd/R1\nuz9QZuN9m1zvsaxIo9Hg3Llz/O3f/u3dDuVDw9mzZ/nJT35yT5CRt6A1GN5TcfktTEx4OXUqzLVr\ne0iSyPS0l/5+O816jq6iUig2cDprVMotshWV0EMidARKlQ7lhkippCLLUCg0iUbz3Hc8yF9/9zpq\nvcrRI37aV26RjGXxDUaQtVq03SaqIFEvVfGHXKidFrXdKLNfuQ+XUeHxY3oM4TN0RC3FWIx6dJ5a\nrsDwE49TXFtBK6mYRyIYXS5cQ0OUkhl23ojSrtWpb60yODzN8vUVTp4+iZy4Q7EGh8MRPKMjdG1+\nzM4Qd1ZL9A37379cLgjvvFcFAVGjeUcfzscFn0gy0t9vJxotkMnse9BoNAKHDjlxOt/7Qrb39RG6\n775907VWC5PPh//wYSxVDZvdJs6Qh1IyC50Wg6dPklm4s8/ORRFrby+OoSHathA17QbdTpeaqmev\nrHLimIvK0hu0k9s0ym36wkGWr9/G5HBQi+WJPHqaTK7JKz+6gb6/xROPBKjkCuidelyT04iyQKNY\nZGdxHVdfkMruBv2T09xesCIKCuV6F9nTy+ioA8tggHP/dI3myh2UWo3Jw0G0NgfFtRWSt28Teegh\ntl56CcloZPL+OZRWa38UV6+nU69Tz2ax9PTgHhlhb6/Ma69tk9hKkl1ZwR/xc/YLRxDLaeRWhsLK\nIs7ee1dr4edha6vI8pVFqpUWZovM6kKCVqOBWMszZYtg0ruxtbYZ9ncJzvRi8IfIXTmPWDMwcuow\nKxduojUawerGNzdHt93aH78TBHYuXqDnkccZH3dTyeYp5BQUVUFvszI224fBXkGRzaxvRrn16jzN\ncgVXj4uBIxFa1SJmScMjT05RrSk0ikUqe2V0Fgtmv5e6aKSRjLF64zVskQgGhwONXo+oEajvRinX\narRzKfxzcziHh7H29GDsP0Ss6UG6mqbdVlhaTGOUVfSaNifmpqnGotSz2XeM+OXW1vYF7z5AA6s1\nHCaztPQOI0STx/ORqjp+GHjllVeYnp7G+R5ifvcqzp49y5//+Z+jquo9VzJ7P1gsOj7/+RGGhvad\nZGOxEvPzSfqmPMg2G06NsG/mJmmwetw4vDZa2TY6nUQuV0dVVcJhK90uOBxGnB4TX/z6/RR299i7\neYdCro5zeJh8Ko8z4EJDi7FH7kMvNslvbSO06pg8Xqz9A+j0GhqCgef+80sUc2Ua9Q6nnphjLhDE\n02oitht0m3UEQcASDLL89LOkqjKrsQb5bA3zep4nZo5jtplJ7uU4OjfNXtNOraGwWdGgMbroJBWc\nzu67FFV/GpIs4xwcZK9QQO9wgKqitFo4BgZ+LrG7G/hEkhGHw8Cjj/azs1OiWm3j85no6bG8700n\niCKesTEcAwN02220JhOCIBB2gstlYLDXTG55EaFexhoO0f/Qg9DtIhmNWPx+JL2eUJ8RNBLRaB5N\nR2Vy1oZL12AjHscZ8iPt7tLjl+gLHSZT7HL/k3O0RAPf/r+exj04SFXRsb1TxeG20W63aHX2exlc\nQ4NYPG52t7fRdNscGbeS60xx6404haqKzajSP+zj2//xIrsrUc6eGSd66TKlQo1GqUo5HufQU0/t\nNyuurCCbTOgsFjyjo3gnJ7H19lLP5UAQMDiddFWBG+fXyOcbgIjS7hBbiGLVd5kOtmkWi5gDgY/w\n2/xw8EEeuqqqsr1dRGs2I2lF6tUmGysJjGYdvb0+cukSS4kSJwY12ANeTHqR5vYSzkgv1XSSiSfP\n4p6apZIvERrwIhYSFJbn0TscBzberfg2D53wsLUQpdPwo69ZGBhyc/rBfmQZsoqV7axA1ztMU1si\no7Oxdb3GZz8zxuLryySLO8Qy7As1jfoIjA8jyyKmZob1F1/D4TRh9vuJXbyI0enEPjCAf3qa+PXr\nVLM5Srkytok5zDNHcQZczL8UJRSyYbXoSGwlaZbLHB4xo0muktjaQmm331GWUd4saX4QWHt66D19\nmvSdO7RrNcw+H96pqXtOBv7pp5/miSeeuNthfKgYGhpCo9GwtLTE2M94ldzLkCQRSRJZWMjQ6XQ5\nfboPp9OA78ufIb+ySLPeRN/TT7quY2GlyLFjQR5+uJ/d3fKbn6BiNmsJBi37xnqCREvvQt93CIen\nTqMlYPa6ydZUULUYtHYGHn2UbjZBu1bGHDnE9oULmPoGWc8bKWTKIHRxBN2sxuocznaJ/f0/Yg/6\nQenQLJWQDAYqDYhtJNHJJgwmPWgkNjYKhIaCBKQMrfgOqiSzshAFwN7UYQuH6O+3/8K+PffYGKIk\nsf788+RWV9Hb7bRrNSS9Ht/U1K/3C/kl8IkkI7DfcW2z/XKiLZJOBz/zoDQaZYwjEXoO9R08mN/v\npRYKWQmF3tZOKO/toXa7+xMakQjteh1HLc7IsRmalh7+6UcreCamiOdhfSnJ0SOHUawe1i/fplCo\n4zSD+cQQg2dO4Ql56XTaOL06/pv/doZLl3apFGu43EZevxTj1kIeTUvgyu0ij/7GkwSdYO1xoNaG\nsQaDpObnD1azSrNJPZcjvbh40Kh5EHOxQbG4/7LRmk0YHA6qqTSpRAW1z4akb+L8qWYnVVVp5PN0\nFQWD0/kOieKPAxKJCouLaXK5OoGAhdFR9/tmyAA6HQVL3wCO3Rjrd2KggqKo9B2fI9O2oOgFHEfG\ncZrUg1FVUZbRTZzkR//v62g0AjavC1OhRfL1BUZHA6jq2xMo9UwGl6ry+18bIVkSkHUy/QN26oUy\nhVoXnSSRb0gUK21yJdhd2gFJRzhkpVRSOHrKS0OoYJANCJ081IqEentoJbYx0Mbs9++XR7pdyvE4\nBpcLnd3O+Be/SKnawTQwxrXrKTo7iwwfHmBoyMnt2ym03QbmZpKBiIN+R4NidBdJp6NSKmH8qYZV\n2Wzed/T8gHAODGDv7UVptz92K7EPAlVV+dGPfsT3vve9ux3KhwpBEHjsscd49tlnP1Fk5ObNJPPz\nqYPtnZ0y4bCNuuimHTqMoKg883KUQiGL0aglHq9y+nSI3/zNMfb29gmJTqchm60xPe3DaNRSqbQQ\ng0G2N3P0D9u4s1JieSWHonR5+MEIWk0Rh81EI51gd3GVpR+f4+SfzFFpdQjcf5pqvoTR6cBos7A2\nH8XrcyGiUk6lKMZiBI4cQbLVQc2j1kqMzkwxev8cDZ2dgUNO2kur1CstRnpDdLsRYptZLFYdk5Me\nxsd/cYZS0ulQVRWNLOMZH0ej1aIqCqn5eazhMIY3Vc7vNj6xZOTDhiAISG+aDNVy+7bWBofjHcRE\nVVWqqdSBip3e5cLo8ZDbilEsNqmXquhlGdXoYGevCBYXVSVDqVKj02oTjZXo8Y7wxP8wTWY3g9tj\nQtXqSWQUlCZ4IxE0kobNrQovvbhJKZGixyMhOzzIRj1dtU2nI2B02HD1mTEFXdRlB6lqG9PEMYSl\n67QrlQOxqfdqRDQYJIxGaf8GFEXs/f1ojUbcbhmr344tNHNgKd2qVtm7epVSLIaqqpi8XoLHj7/D\nB+FuIperc+5c9IBcZbN10ukqZ88OYDS+uwtdabcZC8JOtMn0k49g6d1A514jONZPTdWS3k5idTlw\n9gZpbi2hNRrpyGZ0Pj+rywlK6SI6g4zFbkEyGnFNzRJvdQiEHJiEGmqzhi0SYefiRZTmFmFfAIxe\nYq++SiOTwuK0IGjMzI25uKao3LwRp1ioEegzYLbquHGxwOgcDA87GRpyEF+PceYpLU6LgNvgRq33\nIogirWabutZGo9UkEB7FojVQz+co1iViywXS6Qpebx97e2X6+qw8/vgg0UWZZl8Xu75DN7uz3yho\ntR4IJnXbbWSzGf/c3MEIYDWVIru2RqtUwhIM4hgYQH4PVU9Rku4pD5qfxo0bNwCYmZm5y5F8+Pj8\n5z/PN7/5Tf74j//4bofyoaCQLbOysEen1T0w3ux2VVZXczz4YC+lUoPXX9/D5zMTiTiw23WsrGS5\nfj3B4KCTxcU0iUQFvV7ic58bIRi0EA7b8Pst7O2VCAYtOJ16LlzYpbfXxli/AalVQDZKdCyD5Itg\n6rVy4utejEYtrXaXvWgSWafH0O0ScAkMhx1oLaMUt7bwTk5SicdJ3brFyG9+FdW9jM1jw2qSiN54\ng0Khjqczg7vHQzWVopPeYbLHxlh/CP/hKXyRD26lUEun0fzMPdiu1WhXKv8/GbkX0axUiF+9Sjke\nRxBFTF4vPUePHqiPJm/fZvf111EVBUEUsfT04JqYZiNaZHNzhU61QujIYVR3H9RKuLx1DLE6R4+7\nKJcb9Pba0ekk/u7pHdJ7BcamZPq9bdqmEq/8h79k+P6jPPYHX6JUatIVNCiymeXFXWaPm/if/ueH\nadUbDAR1VDNZqsUqNzZ2aVXKaDwhNlYUJoeP4mok0dtsiFotzqGhd/2PsiwxNeXjwoUY9XoHSaej\nZ2yQ06d76e1950WbWVwku7x8sF3c2kLQaBh49NGPRR16b698QETeQipVJZWqEom8TUbq9TapeIG9\n1y9R3o7S7XTYLXcZevwxCqYIO9E0u9EUatfIkROThMYHqPV4ufp6lM2NHGwVaLcFhmYGUEUNa5tl\n4ud3yefqzERg67UL0KoxNh1CkmWsvb3UsnlWUxKd5WVu/fAZzH4f4X4vXl8NuZgnMjjOaxcsGLsi\n42NuhK7C7P3DuL0WTpwI0dNjIW6vsXluEU2+RVt00tT7MPn95FbW2EmlcUf6eOGZBQw0GOlRcHgc\n1JoG7H19yGYzAJlMnakpP0bFxubONTql+tvnJZ9n4FOfQqPVHpCTt4hmNZ1m44UXaL3Z4F3c3qaW\nTtP34IP3LPF4L3z3u9/ld37ndz4W1/OHjbNnz/K1r32N3d3de9pvByC/uUliLUZmaZNyqYk1GMTk\n8yEIAqqqYrXqmZz0s71d5saNOE6nHqtVx9xcD+vrWXZ2ihw+7OPUqTCCIHDyZBBZ3r+OQyErsixS\nLDZ57rkN/v7vF/jik37euPYGYY+GaztljA47hx46wXrOwNTYMEpiCWMrw961Nzj91CxOcYf0pdu4\nM2YkpY5rdBaN0mTo05+m2+2iExQcU0ew6LvcfvoFWg0Vf9CFpl2lHG9hHxigvLODIAj0DIdx9/1y\npXKDywVra+/YJxkM+/1tHxN8cp4aHwFS8/OUc2VKWg/1RgdrQUFeXiF49AiZ5WUWvvtdKokEstmM\nLRymvLtLXbLR6TuCU7UiSyKi0ci1awkuXd6h0VTx+OxIWpFg0MPIiJtvfesiO7EiIl3azSgr3Sp/\n9N/PYvK4yWUqrF64yeDjn8bvN9NodFDcHq5ejiFptXz1Xx/l1WdvsnRlmUS6gdlm5uTJENpansDs\nNOlamYHZEGqzjntkBPv7CDgNDjoxmbTE4xVEUaCnx4LH884Vr9LpUHgPc7tqMkmzWET/MWDbnc67\nxbnUN8sub6HR6HDhQgw1t8fCs5dRVRWPx8jgoANd8g73H3uAV7oCWqOJYNCKImpZXMrRaHS4eLNM\nqdTFqFYo5soMDPuplutotFrmbybxeWTSi1HyW0lsDhP5koJlawvXyAj4BkgsrKJJbqO3O9DoDSRT\nNTweE1a5yfAxJ43WYVBVctkqiWyHrgputxGfz4xW6NDcXsHpkFFdQ5y/lCB65w2MbheOgIdjTz1O\nYidL5vYdAMaPTrD00kXCDzyA6vbRbCoIAgQC+0Ta9KZKanZl5YBM2/v63tejori1dUBEDvZtb1P9\nACJM9wpUVeV73/veJ65E8xZkWeazn/0s3//+9/nDP/zDux3Or4x6LsfOpUuIGg3hsJ2blzfJb24i\nGQwY7DYGB51Ikkip1ODSpRhOp5GLF3e5des64bCVz31uBFWFZ55Z4/OfH2Fw0IXV+s5r3mbTs7tb\nZmkpw2NnIwTbC2ysz7OXd5LPN9HQpbq7jTU0wxvXNuknia26w9f+4FPo1CY7V68R6A2SzLSx69p0\nozuYBw8x8tn7cPWH0Gg0DGoNLD33Ij6PHpPJisOuPxCbdL7Z+yUZDL/SOK49EqG4tUUlmQRVRdRq\n8YyNvafD+t3C3SQj3wD+1Zu//wXwd3cxll+Idr1Oudzk8kKN6OomXaWLwaTjxJlRzP4dMsvLlPf2\nUJpNOvU6SrOJZ3ycXHSXtttJS2NidTOP3avn2rVN+oa9XL8W59KVFfoidr785UkymSpmsw63x4Qs\ngaa9v52KF3H2BlFlE4VMCZdZ5bEH/az2WVlZy+O09fPEYxH24lVW5mN0VZFms0M5luG6LHLqqBu7\nVUtB68F9ZBCH3fC+Y5fttkIiUaFQaOByGXC5jOTzDTY28litMm73PikRRRHNe7yk7nZKXlVV0ukq\nlUoLvV6LJIl0Om+PsVksMi7X270L8XiZRKKCtZKjq+wfl07X8HiMSFKJbipFqdSiUGoR3d7BYtEh\nigLRaJ7V1RzdrorLKqDUahQrHWStjMuuI/fiEpP9PcQuR2nV6uiENsWsFXpt1HM5LLNT9M8JqFst\nlHaHer2N2lWp1toEwm7MdgOzswFef30HjVbC5TEwPe3j+PEgVquOaiq134RmMnPuappLr6yBqmIV\nWzQcVua3FMRsEUGzX4prKSIDh3xUknuYh8LUalV8PjOgkkxW8PnMBE+cwNbbS6NQQGe1YgkE3tcs\nq12vv2tft9N5h0PovY5r164hCAKzs7N3O5RfG774xS/yzW9+854mI7Vcbp8YCwKjvUFEcYDtzRwm\nncrMXICRkf2ep5WVHH19dpaXsywtZeh2VUqlJplMjW5XZXzczd5eBY1GJB4vMznpPSDrOp1Eo9Gm\nUmny4GEXN//TdZRGg1y2QqfWoFWUyO2maevKpBNFBvotlOJxZIeTej5OPb5DTmegI5moNmScegmd\nc5DFjJFPzdgPSIe3x4EaeWeZW9RokHS6d/Ru/bLQ22z0P/II5Xicdq2G0e3eV2L9GOFukpHngL9+\nM4ZLfMzJiCCKpEoiG0tvW6HXq03uLKSJDLpAVTH7fBRjMVBVWpUKrWoV9/Q0erOR+I5Mva0h4rKS\nyW6iN+Toi9hAI5FIVFheznLyZBC/30QkYqNRa6FVjKxfvIao+pFtDmSDHo9VoBLbwriXYMpk5tGv\nHcbVF0LTbfHDf0xAV6GrtNFqoFwqEVtu0Jl108qXsHj8WCz69yUiitLl6tU9Fhf3O9G9XhO5XJ12\nW0EQBIxGLXNzfsbHvQiiiHtkhFo6ffACEkQR1/DwQQngo4aqqty4keD27RSNRgenU084bCWbrdFu\nd7FYZGZnA9jtb5ORcrlFXzvLfwAAIABJREFUs6mgt9kOUrpqV6XZVNDIMoWqyrVrcbrd/WxKtdom\nkSgDb6ftyw0Rq92N2QDBkJVaXSEUstLpikg6mVa9QbvZwqDdJzsaWaab2iZ14Tw9fS5MShGDxUyu\n2EYWFWw+F+EhD32jBk6cCO7Hp5dwuQz7QmWA1mRCMhjIV2B9JU6jVEJptzF5PdyZ38NikRh0WUlt\nZ9BoRKxmCcmhIxjwoxvzs76eo1Rq8sor2xgMEidOBDl0yI29rw/6+n7hubYGg2SXl9+hVyBbLB+L\njNiHhb/5m7/h61//+ieyRPMWPgmlGlGj2deuUVXaqR1GPTaGe1x4xyMERt/uq1BVdb+vr9oiHLZS\nr3fQakW0WpFqtY0kieh0Evl8g3q9Qy5X57HHBnE49p8XIyNutrdLNLIZfL1e9kp57G4j25s18ukS\nPTM60lUVk8eFXk4yeMhH26ijllPQasBqkckV6qxv1Ki3YO9qjJaUJxy2Mj6+P0Rg7+sjt7ZGu/q2\ncKc1FHrXOPyvMpItm8131QjvF+FukpGtN38qQOcuxvGBIOl0VLp6BFFA7ap0lC71egdTV0elo6PQ\ntNIdfxhbYJfO5jy1bAZLTw/BqRF+8Owu3/neMuVskXJdIRC006pW0Oj0+Dx67CaRiWELtUIJSdzv\ndahU2oQCeo6cmcJmEshrZQJeLY6Am3ouR7dZh2ad0p3r2Kw69m7fRii20MgytWgUo9ZASQNWuxGr\n18HmZpKZo5H3HAPrtFqo3S6FQoudnRKdThetVqRWa/Pyy5scOuTG6zVRq7V5440kgYAFh8OAc3AQ\nUaMhu7pKt9PB3j9ATe/m6adX6XQUBgedDA050ek+mssslaoyP5+k2dwvz+RyDZpNhVOnQlitesxm\n+V2x2O37neYNnYOe8UHiSxsIqJjMOpyHDpGpWg+IiMUi02h0iEYLzM31sLq6X65pNDoUVS1DhwcZ\nGrRx5bUNjhzv5fq1OFOHJ0neuIZW28GgE9DodBjdbvauX0ZqVYguNwlMTNKtlgmNmLF6bDRbKtvn\nzuGdmMA7OEgyWWFhIU02WycQMDPQa4R8HL3NRjudQKdRUBoNLB4XWpOFAY+ZwUE3YqfBwBEtfWEr\nDmOFrujBPzXO4l6VaLR4cA7q9Q63biUJhazv2dj7XrCGw3inp8mtrqK0WsgWC8Fjx+4p9+afh1qt\nxne+8x1u3rx5t0P5tUKWZb7whS/w7W9/mz/7sz+72+H8SjB5vfvmlskkwL78QI+JmmDk+efXqVbb\nRCJ2BgYcLC9n0eslFEVlYsJDJGLHbJZxOg0YDBImk3yg4F0sNkkmq7RaCtvbRRwOPVNTXnYvraK1\nhlDkGBYDeP12FK0e28g4e/Euc6cOoYnVsbodZGIbDByZoOwxsbVTZenKOtZgCM/wIOevb3Ds0cNE\nV+KYlAIGsY3J76f/4YfJrKzQKpexhkK4hocRJYlyIkF0Pc3yUpa2qOfQVJiRUQ9m8we7Zz/u+Dj0\njPxb4Ad3O4gPgvChMCtDacqJJJVcHY3Hj28gyLkLCeZ/cglfwIbdbeHIsSc47AH/3ByZisjubgmn\ny4zVaqBQaDE+7iafl9HLGjLxIj6vzO3zN8gncvzm73+Kzd0ma9EyR46GODrrRapmGZ0dQCd1qezu\nHGhWADTyeXJraxS3txkI97O7a6Y7NEQtk2XyvjCnHpvG79LitQoY63Hg7VVvp9Uiv75OdmWFzNIS\nTcmC3hQk6O+nVBdIJCp0u1CrvZ16r1ZbVCotHI79Uo9jYADHm6O+q6tZzr+8fVAWSSar1Osdjh79\n4F3f/xyUSs0DIvJ2vG1yuQb9/e9dG31r3Hd1NYtz5AhTh4ax6rsMjPdiCfawcWGX2Vk/29sFMpk6\niqLi8ZiJx8v099tpt7vUai2GhpyMjLgZGnJh0GuZPz9POGzDZjegO9VPaXMFa08Q75Fxds+/QuL6\ndVweH3a9jUIygzvgQGs280//53fodjpMHokwnE7TMbk590qMQmG/ETcey7JwPsuxYRGhVSMwNcYD\nBj9do5NsoYPRJKO16FhcSGCyGBDbCgZNHosxg06vBUGgUGi86zzUah2q1fYHJiMarZbQ8eO4hobo\nNJvo7fZ7cnT3/fD973+f++67j3A4fLdD+bXj937v9/jGN77Bn/7pn96TWSDZZKLv9Gkyy8tU4nEM\nbjdd7xCvvr6fIYX9Z9GxYwEeemhfd6S/P0c2W+fKlV30eolDh1yMj3sOFh5vYd/vJkGx2MTp1GMw\nSMw8NM2d584x9dRZ1HaTIZ8T++Ag+Y6ZU9Y0ne072IYP4RsMIV6+juT04PGHkPy7YPdhGxhmO6/F\naW8xEdGSunKOhatF5G6d4PHjBI4cof9nfJAKW1uszW/y46eXqZbqCBqR3a00heIEZ85EDso89zI+\nCjLiA77zM/viwL8ATgCfBj7/Xn/4R3/0R9jfTPuOjo5y8uTJA9fM6JvNkx/ltlZuMXJkmOVlJ7mt\nKGarDkWB1c0KjmEf3VaZarHKylYd11AYsVSiUjFisegIBjvUyjVSqwVul/M88VuD+NwypoYGRTLw\nxo08bqPKS//7X3LkNz6FtldHb0+T4VE/4CcajZJZXYU3iUim2UTUaPCaTLQbDTKNBpr4Gg+eGGA3\nYSJT1BEaDtIjJGlFc6SqVZpShLcerdFolPzmJnI6zdpzz1EURVSjneTGbUbOnkFx+jAY2ggCmEwy\nzWYGALvdj04nvev8rK9vcPnyDp3Ofk/JW8evrekYG3OTTu99oPP9z4HB8O4eEUEAq/X9Rba0Wg0n\nToSIROzUam3M5n68XtPBze3xmIhE7ExNednc3Ff1zeVqWCw6kskqs7N+gkELer1EOGxDFAUiA24K\nyR52r88TX45jsJnwzz1AqijgyFRoVSoAlLej6JxO0LqJ35ingUwpld0/HysJ3F4rymr8gIjA/qov\nsb7F2OAEulICnatGq1hkatpPOtciNBDg+o04DqmO1WEnvbjBne0qoafGEItRtl95hdDQMWKxd54H\no1H6lVZYH6cGuA8Tf/VXf8Wf/Mmf3O0wPhI88MADdDodLl++zIkTJ+52OL8SDE4n4fvuO9g+dy56\nQETewu3baZ56apihIQd37qT5wQ+WmZkJ4HAYkGWBq1fjPPJI5OB4k0lLu60cTOQJgsCVK3tYzBLe\nwTHWby+AqlLT2NAEurQLuzRjq+xtpdld2uC+3zqLwWJg/eYqhWwJvaTSe3gGS7gXOV7CNCiz+L3v\nUskVUe1tmrub5Dc29pW9g8GDcrqqqhSiUTY3ClTfnHZTlS6VeJytTT/ZKS9e790pjX+Y+CjISBJ4\n+D32B4H/AHwOeE89229961vv+6E/a+X9UW1HIi38fhN37hgJBi1cu7ZHsdikKjmJ9EXwuvToLQb8\n4SH8fvP/x96bB8dxnnf+n5np6bnvA/c5IG6eIkXSlERZknXYa2WdxHGta53dcmJXnK2K7ewfm+Nn\nx5uy1055165N9pdNbbxR8nMSZ+P4ikRTVnR4TUqkSPEED5AEiPuYATD3PT3dvz8GHGEIEAQIgLjm\nU8UqooF+++1++3je5/0+z8PwcBibTUdtbQO3eifRO9UY7Hqa6ypx5ca48fqPyVprmTl7i1Q8BQpE\nhkeI6qtRtcglx3cbjdwOBJBSKapqmwhndQQULZVmN9WVcbKhGZTAIDU6LRXmFBZVslhvp8JioWlO\nroS62lrk/n5G+/rIZzKYAUGlRnYamLp1m5oPtmC1mti3L4goatBqjWg0KnbscOLxGFGpSq9PQ0MD\nFy+mSSQKD4tOV1jjlGUFSZKXfb0fhMpKE83NDm7dmkFRCoZIba2V6urFlw4ymcJLy2bT43YbUavf\nnx3u2OEkk8kXl0oEQUN9vRWDQYvBoEUUNezeXYl9jvIdQNKaSXo7sFbuII+Gm5M59NkgGY+dZM0+\nFMWFTY4Q67sO+hSOpgZ6Tlwu7p+Kp5ByeaRcaQ2JfDaLnJeR5cLLMReaotklEVNy+Bqc5EQtxmwQ\n0VRT0C3FYiiyQiyexaTVkksmcUhhamsdjI3FUBQwGrXs3l2JwbC0AnhbnVOnTjE+Ps5HP/rR9e7K\nQ0GlUvHv//2/56WXXtqUxojfH8fvLwhPq6osOJ2GeR5SKETRZbMylZVmtFoNLS2lhnR1tQWdTsBi\nETEatezc6eX69eni7yVJpqLCRG/vNCmPDcF3EEElE9RqMU8l2FGtIZcTcZgLHhaHTYvQXI1WyREO\nGggNDqGduIpYaeXyv5xi975awjMx6psqEJPjZAWB8MAA0fFxksEgplmdiJzPI6VSZHOl5yRLErl0\nriQ6cDOznss0XwK8wA9nf34BmO8/3mAYjSL19Xb6+kJMTsaLYkhZVhB1WgS9DpNJi8VSmGVWVVnw\n+ZyMjkYxGER0HiN791UhyGnUajVGtxtR1KLVashrNajUKux1tcSmZezm9z9umYxEEhMVBw4T9U/z\n9rsTTEwWdCl9/iB1dhuNtjyZSBhBq6X26FHSkQj5bBZBr8fT2VlMVgbArJhLlt6fPUjJBF6HDlOL\nndodTkSbnSNH6vD7C9EpXq+J2tqF0+oLgoamJgczM6VRFpWV5kU9E6uJIGg4fLiW+nob09PJWSPQ\nisl07xn/0FCYs2fHiEQyaLUamprsHDhQg15feDREUWDfvipisQzJZK7k/AyGQk4Wl2t+qJ3P52Rs\nLIY/kEZRJFwuAyaNk+M/Okc2m0fJ57EaRA4feQrRYCCtMhL7yYmCLlYBh8eKrcpLdZOHmyNjxZer\naDbjrHBgErLIskw6HMZaW4tNq0WRUsSMDky19WgsFpRUHEVRELQarFYROVRYbtPp1DzxRAN+f4Jc\nTsblMswL3d7OfPOb3+R3f/d3EbZQvpT78eu//uvs3r2bb3/72xg20XJbX1+QU6cKOZGg4AU9erSB\nxkYbQ0PhucVqcToNOJ364v9nNa9FqqrM7N5dgclUMEa0Wg1TU8liqvhoNENDg514PIfNpiMazaBS\nqTh4sAK3OkwyEkGobKAiFyMdDqNCpv7IEQx2O46JCWqbvKg0GpLxKZ7/+EH0ei0Exxm82ItaraK+\nppHs2MC8aESNIKB3OKivE7h5ZRxp1igRTWY81fZFM0pvJtbzafutdTz2spmZSZJM5jCZRDweE93d\nXi5enKSy0kRHh3tWR6EvzjLvfAC1Wg0+n4NUKksy6QUpSz6V4FZfmL1ddtpefJHw4CCJWJLxkQju\nHS1gdbG/SUdVfcEyHh2NFj+YFosWl8tDQp/H1fr+R9afEenY14xXncLk8RRTvOdSKdRa7bzsexqt\nFnNFBU6fj1B/fzFduWg0UNvRTHNnXTG1+0If24Vob3eRTGYZHo4iywoVFSb27at8qOvQOp1Ac7Oj\nUDr8PiQSWc6eHSMYLNjA+bxEb+80Ho+J9vZS9brFouOJJxo4c2aMYDCFRqPG53Pg8y18HIfDwDPP\nNDM5GSebzWM2i7xxrIdULImSl1FrBeKSjri5gb2Hfbzz6kV2vfgcoxevotfCzsNtVB19inRORVOT\nnZs3Z0ilJNx1XnY+Xo0w2Utao0FrNGJvaMDV3sHli+OMjcewehxcuzaFy6HD7HXja7BgUeJkZRmN\nKGKprsZs1mE2b64aMQ+DmzdvcuLECb773e+ud1ceKnV1dezfv58f/ehHfPKTn1zv7iyJTKYgvL5j\niEDBYLh6dYonnqhjZsbLhQsTRCIZamos7N1bWUxkVlNjxedzMjAQIp9XEEUNnZ0eKistJZ7R9nY3\nwWCKiYk4slyYwP3bf7uTbDaPJCm4XAakbJZX/r8rTA5MIuq1tHZU0FZnwVJZicHhwLv/IOJMHEEU\n0EpxUn4/gXCejCwQy75LJJQoFNQUPXTu3o3D55uXxdrd3k42e4VDR1u5fmUCWa2l+ZFOPvCB+ocW\nILDWbI2zWENkWeHixUmuX58ilZKKs+GdOwsx6IlElgMHqkmlJHI5Gadz/iwzFEoxPZ3i7NlxwuE0\nuXSGmmoTe55ooG5XNd7ubqoffZT4TJhUOg+ZBM7aSmx1dSSTWU6fHil+MNNpNVeuTBEO5/B63zdG\n8mgRrE68DaWhlYuJCl2trcWpwdT164gmE1V791Lz6KMPVGPGaBR57LEGQqFUwU3pMJQ82BuNcDhN\nNJot2aYoBePvbmMECvqR557zEQ6nEQQNdvvitY9MJhGfr+AKnpyMI4tGHE3NxCcnkfMSoslESmXC\nU+Ph0JOthCa97HlqH0a9mpzJy5nrCYLBQaLRDCaTlvZ2F/m8guCwUd9agZxJF8JpbTbGxqJcvDxF\nNpvH6TTw5JONSJJCZ1sr+uAAibFhjG43nq4uLNUPR1C8GfnmN7/Jb/3Wb2FaIK39Vuezn/0sf/qn\nf7ppjJFkMlcirr9DKJRCUVSIoobqaguVlRZA4fr1KZxOAyaTiF4v8NhjdbS0OEgmJWw2HV6vad77\nymbT8/TTTcVcJA6HocTTmslI/PSnw6QEGyp9jGQywZVr0zTteQxzRQWTkzFOnRolGEwVE0gePtzO\n7TcHiMdz7Hj+eQwWC9ODwzir3bT/m+eo2t017/2rt9loOPQo3rYQ+57ciUpnxOmxIAgbqxbYSigb\nI/dhYiLG5ct+stmC5yCRyHHhwgRer5HKSsuSXGSiVs2t3gBKPo9Wq0aWRQJBidGJJF27QGexoLNY\ncPkgG4+j1mqLlU2Dk9GSlObZbB6328jgYBiv9/0XZiEsbXlr/oJOR8WuXThbW/HF42gEAd1svo2V\ncCcuf6NT0MKUCl6BRYWcgqApJn5bDEVRyESjqLVaRKMRi0XEbBaRqqswejwo+TwanUhdkxuVSkVl\nSyPu+myhIq6o5/jxQuXkeDzL9evTZLN5otEsPp+Dd98dw/ohH7W17xtMk5Mx0qksao1mtuJyoYKp\nzmikqfMw2fhOBL3+nknMysCtW7f40Y9+xM2bN9e7K+vCL/3SL/E7v/M7XLlyhe7u7vXuzn0xm0Us\nFnGeQeL1mohEMvT0BIrvbSjUpmpoiNLWVnhuRFGYV+JiIURRoLrauuDvpqcThIJJ9DYbosVCPpNB\nURTGZyS6pTw9PQGmppLo9QKKojA0FKG62oJeryUQSDKaM+F44sN4jqQRjAaqH2nFcI9lZY1Wi9nr\nZfNLVRdm88cDrTHBYKrkhgbIZPLFF/5iKIrCTF8fmalJYpOThIdHMAtZvG49Dod+ntobCpqAPBr6\n+mZ4++1hpqYSJR/LXE5GFDXs2lWBRlMwGvT6e2sXloJWr8fkdqO32zdlaN+D4nYbaW52MPeULRZx\nSUs8i5EKhRh4801uHTvGrVdeYfLiRfQ6NXv2VGEyadFoBUSjvqineeedYS5fniSezKOzWEil8gSD\naSYmYoyMRBBFDSaTllCoMLvK5WRmZpJAobhf4OpVEsO3mbx0icjICPlc4b6SZQWtVo1aENDb7WVD\n5D58+ctf5otf/CLOLRohdD+0Wi2/+Zu/yV/8xV+sd1eWhFarYe/eqqI+T6UqPNOdnR7i8ey897ai\nsGBY+4OQlyQCV68SvNZD8MZ1IsPDZBMJwoNDBPsHiPhnOPlaD1JOornZjiwXkpR5vUZGRiK0tTnR\n6wVyOZnATBZ/TEN1vWdRfdtWp+wZuQ8Gg3ae0EmtVhUFjosRn5xkoref3r44wYkZ+nv99F8fY+eR\nbroeaaS2dr61nc/LnDkzRm/vNIpC0fOSSuWK0Q7pdI5nn20mlyskXrvjYtxOhsRqoFKp2L+/Grfb\nyNhYDJNJS1OTvcTjtFzkfJ6xM2eIDA0Vt42/9x6CwUBrWxtOp55QKI0gqJmZSXHy5DC52YiZW7eC\nPPVUU8GInUly61aQRCLL9HSKpiY7O3fayOcVVKpCBAwUihWOnTmD1V2Dy6FjcnAQJS9jb2ygqsq8\nonPZTly6dIm33nqLv/zLv1zvrqwrn/nMZ9i9ezff+MY3MK9TJuXlUF9vw2ptYXo6iVqtxus1YTYX\nqqsbDEKJnkSlWrr+7X4Eb95k9PRpdFYrDXVWLr7bjzAxgWA0kszrycQSnHzvKvbWdk6+W1geikYz\neL0mfumX2mhqciKKAoODYXI5mfp6Gw0NtlXp22albIzch6oqM9XVlqKiGqCmxkJl5f0f1MTUFONj\nUc79yzn27uwiGY0z5Y8yNTyB69mOeaFlAFNTCfr7Q0XjJxRK4fWasFp1pNMSVquOlhbn7DpomZWi\n0wm0tbmLrtuVkgoGSQQCJdsUWSbU34+7rQ2324TbbSIQiHPixPuGCBTcyKOjUfJ5BZ/Pid+fYHw8\nik6nQafT0N7uZmAgREWFmaoqC/lcjplbt1BkGSU0yZFDtQyN2QnHZbp2eWjr8JbDdZfIH/7hH/IH\nf/AHm+IDvJbU1dXxxBNP8Pd///d89rOfXe/uLAm73VBS4gEK+q6uLm8xI7MgqGlqsi84AVwucj5f\nLCiZDoVor63EavRx69o4lTubyaSyjF4bwF3l5Py5YSYmCmnnRVFDOJwmGCxE5NXUWKmpWXl/tgpl\nY+Q+mEwijz/ewOBgmGAwhdttoKHBvqSXvFqjIRJOE52OornWy2OHmlDpmjC7XTx6oBqbbb7bPJPJ\nl7gXFaVQuK2mxsLTTzev6rmVWX1UavWCHirVXYK0TCZfzG8yl1QqRzRayHJ75EgdkiSTzyuk0zkM\nBoFHH62hqclR0J9kMsXaMHIuB/4BWhwW9E12Gna6EE3lZZml8Pbbb9PT08MPfvCD9e7KhuBzn/sc\nv/d7v8dnPvOZTettValU7NlTSEgYiWQwGrVUVJgWLIexbBQFeU5NpuzUJA5J4pGaNK4dRr73Ug/Z\ndA5HtYdsJobLZUKjKYhXrVYdsqyQz8tbImvqalK+GkvAatWxa1cFTz7ZSHd3BRbL0kIi9Q4H9Z0N\n6C0mouEE10+cZ+DsZWKxNBbrwiJPi0U3T4iqUoHTuTruxTJri8HpxDI3nwug1mrnFaiyWHTzhLKF\ncTZQUWEinZaYmkoSiWSIxTLodALd3V52764s5m0RdLpCKv45H4xsLFYQ0y0SDZJLpYiOjRH3+5Hz\n85NDbScUReEP/uAP+MpXvoJOVw51hkLxvFgsxrvvvrveXVkRarWKigozra0uamutq2OIUKhM7vT5\nSp47tVqN0eMhn0riqPYgWsyoBYHqxsrZ5V8H9fU27PaCVqxsiMyn7BlZI4K3bzN+9ixWs41Hn32E\nS6dugEaksr2FQ8/uvedavtNZKB1/4cIEiUQOUSzkKamrK7vzNgMqlYqa/fsRjUbCQ0MIOh3ujg7s\nd2WYtdv17NtXxfnzE8RiWURRQ2OjnZoaK/m8wvh4rLhkYzRq2bu3akFPmqezE1mSCA8MoCgKtvp6\nKnbvvmf/YhMTjJ4+TToUQqXRYK2pofbQoXWrtLzevPbaawQCAT71qU+td1c2DGq1mv/wH/4D3/72\nt/k//+f/rHd3NiTu9nby2Syh27dRZBlrTQ2ujg7i4+N0+SKcHBhgpCdC12MHMJr12F1GVKpCpE9H\nx+osCW81NrIPTlGUzZnmNh2N0vfTn5KJRgEw1dSRFGxo7R48DVULxrPfTTCYmp0Ra/B4TNvCklap\nVGzWMV8IKVsItV0sZ0s4nCISySCKhXEWhMI4ZzLSbMVQCbtdf99w4my8kG11saq5+VyOvuPHiU9O\nlmyvPnCAqr17l3Fmq8t6jbssyxw4cIDf//3f51d/9Vcf+vE3MrFYjKamJs6cOUNz89osD2+F5z0b\nj6PIMjqrFUVRuP3GG0RHR8HqJaM2oNOqsVZVoLJ7UatVeL2mJRej3IrMLvst+PEre0bWgEwkQib2\nvuA1MTYCjGA1dVJZuePeO86hkLr4wfN1FGrC5IsZB8s8fATx/i+du8V3hTBuBZ1OoL5+6er6pXg2\n0pEI6XB43vbI0NC6GiPrxQ9+8ANUKhW/8iu/st5d2XBYLBZ+8zd/k29/+9v82Z/92Xp3Z8My97nL\nxuMkp6aQs1mYHkULyEA64af1ox9ddlVrSZJRFGXVlpc2Ouv5pfp14DcAHfC/gL9ax76sKhpRRCOK\nhQRWc9AaH47uY2AgxPXrUyQSOaqrLXR1eeapzctsLCRJ5ubNGW7dmkGSZJqaHHR0uFc1GkYjiggG\nA1K6NNeCuIg3ZasiSRJf+tKX+O///b9vWpHmWvM7v/M7dHd385WvfAWXy7Xe3dnwaEQRQacjO2ci\nCiDo9Wi0S3+OJUnm1q0Zbt6cIZeTaWqy09np2fKRcevp+/974CjwAeC317Efq47R7S5oBOa85HR2\nO/aGBqAQMTEwEKK3dxq/P76qrsrx8SgnTgwzOhojFEpz9eoU77wzSjY7P3KjzMbhTsEvvz/BzEyK\nc+fGuXRp8v47LpFMRmIyKJN0tSFX+BBtBa+LYDDgbmtbteNsFr7zne9QXV3Ns88+u95d2bBUV1fz\nr//1v+Z//I//sd5deahIUp7R0SjXr08xMhJBkpYm8hZ0OjydnajnGB4aUSxsW0bRxf7+IO+8U3gX\nBIMpzp2b4MKFiWWfx2ZjI0wJDMCrFAyTuWxazQgUIhYiQ0PExscRLRYcTU0Y3W6i0QwnTgwVCy/p\n9QL79lXS3V1x77ZyeYLBVDFpz2L6kVOnRujpKc1zodWqee65FqqrN/YMeCusIS+FZDJLJFKIkHE6\nDciywssv38DvT5T8ncUi8q/+VeuSo7cWO97Jk8MMD0eRchJyMkZHs4m2ei2W6mosVVUran+lPOxx\nj0ajtLW1cezYMfbt2/fQjrsZ6evr49ChQ/T29uJ2r67wciM+77lcnnffHeXmzSCSJCMIalpbnRw8\nWLuk5RJFlomMjBAeGkKlUuFobkZldRGPF5JW3q+elaIovPLKTSYm4iXbLRaRD394x4Ii9s3ERtaM\nfBn4DPD/rHM/Vh2twYC7vR13e3vJ9oGBUEkCtXRaoqcnQG2tbcEbNRhMcvr0GIFAApUKqqstHDxY\nWwzvvJt8Xp63TZaSh1IJAAAgAElEQVQVZHljPfTblaGhMGfPjhUjaFpanOzZU7ng+CgKqzJuw8NR\nhoYiKEoh943aYmc0LtBd34LFs/0ytP7Jn/wJzz77bNkQWQItLS382q/9Gl//+tf5b//tv613d9ac\nycl40RCBO8unQRoa7NTV3V/DpVKrsTc0FL3gN25Mc/FkH8lkDp1OoLPTw86d3ntOKBUF8vn5z/x2\neIc/DGOkAviHu7ZNAv8G+GPgG8AbwA+AEnPwC1/4AnZ7oZBRe3s7hw4donE2RHJwcBBg0/08PV24\nyTOZaQB0OjfJZI5bt/rxeEwlf68oCv39MqOj0eLfZzKFcvRVVfkF26+rs3PrVpB4PFBs3+k0kEgE\nGBwMrvv53+/nrUw8nuXdd8eK9TFyOZmengBer4nmZgfT08mSsgN3kiStlJmZ0nYBUilpwYqnW53h\n4WH+4i/+gkuXLq13VzYNX/7yl+nq6uJzn/scLS0t692dNSUazcwrnClJMpFIhrq65bU1M5PkvffG\nSSQKz1kul+XChQncbuM9M8Gq1Sp8PgdTU4l574L7eVU2O+u5TCMC2dk+/Bz4V8Bc5c+mXqa5Fxcu\nTHD27HjJNrNZ5IUXWuZVu41G0xw7dotYrLTMvcOh58UX29Dp5tuSsqzQ2zvNtWsBMpk8LpeRffsq\n8XpXN49EOJwiGs2g1ZaGpK6Ejei2XU1GRyO8+mr/vBlOW5uLQ4dquXzZz+3bIWRZobrawt69VSXG\nSCyWIRRKo9Go8HiMS46UunZtipMnh0u2GQwCzz3nW/X74kF4mOP+sY99jD179vBHf/RHD+V4W4X/\n+l//K6+++ir/8i//smqC3434vA8NhXn99dsl3gmNRsUzzzTT0HD/Cr9z6eub4c03B+dtP3Cgmr17\n7700mskUvOX9/UFkWaGqysK+fVVLmphkMhLT00nyeQWn07BoBfL1YKMu0/w+8CSFaJp/oNQQ2bI0\nNzsYGYnOClcLZew7Oz3zDBEoVKXUaud/5HU64Z4ff7VaRWenh6YmO9lswYuy2jlKbt2a4b33xuck\n67Jx8GDtlld7rxRB0CAI6nnVRI1GLTqdwIEDNXR0eJBlGau1dBY0MhLh1KlRIpE0Go2amhoLhw/X\nLekFVV9vo67OyuhoFEUpaIja2914ttkSzQ9/+EN6e3v5h3+421Fb5n584Qtf4Hvf+x4vvfQSn/70\np9e7O2tGVZUZn89Jf3+QfF5Bo1Hh8zmpqlq+0a7ValCrVfMmH/crsqrTCezfX017u3vBd8G9iETS\nvP32CBMTMWRZweHQc/hw3aapf7MRBKz3Ykt6RgASiSzj4zFSKQm320hlpfmeSdB6evycOTNWtNS1\nWjWPP96wYJG9h0Ekkub48T6i0ffDllUqePzxBtrbVyZw24gzpdUkn5f5xS+GuHUrWNxmsYg880zz\nooZBJiNx/PgtAoFkyfZHHqnikUeql3TsZDLLxEScRCKH02mgstK8Kt6s1eBhjPvMzAy7d+/me9/7\nHo8//viaHmurcuXKFT74wQ/y1ltv0d3dveL2Nurzns1KTEzEiUQyWK06qqrMC3qh70c6LfHWWwOM\njESL21wuA88807wmQtQzZ8a4eLE0Aq+y0swLL7RsmFwlG9Uzsm0xmUR27Fha3H5npwejUcvAQBiN\nRkVzs2NZybBWm1isUMRtLopSEH6t1BjZ6mg0ag4erMHrNTE6GsViKVRgvp+HIhrNEIlk5m0fHY0u\n2RgxGkV8vvUxYNcbWZb5d//u3/GJT3yibIisgO7ubr71rW/xy7/8y7zzzjurHl2zURBFYdlLMguh\n1wscOVJPf38Qvz+By2XA53OsiSGiKAojI5F52yORNNFoBpdr49c2KxsjGxyNRo3P57znh0RKp8lE\no2hNpkWLo60Wd8rZp1KleUtWQ2i5HTAaRbq6vHR1eRf9u7wkkQ6F0Igier0enU4gkyld3tnqgrbV\n4utf/zrT09P88Ic/XO+ubHo+9alPcf36dZ5//nnefPNNrNbNsQSwXlitukX1IauFSqXCbtczM5Mq\n2S6KmgWXhaRMhkwkgmAwLFpC4mFSNkY2MeHBQSbOnycbj6PR6fB2d+Pp7FzTjJJutxGfz8G1a9PF\ntVCn00Bj48pnEmUKxP1+xs6eJR0MotZq8XR20rbDzYVLgaLS32wWaW0tZ8W8Hy+99BLf+c53OHny\nJOIS0vOXuT9f+9rXCIfDPP/887zyyis4ndvT47bR6OhwMzkZL0bvaLVqOjs9mEyl931kZITxc+fI\nRqPFpGyerq5Fa2g9DMqakU1KKhym7/jxktTDGlGk+UMfwlpTs6bHzmYlhocjjIxEsdv1NDbaFxTg\nLpeNuoZ8LxKJLFqtelXr/0iZDH2vvkrC7y9uU6nVNHzwKeKCk/HxGKKoob7etmUEqGs17n/+53/O\n1772Nd58803atmGW2bVElmX+03/6Txw7dozjx4/TMJtXYzlstud9vUilcqhUqvsKXwECgTgjI1Gy\n2Tw1NRZqa20lesRMLMatn/6UTOT9JR21VkvTU08Vc6OsJWXNyBYkHQzOq4GQz2aJT06uuTEyNZXk\n9u0w6bSEJMm43cZVMUY2C5FImkuX/ExMxNBqNbS3u2lrc61K1FIqGCQdCpVsU2SZcH8fvmefXZW1\n7K1OIpHgP/7H/8ibb77JiRMn1qzq7HZGrVbzzW9+k9raWg4ePMhLL73ECy+8sN7d2lIkk1l6egIM\nDoZRq1W0tDjp7PQsKqb1es2LhuunQqFiNfk7yLkcsYmJh2KMLMbGkNOXWTZqQUClnj98mjV2RYfD\nad5+e5jBwTCTk3EGBsKcODHM9HTi/jtvAfJ5mdOnR+ntnSYSyTA9neT06VEGB+dXw30Q1IKAagF3\nqUZf1ofcj1wux9/+7d/S3d1NIpHg7NmzZUNkjfn85z/P97//fT772c/yxS9+kVhsW2RoeChcuuTn\n0iU/kUghv9B7743T2zu9ojbVGs2C342lVBhfa8rGyCbF6PFgqqws2aaz2R6CVyRBOFwa2RGPZ+fV\nVdmqzMyk5p2rJMncvh26xx7Lw+hyYbsr1aOg1+Msf1SLyLLMxMQEp06d4nvf+x5f//rX+fSnP01t\nbS1/+Zd/yUsvvcR3v/tdbLb1izrbTjz++OOcP3+eUChER0cH3/nOd0jfVRm6zPKIxTIMDZVGxyhK\noYjeUgv3LYTR48Fy1zdCNJuxLje97BpQXqbZpGgNBuofe4zgzZvExsfRO52429owlMVka8paV5tX\nqdVUP/ooerud8NAQWpMJd2sr1tratT3wBkJRFILBIP39/dy+fZvBwcHiv4GBAYaHh7FarTQ2Nhb/\nHThwgD/8wz/E5/Otd/e3JR6Ph7/+67/m7bff5mtf+xpf+tKX+MQnPsHHPvYxDh48iL7s2VsVVhqc\nIIgi9R/4ADNuN9HRUXR2O+62Nkwezyr18MEpC1jLLItIJM3PftZX4h0xm0Wee8634lj2zSBoy+dl\n3njjNoOD789aBEHNk0820tzsWMeebV7ujPt3v/tdvvWtb3H79m1UKhU+n4+mpiaam5tLDI+GhgZM\nDyGMvcyD09vby/e//31+8pOfcO3aNbq6uti/fz/f+MY3ih6rzfC8ryd3V2BXqeDgwVp27bp3hfeN\nzmIC1rIxUmbZTEzEuHzZTyiUxmoV2bmzYkkVLe/HZnk5RSJpLl/2FyNb2tvdtLaujoB1O3Jn3Pv7\n+wmFQjQ3N5fDRbcQyWSS8+fPc+7cOX77t38brbZQNmKzPO/rRTKZ5cqVqVkBK7S0uOjsdK9q9N7D\nZlNG0xw9enRN82WU2XiUx3x7Uh737cMXvvCF4v/L474tmZ8mdpaNfCcs2zMyODhYLEm/1mynY+Ul\niduvvUZ0dLS4TS0IND75JI4VCCvvPtZSZkqrfS1Ws70Hacvf08Po6dPMrRfubm+n4Ykn1r1vD6Mt\nePAZ8mr1YyO1s1p9Of/GGyi3b5feV52dNDz22EPvz73auNe4r/SY5f037v6LeUbKfuUy9yU1M0Mi\nECjZJksS4cHB9enQFkHO5wn29ZV8MACio6OkI/ecQJQpsyiyJBEdG5t/X42MkL4rx0SZMhuFjeAZ\n+SLwy8DdFazKmpENQtzvp+/VV8lnSkN6nTt20PTBD67acbbbGrKcz3Pz5ZfnGXqixcKOj3wE/Tap\n+7Hdxn2tkSWJGy+/THJqqmS7aLHQ+pGPoNsg91V53LcfG9kzogN2A+U7cgNjdLkw35XTRK3V4mhq\nWqcebQ3UGg3OHTvmJSGy1ddvG0OkzOqjFgRcra3z7it7Y+OGMUTKlLmb9TZGfgP4G1bJQzP4EJcN\nHtaxFEXh2rWbZDLS/f94FVjovNSCQO2hQ3g6O9Hb7ZgqKqg7cgTbCtMHP8g1XO3rvprtLdZWIpEl\nkcjO2+5qbaXm4EGMbjd6h4PKPXuo3Lv3ofZtPdtaCavVj4fRTiqVIx6fP/5r1ZeYTkfNwYMYXK7C\nfbV3LxW7dy+7ndXoz3LbWOkxy/tvzv3XM5pGCxwF/nwd+7ChCQZTXLgwweDgKNeu5ejo8NDe7l6X\nEFK9zUb9Y4+RS6VQa7VohA0biLWhmFtfAqCpyc7OnRUYDIXwRo1WS8XOnbja2kBREHS69exumVUm\nm5W4cmWKvr4gsqxQW2tlz54KzOa1HWeNIJTvqzKbivXUjHwamAF+ApxgAc3I5z//eez2QmGw9vZ2\nDh06VFTp3rG+turP/f39nD07QTRaKECXyUyj0ah5/vn9NDc71r1/a/FzU1PTlltDPnNmjIsXJ4s/\nq1Swd28V+/dXr2OvNhZbWTtw5YqfU6dGS7SkbW0unniiYduHtW7lcZ9LPp9HluVifpXtzEZNevYN\nYA8FvchB4EvA/zvn99tawOr3xzl+vI9strQOQUuLg6ee2pp1SrbayymVyvHyyzcJh0vrdDgcej76\n0bYllQTfDmy1cb+DLCv88z/fIBAorWVkNot85CM7sNm2d4r0rTruczl37hwvvvgi6XSaH//4xzz+\n+N1z7u3FRhWw/h7wPPACcIVSQ+SB2GqakTsTp0xmes62tbUfN/o13KyakbmoVEurcbNRdR5lzcjS\n21lonBcb+81wTmvdxmbVPNy9fzwe5+Mf/zjf+ta3+O53v8unPvUpUqnUQzv+Ztt/vQWsd3hivTuw\n0XC5jFRWmku2abVqmprWrv5JNpEg7vcTGRkht4SHpsziGAxafD5HycdHpSqkddbp1scrkonFCA8N\nERkdRborVLvM6qJWq2bLBJRaH/X1Nmw2PVI6TWRkhPDQEJlYbJ16WWat+J//83+yf/9+PvGJT/Dh\nD3+Y7u5u/u7v/m69u7Vh2ciLltt6mQYKNVCuXAkwNhZDp9PQ2emhpcW5Jt6R2MQEw2+/TToUQqVS\nYfJ6qTtyBKPLterHuhdb0W2byUhcuzbF7dshAHw+Jx0d7nUxRqKjo4ycOkU6HEalVmOqqKD+yBEM\njvUt8LcVx/0OkpTnxo0Zbt6cQZJkGhvtdHV5UGUSDL/9Ngm/H0WW0dvt1B0+vK2qM2/lcc/lctTV\n1fH666/T3d0NwLFjx/jqV7/KqVOn1rl368dG1Yzcj21vjNwhnZYQBBWCoFmT9mVJou+114jNpnvX\nmkxoDQbMVVXUHjr00IR2W/nllM0WQrOXU+RKzufJxuMIev2KoyGkbJb+V18lPjlZst27cyd1hw+v\nqO2VspXH/Q65XB5ZVopG6Mg77xC4cqXkb8yVlbS88AKaFQgdFUUhE4uh0WrRGgwr6vNas5XH/dVX\nX+U//+f/XGJ45HI5vF4v169fp/KuvE3bhY2qGVl1Nrre4UGZnBxdM0MEIBuPkwkXQk9jOh35bJbR\n06e58fLL3H7jjTVLTb6dNCOiKCzLEIn7/Zz6wQ+4dewYt44dY7q3d0Uv7r7r1xccx9j4OHI+v8Ae\n96asGVl+O1qtpmiIyPk8sYmJeX+TjkS4de3aAx8/FQwy8Oab3Dp2jJP/+I/4L19GllaWn6isGXmw\n/b///e/z8Y9/vGS7Vqvlueee49ixY2t+/M24/5YyRso8GILBgKDXoxFF5FyOwZ//nNj4OLl4nFBf\nH2NnzqDI8np3c9uQTSYZeecd4n4/2Xic5PQ0o6dPlxQqXC4anQ5BPz96Q2+3o9asnaFbZj5qjQad\nzTZvu6DXo3lAD1hekhg9fZpQfz/ZWIxsNMrY2bOEBgZW2t0yy0SSJH784x/zq7/6q/N+99xzz/HG\nG2+sQ682PuVlmjIATN+8yUxvL5MXLzJz8yYaUcTV2orB6UQwGNjx4Q+vuX5kK7ttl0NkdJT+V1+d\nZwB6d+2i7tChB2536to1Rt99FzmXAwrLcY1PPom1pmZF/V0p23Hco2NjDP785+QShbBfjShS8+ij\neDo7H6i9eCBA3/Hj8+pH2Rsb8T377Ir7uxZs1XFfaInmDrdu3eLpp59meHh4HXq2/iy2TFNOdFAG\nANeOHejtdhJTU0jZLAa7vVjHQqVWLy0WtcyqoLpH7O/dtUaWi7ujA53VSmxiArUgYK2txeTxrKjN\nMg+GtaYG37PPEh0dRZYkLFVVWFZgFKpUqgW1Xaqy1+uhs9ASzR1aWlrIZDIMDw9TX1//kHu2sdlS\nyzRbVTPycHKaqDB7vWja2nA2N5cU1LLW1q5JxMV20owsB6PbjcnrZXrOLFcwGLDV1T1wm4ODg6hU\nKqy1tdQcOEDV3r0PbIiUNSOr047J46Fq715qDhzAWluLSqV64L4YnM4SY2Y6kykUs2xeWYLEsmZk\neeRyOc6ePbvgEg0U3rNHjhzh5MmTa3L8zbx/2TNSpgRLVRVWt5vpGzfIZ7PYGxrwdHVt+9TVDxNB\np6P+yBFCsow+m0VrMuHt6sJSVbXeXSuzQVFrNNQ8+iiiyURkZARDNkv9o49iny23UObh8MYbb1BX\nV7eo1+Pw4cO8++67fPKTn3yIPdv4rOcXpgv4X0AeuAp87q7flzUjSyQvSaRmZoDCrHo1BImyJCHL\nMoIorritpbLV1pBToRBSOo3OakU0mR6oDSmTQaPVrniJZiOzlcZdliSSwSAoCgaXa10KSkrZLGqN\nZsMLk7fSuN/hN37jN+jq6uJ3f/d37/k3r7/+On/8x3/ML37xi4fYs43BRs0zIgB34s7+Cvgz4MKc\n35eNkSWQCoUYPX2aRCAAUMgNcvAg+lm1fnxyksjICHI+j7WmpugO3ohs1pdTXpKIjowQm5hAazBg\na2ggPDDAzI0bSJkMosVC9b59K3aZb1U267jPJZdKERkeZvjkSVIzM+jtdqz19dQePLjuSeU2Klth\n3OeSy+Woqqri/Pnzi3pGZmZmaG5uJhQKod7Ck4yF2Kh5RuYGwBuA8Eob3Go6jvsdS1EUJi9eJDoy\nQj6TIZ/JEBkcLCZTioyMcPv115m8cIHA5cvcfv11pq9ff39/WSYbj5Ofk4tgI5zXau+z1u1NXrjA\nwJtvcv3cOSbOnWPk1CmGT54kG48j53Kkg0HGzpwhGQoVti0xr8dG1LOsdlsrYaNoRqRslskLFzjz\n058y+NZb+C9fZvLyZYK3buG/dGnBfbLJ5ILp+DfKOa1mO9tFM/LGG2+wY8cO5PukQXC5XNhsNgbu\nEXa9Wc9/pfuvt2bkReBrwHtAOSB+mWTj8XkZNQFiY2PkUimmrl0jl0wWt8u5HIFr17A3NZGJRvFf\nukQqGCxoErq7cTQ1PczubwlSwSAzN2+izBoYgsFAdGiI+MREiSckPDTE5PnzJKemEK1WKnft2lap\nv7cyCb+fuN9Pwu/nzsJIJhIhHQ4Tn5wkG48jmgt1prLxOP6eHiLDw6g0Glw7duDp7FxR1tUyG4PF\nomjuZs+ePVy4cAGfz7fGvdo8bBR//Z8CLwP/Mmeb8vnPfx673Q5Ae3s7hw4donFWkHXH+trOP+ez\nWdKXL5MOBouRF26dDlNFBUJHB6OnTmGZ3X7n91VOJ01PPcW5114jE43ink2yFAJq9u+nY9++dTuf\npqamTee2jY2P0/eznxVzdwh6PXI+z+TFi3i7uoBCAcJgfz/NTz9NcmoKANFioeW55zA4nevW943C\nZnfXz9y8ib+nB/+lS4Ru3y5utzc2UrVvHzs+8pFiOv+hX/yC6d7e4t+o1GpqDx8u3ivbic0+7nNZ\n6hLNHf7oj/6IfD7PV7/61YfQu43DRtWMiEB29v9fBU4Bc/PkljUjSyBw9Sqjp08XZ+ZqrZa6I0dw\nt7YydvYs0dkKvHeSK1lqaqjYuZO+n/0M7rq+1bMhn+vFZnw5ZRMJbv30p6RDoeI2o9dLZHgY7WzG\n07jfj6DT4fD5ikJjgPrHH8fT0QEUlswy8TiCTrfiOjSbjc047gBSOk0+l0PKZBh4802UfJ6BN95A\nSqdRaTR4d+2i9YUXionM0pEIt44dIxuPl7Rj8nppe/HFLS1SXojNOu4LsViis4X40Y9+xP/+3/+b\nV155ZY17trHYqJqR54GfA/8XqAWOr7TBja53WO1j5XM5dHY7no4O9A4HtoYGGp98EktlJUMnThDo\n6SFw7VohIkOvR6XR4OnqWjSB2YOe18xMkqGhMH5/HFle2gtmK2hGRJOJ6kceQWe1Mp3NotZqMTgc\ndP7Kr+DduRNbfT31jz2Gq7WVVDBYsq8kyYyNRRi9McSNV39WUocmPjnJ+ddfZ/rGjVUpLz/3PBVF\nIR4IEB4eJjE9vaK2Vpt0JMJ0by/+y5eJTU4u+rFaL12ELEn4e3q48cor3HzlFQKXL+Pp6CCkKPie\ne47q/ftpfvpp2l98EVdb2/s7qlToHQ6MHg9Grxf9HWHrnOdxKX1JJLKMjEQYHY2QySxce6asGXm4\n+3//+9/n137t15a8f3d3N1evXl2142+F/ddTM/LPs//KLJO8JJGJRglcvkywvx+9zYbOakVrNqOz\n2Zg4f56ZmzeBwsdy+vp16j7wATSiyOTFi1Ts3Im5oqJEbyIYDFiqq8mkUsvqi6Io9PQEuHzZTzKZ\nQ6fT0NrqYv/+arTajR1auFIysRj5XA5bQwMGlwt6e2moq8Po9aIRhGKa9VQkQv/x4yWeKEmjZyAA\nwb5hohdOkJyaosXnwGLVc/2HP8Tb3c3U8DDK7dsYvV4ajx5dVlSGLEkkZ2ZQZLnQt1nyuVzh/rhx\nAymdRms04u3upmL37nWPskpMTTH0f/9v0WgT9HpqHn0Ud3v7uvbrbkIDA4V6TbPeyGAsRj6bxdvV\nRaXTidZoxOhwzPN0JPx+Ji9cYOr6dbQGA+7OTuyNjTh37FiyV2R8NMjVS2Mo6SRqjYbbdifdu6pw\nOjd2hd6tTC6X4yc/+Qlf+cpXlrxPU1MTk5OTJBIJTA8Y9r/V2CiakYUoL9MsQHxykvFz51AUhf7X\nXsPd3o5KrWby/HlyqRStL75IYmKiWBQtPDhIZHgYh89Hxa5dpGZmMHq91B0+jP/yZSLDw8i5HA6f\nD2t9Pba6OkSjccn9CQTi/Oxn/aRS78/QNBoVzzzTTEODfVnntlnctnlJInD5MjM3byJLEka3m6pH\nHlk0o2l0bIxATw/pcBjRaiVuquXKkEKNJcO1fz5GPifhchvZ0WQm0NND1b596Gy24vKaZ+dODE4n\nkcFBdFYrzpaWex4vE40ycuoU8clJFFnG6HZTd/gwRreb8PAwA6+/XlLNVdDr8T33HOaKCrLJJNlY\nDK3RiM5iWd0Ldw/ujPvwyZNM3VW1Vu9wsOPDH37gPC0PSjYeJ5tIIJrN847d/9prhO+a/Ql6PS3P\nP4/J612wvXQkQt/x40THxwn19REbH0djMPDIZz5Dw+OP31fAqigKM7cH6XlvgJuv/5zg2CQmt5vq\n7nbannqcnfs3n/h8szzv92O5SzR32L17N3/1V3/FI488skY923iUa9NsEXKpFCOnTpGcnkZvtxc+\nVIrC9X/6J2RJQqXREB8fJzoygqW2FtFoJDWrZZg788pGo6jUaqofeQQ5nycXjxMdHSU8MICzpYWG\nJ55AvcRkTdFopsQQAcjnFaamkss2RjYL4YEBJs6fLxayiwwPk8/l8D333D2TxFlrajBXViKl00ho\n+OnxftLpNFiLDyjxeJZ0Kks+lytx3Sv5PP5LlzC6XEVtSmR4mOann8bods87VuDqVSJDQ8Wf4xMT\nTFy4QPPTTxMbHycdiaA1GovHldJpMpEImViMyQsXyCWTCHo93u5uPJ2dK/aYKLJMXpLum0AvucCS\nUS6ZJJdIPDRjRFEUpq9fx9/TU/QcVe7ejau1FVmSUODey5yLXKdMNEoqFCIyKzw3V1YCEOrvp+bA\ngRJjJB2JoMgyeru9eO1jExNMD44xeuYso5cLAth0LEkuI2HzOGjbVYcoll/n68HcJZrl0NXVxdWr\nV7eVMbIYW0oxtRF0HGt5rFQwWPgYKQpqrRZ7YyOJqSlkSUJvt2Opri4YKg4H0uyMWms0otHrqdi9\nu6BncLnQGo0Iej2hwUGiw8Okw2G0JhMGl4vh8XESsxEfS0Gv1yIIpbeRSgUWy/0zt25WzUh8chLR\nYkEz5+Oampnh1mx+l3uh1mgQTSZEnYhOV/hwJGQD7oZqAERRg2jQFeqMVFUxMWt4ZOJxTB4Pgl6P\nweXC6PGg1mqJ+f3zjiFls0RHRwGQ83mSwSDR0VFuXLrE5OXLxCcnCVy9ysyNG+Rml+RUGg2yLDN2\n5gzpUIh8JkMmEmH8vfeKS3mKopCYmiIyMsKNy5eXfK3CQ0P0vfoqN37yk0JCsDlC37u584Gei2g2\nI97DQ7MWuoi438/Y2bNkIhHymQzpUIiR06eZuHSJGy+/zM1jxxDNZu6ez1uqq/FHo/c8hqDTFXLO\nhMNI6TS5VAqVIGCtqysYP5cvEx4c5PxbbzH8zjuMvPMOo6dPk5ltMz4xgVrOkJx+/9mUs1nymSwp\n/wRqSnNbrKVmRMpkiI6OEh0bWzBXylLaWM2/X8/97yzRzK1Fs9T9Ozs7uXaXJ3C5x1+Izbp/2ZTe\nRKgEAaPbjXU7H6wAACAASURBVJzPo7NaafzgB/Ffvoy9qYmE38/wyZP0v/46HR/7GI1PPgmKQuWe\nPRhdLqR0mvDgILKiULl3LwogJZNFwWWwr4/E1BRpm410KISlqgpJyjM4GGFoKIwoamhqclBbay3p\nU0WFicZGO/39waIkorLSTE2NdV7/twKBQILeSYGpES3VVQ481jSJkQES09NobTZGczmcO3ZgXCRk\nVxDU7Gm3YJJCJOJxnG3taPVa3CYZd1MlDYcPER0bA0VBpVbj3bmT5NQUI++8g2AwYK+vR6XRcPu1\n15AzGdwdHWgNBc2ARhDQGo2kZmYIDw4WlmryeTJuN8G+PsxVVTQePUpsfLzgAZltT6PVkrsryiOf\nyZAIBDB5PExcuMB0b2/hPgLsKhXe7u5FvSaxiQmGfvELpFmjJx0KkY5EaH7mmQUjhlxtbYV8HYEA\nKApak4nKPXuK5/YwSAYC5O/6wIb6+hB0OrLxOEo+Tz6dxt3aSjoSIZ/NYq2pwdnayuDAAHGzGZVG\nQ/DmTVLhMJaqKpwtLRg9Hhw+H+PnzqERRTSiiKejg7EzZ0hMTeH0+ZBSKdI2G/FQiFQwiNPnQ63R\nUH3gAGpBQEknqa134b89QS5b8J6JeoHqBvc9084risLoaJTBwTB6LXhMORwOfcG4XWAMYuPjhXtP\npSpqnkquz/Q0I++8Q2JqCpVKhdHjoe4DH8A4R5e0nbiT6KzuAYpYdnZ28td//der36lNypYyRu7k\nrNiKx8pEo0yeP8/w7Lpkxc6daEQRc2UlVfv3c/K//BfUajX5TIZkIEByaorWj34UtSBw7R//kZvH\nj5NLJPC0t6O32VAB5ooKDNPTjL77LtGREQCEYJDRM2ewVFdz7XaKCxcmyOcLVsbAQJijRxtKll+0\nWg2HD9dSW2tlaiqB3a6nvt6G2Xx/z8iDXMPVvu7LaW9qKs61cwPIiShGTZax4RAhmxF3Iomo12OV\nJPyXLhEbG6P5mWdKKh/PZbq3l+DZsySv9pFISFh3ddPw2B5M2hze7m5EoxH71BTeUAjBYCA0MMDw\n22+Tz2RQqdUMvvkmjU8+ibWmhvFz55CyWeoOHQIKy3Hujg6C/f0k/H6UfB61KNLs85GYnGTi3Dly\nyYL40d3eTt1jjxU8bH5/waV11xq+oNMRm5gg0NNT1JnYgcmLFzFVVGC+h0YCCktJ0l2C6ITfT3J6\nesEPncHhoPmZZ0gEAsi5XMELtMhHbrXuhbntaO76QOclieT0dKHOy+y1yUQiCDodTR/6EBpBIBUK\nMfyLX5ANh7n+3nsoilLwUgYCxEZHSQQCNH7wg9Q8+ij5XI70zAzZVAqjx0Pc78fs8aAzm0mFQkyf\nPk3t4cMkZo0yQa/H3dGBtaaG0MAADV1NZMMhZoIJRIOehu5mfIf2zhPA3jmngYEQJ04MU2mH8cvv\ncXZknPp6Gzt2NRWMiDnLfMG+vuJ9BjB9/Tr1jz1W/L2iKExeuvS+t4yCx8Z/+TKNTz55T8N0ueO0\n0nF9mPv/0z/907xEZ0vd/84yzUqOvxCbdf8tZYxsZQJXr5IKBqnavZtUJMKlv/kbUKmw1dVha2xk\n/+c+x+ipUziam8nG4wydOEHj0aOEh4cZfOut4qw3cOUKKpUKS1UVgl6P3ukszHI0GgS9HntDA3I2\ny8z4DDdvpoqGCEA6LdHbOz1PC2IwaGltddHaurVnR/5bgwy8/hoRf5BMIoHFbsb66AHM3QcwyfHi\n8lZyeprY+PiCxkhyZobxc+cK+V/GBzAIArHzQTxOkel4HEtlJWJ9PSaPB5PHg5TJMHr6NPb6ehKB\nAMH+flCpSAQCVOzdSyYcJjoyQqarqyg4dTQ10fDEEyDLyPk8tro68rkcPX/3dxicTjSiiKIoTF2/\nTuNTTxUEyxUV8yKsDC4X5upqQv39JYJXACmVIhMOL2qMKAukxVZkeVHRomgyIa5jJmBLVRUGl+v9\nfDCKgrWuDpVGU3I+UiaDavY8Rk+fLupdYhMThG/fpvlDH0IwGJBSKaKjoyQDAay1tXh37WLy4kWk\nXI7pa9foO34ctVqN0evF2dyM0e1GEEX0DgdqjaZQVyqXw+h2U3vwIKGBAbosFjKRCEaPB3d7O7Z7\nzMplWeH69Wn0eoHkwFUmbhSSXI+PhHDZtQjGizQ//TQqlYp8Lkfg6tUSr5A0m8XZVleHWhDIJRLF\npH1zSQQC5FKpZQnftwK5XI4f//jHfPnLX36g/X0+H+Pj4ySTSYzb7NotRFkzsgmOdfPaNeJ+P9HR\nUfKSRGR4GI0oImcyoFIR6Okh4fej1mgIXL1KqK8Pg8uFzmYjNjqKLMsokoQiSaAoxCYmgMIL1VJV\nhberC293N97ubpKzH7RMTiaXK62hYjRq0WhU3LgxTX9/kHg8O6+vy2EzaUbyksT4+YtE/IWwU53J\nRDankJ4OoLPZSQQCTKfTxb+/11p6JhIhl0iQz+UKws5slmwshqIoiGYzY2fPMnHhAqlQqNA3lQqV\nWo3R7cbh82F0uzF5vYVMr2qRpLGaGbWHqZl08SOvUqkwV1Zira/HWltLNpHAH40WtUGyJCFLElqD\ngUwkAoBoNFL/xBNU7t2LuaoK786dNB49iv5OxeE5s97pTKZovC6GtbYW9V1RIganc9Vc+muhi9BZ\nrTQePYp3507MVVXUHDhAy/PPz8sRY6uvRzSbSYfDxWs4nckUM/GGh4aKy0tKPl805lzNzVi8Xowu\nF5HR0WKhtGw8zvj58whtbZirq9FZragFAYfPRzIUInD1KoJeT/0HPkDL88+z85OfxPehDy1oiEhS\nnrNnr3L9+hQajRqPQ0t0bHzO72UkSSE5NVVMwCal0yWlI+4w5vcXBNUUvEaaBcZcazCU6KcWu75L\nYbNoHt566y18Pt+8jKtL3V8QBFpaWuidk5F3Ofvfi826f9kzssFJR6OFglv//M9MXb1K49NPM/jW\nW9jq64uuY4PdjkarRWs0ks5I4KjEe+goWZ0No9eLwekkNTNTzItgqqhAMBgwOBzFpZ7sncRamUwh\n90SNE+eowthYYbtOp0EUNVy4MMnt22FAwWbTc/RoI5WV5nW6Og+PXDKJWkoSjRWih0RRg8kkIqfi\n6Mky1/TQiOI9w241ooh6VtehFgRkScJaV0dqeprx8+dxzmZpDfX3o2lrQxBFnC0tjIVCmLxe3I8c\nJnjjGt7Dj3HynXF6z93C3dnFYMLBnj0yu3ZVAGDyeLDW1jJ19SqyJCGazVTu24eg06HWaDB6PJi8\n3pIoFYPdTs2BA/P6bKmunuc1sdbVYaqoWPSaWWtrqTt8mMDVq0jpNEaXi8q9e5etAclmJTKZPCaT\niFq99tkIjG53yfJFLpVCmi1CqSgKtvp6KnbtAgrLWBqttuhR0FmtqDQadGZzsSCiaLGgt7/vTbT7\nfISHhhBmn71UJEpOrUdjVKN3uRk7f4HJs2cKOp50GpVKhUqlInD1Ko1PPrmoNyqblXj33TF6esYR\nhDRjY1Gammx4m2sJTRS8N2aziEEvFPo+a0SIJhNGl+v998AsOru9aHRqtFq8XV2MhMPks4WJiEan\nK9TWWWL03VZioSWa5dLV1cW1a9fYN1uGYzuznnfQQeBbgAycBf5/9t4sSK4zPc98zsl937fKqsra\nV1QV9o0Ed7JpqZvdklrutmSHbMdceUZjxcT4YkK3czXhC4U9F57whT0jta3o1S31xuZOgiR2oFZU\nFWqvyn3fM0+ezDMXWUiyCBAECJAEW3ojEMFM5n/+c/6Tlef7v+/93vd/e9gD/i5yRsqJBK21NVRa\nLZr9VN7t4ME9Pk6r0UCWJEJPP43W4SIXjmH0BSjqfPz2tS1OjIwQPHkSlUZDMRZDb7Mx+s1vYuvu\nxuT1IpVKBI4doxiJUEkkCOl0bVE0t4vjx3XI8h6ZTBWn08DKShqdTk2pJLG2liEeL7G3V+D55/s5\ndMiLWv1gImePE2ekuu+oq9brMbrdd9a/1VoErRGTSUuhUKdcllCrBYam+nGFuqjF9/CWy52WWHMg\ncGB4U5Ypx+M0ZRmDy0VTkrAEg5SiUZxDQ6Rv3cLkdqPfL+3ENiPY9B4uVffo8vXgPmXk6ocbrK3m\nsfueAKWLre01TP4AaoOBcrHG/Hyc7m4rTqehTXw8dgxrMEi9UEBjMpF0u8nv7HSIsSafD8tduBu3\noSgKtVwORVEIPf00+Z0datksvR4Ptt7ez5StFwQB99gY9r4+5HodrdncDqDvE4qisLaWYXExQbUq\n43IZOXzYh9drPnDvHhafdRyNwUDP6dNt/xhFOVB+09vtOIeHic/O4tbpUDQafNPTdJ85Q6Naxej1\n4hocpF4sUs1k0DudWPx+3GNjhC9dwjE8jKqsUKk2sPk9eFw+Lq2/g713ALVOQ6MlEJ5bZPDZZyju\nbpNeWblnMBKNllhdTaNWtwnUTqeR1dUMA0+PYppfRS00CYXsqHRaPBMTnXsoiCK+mRmkUqmTBTK4\n3Yw/+eSBvwXn0BBqvZ787i7Cfpn4Xt+h+1nfh/38VzFelmV+9rOfcfny5Yeaf2Ji4g7eyNfh+r+I\n8V9lMLIFPEvbn+ZvgEPAvXsjfwfx8dT63SCVSjQlCVGrZeSVV1DpdOhtNuJzcyAI1AoFgidO4J2a\n4tqrF8hnS8jLMdRGE96xw6zEdJz9/VcIHDlCvVTC2tWFtbcXrclEfG6O1M2bNBsNtBYLgWPHsPb0\ndPQgfD4zL788RCZTpVZrkMlUKZUkZmcTLC+nkGWFGzfi1GrtneupU19PF9rE4iLx2Vmk/WDCNTJC\n4OjRA9oPqUwdfAP4euLYbDpQwOJx4JqYxNHXh8njQSoWURuNtCSJ8KVL1PN5zIEAlmCQ+Oxsu5tJ\nlrEGg7hGR3EOD7eDTJOpTSAWRaRymZqiZXU1jV8bo1p0Eg4XqddlMpKVptZKXRaYW0iCtx9dq0gt\nn6fVkKhU1JTLUkeNU1SpMAe6OmRRo8tFbmuLciKB3uHA0df3qcJmUrlM9OpV8ru7oCiYAwG6TpzA\nNzX1wOur1us/s6RzN0QiRT74YJd6vZ1hKBYlymWJb3xjEKPxswnSjxqftlb+w4cxOBzkd3c7gUr0\n2jWq6TSO4WFyGg2F3V2kYhGtxUL3qVN4p6YY/da32Lq6QDydotXU4vSFCG9naNqC6L1aYtevk9na\nwRLw4RwexeL2HPA2uhvy+foBnpfBoKanx47R5eL3/tfvIyUiiKKAvbcX6ydKPGafj8GXX+7MYXS7\n78hi3Q5APo2n8g8F77zzDn19fQ/94J6YmOCv//qvH81Jfc3xVQYjHxdJaAB3N1l4AGxtbX1pGYuH\nnavZbLG+nmFlJU2zqTA46GBkxNXRn7gNvc1G1WrFtK8Zsffhh2iMRnqffBKtxUL/M8+AIFDY20Mt\nV7EJJUr5GBZTN+ZGnFzNQSEv4tlX7Lwd9GQ3N4lcudIp3cjVKrEbN0g3Ggx/TH5bp1MTCFioVhuY\nTJpONkSW2z94Ho+BXK7GjRtxJic9mM33b/L2edbwUd/j5dlZpPn5Tr1crlZJLCxg9vuxh0Kdz1Wr\nMtGqGe+ZZ2mVMu11NDkp0n5AaU0mIskkPp2Ozbfe6oiT5ba20NlsiBpNh09Q2NtD73Aw+OKLNPbX\nvV4oUE4kUGm1CHYvVlULg0uN3gwNROauRdDJJSqpJKJsxtHVxepSjAG/gFqnR6XTYTBoMBrbAVSx\nWGdnYY3I8gY6vQZdwMqpZ862d/f7DrGtZpOmLN81xZ5cXDzgLptdX0dUq+l7+ukv7e9sb6/QCURu\nI52ukk5XMRq1j+w8HvY4Ko0G59AQBbUaTbXK5f/0nyju7tKSZbbeeYfec+foOn4cqVikWa+TXlvD\n6PXSe+4coqebknUZqSaxm2siV/bIbYRRZWRa9TIGkxary05iaRn11Bjdx+9M5yutFvndXQqRCDQt\nNEoFWhoJna5datLpVPh8ZoI9QRi7t2W91mg8QER9FGv8oMd42Dm/jPE/+tGPPrVE8yDz3y7TfN7x\nDzv/4zT+cSj0TQMeYPmzPvi7hLW1DO+/v4sstxn6yWSZWk3mxImDKU+5WqUlyzRKJVIrK3SfOkUt\nlyMxN4dKp8Ps9dJsNFDpdGQXr3Hzt+92WhAnvvUyod/7p5TWFsnfyBM4erSzsy3s7XUCkduo5XIo\nn2LKZjBomJ72E4uVO+fc32+nu9vGjRsxBgYcSFLzrmMfZ0il0h3EPaXZpJJMHghGbDYdiqKwlVDQ\nat0oioJSh/GjB3f8+d3dAw6+AIn5ebqOHz/w3m3NjfTKCtV0muDJk4QvXSKzvkE9XcB/6hzR9TAa\nOc7oN16gsLWBUCujQmZ3c5Npj5WxqW5axQyWrgA6vYbxcTculxFZbrL03jWu/Y/XqVfapFqNz0jQ\n5cRsM1KKxahms1TicTQmE46BAdxjY51dsCxJ5D6m4HobxUikI8L1ZeBu/BBBuKfQ6VeO6PXrpJeX\nqRcKqDQaavk8m2++SeDwYfQOB0qzSeTSJUqRCJ6JCay9g8QKq1x6c5VCrs6xpwL0Hx1HunUNtSgg\n2myYg92svv42Sq3I0Esv3DFn8uZNwpcu0Wo00Lh8uNQi0XI7GBEF6PaIKLE1trer2EMhrN3dX7kP\n0dcZzWaTn/3sZw8s/343DA0Nsbe3R7VaxfAl6uk8jviqgxEn8B+Bu4aYf/EXf4F9n/g1NjbG6dOn\nOxHXbcbuJ1/fxqf9/0f1+vZ7n2d8q6Vw9eoS5XK1s3up1VLMzxcYG3NjsejY2tqi1WxSvHqV8qVL\nSB4PeUWhNTeHb3q6fbxWC8v16wSOHSOayRDe3UKrFWlITRouO7u7OxzS1SklCsQLBTIXL2Lt6cFg\nt5MoFsnU67j3a8apeh1RreZ0d/ennr9WC3/wB2NYrTr29nYAWF5OYTCo8Xgk0ukoTufgA63HJ+/X\nZ+FR78hDvb1srKzc0bqqNho7HBJRrcbjMXH4sL9jCKjXqxkZcREIfJS67+vrY+/ixTvm+GRbKNA5\nbi2fp1GpoDEa6T59GsfgINVak4bFT+7dWQwWI0Jik75eK5GtKqKgxxIIELm1wx/9+bdR6/RITRGX\ny0gg0OZSpBMFNi5c7wQiAEqmxubb7+Ab7KGWzbLx+uugKDiHhqhmMjQlie5Tp9rnK4p3dMFAu+wj\nqNVfWvaxu9vKzZsparWP7o3bbcTlau/cvyzOyIMc5/Kvf90O2FotlFYLlVZLPZ9HURQEQWD99deB\nNqk1duMGjkKBmWkfC5eMlIoN1uYLHPmzU5jHA1STCcrpLPndPXwj/biGBqlls9g+xtGQKhWSS0ud\nrFsjk2Ay6GXEFkLl6UIjlVDCyySvtzvosuvr9D75JM7Be2dIHuXa/K5xRt599126u7sZGBh46Pk1\nGg2Dg4OsrKxw+PDhBx7/sPM/TuO/ymBETZsr8r8Dibt94K/+6q8+dfAnL/jr9LrVUtDr3eh0HwlC\n6XRu9HotrZbS+Xw5mSSWSLQfhkYj7tHRjoGXTVGoF4voHQ4K4TBd4+PcKpXQ2vTIjRaCIOMxaqln\n2mqWbp0OQRBolMsY7HbGjh5lM5PpZAXcOh22UAjjfhfIvc7/xRcHeOMNWFhIEAxqOHrUz/HjwTse\nzA+zXl8WTD4ftt5eshsbnffUBgPVVIrE3BxaiwXf9DS2nh6mpnwEg1ZKJQm9Xo3HY7xjh2n2+Uio\nVAeyTo6+PnR2e0eLQlCpcAwNYfb724q6soxKq6WWyxG9dg1TsId6y4BKJaDRa8lubXByKkik28r2\nZhatTsXYmJsenw57d9cd1yTX69RKH3239AY1dpNAJRFHd2Sys4uGti6GweUiu7GBZ2ICncWCSq3G\nPTrK7sc6sARRxDk8/KVqSQQCFs6d62VpKUmpJOH1mpia8mEw3NtU7quEa2QEnc1GPZvt2DSEzp3D\n4HIRu36dZqOBPRTqZKGK0SjuXj1PnPQi6PuhIZHf3MTcZWL1/BUMJj2tSgmdVoXBaiG7vo57dLTD\nZ5JrtYOKsYqClI5jFFsMPTHJ1rtzNJoSBpeL1r7bd/LmTex9fQ9EJv5HfIQf/ehHB+TfHxa3Say3\ng5F/qPgqg5E/Bo4D/9f+6/8DuPAwB/y6cEbUapH+fgfpdPWA4GUgYMZq/YhzoSgKZp+P3MwMBkUh\nOT9PJZmk9+mn8c/MUIxE0JhMaAwGDG433adPdzQP5HodWZLQmc3U9tnxGoMBzX4rp8Xvp++ZZ0it\nrFAvFLD19OAaGWF3b+8zrysQsPD97x8iHi8jCGC36z8XoXBlbo6A04nGbMZgvz9TvUd9j/ciEbrP\nnsUSDHYUL2u5HOlbt9oy6sVipzXW4HDgdBo+1a59a2uLnmAQ38wM6ZUVmvU6GpOJrmPHMPp8WAIB\npGIR437brahSYe/vJ7e5SXJxEZ3dTu+TT2J0uynG4tTHHTj0JgZOTJNdu8WQXcvQaTuC0kIUyujM\nd5rHleJxxHoRm8NIYmMHj9+GUEyQKlVxm3qp5/Ptdk6hrbbalKR2wKEoNBuNjtOvra8PjclEZm2N\nRrmMc3AQx9DQF3IP7oX+fge9vTbq9SYGg/pA8Pe4cEY+fhznyAgT3/0uycVFBJWK4MmTtBoNYtev\nI6jVDL70UseJGWiLqgX8qBuL7C0s0zAI+JwevL/3NC8N9pC4cZ3i3i4Wn5fY7Cwmrxfn8DDeiQmg\n3UqsdzjuKDWWdDrkep1qKkX40iUalQq27m6svb2dQOl+gpF/5IwcRLPZ5Kc//Snnz59/ZPN/kjfy\nOF//Fzn+qwxG/vv+v689UqkKiUSJQqGO0ailr8+G1Xrv7oGxMTe1mszWVg67VY3f3MDnqlFOJDC4\nXBT29ignk8iyjEqnI/b++2Q3N6mmUohaLb1PPIF2f7ftm5rC3t9P1/HjrL/6KvViEcfAAMGTJ9tm\naIqCSqfDOzV14KFv7e7G2v2JDphPiDt9GtRq1V39ZxRFIZut0mqBw6FHpbpTV09ptYjPzbF3+TJl\nUURjMOD9HF0ajwpaoxHP+DiefRn1+Oxs+32LpS2HHomw9+GH+I8cwfKJlt1PQqXREDx+HOfAAHKt\nhs5qRWtul0/04+MoikJua4utt95CbTCQWV2lViigMRpRZBm5XsfgclGStehtXRjcvSTVZuReGyax\njpCLolWrcAwMUE2nqeVybb0Qo5FiJMLmW2/RajYZP3uIVqVAJbxNIZ7EdXwce08X66++indmhtzm\nJtVMBq3ZTKNSwTk0RHJpicLODlqLhXIyiUavxzk0RODIEQwOxxd+Hz51TVUiRuOj1WdsNltks9W7\nfj8fBha/n+CJE+hsNnRuP3N/9xq5ZJau4V409RxyvYY1EKBRqWD0erEODFI3ehj91jcJPZUnl4sT\ntJvJzl5EqJfQmQyIPd1Er13D4HCg3/eRcvT3U0kmkRsNXKOjyLUatWwWQRQxeDzUrVY2XnuNYiSC\n1mwmMT9PYm6O0DPPtAMkWYbPaM3+R9yJ8+fPEwgEGNoPzB8FJiYm+MEPfvDIjvd1xePMYlLuJRv9\nWZAkmXC4SC5Xw2bTEwiYv5D0bjRaZG4uzsWLYTY2soDC8eNBvvOdsTtM5e6GfLpI9PIFipvr5HJV\ncmVwDQ/hDflIn38dpSVTTae5+dOf4h4ZaWuMlMvoHQ4GXnqJVqOBJRhEyuep7nuZKM0mgijiP3oU\njdFIo1RqS3v7fF8oca1clrh6Ncrubjs709dn59AhLzbbwcCsGImw/tvfdoSToM2hOPxnf3ZPqfDP\nwu26/MMgvbrK1ttvtzkdGk1bSr9SwTk8jGNggNBTTx0gtn4Wavl8m8yo1WJ0u8ltbbH97ru0ZBmD\nw8HqL36BNRRC0tpJpSrYPDYsM2dZ3aywsJikUof+QReK3KAlSZw6082QX6Rya64tUCUImPY7M+Kz\ns2Ru3QLa62kfGqYQiaI1GlBrNVQzGZKLixj3HYBj16+3HYK7u7H39ZFdW8MaDLL74YcUw2EMTifB\nU6cQ/IM0bN3oDFq6uiw4HI+WaCcIwkPd9wdFOl3h0qUwsUgejVZN/4CTo0cDd/19kCSZtbUs6+sZ\ntFoVE6N2zEIFRW6gt9vvUJNtNZtsvH+RVEVD8tY6a2+9S7MuUWu0GB72YlYKdJ06RWZlha6nnmen\nGWBzLU29VsfqtHJoxELhzR+S31hDazJRjEYZfeUVjG43tVyOZr2Oc3gYuV6nGA6jNJvobDb8hw+j\n1utpShLlRIL43FzbJykaRVCpcI+MsPP++3gPHWLiu9/F2t2Ne3T0y1ryu+LLvu+PAn/+53+O3+/n\nL//yLx/ZMZeWlvjOd77D6urqIzvm44r93+e7/kh/1QTWLwSy3OTChTC3brXbZgWh/WB88skeKhWZ\narWB2azFbn/4H9WtrRxraxlWVz/q/5+fj+P3m/n2t0fRaO6dCq1Ht9l98zVSuzFyhQYmfxc7+RI6\nYZJEvIC/2wGiiNHlopxKYevro7y/q5WKRRrlMnqbjVu/+Q1ak4l6oUCzVmv7l8Tj9L/wAt7JyS+l\nPry8nOoQWs1mLR9+uMe1q2FmJuwMDVhxuszobTYq6fSBQATate/Pi2q1wcpKms3NLHq9mtFRF/39\njs8VmBi9XnR2O6JKRfTatbazrV6PzmKhHI+z9utf4xobQ2s24x4Zuav/TDWbpV4sUs/nKUajbeVS\nRcFz6FBbnr/RQFCpaO2TWpOJMhmphUUrITWsvPV312gYXaTTNapSi+XFCN94rpcbH6wyPWbh0vuX\nCXo1mExaUBTK8Tipmzc7ip+311Mq5KlnUuy+M0+jXEZrseCdmkJjMuHs78fe14dUKqExmdh44y1U\nBjPoTW2ZcqHdtpJu2fnwp3MYggVMbhc2m46nnw7h999dc+NxR7PZ4sN315k7P0+9UESlUZPa6cJs\n1jIz47/j83NzCa5fj6Io0O1Vc+G/vY1dVcNuVaGzWgkcO4Z7ZKRjVFfKFrkyn2d5u4a5GGd5KUNv\nrw2dXBTTiQAAIABJREFUIrG9meHQIS8mt5tWC5J1AwvzO1RTSVqSRDVrJX2zyGGPta2s7PHS6j/K\nm+8nsA7ZCQV99Ha3y2uFnZ3OOdbzefYuXOiQkddefRVFllHr9QiiiFQooLPZ6Dl7FrVeT71QOFgq\n+kfcF1qtFj/5yU94++23H+lxh4aG2NnZoVarof8cejy/K/idCkZu16pisTLr65mO+I+iwNJSEkVR\n2NnJY7PpMZk09PU5mJi4u2z3/cwVCoUolxtEIu122Far1SaJNlqk0xUKhXqH+S/LTVQq8cADstlo\ntLU9VlfZ281RLUnozSbGT0+iESSis/Po5RCtYFfb60RRaJTLFMNhQs88024vbTYpJxJ4xsZQ6XQs\n//znqFQqDC4XUqlEbmMDo8tFQbGwtZVFlhV6e22EQra7pqg/b71PlptsbeUAsFh0vPnmJjQlguY6\nscYucthAqM+Ga6C/zVsRBFK1Wqeb5377NT95foqicPVqhKWlVOe9WKyEIAj09392aeGTxzPY7YSe\nfJL0rVvt7IXT2VGYTC0vo7fbacoyyfl5PNPTjHzrFfItM7FYmXB4h26DQG1jCR11BKWJ3m5Ho9cj\narVUUinKiTZXW63TYXC56Dp1inhWpstmoJRIoekboLQepiEVqWe3yCZU1AsVykUvBk2LRqlAYm0T\ni7oLk8nZOe9SLIZvepri3h5NSULYL3/ltrfJbm5Rdzqwp1KEL15k6k//tF3yy+URBQHFYCZfgUY2\nQ11tIp2qYHfocQZ6mFtMUc5X0PvbgU4+X+eDD+b5wz88e1/364vE5/muplMlbl1Zohxv3we5CpnW\nTZZnXUxPH8wcJvcSzH6wQjFfxe53oSkkEMo5KsioFTXVWpPsb96kL5PD4nWTV6mQakZ29krsrmeY\nGrAgKC12d/NMHfJSKlRpKrB2/iLR9Qjl7irxaJ1yNgelDOauLgRtjVaoF9RacoZu3vrtOoqi4DeX\niYXzOL//BEYhicHtplEud1yRsxsbncC4USqRV6kw5XK0ZJliJEIxGsXodGLt6aEpSRg+Jnf/IGvc\nkuWPjPFMJkxe7x2OwZ91jAed80HxRY3/4IMPcLvdjIyMPNL5tVptp6NmZmbmsb3+L3r871Qwchvl\nskSj8VErZaUicf16jGy2RjxeolqVOXkyiCwreL1GHA4D6XSFZlPB5TKg1d7fsgiCgNdrxGrVddRJ\nVSqB3l4bVqsOg0FNJlNlaSlJLFbCatUxMeHplG8q6TStVotqvoBao+XoK08gF7LsvPUm3adPMfbc\naeJXLiKgMPHHf0xmbQ2t2czIt79N3zPPIJVK3PrlL9Ho9ejsdlrNFoGTZ4heuoAgijgGBqjl88R3\nElzaSFMutzso1tcznDgR7PiYPAoIgoDJpKFel0kmyxSLEjMDKlQ7t1i6sAyyzLEnhug7OsngN76B\n2e8n9bF2XkvXnV0h94Nstsr2dv7Ae4VCnevXo3i9pnb24C5QFIVMpko6XcHrlQ4QcC1dXRg9Hmr5\nPKVIBEEUye/uIlerqLu6yG9v02w0yK2vE7m1x2paz6XraZzmPPPXb6BR6jz54iGyF98itbyM99Ah\nVBoNoaefxt7XB6JIJZEgevky9oEBLNl1dt9+n/xehME/DWK1aEhEM7RqFRoVVdsdVythtRtRqwRE\njQaBjznI1mo0ZZliIokpEEBptVCbzKR3ImwtbKDVWamW61g0Ina/HwWIRstsr8YQRRG9MYt3aJhS\neA+T1USrViG3l8N3zkl5t4Zar0Nr+qiLpliUkOUWavWdD6HG/sPxQf1nviy0qmWaterB95otlHrp\nQCCSWVsjurxFem2LfKaEWQgiOirc+s1vqWRzWNR1jB4PM3/yffI1FcVoma10AUVwkdgMI0oK125I\nTD97hujcIga3G0e3Gv9UHxd+8HNUag3Bfh8f/OLv0drsWKxG5EoFq9cGrSZNi5elpSzFTBGr10Vd\nVhg/PEg5sks4ukQtncQ5NITGaiezF6NeqaG0WjSqVQSNhnouh6ZaxdbXh1yrYevtxejxYOvpQWsy\nHeA+VXM58tvb1AsFzPvdZXdTzG02GoQvXSK9ukprX9vIMzlJ4MiRfxCdOfcSOntYTExMsLS0xMzM\nzBdy/K8DfqeCkdvRmNWqQ6tVdUS40ukq2WyN6WkdW1s5ZLnF/HycQMBMPt9WDw2HC7RaCm63kdOn\nu/F47uxUuNtcvb02hoedXLwYplyWMBg0mM1aTCYN+Xydy5cjxGJtZ8xMpkoyWebFFwfa/hr7WgSe\n8THcWgOxa1ex+b24hoYo7IUxu12MvfIKl/7Df6Dne9/jxL/5N6Ru3qReKpFcWmL3vfcoJRKodTo8\ndieKRkchU0DTM4Z3agiN0UglkyFXUqhUGp1zbzYVlpdTDA05Og/hRKJELFZGEAwkk+V7Xn8mU2V1\nNU0sViIYtDDUb0Ws5ugzZnHTpOq2EovZcKljzF6+jkHXzgjVS2V233+fruPHCT31FLaeHirpNEaP\nB8d9RtKfjLibTaXTDq0oCpFIkXC4SLEo7ZOJ7YyNuQ/wSSRJ5saNGKVUhlY+xaW1KAPTg/SOf3Rs\npdXCNzNDq9HoiJjZQiGMDgfJdJa8YmZ7V0JMVMmXRZLJCsM+M7FMkZmzY7QqRaqFUltnolBAZ7EQ\nn59n5l/8C/YuXODWr36FJRikUa+z+urruIeH0Vht5GcvEvQeJrdXxufpwuVR43X0Md5v4OhhPzuL\nGww9cQJ1dofrH65id1rQCRJWnZNL77yO1arFN9KPrrcLWVVEkkWKuTJGixHMRlR6PZkiSHo7NWmP\nSqlMKp3m92cmGRkfYm92kfE/+A6F7S3UUgm7w0HN4OmQcAH6+/vvCESkSoXE/Dz5fbE0x+Ag3kOH\nPtO/5jZWV9OsrbXJ04ODDgYHnXcNdu71XbgfmA0iw6MeriTzne+NFiMjwx9xPxrVKvG5OcRmk0C3\nnXymhE6USS4ukouncdj1SPkcrWiEajqFEZHN5SQ3t2qcOWsnm6lgspkoVtR8sCgxMf0Ew98Yw6KH\n7Pu/weG1IysqfC41/VP9lCQ1GlULpdng+KmjDAZbRDUyGsmMSiWQrWspJjI0NkrMbm1w+EiAwt4e\ne1dv0Pvs80iKBuv4DHuLt1BKORwT06Rfe4taU8Tv8TExPY2lu5tqMolreLgjelYuS0Q3oyz/+nWq\n6RQejxGLtW2H0PvEE23F3Y+tcTESIbW83Gn3btbrJBcWsAaD9yR2P+h9etjunS9ifKvV4sc//jGv\n7+vEPOr5JycnOx41j+P1fxnjH+tgpNVqd2aIovBApDmv18TEhJulpRSS1KTVUjh9Okg+X+2oh94W\nrtrczLOxkcVi0aLTqWk0WqyspHE6DffFtFepROx2A//2354iEikSj5fQaFRcvRpBEATW1tIHJNLL\n5QbpdAVRFGhhoNUCSyCAc2gYRZLQ6rTc/MlPyUViOHr8PPnv/h0v/vt/T71QoBAO72dAmoiiSCWT\noZxMond52F1awzF5FHtXkJ5Dh8gns5gUDZ7JSdZKZhSlXUpSq0V0OhU6nUguVyMWK5HP17l2Ldop\na5lMGs6dC9Hba7vjestliXff3SKRqBDw6NDkdtn4zRaxix+gUqsoZIoYfEGePfMchb0Wel17DS12\nIxpFolGp0qrX0e+T7j4LstwiEinsS4BrCAatmM0fZTEcDgNut5Hd3QL5fJ3t7bbAVF+fnVSq3AlQ\ncrkaDoee8XE3lUqDYjTO3vn3yEaTAOxcusaL/+qb+CfHSN+61XG7NQcCeCYnCZ45Q2Jujt0LF8jU\ndKTzdYweH5EM3NxIYTCocPtsfPOPDkMhSXa2vXs1ut0YnE4ElQq1Vkt2c5PNN99s+5SYzWTX12lV\nK5TicfQ2J5LcYiykY/TwKWJ7WcRGBU0tR+Lt9zBOTTAyOoK3P0gxHyDkz+Cw66gWS4iNCn1DHmav\n7LJ08wqTLxmJZVr0PvEE22+/hVzKEd7dwH3oEKmcTMPgZuaVF2hUKsTSTer2Hm5du0gmVsJkt+Ac\nmMTdY+XUdDdLYZFKrc29crmMdy1tJubnO11I0PZmEUSRwJEjn3mPAd57b7vz/YtGizQaTQ4dunfm\nrlKR2pkd/f3/jOntdiZHbJiMY6yvZ9HpVIyMuBgc/phLb6WCVC7TrNeZGu2h2QqiERrIcovQaDfV\nZIwm4B4apJqMs3vxKpvXbzE4EiLgGeDs8+NceGcZs16DfcDP8JgHVSUDlSqFZAb/ydNYR8axWfW8\n8k9VJFNV6nWZvok+yvPvc+XvLmBwu6lgwW9zoFQ1SC2R3dl5fG4tQquBpTcEFieJjV1Czz2Hq6+H\nnSvXScWLVG/m8IYm6Ds6icrpw+bRU1heQGezYXC0uVSy3GR2NoaSiZDPVSlkJDLpCmPjHpSbN9E7\nnajUaoxud8eBuprJ3KHa3JQk6oXCZ3aZfd1x4cIFHA4H4+PjX8jxJyYm+Nu//dsv5NhfFzzWwcgb\nb2wQj5cRRYFQyPapjPfbuF2rUqlEjh3roqfHRqFQp1Lp4ubNJOfPf0T6cjoNeDxG1tYyiGLblKvN\nK2lnO9xuA2Njn84nuT2XoijE4yV0OjXz83EKBYlCoY7JpEGSmjQaTYJuERVNaooOUaNldjZOtVyj\nsL3Dock+tNYKtXwOi9fF1tvv0JRqGG1G+p56ivClS0heLx69HrXBgNnnQ2sykY3HGf3Od4jOzrNx\neR6bz4Z9bBJVcIiGK8DyTYmNio4BsxuHy4hqp4TDYUCWW+RyVbxeE6+9toHZrGVhIUE0WmJ42IlW\nWwTcLCzECQYtdwRkmUyVcrnBYL+VoBilkUmi1qkZfOEFVn/1S+rRHUS5SmuvC7fXj6fbQ1Oq0xs0\nQ72ALRRC73QeWMNPg6IoXLsWYWEhiSy3EAQwmcp885unOnosarXIyZNBRFEgl6vicOgZG3NjNLY1\nKS5fjgDg95tJpSrEYiXGxtwU1lfIRpPIBgF1VSGbzLN16TpGm5m9Dz/sCEnVslmMbjcDL71Es15H\narRobcYxuqrYRya4slNFo9Pi0CsIUpjswnXCV64QnBwhvbJCa2CgLZoWClHY3aUcj6PSaDB6PBg9\nHkxuN76ZGSx9g+zltSzd2GVvrsTkKRGtEifxm19gdVrxjc+gcXrx+a3IOjvvXl+FJpwaFyhv3KK0\nsYos6unqCrG5WyaZLPPzX+7wzVfGOfWv/4y1y+dxaPT0PPU8P/77DWav7CKIIofPTdLVYyOVraOt\n1igks1TzeRxaF+VEDaOi8NILT1OoKKhUIg6zSHRvFZtptFOKkcplcp9U0FWUtpDa5GTHePFe+Li5\nW7OpsLKSZnj4Tq8maAfE8/MJlpZuYbF4GRpyMjHhuetnPwm1TkfXoTHU4hJ9bgVRq6Wo0WDt6mq7\nFGezyLUa5kCAws4OreQux4ccaL0DJAw58haR5KYZjVqgWa8jq00IhRS1zZukDFVqaz6muxQG/3AI\nwWxHLhXYefeXpAeGKfhDZLtOI4kOElEF7c01iqkMelULt65M4fwCO3u7SDt77NxYInj8GIVslN4T\nT5Kta9DJFoang1jdNvLhKI6gBWuol53dNGtLUaa/933e/2+/RFeu0vD7eP+9TQr1Hb79Z8/i9Pux\n9/d3MlyZZJFGeJ387EVa8SS9w0Nk8w1K2TzF1V1MPh/FWJxIRWboxBMYu0MY9caOPs1tiGp1x038\no1vfJlVXMxnUej0pSTrgd/VZeBw5Dw8idPZ55v94ZuRxvP4vY/xjHYxsbuY6/724mMRo1HDkyP1F\n4CqVSCBg6Zi85fM1Dh3yEo22A4dnngkxOelhfj5BoVDn5z9f6QgrKQpcuhQhGLRisdw7zWy16gkG\nraRSZZLJCtWqjCC0ZaudNg0D+gTxdy/QqEt4B3vQjR0lU5NpFrKktsO8cWuDI0+OcXzCRqNapV4s\nYvb78c/MkNvcoJbLoZmcZPvNNzn0ve8Ru3YNwWBm49IsNr8XR3+I8e8dYmm7wfkrWeSdHOl8klOn\numk0mmxuF8gVJA4f9vPBB7tcvx5leNjF9naefL7GE0/0ksvVKJUkIpEit79DxaJEpVhBziQoJ5Oo\ndDoalQrh9TBDnl4MxW22LrxPcW+PyOXL2HuC9D71FDqbnejSLZS1HQa6ezn7rTMUtzdoVSvoHQG6\nz5zp7LQ+C6lUhZWVdCebpSjtktvOTu7ArtnlMvLCCwMEg1ZWV9NIUpNUqorHY2RrK8fQ0EdEz2JR\nolKuU8/nDsylUgkoUpViNHpQ0ZL2jrCWzeIeHSW6cJPY+i674RKJV2/Sf+oo3vGT9DqblCKrNHN5\nnEE/Fr+f0NNPU47HMTgcbL7xBlKpROTyZfzHT9AS1bz3X37EoZefRahX2M1pefs3CzSbLXrOnGVh\nKYtFVBh8/kV28wbmV1JULq3Qc1jFzIu96DQirUadZirN1f/3B6hooegt1IRlRl55hZLWTEVW8+Mf\nL+H5n09hCg3gdTmJJGqUyzKiKJDNlrl2ZQ9UKl55ZZS8MQXVIk6XEbu9zRnQ2+14Ag48QOrmTfYu\nzRPLZmmtrRE4cuS+ZcUfFLLcQpZbd5XCmJ2NsbCQpF6XkOUaV65EUKnE++ZAGd1uQufO0SiXEbVa\n9iIR5FqN6LVrHWdlALPfTzEWoyKr2VzNYgkeorCTR+dVMBpFaqUael8XG6+9hs1hwu628eH//f9g\n9jhQ6Y1ojEbGv/kyytHDqOweVCYrXq+RosZDOtfg1de3CN/cwOYwcuKJAY6HtFTmZtGpBTRqkfzW\nBlpRR9DepM/pwnbiLLV4mOv/5b+ye22WRl1i6IXnGP2jP6ZRltmJVFmLCVTSFeTwTYwaGya/n52F\nNVSmLMr+NZk8HjLLSyy+9i5WoUxscYXk6jqT33qZSqSIXrfvw7SVYydbpph+H/sJNS6nHruvi2o8\nAorS4aWZ/Qe7kBKLi8SuXWt3yAkCZbOZnkAAve3OTOvXAYqi8JOf/IRf//rXX9gcw8PD7OzsUP/E\nb88/JHyVwUgA+CUwDpiA1r0/DpubWaamfJ9aS/60aMxg0PDkkyFGR91IUhOLRYfT2eZGBAJmbt3K\ndNxBJamJ3a6jXpfJ5+vIcrszRqUS8XpNqFQipZKEz/eRP8TRo36Wl9P09lrZ2Sng8Zjo6bFCLoYm\ns4XYrNGSm7i9ZrLrc2jSOZw2M2MvDxHbjNJIxWhpfPinp9npfZdKNovJ4yG1sozWakWdziLavZQy\nOQStgVJFxtUfopjOo602MU6fpJzaQlZbuLkYYzcu4fOZOXasi0ymSrHYli9vNhXGxjz09dk4f36X\nXK5OoVDH7TaRTFb2Cbg+NBqRYMDE5o1VUosL6FslRFHBPz1N13AvDanJxtsfgCwRvniBWj5PORZB\n1OmwDw5h8vvQ2t2sXt9i5PlzDB8+jNioYnS7sQSDiPsusZ8VPddq8gFfEmjL5mcyd7YBq1QioZCN\ntbU0hUK9s4EzmzUHVG0BNFo1zp4uYuth1FUFhHamzOZ1tJVWXa52V1S12m6BFAQQRYrhMHK5SEUw\nEc+XELQmwsubHJ+ewmPTITZs7Iky0aVFKpFdPJOTjH372+2dts9HZHcXUadH4+9j9/y7GB12mi2o\npHPc3NSiILR3kisruI+epKz4MMwMsvyff4Vcq6HS6CjXBOZm4wyOeDE3tdRurjH27Fl2r86hMhip\nFUGUykQTZWwWDd3dLvLZElNPnsVMgSu/vUhPPU/v0QBZuhCNVia6FcyNNF1np/D7TeQ2N0FRMPl8\n+A8fRhAEitEo4cuXadbrOESRWibD3oULHa0No9tNbHYWFAW9w9FWqx0cPJAVyedrpFIVBEFo8xPu\nEegHg9a7ko+LxXqHsHzb10lRYG0tzcSEG7X6/oiUgiB0sgR9fX3EFxZILi11dv2KopBL5rBMn2Vl\nJc3W1h7yWpaRY09j0TUJ9dpJrW9w690LSJUqE89Okby5jNluQlCpMNlMlHIlKtkCQu8U0UQZZWcb\nt7FGQqiytFElsh4hHU1TrdR49ccppv7P72Ku1cFgxDXgwD48iqg34p8YpVWvYrIaSV27gFQq4uzp\notlskrp5E9vFCwz9k99npyrSEgRS4TSHnjtB19gQogh9IzasLRMtSSJ67Rr+o0ehlGFoIohKrcFo\nMbJ16QaZtVt0j/Zi93vIJnIkEmXUjRaVXAF3q87iqsTzTx3FNz5CLZfD6HJhCQY70vTQ1tVJzM9/\n1KqvKJiKRbIbG/ddsnvcOA8XL17EbDYzue92/UXMr9Vq6e/vZ2Vlhenp6Qce/7DzPw7jv8pgJAM8\nB/zsfgdoNKq7OnneD9Rq8YB3CrRt4avVBocOeVlby9BstnC5jB0r9my2ynvvbVMsSthsOgIBM4WC\nBCjodGpCIRsjI27MZh3Hj3fhdOq5fDlCpdLA6TQgpLfxe410+U2oLXZqqV12zy9j6umnVoxz8Sf/\nHa3NgcZqozxqQSoWCRw7Rn5nB425LfOudXpIrG6i93gRVWoiN2bZ3khhNOvxD3Rj7+5i9laevKSl\nnK/RbDRwO/UUCrUD3bKtloLR2L4utVrEZmt3AEUiRQ4f9pPPV2k0Wuh0Kvr7HUT3Urzx6tugNdI9\n4GXMJ7H805/iP3oUg8NBNREns7YOTRmD1YJUFqnn80j5PN4jJ8k1DOhUejYSAkavl/HDD95CbTJp\nMRo1nS6g2/B6706utVh0PP10H2trGdLpKoGAmWKxfsCGXqtV0dVlJeQ5gVDNE98MY7NqCfb78U1O\nUoxEiF69it7pxD44SEtvRUZNDT3NYgy1SmSg30EuVyOXq6FWC/g9WlQGI3qHHXt3kPjVK1SSSXbe\new+zz4eo09FqNlHpdDTdfawt7JDYSNBz6hSFVJJKpUVdatEoV0AUqKtMSDtpzCYtV6/skWsYUeVi\nGCxmFLWW5asr+FUOYuvL5K5+iN2hZ+i5p9CYzdgiecKxKgmKaGoZRnucRFd3KPeBXEmRWl0lshlH\nbVjlqX/5R+RiW4TfC2NPu7G47HSdOIF7fBxaLQxOZ6dLopxI3JExapTL7axRLkejVsPR309mbQ2p\nWPzoOPsIhwucP79DPt8OFJ1OA+fO9baJ3MDQkJNIpIiiKHR1We6Z5bibfszDit3dDsCgrUWys5Mn\nFt6kp+ljayfH8IibbKrE4uU1XGPjOIc89E4IFJYXaLh0+IYGSF29hFQo0mxIWCwGNCYzs+cXESed\nbM2ukgtHmTkzim/czY0fvIHNbiK9K1IvVdHYDGxupjj+J3/CzrvvUC1WiMwu0HPmLBvXbxIYHURJ\npIgvLbeN9xDQmM3kwltU0mnMDhs+k56X/+XL1OTfZ+1mjPfeWsbhMuF3aTA7RFZ/8Qssfj/FcJjN\nt9+mUqhQlNSEzpxg7OXnsJg1DD51htTiIuVMAXm/I9FoM9MQdCiKRDwjM3Bm+FPX8ePtxh/HbV+m\nryN++MMffmFdNB/HbY+ahw1Gvq74KoOR+v6/T8XHy5NqtcjYmPuewciD1qrMZi2ViozFomVkxEky\nWaFWk9Hr1fT321ldTVMsttt1XS4Df/M3c2xu5nC5jAwPC5w+PYXVqsfvb/+gDgw46eqyks1W0elU\nFBeTpG62xdAMJh251TRTT81g9PqY/+nfI5UrGG0WBkf9LP3wh3QdP465bxCN3YXeYsQW6qMpaFAN\n9WPXGVHrdEhViWqhhNZsZmtpm+BTz4DWgKgXyEUTTEwF2YnWAIFGo/0Q9niMeL1GDAY11apMsSgx\nNeUlm61hNGpoSXW+/WIXTq+VTD7F5maKW8tx3JMzCIUEl3/2OvlhB4e61Nz6xS8Inj6NymBAUIlU\nkimMXg96mw3X6CjWvgEMvQPko2UMvSPsJWqdroUHvV9Op4HpaR83bsSoVmVUKgGbrUpv76cr2zoc\nBk6cCH7stZ5r16IUixI6nYrJSS/BoAVBsPL0v/ojVubm6PJ4MLpcpFdXydy6hWNoiNzOHhf/83/F\n3j+IaWiCkn4Ln7vttOt0GRgaclKvyVgcJrx+GxgsSGKOgZdewtLVRfjiRTRGI/7jx6nE44S3t9H3\njhBJNVDECka3l71YFa/ZQDm9Q9/EGIlYAZXBRDKSwm4P0t8vIjRlYmmJ6WNnKCxeI3JzDYPVQnwp\niVnbxDE0yNxv3qU7Xab33Dl8p88x1BtiNFNld05k/co1Jk4fIhvbwCbVeer732D5+ialUp3S1gbl\neAKv24FOp0YqlYjNzjL8e7/XMcSTJYlSNEqz0aBeKKDW68nuGy8iCAiiSHxhgUo8jtZspvvUqbb+\nzb6wG7RLLjduxMjn23/ut8ttCwsJnn22HVg++2wfmUy1cw8/7e/cYtERCtmYn09Qr6fQ6dwIQjuY\nud+sCLR38AgCequVra2tA63IuVyNcLiIRStgFsrsvPEae28oHHtiiKFQPxmpTqPRwjIQpO/J05gc\nFqqZFA2fl9zcAihN5Fod76lzOEYmWdvcoxrZpac/QEPUExzwoTVoUVkdDB7X06xV6BntJTQzTsOY\nZfBP/icSuymcpQKZ+WvoK1US+TjOUBDX4ADRuQWkuoxR26Lr+DG6jh1BFjW8/84aG2tJIjk1Hr/C\niXMjzP/2fX76H6/zrT8+gtrZFvRb/dWvEFUqRLmG22altLrAyMsvoTO31ZrLiQQaJPQGNbJZh29m\nhlip1Sk/34ZUqdDYF83T7nteaYxG1AZDWx14H6l6na771DWBx4vzcLuL5kFKNJ93/pmZGW7cuMGZ\nM2cem+v/Msc/1pyRs2d7WFvLoNG0Ge8DA4/WH8PpNHD0aIDt7Rxnz/Z0duADA3YCAQvr6+2WTodD\nz+xsnPfe20GjUdFotKhWqxiNCYaGnJ1gBECvV3cyMOrBQXLb26g0GsxdXXhqNXI7O5S38hRW5uke\nHMTqdSEXsogaLdpAH+/8f79k6/oS/SenOfzMEZIrq5h9XroHBylFI/ScOUVFXKSaK2INeNBa7Yxq\nkavxAAAgAElEQVSHXKg0BRxmKDUUvF4LQ0MOFhcThEJ2AgETigJHjvi5dSuDUajhdgqc/F+maBZz\nJOeu04wXKG4ZSGLm0gc11tdyVLJZDk246BoIsru2yfEjU+xdvMjGa6/R//zzGOx2MqurHSt6x+AQ\n5qlT5LUBaj6IJ9rBjs9nvnPx7xOHDnnx+Uzk83V0OjW1WuqBTPl6e+34fGZKuRKCXMXitHR20Vqz\nGUtXF66+Pmr5PNmNDVRaLSqtlp0bi5RKTZrhBJmmFWOugea5F/AOjCDubBAKKdTKNUyBLuRMDINq\nj/DaKjVJoiXLTP/zf045m0Wt0eAeG6PVbLK2sE1DqmJ3Owk9d5rNDy/j7g+yfXWOPinNmRemuTaX\n4Og/mcDuc1LNbqIVdVhdNop1NVg8iKLIQMiMtLxEXq1D7/HRd/oo3VOTrKX1hF/bxT+uJ7e9y/iA\nkZmZAKO9sL28Cc0mol6PKrnGoWeeZ+/SVXxeI1pVnfzuLlqzGalSIb+9jS0UopJIsPHGG6RXVzHv\na6/ktrZoms2g02H2+doicNUqCAJyvY5ULoOi0JJlmpKESq2mUpE6gcjHkUpVO+33giB0BAI/CzMz\nPlQqkcXFAhaLnqEhF6Ojrs8eCNSLReILCxR2d2lJEiafj7rLRdfICIVwmGa9TqkooVKJ9B8ZYfmD\na5TzJWrlGvF1HbpknqHv/gnBLhPx2evkNjdxjoyy/PO/w9rdg+bwFIVIlEa1jjXYRcFgJbY8h294\nkPXtIqZyCv9Iglf+2RmuXw1jNHhppcIYpAw2Ocn2doWdjTTz71xFqFc49eQAIVOV6NWr1DNpgmfP\n4tmOsvHu+6hk6D96Et+Js9yKCaQqWnR2N9nZeWp5BVVVoXfAw+5yhVJDy7GXXqAS3kMURbRmC+r/\nn7s3DZLrPO/9ft19et/37ulZevYZzAxmww4QIEACEClKlC3Tpn2vl1u+cRJ/iW8lt8qVLzeVKiWV\nOFVRua5Tjq+s8MqSbVqWLIoUJe4kCBD7NgBmX3vf971P98mHBkekSFogaYmU/1X40N3n7efMeQ/e\n8/Tz/N//X29ALrVpSxIKhQy5XE5mbQ2L349MLqfriIvFaIlU24YoigwN2ejp6fA+0mtrxG7fplku\nI2g0uPfuxTE2hsZiwTU5SfTGjU4lTSZDa7Nh7e9/oPn5vOHKlSsfq0XzaTA7O8uf//mf/8LjfF7x\nuU5G/st/+d+w3Dd2KxTGEIRDuxnX9n32/s++fhcf9fnPvlarTQSDBWKxICqVwOjoIAMDNhKJMO12\nFug8vGKxEBZLjXJZT6FQR6FosLW1Rbs9+qHff/v2EqVsia7pw4jhNa489xyleByfx4Olrw/NcB81\nhYTHbKAUj9NwuWkY1Gh1AmqrjVStwc3FAFN7xlCYbBT0aqLFLTweH4f/YIpALEY+XaBUaWF3Fhnu\nLpNxm0ik1Hi8RjKZGIVCnkBAhsWi4fbtVfbt8zLbU6OaTBJa2qEc0uPQamkmwuyEQpTSBVq5Bo9+\n6SkSoQ10PjV3r2/z5a/sQWxlyLeaSO02+UCApRs38J88ydmvf51KKkUOsE5M4BmaJrWQpFQKYjAI\nHD06hcOhe+D5+ll0hOUMu+V8+PgkuHI4QOLWLRrlMoJW21k476sovns+9ZpIq9VGLgikVlcRKxXa\nyBBFCSWQj6aoZvNYj81g8Tgox+NIQC2ToVFKsvr664i1GjK3G6ndZuO11xh94gnyOztsvf46OoeD\nua9+ka1QDZXDTXY7gGtqkmyxybE//vektoNYdDJ+/98fpt5SIG9WSBaHiWUlTp3x0JYpufd2jIe+\nOIujneSNV8OIGguBS+vsP3uQvLabUD7PzlYC71AVnbxGuShxYEBH4uoFTFot1uFhdDYbvfPT1CNb\nDMyPE7hwgWIuh9poJL2ygt7tphAKkVpeJvjOOzSrVeSCwM4bb+yaMeqLRTwzM5h6elCoVFiHh8lv\nb9OsVtFYLB3lWrt9t9qg1SrR65WUSu+3ADCb1T/XLuHDoNOpOHDAx9SUC7lc9kC7aACazRaxxRUW\nn32WyLVr0G5jGxlh4qmnUPf303/qFOm1NRqaNNZpO410kuC1W1j1RioqPSqNEo/fjbO6QfbyKmKt\nhlyppFKqofX4qK0u03vkCAqtlkalhmlojOvnInhH+nD0utnjV1EK7KAJ3sQzNsHY7+zl9k/eBlsd\nr1kkv7PD5Vd3ULu66JudoBCL8c6rd/D+3lEMXV6MfX0kohnGf/O32fu7/5ZGoUhZsHBjuUwkVeD6\n7RRTMz5MXjeZnTCBepSeOSulSBiZOEby7l00Rj35VB4NKtpmL2aHGZtJidpsphgKdVSeKxVUJhN6\nnYIDe/toqs0IGi1utx6lUkH5XSfg+5LyrXqdyNWraKxWjB4PrslJdA4H1XQaQaPB4PXuVk4eBJ8n\nzsMnadF80vizs7PcvHmTvo/hffUvGf+zHv95SUY+tCb79a9//SMH/Owf/Ele12oiL764hiSB291D\ntdrkzp0ESqWCo0d7OHzYwqVLYdptCZnMAhRQKjtun7kcjI7aMBpVH/j+hRtBzv3wHvl0EeoV+txy\n3HIlNUlLIlHGPKBidHqG3PY2ocuXKSZSeOfmkIfCjB/eS6PRZnNhnWYkjVMs07VvH3dvJbFrzaRi\neWR3F6iks7j37MFs0XP5h2/T1efGNX+MdK7EwkKca9diNJttdLoAU5MubAYrRkmAaonkzWvoNRrs\nXjeVZBK1yUS3y0UkW+HOrRvYR0eZHPPz6stryNU6VEYjE3122NnB2t9Po1Ijc+cukUSC+sgI41/9\nKiNDQ5h7ewE47TZSrfai0Qi7ZOOPOz8fB41Kher9nrTWbn/fwldJpwldvLi7cIrVKuHLl9GYzRjc\nbrLZKrdvx2k0RIxoSd+4iiBrUkvGkAta7BMjJGotVDo1ap2KViLEyg++D3R2lxQjUQZOP0roynW0\ndhuGri6QKToaIpub3HrmGdqiSCEUwr24jvnUb5IIplh+8XV6Zie5eS9PrVCgx+9kfs7E63/9Peq1\nJjaHgarKwVrRQl2m4atPTRIVSixfWuL0lyZxDvRSrrZRhrIo5G3WVtPUSg3OPtKHVZ1CdLbROXSo\nXSasAzkSd+4QiEYpxmLM/Lt/h9RqYR0cJHrjRsf9N58nFwgwcPo0sZUNJL2dSl2imU4jViqI1Sqh\nixexDgygMhgQdDq233wTrdVKIRwmtbJCORZD0GjoO3ECz/T0bgVKqVQwNeWmWAzuiu8ZjSomJ12f\nmAMGPLDxpSRJrK2lCW4mibz0Mql7cVyeHmqRHdJLS4SvXsU6MIBzfBxzTw/ucoM3X7hBejvSWZlq\nBYb6XEztG6RVKVBLRIlGkqy9/CqCSolrYhz3kB/13gkKgRBGjwur34+528X0jBKZVk/uxnne+vvn\n0Chl6A0qRh85ztTjjzCiCVPKxihtVWlZHqWQzuP2dpNZXkSSwDs1iaS3M/nkl9h86zyXX7xIS1Lg\nPzRD78On+e63r+NyGRjdP46iWSO8GsTqtpNYXsPUY6ScyWC06HA7VFRjEWILd/DumyN2b4WKVCVd\nUTJ3cqbTO5OkjkGkILD1yitoLBbMvb3oPR48x47tJo61TOYD3jZirUYlkcDo8SCTyTB6vb/y2iOf\npEXzadDV1YVMJiMSieDz+X7+gH9l+CyTEQH4CTANvAT8z8CVT/OFH7dXVSzWd3+tFQp11tYy96Xk\nW8jlMvbudXPmzACpVAVB6Ci6rq5mUCrljI0pOHXqp7EaDZFUqkKl0uTOtQ3KmSwtUUZmK4hW7qLo\nGuXahefQu13U/BpOnn4M4+ICglaHvd2mnM5x9W+eZfzMSfpGu9hZ6ehAWDwO6vI6Rx4eIZvM4+l1\nUonHaJZLhBNNfvTsJQx6gXqtjqHdWXR1OhVGowqVSs6JI172DqpBlMhXROrRIrquHtRqgXv/8A/E\nbt1CJpdj7O7G3D+I8/AslXSKiUOzrKxYcfd5mTvQR+XaKplsm6EvPkk9n8c5O4dcBj375rAPDWHq\n7t69FgqF/H3CZP9S8/VhY8rJJIHz56mm00iShEKjwTE6SrNcxtTdTbvZ/ODCWa1STiRQWWxcevMi\nFoMdtdaAzN6F1j+CUdPGFQzTRIFMUCCTy+ieHGZ0by9r3/or7v7t3zJw+jSBCxcw9/TQajQx9/dR\n0+sRK1WSq6s4hoc7qrPVOrRETN3dlAI79EtJ7L3DvJPM48pkMJv17KxGmZ3zceuF1zE5LEwc9bO9\nHCaZjvHQ8XFurDd4/eU1jjz6ENfevEulKvHoH/8bmtUawwvbqI1G8gEZbnOC1MJ1AuEguXCUqROz\nTI48xuL587S7u0n9+McMfuEL1PJ5NBYLxXCY3lOnqYSDFCNhBk6fpm7u5eLrK9SaKUo7MvbO7Ee6\n8wYKtZp2u41Yq7EdCHTaM/U69XyenXPnMHV14ZycBElCrFZpNztJhyRJ1HI5uuxyHntskHC4hFwu\nw+s1PHBb5tPeP4FAngsXgjj1TWIbIaIbUeo+B/4uH6LYJtGUqIs/TYqEdp0eQwnHgXEa4Q3kjTIm\nnYjZZaUQqdKSZDREibbBwfrCMq7xUeQKObFMgXYiTvT6NXQOB6NPPonPbMHY7eb5/+82OiUIggQK\ngci9ZUaPztKWK4kWlURjNfwjLdp2E82WjHqhQL1YpFku4f/vTlHZWqBUbuIZGySfKpAJZ2je3UGw\nOvH26ej2qNl/sJtoKEPPoBWbaQ8To33IMiFOnt1D+u2XMHvdRBZX2HfoCKahPZRqMrB6qJocNKWO\n+J/SYCB8+TKNYhFTTw/JahUpEiGzsUHX/Hzn+mi1u95X7yU1Kz5CbfdX1Zvmk7ZoPml8mUzG7Ows\n586d47d/+7c/9vhPG/+zHv9ZJiMi8OgvMkA2W6Xdlj6SEKfVKtFoFNRqItFokXK5k5jY7Try+TrX\nrkV47LEhPB4jjUaLkRE7TqcelUqBTlem1eoY41UqDe7dS7C+nmFrK8va3QgT4704tCIUUzTVZgrR\nIntOHSV4b503/vr7uExfQR1ZI3r7FmKlSqOQp9kEtdmMf2YK98wMWoMeWavB1sY6Bm+VdGwDxcQo\nGrWBO997kVuXA3T12vF3axnf14/GI2fI0aRUKDA/JHD8oW70hQDxV64iGIw4xsZQymuUigViV+6x\n8vzzKNRq9E4n5VgMZDJ8M/MoGiryWxtMjVnZ//AABnkZYe8hDPuNhNMN8I4hdIHTY8I/2/1zZbt/\nUZAkifjCApVkZyGt5fOklpcpRSJYBwbIbm5iGxr6gFDTu2PXXnuTxNI6a2UT2RJkIwlc3XYeeXSQ\n6d/zEL1+HUkmZ+7kaSwjo7SyMWrFIiNf+hJd+/ej93ZRiETxzM5QjIS5c/ESLaUapVaNwdtFo1JB\nb7N2iJIWMyiUSJUCNpsOl13D8js36d2/D5fXhN2hp/vYFFIhSWX1DjaNEeNML7VYgIluD/19Nmzm\nBrbHxzG77chUTcRMkqkTs2yvxjh+zMrtH9xBIVaR6mX84z143TrCly6isViQORyM/S//K6Ebd7j4\n7I/xToyj1Klx9veh0GjQud2k01We/6tnia11KmAGr5cr7+xwZHov9dXr6Oz2Tgmz3e6oACuVVLNZ\npFaLajaLqbcXuUKB1G7TqFSo5fNEr1/v2NjLZJj9fsZnZ3/pvjWBQJ5ms01LocXS00V8eZVGo0nD\nPER4O4G9bWBho0ZNm2Zw0Ear2SRz/R2qySRTB0fIh0IYvV5Sy8tsX7iETK0jvrpJ36lTNBsili43\nqcV71FQqihubNMsl5EqB6MJtnHv2IvjcHPrqo8jVGuIr68RXt5Ar5Bg9HsrlOsaCHElTxCA0mHto\nnK1NCe/UHmzKCqOzg2hqKWKpLHfevoN3YoiqICewHKNHtc6eI4/Q54btYJmqqMBgtzE65kTelWbA\nnCdfSbL2zH+lEAww8/u/i6TUE1oNImqtSL49FLMabEqB+cMTZNq1TjJZr2Pp70djNlO6n2wUo1HE\nRoP06iqpxUVyOzsYu7pQ6vXUMhm0dvuvfCXkZ/Gd73yHp59++pcac3Z2lrW1tV9qzM8LPi9tmn8R\nvJuNVSoNbtyIsrOTp1JpotUq8fvN6PUq+vutu4JOBoOKyUk3ly4FKZUayGTg91vYs8dJPF6iVGpT\nLjdRqQRsNh0+n+m+ZHwLm82CTieg1QrEYiWWl9P87d/ewenQcfVSkEvnt/hv/vtDHHr8AJnNHVIr\nW9Css2fERMJnJ5Fq4DdaKewEaCOnVigxcPIY7WqJrTfeIr68jrxVwzY8QjEUptXtY+zUMVRakXS9\nyaGvnsXtX0TdKuEc6qews0Xy3l0ePXiQaFpLz5CX2Ms/4N5rL9Os1dGYjAyePoPJ56WWTVNJJmnV\naigEAbFSQWUwoBCUjI0Nk9jYpn96Ao3VhtJgwtTdzdtvbhDfKoJShbJcQyaTka8UGJ8QEYQHJ5R+\n2Hx90jHNavV9WwYrySStep1yIoFteBip1aJRLqPU62mWSrvHae5LYidXVtHofVy+HaMuqcklRcrU\neOXHyxwbbaMyGHDPzKCQiVDKUEkmyW5u0iyVCF69hkKlwdTXy/VvfJPRLz1Buy2RD0cRlALdRw4T\nvHQVlc1JIRggHwgiU8gZOnOG6FaUuTOHWb+xiNXUYv6pYfrnRrn9zH8lux0kn6sS3YnjHR/ikT/9\nD2y9eY7QC2sUTCpMPT3oLPtpygTSy6us/f23aYsiE089hVuRxdpvpmnx0kgnqG0tIRw+xNDZs2yd\nO0+k0mblJ69iG/RTyJUI3w5wyKjDOzlBNZUgk6pSKnQM1wqhECqzGUN3H5LTSL/P1PE6SqVwmUzI\nFQoa9XrnWsrlnZ0196+vQq1GZTQSu3mTzPr67nVP3r2LUqPBOzf3sef9590LD4JcqUXvkaOUkhms\nZiWBnTQqjYaB2YNshUvcXV3iyJEe+i1VWvU64StXCF+9in10FIVSSSXVsZdo1YtItTKpOwsMH5hH\nIcjIbW8jaLVU0ymktkRmbR3H8DDF7Q1alQIL3/42MqWKid98mlIkTM/sFLmdLSJ3V5FV6oxP99Es\nF9G1KowcG0Kv97L2o+eJ/NN5sgYNrokpBo/MEri3hbPLicPWR9eUH+eUjds3gkSycuT1IoN9VmTN\nCl02C5FLb6I16uh7+ATlZILUyhq+qTGsQ0NUDT7aOhs2pRyzAarxKDqnE7XRSL9MRjkaBcCh0YAk\nYfR6Sd671+HaSBJyQSC5tIR3dhbP7CzW/v5d1+BPO0+fB85DvV7n7//+77l69eovNf7s7CzPPvvs\nJx7/aeN/luN/5ZORdLpCItGRjHe79VgsWpaWUiwupqjXRZaXU+TzdebmvPT0dMiqjzzSvyuoND7u\nwGxW43DoEEWJZrPNzZtRnE49fr8Zna7Tl/Z6DYRC2l1lyHa7zcCAFZtNRyCQ5+rVMGaTEo9TzaNn\nRwkHM/T1GjBV11h640coBAGFRkNwaZXRLz5GWVLinpqka/8+UotLKI1GfPv2k1q8h9ZmJXblIgq1\nGrFWY+jMabav3MQxKyDKlPSO9SHI2piePEN6O4Qg1WgLavRGkY2/+X+xjY6iMEwTePUnNCsVavkC\n+e0tlFot47/+a4jVjty1ymikWamgdTgQtFoc42O0JBl9hw+gdPYSTEuUEgIjljoyQcXqVolaTcRg\n6HjE9PdbHrhv/3HxUa6w74WgUqHU6ajnOyJY7wotqQwGJEmi1WhQTaXoOXaMUjTaUUN1OHCMjRG/\nfRuL3cR2SsnqappcpozBpKWQLuJ396KxWEhfvk01k8E+MoJcLid06RIyi4dybodMOINeK8czOUG+\nVmfxhZcY/+IZ7MM5lDo9xVSWwTOnadVKNHJpTF43vn3z1IolSskY7tk5HHYVG+cvEboUxmiQI9Wr\n5PM1jAaBqs2AVquilY6RXrpHZnmRXLuBweNBQMQxOY1teJjQm69i7vKQDwQwmFSUwmEK68uUMjmK\nSPQeO0q9UECU5IiZLJVMZ4eYaY+FXCpPcCnA5BNn2QwGMPu86OwRBI0GsVajmk5jHx7Gf2Qf2vg9\nkvfuYRsZwTk+TjEaRWOxIFcqce/d23GLVSiQ5ArUPj/ZfIPY2jbCewwKAbJbW7j27kUh/PKWnr4+\nC+vrHWHDjMrBsT/6t5S215EM21gHBnjpxWW2dvKMzY+QiempLq5j7O6l9/hxEnfvIpPLaZRKiI0G\npp5uUlsh3HvGaDfrWD1OCrEI7qkpUktL1NJpTD3dtOoKNFYr2a1N5IICqS1RDAZZff6HHPqTP6Ge\nyxK8co2KqKd3fJCVHz4PbRHB5sHdbtMoJhEKMeqlHC2ti0IowNjRk9RrLWLrAQxuF0b/IDa3lf7h\nJsbbNwhubJKMKune38d2LIJJ2SK1E0HndDD6G79Du1FHqZBI1zU0JCM7oTLXL+9gNws4WxHmxvQ4\nHBp0djuWoWHS+RaNlgyDSYOpu4edt97crTCq7m/nlclkuKenH0jy/1cJP/rRj5iYmPjUD+aPi5mZ\nGf70T//0lxrz84IHXRGO0REpWwQeBvYBN4HXfjGn9WDY2clx4UJwl/ehVBZ4/PF9uzLyhUJHYfTd\nY4eGrIBEKJTHbtdhNmtQKhX4fCbqdZFvfesW6+s5bDYtuVwdh0O3682iVgscPtxDLlejVmsSiQTx\n+YyIYgutVkm/34TVIGNlKcHQoIWHvzqAVwyw+eLzmIUakXAehVKJq8tNZmOd8TMnidy8wcRTv4mg\nUSMXBHKBIJLGRKNawzE8gChKNFpywk0lC+9sc2rvEeqlAjqHlVo8RvbKOQSNFp3VhF7e4Nbf/S1y\nhQzD/ZJyNZVCYzYjiSKSBPlogrYEMqUKncPJyJe+RPjqNSSZDNfUXtzHThGqgMfo58Uf7rC6WUKh\nkHHqVD99fWb0+o4QXK0mYrPpGBtzfCqxqQ/rLcZiJRYXE2QyNZzOjinbex2E3ztGLgi4Jiep5XKI\n1Spam42WKGIbGiJ67RqVVArb0BAKpZKeI0fI5+uoVHI0KjlIEo1yCUFnpJQt0mqImB1ejhzrRZdY\nZPviGum33kCs1XCOjzP/R39EOFQgtJlBTBZIpevULHr89QamoRHSWwFS1Ro6UaS4toqgj6BUqbCP\njCEXVKh0WjRmE5VkCqPJQLuQ5uJffhNDdw+JopzuaJx6rc74sVkqiSjWbi8FnZF6No3QLKHTqVAb\nbVQyWSI3bmDs7cO5Zw/9J46js9tQG434Dh5k+bkfUslkkavUWIZHUegtJNa3oN+PQybgGhmg1ZbR\nbtRQG02o9ToquSLmgWGSdxfoG/WxtRRCoVIh6HTYbVo01SRam42+48dpFIvcu3IFbaGA1Grh3beP\nkS9/GZlCQb1YJlmUsZqSI19Ikd/MYRCadHebdu8TuSB8aoGyf+7++TD09Jg4erSHxcWOx5FC1kZS\nallZzzHilqPQtXj0sJPM1g2yF9eRGyU0HjuSJOEYG0OSK5Cr1DQSabKBKFqXF5nFRv+YH6xOlCIY\nzVqyyHCVqrSbDZwjQ+hcLlqNBkqdnpHHv4hcJVAt1cFgJXhjhWpNZOLEXm49+13Wz11EY9BhPKBl\nxKwmencLlVZDU6tF6/ZSaOlpRcvop49w8PhxzDoJZCLZ5Xukb29w8R9fZmBqkJH9Y6y//gpqrwWt\nUUs+VyVTTCBcu0k2XWJg/yQlVKQqDWqVJhMTLu6ev0P3pI10Jo8sE6I9ICIMzRMqlckVEhgaVpTR\nKq2fMckDaLdaH2iBftJ5+qTH/yLGP/PMM/zBH/zBLz3+8PAwWq2WbDaL1frJpCw+D9fvF8UZ+d+B\nk4ACeAM4TkfG/T8Bc8Cffeyo/wJoNlvcvh1/33bBUqnBxkYWpVJOq9Umn68Ti3UIcz09JrRagatX\no7zyyiY2m5Z9+7zMzXXh85lIJis4nXoGB+0kkxXK5cb98UUMBhUbGxm2tnLUai2USjmRSIALF0pM\nT7uZmnJitWr5/rMLOOxqVi/eJrGq5zef6EWqValGgzhMZrL5CjqNgMNvpbR8k3Y6jM7uIHzjFtVc\nDsfQEPHVdfoPzFBHg9qkIZ6oQCpPSwKUaoZnhlj//j8SeOcdpDa0RJHJp76KQqmgUSphdLuoZDId\nQzqrFYVSiVwQqDXaGJVKNA43t37wY4aOHKD3+Anc+w9h9HqRWxz8zT9sUKHBFx7vJp5uotMpUSrl\n3LvXMRA8dqx3V55doZDRbv9cBf9dSJJEIlGmXG6i1QofqaJ67tw2uVwngcxkqqTTVU6fHvhI6XBr\nfz+CRkMxEsE1NUWr0WDn7bcpJxLoXS7sIyOE18NcvF0gnW8hVkr4zCJ+p5rc1haqAStTM10Igoy9\nE3Z8pjzRe2uoPQa0PYOks3UCKYlJmZYWCmRqDRqbFSmSoioqqCtNNBtFrH09YPUQCm/h8A5i1EmE\nLpzraFl0ddGq17n5139Nbnsb/6On6Tp4CP/cHlqNBr4hJyargVSrSTmZYu2ty+gNasxHDiGXy6hn\nU+itZiK373R2/TgsBC9dRmsyYe7rJXnnDjtvn8c6PIRtYJDp3/s9coks7VaLRChGZKdAuW7FZdDi\nPvIwS29epsfhYLTbwuSJvRQjEYy9fVidFg73WnE5NCTTDfomB/Boq0ReeR7/yZPQbnck3+8b/LVb\nLeqZDIYjR9CYzWxv57h2fZNWS8JoVGEdGCRw5RoWiwajUY1MocAxOrqr6vpxUak0iMfL1OstbDYN\n0kc8BAuFOhsbGaLRImq1cF/csMH4uAOXS09te4XqSowTT+xDbnFRa2ZZev4cdRGUkhOFrkq7lMZq\ntxO/d49iIs3EU0/RbMsJ31lC5ekhkZcz0DPCq//5W7hcetyz86QFD6NP/yH2LgeCSomSOhqLheXv\nfY/IzVvI1Fr6T55CJghk8y0C6zmGH5ZQiFXMdiNKnQ6jSU0znepU9poNlCYzK3dCFCowZuIQHbsA\nACAASURBVOtifXGFxWqNwwfc5K++jv/M46jEEvO/9STBYImWxoTGbEGQt8jHEqy+eZXxEweQ1Sv0\nDPvIikbevhRjcatKtdZmeMTJmV+bJ3/zAue+/QKHHxqiqVCjyF5GLbZoZsto5RLZnAGbzU3zPWJm\nAJa+PoSPIK7+qiKZTHL+/Hm+853v/NJjy+VyhoaGuH79Oo8++gulVH7u8CDJyJPAXkAFxIFuIA/8\nX8BlPqNkpFxuUiy+X0hJrXYQj5cZHXVw40aUUqkjBS6KbUZH7bz1VoArV0IYjRqy2RqJRBmFQoFG\nI1Crifh8Zq5cCRMIdMr+a2sZNBoFg4M2XnxxnVyuSjhcYns7yyOPDFCvF6hWmyiVci69E6CFDKXU\nZHMlzJGTe1hfTzEwuYfotSsYFQocNiMms5qeqRFygRBdx79C4OJlln/yGpIEtv5+DHYbhXQRU28v\nxUSa4YePIhls/MZ//D3MLgPlwDabr73ekeHO53CO72HlhR8x9dtPY/APkU6VyK5E8J98hKHHH6cY\nCqHQGdB219nz61/l3isX6TpwGL2/H53PRWEzQrWi4bVLBW6tNRgYcRGMdgzqHA4tExMuajWRcLiA\nViuQy/3UF0aSHuwXbrstcfNmlHv3ktRqIiqVgpERGwcO9Hzg2HcTkXfxbhvu3WTkwzLu924jzAcC\nVDMZXBMTHQVQs5vXLmVZWgtgNKoRiglubC7zxaeP0DU/j76p4uwTE6iqae69coGBExMUtjfR4CVe\nUdNWCEgqHZFoiaETR1C//QZiTUerVqPckCPqHWjUKgxj07z12hrbV5cYO74fD1GErUWQ2ij1OjJr\nazQqFRRGC1JbInzjNuqufm69chWbt4HSaMZ//CEK0QRqs5muqVE843uoVWq4JyaJ3byB1Gqh1qjw\nzsxSiEZJb6yjs5hZ/O53aZQriI0GYqVC7NZtXAePUogmyOcqjB6d48qFdc6tbzEw0cvM7zyNfbCX\nQKhCWSbHrKyTunkN58wcckHAaFRhcDoQq1WSS+sIajVqk4l2s4nB49n1IpErFNQKBcrxOGqTiXi8\ntOu+Wyw20Dn89D+kRt1KY3AYsI+MdAjFnwD5fI23394hGi0hSaDVCszPd33guFpN5Pz5AKFQgUKh\nzvJyCqdTx8GD3aytBRgasjE/4sRg1JC5e4uqY4TK0ha5nR2G5sagDTWFCZ0Eiv5pGrI+hse6sdrV\naG12hh4+Rl2hZzsO4XwZa08XktbIW+ejiOUi4jEb2e0aoe0Q//F/PEjkhR8TvnEbuVxGGznldIbs\nxiaOiQlSoQjFZAbX2CiFzXUMXhdSPEas0cD/8HFufevb6PpHKFXrOPw9yMwugj98kVK2hEkYx12u\noFbLsYyM8uqzC4S204CErirHKZegJaK3mpCqRcxdHkLRApeDO7z0/F1kBhtNmYr1rQL79lqRNatM\nnNjHwNFxdE4nl7/7E5RaLU2lhY3QNfpqNfq+fBKdRkExHAaZDHNvL86JCcR6nWo2i0wuR2e3fyDZ\n/FXjjHz/+9/nd3/3dzEajT//4F9A/NHRUS5duvSJk5HP+vr9IjkjDTo7X0Rgg04iAlDlAcztflHQ\n65UYjeoP+JYYjWq8Xj0zMx7W1zP4fCZMJhUKhZxAII9G0yGdQmfBjMdLpNMV/H4LwWBgNxGBjkLr\nzZtRWi2Jl1/eoNVq02p13l9cTHLwoI9aTby/8DWQA1qdEptVR6VUJ5tsoB4w4j/5MNVMFrlGw+hj\nZ2m25ASv3aTelNi4voJ9fIJGvUEqWabr+EmMehVmlw2dw46EjLU33yF64U1WggEGTxzrKIWq1Zj6\n+mmUyx0vmz/6b1F3D2LUZGnLBN7+xzd45I+ewjU5RaMlQ6XTEF8PgEqFaHQRKqpQWQbZUZu5dilK\nPF7B53fichtJpcq7lYuOk68Fq1VDs9nercharRrs9gfbFZFIlLh7N/E+M8KlpRQ+n4m+Pss/O1aS\n3m8v/8HPO1tHJUlCa7XSajZ3d9cIrm7WN6ucf22NqihDarcxqkRcejOLN7exzhjQa7UM+Fzc+uEd\ndPI68rbI8L49xONFVAYtwWgVj9WAyaojW1fR88jjFHe26D10AIXZSbMlobfb+btvnKOQyCI3mNm+\nuch2PsmjDw2TuX4BvdNJ8MJFvPP7yMXSVGsipWIdszpLCxmbt9YppPI88T88Tf/YKG1kFGMxNt66\ngHV6HyO//huozRYMPRtY+gcopNOdB1s0hsagR6FSodboUZktNCpVFAoFSpmIXGpiHxoi29DiH/Ji\n7/aQKKsQ3UPcDbdYe+suI/snOHNygpp7ksubJQqVFl2uHoYkFbJsBI3JhM5uxzk2RjmVIr+zs3vd\ny4kE5VQKS18fhUgEnWngfXMTTzUwGr3MP3YEh6PDL2i3WpSTSZCkjvfNA3JHNjezRCI/JSFXqyIL\nC3G6u42YTJr33GtlIpHOr/dcroootgkGC0xMNFCpFASDeWZmhmmLItlIknKsSv+Am3rMh82mIpst\n0DbZWNlukHHWCCdVXLt+lfEBHebkAjqvF938I6yERVq1Nn1HH0Vv1LDz2jL2njlEk4lzL6yg1qjY\nWgzSkAT6Tp1CJjZoyVSIChWRpXWkPSeYe/JRlNUMereH2T/8Q2K3bgFg6unF1DeA76GHUTncMKRC\nVJtZuLxOWy7QarURW50kvFkusxOXU8lkcTs1ZMMx+uZGqEZDqIUySrWSrrkZmpKcukzH+nK8Y9xo\nBbEpISEnk28wNdlLcuEW6dV1Apeu4PA6aCn1xAMVNBqB1OYOtJr0HT9OvVAA6Oy2SSQIX7pEJZ1G\nJpdj6u7Gd/AgasMnV13+LFGpVPjGN77BxYsXP7NzOHToEM8888xnFv+zwoOsBHVAB1TotGXehYXP\nMBlRKhVMT7splRrv44xMTo7QaLSpVpv091vvE1Cl+667OpLJCuFwAY1GidGoum++J8fnM2Iyqe67\n27bv63QoyGY7rZ5Cod7hXeTrZDJVjh0zIAgKTCYF6XQFg0lLNJTBpDYhtiCXyjP9G0dIvPodxEYT\n/6lTqOwuZBod5WIbhcVJIlqgkMySjSbpmd/LhYtRjig1TB0cRmPQkbyzQHYniGJ4CGO7zvJzz2Gw\nmfDs28+d7z1Hv9NFo97E0NtPVVSg6J+i1VhGbTZj0Bt551KYPeMOlK5u7kbbeAe9lGUp7uwUEYxG\nbAWRUklEFNt0dRloNts4nQ10Oiebm3nqdRG328DYmAO3W0+xWEevV6JUKpid9fyzrqvvRT7/frM6\n6CQYq6sb9PXNv+/9d/1z3oXRqHqfH8Z7+5GNcpnojRvkAwGQJAxeL86JCdRWK81SiUxFIJcsIlfK\noSUhSRLJWA7nHgf9Y07aYobt7W0GlUrmHpogfusm5eXreKenaepTFAJ5hme8DE35uXk9wve/dR69\nUcPcyRkspjb7D0gYlTUWFzu+K2qbilS4jqRoIpbryMxOVAYj1VKFpthC0BnIxVcw+odYur7GVx4/\nS13tILG8jGd8lJbeSb2YxepzUYuG0I8PYDMqqGVzDJw+i9Jxi+TSCjtLEbRqGa7hAdQWC7ViGc/8\nPJn1TVrNOr59+9HYHVSDGXRaEy/81U+wDznZc/wkN95IUrwcxemxUBUsJLcClE9P8NLby7z63A1K\nlTYqlYInf2MvXz07SmttAfvICHqXC4VaTcpsJpxIoK9UyG5sYB8ZoVmrUQiFMA4r8bqtROMdjxm5\nXEZ3twmrVdfRXCkUCF+5QjESAUDvduM7ePCB7qF4vPyB97LZKOVy324yIkkSzWaLRkMkm60Tj3eI\n7SZTx4VbpepoBdUrDVQGA5a+PhLLCRQeK2OjVjZuLtNuSpTlTTR2H+tbZSSgEovw+q0kv/b0PIvh\nOqtffwHT+DTb0QbpPiNnvzhE25Sl1KoSuF0lGsqi1WuoN32sL2zTzsbpHnQTDwSoVtuM9gxRSJWJ\n7mywd64bhclGKRyi+8hRKnodfX4/5/7zN0ktL9N34mHCjS7SpSwiSjRWO5JcxdhcP0bRRDlfoooL\ny8AgUqWAWq9hNQLdg4NMzRzHtx3E2u9n5+4qgqTG5jR2ZA5qZby9fVQlFaMjNkyZIHWbiWKhhqmv\nl50b9xg9c5ql+CZSVaTPpsVsUiGTydCYOyrIbVEkev06pVjsp3OysYHGbKZr374P/T/7IPgsOQ/P\nPPMMp0+fZugTVvA+bXyA3t5eLl26hPQz5O9fVvzPM2fkBPBubf69yYcA/P7HjvgviL4+CwaDimSy\nglwuo9FI4/EYqddFdDoliURl13xrcNCCw6Gj3W5TqYhUKiI2W+fXvcOhQxAUTE97CAYLVKsiWq3A\nwkIcuVyGTCYjHi/R1WVCrVZQKjWw2XQ0GiL9/dYOIdah4+QXJohGckw8fICpITWGegxhYBDXnnGa\n1To777xDu1LB89AjDD3+BNGtCM5eD8FrN6mgw9erwe3SYfJ4OPe1r1GMRMiHYxgPHuDQrz2J/+gh\nqrk8PUeOsfLjl2k3mzhGRvA9+kWCJT3BjIB79jgyQUk0UqLVbKJ091JuaYikCtxbzxAOl3A4DIx0\nmbh9O8bDD/dz5EgPjUaLTKbK2toGCoWcL3xhCIVCRihUYH09QzRaQq2Ws3evh7173bvE3geBTqdE\noZC9r8Ihk7G7U+m9OHy4h4WFOJVKE6NRxcyMB5vtwyswycVFUktLu6+zGxvIFQr8x4+TuHOHWFii\nKbbYe3iMi68vIbU6CcHQWBf6WoiVV16A/n7yKhW1fB6FXEb81i2SKxtM/PF/QD6uQd6skCrX+cHf\nvEKj3kSQS4QXNyi67ExPOoisXsXoP4Bj0E8huYVvbBAqeVoGAZPdjPnIURRaPYNnz5IJRuk9epRG\nW8HoaR/3lrMsvLWM2awjv1OlK5bFLGUR+vcyNTnNlee+z+ZPXkSSwD4+jm1kDLlGS9dwD75jx8Hk\nJK1Usf8//R9UV2/SajTQ+fx4p8ZZOneDnet3sM+IuPvclKtVQoubjIwN47LIWF+JkAhmmRvtIpko\n88bLK+QrMur5EnWViheeW+HhR8eYPHMGo8eDXBDQ2e30nzxJ+fJl5OEwvceOoXM6dytR5e1VDp46\nS6bqoljsEMB9PuPurqj4nTtkNzd35yu/s/PAfAOnU/e+qiVwX+9HST4YJLW8TKNUQj0wRSZdYXUt\nS6FQJ52u0NVlpKfHzM5ODqtVg9mmp+ZwYLXHMdhqtCUZBl8Pmq0kGoWAdWyESE4gGU6jVUM10/HH\nMvcPErl0nkapglbo8C2q9RaFZBarskx0J4LbPojZbkKpkFjbLDHxpbOs/uCfyG1somhD7+w+DEOT\nbG6XGe81Ezr/Nkuvvo13oIu+2XFawxME8hrcZ34d2+g9arEwB4762choSexEwO9jen8fXSaRfFBF\n3/wUlZ02qytJvEM9GEw6SrEoLUSauTQqalh7vMSieUpbAQ4dnCBfaBJPlNEZ1Az5XYz1KLn94yus\nXbhGqVTD3e2g58B+qpUG3X47+obI1OExjK73O2/XCgWq6fQH5iq3s4N3bq6z5ftXCJVKha997Wt8\n85vf/EzPw+l0olar2draYmBg4OcP+FeCB0lGah/xfur+v0+D/xuYB24Af/IgAxoNkVKpgVarRKtV\nYrfr3qPk2DHLUqsF9u/3celSiFyuhkrVqX7s2ePA6dSztJRCqxUYH3fQ3W3c1R3x+Uzs3+/j/PkA\n8XgJpVLO9LSH9fU0J074WVxM4HLpmZvzcvz4JLlcjdFRB3I5pKI5VNSYm3bj9JjoH7HgUqVI1svU\ni2UWn/sh6fUtHEN+IleuUNNvI4zuJ19TMv7kE1DKYLCZ8Y4NsfHySxQiUdotaNTqNO7dI+Cw4//C\nE1z9p1fo7xvnoa/9nxg0MoTeMZ5/bploMs7yrQAGq4HH/81xgoUGA4NdrCTVXLgQ4ORJP1pdlUKh\n4zhaq4kEg3mKxQbz8170ehV37sR54w0FCws7OBxaJiddxOMlens7rZR6vc3ycor+fgsWy4MLV7nd\nevr7rWxsZJCkTiLS02Nmdrb3A8d2zLhMlMsNDAYVKtX7b9F3M26x0SD3IX42xWgU79xch3C5mSby\nVoAxhx69TsHS9U1sHhsnHu5m6+9ewXZfwl6h0VAPBjH6fAgWO5lImnpwE7X/CPdeuonSZKVeayIo\nZLs8CZPbTjZXI7UUZHr6EP39Vu7myuRTMQb2jHH06CO4VEUKKTvliohxfD+ycZF2uYDFaaGxEOHF\nv/weOpsNhcOH2WnGN+wjGrFQzCjJrK/QShQ7Yl31KrVcgdTSPdzThykrrbz2TohaIYJzuB9Zpc6h\n00/TUN0gnGkQTxpx9w0ju7WIt9dOuhDFhIaHn5wn09Ty3b98CdHowd9vZnLaRyjXoF0pIsjltHV6\nmuUS+XSObK6Kpef9dvF6l4uDX/oSsdu3Sdy5Qzke/+mHkoRGkBgb+6BDq1irdbgGHzJfD4KBASvB\nYJ5ksoIkgVqtYG5uAkUtz8abb+7a1je0EfpccjIpAbGQw+xVMDPvot1q4/Ua2bvXjU6n6uzCymYZ\naiuoZvNEl9ew7NlLq9kGk5NXvvkSXXMz2F1O8m0Jk1WPIGuRy9eJxwpIGzHUDglBanLphSVm9zpp\nl41oTRIH97mRFErylQbi5DSH/qcRxNgmOiXY90yQbwhgEXEJGV57dpFWU8TQ3UPFN8et1zdR25tU\nKnVcnn5OPH2WVLLE1LwbzdEBbr9+lcv/+DImi5bpY1PcWSnTPdrLo7/1ENcuB7lzK4Xf7+PEySGk\nZopEI057M8XAgRlyBRGhmubMmUHSNRUGu5kTDw/QCt8in8qitLsw6Bs0ZALJ7RAjMwdpxrJ0j3TT\ne/jQB5ILQaX60DabSq9/37G/KpyRv/iLv+DQoUOcPXv2M4n/3vEHDx7k0qVLnygZ+dfMGflFYQ7Q\n09md8//Q2S587Z8bEAoVuH49QqFQR6sVmJx0Mzpq/9BSls9n4rHHhshmayiVchKJMuvrGcxmDadO\ndezKV1fTKJUC+Xyd6elO28FoVDEwYEWnc5HPV9nYyLG+nkWnE3jssRF6e82MjzuYm/OgUimo11us\n31xDVY7R5zQjKCvE7kVwW8bRl5bYfP1NBKWC+MIdJr/6FUzdPvQuNwZvFyafh2oqRTYYoaJQcPcn\nb5FeXkKr1yCXyVBZTaiTOlptiVy6gClTReHs4aWfrGHxeTl4ZobrN8LcWYjQ3W2mf3qQXFXBpesp\njh3rw2hUkc3W2L/fx+3bCTY2MiwsxAkGC3R3m/j9358mkSixvJzEbtexvZ3j8OFudnY63JpSqfkB\nye5yuUmp1PhYyYhKJXDkSA+9vWbS6QoWi4bubtNHuu+q1cLPNT+Ty+UoPkTbQCaXIxME5AoFvf0O\npvNNlpfT2D02znzZhMdQR4quUYnHUer1lBIJDG43rXodhVJJ3+kvYA7FCF27TpdKx4FHp6lVGrSe\nPkA01CHpeVwauof7GNzTC5kptHoV+/0NRr1d3LvVYu+8G72YYOG7Pya5voPg6CJe0WKdO0xG08MB\nt5uZ091IaiPx7RBk4+ybsXDu+WssLqXoPTBP7eo1pGoL//A8rVKFpk6N0aLHPtDL9mKRdlvC6HZR\ny+bJxdP80z8sMOBVs371JqlkkbH5Ieaf+CKJWJpyOMTBL5/EYtVw8TtvcfTUOAaLAavdwLWra/TM\n2Zg9Mowkybl9K0psp8rQuBezsVO5qpfLVJJJ6sUiMqWSptKMTG2k2Xg/X0vncKD7CKt4mSAg/5D5\nkisfTKfGatXyyCMDxGIlqlURp1OHx2MgePHibiICUK212L56h8k9I0x0O2k1m6SCawjjJk6emUSt\n7qjG1rJZ7ON7kJx9tMsFpHySUi7Cxt0QNn8v+09OUNVYEJQKho/OM+Rq04xsojHoMXRpyZUlBvwa\nQrc3GJx3cPFb/4R/0o9WkeWhyXFso2O8fW6Hcz+5QyOwgqfPxcEvP0Tl7irlRALDvkco5VVoewfx\nzU3jm5vhe8+8RTlfQu9MYuz1E061eP3VdWRaHQNKB4urSdQyD0d/qxdtM8fW7TUq5RrNRB+Cf5JM\ntobdbsDlNnDz/D3GegUKkSjZrBWt1cLhrzxELluj2ZYha7fRaeX4esyEVquYXU7isSLlSotWroZg\ntqLxduMbmWF4sgeNWfOBOVEZDNhHR4ne6JCroSN45xgff99x7VaLciJBvVBApdejd7t3SdCfF+Tz\nef7sz/6Mt95667M+FaDDG7l8+TK/8/9z915Bkp3nmeZz0ntvK7OysrK8r/ZoAzTQcARAgqIROKKW\nQ0qiViFppdXsRGzEXmyEeKEJTcRqRzEbWuliZXa0GlJDUhRFAiA8iO5Ge1ve2/Tensw8eTL3IhsN\nEY4AaJqc9yoz6/z1n8r/nDrf/33v975f/OK9PpWfG+5lMHIMePHO65eB43xAMFIs1jl/fveuFbko\ntrh0aR+zWUMg0FX+e2etymDQ3H3gdXdT3W6QW7cS7OwU75QBBBYXM3Q6cPRogN3dAs2mjCDAwkIa\nl8vIU08NkcmISJJMT4+Zw4d72NzYRJZMGKpRvPI++9om0ZU1NAY9Dp8DnyrPzvV5LH1hkOrMPPM5\npFqNWipJq1JBa9CxeuUi688/j0KtweD1YvGF2Lh4g8lHToLOgCyKWEMh2sEg7uEJjOEhzJogq/MF\nbt+qYwgUuHAti+Top2bQkIqLaHRqPB4Dk5MeWi2Z9fUcXq+JhYUUS0vpu99VJlNDljuoVAK3b6do\ntdq43UZisV18vgB6vYpisU4mU70rEAfdHek7A4VKpYlSKXygAJpOp2Jw0MHgoOPuZz+JN41CpcI1\nMkItk7n7j1BQKHAODaExdAMolUrBoUM9hMM26nUZRaNM7uo5lDod1r4+xGyWdK2GvtlEa7Ggs1i4\n+vVnqaSz6IQmvukpPCEf+3PX0Key9Bs0TJw5xtKlJaJXLmInS9+gj53XfwjVHKlKhdlTpzHqWkTP\nXmfr0m1a7Q7KchNPZJDs5iraMS+NaoPVUp3Hnp5i92yBym4KWRS5/uYq1ZYGczxNeHyci6+eRR0t\nk1teoi42OfXMI4TaTXLxPLGbt9DotDgHI4gtBbvXVuh9bAhnpJ+2LktdacU8e4za3AJhZy/KgQA1\nWYOxL0IuX0dvs7G4VSdkN1C++AIjgky+ruTXn5ni6i0np073MzDoIr20RHppicSNG0hiHXUgQlJt\nQeMYJuAbQ1PcR6OQMXo8eKen37fsolSpcI+OspfL0W51OUGCUolrdPRDr313s/D279/e3obmjzoB\nq9t1WrUqe2v7NMsVDCYdgeEQlUqTSxf2cNuUEF2kFt3rdsflwHt0HF3vAHp3GVNvGCSRWb8flb+P\nRr2Fsu3A39PlU/zqmJVzF5O88eoqBr2KIycHUBb3EcsVVla3UBXmeDJoolPpIX3hVdooUZksZEtt\nzj13lYcfidDCwtf/03cZHu+hUlcQ6OmlUq5TyuTR2BQISiXpxUVsw2OYxyeYPNhHtiQzMWyhHt+j\nuB3lhb/5r9gcRgaPTNBsylx97gqJmMDwmAdrfZ+t21cpXJI4cLAHi1VH7NoNxEUZ71AYk1pJbCtJ\nvAbphhFDR4vR46J3tE1ibRulzoFzaIhiScJpK2CzdbNjstymUmmi0729WfBMTaE1myns7HQdnPv7\nf8SnqtNuc+2ll1AnEsjNJgqVCvvAAMH77vux9/jHxccZ/2d/9mc89dRTjI2N/UJwLo4dO8a3vvWt\nezb/Lypn5GcFG/BWAbkIfKAbUT5fvxuIvIVGQyaRqNx9wH4QVCoFfX0Wrl9PIMsdgkELU1Oeu2TJ\nQqHO+nqO1dUcoigxMuJiYsLDD36wTk+PmSNHug/o6REThbnrLJ+/Qa9Jg2Won3ZmlyFNifCIAZPH\niMNvIr+/g/3oacSKSM9wH5UbZ9l943U8k5OkE3NU4jEaxSKZ5RV0Tiel/X0cYyJGp5tmQ2LqmS+w\n+fyzKCxWVBNTWGdP88Mrebx9Ply9BhTmOoJC4MTJED/4wQZ78QbZbIORESNarYqtrTzXrydotdr0\n9dnIZmuEQjZkuc3hwz3Icge/30yx2MBu17G+3v27TSbNXbE4r9dIINDVa0mlatTrEvff34da3c1E\nFYt1bt5MkEhUUKkUDA05GR93oVJ9PB2JjwrH0BCCQkF2bY22LOMYHHxX66ggCLhc3c6gzEqcRrGI\n2mgkePx4VxitWkVrNuM/eBCt1cqRX9eTiedx99ix+L28/h/+FHv/ABpZwuXzkjj7GsPTs2xcX0JQ\nqVn83g+Q1UYEtRqt2czeay8x+PgnaNVquAYjrNzeolMTMbnz9AwHCEw7WFhLUyuU2J+X8HRy6ON7\nGA/0o9BbSG6XMaequHxBAmP91PfjCAoB/1gETXicYlOLtceHOTxIeWsNQalGazXgC3bIbmxRLjax\nB3uQDB5WNirkCzqmD48iCTVuL+YQHAGOHLNTzlVI7G+wPP8m1d0trE4LBn8P3uYWf/g/PYIj6MWk\nFIneWGb9hRdIz89TkzVIinm00zP0zNhYavQwPHiI8QNutHfUOD8IzuFhlBoNuY0N6HSwRyLYfsKU\nsDUUIrex8fbOvJrh2OlRlrZE8pUqoYkIi8t5tFsZ3ANNSrvbTI076TObEYp1ivEU2mgc38QJrp5b\npRxP4vIFOBjuo7lxi6v/8C36Ds1ie/pTNIt5Ni9eImJ3MPFbkyj0FlwWB9/7z+dRGc3YQx68w1p8\nQyFu3VggNbeAymhC7faTTpQYOjyM3unm9RfPo1JBW6Vm/IGjaDtVKskkzoCLpkqmtBdFZ7Ui5TOM\nj7lQqhRUKiKr8wk6YpN+v5H+w1PsXLyCopTCMDBGYj/G8PAgM4N6Ln79BzQ6DQJWA6XNVbbeOEf/\nmQeJLs5Rj20RPP0Il8+tE3ngFM18BqXYQudwYKrWGDxxEIPFhO/gQYROjWIsTadzJrcCJgAAIABJ\nREFUmGSywvXrcfL5OlarjolRG36PDq3Z/J733VuopFIUt7ex3ynbtFstcmtrdx2+fxGQSqX4i7/4\nC65du3avT+UuDh06xNzcHPV6HZ3u3Vmp/x5xL4ORIvBWFGEFCu884I/+6I+w2bp8BY+nj04ngFrd\n5YU0Gl26ikrVtVrefgd/4K334XCYvb0iL7xwjU6nQyjkx2TSYLPVKZeztFoWNBolhUKCV17ZZn9f\nQS4nkkjsc/BgD1/60jTZrIhSWcTl0FOcWya2vIlcKrIVK5Cbu44l2Etsfxtbb5Dq7XUCA59jw9HL\njdeuU9kv4Z+WsVusOB99nNZWl22+n0x2Teo8Hpq1Gu1AkFSlgs8/SDZbRz8cYuD3fx+3t5eG2syL\nb6zgCuqZm89waz5DZEBBu6Nifr5BKGSl3c7jdivw+cx4vUZWVtaJRrPcuFHHbtcxNaVhd7dEtWqk\n1WojyzlaLStWay9Wqwartau7EggMks2KNBoZyuUKjz12gBs3Emg0FUymrhz+q6/uMDqqZGkpgyDY\nUauVlEoJbt/OYDCoGRx0/Mj3/871+KD1+nH41xG3QqnEOTyMc3j4Q43VWiwoNRqkahWVXk/vyZP0\nCgLuiQns4TAr81G2gZwhQEVlYQQRo81Kq5ij0bFQTSVY/sErzJgtpBYWGT00xPr1ZXRODyaPG+VG\nlHKtgGNwg0ZLQWlvB0/Ix8bcNtlsleHBXqqSgu31JKX1FSwOM0vRbc48NIRNqhIa8pGrdOjoTVye\nrxLyzXDmkfspJ+JUO0ZeupAislVCZzEhWN2o+nWIpTLhQzO4Twxw47k30FoM3TKg3cT4iAXLfQGi\nsTI3zyfQ6HUYLTVupTMMTvfjdet56eYWXq+JFkpaTYlOIYUuv4nG2ibbFJB1NioiGLw+0uspGvU8\npmyOZi6BIuBna6fM6LgXnenHs/4FhQJ7JIL9p0TKC4fDtFsteg4dIrO8jCxJ6Ox2Zid6CEVqKA1j\nrGyJ6IUYCoWCjiBQL1VYmmvSc9qP0VjA6bVit/p4/WwUGQuWARsGl4mbiyn6VRr6jhwkcmyGG3/7\nt5T391B5gmwurqJb3mDgsUcxjozwyd/+JCuvvI4stQnNjuEcGiJQ28XSG0CWOygFGU/ATmgsglpo\n4R7oY2FrjfVX9zh2vI9HHhyF5k3ue+wgr/231ykn0hgcTqYemMHuMPDi2Tjf/Zc18ru7uFxGcv0a\nQjYvQ9P9KKQazWyCySkfeVmglsvQqjdRdmD4iIPCzVXapTIWgwK13UxyYRHX4RPMfP5XKMt6xOw+\nBoeFmnIKQd9LLZej1hHI/fAa5b0dpn/lSfKZMufP75PNilgtGtTFfS7+l5cIBYz4BoL4Z2fftzzX\nLJfvBiJvodNuvyfx9V+v6096XXwU/Omf/ilf/OIX7477ReFcjI+Pc+3aNU6ePHlP5v95j7+XwcgF\n4HeAbwIPA3/7zgP+/M///O5rUZR46aVNEomu1oBW6/qREs07vwC3u4d4vMzNmwmy2Rpms4disUE2\nKxKLlYnHYWKi61RqsWhIp43odCaCwRbVapOFBYl8PseZMxZmZ/1MTY1T3N9n4+Zlms0WqlKVrTdv\nslWtcN8XAji1WnxuF7rhIfKVDnOvriDIBhTKKtVcge2z83z63xxFSsYRs1lsQGlrG2u4j+z6OoZ6\nHUFQorM7SORkjHObjH3xaS4viexsrdE/1sc//dMSi/NJFFodCaOd69dF/H4j09M+otFu+aNalXjx\nxU3sdh3NpgWNpsWLL27yG78xQ7O5d8fzRcDpDHPhQpnDhwvMzHix2XyMjpruaKl0cDqHmJ72UijU\nKZfrGAwuHA4DWm2XY9Pp2LBYlOzsFMjn67RaqjulnhyDg453rcdHff9xIYoSW6tJoltJrFYt4UE3\nnl4v0CVfuicmSC8udm3uWy2cw8MIVi/XbiR59tktNBolNpuZaKJKPVOl9/Ah8gu30BrVFKJJBIUC\nhUKByaimXq5iMuvQu2zoNR3KlTI2lx2t3QmiEr3bi85spD0aIHLiCN7ZWb793D61YpVcsoBS6OAe\nGKBiCiDUSnjCPoa0HlRGM5ZGG61OyYWLMbaWdjB4fWT2s5gbMuWGAv9gCM9IL+GQBWUpjsbmgE+c\nJFYQyKZKjPUbSV86T2n4IH/5H5+n3lEj6MxoVW0ee2IErUZArVWhszuRVErUJj2NQg4x3aAYS7G3\nvIPa5sRgt6L2hWg3fTilVeJr23QApVqDQqlEpVKg0fx8MmHvBYVKhW92FvvAAHKj0W11zufJrr5C\nYTFJdF9PWwJbeAiVRoNKr6cuirQVGrT+PtxmJW2rj7FghsrOKq14BZvaj8rjQa4Y6B0JUd5cQ9zf\nRKXWoWmVCQfsWEJOXG491y/v4vL7OPxbv4GYzlAUBf7mb27x0OOjzH7qEdaudV2kQxN9nHp0go5U\n5eKbu9y6vkdLksllStREiacfGkJ643mOH3LSOh6h7/AMRrOWaKLOpTc36XTauNxmxFKZhmAlV6gS\n6Q9SWp3H3qxw6MAI0ZaXWnQHjVaJ36OnmslRzFZoV0u0qhXQGFAGRtjcKbOtkrCbWgwE3WQyZW7f\n2Ce1sMDGlTmUWi1HHzmAJp4jvraHMFBif7+E0ajBqS6z+so5mmIDtWRBJzRpiSIDjz32niU6tdGI\nQq2mLf0rfpEgoL3THnyvEY1G+bu/+zsWFhbu9am8C6dOneLs2bMfORj5ZcW9DEZu0O3UeePO6w8k\nr+r1ak6dCrG0lCaRqGCz6Rgbc7+nBkWp1OCHP9wmkajQaMisrmY4cMCP2ayhXG7i9RppNmVsNh0K\nhcDIiJNGI0m53EQUuwRNq1WHwaBGr9dw61YSn8+EWpZpt2SqVYl4vkApV0FAplxr4zp4jNr+JvV8\nnpSUYeW5VzD7/YTPnKEci2FwuUnuJPHq9BRrdXzTU6BSE781h396GksggP/YcWJ5UFX38R86QKph\n4KVvPI+srNMQWzQqIkePh6kUqqjNBhYX0xw44Gd+Ps32dh6zWUsqVeX27RRms5rjx3vp67PSaHQ7\nZwIBExMTbl58cfNOFqiIWq3k2LHuDs5u1yNJWY4fH7mTLarz2mvbnD+/i9GoIZcTmZz04HYbkOU2\ntZrEG2/sEo9XMBrVzMx4iUa7qrQfxkDvJ+GMvBeazRY/fGmZS98/T7PWbQKLTAR54rOH6BnpR6FU\n0nPoEJbeXpqVChqDgc1UgRsXYsRiZVYW48j1BoGQjf6QmWxOZGBoDF18j3IshqolcuSZp+m0atit\nGhIbu4w+fIpCpoSuVSHeaWFuQ6slU04kcU1MMHD8EI2OhljNyHJSzd5ukbYoIhZLJFoSJp+fZAmS\n2TJqpwGvz4XTb8frs7Kyvsn8loxap6WNkqMnImxcvkVL7+S1b58lPORh+Hce4Nz/9X+jNhoZPX2E\nR5/8FV5+tcTrr2/z6c+d4vLtEti8GNVV1uazNJsyff0u7jsNTZeDiSMRyukcJkMbk9NBtdWh3NaR\nXr1NJXcN99gYu2+cxdzjI3joIFKzRdPpxBweoFiWGR93f2i9mZ82/vW1oDWb4Y5iZn6zex8q1Wr6\nIm6i57ZolkroLBYsgQCaRh6j1cT8SgGzVQ/1fZb/+VmK0QQ2t53cbhyzz8Oxzz+GKqWgWSogtRW0\nahIbSysMnzjAwoUlLCUtN5a6LbLh44cZGdfz7LNbxBI1Li7c4rOfGeYzvzuCyaBAqGZpbt9iXbRh\nMysYm+kjES+h0iiJZyR0/gC2SD+VRIqRsJtqZg/ZOMD8QgqTUUtxMYPZrKHd7gq7TZwZx+3MYNTI\neKYG0fUHWLyUQ5YVHHlwkoWr15ByLQxmC70HR4mv79ESRZQOP3Z/ABIy3/ovVxgfd9FSaDGrZDoK\nFUaHnWq1ydpSnNPHhkmLVZwNmf39EgcP+invrdEUu+VyxZ1kWC2TQcxmMfe8WxHX5PHQcLnQpFLd\nUpogYO3r+xFeyQet6096Xfw4/Mmf/Alf/epX8d9RcP55z/9B4++//37+9m/ftUf/uc3/8x5/r117\nP1Q771twOPScPBlCltsfqHOxtZUnHu9mUNTq7k72xo0EDz0UplxuolQqGB628cADIQRBgUqloFhs\nMDeXolJpIssdNBol/f12Op0OtZpEPl+nz+9AZTaTT2zSLFVoVioER/tQWuzs7xZor29i8zqQpRpK\noUNxd5fc+jpStYrB46Z3epD8m7t4jx4neHCa0P33Ez69BzojpvAw6ymIZaJUOmbkWBtDLU21IuHu\nM9FsSqzN71CXOqgUHZDVCEJX6CmbrbG0lCEctuH1mpBlmVKpw/Z2AbNZyxNPDOHxGBDFFn/91ze4\ndi2OJLWZnfXS12fl1q0kktTmwoU9gsE2kUgLrVbFzk6BcrmBxaJlYyNPNiuSz9d5/PEIyWSVs2d3\nWVnppltLpQaFgshXv3qQcrn5M3Pz/SCkUjVuv7lwNxAB2FqMsjXuwx3yodbrERQKzD7f3Z9vX9kl\nkVBSL1epxOK0WzK7lSI2fRANTcyDs0iVCuZwik6riXt8lFKqgMpgoKm24j9xHE8hRWFtmbDbjbZQ\nYvl7z1JSufBY3URbLr7zvS20pgajkxq0Bg2VloXgzASlZIpyVWJAIbK8naK612T5xhtMnLmPgUE7\nJbHIQ08dJOjTkE6UOPfqKsbIGJlomp6xQTwDfor7CbKpInqDyN6lq6DS4VD6GHlyBtloJZ1LU28p\nsBg1CEolCkFGQoFSCa+/EeWRh+/HLMZYv7ZENi/hnJgkWdNSqwu0mhKirMYYClNNxDDYLRz94qfJ\n6h0Y/AFOzRiJRD6emdfPCs1KhcLW1l1J8j6vlvxsH/vRAnR68PX7OXZommSizH65jjO7h9FcRyoW\nqNeaZOMZ1JUmdQkalQpVhQOVO4jZ52VzbhOrx0kHBaVSBaHWJroRI9BrZ/v2BlpTH29ez5EvNJFa\nHbajNzl21M///JuDvPG//a+ETz9AxjaLot1isN9EZKyHjkqL261DqopUGwqsw2M0lXragkRB5UWl\nLuL1W0hGbyN57Xg9HiTaBPtcKPRGDM4QueQWjfg1dnZtzF3Z4LOfn8Q71aC5n2XmwScxaTvc/G//\njKO/j55Tp4nj4PUXrlApilTFDrLQoiG30JtM6D0+lDURZ9CLymKiruoK1jkceur1Fvo7JRe1RoHN\n/q866t6HL6S4Q1x2Tk8j5nJoLRbMPT2o9R++G+9nhWQyyde//nVWV1fv9am8J06ePMlv//Zv0263\nUfySabZ8HNzrYORj4f0CkbeisWz27VY/QRAIBCxsb+fv3i8Oh46ZGR9q9dt//sSEh2pVolRqYDJp\n6O21MDTkoNVqE/aAVsojKHvomZ1h+eo67oaVyOcewT01SzJdw+B00EyaqWSLyOU9Zk6OcfvSGpIo\nYu4J0D8VQWU143/4SdavLKKq6mka3MjBfubnU5Rv79GsVLoeJm2BXzs1Rb6m5tRnHuD21U36hvzM\nHqtTE2VCgz7Wt8qMjbkZH3cDHUqlBul0lUJB5JOfHCGfF7HZdNhsOiIRG81mC41GRy5Xx27Xo9Eo\nOH68l2azTS5X59Klfer1FjMzPqzWFJGInWKxcbeD4a2OmUZDwuUyIkky1WoTh0NPtdpEELrdDuVy\nE5PpwwUiHyd6/qAxtWqTWuFHjbw6nQ7FXBVJFH/kH2Cn0+nqntTVWNs5eoJ65v0WkrECUrOF3Gqj\n93lYuLVPuWwnMjSCFNtk/+wyqnaddlVk4JET1NVmtEE7WlOQ/kaB+MVzaCwWfBYT4089wrNvVkkU\nBSqxIjuxGo8+EkGsNWmKXnTCIANDLvYXNtAF+insphmeDGI0abFYjdTrMkIpQVNvQWqCKGjZWN5F\npdFisZuJDDhYe+kfqZVF7G4rBosRoS0RHrCwslckeSuDWG/RE7CSztToHzXTrtd46OEhClWBmUNB\nLAEbGxt6Kn4D0cIeb35vDYcJjh0KYbOb2dotk0urcbqGMXp9TH/6MdQ63U/NefcnwXtdC+80z2um\nohyIOJmaHsI+MoDDaUSS2nzzOxtIYovoxg7hgJ4enx6dTkU6XcNsUBIOmymXmogaJ0YhT+ThM1Sb\nKhTI2EK9BAN2fvjyOgpFt8tE6MiYDC4mBmLkKnq2dmsYjBqUSiXKjsTpf/8HqA16vLYhlmMLJLNV\nAh4b8WQVjbrJVlIm1RlEk5ZwWAS2t0WiC5v8yq/OcvH8Nl/6zWNs7pRp1hs8/sQwOoOG5//pPFqT\niVNPHMBQy3Nm0E+p1GB+vYqqpKNYsJC/kCPibmEcP8zYEyeJ51WsrZSQOwrQm9jYqfLEpye5cnYV\nb1+AYr5GutBkOuiikCsweugoiUSJBx7oI58XMdhDuHe38Lg0WO+0+5q83vfljAAMDHW7cWx9fR97\nXT8KPuz4v/qrv+KZZ57B7f5RMbdfFM6Fz+fD6XSysLDA1NTUz33+n/f4X8pgBLop+Wq16yz7zlZT\nt9vA+nru7nurVcvhwz1MTXmpViUUCqFrXNXudKWRAYtFy0MPhRkedrK0lO4+fDsSnegS6Z0NVHNt\nYlYz3okJemYnackTqBslLv/TixQTaWY/8QBjn3yS1//jn2HQK/HKq3zmyw9gmjiKrLexv7LD//N/\nPEdwuI9jDx9jOa1ibm6TpSvLjB2McObRYRZv7uA6OkZfxM3AWICX3ojz7e/vINUabMfmOfOJCQwm\nHcWyhNNjpr/fTr0uMTTkJJcTSSar3LyZpNGQefrpUTqdbutuPl/j9u0UTzwxxFe+MsPycpaeHhM6\nnRKVSsV3vrNErSaRTFbZ3i6g16s4diyI3a5FEMBk0jA87ECWuwJmNpuOZlMmEDAjy23K5SYKhYBG\no6Svz/q++iE/a9jsOhx+N8m1t6XDVWolnh4rmnd4ZSSTFWLLm9RuX+Dm+WXMBgWnTpxkN2wjkxG7\npEy9hqXtBns7FeZ3khw5FKHneC8+l5pbl7dY2GpQjxa5divFxpvXGBrx8tCj9+EemqG1u0zbYGd1\nfZ/lxQTVShOtQU82I/LlfzvF2CEnuxspelxqrmzFaCuMFNZXkZpNwkM+Dk4O8ebyRVa/l2BdpWTw\n0Ciff/oIq6M2qtUmw9NhXNIe39/cJDzkIzAURO/yoHX7WduucXk+g6QycPj4ANlcA3tHoDdoYXDQ\njtllI1dskq+0Qa3j5df3aDVa6CQ1lZqMUa+iipnIWIAr3ziLVqNErVWjstpJXL9Os1zGNTr6E3fC\n/CygNZux9vWRmpvrftDp0MhlCQxE8IW7vKrV1SySJNNBoCO3UeoM7G2l0SnbmFUgV9vsJJs4tRZe\n+WGUx88MYdMUmf2CC7QG2q0Wz//lWdLxPIGhAFqLGYdDT8jZJr+5Tr0mcWR8gOB4hMNhmdzl14nf\nXkQyuFCHK0wdGOD6tRilisT0bA9aQeLbf/0qGqsDsa3i8OEgksqGRtXGYlRhNylwu5wcOtaHJNaY\nu7ZHYqmGo7eHxbUSt/7zBRyaKjNnDvPpZw5y8/I2eVUHZaWBXS9z6dlLDB+dYERlQ60TsdoMVBoC\nsWiRwWEP1VKdUw+PoVN3iAx76ekxY9J2qDYV7O/lcYUdrK5mMJm0aKwORh57EEV2F62yjcnnwzM1\n9QunG/LjUK/X+cu//EteffXVe30qH4hTp05x7ty5jxSM/LLilzIY2d0tcONGousMauhyFQYGHHdr\nVV3TuxKxWFccSqdTcfRol9C6tpYjk6lRrUpMTro5cMCHz2eiWGzQarWx23XMjFlZW4pDMcX+6i10\n9SyZ3SxGt5tqMolzZJyF1U3it7bYi9ZwBfpZX4rj6PUx/YXPk1tfxRYK4R4apKDRcu7yLlsxiZ5j\nx1EpBdajbeymJj0OAd8nZxgcD6LWKXni84fptFpkMjX2k3WWljLojDocbhlZtpDMNnn8cC+SJHPu\n3C6FQp1KRSKTqWAwaPjsZ0eZnHRTKjX4h3+Yw2hU8ZnPjJFOiywspO/oqvhRq5U4HDoUCgUXLuyT\nz9dpNGTa7Q5DQwpqtW6mo1ZrEYnY7/j/SKhUCgYG7CiVAjqdmqkpD0aj5u53Fwxa3tNJ9f3w0+aM\nuN1GTjw+ww/rIrn9JHqjjukjESLjvajeIbhVKdXIzt+mXC8S6LURXd1m8bvf4+Hf+iy+T82gFSS+\n+YMEa3vNO+aAbV47F+fppyKkt8vcvBHFN9jHm5eX2dyr4bR5iCai/Mu3qswM6bj/wUmqNRmXy0i9\nJqEQFOj1GgqlBjqDjmypw9B0GKNc5FP/w4Ncefk6uYCbwECA++8P0dqew6CtILWbCJKCeipBc2+F\n4emDONxm2pU8BsHDp//33yOztUc8KaIJB4klaijNJjQmI5mCgpW1ArMHA1gsIn5/EKtVh0ajZH09\nSzxW4drlPcxGFQVJZi+vRB8aROsx4hryUcmucnTKQrNUxNZnp1xXUG4qaBWzVJI/JKJSfWDt/2eN\n97sWvNPTIAgUd3YQBAH7wMC7hLisVi3ptEzvxCjR+Ar+YyfoJDZJ7qYITE9RdE2xut8lXUptBTWM\niNSoF9tQF3nsk1OsjfZSLtWwB31MRAxU9m7ye79/jNvzGaqVJg8ds9Jau4pUrRFNNUlktsm9us4j\nv/frDPZq0Zt0NFoiCq0ay8AQYq5IqE+Nxmzh0IyXdKJCXeqwvFZk6eZtLE4zNVFmfNzDfQ9NsrWR\nI5pI4nAaaFTKZON5LP46T35qjCtX5nGeOElHLOMfjZCKl7h+YZ1PPXMUzE16eu2EgmaMRjUbayns\njhB9fXbknIjb0mFzV2RlvYAzqKXRalOvt5GkOvl8nZhGw+jwESZm3WgNhnd9/x92nX5ax3+c8d/8\n5jeZmZlhfHz8nsz/Ycfff//9vPLKK/zu7/7uPZn/5zn+ly4YyeVEzp/fI58XKRYbiGKXnPn5z799\nUZnN3SzHWwRWu11HrSaxspIllxNZWspQLNaZn0+SyYiYzWqGB6xUk0kchhaUcoT8TlJb60jLlyhk\nMigUCiRRRJXJEDhyFCm9j9etp1SzI4l1ZFFm/fY2x776ZYxTKaJXb5C8sUcakbUruxh8fmJpI7G1\nPZwuE//j792HMh9l6NgkhbaRa1dj/P0/LCA1Wzz+5AiHDtlptTp4vUZcLhWbm9yRYrfj8RixWvW4\n3UbW1rLMzPh5/fUtrlyJ4fWa2N4uIssyk5M9TE66SSar9PfbkaQOxWIdQRDodMDjMeJy6TGbNXQ6\nTQYGvNjtTeLxKsViV0/g8GE/stzG7zeRydRYXc2yuZnnS1+aJhSy0deXY3+/iMWiZWjIidd779w6\nBUHg8H39BHttFDIlNKoO/qAd/TuY+6IoUU4X2Fzao06DsMuE3zNKOZWG2AqGXj1KuxeFzoAgSHdT\n/waDGpdDyzeeW0LnGWQ726Ha0SHToGOyYHHoqBUUeA6MoO2xs7cdxes18sgnRtnZK6PVqhgatKPT\nCmh1Kv7x/7uODhGvW0f/ZJjDJwZYubyIVMiSfPMNtKoONqVEMVcmt16i3FRhVIR47Y19KgURm0NP\nIDRK+MAopniS6PI62wvbPPqVSZIKNfWVNDaLirrYZHMjzvq6jCx3GB11UyyKtBoNqpUOjzwyRDor\nIjVatDuQyYkYXC68XqioZbIFNytbOSrXvsXMoyeQdBpcJshvb9/TYOT9oDEa6b3vPrzT0wiC8C5+\ngk6npFSqd1tVwz5Csyo2L20RPn4/kac9XF7v8L3ntvjCF7z0h604bWqahTL2YC8WMyi1RnL7CRw9\nJQSlgt4+O7eee41sR4nF0eLoyQiKVoOwp8P1c0kKRYmWxkK9U8Zg1pFf3+TCxSRmj5NiDR54MILX\nb2e9oSZTqVDfLiOoFGjVAi/81x9y8MgkWqOO2H6B4SkXBw4HuTkXZXMjh8JgpWfAi0JyonG7uHQl\nht2hZX4xy8rcDqEePQ6Xgb6hPnrDTnZSLXZ2Cpw+HUapFKjVmsT2S1y6HGV1NcvMmI18pcLtKxs4\nQz0YLXqWl3M4HHqUd3g4zabM1k6J8Ukv94a6/JPj7//+7/nqV796r0/jx+LUqVN87Wtfu9en8XPB\nL10wksnUKBTqbG4WSKWqtNtdoubAgJ1HHx24e5xer6a//21y3Y0bcWS5QyrVfdAmEhVarQ6pVIVz\nZ9P4f20IbWGP6LVVjC47lv5+CtkKuXwDtaCiGI2islgRxCYYbThcAeqZJOEeHRurKRr1Jg6fi/n5\nJNpKgvlrW2jMJppmK/VGi62ra1j7IkgKLdlMmdtXNnEq22ytJsh0mrxxbpdioYHFquW559bJZkVM\nJjXz8ymWlrq+GgMDdq5ejfL66zscO9aDXq/C5zNy5UoUnU7Nyy9vEok4OHjQh8djoK/Pxs5OgZWV\nLC+8sMHv/M4hdndLbGzkyGZFPvGJQY4dC5LLdXc8yWSFvT0Fs7N65uZS6PUqBgbs7OwU6XRApVIS\nDFrRaBRIUhuTqWtkNzvre6+l+rH4aXNG3oIvYMcX6K59o9Eimayg06mwWnV0Oh2uXo2RjtWQBTXR\npQRZXZmpKQ9Wr5PA+GA37Wy28mA9htuqoKNUo9BoCfdZqZRr7CdE6pJIMGhFoVLT7KgoliTS0Rou\nt5mSCKVskXatSjpeZS9aJhCw0Gy2UCpBSZtzLy1y68YevX4D1UyOmy/ucOz0CDtvXqVv+FMUMiWo\nlUjnmpRLdRpSkhPjU0RzEhcu7NMUm/gCNl5+dZdPPj3KsdkIK7dj3PdrnwJnEFsuR7NWR61xcP7N\nKE+e6aFTyVEu1qmmYWI2wuSYAxB45eUNNraK7G7lmD7g5yu/eZhKqcrKm3OkdpPE97JIlTI+r55m\nOo5lfBaVRfzRds17gB93LWjeY9cuihLz8ylGR90IgoJYokYoPITvVD+3V7MsXkqjVit5+OEIJ04E\n2d3O8epz8ygbJUp7O5x68gj5ioRRo0RvUKNWa0hlami8Id74xwXWV1ZRKhXpcDw8AAAgAElEQVTM\nHO7l9/6XM2RKUMrVie/lMDkdVPIVWiiolKrojRomZseIL61iGZlGrVFx65bI6dMCW9slHn9skNJ+\nnNvXdjB5XIxOmRgbdXP1eoxKrorPb+PWrRS511YZjFhJFmTUej2lkoTB0kNbvUvPUB+XLu/x+tVl\nHnygj16/loOHg/y/fz/PmUcG+e53V4hGS8i1Cr1BM5lMnSefGiSaE9jI5phS2RBFCa1WiUbzdlD3\nYSwbPuw6/aTHf9Tx8XicK1eu8N3vfveezP9Rxg8NDSGKIru7u4Q+pFDcL9L5fxT80gUjSqVwl6zZ\nbnd3rO12l8CZSFTo67O95zizuct/aDRkyuUmrVYHo1GNRqPComtT3Vohev0c6WuXMfQNkk0U8Y2P\noLU7iV+/ik6rpZ4vMvPlf8vyag59ZJJcssDK+TcxuV34p3oJH5nh5Td2UBaj7G3nKIsZjjwZwBdy\nU5XLuH02VAaJIwdcbNxYIPjoKPFkg41cnnJZolyREBQKZLnDzk6RT3xikHpd5jvfWeLUqV4yGZFy\nuYHH01W73N8vYrXqWVnJ8vjjA3zuc+PcvJmg0ZAJBi0Ui3UsFg0bG3m++MVJqlWJCxf2OHDAh9tt\npFptks+LfPnLMywspDl/fhePx4hGo2R3t0gkYieTqd314FEoBPT67iXzTqLgLyL29opcvhxle7tI\nudxgfNzFzIyPzc08CoWCmUePY1TL1Mpd1+fwZITw6QcwuN1EL11CWtvBpHIyvxhHoTOg1ysRy3Wc\nbhPZXIMjx4JsbORRa5SUS3X243UOPDpAq1Ilut9m48o8p3/lUTRmK9FoGZvNyAOn+1HR4sqrt+i0\nwTQVxGFsgdwkkW7QMzlBPpEhcuIIy69dRKNto9GpkVVKfJNjPP9SGr1OhZoWao0KhUrBlctRwmEb\n1/dUFLU1nPEYi1dWOXZqFKmt5BOn3ZRuvsn6rU0azTZGh4UDY1+gY/bw3e8s8i/fvsXIVBCXQ8fu\nZpYLF/Y580CAlkmgoOzaBJj7rVj6Imzm2yhXKminbUxN9N7rJf7IyGbFu512AwN2hoYcKBQCExNu\nrFYtDocetbqrJiyKEnNzKSwKmUI0htmgRmF1osptsvTiWVRKBS2NgcHJEPrwKBvLcZoS1Ko1CqUW\nt7ZljMF+SoVFOioNNquW0JCfdFODWqdmYDLMiQfCiLUe6kojiWqer3xlFp1GycJ8kgsX97HZXFx9\n7QY9w3DwoJ/VtSzRaIUet5ZgwIReLRPdLTA128PWRoYHHhljcy1JNlvn3/z6QV56aR29UYfZpCW+\nl+Xsc1vQOsaTjwQpNVvcuJHAZFITCjjQKRvE72STBYUCtUbP3l6JmRkvtZrE8nIaSWrj9Zo4eNBH\no9H60AHJLxK+8Y1v8OlPfxr9L0BHz4+DIAh3eSP/vfvU3Du1oh+PP/7jP/7jd32oVitYXc2xs/O2\nnbjPZ2RgwEG1miYS8b9rDIBKaJFNFCkUG2xtFxgcdPDEE4PIcof7ZiwkL59HrpQxmbVU23oqmRw2\nnwvnyAg6ox6t3UnoyCHcs4fZLWpYTVcZnBhCbnfFtFSuAPpAiO9/d45QxMPe7RXKtQ6pvQxf+vdP\nozRbqUkKenrMWO16wsM92D02zC4H61sVLl2KUizWkeU2nU7X1TabrTE97WV8XMX4eIibN5MsL2do\ntdrYbDokqU2r1aZalVheznD6dB8TE+475RcjDz0UptGQGRpycuVKjOXlDNeuxclmawSDVoaGnJRK\nTYaHHUQiDlQqgWYziyxrCQTMGI0aenosdzwp3t4F6/UqZmd9mEw/GVF1e3v7rsIuwNe+9jXea80/\naMz7oVJp8tpr2ywvZ1haSpPNimxu5vH7TWxs5HG7jbR1FlpGFQaLC9dAhNHT9+EMBShHo8QuXwab\nl2tX9rHaDSiFNp6Ak3xJYvZAgFxe5NnvrzI66mJywsuRowEePOPErIJXvn0RlUZFNVvAGuihgZbR\nUTdKpYJKpYFGCds7JZpiA7/XQDpbxzM0iC/kRhTrOPuClDI59KMRBsb6cQ/0M/nEGQz9I5SbSpQq\nJdU6RKNlKpUmrZaMLMn0h604HEZiuxmEXBStVoXN56IV36LaqmBze1FrlOgUEnZ9G9/4EP/8T/Nk\n0jU0aoG23ELQdtufHzwTwa1vIJWLSC1wTU7xwnNLFKqgtCgoVxRonW5CIetP3FnzYdb9Lchym1Sq\nQipVZWtrG6/X9ZHmL5cbrK/nkOUO9XoLUWyRz8fx+12cORPhwAE/U1Me7HY9tVoLqdWhJdYQanls\n/f2o1UouffMFEjspWgiodVqy0QzOvgAtq4F6XY0zFMAWCrGzV6F/JoLeZmXiQB+mcD9jp49itel4\n8On7QG4xf3GZFipMXh8dFJw7N8fzz+0hNlqYTRqsVi0Go5bxqR7m5tI4XUauXo2RjOcRK00OHPAS\nGXAxPumjP2xjP1ZCrLWJ7u+g1prZ2yvj9RhYXojhcpnRGTRo1FBK55k+3E8qXUOvVyMIHQw6BQ6P\nlUjExm60hqDRoVaXsNnsnDgRpNXqoNWqsFg0iGKX8F6vt3C7P9gK4P3u2fdb9w97j3/U+d7CH/zB\nH/Dv/t2/Y2Bg4D1//rOe/6OOj8Vi3Lx5k6eeeuqezP/THH+n5PSedadfurDWbNby8MP9NBot4vEK\nLpeBwcEuydLne++HY25jg/iNG/RrTXgfCjA95SYaLfHC80uUyzLOp7zE9gqM9NtIJ5XsRkuoVAIH\nbDbKJRGlw0urJoNWR7VQQoGNubkM+aQLMamgI1aoXd6hZ2YSi8PCZkrB0H0zpPfTHHriBFduZFle\nK6PSa2nkG3z323McPNzDcMRCaLSX0VEXVqsWSer6a7hceoJBC+vrWZLJCg5HE6WyiFIpUK1K+HxG\narUWpVKT3l4rnU4HWW4jSW1isQpOpx5ZbnP27C6pVJVEokKnA5OTHtbX8wiCQDRa4uTJXjodcDgM\nKBTCHeM8BUZjd8eg1Srp7bUQClm4dStJLidiNGqYmvLcU27Ih0E+L1IodMtxstzN4khSm2i0jN2u\npdPp8P3vr6JUltBonIR1VqRbZT7hb1IvFEAQaCm12LxOXnh+mUS0SO/NHJNHBjCbdZw9t4tapWBu\nLo1Gk8XhMDDUL3HpuWVqdRlvwIFjqpc3l+rMz+8RClkxmTTcf3+I9bUso4eGiG9bMVrUaO06itUO\ngbCTpUqD8z+o8sShXuTiJjtbFUZOzpLReLl+tcDQkBujUcuLP1jHbNXjcRt54qlhblzdY3QkgEEh\nEetIIEtsL2xw5NEDLEb17KfbpKMVIoNBDo+b0CkrILcYmw5RFTso6ab4G20l4bCNVqvNwNFDyGIN\ni6/I7X0Jc48f38ggZmcHk8XPzk6JiYk6DsfPZ4cpSTJXr8ZYWemKt7XbeWTZwsGD/g/UHfrXcDoN\nuN3Gu0rOABpNt/woCAI6nQqdToXZ3O0YW1pKY/L5sFuUvPrCCr/6jANaEo2mTDpVQW+zYjJqEHN5\nxI6erMKFoiWQWclz4kSIpqzklUsljh5w4vS7qSqtmLwK1tfzbMYhVjQT3e7g6+TRaJQUSw1SaRGz\nVUe93sLr0XPy/oN8/9kNFhdTWO9sQnRGLYVKi8SbO4yO2KnH96h1tKyt5LDbtDgcBjKZbnt/LFqm\n0xZYX0mSiOYYn/CiUktItSqTYw72d3M0W3r6B5047Xr6BtyM5lp3srB67HY95XITm01HIlFhcTGN\n1arjwQfDXL8ex+nUfyh/sF8ErKysEI1GOXPmzL0+lQ+NU6dOfSzxs1823Mtg5Ang/wQywP0fZWB/\nv4377w+xt1ei2ZQpFBoMDNg5eDDwrmPFXI7opUs0KxX0ToHmlecJThzn4mYKqw4sahDbCnRmE/ly\ni/h+HrPLjX1knJtJMxpzkMDpccJqkdjiCks3d5h8epRrGy1uzqd4+MAs7cQG9iOD6IwGnvjcIS69\nuUdDM8wnn3mS3f0K16/vsbNXpl6XcTgN9I/2gFqHwmzj4qUYJ0708od/eIylpW7Hy9iYG7fbQE+P\niViszPi4G6/XiFqtQJZlQiE7167FGB11MTzs4FvfWmRkxMUbb2zT6QgYDGoaDZmXX96gv99BLldn\nYyPLE08M8/nPj7K/X8Zs1mIyaThwwI/T2a2tHz/ey82bqjuiZSomJ734fCYEQcDjMVGrSXfagX86\nCbWfNmekLcs0SiWUGg0qlQKlUqDV6gYi3bKSgCAITE15WVhI026DINgwmTTo9SryebEbcJnNaIxG\nTE4HN64tkI4XUaiU1OptqpUmhUIdp9NILFam0egGkPF4mYMHhxg4aeLBHiOhPiuSrMCRiTM66kKr\nVXH0aIB2u4PZoiM04WFswsvaaoaBkA2Xx0gsVrnDc+qg6w9jIsTgSRUXr+V449lNBIWS8aSIz2fi\nT/7Do2xsZsnl6xQKNR59fIBWrYZe3eGxR8M8+/UowUgfi4sZVtfy5PZqNGotoptJhoecBANGtAY9\nT39mnGKlxdpaDlFsMTho7ZYDVnOEwwOMfvJJwsUixVf20AQktPq3KYvdAFj+yGv4cZFIVFha6mYG\nARQKO/8/d+8VJMl13nv+KjPLe1/V1dXezrSZHtcYg9EYGAKkKFBQULQi5UhJjN1QxN7Q0z4pFKEb\netCVVqEN8e4NUbEUyCUpgRQEEQRhZoDxfqZnpr2v7i7vvc19yEZTICj44QD8v8xUdZ+u05nZmd/5\nzt/cvRujrc38rh+GOp3E4cNBpqYiZLNVbDYdFoufWq1JoVB7U7evrc3M4KCTlZUMWlsbNdUaxarM\n6EQ7t2pV6mgQRYH+ASede3uZLlcZHVVCI6uVBo880ovcavBbX9jH3HwKo8PChQtbtAfN5BoakgUB\nb18QQRS5cmWTEye68fuDTN1epFSuKwRRo561tSyrqxkEUSAcLvAnf7KfmekE1Wqd8ad2IVZznPnh\nRYKj/Xz2syOcfnGaoeFBuntdVKtNXnlliXqpxMJMmIFBD/l0nrpGhcUs0dcGjYyM1qhlZNDI2GQ/\n8/MJ+vsdiKJif2A0qsnllI6SRiMyOOhiczMHKGTWRKL0tsf/o8QZeeaZZ/jc5z63Q8b9ZX/++xm/\nZ88eVlZWSKfT2O3vbDL4UZv/u8WDzqYZB155rwMlSWR01IvHYyKfV0zKfD4TavVbL7ByJkOtoKyC\nVIJAamEBleBCFUvhs3uQkRDVWvqPHSJ8/TrOgAffwYd47Wqa5dshGoTp6rLx+OO9SP4h+sZ02J1m\nHjsRRJSbaLw2Og7sYnYqxPW5Mi25Qne7lmIqw9StMKFYA7vTxPpaBodDRyyWZ3jYg8GkQ6eTcLn0\nTE1F8XqNTE4GkCSRaLRINlulUmmQyVS4ezeOLMPJk910ddlIpcocP96F12tkeTnNZz+7G5/PxOnT\nqyQSZZaXlfThZlNGEKCz00qrJdNsNpmcDNLebsVu13HoUDsm088eLl1dNvx+E/l8DaNR/SYXVUFQ\nfeBtmfuJYjxO+Pp1Ssmk4vo4todgu5nFRR0bG1ny+RptbSbsdi1qtcDu3YoEWhBUGI3K7yUIKiRJ\npKKysdb009gqobY5sPsrFEpNYqk63kSJ7m4HIyNuOjutFIt1LBYN3d02PB4jS0sZCuUWKlFNR8DE\n0JCLqakoU1NR9HqR115bx+HQYxvTs7qawWDSkS/WufDcHI8+0ouKFrKshA+uRaAVb/Ds88uoVAL1\nhoxOnwaUrcnNrTzZTJX+AQerK1kkoUUzEcLl0PP0Vx5G721jdj6N+sgIDruGlXtr5LJVbtzY4sDJ\nx2kKGsxm+P3fn2BlJYMsKx49qVQZUVR8Y9R6NWq9nuE9AukLIf4zVcjh0P/SuiLAdgZS603v1est\ncrkqgbeuQ/5LuFwGTpzoZm0tw6VLGywspFCplK7Jww934HYrKc+CoKKjw4Ykieh0Il/930+SjiSx\nDe5mqNqiWKjS3mHFGgyymtHR1WWgu9u2rSxzMT0dZW42CSq2fXt0qCWZ4WE3586V6ex20pKhUmmw\nf38bJpOGr31tH16PAa9Hz8ljAf75/36Z/acm8PqMXL2mLFz+x/+4hM2m48iRIEsrWdoCZn73//wc\nqXCMf/3WOQKdPvZMBLg9FWViwsepU73cuanjoUk/QqvJretr7Dk0QD5ToZyvcPxYO36niLqeJejX\n43J1srmZo15vodWKXLgQ4uLFELFYiUikwMSEj/3723Z4Yzrdx6PBLssyzzzzDN/73vce9FTeE9Rq\nNZOTk1y4cOFdb9V8HPEgr6K3pPS+F6jVIu3tb67Gf5G+WZQkVKK4EzHeqFQwCQ0kuQ75FCogFdah\nHuhhz2930CgXmV1vkGi2yJVK+P1aGo0WU1NRnnqinUY+y/kXbyFZRb74hVFq5TIv/tttyoUqequR\nSq5E1Wyize9kfatILpzi0KNjzM5EUalUNBogiAI6ncS9e3FKpToPPRRkfl4xWpuejqPXq7mwfeN/\n7LEebt+eRZIETCYNd+5E6etz8vrrq0SjRfbs8REMWrBYNDSbijX84cNBUqkKly5tsG+fn1qtRa2m\nbGsVCjV6euzbnI+3CvPC4Y0PXBm/W3xYPiONWo2NS5cohMM7721ePM/YsUdQCV1IkoDNqmWkS6S0\nNYuothEY6CbaY2djYx1Q3CO7uqw0qlVeenGeYhEcNlnhS3S145SVlXk0nMHrG2BhUYUkqTCbNZhM\nGlwuA4uLy9jtVmRZxcJCiv5+J9FogbNn1+npsfFv/zbP7GyCP/qj/dy5E+Pu3RgAExM+fu1YJy+/\nvMTCYorIVp6JCR8DQ2p8vgC1OtRqdYrFGuPjXmRZRq9X4/OZMRq1qGSYmY3jd6khXyOSgpatQWVp\ng2vXI4TDeY4dtdFtcnDn5gZqn5cXzyfp64PHHusll6uxtpahXm+xspJBFFUcOBB4UzHa1+cgl6uy\nvJymUIgRCAQ5cCDwCxcA9wsmk2bHrBCU5G6Dwb1TTL4XNJsy9+7FyeVqVKsJtFoXiUSJu3djHD/e\nRaXS4Nq1LVZW0lgsOrLZCplMhfZ2J9js9Lf50TfzeLv8XJqu8sw/zzEwIOL3txOPl0inqyQSRZ79\n4Sy5XJVSqcHhw+1YrDp+9MMZNreUTunUVJRmU6avz8HIiAejMY/dosYgV0jMzbKr14jJIKFRC3zx\ni2NEInni8RJWq45kssS1a2FsNh3xaJCeHhuf+sqjhBMVXvzpDTY2VIgCzM+nOHbQSTO5RSYS5/O/\nNYA5EOD2rQ2K+RJGvYhLI9Iqp2k1GlgsZopFHdeubZFKhTl3TsmwamszUS7XiUQKBAJmIpEibrcB\nv//tt2w/Kj4jly9fRpIk9u3b90A+/4OMf4PE+m6KkY/i/N8NPh4l7QeA0ePB7PeT29gAFOtiTSHG\nnsO7uDe1pahqHDb8bRYaejVbaYm7ixtsbJWRZTCZtESjRSwWLS1BzU9+cIVmvYmr20DLZ+T2pSXC\nl+5SrskY7DYks5VKqcxQd5CBoJrV2wniG0ke/cQgpVIDnU6kr8/J/LzidZJKVchmK3R12YlGi1it\nOmKx4k4aarMp8+ijveRyykptfNzPf//v59jYyNFsymxt5Xn66WEKhRrXr2+xtJSmXK7z5JMDVCp1\nVCq4cydKLFZgzx4lVK/RaDEy4nmTA+3HGeVkklIi8ab35EaD7NIskqaPEye6MNXizL10hnKhTHJa\nxUR8jT0Tk8iyBVnW09trx6vOcf30dRbOztISJFS7+xg/0MErLy8jt2RCq0kGh9zo9Yr0c3ExRbXa\nZP/+NjY2cmxuVqlWy0iSgNutdK3sdh0dHVYqFYXv8OUvj9FotHjhhQUSiTKSpGJ2NsnXv76PSLSA\nz2PEZBBpD1rJpFMMDupxuQyEQlmGhlyUSnXcbiOXLm3wgx9M8+ST/YTrDW5dWcF0tIPNu2G8gz28\n8OMF+ncHMBgUxdjr50Ls3buLdN1An9XM3FyKcrnJY4/10ttrR60WWF5O02zKdHfbCAQsJBJFNBoR\ni0WHVitx6JDCb1pbUzM01LNNCk5hNmtxuQz33SLe7zfR0WHZkZqrVNDdbcfrNb7nn1Us1shmq296\nT60WyOWqzM8nWV3N8OMfL9DXZ2d+PkU0qmy/xGJFegNqLLoUyfV1SjWYulFkcrKdYjHG3/3dVQYH\nndTrLXp77Zw61cPaWpbp6QRHjnSwtVXk/Lk1Tj3axz/+401KpQadnVZqtSayLNNqqRja5UbdqrJx\n6wrL0xuYvR52DTmRBZH2gBmVSrWtHlRsCvL5GolUhavXZ/mt3xqmt9fJ1NQ8oqgnHi/z9JMBrn3/\neQqxGLVShfzKIhOPHCS9liO2kSQyI5A/0MUnnuhDazZTqTS4dGljpztbrTap1Zp0ddl2ruVmU2Z0\n1ENPjx2LRfdhneL7imeeeYYvfvGLH4kog/eKo0ePvmuS98cVv4xixAv8fz/3XgT4/DsN/NM//dMd\nVu7Q0BAPPfTQTsW1uroK8JbXb+A/f73j6FHuXr5MKptl8KmnyK6uAlUOPdKJ1dOJtztIvZEinc6j\n06kZHnaSTG5hsehotdR4PEZ8vgbReAS12YpYKdLVaWN1+jbVTIO2Xj/GTicqUaJZFCg3BErlBGKj\nwsnPTHLuSoJ0McTBg+3YbF5eemkJg6HIgQNOlpYM/Md/zHPsmJVUqkS5bMJoVDM6qkGlUpFKldnY\n0FEsbmKz1dBqnVSrDbq6oNGQqVSavPLKCk884aKtrcWxYxOEQlny+Qhf/Wo3y8sywWCJ/fv1bG6u\nsbkpkUqVgSx9fXZOnNj7luPVasmsrKwgisI7Hu8P+vrnz9c74RdV3CpRRPULgqRUgkSp1KBWqRGZ\nukEyquxzG4xqGpUqtY0lfuPTT4JKoJyIE7owTXyrxsZamlq9QWQzw8DD+3jykwMIAhw/0YXVpicS\nKfODH9zbXskqqc7z8wnyechm4zSbMlqtiN9vpKPDwuCgg6WlNF/72j66uqycPbuOyaSlXG7QaLRo\nazOxuprB57MgN2qY9DpCa0mcbjNWq5Yvf3mUO3fiZDJl1tezfO5zI3zzm9dQq0VKpRqCICBIEsVS\nk6YMbUEHvbtNuNxGstkq3d02zpyREUUVTz01SD5fJ5EooVKpqNdbqFQqOjttO7L4SKTASy8tkclU\nkCSB/n4H/f0ONBoJu12PTtfHhQsbrK5maDRaGAxq9uzxMjLifVfn8P3ijeTu7u486XQFh6ObQMD8\nvuSl1WoDt1uPXi/RaLQjScK2sqa8U5TlclWq1RZzcwnUaoFIpIhOqyJ0r8pXvzqOEFqlmEyye7iN\noqznekjHl740RjJZJJOpsrKS5sSJ7m1vmzDZbBWNVkJv1NBqysiyCrVaWXSYTBoWFlJ4PUHGx/QY\ntBrUu3eTK7YwOBxceG2LXKGGy2mkt9fORijLlath4vEyY2MewuECjUaLTKZCIGCmUjFy714EtVog\ntZTBoavQ1u+kUatTa4lMX7xL1559bKyliacriAsFRk/Y0UYVwncmo2yJeTwB9PoS5XKDQkEhzGu1\nIvv2+fH5zO/qWH8UOCP1ep3vf//7nD9//oF8/gcdf+jQIW7dukWpVMLwDq63H8X5vxv8MoqRKHDi\n/Qz8m7/5m//yaz//C7/da63Fwr5HH9153ThwgGo2i6TXK9HjwL17dZaWiohiA7fbwMmTe9gKZUin\ny/T0uDh5xE8lneTUp8aweF1UZq6yenmRoQMnePVqgdM/WqGQr9K7q53f/r0jBIUwq6sZbs9uMDLe\njc05SKFQ41vfuq1EgO92s7KSYHDQte1c6kOWCywuJunosHPpUgpZlnE6q9y4EcZo1NBq1XA6s/T1\nOVlaUhGJFBgYEKjVmlitXvr7Jb71rVs4nXrCYSOi6GB4WGk/nzsXIp0usXdvG3a7DrPZQyYjUSzW\nMBo1dHV1Ua8r6oH5+SStltI6fsNL4L0c7w/j9XuBwenEEgiQXl7eeU/UavEO9ZPahNhmmWqhtPM1\nl1OPpBaplUo0azU0BgOlRIJcLI7B4KbelGk2ZfLJLJsLW1gdVjr7HJw+vUq+2MRs1jIy4uXWre0t\nkGOddHTY+PGPF6jXW1QqyjFTiMMpOjpsVCpNvve9e5TLAW7ejDA/n6S93UKrJbOwoPjE5HJl6nU1\nkqQis5igXq4iqRr4vAZiMQPHjnVw61aE5aUUpVIDs1lDKJTn1KkuSqUa3UNuTjw2QKkiMzUV4ebN\nLQwGNfsPtPPwwx3o9WpisQLJZBlBENi1y4XL9bMbWyql+Ni89toqGxt5BEGFKKq4fn2LI0cUw6Xe\nXodiIb6U2uGPlEp1bt+O0tZmue8cEoNBQ3+/832Pl2WZu3djTE1FWV/PEo+XOHiwjVqtwfJyBpVK\nxdmz6zzxRD8+n4lGo0WrJTM/n1S4I6KKRCbDxmaBoeEe5lZqXDq/QkWy8tzzi+h0Er/3exP4/YqM\nWC2CzykyMmDB4zGwvBDlxLEOMvk6gYB5p+PSaDRZW8vyxBO9/NtzMwwOuMilaxx76nHOnV/jzt0Y\nyWgWh12D3WnmkU8MMDcXY3zcy/iYh1dPr/CZzwwjSUpCucWi49OfHqTZlImEFqnkmuzf50arUzMz\nkyAWytLpsFGxdWB0qVA5bKxulsmVI4yMeBBFxdiwXm9y6FA7N29G0OkkjEY1IyMffTXdz+Pll1+m\nu7ubvr6+Bz2V9wWj0cj4+DgXL17k1KlTD3o69wUPMpd4H/ASMAL8FD64s/C7XV1LWi1Gj2enEEkk\nity6FaFQqJPNVqlV6vi1GR47YOALn27jE7sq5M4/T+jMK1z57o8IX77ERjJN2/g4mXSZrY00cqul\nrNAEieXVHIa2DoKjQ8h6O1vRKq1Wi1deWaa314bTqd/+w9bQ1+fg2LFO/vVf7yEI0NZmIZst0dvr\nYHDQycCAE5OpxNpamnJZya2x27VUq00CAQvRaJF9+/yATD5f5StfGeFAWHEAACAASURBVGdw0InL\nZcRgUFOrNanV6mg0AmNjPmRZplCocfduHEFQUanUyWYrTE/HefXVFa5cucv6epbXXlvj+9+/x7Vr\nWx/0tHzg8/VOYwRRJDA5iW/PHvQOB5b2djqPHcMaDDI66qW9242rsw2dXqKj04rBqGF2Nk6yKHL1\nwk3iy2uoBIFCpkwrG+PQsV6MOhCaFbxeA8P9ZpamN4lGi8TjJV58cZFwOI/fbyKZLDM1FcHnM/HI\nI3YcDv2O2uull5aQZRUXL26QzVaIRwuEQpkd9VIqVaaz04YoCtvjFAXD6vwWpXgMnz3H+ecuUEun\n+PVP9iBJAtFogUi0wPi4B4ddh9WqXEOf/exuREFAFFRsrqdxWLVkkkWmb23yk+em6eqSGRpyUirV\nsdl0PP54D4880rPTVZibS/Dii4vMzyd5/vl5Tp9eYWkpxdWrW4RCOTY38xgMahYXk9y5M/8WKW2p\nVKdQqL7l3NxPvJ/rJxYrcvNmhGKxjtNpoK3NzPT0/HaXsYFGIzIx4SOTqTA5GcDnM9JotJBlFUaj\nGp1WxGLWUSuXyTcNzC0kKYa3aPPqOXXcQmeHkhCu0QjYLWrsZoFWscBvPOZnyFUioMtRT2zS7tPz\n5Cd6OXasg+5uO+Vyg9/8zWHy+Rg/+rcFzl/YoFCWmV/OEUnU6egwMzpsx+XUEwyacTv1fONPDvLQ\npJ/ZmQiPnurCaJQ4e3ada9fCFIsxlpfTDAw4GNzXj7/NwsZmgZXVLA6ngUC3h82kTLYElaaE3WFg\nZibB2lpmu1Nm3T5emxgMGh5/vJcvf3mMJ57oZ3zc9562Ot7reXo/5/Wdxj/zzDN86UtfemCf/2GM\nP378OGfOnHlgn3+/xz9Izsh14NF3/K5fAgqFOsViHbVaQJIEPOo0hlaJ9IXX0Rn1zDz3PHq7HfPg\nCDN3EtjEMj2PHURIxNlKNIjeuondasXaFcDk1DF9O8zBA350JgOrm0sUK2VAWQEPDbmZnAyQTlcw\nm7V4PEYuXgzhcCjeIfv2+dFoRFotJVn29OlVVKoGpZJSRLjdBrq7PYpLogra260cPBggm61gMmn4\n7nfvotNJtLWZuXx5kxMnuvjDP9zHCy8ssbKiKHq8XhO3b0cxGCQOHGjjzJk1YjGlIMvnowwPK5Hf\nKysZfvrTJQYGHLjdH+2VkNZsJnDwIP69e5Vtm+2bpdGoYe/eNro8xwn5NKQ3la5EsNuDSpS48uxL\nrBl1PPTEJBa3ndlzC2jVah7e78DSPoK1PUAqUWQrlKTNZ0HSSAQCFi5dCvG1r+1DqxVxOPQYjRJ6\nvUQwaKHVanHzZhiXy0ChUGVpMUWw3UhPt5VUUpFBPvxwB3emoui0Inv3+lChJCyf/LUg616Z2IaE\nztBkPabi2X+5y29qDXgCdj71yX6uXd/CYdciN5oE2y3UKzXuziVo5VKEKiZOPzfFvoeHGRhwsbau\nxm7TIgmQzVbo73dis+kwm7U7suRMpsyNG2EkSbUdt1All6tRqzXJZiu4XAby+QrXrm0higKdnTJ2\nu5V4/GfdpvdiD/4gkU5XqFQaO68FQcXaWhazuUiz2SIazePzmSkUqqhUMqOjXkRR4MyZVer1Jlaj\nyECHl9h6GL/dR7Nex2ER2bg7h9kqYFJVKGZ1VMsWHj3VyWCbzGwohCaW5tpPztM3cQhBZcNoFujs\ncHDqVBe3puIMDDgoFmvcuRNFElXo9WoymSrpjBJSaTVrWVkJYXLaeOm523jsavo6DRzY62Oo34bZ\npObFny5hNqqpN8Fq1XHy5CgajUgqJmPt7Se/vsbtmxvsP9zL6GN7WcoYOHBAhYY6lWSY0HqaYspP\nV5edo0eDOBx67t4t4vMZ6e93/kL5brFYY2UlTTRaxGbT0dNjx27/aDmbFgoFnn/+ef76r//6QU/l\nA+H48eP8+Z//+YOexn3DR//u8R7wflv9ep1In0+mnkthsJrQyjKRy1Os/fRV/OMjJBaWsXidNCU9\nfV1BxHKK6twCapcNZ2cAz+4RNEY9DUHH3N0Q/k4f9UqdlduLdPs1vHQ2QqPRZPduD41Gi9u3o+Ry\nVUZGPMzPJ5mairGxkaOz08rCQhKdTs3FiyEmJ9tpNJo0GiaCQYFKRVnVTk/H6e21Mzzs5vXX1/mn\nf7rFH/3RfjY28gSDVvR6CVFUIYoC8XiJYNDGoUPt2Gw6ZmcT3L0bZc8eL4GAmbm5JMlkGVmWKZcb\nLC9DqRRmcjJAIlEin68Rj5fuSzHyfs7XO40RpF98STva/Vg+/Ulmby6h3VWlHN7gztkbqKp1ksUG\noalZeiYnOGDzcefVK4iSQDJdp6avsJUoc+XcEpY2P6WaivZ2C1/84hjlstJar1abbGzksFp93Lp1\ni1isyN69fpxOPfPzKQRRhcWio9Fo4HIauXxxlYlxL7/71TFcTj03r61z7/oKXUPt5LJlxYBvOMC1\nKyF++uN7WB1WLl/eJJlc5MjDnQwP2DFqYXdQpGPAz7WrWwjZCHM3l9l3cg9Gm4XL51Zxu7SUmhoS\n4TSVUz1shZNshssMDCgEyzt3Yuh0IpHlTerhFew+CznZzNiYl7Nn16nXmzgc+m05p5+pqSitlkyr\n5eb4cdNOMSKKKvr7HTuS2F8W3s/1o9NJb1LkpFJlEgktxWKdCxdC5PN1rFYtf/zH+7lyZZNkssxv\n/MYQdrtiNgYQ30xgMbVjMTTZva+bs68ssDm9js6ow+11MbrXQUevHZtQ4LVvfp9GsUSnf5JCPE3l\n6hWK2g7yhTov3w5z9IlxyjUdUzc2yJWamIxG2oMt9kz4WFtOUq3UGB52sRHK4PLbmZtN4HEb8DjU\nnP7uy2i0asZO7sXd3oWREnqDAUeHH51Ow+uvr6NWC3R22qjZ+hG0Hk4dOEKhoebmep2jR13oKXLp\n1QUsNi39/Q6MBpliVpH1jo56GR39r3lA1WqD8+fXWV39mRv22lqWU6e6sVp/Rmp90JyRZ599locf\nfhiPx/NAPv/DGn/48GFu3rz5jryRj+r83wm/UsXI+0UzvET62llCKwmaLdgz7kUtQrNaQWs2Yw74\nsfnc6K16jCao5gVqxTLTFy8T/PRvoxIEpq/MozFb0JjN7D3Ug92q5l9evcuBR/byhKGHe/NZPvnJ\nftLpMpcubeLzmTCbtbz88hI2mx6rVUtbm5lnn53B4dDx5JMDRCIFjh3rAmRUKvB6TdRqLX7wg2mC\nQSvLy2kaDZlduzz4/Was1tQ20a6Ax2PEbtfhcump15tEIgVu344Qi5VotWRu344yMuKlUKgBinfL\nG/v92Wx1R7LZ1WXbuXF/HNFotEilSsgyOJ16Mk0TuVKdaiyNs7cHmg3KqST1ao1caJ2RJz6F2h3g\n4iv3EAUVgiiiqueo12VklUA8XsTlMtJqyczMxHA49MTjRc6dC/H44/382Z8d4caNMMGghVyuSqFQ\n59q1Leanw3R2OTCatewZ91EpFJGoE9mq4nZokTQiZ15ZRKuVuHl2iVimiddrYfduD7LeRiJRZOrm\nJm6njjvn77Bnog2DxQRaDbN3N2nkSzi7OlCptYwd6OH8a4vUKjXKNZnhXW4W5+I4vFbcbsUvRpIE\nBAGi8yusXbzC1ItTGIwa7O1+Jh8+vi2XlTEaNRSLivS31VJIsCoV2O06Hn64Y6dbFwhYPhbKLJ/P\nRHu7hfV15QFaLjfw+82sr2coFhuEw3m2tnIUizVGRtzcuBHh5s0wPV0WohtJGvUmew90UG2AChlz\nbgqv18iWzUA8ViDY2cJvqqPTCtRbevo+9WlaxSypQpJcTUKfK6Dx1LF4zeiNSZZnQnT0tbFn0EAk\n3cLTZufUIz3cuxvlO9++hdmi4U//j2OMjbdRKzlo73TisanYuDuPUCtSrgqsXJliT4+IU07QrNto\ntdqYnVUsAs6dW+cHP7jH3r1+DAYNY2MejEaBzc08UqvJ8kISd4ePrUiJhVAeg1RHNlp3umZvh1is\nSCiUe9N7iUSJzc38m4qRB41vf/vb/OEf/uGDnsYHhtFoZGxsjEuXLn2sHGTfLX6lipH3o28up1Ik\npu8R8OrQCHZC61kKG2s4OtoRdXoko5F9v/MlkgtziIJIoVzEO9hLUaumXmtRuneF3/39TzK3uotM\nroGnzUqg3UY2U8ZgNnH9tbt0jA1iMGi4dy8OyMiyTK3W5MKFEHNzST7zmSHa2szbq04Zn8+kJMvG\ni5jNWh5/3Em1aiadrqDRiHzmM0NotRKxWBGzWUMuV+PZZ2cIBCzodBL9/Q70egmzWYNWqyaVKhON\nlggGLezZ42N1NUMkUiCfr9Debt32NJFxu/WMjWmo1SxoNAL79/vp7rbdtxvLh+Uz8l8hm1W8VjY3\ncySTZXQ6SeHXaHQsprQs3QthdKoYHezC2QFqowGdQYvXbyVgrtBqtrh9PUO1AY89tYeFtTKOUpPB\nQSdqtUCt1kCWVQSDViqVBjduTLNv3xBtbSa0WgmHQ+DVV1eQZZmZ6STZbIUv/s4E+54epFXKU62r\niCUrpNI1RElkZjaD3WVm36E+spkS8/NhBna1kSlCqSHj8DkQNGo8bXaMXh+jY36iKyEGd/t56ccZ\nFmeWmZtLMjbZz+99/SGS4RSyqIZ6hbVwmL5dbTSaRXK5Km63nrXlBDcXlnA5jBz+jSPMXp2Dcp7E\nzDQ6Yzf9/Q6sVh0//vHiNklai89nwmQqodVK9PS8sxvk/cT7uX50OomjRztYW8sQj5fo7bVz7twU\nL7+cQq8Xt38vG5ubOUwmLZlMhXK+RPTKXQqxBP0DLkzRMFpXL+dvFxmQyowEmuwdmyBbLSCVZSS7\nmavXY4RWEixPLdHZ4+KrXx1HK1eIrW3hnpjg2p0EvXsHGdvXSSlXor1HxWNtVlKpCMvrMj/5yRI9\n/W6CQTM3r2/QN+DmC58fYW5qnTM/nkKlsVNVm6mmkgzv8iCkN3nsySHKkpW51QqGQZF/fz6yIz+f\nn0/SbMocPNhGtdrE5TJw5fIGnV1WLl2NcfnCCmqNGr/fyOJcnFAoi8djfNtjXKs1d6IW/jNKpTen\nOT9In5GNjQ2uX7/Oc88990A+/8Me/wZv5O2KkY/y/N8Ov1LFyPtBrVSiUS6jVos4nQYS8RI1wQCC\nQPDIYeztATYvXaSaz6K12Og59BA1RKr1JpqeESIaP1d+cAHfUB/7joygE1W8/C+vozFZGT8yzL//\nv68xMKnB59NRq9VxOAykUlGSyTJ9fXampqLcuRPj8cd7mZjwMTMTR6tVVjThcAG1WqC3V8XVqyGe\nemqYwUEn58+v09lpxWzWcu7cGplMFVmGjo4CJ050cebMKvF4mcFBFxaLhm996xbJpOKqub6e48SJ\nLkBGrVbUNG/ICtPpCj09dsbGBlGp2Jadmmlre3cSvo8apqairK1lCYWyrK1labVkvF4TW1s5QrEm\npUIFWWwxfTtE78AE3SM9CKKIrDdj6B9FquYYsMncms7REHRMTioqDodDx8ZGHofDQKslY7fruHUr\nisVSYX4+zU9+ssDnPjdKuVwnlVIKSJfPis2moxhPISXL3L0d5sxP7yFp9fhGdpEqyPzayV5m5tNY\njCqMeiOpQp3BsQ4uXQ1TyZbweM2M723H5zGwvJLhhf+YQaLOE091MXagSiFfQRJVaDQC1WKJPQc6\nmbq5ycJKnuG9PsXWO5mjs93EKz9eoTNoIrq0xXrIyPC+HrofOkC9VKS/346uu5dGQ8Zm07J/v59M\npoIoCgiCCo2mhcv10eIFvBeYTBp271Za9plMiXv3Fra7jkqXpL/fSSJRRhRFzGYNHmON5QuzNOsN\njGKVQMCCqtxk9+4xyKvI3H6FxtoWJanJxORerkdUhKMlZElL20AnpWKRS5fDHNo7hrd/P6dfXkRr\nNOJuc/P9793FaNJiMWvxe3LotRnUkpfeHiUrR9VqEo8V0Rm0hCMFzG4HapePtYUwLreLY79+AJvL\nxFqhgK1QR9MMkb0xi28syK4+J9evh9FohO1IBwPlcoN4vMjwsIvZexEmhoxIagGHy0SrKeMN2Onq\ndbK6mmF83Pe2x9Fm02E0qikWf1Z8SJKAx/P20tNfJr7zne/w9NNPfywSet8Njh8/zl/8xV886Gnc\nF/xKFSPvpxpT6/VIOh31krLas1i1JOJNerv60feNkLz0Glu376B3OgnH68zPPMfxr3wKr9NDaayN\nK8/fRGe3c3cdXp+d4beeHmTkyBjx9TBOp44vfOMR4iUtn5j0oFIpe9VqtciVKxvodBJ//Mf7KRRq\nWK06trYKjI56uXMnCoBGI2y7qWoplbIUClWMRg2HDwdZWkpx6dIm0WgJm00RIt2+HcHnM3L4cDu5\nXI1du1x8//vTVKsNDAYNs7OKRbzZrMVi0XL0aJC1tSzDw26Gh900Gi28XiPj416KxTp6vfq+SjXv\nB2fkDZRKdba28tRqTaLR4s5WUzpdZmsrh87lYaTTSbOkSFhzggNbZycATqeRMgZyVZGOIQvnbt3j\nwktLeL0m3G4DTz01hM2mZ31dMd9Sq0UkSWBsbIjXX1/dUb2Mj3vR6yUkScBs1uNyG7HqW4RWEty6\nsko1lUJtUlNYEalZe9mMlHG5jBQW1xDlFhN7hiiVq8TDOSrVBsNj7VQqTV746Rp2q0RsLYIkyKhf\nXcHjt3Hy1ydw2STKNbh4JYLGbCZVVPHIr48RCJhZX4xw9CEv0UgBbS1NKpTB4rKxtFnn3/91iiee\n6OPepWlE68N85hMuDAbF2VSjkbh7N0Y+X8Nu1zE+PvCRMLp6N9dCo9EkHC6QyVQwmzX4/YovSbPZ\nIputoFYLTE7upl5fo9VSpL+zswkmJ9uJRoscezhIK3YPjQSiVk2zqXQ1NeU8Qr1CUe1APXgAIR3F\nJIJ5YITk/Do3bkQolRpUKzV8bj2jahOGtg5++vwSFZ2bPQfaef75eaZuhjBbtNgdBgRZ5vf+YAKP\ny4DdpmErlMVituO26TAY1KTTFV59dZVarcHhU7sZH3Fw+fQ016/MYBbKlNJpdh8Zw9XmJHp9kY6A\nirExL/PzKYJBK1arwgsZGnJhMmkIhwu01Do0QotgmwGVKOD3mzE7FC8RQVC97TF2Og3s29fGrVsR\nisUaOp3E0JCLtrY3E10fFGdElmW+/e1v8/d///cP5PPvx/jDhw9z48aNt+WNfJTn/3b4lSpG3g8M\nTifuXbuITk3RrNUItFtx93YhBIbIbmxRLDcQHV5yFZlcroRWI1DMFXAP7WXm/DQap5uKZGJ+IYvZ\naeHc+U3a201U6laODnYiqiVMkSLpdIW5uQSSJNLfb2dyMoAgqGg0WjQaTV56aZnZ2QSf/exuXC49\nbrdxR3o7NRXDZNLQ3W1ndjaBSgXj437C4aJCTqs1WV5Oo9dLJBIl4nFFeTM87CYaLWE0qkmnlc6I\nIKgolep0ddlYWEhup3uWUKlApVLRbLa2yZcG1OoHqfz+YNBoBLRaxcH2P3NelPAvFfl8ha4uL5Lk\nBsBo/9kNVGnlKwXf9etK0N2RI0G0WglZltnayuH3W3jqqSGq1SbJZInBQSeRSJFqtYXLZSQaLWA0\nBnnyyX7W17NYrVri8RKqfIKaxkSmJOPoCKDTCogaDZ1ddpqCCo9bR1ByQiFFd7DB9FKBow95KFRV\nJDMVpqai2BwGJEnA0e6nVmuQyrWwu2WuXY+xa5ebO3diaLUS1WqTYrHBxYshTp7sJrkRY/Vmivbh\nbuR6nXK1hdHZTja1giwr0vRAt49MRWJrq0BfnwOAzk7FkbVabaDXqz8W3BBQOntXrmwyO5uk0Wgh\nCCp6emzs2uVhakrhT4miivFxD6dO9TAzk0ClUvHkk/07RPF6vUUr2qJYqhOPl8hkqyQTJUYmBxga\nDTC3mCPbNBIpefD5TBTqaprNFqKoXH+iqKXSUGFxmCnVVaQzNbxeI+VynfnFFKWqjFiqE+xQ08xn\nqaZT2L1NnnqimxdeXsXtNZMttLDbdeTzNZLJErdvR3ZSh1fiAo5gB83oCpLFwfXLq3z604PEVjbR\nFhNM7h9jeNiNXq9cux0dVgYGHLRaCnm3Wm0ycrCfM68sImoknH4nWp2aoSH3uzrPQ0Mu/H4ThYJS\njLwhW/8o4PLly5TLZY4ePfqgp/KhwWQy/cryRn6lipH3u1fl27MHk89HOZVC0usx+f00VRJTxSJb\nghXR4oJYHIdNh683gMVhZfbKJdZvh1me3cLd2UawZ5C6oN7+g1dMrmLJKqOjNrw+My+8sIjFoqPZ\nlInHyyQSStjd88/PsbaW5ezZdXp7HXz3u3f40pdGGRvzcONGmHK5yeHDZjo7OymVaoTDhZ297t5e\nO7dvRzCZtAwMOInHS+zd69+5cYVCObxeI5VKnUJBMesymzVMTPjQ6STi8SJut1JwyDLbdtRpZmYS\nrK5mMBrV7Nrl3k6S/fBxPzkjkiQyPOwmlSpjteqoVApotSI+n5lisU4kUkSSRKrVBGaz9y38B4fD\ngNGobF+JokCrJXPu3DrpdJnRUS8dHSKrqxkOHWqnt9fGzZtR4vFN3G4DoqjC41F8Xo4cCTIx4ada\nreP3m1HHF0htxOgb9JJP5VDKJIFyscKRk1045DixuoqW1sK9OzNkFhO0XF3MLjbQu9x0eczkchUi\nkQJjYz4lZdioZnzcRy5XJZ9XHgqjo14WF9OsrKTJZqt43DVMOiuiVcDf4aSht2PQi7QECVu7n84O\nCzafG8nuRq3XUyzWfu54CkiS5n2ft/uBd5pHLFZkbi65E67XaslkMlXOnFkll/uZJ8qrr97i5MkJ\nPv/50TeN1+kkpqfjqId3MXVxHpNJgyxDtSVQtwfRmww89JCV3l47m5sFNjfXaW+3cPhwkOXlNKFQ\nDr/fjNttQKMRKBbrfOITfdy4sUW12kSnU1OpyeyZ8GAVC8zNzZOK6LhwaxOd3c5XvnScWKrJZrRC\noVBjcTFFV5eN1dUMkiQoickqATRqtAY9cqtJtVRjI1whUiwz0mVgfI+ftVCeQMBCIGBhdNS7Q04/\nerSDqakoDoeez31pL/l8DZfLQH+/g64u27s6xqDIiN+OV/agOCPf/OY3+frXv47wC9yZfxmff7/G\nnzx5kpdeeum/LEY+6vP/r/ArVYy8F8iyEipXqTQxmzVY29owt7W96Xs6hjvILg9gdluRywVS65u0\nTY6Ri8apZLIcPtZLOpFDqJXwGBsUtXoGBpyk01Xm5xPMzMS5cmWL8XEvJpOGixc3qNdb2Gw6AgEz\nGxtZjhzpwGpVwrI0GhGrVcff//01HA4Du3e7sdnA6VQC0qamYpw9u4bBoCGVKtPebiGfVyLtC4Ua\n+/cr7qr37sV2VBCHDweJxQrcvRtHkhTXTZVKxdxckocfDiKKIul0GVBuKoJQ3ZFwFos1cjklFdlk\n0uxsR3xc0N/vRKMR8ftNbG7mt91GZQ4daqdebxGJFKjXjUxOdhIMWt8yXqNRipdotMC///s8q6sZ\nmk2ZdLqCx6N0J15+eRmv14QgwK5dbtrb9VSrCtlzczNHpdLg+PEums0W1WoTi2cAfS2NztHJ6dPL\nrC3HcXa00Tfgp9On4af/ss71Cwuomg2sfi3t3g56ehzcSza4fTvCiRNd1GoN9HoNBoN62zBNh0oF\ne/e2odWKLC4mkWWZUqlOLlel0WhRq8vcXc1w9HCAbK7OwG4/S4tJ/C4b/UYLPp+Jy1NJnE4DPT3G\n+7bCbTWbCG8T3/5holis7chx34Asy6yuZt60/SjLsLSUZtcuD/V6k5WVDMvLaVQq6O21k0iI7Hn6\nU6TX19Fotei9PsI1Pel0Bb2+yaVLmyQSJSqVLJnMBlarjuPHu7DZdKyuZlhaSnPnToxEokx/v4PO\nThuCoOLAAR8ejwGfU830qzfo7vdiNUJN1SCzsYWYj3Hzag6Ty4XdrmzjtrWZOXIkSEeHFbtdz717\nMco1CYvZQStXwNNmwyDW8PqtWHr6uXorth182M7goOtNwYZer4lTp5TFilYrvcXI7uOMdDrND3/4\nQ/7qr/7qQU/lQ8cTTzzBN77xDf7yL//yQU/lQ8WD7Ld+Dfjd7f//X8B3f+7r8hsR1R826vUmN2+G\nmZtLUqs1MRjUTEz4GRpy7XxPo9Hk2qVVNLkNNq9eIxtP4xsdxd7dxcv/z79g11Sxex3ktD7WNwto\nXH5Mnb243QaeeeYOyWQZh0NHW5uZUqnBI490s7mZZ24uCSgy0y98YYTeXic3bmyxsZFnZiaG3a7n\n7/7uCgaDwtcoleq0t1s4dqwTtVrg2WdnkWWZ//bfDvOG9DKXq1Is1nf+L8syarXA8LCLer2JLKsQ\nBEV2d/NmmOXlNH19zp3gM0kSkGUZWYZXX1UyaUwmDeVyHYdDTyZTBhQjpt273fT02O9L2JRKpeJ+\nnfNWSyadLm/LUvWoVCoqlQa5nNKqttn0mM1vNQGORAp861u3uHEjzNZWDq1W2laZaBkZ8RCPFwkG\nbWQyFXQ6ke5uG0tLaTIZpQjo63MwMxPHYtEq2SQagVOTNshEiCSqNHQOii0tM/Npjj3k4Z//+kfE\no3mSiTJmiwaz1cSjnxohKXgol+t4vSYsFi2hUAZJUh4ssgyvvLLMww93cuJEF6+/vk44rHBhFhZS\nO1tvogCtRoMr55bYvduNRq1i974eOrvtPP/8AolECafTwGc+M8TRox0f6sMpv7VFfGaGSiaD2e/H\nNTyM3q50o+7XeQ+H87z44hK12s9kqm63gVAo95bY+44OK5/4RB9TU1GuXt3cUYlIkkAwaOb06VX8\nfjOxWJGFhRQul57/7eujzN8Jcf31adR6PTqXh9VIg2DQSrXaIJOpcObMKoGAGbNZS7PZYn4+yZ/9\n2RGsVi1arcStWxEykSSVcIi+bjMLF2/Q12nEYtbiGR6k2TGOWqvh9OkVnn12llZL5umnh+nqstLZ\naWNqKsbp0ytoJJjYZWa4W8/qnSUEq4tk00qgXXFp/vznRxkcO9yAoAAAIABJREFUdPFRwv38e//b\nv/1bLl++zHe+85378vMfJBqNBl6vl6mpKQKBwIOeznvC9nPjFz48HmRn5EXgf27P4RJvLUbuG7a2\n8ty5E9u54eTzSuKt223YWRGm0xUy8zNsXrvB0lIKQVBxb/EyJ37Hjc5sIp+rY2vUcBuz9BxuQxvo\n5vRUjVKpRi5TJh7N0Wo2GR52odEojqC7d7sRBNjaUnxAnE4D6XQZs1nLvXuL9PQ4sNl0PPKIkvSp\nUim+CNWqEqg2O5vYVtFotj0fBLRaifX1OMlkCbfbiMWiweczEQ7nuXUrilotMDLiYdcuFz/5yRJu\ntwm73UC5rPhfNBotHn+8D0kS2NhQvBd0OolXX13B4dCxuZknk6lw8GAAq1VHOl1Gq5Vob3+rG+NH\nGYKgetNqv1Cocv58iM3NPM1mC4tFy0MPte+Exb0Bl8tAR4fCl3jDGrxabVKtNpEkkdFRhewbDFrQ\n6UTm5lLMzyfp6LDi85lYX88yM5Ogo8NKKJSl2ZTR6SS6u4O8PLVErZYkm62iUqmwGCX0Rj25XBKV\noEKr12Jzmth1cJBUWeLs2bWdbTq7XY/FosbtNvIP/3CNhx5qR6+X+F//6yYTEz48HiPFYo1Pf7KH\noEeiki9g8vn5x3+aIldWkcjJ1BpN5n40xze+cZATJ7pptRTZeV+ffacQKcbjFGMxBEnC5PWis735\n+LwbFONxVs+coVZQeA7lZJJSMknPI4+gvo8qB4/HyNCQk5mZBPV6C1FU4febcTj0zM8nd7J11GqB\n3m4z8dUNbl1cplyU0ZgUk79Go0UolGd42MWlS5tcuxZGpYJdA1ZmXrvKvdk05WyeeqFIKpxAdHSw\nvNzk+PFuVlfTuN0GbDY9y8spxsa8TE4GABXXr21x6FCA3bs9VDt0rJxZZvq1K5gMIrNzKfbtb0Pn\nCxAttWjkimSzVex2xY9o1y4XN29GeOmlFQYHnXzhC6PbW3RVJLeTNbnG3XNxGo0cBw8GOHKk/W3/\nXt/guPyqQJZl/uEf/oFvfvObD3oq9wWSJPHYY4/xwgsv8Ad/8AcPejofGh5kMbK2/W8TaLzdN75b\nvNu9qmi0+BZ9fLGo5NK88cBqVcsk5heRWzLVapNKpY7QrDP78lkCo4Ms3bhKcm0Ta4dA94SVss2F\nKEQx61Xo1DJaSWZ02I7TrudWKMbCQpLduz0MDTkZGnLT3m7m3Ll1ZFl5+DcaMnNzCYaHXTgcOlIp\n5aFfKFTp6lK2cIJBC/39DkKhPFqtiNms3SZKqrl5M0ssVmL/fj9LS2nm55OMjnpoteDevTiyDLdu\nRVhf/5lJkU6nWJvXag0kSYPTacBkKjI1lSaVKvNGwqzVqhQlFotiIb6+nvlQipH77TPyBur1Jsmk\n0hVxOpXtlYWF1LZ7agKt1kU2W+X69TBer+lNq2Zla8tNqVTH5dITiRRJJkuMjXk4eNDPmTPrLC+n\nkSQBu72MSmVnaSlFpdLA5dITjRZotWQKhSrNpozJpMFu15NMlpiaiuHxGBFFAVH8/9t78+C4rvPA\n93e7b+/7ikZja2wEuIAbQBKURImiZFGylOh55MyMHHvieF5cfiNHznOSmky9vBfFcXnKlakoVtWU\npXmx68U1kR1viSKF1mKPJWsjJVAkKJIghZUgdnQ3et+X98cFmgQBLgAaG3l/VSqhL/uc8/X9zr33\nu+d8i0AyA5baWowDQeoaXVQ0WRgdV/HhmRBGs459+6qIRKSts/7+IDMzSTo7q6iuthCPZ/nZz3pK\nzsx791Zy/yEvudA0l35zipyQoG73QZTFHEqNBoVKjaKYx+GQqjjPGVlarVhayg/29zPy/vtkE1Km\nVa3Nhu+++5hOJJakg8joaMkQmSM+OUnC78dSU7MkXV7NzeaCUqmgo0M6P5FIGrNZjdstJayzWLQM\nDs6g0YgYdSGE4TOMRtJMX5wmHE5ia2jA4JKcmwUB6uutvPXWMF6vEZtNR0uNyEDXAOmCmanJGBqt\niN4O+VgEq7ea06fHAejrkxITTk3FS/48L/38LCfeG8JkuBtRUcTqMFC/q4nUTIBAPIbTYMa7YytZ\nnRMTSkDN4OAMarWSffsqOXlynAsXAgwOhhgcnOHDD8c4fNjHqVNjBIMpPB4TkcgkAwPSVpXTaWBi\nIkZjo33e+QkEEvT0+JmcjGG369i61bmgEm85/IPW2mfkpZdeQhAEDh06tKz2m8Hn4tFHH+XnP//5\nosbIZpB/MTaCz8hXgH9eywENBtWCY6I4F31RYGBghpg/RCKeIRZNS1k2p/KkwhGi034uTTbRfF8n\nxngMs9tO3eH7mPBnMaouo07H2d/h4SMhh6PCxM9+fg5RJeL3xxkfj3HkiA9RVDI6GiWbLVAsgtUq\nhRqKohKjUcP99zegUl1iZiZFU5MNrzfP6dN+2tu9DA2FueeeWjweAx98ME5PzxR79lTy6KNb+M1v\nhkincwwPh6mrs5QeKvl8kZ4eP42N9nnGSDqdw2zWSE55s5ESVVUWPv54Gq1WqjXicOhQq0WSySy5\nXAGVSskqrayuCsFggvffH5EiWQSorDTS2VnD6GiEQkEK0xRF6c0wEkkTDqfQauenvm9tdZJK5Rga\nCmGz6fB4jOzdW8nJk2NMTMSIxzOcOzeN2ZzkySfr8HpNBINJpqbiuFwG/H4pA+yWLQ5EUUFPjx+v\n18g999TO1oJJMTQUYutWBzWtdeSUGixmLR+duoiocdNzMUg0muHwYR81NWbsdi1Go5qPP55kbCxG\nR4eXt94aIh7PzupNycR4hPd/HWFXi4GGBjuf9EVJTk1Q5xaJZ/RXFWtUYTComJpKIIoKtmxx4HIZ\nyKXTTHZ3lwwRgNTMDFPnziHU1y9JB4XcwneNYrFIMX/zLJ8rRRQVVFebCYWS9PXNcPr0BA6HnuZm\nB7t2VSAIAh8eO0Z4ZASt1Yq31kqwK0zk8ghaiwWl+kqVYINBhVJpQBAEkokMA+eGOfDYIfyTYfxT\nUVRGNWa3mt3tlbz99iUGB0P8m3/TSiyWxes1olAIHDxYzbPf/jUCcGlohv0dHk6fvEwOJVs67sWl\nnKGpsZ5YQc/57mm0WhVbt7p48MEG3ntvBKtVx7lz01itWoxGFSAQCCSJxzM0NNgxmdTkckVyuQIe\nj5nGRhuTkzH6+oKllw+QjJS3377E1JSk30BAmq8PPdS44WrLLJWf/exnPPXUU6uylbxROHr0KF/9\n6ldJJpO3TQ6VtTBGKoAfXXNsHPgccAB4GPjfyjHQrVpj1dVmnE4ppHWO2loLLpee3t4g7747jMWi\nwdfWwJlfn8Tl0mOzqJgS49R37ERhMxPvv8TI2BR1LSn2qJU0NBjZu6eCrjc+YmdrLXfdd5j/9eYl\nvF6L5Pk+W5NmYiLKZz+7HaNRhcOhw+9PkkrluPvu2tlcDtIb3Je/3IHfL2XLDASS/N7vmXC7DRiN\nagwGFW+8McC5c1NMTcV59dU+Ojq8/Pt/v4N8Xtq+0enmG1yCUMTns9HfP8PISGS2yJ6ZqioT//qv\nvSgUsGWLk927W5iYELHZdLhcerZvd9PbG0SvVyGKClQqBbW1C509V1Nfy21TLBb56KNxRkejpWND\nQ2GMRg0mk4aengHi8Rxq9RRVVSYaGmwLfAkAdDoVBw/WsH27i3y+iNWqxe9PMD4ubbcJgsDYWBRB\nkHKPPPbYFrq7J0mnc3R21mCzafH740xNJejqGqOhwUYikSEYTNLR4eXkyXEqKw04HAYaGqw0N9t5\n9dV+NIZKFApIpfK43QZ6e4Ok0zk++SQ467BaSSiUJBZLUVtr4YEH6slmC2g0SuLhOIV8EZfbgDku\nYleryUxPcOSedrbnHRQK0u9oaXGi1YrMzKRwOnVUVpoQBIFMPD7PEJkjGQjQusQ3TlNlJdNqNfnM\nlQgdjdmM1m6/Qaubc6tzIZnM8s47w4yNSaszY2MxxsaiPPhgAxaLFmMqRQJIhcNsra8hm6lmbDSM\nWixS32Rn164Kstk8W7e6OHlyDKNRhT+mwF3lID99icP31zMdzKBSidz16H4CsSIOhx6TScO+fd7Z\nkgRJursnGR+LUuez43brmRn3k09ZOXy4jt+8O85EVEVr61ZefnOUs2cvUFNj4fBhH8Fgkk9/uhmL\nRYtarUSrVeH1mtBolPT2BgHJD0qrVaJUKujqGuPSJQGvV9pmPHNmiomJGCaThro6C9u3u5iais8r\ndAhSGYixseg8Y6QcUVNrmWekt7eXV199leeff37ZfWyGPB0ul4v29naOHTvGE088sebjr0b7tTBG\nJoH7FzleBfw34LeBRd+1/+iP/gjr7B51a2srnZ2dpR86V6Z4OZ8tFi3NzQqMRhBFOx6PAUEI03f2\nY6L+AjX2IuPhKQp6K9sO7SE5NYHRo6Hp7kaMxgrGB8ZIWXU4Kppo3OZDpdUyPHIZqy3DQw/UMJnQ\nMhMfxWxOotOLqFQiIyPDCEIGUTQxNhZhcnKEbdtcOBwWAoEkMMPevTo6O1uxWrVMT4/h9cLOnXWI\nooKJiREgQV2dm1OnxvH7xzAa40xNSQ6MFy/2YbensdkqaWiwlX6vRuNEqRSoqYHJyRH27fPS0VFJ\nPD6NWq0s+YSk034mJ0fR6drZu9dDIDCG3x9l926peqcghNDr4+zfv53qavOKzv+NPpeTaDS94IYL\nMDg4Q0ODbTaPS45UKkc+X+TQodobhihenejr6pcuvV7EbNaQyeRxOHQUCgW8XiP19TZ27/awc2cF\nAwMz/OQn52htdZLLFSgUYOtWF3a7js9/vo1oNItWqyQUklK1ezxGKXQTKdfM3MrNxESMVCqHzaZj\nYGCGw4frEAR4990RLl0KSW/IdRbMFg172l14LHmysQzbtrpIpXPUNBh4YF8bsVgWne5Kpd1rFzvU\nBgMqo3GBQaJ3ua5bjPB6mLxeqjs7mTx7llwyidZioXLvXrTmtfE7mpyMMTERn3csEEgyNibVUNE7\nnST8figWKUyPsLfBxq6dzVTs3IbbYynl2/h3/247jY02hodDDA2FufuJo4QudDP+cQ8V9R5aDu5h\nS1sN+XQSh1XDL4718vJLF0lnpYy1tbUWivk81RUigYkpFIKA06Gl2RKi7j/sYnomy8svf8I771xG\npVIyM5Pivfcu8+CDDSiVCj7zmVb8/iTJZI5EQvJTqqmxkM8X6OysJpvNkU7n8XiMHDxYg1arpK9P\n2rJVqRTk8wXOnJmkWCxit+sWXeGcC4PerHznO9/hy1/+MgbD2hZtXA+efPJJfvjDHy4wRjYr67lN\n838DbuDns58fAVJXf+Fv//Zvr9v4WuvL5/PNe6At9u9X09bWQttsWoFiscjUxxOMnvmY7vcHKAgi\nVbu2k3M3EVN7cPpa2dvuRVnIMvJRN8N6F0O9QygLeoomEdNoDJ/PR6G6mk+6LvDuS+9jdNqx2yqJ\nRfsJBKNcupTHbNZTW2vho48m0OtVmM1KisUolZVGMpkK2ttrqKoyz94sPCiVCgwG9YI9uFQqh0bj\nxOGwEgj4Z53X9FitHqqqTDQ22mczukYRRYGWFietrU7i8QzDw2Gi0QwWi5OhoRBjY9KqgUYjedp3\ndZ3nyScP8ZnPHGR6Oo5CIXD//T4EQUCjUaJWi7d0fm/l8430dT2Wsh+pUikXTdxWKBTx+xMcPuxj\nZGQYsOLxGJe0PG2366msNDEwMIPBMJfZM0o6neenP+1BqxUJBlNEoxnuvbcWr9dEY6OjFEZtMKhR\nKgXsdj1HjjRw7twk58756e6WnI6l6rJh4nEDyWQOUVRQUWFAqxXZscOA0aghEEgwPh5nYCAord4c\n8DI1EUZJgccea2ZbjUDk/CkoFplKpjAbHUSVDs6fn6a21loyRBZD1Gjw7NrFyPvvS/4egoDObse1\nbduS94QFQcDZ2oqlrk7KdGw2o1Qt3CpdKrcqRzZbWLTY41yUTcJsRme3kwwGKRYK5BNxqtp24PTO\nd9a12XQ8+GADg4MhzpyZYHgqTm+4DoXRxeCEkpHTk2hdYzBwEoVSxd6tbtTFFEm0NDRJK1Bjo2Gq\nKw04zQpaWpzUGqOoDSbqt1eSPD2JIIRKfkuiqCAUSpFIZNFolJjNWsxmKQX76dMTpfD+HTvc+HxW\nXnutj1gsQ39/kN7eQUIhLY2NNurqLKVt6HC4yOBgiNpayRE+Gr2yWqXVilRUzH+IbyafkWAwyD/8\nwz/wxhtvLLltOcZf6/ZPPPEEf/zHf0w4HMZiubJavVnkv5b1NEa+so5jzyM+Pc1EdzfFTAq7XcfI\n5QhDH5xm62MVDEW0VFTYsVZID+tiLRAcplqjQqtxkcgpOXFidNb5Uw2WCgy1jfQPhtjuUXLo3jq6\nuqT6EPv2VRGLpclmC9hsOtxuPZcuhWludlBTY8Fu1xEOpzh1aqIUmtnc7MBkmr+37vWa6Onxo9NJ\n6ZfD4RQmk4a2Nje1tVIOg3vvrSMWy6BSKUoPHatVh9UqPXADgQSnT09c95zY7bpVTQW/Fuh0Klpb\nnZw4cSVUUwp5dnH27CSZTAGVSoHBoGVmJjW7EnFrKBQC+/dXodOJjIxEZhPJGenuTuLzWbFatWg0\nIpcvhxkbi1Fba8bl0pPPX3nzFARpezCTyRMOZzh2TAqvdbsNHDlSjyAYiUalNi0tUgrvqak4RqOa\ndDqPw6HH7TYQCCSIhRN49ClqGpVQBFV8kvRInMrduykUigT7RomKVfSei5HNRujrm+HIEV9pPiyG\nrb4ejdlMwu9HUCoxVlSgMZmYjsev2+ZGqHS6VY2euR52u25BDRWNRonLJT14dVYrngcfJDYxQT6b\nxeByYfQsXpdFEATGx6MYjVLhyw9PTpLJ5Nm924NGI3LxYoAtdhfZ8UHUyRkaXXY0TgMZtRqdTuTg\nXXUUD1SjETLY9EX0Rg1GjwdBocBs1uB2GwiHi6Wkc4LAbPXtK5FgFRVGPvWpxpKRMucbVlVl5gc/\n6MbvT2C1qsnl1Jw/P80XvrALg0E1b1vabNZw1101nDo1TjSaQa9X0dbmXuDAupl44YUXePzxx3E6\nN1YI82phs9k4evQoP/jBD/jDP/zD9RZnxWwEB9aysVxrLptMUixIDwmv10Qumyc4kyIXCdHSsp2d\nOysA+OQTPy+90k9vbwCDQcXOnSI2m4ZIJE0olMJoVKPTq8iLWkIJgXfeG+XQoRq++MXd9PUFCAZT\nDA+HsNm0tLRITnEWi/SmY7frKBSKfPjhGAMDMyXZTp8e57775v+u6moze/Z4uHDBj1qtpKrKTHt7\n5YKwVKNRfd3fbLfrqKoylfacQUqV3t6+dVnncDmsts8ISFsher0UjaBUCtTX23A69Vy+HJ7dwrHN\n1uERF9TUuBlms4a7764lmcwiigoGB0OMjg7N+06xCJFIGrVaZP/+Kj74YJSZmSSiqKChQcqi29sb\n4OLFACqVsrSN8/HHk+zcWcuWLU5GRyMMDc3wzjvD2Gw6OjurgUypj7GxKIp0jIlzA6UNz7YdbhSK\nJLlUCk3DdqbOCcSDVx7Gfn+C4eHwDY0RkMol6B2OecfK4UdQDm5VDodDz4EDUoRLLJadzVDrprLS\nOK+fWw1bNhrVTEzEZrP7avD5rKhUCn79v4Kko8M8dLiSnQ1uJi+dZ3L4IhVNNajbDjE6GiUez/LI\nI02lHDFXU1FhoKGhAYUixPR0nEQiS0uLk/b2ytKK5BwKhbDg+jYa1bOZchVEo3qqqvT4fBZisTSF\nQoFstoAgQEODDb1eTV2dlAYgFpOMkWv9zK4+NythLXxGEokEzz33HK+99tqm9ZlYTvunn36aL33p\nSzz11FOlTLObSf6rua2MkaWSDAaZGRwkcvkySrUarcUC09M0NTtIJnP49tRStbMWhUIgGExy4v1L\npGMxtGqBSCTN8eOX+fSnm1Grr2wHeDxGqqstnDo1QbEIb711mUOHati1y1NK4+zzWTGbpVolcyG6\nIBVxm6s5AWA2q1EqFRw71svWrVI4cE2NGYNBw549km9IKiVFxCx2I7kRgiCwb58XrVbk8uUIKpUU\nSdHQsDKnwo2GUik9sK9N9z6XCtvvT5SquHo8xuv0cmPmzr3ZrEajUZJOX1lhkbZipAe+x2Pk4Ycb\nmZlJoSjmMWqLCMU8o6NRWpqt2FUxwsMjxBNZtJ5qCoUCUJwtyCcVPZucjHP+/BQPPdRIba0Vl0vP\nyEiEczNhFKKIgiK77msjEIWP++P4dgo02hZf9YlEMguO3a40Ndnxeo2lVYDFEtzdKrW10gO+rVmP\nmE/h8Jp46aWLKACTtkgwkOT4xBgtjR6Kl/yoDAZyOclKjMezpRw112IyabjvvjoqK43E41LxzMZG\n+7wVykKhyODgDL29AeKBEFUuJV6bgKXCgdEoFcELhVIUi6DXS3VyamosZDI5VColDQ02tm1zlfrT\naMQbbtdtFl544QUOHjzIzp0711uUNeXuu+/GbDbzT//0T5ved2Tzz8KrWMpeVTIUYvDXvyYZCFDI\n5wn29WHyerH6fCQDAdyNtVQ0+VAopCyBY30j9L93kmQsRSFRxFVjJRC14Pcn2LmzorSMKi3ZVpBK\nZZmaSuB26zGbtYyMRDh6tJHJyQSffOJnejqBViuyfburtFysUAglx0hRVKBQKHjjjX5aWkT6+5W8\n8UY/1dVmDh/2sXWrc7YmxPLPl9Go4eDBGnbvzqJUCqjV4prWHVmrPCOL4XJJWyEXL/bR1NRYljT3\niYSfHTvcnD07RTqdR6VS0NwsPQTnUKmUKGdGmDx7lvFUCn1FBTplFSffHqTnxEVsDj1eh5Kxd39D\n5+8eIRQyzTM0q6pMZDJSnSG9XsoJcvBgNZWVRvo8IjazSM+FAJfO9qPS6ckNp5hOjKDTxclkrjzU\nBIEF/gG3ymapTXMter26VIl4Rf0osziivUxP9+Ar5hBQU+PVkyeK3ewgn00TDcVRGbyYHFbMjVu4\nFJBq4czVqRkZiZDJ5DCZNDid+lIYajQ6hc/n4MyZSQYGZggEkrS1uUshuf39QalG0sg4wb5+uily\n4N4m6ky9uNvaaGiwcfFigHTaj0LhxG7Xs29fVSmdwVINj83gM5JMJvnrv/5rjh07tqz2Kx1/PdsL\ngsC3vvUtnnrqKX7rt34LtXqhj+Fqjl/O9reVMbIUIiMjJANSanaFUomtvp50LCalqm5txVJbW8rC\nGB0dJTU5CrkMolDAoMxSiExT6XbT0uJk927J2XR8PMo77wyTyxXQ6aSiebFYhmJRqnHhdBqoqDDi\n8RhIJLKYTJpSdV4Aq1VLba2Fnh4/ZrOGixf92O160ukEp04NA5SSd4mi5PtQDpa6qnK7IAgCWq2q\nbPV2FAqBPXsqZ2sGpdHrVbjdxnn9R8fHGTl+nHwmg6BQ4I8KvPHKm4STEA9HCU7OwLYqDnTUYhRi\nCBYtIGXGTSSy9PcHKRSK+HxWzpyZpLOzmvp6G1u3umhutNB7bpSZ9y5j9fnQ2myo9XqSyRwWi4hC\nIfnGqNVKGhqsZQvRvtOYOH2a+PAAJk2BtKFIRohTZc5StFgoFg04PTbyNi2+tka82xr55HIOyOJ2\n69m61ck771xmcDBELldAr1exe3cFO3ZIW8GxWIYPPrhEKCQZL+FwmpmZJA8/3ITFouXCBT/pVJbo\n+DjFfJ48cLFniuq7HAQuXqTjyEM4nXp6elLU1npoaLBtet+vm/HCCy+wf/9+du/evd6irAsPPfQQ\nLS0tfPOb3+Qb3/jGeouzbG4rY2Qp1lj2Gic8pVqN3m7H5PViqqllZCTCxPkRjEY1msAwmkyIxhYP\nF86MoNWqIA/bWqzs3u1Bp5OWQ0+dmmBmRgoIcjr17N1bicWioabGjNNpKKVcvp5vgiAI7N1biU6n\nIhRKlpJQdXdnEYQcer0KtVpJMJji448naW11lj2xz1q+8a6Fz8hy+8vnC4yORhgfj2EyqdFoRNRq\nJWaz5rrhv3N9VVQYqahYfMsnOjZWyrehMhjoG4mSDocwWZ2EkAzDdCyOu64ep1jE0mBjYGCGaDTD\n1FS8lJo/lysQjWY4dWoCj8eITqdCVKvR2aw0dmwnGs3Mq8lSV+ejrs5COJwuOW8uNwX4RlgVgfLJ\nsZR+0pEIkdFRQPL3ymYT5HR5rPoiGb0Dp0vShWerF6XFTjKYZMcODW63EaNRzfR0nIGBmZJDdSKR\npbt7Eq/XTDabJ502MjZ2ad4KTjSamc0ToiaTyVPI5ShkrySSy2fzFIoK8qk4KmWR7dvdbN/uXvNz\nU64+lvL9YDDIt771LX71q18te7yVjL9R2v/d3/0d7e3t7Nq1a8XbNbLPyBpjcLsRlMp5WSDVRiMa\ns5nu7klOn56YXeEQ8QpRxMnL7NrSgMfTysRkDJtNz5776rBapQdTPC5VzwXJEIlG05w+PYHBoOKx\nx7bgdN7akrjBoKajw0s2m8du1zE0JL0VG41qAoEkkUiKmZkUoigwOhqmunrptUJkbs65c9OcPDmG\nxaLh8uUIAwMz1NRIZdj37auiqWl5vjXX5ugoFqQwWp1RquQMoNVpUKqUmGsqcbkMPPBAPQMDIXK5\nPDt2uNHpxFL+lGg0XQrPvHgxwLlzUwwPh6mvt6HXqwiFUmg0Stxuw7xoKpnlISiVCLOOgoIgSFus\nyhh1v91KylJHOJLBbFYTDKZ4993LKJUKXC49Fy4EEASBeDyDw6EjHE6XfIt0OpHjxy8TDCYRRSVn\nz06XahvNUSyCKCqpq7MSCCTRmE3kklKYeGWNDXUhgb6iApV+daotb1SeeeYZPvvZz9I2l6fhDsXj\n8fDKK6/wyCOPcPHiRf70T/8UVRnC59eS26c6EktLnGWuqcHd1oZKr0dQKtGYzVR2dJBR6rl40V9K\n/pNM5sgbnYRTCrJTo7iKk+ypzWOzJamovvJA0mpF9HoRk0mN35/gV78aZGBghtHRKO+/PzIvauVW\nUKmUbN3qoq7OTGOjglyuQCCQwGzWolQK1NZa6eqaIBZsVu52AAATMUlEQVQrrxPiaiQfK+dY5ZZv\nsf6i0TTnz08DkE7n6eoaIxBIMjEh1Rfp6hojEkktaHcrspmrqkrbf9l4nNoaE+ZKN6bKSjRGI0ql\nkqqGCjxVdiKzhovbbaSzs5r9+6vIZPLzErlJ805Fd/cEH344SjyepVAo8u67wygU4HRKNW1SKf8y\nzs7irOUcuRHlkmMp/agNBuyNjfOy3gmAp8qGy53jwQcbyOfnnI6lsNwPPhjltdf6GR2VjNq5ek/A\n7BaewIULARKJHNlsAItFw/BwmERCuraNRnXJv2frVietrQ4qWxtw1HrYsrOGtlYLKoMBz65dpZXS\n9Tg35erjVr9/+vRpfvSjHy3YmlipzJu1/Z49ezhx4gTd3d34fD7+7M/+jLfeeotsNnvzxmUYf6Xt\n79iVEaUoUrVvH/aGBnKpFGqzGa3ZzMREbF40BMBkVKSl8x6M6XHC00HMHi8quxVRe2W5Xq0WaWur\n4Pz5abq6xigUimg0SrxeE4WCVASvudm+pKVxnU7F3r1eBCGC2ZzGbNaiUgmzKbyVBINJwuHUDUN4\nZZZOMpkjEkmjUAhcvhwuZapMJKSLOhbLEIlk5mVkvVUMLhd1993HdE8P6VAIT72dxxpb6B2M4fA6\nsJuV7N7tobLWxaXh4Xlta2ut9PfPlLZfVCqpiF+hUGBwMFSS0+UyYLFoyeeLfPrTzej1aoaGlpcb\nRGYh7rY2lBoNM/39CAoFji1bsDc1ER8ZASjl8xAEqS7UpUthlEqBbLaA3a5nejpBNJpGrVai04lk\ns3n0euktNpHIcvfdtfT0TKPRiNjtWrZtc2M2S9E/BoOaQ4fq2LHDTTazDb2QgnwOndOJqL5z7gOp\nVIovfOEL/M3f/M0dk1fkVqirq+Pb3/420WiUn/zkJ/zJn/wJAwMDPP7443z5y1+ms7NzvUW8LutZ\nSeg/AP8R0AD/A/j+Nf9eLK5DRbZEQko+FQxeefMtFouzxbKKJOJplKKSpiZHqYDW1QwNzfDTn/YQ\nDqewWLSlm4jTqeO3f7tl0ZC+W+H06QkGBoKAQDKZLeXGeOSRplveAtroCIIUubSeFItFenuD/PjH\nZwkEktjtOrq6xjGZ1NTWWvD5rGi1Ig8/3ITbvbLzXsjlSts2mUyOTKaAwaC6oR9QMJhkdDRCJpOn\nosKI12siHE5x7FjvvKReIEVuPP54a8lBeqOyEfS+HIqFAgjCAn199NE4XV1jKBQCFouGl166iNGo\nZscON2q1klQqx7ZtThwOPXa7jmAwyYcfjpXai6ICq1WqIzMxIfkJmc0a9u+vuq4v0mZkJXp/+umn\nGR0d5ac//eltXRCvHIyMjPDjH/+Y73znO+zcuZPvfve7VFdXr4sss7paVGHruU3zInAfcBfwn9ZR\njnno9Wra270lI0IUFTidepLJLH19M4yNJ7h8OcoHH4zi9y9826yrs9LR4aWmxlLqQxCgvt62bEME\npERnuVwBvz9BPJ5FoRBoarLjcNxZe8SrzcREjK6uMVpbXYiiAr1ehcWinl0qlyqvNjbacLlWft6v\n9h9Rq0WMRvVNb6x2u462tgra271UV5tRKASsVu2CHCmCAI2N9g1viGxmBIViUX01NdmprbUgCNJ2\na22tmbo6C2q1dP1brVp27HCzZ4+UqLC+3jovw2o+LyUnk5LoSYnSxsdjnDgxSiazsALyncYLL7zA\n66+/zve+9z3ZELkFqqur+frXv84nn3zCgQMH2Lt3Ly+//PJ6i7WA9TRG5q4qDVCWNeRy7ZPW19t4\n5JEmjh5t5OjRRrZtc5VquMwRDI7PWz2ZYy4iprnZjsGgwmSS3ohaW5e/lDg0NITTqeeBBxro6PCy\nbZuT++/30d5eWfaL8U73GZmaihOLZUgkstx1Vw1btjj4vd/bzb/9t9vZu9fD4cM+Ojq8i573tfBn\nWQxBEOjo8NLYaCvNuZ07K9iy5crKXTllu5N9Rm6lH7NZw5EjPh5+uIn29kq++MU9bNvmQq9X4XTq\n6eysnpd23WrVcf/9Pg4cqMLjyXL4sA+Xy7Dg/hIMJhe956zFb1rLPm70/RdffJFnnnmGV155pVRE\ndaXj3SntNRoNf/7nf87LL7/MV77yFZ577rk1Hf9mrLfPyP8D/AHw5+XuOJfLEwymEEUFNpt2yQ9t\nKaGY5BMQjfrnVbhUKgUUCq6bn8Js1nD4sI9wOI1CwbJ8CxbD4dDLKyFlIpcrMDMj+dwUi8XS/JhL\nCjVXzRekVYajR6WMpxsVi0XLkSP1hELSnF9JhlGZlaNWi6VEZQA+n4VQKEU+X0SnW3jbtdl02Gw6\nLJYUPp+D0dHIgu8olULZcuJsRp5//nn+6q/+il/+8pc0NTWttziblgMHDvDee+/x6KOP0tfXx7PP\nPotSufxV+3KxFmtcFcCPrjk2ATw5+7ca+BVS1d7YVd9Zts/I9HScEydGCASSKJUKfD4L7e3eZSf3\nikTSvPFGP+m05GiWSuWwWrXs3+/FbpeNg3KxVr4DwWCCEydGmZ5OoFAI1NSY6ejwYjCoCYdT/PKX\nAwQCydL3PR4jDzxQj8GwsR0EM5kcExNSTROrVcptsRm2aTarz8hSGB+XtnbnjMWmJjt79njm1ZzJ\n5wtMTsaJRNLk8wX6+2dK5SEEAVpbndxzT+1tszVxq3pPpVI8/fTTvPPOO7z00ks0NzevgXS3P6FQ\niCeeeAKj0ciLL76IwbD6voc38hlZz1mtBjKzMrwJPAZcvRdS/NrXvlZaimttbaWzs7OUUGVuKeja\nz9XVNbz2Wj8DA4MAaDTO2eJQAo2N9pu2v97n7u4L9PcH6epKUCwKOBxpvF4jjz66H4tFu+T+5M8L\nP9fX16/6Q6lQKPKrXw0wOBiad7y9vZL2di8gRUN88kkAvz+Bx2OkudmOzbax83Mkk1nee+8yQ0Mh\n8nkpkmvHDjd795Z/K6/c3O7GSDqd49ix3nkh2YIA995bR0uLtH2bzxfo6hrj/PlpstkCoqjA7dbj\ndErRNz6flaYm+22VLflW9H7ixAl+//d/nx07dvC9730Pk2nzVhXeiGQyGf7gD/6Anp4e/uVf/gXP\ndapVl4uNaoz8BXAYyWfkR8C1G1hLXhkZGhrCaHTxi1/0kUzOd/SqqDDw+OOtyxY2Hs/wyiufEA5L\naZrTaT8ajXPeQ2y1GNrg9WLKNdat3JxWKt/MTHJe5MmcHp1OHY8/3rrsrKTlkG0l/fX2BnjzzaF5\n24k6ncjRo1LUTzllK/fvXK4xUi45Vruf8fEor77aRzZbmHe8vt7Kpz7VCMDYWJTXXusjFptCo5EM\nFKVS4IEHGvD5lr49uJHOzfX6uJ7eh4aGUCgU/OVf/iXHjh3jueee47Of/ewtG9UrlflOa18sFvnG\nN77BCy+8wPPPP8/OnTtXbfyNGk3zl8D9SNE0i3vSLJHjx48jispFHygrfaOIRjPzDJze3m6AeVV2\nV4vjx4+v+hibZayVyqdSzZ8fc3rUaMQVb2mU+9wtpb9AIMm19/VkMkc8nllyX+WUazUplxyr3Y8o\nKhb19dBqr2zRRKNpstlCaT6ClKNkLqtzuWRZj35utY98Ps+bb77JU089xZ49e6isrKSnp4ff+Z3f\nWdLq3kplvtPaC4LAX/zFX/CP//iPfP3rX+dLX/oSx48fX/Zq5XLlv628oS5cuIDVqqWhwXp1gkQ0\nGiUtLQtzgiwFg0E17+YxONgHMC8kb7W4cOHCqo+xWcZaqXxGo5rm5ishr4ODfahUirLU+Sn3uVtK\nf3NlCa5Go1GWjPByyraWc+RGlEuO1e7H4dAvKEqo04k0NtpKnw0GNaKoKN1XQCq8OJceoFyyrEc/\nN+qjUCjw93//93zuc5+joqKCr33ta+TzeXp7e/nmN7953YiZ5Y4nt78+hw4d4ty5c+h0Oj7/+c+z\nZcsWvvrVr/L973+f119/nVOnTjEwMMDk5CTxeJxCobBoP8sdf72jaVaFPXsqMZs1DA6G0GrFUtz/\nSjCZNLS1uenqGitlaHU69TQ3L69Gicz60dbmxmBQMzAwg9Wq5fBh37KWwjcSNTVmamrMjIxEZuuY\nKGhpcaw4MZvMylEoBPbvr8Ju13HpUgiDQU1zs2NewUyPx0Bzs71kECsUAj6fFa/39vaRUCgUHD9+\nnCNHjvDtb3+bmpoannnmGex2+b66Hmg0Gvbt28crr7zCyZMnefvtt3nzzTcZHx9namqKSCRCPB4n\nFouRSqXQ6/UYDAaMRmPp/xMTE3R3d5c+Hzp0iN/93d+96di3lTESCklOiRqNyLZtbrZtK0/lyjm2\nbXNht+uYmorz/vsKHnywYdlvLkth7netBRt9rHLIp1aLtLY6aW118vrrCurrbTdvdAuU+9wtpT+D\nQc1999UxNhYjFstgt2uprDSVVoDKKdtazpEbUS451qIfnU5FW1sFbW0Vi/67KCo5cKAKt1vJ/v1V\nmM0avF7TvNXYcsmy1v3crI/vfve7ZR1Tbr/y9lLuog46Ojqu+718Pk8ikSgZJ/F4nHg8zrPPPsvn\nPve50jGXy3VL425kN/s3kTK0ytw5hIGVLWHJbEbigLyEc+chX+93Hm8hBa7IyMjIyMjIyMjIyMjI\nyMjIyMjIXJf96y2AzKog6/XOQtb35uWO1N1G9hlZDlpgeYH5S0cDpFeh3w7gIGAFQsD7QNcqjLNY\nWLcAvAY8uArj7UAqjnh13FcnsJSgdCOSjNGbfXEJlHvOLHdelEvvq6HXcuhujj1Iv28Q+BRSJuZf\nAIvHCV6fcs+FcsyD5eh+pXovp77Lpefl6rhcOl2pLpeix5Xorxy6W6nOynU9zvEU8N+X03CzGiNP\nAn+MpIR/Br4NFIFfIyVSWwteBx4qc59/izQZfskV564HkH7n18o8VpLFJ+wuoNxxdX8DuIEs4AK+\nBExxc319CfhPSA6O3wf+d6SL5GcsPVHeWs2Z5cyLcuq93Hpdru4W47tIN3od0sMiCkSAauCLN2lb\nrrmwmvNgqbovh97Lpe9y6XkpOl6pTldLl7eqx5Xqb6W6W6nOVnI9AryNdL6vtiO2A2eBe2+h/W3B\n+0hhyQLwfwAvATYkJZSbt6/z38wqjPWbJR5fCR8hWfPX8stVGOvtq/7eieRRvY+b6+s40tuDDriM\ndOELwHvLkKHcc6ac86Kcei+3Xperu8W4+vd8fNXfb91C23LNhXLMg3Lpvhx6L5e+y6Xnpeh4pTpd\nqS5XqseV6m+lulupzlZyPQL8n8D/x3zD5xe32HYBmznPyFxu9u8iKfVfkKzEcuNEslQz1xx/YxXG\nOgn8DyTLPAqYkSztj1ZhrEeRLPNreXgVxlJwpTDiGeAzwP9EsqJvRBrpTSkJ/L9c0cFyt8fKOWfK\nOS/Kqfdy63W5uluMq+uU/19X/X0reafLORdWOg/Kpfty6L1c+i6Xnpei43LodCW6XKkeV6q/lepu\npTpbyfUI8CzSysp/BL4CvMgKdluUN//KhkQJ+JGWxgBGkSZELfBKmccaACZZuAd5Hhgv81ivIf2W\nLUA90u/8ZyTrs9zEgPwix5e7V3gjziHdYOKzn5PAPwLDSEt616Mw27bAFWtdDdRw69b7HOWeM+Wc\nF+XUe7n1ulzdLcYJpLfOAnBx9pgamL7q8/Uo11woxzwol+7Lofdy6btcel6Kjleq05XqcqV6XKn+\nVqq7lepsJdfjHHngQ6RVqU6kLaPVWF3fNLy4hmP9cA3HkplPOc99ueeMPC/WlnKd73LMA1n35WGl\n53GlupT1uI7cLoXyKtdwLM8ajiUzn3Ke+3LPGXlerC3lOt/lmAey7svDSs/jSnUp63EduV2MERkZ\nGRkZGZlNimyMyMjIyMjIyKwrsjEiIyMjIyMjI1MGFq/LvfnHkplPOc99ufUoz4u1pVznuxz9yLov\nDys9j+vdXkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGZtPyMFIp6F7gP6+zLDJr\nw/eRUlJ/fLMvytw21CAVMzuHlLb76fUVR2aN0CKlYD+NlHL+v66vODIyi6ME+gAfoEKasFvXUyCZ\nNeEQsAfZGLmT8AC7Z/82ItUBka/1OwP97P9FpKrF96yjLBsKOc/IxmE/kjEyhFRs6EfA4+spkMya\nsJzS8zKbmwmklw2QiqX1AN71E0dmDUnM/l+N9AIaXEdZNhSyMbJxqAIuX/V5ZPaYjIzM7YsPaWXs\nxDrLIbM2KJAM0Umkrbrz6yvOxkE2RjYOxfUWQEZGZk0xAj8Fvoa0QiJz+1NA2qKrBu4FDq+rNBsI\n2RjZOIwiObbNUYO0OiIjI3P7oQJ+BvxP4J/XWRaZtScM/CvQsd6CyMhciwj0Iy3bqpEdWO8kfMgO\nrHcSAvAD4Nn1FkRmTXEC1tm/dcBvgAfWTxwZmevzCJJnfR/wX9ZZFpm14YfAGJBG8hn6/fUVR2YN\nuAdpuf40cGr2v4fXVSKZtaAN+AhJ72eAP11fcWRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRk\nZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGTuIP5/xRHll/wr\nALgAAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAImCAYAAACB54oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd4HPd57/uZme2LbcCid5AgCPZeVCja6qIKrViWbcmJ\njhLLshM7Tuyce+95ro99zuPclOPYThxbyoks+cgy1TslFlFi7yBAggQBEHXRge29zOzM/QMURIqU\nREkESUv7eR4+WM7sb/admd2Z77y/twiappEjR44cOXLkyHG5EC+3ATly5MiRI0eOzzc5MZIjR44c\nOXLkuKzkxEiOHDly5MiR47KSEyM5cuTIkSNHjstKTozkyJEjR44cOS4rOTGSI0eOHDly5LisTKsY\nEQThF4Ig7BIE4ZfvW24SBOG3giC8LQjCv06nDTly5MiRI0eOK5tpEyOCICwBrJqmrQEMgiAsO2P1\n94A/aJp2vaZpfz1dNuTIkSNHjhw5rnym0zOyEth6+vU2YPUZ664D7hQEYbsgCHdMow05cuTIkSNH\njiuc6RQjTiB6+nX49P/fZQawEVgH/EgQBGka7ciRI0eOHDlyXMHopnHbYcB++rUDCL1v3U5N02RB\nELqBYmDkzMGCIOTq1OfIkSNHjhyfITRNE863fDrFyH7gW8DzwPXAE2es2wcsFAShBagBJs63gVzf\nnM8XgiBc9nO+ceNm9u8fpapq/pQ9Hk8r11xTwW233XTZ7Orp6WHfviP4fGFmzCjnqqtW4Ha7L5s9\nF5Mr4bxfarLZLEePHuPQoeMoSpaFC2exfPlSzGbzR47ds2cfGzcep6ZmMaIooWkaw8OdNDQYue++\nL18C6y8On8fz/knQNI329nb27z9KNJpg9uwaVq9ejsPhuKDxiqLwr//6GOl0OW53GQCZTIrh4SP8\nxV+sY8aMGdNp/lkIwnl1CDCN0zSaprUAKUEQdgGKpmlNgiD82+nV/wT8PbAH+E9N05TpsiNHjgsl\nlUpx6FA7FRVzpn40giBQUTGHgwfbyGQyl8Wuw4eP8NhjGxkasiCKs2hpifGb32xgbGzsstiT49Oh\naRovvPAazz9/mHi8FEWpYcuWbh5//GnS6fRHjt216whlZXMQxcnZbUEQKC9v4OTJIUKh0IeOz/HH\nxzvv7OTJJ9/B53MhCPXs2zfBI488dcHnur+/n0BAmBIiAAaDCZutlv37W6bL7I/NtKb2apr2fU3T\n1rybMaNp2vdO/x3TNO1mTdNWa5r2xIdvJUeOS0MqlULTdCSTKUZHRwkEAqiqhk6nR1UlUqnUJbcp\nnU6zadMeysqWUlBQitmcR2npDESxim3bdl9ye3J8egYHBzl6dIja2qXY7QVYrQ6qq+czMqJx4kTb\n1PsmPR7DtLe3TwnPbDZLIpHGZLKctU1BEJAkE4lE4pLuS47pJRwOs337Uaqrl+NyFWE251FR0UAy\nWcDevQc/dKyqqng8Hk6cOMH5Ll1mcx6BQGSaLP/4TOc0TY4cf1RYLBYG+zs4fmAAh8GMomlIdjsN\n8+dit+vJy8u75DZNTEwgy0aMxrPd9253OR0dO9A07UNdnzmuPAYGhtDpCs45bzZbCe3tvSxduoR4\nPM4rzzxDsLcXqygSVVVKGxu58557qKgoIhicwOUqmhory2kkKUVBQcGl3p0c08ikCLUjSWffqgsK\nyjl5so11684/zu/389Lvf4/i9ZJOJGg95CGT0jN3/gJEcfJ7FwqNs2pV5TTvwYWTEyM5cpzmSFMT\nlboUmpjAaarBYrQx5B9h3642/vFnP0QUL33BYqPRiKbJ5yyX5TRmsyknRP4IsVhMqOq5U36ZTAqb\nbdLjsfWNN8DjYXV19dT64+3t7Hz7bW6++Voee+xVVDWL01lIIhHF6+3gjjtWYjQaL9l+5Jh+DAYD\nmna+70oSq9V03jGapvHyH/5AUTxOxenvTyKWZmfzNgxGPTPrZzExMYheP8GqVTdPq/0fh1w5+Bw5\nTtOyZw83LFrAnVfXYjEN4Y8cobIwwpIZFoqKCi+LTUVFRVRW2pmY8Ewt0zSNkZEOrrlm0WWxKcen\no76+Hr0+TDz+notcljOkUsMsXjyPWCxGf2srs8rKzho3u7yctkOHqKio4KGHvkRxcZTx8b0YDB7u\nu+86rrpq1aXelRzTTFVVFS6XRjD4Xo6Hqmbx+bq56qrF5x0zPDxMZnycisL3rlnXL5nPumWFeLo3\nMzGxjzlz9Dz88NdxuVzTvg8XSs4zkiPHaRKxGGa7nZqSEmpKSqaWNw0OXpZ4kXf5ylfu5Pe/fwGP\nZxxBMKNpERYtqvjQm48sywwNDaGqKhUVFbkn5iuARCLByMgIOp2Or371Zp57bit+vwWQEIQQd9yx\nmqqqKvx+P3pBOMcTp9fpEBQFWZaprq7mwQerz/9BOT4zSJLE/fd/iSeffAmPZwBBMKJpIa69tpEF\nC+af8/5EIkFnZyeRcJisqiKd/g7pJIlls2dBcSHf+3//5lLvxgWREyM5cpympqGBkb4+Kovem4tP\nyzJJSaLojGWXGpfLxV/+5YMMDAwQj8cpLCykuLj4A9/f29vLG08/jSGZRACSej3X33038+afe/HK\ncWk4eOAA+958E5uqogCq3c599/0JiqKQzWaprKzEZrMB4HQ6EfLyiCYS2CzvBar6wmHsJSUXlP6b\n47NDSUkJf/u3D9Hf3086naakpOS8sUGHDx5k75tvYkil6Dx6lNDwMGtWraL4tPdjxOejdt68S23+\nBSNcqXnegiBoV6ptOaaHy113YGxsjGcffZRyUaTY6SSWTNIVDLLirrtYtXqym4Hf78fv92Oz2Sgt\nLf3Q7cmyzMDAANlsloqKCiwWy4e+/2IQiUR44uc/Z77DgcNqBSCeStEyMcFXv/vdDxUxl4vLfd6n\ni3g8zsjICGNjYzRv3MjyqiqMej0wKSy6ZJlv/uAH5/VaHTxwgFcff5w6h4P6igpCsRh9iQR3PPjg\nJa0LMZ38MZz3aDTKyMgIBoOByspKdLor8/nd4/HwyqOPsqy8HJPBQEd7Oy0HDuDT6bhn3Tri6TRj\nosjXHn6YwsLLM+UMU+f8khc9y5Hjj4qSkhK+9p3vcGjvXtq6u7EVFHDz+vU0NDQgyzKbXnuN3uZm\n7KJIXFXJr6tj/Ve/ivX0Tf9M+vr62LBhI8mkERCRpBi3334ty5cvndZ96Ghvx6koU0IEwGoyUaLT\n0XbsGMU3Xb7CbZ8nzvSEtLS14UgkSObnYzz9lOp2OBj0eOjt7aWxsXFqnKZpbN++i3feaSFiaODN\nzh44uY/b7/gC9zzwAOXl5Zdrlz537N69l61bD6FpdjRNxuFQue++u67Ic3D00CGqrVZMBgOhYJBR\njwe7Xs/gyAiPvPIKN9x9N9/48z+/orOtcmIkR44zKCoq4vYvfemc5Xt37WKiqYlramqmMlg6BwbY\n9MorfPm++856bygU4uc/fxxJrMVdWEpBQQGpVIKXXtpNaWkxFRUV02Z/IhbDrNMRDocZ8nhIxmI4\nCgqQrFai4fC0fe7lYHx8nKNNTQQnJiitqWHRkiUXXJXy/cjyZMaS/rTn4tPQ19fHgVdfZWVFBUa9\nngmPB3smQ8v+/Vx7443oTn+GEUgmk2eN7ejoYOvW41RXr6aqSseCBWsJBMbwRQYu2KsVjUbp7u5G\nURQqKyspOSP+KceF0d3dzZtvNlNZuRqdbvJ8hcM+nnzyZX7wg4cwGAyX2cKziYfDuE0mEvE4W15/\nHcJhDJJERUEBdatWkQ0GiUajOTGS46PZuRP+4R8gEIA774Qf/hBM58/cynGJUVWVY/v2say8/KxU\n2lllZew+eZJwODx1EwwEAvzLT3/KqcNe8oQgh/x+otksFeXlSCZ45eWN/NV3H542W8urqtgzMkL/\n0BBOScJsMBDw+Tgei/GVtWun7XMvNadOnWLT739PqU6Hy2JhqK+P4/v2ce9DD30sN7Tf72fHli30\nnTyJIAjMXLCAtTfddMGiZrIIWQKz2Tzlwj966BA1eXlTUzJFRUX4fD4Uv589u3ZRVFREaXk5IThH\nYOzffxSXa8ZZdSXy80sYGBjC4/F85BTNybY2tj77LM5sFgnYr2k0XH01N912Wy4N/GNw4MBRbLaa\nKSEC4HC48XgG6O3tZfbs2ZfRunPJ6nQ8/eyzBHp7MUSjVFksaAYDndksCZuNa1au5Njhw9TU1Hys\n7cqyTDqdxmq1Tvv3JydGrgD+8IdJ8fGzn0F1NfzLv8B118HmzXAFZV59blEUBSWdxvS+pyFBEDCK\nIqlUaurmtenll0kODOEdjjCRCpJJxYln9ZzwpXG59Gz43/vQ63Vcf8Na6urqLnrtkqqqKnp9Pqoy\nGUrz8xEFgVgqhc5iwTsy8tEb+CMgm82y7eWXmZ+fPzUd5XY4GBgfZ+fWred4qj6IeDzOM489Rkkm\nw3UVFWhAX1sbzw0P82ff+c6HPv1qmkZTUzPbtu0nkchiMAisWbOYa6+9mlgoRMkZcSB15eXs3L4d\naWKCOqB/dJQNG99EqarD0TCHW265cSpAOhyOYTKVnecTjR+Z0RWNRtn63HMscbuxnn6Syaoqh/fs\noWbmTBoaGi7ouHzeSSQSnDjRjt9fQCKhUFJScsZ3wXBZM+veTzKZ5OWXX+XRf/ol8dEBChMxaiZX\nMKJplDgcWCYm6B8Zoaa29oK3K8syb7+9kwMHjqMoAi6XiVtuWcPcuXOma1dydUYuN8ePw/e/D9u2\nwX33wTXXwEsvwapVcNddcJnaoeQ4A4PBgLu8nIlg8KzliVQKxWAgPz8fmJyeOX7oMC1tw0TiKSZi\nBsYzxaiUgmLHOxEn6IXnn9zI44+/xYYNL6IoF7ctk9/vZ1FDA5WLFtGpqpxUFByzZvHlm29moLMT\nVVUv6uddDnw+H1osdlZcDEBFYSGejo4LPqZtx49jjUSoKS5GFEUkUWRmWRmC10tnZ+eHjm1pOcqL\nL+7DYplPZeU1uFxL2bSpje3bd1Hd0MDYGX1Dgl4vc1wu5JISjqfSbOgYplueSV9/Bb/5zSG+/e0f\n09HRAUBjYy1+/9miUVWzaFroI6dbent7ccjylBABkESRKpuNE0eOXNAx+bzj9Xr51a+eYGgowalT\nIzQ3D7J9+35isRiqqqJp4Y8MXL9UhMNhfv3r3/Hvv3gFS7qatFDLuGCkTRAYEkVUWWaR241DUeg4\ndYrqWbMueNuvvbaJXbs8FBauoqrqWgShnqeeeouenp5p25+cGLmMqCo89BD8/d/D3LnvLRcE+MUv\nwOGAv/u7y2dfjve47tZb6YxGGfJ6ScsyE8EgzSMjXHPrrej1ejRNY3R0lKbj/Vi1SkrydCSzXsyS\nnYyqI5IexyjFqSlcTiAQobx8EW1tQVpbj19UOyVJQpAkFs2axZduuom7b76ZZY2N6HU6JJ3uM+Gq\nlySJ7HmyMLKqiiCKF+xtGhsaouA8wcdOgwHv6OgHjtM0jW3bDlBaugCzebJFgMFgorJyIbt3H6Vx\n7lxiDgenhoZIptP0dHcTUVXmzJtHIGvH5voitSXXUGirxO1eQDBYziOPPIWiKKxatQyzOcDwcBep\nVIJIJEB/fxOrV8/+yPl+RVGQznN+9TodmSvoaf5K5rXXtqIoFaxYcStut4YoyqRSBg4fPkR//xGW\nLau7YjLStm/fQyTiJB0WqHAVY9XbydcX4pLMlBsMFIkiyUSCQCqFbDKxaMmSC9puMBikubmX6uqF\n6PWTHqG8PCdO5yzeeWf/tO1PToxcRl55BWQZ/uIvzl0nivD730++Z8uWS29bjrOpqanhyw8/jFxT\nQ3M4jD8/n1sffJAly5YxPDzME7/+Nc/++78THxllPNRHgdWOWYwj0otGD4IQpsxSTkaBhKyRzSrk\n51fT1HTiotpZVFSEpbiYUb//rOVdo6PMX7nyMyFGCgoKsJeXM+T1nrW8a2SEOcuXX7AYyS8qInKe\nm3RMlhF0Onp7e/G/7zjCZEPFSCQ1JUTeRa83kM1OXry//tBDFKxaxdF4nD5RpHTuXAS9nkGPB12k\nh/DoDiKh4yhKGqezgr6+MOPj4zidTh5++OusWOEilTqB2TzMvfdexW23fXQWVGVlJQFNQ8lmz1o+\nFAoxa8GCCzomn2ei0Sh9fV7c7nJMJitr1txEXZ0Zo3GUQKCV22+fz1133fqR28lmswwODtLX1/eR\nXZg/DS0tHZSW1qEzGhgJDaBmxggoUeKKSlQQGNc0BrNZJux2/vRv/uaCe2uFQiFEMe+ca4Xdns/w\n8MQHjPr0TGvMiCAIvwCWAs2apn3/jOU/AdYDQeA1TdN+MZ12XIloGvz0p/DjH08Kj/PhdMLjj8MD\nD0Bray5+5HJTUVFxTjxCJBLhxccfZ6bBQEVFBdGaOk51DTM40YXJlIeolIKogeBjOK2gjAfQ2XTs\n3LmJOXPmYbdPzvsePdpKZ2c/NpuFpUvnf+xAs3cRBIHbv/IVXvzd7xjzeCCZpGfCi+zMZ15hIbIs\nX5SMkcuJIAis+/KXeeF3v2PC48EiCEQ1DXNlJWu++MUL3s68BQto3rEDXziM+3TMz8D4OLt6BnFn\njmA09qJpcebPr2T9+nVT9UCMRiN5eXqSydhZgiSbVRDFDFarFZ/Ph6yJCDYXlvIZ7Dl2FDEwykxB\nxG20o2owkgoQ97dgNl+NpmlTIsrlcrFu3c0f2ATtgygqKmL+2rUc3r6dyrw8DDodw+EwhpqaXMG7\nC+Ddmifv3oTN5jzmzVvJ3Lkag4O7Wbx4EZIknTMulUrR2nqckyd7SaVi9PWNYDAUAiKCEGXu3CrM\n5jwKChzMmzf3E2d8vR9JElHVLK4iC4lmD0utTiY0gYnkEGoigc5iQSwqYvX69dzwMVL67XY7mhY/\npwlnLBaipMR9UWw/H9NW9EwQhCXAw5qmPSQIwm+AxzVNazq97sfAHk3T3v6Q8Z/pomfbt8Nf/dVk\nzMhHPch973uTWTZPPXVpbLtc/DEUQXo/2956i70bNlDicKCXJJr3HCQZUeic8DIgOlCyZWQyetJy\nCpujDqMlTsPsuVit+Xi9u/jRj75BW1sfXq8eh6OEdDpJIjHInXeuYPXqT95rJJ1Os3nzFl595R2s\neTW43ZWk035qakz86Z9+BdMVlKr1Sc97JpOhu7ubSDhMYVERNTU1571ZfBiDg4NsfvFFUn4/mqbR\nH4iS1c9kzpzVU3Z5PMeZMUNkZl0Vkk5H/axZ9PcP8PLLh6ioWITBYEKWMwwNHWft2hmAxjvvnODU\nqSBe72Q33cDYUWqiY2RTcXRiJTpjPo6CAkbUGBFbNatX5/Gzn/3kUwc0a5pGd3c3J5qbkVMpymfO\nRE6l6G1rQ2cwsGDlSuYvWPCxj9N0cCX+3v/jP57E73fhdr8XROz1DlFaGufBB79+zvuTySSPP/40\nw8NgtRawffsWVNXN4sVzqKoqZceOTUxMhLj66qswGkV0Oj8PPLCe6upPV8o/nU7z639/hF2bDzPu\n6cAcSaClslgEiaziRbTqEGfN4r//7GcsX778Y3tEn332JVpbI1RUNCJJOpLJGGNjx/izP7vpU2US\nXa6iZyuBradfbwNWA01nrP8nQRCCwA81TTs2jXZckTz2GHzrWx8tRAD+8R9hwQLYuBFuv336bcvx\nHqqq0tfXR++pU+gNBmbPnTsVSDg4OMjLv/0tzvFxgpJEZ38/WUmiVDSh2gzIogb5KpGYH1EqJZ0e\no6ioHoPBSSIRxuFw09vbh89norr6vSh1WS5h06b9zJ8/74Jdq+9H0zSOHu1j0eK7MZnejYuoweM5\nzqFDTaxZc82nPTSXHYPBwJw5ny66v7Kykr/467/G7/cjyzKPPvoMxcVnX7xjwQCbn9jEXWtWIOp0\nNG3axIp167jjjiW8885hMhkRUZT54hcXMmvWDB599FUMhmpSKY2ammo0TSU43k9lQxnh0VPE42Ek\nvYF0WiAdH8NWJvK97/2vi5JZJQgC9fX11NbW0tbWxu8feQRjLMay2bOxmkwcePZZPD093Pknf/KZ\nmLK72KxffzOPPfY8g4NBTCYHyWQIqzXG7bffc973Nze3MDIiUlMzn8HBUxgMFbhcs2hv7yUYHECW\niygoqCORgJkzG4lE/Dz//Jv87d9+6xOfb1mWefb//B8so0MIvk6SQ6ewixI6yYBiMrDomtXcddNN\nHB4fp7Gx8ROd5/Xr12EybaOpaR+gw2IRuPfe66Y1pXk6xYgT6D39OgycEaLJv2ma9j8EQZgJPA6s\nmUY7rjgCAXjjDfjVry7s/RYL/Od/wp/+KVx77WRga47pJ5vN8toLLzBy9CjFJhNyNsvRt99m9Z13\nsnzFCjY++yyL3G5SkQhpv58lNhtjioKY78Qty9xcUYlYWUFJ/QLGxiyYTA7GxrzIskJR0SzS6UJO\nnmyjru7seehEIsLAgI8339zEDTdcP5Wt83EYHBxElq1nCJFJCgtraGpq+0yIkYuFIAi43W6i0SjZ\nrHhWbQmvd4hk33Ea7PlUFxVhsViolWUOvvkm933/+6xYsYxYLIbFYsFoNLJ581sEgzAychJZNqNp\nKoIgYrbW4E300jhjEeVlEql0inA4Rr6umu/+fz/9xNNy5yOdTvPCU0/RtXs3pt5enDYbB/bvZ+my\nZSyrreVASwvDq1ZNa/G9P1aKi4v5679+gOPH2xgb81Fa2si8eXM+8KHg2LEuCgoqAUinkwiCCUEQ\n0TQT3d1tVFRcTyqVJB6fLG5ntxcwMNDF+Pj4J87K6ejoINXXx/DQEMmxYRboRVySxJiaobC0HGSZ\n8VAIyWL5xC0ojEYjd921jptu+iKpVAq73T7t3rTpFCNhwH76tQOYynXTNC14+m/3h6m2n/zkJ1Ov\n165dy9rPSNGmDRvgttvg49xjvvCFyTH/9b/Cf/zH9Nn2WUdVVcLhMEaj8SN/qO3t7Yy1tLCytnbq\n6aJGltm/cSN5NhtaMMjchgb2DA7i8/koM5uxKwqHhoaYvXgxt163huaxMSoqChke9pGfX0d+/mRG\nRDA4wcDASaxWlXR6Mhhy0puxh8OHD+H1Bmlv7+PVV3fxrW/d+wnFw/ld4Lkn4kk0TWNkZIQBjwe9\nXs+MmTNxOAzE42Gs1knFPzF0CpcoYjZJU1NbBr2eQlGkp6uLVVddNdWGfWJighdffJOODgPJpJVg\ncJhgMEB9/XzMtjzaByYY8vqoT7hZs2w29opyZjU0TNX/8Pv9DA0Nodfrqa2t/cQN8ZqPHCHZ3U2p\nIGByu7FZLJTKMkeamykvLMQlCAwNDubEyAeQl5fH6tUrz7sum83S398/Vc3UYNARi01W73U63ahq\n/+l3qoji5O8slYpSX3/xMnB6OzpoP3qcw4cOszCrYZJMqJkELr2eIx4vgl+mOfAWf/433/7Un2U2\nmy9ZY8bpFCP7gW8BzwPXA0+8u0IQBJumaVFBENwfZsOZYuSzxPPPf7KU3X/+Z5g/fzLe5AtfuPh2\nfdZpazvJG2/sJBpVEASFBQtmsG7djR/4Y2tvaaHK6Tzr5m3Q63FpGh6PZ7LomdFIdUMDzQcOEA6H\n0QQBnyRRarOhE0VkTWPJkkV0dLzK8HAXBQVlNDXtoru7j4KCQtxuC5s3P81tt91HPB5m+/YdCEID\ndvtsqqvr8Pk8/OM//icNDfUYjUba2zs4deoUExMRzGYr8+fPZNmyJef0x6mqqsJgSJwTZDkx0cdt\nt83l846qqrz52mv0HTpEviShaBq7RZGGpcvYf+A4Tucs7PZ84tEQanycq5ctO8etnj2jZoumaTz/\n/BsYjTWEwzvx+zUikQzBoItAYBQYobj4OhIRLz7VxtP7R7lm7Uz+n3vvPZ0qvJ2dO1vRNCeQRdNe\nZ8mSmRQUuKmpqaK6uvqC3fonm5qoLSxkIBhEPp1ZY9brsakqY4EAGU3DlOv8e15isRgdHZ1EozEq\nKsqoq6ub8ggEg0GefPIFJiZUBMGMpkUxGuNEIj7s9gLy80spLjYzNHQMg0FHXV0t3d3HKCoqoKJi\nsp9NJOLH6RQ/VXrwkZajNB85RpGsYEJDp4p0KiLdSScGQzFRxUTAWMS///p1jrX2cv/9X5rWYmUX\ni2kTI5qmtQiCkBIEYRfQomlakyAI/6Zp2veA/yUIwjwmU4v/r+my4UpkbGwyM+bGGz/+WIcDHnlk\nMhW4tRXOUyIhx3kYHR3llWef5YUX9+B2z6N+zgLKKso5dqyLWOwVHnjgax97m4qi0NTZS//hVmKj\ngzRUViIlk8iCQLHbTXp0lP2trZSuXk1ZWRnf/ObX2bVrH6+88hIDA2nmzFmBpmnodDpsNpWtW39P\nNisQi9mw2UyUlZWg11soLGykr2+MJ598imhUoqtrjIGBKAZDPhUVBYyM9NLc3M5DD913liAxGo3c\nc89NbNiwBShErzeRSvmprTWzfPmyi3h0r3wSiQTBYJC8vLypTIaOjg48Bw6wqqZm6iYfT6VoaWnm\na1+7m4MHWxkZ6aC6wYGUV4HL6aCnpxefz0844OOEz8cSoxG7w8G8efPw+Xy0t3vo6YkRChlJp63o\ndBKp1ACJxDA2WzX19TZuuGEVRUXFhMMhxsebCJ7uGfL2221UV69GknSMjY2xZ88ge/Zs5JprvkAm\n04IoBnE6CzCZjKxcOZ8VK5Z/aFaUIAiUV1VxzOPBkc1O3lA1jVgyScRkor6+/pIc+09KMBjk5Ml2\nEok0tbWV01Kt+P14PB5+97tXyGQc6HRmFKWdurpD3H//l4nFYvz4x/9MR4eG213OjBlFVFbOYWDg\nBGbzEAMD+xHFfIqLC4A2CgsLMJkEdLokdruJYHAMv38MSfLy7W9//RPvSzwep3X/YWQkNEXFp2TQ\nayKerAOrVIMm6YlmNWYWz8ftdtPXN8xTT73FQw+Zqf0YFVgvB9Oa2ntmOu/p/3/v9N/pa85xhfPy\ny7BuHZyna/gFsW4dPP00/OhH8POfX1zbPouMjo7y3KOP0nuim4aC2Rh1JnqPHCERjzN7zhy6uvYx\nOjp63vnb2YsWsbetjWKXa8o7kpFl+sJhju04jqNyDZ2HN2OJZNB0EBFkopLIYoOBkUyGVCzGA+vX\nA+BwOLjZkGjqAAAgAElEQVTjjls5caKHWCzB4V0HMGiTxbtUg0BZjRFFGQNKEEUTw8MBvN4ANTWV\nCIKNbdsOsnbtNwiHx6iuXosoSni9/dTUOPD7IzQ1NXPdddeeZX9jYyPf/34RbW3tRKNx6urmUF9f\nf8W2Qb/YqKrKznfe4eiuXViARDZLzcKF3HbXXZxoaqLG6TzrpmA1mbCdLnn8zW/eD0y65X/zy1/y\nmxffIC9rxjs6RkRLUTWrijl6PTv/8Aeit9/OjPp6urs9yPIs7HYnBQV5JJNhUqk8gsFxamsX0tBQ\nhcViZceOfaRSIpGIl3/4h19RXV2G3V6DJOmQZZmmpjZcrgaiUT0g0t+vMjoaZvXqSioqZrJx40l6\ne4e4//57zjvl1rh0KR1vvMHCmhqq58+n98QJJEXhVDKJSa9n/X33nbfT9JVCW9tJnnlmK4JQiCga\n2L69g9mz8/na1+6etrR0RVF4+unXycubi832Xg2Fnp5WtmzZxoEDrbS2higr+wLZbJYjR/oIh6M0\nNjbg84V46KEvMTIyislkZMaMr0/FmKTTafbs2cOGDa+TzeopLCzn6aff5M4717Jo0cKPbWd/fz/x\nkRHSqRSDchJ3VkXWDKQFKxICASWLpWQeoVCCsjI7kcgp7PaV7Nx58PMtRnKcywsvwHe/++m28ctf\nTk7XfOUrk2Xjc3ww+3fsoEqno1vTkWeyo9cZqDYY6Dl1ipq6OkQxj0gkMiVGotEoXV1dJBIpystL\nKViwgLf27MElSRjNZiI6HXGTg5KipTidhYiihCf9IjEE9EKcr990HYgisqKQrajA4/GwZ08L0Wic\nxsYa2traaT8cptZZhiSKpFMJQrEwxw61U1RpQhCcZLMJNC1DNmugu7sPQRimrKyCZDIOOBHFSbex\n1eqmv3+ExYsbOHGi5xwxApMFwv5YglUvpHOuoih0dXXR3t6D2WxkwYI5H9jS/fChQ3Rs28ZV1dXo\nJAlVVWk/fpwtooiSyaA7IyAvkUrhDYfxh0JnFarKZDL4IiJ11z1Ay97tmMpczCmuJZb0MeIPUmaz\nsun55/nmD35AJpNBUQRAhywLSJIDi8VCNltAXp6FWCzB/v1HSaetKIpKLBbj5Mk0b799gFWr1uN0\nFuH3+1EUI3q9EdAzPDxCImGmtHQhw8ODzJq1mNraxXR0HMTj8Zw38HXpsmX0trfT1NtLkc1G8fz5\ndIVCfHndOubPn4+iKIRCIZxO5yc6T9NJMpnkhRe2Uli45Izg6zra25tpaTnKihXLP9F2NU1jaGiI\nRCKB2+0+p5rt8PAwsZiOqqqzizmVlMzgpZdewGyuRa+3I4o6dDoDBkMVvb29VFaWMTw8Sk9PL2Vl\npcyYMeOcQM+DB9uZNetmXK7J/kOpVILnntuB213wgXE7fr+f1tYT+P1hamrKmTt3DmazmY6ODtLe\nUaolM1FLPhOJGGYtj4gq41dVdAUzKS+aQyIxTiTixWo1Y7O5GB3t/8hjFIvFOHDgMMeOnUKv17Fq\n1QKWLFn8gQ8v0WiU4eFh9Ho9VVVVn1oo5sTIJSQQgMOH4eabP9123G7413+FP/9zaG7+5F6WzwMD\n3d2sKiigyDnKWCCKM68AURAxCQLRaBRVjeJ0Ounv7+e5555n8+bDWK01p2MukkR9HVRY9XT7/aRE\nkWU33shETxCnc7IzrNtdSXNKoEwxkZEjtBw4xuLFjaQlkYSs8dRTu3C7Z2IyWWhqGqGl+RjZuJ3h\njEIsEkZFh8lkIxP14e9OEk33EVKL0UkFaBKoYozGuTYkqZCmA2/i8YRRVTP5+WXIsoLP56OnR6S+\nfvJG/e6FQ1VVTpw4wdH9+0knEsyYN4/lq1Zhs9ku5+n4QF557jl6jk+Wxq+bN4+1N900FRj6LrIs\n84c/vEBnZ5i8vFIUJcTu3S9wxx0rz6nJomkah3fsYEFZGbKi0D00RCKZxOVw0N3SwuLrr6dn2zbc\nDgfHenrZd2IYVbUxGAkQfX07paWlVFRUMDAwQDZro6qqkc6jpygrkIjEAwyOj/KbDVuZW+QCUeO3\ngkBxcR6trf0MDiro9SWIIghCApfLTDzeQyikcrRliExSIBrrQc0O48qrweRysnfvERRFT03NpLCa\n7EcTIJNxYzLZEQTQtPdiVETRydDQCG63G0VRsNlsCIKAKIoYjUa++sADdHV14enqIt9mY011NXve\neos3Dh7ELIpEVJXG1au58dZbr4iaI+/i8XjIZPLOyQJzu2s5fLjtE4mRcDjMU0+9xMjIZLaLpkVY\nsaKe22+/ZWrfJ3s2netlSiZTHD58nNLSfIaGBhkfN1NVVUV+fj6ZjMhrr72Ky6XwzjujRKPN6PVh\n1q37InPnzsHtdtPd3U08bqK6umhqmyaTBZOpgqamYxQXFyNJ0lkeuu7ubp58ciOq6sZisdPScoyd\nOw9TWGjhp//tv5EIBggCAgITgCSYSAgKQp4Nd0HN6WwemURigEWLFhCJ+Kms/PAYlUQiwWOPPY3f\nb8btno2iKLz0Ugu9vQPce+/d53jg9uzaxeGtW3EAMiDn5bH+/vs/VVB0ToxcQt55Z7IR3sWIHbvn\nnsnqrE88AQ9/bie9Ppo8u514KsWSWVW8uLMdvc6A1WQjnVWYmOhm0aICXn11I08/vYmurggm0xIk\nSSQQ8GGUojg1mYa5k9VVjQYD3tZW/EkDpaUpDAYT7e29ZCyNDIVOocYjBAcV3mprpby+mrzSeSxf\nee+US7y8fCZaxkU00ooolCFlzWgk8KU6yc8GQBUQ1SIEyYGs6lElPWkthX+sD+vgSarNLlLBEAPe\nPvrzF6FlrdQWCRzt28upAxFamlq48ZYbuOmm62g+dIi+vXupy8/HZDAwtGsXTx07xv3f+tYVKUjS\nJ09y7WkPR39HB88MDvLAX/7lWcHFra3H6eyMUVv73g1Jlit4880DNDbOPutJX1EUUtEoMUFg1759\nOGQZsygynM0yKIrc9o1vMFRby5bmZlraQ7jy6omqCjWz55FI2HjkkT/w3//7908X5RIAjWCgFzk0\nghyO4A+NUiplsVjLiClxXMEwwa52fD4boliCLAcxGPJwOCQEwUhRUZKD+58hErQjqBGM2TTV+kqE\neJpoOkE0z0dbm5n8fDPp9DgeTw951gjevl5icT16h5tFi2fg949isdgIhcb43f/eRl/3CD5fGJ1J\nx7LVK7j99hu4/vrrsFgsNDY20tjYCMAffvtbTGNjzD1dbCurqrTs2cPhggJWrV49/Sf4AnnveJ/N\nZLGsT9bk8bnnXsPvt1FdPVkSX1VV9u9vprDwEFddNbnvZWVlGAwpUqn4lBBSVZW3396C3V6I3V5O\nfb2L3t42urpi1NfPpL+/laIigTVrvobXG+bYMT/RqJ/u7leYM6eZm29ejslkQBDOveAnkzFeemkH\nTU0dmEw6rrpqEWvWXI2qqvzLv/wng4NWVDWJw2GlsXEGr7zwJP4TW5BiYW4EjEAPGpVARPMT0rmJ\nWkbQtBOMjrZhNEaYP/9mCgpKCQZPsmbNl857bBRFwePxcOjQYQYHszQ0NE6ts1qX0Np6gKuvHqKy\nsnJqeXd3Ny2bNrG6shL96YcffyTCK08+yTd/8IOpSsUfl5wYuYS89RZ8jKq8H4ogwE9+AvfeCw8+\nCB/S7fxzzbI1a9j7zDMsq6nh9tUz2Huij87BMHKemVmzJnvD7NnTSyCQQVEM2GxudLo8/P5RtFSA\nhDHChv7DzHTasZtFDHYr2fIqRkbacbnq8Hrj6M1l9He+Q0F6BFsEqsx5RIfGkNNlHMzsxl1Wweio\nH1XNkkmLGJQMNt0YGTEPm6ijQA4QUxPEBAe1+hLMJgPxbAp/JkZCZyI9mmJGkY5MNES+aCCbCHOy\nbwsmVzUZi5Vqm4mFtVfRNuHlrbe62Lx5BxWGJOuXLZu6WMyurKR9cJDmpiauuwJTsWaWvVfxckZp\nKTGPh/aTJ1mydOnU8qNHO8jPrzprnF5vQFWdeDyes8SIXq/HWVzMW1u3Ms9oxHVagJVns3iHhujv\n6eHeP/szfhGIo/NFyFpcRL0hoqMpRsayhEK9lJf/jm984+tIUhSPpx1zyks2GiWcylAhStRb8/CG\nxnBWz6f71Ai2pIbNnMHlshKLxUgm+4lEQsxprEMZ76YwPIygjJNRFSyUoJMFdJIevaKAyYVODBGP\nn8BgGKT75CnydS6MYho1MoFvVGRvdAGlFUESiQkGe3cwq2QR5kQFlcbZxOQY+3ccR68vZ3h4nG9+\n8xtTT/1erxd/by9Xn1H1UxJFZpeW0rx795QYGRwcZMeOAwwMjFFU5GLt2pWXPNC1qqoKUdxMJjMp\n9t/F5/Owbt3HL7g1MTGBxxOiquq9bBJRFCktnc3u3S1TYsRoNHL33TfwzDPbkKQSTCYrg4On0DQ/\na9feTkvLKfLzFzB7toXBwTaGhnZgsfi5++7/m0gkzMaNLyOKBQiCgRMnOpg1ayGbNh1h/fpVKEqA\n8fFxotHJejR6vcbu3buYObORWCyP7u4Rjhx5ia6ubux2G8eO+amsXIRebySVirN1614mTh7AFItQ\nC5QAJ4E5gAHoR0XIhtFFJEaUBHqjhcLCYvT6IDpdPw88cNt5K76OjIzw5JMvE43qaG1tJR53oap2\nZs+ehSAIpz1tLgYHh1AUhUAggN1up+XgQapttqlrC0CB3Y5pYIDe3t4pAfxxyYmRS4Smwdatk6Xd\nLxarVkFDw2TdkgceuHjb/SyxcNEign4/+3buxAbU1JcyY9U8XCUl/P7x1/FOGEnE7JhMM8hkoni9\nxyktXYWq6giHA8SzforyZmDRFxKKR5iY6CLc72XBKgN7977O4EAaOTTAAiOUmNyUGqwkMmmGExHG\n4iG8J07R3h2lqrqeZDLG+HgQk6rQkAljkmSyQh7prEhMkAAROZMmq2TIqhqiBpmsjBE9PlkD2UKB\nvRCrQSEZGcdHFqc+y4qGJSRTKRKD4wwFjKSzKnH5JPvSKqtWLZ16Uil1ueg7efKKFCPvJ99sZnx4\nGM4QI6Ionnanvx/tvIGcDYsXs+fZZ9GfrpibymQYjURYuWQJnc3N3LJuHS6Xm8XL53DwYCvJpIFs\nNo0gKGiak/37e1ix4hS33XYVP/jWd3GHomixGPF4iBAaJqMOh8mAM9/BwEAEk95Mvr0IW2Ex4+M9\nSFKGWEym/dhhrOkAquIGnFiANGZGtQkKFAsiYEybScVE+rraCQcc1OY1IKiQTCqMZ4Posi5inhSC\nLgJkkVPlIIsgWLCYbRgUE4GxAEeajpBMzmLNms6p6rSpVArjebI3rCYTca8XTdPo6+vjt799Fat1\nBk7nMgKBEI8/vol77omxZMniT39CLxCr1cqXvrSWl17ahSSVYDCYiMfHqakxsWzZ0o/ewPtIpVII\nwrlP6kajBa83cdayefPm8t3vumlpOU44HKO6ugybzUZNzRwymQwdHU1omh29Pk4iMYHV6mLfvrfp\n7u4kHq/AYnGj0xmRJIGWljYaG6sZHZ1gcPAEJ07sR6fLx2DQE4n04nJV4PONMzaWJZnMw+9PcuzY\nM8yYYcVun3M6ZghMJivxeBJrMoKChovJhm4mwAYkgSR6sriZUboMUdRw1y4nmx1ieHiIa69dOFUf\nJ5PJcORIC01NbSiKQmdnJ1VV11FdXY7fn2J4WKC9fQSn0z4VQ5fJxHhn8yYKslnygARwpKuLL8ya\nxYljxxgfGkKUJMpraxF1OlKfojt0ToxcInp6IJOBT1m9+hy+9z34n/8zJ0Y+CEEQ+MINN7Bs5Uq8\nXi9ms5mWw4d548mnKdKVYjUrdAYC+DMhRElHNptHKjWOKOqJJfyUWiupdOoxSEa8cQNjkVqyBh8e\nD8Ri5fi8bdhUEyEtToU+i2ASQNAgk6a3v4W0uhiz1UQ2cZSh8Q7SShpRquQocVzZIDMJk9TpQDOi\nynGiJMnLmsmioaBDyYJBTBGMSFj0DjIZGU3OYFJBL5voGYqwsDrM6IgPASt5Zid2s4vsaA/hsERn\nRxcLFs4DJm/G5o9oQ3+lEEmlqHef3ZRr6dI5bNiwF6ezcEp8pNNJJCl0VqaAqqq0tbVx4MAx/KKN\n5nAEVyyGLS+P2iVLKC0vZ//pjr+zZ9fwH4++TUdLF8m4Slazomg6VJ0Hnc7Nli27uXrlPBblWyk0\nieyIy+hpRMsInFSyFGVj5GfTaJqKotMTT4YJDnhIRMZJRuNEZTf5mo2oZENV8jEKcfJQJlMzcaPh\nxa3LYzQSxBsfodS+nCK9DT1hfOE4dncpvmwFZjEfcypMaqwXq92KqLjpHx+jvqiIZDKJzxcG2cyA\nZwB/IMLAQBM/+tHfsXr1atxuN0lRJCPLGM4IMhzx+6msr0cQBDZt2onTOQeHY/KYu1xFmM1W3nxz\nN/Pnz7ukzRWXLFlMWVkpra0nicUS1NevZvbs2Z/IhsLCQkQxjiynp27wAH7/CA0N53oLiouLueWW\nyfiK0dFR2tpeAKChYTHV1bPo7j7G/v1pli//EtFolvHxUXp7Q+j1ZaiqQCYzgdWaQpKqGB4e5JVX\nWjl1youm2YnFMqhqiFhsDIPBjN1ej8+XIZUSMJlqiMdljh3bR2FhjGQS3O4ZmM0uTKY8gnIcAzAG\nlAHq6X8xIIkdndFNvsvNWDpOIpHHyEiGSETHli2dHDrUS3m5kaamk0xMyMyevQiDwUFra4Z4vJWr\nriqmunoGHs9ejMY6ensHKS0tJRYLMTTQzNpKO0vP8JAFBwbY8NJLrKuro9ZmI6tpjLW10a7Tccun\nqJ+SEyOXiK1bJ2uLXOzil7feOtlwr6kJln2OykdomsbAwACBQACdTofD4cBut39ghoDNZsNmsxEI\nBOg8eJBCqwNJdWAUZPIDcWKZJIrkJJkOkkhkyGYBScOkS+AwuPEnEgQSOiymUkYSw9jti8lmQkja\nMDr0hDMGhlI9CIrCYDaCS5MpyWgMZfuIZMIEIhlkWYckOBGEEgz6LIH0ECeVdvRakjFkrFiYIEgc\nC6AjTYYoAayqRlZ1EE2l0TIhyvML8ScESm0FBGNxWo8eBjnDhAYU1JInSSStdgS9hX7PKPPmTz7Z\nHejspMxiYfu2bcxdsICioqLzHqvLwUQwSNG7lUyDQUJG4zmdZufOncvixT0cPXoQo7GQbFZG07z8\nyZ984aw4mNdf38T+/R4cjlr0tiX45DA6R4Ib1izFZDDQNTzM7NMel+rqSib695KKglHfgKJmiYW7\n0Gl+htuzPDfxFESuZ/WSJWzcvBNXwULMEY2ImGQ8EWE0A4eOH8GiVwjry4nFMhhCYxSlEqAWkmCC\noBBHogqDsYRUeoAYGdzECGMgSBS9miSqBHBbZZJpiTyDRDKZwmW24Q97UVU96WScwjwbemseNrsJ\n/4SPVCJNKp0gFlGQdEYmIieIkSGedBMOW/jOd37FXXft4Yc//DYrbryRptdfZ5bbjd1iYTwYpD+T\n4Z4bbiCVSjE6GqSqasFZx9tksuL1SgSDwUv+XSkpKZnqAfVpMJvN3HzzKl57rQmXayZWq51AYAxV\nHeKGG77yoWNLS0uZO7eUEyeOUVragF5voqenG5erhgULFpFIJHjiia3odNXIsoSqgtFoxWLJZ2Ji\ngljsEOm0hiQtwGh0YbNp1NU10Nl5iIGBfTidV5FKiVitk9csTcuQTlsJhewkk4MMDfVRUFCA3z9K\nCJmZTJYxdzFZ3jwMeJFIYsQgmAgkwqjWciLBFFZrLaLoxWTKY3Q0wNatR7BaaygurqOjYwiTqR+b\nrRaPZxi7fR8NDctYtKiRI0eaSaWyNDcHOXVyL6mRTvqGSshOTNC4YAE2m42KggJSySS+TIY8VUXO\nZgkBksFwjmckm82iquoFCcmcGLlEvPXWZNDpxUaS4KGHJnvXfF7ESDKZ5KUNGwj19BAaGKDP40Ex\nm5k1bx4Ny5dz2/r1H1hVtaenh2w0SoHTxKA3RJGzgqL8MJFUgNGkF70hjqqO43aLlBQVUWmsRpFl\nRsIJDNYiFEEhEzUwMuIjEw6Sn1eIlEmil40MKRqZ2Dhleh36TIZ8SUIyWjGYJdriWUTRiV6cSVrL\nEk6GMGolTBBCRw8y+RgoRyZNkBHSCMgo6MU6wnoNUzaAWbWQVCOMJ4IkDaUE4inCiWEGowkUnRFz\nYR0ObyfeyEluWPc1etoPooaCHOnpYf/x4xTn51MWjTK+ezcHNm9m1W23cdXVV3/igLOLybDZTNfA\nAAJgLizk7vvuOyfQVpIkvvKV9axY0U9PTz8mk4HGxlvOStMcGxvj0KEeampWI4oii1ZdzYmDB+kZ\nTXKgrZ2CAhdJp5Nbr7sOgKHBQW5ZOIPH+/YhqyLhkJda0UC+3k1Glgj5IuzcsoXF995LACsmRSKZ\niZBKRNBUDc3sYiDmw2WSGY4OI0TTlGNAQSKlJTDrsihalIlMgDypDNCTQENAw0QchSCClmQWImLW\nTE/fCdxFC5FTaSqteRgEHZnkEFZ9IRlJwihIOKxWNJ2HTDxMKDCGqjmJZscIphJIhoWgOjEbC1AU\nmQMHArz88ib+y3/5Gg6Xi6ZduzgVCFA+Ywb3rl1Laen/z957Btl13Ve+v33Szalv54zuBhogAGaC\nYASpQFGiKYvWiENpZEkuzYytcZjnmXpTU66penaVP3jKnueSnzXzniXb8liSZYk2FShSFCNIEIBI\nZBKN1Dnee/vmdPLZ78OFIFJMSqBsWetD172nT9/Tvfep3uv89/qvNYDv+xiG+hqdRhAESOm8bXbg\nb4UgCFhaWmJzc5NYLMbU1NQPde/efPNNZDJpDhw4Srm8wI4dQ9x++wM/lAvqhz70ywwMHOTgwWM0\nm200rcWdd36AeDyOED79/aN4nkuzqaCqLTKZfoRQmJ8/wMhIkkKhhhACTWujKA6WdYTh4UkWFp5j\nc3OVUGgckNTrq7iuSyIxiKp2MTU1gW27zJz6Bl71BbbT2ZpxgZOABSwAaXzAxZQtmr5AVwfQtAi+\nn0cIC9+32Nz00LRxIEkkkiYSSTM//yzr6y+i6z20WqdYXMyxe/cVXHvtbggucObAw1wvBBuKQrJc\nZrPdplGtcss730mrVmPb6Cjh8XHOVSrous7W665jK5BbX2diYoJ2u80zTzzB2aNHCXyf4a1bufPu\nu990rH9BRt4GeF7Hwv1yZcp85CMdIvLnfw5vYzX1Z4Znn3oKf2GBAcAqFnnP8DC5Vot6sYg5M8Mj\nUvLBj7w67tt1XR5++DGeeuooc8c36Y5CqV5BCI3xLSNoEQ2vsMjkdJxf/dWPcccd+/jTP/3/eO7J\nRZJ6hHRPlpfmS9RqFwirFTZXjiLpRUqPTFjSCmo4QuL5kpgbUJMQEwpCq5IJd6M1m/hKFhl4KLQx\nJCBUhIyhoJPWRon6AkVNoMk4bd9CEsELwjQZw4ts4pt5IuEtZCMqW7t3ML/+LP2KRa8QWL6DVV7C\n9ptMjk0QCoWZuOp2UqkdhNNR9kpJTyLBMyfOc+rCIl67zqPffJjhsVFGJid55733svfWW0kmk687\n5pcbn/zt36ZUKgEdb5Q3ys8RQrBly5Y3NHBaW1sDMpdaJfv7+4m94x2cP/sSc+4Fxq++msFkmoWF\nBbZt24bZbNKdTrN1bJRzczClpekJRXBcB03x6E8kMUt5XjxxAs0IUzdDtKWGYUQJfI+kptO0daaM\nDKZfwhE+VQS2v0G/kiQtdCpuiwIL1P0sYSwCFBp41KjTIxz69DhDepxl30Y4RWq5czgiSa20gaGD\nUMpUAgevLnBKNi/nN3G9VQxRY9Wex2zbtAMLRR0kGc6Sjqfxg4BmrY4cHODo0bPcf3+LnTt3snPn\na6MAVFXl5puv5MknzzA+fvWlsV9fP8+uXWP/JLqvbNvmS1/6By5cqKIoKaQ0UdWH2bv3SpLJFBMT\n4wy+QgT9g3hlZ9H38L2cmUqlQjKZZGJi4jWeGrquc+ed+7jzzn34vs9//+//E8PonCOlJJnMMjTk\nsrFRIZPpolzewHFKOM4Svr8P224BBr6fQ0qbctml0TCJxVRM8wyeJ9A0FVW1iUYTJJMhfD+GaRbI\nrRag7RIiwKKzRZMFhuhYl68DJcA0ApJdQ0SNCcJqCNdt4DhzbN06hu8r6Ho3qrqJlJ1oAM/zKBYF\nsVgay4JodIBIZJoDBw5yww09UMlxTSLBlT09HPA8FNsm7Dj45XInnC8I2LQsxn2f4aEhJkdGyCQS\nnFxaIpZIEAQBD37hCygrK9wy2PFTWltd5e//4i/edI5/QUbeBrzwAmzZAper0jk+Dtu2daov73vf\n5bnGPwVYlsWpkyd58K//miv7+phfXmbbxTTJwUSCtWKRwauv5tTMDJVK5VU+FU888Qwvvphnx473\nUtuMEm238IJVYJ5ifYV60OA//ucP8W/+zQPMzJzhv/23P+L48XNUqxY5mSafW4dGntFIhC4Zxm7l\nKIkNGgqkNQvpVUDV2XAhZ4RISR2p6nSJGr6/hMRE0qDlK8QUBV2N4EiLQEpULYaQ0FRCBEGbFjo+\nffjE8IWFToFIbAvxvgxePYdlLZIvVhmmynWZHtrtNr7Q8LwGi+0ipSWH5578O8a3jTM1dSMXTh6h\n3w/44hMzlCoa6WCUlrOMrBaZ6moQOn+ema9/nbmZGT72qU/9TNw5v5ec+5PCMAykdF91LJFIMDg8\nxOrqAseOF9E0H89bIRJ5ln37rqENbJ/o4+z8AhFNUHZNGl6AlB6DVos0Og+9eAq7YpKMxbADn3Yg\niYT6aNstIiJKwRGUmiFU0Y3rrzGERAuK1F2VNILdBJzlu4ToQUNHp4JKmSukQBKwhE3eN3l31xAN\nisx7NUq+S0nC+LZtzJ9ZRMomuuFhe4KIMUU4Wuedd7+b/fv3Yy6fw9B9omEbVVFxPYtsNEy9WiUI\nwnie96bjtm/frVSrdY4fP4CiJAmCFlNTWd7//jd/mn278OyzzzM76zA+3gmwW1w8w4EDyxw+nGfP\nnuT92G0AACAASURBVOsIgiPcdtsO7r77XT9UEGSr1eJv//arrKxYQBxo0du7n49//ENvuNWrqio3\n3XQln/3s1zFNjSCQNBobwDDRqEmrdZ5YTEfTWrRaIep1n2QyTbF4jiDoR4hehKhTLObYvXuC0dEw\n8/MrpNPbqdcr+H6VoaHbEaLJlVdu5dEvfhFLqyEdjzowQSdxtkYnAnMQOI/gtmu2YQlBzpunXD5D\nsbjG9PQ06XSWcjmHaSaJxzXAx/Mc6vUmQSDp7e2l3V4jmcwgZZGJiSm6u6GZmyN98al2x9AQR2dn\n6fJ9/GqVl8+d41yphOG6RDc3aeXzPH7hAtM7d9JKpdi2bRsLCwu0FhfZ8wpDvuGeHlpra286J78g\nI28DvqcXuZz48Ic7NvE/r2Sk2Wzyd5/7HGxs0FUq4VkWM2fOkN6+nVHDQAKNVosTs/OUXYfjx4+z\nuJhneXmDVCrG+fNL7N79fjRN5Zobb+TooUNsboZo5PLsuX6KD//HX+Pd73kPjz/+FF/96kHm5mKM\njT1ANltgaelxMnqZvliIbCyO6/rIZpmk1QTNI6WnCcdVHK2HkaZCSJWoQoF2kzXLJqoETGZCLDZn\ncYIdOGoXtmeiijZhBWL00QzqCCmpYSFIE2ENBROpxAmEiufWkH439eYSaXcTpxkQkg5zeKQjKYyQ\nDoFgAJf5ZpHc6RfZtus2lpbCPH1gldzicUbjO7FrNfKKR8QvMxnup1K1uWFwkEqtRrRa5cTx49xy\n6z99x9Z8Ps+JI0co5/MMjI5y1XXXkclkmJycJBR66lXJu77vcebMITKZXsbGvu9RUqsVOXToJYa3\nbSPbbIK2wdl6jJDSg+3baDQIWT5Nr0ZghQnaTdasAzScHuKiiygtXHeJpCoou1GCII0SzLIVm0Fi\nCEyissUskhiwEwtJlQgaYUUnCAIqqsIIMOe0GE/2kLNaFNwmG45KLJahX3OZn53DllOM9kzTbBQJ\nC4nrBNR9OH78BbLZaylshPB9n3x5jZCxQTY5RjqeJl+/wNTUrZcyeV4Jz/M69uKtFt3d3Xzwg+/n\nzjvLlMtlEonET0Wz8dPC4cMvMTDQ2YdutWqcOPESvb23Uq+vkUoNkEhs5dlnX2DbtgkmJyff8vMe\ne+wp1td1xsa+r0vK5Rb42te+zSc+8cDr/kwQBCwuruH7EcrlFqbp0Gw2cZz9ZLPXMzCwHdetkcud\nQVV3UCg0MQwPRWmgKD34vo2m2eh6k8nJqxgbS3LXXRkOHXoZx0kyM1NjdfUsmUyaI0deZrNaQLZX\n0IAkYANFOtTJp6MfQY3RExpktrZG73CaHdndHDnisLBgUSqtEI9LcrnD3H33AwwMDHHs2BlKpRrt\n9jk2cyGGsn2kkEjfpKdnBChihMMsLS1Ry+c7lcieHgqtFovtNqlolHdu3Up/LMa548fRgoCE4/D0\nyy/zh//rfxGJRCiVSiRfp3ur+y0qbL8gI28DHn8c/uAPLu81PvShTl6N4/x8eo4cPnCASKnEjslJ\nvFyOUK3GlZkMJ+bn6d69m6fn1zhTj9COhjhX2OCZM5/lttvuZWzsVjY31zl58gCp1CoTE1uQUuJ7\nHtlojHCQYTKd5vyxY0xu3cr+/Sfx/R7icZV6vUKjVKSUs8l6PmGpIM0NcEziioGmm/iBhdmyqdsR\nkA0GYhHWGnXafohQEMOTgpmWzc5EArfHxy5dIGZsoVRpE1VMol6A4UXxWcKlgiEGSMtFetGJqjYR\n0aLqedQrPlY1QOKj4qEKA1Uo6L5CwzaJBzZbkxHyUpK3BTekxthcmGF6+gY02YVj9qLGHLKahi8t\npGXhJaIIVUdRFMxmk+2pFMvnz/+TJyOzs7M8/Dd/w6CmkY3FWF9a4tShQ9z/7/4d/f39fPSjv8QX\nv/gtisUoQmhIWSEadbjiilf/XalUN8vL81x1zx4W1os4eoim72AoRbqEIKX2st6cIxNYbA8p6Gjk\nnBongwomIYQdIalEqVo2LTeOGThMEBBCIPHQUfER9BJQAjJCJy49dMAMXGoElAKVYTVMUpi0cRG2\nRcSP0a+GaPthLD+B726iBAbF/AK9oSiaFicUjrBcr7C6tMnuq28lbkCrVcf0YnjeJqpiUG+dYfsV\nBh/60D2vqRaUSiU+//mvUi4LoONKunNnP/ff/4HXWKX/rCGlxHVdVLWzXOXzK0AWTQshRKfdW1FU\nYrFhTpyYeUsy4jgOx49fYHDwllcd7+sbZ3b2APPz8xw9+hIzM/PE4xFuvvkaxsZGOHjwEI8//gKt\nFhQKVUxTQ4gIphkwNFSm2TyP6wboepZMJko+/xS23Y1hjCIlCLFBNpslk9lLrdZEVft573vv4oMf\n/AAnTpzgT/7kc9RqAdFoN6urq2xUVhmghQ/00amMAGwAeTq6kVCki0XHpqz2E6kPk0oZTE6+D0WJ\ns7Z2nqmpPnbvHmZl5RCRyPV0dzsIsYrVbHHD+HX0ZTrVSMtxOHX4KT752+/jW88/SXNzkysNg+5Q\niEouR83z2HbnnUQTCa6enERVOsnDtWoVoShk6vVLItVkMklbyteMe63VetN5+QUZucyo1ToJu5f7\n/3t/f8dz5Nln4V3vurzX+lng7PHjXH1xn2t61y6OPvcc0WQSt1jkmzNnWTYH2b7t+k48erKXcGQH\n58/nGBvbSk/PID09A5w8eZrR0RFmTp0i6brEsmncVBc3bd/ORqnEQ1/+MtCL53kU1ucx2g0yoQgZ\nqdNurJAIAnqNGJoEU7jkfQtH0Rgf2k3ebOE01ik3Wuiih4QRQpeSth/DkU1qnkEm2kUiqaH6TZLh\nGm0zQJVRfHwEDjHqWDKgnxQRFboVMAKVrCo57dfpkQmW8UkSRhM2lqoRkmC7JmlFwyTCBcehN7WF\nVCzFRjHPN77xNfx6Cz+IcHYjT69IoEiTSODiC0GrWWVtDcIjI7Qti/jrPEG/Hmq1Gi+fOkWlUKBv\nZISdu3YRjUYv4x3QQRAEPP7QQ+zOZEhfDCPLJpPENjd55rHHeODjH2dycpL/8l/+PQsLCziOQyqV\n4nOf+3ukfLVlfgeChx9+gmYzy/QV76I+1M38zFHqzQIl0aBX08jIFF2Kw7plEkNhFyEKhAn7Fg2/\ngYFGwW+iECeKgo2GiYOKQEUSBZaBuJTYgMCni46d94YiOO871AKbLXUPjX4UIsSlwHQtTvsenlAQ\nFIh43WgxHU1TsR0Ty26iY3DqyH5iZoXheDfoOkv1Apo4SqZ7nDvedROjo682ipNS8uUvfwPLGmBs\nbPjSsdOnT3LgwEHuvHPfZZ/HHwVCCHbv3srMzDIDAxMEgY8QCq5ro2n+JZ2Toqi47ptvR0FHKyKl\nuJTx9MrrmKbDZz/790Qi2+jpuQnHsfj0p7+C6zrE40McPVqmWNwkk9lBJDKMZdm0Wh5Hjpxk377f\noKcnS6mU48KFOZLJDKbZQtO66ZCnQWIxg1hMo1xepVg0WF5eJpcr8PDDT6AovQwNhdjYeJFcbgmD\nEjYdErIL0AEViNEhInnA0g3KJKjUfEqVVTY2alx11YcJhaJs2bILz9vkhhveyaOPLlAuzxKJ9NLT\nM8HG7AUa7VXikTCqolJtFhhNtSjlNpjq68O3bVYKBRYbDdwgoBaN8sC/+lecOnAA3/dRO1kHZLq6\nOvqsVuuSyd7k5CRPZzKsbG4y0tOJzag2m6y/xVbhZSUjQog/Ba4Djv1ggq/oUPXjwP8jpfzLy/l7\n/Czx9NNw880QDr/1uT8p7r0XvvnNn08yomoa/kXDq1QqxZ477mB5cRHD9zlXDegamsaORBiZmqD8\n0lG6uoYplxep1WpkMhmuvPJannzy2xw//iJHvnsCXXoEcoP7bh1DEYKh7m5OzMxgG2Hi8QxOeY2R\n7hFAoCstPCQhBYRvdSyrg4C8tGgQodquo5g2JauGFYQp4qJqkr6IThC4BKKLiifoc2ysdp1SrQ9N\nDhIOLBxKeDTRiBAljUIdHRfV3yCE2jETkD5RwghpMIaFQhxdRmlSRioSn4BmJMxSNMqOkRHadZ1i\ns029pVGTHq1CDdfuNAqnEoPE/TCb7SJGZY0d3SobBYeoplFOJvnkxz72lnOxsrLCP/7VX9Ht+yTC\nYU4fP86R/fv515/8JF1dXZf1PiiVSvj1OulX2FMDDHV3s//CBRzHwTAMwuEwge9z8LHHaJdKnHr+\nEBuVpxgZvpbs4BDTO3eh6x1fiEolzfDwNKdOnaG7p5/l2AB1S0HRNuiP9OJVKwSKgiMhQxzvYvWj\niz5Cap2mrpGw1vBQKdNGI0IFFR+T1MX8kDLQRacq0k3HOXMJwYiqcNZtU5IhHD/McDRCygujS4Fl\n13GECWICN9ikhI6wQsQUl7bbQBMFNHcC3/PQiVCzbUKyQVq36Y0nmNh7B74fpdFovEqEWigUWF9v\nXrJHbzQaeJ5Pb+8UBw+e/CdHRgDe8Y5bmZ39MqurDqFQmEZjjiDw2LNn56VFsF5fY9eut37qi0Qi\njI52Uy7n6er6/lZUvV6mVssxOLiH/v5xoLOVV60aQDdDQ4O023Po+o3k86eJx6MYRgYpe7Htl8nn\nF+jq6qe3d4R6vcjiYhHD8Gg0HCzrLJqWwnH6aTQCYrEShw9vcPZsDtdVWF5uEYlk8P11qlULv+mQ\nwSagI1qVdDppfDri1QjQQBCWEIvtotHwsCyLcuFZjj7/bXp7+4hnB0ilFZaWltnctLn99vtJJNIs\nLi6xpa+EIpbQ1XkCCTfu6GYgey0HZ2e5YWKCrl27yG9sUGu16MpmkZqGb9vsvOEGnnzoIc6fPcvq\n0hKu55HOZJi65ZZLDyO6rnP/r/0a33rwQQ4sL6MJgYjHee+v/ir/xx/+4RvOy2UjI0KIa4GYlPJ2\nIcT/FEJcL6U88opT7gUKdMb55xZvh17ke7j3Xrjvvk6q70/bz+RnjV179jD72GNceVEUFY/HGRwf\n57qBAcbsMNnsHkKhMEEQcO78STzPQghxybFzaGiSoSGNc+eeo9EukTSiQIpvPL+OaR/k/bfsJRmP\nk8hGOHWySDaq0WxV0LQQjrNGVhUUZUBTumgI8nj0IsgEHiulWRpBQE16eHSRYoiIjLDUblH3l+kz\nohhWnWY5h+n14mMToGMQQyfAZp3thMmicgGbLjZQ0IkHHkiHlpRItQvhe4CBSQILn3ZQJRAORaDq\n+Uw7KuvrDUrNJuHYJG46hdMywWwxGArQZRNbXqAgQ7RxMJU63Ykhhnt7McNhFHjLdkcpJY8++CDb\no1G6L1ZRhoCFXI5nHnuMX/nwhy/XLQCApmn4P1ACdhyH9fV11nI5VlZWmJiYYG5uji/+j/8bvdJg\nfW6ObYFL2NqksiGJSYfvzJ9m13Uj3HnnNbzwQgnDCKOqCi+9dAi/tUqvKNBub5KzLDLCYdP2UYWB\nFBG8oI1BGIGO4hvU/RxXI2liUMRAwQQETSQ1YAPBAJIZYJQOv6wDFgElB1pMopJAlQbLlkeIEr1B\ngINAlSGywkBVMlhBnU1zDUfx6YmGGdC7mDUrdIWytK0lNGudRKAwEBXEwxkqhXMMjV6H7/uvGS9F\n0Wm1Whw9eopy2UQIFVV16esrIuXrO9r+uFhdXWX//sMsLXVs5vft2/Mj28xns1l+8zd/lWPHTrCw\nsI4Qw5TLEl332dxcY3b2u/h+na9/3eHChUVuu23vmwqi77nnHXzucw+yttYgkcjSalXwvHX6+7vJ\nZgcunbe2toSuD+D7Al3X8DyLRsPEddNAnng8ghA2sVgfKyv7SSZVwGdj4zDtdgkpMziOQTg8gG23\nqNePYVlt4vE+stlfZn7+ENnsTnp6JMvLZwiHt+O1N1DswwzgYdNZIJt08mhUOtqRCmCjcU1mFKGp\nOE6eoFpgONlNw7KJeyYbM4/STMHyadCSaSqVGoqiE4/H0SIpIvSx7+otDFzclju3tkbf+Di1YpG2\naVK3bTLd3Qz197OQzxOJxYjEYjy1fz9b6nVu9H08ITi7vs65o0f50l/8BR/9jd8gFouRzWb52K//\nOuVyGc/zyGazbxnIeDkrIzcC37n4+gngJuCVZOTDwJd5vVSknyM8/jg8+ODbc60rr+y0Ec/MwOt0\n8P2zxp69e1mem+OF2Vm6dB3T86gZBr/88Y9z6tQMR4+uMDS0FUVRmJzcyqlTM0QiCVKpFFJK1tbO\nEQ6Hufvu+/jHB78NLYOuZBeuZ/OtwwepN56i/8rt3HHjlaysPEI+WqTdstgsbqKFXNLxDMPNJmFV\n5Uyrxe16BK9tsoyCEUjSCFqim4jsp0FA1XcQIkmYacrOIo6TYxMFHx2BgWSTJg4BYRKkieBiEhBD\nQ+JjKB5tPJJCUg/AC3wkIaooaEgkNfoQJKRABxbaNhkdRlM9CE3hXHkWixBqy0R6JWJ+kelInGRS\n4eVqHndsgi2jfdz/jmuRUtKTTnPm4mL+ZgtFqVTCLpXo/oHS/2hvL8+dPo3rupfVrTOTyZAdH2c5\nl2O0t5dSqcThwydZKrWxBqf4y798lF27+jl99Ls05oukolliQZiknmRKVrngr2OVm4TNFrW17awu\nJZmZOc3i4jrr6xuI1gwTQkMTKlo0xqZTQQibOgoKITxVkJOQlRFCqk7ed+gXkm402tInjUMbH5MA\nDwMfHQuPHA5bUIgBOoIYkjbgkiVGmBoeURnG9gwco5eyt0IIBYUu1ECgoJMhSkwo6OoKw0oPZjhK\nKqHRKB2lyykwhoLug6KmifguTmEVTbviNeLVvr4+NM3iuecO4ftZuro6LbGVyhKFQpXl5eXXzTL5\ncbC4uMjnPvc1IpEtpFLXUCrVLtnMAzzxxNOsrOTp6+vi+uuvflNztWQyyR133M4dd3RI8fz8PCdO\nzHD06HGEMNi16x6i0QSnTq3z8stf4lOf+sgbEpKhoSF+67c+yosvHmd1Nc/0dBd79nyYb37zCc6c\nOUckEiMeT+N5Hoqi4fs2oVAIwwDHKaAo4Pstms1FhOiE+6lqnGZziaWll3GcDK47QDh8NZ5Xpd0u\nEgr1EInswHWXmJ3dZG3tK0gZp1TKkck4tNsuzWYNzZ0nQ4UkPhadqlovnaoIQBvBIgq+0k/DdzAs\nC8Uv0xuWpJMD1M1jrK29xKRmEDF16q0yipnl8Df/lszgToa3bSPc3U1hfoG2ZREEAaubmxR1nT03\n38yf/97vscMwSIfDzM3OciIUIj01xbt37uTP//iPuam3FwVIaBqapjERCvGdSoXK+fMcO3KE2/Z9\nv7L2o1RKLycZSQPzF1/XgEvLoxDiLuAZOuP7c6tbWViARgN+wEjyskEIeP/7O1s1P29kJBQK8cDH\nP87CwgJrKyvEEwmmt28nHo+TyWQ4f/5LLC29RDLZSzweI5MpkU4HXLhwkMXFCwjRptHwEWKedNcE\nNdmkadoYqkqrHeZbR5a4JbmdF//4H9jcPEd1c40tvVeyfXIPKxurzC/sR/V9ru/vp8f3odWiFvgE\nSMIoCCWMDJJE8AjQKQOB9Gjjo1KmF5sJ+qhjs0IRm2kEDTw28LFwL37txsdEkA8cFBEgpSQMKLJO\nR9YaJkKNrUgiqAhCdAmXiIgy65qE43G8SIJmPsBqLLEr3QOKhhEMs+7kaLR9MulBnFQfw71phi/u\n6f6wEEK8cSnzbSrHvfe++/jq5z9Pfm6OU989iallUMd2snfvPRhGmGPHDnPk6UO8d+te6tUCEUUh\nHIriui7B5hx7rxkiE+tnxnZ45O+eoGB3oRoW+bwgGmj0dsVpVdcIazqOHGC5vYAtXTQ0EsInFRpA\n98ENfGq06EajIiGOQpQwHgHrNGgRkESjSogmghIRwGIUiUJAFZUmGRyySAJWRZUuqWE7PjY2PiFC\nRC+eHcbGxQw86o7Dml9D2AHj268nUZ1jhybQAw+kjtZuc8FsMNabYXyw6zVVDsMwuOaaSR577B/o\n6dmDbTcwzRKqWuCKK27l0UefZKS/i/zKCj2Dg1x3001v6uHxZnj00f0kEtNkMr0Xrx0mEknwyCPP\nAfDccxvE41mWliocPvwlPvGJ9zMxMfFmHwl07sPJyUm6u7s5dmyWG264+ZLAdWBggo0NeO65w9x3\n3y+94Wdks1nuvvv7e9rFYpHZ2QUOHVoimZxAiLOEwy3KZZ/+/nGq1ToTEzsplY7geU10fYggMDDN\nlzAMSTq9k2i0m3Z7FdfNoigGrZbA88JImaDdnkNVRwiCJFKCaQoMw8D3MzSbDTxvjbD3NKkgRzcS\nBXmpKvICCp2NtoACghyjpGPjVEWFO64YISoabEunKZUqFFsO10Q1JrLdXFheYHy0G9frYs1v0htW\nyJ09y9g1V+N4KeY9j5W1Nca2b+dfv+tdPPLgg9y5ezeVhQUCzyMhBOVqlUh3Nz09PSzNzHB1OIwX\nCpF+hQVAVgg8z2NhZuZVZORHweUkAjU6HUnQaY+uvuJ7nwQ+Rqc68ob4/d///Uuv77jjDu64446f\n6i94ufH44x39xut0OV02vPe98Cd/Av/1v75913y7oKoqU1NTTE1Nvep4KpXiP/yHj3Py5EvMza3Q\n1dXFpz71f1Gr1fjMZ77I9PQNDA1t5ZFHvsILL5ymv387k9PT5HLzbK6dpmGukR3YwbHDB8lIg0ar\nTKGRwLLqRCMm6XQ/WmIHs2YFc32dwDQRUuKLzhOuED4ubWzaFBnAJ4mFhodEp0APKlEygMRGo4st\nlDEQF3svbM5iUUaQwRIavfgkpI0rEwRalIrXpIBLHRWLBJOsIAjwFZ06kogQ9AqdZc/CiIyxY2yM\nldIJLDeEa7XxHIeG10IRKoofIh6NUjM32bPjqktj2LIsmpr2qqjw10O5XOb4hSXmDh5juLeb6ekt\nDA0NsZDLMXXllW9Lhkk2m+WTv/M7PPPMM7xQEExN3UQ2O3BJkBiNZmnYGm3HQjfCNC5u69imQ9OT\npGMxcs0m5+sB20beQbjeRM2kWFnywE9TMDfYNjTI4lKFwIeMPsGs4mBZkqoT0NJsisKjiYmNT01K\nhlEwCKPREagawAohPIZxCBEmoEGODAnyNPGoUmcQm2EMEggULJkixwUcJAEBCXx0FDzCCDw8JE1c\nfLEbJ8iiyzSLZ1/gCtWh7fvEtSSaqqEYIfo0l3AsRDabpVAocOH8eQAmJicZGBhgbGyUa6/dhW2b\nNJtFJia62bLlLsrlPM997Uvcd/MNbEkkKJ8+zVeOHeOeT3ziR95asW2btbUSo6O7XnU8HI6yudlZ\neoaGpoFOZ1OjkeWhh77D7/7uv79kWvdWyOfzKErqEhH5/j0yyLlzJ4BOFaXRaKCq6ht66Egp+cpX\nHiaR2M1tt01z+vQCUmbJ50vEYjkGB0e5cGGeUCjNyIjK0tIivt9E03R03cUwBmg0FjAMD9dVkLIP\n2z6HlN/rTGoC4/h+L6qq4vuTCJHD93OEQmUsKw3OOQxiSMawsClRwadIjQRxMixjU8HCQyUkrkGN\nW2y9apCxsX6apSKubaLFHLYNpbh5oBvhOKyvq+wYG+bMUh6tEVBrlAhpEc6cepz/8/d+jVtuuYkg\nCFBVlXK5TH1jg1t378beto1yqQRCcG06zYvFIrZto8dizC8vEzNNYpEIuqJ0th2lJKzrhC+Kyn8c\nXE4ycgj4deCrwDuBv37F97YBX6Oz3SyEEM9JKc//4Ae8koz8c8R3vtOpVLyd2LcPHngAmk34Ce6L\nf3aIRqPcdNON3HTTjZeOPfHEc/T1XUdPT6djYNeua1hZeYa1tQ3ajWWclReI1jdJKx612adxQgrb\ntr6blyyboWgWW9ost9u85+67mdy7l3/8/CqDMYfVjQ2GDAO3VmPOdYlISUUGuJjE0HGJIolj4KOw\nSA8BCdIUKOEzgIKGQRGFBlDFI84iJmklgittAlljhCghJQSE2BSCjFRRsVggShOVCmHUQEdQx8DD\npUYgNVbWX2J6yxbSEZd8vUjVddimxtAUhzqwaTpstjze/+EPULQsRD6P5XkUgoC7HnjgUsLn6+Hs\n2bN8/vPfZmjre1myDmBvVpldfZHhrcv0X3UVd9911+Wd5FdA13XGxsYYHJq6NL/fQzgcI5TqYslq\nMRFN4hhhqmaThUYZx9B5/ty5jr01CeaYoVSHeLtNWPcJ6gGu8GhcOIu0bUwRwdc1RsNZGlLBcQ0c\ntUVN+iipEerl0+Qw2XKxIjKLSh2dAiECBohd3GxJEaeIziLLxAhTJ4FOCgUbSRQNSYowJgkinCOG\nTwYfOMsmSQIGMFkBBonq00hVYrubaDJABi6+FsPQdOKZNP0Dg6y2apzNV8iXy3zp05+m5+LifsT3\n2X3nnUxfcQXJZIjx8ZtfNXYHH/8CNw/0suWix0gyFiPVaPDkN77B1H/6Tz+SlkTTtNe1mZdSIqXz\nmvMTiQwrKy6VSuWHbi8Oh8MEgf2a45bVIpmMsbq6yte//jgbG3UgYHp6iHvvves1xmbFYpH19Qaj\no7vp6YGRkWHq9TpBsA3PO8stt+zmD/7gz6hefKQeHNyOoqSoVApYlksQtGi1KihKG99vIETzovbm\ne39rgo5DSKnTjaIaSJkGGsAatn0BDYU4XYTw0Qiw0XGIE8cEwnh0YTMAKASGx+Cwxu///n/m7770\nNebmDtHMr7N3Sw/Dgz20bJtGpUI4mSQTj3PdthDN+SW8UJ7uZJy+niQDA3202+1LBE1KeUkzEQqF\nGLhYDQuCAN/z+Me//3tiqspssciI41Cp10kYBjnLYikcZqTV4t49e36oeXs9XDYyIqU8LoSwhBDP\nAsellEeEEH8mpfwdKeU1AEKIjwPq6xGRf+7wfXjqKfizP3t7rxuPww03wDPPwC+9cYXyXwTOn19m\ncPC2S+8nJ3dx7bUrfOPrX4NckzEJEVWiyAhpvwSexkurR2i6HhGnSH9YI3d+gfktXcQSw/RlBggi\nVZxcjgONBlHfZ0VGaZPGJkSAgskiLaoIugjRRCHAwkAhQEWn0/vSoBsbBQUJ2MRpU0YRvbik4vmI\nzAAAIABJREFUOSlNSkhCgYMfSCL0EBc6NbmMjksNjSYQx6QbBUGEFSxEEEavbrCcn8VylugSJpPJ\nLQivSVRPEBMqllUhe9VePvmpT9Fut1manaUnmeQ9u3a96QIgpeTRR5+lp2cXiUSGvr5RchvzNCqb\n5NUCv/tv/y3xt5n9Dg0NoarN1yx2plnn5pt3YrbTzBdWqUZSrKzMUjQbjBseKT/O7vFxzqzWWZo7\niaenGRgYpCo8Cp5FsbVJIF0axDBlmIptMiI9Ro04OVnBFxBTNMr1BeJCEMgYZ3EpEwGGMQmQNIER\nipTpQhLFR7loedbAQCWOJEKaNjY2gjgeCgF1pjCJkSZHmG5sQuRZZZMAlQAD2/eIGSnUIM9QZpxW\nrcZIIgmKj2W3yZULvGy38AYmOfP889x/443oF9uZPd/n0BNPYDoOzc0ZvnPyGFO79zEyMk0+v4Tf\nXOXad73adTWTSOAsL1OtVl/lavxWUFWVW265iieeeK3N/I4dw685v0NSgtdYsr8ZhoeH6e3V2Nxc\nvURKfd+jWLzAPfdcyV/+5T8QDm9jdPTKizqTBT796c9xzz13kEql2LJlC5qmYVkWa2sFzp3bj2U5\n9Pd3Mz09STwe58yZw3zrW4fYuvVmzpwpkc97eF4Zy7qAEGOAjuf5OM4wrZaB78/RkZn2IEQeKXN0\npKdNoNNxIsQGkUgPuh4jkxmgUDiI18wQx0fBw6TEEJIwKVw8XCQNSkiGEWhoxiLvfvevUC4U2KLa\n3PWRu1nJ5Th28iQzCwuckZJbpqfpKpcJpKRqmniGSrK5yQsvv8jAyAjf+sxn8ONx9r7nPWyZnKRU\nKuEYBvlymb5XaD2WCwWCcJjmmTN8dN8+njYMnnnySezNzY5/TlcXN2/Zgua65NfXmZ6e/qHn75W4\nrHqNH2znlVL+zg+8/5vLef2fJY4cgaEh+DG3Wn8i3HVXpyrzL52MpFIxTLNFLJak2aySzy2iSOhN\n2gyZbbplhMDzaLUrZGSA7qtcKC+yJdqFBih+lF5bcP7Jxzjb8OkWeSKhEFl0MhGV/ZZHiwlahNGQ\nOKQxKePTJEGSND2Y6LgUMPCJESApECaCgoKggUEESY00Pqt+BYs0DiPkUYnio9EmTBhLSsoECMI0\n6WKOAkO4WHiYqBTpRZE2hl3jxMlv0NUVJ9lQSMgQrh7FjScQQrJ7yzYKro2maa+b1/FGsCyLUqnF\n6GhnMQqFIoyN78QeMFlePky73X7byUgsFuOee27loYeeJxIZJhyOUSot0dXl8pu/+Zs88siTfOc7\na+T8JNGxG4jJIyjlPOVSjYTvU96skZHdlO0Cq4tzqI0mil+nIR2ajKGTxEFHJ6DuOKQ0jyF0THcN\nQ8SwPBsFFRcHExUYJUCjD4sKoGLgEadNhU08mvgodKOi4rOCS4QGEbox0fCwkeiU6SeEj0qn3yZB\nBB0VF1BIIan5BeqOyoCu0p3qZlXpoRXSiYWibFQKzBUr6GM347ZMcjOLXMh0sWPHdoQQKEJQvXCB\nJ+bnueuaa1hgkRef/wLz2T7ec+970a/fRfgHgvGCIMCnozX5UXH77bdQLtc4ceJ7NvNtJiYyfOAD\n733NuZuby2zZ0v26brFvBEVR+OhHf4UvfOEfWVpaRwgDaPDOd16JZbn4fu8lvUoQBKyt1Xn55fNs\nbLgXDcie4GMf+yBHjpxgbm6BbHaMZDJNoVAll3uRsbEEBw7sp1RK4DhRWq087fYmUnbTIRclVBVc\n10DKMTqVDh04AyQIgs7jBjjAFBBCCAdV9YE1dF0nGtUIhxUqTXmxhdemC480Bk3AQyGJTh8eedYJ\n1CS9XSEMNeDo00+zb2wMTVXJTE2xY3yc+fV1TpsmJBLkTpzg2MsvU2u1iEjJy+UyAxd1aCtS8o73\nvY+//aM/Ij04yNaeHpx6nQcXFrjliivoTiapmCZmMknY95lIJBBCcOdNNyFrNbxqlcVmk+v27uWK\nyUk0Xee7+/ez56ab3rTC+kb4uRWP/qzxdrb0/iDuuqsTnvcvHbfeeh0PPXQEVYmxcnI/PQisxTmy\nbg3sJhndoeX6hBVB4Emark1EBERtE0tzsR0VRYtiNG2iso7u+XRFE1RdnYX2BgFZIsRQiVBHx0dD\nMgHMYSPp+KWatPHI4WPQAGqYCMKkCaHgYBOjSBcRCjRpEEWwmzZFNFxUdDZYwKVJmyFUJhF4NBhl\nmU001gkTIqVOYnEeQ28QjQTcdeutPPLY87zcLGMoKkmnwp5r9qAY0IhaP7LVt2EYGIZyqQphmk3O\nnXqO+vocrcYKD/6N5J777/+pdWH8sNiz53oGBvp4+ukDPPfc83ieAvTyyCNPsWfPVZw8ucDOnbcx\nPztD9aXv0KcKSsUS+WIeD4kqmoQTPVhBnYa7QVhWUEQvEWOCtuuhSUlVmhhkWTcvMKkFRGjj+hoK\nEXwCemiycpEwRPGIAmUkDg0sokg8mlhIdqBSI4aBYIgWR2njUMYgdNHgO0mTNiFUXCQ6EQQGUVQs\nkrQJU8NGwRJtdOHiW2UGkiokB8nZCsueh9s1hKFGaVYXKLYCvv3tF3Ecm6uuuopCoYBdLLJl1y4G\nursZ6O5m73XX8sLiIvv27eVsV4zZ48fZPvz9ysXcxgajV1zxY2UW6brOhz70y9x5Z/GSzfzAwPdb\nZ5eWXkSIBEHQortbct99P3q0eTab5bd/+5Osra1hmiZ9fX2kUin+9//+CvH49ys5i4tLrKw0yGS2\nk0ymGRu7ilJpg89+9ku023D77b/E0aMn8P1hDCNGLlfh9Omv4nnDSDlFu12k3e5DyhSwRKfZ1sL3\nAzr9Gg2+7wYyefF1m45F2RSKUiEIkoTDKlI2aDaP0W77VCoaqlsgIMsGfWh4pOm0f7epk8TARhBB\nRcMlmbS5adsoseImC4uLqK8IjdQ1jW0jIywtLNA7Nka1UMB1XRYPHsQHMpbFuK4jazU26nW+vLmJ\nEgRsLC0hJyfZPj1N386d5HSdvh07MEwTzXU5fvAgW8fHIR7H930Cx2Egm2W21WJxY4NQNMrU8DAh\n36darf5YUQK/ICOXCY891rFn/1ng6quhXIalJXib14afOizLwjRNkhcD8d4I+Xyew4ePsrpaYHi4\nl717r+OGG65jeXmFL/zZ/8uOaDe6KsnGPRKNCC82GlxoNrG8EKrQiCIoCxMVgRcEqEocPWzgSQtX\nakRlkhZp5lp5ojLCphujiYaGRhONgH4UXFxsQMEjoMxZ4jRRLxINAwOHEElKhKkigCRhUqSp0MbB\nJQU4NGmhUqOfFgY+SaCMzjgAgjohYgT0IokQZgMryKNHoIFCJJ1lbl0QTV9HyvCwnIBNc4XTcy/i\nKTa3ffwjVKvVH8n2W1VVbr31ah5/fIaRkV2cPPQw3a0aXUjGd00zAnztr/6Kj/zWb9HzI3bo/KTo\n6ekhn68yOnoLvb2dG35jY43PfOZvSSa3EY0mWDryNIbvYTdLjAuBisKG9HGkSd7KcUMmy3PFVUKB\noC2j6MIjYuiYdoMWoFInLOuIoEnIt6gIjxiDNC52N3RjUMQGwrQQpEmSZwOTFDoSSQwNF4NeHGpE\nMJAMo3KWOD59qPQSEAEKmFQAD0GOCgFgoTGODmzQFFW6koJoJGAwYzIWDXG0OM9y2WOt7uCaPsGG\nRiKk8bJbYDAeZfNb+/naoZfx/QDpNtj+inRmRVHoi0RYuPD/s/emQZad9Znn7z3r3febW+VWu0ol\nFdoXEAKhFrLEFtjY4MENAxh3dEe3OzpiImYc/aGZDia6JyY6/KG7HeC2GzzYjWkYjBAGraBdaKtN\nqj2rsirXm3dfz37OOx/ORVAWGCQklRTBE5ERmefeuPnmPSfved7///k/zxned+ed/H/NJj9eXiaj\nKFhSkpid5QMf+tCvdY4qlcrPHbP9zGf+Cc1mi0Ihz86dO1+zAFpRlFeIr2dmqpw9u0mhEF+PS0ur\n5HLT9PtnyGTi66RcnuaFF54lkSizf/9ustkcS0vHOXfuMI3GOs3miERCYzDYJIqSYyKiEOs/KsAs\ncJyYnFxHnB6zQOyT2uanqTImiiLIZnu47gjPG6HrCySTU/i+TegfJY9DwDlMYIRLDoUSFhYqGsTi\nZfrctP86PnnHjRiaxtEjR+Jxe+DFs2vU230KaY26ElEMQ3bm85zv9aioKuFwSElKKpqGFQQ0XY/G\n8jJXTk+TKxTYbxicOXyY6b17MaKIHz74IJ0jR5jQdZabTf7miSc4cP31jCyLQ6dPE7kuVV1ndmqK\n2osvcurMGTLbt7/mCulvyMgbgF4PjhyBW2+9NL9fUeKqzAMPwOc/f2nW8OvCdV0evv9+Tj3/PJqU\niFSKd991F++46qpXPHd5eZn//t/vQddnyWTmuO++E/zZn32DPXu2USrluGHvPLuqVVabHQ4vn6DT\nqjOyLCQKk0S4MuIUGkM1S0JYZJDoCFKKSbNnM3AdWkLBk4J2GJFkgINPBKQRBBTQMJGk0WnGpqkM\nCdlEwUEjQ4hGCxWFaVxcKgwpI+gzoseALhZ7SaJh4NGnh80KAoMKGjoRKSJcEgzIEzBkAGQYYdOj\nxpS0SdnQ0XVSoxQThd2kEz7Ly+dQej2ivsGFYZuPvO86dgQBf/Nf/yu/+/nPX7RL/WW49dZ3MRyO\nuO++e3HWjmHmMszOlrjyysvRdJ2p0YhDzz3H+9/ktMYTJ07S6yWYn198+Vi1OsvSUp5a7SDHX3oB\nv7kKzpARko5UGaAxRKUJ1D2NR08ss4CLH0XU6LDhdAlUjUD4aDJihA16wJnQZQ6F7dJgwBoWEp8c\nLQQWm8A8BXIo47OWZYsAgUISkzQSE0EamxGQpIDOZZgEeEg0LGxsfGpozJCggAcE5HFoI5lCYyYr\n+MgHdlJIpzl94gSPHzuB5sCiaSLUkHrUJeMLJqWCgkK9scS6mmOmO0lo6oyEwY8On2OqVMIPQ3RN\nwwsCzGSSVCrFH/zhH7Iy1ojk83nm5+d/5emWV4ufNx33euHaa6/iqadepN3OUypN4boujlMjk/HI\nZAqEYYCqaphmiiCwACgUJgiCo0hZod9vEAQZej0D33eIh7IKxCRkCxgRVz62AceIaxld4LLx8SSx\nVmQT2EDKPFG0iOc1UJRpVHULyxKEgUuGKTIc4vKxeLU2/hsSgCCiS4MBUEqWSCXy/OCZY1y1a4Zs\nucy9P36WRj/BoAnCl6yNagzCFTaLGkXbJrAskv0+IylpAH3bQwoNM5QoEWy0OhSrVWzbZk8ux5Gl\nJdYsi8RwyAf27EERgssnJvhvjz3G6Ac/4H3XXkvVdRl2u8ht26hmMkwKwcGVFdxdu35DRt5K+OEP\nYwv4f9B6fVPx/vfHfiNvVzLy99/5Dv2jR3nn7CyaqrLWaPDl//D/cNm73s2tt97Evn37ME0TKSX3\n3vswudw+8vkKS0vnWF52MIzr2dqqA2WOPPcAz2carJ8bMGxIhmGRFBFZ8owQRIBKgCVLuOYETfcc\nRbtDB4O6G/tESOmQpkkeDw8TmMSmhsUKkiwBKSQdBMuopAlJ4uPQIk2PEVVmCGgjqQAKJ1mmzIAI\nA48We0hjYuPSp4pJBp0+W7iYeDSRCASrZCmSJ0KjTZ8uggvM06OIzkBm2FfJMvA8Ov0tcpkptESC\ntfV10kaCcmWWdx44wGS1SrrZ5JH77uP3P/OZX/mcaJrGhz98N9lskuNKnyt37ryodF/KZKhvbLze\nl8IvxdZWE8P46U4/iiJWVlY5fPgc6+vHmCpvR3c18oFknSzn0AhRxxkyEh0d6ejomQ7VREDNiTjP\nOjLcjmQCQZ2EsoUXOkiZJCRggE4DnRESFZNobP8esUKDDBkgjQPMUyNC4iARKAT4OIT0UWiRwQGy\nKCQJCKmjUGMahQIdsnTpUKXFDjqUBGwqKkZ5J4fPbCC8IUfOrpDpDSlqJTQzQzqKmPPbFJQsiiiS\n0EJwcxhoeAmThW2z2J0OR04NqbUeZHZiJ37gMKDL/zXu7QohWFhYeNNbbq83isUin/vc7/Dd7z7E\nysoZDOM8zeaAMKzy8MMPoeuwc+cOcjkN8Dh06GlMM8naWpdWqwvMoeshYZglth1bI27FxC6r8e1z\nHca1szjdJA3UiN0sOsSEZB+wSRi2sO0CUWQRRQ2k1Mavu06SDaYIiTDxyZBH0mDEBVwkKl3M+FFz\nF3PVm2n02vzp3z6NPTiOK9NE4Tzz5SqZTIY9E9M89ux53OY5Fkt5aq4LQUAGeEJK+kHEjGqghBFD\nBdpewJVrG2y6Lo6i0DVNzrZafPbAAZSx6LjvulxVLOKORrSiiGq1ypXz87xYq/Hs2hoTmQw79u2j\npWmv2cH3N2TkDcD998Odd17aNbz//fBv/k3syPoqxOlvCbRaLVaOHuWW+XmEEJxd3+CB589hu2Ue\ne3iVrS2dqakX+OxnP0EYhtTrI+bnK/h+wIkT5ygWF1FVnXZ7jSuumKDW19lYcZhyfSZJoAgDW6aR\n9PBR2BAZIjmJQMGy1nAweEn6iKGKSZI0AQKTNAkm2SCJx9LY6yPHWeqM8CnG+THkgQlc1vApoLOL\nkBpdOsTjfXk8hkgm6ZJDZ8AUPRYJcRD06SLJoqJSxMNinQQNFFQ2cOnRpE8BiQ70mKHJIhptBLqu\nk07pFBN5TiwdQle3kQxDqrrO3skJOt4Jjh08SPn225kpl3lkaekfdUyVUtJsNgnDkGq1+nKbbHZ2\nltP5/Cs0BO3hkIlL4LZXrZbwvNWX1/zCC0c4eXKNen1EtXoF7d6QhB8QkMBkG30sBIIFBBoRCi49\nHFZDk1ZooWBSIIuNxMeibE7gRzY5/zTTuEwqBuejEW0y7CZJFpUuCg3SrCEx8BjgjgeuBwTsRGMF\nmzOoFFBokaJNQBuPEBebEjouAW1KaGzHQKBgYGIwQqfOgKp0EVoKzxlw8ngDQ2qkXIvJMEDFJ7Q8\nZBQwJRXCyMaP0tjukISaoaIEbI3aeKM5hh6s1rt0hha6sYCRnWF6xw3ce+8P2blz52sSqr5VsW3b\nNv75P/80g8GA733vPr70pQcRYgfpdAXL6vHEE09w4ECGTGaB5eVjbGxs0Gz6GEaV3buv4cUX20i5\niqLMEoYp4jbMBjHRMIj/p03iSshPUmS648dyxG0cj3HGLkHwzPg5k4ShB5wGPAR1VEwSlEmg4CHQ\nyCHosEWIYJEOgn2ZDAPb5shLJ0kONBJqAV3JYVs+61tb7MxmqXe7pKVPWpiYisJUKsXaYEAxiojl\n6grroUsDCCOV96ZzFFEoaRpeGPLk2hqZqSmMn7lxtIdDJg2DdhCwa98+tk6fZqFUQisUGJZKvOu6\n61BUlR83m6/5XL3NblNvfUgZk5F/9a8u7Tqmp2F2Np7quemmS7uWV4t+v09GURBC4Pk+Pzx0lkJm\nP9WCwVK/z8LCVaysHOepp57hlltuRoiQKAqxrBFS6qiqPk72jPC8EUZ6nrW1s2QUiSc1hjLAIMuA\nAbYwMOUCEoNh6JJgiiEeAosZTHRCXKCApI/JOiaLJChjAzY6KlXquDgozNIlxGCdHCNsygSM0MkQ\nUUfiIsd74AIOKpINYiv5ISYmHtPYjLAZoSCQlGiQJ85M8IAOGUwKZNDG5X5Bgy0gTzEzja6F3PKu\n6zn5oxcolUqUM1mi9TWGUYurthWg32djY4PpmRlUXf+F5fdGo8E3v/n3rK/3URSNVCrit3/7Dvbu\n3cuOHTt4fGaGM+vr7JieRlUU6p0ONeD2669/sy6Tl3H55ft46KGnaTTWECLB0tIG58+fwXFaSLmD\nTCbHyFth5PaYDk1cGuwlT5YkFhZpEpSAF+wG80RItUIqzBIg6OETSYnwkyhk8WkxiFx6KCxgINBw\niQc2F9BpY9NmDpV4jM5jFZUlVBR0ljGwMXCwSVNkAZURTVpYuIxw8JnDw0RDRccEhuhk6WESCZ8w\nCrFr57CEyj5zmpbjUCGiF1q0hxYOGrqeJAp8FNVHR8P1XZQQtHQaqScYWTYlVSUlA0p0sVRBt5fk\n8D0nWF/f4q67buW2296NaZpv+rl8o2AYBidPrvGhD32c1dUa9XqbiQmTUulqzpw5zCc+cRs7d97C\n0aOP8/jjzxBFWSYnq5w8WSSKXMKwBjSIyYgJzBFXNVziTOYscYWkSqwfGQF7EWKElEOgCNjAJIaR\nwvO2EU/dtFE5ioJHgiImCipgoKCisI5Biwgdi5IQhMMRjzz1d3i2wWXlCS50IzqjCxTkNLnAZHlp\nCUdKqpqGFUQ0bRt0nbyikIkiWsQ1m22onCJigwiMBH0ZsGXbDBIJ9h04QEsIVvp9rhxPxRiaRtvz\n8HSd7du309rYYGBZ+EC5UiGRSHB8ZYX973zna841+g0ZeZ2xtAS+D5dffqlXEldH7r//7UdGCoUC\nwyi2Qq93u/hhGlNPMLBGZPOxWdHExCIvvHCEO+54H1deuZ1jx85SKs0RRXFMdadzHlUJOfzsc7Tr\ndTwELVHCUEEKGyW06OGhyWkUoeIREEiPDB5O7KvKkAlCfBR6TBAi0cb7XociPtvQiUjj0yCizxan\nGDKJwRwaSUx8bEak0XBxkASEXCBDQBaLgIAkHUaENHCYxSU7diJxCDGJpXAlwENhgMIQFUmauCzs\nM2KCDYbsFSG+3yRfWCA/UWb73inEqM4o6FIfvoT0OqzZWYQwWBk+TXXnDNd//Pd+rijY8zy+8pV4\nimBhIc4yGI36fO1rP+Bf/ss8U1NT/O6nPsVD3/8+T7z0EoqUFGZm+O3/5RdngbyRSCaTfPazv8d3\nv/sAP/zhjzh37hiGkSKdPkA2u50oCglDyVDxWWkq6KGHisACQnQiPEChTICGIIoEAQJQyQLrXp8k\nERYK20mRRgFs8uPRy4hYECuIyKIwIgEkiPCQzAAvMc0KUwhKCM6SRTJNnAXtoOFjEuDj4+PgYI6v\nNIkggcMAgceilCyEEQ0UlAg6bodQCo6LHMgyDjpD2oRBmwlhkjMEfmAjoiYN8uQL03Q6W5RkREMd\nMpUsoHQHbJ58id7E9UzNXk8qNcfjj69Rq32bT3/6E69rYN6lxGAwIIoMcrnYQTWXy6DrGgcPHsc0\nSywtHeHUqTN4nspwWKff76MoRSCLaYLr1omiIlJ2gCni/8rs+EsnrnCYxBM0GrF+JCDeRhT5iYgV\nqhjGBGG4RRgmYPw5kQf6CMpEeCj4gI1PHR3GQYtlvUAlHQAK5/rnWWttMOmMIBzRj8Amie1M4Eno\nCI9p1aPlqXSHQ3KALQSWlMwBqCppCWYUcLSzwWIuSytIMDU5ye0338yZKGLp2WdxazVm02ls3+fZ\n4ZDfvv12kskkB66/nicfeYSz3S7vUhSev3ABc26OW34Nl/TfkJHXGfffH5OAt8L/8J13whe+AP/u\n313qlbw6FItFdlxzDUdfeIG8aYKU2J5LzbI4cM0142fJl2+kd999B+32t1hdfRHD6HLu3IOEbp89\n5VkKmQwH/cdQZRlFZCmmTUb2kJ5sY0ZDRlhEsoGFIElcnnYpkcbCQBCRwcaji0WAJDGemJlGo084\nnpDR0YEOgog+KjUEBUY4eJhIHBQGmASUOY+CjiCghE8Rh3PAWQJGRDSI918KMENsVewg8IBZtPHO\n20WSRUEnIE2bNdakhWa7bE8ssKmqfOJ//RTPfOtbXDhzhqLicqYnaXQdEvik1RzZbMh16s8vxy8t\nLdHr6SwsbHv5WDqdo9+f4fnnD/PBD/4W2WyWj37849gf/jBBEFwUUX8pUK1W+dznPomqBiwtOWzb\ndi2nTx8ek1OJ5zmoahI7NUQZGoT0UdExlBRO5ODLARCiIXBkF48ZsghAEuLg4lMmIIuCCWQJcXFQ\nSRIhkONAvAAXgwEJ1sdWdwEWGcyxT64CSBIE6PgMmMVCw6BFEoskKkN0+gwpY2OPr7c287ikgL4M\ncFEo4RNFIccxSMp5yoqJFoWEJKgrEjU1ZK7qM+h5LLsRAy2iuXEYLfBIiQE53SBl6YRKQFWfoNvZ\nZEOeIXXrZUxObuf06adZXV1l/h8EIr4dsLm5yTPPHGRjo8nc3AQ33ngtmqaxtPQi3/72A3S7Q3K5\nKtPTV7C2do5q1ePFF01SqT2sr58nmbyRRuNBlpZ+RCIxj5QCITooyhZhqBGTjyI/kZfGPy8T+460\niXUjPWAdKRPELR0F8NH1AFWtoKoQRVso2BhSRY6fFRCSJ6CPQocUQ9Lk6VM1Kii6oNeukY0strkj\n+g7oBFQIqYoBunRxpADpEckGfU2J3V6FYBQE2MCsqsapv6FCC40WOdLSpVTI855rrqE+GHCuVuOu\nf/bP8D7wAe79xjc4tLJC/rLL+PznPkf73DleWFlBAZJXX80H3/EOJqpVpmZm2Llz5y9N5v3H8Bsy\n8jrj/vvhD/7gUq8ixi23wNGj0OnAqzBOfEvgrg9/mEdSKY489RQ1e5OeOsEVN930cqrn1tY57rgj\n1idkMhn+6I8+xYULF6jVanzzf36HU89sYup9bHeTA7uSHD3RZeiphK6JofYxpUvdS+EpDpooYUYu\naelik0FjSAIFlwuETBKh0sTGoMU2BAEhNgA6ET4+GZxxRFps2dzBYJ0sKQy2GKLiUyKgi4/LBBYT\n2CRJ0iPFTnSWGTAkQkGhgqSHpES8645rPWK8z1bp4+JSIEsBwQCbHOvMYGoqD55uYOxcwwkCvvf4\nU5TVOZbaOQL1ZmqySyRGFOUE82GZH/zgMd73vve8wqCo3x8gROoV5ySVytNodC46lryUKu2fg+3b\nF9H159H1DNPTM6yvP0+n02QwCEmpSfZMZ1he3cJyh+Qji1BKhKLTDWEDk4AAkz6WOEdNTqChoeDj\nMCSPTQ6Bhs4UBht0KCEJSBIiGNKnR4IsOhlCkgQkUaiNPTTnMckC6XHmjI2NR0SNCioTqASo2ARs\n4I2nbRy6JOmSJUsLi7T0qSCwULDRcEgRsoEdGbjkECRJp3dQ3Kew7Fqkpy6n6OvIU0eoIgp/AAAg\nAElEQVRJ2k10MWRHwqTjWYS2iWdmUdQshD7VZEi/12VycgIhcrRarbcdGVlaWuKv/urvx5N1sxw8\n2OLHP/4a4HD4cJu1tRyKskC3u8HGxvcolfKsrXlcffW7WV1dwbIStNsOcC1wlCg6QRTZRFGaZPJ2\nHOcIYegTVz0CGGcvwxCVFjoKPklCysApYv3IJDEZWQW2o6oeuZzJqO8jvGVytImADD1GTI2zuxU8\nJAE9kiTRVA/Pq1ORDkL46EgaqECSJjZ7pIONg8OAOSTPATLSqGoafeJG0jyQiCIGSgaUHHYEaaqY\n0ufJzRo3eB4d12Xoeezfvx/DMLjhhhsIw/BlV1zXdVldXUVKydzc3GsyN/tF+A0ZeR1h2/DYY/DV\nr17qlcRIJuPx4gcfhN/7vUu9mlcHXde54667eM/tt/P+kyf51rceJgg6nD3bwXWb7N9f5aabfpqD\noCgK27dvJ5fLkYgcKv46yqDNO/bv5537b0H6p1lbb9IN+wSRJDDyJDKTTBV2Mah1wNEYyToOK2RI\nEJLDIEKhDggs1giw6FDCRWCikSSBi4VGGg9BgMIkaQQ6kgGCAT4ONhXWUZBcT0ALD4cTrDFNkwlM\nEgQkUDiPRglBTs1QC/tsjUPDJQoBKgqSHkMsUkCNOjUEgiwFCoaHmoqYiuDCw0+hbitS6dnUWGfk\nTZBLlJFKhoF3gl4n4nwkabeX+Iu/+Bqf//ynLtIHVKsVoujgK87JYNDkuuteaeP9VsLu3bvZv7/E\n+voKup5F0yICXyGp+uyfKrNtcorFyjzPHf0m7qiPEaXwjSLdTJXAapPzV9kpXCazNs8OTnFGaoRo\n+CyyRp0CEgOfBhKLJB7DsbmZiU2WAAMdBQUDicGAEJcOi0gkAhuNMjarNAlwaCDQqRKhAAo5EkRk\niGiTpoQ/DkfssU6OJC4mppBkpUIThzxQJgN0sHDpUGHomvRtyd0f/DzT0/v50d99iaKWoVKa4sLo\nAomoz6wS4pkdhq5DE4e5Hdeye26eVq3G7j17APtNd9T9dSGl5J57HqJQ2E82G+++MpkCx441eOyx\n5wiCOTQtJIpUdH0nnucyGq1jGDqbm6vU6x06HY0w1MjntzMceui6SxCcRIgpgkAd58xIYhFrirhd\ns0meLZL4jJhEpYCPgkeaeAR4CchhGDOoqo9p9ogiCL1TzLDGLAFVoEPIiHUGmFgo6IQY5FASSTJJ\nE3sgSCqCTpQgIQRJqZEkQw+XIzQpE1ISgrKUJIE9iQTVTIYFXWd6MODQcMiFIESPElgoSIrMqQah\nMDkblfnbo0d5/223sf/d735ZxCyEuMie3zTNN2wU+zdk5HXEww/D1VfDq/CSesNx993w/e+//cjI\nT2AYBgcOHCCZTPJXX/5zBhtblPJpgm7I1tbWReOH7Xab//If/yPHHnmEymCAoao8urLC1J49LMyW\nqTfT6LZHJWmyNtwkIo2hp5gtjahv1FEBFZcseVpoDEmhEhACDjNEJBiwQZoyBgMqDIkQOKj0cEiT\nJ4WKgYlFir14PEtERIYUE7gUkHTQyQMShxE5AuxxYHwOhTMETIcjNFS2ABdJcaxHGKFQR0ejgkkC\nlwEBK2SIqJLCtx2qjkqn5eIqHnvNDAXPpcM6ZlphaG8hxB5UNUsqNYFhGKyswBNPPM3tt7/35fdx\n+/btLC6mWVk5zvT0LlRVo9FYxTTbXHPNBxmNRrz44jHW1mpMTJQ4cOCKVwSPvdH4ReODMzMz3HHH\nNfz4x2u0Wj4vHjxB6Bl49oDltR6DgUMlP8nsxPV0OsdYdbdRnruVkpknu3wP+AU26dIfjYhkSIUQ\nE4FDmwidZQJ04rygPLHTap0cLhlMRqRYIcDBYxYPB0GLMh4hCkM8kjAe8F0hAThMkcXFQ8MnQaxe\nqmACeSaQjNggQZ0BZVQEAlvqRHSxkFRRMYlJQxGBUEPCTJr2yimWlo6TSFTJhQGVShktjCgGec5Y\nLRZ1FdXU0BMqZq7E3oU9eEGEmUxRr1+gUhFs/xlnz7cDut0unY73cmTBT+A4AZ0OeF5EJjONoihI\nCWF4BYoCiUQHyzpPq+UTBFOoagLb9omiNsNhBSkjFCWBEJuoqoIQPmF4nthfpI3OMlVy1DBQ2I1B\ndhwiMCJAJxa9KoRhklRK0u0cJ3KWKFJnhlgKqxOrT1zgGHHwX5oEkT6FktjGQB2io9H1AhgHa06h\nYxCrTiwSdBihR9HLcz65KKIgBMlUCsW2ef/0NF9ebVAUVSqkURRBJCW+qpJSM0hrgxeOHeO63//9\nN+eE/QP8hoy8jrjnHvjIRy71Ki7GXXfBv//3EEWxGdrbEbZtc/83v8lN5RLTe+IY81a/z3e+8hU+\n9a//9cvhXU8++ijrBw+yL5fjeK1GRVEwheDoCy/gpbLUai3SWoKu7ZMOIyrmkPpKF0MpUVA0EBIR\npnBZJmAnkgl8Qlw2kGxHYRqBw4g+4XhAF8BBJaLAZWSI/QckKj6xiiLCQyOBiYNNiIKDQxoFF501\n2mNlQnwzGSA5S4RGgQiNHn1cPFIIlsmSY5KdePSwGBAwIkuWLUZenrziI6RKRsBmd8iEmmLGSFN1\nezStZ/CjCSQZzKSJZW1yxRXbmJ+/nKeffv4iMqIoCv/0n/4uP/rR4zz77I8JgpDLL9/OHXd8giAI\n+NKX/pp+P006Xebo0Qs88shBPvOZj77CAfONwNmzZ3nwwSdZXa1RqRS47bYbecc7DlxETO6++w76\nvb/lT7/4X/AsgapcQTa1Hx2XjfYSw6GHH3Tj+DEp6G2dxBcOc26DoplBkSpppU4tdNhNih4RHbq4\neFj44/jDTRQMbMpEVNBIkGMDDZ0kDkUuECLQEQzJsYbCBCYGLn08pjDo4dPGpUNIEkHIgAYmEUUE\nHRwkIQEqaSBDmxZpfEYoNNDZNjZWAw+JQShsksJhxT5DSkty9OiT7N59PYoWm8uvex2WnB5mcobD\n/oAcEe/bt48rr7+BRw6fZLnlsmvblUxMpPjYxz72qgLr3gqIR9Qjoii6aErMNHWCwCGKJMNhHUXR\niTVnbTIZldGoy3C4hOdFRJFGFDVwnAtABNhI2UfKc0CRKBoSRVlihcc2oEKSLXxsIqYxSAEaYqwS\nCsgS60nKhGGHbtdDY4VZWghiC7UesdIkIq6zFInlrw45BqENYYZWLkOjeQYNFw0dkxJ1PCI8bGL3\nkwFwFbGU1heCpu+Tsyy2ul1soTJwfbJ6hEqbVjjAjTIYpJnVNHS67EgY5HSdY08+yU033fSm68De\nXlfbWxhhGJuM/cmfXOqVXIwdO2K9yKFDcO21l3o1rw2nTp0ibVlM/0z/upzLUen3OXr4MO+57TYA\njjzzDLrn0W+3ualcxur3kZ5Hc2BxvjfinbkdjCKbvD/EUByGkU3WD1kVfUZyioJqIqI+WdmmRQIT\nE4lKWinQiSCijU+fPEly7GLAJh08QuYp4uGMC/ouPeYZMBgbYqmM6NPHxUaQpk0ADJC4TALbiXdG\nNiEuCm0m8NmJDrQIEBwng4fPBLMk6TGijYZHkYCALUaUMfCRRFJFkUO6PRvF9EmIJBoauuwy8BUU\nzUBV06TMLjmzwObmMvEH7sWVhmQyyd13v5/f+q1/gpQ/FQv/9V9/E8+bYmFhcfzMGXq9Jt/+9v38\n8R9/7g2dvjh9+jRf+cr3KRT2Mj9/OaNRj69//XFGI4t3vetmICau3/jqV9l47jkuk3BZqcCh+imc\nZILhyIBghk54AUMbkPRtNENhoZzi7GYDx/cIjTRW5NLxAypoqKh08JkmokAwNklTaKOhotClzynW\n6JHAIo3BNA2G9GkzjY6NoE6ZHlOEbFJAwcFDw6OCRGdAB4eQNF0koBHRQqCPJdRFoMUMXbYD6XGI\n3nk8VonYI3QM6eOJEaHioSlZpjIHGDoBrVaHe+75S3TfY7hxFtfWKRk5ClRoMsGK26aumwyjkF0H\ntvPhm2/mxptuelUxAW8lZDIZ9u2b5cyZc8zM7GIw6HD+/GlOnTqIpm3R6+XQtO1IaSCljWUt4/s1\nTHMb5fLldLuncJxDRFEVRdk7DrlbBbJIaRIEk8A8qtomDH8iYi0RYhAyROATUwqQ2Hj0iTcn+fFX\nAMwRITFosMhPnUhM4mi9gNhabQSMRJW0gLS6ytAR2Noilu+QJE+ODjDiFC4hPhKPaWI3kxzQ1zSW\nwhBnaKGrKj1Npeu67DVThM4IgzxdpU8PwZLvM1d2WFxYYM8NN+CHIcdefJGb3vnON+nMxXhDyYgQ\n4k+JlUAHfzbBVwjxvwN3EdvT/Z9Syu+/ket4M/DMMzAxEd/832r4Savm7UpGuq0W6Z+zS8snk3Tq\n9Zd/NlIpthoNbkgkKJkmYTrNS6vruKgsSA/LH5BCMmfmGHkRI6/LlD6BqUYcsRs0A5eE6OOINIlo\nFNu9izKaomFLG0fagIKLwhYbuFSAnZisM6RDnYAkfaq0SRGyBej4QIMhOSJ2oKEhsOjRoMSQWUyy\nhJiEGChUUVjDp06fkAANhRQZDNpjIaVDmxRJZhGoRLhxqixdgsinwIgkGYLQphcInJRLUs+gJjTy\naZd8TlAMz3L11DSFzgarZw+S21PFcZyfK0ZVFAXf9xFCEAQBp06tsG3bxTkH+XyFlZVTtNvtN/RG\n9sADT1AuX04uF/+OTKaAYVzNgw8+w3XXXYNpmhx84QXE+jqLhQJntSyldJlux2bJfomBvBw/CpGi\nzjQ+s5lJmlrA+vp5rMCgL0sY7pCiAFumKY2bMxKoIEkQE60aCg4q54EcKiY9II1CdkxfZqkzRYdl\nJDMoLOBzgXXmadFAZ0CRiBIhJSIUzjIgT4oEfVYRJBEcwCBJSJcM60wSkMUkBfgI5tDYwqYnQ3IM\nMRUfoUzS1jVcx6XjBSzuvJ1crkF9YwnXstil5EmGNv3BBUI9TWXqMsLKNt71yU8yPz//moLw3koY\nDodMTpZ49NHv8dJLj7KxMUBVJ5mc3Em16tBqHSYMW6hqhiBojUlFhlSqihB5pqZ2U6upBEGaIGgR\nT8tUiElHnbh+kUfXsyiKQRSdJgz3YLFIlg6CDUIyqBi4jAhIEtcrZoEd4+8bQIICgjQyTgcfr78K\nnCPemDQwiGQeJdzE7dtE5hxCpMmIJo5UsMaZVIso48kwnwHgopNEJ/RDmobGXKFK03MYCIXFfJlU\nMkPK7dIb2TD0aEZdFnQdkwRbQcBts7O0hkO6v4Z52WvFG0ZGhBDXAGkp5a1CiD8TQlwnpXx+/PB/\nklL+30KINHA/8LYnI2/FFs1PcPfdcWjfpQru+3UxMT3NGd9/xfG2ZbHnZ1oD77nzTu79i7/AHH+o\nbg2HDPp9NBlSUTTaThdThrT9LKEEU/o0vBqBmkaROko0ixB5PLlJngERL2DLPKOgjIYgJSwqImAQ\ntehTHY/XDggpYiAZcBwTC5eQIwgsJCMS2GwnztzcREFg4JAcm5mpKOOUG4GNQEVDH1uEC3K4DNmi\nyR4MNLqsU0RnGwIFlWBsxSZwyBARcgIfkz4OClGksiubYzJpUJkv85FPfIJvfPlrXFteJJfO4zgD\ndldMKvk0zzz9NO993/suen/X1ta4775HOX9+E13XuPHG/eOEUvlzztJrs4D+VeF5HrVah/n5d1x0\n3DAShKFJvV5ndnaWU4cOsVip4Ns2nVGHkRWiEJCNRnRYwTSmIDlHVfOYKORIjtoc6pxhJGfQlQzr\nMqKLhouNRUiISwYYECIRY5niFCYZJDYtigzZGPvlCjQkESMiknhUUEkQcAaBYJI+JVR6mGSxUTAx\nSLAHwZAOF3AZkCTERXKeEWkCukzRIkeSAA0Ln5A4lj6NwhpNtikgQ51e1MbxVUy6JM0cBjWiKE3Y\nOMduvUJez5BWJAnPwxAe9W6D48+3+fFjj7HzVcQCvBVRq9X4y7/8Jo6TZ27uVk6evA9QufXWG5id\nXeTee2Fi4gaWlu4liiwajQGuayDEIu22x9bWsySTBlGkoigm0CJWcATEQtUhcRNliKbNMD19M5ub\nTxCGzyHRaTDEICBkmZAWHiHxXjsApol9garAS6hs4mBgj32FWsQaD5u4PaMS35g9TpNAI4gEoR3g\n0yVDSJo2eVpMoJGiRZGAInAMA58iOUwMBWrRCMdIU5rZRckZsk1GWL7HRLHK4rRg69w5DMtlXzbD\nCSlJ6jrnt7YIVJWrZt98ofo/SkaEEPuAjxA3xyCuIH1XSnniV3jtG4EHxt8/BNwMPA8gpQzGx1PE\ns09ve3znO/A//selXsXPx7vfDcePQ7MJl8CT6tfG7t27eWpyktNra+yYnkYRgpV6nUEmw45du9jY\n2CCfz3PDDTdw+a238txjj7FgmpzfrJH0QqQUdAERRbgIpKIgZZJu4BKpJqX0BBmviulO0g86KFjM\nIElg41FniyZJM0Fo6uRDnaMjiUafLB4JTFxGeDjAAZq0CdgiSZpNuoTMkGYHOhF6LD9EZQODNCYj\nHAI0JB4Cl2jcpdZJMT2e28gzwOEMpymg0aeDRp8ELjouBj5DTEIcVPrMoONTxmBENxAca7hct+8A\ngZXl0KHT3PqOXUzrCYbDAfPzBRYWDhACJw4evIiMbG1t8ed//i2SyV3Mze3F910ee+wUo1GbWm2Z\nmZmfKupbrU1mZvKUSqU37BrQdZ1UysBxLBKJn44db2yc49lnn8S2O1QqOdz2GrPVCsvLK0g1S7uf\nIGmUwGtiBz6KukI5PY3vnWc0KtHuNkEWqSg78dUMivQZhjVsmSTPCrOE2HgYRNRRsciQI49DhCSL\nTXU8E5MnJMNoPPKp0Blb19WJSFNCJYVOD4mLoI06VhiFgIKDjiQiwCeiSJIsYJFBG+eVOOgIIkIk\nESEGAp0eCn3KSHVANRTMq3l0LYOiZAnOv8R5w2IRhbShEqKCDBCRiumpWGGXcJDi0EOPsPvyy7nl\n3e9+w87f6wkpJRsbGwwGA8rlMtVqlXvueQAhFpmbm8FxHDKZHeh6mrW1JRYWdpJOJ4EyO3ZcS612\nniC4lcGgxmgU4vspXNfEdXtomkUQ+MRTMBXidN4ssJu4ZdPAcWxWVjYJwwHxwOw2QgJsNGLFRuwY\nErsE2cStmwRxTU1QYAdDAmx6hLjkkbjEtRdnbAXvIZkCdqGxjsRDxUWhR0AOl1kiVAIq48F/F5UJ\nTGqEeEBG0SE0OdQe8dFdZVptn8ixCMIAhEZgO+xcXOT86iqpXI6qaXJFtcoTzz/PVXfeyb5L4Nr5\nC8nIuJXy+8DfAs+MD88BXxdCfENK+R9+yWsXiKtOEGt0LgqtEEL8GfBR4C3iyvHacfIkWBa87Mf1\nFoNpwm23xR4on/zkpV7Nq4eu63z8M5/h0Yce4slDh5BRxPzevUxoGn/zn/8zSSGwpeTym27iT774\nRb78xS/SPHoUZ71BOlNE9T1qvsMOJctW2EfxBxjCwFF07CjH2tAmFAWGREgEJlO08CiTJIHGoiI4\nj09VRiRKkyTtGtXIpMcIjTIhAaCjkAHqJChikUOyjYARDi4eQ3RyaJTx6SLpEaBxHpcpTFJoWHis\noNBhigIKggCJi02RLnNIEqh0iN1QPDQMDNL4GHRYpYpKwDQKQxK4TFFiLdjEGUjSxSl0fYHVpWP8\n1kc/eFEVY2BZiH+gbn7iiWfRtDnK5TjV1zASLCwc4PTpJkKscOHCAMMo4PtD0ukRv/M7H3tDr4Ew\nDFlYqPCD7/0d89uvZmZmB83mJg88cD+7dl3Lnj23YttDjlw4xZEH/ieDlQ6KMgdqQNft0dEgl6ng\n++fZs+caLpxwKYYetlAxtCQIBYmCo9mM/AxFuuSZxlA7OBE0ZYABSHQsQtbw6XMZISYRSUDikRy3\naQQRCpKTSAxi2zp1XCGzAY01aiQYoqCQIU2EQgcdcBGMCBlSIUeGAIsJzrLCTjwqRHRQuICgTYoc\nRcJohogLTJBCRDlkJDGTWXAsVK9BtjSFNhhgez1GgUFCSzMMbDxsbthxK832gIe/9723BRkZDod8\n/et/x/nzPRQlTRT12b27yoULDRYX41uMoigIEZFOT9BoXMB1bfbt28Ezz5zAslr0eqAoZaKoDqwg\n5Q3ouo7vtwmCDnHlL0vcWomIw/AsYkKxAyGmCYI8se17GiF2IeUqsS5kknjP7RBXQgbENEMDhhhI\nkqRwUXERNNERY1eZ3rgpu0EaSTg2DPCoINhkQIkKHgoO8ZRdHoss8ayOREWgoqOiCJVuYMdtPtfh\n2PMPY6Wy1GRERVdZ1JNIF845Dvsvu4zOYIDUNGq2jcxm+dinP/26+of8qvjHKiN/CFwupbyoPi6E\n+E/AceCXkZEesZYG4rN0UQVESvkvhBD/B/AgcRXlFfjCF77w8vfvfe97ee+vYTX7RuI734EPf/it\n4br6i3D33fCDH7w9yQhANpvlgx/9KMGHPoSUkicefZSlhx/mnfPzaKpKEIYcfeIJdF3nj/7tv+V/\n+xd/zDl9FS+dISFNiv0+qwE4gcF5LMqJJKEfUg8V3CAXm18Jg6IwkFKOiYWHADIiRxjYbERdFsI8\nSblBAYFkRI9VfAxCfATnyRDRJU9AEZUWJdYoYREg6LOOyw4ieuOE3oAmaYZoY+GrRp0CKvMYBOM6\nSoCBSUAWSYBGFp0hQ1JUyCIwCNkgRZMUBWALgYJGDh2LamBTXz3IqLfFgZtu4KwdUWs0mB6bxwGc\nq9fZf9ddF73f589vUCjsu+iYEIJkcoKPfOQqVFVlc7NBubyDffsuI5V6pUna64XRaMQ3vvpVvLU1\n9il1Tj/2/3LMyNCLVLZvv5kbb4zFq6qqMbQSHFp3KZBm2szg+i4NQ2V2+w3s2bvI8vIPqdefYhAK\nlmQHMyEJFQM7aKGRJfKHaCJLXkpMIvJagaxS5Kxdw2b0/7P35kGSnnV+5+d57zfvzMq676o+pL50\nttQ6QAeCHTAQnB4OQQThMWu8G/ba4/GuZyYmdh2x4Ql717Ez/9hjMzMxnpXHgBkhBhAgECAJoW66\n1a0+q++6q7Iq7+u932f/yJRAEgiN2FG3IvSNyKjoNysr336fqnx+7+/3PWjTpk2eNjtRGCZmG0EB\nSYUYDYUsAh+V3sxd9GmNkhwKG6RxSCJpk+AyXUw0DDQ0DNrYqDSIGMdhm3Y/lyamtxWuElF7afwX\n9AeEOToEfb2WgRBV4tCn22limDp5I4tjGdihhk2Zrg9e1GYt7jA6eRvTIzNUmhWuLq79na3f/594\n9NFvsbqqMz3dW3MpJadOHWZzc4Xp6d6o0DAMxseLrK3110AIJibG2di4wupqkyDo4HmXSCYtOh2N\nIDiGlCawARQRoo6Uo/TcVTV6FPOf0hvTuKhhGYHWp4yWkHKdXgHTGw8Likgc4Hy/vFBoc54YD7Vv\nd2ci0MlSImCFBgAKOapohKQZYIMh9L6PjY7FGg4BCgpdYio0KOAS9s+wQkiLEB2binRw0TBJEsZ1\npv0Ol9s1Vm0bbWiI729uEAUBe6emsJNJCtPTfOj223E8j6JhMDg4+GYt58vwWsVIRG88s/iK42P9\n534VfgL8j8BXgHcBf/7iE0IIU0rp0Ssff6ng9OeLkesZjz3Wk89ez3jve+F3f/etmeL789A0Dd/3\nOfHMMxyamEDrqzw0VWXfxATPPfss995/PwcO3cuF46tETRdbxKSlgibSLCmQS88zPzDOyvoitnQY\nkBpXpYslc3SJsKiRQaDjE6JTixxcDJqRQqrTRchekFWOLgYxNRo0cMmyE4McbSIEghybDCFQsZGo\nZIhZ4wwBXcYJWUYlZKrv6OrTRSHGQ9IgRqKTJCZEo4WGSRbooKNioLBOQBMLnUEk65jESDRUNMCm\niYaDgcqwPUgzdPjWt77J/n27OFmvU3NdbF2n4vuk5uc5eMcdL7vOQ0N5VlebWNbLSY1SdikUCkxN\nTbF//5uz5j/6/vcxNze5aXYWZme533W5vLLCl4+d453vvO+lLs/GxiKOY6Eld9BVFFb1KVTNRsQW\nmewQGxvr7NoxRtzc4Lzikk7tJ9RVKs02nUbA9ubl3phE0wiDJgkh8f2IpowoIGkhqWLiM4nBCAoq\nPl2gjcIeBKsobBGjYWOjUMRgkzIFQlqM4pAnjyQiR4xNiqsYGOzEoonHOmn20MbGpojKcWzWmKTL\neH97W0PiIMkBTVTGUVgmwENHETZCJjH1JrEaoCoKgSEJLRUlZVOUkyxc3KIZS9rGOKPqCCfPX0Ax\n4IZd17eZHUCj0WBhYZ2pqXtfOiaEYHb2Zi5dOsrW1irDwz0O2b59N7K+/jhCNNjcvIqUbQ4cSPP7\nv/9v+cIX/ncWFlJ0u116XKcxoIqUg4CGlOPQLyF7dNIX03lVEoqFqliEYe+mIKBLr3My2f/aS6IS\nGMAyBTy0/s1GmzSCIUJCJII0BkkSCCLqJIBhyjQYo8UQGvm+saIk5AIeeTbo0mSKmClUyggEst+P\njdlCQ8NEx6aIxRZtxkWblKpwi2HyE1R2Tt2CKjwWWiWM6Wn27t3LjrExmt0uC7Ua7/7MZ96s5XwV\nXmtb+l+A7wkhLtEblkHviu8E/udf9YOllMeFEK4Q4inguJTyqBDij6WU/wT4f4QQN9BTNP27X++/\ncG2xsdEb09x337U+k9fG5CTMzPQcYl/BU3zLodvtUtnY4NilS/iOQ2FkhNn5eVKpFFoU4TgOUrpU\n2yGamiGNhyIMFoNNanGOu7NjSDdA1zUKwSqWmkONJT4+XbaxqSDQ+u6XPYGeSRYbWG0sYaDQxcMm\nT0zMABp1gr4jqoWPjsY6Y7goBEjKCCJMGhTosobgDCoeBnq/dNDwSLDNNAEep6mh0SBHSIzFNBIf\ngzQmMSXagCSDQYRkhZgWI2TpkKOFTYcBTAJCGqqBCDsMJYs0mhsEocU//v1/w4njx7ly8SKjIyPc\nddddr0poveee2/nP//lvSCYzWFYSKSWbm1cYH7ffFD+RFxHHMQvHjnHP2NhLx5ui6Q8AACAASURB\nVCzLYs+OHaSPnqRcXmNwsLeRbmyssLFxmUajSjo9juNsoetThG6VS84WinaRfYNF9s7NsrzwY+Jq\nk07gE1tpiiNjtGs+UilT76zQoMuadEkjGUAjIqRNREQXwXliygSEqHSQCKCDykCfWBwRcrXfiJdI\nmmjYaOiE+PS8ZzwUYgwCmrRx2CDDIAomAZIECjFFAkrY/Xfo0hsavEjhLeNQJWQAwSKSddoMSR1b\nWJi6QU2vcOuD92JpOtWVMhdrVS4KMLVJbh6bI2OY1NttLnklPn//B960NX2jcF0XRTHwPI9qtYai\nCAYGiui6ydzcDIqyzPJyHdPM4Lp13vGOMd71rg8hhCCbzTI7O4uqqvyjf/Rx/tk/+2OaTZ84TiLE\nIBChKDFxbCHlIvSj6ngpNaYDqMTYmEqxP9C1UWgSU+RFsqrCRWK2UWlgESLJEBGRRUeyhYJAkABs\nLlJBIcJEYmLhExLQJUeIjUUdBwhJEGMSUn6pxwZNElRIs0qIShdJ0D8XhTZduvjMC4/5OIBARVc0\n9Chkq1Hh3n134119ntEDB6gYBhsrK6SKRd798MPsuYYJr7+0GJFSflsIsRu4g16HRNIr/Y7+HAH1\nNfHzct7+v/9J/+sX3vAZX2f4m7/pdR2MX5w5dl3hIx+BRx996xcjx44c4eq5c0zmchQTCRrLyxxZ\nXWXfnXcibBvbtrl4bpVsRkf6Jl0ljxd1kSLA6q7T8hTc0GdMaZDTQ9b9daCOwQg2kjLQwUPFIKLQ\nb8dvMYtPjMMyBa5Qw6bniujSpomFwhCCAUBBcg6FEEiTokmCDpKICB35UlM9oE3ABjEWJXbSU34Y\nJMihsEyXMjoxWyTJ9JUaEmjjE3IJmxgVlV1IMqxzii4rxHQQwiNQDaaUFFHQoOUpaGnJ+Pgw5XKZ\nF55+mpTnUV1a4pHDh7n5wQe578EHX+oyzM3N8ff//n1885tPsb2tI6XHjh0jfOQjH31Tk1yllMg4\nftV7CiGYmxmnVFoglxsijiMuX75As5kkn59EVWepl48TB98jpRr4bpdCqo7X0FioVhiO6lTKLWaE\nxtr6eRYVFeE2sGNIiDQZCTkkEo0VBCY2PVaJh0kZFxeVAVR2YiCJOA8E9DJVu32L9xwOOWALQR2f\nAXycvsmdCoTYeERcIk+KmAFKeKRQSRKQJEmVPBvUGURDI+QWerqOTcDAockSLTIUkZSkT0vEpGMw\nopixqVHMhsulckx+7HYKBZV07RksrUtL97hSWSUIKuSTIaefP8bdd991XXuMFAoFSqWrHDlSRlXz\nQISmnWX37hFuuGGWz3zmY5w7t8D6eonx8VluvPGGXyhXv/vuO7j33km+9KUfADegKGsoio3vn0NK\njV6Sy9307pVVeiTVZ4AtvDiFGmRB5BCygk1Ih2V66hv6nJCejV2RUVIY1Ikpsw2oJOnSoEGERGEQ\ni54BW0CNkAo2LikkETo+Fj5tMoR0AJ8eiwVUKhhE5MlgkAKu0mSCTbK6jx/UKCIJUWijkEPBEYIR\n06a6vUrXczCMDKpu8Y//198hCAIMw7jmCc2v2bCXUkb0xi1v45fgscfgs5+91mfx+vDhD8O73w1/\n9EdvXTfWVqvFyaee4j13382FEyfYZZoMZrN0trf5ztGjfOZf/Sva7TaNusPM6BzLiz+l1ayT1Qwm\n7DRbQmXnmEG0UiIRBFSlSV1JY0kFIf2+bmKaOtMo+BhUsFDQKSCoMUOFJlUaDFAnSdhvm8MeFEb7\nYWcegmk6nCbBFnl8PAwgh0tEihwNuqQYQyOBQCeDTpMVZvARfVukGTR8TLo08an1Z8seKnUsIqpc\nRbKPEIFGlYAibQSLqGiixoiapBE3sRXATrL/jvuZmZnkG488wk2ZDJmREQDCKOLIE08wPjXFzp07\nX7rWt9xyM/v27aVSqWCa5ktOt28mVFVldu9eFs+dwwLW1kpomkqmkGX8ht3suu0Onn76MCsrm/i+\nzthYGsua4eypH5NQbFRjjLSxwYEJk4yjsHbhAuPZLEG3y66ESqfZZFZYaEGNuoxpY7Bb2oTUSJPF\nRyXEZRUISeExQx4NF4lHiMomw2xTpAV0cYgoM4eCiUD2H8P4VIlYQWGwf2/7ouamQYIWPlChCiTI\noqARUKNLnQidWdZQyRLyHGXmaZNExSJNTESdGhohczj4ikoxn2f/jXu489AhnnqhwsG5G1iqVkmO\nDXHXnjt44fKzrDS20DyDIXsaXda58OQPeERReOijH2Xp8mVKy8sUR0e59dAhxn6uK3Utsb6+ThBA\nHHdIJEYwzTTN5gZHjjzO5z73+ywuLvL0089TLtfJ55eA3u9ws9nkyJFjnDt3Fc9zOXz4MFE0wtDQ\nMEEwQ7u9ietexTCG8TwX2A1cpjeaeVHw2Uvplag48goqHSzAoI2gQUgViwTTQIAkYICAXqquSZuY\nIQyKqMSotAjJkUWiorFNSIhGgRYzxGSBBAFlHHRiXkzDuY1eN0BiMoxAsEGGNAoCjZgWKreh4KoG\nnchjAsF5JH4UIA2DvJ3CspJsVkuU44jbhnvW+K/sil4rvIXZA9cerRY8/TT81V9d6zN5fbjxRkil\n4OhReAVF4C2Dzc1NMkKwb24OU9c5s7CAU62iJ5PYY2PcdvAgi4uLdLeuYG3U2ek5GKpFGUk2kSWv\nx6wBemqQ5e4GHZkiSBSY8bvgtVlXhgmiHCYKJiY6o0RcYJAcLjZXECgkuAmDFl1OodJj0O8gxkIS\nENHAArawSVLt+21m+h6NWYbI0aFIjQYTuLi4DACSASIcxvuamXbfvzViCI9lBtExsdkihYuNThsf\nA0NpYGo2YRxiRYJAHWcxdin5SVRlmFB0MBSbnTmDmZlhttYvk/k5gytNVZnOZDh19OjLihHoKZlG\n+kXLtcK9Dz7I//bVx5BrDYrpQdq+y5p/mY9+/tM89NAD3HPPIR555CtoWgMpTU6dOktK17DibRQl\nYP94yAf37uTK5ZBTl6+wXAnYqSXpKia1UAFaZGWMIQRdKbERdFAw0XEJ0UnQRBJzAJ+YGk1idBSS\nWJxgNz4xOjEZPAQ6CVrYZEji4ZPBQVKgzAajQEwHB5syKgF7aXKBHA08LpNgnIgsAR4V0hhMk8Ki\nikeVNYr91OYh8v3QvTbDaChMEFAmFLDS6PDA5AwrWxU0JY+qqBQsm0qrSbOxSRgNY4mA26cG0BSF\nWmeAhlcl3Nzkj//gD3hw/36mMhlqp0/zleef572f/Sy7du1609ddSsnCwgJHjpzEcTxqtS0mJ29l\nft7m4sVztFpLjI8XSCQOcurUGU6c2GBg4EYGB2/A8zp8+cs/plqtcuzYAu12jjBM8eSTJ1ldbTM2\n5uD7Ftvbz9IrOPYipdNX1bTocUXW6XVGBHAD9C3cNWxUQGEFjRE00gjKpNgmBgJssphEhJTx8VH6\nkXc+BTRK6BiM0mabPD4hKgU0BkkzRatvi9Yrf1r0ei5pQEcli6DW19BNoFFCMqDY7FJD3CAm1HQG\n7DSdboP10McESrrOhJmkqWoMajpXaiWyO3Zx331vrsPqr8Lbxcivge98B+6+GzKZX/291wteHNW8\nVYsRy7Lw457l8s7JSXZOThJGEa1ul6X+rOz5Z5/lwECaU+fOMxBLkqqOHUtOrl/h9gM3oE+Msz07\nxeXjz+HUEthRh3ElYFVJkhdZPBH34ruli0KHgJg2lX7WhGAHKZJorBCiMNRX3iRQMInRiWjRZRsD\nhU0iGhh9c/kcaRIERKiYRGTw6ZBHRyKx0fD7f5IBCsv4eOg0cUhQRCVBmQ4wT4IEXa4SYxDJEWIl\nAiVHU7rkbImq7kRTJoiiGDcWKJpPPq8xOjpK7Re0Y01dp93pvFnL+LfC5uYm+am70OdStCsbJFN5\n3jG+g3PnzrC5uUkikeDMmfOcPduhUNiLlDl03WQ2O07CcLhl3MPSNFL5PCU/QcHIk9R04jAGmcGN\nJcQ1pOyVkl1CAqCDS5cEoh9nqPQj7xxET2WlDqJEabo00MiQJgK6+NiYFNCRmHgUSFHGJiLJKjYx\ngjoJYsZRSRCwRYUKg7QQdPFJ0SKBRpEkK8QEaKT7/jEedVKMYtDEYQADiY6r6fgyS8JOkXa3+cmp\nGpYFbaeNEDblep2mprFa2qDdSDNkhmiKQtfzCDWdVHqaC5cvkwsC5kd7cu5sMkmu3eb7jz3Gjt/+\n7ZflvbwZ+Pa3v8ePfnSeXG4WXR/guefOIuU673nPR7nnnp/xlpaWzvHUU8cYGDjI0aNnaTY9IGZo\nKM1/+A9/STK5G9u2+clPnqZUUul0hqhUjqHrOkJ0iOMMQrjEscAwugSBx4vb/88My0xgEMk2fl8V\nYzGCSREIEaTpcAWTbQSw3o+N8Impo5JAwcIggUBDwcYgRKeDR0BPbqojKfbf8Qo9r9YSPY3OEPS7\nKjYWETZW/3NEwTJNVF2QQMNN6HRkTGJ8B6JTwzAVtGQCTcswoCVYdzukd97Ax37zN5ifn3/T1vL1\n4O1i5NfA9ey6+svw4Q/DZz4D/+ZXCbOvU4yPj6MNDrJWLjPed3ATQnBhe5u7f/M3AbiysEDY6pLT\nFXKxCjHoQmHEUPEiyFsGG0FIIjdGMjdAde00bac38ZcywJAeUKdNF4ckghRr1FBoM0HMVQxiEpSI\nCFBQyRFRIqZAkrNkaWFSJmILC4jRMChgYCPR6CBxEEhi6giGkERAFZ8xOixgs8YgDQZQKRKxRIwk\nQEVgYmETIbAYJGCNSBSRiiRj6XQcgRuWKOq3ki+OE6kqUwMDJFMuvm9gmiY1KYniGPXnNpf1ep09\n99776gt+HeDkyQsMDs5TKIzA/E2USiVOHXuBjdXz/Nv6/8Hg5ByGsYPBwYvEccDo6Bztco1LtTPc\nOuowlettXMvtNpnRvXie5HR1iSE1iy8VgkgliA3qwsJBpYyNjkaHKjp5WjiEmETERJjAKJJlvKiJ\nJMAlhdnviZm0+zJviYdLhpCIGJNW3zt1gIAsEgWJjkcNQZUsETtQUJH4tDlPgAYYFIlRKFDDoU2Z\niCEkPuAge3RZEeJHXSJCwlBHlQncIGLP3EG+9tS38JsuXtfD0HVE0IIwpuW7XNlSGRwdZWZsjO3W\nGs16nZ3j4y+79rlUinBlhVqt9qbySba3t3nmmbPMzNyFovQUc3v33sEPf/g0KysXmZ/vSbmklHhe\nCc+D55+/DORotaDRaHHx4mm2to6xb988zeZlLl5so+s2UubxPBvP8xFiB0IE6LpOFHXwfeh1Ol16\nxcgqPb8Qg16/QkOli4ZFAo8MXj9AMSRHng5NOmRp41Ghl2+k0cSmiECh2R/YNtlGvtRDTVCmhkkH\nk95QSPKzNJsGPdGxQNLFwxQ6sRTUVJ2inqFDRBA7qBqkdbATSUgJMtPzVDodPnrffYSdDk8eOU47\nbXH/nXu4885brzlH5JV4uxh5gwgC+OY34Q//8Fqfyd8Ot98OnQ6cO9cb27zVoCgKH374Yf76L/+S\ntaUlLEWhHsfsfec7OXBTT2cgFIX69haTI5MY7TpJ1UBRFcq+y+LGGocrVTxfR7oRg+gMxU1cp4KU\n4EiTPGk2qaExh8oUPh4xY0Sk2GCFIaYBHZ0EHl0kGWJWSHCEYUzSSEyajOGzjWCTDnVapLDpElAn\n0fdNjHEYYIUGs7jEbNLEZ5nRPmk2TYSDZASnf58OOgYxLhARYlLEVzcw1DqTgxOUamUKmWlUZZx2\nFHHj3j3Ytk2jcRlVtUmn0+y86y5++swzzBUK6JrGarWKHB3lwM03X7N1fS0YhkYU9a7Y1tYWp599\nltFkEj2TZndC8Ni3fsDOWz7Ovfc+yMmTR9jeXsTK1vC9KkrC4NTWFk3XZdOyuPHWW1laDKgECkbQ\nQAkFrTCkThKHAQQpVtgg0ZdnO7SoksQnQrCMxk5CJGChsYqkSoSNjoEALFRiVulZUaXxiBFUGcKl\niU+JGm1SBBSJMYB1soTMkiFD3PcocdkgJmACg1EiIKSBzmUCHKaULiEWRqzj4YG0SCk2jtwEmaaG\nRmW7iucfw5Yha9VTFPQ8Y8URrE6DlCUoFnYQt9uMjI2haiqqqOMBozMzL7v2UkoiKTHeZIb+6uoq\nQuRfKkQAxsfHGB4ucvLkEUZGpoiikHL5KrfdNs03vnEVxxlke7uMEEkMY4C1tefpdBJcurRGux2j\nKAVUNYHnbdHTJY0hZQshAqLIRVFUgiBLr+joeY7QF1T3ChIHre/io9GgiILaZw6lCanh0uZGMkyS\nxsWnQbOfNNXT4qSRdNEIcNkgYIiQMQRq38HG4BwCC8lOet2RAmBgcBGTGgkGCAnp0kwoDKbyCN8l\nW0wxW5jkVCtHcWiInQMDeEHA8VqNsfvvZzEMOb6wxuhNH+D2Gw/S7bb4j//xv/Nbv/UhZl6x3tcS\nbxcjbxBPPw07dsArbiSuewjRG9V85SvwB39wrc/m9WNjY4MjzzzD5tIS+eFh3vXBD6JpGo7jMDw8\n/DJy5Z6DB3nyz/6C+cwIJaeFQoQbBCx0m3RbTebzQ4RhnWYo6YQGA9JkKIJFQkzKtPFwSaJSRKOD\nLiI8qRIwT0AbiYWCjU6rr7g5xiAB0zSwiKjhYyCw0ZkixiXAY5UVAgJGiYiQNPv9kG0aNFhhk50E\n1DBQyeID4OCgoPQlvh1qJPAJcHGQ+DhIkUYQMj88wg3T08yNRpTqJjKOUSOLOJY0GlukUjqXLp3i\nG9+w2LNnnts/8hGunj2L57rsOnSIW2699RcqD64H3HTTjXz7249w4fRFLp8/z2QigUhYCFFhx8TN\njCxssn7lMvO7dnPPPf8DnufgOF1OnXqCndMmvu9z6MABHnjgAf75P/8/KQzsIZeb4/LCT1DEBhtu\nCSfeiSkNNDYpopNA0sKiho9FkkmgQ4kuTVqYBIDHKgYGq8QIYkIi1ggpUmUMk4AyZQJ2YBAQo2NQ\nYZsAA4mkt9HlKTKISRUTixYOERHDJFmnTYiHREEnQYiNKdaJTI22V8PF5hwRoyikZZmU0ClFZTpW\nBksbZqORJGtmUZQFdg4H3DMjkXKc//rCJc6tB9TbKgvNMnPjGrccGGVy/zsIXlF0XNncZGz37jc9\nTt4wDF7ht4mu69xyyx48D1T1Kqoas39/Gtu2iSKHjY2zqOoebDtJuXyJbtfBtqdwnC2knCOOfTzP\nIww36RUYbcBFiGGkPEkUjSFljyTee4zRG5pcBi4BBSRVNMqotIgYxSQiQqAS0CaByjAqGiEKSTw0\nAgqEwDJBf0SjoJBBsNG3eHdJk2eKJmlO0eRWfBYR1JFomBiMMo5JiWFKCOqyQireJi8D0gWTsYlB\nfEXh7911F+lkksWlJbBthopFPv7ww3z96z/kroceIAwDwjBgcHCCet3k8cd/xBe+MPMmrupr4+1i\n5A3ia197641oXsQnPwmf+1wvOO8669QB4HkenU6HdDqNrussLS3x6Be/yJRhsCebpb6ywje++EUe\n+MQnXuqG/DweeNe7+LPdOzh+aZWBZI7TTpNlt4PWbXG7qjEoIIpDHF3nbOxgJzI4bZtiGBKjU4w9\nmlgkEBj41KWKiUZvqpvBJcImQCcDXGGYGiMkKdKLwxtCYQOBh4qNQxKwiHDoAiYKQf8OOoPfN1Tq\n0OIsHh5ZHIYRTPa7J+tABYMGESU6WHicAoZRGSCWMWG4ydJ2jGm1+cS7buX0lXWePf1T6h0bJziL\nZkEsBLfffhuOM8mTT66QTrf4/Oc/SS6Xe93rEgQBFy5cYGlpjWw2xZ49N74hhY3neUgpX7fl9JUL\nFzCbF6hWBG69Sa0J5fJRPvmBe8ilUuyaKPDjhTLdbgchJE8/9SQXTh3GaV1ia2SAW3bPsW0YXBwd\nZefOcZ599jyl1YCh9ABbkYOdGUcPZpHeaSZCC5vBvq9LhTSLxPjkydLAwybCJqZECoM5bCwczrBF\nFh+fPG32ABYxCjpDwFk88kh8TJokCRmnxwQooNDCIO7nz0h0DFxUVHRiuqi0MBAohETArKnSikxK\nms1gHJEJI7Zp4ugpFKEQazpWaoh8/i6kVyZrRoyoBk3nCh3f5+iqT8efJZMcQVXaREYHmUlx19/7\nAO9//3v56iOPcPjqVdJC0JESY3SUj12DD7q5uTlM83t0Og2SySwAURTS7a7xuc99jJGREf70T/8b\nZ8+62HaCOC5QrR4jkwmJ4wz1+nls28Y0p4jjDRqNs0AB112hx8QYoJcdowENhLCJ4wq6bhLHJlIO\nEMc+vaGJChgIzmGqOunIJ02HBm3afV6IS4O4P4oN0HBxSLDJFAoJJFkghWQFSYqIBXQK+DSpEmIR\nYKNi02WBDiGGlUANfJQoCSRJEqEqBh1ZJJYjVP2LnFAiDu2epZW1uH/HDubHxlgrl5mensZSVbZc\nl2azycmTF2g2V+jxYBzyeZM77riP1dUKruteE+v3X4S3i5E3ACl7fJFvvUWzhu+8EzwPXngBrrfO\n/Pe+9wOefvoEcayj6xH3338bV8+cYlcqxXB/40tYFplkkqe++U327N2L9gpLWcuy+O1//a/5r//X\n/013s8acOUb1/AlGNYXJVA5DN4hDj0QckYwCWtLFUnRMTaEkQ9Io6HEd6OCgoSIJiRFsoLONJKBK\nHh8bSJKnhkDDIcbGRidkgJAmgoiefdI2CjET2LQYo0WSAQQONUqsAa1+FqXODBKXCA1wMVSThNoh\nCqrcKiNiHErkaNGmSwsbHVdJoaIyM7if58/XeN+hPTiNJ9lcWmAqP0mpUkUMzTIxPkcmUyCTKbC2\ndpFnnnmO97//N17XujiOw1/8xZdYXvax7SJBsM13v/tTHn74fa9S4Pwy1Go1Hn/8Sc6dW0JK2LVr\ngve977VNb7a3tzn/3HN87qH7qTab/PnXHsPqdvBdl6ee+wlLK8tksllClimVznPiuacIV5YYDWuM\nJy18N2ZlYZX9oyOc+e53yQ2OkErqVOUStpEmk1AppA9wcfUCNiEmNqrQCWQENBhHsE2MT5M5FDQk\nNXQkNRxmMWigIdC4CmgUcDEBE4lLhxQwREyNHCUyxGSQDKFT6bvlanSBDAFdDDShoQAV2StthghI\noxEhWMWh6YYMWYPUZchYuoAeSZrSZ3p2iFQqxeELZwmCLNWtyxhmQNYUzE9NcHGhzLPLqzj+JLHI\nMVrcTcVxmLlhN53OCQ4fPs+DD97Hp//BP2B5eZlarUYmk2F6ehpVVV9rif5OYNs2n/70+3nkkW9Q\nLqeQUkWIOg88sI9du3bx1a/+Dc1mjrGxSUBwxx3v4fjxU3ieSz6fJZudoNOpomkuqjqD627R7bbo\nmYcXUJQMUhqoagJF0dD1TeJYMja2lyCw2Ny8gu+n6A1LdISwSKi3Aav4Ypt9yTS+bHC1W8aXOlBG\nx0QQEOBjU2UMgUabHBEWvWiAAXoeMUOEgGSELiW2WELiM46BQVNVKJhZpCwTRAJNiWkJ6KLjyYhY\nSAxb4ebb7mbvbYcwjRXq1S3+6vuHWdsM2N528IM6jtbg3ZgsLraYm3vHSyOvZnOVw4d/yO7dWXRd\nf9PX9pfh7WLkDeCFF0DX4Rqa1f1aEAI+8YleyvD1Vox8//sXmZg4hK4b+L7L179+lLh8gk/ffdfL\nvi9l23RXVvjm17+OIiWjU1Ps3bfvpVHDnYcOYf7e7/LsE09Q2dxErJ5jXB3EjhVAxY1C1EiihT71\nTpNhIVkNTTblEFmpkqBEmwUiZpCoqLQoUKWAR46QbTa5QhoTBwUdGKRLCpMGkiQeNUr4tIEWSVwK\nqDiMUiXHJD2hXkQRC49FSsxCP7O15/b4PClsUvjo0SoDNPEViRJb2CQZRmcLiaHqxHqWLbfF4TMn\n2T01x1d/8BSDUcSHH/4kiqryve8dgTjmp0/8v9z/4f+JbLbI4OAkL7xw7HUXIz/+8WFWVgQzM7e9\ndKzTafLlL3+bf/kvZ37lh5rruvzZn32JdnuA8fF3IIRgaWmZL37xS6/5us3NTXKAqijUmk0yAtxK\nBcNx8CsVNtpt2rbN5NgYMzMR5x6/yM1zO/C3BdOZArGUnGzXOHnmIrccPMDXvv1N4rZGNtBI+xpr\nHQeh1VGVCkkjQsMjjrtIWcek3Y8xi9iJRg4TkAg8xonZ4BKTDGGQwaXJVl/10iFEEBMTkSImg2Ab\nhQEKbOADl8mSwsNDJU8LlQwehjBxpIurhCzKHkW5hoIHdOmQpssQCpFUSKbyrEmfISWGUFIul1BS\nKerSI0WTQtImlQ4pby9zPt7A1QRr5SaqiLEzBSqOw+DEBJZl4zhpHEdjdXWVOI6RUrJjxw5SqdTr\n+t34u8L8/Dy/8zuf5+rVqwRBwPj4OMVikSiKePbZ45TLOj/96VEAUimNbDbDxYtVwKbVWiKdNhGi\nRLtdY2xsB4uLR4giD0WZJY4dEgmbVKpAq7WOEDH5fJFq9QWGh/ejqi2EKCFlHphCoBPIAIVthnI2\n9aDLQBwyqUaM6FlOuXkcWcVhCZMMCWLCvkNvkl4/lD5hXUFQQNAgIkajSIqQOovE6EywxQp5t40R\nxHjUqcY+WyRwGQTmEFobTRmlXHYJQ0kQwJnlMrVlDbduoOkFfH2CREbjiSdOYlmzNJtlcrlhADKZ\nCa5efYEPfvC916TQ/GV4uxh5A3j0UfjQh67PEcfrxac+1QvP+8M/vL4M0CYnD6BpvY3NMCwmJm7i\nqePfwfU8rJ8z51nZ2uL44cMUFYViLsep55/n2FNP8Ynf+i2y2SxCCG659VZuufVWoihivVTCff55\nbEWhWWniRxIRBmwTYyg+1cikJAZADNCSklhmieR5hDiMKg0KhBQxyJMkoEaRgArLNEnTxcSkgiRB\ngwxd6qwh8Pst3CpFBumg4zBMQMwFQiaJidBpMoVGmw4uITkcdGxCFkkTYUVdsriMaCkq0qdOB0UE\nKFJHR+JrFlkzTY4ORjbLSlcyovo8/P7fIJNM8qMnnkBurlBID5Js13n2pSPT6AAAIABJREFU8T/n\n4EOfIpHIYFmvn5R49OhpRkZeXrkmkxkqFZ21tbVfSYQ7f/481arO9PTcS8eGh6dZXm6+5utM08QH\nXN/nxIkTvHNsjCOlEqbvo+s6lWYTY2KCd+3Zw7MvvMDusWkGMkNUaxsAKEIwqKps1ZucXlhgRkru\n/8iD/MWXv8765hJhrcx2oKIoe2mKEgUdFL+FTYk0vbIwRGEQlQifGK3vKiIo0pNgg4NgAJsYhxZx\nn9mTIsJDYQmfEj4KkhQaMQsoJDGx8VjEwqdFli3ZwNIlhcwMcWWbJJu0EBgoTCIYIUFEl9WgSyVK\nMZhI0Q4bEHdY3NrgUm2RXfkBSsESqmgzHWe5cSBH2etQpYm1e45YzqJoYwwNjb3UnpfSBWy+/fWv\nY3sethC0gZve+U4eeOiha6q6sG37VRbljUaD558/RyZzL7ncbsLQ58SJx7DtaXbtmiKVStBuj7Cx\ncZF8XmVoaBjD8AkCaDQmSKdn2dx8HkXp4PshUvrMze3HtiMcZw3LslCUMqY5jO9ryLjSy6OJVlFF\nGVUOsK7ENFNZ/G5MUhlkxOiw3XgeSZOIFF2gQ4ORvmmZ0WeIVYjJoNDsa2NcbAxq5PBJIrFIMSYL\nLEcNkkLHEjGKhAksKtRYZwFdFaTTk4yPH2Jh4QzT0yaT87fQdNt40iGRyjFaGEHXdY4fP0exWMS2\nu1SrVxDCJI5dhoYy3Hbbq0fc1xJvFyNvAH/91/Anf3Ktz+LXw759kM3Cj38M11Ny+IuFyItIJNKk\nhqc4vbLCbfPzCCGI4pjHf/hDDk5OctOOHXiehxZFLC0t8YPvfpcPffzjL/sZqqpy5zvfyQ9XVri0\ntYUuQjxdckVAx0qgCR2/O0w6TuHLAKEm6CoJkHvI6ReYSLjMt9rEUqURdYmlSgKfKVzOY7HJIApd\nClQBjU0cJClGGWedNabwGCZFhwY5TFR8timhkCWNQYcYjTY6Dh4KClWmcUgQs07IClla4RiKGlEV\nJdJykxaTdFHJmjm6YQ1V3UKVJpqlMDE1RiaT4cKZMxQVBbJJQJCyEhTMBOePfo/RXXv54Adf/4eR\nlL/smde3UW1sbGOar+anJBKF13zdzMwMfirFuaUl0nFMFEUULAvDMBiYmGBHKsWypjE7NsYTp05h\nSw9N1/GAWMYoQsEPQzTDora9zYHZWQZzOd6xfyfPXnmMexIKT3sdrnjnaQcZVo0mY0qD0UihAtSR\nuAjqhOgI2viUAQ2BIAQcgr79e4aQDVoU0Wlh0iSgTpcqw6QZpo7T33xUMmxjEZAlJujbdptEqNoI\niajLLhwKaLQJaOKTIw+4NAlZlzGJWHDz4E4qnRKXW8e40TLJqArzY0MEseTE5UXa0TgJK4sRN/n0\ne+/hnOex6SbY2oowzV46daOxSDars7l2hjuyY+zrF5VhFHHs+98nk8tx+8GDr2uN3yycOnWGVGqK\nVstD113CsIFhjOO6BiMjBu9730M0m02uXp3g9OnHMYw2mUxMMjnLsWPHKZVqQIiUdVw3iRBd8vl5\nTLOMZdmsr7fwHA1VsVFxiZVtVCWHrqbwAp2rLgyk94OWoDimovlNVldPMEVMjphL1MjTG89CL1NI\nImnQY6A4SAIEaWKm8HGo0cFAkqFgSLTIIiHb7FJsFJEkRrAc1sgRURNVMtl72XnjrSQSeZaXt3no\noUNsbARoWsT0jt2oam9blzLGsizC0Gf//lswTQvXdTBNg25XY/w6U1+8XYz8LXHhAlQqcOjQtT6T\nXx+f+lTPPfZ6KkaCwEPXf9YBcZw2u/feSGGmyLNnz5JRFNYbDYRhcOehQ1y9usipU5eIY4soDvnu\n6T/l5oMHX3Wn/p4PfID1CxfwSyWOHz2KmkySjCImu10iX2ANjNPwJKttMKWFVASBkkWY83S5hK85\nZFUVw/cIhaDthaxikSOkRZ3L5KgBGh0sTPKME1ElooNPmi0giUmDDhNAkjouXTwMrhCQZJBhRmlS\nZgKFMXxsDAwKrPdb9akoi8TG4xKSCzhKGs1rIKRHxhhgs5tECbZRbp7gwvo626ur7MjlSJsmJ89f\nphIojMqYbuk80+8+wMGDt7/udbn99j386EdXmZr62V1qt9vCsrzX9aE2OFjA91dfddxxGq/5OsMw\n+PBnP8uf/Pt/z3ajge55lF2XfTMzDA0N0fI8hKIQhCHjs7O4pW0a5Q3swiib5TX0OGKxU+Xu23ex\ncPUq87t3E0URV8+dY9/wMKHrkg5a7EwKyo7NaghrUQWBQhsVm5gBdLYJSCJpouCSIaaKQ5siDj4K\nMQ5FK8tWOEBF5GmHbXyZRiPLEFOUaWNzAEXo1GSbBHWmUNGR2OiUiTmKSei0mcyOoCZMgm6XUVKY\n6CzQwURSRqejqkxKl5Xt8+jOJpNKyP1jY9TrNerr60SmyQ26ypnWOsPCQ1UjctkMe4E9O3bzxBNH\nWFq6AAgKBYuhoSJpP8He6emXrrumqtw4PMzRp566boqROI45fPgIv/d7/46VlZgwvIiuj5BI6Hie\ni6pqTE/PYlkWlmWRTicYGWnTaHgsLraxrN3Mz1ssLCziujpCVIA1stk83e5JNG2CVsukUb6AjLeI\n4xU0ZRRVmSSIXULWMQyVlC1wvAaCNBdbFXLJVcbzFtPtkDOdDkls2rj9xCho0uOJhP3HVXrU2Rwx\nETEeMWVMVKPYC2BUJXocoWomMraI/QCNbs86TTq0/Dal0gnCcJtUyuNjH/sg/+k//TdSKZ12u0Mq\n1SP8tlqb7Nmzj5WVS3S7uxgYmEdVI8rlC7z3vbeTSCSu0Ur+YrxdjPwt8eijPeOw62m08UbxiU/0\nyKx/9Ec9Dsz1gJWVE4yPH8A0bVy3w8bGKT760Xs5ePA2Njc3qVardLtdDj/6KN1ulxMnrpDLzaCp\nOmEUoVU1/st/eYx/8S/+4cv+2MbGxnj4n/5TnvrOd1jtdlk9fpwJwyAPNKI2p5urbPl5FAaJpYEh\nA5CbZK0b2W5vMZrwmRMCU1XZ8H2WEGSxGSNFB1inRpOAEQIsBpCUaIokjpwl348+a9Ghw1U8OhjE\n/QAtaDFBGoMGVf4/9t40SI7zvPP8vXlV1n13V98HunFfBMFLAEGIt0jJFoeWRIkKcSTRHtszkm3N\n7tgTlr2anZiInQlHeGPWsfaMJ2zRq4OWLIoiTUokIR4gQIIQiPtooBt93133mXfuh4YoygSpwyRB\nOvT70lVZld1v55OV9eT7Ps//345PmhQtGtiARpAufKZosSR0KoTwaSciqmQ0m5hcRdY6yetRuvu2\nEYsJQpEQs2KF41NTLI2PYwuBlUxy99VXk4lG8RckMokwTz3+OH3Dw6xfv/5n1nzs2nU9Fy48zOTk\nUUKhLJbVQIg899//oZ+rCG7DhvU8/fTL5PPzZDKrXiel0hKaVvqZ+3Z1dfG/f+Ur/Nmf/An9uo6S\nSBBw3dXzpVZjYNs2Rubn2XvXXdi2zbPf+jb18RkuVpdYalZJZjNMVCpkNmyg7jjoloVZrxNUVUby\nFbLpTjJKkENT80y5JvVLqqbtCIpwyTfGI4CHIEULlyIhsngEL3W9mDhMmAbLUhZHtIGiYdnn0bFo\nsIJHCgRUfYMoZbqQSF9q9VzEZpR2FHIIVBbrGl4ohDBmwXPR8HCFTFXrR0g6iphFC7rIUon+uE7T\ndokl4tQadVTbZrFaZ000TUwVhCNJIpkujh0bI7O2gztuuJZPfvLjnDt3jmKxSDabRdM0XvzGN96w\nHBMJBqnPvjGBvFJ8//vP8Dd/8wzN5hDRaBIhXExzDEVJ4HlFurr6yeXa8C9N4y0vT3Lzzddz+PCr\nHD9eJpGQKZdX6OjYhmGs0GqFwYdmw+bE8aNEQosoWjet5jwhbMJ0gNdEFicxpHZa4ioQBwkHNyHL\nIUKyia0HKdZkbDOBonWQZ5QBoliXbkOyQA7ovmSbeQGPJXwal0wVLTwmhEwl1IGkWhTNFhnNo9I0\nCITa8GwVW67jWBE8P4avdBEKr0VVg9RqJ/jyl79IW1sbv/7rN7Ow8AjT03N43mpNDCzQ1tbNjTf2\nkUqFGBs7TDIZ4/77b2Lz5s1XLpBvwjuajAgh/pxVf5+jr3fwFUL8H8Adl55+2ff9Z9/JcbydfOc7\n71/10n/KwMCqVsozz6zWj7wX+PCHt/P880cwTZ9QSObee29g584dAORyOXK5HJ7n8eoLL3Di+Gk0\nLYEir34ZLlTzdA3vwDRjjI2NsXXrVpaWlti370VGRibRNJUPfGAb195solarRJeWCPg+QpFxvUXq\nnk9MbcP1LQx/cVUh1fIIRfvQOqOcnptBajaZtCxkSSMr4iiySlxRCJkGo26dEk0SFHFFjGU/hMGq\nuygIZAJYpDBpMEOQBhuR6EUlSIsCHrN0kgeCWEQwqKID8mpZJaaSIiBlMEUTLdnOXKXMxdYKUVUQ\n0eI0mxdpT/cxMTLPqcqrZNNpGo0GPfE4ihBY1SrPjc/wwtlJzo+tsLYnzcX2FMfWr+cTDzzwloZZ\noVCI3/zNTzMyMsLk5ByxWIqtWz9EKvXWyyyv3/9zn/sNvvvdHzA9PX4pnlE+/el7+dM//b2fuX80\nGuVTv/M7fP/rXyfS18fI6dOUl5cJpNMELIu8LzHx/FFkWWHD3psZSR3jpuE+dm3aRCwcxnFdnj93\njlcWF1EvjnMo3+KFhokkBFtVm2qzjmLXMYkgiDBNjbXYxC4py9goXCSIIIaKBKyjwAIeMyjIVLBp\n+hKS0geujOudQ5V9PL+bBa+ARwPJtwFBDA+dCCYeFgYLhAjTSQsFG5mWAZFwjla4QavlMudYrPgS\nqgsBVaKnZ4BkwiJjtNjR0c6PpqZYyedpGAaO62KZJme9PFY0jRvP0N05yHJxgbFimd8ZHCQQCLBj\nx47Xjm2j0VitjXFdlNcVNC6VSnQNDr4hFleCYrHI/v2nMIw0g4PdXLhwDkVpR4ghEgmHZrOOaZ7g\n7Fmb/fsPUCrNEAxWaTZ3ks8X2LZtPUIEWVqSabVamA0Z14gi3AKW4YGfRGvZtOpT4KdRpQGE1yJE\nFtct47hzeKKILvk0VsZoeSa+7wEWiAEUJUwkGEWrzGOhoxOnyQomq/4ydWRaqCwgIfBIBkL4ER/H\ncsgSIJCJkVu3g3hcJz/+KvqUwZlqgawcpYWPp3VT8G0IpBCiSSIRpatrK11dq9L9W7Zs5o/+KM53\nv/sEL754FEVR6e3t5KabNnDLLTe9Z8zw3op3LBkRQuwAwr7v7xFC/L9CiJ2+7x+59PJDvu//JyFE\nHHgMeF8kI9PTMD4Oe/Zc6ZG8fdx/P3z96++dZGT37g9www3X0Wq1CAaDl632liSJuz7+cf70wCto\nNYOW51NxbMxEhu3rdrK0NEWj0aRYLPI//+ffAz10dd2E41j88IcjzJ19nk/deSc/2LePsfPnWWq1\niIogA0qNmj+KosQIBDXCqd3Y1gqy5LJ2zTCLvsuZqSlM22ZQ0jAdD1UIbMcmq6qseIKSCDDteTR8\niVUviyxlCrQh0AlgYVFkGZMUMt34CBw0Vu9/M+SZJYOOhMWPu2sagKmkUZUIdXsCtBTd3buZNA9h\n2v34joKws+QXirilZwl7TYS5gNTTgZzJ4EsSAUni4ecPs+J0sPeqXyMZjVGoLGJaKwTkUY6++io3\nfOCtjbM0TWPr1q1s3br1l4pte3s7v/3bD1Aul/F9n0Qi8QsVR65bt472L32JkbNnGbz9dpBlwuEw\nTz31IprXQ2fnGiqVAo898iSLFw5w38278C7dJSuyzDUDA3zv/CgltwPRuYfCuVEk2+CAsULSrzIj\ncnj+OiBKnRWOcpEYeWp4mGSQ6bskWqUhCBMSA5T9Fr6IYxMlHC0jqBEwoeyAovQh/HY8OvGo4VMl\nTB0dhToeMquzOzb6JZFxCU3SUYSFVS5TdVo0PRWLbiQpDVIYw1+mszPMVVft4MBjj7GmoiN5Hofy\nefpiMSKKguyrzCsqSjQJ8QwT5RUWXI+brtl92S+lcDjMVXv3cuSZZ1jf1kY0FGKpWORis8m9t932\nS8X67WZpaQnPi+D7VXQ9zNDQWqanJ7DtJsvL5xkYSDA83E+h4BAMNmm1woTD21hYCKKqcU6ePMWd\nd97F8PAAzzx1mkRgPYX6FJJbR/N1HMC0LDxMQqzFQ8ZmDpkyCi4tKmT8Ag23Hc8N06YO0PRsKn6L\ngKjT8n0u5vNIhKnRIkuMImVmcXFIIJHGQFBCp0mICXOMm8I+mUQMX9U5bqyQjKsMrOlj165B9IDP\nf/k//5K5pqDVLOCrEE5upS0Uo6Mjx65dG/D9Os1m87Vj1NPTwxe/+Nt84Qs+zWYTTdPeU627P4t3\ncmbkOuDpS4/3ATcARwB835+8tP3H7sjvCx59FD7ykffOksbbwcc/Dn/8x1Cvrzr6vheQZflnthX2\n9PTw6X/3O3z9a89hxdpoS7bT3t6LJMn4fpmurk5eeeVVXLedzs5eYLU7p79/OycPfpcT587hC0G9\n0UCRJKpCISxpmE6Viu8jojvQFBNNW2bjxo1MO7PM1ev0pFLM2DZWy6RJE8fXSApBDYOCHCKrdiO1\nDOo4+FSQGaKGhEcJDeuSJ03gkrqryqokvIGPhk6KIhoLVEnSoAefCVYYJ0TLDeB5M1iegyoE02NH\nCGptmIEEmtZCcUycpoXkyqSpcFUqQr3RYAa46e67OTcxgRFwGGpfQya+qteSTXSxWDTwHJdzR4/+\nzGTk7eIXEVq73L7Xv26cx48fx3Ey9PWtY3l5hvMHHyPXMlFaEkunTzM3Pc3eG28km0igyDJnz87S\n3TfEUMbDDc/TKhi03DhnaQJpdCWG5Wj4JJBJUycERBDI+ECTRVR6iOJg+RYImYCcBqGSToSRvSTV\n8gItO0eAAIgWplAQvs9qrOdxgClMujGw0MhjYuPioqNJOkt2hXYcDJpo9OFLUZJqiEhQo2xqrIwv\nsO3Gq6lt3syBo0fBMDGTfbxsaJSqNTRV4q6dNzFjG6hbdhEPRQk1i+za9ebumDfdfDOxRIIj+/dT\nnZ+ne80a7r35Znp6et50n3cC13VZWFjthOro6HjtZkTXdTQNwmEV02wRCsVYv34blco84JBOWzhO\nkquu2snzzz/NwMCNyLJKoTDNpk2dzM8XOHbsFdraevDsR1lsrmBZCppvYYsiYb8NhI3wxSU1mVly\nFBhAQ0ZmEYmC5FH3VAIijuSspiu+r+J4NrqYYskPEyJGAQOTMkF0jiPQSaAQwCaJQRqBwKJEszmN\nIzQ82SMeCRK2L3L99TcSicQIBgP8q4/fzj/8wxE0fR2mGcEwfDStAOhks1mWlubJXPLnej1CCMKv\nc+V+v/BOJiMJVhVjYNXrZ9Nl3vMV4K/ewTG8rTzyCPz7f3+lR/H2ks3Crl2rIm7333+lR/OL8YEP\nXM+pU2MUCkFSqXZarTorK+Ns25ajp6eHxx9/lni896f28X0fw5UZOXKETYkE6VSK6VqN54wW+WAX\nejiO44Xp6eqlUpnHs+qcO36QRr5Ij2NR9H3KXoKgGiDh+lTcAjXP56KkkZD7iNsQIYBBgAJ1ZBaI\nkMa4ZKIFy0AEiwYuChLKJX+LCtAghImumDRclzO+wzIyNZJ4/hCuDz5xXFdjuXScZDRLOCBwfZ9S\nrUC7cMCRsVUDw5Rpi0SYLq3WZGRTbcSj0hvulHQtwWJxkcGhN5+hcF2X+fl5PM+jo6PjXfcpeSum\npxcIBtMYhsGLT36DXLmMJWTMpocwbPqTMkdPn+aO3bsZm5tDDqQx80VEvU7UdckEg1SdAFW7Rlh4\nrLhlAnIYy61cEp7ruKS928QmiCAEzOEQQZJqhOUQDXcZobUj2za2BWFdZaVpEFZUNE9QcyusTtaD\nR5xlAoQoUGSBrkvqEUVahInQcAokcbCpARYRoWD4Joa1Ar7HQFCiYqp8/+BBGoUqLV/hbMGmM9ZO\ne0cXOUVlbmacpw4+S7ojw/B1H8JxDHp7NTZvvtwleBUhBDuuvpodV1/9pu95p5mcnOTv//5JarXV\nczEcdvnEJ+5icHCQ3t5eUino7o4zMjKHbWcIBALMzBzG8+aZnFSpVi+iac+hKAk2bdqCLKsoSgjH\ncdm7dxfPP///IcsNhHDRlSyy7eD5EsJvo8Ey+CYyEjUqZMiTQ0bGxQMCOLR5LlVJR/XzOERx/RZZ\nPALo6L6ERJUaFi5BTOrY6LSIYrIBCR0PgYNMCBeJMI4XQpXi5H0P2wpy8ewkDz/8ImvW7MDzLMbG\nlunoWEO1qrC0VMRxklSrCouLo7zwwpPs2JGks3O1/mphYYFTp85RKpVRVUinM3R3dzEwMPCuuy3/\nsryTyUgFiF16HGe1q+k1hBD3AEnf9x9+s1/wla985bXHe/fuZe/evW/7IH9elpfh+HF4j8xavq3c\nfz987Wvvv2QkGAzy4IOf5NChH3H8+Fk0TeWjH93G1VevOlJmMnHGxmqvyUkDFIuLJFyDLZs2MX78\nOBlZpjOVYpNco5HJsKH/Os7PL7Jcn6JVeJWU5uL5CYr1Fp7XTkkF38uQVxs01TotT0XVWth2nDZX\nwvZWP1QpoIGCywk82gnhY1Ihjk+RBpDCYxFI49JCFhUS0kXWynU2qCqmFeBZO0iBLnzW45PGp44k\ndITQESQpN5boCYdIxyMszTeJ4tHyakR8i3y+Qb5YpCoES8Xiasu0LiPHYpiOTeBSC7VpN2naBpve\npGNiZmaGb37zcapVAQgCAYt77731DdoPVwLDMIjFQhhGnpHTI/hL8/RkOhAIzGqeqZkpurIpCsvL\nTCwssOC6ROM6egOm5+dJBgK4vk9EsQl6LnFZUHWLtPBYtSH8sSy8Q4IshuRS9gL48jRqIEDQj6JH\nMzTq40SDGpIZQvJL1L0WSA0skaDq1C6VwUaQCRIihUSUOtMkqJO6NIcmpCWafhPPB48aOcoIFLKS\niiokKngUXZ+VlkW+NceRkyGGs1tw/CCK7KL7Cs1SFd90adfS5J06K4tTPPO9/4c//i9f5vbbb31P\n1w1UKhW++tXvEY1uord3deauXi/z0EOP8/u//xmSySSf+cy9fP3rj+I4HtPTZ5mevoimeSSTG6lW\nE0AM3zdYXDzIhQtn2bBhK65rEgpliMXC3HbbbtraIkyOLGHVQ0xMN5ClGCoWVXeJEEFAockEQZoo\nKBi4mDSJCRvZ9xjzWvRoURpeEcv1VitAhI/iOWRREVQwaJDDpkqDOgKPOglimICBwMBGUKXq+xyp\nlkglcwSVELOVMCkzTUfHIOBz+PARXFchFgsTDOYoFpcpl8vMz8+xdm0n5XKOr33t26xbN8g//uMh\nmk2VU6dO02oppNMxNm3qZN26JJ/61L3v6dj/mHcyGXkZ+DfAt4FbgL/98QtCiK3A7wJ3v9UveH0y\ncqV57DG44w54j8j4v638+q/D7/7uasLV1nalR/OLEYlEuPXWD3LrrR98w2vXX7+DEyceJRpNouur\n05ZTU2fpDMvs2rMHz3GQKxXioRDdQnDGdgjo0+iBRaKtOfZ0RzHqAWZXCpieR1P2MFwVXcmhYCEp\nJhUlQ0xdRuQlUIO4fouav+oJmsLHoUGSEgYyPjIWZZKX7Olb5HGYAmySQY1uGghFx0Yw6fsURAZo\nx/UjSMhohHD8Ip636iyqiEVsO42mhOjKpijPThLRlhiUBbasUmqaNHyXv/jOY9xzz4fZdm0fkjTA\n9LkxokLg2C3yjTFuuPsOtl911RuOX6PR4Ktf/S7B4Hp6e1ft41utOt/4xtN84Qtp2tvb37nAvgUL\nCws88cSzTEws4Tgm586NYBUDhIJB8MF0TFJJmfZIHxfyeWYDAXb09PCv77iDhx56mJeeOItj2wRU\nlZZjYxpLdOtNbNVDaYTQAylsO49j1gnRBsLBFg7hQAJXChANt4iHHQzbRY469GbbUVsFisuTeG6T\naMRHUkLUa+eJC5UAEjUsII9PH+BiESaIjoFJGIlBSQbXYpkCJk2ykoLtSVS9ZeIix4pvo/rguA3S\nUpU+EjRaJWQRIBFOsWwW0esF+rMdlC2DvA0DuXaSapD56an3XBvnP+XMmXO4bopo9CdeR5FIgnI5\nw6lTZ9izZzfZbJYvfvHzzM3NYRgGzz33MmfOVBkdLdPTM8TIyDialkLXk1QqyywuTpFIyGSzGRYW\nTnPPPdcyPT3P5quvZfzkeZSFJp5jYbsuOhqCZQQqQYr4NPAJoGCTwyKp6YxbPsJfYcVJ0PIUogJU\n4VD1Z4iQx0QQxUUAg0AEj1eossQ0LVRsYnj4CGaIKTXSeheeohMXIU6W85TkNk6fnqRWe5pAABYW\nlikWY2zdOkgsluXsWYVsdgulkiCRyDE8/AFOnTrIgQPH2LbtI7zwwlMkEtfQ0ZGgUJhGkjoYHa3w\n0kuH+OAHb7pisf15ecfmb3zfPwYYQoj9gOP7/hEhxH+/9PJ/A9qAp4QQj75TY3g7+da34N57r/Qo\n3hnC4dVamL9/a2Xu9x19fX3cfvt2Dh/+e/7hH/6Cf/zHv0KS5lm3ZR2yLDO8cSOuEETDYQzXZbC3\nh5t3rGdgOMeWaJihVBrFVwgqEdJyG46XR/IdPGwQChXTRgpksZVeSpSYt8uUPReLVWEjjTpRlggx\nRYpZ+pkkSGFVZFzqI6ZcQ1jZSUjagi9itJJZuvv7ORcMcUqKIoJZFFkjQJ44NnEUoujILCMpJQKa\nR73xPOXlQyyWz1P2xhjwClRqJkUjiKG24ek51LrEYl3lYx+7nfb2Bh1DIeyUidZt8aX/9EU++9u/\nfdlCt5GR85hmjFgs/dq2YDCConRw/PjpdzGSP2G1KPlbLC/H6O3dQ3//zcRiQ+TzJ6lLBpPli8AK\n29Z00N/Tg4jFeOAP/oD7P/c5urq6+K3feoBERwtDWWS+OYWlzjMQr5LTQRVT2HKejVuSXLWzg2Co\njhSII6sZLEXBUnVCQY9EtA2PAN3pIXrDObZ1bwdHJmo16PNNtuI5NTAEAAAgAElEQVQSrc/RaY+A\nO4vHNAGKpMni0wBcVBoIIC7p5ISG7BnUaSIDJSFRkYIklHZ0f4mz3hlMfwmXFWTytIkoMc9HNAqr\n7keShxRto+hLXKgWsSyD9qDHFj1MoF7hyUe+C0ChUODAgYPs2/cc4+PjeJ53RWJ4OcrlKqr6xoRJ\n08KUSrXXnkuSRE9PD8PDwxiGg2U5SFIETdMYHOzG8yoIEcU0J5iZeZJczqRYfJVbb93ANddcTV9f\nJ7mOJNt27ybT3U+6rZv29h5EQAMpQ0rpZTDaf8lNxiaJBZJg0XEoyioGPkWxRFmuUKJIxbvIRn+Z\ndXj04hIEgkA7oAO7MEgzT4Bj2LxCSLxEm3QGyVcYNxo0PZsVu87FegMR6CEaHWB+Hs6dMygUTKrV\nIlNTY5TLRXxfxbbLxOMxKpUGAEIEWFhwaTZrGIZMMLhajxUOp5meXiCXG+KVV0694/F7O3hHW3tf\n38576fkXL/38+Qwx3iMsLcHhw6sFrP9Suf9++MpX4AtfuNIjeftYWVnhxRdPMDCwi+HhMLZt0mrN\nMNUYZahSobOzk8ratZw7f57JRoO1fX2MuS5rhoYoLy6iCYGPgSzLxGI5yqU6NZpgj+NaKWpCRm/q\n5M0lApTxMWmRw0IQoYRghSSwSTJRJJuGp6J4MnnCyEoPshJBwgNJJ5yOk+6YwVY9BoIh5nwLq+Ii\nu1WCko/jBZHIoCLwWCGWUvBEiJgzzYZcDFnTuDAOsy2fFTeAqkcwFZ3ecDcrrSJTkyvs33+YYDAM\nmKTTAW66aTe7du160zXlWq2OLAffsF3XI5RKby3j/k5x5MhxPK/9Na0SWVbYvPl6lsdP8+vXdnBx\nfJyQZZE3TeZLJfw1a/jg7be/tn8mk+H/+r//G3/xX/8rL333u4SFwI9GWZPqxa/VUKNbuevDtxMI\nRDDNbzA2No/rxLGdBhHdJxUNEwkJStV55uYm6evs4+LEcTLNFp2pXubLY8Qti6ArCKOTUjqpOkss\nYOGjI7Cp0CDDquS6K1xMWSWshWi1qkxgseAHWXFDKLTQcBEorBE+CSWI7cs0fZ183UTTLdxAmnja\nYrniIiSZrkgUhQYZHbrDcSK+x8lyieeee55nnz0OZJBljR/+8CxbtrTz8Y9/9A1Gk1eC3t5ODhx4\nGej/qe2tVoH+/suL8w0P93DmzFE8b1XrNBQKEgjYSJJCV9cWBgcVdN3m3ns/yPZLJlxbtmxm//4j\nmKZGV08aWc4wNX4CqlU0pR1VtomoATQ5zZw7v1q547lUgBIhPNagBGP05YJUp1/kBgd0VFTfoe77\nOKw28tdQLzX0O3RgEpQdVhSFgKzhOBFmHcEkXRS8EPXmMnJkDapm0moZaFqaUCiA59VptV7CMKLM\nzJzANCWiUZ9MpodS6TyPPfYwxeI8lmVhGE18/yefY9/3EUIgyzK27f5cMbBtm4WFBYQQdHZ2vuu+\nNVf+LHwf8K1vrc4cvMdnOv9Z3HorPPAAjI2tao/8S+C55w7i+1309PS/ts22uxkbq/LKygqFQz+i\n1Wjhx5Pc+MlPsmv3bvr7+3n04YeRu7sZO3qcarNCqdpC19rw9SRNuQvPzWNbs+haJwqTaO4ig3Rc\nqqKvoyLj0ETFQkgSbiyGUBQQKlpdoBoBED6qFqFpVQgEdUIRmUCii3h/F8eOHMJtXiRopZFFiyBZ\nKkzS4iKSqNKj+dSbPrJVYWdPho5IhM1dXeQXF3EbPr7aQSzeQUgOYlgWciRBteXyve8d4J57HmTT\npqtwXYcjR0aoVB7lgQfuu+zx6+rqwLbPvmF7vb7C4OCbF0O+k0xPLxCN/vRaYjKZJBDvpliv8rE7\n7mCxWGSxWCRsmvzmH/7hG5Youru7+dwXvgDhNAdeOIDfqOKl0/yrz3+es+cLRKMpVFVj1649lEov\nYhglNEUnqmaRRBVBE7m5sKoGY6cp5WdItGxa4Ra5gE8VFSQZ1RP4AZ+wFCRpmRSZxCKFBCgsEZKb\njHguIV8mYJmUPJMSEdLSWlxkSp6NRZag2iQWiBORNITkYrdaWHIES67T1bcGTYtSsV6hrk7hOhGG\nkxESksLY0jzlZpmuTYN885uPs3nzR9H11WNRLKb45jef4ODBI2zfvpk9e65h3bp171YY38C6devo\n7DzMzMw5crk1ACwujtPW5rF+/frL7nP99Ts5fPgUExOTVCoxGg2L5eUKsdhq59mqzmk73/nOPgYG\nBjh+/CQvv3yS0yeOkZ+bplJoMrVQIZYYINe5ntmZUSIs051bR8WaRql5LKEwT4AoAgdBmxoiHkpS\nyM+jeBKLuoJs26gOFIE2FHwENiFCyNRxaMktEopEe38/M1WJdGQHQ47NeHEWLxhGmFFCoTiDgxqT\nkzMoSoBWqwisMDg4SCzWT71+hlQqRzq9ifPnv097+xZisS20WhdptUY5efIIkuRh2y1UNUijUWDD\nhn6Wlqa47rrLH7/Xc/78eb797acwDA3wiUZ97rvvbvpep8r7TvOrZOTn4JvfhC9/+UqP4p1FUeAT\nn1h18v3TP73So3l7OHt2nPb2XT+1TVUDNJvQEkEiA7cR1UOAx/RMiQ/FYqiqyvrt23nkr/8GUdOw\n/DSKWmextsKK6rJ587UU5qp4To6kHqHVCFF1PSpGnoC/majwkISGS4WyP0Y447FjaIhEOg2SxGMv\nHSNkV6lJKzTcFtFkFE2TqVRabN06zOysSrXQwZpuhcL8GG7TJu0tEtMkkFp0BCWMRoNlT3B1SGGj\nolCtVnnVtrlx7VoeXjlKznGRXImma2LJPmY0SaNRo7d3C/H4aiugLCv09m7mwoWXmJ+ff60q//UM\nDg4yOPgKExOnyOWGkCSJpaVJUimTLVuujIJje3uKubkSsdhPxNaEEKzfPECiw+LQwgKKECidnXz6\nIx+57MX0xImTPPzwcyQS13Df/bdRLq9gGJPs2rOHweElnnjiRwSDXbS1xdm8OczZs2dIp4dwnCIB\nxUb1Kty6ZTMdsszFyhKziyXiskVQSOi+i0mAtlCE5cYKQadJKNiDL1lYxjRlqqgCYnKRcLiPqNJL\nxaxQtVrUsdCx6dFStHwfYZZpILAQLLgV4lqKeDSJJUHJaVILBQiFdPywzR/84WeZHz/P+W8/QqO0\nSMEOI2SdWHYdS0WD2tgiO3asFrwVCgVefPE4ntdNqdSgWEzzt3/7FPfeW+eaa65MN42qqnz2s5/g\nhRcOcuTIIXwfrr9+I3v2fOBNiy+TyST/9t9+ht7eH/Doo/uYnZ1GlkM4jkZ39/X4fpbR0UUc5wJ/\n/ud/iW3nmJ8x8fNJcqEQCeccV6eyjNWb6J1REok15Ocspmrn6YwGOG2mqFhpgoSQsZFECxFw0X2P\nEBIyCsOxdmbLs0R9l6AnwAtg4yALgfAFVWVV60NJ6Vy/axdHzjQxahH0aBxVz2Imk5RKZ1HVEMPD\nV1GpvIqul1EUjXQ6x3XXbWdysoDjSKxbl+HIkUdQ1Q4ikU4mJk7h+01SqU7Onz/P2rU55uf34/sx\nurszeF6ZRMLgxhvfsjSTfD7P1772fdLp7bS1RQGo1Up89auP8qUvfY5oNPq2x/ty/CoZ+RlMTMDo\n6L/MLpp/yv33w2c+A3/yJ+9vR+IfEw4HsSyDYPAnmiWu6zAyMsqtt36S9vaffAEvL8/w9NP7uemm\n6/irv/o79l8wCLQcQpaFIoMRTdGWipMMz9A/HGB0JkitYGM7Oo4IYok4SRFcVdoUPoFACFn0ouU8\nRDpNNBrFNE06ImHisqCrZy2RSCeNRpWlpRUUxaSjo5+FhVnCSoxqrUkiqNPwGth2g6TwcDWZhiuh\nqDJ9bT0EGzUqVYuAZoHv097VRWdHO2OFFqaooYfiOJE4gdQw3twLXHWZIlUhopRKpcsmI7Is8+lP\n/wYHDx7i8OFjOI7Ldddt4MYbP0ww+Mblm3eDa6/dweHD36ReTxOJJCiVSoyMnEDXF7n7o79DW1sb\nlmWRSCQuu/zkui5PPLGfXG77686LACMjLb7wha/w0Y/ezp13bqNcblCvt7jzzk/T0fG/cebMWQzD\npqurnae/9S3WqyoXDx/mtuEewsKkOjaGaDapOQ6WLxB+gClHAmmZRKOO43vUVJ2OxHoGs0kuTD5P\nTM6gShBWYtRaLogIrm8zZtYJyB14UgjHK+F5VQwtx4hVIVVqYkoStZjHb37pQTZs2MzQUD/9/f0c\nP36cvzx+guL5PKloO51dXaghnaPFAs1mkEJhnmy2mzNnLqDrbQjhIUkGyWQboVCUH/zgINu2bbli\nrdvhcJi77rqdu+66/We/+RKZTIbPfvbTfPazn+Y//sf/zKFDS3R27kWI1djrepwzZ85w4sQyN954\nA2PHLrKmvRPXcTgweoHeDVmuCdv8qDRNV9d6QqEoczMvYZs1tPh61rga9YZJFBnHsZlrLBGywcOn\n6QjOLs8wFPAxZBnhyyygsCJkHAFNLLxABNMzEa7LzOQkphugt3eIlXyRml0mG4/j+2EWF1cYHS3Q\naGiATEdHhkDApa9vLZp2kdtuu5ubb97N44+38dxzC8zMnMXzNPr6NqNpOq2WjevO8OCDd2PbNuVy\nHd+vMjg4QKlUIhqNvqnA4IkTp5GkHKHQT5KOaDRJqZTg3LkRrr323fEm+lUy8jN4+GH4jd/4lyV0\n9mZcey14Hrz6Kuz8+T3U3rPs2rWdxx8/RX//jtc+iJOTZwkGo7S1dfzUezOZLk6f3sf4+BwjIwVC\n0RswVZ2aVcH3DXKZJEF1hYg9z7n5FngaihLGsjx8L0jJA08YxBUNw3OoWHlinUnKwuRUq8XJfJ5K\ntcao0WDTrnu4OD7J5OQkjuNRrVZpa+tEVcOUywXyy7NEZYEphQm7VTKeQQwXw4A516YRybDWD+Bq\nJqbr4psusmxQaTZJJUOsHepledmmbMvEtAC6dIFf+7XdRCJvbAXz/QbxePwN23+Mruvccstebrll\n79sam1+W9vZ2Hnjgw3zve/vYv/8iExPzpNNZ1q/fwl//9RPs2jXM3Xff8aYX3lKpRKslyGQiNJtN\nzpw5y5nT4yRT/fh+O8vLUSYmjvOpT93Cxo0bOHfuHPv2HcD3fbZtW8eGDRt4QdfJpFLke3uZmJmh\nIxbjhOPQNEwygShNx2bCtxBShoS3SIQwshwmI0k0jDE6O+5kudWN78fJ111akk/eB10Iyn4QXQSI\nqGEs16FhCRx/BSFpOGofo2YRR2rybz77SX7v97742v+1srLCU0+9xIV6iCZh0k2HmYtjJNcMcNVN\n9/Dssy+xsDBNKtVBsVgjleqkUDjL2rWrM0eBQBDLUigUCnR0dFz22L3X6e/PsX9/5bVEBMBxbHwf\nHCeCYRhoQiAQ+L6PKiWYnJ9BM3xqrkSqaz3B4CJqQMcSgngoTH3RxBMyVa+JhY3q+yyYY6i00xCC\nEc+mZri0awoTnk1JJAiqOVYkiQZ1ekMwFFZIpwI0Ck0KS1MYlqC38yo2r1tDsbaErg9x5503sLIy\nj+8rjI0dRlXj3HTT3czOnqKtzefjH78P0zQ5c2aUuTmHSiVKIBBkamqcNWvWk0gkSad1hoYGWVrK\nc/Fig2Cwm1OnLH70o8f44Ac3cvvtt1z2uJVKVQKBN4qkKUqIarX+jsXrDX/vXftL70N8f1V/46/e\nN7Js/zyE+InmyPs9GRkfH2d2dolGY5yXXhqjo2MtsuwQiTTZtGnwDV9WjmNRrVaANM2miSSpSK5K\nJNSFabdwHIeK1SIa9DHtMBFKlBtncL0EDSeGi0dLb8NwbQwxjx5ai2kFSHe1c2zhFKYhSMaGUFWD\nfT/8IaFQH/F4Gll2keUk/f07OXnyNMWZQ2Q9h5jdpEKenBYgLOI0cVDae8mZMmW7hhbqJV88jR6K\nYDarXKzWmS+VqKUGuPrqu2k2XRYWZpCkee67715isRhPP32MUChKOBzH8zwWFkbp74+956zEfxZD\nQ0Pcd1+QmZmH2LHjTiKR1Q4Cz3M5ePAVNm5cy+CbeKrouo5tNxm9cI7JMyMsT0wTEBEKldNIsRKp\nVI5wOM6TT+7n9OkRjh1bJJUaQAjB2bOH6O9/lXOzszzxyCNs7ullw/AwbqNBZnKSU2GBHu+maTXw\nKiXk0jJhP4IqB1CkAIGggo7F4WPPsn1rN+VSmJJQUYIR/JaD02rhkcfxBmjYFr7nYkoNfFkib1eQ\nPB9UmUDQR1VVHn/8+1x99TY6Ozt58skf4jhdbL/6NkbCRRQ1hGsaiFiAzs5+hofHqVQusrTUjmWV\nWV4+Ri6n09MzDKwWPHqedcVmvH5ZlpaWGB0dAwS9vd2Ew6dYWholGEzh+x6uW2FgoAvwURSFfL2O\nLnxcp0HNmKFVLdCf3UwomkWSZGZnR7GsNZhOg2INDHMRz3Xw3TgeAg8PDYmUUqBbCyJpXUxWJph0\nDdK5HLqXJhLqoGE0UZpNkqpCCR9F34jTFISCbZybnMAIaWzuvZb8RIHt2zeyZcsmhIBGo0KlcgPV\n6gn27u2mq6uddevWoWka3/7246RS21CUA8hymnC4A8MoMzFxms5On8HBazlw4DD5vKCvbyfl8jKG\n0SAc7ua5506xadP6y37W+/u7OHbsxGtF4T/Gsor09Pxy1g+/DL9KRt6CQ4fAtmH37is9kneP++9f\n9d75sz9brSN5P/L88/t56qnj1GoaExM6y8sXmZm5wG/91ie5997P8zd/8w2Wl6dpa/uJOuv8/AXW\nretmaSlAOJykVMrj+RkggCxkLLuOLK1QqTXpQmKovYeSJJhbush5bwJXbUNVE1hSA8XtBlunWVri\nyMElDAeSWo32UhXJlWnzw5QMBZHoxfcXyWZrRKM6o6deZb0eQJaTmI2LhH2fqNlkxXOItK1haHgH\nU1PLlIs1Gq6NEskxKkzmrBqBXDtrrv8gG9LX0dnZj+e5OE6LkZEK/+N/vMTOnRswzRorKy9TLMbx\nfZstW/r58Idv/4X8Yd4rjI2NE4sNvJaIAEiSTDDYyenT5y+bjDQaDZ79wQ+YP3OQ88cnyaS6kf0Y\n6ViKYn0KYa5w7NgLtFomZ8++gBAp2tt30Nk5z8aNa2m1QvzRH/4FEWeZNk/lxXOHORh6mTXbNlEM\nx7h6YDfd2X4Azk0d59yhp0gpGSJBDYGEYXtYNCACbQM5JssTGOF1+ATJdu9g/uL3CXoWME/NlbBp\nEU4k0fQhdL2DSKSdWm0Zyyrz8suz+P4gL7/8Le65Zzejo/P09OwhEAhy4cIk0eggiYRGsThGqVSg\no0PlvvseZGZmAUlKMTNjcNVVt6yK4QHz86Ns2ND1z5Lqf7d57rkXeOaZ4yhKFs/zmBx/CWP5KIlg\njmZZkO7bzPard7O4eIzZ2Qn27TvASgVGT++jU2rRq9QwWnXOLpwgs/VTjI//CMPQ2bx5D/n8aSYn\nVjCa/bjOFFkpiOIFEAjquHiiTH9yJ5oSIeh5rFglhDZMT6aNo2OnUbQ1tCccEvEIU2WV/IJDrj1D\nW1sXmaEN6DmHm27qIxwOs379T+qvIpEEiqIRDndy5523vra9Xq8zPr5Ef/+NVKsN9u07QKNRAHws\na4KdO/81lUqBM2deolrN8uSTB9H1LJlMN5LURJZLnDp15rLJyObNmzhw4CgzMyPkcgP4vs/Cwhi9\nvTpr1qx5N0IJ/CoZeUv+1/+CBx/8l1E/8fMyPAw9PfDss3D7z790+56hWCyyb99RZLmPixfHiESG\nWbduK0tLJ3nyyVdpb+/gYx/7CA899A9MTS0jRBDPq7J+fZbrrvsADz20j+7uHly3zoXyaeqtGI5r\nEA9XWNsdZGF8lo19O2nv6CCYCNM2OIh67hhzajdDG4fY//zTROQU6aCHZGu0bA/NahLWMsg0CMpZ\nVKmBJMp0dcVJpTZQLL5Eq3UKapNEAnH0SAsv3c3IskvBNnFsk3A8SzKZYGGhgBPrYgLI5+vE40ME\nuraw9bphTp89yUc+stppMjMzysREic7OPZRK47S1rSOZ7MU0z/Hggx8jEom8L/0rfozneZdNooSQ\nXrOQfz2+7/Odr38deWaGO4cHSU5NUzMWOb48gk2RzoTOYsXj6JFxLEdnaSlANBqnszPNygrs2/ci\nJ05cQDbTdEUj9ES6sO0W5fJJJkbGMbMdlKbPYDsWiUiK+ZVFHF8jqIaIhEIE9ACu6+LUTTKdKX7v\nj/8YwzD4/d//z4yPzxKP9zG8dRsz4+O4Zgw9JBMJa8STSQxDZ+PGbZTLBTyvi0ikA8epEgxGSSR2\n8NhjL+C67iXzwSzbt2/k5Mlj+H6cSmWWYtHjk5/8EJs3b2bz5s3cdtsH+d73nuTo0UNIUgzPazAw\nkOKjH/3QuxG6fzaWZXHw4EH+7u+eYM2a3WSz3UxNnEYv1NkajhEJ+SCFmJp7lfPBMrfc/gEajSqG\nUUX1pxnUPVTLRVEE2fY2suFuphvnEEJn69bbUFWVbDaLLPscPQpRkSQdDeMaJqYhEbey+LKDIxQc\ns4rrqXQmhmhlIqQG17NeH0BVQ6QCkxQnx7GNBC4KxaJJteZS8Jts6t7A+fPjnD59nlJJZv36dSST\nq4JvKytT7Nnz051Nq+f06vm+fv02ZmaqeF4IVdUxjNXl11deeY5sto/FxSKStBHTDFOpCIaGtjM9\n/QrHjp3izjvfeFHXdZ3Pf/4+9u9/iaNHDyNJEnv3bmb37hve1bbvXyUjb0K1uupFc+7clR7Ju8+P\nnXzfj8nIzMwMnpdgdHSKSKSTQGB12jkW68W2Z3jhhaPccMO1fPGLn2diYoJ6vU46naa7uxuADRtO\nUK+b6HqdweENzEyMEVJLrOsJ0dMRRKnGKBhFzpxrIkgBMnk7gB6q0te3noi0j45AFAkwXBeQSAqF\nZmsRtBABPYFh1El4No3GMm1tgyhKhN7eFPZCkGwoQDTczcmFCtHMddRKoyhujXK5QLmSR08HMEWM\nWtUjlL6agbWDXHXVejo62hgZucDY2EW2bt3CxMQ4kUjfpfVz/9IxSDE1pVOr1a6Yeurbxdq1Qzzz\nzAlcdwBZXr2M+b5PsznPxo1vPHGnp6epT01xXV8fF8fGWNfTQUTXiY7azPo1dC0OJJGI0WxCV9d6\nTFNjdnaajRu3c+7cKOWyQ0ZWkDAvLQF4QBbRmMGJaUwswdTiDO3JAiulGQJqlBJV0moMSUg4kkve\ntwiHNcrlMvV6nZ071zIzc5JwOEM4HEWWIRCIk0j0YxhzjI0dIZ2+Fl0Ps7JyFt9P0tWVRlVX1XDj\n8Qy+H6GtzWN5eZpcrp+BgU3kcn1cvHiCRKKL//Af/t1PGU8qisK99/4ae/cWKBaLRCIRcrnc+2KG\nbGlpiYce+g7Hjs0xN6exuHiEtrazOIUptibaaaoBBgaCpNMpdhgG44AkKQwMXMfWrSmee+S/s63v\nKsKhGKXSHJJUQw/0INvG/8/ee4fHVZ55/58zvWm6ujQqlixZtmRbrtjYGIyxMcamBwgGAkuAbJZk\nU678tr0hV7KbvHu9IbvJbhohJBBCMaH3jjHuRbZkFatrVGfUpvdzfn+MkRE27rYkez7X5cuaMzPP\nec48c858z/Pc9/emX9ShVCrweAaYOdOBw5HFoYaPUUbl2G0WlDItba1NCDIBdSJB72g/GiRkci0G\nnRJjuh2z1Uw4qkIUFchUCZzDe9ArHKhkGiQJwsgJijp27apBp1vI7Nkr2LlzL62t7cyeXUY4PIzd\nHqO6erwwTEtLw+GwMTjYi92eyyWXzGXHjgOMjAyg13tpaHifkpLZmM0G9u1rwG5fgEwmx+8fxOfz\notWacbuDxGKxYxocpqWlcc01q7nmmtXnaSSPJiVGvoRnnoHLL4esrInuyfnnK19JGqAFg1PPW0Uu\nl5NIxAgEwlitR9a/JSmBWq0hkVDj8XjIzMyk5BiGKrfeej3Tpu3mww9ldHV1MWdOMVkZJgrzsjBY\nrRx480227ehCIaajkKuRpDh52XNoDxzi/fdfRJeI4w31okJNLB4jjpxI3I9MHEYhaQERtVpFMOol\nHgszNOSkvX0PPl8WKkMlLinA9voajJqZpGmsuDRZxPUaJJWSNw7uYsbCK6ialsGBAw0sW3Y5RUVF\nqFQqEok4FouezZvfQKNJEAh4UasV+Hwj2O1pY7EAgqAgFoudr+E4Z+Tm5nLZZRV89NFONJpsBEEg\nFOpjwYKCY04tj46Ooj/8Y2uz2egURTI0GuZOL8XX209zXxcRsYSQ3IfZnIPDkUtLy26iUQuhUABR\nhGg0RoReZHITo7EhEokECkUawXAUtSqbhYtX0tBQT4AwSl0eIm7CehM1wQEEMUZAhKF4kEUmB7/4\nxeu0tnaSlqbEbrcgihI6XYI77rgHj2eAffu2MG9eJkuWrKS5WU447EShiJKTY8dqtTMy0jmW/SBJ\nIldeeSlvv72Fzk4ParWJaNRHdrace++970srYNtsNmw22zGfm4xIksSzz75KIuHAbk8jEAhjNNro\n69uPyuNEbZ5LWJAhCLKx7DCX04nbPYxaXYRSqUKnM2I0WJDJZMjlasrLMnB2u/AMDqPNKKW7exsz\nZlQybVoRfr8fs1VCCMTQqgSUigQzZjjYX7cFgxQiLkrECIAYQ222Yi+ehSbNTFdXH2BEFEPEDOl0\nD7egk2dj1Jqw2QqJu0aRYl1Mn16NRqPHZsviww9f5oMPnmPBgksQxSx+85unuOOO9RQWFo4d/4YN\nV/HYY5twOkfRaExUVNiJRoNs2PBV/vrXl2lt7aG7W0U4HGRgoAajsYBw2M/gYAuLFs1Eq+0jkUgc\nU4xMBlJi5BhIEvzmN/Af/zHRPZkYsrKSmTWvvpoUJlOJoqIiNJr3kMvjxGIRlEo1kiQSDDqpqCgH\nBtBqtWMOhV9EqVSyZMklLFlyyVHPxeNx3n/1Tcy2EnKtuUSiUeRyBf0BPxkhDXK5h8HRPnSChyE/\nRCQNcRJIQjsFKj3RKESjrShVCqylDvLmlrNv3ydMmzadFY0yVUkAACAASURBVCtupKnpEDWfbsMd\nSEeh9pBhziAvr5LFl69AJoP6+o9YtaoKg0GHxaKntDQ5lRuNhtm69T28Xi2hkJLt2xvweA6hVPoo\nLCxlzpz5h/sfAzxTLmD1MxKJBDKZbGzcrrpqJeXlpRw82EQiIVJRcTXFxUcHJwOYzWYCh5dvzBYL\nGcXFdLS2Eo3FcBQV0Ce6ycoqJbewiEOHRtHrLeTmFtPcvAWPR8HwcAuC0AYyGTqlBTERJxbzE48P\nEhQEHPkLsNkzMJmMDA42MGvWJXz8zm9JM2jo6U8nFk8jHAuBIsDwsIzm5j4slgpEUcRobAeiuFxh\nmpvrMJkUrFkzh7vu+gput5vf/vYFrNaZTJuWS11dHyMjw2RnWzEabXg8g1gsUFFRQWlpKY2NjfT1\nucnIKGLGjPJJX5PmVOjv78flCuNwZCOKClpaDgI2zOZSOp0fEopFiMW9ZGUlM4TC0SgJpZKqqul8\n8IETo9GGOacYt8tJhtEKBMnKKsOUkQHBIJetXcvHH+/E65UYGOgkFgtQMVPA1S4nI8uMUqGkp7+R\n/Gw1/qiFQrsFoy6XLpebxkCCrxTOQqPRUle3n8bGbVithQiyKuS6FjzhHrLTC5GrooTDDcycWTxW\nLysaDSMI6eTnF1FdvRyNRoPfP8qTT77C97//dTSHC6JlZmby0EN3U1t7kP7+QbKyZlBZeRN799Yw\nMCCgUs3AZEonMzOA369FLh/GZpOzdOkczGYdNpt9rC1Iirv6+nq2bt2Hx+Nn+nQHS5cumjCBmhIj\nx2DzZgiFkoXxLlbuuCOZVTPVxIher+e229bQ3f0YDQ1bMRrzkMm8FBTY8PtdyGRDfPe7D9PXN0Re\nXgY33LCaZcuWnlQWgUKhYN6y5TzfvZdevx85ECZKblkZPftqmDVrCZ2qNHx1e1CpBOLKKP5APz6t\nloQ1k0Q4giAbRMpKJ73MQW5uFI/HjMlUzYsvvoEkmckougR3YDdObyfWIi2rV62itaWWQzVb8A23\nUJAR55a77qKx0YnHM4jJZKet7SCjoxq0WgvXXFOJ0ZhGb28h9fXvMG3afEQxyuBgDz5fJ2vWzMdo\nNJ7wWCcTbrebd9/dTENDBwqFjAULZnL55cvQarUUFBSclEukw+FAn59PU08PJdnZzKyqokmvZ0tL\nC3MXL+bapSqcTjW5uSV0dHyKzzdMJBLFZJLh89URi3WSl2egt3uQes9O0iWQxDg+WQh14Uws1iIA\nBEHCbrdRWVnF0OB8Og61kJtTilyuoN01jE4+D6fTiVKpJhJR4ff7MJlkXHllNb29HQhCJ7feejvl\n5eWoVCocDgdf+9o1vP76xyiVo2g09ajVBjIy5tHZuR+dLsDdd9+AXC5HLpczZ84cDjufX3B0dXXR\n3NxJf7+GzEwbeXkmurvbUamMJDRmajoPsHxWETabjXA0Sm13N3PXrGHeggXs3duI09lIfslc9g90\n0tNWw3SHhV6/nxGlko0PPEBubi4LFiygpaWF7u4+jMZC/umfbuKdt9/mzedfRhaL4w+1kdCpycxz\nEFRpUdlzSC+uxNPeRWvrQex2GxqNl8zMDAyGDEZGnOTnz8VqNeD3H2D27DK83mZmz16A3+9l795t\nbN/+CYlEGhkZR4z8DAYzQ0N62traxlXINhgMXHLJorHHiUSCzZv3Ul29gq1bDxKLGcnPn0l7+wE8\nnjC5ucX093ewZ89+Zs6cxh/+8BSrVy8nPz+fDz/czNtv12KzlaDRONizp48DB57iwQe/OiGCRDhW\nsNdkQBAEaaL6dt11SSHy4IMTsvtJgc+XDGRtaQG7/fzsUxCEYwYfng4ej4fnntvEjh116PUZh6tg\n9hEOa/F6teh0efj9oygU/axdO4P77rtj3F3D5wmFQjQ1NTE4OEIo5Gfz5nas1nJisRgmkwmFQsFf\n//ob1qy5Dqs1kzde+gMdB5vQyPUEJD9Fs+aQEEXioRFmzMzgB//8faxWKw0NDXznO79AEGYyMBBC\nqTShUiUwGuU4nbsoKJiJUj5MqLWWDLkasyGB3qwjbJJx27cfYsuWA4RCBnbs2IFMVkB2toWFC6tR\nKpP3GC0tW5k7NxOvN4LRqGfBgqpjLk1NNMcbd4/Hw//8z5OIYg7p6fkkEnH6+g5RWCjnnntu/9K6\nOsfC7/fz7htv0FFbi0yS0NpsXHHttZSUlBAKhXjyyU10dAQIBATeffc9vN5hFIp0EokogcAAarWD\nqG8UWSKIGHejFdzY06zoCkvJKrgerdbC0FAnc+cWYDJp8Hh2I4p5GAw5yGQCTz/9CkplOT5fJx7P\nQWy2KlQqI6HQIe6++2bkchm5uUE2brz5qL4n42GCyOVy+vr66OvrR6/XMX369CmXjvsZp3K+b9++\ngxdf/JRdu5rQ6+cQj0cxm6G0tJCmpjpyc0MsWjCTvuZmFPE4CYWC6ssuY+myZchkMrxeL9u27eLA\ngUMIAqTbddiMadiyspg5a9YJBbrf72fT00/z3p/+Qom9ArPBwkjAS2csTMXyGxgYaGTp0kLy8/N5\n442PsVgWIJerGBhwUVPTRCKhxettprLSgkYTR5Jy2bx5Ox6PgVAIwmEZKtUgl146jSuv3IBMJqez\ns46bb549VlfnWASDQX7609+Tn7+M/v5+amoa8fsjDA+34vU2UFKSi1abw4IFV2GxZDIyMkAg0MzG\njWt54onXyc1dMhZzBdDX10pVlY7rr193coN4ihwe82MGJ6VmRr5ASwt8+mkygPNiJi0N1q5NVvL9\n+7+f6N6cOiaTifvu+zvuvDOCx+OhpqaW11+v49AhF3Z7FYIgoNfbGBqSc/DgKAcO1B7TadDlcvHH\nP27C59OiVKYRiYzQ19dEPC6SlVVGOOxlZKSL+fNzDteFULN4+bXEhByUykzMZonLLkta0judDaxa\nVYjD4SAej/POO9vJyCjA6Qyi1dpQq42EQj4ikSB2u5zR0UZ8zoMsTM/BaFBQVDQTuULJvuad/PqR\nX7NizdWYTBoGB41kZpaTk+NAJjtynqtUKhYtmv+lnhtTgd279xEOW8jPT85+yGQqHI5ZtLfvpLOz\nk6KiopNuy2AwcP0ttxBct45YLIbRaBxb0tFqtdx771dpb2/n3Xc/wO+vRBTT6e4Oo9Eo2LbtTWJR\nC3kGHQaFnJzs5fQON5KhakMS/Didb6FU5mA2K6it7UClCnH11Qvp6FCSmZlxOL5ETiDQhcfTQSSi\nxeuVkKQ2JKkDUQSfr4P16y8/Zt+T39fktH5RUdEpHfdUx+fz8frrW3E4FqNS5bBnTw1KZS4ulw+N\nppE5c8x8/esPYLPZiMViBAIB9Hr9uNgIo9HI6tUrWb362MZfJ0IURTydnaxfspjaul4EwYrVYELy\nSzQd+ITiGdlce+06VCoVH3+8G0ief/n5eaSn23G5XHR1ubn99iuprq7m7ru/gdsdwGyejiQNIJMp\nsNkWs3PnZqLRIDZbFmq1h+zs49eU1Wq1GI1qAgEvWVlZLFwIH3/8PiZTHhqNnpGRAEajBb3ehCAI\nWK1ZxGJRXn/9PQTBOE6IANhsuTQ07OP660/rYzojTv624jQQBOEXgiBsFgThv76w/R5BENoEQXjy\nXO7/dPjVr5LpvFM46/Gscddd8Oc/T3Qvzgy1Wk1GRgYDA8PEYiKCYBkXUyCTaREEPY2N7cd8/wsv\nvIko5lNQMJucnGKKiuZRXHwpOTkCmZlesrL83H77En70ox9gtwfp6NhDNBpGLh8gEmmjqmoGoijS\n39+BTudh7tzZQHL9OxxWMm/eEqCLYLCXeDwI+HG7D3DNNTeTmakn36anoryU6dMrUSpU1DrbaHGp\naaxP0Noqo7Y26VESi42OEyLBoA+1OjKWJTRV6ejow2RKP2q7IBhxu92n1aZOp8NkMh0VWyKXyw/P\nHKmpqFjK6GgQuz2ZwqvX5yFFh5FLIIoy/EEvaoUGe34+c6ZlcfWaGZSUJBAEGVlZ06moWMnBg8N0\ndOwjFosiCDJsNhMjI41IUjrp6eUkEiLRqBJRTKOp6X0WLy740qJwFzNdXV1IkhmlUk1+fimXXbac\nnBwRmy2EwTDCTTddRWdnJ7W1tWOlAM52kObg4CAGQaCouJDsbC2DQ+2MjLpIhH0M9dRw661rx2z0\n58+vwOU6cj3RaDSkp1spLbWzaNGiwzOwambMWEBhYQaVlXPIyNDjcjXi9epwOkO0tXkZHAxTU1N7\n3H4JgsDq1ZfictXi842wZ892FIppKJVplJdXYLXOxufT09S0f+w9FksGAwMjiGL0qPYikRBpaRMz\n03bOZkYEQagG9JIkLRcE4deCIMyXJGn34adfBj4GHj5X+z8d3G548kmoPf74XzRceSV87WvJ9OYZ\nMya6N2eG3W4mkWjlszTXz5CkKDKZCr3+yAnocrkIh8MolUq6uz04HOOLwuXkTKOnp49vf/uGcRe9\nBx+8i5aWFlyuQa655l76+tzU1NTi84nMnFnMqlVfGSs6JZPJkCQRuz2H1auv5rXXXkaSQqSlGcjM\nnEZamgWLRYF31I5WY0BAwO0bprbZjTxmR1RH6K9vRmY0Ysk0o9H00dERR6u1E42GkMkGuf32NRNW\nZ+RskZFhpqfHi9E4fg1bFIPnrICXQqFAFJPBsqIoIpcrMRgsxMIRYolRZJKAIJiIxbyM9jjR+bWM\nBsOMxAu5+pobxz7zRKKI4eGnaWn5GKOxEIMhhEKhwGrVotWqsNs1iKIKgyGNqqpCNmy4Zkqk155v\nkqXsE2OPLZZMVCotbnc3o+6dvPH441gEgQTwvlLJ2ttvZ/r06We1D3q9npAoIpfLWbSwmqHhYUaG\nRwnFo+TlVo5b/ly8eCFNTR10dOw55vmYSCTQaJQEg8qxwpVWq5eRkSjxeACzWcXy5YvIzMxg8+bt\nVFfPJj39aEH+GVVVlchkMv72tzfo6+sgM9NCVdW0w7FjNZhMDjo6dlNZuQhBEAgEvBQXOwgGw4dT\nhZOZR6KYwO0+xC23HB28fz44l8s0i4B3Dv/9HnAJsBtAkqQhQRDOTynAU+CRR5IBm1M02eCsI5cn\nA1mfeAJ++tOJ7s2ZMW/ebD76aC+dnf1EIrmo1QYCAQ9KZRidLsG8eZWMjIzw6nPP4enqQiWTMRiJ\n0OOW4XB8sTXhsH22iCRJeL1eVCoVWq2WGTNmjBNuGzYkX5O8oB4hKysLi0XO6Kib/PwyrrlmAzU1\nNYyMhEhPN+D31/LNb97JL//fo3QM91Fky6GlowMhriNCmLJp0yi02Rn0enD1CSxcOIPq6pm0tzsx\nGjOZOfNqrFYrU5358+ewY8dzBAI29Prkuv7gYA8WS/ycuUMuWDCTZ57ZRmFhNvX1LkymLOAgBpMB\nlaDFQJBBzxBRfys5UpA2omRb8zAmVDTV11N5eI1fLleQnz+HK67IRxQFdLocAoEQSmUWgqADolgs\nVioqijAah1NC5EsoKChAqXybUMiPQqGioeYjvN3NjPa3ICRGKb/0UsqrqpDLZPiCQd54+mnyvv/9\ns5pJlJmZibWoiJbubqZlZ2O32zGaTOxxOln+BUOm5JLf7TQ3Nx/zfJTL5SxfPp/HHvuYtLQcFAo1\nPp8fjSYNna6bdevWk5ZmOdyahe7u7uOKEUi6qFqtFsJhLYWFi8ficaxWDSMjQ4AIJDN3Rkaaue66\n1VitVv7ylxfp7OxGJtMgih6WLZvBnDmzz9rndiqcSzFiBtoO/+0BZp7DfZ0xQ0Pw+9/Dvn0T3ZPJ\nxZ13wpo18JOfJMXJVCUjI4N7772eRx99ip073yGR0KPTqamoSGfDhmU4HA7+9OtfYxoZYebh7IxQ\nJMLeve/Rkt5ASckRheF2Oykry6enp4dXXvmAwcEAkKCqqoi1a1eN83X4sgBLmUzGrbeu409/eoHO\nzj4EQUVBgZnZs+Pceuv1TJ8+HbVaTfibUX73yz/S2V5L10A7wzE7JUUzmJ6fD4DNaKSrqxm5fCYV\nFRXjIu8vBLKzs7njjtW88MJ7DA/LEMU4OTlp3HLLTeds1qeyspLm5g527+5AoXDjdLah0/mBUaJR\nOb3uPvTBXqosAkU2G+lZWbzrbCMjv4iBri4qKiuRy+VEIhECAS+Dg0O0troYGUkcrvcxk/z8PHQ6\nHRaLhc7O/Vx5ZeU5OZYLAa1Wy623ruGvf32T5vo21H1d5Bs0ZJvklJqK6G1r44BWy9yyMtJ0Ooxu\nN21tbcyaNevEjR8mGAwSCCSLRn7Z92r9V77Cq88/z6ctLWhkMkIyGfOuvprKqqPrtyiVymOej6FQ\niLfeep/WVhcy2Sg7dvweq7UUr3cUSQqzfv11nxMiACfvC5KZmYnZLBAIeDAYzAiCwMKFc/ngg7dQ\nKAL09OxGoYhwww1LKCtL2gI89NC9OJ1OQqFQUnBN4A3MOcumEQThG4BbkqRNgiDcAORKkvSrzz1f\nAPxEkqSNX/J+6Yc//OHY4xUrVrBixYpz0leAf/1XcLmSgiTFeObNg5/9DFatOrf7OZvZNF9GIpGg\nq6uLvr4+jEYjDocDo9FIV1cXr//udyz8QppoXXs7rzb0U1F1JVqtiWBwGJ3Ox7XXXsazz76HyVSB\n0WhDFBP09bWQnR3l61+/85giJB6P09PTQyKRIDc3F7VaTTAY5OUXX2TXhx9iUavRmUyUVlez6ppr\nxrIk3G4327Zt55k/PEbcp6AgYwEqpTp5PGKCPR3b+H+/+Tdmz56YO5oz5WTGPR6P43a7USgU2O32\ncz6LIEkSTqeT9vZOhoeHUKnU2GwWGurqaN+8mXhnJ+V2OxqVCl8oxIHeXg5JmejtVVy6eg3NjY30\ntDQxPFqDXGNl3qJrmV5WQXNzDZ9+uoWCglIqK2fh9/dTXKxj48abUavV5/SYJhuner739fXxyL/+\nK3PNFux2G80HD2IMh1EoFNSEQtx49dXIZTLqOjupuukm5s6de8I2Y7EY7731Fo07d6IC4kolC1eu\nZPGSJV/6HRscHCQUCmG3208pkykcDvOrXz1KV5dAWVk1crmC5uaDNDd/zPz5RQwP65gx4zJksuRd\nXyDgxevdz/e///WTnuVpaWnhySdfR5LS0WqNBAKDmM0hbrxxDWq1GpvNNqHfs4nKptkG3A9sAlYC\nj3+xXydq4OGHHz77vToGw8NJk7Pdu0/82ouRe+5JirRzLUbOB3K5/JjZCIFAAM0xLj7F2dks0emo\nXpaPyzVCXl4pVVWVvPfexyiV+WOxDDKZnNzcMjo7d9LV1TXOORGgs7OTp59+Fb9fgSDIUCiC3HDD\nlSgUcty1tVxfVYVOoyEhijTW1PBaOMzNd9wBQHp6OuvXX8toXy+++gZqWutIiBZARjjST9WcbKqO\ncXd2IaFQKM5raXtBEHA4HDi+sEY33N+PpbSUtkCAYZ+Pzn4vCUnFSFjElWjDlmZg84evERvsI9sq\nYlNZ0Kgr6D7YiCHNQmnpHGy2TGpq3iAvr4S5cy+hvLx80rpiTiYUCgWFOTmUHZ4V9Obm0ldbS67V\nihSLEYvHkeRyRoD8w685Ee+88QYDO3awJD8fhVxOOBplzyuvoFKrmfclpcvtp+F1UFOznyeffIkd\nOzoxGmfR07ONhQurKC+vwm63kZ8fYeFCM1u2bAMsQByVysvtt19zSstNJSUlPPTQHdTU1DI05KGw\ncCazZs2cEuZ350yMSJK0TxCEsCAIm4F9kiTtFgThl5IkPSQIwjrgB8A0QRA2SZJ0dGL9eeQnP4Gb\nb4aLKFvulLjzTvg//we6ujhG/MSFQXp6Oh5JOsqZdWB0lOmVlaxYsRxIpvg1NTXx1ksvE4vaiMdj\nZGcfqY8iCHo8Hs+4tv1+P3/+88vo9RU4HMkp2HA4wLPPvke6IUy5zYbusMeJXCajIj+fTxsaGBwc\nHHfhW7luHc/39bG0UkskEmE0GCRuyOO2b3wjFW9wnsgpKGDPrl3klZTw6t/ewazJQqvS4A9JmLJm\nkVtgwij2c8nsQnLsdv73pQ8IBZwEA6Ps2DzC1dfditWazfTps1m5cumUdcOdCMxmMwmVilAkgpRI\nEAwG6Rgaormnh1hmJkMeD50+H5VXXHFSgsHv93No1y6WOhzID89kalQqZmVns/PDD6meN++snFe9\nvb1s2vQhGs00TCYlFksh4XCAbdtquPLKpaSlWenrq2XjxpuZP38O3d3dKBQKpk2bdloiwmazsXLl\nijPu9/nmnPqMSJL07S88fujw/68Br53LfZ8sbW3JAM2DBye6J5OXtLSkIPn1r5PLNRcidrudknnz\n2LtrF2VZWejUanqHhugRRW5bmvQJkSSJ1196CefOnRQnIvS7u3AP9+HOKWb2wjXIZHIkyY/JZBrX\ndlPTIaJRI1lZR9aCNRo9SmUOB+veYPHSReNeLwgCBrkcr9c77qKam5vLHf/wD+zduZOB7m4KsrOZ\nu2DBlC96N5WYUVHBrvR0GnfsJqtwJvEodI24iOQVcvU1G+noqCUtcpDSvDxaursJ9rWTIXjJUOvp\ncNax56NNVC1djygGp5wT7kSjVCpZfNVVfPCXvxBqbiZTLiffamVXby+RcJgurZbVN99MaWnpSbXn\n8/nQymRjQuQz0nQ6Al1dxOPxszJjtXfvAVSqXHQ6I6JYDyTP/2BQg8vlQquVUVCQDFBNT08/YbDq\nhcpFb3r2z/8M3/oWpK7nx+eb34TFi5OxNV9Sd2vKc/WGDezIzGTfJ58QcrspKC/nlpUrycjIAJJ+\nB527drG4qAivzcZHw7tI19jp6G2jv78DUYyRn68fsyeXJIm6ujqefvplDhxw4/OFKS6egVab/ADV\naj1KnZFBj4eszwWOiaKIN5EYKyn+eWw2G6uunhql3i9E1Go1t957L//RPUCruxOdOY2s2dewdPo8\n1Goter2ZUW+MSDTKvpoarizIpsXpg4QWhy0LdSTIrk9f4Pa7rz1hanI8Hmffvhp27qwjFoszd24Z\nCxfOn7KOq2eDhYsW8dHbbzPa1oYfMFut3LRkCUa9nkOJBCUlJSc9m2E2mwkLAvFEAsXnovNHfD5M\ndvtZWzobHfWj0egxmexkZRkZGGjBbC5CEBSMjLhJJAIsW3bDGe3D6/WyY8du6upa0Ok0XHLJHGbN\nmnVKDsUTzUUtRrZsSf577LGJ7snkZ9q0pO/IL3+ZFHAXInK5nCVLl7Lk8EzIF2lvaSFdpSIQCBCL\nxZg7dzqNjW0oQqM0173JdV+5jrVrryQajdLS0sJbb71PU5MPs7kUUVTR2hqgu/sdli+/Cq3WgM/n\nYtXalTTv3IFSocBmNBKORmno6aF04cJjipEU54doNIokSccM9ktLS+P6W27gFc1BHI5KEok4LpeT\n/n4no6MdLF00h8319cgjEfLT00nE49Q6u7HZCtAgYtXpWLv2qmPs9QiSJLFp00scODCM3V6MTCbn\n3XfbqKtr5u/+7qsXXbDrZ0SjUeTRKBvXrz9KdCScToaGhk5qZiESiaBQKKi69FL2vf8+s3Jz0arV\neAIBDrrdrNp4zLyKY5JIJOjt7UWSJLKzs48SMaWlDhob67FYMpk/fzkHD+6ms3Mno6P9GI0V3H33\njUfFJn0Rj8dDS0sL0WiMggLHWFViSM7w/O53T+H1GrHby/B6wzz99KcsXdrLunXHd3CdTFy0YiQa\nhfvvh//+75Tb6snyox/B0qXwjW+A2TzRvTn/iMC+/QdRRGR4vX6GhtwYDHrkehXzFlZw003rcbvd\nPP748wwMxNi5sw6DoQy/f4TMTCPDwxI+n55Dhw5gtVpJT4+zevVVOCtmsPmttzjY1YVMpWL2lVdy\n6WWXTfThXpSMjo7y5psfUF/fjiTBjBkFrFlz+VGFwyorZ7F1aw3NzXtoaKinudlFICCg1UYYGnKz\nZFEpPQcPYhweRmO1cuOll2K2WIiLIgeCQRSK4196u7q6qK0doLBw0diPrl4/i87OGurqDjJvXvU5\n+wwmMzKZDJlcTkIUx81mACQk6YSfq9vt5s03P6C5uQeAyspipl1+OXt37SIRDqO1WFj51a9SMfPk\nnCi6urp45pnX8HgEBEFAo4ly001XjXPSraycxaef7sPpbCQzs5CystkYDCqKisr5+tfvPsqD6IvU\n1taxadN7JBIWBEGBKO5kyZLpXHPNagRBYNeuPfh8RvLzk/vUag2kpVnYtm0rixbNmzLLPhetGPnP\n/0ze7d9wZrNjFxXTpyc/r3/7t6Rt/sVGW3s3TYMxSrVGRkf96PWzCAR9jEohpPYw27fvYO/eBhKJ\nPIzGMEZjEKu1mNHRfvLyNGRn62hq8tHRsYtrr72TpUsXodVqmT59OqWlpYTDYVQq1QkvTinODeFw\nmMceewa/30pu7jJAoK2ti8cee45vfvOuccGESWOrW3n44f+ksbEftbqUiopcbDY7Xm8ne2oauGTp\nUsq1WnIzMsYExYGODqpWnrg+itPZjVxuPeruPy0ti8bG9otWjCgUCsrmzaNl927KP1fqoMvlwlZQ\ncNzZRJ/Px6OPPksikUte3nIkSaS+vh2Lxc393/sekiSh0WhOepnH7/fzpz+9hE5XTkFBUqwGgz6e\neuotHnrINiYCdDod9913O598so2amr0olQrWratk8eKFJzzXvV4vmza9i90+H40m+f0TxQRbtuyk\ntLSIsrIyGhraMZvHz6wk04PN9PX1pcTIZGbfvuRyw+7dkEpCODV++lOYNQtuvTU5S3Kx4PP56OgY\noWzJBja//BgZMjuBiJdBRCR1HuXlK3j11Y8ANYWFVbhcTiBZ+8FoTKe7u5V1664kPd2EzVbImjVX\njmtfEISLOhZgMtDY2MjwsJKCgiPOrpmZhXR1+airO3hUIUWZTEYwKFFauhCbrXBsu9lcQG9vC7qM\nPJwhD+6uLrSCwKgoYikt5ZJLLz1hX7RaDaIYOWp7NBomLW3yp2meSy5buZJNvb3s6uwkTRAIShIJ\nq5WbT3BnuX//AUIhE/n5yR9uQZCTk1NCR8ce2tra84f/OgAAIABJREFUTtkwsLGx6XBg+pFZM50u\njZGRLGpqalm16oqx7Wlpaaxde9UJl+e+SFtbG4mEZUyIQFJoGI0F7N17kLKyMvR6HT5f+Bjvjk6p\n5byLToz4fEnL91/+8sJNUz2XWK1JT5bbb4ddu+BwbOcFTzAYRBBUZOdOw1CwkKg8BwmJdH0GwWA/\nCoWKSARksjgANls2Gs1OgsFhtFoLoigRj0cZGWll3bpjV2YFGB4eZseOPbS395Kebmbx4uqT9kxI\ncWb09blRq49ef9RqLfT0uI7ankgkiMdFBGG8Y2fSR0ZNIgEPfuc7tLS0EPD7ycjMpKCg4KTuvHNy\ncujpeYpDh1ykpZkpKsrDajUTDnczd+7FPZ2r1+vZeN99dHR0MDQ4iNFkYtq0aScMOO3udqHXH+0w\nqlKZGRhwc6rmxR6PD4XiaGGo0RgYHvYetb25uZkdO/bj9wcpKytg/vzqkwpihqNnT+RyBZFIEIBL\nLpnD44+/g8lkH7MY8HgG0eujU6q680UlRhIJuPtuWL48eWef4vTYsCE5q7R+Pbz11sURP2KxWFAq\nk0JDrVai1+ehUKgJhfyYTDoggcGgRqWS4/ePYjCYWbx4Odu3b6a7O4zFoqSrawtGIzz//Nts2vQO\n8+aVs2LFpWMXpIGBAX73u2dJJDIwmfJobPSyb98L3HbbSiorT97aOsXpYbOZiUZ7xh4nEgna2trZ\ns+dTDh2SCIXCrFx56VgqtdFopKgok5aWPuBIQGEgMIhSGWfmzKSl/8yTjD/4DJ/Px1NPvYRWm83A\nQDeDg0M0Nu6jtFTDN75xe0qckgw2nzZt2inVJ0pPt9DQ0Atkjdsei/mxWstOuQ95ednEYk1HbR8Z\n6WVgIMGPf/xfJBIi1dXlyOUyPvnkEEZjERqNhQ8+cLJ7dz333//V46Z4JwNbPyWRiI8JDYDR0W5W\nrUqask2fPp1Vq/r48MNtgAmIYTBEufPO66ZUocyLRoxIEnz3u8kaNH/960T3Zurzox+B1wuXXw4v\nvQRfcFG/4FCpVKxevZgXX9xBbm42HR1NaDR5RCLDzJpVTnd3HVdeOReHI5cnnngdrzcbnc7EjBll\nRCLtXHvt5ezceQCv10JWVjGCIGPXrjZaW5/hgQc2otFoeOedzchkDrKykj82BoOZUMjKK698SHl5\nWcql8xwzc2YF7767naGhPmy2bGpqajl0yIlWq2DOnHW0tnpobn6Gv//7r475v9x5543s2/cTOjq2\nYbUWEY8HCIVaWbAgh0WL5p1WP7Zv34XHY2Tu3IXMmhVleLiPWCxKONxJefnZrUZ7MVFdPZtPPtmP\nx2Mbq5brdndjNIbHarWcCiUlJRQU7KCzs5bs7FIEQUZvbyttbTsRhMXk51chk8nZurWe3bs/ZN26\n+9DpktkSBoMZp7OR7dt3cdVVXx5DlJGRwYoVlXzwwU4MBgdyuQKPp4eSEv3YDYogCKxcuYJ58+bQ\n29uLSqU6XFxwal0vzlltmjNFEATpbPVNFOGhh2DrVnj/fUhlTJ4dJAl+/vNkMPDPf56s8HsmMTjn\nozbNmVJXV8cHH2xn5859eDwhCgtLsFp1XHppFVdccRlyuRyXy8WePftxu0coLMxhzpwqnE4nTz31\nKYWF43+gOjv3c+ONc5k9u4of/vAX5OVddpQ3gNO5kwcf3DAune9CYjKNe39/Py+88BbNzX3s3HmQ\nvLxpVFcvxmJJrkf29bUyd66B9evXjr3H5XLx178+y7ZtdahUCq64YgnXXrv6tGzDAX7xi98jk5WN\n+dF8htN5gNtvX8yMz5eFnsJMxLh3dXXxwgvvMDgYBCTy8y3ccMPVpx3kGQqF2LJlGzt31pFIJMjI\nMNLc7KOsbNnYa/r7O3jnnc0sW7acoqLCse3hcIBYrIHvfvf+4+5DkiTa2trYt+8g4XCUWbNKmDlz\n5pQTGzBxtWkmBQMDyaWZUAg+/BC+YI6Z4gwQBPje92DFCnjgAfjd75JZNidRn2rKMmvWrLFqoOFw\nGJ/PR1paGprDdu6QvJu5+urxhXyczj40mvHpoQA6nY2Ojh7mzp2DSqUgHo+iUmnGvUaSYlNqunUq\nk5WVxTe+cTdbt25FJktj+vTF42I8zOZMWlvHT81nZGTw7W//A9/+9hdbOz00Gg2BQOQoMSJJsSn5\nAzSZcDgcfOtb9zI8PIxMJjtjLx+tVsuqVVeMBau+//5H9PePjy+SyxUolSoGB0fHlRyJRiPodCcO\nMBUE4ZSXpKYiF6wYCQSSxd1++lO47z54+GFIncfnhvnzYccOePxxWLsWrrgCfvxjKC6e6J6dWzQa\nzTgRAklzoj179tHZ2U96upkFC+aSmZmJxWIkFus9qo1IxI/Vmo8gCFxySRUffniIwsIjRe9cri7y\n803HvctOJBI0NDRw4MAhZDKBuXMrKC0tnVLui5ON7OxsNBr5UcGmoZCf7OwjdzQ+n4+tW7ezefMO\nAoEwc+bMYOXK5WcU17F4cRXPPLMVg8EyNoZe7xB6fXTM3TfF6SMIwlG+MWcLs9lIPN4xbpvVmoVM\n5gGOZLyIosjgYCu33DK+FMTo6Ch79tTQ1dVPZqaV+fPnjDlAf0YoFOLAgVqamjowmQxUV1deEHFE\nF9QyzeAgfPxxMqjyb3+Dyy5LFsE7xfixFGeA3w+PPJLMVrrttqR9/Mla7U+m6frTwe128/vfP0M4\nbMVotBMMeojH+9i48Wqys7N55JE/otdXYDQmI/r9/lE8njq+9a2NWK1WIpEIzzzzIk1NgwiCEQhh\ntwvcdddNWK1HZwFAUog888wL1NYOYTLlIUkiXq+TxYsL2LDhmilRQG8yjnsikeB//ueP+Hx2MjKS\naXfRaJju7t3ce+9aSktLGRoa4le/epxPPmlEknKRy/VEIm5mzNBy//3XU119elOEoijy6qtvsmNH\nC4JgBqLo9RE2btxwQfzofMZkHPczJRAI8Mgjj6HRlI3FpQQCXjo6PsZg0CIINiRJiSR5WLiwmPXr\n144Jzv7+fh599DnicTsGg+3w9aOXu+5aR0lJCZD0NvnDH57G7VZgNGYRiQQJh7u5/vpLWbDg9GKU\nzifHW6aZ0mJkcBA2b04KkI8+go6OpPfFypXJbJlUQcyJw+2Gf/93ePLJZF2b73znxEtkU/3i9Je/\nbKK9XUFm5pGc8UDAQzTawPe+9wDd3d08++zr+HwCkgR6fYKbb14zdqGB5Ppwd3c3Q0ND6PV6ioqK\njusq2djYyJ///CGFhQvGhIcoinR17eCBB9af0GZ6MjBZx314eJhnn32F7m4fMpkauTzA1VcvZdGi\nhQA899xLvPzyHjweC2ZzIZAULMFgB3PnaviXf/nGUTNnp8LAwAB9fX2o1WqKi4unlGfEyTBZx/1M\ncTqdPPvsa4yOSgiCDK02zo03rqKwsJD29nbC4TDZ2dlHFbh8/PGn6e3VkZ5+xMzN7x8lkTjEd797\nPzKZjHff/YDNm3vJzz8SNxSNhnG7d/GDH3z9tKr8nk8mLGZEEIRfAPOAvZ+v4CsIQg7wF0AN7Acq\nJUladuxWjtDff0R8fPwxOJ1J8XHZZcl4hXnzUksxk4X0dPiv/4Jvfxt++EMoLISbbkrG7yxeDBea\nyWg8HqexsZO8vPE27nq9iaEhGBwcpKCggO9+9376+/uRJImsrKyjhIYgCOTn55/0HXB9fQsGQ864\nGRCZTIZSmU5zc9uUECOTFavVygMP3IXL5SISiZCRkTEmLiRJora2Bb8/isGQPfYelUpDIKDB50uW\nji8+g7XKzMzMVEXmKUh+fj7f+c799PX1IYoi2dnZY+f5523iP08kEqG1tZf8/PHXj2TWTWKs5s7+\n/YdITx9viKJSaUgkDHR3dzN9+tTNtjpnYkQQhGpAL0nSckEQfi0IwnxJknYffvr/A/4FaATqgeYv\na+f99+G555LiY2AAli1Lio+vfQ3mzIETlCJIMcEUFsKf/5wUkn/8YzLQtb8fVq9OBr4uW5a0mZ8C\nqwnHRSaTIZfLEMXEUbEagiCO2T7L5XJyz+KUXTLo9Wj3RVGMo1anlPmZIgjClwoChUKOTCZDFOMk\n76uSSJKIIHDCOikpLlxkMtkpnedy+WffpcQ4PxFJkpCkxNh3SalUkEjEj3q/JCWmfBmJcxnhtgh4\n5/Df7wGXfO65WZIkbQNuA9o4jigaHIQZM+Dpp5N/v/JK0i9k/vyUEJlKZGUlq/3W1sKePUkR8tFH\ncOONSTO6qY5MJmPhwpn09o7X1W53Nzk5aaed5nkiKitnEIn0jbtAxWIRJMlNWdnUvUua7AiCwMKF\ns0hLU+D1do5tDwa9KJUhsrK0Z1V0priwUSgUVFdPp7e3Zdx2t9tJYaFtLOtn0aIqXK7Wcctbfv8o\nen1sys+CnsufczNJoQHgAT4fRioXBEEJXHb4NV961fzKV85Z/1JMEA5HsmLy/cdPr59yXHHFcnp6\nNtHRsROZzIgoBrFY4tx8883nbJ8FBQWsXFnJBx9sQxDsh+/Kh7n22iVTpkDWVGXFikvp6HDy5ps7\n6ejoRZJ0qFQBFi928NWvbpjyd6opzi+rVq2gv38TnZ27EIQ0RDGAzSZy/fVHrh/z5s2ltbWT+vod\nCIIZSYqi0fjYuHH9lE/7PmcBrIIgfANwS5K0SRCEG4BcSZJ+dfi5D4EngSHgHsAuSdLSL7z/wots\nSpEiRYoUKS5iJiKAdRtwP7AJWAk8/rnnDgArgGygGhAEQfh7SZL+9/MNTKVI60AgwM9+9nuyshah\nVB5ZP3Y6G1i+PGdcBccUx+ZCja5PcXwm47i7XC7++7+fJi9v8bg1/I6OfVx//RwWLJg/gb27MJiM\n4z4ZEUWRRx75HYJQSlraEZO2wcEesrIC3HPPbRPYu1PjeFYD5yxmRJKkfUBYEITNQFySpN2CIPzy\n8NP/CeQCeuArQN0XhchUo7u7G0kyjhMiAOnpDvbvPzRBvUqRIsXp4HQ6Acs4IQJgseRTW/ul8fYp\nUpx1hoeH8XgS44QIgM2WQ1tbH5FIZIJ6dnY5pyGgn0/nPfz4ocP/95CcLfmM985lP84HCoUCSTo6\nyjkej6WyGlKkmGIksxeOjqyOxaJoNClr/hTnj89+WyRJGjezkMzcEy4Yp+UL4ygmAQ6HA70+hs83\nMrZNkiTc7lYWLao6zjtTpEgx2SguLkap9BIK+ce2iWICn6+LefNmTWDPUlxsmM1miorScbu7xm3v\n7W1h7tzSKR+4+hlT2oF1stHZ2ckTT7xMOKwH1EjSCLNn53LjjetTngMnQWoN+eJkso57fX0Dzz77\nNvG4GUFQIIrDLF1axtq1V00Jm/3JzmQd98nI8PAwf/rTJoaGBARBjyh6cTi0bNx4M3q9fqK7d9Jc\nsHbwk5FQKERLSwvhcJisrCzy8vJSF66TJHVxujiZzOPu8/lobW0lFkv6OKQcUc8ek3ncJyOxWIzW\n1la8Xi82m43CwsIplz6eEiMppgSpi9PFSWrcL05S437xcTwxkooZSZEiRYoUKVJMKCkxkiJFihQp\nUqSYUFJiJEWKFClSpEgxoaTESIoUKVKkSJFiQknlm05xmpqa2Pvpp3hHRsgvLWXR0qXYbLZxr5Ek\nCY/Hg1KpnFJpYClSXIh4vV4AjEYjkiTR0NDAvk8/xe/1UlhezsIlS8aqtKa4uBgZGWHXtm20NzSg\nVKspr65m0aJFUy5r5nSYsGwaQRBmAr8naXN4UJKkB7/w/EWdTROJROjv70epVJKdnX3M9OCtW7aw\n57XXmGaxYNBq6R8ZoV8m47YHHhir2NrW1sZ7L79MeGiIBOCoqOCqa68lLS3tPB/RibnQo+t/9Sv4\n+c+huBgeewyKiia6R5ODC33cP8PlcvHOyy8z2NkJkoTV4cBot9O9axfTLBZ0Gg39IyO4lUpuf/BB\nrFbrMduJxWL09/cjCALZ2dlT9ofqQhr3kZERPB4PFosFk8l02m389be/xejz4e3ro9fppDcYxDJr\nFvf94z8yY8aMs9zr88+kTO0VBEEhHfZPFwThj8CvDtez+ez5i1aM7N27j9de20wspkGSEtjtSm67\nbf04j4NAIMDv/+//ZXFmJqrPOfC19/Xhz8pi5dq1SJLEC48+SoXJhM1oRBRF2vr7CaSnc9cDD0y6\ni9iFdHH6Io8+mhQizzwD776bfFxTAzrdRPds4rmQx/0zAoEAf/rlL8kTRXLtdgRBoKWnh5c//pgH\nNmwYN2PZ0ttLWnU1a9evB8DtdhMMBklPT8fpdPK3v71LKKRAkiSMRolbb12Hw+GYqEM7bS6EcY9E\nIrz88hscONCJTGZAFP3Mm1fCunWrT9kZ9c1XX8Wzaxe9jY1Ig4PkZ2SATManbjfZlZXc9q1vUVBQ\ncI6O5PxwPDEyYcs00vhCLlpgdKL6crYZHh6mt7cXlUpFYWEhKtXJ17Lo6uri+ec3k509D7Vae7i9\nfv7857/xj/9439gX3OVyYZCkcULE6/VyqLaJre/voMUp0dW6h4VmJbb8fABkMhklOTns6uyks7OT\n4uLis3jUKb6M3l74p3+CLVugvBzmzEkKkR//GH7604nuXYrzQUN9PfpAgLzPiQaVQoE9Hsc1MEDR\n587FPLudmvp6fJdfzqZNr9DaOoRMpiEUcjMwMEBV1TricR+JRJxwWMGf/vQS3/nOPRgMhok4tClB\nMBiks7MTURQpKCg4a5/V22+/z/79HhyOSxEEAVEU2bVrPwbDJ6dcqb1+zx5G99bS39BEji6NhsEW\ncnIzyFCpMEoSOzdvpmDjxrPS78nIhMaMCIKwHvh3YLckSe0T2ZezgSRJvP32+2zZUgeYgRg63Tvc\need15OXlnVQbO3bsQ6t1jAkRAKs1i87OXlpbWykvLwdApVIR/dxdRTweZ+vWvYSietIzM3E4FtB9\nqJm2Q62UFxaMW4PWAx6P52wccoqT4N/+Df7u75JC5DN+9rOkKPne9+ALIT4pLkCGXC6M6vEVvZUK\nBXKFAv/hGJLPCEUiaA0Gnn32Fbq7FRQULAWgru4gDQ1NdHc/j1abDyiQpBEsFhkHD9azaNHC83U4\nU4q6uoNs2vQu8XgagiBDJnuHa69dzoIF886o3VAoxK5dTeTlLRlbRpfJZOTmzmTr1h2sWLHspGdH\nEokE+2sPkeYBs86KXmckISbocroI2w1MN5kY7Os7o/5OdiY0m0aSpFckSaoEfIIgrPri8w8//PDY\nv48++uj8d/AUqa+v56OPkl9Oh6MSh6MalWo6TzzxErFY7KTaGB72otMdK55DQzAYHHuUk5ODJjOT\nbrcbSE7lhkIyhuIxskvmAGBOzyMqqulod45ryU+y+FKKc09vL7zwAvzgB+O35+fD9dfDb387Mf1K\ncX5Jz8rCEw6P25ZpseBTKvn81oQocsjloqC8nPb2YXJySsaeCwSCeL0xRkZMWK0zsVrLsFgW0NXl\np76+4TwdydRieHiYZ599F5utmoKCOTgcVWRkLOTFFz+h7wx/3EOhEKBELh9/T69UqojHBSKRyEm3\n1dHRgdpShF+hIiiKAMhlcoKigoFgGLlcTsZJ3tBOVSZsZkQQBJUkSdHDD73AUWsZDz/88Hnt0/Ho\n7+9nx4699PYOkpeXzqJF88jIyBj3mu3b92OxFCOTHYnFMBptdHWpaW9vZ/r06SfcT0lJPh991ENa\n2pGZjOS6qmcsKBWSa2/X3X47f3viCXo7Oxnp76fO68Ux+zIcBclAp7yiWew+tIdut5u5JC90zb29\naPPzp/za41Thf/8X7rgDjpUc8cADcMstySWcC6QKeIovYUZFBdvfe49OlwvH4fO4Z3CQkkWLiOp0\n7OrsRClJtLpcRA1WhrfX0NcXJDc3PlZkUy6PkkikIYpH7rZlMjkKhRWX64JZ5T6rNDQ0AnY0miMx\nOSqVBpUqmwMH6snOzj7tto1GI1othMOBce37/aOYzeovzVx0Op1s376XwUEPxcW5LFxYnYwJyigh\npM2kfvPzDA/2oNHoCCrV5FmNdIXD3Lhs2Wn3dSowkcs0awRB+A4gAO3AmxPYl+PS1tbG44+/glKZ\nh8GQy969w+ze/TT33HPduB/1QCCMSqU5RgtKotHoMbYfIRgM0traikwmEY930Nen+v/Ze8/wuq7z\nzve3y+kFpwAHvbGAJECCRSwiKUoUJTuW5SLJkh07rrFiO5Fv6s08mdzJ8/hOJhlnnDvjJGNnYtmO\nbEm2ZcmyVSJajaTE3kGCKEQ/AHEAnIPT+673A2hIlKhKyizi74vEfdZZe529sNd611rv+38JhZpQ\nVYXp6QHa26tfd9QTDAb58h//MRMTEwwNDRF9+ijt7VvnP/d6A1S3r6PMCLvHxzEEgUUrV3LLbbch\nXpv93nNKJfje92D//vN/ft114PXCjh1w662/3bZd4+JSKpUYHh6mUCicN0Gmw+HgU/fey/NPP83u\nwUEAahYt4su3304gECAcDvPEE8+Qzweoq+1AVUucPv0rFOUQmzfPhXYGAj4EQUUUdXRdBwzS6RjB\noPMNdlOvUSyWkSTb665bLHby+eIF1S3LMh/60GZ+/vPdVFYuxe32k8nESST6+dznzp/Z+cCBA3z/\n+79EliupqWlmejrGoUMPcued2xCELEuXb6K2sY2Tx3eQmAkjqgpGY4jbv/hFGs/6/l2tXEoH1ieB\nJy/V/d8upmnyxBMvUFHRjtc7d7jvdvtIJt08/fQO7rvvS/NlOzoWsGvXGVwu7/w1XdcwzRR1dXVv\neI+RkREefPApymUPgmChVJLR9VNMT4dxOOx88IOdbN68kXA4zN69R4hGk7S01LJp0zqqq6tpaWmh\nubmZyclZTp8+QW1tG7JsIRaboKZG5o/+6L8iSRIWiwWb7fUv5jXeG558cs4vZNGi838uCPClL8GD\nD14zRq5kJicneeCBxykUnAiCDcM4yPLlNdxzz8fnfQYURWFgYIh4zoBgA6tWLWPz5o3zzu2SJBGN\nmrS3b52fxNauvZ5Dh05QVxdgwYI2JEmksrLAkiWNJBIjiKJIW1sdNpuDzs7Fl+z3X860tjbx4ot9\nwLnO+rncNG1tmy+o7mQyydRUFMjQ1fUkXq+Tzs7l3Hnn7Sxe/Pr+6O3t5a//+p+Q5aVYLBAOH6e1\ntZbq6npOnjxNZ2cDXV3Hqa1dwg033c3U1Ci6HuZP//T3qaysvKC2XglcEz17C9LpNPF4iaamc70M\n/f4Q4+OnyeVy857Z69dfx/HjfUxM9BEI1KMoJZLJEbZuXf6GmgHlcpmHH34aj2c5tbVzfhyGsZSx\nsSPcddcmVq5cCcCJEyf52c924vG04nK10d0do6vrZ3zlK3dTX1+PIAh8+tN3sWfPPvbvP0a5rLJi\nxSK2bfvddx33fo0L48c/hs9//s3L3HMPfOMbc7so9vNtql3jskbXdR5++Ams1jaqquYmDNM06e4+\nTkvLUTZtuh5N03jooUcZHCxSVTUnLvPcc4OMjU3y+c9/CkmSGBsbx2KpOmc1vWzZWhSlyOTkfqzW\nKRYvbqCt7aP09aXp6FiJxWIlHp8kENBYu3bNJfn9lzutra20t1fS23uMYLAFQRCIx8dZuNDFkiVL\n3nW98Xicf/3Xh9G0amprt+Dz5Ugmh1m+fNF5DZFiscgPf/gLZLmDUKgdANNsZWTkJMFgFX19k/zN\n3/wxdXWH2bv3OLOzJdrbF7Bt2xffF4YIXDNG3pK5lY2OYRjnHG0Yho4gGPPnuQAej4evfvWzHDp0\nlJ6eESor7XzkI1tpb29/w/rHxsYol51UV7/iUCqKIsHgAg4d6mblypWoqspTT+2ipmYVDsec4eNw\nuInH7Wzfvot77/09YC7CZtu2rWzbtvXiPYBrvCtmZmDvXnjkkTcvV1cHnZ3w7LPw8Y//dtp2jYvH\nmTNnSKcFmptfmTAEQaC6ejEHDpxg06brGRoaYmgoR2vr2vkybvdqBgYOMzQ0xJIlS7DbbRjGuU7u\noihSW9vMbbct42Mfuw2YM3R6eno4ePAkhUKJW25ZyLp1111TVn4DRFHkd3/3Trq6TnD0aC+6bvDR\nj3awZs2qd6wD8mpefnk/ul5LXd3cjovD4cbjCfDccwdYvXrl6/pjdHQUTatAll9xahUEEaezkZGR\nQZYu9WKxWNiyZTNbtlzYjs2VyjVj5C1wuVy0tzcxMDByjmd7JDLIypWLsL9mOevxeLjllq3ccsvW\nt1W/pmmY5uvFx2TZQqk052cSj8cpl2VCoXNj4wOBGsbG+lFV9YJerGtcfH7ykznj4u3MEZ/61JzR\ncs0YufLQNA1RfP0wKssWstk542JwcAyHo+p1ZRyOKoaGxliyZAltbYsRhH3nOENqmkqpNMmqVXfM\nf0cQBJYvX87y5cvfo1909WGxWFi3bi3r1q1968Jvk7nF5rrX3MeKabqZnp5m4cKF53ymaRoulxe/\nP0sul8TtnvNoF0WZeDzCxo1bzutj8n7imhfj2+CjH/0gVVV5wuHDhMM9hMOHqKtTue22Wy647jmn\n1BSadu6qKB6fYOXKuegbm82GaaqvUyvUNAWLRb7slFSvMWeMfPazb6/s3XfDM8/AqyK3r3GFUFdX\nhyjmUZRzw3aj0fF5Pw6324Gqvj7MU9PKuFxzekJ+v59PfvJWEonjhMMnCYe7iUQOcNtt112R6qpX\nOy6XA0V5vQOsaarn9cv7zTi/alU7FkuaRGKcRCJCJHKEtWsb2LJl02+h1Zc313ZG3gYej4c//MMv\nMjY2Rjqdxufz0dzcfFEiUioqKvjgB9eyffshPJ5mrFY7yWSEmhp9/hzY7/ezcGEV4+Oj1NbObQua\npsnkZD8339x5LTLmMmN8HEZHYevWt1c+FIJ16+YMkrvvfk+bdo2LjMPh4CMf2cLjj+/B6WzCbneS\nTs9QUZHnhhs+DMDy5e288MJxyuXGeTHDUqmAacbo6HhFXmnFiuUsWNDKyMgIhmHQ1NR0LWHeZcrm\nzat4/PFjtLSsmR9/Z2cjVFZaqK+vf135QCCwZzwXAAAgAElEQVTAtm2reP75k3R2tpLNFojHw2zc\nuIC/+Is/vBZYwCXMTfNWvN9y0wwPD3PkyEny+RLLli1g1apOHI5XVFjT6TQPPfQLIpESguDENLMs\nW1bDJz/58XckN385czXkqgD49rfh5En44Q/f/nd+8IM5Y+QXv3jv2nW5cjX0ezgc5vDhE6RSOZYu\nbWbVqpXnSI53dZ3gl7/cia7PZeqV5Sx33bWNlSs7L2GrLy1Xcr/rus5TT23n0KEhRNEHlPH7TT7/\n+U+cowf1WoaGhjh6tJt8vkRHx0JWrux83VH/1cxlmSjvrXi/GSNvB8MwmJiYIJvNEgwGL0iw53Lk\nSh6cXs2NN84prt5++9v/TjIJLS1zuyrvt+Cnq6Xf34p8Ps/4+DgAzc3NON/nWRKvhn6PxebyBTkc\nDlpaWq4dmb8F14yR9zkzMzPzifuampro7+uj5/BhNE1jyapVrF2//pxdmEvF1TA4TU/DsmVz/32n\nO68f/zjcdRd84QvvTdsuV66Gfn8zstkso6Oj80cvkiRxeP9+Rvr6cLrdrNq4kY6OjvedA+PV3u8X\nC9M02bVrF/t37EArl1m7ZQubb7zxipRsuGaMXEbMzMxwaM8eJkdH8QWDrN2yhUWvUcUyTfOiDEyG\nYfDsf/wHgwcO4AMU0+TAwABtVVWsPpsldDKZxKiv5/fuvfeSn1teDYPTv/0bvPTSnAPrO+VnP4MH\nHoBf//qiN+uy5lL0e6FQ4PDBg5zu6kK2WFixfj2r16w5J1T/YtB98iQvPvYYFbqOCERKJRLZLGtq\naqgLBimWywzF47TfeivbPjDnP1Iul5Hl98Yx/WKNLReDq+F9f68xDIP//o1vMPz887Ta7UiiSFTX\nCW3cyH1/9Vd4vXMCm4Iwlwvn2NGj9B45gmmaLLvuOtauW3fJx/VX82bGyKXMTbMB+J+AARw2TfPP\nL1Vb3g3JZJK9u3YxdOoUNrudzo0bWb9hw5uG2E5OTvLY975HgyTR4fORmZnhmR/8gM133cV169YR\ni8XY/cILjPT2IlutrNq4ketvuAHDMLBare94oOzp6WF07142trQgiiKR2Vl8iQSz09Mcj0QwVBW7\n2005FqPn1CnWXHdhWSyvMefz8ZWvvLvvfvSjc/lqYjF4k2Pna1wgpVKJn3z/+1ijUZZUVaEpCscf\nf5zxkRHu+tSn3vFknUwm2ffSSwx2d2O1WuncuJENGzeSy+V48dFHua6qCudZv4DMiRNEe3sJtrbi\ndjhwOxz4PR727txJRSBAz5EjzE5MIMgyHevXc+O2bRfsU6CqKvv27OHEvn0opRLNS5Zw4wc+QHV1\n9QXVezVQLpc5sG8f3QcPoqkqS1evZtONN85P8hf7XsA7Mg727NlD969/zQpZJnc2KWrA7Sb80kt8\nx2rFLggYhsHizk5i09OIkQitVVUIwMAzzzDS18fvfvGLV4T0w6WMphkDbjZNUxEE4SFBEJabpnnq\nErbndRSLRYaHhykWi9TW1s4rnabTab793/4bybFpPA4njSEvJ594gqnxcT7x6U+/4WD28rPPssBm\no+6sop7TbqfC5WLv9u00NDXxyP3302Ca3FRfj6Jp7H/sMR74wcPUL+jEZhPZvHklN910w9s2SroP\nHWJBIDDv7R1NJiGXQ52dxWaz4auoQNB1+gYG2LtjxzVj5ALJZufy0Dz++Lv7vssFH/4wPPoo/NEf\nXdy2XeMVuk+eRJyepqOlZf7aGpeLgydPMr5x49tOIqnrOiMjI/zixz+mWRDYUF2Nquuc/vWviYTD\nNC9eTNA05w0RgGg0SqvHQ2RigmAwiGkYjI2OcXzPIR579hBtVX7WLK7F5bBz6Je/ZGRoiKWdqxga\nOkMg4GXdupXvOEfJE48+SvrUKa6rq8MaDDI5NsbP/s//4bNf/zrBYPCtK7gCiUQiHD7cRSyWpLW1\nnrVrV7/uWMMwDB57+GGUoSFW1tQgSRLhQ4f4yenTfP4P//Bd+/RMTk4SiUSw2+0sWrSIQqHAM8+8\nyOnTZxAEWLasmdtu2/a2IqV2bt+OmEhgdblodTrRDIOpVIrB2VkAvvh7v4coiuzbtYu+3l6+dNdd\n8wENnS4XR0dHGRwcfFPhzcuFS5mbZuZV/1QB7VK15XxMTEzwox/9kmLRdTbfxAE6O+u4++6Pc/+/\nfZ9jByZoqlpCrihzsG+WkL9ASTzB5I03zie003UdQRAQRRFd1zkzPMzNr9EMcNhsWFSVXTt2UKUo\nNJ/9bjadJjmWwNAseFa24Xb7eOqpY4yNjfOZz9wz7+ORyWQQBAGP5/WJssqlEpazhoum65QUhclY\nDE/JoHc8hSwXMfU8slNgsLf3vXyc7wt27IANG8Dtfuuyb8RnPgN///fXjJH3kvDAADWvmZgEQcAv\nSQz09xMIBM77Pr2a0dFRHn10Oz3dYVKjI8zUuqhwuaj2+1nV0sKB/n5Mi4V0Nks8kyHg8SAIAjab\nDT2XQ1PndIUGBoc4dWqSWAp8rkbOzBQ43N/Povom3A6BYy8+xPU3FejoWMPUVI7Dh3/BPffcxOrV\nq9B1/S0XJlNTU0z19LCxuXl+kdQYClGenOTIgQP8zjvxsr5C6Ovr46GHnsVma8TprGLXrkkOHDjF\nV77yqXMiXUZHR8kMDbH+VUZpW0MD3ePjdJ84wYaNG9/0PrquI4ri/HPVdZ1f/vJpjh8fp1x2Ui5n\ncTqfAjTc7g4aGuay7g4NhfnBD37G17/+pXN2vRRFIZ/P43a753cyZmZmEHUdn93ORDLNeKpESgMh\nV0JJpDENA0mWETWNSlUlMjlJS2vrfJ0hp5Pw0NA1Y+TtIAhCJ1Blmmb/pW7Lb9A0jYcffgK7fRmh\n0FxOGdM06eo6ht+/g5d3nmBBzUrcjjmlRLejgqnEMDZrlGg0isvl4vnnX6K7exhRFFi9egm33HIj\nNoeDkqLgeNU2nWmaKKZJfHKSJb5XJOH7+oZwOmuoLOUZHR1kcHCWRCLPyy+H6e8fZ9Om5WRnpklM\nTIAgUNXaygc/9rFzXrbFK1Yw8Otfc3piihND05yJxeiNxGkTK6lERjY0RMFCX3Qat9BFX18fy5Yt\n+y095auPZ56Z29m4EH7nd+aOeXp6oKPj4rTrGufi9Hgols8VIUun0xw5ehRhcpKe3bvP+z79hmQy\nyY9+9CQeTwcWQaW1xodhKDy5t4ffu3UtTrud1HSU/eGXiY7EcBwZRVTiLG2qweX10pNI8OHrrkNT\nVU6eHGBoJMlALIFdKJNUXNitTQwpORprJURzOePjedav9+H1BikWq/judx+muXkX5bJObW2QD3xg\nM21tbef9rbFYDK8gvG63ttrvZ2R4+OI91MsETdP45S9fJBRaPZ86w+sNMj09xgsv7ObTn75rvuxU\nJIL/PMZcyONhYnj4DY2RsbExHnjgEbq6BnG57Nx++xY+8Yk76Onp5eDBSbJZF+PjMQTBSjQ6RbEY\n5qtfvWV+h7qmppVwOENfX/+8Ubl71y66du9G0nVMq5V127axYeNGbA4HY7kcSjJFseQgYA2gaDlE\nQ6aoutm1aw+yZKN/fAJ1ehrLsS4aGhqQzxozJVXFd4WkCrikalmCIASAfwF+/1K247VMTEyQy1nw\nel9JbicIAqHQQl54YQ82Rx2qbpzzHY8jxGAkxcTEBN/61nfo6SlTX7+FmprNHD+e5oEHfs6K66+n\nPxI5x2lrbGaGytZW6pubyeTz89dTqSwOh5sz8Tg7dhxlclLCNFtJp/309mb5/v/3PZS+PrY0N3ND\nYyOuqSke/eEPKRaLZDIZ+vv7qfD72TE0xo+fOcDIeJzJsXFUI0TEEDmTijGWTzJkqjgDy7CLdp59\n5BGKxbeXVvua49m5mCZs3w633XZh9Vgs8OUvzznCXuO9YcWaNZwplSgpc+kWSqUSu3fupFwuc8eq\nVdzQ2Ih7epqfn32fXsuJE93oeiUejx+700VJVXE7KlC1ACNT00wnEuztm6W+fgtWpx8tMosvIxHr\nHeLUkSP0ZrM8e+oU2w8c4OkjxzmaKKDIrcSLBpJZj2jYKJQEhsYjiKIfw7ATj8eJx+McO3aCkyeT\nqGotTU03UyjU8cAD2xkcHDzvb3W5XBTP865mCgUqrsIEbNFolGJRmjdEfkMo1Ehv75yY3G9wezyU\nDOO1VZArlfC+QWLTiYkJ7rvvG+zcmUcQNpNMLuV//++X+OY3v82BAydIJg3C4Sx+/0L8/mYcjkaS\nSQs7djxJPp+Zr8du953N+Asv79zJ6eefZ31lJRvq6mjSNF740Y/4x29+k2hfH7KucyxbYtYQGSnn\nOGNqlG1uDM3K8eMjFIsOFjauIiG7mIorHD16EoBCqcS0rtPReWVo2VxKB1YZeAj4v03TjJ6vzDe+\n8Y35/9+6dStb366k5TvENE3Gx8eJRqO43e6zf7Dnzxej6ybVdTXEhmdxOxxYpLlHODw5wWwmzNHH\nH2dkKIGtJorT6cXvD1Ffv4SxsaPceGMV6dWr2dvVRYUkUTAMbLW13HnnncRiMX62cycWoCYUwuNx\nEZ4KMxAvoOmNlEsK8dgYghCjvyfFMkuWniOnqPJ6qampoTEUYnJggP/nr/6K4e5hBNFFPJ8jP9pP\nR20b2dkJVDVH1tmM23SimTkqPA5S2LBZXFRVefCqKsPDw2+a9yIajfLii3vo6RnB4bCxefNKNm/e\neEU4SL2X9PaCKMLSpRde1733wpo18M1vwvtciuI9oaGhgdYNG/jJT3+KV9cpqSrpfJ6Pf/CD8/4d\nDVVVJMbH6e/rY/WaVzLiplIpDh8+TjJpEgjU0tDSzPHwGF5NRZYcZPIlukfGmcroJF76D0rRMdoC\nlRiKzmh0gmU1Xhb7/Zh2O8/t24daLNPkczGWPUPaMHAhYpRLSGYRwS4xnUxSMvI8/OPTuCtqSSZz\nmGaZcHiK6uoW4rOThHt6+K9/uYcvfO3LbNi8+ZwjppaWFqSqKsajUZpCIWBukhrNZvnYWxxDXInI\nsoxpvv7EX9c1ZFk6Z4eora2Nl+124pkMwbMOq/lSiYiisGX16vPW/9BDPyeTqaW5eRUALlcFHk+Q\nJ598jIULvfT12QkEluFwFLFYRFLTB7AluxnZcYxY726aVlzPlls+RTI5TS5XxfDwMHt//Wuso6M8\n9MwzxJJFrBXVpNUifT9+kGWhKqoEgZToIitUI8kSjgo/BSNGsVTG6nAgnZ2D5PpFpG1O9p0eo+y2\nkTAMOjZvJpPJEAwGL3ul7ksW2isIwqeBfwJ6zl76z6ZpHnjV57+V0N5yucxPf/o4AwMJBKECKGK3\n50kkMixadCsWy9yRimEYjI/3sWFDkK6uQTLpAEPdvaiZDNligdn4af70ng1QUJiIqCTLRc6YBjd/\n5Ks4nW4ikRGWLRPo7OxAVefyzPT3D3D69CSnTw+QyZSp8PrJnOkn5BSorA5ysH+K8ViI6IwFi1AF\nTCMQRdbSLLOkWFJroX1hPQW7ncWdnTzx3HMUU2U6l2xmcGiY0XA3Bd1GwCrhFgqE3B72ZSyIYjM2\nJUPI6yaiaYSaqvjIpkrsDgviokUoqRSYJsvWrGH9pk3zjlyJRILvfOchoIGqqgZUVSES6WfFCh+f\n+cycjnk+n0eSpHcVAXAlh/p961tzEvDf/e7Fqe/22+Gee+CLX7w49V3OXEi/a5pGsVjE5XK97cH2\nxeeeo3fnTgKSRCKT4WB/P0t9Pj60bRvCq+oYnZqi2NREbW0tFpuNYlllz55eIpESp09Hqaiw0NGx\nFJvNR/+xo8xMnSBUkWNX1xg6y3E6QviVLKaRB+EMzUaKFZUuJJ+LrmQCeypNNFsCuRK15OOMmWOW\nhciCG6tUwOoyMU0rboeL2mATJc1gJpukusZCZeUCKuyThNQ0DZ4AqdQQK9avIO/389mvfe2crLGJ\nRIInf/5zMhMTWEURxWJhy0c+co6RdSl4L9530zT57ncfIJ0OUln5iix7ONzNli0NfOhDt55T/vDh\nwzxy//1IuRyVlZVYKyu55c47Wb5ixXnrv+uuP0DX1yFJVmKxEaanx8nnC2SzUbzeEvl8iJqaG5Bl\nHVE5iWd2FK2YQLYHqa+pZbY4RS5YjdPjZMOGG0mnpzn5xP1stluJF0ExKgjno3hQCBplAk4n46U8\n42VQhEbyqFgcFloWLmFkfIwKOyzv6MR0V9B23a34fFUcPfprBCGBx7MAp7MKyNHU5ORzn7v7kmd3\nvixDe03T/Cnw00t1/9+wZ89+BgZKtLRcP38tHp9CFA8xMXEIm62eiYkpentPYrUmqK29jZtvXsMP\nv/8Y+WwS0TApFEZZ5stjUxRGkrP0nB6gxuZCLubY9cR3Wb31Ho4ff4lw2MuhQ1GgQD4/ja5XEJ8Y\nYbD3FIh+rH6DO+76Q6LREQR3klsWtfHP/7wdDBHJmsZh9WCUl1Cil5I2hWy1cTpRYHg2xX/0JElO\nT9LR2MJ0JIpa1Fni9NOfmiFTqkQUJIqCgVqOEdUVvBYXlS4PdsNCfZVKW0MNP921i3XlMstbWxEE\ngbFduxg5fZrP/sEfYLVaOXDgCLpeTV3dXLSBzeagpWUVPT376erqoufIEaJjY5iAr6GBQDBINpGg\nsq6ONevXX9WhhNu3w5/92cWr77774K//ek4A7TKRhbis0HWdPS+9RNeePaCqyG43mz/4QVa9wYr2\nN0QiEXpeeokNTU3IZ3U8PA4Hx3fvZiYaRRVFDvePM5PMMjEZpnFBLb/TuYJ4NssvDgzTueEe1qxZ\nQDZ7gHzewvHjp2hsrCKSChPN6pwcLlDMC0iEKRdmKOomAamRvCnjEdOczsDImTGcskiDIFKnqyS0\nCEkzRqVYS9ocRhHasDga0LQ0VsspRLEShEpMI0GpcJpQ6HOIIiSHeti0eh3ZXJpyMYdQKGAUCpw8\ncYKNm15JvBYIBPji175GLBajXC4TCoWumhQSr0UQBD75yY/w7//+GOHwDOAAMixYUMHWrTecU/al\nnTvpev55rquuZspiYSqTYeMNN9DxJjvDqpqnq+s/mJ2dQtMETNONKMroeoL6+qXoepx4vJ9QqIHk\nRBcSWTwUcBamiZ8ZIye5mEpP8cWv/z2apjHU34OezWOIIImVFAyVxRYLiVwKWQCzBK2yg4iWx2JM\nU2N68di8BNQsw0aW4PJttN/yCbzeALquMR7uY+9zj6ApLqyOMF5/LWs3X08kIvP887u4447L12H5\nfS969rd/+0/4/WuxWu3ouk4mk0WSJJLJU9xxxwb+1//6HkeOjOJyBZBFE6us07QgxCKfwJJAANM0\n6RsYYKFpMjg7S05V8WXLOKx+MuUiWk0zR2dnKFgbaWxcQalkUCwW6e3dR0Acpb6YwyFUYbd6GS8l\nidn9dC7fSD4/RFGLMD5UQDAMSmI1Lscq1LxJXh3BL+ylMeAn5F8DRZPj09NYDR3JWiYkagQDNdjT\nY0SzGaapxmcTiBUTiNZWogrYXVYULUltdYk/+9RH6J+ZQUmn+eSt564cjo2Nsf5Tn2LlypX8y7/8\nEE1rxeU6NwZ/YOAQ1uIprq+vpy4YZDoe58lnn8XncHDLtm2ki0Uius7Hv/QlWl/l6f1artSdkUwG\n6uvnVFcv1sLDNKGzE/7xH+ecWq9m3k2/v/jsswzv2kVHfT12q5VcsciJqSlu/sxnWPEmZ+R7du9m\n/PnnWXI2ag3mji1+9vTTWGWZhBHC62xmNpnj9PgI7Qu93La+iVgqzfb9cRJZg9b2dmqbmjndP0B/\nbxflcpigv5NUWiGf0rHiR9OHsOpuEkzgoIhMjg4pS61FIqsWKQkmrS4XnrxC2ZSIGAYDgoeotIy8\n4EEkg0NKsLa2wGzJR1FyYbNWMJ2MYshBfG43jaUx2hrqGR3qxuuw4LTZKEkqTR/axv/7rW9dVmJX\n5+O9fN8VRWF4eJhcLkdVVRVNTU3n7JxNT0/zyD//MytDIfb1DDI8mcVEZjYf43Nf/wLXXbeGioqK\nc0Kfjxw5xn/6T//A/v3jGEYQWIGuC5hmHEGI4vPlWLx4OUODh3BYQIl2sUG2sMDuxuNyYmDQk0py\nwuZmQdty5OQMUzOjeAs5DEOn0hYgbuqEVIO0XiaAjF0wkCWdQQyWWaxENAHT7qKmOoi9JsBssJWN\nN30Bq9XB0b2/YmLfk6gzCaoqFpESTXLWEEXRzbpbtlBbW+Bv/ubrl/RI/bLcGbkcME0TVVWRZQuT\nkxG6uvrRNAnT1DGMYdrb/YTDJZoaN6FMnsCRzVMuZTh66gC9QSufvOVmGmpqaG5oID44SD6Xo1KW\nWbCwkfFwhGQpj0fzIyWnEGvbgCq8XieRiW6MjIOyXsJPDk2AnFrGYYpYUmOUpmooGzPUakk0vUhZ\nUVGYIVocQCVEwAmLqgLM6jVQglQyCQ4HNQ4n2bxCSRtHyecpqWV0yY5NhCyQM2oRdImg30dNvR9L\nxXIQp8kEg7Q0NmIdG0NT1XlPbICQy8XE8DArV66kstLHyEjmdcZIbHqQtRVQf9Yh7tipU6wLBsmX\nSqiFAgvr6vBlMrzwxBPc+yd/ctkoQF4sXnwRNm68eIYIzO2G/OVfwv/4H1e/MfJOKRQKnNyzh02v\n2t1wOxx0hELsf+EFlq9Y8YZ/Y7+ZAJPZLOMzM+iaRl0oxJqVK3lwzwlcVjcZo0heN1jV1oEoKjyx\n9zh6MYGZDdFi8eLK5ejfsxvNNFnRVE+pbMcUfExNjGKjGsG0YFKJwlFaKaNRppISVsOgqJl4JJlW\nDGKahiiCVZAIaDIWs0hemMQjSdj0DB6LhZZgiOHBPJK0DJurFqdoRSZDMnqSSjFLz8kwTdWLaaqu\nBUz6Jkd47GdPIOs6C9vb2frhD7/pAuBqxWq1vmlk4NDgIEFR5Je7D9M9KmKR/Pg9DmZnU/zJ//VN\nFtQ3YLGbNLUGuP3DH6BzzRqefXYPXm8zdnuSfN6NaZYAA9MEq9UGxTNEex6jXpSwIZIxijgMsNqt\n2GxWTMOgCjDyCezxCOsqKnkmNolpmjgMk+lynqhhYlCBhAddKAASSS2PRVQoGDI2r49gbQO3/M4W\nmlpaeGZgEE07TU/3MOXhwwTLOQRvNV6HD59pMqDEcPqrOX7wGJW3L0LX9cvWv+99a4zE43EmJyfx\n+5309XUxOJjC42nEYrGhqkXi8RF+8pNn0PUqlEg3gayKQ3SStWkEchr2yRj7n3wSR0UFeiBATSBA\nPJej0udDtlpxhfysaF/M4vZ2hh+MkCjLKIpOLhdHLCvYRBBKVnSLjK6LxNRJZMPEgsnxgV2Ish3d\nZ1InlKmwOvE4fIyVswyRo85fQbAySMjVgZ6XkHWdBfX1ZGIx7KpKtlSm3jCISQ5GinFagrXMKgqi\nv5aK+jpMVAILa7nppg8yNTVAqMnFrh37KZzoZsg3TEtzDe3tS5AtFgrlMrVnNRmuv341J08+idcb\nnE+FHoudQTJTtDYsBuZWmflUimAggKEo5HI5AIJeL/3j46TTaXyvCmG+GrgYUTTn49Ofhv/yX+DI\nEVi79uLXf6WSTqexC8K8IfIbfG432fFxNE17wwF30eLFPP797yMePky1JCECe3p7Ces6muRFszvR\nBYNcOcpYdIqQLJNMjiKLJVRZQ7J4kUURl6JQME1SeoqGyjqiKR3RBEMTEUQdTc9TiUoVrcQ5Q4Ug\nY5MgqecQDA3ZbkHWdUoOF0Grk2Q6hWb1ssTto1ExqLBXkMqN0dt9ipJai84siXSUhgo/ddXtzGYl\nNKWbqoIXWZAolnIMTU0wnM9gdfowpmeobW7mV/ffz6aPz2X2drlcLFiw4KJL3l+JhMfG+Mnz+zg+\nnCHoWUbQ6+bkSJjpmQTVgesQlBzlmR5Od59gaud+ggvrSUoOBPtiAoEaZDmIrnspl3VMU6dCHaBR\nKNBksRCwVxDREmQFAcFQGElME8o40SWJWVXBYqo0WG2MZ+KY5RwVpoFThLKgoBOkLNpxGAIl0Y4k\nKJRMC7NGCY/Dg7uxDavXQX1DA4VymdbFi/jSfV/l37/zHfJiiq7JCVR0VK2MRbbhRyCHRi6TIhi8\nvDMEX9Z/lf39/fT0DGKxyHR2LqPlVeI07xbTNHn22RfZvfsU4KNYVNi581c4nctxOCopFmdR1Uk2\nbdrKSy89Tz43ha9QxC7ImIJJPj/FAsOCXZLAMGj3eBjO5cjabJSqqhhXVbymSeOqVTQ2NXHyxAnG\n41FKzgwxdZR4JkON14OBCqiIsoN0OUGTIZDGhYwfmyYyoUWJzQrYRUAuYDVlqkSRWSNJzmbhhiXr\n6BqMkso4sHi9LKpvIO52c2rgBG5R5XSyjxkgK/lJZ8oYQp7qQI7K8gRSMQHhKV58chxPTQ2xmElz\n8030hzNYHC5GRpOUyt20r1jGjGFw69lt79bWVu6550aefvplVNWGYajU1bm54+6Pkj5+nFpAkiQM\nQUA3DEqGQe3Z7QLDMNDhsrXK3y2mOacv8hd/cfHrtljgz/8c/uEf5lRZrzGH1+ulZJpoun6OQZLJ\n53FWVLzpZGuxWMAw8JkmLkFABPKKwuxUEtXbjM93HYJgMnX6B/hy07S2LEVIwBq/nz2JaUazAkuN\nShStQElNUN0gkSmkyBXtaFoRq2ggiRZMJvHhIUuGGYo4TTsO3Ypm6qRJU7JYkG020ppOMZcmLQnk\n9CILlTKSrqEbJUplFUG1YpoKqpDA1HVS6TiSK0NNXSXZdIiIojKVmoSMhVhJxu3ZgKrqvNQzxebr\nNPIDA/zg7/6OG1asoARsd7n4wB130Nraelkkx7wUvPTSbvbuH6dvsgKLuJBMoUgis59iOYNdaEMW\nLETCB+mwB/D6O0kVEixwLmRPz17MVjeBQIh0OorX20wmk8HIj1EnGtiMPA7BCloGSyaBgoVpw4ti\nQERTsEkGstVGWVGIzUaxCRqdoozdYkUzNERd54ygkKSSpJhCcjiIqxYykkxWVVkoiWhjfcQrHPzP\nfx3GdHlZ94m7mJqaYmR4mGJvL4VCDvR44pQAACAASURBVJ8kMZMfwemspWyqRGbDZNQzzI5U8+D3\nvsfNH/7wvDDnu8E0TSKRCLOzs7jd7ouWrfiyNkZ+9KOduN116HqB/fufYtu2Dj7wgW0XVGdvby+7\ndp2mpWUTojj3AIeH00xNncJm81NdXUFz8034/SFqavpJJg9SLGTw2wJk1RxeTUMWSviddhK6Tjyb\nxVR1uuPjNK1bT+PyhQQkiUAoRHd/P0dOnKBzZTtdo7PYpBpsgsHkdD9lcwJDKDJSLFBrqhg40HGh\nYgAZgoCu6SiYpA0D05EjFPSwddlKln/iExiiyNHRH6OoZ1CKFmbiTpwOL+1tHhbWbuUXz+6g2bYE\nUQiQKImkc6M4ZnpxBFvw2GQq8grjE8fYdXCS1Rs+RCiUx924hGf3bceplBHDRaJeJ/fce+85wk9r\n1qymo6OdaDSK1WolFAqRSqV4sLubaDJJyO+ntq6Ok4OD+CsrqT4bTjgyPU3jsmWX3Jv7YnPqFFit\n8AaaUxfMvffOKbIODsLixe/NPa40XC4XyzZsoHvvXpY3NmKRZYrlMj0zM2z+5Cff9BhwZHiYVU1N\n1K9YQXR6GsMwSJ6J4J9IkZrtYnD2DJq9Ek9JRdeddI+exCaVGU0o1Msi/gYrtdVpxsOnKSglwtNB\nFE2jrIbQRZmSOoHFakFmFgs+Biiisoq8EMWPlwJ+VHGC8Vyc8VwOpygiSBJWj59K3cBrTKGgIygB\nPHI9skUnUshTxIIplTEIMRt3kDcLVHrtiDYno2ULsrQMSZaxih7KQoqgbxlPvXSANsoEHA6WNDSw\nv+c0+/b18+KeYVatXc6WLSu55Zatl33I58VC0zROnDjB/fc/gte7lIpgPWMjA4hUoputFIonwGoy\nFttHg1lEEQUSagRTmJuAl9S1cXBqGG9NBaI4Qyz2MoIQwEEYl0XFY9FY3FzFyMQZdLkKr1miWzPw\n4aBSqKQsZpiW3BSdfiYK06yw2EhrRSSLBUGQ8UkSvjJYvH6mE3lmNQUDkUK5zCKLjLWUQ9M1vKJB\nKl0k5vVQ2D7KsWN/S5U5S6XXS3VtNYVohha3m6lShCldBynGx29Yzd0rVzKTSPCL++/n0/fdR+js\n2PxOUBSFJ37+c2b6+vAIAiXTRKis5O4vfIHAG2izvF0ua2OkpWXdq6R2G9i58wCdnR0XFJVx6FA3\nfn/rvCECsGDBYuLxJG1tS6mrWzB/PRiUsNuKjOciSJkMZVGlQk9RYdPJWixMY2UkY2AT7FQEm/D7\nNzCZLDFWHEXpPc3E2ATLmxv52NpVmNJJzsRGMYmTyMexCjUogpuwMYZMAisaCgIGBQRC2JjGQCWE\nA1MroydVhnIZzujDGEt6qJFEvnzzFiLjE+zbe5TBrl+RtDmxiTp79kaRZR9L2hZQV9mEbpocPx7G\nlXajlcbxeRsYj09QLqSo1ksYA8fojp7hjF5Bw4JPoKpFZmb6yAje8+bBsNls51z3+/3c9fu/z3O/\n+hUD4+Oofj+Jxkb8lZUMRCIUAKm6mk9+9KPvut8uV35zRPNeucG43XPS8N/6Fnzve+/NPa5Ebv3Q\nh9gpSRw4cADZMDBsNq6/8863jKYxDINMPk8qk2d0Ypp8YpbkQD8eawVLQ40UYkX6wwfRdJWiYaJI\nJvaqRmZVBYeog2wBBOyeZYQzk/gdHTisdkxGsbk0MNOo+TOAwgQ5NBqQkUkKVajEcJgapukgKohU\nidDsdGKKIqOFHJOKgEeuQtVMBDRspLFgRzcL6EIew2xFEu2YuoaWzWN11XE6sY+C2UbQ2US5NMtU\nKoXbU2BJ8wqOHT/B0sUhZrNZ/vHHP2Fi1kVLfQdW3YbLtZwXXxzAarVw001bfit9dinJ5/M88MAj\nnDoVJRx2Y7XOkkgOYXV40PUWbJKdUnmEkjqDqruxWA1EqiiXixTVceLxKLUNjTgLEZLJIQShhGFE\n0PUydinHkvZWxJKTiako06kSmugki4scC8khMkUEUxWprGjAI9mZjIVZK4kscLmgXEYBSi4XFRQZ\nnemmFj9+zYJipoiTRETAanVRsNgYLsvUVjUhOpwsqGrgyOAwjmqBZYsXUDQMssUiw8kYUdVAdbi4\ncd1KFjc08PNdh6lwWvF5rBzet4/b77jjHT/Hfbt3k+ntZeOrTinGo1GeevRRvvDVr15QH13Wxsir\nVziSJCNJlYyMjF6QMVIoFLFYXlnpZ7NZYrE4ExOjPP10gvXrt7JwYSsTE730H32elWaeoWor01Pj\nVAIFWWNIl5kq+jGFSmTZx4yYx64JZPIqiTMaIyOT1Nd3kCvYiScreObgEKsWVTOd7CeRnUWjllK5\nhNe0kKOZGCJBSoCOieWsLK5ADgsFwEkAm1BCsBpEyhYeeegpbm+r42SyRD5foFTO4TatTEVjhGxB\n/KoLpaAydOg5Bvx1hKoWY5MkKmw+bFYoiils5TgdbgfDmTKJxBSUBSo8DuLRfmRdQdKLZDJ2Dh48\nyq23bn3L59rQ0MCX7ruPdDqNJEk4nU7GxsZIpVJUVFTQ2tr6nqREv9Rs3/7eHNG8mq9/fW7n5Rvf\ngLq69/ZeVwqyLPOB227jxm3bKBQK5+TzeDN0w+DJwyNYShXkMzLZrIC1ZMORzyCpcTyGTJVpY6I8\nQ60YoNFbRb6g4G9qYjo1w+nBKNZRDV/VMtzVJqJUh6JqKGINHr9ENuNEJU/AGserlAihYDDJjCER\noRkoYTXCLEGk0tDIFjTyBjgFHxWym6QhIqt2RMGgZKbJkyJLAAQwzQJxNU5AgArBRiajooserJYS\nZWZQ5CyVNpFGf4BCIY+ha+waHWVxMEgiY9LubSQTjxPRdTRNp6FhBbt3H+WGGzZdle/mq9mx42Wm\np200N19HONxNINDCwMAEgpCistLD7OwUiBqKUkISFzClzGJXEggIIHjoPdnDiZEB8vU+fL520uky\nNpuJJJVQtQFeODZEi92HC4G8IZI1ZBJCEMQGTMFFUW/E5BCFgoTDBjZRJiNJOOx2VFnGabVSKpcZ\nz+VosVVgKllMM0clOpUYRHQYyeWosbloEiA1NcoZmwVf7QpERUNRXYi6TtDlQli0gMV+PzP5PA6H\nA0Vx0D9uw+2oIRIv0j02zKnUk7QsXkxDQ8PrEgjCnNFeLpex2+3z87BpmpzYt4+1rxmEmkIh9obD\nxGKx86ZPeLtc1sbIazFN44IjMTo6FvLCC2O43T6KxSK7dx9B1z0sWtRCdbWP7u6XGB/fRVO1nUY1\nS2swyKr6eqILGtg7MMBMsch02ka9pQpZspNXRLJSiHzBwDYVpVgUkFWB0uwpymWNrtNnWLmsjUd2\n9rC0aTUzgUnUeABF0Mkpkyi6j2lMZCZwUsREJss4ZVw4kRjBxCtqiKZKSdVQNSf5eJGu+FFsliok\nuYJ0vgi6gls0mJLtKIoNxZjFqUehFKEw20tRtNBicdEYsiFkMnRarZTLKnZBpEFR6DPiCJqOv5zC\nY6/E4YLiSDfPbs+/LWME5ozHVzunLly48IL66nInk5lzLt12YSeHb0llJXz+8/Dtb89F11zjFWw2\nG7IsEw6HKZVK1NTUvOF2sa7r7Np1lLqFN3Fi9zFC7ioKmQI5qZUUgwSTJQTBjaDYyJoy6ApyOkXA\n4+ZMbJKEpwI0D26PhQqryvjkJHUt7dQ2NrNr10HKZRNFMbGj4cOBEwGNIlb81FKmxBls+BBIEURH\nM0FWVQwqUAUPFgQGdA8OcrhMgTIOMtixImAYBZzkcKIScHqR/H6KhkCF1Y6VBKrSjd8qIEoWxlI2\n0iPTOANWAhosr6lhNBFHKSsY+SLlconp6Wmqqqool01KpdJVd3z6akzT5MiRPmprNyGKMpCnp+cI\nIFAuF9D1FLqexeVyUBS9mIZMUqkAZglhx2v1kDIzTGRzWKY9OBwNlEppHA43+fwU+bxMxvCRyRcI\nSHYyCGTwoZo1YEYBKwJ2wIkpVJHMjrJEsjOum1T6fAREkVQuR388TlmQcIoeBCFJi+ihqGfJAnk0\nWg0DR7GATZSoFi2YmslA70EM7wJGJ8KECnnaq6tp9vmYSaU4rSgUTQtOsZ4q39wCvqwWiZ6JkJlM\n8tg//AMD0STBRW3c+YmPsX79WpxOJ4cOHuTwjh3kUynSpRKNixaxccsW2pYsQVUUrOfxybKIIsrZ\n9ArvlsvaGDEMY/48U1XLQJzFixe943pSqRS7d+9haGgSm81CsRhmbMwklVLIZstYLGmWL19KR8d6\nNE3jxRd/xoHnH6etWCSZyTBjtSJ6vXxh40YeONVDSQjgDjQyFIljCDaCngBZtUQqNY2cmCCo5MgV\nZASxmmSpxJ7uIRQ1QTrbxVRKQzcdSKaAIFgQ8KIQZIwpKsmjUKZIDV485NERKSAZYBcErIZGLlGk\nrBuoehmHmqTALG5MdBSihgtLsQqraANitJo6IV1AlOyMKRn6S3HSmpVlpsmwpqNbXAQ8NWRzaazF\nFIam4nb6aKzxU1dbQzwT48j+3fzd3/0zVquF665bxsaNG963jm+v5YUXYNOm345k+5//OaxeDf/5\nP8PbyDz+vmFmZoYHH3ycZFJAFO1oWpzGRhfZ+CzDw2dwB0Js2bKerVs3UywWyedFauubGWvWUE2D\nQjFLUKoimZxFKSaIlX6TTFyjRBVjap7BdAq/exHN7lbK6jSz6Qym0YxVaqLv1F4KpSyaZmIRgogY\ngJtJEliRsQAyUZyI+MngxYFKEh0NOzJFVDRUVFMkrVnRWUEeG2mmMZnBQpoq4pQoIqLjwCCejmCW\nnYgWF00OsJomdjWGQ/CR1wyKchZPQyN3/e7XOPnggyTTaeLxKQTDiSZYsTv8HNx7DJtNprraisPh\nwDTN/5+9Nw+y7KrvPD/n7vftL9/L5WVl5VL7IqlKCxLakAQ0IIwYSfbYGsB2Y4+XgY7ocEdHtMPd\nMXbP9MREdxDhCAfRBgLcQLC2EIuwbCS0IYykKlWpqlQqVVVWZVbu29u3u9975o9MZDCysSRQCTPf\nvzJu5n3nRp777v2d7/l+vz86nQ6apv3CFSZhGLK+vo6u6wwNDf3EglVK+fK75MiRo5x78QL9nkoU\nCVyvQav5LOXyTpKkjGmaOI5OElm0ZIWm7GCEVfJpi0p6kvlWxPp6Hd836PeXiWONJJkCcnQp4yTT\naPgYZBCsEVEkRAdWEdTo9F1SLGFJl4Ew5IULF5CmiQHErgdIOuEaFpKaUHGJ6RPRB7KAToyT9OjJ\nFFmZp9qts9KV+OEcYcPi6KUNSlmVPRPjTG3bxpG5JrvzOlIm1Bo1zpx6hGIYo5lQvVBj/+gups+t\n8rWvHeX06Qsc2DfOhSeeYDKV4uz0NPl+nzMnT7Jx6hRD+/dTHhtjuVpl+4/oTfqeR7ilH3w9eFMX\nI/Pzz6DrQ0gZI2WVu+666cdCaH4apJQ88eijfOovPkWrYWNaJTLlMqXhHOn0It3uOqVSjoMHr2Zk\nZBIpJSdOnObUsUtMhjoVTWA5McXEpyu6zNRq+K6DZQ6T6MNsG93GUrVHw5F43gYyqTHlh6z6DkX7\nGlQUVClZaDXwsHHDAlFUJ47Vra0YH4mKxhpDKGQYoksRiywxfSwUXPI0mKMse1SDHAECl5CL5MnT\nZxKHLAZnkHTIkJU1/LjPTnxGsHHpEURtBmTADmLqrsdGIkkJFZOQTrdO3tDRvBgvClAMlcJAloSY\n5y+dJ7S24ftjZLNlHntslunpOX73dz/4L84V81rw87L0vhLGx+F979tsoPfHf/zGjPlmRxzHfOEL\n3yCKxpmYGCFJYk4c+VuO3v9lxvJZhoamqK7M8WA15vz5eX7t194NJKiqhm3bDAxsI5UdYO38c7T6\nXZI4R4pBNAzAw6VLhhEEEX1Hw1A1HLdBEgxTr/Xp9Dv0nC4Rawh2E8s0EhMJROxEMk8GiwSXKkvs\noItKF4hwEMSoeFgEhPRZo8EuVFJoQkfIARIukmIFg4AcfTr4OOhkpCTjOgh/kWpPsFvPMDW8jWwx\nz2qnQWp0kF1X7sdKpdhzzTVUL86SsXXWQ4/BgSlCVLxUgWeffYSPfeyjzM/P881vfpdGw0PKmAMH\nxrnrrnf9WI+bNyteOHWKJx98ECMICJOEdKXC+++7j/KPNAFUFIWDB6f48pe/xbN/d4GiNoJlCDyl\nhaXpJDIijpbR9EmEWCOKmiTJdjS1jJQuqJfIWBInUIljj42NZZIkhRAJUlaAzdZqEgtFGujo+Cwg\nmEDDJkElZhxJhpiXSFCZj3VMJEUZYYY9ImAdFUGeDVRGMLgkO0giykCOzayoGJBE9KVP4nk0hYcr\nHQrmDght3MDjpX6LeW+Rf713H5VRg0DP8sz589RXZ0l3Wuh6hna3xUqgYuoDbC/maQcRy8sJiy/c\nz92HD3H8Bz9gUFHIDQ9T8X3Ot9sM9Hr0Mxnm4xh/ZYWhfJ6O4zDX63H7b/zG634nXM5GeRXgIWA/\nkJZS/kT7xI985B4uXpxF1zX27n3Xq96POvH88zz25a9gBgNcO7UfiWS91cLp5EinLd7+9nHm500q\nlc1QoFqtzvnzi+iJTzGbhygk8PpIN6acEjw6Pc1Cz6flr5L3doCSQlUzeH6CGznEnXliXaBrU3hx\nQOC3sJMYXbok7AO/j43A4yQxZWJ6QAeDDmVS1AlJUcKlTUhIgxyCDAk+q/j0aKJgkecwIV161LnI\nKoIODcZRmKKHAZzEANok9ESKDJKchICYAIGuGCgoiDCgS0wmM8iy0IhFFrfqcP7732fbkIk0Roko\ncOTIixSLeXbtmmB+fp0LFy5w4MCB1zX/nucBvKl97/8Uftil99//+zduzI9+FD7wAfgP/+H/j4iH\nzQ6q9XpCKqUwMzNLt7OOO3OGYXUESwgsYZJpdTi//Cx+fBNXX32Jctmk05Eoiku9vkJt5RKza+dw\nXAdbjhPiA2CToodkjRmKsky767HRCchqKbpRl5XmCjKsIKgAbQQxEguDLDEhKjkkra1vnIXFEA4e\nY0CIZIbMVtmi0EOljoZPE4ULRNIgoY6gj4qHSkyL7QyQR0dQp0+DZW5MPM4IldjvsrG+jB/00G3B\n5GQF1XVZWlzi1PQsYnGdqw/cRC8OeWllhjXHY3LyGoaHp5Ay4a/+6lvk8wfYvr1EkiScPz9Dq/U1\n/vAPf/tN7bSZn5/na5/8JNtsm3I+z9jgIGfn5/mL//pf+Z2PfpSJiYmXWZJsNsXMzHOIxCYhpNdv\nEycrFK0sjoypV19kcMSkWCzQbDrEuCTxOopIIDJZabhoRkwqHeC6HcLQAWykXANWgSwJ80gsEnaS\nUAOyhHgIxhBEQBGFARRGiVjnHH2KsssQHTwkg+QoYXEaSURIloRhdEYI2dwA0YnRERgkuIRynVgY\nDOi7iGKNtaiPZRbRtTzV1iW+8tjzXHPrlRiWQiGfx+umqYRpUghkolFWDRpLy2SVbUR5F8PIUa02\niMMQv91+uXNxxjQJGw0qAwMcW17mf/vIRzh94gRzs7Pkd+7k7htvZGJi4nXP5+VkRhrA24Fv/GN/\nsH379ld0c/xzceypp9ASlbS1WcQIBMOFAudXVkjlJsnlcsTxHL1emUymwMmTp5mZuYDpraDagyy5\n85Q0Hen5vLSwyNHAIj30FsRGjfXmSSQVitkS2ZSPaRdwehX6yTIdv05eQhpwEYTEgIuKi0aBDAU8\nNohYI6GHwiABMT4BFh6CAA0bkxwJCi4KGSwctiOI0dAxEWRI41HBwSJFBUGRHhKFEZrMkJBGlzEp\nAkKgQRqkoCkCbFXDTgROAsuJQBm4mnSQwrYUNnpNTq06SLHBwNAuthX3Eschx47NMDiYcOnS4msu\nRprNJg899Cjnzi0iJezdO8Z73/v2H1vJ/CLg523pfSW85S1gWfDUU3DbbW/cuG8GLC8v88yTT7I6\nP09xcJDrbr0Vz/M4efI84CGETW35OUa6G6TUIvXaKqobkzFNRuKY2dMn+MTHz/F//l9/wt/+7Q9Q\nxQoXT53Faa6Slz2EGKCVQB7BNhSyKARY1HBRkrPYehoUwXJdxQktkjCNTFZRyGNRICAFCCBBUqRP\nhE5MiIJPhI6NRxoFl2Vs8kwRE1FHAywkgxhcwmcGQRaTUUJapMjQJkuKIUJCTCRjFJhGUuUStlAR\nhkWsqZxr1JFpC3mpzdnFk0Tj67z1rXfyxLn/wcWXzjI6UqY8NcH1h25j27ZdLCwc4/Tpc+j6GLnc\nJuOsKArbtu1mfv4oc3Nz7Nix45+YlcsH13X5b//vn7N+ts1SyiZOlllrPEUpN0zbV6n2Ps911+3k\nvvvuJpVKcerURa6++kaebTxN0p8jYwrcSGO9H5BNl0iZu+j1GiwuzqKqN6GINIkMSGQI6ARxF9wG\naQVgGU3bThjWEEJlM9F+YyueYQSdGgKBRCEkjUoEaAg8FFKkSaFRRWUIlSJLzDNGBwMD0CgQoGCT\nQ5CQIKlikGcFSBMRo9EgR48OfqIgkbihj6bswAttlCjBCWPOLy2Smg7RtO9Tn9/AbflEQZWdpqRg\nDWDqOiJJWFhdYv8N7wASpGUQRtGPrXbcMEQ1TUxNQwKlUol3vfe9P/M5vWxlr5TSl1K2fp5jdBoN\nBjJp4iQEwPE9jp4+zYsnT/P4Xz/Iw9/6BnfccRVxPM3Jk3/D2bN/RzYLmeIQrppCLR5kXUsza6aY\njiQDqTK91hpOVEDKcZABze5phKqzfeJKLMtgLUgoyjZZJAOoDAAWkNAiTRETGwObFFMYWOTxkDSp\nEhGQsE4LjwSJjY5AwyOFg42KRQHwcOiRIIlQiTARmBRISOgBkh7bWSaFB0T4BFLSwsQhj8UI2WSA\nbhyxrOisKimS1Dhj+QM0ww381jST0QZDTpegPYNh+GiajmmmKJUmmJtb5LUuljzP49Of/gqzs4Kx\nsVsZH38b8/M6n/nMV+n3+z+bSX+D8PO29L4ShIDf/V34zGfeuDHfDFhYWOD+v/xL9Lk5rs3nKTeb\nPPLZz/Kdh75Dp9OlUBijWBwmky0DNrXaCpqUDGQyOLHP2eos0epLBC8c539+/OOMDVlMDLQ4NNxl\n30CWayYOU7Cy5ElQ8UkRkuDRwSNHzA2K5KCQtC7O0ez2cL1xkmSChCli2gh8dHwkHWJ8JH1CwCOm\niU0HnS59miScJsMyGhsIHDRM8phbT4gEG4MJdFJErKNRxMBGZRsKeQRpPMAHDNKskSaWGudihZNe\njpVkDyvBHh578RILrT7+Wp0zzz/Fze/5IGLsGmr2bq69/T7GxnbT67XIZCJ8X5LJvJIIKU273X4j\np/lV4fHHn2JxHrYPXUmltB0vUKm1x2j2BhnOTVAqXcn8PDz00CMkSYLj+Bw48BakEoKAti+pOVmC\nuEy9t4Kdy1Mq7ccwIIoaIDZDKSU+MT6go6p5PDePSEok0TlULiBYI0udPCtYJMQ0UABd0QlwEWjE\nxICDwAUiBJvb9BJBDoM8aXKARpc2fSJCfCJUVBIkdTRSZBmhSJcU57C5RIkeNhYBA8EcWdqEyTJq\n4KAHARYmOW2YXqeDre2Cfo2r8nX2DqgIEdDxanSCPrXYZV0xGByeII5r3Hrnu7nUaKCm03QchzCO\nmW632bdnD4u1GpP79//cmiy+eTm4nwFGp6YoZC3CeAM38Hjyuedpr7QoiDRFNURcqvHApz7Nhz50\nNwcPVrjxxpvIygbDMsGrTbNWPcu59QXsxirlUMHvOUTdAiQ2UpQR6l4k+1irznP6xafoORZOUiIk\npM0CVdGjS4BFF6iTIsEgQSEhpkqahAiLDBNEjGAxjEKPFgEuDj4tYuapYJJC4tBGpYfBMh49ekh8\nfDQSUgRY1AnYQCWgxgBnSTgPnEGwgIVBDp+IEEE/UenLgEAmbHQ6zNZPMKn1uTY/yPbCEPvzw+wz\nVPqrR+j3N2vGMHSBDqXSa1NQnj17jnbbYmRkCkVREEIwPDxOt5vmzJmXfmbz/kbgjdSL/Cg++EF4\n8EHY2uX6pcD3vvMddmcyjA0OYuo6g4UCV4+O8uyjT3L48GEajRdwnDpmdoQWPlG0hq3pNL0eT86d\nI+UaDFOirJbonbnA8QcfZO6FF9E9g4KVJ3IcYq+OQYIFeIQ0CYnoMImDJQVJr8+obzNCB0ELgxgT\nA31L36VxCYUFoEPCKirnMBgAXLK0iHBxyNNkjIAxqkgW6aOj4uKh0SBhGZ82CktoeKQZwEElISFG\nINGI0OiwSWkL1aRu5KjL7ayLCm1tiF6kEoQjKDLP9kRDXDpHc+UiO3cO4vtNLlx4gYWF0zjOS3zg\nA3cxOVmh2228wn+9/6Zt25AkCUePnmFq1yG6rkucxKzUGgzm99Dpx7R8n0wmw+joHl54YQ7P85iY\nGEEIwchkhcXuCvWehR+mcaMEJ8ixutai0eihaRXieBUpe6hqHkX5oe21hYzTqMl+LK7AlDdhMkZZ\nrrKLLsM4FOgzKFw6xARJhog1IhbYfPZvoDCDQpYedRJAByIkMR424BCwhKBOmRoFZjY3lAhQqJKw\ngUcV8BjEQmVsq1wV+JQRbKeGFC36eKCEFI0BgsYCmSShlNtFgMJ1g4PsHhnBNyWngjXWM2nSI2N8\n/4nP4VTP4HW7MDFBb3SUJxsNvrO8jLVtG4mmUbVt7njPe35u8/qmFrD+2Z/92cs/33777dx+++2v\n6vyb3/EOvj4zw8HJFN858jidlkNeS2OkQt66eyeVYplz8ye4/0tfotmLaS2e423bKzQ2OgR6hmZ9\nhrzfQx8ZwGt4tP0cNlNI6dCnQZLkkTKEqE5WmSQhC8Q45FDFLBkuUcAgS0AXDZdpYiwgxEKQRcdl\nmGHyhEjq9IAUFh0iVlAoMUoaiUaVBkPUGd1iS1aIcLAI6aNgUkelg4XO0JY8rkef3BbFa1KhSYoa\neQJcInpC0MHETu3ANip0G3N4ccCiW2W4XEHIkLFsijBcZXHxKYaGptB1l4MHJxkZGXlN87m6uoFh\n5H7iuG0XWV7eeE2feTnwQ0vv3Ah10gAAIABJREFUHXe88WMPDcHhw/DII/D+97/x47/RiKKIjYUF\n9v+D7VpT1zHDiLGxXZRKI8zOXkRRXPR9u2krdVreKkcWVpCBIJ8ukbVNuv2YpXMb6BdmmPMdMsYg\nbi/EUgcoa2VW42W6qAhMAjqM0yKHSV8GpFUdpMouIvqsEmGjAQYSECR4ZLlEnWUEeRRiJNNkiQkI\nMRhB4yABFgkBCSYJK6xxlhIqwwRbT4B1FBQiQroYOGxHYQUFC4GCD3hIIpooho2hj2Cp2wn1DEES\nkQ99UmqRAJNGv4ctA8K1WfbdeQeZDNxyywh79+6iUqmgqipXX30lx449QKuVpVAYJEliVlYusH27\n/TPRAbwabOpVznPy5FkADh3ax969e38iAyVJEuI4YWJqB0cXl5CtBrHcZBq6rs/U4DjFYhEhBEJo\neJ7Hu9/9Nj7+8a+wtlYlFuMk5JCoKKKMpqtE0Vnq9TWy2TK6rhHHdZKkipRtQAUUNAZRSQijiESA\nIjV0UigkFI1h+mEfRRbREVvzHJFiBo1lDDRyWPSYRUGw+ZxPWKTNDrokwDLDeGSxEfgImpSJ6JLF\nI0eLDCo5TCJaxHhIHIbZFLU2WCEggyvnCNSrsBim6sxRVl1UGWDkyswuCf6q1WJYl1RMkz1X7mFB\nVWltnKaSFNk9NMFAtcpSEHDHvffym//237IwP4/TbjM4OsrBK674uTop3yzFyCuS3T9ajLwWTExM\ncO/v/z7ff+QRopMvsT3TYc9khanRCWzDpNtrUl9r8uADj5MZmqR25jgHD72VkQO7aDSq9BunGdcE\nDdelEdkImUYRBqZUcQUksoOgh6WmsfUsgV8lS8ggKUK1RC5Zx8OnLwUBLhKbLComGSw8mtTRyRMD\nIQkm4GGRQqNMjy51VogJkZSoUqGPhQr0GUIwS50uMTXS9GmjkCFkHckMBbqUUAm3gql1wEbDRyDI\nMEGHOUyylQP0ejFxAorYhiMbVLsOumhRyWiMprJkD06wZ89hoiikUGi+5r4Gg4MDBMHKTxz3vA7D\nw6/esn258PDDcPPNP9suva8Gv/qr8MADvxzFiKqq6JaFFwTYpvnycUVRyJbzdDo1JicPsm3bZqZN\nt9tkcfcgzbkXyU13KLoe6dAgim36fhM7CDFlhEgCyuEaUiq4gU9dGgQEuASkEBSIGUMjQKcFpFTo\nBg5gUCFkgzo+GSK6aLRJCMlSYJwebdroxAyhsB2TGQKWMNBJo6ESoQMJMQFFqpTJo+NQxkAQcFFA\nRmqkCVhE4lEgZB7IEuMznHXxgg4rURldOmhqQiBdYreDrheRmPhBFVIauj6IW69Tr68wOprjzjvf\nxeMPP8yTDzyAIQSJZXH9dVdxaX6FxcXzQMyhQ7u48853vKHiVSklX//6tzl+fJlsdjtCCE6depLD\nh8/y679+D4qisL6+zlNPPcvs7DIrK0t0uzZvufVWps+exZk/R6ezTrFS5K233IIQAsfpkskoFAoF\nSqUSV101zhe/2EHTykQMADFCZIjjBNBQlBjf30BVHZIkg5SSTWmjDWhohChEeDJCEpHCAnLErGAz\nwIBoU5NLqOTxcNGosR2TFAYBfbJsoBCwikmEhSRgnC4aMacxCYkZo0kWhS6SNRQCUhToYxPQpYxB\nhlECNqiyFxVD0YgUi0LcY024bJDGUrIkSodSIU2QGEwvzRHGguuveT++p7CytsTx3iV2qCaRZ3Dz\nxE4KmQL1WpNadZobbjzEie99j7f+8R+/oR2fL6ebRgO+AxwCHhZC/ImU8uhPO8/3fZaXlxFCMDY2\n9lPtRBMTE0z83u/RcGOOfv0xDoxtKg6D0Gd2dgY/yTKy/TCTu6/g2dOnOfrcs2SzJdzmIqLTwCYh\ndEJ0mUcnIJQtImyk3FRxCKqosgfuaQqJg0ClQxo9hiIaJ4SkKsZIkgwORTyamGwgiFCoYhLRQMfB\nJkTHJ8Chh4rDBDohKwRIRojIoWMhSROiIlCQVAGBwSoOKueIcRklS4XdGEpAI1mnyAZ5BH0lg60o\nyLhHlwgDk2ZzgyDYgbSHcb1lNBJ6UZ3hgkkvdllREvYrMd/73gNEUY+77347Gxsbr4kdOXBgP48+\neoRabZlyeRsAjcYahtHkyiuveNWfd7nwzW/CPfdcvvHvuQf+9E8hDDeb6f1LhhCCw7fcwtmHH+bw\nxMTLL8iLKyu89Z13sNHpsLR0jkymhOO0ieNVPvKR32JxYYH/508/yVrzElpkousCVbYpGVnm/A7b\ndYuKTIgDybrw6CcRLYqEDFNDo8UiHhuMCJNAscmHXSJaLGFiYxET4SCxaZEG2qTw6BKi4hIyicIk\nFllMhvHoAB0uEW8tLjTKpGhSJMSgikmChopKipJ0qVHHwkenSYpRBCY+M2iKQ8kqI3KHGBjZx9za\nMkv1dUxjB5FqE6GiKxqK6BF0A6zKODPNRfyXHuOuu97Np//7f2eo3+eWsTEURcHxPJ7/wQ94z4c/\nzOjoKLquXxaH29zcHMePLzE5ecPLDpiBgRFOnTrCddfNkkql+OQn70dVxxgYOMS2bYM8+eRf0+02\nOHDgBqx0wvHjP+Da696OlDG12grd7gwf/OC/QlVVpJScPHmW4eER+v0ucbyHOI4IwxZxLIE14rhG\nkuSx7d3EsQMsAwkggVUcYjSKSAqoRMRIoIdBhSj2MBOooLNElR46FgYWRVyWkHToEJEiIoNPmx4F\nYIyEBKgD40jEloIoDRQJOY/LKDo1FExagEMDnywhhqaQiATd0LD1As1um4gmffl91EhidIdI1Awb\nrRe5YtdBRkvbEUJhdGiIsxsjNJ1lJrI5BrKbrplctkSzFbO2soZayNFsNl8xO6Rer/PMU08xd/Ys\nVibDNTffzOGrr37dxetlK0aklBHwzldzztmzZ7n//u8SBBZCgGl6/MZv3Mnuf0YHsXe/+w4ef+gJ\nFpvrbMsP0m7X6biSmgY3XvVWmo0Wq50Oo25As/sCRhyTN9KsBgERKnkp8VWdZjKLK0sICijUEZyn\nmCRsI00RHY+ARaq0ZZdFfAJlByhlokRHYCPxcDc3SDDZiccG4KChEWNjUCYgR50cPgsMkaVLnSwh\nKWI0ElRAQ6IhidlMK1EYYJP7iJG0CYnwkx5FIchIFQ2XiSRBS0BoWSKR5ywJq22HJFlCEdtYEk2s\nYA41yrC4ruEoKpkxm2PHjmOauykU9vPVr07z2GN/wn/5L3/ElVde+armPJ1O8zu/82t885sPs7Aw\nCwhGR/Pcc8//+guRaQAQBJt6kY997PJdw9gYTEzA0aObDM2/dNx0yy10Gg1+8Pzz5ITASRIKU1Pc\nd999JEnC88+fZH5+jcHBItdddwdDQ0Ps3LmTp595kW9+3aDVrjFq2USupBV0qZPwFruMTR837rDg\nezSYRGWEGIvN9pT7WcYmlEtcFUNKKAgk4HOBNh6TmGjEKPRZYAIXiywZDFpUcbGo46MjsbHosoFD\nHpgkJiFhBpsaZXyGUeiTkAF8+iioqFtkv0oLF4cCHtemMihxyHKrS095CU332Ta6m9BwqNdbCF2n\n7ldJh3W22QbDxSEcsU5LSTFh7uFbXz3ByuIZrpg0OV8+TxAEjAwPMzoywnNPPcWHfu/3Ltscnz8/\ng2UN/1hgmRAC2x7h7NmLNJttDGOSwcFNVnb79h3cdddv8uKLf006vczb3z7Fb/3WW7lwYZ6FhdOM\njQ1w663/C1NTU7RaLb74xa9z7NgCvl8iis7hu49gKHsRUcimNbeOpo2gaddhWR5SQhwfII4vsikZ\n3gMIIiJUVtDIolAjxiGmgEwCElwc6kRkUFBwyeJykQnApkxETI0ma/hkyLJGjw4h9hZLFiBJAxFg\nAiYaGh5NYnagoGHSR2MAnyVgIQqpGDZxnLAe+5xNBgiUXSSygkwaNJx5hkwYICasz/PiwgVy2TKR\nrrPzyqs5fryBG3o0O3VymQKqopJO51lbW8fMZ19xS6bRaPDFv/xLRuKYq0slvCDgyP33s7G6ynve\n977XdQ+8WbZpfipqtRpf+tLDlMtXY9sZAPr9Dl/4wt/wR3/02z9VbLVnzx7+9f/xIb782Qd4Yfp5\n6hurdMIUt7z71wlDwUvPPkc2NYGnLJHva2RVhYaqUtdzCC2hG4d04zVCxjAMCINFFBYZYZ0p0oTo\nhKjowCgeSwQ0GSASo7hREYmDRgOTFBpj2Myj0UPFpEOdhACNXVgEGOQIGaCOgkuMwiBpzmASUtq6\nYWMk60ADHbEVmRZiopECctSYpkyPKT3PbORhSp+SKvAjBSdWQFVJywQlhkB2MaVPDw+fYdJJAcMQ\npI0M9dU+woLJqVGKxQlGRvaytnacT3ziC/z5n//fr1pZPTw8zB/8wW/Ram2KYt+sIrl/DE8+Cfv2\nQaVyea/jXe/a1I38MhQjmqbxvnvvpX7bbTQaDWzbJpPJYJomuq5z++1v+4lzVFXlN3/zbp577gWq\n1h4u9aq08SjqGgWzQuK0yKY1fMOgEQySF1fRR0MqaRRAiBmiUCVLQpeEQMZYKOjY7MJkmj4lioRY\npMmQJSYhhYLK4NYatk0RnSYuFgkVFKaIyCBQ0EkR0KZPjQIxEaAQYgN9LIxNHpYAmyySq8ghvB49\nJWa3qlEYKNNWY/xonfPdBrncDmCZVsvFDRWWfZeVahs1n6NcvpphTIZzZapumqPHLpHbafCO/fvZ\nWFvj2NISxTB8Yyf1H2BTp/GT15AkEYahMz29wNjY7T/2u0KhyMTEft73vne+HAFx7bXX/sRn3H//\nt6nXcxw+/E6OHDmPoXaIlRph9AIJNiohCQlJYmIYEb2eSxxbJEkM5BCkMcRuItklZpF4i6XKYdJm\nlBAPVa5hEGChsxOFDVwarJPBx6AACFQibMDEIMJnFJ0+GnOE5AhI0SKiiLvlu7HxUYnIAGkEPhIh\nfEoS+oAQOn4SIG2TS2GBWNmBnT+A31exRIU4KdGVJ9lh5MkGEk822LHnWixLp1bboLv2Erl8gefO\nHKFoWAyN76VQHKIvHG686qpXXCAeffpphsOQnds2mW3LMLg2leIHzzzDW2688VWFkv5D/MIUI6dP\nn0GIoZcLEYB0OkejUeKll85y0003vnw8jmMWFhbo9/sMDg4yPLxZcd999114nsdDDz1NfnI/S0se\n8/NNLk3/LUNSRSvsou4K1oI63cBlPQrR7VEGbQ836ULfxs6quN4aOWqUqZIhpoTDOi4hGjlUBkjo\nYbKGTifSSBgA0lgsAJKEdYqsUsYmRmWOiC4GJezNltEoKKiE2IQ0GKJAC5M00RbhB2tAD1BRyNHG\np0+TbUQopIkBA5sEP+6gJx4h0E7AFBqJktAXEEQGgjqCnQQso1NnmClMIvQQPOGiJ0MEUZ0gkCwv\nr7FjxwSmWeHMmaf57ne/y6233kou95Oi1J+GX7Qi5If4xjfgNTS7/JnjXe+C//Sf4D//58t9JW8c\nSqUSs7Nz3H//w7hugqYl3HLLYW6//dZXbPQ2OTnJf/yPf8Bf/MX/JJ+/idbGKGLuIotzM7SjLuNK\nicUEbHOEOJQgE2w9RhE2np/C5DwV/C0qXbJOQEKWmM30TIsMCS45bCQRNjoeMRoGKVwcAgISlpAI\nRpEEQAeBxCDGoMw6iywRkGFzU6AL9AgJCOkQUSCLRp8TtChIOCRUBiwbM2XS7KyzXcAFZ4N1/wKh\nAmDhKRX6sQveKVJC5+C4wDJ0Tp+bxe90GFLznLg4Td/1GEkVaPkO3cuc83Pw4D4ef/wUYTiJrm8u\ncKIoJAjWueKKWzhx4ixB4GJZPy7UktL/J7eVNjY2mJ9vMTg4xcmTT7O4OIsSx2iKRkgbgY6tDyLI\n4yQJrtMkTiySpIMQI8AykhyRTBCkERQAF50KaQIkOh3y2NSpMIpGhKBNmYiQDpI866Qw6QEhWQTb\ngT4BCRIPHZ0UPjFrBERUyWyZXOvEaGwyJR0SImIUGeMRkgbmpY8WCbxeREcrIopjIAUQIxAoSh4/\nCkhlFBwvpnr6e+zIpEiSiAvnjlCWAZmuTdcYZtlpcun0c4S5FPf94W/znrs235VRFJHJ/P07d/78\nefb/g4JDVRQKQrC+vv7LUYy0Wj1M8ycVg7pu0+n8fUZFs9nka5//PNHGBrYQdKRk/NAhfuWee9jY\n2OCFF1a57rp7mZ4+yfnzT1CrObRqC3jlNLq0GSpKEm+IXsMhj4orJvA0hcHRKo2lsxQyWTruAjfq\nESWh8myosSZ1dArECBw6hIR00Oig4OEhMDDoYhGgEpKhxl5UYlw8bLYBl9jAZxx1q0CJt9otbRJ1\nHikiEhSWUEiRELFJHDZRAZNBJLMssIC25QGQOEQQB5gE9NAIpEpbKrRjBUERnxBJHpUWGiEqFhqC\nPDGqqmOpCp04xg8TNE2h03FYWVlhaWke6PA3f/MSR45Mc++9b+fw4UNv0J1w+ZAk8K1vbbIjlxs3\n37wZvNZs/vL0qjlx4iRf+9rTbNt2iHI5TRj6PProiwRByJ13/qtXPOf666/n938/4NFHnyOX28lM\n0ED3lmjVbM4pAbJYYptS4uJGSFFLEWsaQeTiJy5ZuphbRkohBLFMqOHTwkLF4ocui2jrGwuCNg4e\nOiEdMgTkUVCRREgkaVRMFLoYRAgggwmoVIlY20raXEbFxGSMCkVa5NAAySnZYT1UCftQ1jQG0jkG\n0jnGzBZV/xKOsxehTaFE56nIJQZUkH6P/uJJnq0vMqSWGbNtQq9FKo4Iag7LhQE0pcDC9ConTpxk\ncLDMkaeeYn1xkdLICNe/7W1viIhxZGSEX/mV63nooSPAAJuehjo33bSHpaVlcjmdM2eeZv/+zbQ/\nwzBYXr5IJiPxfZ84jl+xIO31emxsNPnGNz5PoxGiaYOoWhoZKhhajlJmAkNYJH4D310ilkOoQiBF\nhJQe4AAZYgRs5YboBCS0cdAIiLCpkkGi4QE6CQYGCWnULV9MFpM0Bi5ldDqEZNjMbA2QrKIyQY4O\nDvsxMPBJCOki2UDQRWIAXWJyJIyyyYyMAlkkvTigk4TktQKDhRzLvUU0xSCM+tgiYo9usdpbpRsE\nJJ0VdEPh1uECS/UWNWAkO0qYHqLuVglHK+y96moe/va3mT19GkVK8pUK77jrLsbHx0nncvQbDdL/\noAD0pXzdTptfmGJk587tHDt2FPhxJ4fn1ZmcPAhsKrK/9dWvUu52Gd+ypUkpOXniBEdGRlivNjh9\neo0nnvgKGxs9hodvplwGrxez0VljW26FvaWrmG32CFKDNNw1QplgWhUaIRy+0WaoWWM50hgKJWEQ\n40Q2QqYYIo2OCRRZYI0GWXT2Am1UZkjootMkpMEePApoxAiW8BFoZIhZ27JrGcxQoo1FgrdF3kX0\nKZCiiMUyHTJABgiI8EgwsCigsY4gIkcXg5ktk2FJLeHFffpy02YYMowX91glhSBPTq1TSHLUZRXB\nJtuiCEFWVYEWSdRGVVO4bp3V1QZCdBkbq3DFFW8jikK+9rUnmJjYtNP9S8aRI1AovLGpq/8YLAtu\nuQWeeALuvfdyX83PH1JKHn30GUZGriCOI5aWLqCqGpXKPp555ji33XYzqVfoWCiE4LbbbuXaa69m\nfX0dy7qb2dlZvvu5zzGazfLizCVm17LsMCRLa21imcELHQx1gcOJQ5AIVggpSQUDhT4e6+QwSQES\nlRTrOIwQMo+CzyAqNg5l+tTpU0XiI1jHoESwlfPjAwpN0gjymOgYbOATERCSZowCaXoMoKBgUiOi\nBLSJqUUOM72Y63N5wqhHX3aIlTxqEhNFlxiiwXa1yEA2RbWzRKofQbiCOphHNXT6XouKIsiqNpf8\nDocO3oCWL/D5zz/AmBmyK5vlUD5Pc2WFBz/1Kd7xgQ9wxavUh70W3HTTjezdu4eZmVlgMyTx0UeP\nkyQ1osjixIkTPP74IwwM7EaIHqYZcM01N/OJT3ybQgHuu++uH3P6bTY9/TueffYYy8ujZDJTBEGT\nRCjoepYkMej2q4woaXRpYErwmEeTeUJCYIHNyMofZnMmSAIkAWnqmCSYqNhIHPr0yZOliIKOxCeF\npEOPEjYGCjYRDhARM0bAOhILwQQChxALkzoWFvbWaD0y+MwSYwLprWCIOpsl0gEECgo2MRdki87a\ncYx4DIWAKLZR5AaTZkxWQEeR3Do4iGpHXHv11SwfO4Z0wFEV9u7aTiIlEduZNyw+/+kvcc+hHdyy\nbRuqorDRbPKNz3yGD/ybf8M1N9/MY5/7HAO5HNpW8bdSq8HAAOPj469r/n9hipF9+/YxOnqMhYUz\nDA1NArC+PsvkpMWuXZu20Gq1SndxkSt/xB8vhGBvpcLT3/0uZ5e6dLt5PC+hWLyGXi8mDGP2HryG\nqHGeATtNq3WJIIKO0iPMDjC+6yosy2LnwDiTkx6r3/8udjrN+WqVvutRS0a25E8tChj46NQpEWNs\n7QTnAY0MZ5jY6kHQI0MDgU245arRUdARzGDTYy8OFTZb9cQ02CCmBizhYaK9XBVbWzxKjw4OCgYW\nGg0ifNKiQoYs88zjxSEasICBQ0SXGi4GUuRJ5Dw58liqgh1laDOPQZF0kibwe0i5hG6orK8fQUqB\nqroMDSncdtt9qKqGqmpAienpC9xww/Vv2P1wOfDlL8N9913uq/h73HbbZjT8L0MxEoYhrZZDvz/N\n9PQsUAQiNO0opdKmuP3QoUNor9DeHCCTybxMNw8NDXHu+HHMapUrd+1gqXqavitR8BnQHdrJOpa7\nQj7Z3N+vIVgloYfGGhDj06BKQBeDFhAyjU9IBZMMARFlDHKU6eCTByQz1HGBCSTQZwmLFnWyNGgD\nghZpPCwENio+afqoWKzjk8FlEkGAJAdUNY2FuMdwqYzTzZFddxmS63RlzLDw0dUCQRxj6AmOt0xK\nKdLoLxPJPkW5TtrOk7JTaBrUZcD4vrfw4pGvc/MN+xjb6gFWKZXIplJ876GH2H/gwCsyDz9rlEol\nSqUSvV6Pj33sM5TL12CaKZ555jny+VswjAWmpjKcP38JVd3N0NBV5PN52u0an/3s1/l3/+5/Z2Nj\ng+9//yjPP3+KmRmXTKaCojQRooJpVmh7JwjCi6iKSpw0aEZNTDWDLWwS6ZETCa6MUSgi6ZBwChhm\nM6asQ8QqaSQjBOQZIMbHYRCXOg4KafJIhnGYY5UAhxUaaPioCFS24dNEMgWEKKxhEuHTR6JS2LIM\nJ4TkSbGKQo9lEhQ2uTiAvWzmw0pi5oCdSpeWuIDoBRSESdPbwBRVhtSYi60mhiaYGBzEsyykpuGy\nmXgqkwTLtlGEYKG5jsyUiWsddlYqzCwvc2l+frMRl2Vx9Omnee/730/tzjt5+rHHyEpJKCVqucyv\nfuhDr/v+eF3FiBDiw1LK//G6ruCfCcMw+PCH7+Ppp49y/PiLKIrgne88wI033vDyA8j3ffRXsBdZ\nhsHc7CWKwzeysjJHEARkMmlsG/r9GrbtcM1tt3Ls6W9Q63eohxrW0AGu3X0l+/btoF5fYWbmDM1m\ni2Ynot+LMKOYRcYJ2UdMhnUaNKlSJmQAm0XmCYgBi5geaTxMFOoMEVIij0qdEJcqWQQ9TNII/j/u\n3jRKsrO88/y9d4+4sUdkRu6VmVWqUqlUm0q7kFglaAlrZLcHm56xDeNj+wOGMYf2mfY53TM+TDc+\nbvdpz7HbM4MbmsZuYBi2QVi0MQitaC1ttVdlZeW+Rsa+3P2+8yGCAqEFmkUF/n+KEzci6s26N+I+\n7/P8lwIOI0hMQhIIzIFqJh54hJwhHgRS97UzMUmy+ECPOh10DDL4uNIjpQ0RxVli2cNDZZIUARHz\nxMAqgUySZBKJShQ5QBKFNVpKjbZIIMOAvKZT03SmpzdJpVIUiwe44YY7SSa/R24SQsP3/TfgKrhy\nCEP4/Ofh8cev9Eq+h9tvhw996Eqv4qeHVquFlJJsNvuKY7quEwRtTpzYpFC4hkplnu3tFer1beJ4\ni0ymRLn8JL/6q3ex9/taV57ncfbsWbZWV1EMA6EoPP/Ms8ydOs3C2dPko4iwskNca5Awcwwnc+wp\nwflLfaP3EhFpEoTE9NAQA55InhUUInw0HLK0KJNiFwoWKj367A+FmBwRCxxF8iwX2aSHSgHBNDFX\ns8rqgGkWEZBliBprNAnwMYkQeAR0mUDiAqaiEugaE4bB8VaL53o9UqHkmvIYl9Za6CJBAY8oXsPr\nGmSMLrmUZM3bwCIklVQ4VddZckxip05PlzCT4mB+hKhbp/wD3c1UIoHc2aHRaPxEfID/VjzzzDOc\nO1cll5vHsjQ2N9uUSnvo9SxWV5+lWDyCEDbz80scPXoQ1+3xwgsL/Mt/+b/T6cDU1E1Uq0lcN0uz\nuUQikULT1ghDH8vqoutput1RFNUlly/TCxbQ/HlyUZcwnMSUKgYJJA4agpgaPUICEgiliBNvoyFw\naBBgIRnBIGKdBg1UQrp4QAEVnYBtikQMM0aCDZqUWL6slPEIEBjkCamyhSSBgkaMRoWIApAbXFEG\n/T7NdzVHAf2b+H4h6Vg+qckuFa9OZXMNW9XYn8uhAsvtFvVmE7VUIpvNUtq1iycXH8co7UHKmM1W\nnaphEcmIfSNZHn/+eVrLy4wnk6hCML++zte/9CXuuvtu7njLWzh67Bibm5tYlsX4+PhrynodxyGK\nopfxTl4LP2ln5KPAG1KMACSTSd7xjrfwjne85VWPDw8P42karu9jfZ/KY21nB9XOMTq6ByFMVlb+\njlZrAU3L4DhblMtjZLMZQkVw+92/z6lTp0mljrK5ucWzz34aVc3j+wGl0jDb26D0QlqhiScniFAR\n6GhkUdHpskTENhnSdBH0kEg02licBXZTpo1KF4jQaTHBNuuMMkqbNQxUEijo+CQHhYgJhIQMo5JB\n5TTaQP5lUECQRFAZNBb3Y6Ih2aBKJWyi4JHHH7SOA7ZEQEcGxBRQcAnEDorI0FUcmtEqGSKGVAPC\nNoGMacY54iDHynzEwWOVbjKiAAAgAElEQVRlKpXNl8nv+m6IO8zM3P4zPPNXHt/+dl9O+yOoyN8w\nXH89nD/fd4T9MTjEP1f4m49/nNryMkII8pOTvPO++yiXy5ePCyHIZFK4bpu5uScJwzKt1ihxPI6q\nLrC8vMnY2F3863/9H9i9exe2bTM2luf4ww8i19aIOx3WKxXOr26wK1cmbSYZ6zVZdTpYisGd2RJO\n4LLR2mIksFjwJWcQqGjYWHTR2CZCp0GJNDMkKeKyhuQ0eQw0dBTsgV27j4IYhMd38VnGpEYKwS0Y\npAgJiAjwsRDsoCIRVNkkg42kSoUtIsYGlogOMQ6SbKzixCqGbhI7DpdWmxTbMQveNn7kIfDYosMI\nPkKFq7MpssPDCEXhfK3GeifJ+NA11HsKXc0gn01Q29jiqaceIp210b/PWA763+9ASswfeP5niePH\nn+czn/mvrK0puK5kZ2eRRqNGPj+NEAq9nksqlcQwUlSrW5w8+RQXL27iunlWVzfJZLLE8RyGYZFI\nJCiXZ2i15kkmd2FZGVZWHkXXy+h6g9CtU+94xEISBgoZOUovrqCzQ0AGk2EMbHRGUWlSYwkYx1dG\nWIpbJNgij0TQQZAlwKGFzzgeQ3hoKFwgS8wMKjqrdNBQkNgcJ0AgSRMQouBgEKNjYrNFHZMOE2iU\n6RcdCjAHpOlvRjXApz9IEnFMpdeEiootBDnbZjmKiHUT1ARlq8jF7RUa0UVuuO02MhMTmNcfZXWz\nwbdXzlMY3U1xbIShIUGwkqS2tMTRYvHyb/2E5+F0Opw5c4bDhw+TTqdJJpMsLi7y7DPPkMlm2b17\n92V1Zbvd5ltf/zoLp06hSEl+fJy3/9Ivve55/6HFiBDi5OscfqUjys8IUkouXrzIc8+dwnV9DhzY\nzaFDB1/2JTFNkzfdfTePf/nL7M5kSCeTbDUabAA3v/l25uYa7Nt3FFVVePjhRzFNg1KpxNRUma99\n7ZNIaXHmzBKe57C29hVaLZtWq0OpNIOu+6wu+0SeSeiUcKmhMoKBIERFo0CERY8XGcVlmhQ1Kqwj\nqDCJxz56tBBoDCNxEDSADiUiHEBHwSRApYtLCgUXBYWIkAgdSGFhoLEbwSWaXCAYUKsi2vjMMna5\nayKZJgG06HABB2uQHOlIhyQjZMihoeIpDdrxEmHsksZnSrVIYWKpKSrCI1KnGEvvJ5XU2VrTGJko\n8vd//xne+tZfIY4jGo1FbrpphvGB1OsfKz73Ofhn/+xKr+LlME04dgyefBLe+c4rvZqfDLlqlQOD\n8er6zg5f+OQned+HPvSyHdXQUJmRkSqnT+uEoSQIoFgsoao2m5vLPPnkP1Ctmth2miBo8Zf/7uPk\n/TrjRsC4At1Ol5v0BI36FlW3R1poZBBUjYCOEAwrKsu+x1yjS5IEK2h4jA4KhW3GBt/WkAqrA4m9\nSZISSbaJcKmhoJAfPO/SRKFGHoWLhITkiAlxqSPR6E//RwaZMxKNCJUWU4wSU+AiF1jCR0EliU5u\nUOgo0majEdC10vgiheN0kXEGSQMPhzYhHi6jUcx6VzBfraJNznCpWicIijQNH00FQ7PptFTa7jIO\nNfZfPc03nniSe25/0+Wb0IX1daYPHfqRdrY/DXQ6Hb761UfYu/dtbGw8TCJhMzQ0zcZGk1ptC0Vp\nMjs7S7VaQ0qVZNJnfn6bQuEo29vzJJNlyuVrWV09weSkzdraSVR1BlV1SCQ6tFoVGo1zKMo0mibQ\nzAyd3g4GwyiUULQkUZQdkI0DQooExAjOAx1UsY8o7nvRGKTxsGmzSIY2EWVCfMboK6JqDBNjDOLx\nFAQmgik82gN7f8kMHi4qbQxUoEKGBjEpFHKkgA4CmKTPE9GBg/THNVX6SpsaYMgIG8g6DvU4ZiiT\n4YzrMdd2mSwV2PBcTml5pFLis8++yO984Hf5d3/4hwghOH36LO12l+npCWZmZvhfP/IRjF4PCn0z\ntNMbG5xaXyddKPDxP/1TfvODH+TgoUN88W//FmdlhfTA++fhQoH//n3vI5/P84VPf5pkpXKZd7JZ\nq/GlT3zidc/9j9IZGQbeBdRf5dgTP8L7fyr45je/zUMPnSWdnkLTsly48CLPPXeK97//vS8rSCam\npjB37eErTz6HpcXccsct/A/33IOUkgsXPkurVWDPnsOk03meeeZhXLfC6uoShlFicvJtmGaSVMpl\naekBikWLOC4zNlbmzJmLEGQQCAxh40qBQRrwsHCIcYnpMESLWbKE6OgYjDOMoMsmIyjEVMjSpkIO\niYaJQhcI2cIhHNS6GwSMD36aOkhWicgBKiY9YlL4jKKywhgNUqSQlNhG0GQHA8ksKhoJAppk8ZjC\nYw6DLBa7CNjEJUQoPboySxCnUVHxqdNhizEpEWYeL5LkyeMGLXZl93KptcOhQ29nZeVJKpXHiWPB\ntdfuxvd9/uRP/grbtrjttqNcd91P7sb38wTH6buu/pt/c6VX8krcfjs89tgvfjEy/n3S0rFSidry\nMmdOneLGm2++/Py11+7m/vuf4sCBo9RqDrVagGWl6PWqSJlma6tFuXwzFy+eYGWxgvTGcd0h5nst\ntrUKcbfGKG18JFkkJQJ8obAVOiybCYpmgpofASUqeEgMMqRps8QMCjbDSFqoeOSIeYqYMgE9uoQU\n8egQcokEOUICJMvk6GKQJk8PH0mHOjHDQAsoDcwTv9snLaJwFkmAggFMYBBSJcUCS+zBJImPH0as\n4LEa2kQ+WDImRZsNYgKG0Rljmy5NUccVIZPZMpfmBSYlCum95BImHW+LuLdDMTtGNlnmmsOHuO6m\nf8Jj3/oE8sUX2VUq0Y1j8rt3c9c997xh18HKygpxnCGfH2b//r2cOfMSuj5KIgFzc49w662Hue66\nN/PQQw+ws7PJvn1j1Go5Go1NhoYS9IOGJVGU4bnnTqOqGarV03S7VcKwguuuYRhdEgkLzwsJwxSu\nVHFkB8E2XUbxiUiyG51lbAQRKgEFOgTElFCJMAgQRORJ4aKisEUFnwCLHRw8yujkkPiDeDuAWQQh\nNk2ylAb6nGVGUXGJmMfGIAuYFFAxCfHpK0U9+gVI39pSMA7kkawC24BLn52oxjG6EMx1u4yj4Qc+\nj29u4SmT2NlDlPYcYa12jqXVHd6eTqOqKrfeevPLzsGd997Lt1dXuVivs9FsUqtWecvu3aiKAqkU\nL9x/P48/9BAjjsMN38fPXK1UeOBLX+LWt72NYGODq77v2EihQHtt7XXP/Y9SjDwApKSUL/zgASHE\nIz/C+18TQog/B44Bz0sp/+C1XlepVHjkkZNMTd0yIExCLjfE4uKLvPTSCW688Qagbyn8yU/+f+j6\nBNce+VXa7RrnL65yW7vNzMwM73vfvXzlK99kZeUcUsbcd9+N3H77DXzqU3+HorjMnfk2im5jJUdQ\n1TF8v4Kuhwih4DkeeStNt+eAiFClIGINQR6JAngozJEjoI2HJEVMCg2TAjFbqMS4CFQcsjhEaLTI\n00VlixZbjBOjoNAmxRw+DgENBDqjdFBYxyWNxxgRNVKMkaKFRXuwr7LR2KCLhY+HSkx6QIYbw6VK\nSA+FFFKk6ak9NJEjkjlSwiaOFVQ5Ql3YrMRzTAVNQlLoSHRdoGsmIAmCgNXVOrncAWy7zN/8zROo\nasA73nEvUWTxxS8+w/r6Fvfee/dPcmn8XOHrX4frroOxsSu9klfi9tvhYx+70qv46SNrWVS3Xx6e\nePToEcrlzzM/v4RljeF5VaKoyfBwnlbrIpaVZHn5SbrdGiKcIPAdTCWFjokXaURUcPDJCkEKBVPG\nJIGkjKn7Hk8EIetxAg8LD4lOkhbOQDExREiDmAx9b8wGCg6XyNOjQcQ0MVlSXMBgDYMGWSLKWGio\nBCh0qdJjiJgJ+tTFAgoOoKGjIvuDGOqs00PHJUVAGxWLFQ7SYAmbgJCYNjl0OY5wWzQHGcM+EygI\nAhQ0soxaU9SCOfSWSjKyMCyJKx2224KunySKHLpxBzPTYHL2WhIJm2O3vod0ep1b3nEHmUyG0dHR\nl41lf9boh9tJAPbtO0KpVGZl5RLJZIJez2RqKkmtdppjx8YolVI899xpPA+OHLmJPXtmeeml06yt\nbbO+vkk2W2Jk5CoqlS+Qy6VJJIpUqwaq2qNWO07KPIZUFKRMAg0kwwSBCvi4OIDE7jt24KHjYoDc\nJoVJCYUesINEohNisIZA0sKjgCRNiEL/L/HpG7ynkXRI0k9g9smzzjYaEjnYUoZ0sOjh0iGBgoUx\ncA3xBr5SfcfteQQRGmMoRASsD9y4O3FMU9PoxTEHRYTUDRpikrQYZssP2ZMbRdNCLlxoMD8//zJ+\n1Xdx3fXXc/Laa9mXTLLwjW9woFAg7HapKgo3zc6SsG3+8ktf4gM/kIkxMTTE4vIyi4uLpF7lmin8\nEJftH1qMSCn/p9c59t4f9v7XghDiOsCWUt4hhPg/hRDXSymPv9prV1dXgfzlQuS7yOcnOHFijhtv\nvAEpJfff/y0ymf1ks/1dlm1naTbTfO1rD/LBD/42MzMzfPjDv0OtVkPTNLLZLBcuXODCyZfoXlrF\n2mgiSVBRVXbCHAm7xdRUmXptkdiv0Y5MwtBDk9skUXHZRrKIxEJjgxSNwfyw13dzJD0wb49Q6BBj\nI8hg4ZNAxSdFl0U0kmRokUVllRyQRBDSw8VhgjwpYlxcJF0uUWSbNjpJNEIMfDJs0yI7YKj0AG3w\nCQJBRA1JBkmXNgEJ1cI0HbpeAkUmUaSKJ318VcXWx6n464zGXSxFQ5ohmWyJeq9JIptiaWkFITT2\n7buZc+cuYtvXoighp049z6FD1zM0tJennjrBrbfeSOkKGyn9tPCZz8B7f+wr/WeLW2+F554Dz+uP\nbf6xoOG6HPiB/KNkMsm/+Bcf4KMf/Wtct0M+30HXc6TTSVZXL3DxYgQkCMMUob+FJhRM2SWrxmii\nr1Sp0GVUQkpVaEYxNRmxhUYjtmmh08PGIkWODjY1KnSI0YmRgyjLDCkqpNDp4gMdHFSSPEeWAIOQ\nkO+aEfYtvHu4uMTsBrZZAbIog02IioYgTUiTJIIuHSQGKjOoSBTG8YiRtOnxDpyBti4gJiGbjNFg\niAyL1EnTxKSfltJDpx3ZhFqWnU6IH3joaYud+hLIvRhKijDu0Ao8SlaCdLqA63ZZX79Euz3P/v17\nGR4efkMLEehnien63+M4HRKJFMXiKMXiKAsLz/PLv3wvIyNlHn74O8zNrdFouNx991s4fnyeyclp\ndF3n0KFraDSeoNF4EUXJs7DwOHE8iW3PEMeCKGpjeOvMxC4p/yK90GWDJi1uQBW7ieUyggIxq/SI\n8DGRCCIm6Q9EBEkcJAoKSXrExJfTZHxiplAYRmMPMSukeAIbnTZrBGg4JAfC7gCJiaBIgIakhyAi\noIFJmzY+KSIkCQIkdfrj9745nsAjwRAR8UD8oGOxRY9CrNP2I8qJNCv4rDkeGCbJpIGM4OmnH6ZY\nTDA6Os2FCwuvWozkcjnuuO8+/o9/9a/YnJsja1msKwpmsUi71SKbzWKEIX4Y8oPOX5oQ2LZNN45f\n8bn1Tud1z/2VlPbeBPzD4PG3gFuAVy1G+mqZV/5xYRgghORb33qIxx57jkceOc6hQ3dgmkksq+85\nkM2WWF4+R2vwnyiEeBkrfHl5mdaZ51DbRXLWEK7rMCbBkav4MqaYnqB54Zvk0en568TSGeTDdPFw\nkSQIWSeHP7gcLcZRMfGoskKIoEoXSQYVmywuI0SYxPjAJiYuDRxiTpNDMIaKCdQIGSckQRWDAqBh\n4jPGHFUkFttYuKQxUFC5ihXOo1InoIFOgoAkBWxcqjRZwx9U5pHiMlQcRmsbdHsmbugSawmkkqAT\n7CBJ82zUJSl6uMESXjuFruS55dYbOXXqGd785rvQdYOtrSqmmWdz8yzHn3mcF554hIQRk8lZPH3b\nXu55A9u7Pyvs7MCDD8Kn3jCa9n8b0um+78nzz8Mtt/zw1/+8Yml7m6mBpHRle5tuOs2Ba78Xnug4\nDs8//wIvvnie6ekc1WqV2dlpVleXuXjxcdrtHqnUYYTQaTR6xGQJ4goN1UHGEj120JCcQ9IENqOA\nBrBGApVpIIEC6FSYZZssJjYeKSRrxPSoYjKMTY0cCVx6+KQZAiyaGAiuwkYQ0KPHJi5nsVDQ6PZZ\nWFiYJAlx2SZGINlGMoskJqaFC8Ts4DKCTgcFCCkgySNpI+gQ0wZMJKskqDGKjUObWSJSaAMSfYxN\njw08NEXBkx1SWp6rs8NIv0PHW6bhecSySjE7y/jEbZw9+wLNZptKJebqq/fw6KPrPPbYS7z//fex\n6/va7T9rJBIJ3vOed/K5z30DKUuoqoHn7XDNNSX27NnNn/zJXzA318ay0gwNDVGvb2IYDmtrT6Oq\nQ0gpmJgI2bVLR1EmgQymeZggiFhZOU3QmWNW1jFkEjWOsBSNRJRkjh26coJ+KJ5Hn51hERLQH4C0\nEQhMNi9LDDrExHhkOEDADoIQixw+KhE9hlmmTG7gp+oR0YOBhFcnIKRDnn7SZRcHiWCCNkeJWSdk\na8A46YcvqpQHypoEOhEq24RsoFHBQDJGiE4vjNmmSdd1KCbTIBzU0KNa7+DLDIliiqmpQ5w7d5KX\nXgp597u/N9+t1Wo8+OBjnDw5x/raGpV6j6aWZhOTfMJgMpdn7sQJikNDWKUSZ5eWcLtdut0upWKR\nsZERRCrFsWPHOP3ss1za2GBmZAQhBDvNJptSvu65v5LFSA64NHjcBA681gtnZ2fR9W9frpYB4jii\nXp/H81wuXQopFK7DshwuXmyztfVN7rjjn6DrxiBfIHpFhsry8jJPPHGc//LxjxM2HFQVDCOHaRZx\nnG3GDY9gYor6yQe5u5jnkmhR7zbB7TBHSMgEaVRa5NEYRiWiQx2fHSQeKRIEOGxQocoM0MPAo4g6\nkOQG+GwzRQ+dkAYKNWw8htHJ46DjAxF5oEt9YAwcksIngY5DiwQ6BTRCfHYQKPhoJFklxkOlQEiM\nTYiNYJMWpqiRKSXpxBEdt0MYXk0Y2yS1BBDSiddBJtGS11PYVUI1AwyrwZvffDVTUyk0bYrp6f0A\nJBImp08/y9aGgx5OsssewQs7LM0/w7/93/6M5eUt7r33nb/Q5NbPfhbe/W54FbXpzw3e9Ka+5PgX\nuRgJJid5dG4OAYzs2cOvvfvdl03MPM/jP/2n/4f1dUGxOEU2O0a1epxe+xw3H5nC6WRIJG7Ctkc4\nfvxZhNhC1xN4rkRJDOHrSXZaT5LQNcYDlbKIWJYJKmRxuAqbNA5thmjSF7jraMSDUU1AgQIrVCnR\nwsanRkwFiUEZlRoFIhRsFHQ0IrIkmEOjyy6yWNjoCFTWOD2IyRP4KKzTwsMfaOZ6hDhIhpDk8dlE\nDnwpoDcY4ZwiQQh4GGxiE6ANBgjjQGdgoBijkMDGooUre6QUh5mJIq2mi6WX0KWHDM6QMHOMJHK0\nVxd4emOVkbE3Mzyc4uDBoyQSCVqtEl/+8jf4gz/4nTe0Q7J//34+/OERzp49T6/nMDNzjJmZGf7q\nrz7Od76zTrl8jCiyuHRpm0SiwfR0kV//9dsJw4goipmauoMPfOA8cbwHzzuP63ap1TpACTPqkbV2\n4zhzRFFATNC3QxAuntgmijtAAkmXfidEpS+qrZGmzRQFaizRRiXLOOogfKOf6FtGEqHgIFhliH6H\nDByKTFKlRRKTKgYxCxTxkeTYIKCLis0Os7hs0O+zXIVCHVgkGGw5k9Tp0UZgE+EhWUIBRkkxSo8e\nPqAyxlawiutvc9fkCC/WmyjhNEJYYGoEgYPjrPO1r12k241461tv5MiRg3zyk/8vnjfM6OjtPPQP\nn6G2WSZrJ/Fw0bQUpxe3gBYnNzcJR0f51uOPc10mQzmdZmNzkydOneIDH/sYpmnynve9j2/cfz+P\nnT+PAtjDw9z3nvfwBx/96Gue9ytZjDSB7woSs3zP5u4y/viP//jy49nZWS5depGtrQyKohPHNWZm\nEiwvm4yM7EbTdKamxlhf92m1AjY3F5ic3MfGxjyHDs28zKr25MlTfO5zD5JITLK15ZPXR4jDEMdb\nwI1DdE1FUxX8IOb6yXFumJnhgOfxd99+GNP12CRFFYseOjBKgi5JdBx0QpI4rNIkZguLGkVi6ugs\nozOCwTCSEIc6Y/j0TXUDQoawsFjkEj5XI0gQ0hq4C/gojAAmKut0sLFJorNDPLDKEfTQqZMmYgyN\niBCHChE+CZI0CEjS5VgqjZkr4QRd2qMBC5tncMI9BLJDFFWQAopD4xw+eifj4zo33niU5eWT3Hvv\nAW688Qb+43/8L1Qq65RK45TLaR56aIvIKWDFPjvby6x2KsAuvG6WRx9aZW3tC/zmb979qu3AXwR8\n6lPwZ392pVfx+rjttr7a5w//8Eqv5MfHr/3Wb+E4DlLKVzipnjhxkvX1mF27jgCwtbVMd/kSydYG\n5XwG79ISjcAifdUkw8N7CIISOzsvQdjE9SWRMLHzCWaVFLNCsNZo4XuTJICINC4mKXSqdBgmxEAj\ngY+KTQ8HQYUuBk2yBOyQJIOFhYoxaJJ7A0sqHR1JgxDJMBaJQVNe4NJgHJuYBjEGCVSSwDI7dFBJ\nMYFKGYFDQJIe0wRsozFMTAfJDhodBD1MMiSYpU2XTWqUgRwWkjZtQiKRRtUMYnWTm99yL/b2IuNj\nkvNrbeoXF9EDOFAcQubLzE5McGbhJNX6FpM3FbjuuiOoqsry8jKdZpN2d4Hl5eU3tDsCkM/nX0as\nbDabfPObLzA8fBO23fdCMc009fol1tdruK7Pm9506+XXXnXVXpaWHAxDY2XlBFE0QxSFJEwbTZOY\npk4UuGjCwA1bKEIhmYiQcYGeB1Ec0e/GZ+kPR0YJWKJDhRE1w1LUwiaJpJ+r3LeiaxGTxcInpEZf\n69Kh798UkkOjS4MaaXqk8fCpEBMRs4sOSRwCoDj4tAQqZcBEsIVGTJZ40BURWFg02EbBIoNH3xu2\nhYEphkHG+F4NP5SU0oL11jJSG0aNepw69Ry7dl1HIjFCtWrzF3/xAF7v3zNcvoHrrr8Wx3FptSNG\nCgdxvIv4+ZhTtXXqOx3iuMq7Dh2k0WgwlMlg5HKIbJY909PstW3WFxbgttvIZrO85zd+g263SxiG\nZDKZH1rQXsli5Eng94AvAG/nVfxK/uiP/oj19XUURWF8fBzHcbh06RK+7zM5OclXv/pfOX78HIbR\nRoiYsbEiqZTH5qbDmTPPE8dNJiYs7r77e/rmMAz52tceplw+gqKo6NkxetVz+K0ddqSCopcxkmka\ncZdCsoI9lUfXdZxKBZOYhBJhxAZpQnxGibFxcQgH1ryQpkcCG0mMh8EaJRoUUKixSheQJAmpD1Ip\nuriDWbRGjiQtdmihkUVjBYUWGUoY1OnSxmFroAPooAykvwIFmxwZFukM3EkyWKQGOaAdmgQ0KZGn\nYwyzvNVgXO2SEj7TNqy0L4BI4cUBplaiXNiLoihoWt9Rz7ZLLCysceONN3DvvXfyyU9+geXlOkHQ\nVwJ12vNEqs5GZxtdTJIxU6xv1JjaC4XCQb761Qf5yEf2/MIpbF58EapVeNvbrvRKXh+33Qa///t9\no8Q3eMT/U8VrZVucO7dAJtOPSY7jiPkXH2ZfMoMHiCjimokytbkKjcoSoCCcJXbj4IhV0tksbdmj\nroSUzAhX6CzKBFLY+LKLICCJiYVCDZ2YFrmB7fYOCltY+BSRCKBJg5AiPgoh/aySLt3L4ZR1YiDA\nQ2McD0kTSUyIpIvEJkQCPQRDmGhYVHGxyTCEgzfogDiYpImJsXGIaaLQxSAmYpwCGRIDwa9HhnXm\nuEo1yYuQSHHxjRSxEpGyMtgyxldNdmUy/Mrbb+evv3g/lTWNTHKIZb/J8ws7SNnFTtrEoUccxzz5\n0MNoTo+ErrNdPc/nP/EJ3vfBDzI8/IY5ObwC6+vrJBJD9Hrh5eeiKMJ1Y+bmnuKBByyWlpbobG3Q\nqFRYvLDEzL67OXBgD93uF6jVFokiCycIcVhldHiWVmMDRTZot7t0hIGMU3hBEyl3EMJBymuAWUBH\nsIbKNDVqqFETH5MtXGJiHLLoWAi6qFRRSeNj02GDIVo4QBWJIEdrYBWvYKOzTRETnwCNJhoRDpLS\n4F8ESQcD0MjCgH+Yw6COpEMFDQ+DFhKJg46Ci0FSVjFoQ+zw7GaLdCKPaY4wMZmm67Uw5DWUy0c4\n+9K3aM/3SEnJXGOZat7AqQdMX3MN6dwwnYaHJrKkbYGq5FGiPE40z/UHD/L8U09xzdAQ8/U6B44e\nJZlMEscxj5w/TxzHl3/rbfuVeXKvhStWjEgpXxBCuEKIR4EXXo28+qd/+n/j+xYgSaVC3vveX+Lw\n4X4g2/z8PN/5zkmEyJPP70bKmNXVDcbGkhw6NM6115rceefb2LVr18tugjs7OziOQqmUIggCnHaN\nVquCHxtk2IWIdCqtgCA1TaEEDSVgs91mZ3ubWEriuE8ltQY/TzomLYoIKmQJCekR06aBTgODMbaY\nxUfSn0K2OU9IkogAmxgfA4cUIBF4KPTN4y0EUCNPE58mMQZDQEiTRfKEXEVmICtzaOKxRIoQhQLn\naZMgwAAUfCpodChSpAhtQVf6LAofLW5wrJijkLNIqKOsdWqc76nUduoIM+L66/tGZo7TpljskwlL\npRL/9J/eyblzF1hZcRFsY1tTWFKA9NDUUeK4hRm4bGxukkrlWFkJqdfrb6iD408D//k/w2/9Fvy8\n11ATE2DbcOEC7Nt3pVfz00cyaeH73sBr6CXWLjxHoJsoimDv/jw3HbmGxa1nOL19HC1RJtNeRHca\nJI0CeWuGYdFj0Z2n2XE4YOscLBXpNZNUuz4rbA24WAo2FbJohDjYxMxRJM0Em5gIRgZKt9OssEkJ\nGxWVNkVceoyikcYnps0OEQ26GIP4hSYRNi4+JoIs0BrcPCQmAQptapxCo4VBhMkQAUUUtgB/kHo1\ngsMaMTmSBCAUdBCYZskAACAASURBVFRiPce2n+FJWaMcg4wVYs2nouqkkjnG4ohnKsucSrjsPXAV\nbz5wFS86L/DQ6gKhtourp65hdmyE4+eOc/z5E6ytrJJwXcaGhpCxy8FdRa5OJPj7r3yF3/y937ti\n14BhGIyMFJibaxIEGTRNZ2HhHJVKDcsq4PTyfPk//C3XlpNcd3A/UdHkwUe/xOFb/zvuuOMunnzy\nBI3G06Ryu6lKF5wecdggxGTHshkZOkSrV0H4DTy/TRjmQO5CESpBFCCx8aigkqJORJ69tEjgoQKb\nBFRIY6OzREAeDZU6DVQctimgYAMxEUVMcsScZBpJkTYKAQYREX2Sqo7OMpJw0DUR2Li00aiRRkGg\n0sNlB4UubTRMLPbiY6MiSeCi02AIyWQqyfCuUVbaEWHTZdvrMTK7i4Xzz5L1O0xnUqQTCbphEd/t\nQafD4vnzpNIWXZmitrVIz0uzud0kISXX7N+DnUwSSIkiRN/LqtUimUzihyGGZf3YI70rmk3zenJe\ngFzu6OXI6Ha7zqc//VU+8pHfxrZtHnroKWZnb6FeP47rtrCsDIXCOEtLJzl0SOdXfuV3X1XNYRgG\nUgasra3z7LMv4GyuY4YmnjpDTzHRDYNU5OFZGkIb5bn1FzjhreOtLxJ2u4SAS48ObbosIcmhUKKJ\nPyhSGqTwsTAosUGRmFH0AblVcImALbo0EMyjopNADuKPfLo00XHZIKbOKFskgTTrhEQEKCTQsEnS\nATr4qKRRGSdgjQ4+DgKF/YQYOGwOONkm6UFWTss/z3W2jefaiKhLrdFBWBErUQeiLHrcwHcN8mIX\nixcvkkpZwBZHjtzJwsICD3z+86gDVvTF9U3Stk2l0caSWXwFVGJ6UYchS6JF0cDiO3wFZ+fnHb7f\n54s8+eSVXsmPhttu6/NG/jEWI8eOHeT48fs5e3KJxtmnmfQ9xlWNSqfCS+cT3P22t/Hu2w9Re+I4\njt/CVjfxFEkiMUEUdZGyQ8H36cqIQqhiZlROdDzSwiQje7S5SBfBEBXS9Ngh5jwabYaIseigI3BQ\nBvZTO9jUURADNpaGRo9V1lhHQTCBQZotWqgIJlEp0mUJj0UKOGgodDFpkGITEOhMIEkzhIGLww6b\n1ACbPJMIugRUkXgYLNIFhExTU0zScos8LqpQ2FLAlwZ+ZNKJi0wxxRMXNuk2qqzqPv/XZz9Ly3Fw\no4ji0C6G8wfZabqcvLSKT5LY22D+5FmuLU8wV5tHs3vc8+v3MFYscml5mVarReYKWf1OTU0xOmqi\n61nm5lZpNDpsbzcwjDZvf/tbqa+cZcJIcfbkMq0apFJJZs0OZ1/6IvsOX4/nvUg+P0EudyO6rlKp\nv0Q7rKEaE0xMTuC5KfbtnqLRWOLixfN43iVgcaCAFIBBQESEgsooKgER3mDQngLW6SExyQATxCwx\nhMYOu/G5CkEOiYvCJhodQkwCIuboDkS/UMWiSY6INlehkBxYXlZpsAwIUrTwsPDpEgzYgglianRZ\nRDCDjUGbZSaoE9LDd2POLC4wNlxmvVOh0QvxFp4i7nnkBXRDCyuKyBgaW91NXrpgkC0OMzQ1jqK7\njExnGN1/jKY4QSpY466bD6NrGsK2WW+3CelHNUgpObe+zuE77/zFLEZ+GL5biACk03nq9Qznzp3n\n2LHr2NioUC7fwi23mDz77JPU6yZSQhgu8K53/Y+vKSstFArkchr33/8I6fQEWbWAbyfQexG69DCA\nyNDZrsdcvNhFlRZKPSJ0bZJ0CUmhMYWFSYeYkNP03fpSZNihhCDBBBHgsIOBoIZFiEDHJYPgEjZd\nplikRxGHBB1CklSxkExg4aOyTZqQaSRl1EGlLTmFT4I2Gk0S2PTo0MEhxqeChU6OInkifBxGiNlF\nxHrfVFpASZ8mFhUsVceXJuOKZDmMGfc3ccQGQhM0DZfIj9m4uI2eWOWGwzN86i//kjPHj/O2/fvZ\nf9VVNDodnnvsCUxnB0NVidQaUdTGjSQpvYidyVDKZllZOc+NN06S/iEa8583PPAAXH017N59pVfy\no+G7JNbf/u0rvZKfPqanp7n99qv464/9ew6kRtk2NBy3ys3791CLIs5eukQml+ND/8v/zInjx1l9\n5HnctkLkQ9zbwfMaeL0WGTvNdhwzokp0fZ0tYaLJBP0s6zUSAxVFX0NjDBxGxogwiQjRiNBYR2cD\nnwwh4whsBEV6TNLhLLs4hySkgYlPmZiQmHkCdDbIIogZGfgSrdHDYZoJXAoD+rnAIoFPkU22KWJR\np889WGcGlxCTEgbr1PFFxB6jCAKmrATbocJLvkqKGWxNgVDBcxSyxiiW6nCoWMSIIp7f3OTphR1W\nKltYmoUXBjihx8GpWerho9w82SNlGvixxvLaGuOlEkII5A9RQ/wsoes6v/Ebv8ynP/0Vrrkmw8mT\nWwwPdzh69Aizs/t5/KVvI3e62PZuVNWgWBjDtos0ts/w4Q+/Hykj1tZiTpx4lFZLks+Pomp7MYwy\n9/3yu9nY2OKhh56m0WgRhqvoepkgABhGUgW2gDYxTVz24OAhUEnhAS16GAiG6dEBQpLU2CaLJI9N\nk5gOIVkC8ihcGuizEgiGsAnQaZCjgIlJCgcFiC97xmjkyNBmmh41iqxxNZI1AkqkWMKhiMMKz6GS\nQSHAo8aUplMSKuk4xnYdDF1wIAubzbMY/hBeKKkGAetaTCA2yZkl6p0aHUeHikcm0+bw4SPYdptD\nx3IEGzu8dOYMnVqNWr3Oo2trfZnv5iay02H02mu59U1v+rHP8c91MfKDUNUE7XZ/Vz46OkS1WqVU\nGueuu+6j2dwhjmPa7QxHjx593c8ZHR0ilTpDr7dML2qRUSRd00SLM6RSw2z0Wmh6jnptnnzsUVDy\nuIpBN+6hMIYkgQ3kUNhCp04Ngw3GhIomISTHFhcYxmCIGI2YVSBGRxmkyfSdEjOs0yBiDYUUNntJ\n0KGAQ0yaFA2ywCI6TdKASkQbBY8U0cCKp4dBmZAhosHFHtJCISCghCDCQEGhgyrBiC22vJBhoRMo\nEi2dptPcwQwjdusKG7rO1Ti41TPs9EzaS22Kk1lot5n2PLZPnWJ1Y4NarUax2+GwjDhHj1CLObz7\nAGvNHTba62AXqTuL3DS5i3vv/cWzB/3Up+D977/Sq/jRcdtt8Od/fqVX8bPDzMw077rlCGPJJJ47\nytLcHA3XhTDk6TNnePuv/Rp33XMP1WaLc4+dIe6tkugF5BJ5diIfV9FI9toUp0aJpGQma9Btr0Cs\nMaHBiiuJMKkSU0SjRIDFNpsohBwA7ME+dYMiDVwEPj4eGRQioIFBSIKADkNojJDu9yzwCJCsEHIb\nF3mBGlWy2NjUaQ1sE/teFhGSLjESDRWDKhEBIdvsxicLbNOgQQ6NmPHIJZRN9hSTWHFEKYwZDVSk\n1UNoaXqKy+5ykY1mBO4ShweufZcqO7hBi+r2C1iGSSGZpiALXFxZZW85x5htUUinCaKI48vLTE9M\nkJuYeNUAwzcS4+Pj/PN//rssLCzw2GMaZ8+G7Nt3PVEUUm01SakFQKLr/duarpt4sUGlUkHTNFQ1\nZmZmFsdxSKcthoePcv78MoZh4rouQSBQ1ahvAKlOE0XzxPHT9IWfG/RVNRKVS6iMAjVyFOhgYBBh\nUAM0fFYG3eoOZapk0DEQtNlihQI9/n/u3jxIsqu+8/2cu+fNPSuzKmvvru5W71paVtNqSa2WBAiJ\nRWBsjMEMHgeGeW9msCN4EzMv3gvsF/PPi/fCjrEDvxgmsJmw5RUMGGywMMggI7S21K3uVu9dXXtV\n7tvNm3c9749MtwEbAzK4JX3/qcrMupkn85y6+bvn910GDIMIikyhkUdQoYCHQ5aQLGkaQIxHRB4D\nhRzQQZCgSJsKu+kyzBW2SNEjoMXBUUHbpYtDQKxZ9KOYvpCEmkbBdRFhyJ17pvj2pQ0GA52qMyCb\n8FGNSSYz2zELKolykSPH7qXVusoHPnCc2dlZFEXh47/yK3QuXYJajdRgwF7bpmFZXG61ePjhh3nz\nv9AG+jVVjARBg5mZ2wG4774jfOpTf4lhJEgmM2SzRVZXz3HzzfMUi0Ucx+HixYv0eg5TU5Ns3779\nOnfE92PuvfetBIHPN8NVlOUNnG6brmczCPp0fJdB7EDYIyVKxFE0ktvmSGCjM5ReJRGkkSxjMmAd\nKW0kaSpcYwyTMQxMQKfDBJKLgM3kyB11B4MRPWkYlrUM1DFxgM6IzAbnsNHYjs2Q3OfgE7CJQpcA\njYgJDNIEVJFIoIuPj4IzyrMxgIAMIT0kndBjTPhoekRCj+n6A7oxzKsGVQXQbKYT4wyimHqrTn1p\nC+OoJAoCJLBYrXLy2WdZGB9nemyMtA775+ZZ3Wqy0t4kly5RnIo4uDvP9qNH+aUPf/g1R1zd3IQn\nnhi2aV4r2L8fKhXY2oLvyJd73cA0TTCM6zLx+W3bqFarbNRq3DI+zi986EMoisLeffv4y8JTdNav\nUGJA2xl2+mPNoh+02GjUccwCy12dAfP0tR5F08MMhuTYovQYEyY96ZAGBG0clvHZiaQ18knNMk+f\nVS4woIdPjgSQYkAbSDOGQkyARIwypwR5FLoYJJEjq8IE6qh5amORIUbFJ0TSIULg08TGRaePAvgY\nlHHpU6GCSkZTSJeT6EIwbZr0Y8m65+LqIBSVpu+jCkHX87h1csjXqjkOX19yCaJ9GMokupam2V/C\nYZGcoVIqZmmrKm6jga6qVDsdrsUxP/POd96oqf8uGIbB7t27KRQKXLv2hwwGfSzLxijMsLmyzrhh\nk81OEccx15pbpKduwnVdKpU6tdo4k5NDxU23u8na2lnm5kLOn/8GTzyxSBSl6PeX0LQpPG+DODaA\nOYaFyAGGMt8OIT6SLTIoODSAGgY+Ov2R+nEShR45mkxRJiYcib9V0tTo4SNIE+NjouMTYWHRJiCJ\nNzqPG0j0kdS7jYeHoIeBRTwK0lMwMYhI4KGgEqPSo4OOz6RmMBuHJKVBJpNhpd3mUrvNpKbh1Wvs\nSgT0oya5cEAfm9W+zrV+n9LCAkeO3U8+n8d1O6yvb7Fv3z5eOHGCg+Uyqm2zfOoUU/k8Xr/PS8vL\nOBcu8LlPfYq9+/YxOzv7iuf2VV2MrKycZ2JiG3Ecsbl5hR07Mmzfvh2AHTt28Au/8CY++9kvs7Tk\nkkwmOHJkP29+8/2srKzwP//n5/G8DIpiEUWn2bkzy/ve925M02THjhmuXFlkbm4fb333v+dvvvQH\nDE5+i0gushWsEakSQ1lAjSeR0iWIfaSUyGGANDEqCdUklAGGJjAZICKLVuSRIEaik8XCw8bFAWxU\nImximvg47EIlN7oaChDEIzNghQ5dmhTwMGnSAybJYxEgGEaSD70d+6wBLsO46TYCG40DhIQIYjQu\nYlPBJEFIjxQSn4g+K+zExRaQS+VY6fdpRSGXhUo5lOzUc+iaMfRBGbjMZad47rmTTOyc4/TiIjcn\nEhzSNLbrOlvtNjU1ZGpMJ5Ge4sn1JdLbxrj14GHufOMbuef48ddcIQJDx9V3vhP+lbLBfixQ1aHP\nyLe/Dd/j0vy6wNzcHDKXY6s5jLlXVZXS+DjX+n3e9Mgj19fZ/v37mN5WJtHdR9FI4HsOU1HE5asn\nafUM/qoZYKlpDGFiaRqlXIZutEXorTApbISnsR5HhJhE5LCwSLKGj49JEp0iCm1gjZtwOccifdLE\nQJKYLgYhEfYoFkLFZsBQQSeok0CiUyJiCTHSYtTJkidARxv5mzhUAJcdCDKE1EhRYRIHDxVdibkl\nm2bTcSgUizi1Gj3XJXBdmoGPK8YJ9KH/8rlWFyyPqXyKWrXO585coOfNk9fGGCjxkEKvz9Lrr7A7\n3cYiw5333cfG+jqnr1zh9uPH+cWPfORfLSjvh0WpVOJnf/Z+Pve5x4miFONTJV7a2EBNSp66cp5K\nz8UozrFtXKHZbDM9fQtx3KfRWEIIi8Ggy2Dg86u/+tM8+eQL7No1xtpakyiaQ0oTz1sCdjNskY0D\nM4A3EhkMz+SwSYg/Ckr0EOxAx0Gwk5gzTBCi4hJf9+WFPC4VYmImR426mCwmOiERIT46a/SZREHi\nEtG+LgHWsAlR8BAskiCPRkAVnZgDqMQEdCyDy0qCbXEEQuBoKknDwGk0KAFJw8DqOIR+jCsSGHaC\nrTgiziS58+1vZ9v27dez3sLQI5kcyuwb1Sppw2B1c5PtExNUNjbwm00mDYOBYeBtbfE/fvM3+div\n/Rq5XO4Vzemruhg5enScF198AVVVefObD3DnnW9AVYdy006nw7PPnsTzNHQ9jabFTE1NoGkaf/RH\nXyKR2MPExD+oNy5dOsVTTz3D8ePHuO22W3jqqVMsLb2M7/uUZnew1d4kRZKHH34fX/nyoyxejOlL\niRNBjix9qqSJcdkEpomESoTPBhEyblGOE6yhU0WQGXGjAwwaKCToYKDRBdYwCNmGMios/r6JEwMO\ndTzGUCghqLGBTZYUSVR0Auo0gQFjRIR4mNTpUqSOBA6iYKDTJKKDSp6ACpJnMUnREDpStkjQo6la\neFqGJcehXJim5IdUxXCRh90GMyJiIAQVKcg3+1xodLm0vs6YohCGIWEcoysKpThmTVW5943HUIFy\nez+/8vGPY5rmyDX3tQcphy2a3/mdGz2SHx1/zxt5PRYjmqbxrg98gM//wR+wePUqnWqV1XabXYcP\nf5epnqqqbNtW5KkvnSXSMyiKpN/vE/YTRKGFL5IkrF0gmmTVmH6nh0iM42pbDAZ9CnGIQ4TCNgQ1\nJAUEGgq7EdRRqGORRgEcBAkKmMSELGGiECMZ0EbHRtCgTURAGlhGISLJOBFVYuoM8MmSpk/IJXqj\nNJOABjptJtAZwyJCYZwqPQI8MvgYErqDARfCkP6FyyTiiFbgUQlj1iWEwSX6ShE1tQuhRCQEfOX0\nVY5kMlzrChJWmdCTSGIms1mEIqiKWUJRwQtDNppNGorC3L338nO/+Is/kjzzXwOVSoUXXzxNvd7m\n+PHbyGbTCHE7X/jCGF/5ysv0BjohAmpttMQaTz/9ApnMrdxzzyQXLlzkxImzSKkjRJYvfOGrJJNZ\njh9/G5/+9KcwzRk6nReJ4w7Dr8c+YI9+WqP7fGxsMqiEBET4SNJ4bDEgABqYmITYBLTxEQxJrgGQ\nQqAjUYlIU6WJjoJOTIEmAyJqGATU0XEI6NMlg0eCMdYYOrl26JAnoodFQAIFW0hcy2DvzAJOq04c\neghg5+6dBEKSrDVoBH2abkDGcynk8nihz6adZld5G2e6HnPzs5imiZSS9fUVrl19hq21BEtLZcbG\nx1nxfVAU+r0ebrNJKZnkquOQTSTwVRXb93nhuee4/01vekXz+qr+xnjooTfx0EP/+I1JKXn00T+n\nWk0xPX0E3w+IY5/f+cQfsa38Gc6e3WDvoRKpVP76FVO5vJNnnjnD8ePHSKfTvPe9b+PjH/8Nrl4N\nMM0smdQ8y1ee5TOf/r/ohxaOWyMMJ2kSEysrpKWLwGKNNoINlDhDQJ9sNGCfkUZoBrbvcTl2Rp3E\nLjY9Igr0RhXtBml88ihsEVMgpkPMRTTWkECbBBo3AVUiJDEH2KRJBxWNLWbwSaGjISkQUiFmi2VC\ntqGhjK60VEwCNHqYRNyHg1BDfGlQo09F2Ows7KQTBgy8TfC6KHqalDmD4uusxn0GskcY+IT5W/H1\nDGOGRj+uklFt4qRGs91my/cpl8vcZBgMgoB+EPCG++9/1Z24flScODFM6b3nnhs9kh8dd90F/+W/\n3OhR/ORQLpd574c+xP/3G7+B1DSO7tkD3S5/8Fu/xds/+EFmZmb4vd/7E9rtErff9/N0zj5Hb6OG\njEC1yjT9LVKJBSRZ/KBNY9AlIwR9v4MrA66FAxJoaAgiukgEAxbpU0CjjsslkuSIaOMTsYpKzCwx\nDSJMFAT7FZvLcZsKEh0LcEZcAp+YGZo4wDp5YnYjqRIRkWGLDA4xEcHIWXmYidPBIkEEqNgopNCx\nkNRdH0XJcjkaJxx0iUKfopLgWHE77X6Xmi9Z9C7ywLv/HcFA4W++/HncbgXVtpA+uNLAkApuv4Np\nWqhql32HDnDrm99MZvduds/Osnv3bnRdv7GT/j04f/48f/iHj+H7KZq1dRqbVymULD72v/8q09NF\ngqCJouTI5XJkMrMoisezz57mllsmsKwsly6tMTGxH9NM0GicwzBSPP30V5ma8uh0Ful0qmjaDLAE\nXGbYmhHAwqjUHPq9WChExDQI0MjhsQsoolAlpoVLhgo201hIegwt/Mdo08BkgpgNIgxiBEt0gRoJ\nGmjAfiRtYtIwYoDATcSYI2cpQZ4mARvYJGkziaCFZMKy0KMOlhwQGhoyn6UZBVy+dJWUVGml8mgh\nbMWCSr1Gw1Rxc0Um5/dyqxGxvPwEllXm6uVLdNZf5k23bCM4c4YvnjjBtsOHGWSzkE6zvrxMQkoq\ngwFNTWMhmeRSGPJT8/OsXLoEr8di5PthdXWVlZUenmfx/PNPEIaSxsYJpmnRn7KYcFXWn/4rGtsP\nsP/W4wghUBSVMPwHw5yTJ8+yfftd3HnnAs9++9uEWwpKcjft3gUmadGNq2jmTgzFRNUzDIIuNa+K\nZh9gMieQziUmuk1ysU0Yq4QyYsy06bkubbosozFBnwSLIwqaNiK2lVBoE3CNoensOguYpMmwjhxJ\nBYfh0R5ZQNIhYA6FFAYWIRF9HAxMfJK0cKkQsIWCgkGPJBE9JAU8VCXGiwe4MkBTFDQRoSYMTCek\n53t45gSeDahZ2qGPH6SoOD3M1BQ3H3of1Y3n0PQauIKNQcjsRJ6f//CHuXDyJHEQsNHtotfrTO7b\nx9FjxwBoNps0m02y2exrzlvk937vteEt8k/h8GE4fRr6ffgeE9PXDZ76u79jQVFYuPVWVqtVXM+j\nJCVf+bM/4+iDD7K5Kclm84i5m1jbXOPy0jJ+twaGh6tMoise/UEVLRZ0KdCTAWFUQ1MlbXbxEg1K\n+BioeOhsYBExhY5OgEWdHlnW0dCYxqDBGhUc0hTp4vJCPMCnjxgVEwU8QCMiR8hFYjocpMduhuFn\nHk1qpElRwEEnIsRggwwWAwwC0vSosp0EEQX6hDiiTULmmRUaV8IiLlOMi1VyhGy2+2i6SS5RYkHz\n2Vzf5Lbb7+bgHe8kii4yUcrxjSdeYHzibpxWmzDso+sNMok2t7/5/XzwIx/5vuZzNxphGPK5z30N\nXZ9l6dRXmYgjZhNZNq6t8d/+z19j3VOZnDxGobD9+jFxHLG4uMhgsMhLLzlImULXdRqNa1iWg5Rp\ner08V640gCmEKCKlTzK5HcdpIOUY0ENQJybEYIBBH4cNmkSEFBBMMAw3tNDIMkyWabGFgWSVPBGQ\no0uTNjlylIjo0eEUKn2SSALa17NnOsA2hvbkdSIiukxgEaCPdtMlOUyq9IdEZ6HgqpJACJKJBIbr\nsplMUk6ncZw+qmFT9QZYdpo40ljzJF7cQzFMbrrjrdxx9CFWV5/hl3/5HVy5cgWl9hwP3v1mEqN2\nzXwc88yzz3Lsve/lbKnEU1euUFteZnZsjNlikUu+z+HDh/GDgHSh8Irn9zVZjPR6PVZW6tTrIbnc\nNrqdNcZ8H1vaeD2XsVwOKzHGhWsv05zfS6FQplJZ4siRPdef48UXzzM+fpRqtYZXrZIzDEwtSy63\nwN6SRrddo6Z2EIyjqwaqaeJo2wniFANf4gdF0rKDI2JCICkEXuCSQZCmQx9YwkJjkgAFkwEmkpDT\ngIqFBzRQGEMnRMWiADTpo5MlYhiJpVBE5ykMeiObNY0xUkSkcPFQaZNngw7nsJkGIkxCQtrkaeMi\n0WWMiqQoDJxowOMrL5JXFJQIrnXr9M0D2IkpdBucqIowBoyPTwFNjh47ztzcFCsr57j61F9RnCky\nPT1NoVDg2TNnGMtmedcv/zI7d+4kjmO++Od/ztUXXiClKPTimNmDB3nbu951vQ/5aka7PbRVP3Pm\nRo/klcG24cABeO45uPfeGz2aHz+klJx7/nn2p1J88etfx3QcLCHoSElF15GpPFfOniQVPI3wXBoX\nTzItBdKcxLINNhyHVb+F45vklR2YmgKKg6tGDEILRJq2GKMVr6KhA/NEDFBoEXMNkzWmcJhEIUKn\nQReFKil8JiiwHZuzeGgsYDKGSRuDPjZLBFyjAowBeZSRa6sgS4jDGg0a9Ehh4TJNE9hGTB8fgywe\neWIsfBQEUSwxFIs+GgmpImMfW5ooqo0nPYSqkUumEGqI06xgGDoQY1lpjh3/GQwrxVNPPYPUVCK9\nS2E2wcf+t/+Dt73tba/q9urm5iauq1FZPsWcUMhn8jiOQylVottYorJVpbRw7LuOURQVRcnywAOH\neeyxb7O+vs7Fiz62nWJ8vMzGxllmZ4/Sbp9ieVkjjhMMBhIhEkjZANbQ6KGwxDDcUNBDAOOEzAEh\nkhaMUtlDasARYIkYh00UKlwDemjchE4BiPBpMk6bBVwGpOkh2YGCNfJZnQB8ho2hYfZRgIGBgwQE\nuqogoz5NJLfbBpO2hWuaXHYcrLk5/EqFpWoVp9OhFypYqRyTQcxWu4OUeTTyrPV9lJfOYpl5Dt6c\nZG5ujkvnznHz5OT1QgRAVRQmTJPa5ibv+8Vf5OF3vpP/97/+V1KtFlPFIvOTk+iaxvNrazxy5Aiv\nFK/elffPIJ1Os7R0ienpR1BVDbe9yqSRRA0DXLfBvfce5sSJC5j9iKXFM/R6VQoFj6NHH6bRaGCa\nJrquEccR7VYTW1UJ/QBQEcTYdpKpwhSVXhPbKKNrIZg6bgeUsEFaJtD1HLpVJBV06QZNDJEkBNqi\nw5QMiQlYBTqUMLHIERDSwUchZpOdSGJUzhMSMiBJDhWXkCZdPPqYCHwEWxQpENBBJ4GBgYeDjmQo\n/jJxEYRsjER/FkKEjMkG05pgm6KyFASUibEJWCTipjjGVtN0VQ0tSqBIFz/WyOay7Dh4iK3KEyws\nZHjggXuuQiResAAAIABJREFUm5Xt2XMYp1enqm7w1MoKoZRse+ABPvL2t19vzTz+1a9SO3GCu+fn\nr/sSnDl9mq/bNg+/4x03arn80Pj0p+HBB+E1nOt3nTfyeixGhBAgBE8+/zyzYcj4d+y6Pb64yNN/\n+zUyjYD98/t5efkct1kJGo0lOhEkRZpiELPkBShMEourhEqEqijkU3tp9Nr4gYKISghSRKwgh/oz\nYprY1MjSZ/+IKt4hokuLLCEzDPleF+gyYJYyBQI8kugkKVAjAK6ywFCFZxCTIqaCQMUiRQobjSQW\n0KVMRIVVPIKRHVqPLhUKCCIG6KpGP47pSYUwTqPi41IlGetkkhkkXbzIIzIEY5PTFItFXHeJRMKk\n3W5z5Mhb2LPnEKdPP8bP/uz9PPTQQ68JU0JFUQhDH6e6ypRmc/bsRaJIRcqIINgiayvU65dIpQoo\nypBb2Os1SSZDDh06xOrqJidPutx22xEMI0m9fpVKpYmUm4ShpFAoIcQEtVoFGEdGGYx4kaLSpBAr\naDEsEyPZSURMjTaQQFUXgCWiqEJECnBR8FExSdPFJoVHDZ8AnzQuASU6HGCAgsIGIW3AJEYHSgz3\nzMsMWSYdIEWTHhEpEkgkHdlj2oZ5I8VGFLEZS6JBTF/6yGCDUrvB4elp9EKBrWaXp50WL7oRiSAk\nFj1aIk06exfddo/Lp/+Cj/7Kb/3QZmW5XI5f+c//mb/44z+mV61yoV6nr6oce/e72bZt2yue3xtW\njAghHgJ+E6hJKX+kDr1t20xMpGm1LpLL7UAoGoNBh7Thk83mGS+VuO++DN88cRJ1KuLBt+xDVVU+\n+ck/pNeTSBkgZY92+wyWVaIWx2QSFoNglVTSp5Qb41q2xHRKoed3GMsmObdUJQo9imLYMAl8HxcT\nTemSFE2ENqDuu5QEZIhoyjQp0qPU3kl0THQmSNDHoMUOFK7ioNOjTUyODhYaOVwCOlQBlQQJDEyK\n1FkmjQY4lJHECDooTGJRoYdglpgNptAZ17oUcikq/T6eYZDudChoGhuKgjqAXYrBQNHxlSQytlFj\nn02tT6a0HT9oksslGB9Psr5+nsnJXSiKyubmIrl8xD13vglF09h/8OB3hWcFQcCZZ57hzpmZ64ta\nCMHemRm+/dxz3PemN71qt38B4hg+8Qn4/d+/0SP5l+Guu+BTn7rRo/jJYXrXLi49/ji3fcfacwYD\nJnI51jfX2ZGfZuD1aTYrTPVbzCVtrvXa6PgY0iYhBL42TsFMMJZNs96tY5vT9IMYqXTAh1huJ4hc\nJCGCFDZlApZIsIiJiYNPnT4TwB6GgfOSmMsEvEQLwTjmdYGmwCZDF40ZQlzgBQwMMqiouHgYhHQJ\nmEWSxEUVCiU5QLCEZAWJwEAlgaBAyErk0cBkS01jq0V0BareNcy4iuknSGVtBqLC8iBmu1Pjz/7o\nNzDCGmrb4ut/sYSVK7H34Dz/4T+8jyNH3nBjJvIVoFwuk89rnHd7XK01sMwChqFSrS6haQkq9Sp2\nao1m8xKKYiNlhKK0ue++fUxMTLCx0aFcTuG6TaRUURQNKV2azXV03aTdXgEy+L7EMDxyuTHc1mnK\nukDxAX2MNBoyGqMtXDQRkUiMI0Qep3t5REwdZrmr+ORpM0cKgYWBRQ6fS6xjoTCPhoVCl5AaPg4K\nF4iYAwyGbJU0wwgRGxgQk6SFTRsHha0YVGExME1EILHsMuXMOF3X5fz6BbbCJLJlYmohGSGwem22\nywy2PknOtOnELoveWWZnbuWm2TS9bheAXXv38sVvfpP5OEYd9aqjOGbT8ziyd+/1uRgfH+dDH/0o\nq6urRFHE5OTkv3j3+0YH5d0CfP1HPTCVSrF//000myZLSycJlTodvcO+uZswtB66YRALQX7XAh/8\n6P9Cu93mk5/8AuPjtzA7myGOI5aXz1GpPEexeBObbgNvEGAmVpgwbc6eeYmVfo8WGVJ2m2JBoG9l\nMZwacVzHixMINAahQdMK6QiNbuiyTYObTZMVz0MLLCSSIoI6bVxMTExiuqQZUMGngkOZARXKLNLH\nJCJWBF6skcEnxiMgS4NFIrKsY+KPIqRVdAwMksTsQuMcLaQQzFkppJ6gEzaQlsWLvo+tKHQTCRp9\nlzmhoqBiyBhNU0gZGbx+lW7rOc6ePo+pxlgqeLWAg7c36bQvUBgrEjqblIkZnDqFF4Z8/plneON7\n3sOBgwcBGAwGKFGE/j3bvJqqoo0efzUXI1/5CuRyQ3nsaxl33QW/9EvD4uq1yHv5Qbjtjjv4xqOP\nstxokNQ0vCiiryjsu/VWzj7xBAcOLHDy5Dm6nQqh12MskWAqXcTFIhEVWO1UyJQmyVp5zDgg6LXo\nOB3Q+mTtJJ1WBz8IAAeLARbTSDT6CDQKDHAQgAscIkZjWIwkUJgk5Bo9anQZw0CijKLvfCwitlA4\nSxaP7agY6IQj2e8WO3DJ0GMSj7SUnBq9xjgxNwuBiqSiqCzGkpqUrIoBYRzh+VtAiKMmqWfT9IIN\ntpXKNDo9ZjQF88LX0Ad9yjt3cv+xu0kmElze2KB4U+k1VYjAcGfk/e9/hG/97ddZba4xnVWp19dR\nVYFqTyC1Iorik0qtMD6+gKpG7Nw5x/vf/y4cx0HT0uzYMclf//WXaTTaaBpYVowQZfr9NOXyIba2\nzhHHAUJkCKIzmMmQji+Z1AtE0iMI+8TCIdAsdDR8v0scd4EtVHwENWw0InzG8dFwYRhfh0KfBRRa\nI8lCm5A2CXzShHi0aeASYzLcQbvGcGdEMmzXmCM9V0KopKSgO/CoeB7jRpqc5lCrLXGq2yOKpila\nZUQgsc0ELweXGadGJIc7gcmETtFKIwYd6q0KCv/A85ibm2PPsWM888QTTIyKi03PY++xY9/lIbK1\ntcU3H3uM5YsX0XSdg0eOcPfx4/+iguRGBuW1gFfkY28YBg88cJgvf/klHnjgbei6wfmXn+Lk81/h\nzt1TnF1Zoamq3P/ud5PP5/nSl75KOr2DZHKYq6AoKtu2HUDKNm996yHuuGOKk9/+O0x3Jy9++ylq\nToCaznFTRmLqBeqxIDc2QaMRI6JrSPqARl4ZMGUotJNFcp7HrONgC0FCCPoiJJYJqtTxyeEMTycY\nVDFo0EFhGpVpFM5TZZU820o7SRoCVTTpNNosuQYd6QEGJgY9GsxjIxDU0AkxUXGYwEBlQFvqtOIu\nc3qJajxgdt822ktLyF6POyYmOLe8Sj0akFGG3H7NShMJyVakgjLHTeWD+J0u/WCZQrBBqllj++Q4\n6bkc4ZU6h7b/AzFsbjDga5/9LAs7dmDbNqlUCjOXo9XrkfsOT4Ke6yJs+4ZlWvyw+O3fho9+9LWd\negtDw7Px8SGRdZQp+brCwsICe+68k7LrEvb75JNJJicnuby6St1xuHDiBGO6Tt4StH2F7YUs0jDA\nU/BJUbQTuOmIZDpHs9HDVUDVNygUBJZZoN9dwXdXEGwQY+NSQQFUPNqY1HHIEiORmKgMiEaPS3QE\nCTyq+AwwSKCxiYdHhSwabSaJGKfITnwCPOqo9EgyhuQqJcMmiAI6sU+AQl2mkWQ4icSkx5T0MGRE\nAhiXAwytwmK4RaiMoWkLSDPiwZ+7F81rkbh0icOzs5w4c4apQo5Kvc63n3qK9zzyCHfl83zryhXa\n7fYNd1XdGLk5ZzIZZr5jV/X7YXp6ml/+X/8tv/3//C4btU0UQ4V0iU0rw1T5FiYmAsbGYt7znuOU\ny2VqtTqPPvp5NjdrfO1rj7O4GGAYU2SzB1GUBO32ORznGWx7H6a5HcsK6fcrgIrn9Zkay9HtGjSd\nPgU9QugRA8VFF3ncvouMXRK2hRoKJlyHTQI8ioToVOkhaZGnj8UEfcCnxYCYAQpbjJOlyAALRQmp\nxQla1Mhhj/ykHLI4ZID96OiqhhtJdEXjsozYiiMOmxp9YwwjWcBwOwykjZ6YJZfK0+5vYgYRMsqx\nRZKcDql0Etu2kXGM4g3Ycs5z6eoYLz3/PDt37aJYLPLGt7yF3fv3c+ncOYQQHNmzh9nZ2etz02g0\n+NNPfpI5ReH47Cx+GHLxiSf43MYG7/3gB1+f2TT/HO6++yiKovCNbzyP50kmJjUe/vWPUSyOoaoq\nCwsL178ANzcbpNP/mAigaWnGxsa4++67+ZmfeRe/99//O51mB+dqjUrLxhnkySZVFjdfIm6dZr9S\nIhQhUVxFU4sYcTCkldpJ9k9PU7lyZRgcFEXYUZ+rkU6faSLmEWSJcBhwkU0C5inSJsahS0gf8Dhf\nfZmCHjFtmdSFoCuLROwGTAYkifkGm1xDZw6bCQQxkGUdly6baMxyKfJYaa0TGxahO85y0ET028iV\nFTJC0EbBjHzaqMRBkqq3QTPMMD+7QK/bQhcOu0oFLE2l32wxnUzypS98gZ/7Hq2rbVmkw5Br166x\nb98+hBAce8tb+JtHH2VXEDCWydDq9Thfr3P8ve+97g/znXAch263SyaTwb6B8o9z5+DUKfjiF2/Y\nEH6seOAB+OpXX5/FiK7rvPGnf5qv/fEfM1cqkbFtFisVHj9zhvsOHaKzusqYrlPO5/nrlRonnQ12\nTRSRqqCvZSlN3Uxm+zQvvvg0rbZPzBoiNnDdHSQSHgP/KpIEJjswmKFPiI+DAdSpkGZoCBigsUFE\nWijoUjIYUV27QJ8KESZtYlRcdEpUSJAiDaRGcWuCkCwxAWkEQrVJW1m8IGLNc+kYM6S1eXzXIYhj\nmtJjQ15hP4IxTCpEyNBlt1Doixr1sEmvpfKGN/wCf/foo9w+MYEEZBRhWRb5MKRVr7NRr7OtXMZQ\nFFzXveHFyCc+8VmESCOlw+xsive//6d/YI7VwYMH+Km77+ellyp4Ax0zmWcmNUGrdZlyeQ5FCbEs\ni6tXr/HlL5+iVNpDrSa5fDmF67bI5Qq02018/wJxDFKmyedLNJtX0PUypdJBms02Iu5jKBHluTQ9\nR0V4A1r9HjoxbWcFgUk61cVKRPjtBlvoRMwRYY0a6SZ9lplggEMNgzwONj2SbDFAo0QbCw8TK/bQ\nsYnYhzJqEPYJqLHKFA0UIrZFCqqqs4WkpmrMpSxUVcXzfHwlhV0uMW/Datui7jlM5fOYCRMlDKkP\ndO7cXqLR7bHccYjdgKWoQTpr8fZjxyi2Wvzp7/4u//Y//kds22Zubo65ubl/8vM/8cwzjEcRs+Vh\nkrup6xycn+fpS5dYWVn5vsf9IPzEixEhxATwJ99z96aU8ud/0LG//uu/fv3348ePc/z48eu3FUXh\n7ruPcuTIYVzXxbbtf/ILD2BmZoLFxTql0sx33R/HXfL5PDA0S1peXOTc0oDlLRtVvQlV0Wn2Wthu\nn0ykMplP4idydLsVNqINXMPC1BPcfettGB50Wm1ObW6QBlAjOpGgTx6LBOCNiKYLhPTwyaCRZmuk\nqhkDQhy0OKDqDyCUKNjYIqAvHWJq6Cj0yJMjj05IjpgO0CWBR5IMLilN0I4SyMQsh9/089wWRnz5\nzz7N4uAis6KP48WciCSxopFQWnTtJKnkBHvnElSWq8znsyQNg6YbMfDqQ1l0FOENBv/oc1W+Jzxr\n3/79mB/6EE89/jjn19Yolsu85R3vYPcoSnZzc5Nms4lt25w+fY5nnz3PcAPS5a67bv5By+Enhk98\nAj78YXgNCH5+KDz44NC07T/9pxs9kp8MDhw8SC6f5+Szz7JZq6GMj3Or63Js927WFhb4ypNPcbKR\nRB87SiaRIDE3TrO7RBT0cHXJoLLB+PhdDAbPMzn5NsbHt3HlyjlWFk+gq5MookFCTiBRSQFdBApj\nuKyxKGziyUl61cucCvsc1jTiIKCOwWWgQgLIkGWATohPkh55YvL0CBB0CMiPjK40Bqis4zIXOWw5\nDt1YUKWAaS0wVt7HpWuX2Bg0MYAk49haCy90KRCTI8STJtVIRSdL3434+Md+jXHdJy6OcdPUFE4Y\ncmZ5HSEFFU3Q6XTo53KEhvGqkN3Pzx+9/vva2iW++MXHeP/7f+YHHDPP/v1lTp26imntxLIytFqL\nZDIe09MLbGycJY5jHn/8BHNzb6DVanPtWgPD2IaqxnjeFaQsEQQOk5M34TgauVyRIMgjhE+5nEeR\nTaQXUEhPQXCeyYTghbUKIp4iY6m4YR1dlURBknY4QFBEVUqocQ6LkBwRAZKYMh5tCnRZo0cFHR8H\nD4sEZQJUNCLS+PgUsEmTo0GEZBMdj0nW6dMCLhCTjQJ83SSbz3FbwcZQFBQvxhpLMTO/g8snz1Kc\n3EW7uYGpSBqDAXFmGFbQCCMSts1Kd4O23wRD45ZdeymXSkwXi3SWlzl75gx3HD78z37+G9euMf1P\nFLFpoF6vv3qLESnlFnDfKzn2O4uR7wdN075vJX327FmefvxxFi9d4qVLLfYcfJCdO/cQhgFra+fZ\nu3eS8qi6A7i4WOHiSp8g3kZSzeC4IX23zkyokk9mGPhrpBJFLMMgKSfYsrPESYVqO8vTLy/i9ecJ\nQ8GE3Sb2u7R8CxUb8BBCoEtJiE1Mmjo60EFhHOiRZJ0pbGyZouMPuCJ9dDQyWopmsEUXSZIJdDQ8\nSmziUqdPlhiQWCSYEQp5TTChFPENj3rtGqZR4PDe21mr5lhc/AZG9ibGzBk8T6Gd0BgvBvSdJLqu\nUsqmkXHM5XqbtfYmqVSbOxtNMuUym90us5OT1z+rge/TVpTvIrHC0KZ/x/dE3Xqexxc/8xk2zp0j\nLQTPX7nGSjvH/W9+D7adJIpCvvGNUz/kqvjxotUaZtCcPXtDXv4ngvvvhw984PXtNzIzM8PMzPDi\n4syZMzx/4QIA47kcsZrjnkP34AcR52pVZGaMhJFmotjm6N0H+NM//SZjYyUsSyMcmKxcXcYy0qS0\niLHSHi5efZFELJC4SCkYoBDSRhNZkmYBI59HeA36ffi61ydCIDHQSZDHIT+6NIhHDZ0t6mxiYlDE\nZAWFJn1y+Ag8IhQcYiVPWwoi4TNA0g8U/LaD40lisqQQuMScDqtkUChhkEDwImkEB7AVhYS8QKFr\nkTElWbvPmTMv05Q24yQx4ogGGi+ceJlN3+fBf/NvXnWGZlNTOzl37lt0u91/dnfk7JkzNFevkOUC\n5y49SXnhp9i37zYWFu7GdXvYtkc6nSaOE+i6wdZWFU3LYBgN4rhAHG8ipU0y+VOoaoBlFUgmu1Qq\nAapqkEyGaOoKP7XvJtxWRLWdZPfCJC9cWEGGTRx1nqw1QxxbdLwaTnyKhDmJoqTw4pAUEh0DZZRW\ncxWDDt6oGAWfcTRSeEgCfHIj0wdBFjnKLJKE+CiUyGJSZlxotGWfNUKmEhE/f2gfz1+8yN5ikfmi\nRV9zWbryHH7Ywhqb4J77HuTCqdMMGlV0WiTSk7zcMwlaK5Riwbw9Qz5ncYtt85XHHuPQHXeQtm2q\n6+s/cJ5ypRKdc+e+qx0PQ47TvyQ24EaqaW4H/m/ggBDiq8DbpZTej+v5Tzz3HE9+9rPsLZW4Zf9+\nFqwr/OWLn6HT2c/ERJGjR/fxxjcev/73UkqqTRepFlFRUBUNVVHp9TViqZJKW2TNCENXESJJ2++w\n4ldA7uL8xQ2CcA6CASkrw5a/QuheQAgHTcZoI6+PFgmM0bLTGScgQZ9rZGiRRMPDx49dBArjSDps\n4ofTRLjozKGwxt9fvBuM4SEwRtdtGRGRtDU0QxINVIz2gMc/9yjZ+TewdyxPLpVnIzHHrskHEIpK\ny+1SHp8Dpcea9yT1oICm65y8sokfG0gGzBcO88WnN7jjjbtJb5vlxJUrTCSTDHyfzSji2Dvf+UMt\nvicefxzn3DmOzs0RhCFPnVxijBznz5zl0OHDqKrG9PT+H9fU/0j49KfhoYdgFGj6ukAmA4cOwTe/\nOXxvr3eMj4/TjmOklHT7faLIQNcMmr0me26+mf0jkvXy8hM88sjDLC93qFZU3GaPcjZC03W2GlV6\nPQdL64IS0Y8CDDRUJDERCilUWoggprt2lQUl4tbJcVqVFi/3HHpolLDYpEOBGJ2AYZmSZpIkHTYJ\nUSmRQGGTkA0cfCQKCaZZQ2OLCoZeINJ6+LFko7qJKkooUqLjEbGFJ2boyBXKGLQIiJkkpaTwWWEa\nA8vIEioWF2urmH5ITRkwSOSpi5hEJsdz61tsS2q8odlkMBhgWdYNnr1/gBACIXQ8z/u+xciT3/oW\nf/Kb/w29HbDLymEk26yuPEN/foarV5+h01nh6NHb2djYIAwdpJSoqoqqKpRKeVZWqui6ghAaENPr\nNdi+fZyHH34rn/nMn9HprFIuT5KxDxJWWriDkFiEnFhaxQcCUSAvSpi6StsJUOIUsSwRyhAvrqKQ\nJyZGkhyVqFCmjIHJGhWybGcHE7QIaNInIk9AlwQQUidDggBBFUiiozBMNtOUHHNGEW+wwmZvwF9f\nucL2nTs5vbaG1W4zZtus1+vouk4hVeHcS18gL3T27E6xY3IPL152afZNRC7NjmSefrUCccDLF69i\nGwpP/u3fImybe36IoLtDR47w2RdeoOC6pEaihOVKBcbGrmfHvRLcSALrCeCV+cb+AARBwJOPPcZt\n09PYo3+2W3buZG5ignO+z0c+9u//ka7ecRwymSwzC1NcvvgykVdAoGOkZ+lGL2NnNGYKY4yn08Rx\nzLdWajR7GUr6HAkmCIMtGv2TtJUxpChDbKDKc8RcRbATl8SItrSORjC6rRCQxWQVjcQoUElHoT+i\nMFXwZAtBhIaCjySLIGADwTQqGh2GHq2zaYtSNofXaRDikk8kGUQenbVNntnaYr4cM16YwfUcTDNJ\nN46ZzpXwPIP5+THuvHOBP/j9L7Hp+ShSJ5ta4GpTsO/AHvwwyYOPPMLW1hZLly6RTia59+DB79pV\n+n4Iw5CzzzzDG6amEEIw8P3/n7z3jpLsrO+8PzfXrZyrOufu6cmjGc1olCVLSEIJYQRIYGzABo7h\nGHzswwafPcs67O5Ze/3ar9nX3jW28S4G2TIgRBCSXoRymjw9oSd093QOVV256lbduH/0MDBWQEia\nGZA/f3XfvuGpfm4993ef5/f7fnE9hbZYnNMLC+cGRFW9+IOi46wt0fzDP1z0S19wbrkFHn30X08w\n0rd9O/v27KE7FsN1W+TKRaqSxOjZwbHVMvD5JFKpFO3tIfY8/TLxgIAouuTLDfLlBqIcZWl1HJ/g\nwxILCG4bVSxMDOJig3ZRBamGZlSQPIkps0RfIkuifpKq53ASHyniuPhoUUVCAgJnv9kNVE4hIRNB\nQaXGPAFkrsCPgqeFENRuGlYLvzxJs3Yc3A5UKUTDNWmyTBQL0fNTRqR8VhTRw4/gAdQQPQlBUkEQ\n8dQkdTGI6dSYCvSgq3Vu7B0iHYxg2YvMPPkkizMz3PfRj/7cmFk2GlUCAc4tnf9LLMviK//fXxGu\nqWSyQ4iCSCTcRWjuOMvzLyJ0bSGTuYz5+QCnTx9lcXEKUYzT3t7N+PgcPT1ZisUjeJ5Eo1Gm2Zxj\neHiIO++8hUAgyOjoCFNTdZLJXvKUeOnAMYTmIrYrYjpxXDeEQ4SSKeFi4rguBg0E4nieD1kFy2xQ\nc+vIiLhUkJlHQsTBxiJKlCAiIKMRwMZgmgYGKgZBGsh04BKgiYeCg0CeED5k16VluYTEIGVdo9BK\nEpF1IuvXo1UqFJeXuXb9enpjMZ6fmuJMvc5H7r2XbDrN6fl5JFEkqHoYuRqRjm7mp45SX10ipJr0\nt6eZsSx6IxFWx8eZnp5+xYz3T9LZ2cnN99/PDx9+GDGfx/Y8Il1d3HvvvW9JNO8XNoH19SiXy0it\n1rlA5EfEQiGcmRls235FMKIoCn19XZhmjcHhIXK5FVw3gmmWaYZEoiNtJFIJ5qenmSoUmFKCpLJb\nEQSJVukIemWGsJvGL0ao2y1aYgTV6UPiFE2KNPEjIOPHxSKDI8hY3pqXjEUTB406OrWzOn8JdCRq\neMI+bE9FPRtlN5BxKVOhjH22dMyHiVjXKVo1ghLIXp1mM0Fd1PApGjOlSeIJiOqD1ColZusVYp3D\nNJtVqtVJPvKRW9m+fTN/93ffoqPzOlQ1gW23kCSLUgVaLY1SqcSGDRvYsOFnm8GwLAvPtlHPTgn7\nfT40xcZyLCRBOCfRbxi1N9/hb5JHHoFEAnb9YlU4viFuuQU+9KFL3YqLx+3veQ972ts58OyzEBUp\ntAx27b6FYDCI49jMzx/h9tu3I4oiV1yxlR9+42G0kMbJ2Zco1fxEAxHwp5hbmiIa8KhVC5TdNYkr\nCZWU4Cck+Vl0qqRdiPuDOG6VQnWViiBiewkkwrRo4kPAQcOkgEPrrGVmgw00ieORESVedkVUKYMn\nlKk7NrLXwC/FaTVOIzbniAsCAhM03SUQbfCCSF4ICwELldOih89t4VHEFZOYroQhemA6eHKT7sEB\nDEPHwSWS3EZj7iC4ArZlEY+F2dTTw8uTk0xNTb1iWfVisrw8TSSSpFYrUatNcf/9N71m7t/c3Bz5\nmRWGerYjCmsBlCTJtGX6eWLfM9y7/VdYXV1hZmaWaDRKINCL45yhVKqQydQ5der77NjRRTicJJc7\nhSRlGRnZjm3XmJ1dIBotEQrZPPbYV3FdhXJrgVp1FVXZTsDfhS9kg2HgOHWqdhPXW1mrSpRVBKGF\nLO/Cdc/gmIfxaNKBdTavz2WZICIyKgIWFjY+RAJIhLHJYWCTAmCGeSQMPHy4tJFCRcHxQPCgLrj0\ndw5w5cYb2De3j01tYRq1GjeOjp7TBemMRsnn8yxMTdGWyRAJBHDdOYJ6G3NGnaXJQ6Qlhxouumtx\nZH4et7eXK667jlKzyZEDB143GAHYsHEjI+vWkcvlUBSFZDL5lu+Fd2Qw4vf7MQUB5yeEW2Atz0FQ\n1VethdY0jWuv3Y7rTlKpGPh8FWy7SDCoctttn+amm65l/PBhWidO0JycpHJshYYpcHTyOKnG8pqP\no5ACyyQEeEIFBBmfl2KLUqdgVZkjRkiMkfPAIYeFh8oiFRSmsBGJIBPEpUGBBTwUdDFPxqmcVehr\no4CJSLDnAAAgAElEQVRDk24cXMJUUKijSQVygkXWKYPl4RNkVn1VJJ+fkL9EVhboXreZTCaDbXfg\n98ep1QxE0cHvT3Hnnbfy3//7/8CyFAShCMiEQllcFxYXz7C62nrTGiG6rhNtayNXKpGKRpEliZ2j\nnTz68nFMXwd+v596vczS0sXXYH+nlPO+Gtu2Qa0G4+Owbt1P3/8XHUmSuGL3bq7YvZuPmybf+c6j\n7N8/RrXqw/MMbrhhM1deuSZV3d7ezlU71tGp6zz83MucnKsR0BQKtTzdfTeiqDqV6SPojWUkx6WJ\niiho5PFQXQWXFqZZJawKiI5EydVQiCEh4+GjQYW1NEYZyFPAogcPVRAICCJ5UWTaC+CQpuUmMD0J\noVWhZk/i2Q4BOvH7fNTNCglKbBZlxl2bIiZNr4Em25hKkqIlgLNChQCulMEvLqF6VVTJoLd3mH3H\nj1GVM/hMh6AaI18r4xfqDAysLVtFRZGVpaVLGoysWycxOztOT0+cq69+z+s+BD3PwxQkziqin6Ns\n1DFaKi+//BKy3ImmtVEqlbGsOS6/PM1v/dZ91Go1BEFgZSUHQH//x9F1nSNHjjI/v0Iq1c+3vnWK\nRiNGW9sorivh801zOP8U8WQX6fQIhpFkdur7CE6Flr2E6yWxvTTYJQSniGk+juCtWSemkAggIuAR\nR6GEjUMdQXFxbQfBa9HEwSOMQh2FDHOE0CigUSVKCZcALk1cVFwUWl6VitLkmr4t2LaJZSocmZpl\ni08+7zkX8fmwVZX8ygoAqWiU3qzKgVOLVCUPs2XgFyVCfpF0uoOGZaGn0wSCQVquS7VSeUN9J8sy\nbT+RR/hWeccGI0PbtnFs7142dncjnA1Mjs3Ps+Wm1468b7nlRgqFMpOTZTo6dtJqFenq8vMrv/IB\ngsEg4XCYif37uWvzZv5heQ+61snkxEv47SqG4CIIFpZg4HkGOC0sxUfFbpGjgSSIKN4yq4JIyEvh\nkx1WnBwt10bAR4F2woRxBQHLU9EYoMU0LSrUhXYUL0CRIhZBIshYNLAJUiOG7Qr4/X4a5gRR28QS\nJOxGk1ggyUAsg1ETiUQ6+NVfvYtHH32GfH6aVCpEMOhxzz2/jOu6PPLI8whCB9WqTaNRQJZnSKe3\nYRgFfL4Q7W8hqeL6d7+bh770JZqmSTISIRYM0N4l4sZl5uefIRr1c9991/Hf/tubvsTPzLFja1oc\n99578a55MRFFuPtueOihd7aT76uhqirvfe+d3HRThWq1evYt+cdu0plMhnhfHywvs2VwkIAvSDSU\n4IXj+yjYfswypHxd6IpLSDAZK05StHUEJ0laCDHnrbIeE9u0kYU6qqiw4AokRQ3FTXIGcCihUcfF\nJoZHRBCY8TzOeC66oKJJXWhqG81WC1FI4Ylhms5+IoSQZQWfX8K2HUpOC79bYNXVgBRBKUgy0UXF\nmKfpyrSkLIK8QtRfx5I8ym6BsJ5kvF7GN7qJLi/F7JkFrNoCfTGT7dt3kUqtvYM3XJfgJdb/uffe\nu9/wvu3t7YTaskwVFulPrC37uq7LVH4eR5Lw+0fR9bUlHkUJUirBsWNjpFKpc5/5X8qV79q1Vjky\nPz/P/v0TxOM3IUkqMzP7WV1dxXF8LC7+EFVVUZQI4fggq6uHcc04shzGbjYRhCiu6yIKIhJ1TAwM\n5ugUQ5guWJikxDrzgs2KNA+eH8+2sVEQ0NgsqEgSzDsKmhenjokPsGgwjYOPIi0kDMHH6ODl1Iw6\ne06cBH+C47MmNTlHfzCIfnb2udZs0jMywplqlVypRMDnY6Azxbw5Q93UqJotCs06gi5haxrb+/tZ\nchxKtRpLlQobb3hT9SZvmXdkMAJw87vfzfcsi+cOH8YvCNQ8j5Hdu7n6dUw7/H4/H/vY/Rw6dIiH\nH36McrnByorL17/+He6442aOjo3RWFnhqakpWpUljqwsIVotooqM5RSZs0+QUWPEdY0zpRqCm6ND\nrJMRFKoYBIQWeHOoUgvJ8+jyGkwRwEZGIkqLBC0sErKOhEDJ9pDpolfppeE4GI6NiIuOQQUJER1N\nkFGkNF5zFRudFCbtno4iyUyXpnmyukxy6Cpq1VUeeeAB4pqG59aIRGXu+7VfIxgM8m8//wUaJR2z\nIaCqfhzPo9VSWVp6DE2rc999X3jTQjYAfX19vP83f5OXnnmGI3NzxLu7+fT999Pb24tlWSiK8pbO\n/2Z4p5Xzvhr33AO/93v/+oKRHxEOh19VbM8wDEYvu4wffPvbVG2D6dUl8pbA0NbLefbZZ7GaUST7\nDAGWCRgGo5Qos0LRK6BKfiSnwZxlEBRk8EwKnownWhiiwrJr4+EjgZ8QLikC1CjTxGSLILPXc1j2\nNCJikJyZx3aC+OVJZKlJzVJwaCI4AnKlSY+qUHLCTJnLOHQyEE0S8vmZbTj4tS4CwhlQQwz3p1ld\n3ccV3VFyjTCTlkxOSOLV44BHNOGnQYu7brueznQagJViESMQYGho6IL3g23bnD59mqWlFeLxKMPD\nw28qcdbn8/ErH/8QX/rLr1HIzRJSNEqmgZmMEm/JVCotisUFqtUahmFjGAUSiTzj4+Os+ynTg4uL\ni1iWjqoGOXjg69RXLcJSjIzSS7G1RNM4Rm/vjayspKjXI4RCHfj9QXJLE7SMSWAIGxFZENC8BKro\noIpzJBQRyzTwISAFAiiKi11cQBNlLMFl0VHRvQEkx0LxCjjkSVMjwpqQno8mqwjUEPEkj1pxjj2r\nkGq/glBUYnTdNTz96Dd54OA4dw53U7Nt5GSSVCJBx8AAB/N5tFaLkcsv548++1n+zxe/yPZYDFEU\n2b9nD/byMmFVZaJSYWJpCbWn55yq9utRLBZ57sknOXHgwDkF1iuvueYtJUS/Y4MRTdO45/3vp3jz\nzVQqFWKxGLqus3//AfbtO4bnwfbto2zbtvW8/JFGo8EjjzyHJI2wceOaUNrs7Ax/8zf/SDV/hurx\n42zOZEhGgiwf28OKa1FHJiSZrJMXcUQPn5JGlPL0i2VUUcJAQpZlehyHk6JH2h9AsE1ynozYLCJ4\nNgJ5WthonoYlO3jiMrpbxCZFwamjCTquJCKTIeceRfHCxAU/eNC0LaIU8XAJiBqOZ9GwTARBRVU1\nWrbOnqeeZ/1tO9i5czuCIHBmaYlvfOUruKLI6b3jXNE7xNGpZcqtCi1BJxBOYJoTXHXVRq688srX\n+je/YTo6OnjvBz/4iu2XwqCrVFpz5z127KJf+qJy3XVw+jTMz/9im/+9nRw6dJhvfOMJHCeE53XR\nCAhcdkMnjUaASKST6GGFyaWn6cNgJBDCcBu0AQtNnZJnsOgK6B4k0NHRaXkFMiLkhDPIOAhiiKxb\nIYpJEBk/Kroos+ou0VRkkqJOXoviuQrN+hxpigRsCdHWSOJSFAQCwgAy4FkWgmCi4Mcva7hOi7zh\nIXopQv4MueYkQquGXQ6SUdpICE3i4TBOocbU0lHimTXtHlGssH77Zk5bFouzszieh5JI8Msf/OAF\nr6ap1Wp8+cv/xOKijSxHsO1ThMPP8NGPvrkpyXe965eIREI88shTFAoVtnakGR3t5Q/+4EtMTh6j\nWhWwbdB1j46OBH5/lq985Tt87nPJ181rSCQSaJrAwsIhGrlVuoPrcd0WVamKT2pSyE1zUvoGiuJD\n0xwymSzlpTEGfAVyVnjNpJU1F3cLh6gSp+osM6xCXlA5JYCs++gPhahaNp0olOs1PFqMM4foyaRp\nkqFONy6zrHnSpIE2PAzBpSB5nK5UcGWXYu4IKhEqqzI33vF+9r30IPtlkZ6uLlaBernMxsVFQqJI\nyXEIRSLYtk0L+D/f+Q6jfX0MrVuH1dnJ3kOHaCQSbLjjDnbs3PlTl+RrtRoP/PVfE280uLqtDdtx\nOPXkkyxMT3P/xz72phOi37HByI+IxWLEYjEcx+ErX3mQvXuXsCwNy3I4ePBJdu48wa/92n3nsoDH\nxo5Srwfp7v6xQFo63cPY2CQsTtETDBLVdeZrNa7OJIgtLzNrNRGAq3w+5s1FFuw8eqBFueXguJAM\nh1GsIFXDIRSQmNZihFoeirnCFskhTJ0loUDBFci7NTJug17dR84GlBanzCWc0DpSup+looNpCKQQ\nkbHWhKeFIllPxMCjiUZQ9ai7CrqcJOxVOTM/SVtkkH9+6hQ+ReaGy7aSjkbZu38/puuSjkRIhrM0\nGgaFikm+XsaVRWKxEJ/5zEeYmpqi0WiQSqXo6Oi46LMYbzd/+7fw7nfD27jc+XOJosDtt68t1Xz6\n05e6NW8e13WZmJjg5MlJNE1lw4Z1b2itutFo8O1vf5v9z7+MTxVZt3kzew/O0dt7DZq2NuA2myOs\nrOzjwx++juXlVSQ28tw3jzNQdRgMa5TLAcYLLSaaBqIQouiGKNHGiuAhMEW7LLLJpxOyWrS8Gep2\nkAAmDgoIEoqiIAkKMSFIuL2HhlGlC5lKfYWUmKPD8eOTY+RtgxVMskCJHBF/G5WmQcFaJq7rOIJG\nWrAYrxu4apRWy0BWQPH5kIGKKVCSZEYHBmhJNWRkRq++Ap8vQCAQYWbmMNfduZY3Jssy2Wz2onyP\nH3/8SXI5Hz09I+e25fPzfP3r33tT5xMEgSuu2MWuXTuxLAuAP/7j/8nIyGXMzLjMzxsoSgDHqSPL\nBsPDI8hyB3v2HOC22167eLOzs5OtW7v43sPPobk+LMtgoTKFS5L25AiVVgPTzJNINOnq6qFaWSZh\nrhLS4tRaAuCheiC54Cgqc3aVpCJyShUpyCK93d1MlcucMU0c16HatCh4GiYZNPzIeFSpotEgg4MK\n9EoSDc+jXRSZ8gALqq6N6koEzBY7+npxTYv548fZuHUXn/zk7aiqykNf/jLDkQiyKJKMRGjzPL70\n//wZWC6Xd7ezPp1m8cQJjhw9StfGjQzdfjt3f/CDhMPhN1QNc/jQIQKVCoNnxc1kSXpbEqLf8cHI\nj5iYmOCpp8ZZWvIjij4kyYdpmiws7GHnzi1s3rz2FrG4mEPXo684vtk06ZQVol1dnJmdpVGrgePQ\nFgxStixCioKiKPgNA9dxsFebZG2XsGfSrFqURYWaGMbzdDLdl7E8/gxdZole2aXpiZTtEk00/NTQ\nLVgtzaCLoEt+2j2LGbOIP92P4izgNnKAg+cV0YUScU/AxkPFBlEC0SMaSJGvV3G1GNn0FtqCHTRa\nFb794hjFmsFSwWZiLo8om6QifjS1wvDQAKVyidxqibzc4tY7ruWpp/ZSLsusKaVW2LAhy7333v1z\nJ5j0RvlROe/XvnapW3JxeM971tRYf1GDEcdxePDBhzh0aBldz+A4Nk88cZg779zF7t1XvOZxy8vL\n/NvP/yGLp0okAwmgyr4f/g0EUnR3/3imz+cLIAhparUGt912M1deuZOpIwep7dvHZKHAC0tL6KbJ\nKCotTAqUyQsSVUYRlSCu7wRlp0zdamGrYFFHkCDiediux4xlEhE1JMFkpVqg0DIYjmWZLs+TdDxC\nkobrNUnhguix6oKnFNCT3RRzUwxQxpQEZj2LOVsBSaVuN/GaC6TiATraB9nY2cXi6hjXXz/C4vQ8\nPjWI32ohSQrB4NpYpmkR8vkSO3bsuNBddg7btjlw4CRtbVedtz2Z7GBm5sxbOrcgCKiqyuTkJIah\nsnPnDeRy/4wgtFBVH7Zdp9lcYuPGOzHNJvPzK697PkVR+MQnPsjY3hdZLFdpuSKiHCMRypLOpJGL\ny3Su62HdugShUJXHHv4Bop2jUl7BcGUC2hA+LYZZXUJWJep2kyhNbEuhAew/PUGH6xGXVfKGhYtL\n1VXQULFxkGgioFAiRYV5ZEBxXRygAVTwEZAyqIJNNpKk6cocnphn52gfaddmevIww8O/zdNPP82+\nl45zyt8FqBQrR6k0DJqVGgMBP0tulXhc5aZbbyVXLHLKdYmn03z5z/4Mz/PoW7+e6971rtdV552b\nmCD1KjowUUlieXHxTQcjPx8F5heBI0fGmZysEYn0EI2mCYXiJBK9VCohHn/8qXP7ZbNJms3yK473\nPAs1oLNl+3YGd+1Cy2apKArxnh6uvOEGIl1diJEIq4qCT1UZFUR2KBob9QBbfD5GdR+q2KCqSPj9\nZfyhJiG1SUiGVX+GdGA9cUWlXW6iUSKKQFKwkew8XbpDlCUW5scwGpOEaSIzTYscsufhYGHjskSD\nkOaiqhKm52FKftx4G/FUH4ZpIUsqlTo8O1YnFd1KMDJCJLwFjyjzuQPkK7OIigdanf4BBdO0WVrS\nUZQ20ul+uruvYGysxIsvvnwxu+5t5Xvfg1TqnVnO+2rcdhvs2wdLS5e6JW+OY8eOcfBgjt7enWSz\nvXR0DNLRsZPvfvdFisXiqx7jeR5///cPsjID2/q20ZPppSezHlHowcyvMDM5dt7+iuKjXjcAiEQi\nfOrznye4fj3jhkFQEFivKGiCRBKXQSz6vTyydwRVDNOww7TFY4gBP7uGBhjSbOKuQKcaJStqdHgW\nOSfHtG2xZJkk41kk16ZHVfHJCmHNJRmS0FWbrE8mEBDRNJdaawbPauBTfPjlFlV7BkPWCIeTiNIy\njrBEIDlIIBxkenmcgU6dbDxOJBLAaNZoAH7/jx8Yplkhnb648u+e5+G6LoLwao+Zt2dWxnEcQELX\ng1x11S10dibp7AzT3z9Ib+8IPp+fer1Ie3vqp55reHiY3/l3n6Wt00XUG6RTGTKZDKbdwqbC5s0b\nsW2NWCxMui2KL6AQC0fpCPrXtJ9Ui0gmQUUu0xkss7GjnRU9woobQrV0goqffn+UYclPxRFJoJ71\nO8rTRpU+ysi0WEagDuQ9DweY90REOY4puIS0EJY9g6J4lKoWp86cZrV0iu6Ujud5fPvhH6KI/bTF\nh0hFOshXNEq1bkTLIh5IkEz0UCx65POrDPX1MTM2xvJLL3FVWxvXdnTgnTrFA1/6EvV6/TX/T9Fk\nkuqr2IMYbzEh+l9NMFKplLDtNaOhn0TT/MzOLp77fePG9fh8ZfL5NVncVqvFsWMH8PlakExSMww6\nOjrYdfXV6O0dHMrnScRi3Hj99YzLMg3ANk16FAVLlLEkAQnQLAOfIiAFVNraEvSNbkJJpij5NUwp\nTjqepqezF0d0iKESU5OoUoiMpiJbBVp2Dr9YJugJBNUsjrQenT5aZMkRZJUqiiIzicAZCWbFOlOS\nQnLgl8hk2zHwKNWWcR0BSUyyUCySHRjAF08QD/WTigbZvUGjI1WgZ0Dg1tuv5bkn9pMfn2Tq5Zd5\n7tFHmTh9mra2YZ5//tJIt78d/Kic918Lug533QX/9E+XuiVvjoMHx4lGu85bUlAUFYgzOTl5btvK\nygovvPAiL7zwIidOnGBiYoWUHj2nRwHQme6h2rBYnZ847xqGsUJ//4/9NLZt24YTj+MoCt3hMC1F\nIeK5hNAIoZNFIEaNZnORZtNhxnTIdHezalms01VcSWLOXKbpVZBkE0nyqKlBiqaN0PIzV2hRbRi0\nRA9FElEkiXA4jOZTKIgCDWWQmtEBwhAnhGGWfBm2do4ymIDBXpltGzq4/c6bCATqiPoCgWiJZFhj\nYmGBQCTCXGMeLdWFpq09oFZWZgmFGoyOXtwab0VRWLeuh1xu9rztlUqBWOztmVnt7OxElmu0WgaZ\nTIZoNEyl4lAs5kinM5TLeVx3kcsv3/aGznftdddxxwfuoLPNw7AXKNbOUGvOsn7zANPTC+zZc4jv\nf/8AM4sBliyBrp5NbF+3i6uG1hH35YikDdb1+Pj0Rz6A178VLXs1CWUDQXk9C1YHh1s2juASxaOO\nhY8Gw/gJoBFBZYS1Sk8HeAmYkiQKsoKryEwLIqFID5lgCNGdorS6h/LiM8SNU3hOi/n5eQQxjqP4\n8TyXSqOI64aIBNpYrZvooTW17FAoyczMEktLS9i1GqNdXciShCiK9GazBKtVxg699hi/+bLLWDBN\naoZxbttKsUjjLSZE/6tZphkc7AeewLabyPJa0pZtt3DdFTo6hlhcXKTZbJLNZvn4x+/lW996jH37\nXuL48QlCoQhDQ+tYqOd47NRpwrbN+LFJCq4G3Tv5/vF5Ojvq3PbJT7Lvu9/l1L59+CUJ2RZQZB+u\n6yK1mtgti0zAYYO0xHKwyfGwD12XaBZElho1zpTPoLaqOGjgykiSREAJU7Nz6IqOKEepmkV8Sh+i\noFF28yheiwBB6oTpD0HW7+egaVFRk9S8MNPTOSxLIJTQMAMS83MOYU0itW4dA0ND1Ot1Du/ZS27B\noCZAqLedd73rXXzna18jrQboiq+9TTmuw5kjRwiGgryNqv0XlWPH4MiRd24572tx333w+7//zgrC\nPM87F6A8+eTTPPbYfiRp7e23Wp1ieTlHkPMTFsORMIoKC8vT7NvzIqpPQ5abbN4cZ3Bw8Nx+siyT\nSiQopdNrwlG2jSYIeB4ICFiALPiABVooCAp88oMf5J8efRSjUMI66+YrKRqyoBH1XFxJW7OPlxug\nS6yik3IsZqwmOi7JZIKj5TpFIc5gdgil0UBKaUiui22VqNsm3aE0VU+ja3CQoB4holdx6scJRHRO\njo3RbDYpaxrXfuCX8QQ/MzPPAh59fSnuuuv9b1or6K1w66038Nd//Y/MztYJBhPU62VgmY9+9G5+\n93ff+vl1Xefuu6/nwQefZG7OZHV1lVxuDttewvPS6Hqez33uN86V9v40fD4fH/v0p+lbt44v/vn/\nRhQCjGzaRrlcZ2pqhVBIBkL09W3hpeUF9uUX6QkHcRGoqiE2b7uBxaPfJ1c1cOmgXl7EatpIrohi\nB1iwSkSFNddmEwNVCGFKIj4bRAEaNMgoCqueR9h1KYVC6KrO0YpKtnMzkXSW6uwsXUqUTLTB7aNZ\n8o5Dxbb54z/6Iw48M0az7jKuhBjsGcFyLGzXwgm10RDs8z7rsakp0tnsK8RBk8EgS7PnB5A/STab\n5ZYPf5j//xvfQMnncTwPNZnklz/wgbd0j11Kb5pPAB89++v/63neBV3F37p1K+vXp5md3YsgxAEB\nUayQTvtYWVnhi1/8OqKoIooN3vWuXbzvfbczMbHAHXf8KtHo2o3cahlMTT3DyeIS7dd8mMuyveh6\nEM/zmJraw8bNm6ksLCCbJrUTJ+gWBIxqg0qtznytSk6A0VKAsf1HEMwmctVgT6NKob6KRI12ycUv\nRFn2DAyrguwJLDgqrhal2bTwZBfT9VDxk/D5MZwqcbdFTHCYlZIMbWvHKrcY8YK0X/te5ucnOH58\nhUKhyi/90i4CgW5++MNFrrzmKrq7+5BlmUgkwrYrdlAsetzzG/fR1tbG0aNH6VBVlnwmlm2iyCqS\nKBFTVcaP7uN9H9h+IbvqgvEXfwGf+hRcggKeS8pNN8FHPgKTk9Dff6lb87Oxdes6jh59jlgscy74\nsCwTQSjS19fH3Nwcjz12kK6u3UiSfPbv/Rw+/EWago+4oRPS19wC86VlFNWkM+pgzz9J03WJtsfY\nvv23ztMemp6e5sTJaYpFA8MUWXVEgoCDQQuROQQUSUYVPFSfy46+Pvy6zs5t29izWsItLqN4YQRb\nwfJa5CWXulWkUzIZUVXaMx0cyi1wurSCjkssm+Sg52EmYwz7RhGQ8XSd9UNDVOt1Tk02Wa0u48kp\n9HgcuVQiUK/jlmYJ1aZp87Ks272bTDZLo9XiSD7PJz7/eSzLQhCE1/R5mZ+f59jhw7QMg4HRUYaG\nht6SnPerkUwm+cxnPsKhQ4eZnl4ik8mybdvr5yT8rGzbthXLMvnjP/7fDA93c+21W0gm23Bdl2Lx\n6M/8gAwEAgwMDbFt5xb27j3Fiy9+l/n5eYLBLO3tG1lYOIGqTpFt20SxaGB1D2PbBu7cXvLHX6Be\nXuaJFxq4jCDLYVpKFctoYjlrZnhNsYghiLiegeq1aHpNZKGJKjbJSiZeKERvOMxyocBkPM6Oa65h\n2PLT1X0l42MnmTtxnJpTIK2u8NTJHNuuuIKVqSlqp0/TbfnwSR3kygX2H3oGIdaNqgXpH76MfMCg\nVljEreTI9MUIdnXRb5qv+Pxlw6D9pyiqjo6OMvj5z7O0tPS2JURfypmRRz3P+1/CmmPRi8AFDUaC\nwSCf+tR9PPDA41SrApKkoGl+FhdPoKpXU6/XmZ2dBjwmJx/k5psvQ9O6zgUiAJqmYxgBTFOnr2/j\nue2CIBCL9XLo0EluuOsu8gsLLC8tYRSLuFaTBaPKjCTSFYqTcmHl9CQrgsRQxxChlonjjxNuFmlX\nMxRsky5bouyWcAUZPwpN28JwDDZlk5xZqFE2GriuREt0kRSJGhJdPRHWDQ2yON3ARSSRSDI0tJGe\nnqMcOLCHqakfEA4H6Ozs4Omnf0Ak0smOHVuIx0Pkcke57753n7N+bjWbBBSFazb38IP9x9HVDjTF\nR7m2jKcYXHfdZy5kV10QikV44AE4fvxSt+Tioyhrs0EPPAD//t9f6tb8bKxfv56tW09y6NBL6HoW\nx7Gw7WXuvHM3sViMvXsPoKqZc4EIrC3jbNq0m/n5MU4X51ELIo5Vo9SYZNtQNx+++WYM00SVZUzb\n5smHHmJkZARN06hWq3z5yw/ROXILS6fnwecw1Vqkho0CFAQbCz+K2CTb0UM65K4JFZomiqpypC7i\nihohDxRJY8FzKJh5BgTQXY+juVkqjkl/KErBtQlv28Bd77mdyRdeYDCZ5FtPTlMteMwtl3iqepK2\ndIy+vm7C5SKOpKL7ddx8gVPVAvX6QXb1ZeiJRDg1NkZ7RwfRUIhgocDk5OTrWje88PzzvPyd79Cm\naWiyzFN79nBwZIT3fehDb3tyeigU4uqrr+Lqq9/W057HykqBTZtuIJvtPW97pZJmfPwk6bP6Km+E\n2dlZvvKVR0mnr+Z977uNEyf28sADD6Lr28hkRpBlHxMTM+h6DEmaxTCSrJx+nkR9mZAXYNe2LTy+\n/wjLS2fo7bmMnKLQqJbwATY1pt0GBSQk0UdalvCLJlqriAaYop+phoffdXD8EX79c5/jU5/5DDDO\nAD4AACAASURBVLlcjv/xF/+TyuKztEWL7MgG0ZVBBGDi1Cnq8/N0uiK+dJalskFbOEWtOM9kYZpg\nuo5SW0exoaDG/Wy+cRcf+tC9dHZ28nd//ucsrq7SdjY4LFQq5IBbt/30ZS1FUeh6A8Z6b5RLaZQ3\nffZHB7Bfb9+3i8su20ZnZwdHjx6n0Wji88k88ojA6dMnqVaDhELrcV2H2dnjfPWrD7N79/tfcQ5R\nVGm1XtlcSZKwLIsNGzcS/jf/hicefZS9zz3HgeefRwsmCRUKXBcMI9gOAUEjJcJ07gym45Lwp0nj\nogk1fDJMenUyePjdFnO1OeYFkWu3bCLeJmEToTq9zEqrDoJI0/ORjSts6PUT9fs50SzQimdJJNoQ\nRYnBwS2EQjHGxh5l06a7iESSzMyc4MiRQzzxxNe4+ebtfOhDt7Nx448Hro7OTvZ4Hld0dxMNBhib\nWqBaX6E9Y3D7r3/0bX2ruVj87d/CHXfAG/D2e0dy333wm7/5ixeMSJLE+99/Dzt2THLq1BSqqrB+\n/XXnSnsty0YUXzmMxeNZrrqqnXg8yrFjp0gmI8yeHCfbavHVH7xEzQCwWd+bwBf2Mzs7y+DgIMeO\nHce2YwyPrOfwoZeYrY7TbAlMt3IEXJOI4MMviOSxSHgFbr7ylxhfWWF/pcLhyQVGrrqXZ595mtLq\nBCFcTLvBRlza8WgKMqOpTqZdh0osTbvu57q7bsMsFrlu3Tqa9TrF1TP4fNvozoaYWF1hueQxufgS\n1+xI42+P8MQj3yOjRulKxWjJKfJLZWKahqgo1Go1IpEIMpwre301isUiL33ve+zq6DjnGdWZSrHv\nxAmOjI2x7bLLLkBPXlhs20UUX6msLQgSlvWzPV5efHE/Pl8PgcBaMma5XCEW66Beb1Cv14jH+6hW\nV5mbO0VHR4x8fg/BxhQbh9bT3taDUa4z2p5hJp9jrllFTHZQrTXAKiN4ZcJigPXBCJNGmVUsKpJK\nWPMhyT5qko6mx4iFUiz6XFbLLTzPI5VK4TVKDGTT7M2XeObENAM+kc6gznQ+j9No0J/oJhmOIVFg\nrjhDxCvTrcl86u5340gqlUaTnG3wyU9+lI6zwkPv+9jH+O6DDzI5M7Nm4BeLcfdHP0o8Hn/LffKz\n8vOQM/Ip4KGLdbF0On0uSj569Cirq09TrerE4z9eM85kNjMzM8Hy8mna2s63RFZVk0RCwrYtZPnH\nbxCFwizXXLOmXNfV1cWv/vqvc+udd/K/vvAFpg6eodww8FwP76xssIJLxHGYAkKijiMo6JJKQJdI\n1loYjkldEIjLPtKeRWVuhuHuTq65extf+s4TTC42UMO9hMM6ZmORhVKN8VKRKVpcs+u2876YMzNj\nBIM/nuXp6VlHd/cICwsTbNsWPC8QgTWBsq5t29izdy/9iQQ71/Uxu7qK29bG7rdBAO1iY9triatf\n//qlbsml46qr1sTexsbgDQgs/lwhiiKDg4Pn5XX8iJGRAZ555hE8r+fcNLHneTSbS1x++e309fVx\n0003AvBHv/d7PL53llR0lEwsgOM6HJ2aQVAmuNnzAKhU6kiSjiAIbNy8i4UlmVCii3p9Ca/0DJ5t\n4Xo1Losl6Mvq7DlyhN/6r/+VXVdcwT/8w9dZWAhw8nSBVWWA4vJjDODgkxWano3qubSqJbqTbSxW\nVgmkgmzdupUffvObRLu72Tt+mh19Q5zMzVJ3VFStQqW5TNyv0ReJsLQ4RyqgceuGrfg1nTO5AI25\nUywurKJ3JFFkGdtxKLKW2PlaTE9PE/W8c4HIj+iOxTh+4MAvZDAyOjrASy/9AM/rPHcfuK6Laa4w\nPPyzjVlLS6sEgz8e9xuNJp2d6zl9+gjFog9V7SYWa6fVmmL37gjHj8RZ33kdnYk1y4wgUZxci03t\nJebkVepNlYhWIaGU6HfjBMQmIRxEReOML0ikvZczxXnMUIakFiao+WmGQuy8/CYajQqLi4uYpskL\n+2bpDw8TUhZJCx5yy8aUDHpEkVOWRU1WkVZmoWUQaNVwadH0JHRJYnh4rdx2fHaW2ZmZc8FINpvl\nY5/5DKurq7iuSzKZvGQuzhc8GBEEIQM88C82L3qed78gCLuAW4H3vNqxX/jCF879fP3113P99de/\nrW1Lp9Osrs6jaTvP295oVOjs3EAk0mJq6gCp1NqNmc9Ps359jIGBzTz++Mvoegeq6qNcXqCvT2Pr\n1i3nnSccDiMGg1h2nVQkQa5aIuA5mDjUHAdb9xH0BbDcJsuAKloEZYgJLp7oYes+0pEwqmUyKUmc\nGhujq7OTgc6tjPRmaAQ1+gYHzi43zdC3I8zwDRpHj84gihKSJJPLTROJmMjyELVajUqlgqIoJBIJ\ngsHoq5ZHCoLAHffcw9jgIGMvv4xlmozcdhuXbd9+wRUbLwTf/CZ0d8NFlFj4uUMU12ZHvvpV+C//\n5VK35u2jr6+P7du72LfvZYLBtQG2Wp1j586eV/iQ1ByFph3Dr6351EiiRDTUwdjiwjnzzK6uNkzz\nJNBPb+86kskXWVhYguYyw7FOAoqHqji4do14VyeJZJJQOIwkSWzduo7jx19gZKSPZ5aeJ6xGUQWQ\nXANHaBFWQBFauG4ZNRhn841Xs3nzZg698AKrlQqNRpN4KMa1iXaWSjnyRya4adPNgMVQjx8OnmBB\nDzA+d4pt/Ztoj2UZKywzvjzBup4sJcPgyOnTZLZswTCM85J8f5LXWtv3PO81fbt+3hkcHGTLliMc\nOrSHUKgDz/Oo1ebYvXvgdQOzV6OnJ8uBA/lzMyPpdIpq1aCnp5+2NhfHmaCzM8rAwBY2b+6j2ezA\nmDp83jl8vgjtmTjBdAeVikm95hD1ElBZwLUbIPmpOy3Qw+zoa6ctoiGP3kx79wiu6xCLZfA8gWPH\nnuXo0aPMzKzQ07+b3OlTtGsKbdlOKrUa87VZktkMKVHi+Mo0WwMRkj4/hZbBkiDQ7fczf+YMw8PD\nALiv0seCILwtrrtvlQsejHietwy8wnlHEIQO4E+Auzzv7GvJv+Ang5ELQSqVYsOGbp55ZgJFCaIo\nKtVqEUGo0NWV4p57duA4Hvv2HcV1PW6/fZQdO7ajaRoDA30cPHiURqPJ+vU7GR0dfYW0ua7rXHXr\nrZw+dITVfJ71yQ4KtSKL1Qp1SUUKp+nr2Myxif2YgOdT8dcWsF2DZDjA5q4ufJLE/MICuC5xQWB8\nYhIYYalSwLRkCvsaAChKk97ePn77tz/F/v0HePnlMWzb5eabh0mnL+c//scvcfjwMqADFoEAdHX5\n2b371V+T1wbXrWzduvWC9sHF4E//FD7/+UvdikvPRz4Ct94Kf/iH8Av6zHkFoijy3vfeyaZNpzh0\naC0haMuWmxgaGnrFQ9enR9AzOjOreUKqiuk4VD2P/vU7aJ7VTRgcHKS7+yVmZo6QyQxw881388//\n/DeUKzOEgim6sp2Ioksmo7J79+Ucm5k5tySyYcMGNm06Sa02RVgvEjU8amad/kgQSYtgegaSqrAi\nQt+Vu/nQJz6BoihcedNNPPr3f48e8rFaKDG3NM/+6UWqdoITM2cI6DUigavx6Rqb2gfYm5/ncGGJ\nkCggxzPMihaX7djB42fmMcU4tWmFib/6Nr29Ie6//73nmQTCWgD3hCjSNE18Z8csz/OYLha58rbb\nLnSXXRAkSeLee9/Dli0nGRs7gSiKbNnyLgYHB3/mxMrduy9n376vUij4icUydHUNcPDgA8RiXVx1\n1c3Ytsni4km2bOkim01x8qTFfCDKYjlPJhRHEASWy3n8w3184jd/nUcffZKnZg4QFXW8RB/G3CkK\nTgsr7OOGK7Zx45VXsOfAYV6cO8nWHTcBMDk5xaFDJ6lWTxIM6hw69CKXX34PK4vz2HMGBHX8AT9N\nIcHWK7exd2KWH/xwHzOWgiJVkUSLtD/Exp4O3EYDwzAQZZlVz6P/Ero0vx7Ca8QBF/7CgvBXrAUp\nC2c33eZ5XvMn/v5aMcrbyszMDP/hP3yRcjmO4wi0tSXp7EwC0/zO73z8FV/kf0mz2eT48XEWF1dI\nJmNs2LD+vGNc1+XZp57iT//T72NNTRNVNbr6+2iIAsfKTWJtvQwOdTKyro9isc7hZ55Am5qkp9U6\np3J3YnWVacPAVRRivb2cbsSpE6ar65pzLpVLSydpa1vkL//yjwgGg+e18eWX9/D7v/8lbLuLSKQX\nUZRZXj6JLB/jP//n36Wnp+cNl75dSARB4O3u8xdegA9/GE6efOc8gN8Kl18Of/AHa0HJzwsXot9f\njb/7uwdYWPBjmlDI5dB8PrLt7RSLY3z2sx88t3xrGAbPPvsCe/YcxXFchoc7OXF8nKkfPEF/IkV/\nfweDA/0IksQLs7Pc99nPkk6nWVxcpFgsUiqVeOjr32Ll2eeo1Q18zTqjmRQdmRT75ubQtm/nP/3J\nn5w3Thw7epTHH3qIB//xYZbLKZLZHViVJrLYRJVn+PBNg8RVmRf3nCYXzrBx9x3U62VqtSL9/Sod\nHRn27MnT3b225FoqlRgbe4nuboff+I1foaen57yH8oH9+3nqG98gJQgokkSu1aJ961buet/7Ltrs\nyJvtd+P/svfe0VWdZ6L+s/fpRaeo944khCii2phmwMYN9xYnTtwmmbEn8SRzp2TuFN8pmcnv3jUz\nSWaSiRPixHFwwd0xxsaA6SCKQAj1etR1mk7vZ//+OEAAgY1tIQk4z1qshbZ2eff+tvb3fm8NBGhq\namZkxEZmZhrV1TPRarUTKlt/fz+bN+/AYrEilwtUVOQhSQKtrRa0WhVLl87j+uuX4Ha7+c///C06\n3Qz6OxsYG+wkGgkhaeP84w//nsrKSuLxOJt+9zv69u8nZHNga28jxWhAzM1l3Q03oFQoaOvp4d1m\nC9Xz70MU1WzffhBRjFBdXUBR0Uy2b38HpxNuu20Nh7b8mhJBhVqlJi45ENMNnOwTsfkETKKI3elC\nEGzMKhLIVMqJBAJULVqEV63m+vXrWXLdxSsXX25OjfkFtcMpU0Y+i8lSRgCOHDnKu+/uIhbTAXG0\n2jCPPLJ+nJn3fJxOJxs2vMLYmBqVykgo5EahcPL44/edyUw5TTAY5FBdHe3HjxOPx5m5YAFz5s5F\nqVQSDofxer2YTCbaWlv55b/8C64DB5ibloYrFmNUFBO/i0S47RvfYO+BBjo7jRQUJJreBQJeQqFh\nKipSePjhhSxevOica//oR78kFMpndHSA7u4uAoEg4UCAuH+Q25YUokhJoWjuXG6/554pLfN+OSal\nBx+EZcuurhobX4af/Qx27JheRdAmSxnp7u7m+effITNzDjqdkVgsysBAC1VVWr72tU8vPhMMBtm4\nYQP092NSqYhEIlijUWasWMGK1at5+9VXsbW3oxdFPLEYuoICxiwWakwmrGNjdPf2MubxEE1L429+\n+EOysrLGXcPv9/O///f/w+vNZnDQRn9XJ7PzMslKMxAINfGNm6/ng1276RAMlJQvIR4PkJEh5667\nbubXv36b7OylyGRy2traOXmyD1HU4fHUs2hRFcuXV3LXXbefo5DYbDZaW1oIB4MUl5VRXFw8qX2n\nvsi422w2Nmx4Dbdbg1qd+Obq9T6efPLBy7KgCoVCyGSyT015bm5u5rXXPiQS0RKLRZHL/Xz1q3dQ\nVVWFJEn4/X4EQeBkYyPHDxxg3/btVKSns3zePNRKJcFwmCMDAyy+6y66uwd5992PGRsTmTfvOtzO\nAFaLhZh/jKMdLVRUzqaqugRP6yGUPhd6Q5xWtxxDzmLkCiX6QACTXo8v6EEh76a2PJfDo6Pc88gj\nVMycecH3bjJJKiOXQCAQoL+/H5lMRkFBwSVNyhs3vkFHh0R2dgkOxzCdJ/bgGOhErQ3x8FPfYPW6\ndRe1rEiSRCgUYuvmzXQePYpaFAkKAvNWrKCguJh/+uu/pufIEXJSUjAYDAhGI4tuu42v/9Ef8dpr\nb/POO+14vTJAwGhUM3fuTMJhN4sWGcY1hPrBD36CwTAfpTIR73HkwEFioyOEI0PcUJNCSXY2FoeD\nsjVruHHt2i/9LL8oEz0pdXcnLAHd3XCRUgvXHE4nlJQkao5MQcD8BZksZQSgqamZ99//BJcrgiBE\nWbiwknXr1lxSLFR7ezsbfvxjRjs7kclk5M+axRPPPMPhffvwNTYy81SaoyRJNFosRAsLCdhsyAMB\nEASCSiWLV6+moqLighOnzWbjxz9+jfz8RK+Crs4uehqOk6pSMeZtZNWCYqTMTG594AGsVivHDh7E\nNTREJBTiUGMPi1c9gSiq2LbtEGZzCaIow+k8zOrVa7DZWnjiiZu/VIXMieaLjPuvf/0yfX1qsrL+\nsNizWvvJzvby5JNfnWgRL5lQKETfqUJhBQUFqFQqWlpa2LV5M36HA+RyZl9/PStWr8btdvPOK6/g\nHxxEIYr4ZTKWrlvHkuuvB+Cll15nYECL3eZm8MQJUnU6YrE4/dZ2guE+RHNuYuEbsJKiVtDnSeWm\n27+BwWDg6J49pMTjaFRKhux1LFs+h9u+/vVpM+6fpoxMh2yaaYFGo/lcAxYKhWhu7iUvbzkej5Om\nve9QIlcxK38GVlsbo/v38/roKI9+85vnRCf7fD52bd9O8+HDNJ08SWY8zs3LlpGi1xOJRjm6dSua\nu+/mV6++ytGjR6nbvRuZKLJo2TJqZs9GoVBQUVHCjBlesrMTJkC1Wo0gCPT29pKXN/4eZs4soaFh\ngJycMgKBAI6hQcSAH0v/MQow09vcjNpsxrFjBytXr56yaOqJ5t/+Db71raQicjZmc6JfzcaN8KdX\nXrmYL0119UyqqirxeDyoVKpLDsh2uVxs3riRGwsLSZ89Gykep76xkb987DECPh+1paWkqNXkZ2Qg\nCAJVeXnsHxzkW3/1V4yOjrJ35078ra00bdnCkc2byayo4M4HHjjHvZDomholHA6iVKopLSvFYDTQ\n2XoSSa6h+o47qJ0/H7VazcfvvovOamV2Xh4C4Gru4MjHG8mqWoUo6hFFGaGQB7VaQKczEAzm09DQ\nMm0mpS+Cz+ejo2OYgoLl52xPT8+ju3sPHo/nogXeLjcqleqcbK+uri4+fPFFatLTMRUWEo5EaN65\nkw+8Xu687z4ef/pphoaGqK+vp+vECXb9/vecPHKEpWvXUllZTHNzA53NvYTsduz9/ciB0UA3t95Q\nTGNPDw9ffz01ZXfgDQT4xe/303rkMItXr2HJjTdi6elhsL+L/DlVPPTMM2RfIfUMro5ZZwqQJInT\nSn1fdyM5gPlU9LUoyqjIzcXf10dvb++ZYyKRCK/++tc46uqYazRi9vkoCIc5uncv4XAYhVzOrJwc\nDn3yCYIgsHDhQp7+7nf51rPPMn/BgjMBsjU1szCbgzgc/ahUSuLxGAMD7WRkSFRWVp4vKitWXI9c\nPsLgYAcezxij1kEGeg9zS5GJBRkZLExNRe9y0dTQQDQ6KSVfLjsWC7z+Onzve1MtyfTj8cfhhRem\nWoqpQxRFjEbj58oMO9nYSFo0SrrRCEBbayvujg5mxOMUiiJ5wSD79uxhwGYDQCGXI8RiSJLEYH8/\n3uZmlhcWMr+ggKWFhcQ6O/ng7XMrGiiVStasWURfXz1+vwcAtVpORo6Mv/6777Fs+XJ0Oh1dXV1E\nhoaYkZeHTBQRRZEV1y3AEBihu+MQ0WgQj2cYr7eZOXNqr5rFxZXEgR07KDcYMJ2K31MqFMwpKqKr\nvh6Hw5FYPHZ30717NzUqFauLisgPBvnwN79BoZCTlRWntaUOud9NplJALtm5LltkpLMTldtN/imz\npl6jYWFFNlFPH53treh0OnLyMimvMvFnf/70FaOIQFIZ+cKo1WoqK/OxWi34naOknEoX9PndmExq\nNFotKYJwTupsR0cH0YEBqgoKiMZiaGQyskwmFIEAAwMDQOLlCnm9n6oUaDQannrqK1RXqxgY2M3Q\n0F7mzdPzxBMPnUlRPJu0tDSefvprLFpkIh5vw+msY0F2hMqzunimKhTIo1E8Hs9EPaIp5V//Ff7o\nj+AKrM922VmzBux2OHRoqiW5cnCMjBD1++nv72d4eBhLaytFaWlk6PVEJAmtXE65RkNDU1Nif7cb\nfXo6Go2GI7t2UZ2bi+yUUiAIApV5efSdPMnY2Ng511m69DoefHApkUgzvb07EIROvva1tcydO+fM\nPnabjZTzFIyMjAxuWrGQvIwwsdhR0tK8rFy5nJycklNprgPU1FRc5qd0edHpdJSUZGKzDZyz3W4f\npKgofcqsIhdipL//jOJ6GkEQ0J+aE8LhMAc//pja/HwMp1z5aQYDs9LTqduxgzvuWE1Zhget2IUo\ndFFidlFo1KIVRSIezzlJCktnV7FsjgGn7QAWyw5SUkZ48sk7KSoqmtR7/rIk3TRfgttuW8Mvf/kK\nvoiPUecoYbUGudxPbe2CxIpobIxCr5dIJIJCoWBkcBDzKetGilZLCIjEYuhVKlx2O5SU4PR4MGZk\nMDo6Sv3BgzitVvJKS6lduBCz2Xzm2ikpKdx//53ce28c4DMj4M1mMyk6FSkhO3NS5HhHR/lwbIx5\nZWXo5XLs4TAVM2bg9/uvyAqrZ9PaCps2XZul3y8FmQyeeQZ+9CN46aWplubSkCTpTPGn7Ozsy1Lv\nJhaL0dTURNORI8RiMarmzWP2nDlngs9tBw4w02RizO/HZrdTYjTiisWYOWcO/RYL6SoVVquVfquV\nbr+f2x97jHg8TsjvR3teHQdBEFDLZAQCAfR6PTKZDEEQEASBBQvmM39+LdFo9IKxayazGW88Pv4Z\nKRTc9/D9iEoN27Y1EAz6GB7uIRAYZsGC/CvaRXOa9etvYsOGTVgsTjQaM4HAGFqthzvvnF7dL9Oy\ns3G6XGSYTGe2SZKELx7HaDQyNjaGMhpFrVQiSVKi/ocoYk5JwWuxEAqFWLV4AT1HjjA82E+KR06f\ndZRWvx9Bo0F+1nshE0Wy01P543vvZtnKlZ8rCSEajdLY2EhLfT0AVbW11NTUTHiPokshqYx8CdLS\n0vj2tx9n586dvPvCbyjM0jFzxjy8Xi+vvfEGVlFE/+GHNOzZw83334/BZKLnlMVDpVAwo7KSkydP\nYpIksnU6HG43TXY7ZUuXsumnP6VApSJHp2N4925+e+AAD3/rW0iSxNatu2hu7kGplHPddXNYtWrZ\nZyojnZ2dHP/wQ5YWFqKeM4fY8DBjTif7OjtZsXgxsysqaA2Hp0Xxmy/Ld78L3/8+TINs5WnLU08l\nmuYNDcGpyurTFqvVyjsvv0xodBSFIOCXy1l2660sXLz4sw++RCRJ4r0332ToyBGKzGZkosiR11+n\npaEBuVxOuUxGPDeXaDBISVoaDouFA+3t6EtLWTRnDu6iIhpPnMAZiRAuLOTelSvPZNRl5ucz6nSS\nedZiIhgO0+9ysWnT+4yOjqHXq1mxYgHXXbcEURQRBOGik0pZWRm70tPpGR6mKCvRQNDmcjEsSaxZ\ntIj09HQqKso4ebKVaDTKzJm3UFJSclW4azIzM/nOdx7jxImTDA/byM6eSU1N9bhyBlPNklWr2PLC\nC2hUKvQaDbF4nOb+fvKqq0lPT8fn8+GJRNjd0ERTr41YLE5prpm5ZfkoNBpyc3OxuFz0DwxQEg4j\n+P0ICgVLcnPZHwpR19zMvPJy5DIZ/VYrDpWKOxYt+lyKSDwe561XX8Vx4gSFp97Ng6+8QntNDfd+\n5SuTXgAvmU0zQXR2drLtnXdwDw9z9OBBZuTmsvq669BrNLh9Po47ndz71FO8/eKLzFAoyDSbkSSJ\nuqYm9pw8ycy5c8kpKuK61av55N13ma3ToT+r26RlZARXVhZ9I0GggIyMfGKxCIODbZSXK3nssa98\nalreW6++itjRQX5GBg6Hg6O7dpGpVDIQDJJVU0NIJmPubbexfOXKSXhaF2Yisipefx3+9m+hoeHa\n6877efmTP0kobP/4j1Mrx6eNezQa5Zc/+hG5oRB5pxTl06mQtz/1FGUTVMCpp6eH959/niXn1ePY\n09rKqM/H3fPm4Q+FONrUxEB/PwP9/TgiEf7iiScwGwxEolGOWCxcd//9LDiv1G93dzfv/PKXlOv1\nZJrNuH0+9rS10R1IYVbNWkymDIJBH4ODJ1m1aga33PLZGW1Op5Mt77zDSEcHIqBNT+eme+65okzz\nk5lFNRUcq69nzwcfIAUCRAWBGbW1rL31VtRqNfF4nGef+V/0NIwxs6AKmSjH7hllxH2SZ77/DAsW\nLeKbDz2EqbOT2tRUlDIZDr+f3nCYitWriRcWIobDxKJRimfOZMVNN32uZoCQyA7b+qtfsfislG5J\nkqjr6eGmJ564LJa0ZDbNJFBWVkbpd7/Lto8/JgVYeFZktUGnI8vppKu9nfsef5zNmzbR1deHIEmQ\nm8s/fec7FBYWolAoGBoaQhYIoD/PQpGfkcHmHbvJLr+FgoLTaW1KcnNn0tFxGIvF8qkfoqDPR+qp\n2Tk1NZX5K1bQ1drKcEcHgXichx59lNlz5lz0+CuBgYGE++Hdd5OKyKXw3e8metZ873twljV5WtHT\n04PgcJB31rutViopSUmh/sCBiVNGurpIVyjGKfRpajUdvb2Iooheo2HFggXEamsJh8O8uH079VYr\nKS4XQVFk/i23MH/BgnHnLikp4Z5vfpNdH35IS18f5sxMpOxSqtSzzvSLUqt1FBXNZ+/efdxww5LP\njH8wm8185bHH8Hg8RKNRTCbTpNYISfLZzKutZfacObhcLtRq9TmZU93d3WhSSiicrabHYkEpioRR\nkZK3EEQ5x44coSo9HXk4jNXvJxwMkmI0UqJWI5MkZs6ezc233048Hv/CLpXu9nayNJpz3htBEMjS\naOhqa5t0t15SGZlABEFAlCTSLlBbRKdW4xkbIy8vj6eefZbR0VHi8TiZmZnnmMPkcjmRC/iDI7EY\nY94wVaYs4vE4He3t9HV0EI9ECMTcHFt87FOVkbJZszj57rtngqpSU1MxLVlCKCeH+//08dpH0AAA\nIABJREFUT8nNzZ2AJzB1eL1w113w7LOwZMlUS3NlUFGR6GT8H/8B/+f/TLU0F8bv96O+wCSr12iw\nOhwTdh2VSnXBvzulXI7caGTM6z2TGSETRTyBAEtvvpm7H3kEn89HamoqmrMsmWczMDDAnq1bGbVY\nkMnlFJSV0T5wnNzcczMdZDI5oMPhcFxyMOZ0CtpMMh6ZTHbBDrijo1aUylTK51cRmDmTYDAESJxs\nOMqG//oFJmUMMRDApFKx6KwCmjaXiy6Xi5tnzEA8lUn1RVGqVERisXHbI7EYqinoQTZlTkRBEL4u\nCMJOQRAOCILwxFTJMdHkFBTgCIXGbbf5fOSXJBruCYJAVlYWOTk54/xyGRkZGPLz6bdaz9neNjjI\nrHk1+P1uTp44wfDJkxRptVSkppEScXNw82Z6enouKtfsOXOQcnI40dvLmNeLdWyMQz09lC5efMUr\nIi4X3HknzJ2biBVJcun8/d/Df/0XjI5OtSQXJiMjA1c8Ps6cPzI2RsEFuvh+USqqqrBJEoGz/nbD\nkQjDkQh3PfooJ+x2LCMjePx+uoeHafX5uPH22zGZTOTl5V1UEbFarbz+i19gtFpZWVDAdRkZDO7d\ny6ClC6/33EyaRLmAwLSLf0gy8RiNBiQpACSyI3U6LQ2HDhEY7GVJQTY3zZhBittN59gYDaOjjAUC\nuIJBjttsZM6dOyFWi5k1NQxHowTD4TPbQpEIw9EoVbNmfcqRl4epjGjaKEnSSmAp8PQUyjGhzJgx\nA7KyONTcjC8QIBSJ0NLXRywjg5nV1Zd0jvUPPsiQWs2R3l6aens50NODsrycRx97BJernf62ZgrS\n0lDI5Di9VrLTJK4rLGT/9u0XPadGo+ErTz7JjFtvxaJSYU9NZdkjj3DbnXdO1K1PCceOwdKlMGsW\nPP88JC3Vn4+SEnjyyYRFaTqSk5ND4bx51Pf04A0EiMZi9AwPM6pQsHACe2ykpaVx4/33c8hq5YTF\nwomeHg4ODbHwtttYtWoVDzz9NGJVFV2iiHr2bL7yzDOXFJ9x+MABcgSBnLQ0BEFAqVAwu6iIHC10\ndh4iEklMBJIkMTDQSlVVLgaDAavVit/vn7D7SzK9KCsrw2gMn0lTHh4aIuayY9B6mFWcT35+Prk5\nOeQoFEjZ2fQqFBzy+UhfuZI/+bM/+9Tg0mg0is1mw+v1fqoMWVlZLLvrLg4ND3Oit5cTvb3UDQ2x\n9M47p6Q+yZQHsAqCoAG2nFJMzt5+RQWwQqJ/xebNW6mra2Kwrw/vSDelZQXcdOd6lq5Y8blMqpFI\nhK6uLnw+H2lpaRQWFiIIAh9++BH/82//TZo2E0mKkmmWsXZBNXqNhr0jI3zvMnc6vpx8noC2kRH4\n4Q8Tqan/9/8mOtImFZEvht+fsCr9y78kevlMNp817tFolLqDBzm2dy9Bv5/S6mqWrV59WTK/PB4P\nXV1dSJJEUVHROen0X4Rf/eQnlESjZ2pJnOZEby/xsgosFifxuIZ4PEB1dQG5uens2nWcSESGIIRZ\nuLCSW25ZO64j+NXA1R7A+llYrVZee+33DA156WzrRD7Wx93L5lJ8ShEIBoPsraujB6iaOZOaxYu5\nftmyi1rhAI4dO87mzbsJBECSosyZU8Qdd6z71EaCLpfrjFW9uLgY43n1USaSadubRhCEvwf+CPhb\nSZJ+c97vrjhl5OWX36CpyUdeXtWpcswBBgaO8uija5g1QWYvq9XKb//936k2m1HI5Wf82Ha3mwGN\nhsefeWZCrjMVXMrHaWAgUR9jwwZ45BH4m7+Z/qmpVwJHj8K6dfDeezDZTT2v5knprVdfRWhvp+C8\nTIdDvb3c/OST5Obm4nA40Gq1dHV189pre8nPr0WpVBOLRenvb2LBgnTuvXf9FN3B5eNqHvdLRZIk\nbDYbB/bvx3HwIDXnWdsaLRZmrl/P4ksIhOvo6GDDhvfJzp6HRqMnHo8zONhGSYnA448/crlu4XPx\nacrIZXfTCIKQJQjCjvP+vQwgSdI/AmXAU4IgjHOUPvfcc2f+ffLJJ5db1C+F3W6nsbGP/PxqRDFh\nQlOpNKSnV7FjR92EXScjI4P86mpsHg+GU9puMBym1WZj8apVE3ad6UZdXUL5mD0bgkE4fhx+8pOk\nIjJRzJ8PL74I69fDr34FF4jlTPIFWLh0KT1+P55TLhdJkugZGUGelUVRURFqtZrc3FxMJhM7dtSR\nlVV9pqGlTCanoGAW9fWduN3uqbyNJJcJQRDIyMhg5apVuFQqrGdV5B1xOnGp1VRf4kJ2165DGI3l\naDSJqVQURfLzq+josDM8PHxZ5J9ILns2jSRJI8CN528XBEEpSVIYiABxYJy29NwV5HLweDyIom5c\nep1eb2ZwsGFCr7X+/vvZ8t577D1xAiUQVSi47p57Jsz6Ml3weOCNN+DnP4fhYfj2t+GnP52+aahX\nOrfeClu3JuqPPPccLF+eaKzndoPNBlZr4p/dDgYDFBQkMpeWL4fVq6dPF+DpREFBATd/9atsf+cd\nBLudiCSRWVbGA/fee47fPxaL4XC4KSo610QuijIEQYPH48FgMEy2+EkmCYPBwL1PPMEHr79Ou8WC\nBOiysrj/vvsuOaB5eNiO0Tg+jkkm0+N2u6d9n5qpTO39viAIqwAV8IokSVd0UxSz2Ywk+YjHY2cs\nIwAul438/KwJvZZGo+GeBx/Ec+ut+P1+zGbzVeVT9njg6acTLoOVK+Gv/iqxYp/kgoDXJPPmwb59\n0NSUcN2MjSW6HqenJwqkZWYmlA6PB7q74cCBRNO9J56Aykq46SZYuzZRv+QCbZKuSapnzaKyqgq7\n3Y5CobhgHIpMJiMnJw23247B8Id2DLFYFPBjSmrgVz35+fk89eyz2Gw2BEEg7VTQ86VSUJBFX5+N\n9PS8M9skSSIadX3p2KfJYMoDWC/GlRgz8s4773PgwCB5eQlTq8fjxGZr5Kmn1k9YcaarmdM+ZElK\nxITcdVeypPuVQjicUEy2bk38O3kykeVUXJywrigUIEmc6XS9YkUiRgWSsQOnaWlp4Te/+ZCMjBr0\nehPhcJD+/kZWrizl1ltvmmrxJpzkuE8sfX19/M//vIHJNBOjMZ1IJMzAQDNz55p46KF7p1o8YBoH\nsH4agiBMT8GSJEmSJEmSJF+IK7Ic/HRVlKY7wWCQH/1oA7FYwRmTndttx+Np5jvf+dq07co7GSul\ngYEBfvrTTaSnz0WnMyBJEiMjPZhMTp555olJbw6VJLlCvlaZiHGXJIkNGzbS1yeQm1uBIAin+vzU\n89RTt1M+gYXxknx5Ps3tdOW3cUwyjra2Ntxu9Tm+Q4MhDUnKpL5+YoNprzT27z+CWl2ITpcIBhQE\ngezsEkZGYp9awTZJkiTTj+HhYbq7neTlVZ6Z6NRqHWbzDHbtOjTF0iX5PCSVkasQh2MMuXx8BLZW\na2B01DkFEk0fRkYc6HTji/oIgg6P54qOoU6S5JrD7XYjiuMLeul0RkZG7FMgUZIvSlIZuQrJysog\nGnWN2+7zOSgsnNjMniuN4uIc3G7buO2S5L5gQ6skSZJMX1JTU4nH3ePcPS6XjaKiK7vn1rVGUhm5\nCikvLyc7W0Z/fyuxWJR4PM7ISC9arZu5c+dMtXhTypIlC4BhbLZBJEkiEgljsTRSXm6moKBgqsVL\nkiTJ5yAjI4O5c4vp7T1OOBwEwOkcJRDoZuXKZPvuK4lpnU0zXWW7EvB4PHz88U7q69uIx+NUVRWx\nbt0qMqZxruxkBTIODg7ywQc76O4eRi4XWbSomjVrVqKegrbZSZIBrNcqEzXukUiEnTv3sG9fA+Fw\njLy8NG69dSXFxcVfXsgkE8oVm9o7XWW7kohGo0iShEKhmGpRPpPJnpTC4TAymSyZQTPFXAvKSDQK\nLS1QVQXyaZ3DOHlM9LjHYjGi0SiqZLW9aUtSGUlyRXAtTEpJxnO1j/vAQKIyrdebaGWwdStkXduh\nW8DVP+5JxjOljfKSJEmS5FolHodHH4UHHwSLJdH/54kn/lCJNkmSJAmmTBkRBGGWIAh7BUHYJQjC\nz6ZKjiRJkiS5XGzalGg0+Hd/l/j5n/8Z2tpg586plStJkunGVFpGWiVJukGSpBWAShCE2imUJUmS\nJEkmFEmCf/3XRAfk02FJCgV8//vwwx9OqWhJkkw7pkwZkSQpetaPGmBsqmRJkiRJkolmzx6IROD2\n28/d/vDDcPAg9PdPjVxJkkxHpjRmRBCEOwVBOAEEJUnqnkpZkiRJkmQiee01eOQROL8dh1YLDzwA\nL744NXIlSTIdmRbZNIIg/Bh4T5KkrWdtk/7hH/7hzD6rVq1i1apVUyBdkskiGV1/bXI1jns8Dvn5\n8MknUFEx/ve7dsGzz0J9/aSLNm24Gsc9yafzadk0U5bxLgiCUpKk8Kkf3YDy/H2ee+65SZUpSZIk\nSSaC/fshPf3CigjA0qUJN43FAoWFkytbkiTTkal009wiCMIngiDsBPKBD6ZQliRJkiSZMDZtgvvv\nv/jv5fJELMm7706eTEmSTGemhZvmQiSLnl17JM221yZX27jH41BUBB99BDNnXny/N9+En/0sUQTt\nWuRqG/ckn02y6FmSJEmSTBIHD4LB8OmKCCSqsh44AD7f5MiVJMl0JqmMXKW4XC7cbvdUi3HNIkkS\nY2NjeDyeqRYlySTz+uuJbJnPIiUF5s9PBLMmSXI+8Xgcp9OJ7xrRVpMtmyaR0xOUIAiYTKbLco2R\nkRE+fPttnH19SJJEamEh6+6+m6xkM4xJw2Kx8NHbb+MfHSUO5MyYwbq77vrUMfd4PEQiEUwmE6KY\nXCNcqUhSQhl5//1L2//mmxPunFtvvbxyJZk+uFwuYrEYZrMZ4fy871O0tray/d13ibhcxASB4tmz\nufn229HpdJMs7eSRjBmZJAYHB/no7bdxDw4iAab8fG65554JVRK8Xi8v/OhHFAsCuenpAAzYbPQJ\nAo995zuf+SI7nU5isRhpaWkX/SO5nFwNPmS73c5LP/4xVXo96UYjkiTRPTxMv1zOI089RWZm5jnP\n1uVyseWddxhqa0MmCChMJtbedRfl5eVTeBeTy9Uw7qepq4Ovfx2am8fXF7kQhw7BY4/ByZOXXbRp\nx9U07peCw+Fgy9tvM9rZiUwUUaWmsu7eeykqKjpnv76+Pt742c+YnZ6OSa8nFo/TPjhIvKCArz31\n1AW/zZIk4XA4EAThU5WcqSbZtXcSaGpq4sD27TiGh8nIy+P6NWuoOJXX5/F4eOE//5MyhYLs1FQA\nBm02LJeoJFwqdQcO0Pz731NzXq7gCYuFWXfeyaLFiy94nM1m4403NtPX5wREUlNV3HvvzRQXF0+I\nXJfKlf5xcrlc/PTf/532nTtJNxopKykhKz2dPY1dNPePUVBTw+zZJdx3361kZ2cTi8V44b//G6PT\nSUl2NoIg4PR4ODk2xoNPP01OTs5U39KkcKWP+9n85V+CSgX/9E+Xtn8sBpmZcPx4oi7JtcTVNO4X\nwuFwsHfHDtqOH0eUyxkcHGRRVhalubkIgoDN5aLZ4+Fr3/kO6acWjwBvvvwysq4u8jMyzjnfwd5e\n1v/xH1NQUHDO9v7+ft54YwtWqx9JksjLM3LvvbeQnZ09Kff5eUgGsF5mjh4+zMcvvkh+MMiqggKy\nvV4+eOEFmk4tdxpPnMAUCp1RRABy09PR+Xw0NzVd8nWCwSBNTU0cO3aM0dHRcb+3j45i0mjGbTeq\nVDgusD9AKBTihRc2YbMZKSxcRmHhUuLxYl544R3sdvsly3at4/f72fiLX+A/doxlZjO1Gg3DJ0/y\n401bCYYKyDHWYDLOxuPJZMOGTfh8Prq7u4mNjFCak3NmJWNOSSFPoaC+ru6C14nFYnR0dFBfX4/F\nYrmqP+ZXGpL02Sm95yOTwdq1125GzdWKx+Ph5eefJ9DYyLKcHNICAex1dbQdPYrDbkeSJNKNRnJE\nkeNHjpxzrG14GJNeP+6cWkEYFwfocrnYsOENQqF8CgtvoKhoGS5XOi+88AZ+v/+y3uNEk4wZ+ZJE\no1H2ffQR83Jz0anVAKQbjcyWy9m1ZQszq6txjIxgvICSkKJU4rBaL+k6vb29vPjiOwSDWkAB7OT6\n6yu5/fZ1Zyay9OxsTtbVcf4CaywUougiq+y2tjbGxhQUFf3hKIMhDY8ni/r6BtauvfGS5LvWaWxo\nQDM2xszSUlzt7Zh0OuSCjIhXRywuIyhF0Ol1pKZmYbFYaWpqRiYT0V7gXGa9nsHh4XHbnU4nL774\nOqOjcRLtnDyUl5v5ylfuRX3q3UsydRw9mmiEN2fO5zvudNzI449fHrmSTD7Hjh7F6PNRVlCAx+/n\nw4PHibuhzWXH6amjqCiNRYtqMel02M/7W8/Kz8fR0oL+vDnDK0nj4s4aGhqJxdIxmf5gRUlLy8Fi\nsdHc3MKCBfMv301OMEnLyJfE7XZDIHBGETmNUacjNDaGz+cjMy8PZyAw7lhXKETmJZjiQ6EQv/3t\nO2i11RQV1VJUVENBwfXs2dPJybOczbNqavClpGAZGUGSJOx2O5u37WT7iTa6uvuwWq3jVtJOpwu5\nPGXcNbVaI8PDScvIpdLf1UWGXk9BYSFeUcTt9+MKRtHLNfRbrYgGA+np6fh8Pnp6RnnhhdfYvfsg\n/WPj+0Pa3G4yL2Czf/PNzbjdqRQVLaSoaBZFRdfR2Rlh+/ZkOsZ04LRV5PO662+6CT7+OFGfJMmV\nw8WskpIkUbd7N71tXXyyYx8bN+8gEssBdRomjRmNJgurNU5razs2j2fc3/qiG26gNxTC5nIBEI3F\naOrrI7W8nNzc3HP2HR11oFaP/34rlSnYbM4JutPJIWkZuQinJ/NYLEZGRsZFMxw0Gg0REi+M/HSf\ncCAUiSDJ5ahUKqpnzaJuxw46+vsJO50M9PZi9XqJl5Rw53n+vwvR1dWFxeKFSAvxWIyMvDy0Wi3B\noJYPPtjBrFmzEAQBrVbLQ08+ydbf/563Dhyg4UQnKVkzqV60mj17+vnNb/6CkpICioryWLVqMfPn\n15KZmU40Ot5V5PXaKSws/qKPb8qJRCKcaGig5dgxZDIZ1QsWUF1djeysMZooPB4P7R0dtGzbhkIm\nwy+B3eZn1DGG1e+jpriSBddfj8/nY9euwzidIyxZUoXbnc7Rrk9Qhg+zbH4twUCAYYeDIVFk9Xnx\nPU6nk+5uGwUFN5yzPSengoMH97Nu3ZrLcm9JLo3TWTSvvfb5jy0sTJSOr6+HBQsmXrYkX5xIJILd\nbketVp+xSjQ2NvL66x/Q3z9CYWEO9913C7NmzTpzzNat2zlUbyHbLWDUamjq7CfNkI2k1BJ3OzHJ\nRAwpmdQ3NVK6YjG3nxr0xsZGDu7YgdNqRa7VctTjQeNyIYkiFQsWsHrdunGBqfn5WdTXNwF552wP\nhcZISyvi8KFDtB0/jlyppGbhQqqqqqZttl5SGbkAIyMjvP76ZoaGPAiCDINB5L771lFaWjpuX41G\nQ+WiRTQfPMisggJEUSQej3O4owNdZSUtLS2UlJRw3ze+wT/95V9ib2lBlMnIyMykXK/n7Y0befRb\n30KlUl1QFkmS2LZlC32NLZRnVxKNxdh+uIGgzEB6ZhZNTa2Yzb9j+fJFDPT2IogiN6xeTVuvg+Wl\n92AypWO19tPa2ockzcbpVFNSUsmmTfvxeLwsW7aU7Oy99Pe3kZNTiijKsFr7UaudzJt35+V+1JeF\naDTKppdewtfWRmFqKrF4nD2/+x1dCxdy5333TWikeSAQYMNPfkLL7t20tXQiSBqsITNxTQ5l+XNx\nWbuw9A/RcKwejy+C1+snO1tLSUkNCoWSG9Y8Rd2+33D43c343CGUxlQq5tXgcDjIOCuALRwOIwiK\ncbLL5Qqi0TjxeDypjEwhR46AKEJt7Rc7/rSrJqmMTB8OHTrCK6+8h9sdBqIUFKSSmprC66/vRyab\ngUpVTHe3jQMHfsw//MMTLFmyBIfDwc6dJ5i7cD2tu95Cj4BWayIaUaFOyWM0VYMsFkIcsxJUa/ne\nY49hMpmoO3iQXS+/jCkaJQOIKRTEFApWPfIIM2fOvOj8UFMzi08+OcTISA8ZGYWAxPBwNyZTiIa6\nOuL9/RSYzURjMXa8+CJd113HHXffPZmP8ZKZykZ5S4B/B+LAIUmSvjdVspxNMBjk179+nXi8iMLC\nhPPX43Hym9+8x7e//dVzop5Ps2bdOraEQuw9dgytKNJo6WfEryIj4qO+4QNSU0Vqa0sRAhGU5ipE\nwYzNE6DvQAvmxkbiKhUGYyr7dh3AP2ajsqqMm9avZ+68efT39+OzWMgxgkIG9S3H8TucxAU5dnGM\nVTcuYdvWNg5ueZ+baiqRJIkD771Hl13ihhUrAWhqakCjKUerTcNub0Op1FJQMJ8dOw6yZMkiHnvs\nQbZu/YRjx/YSj0tUVORzyy0PYTAYJvXZTxQtLS1429tZUFJyZlumycSBo0exLFo0LpXuy/C7l17i\n5z9/C6/bTCy+CJe/h1RljJSIgoY+F2V5+cRCY9Tt/B0utxtTTiHl5Wvx+z3Y7YMM9DTS3GKhdtEd\nLFm3BJu1n97mg3z7sWeonFlIXk4OReXlLF6xAq02jt/vQav9g1nWbh+krCwPhUIxYfeU5PPzyivw\n0EOf30VzmltugR/8AL7//YmVK8kX48SJE/z93/+EWCybQCDM8HAX0agKv38MnS6dkhIRmUxJKKRi\neFjJP//zT9i0aS4DAwMIgom0tFyKFt1MR/0OXBE7sbgRMSiy9ta70Om0hMNBiopiFBUVEQ6H+f3G\njYwcPIjbZiPk8yETRQzp6QTlcub94Afj5PP7/TQ2NNDX2Ul5cToj9jEGBnoAgdmzS8nJrqHlgw+Y\nf/438NAhBhYtIi8vb9w5p5qptIz0ADdKkhQWBOElQRBqJElqnEJ5gERAp9utoajoD7EcKSlm3O5E\nQOdNN60ed4xKpeKuBx7AuXYtzc3NHH1xC1FvlO7uMSRJTne3ix3bPsaMkdkl8/B6PQwOdCOLp9E9\n2kTTf/wMTzibWUWVpGizqd/ZgrWji4H778VgMlGo16MsjfPWR2+jcASZqcnBH3Ljsg4x0pdKzKNA\nUsgozMxEIZeTaTBw6PAHOGePYjSm4XSOkZo6i1gshkwmIJOJiKKceFyNw+EgLy+Pe+9dz/r1EeLx\nOCqV6orO0uhsbib7vGh0QRDIUCjo6eqaMGXE7Xbz0/9+FYW4AJNGhyBTEheK8IXb0cpcaOQFmNRG\nSopnsKvhfQpNM/CHUmlv97D1o39GHQetqMfq8NOhOIJtoIs8MUBWXCQ2GiDiO4azxE6JXM577e3M\nXbaMvXuPoVYXotMZcbttiOIIt976ALFYjGAwiFqtTlpIJpl4HF59FbZs+eLnuPFGePhhsNshLW3i\nZEvyxfif//ktfn8eWVlVDA3twWhci883xujoEXJyFtHefhiVagSdrhSFopRjx7bw85//mjVrliFJ\nEQDy8meQlV1M1oxj7NixDX8oSl3dccJhH0qlndtuexaA0dFR9m3dSkUgQGkggFomwylJ9AwPs/3N\nN1n/8MPMOSsq2uVysfEXv0AzNkaGXo8vFCISiXDf/fcza9YsFAoFr7/0ErlG4zn3JIoiqaKIpbc3\nqYycjSRJI2f9GAGiUyXL2SQCOhN1P4JBHz09rQwPDxONBklJyb6gMnIas9nMyIidri4bWu0czOZM\nANzuMdo69pNv0FJVEGHIYsGsUiGXaem264nH45SozBCXkWbIwOoc5f1dTexp/AlzFs1BO9JF2GEn\nLzBEAAUyHKRqZBRlV9DX04IhtRIQicZiKORyDCkpVKQbaGupY8n1d6BWqwiHfXi9LsrKchFFEUmS\niMeD59Q4USgUtLS0sH/bNqyDg6RlZ3P9mjVUV1df1mc+0ag0GnzR8a9T5JSidTF8Ph/t7e0E/H5y\n8/IoLCy8qEtHkiQ2bdrEqFWOJiIixEOo1Qpi8QhyWTGjnn0U5FQQjUm0WPrQKNOpyqumsa2PlpOH\nCHpMmFVKDAYtRl0eHo8La8/7iJlZdPn8ZGpNpGt0mGMxnGNj1BQW0tXayp/8yQMcOHCUwcEeCgvl\nzJmzlI6OzlOpfFG0Wjlr1ixm8eJF07bw0dXGvn1gMsFZYQOfG7UaVq+GzZvh0UcnTrZrDY/Hw6FD\nR2hp6SUlRct1181jxowZl3x8MBhk8+aP2Lx5HxrN9Vite4hGdWi1atRqE7GYiN/vIRg0IpdLSJIS\niKFWp9DTEyYQCKDRBPB4nKSkmJHLFeTklBKL/Z709BkoFDrKyyvIzU1jy5YDzJw5k23bthEaHEQf\nj6OSy1FrtRQplQT8foZ8PvZ8+CGzZ89GEAT8fj///R//Qecnn2DW6yksLGRuZSVZwK733jvzrVZp\nNIQjkXH3F5UkFEolAwMDeL1e0tPTSZsm2u+Ux4wIgjAHyJAkqWWqZQHIzs4kEmkmGPSxa9eHBAJG\ntNpC7HYL9fX9fPLJLlatWnHR43t6LITDOjIzM5EkGBzow2uzIUa1DNtdnKivRwHIU1MJRaPYw5Cn\nM5BlMNBpHaapdz9uqxOloMYXirProw48Y82UqtzMlMuJht2EQlr8Kj3Dg0P0e+1Eh50srDq3ampV\n1QyCfi+9vYcwGBS0tu6ivHwuVVUzkCSJgYFWamoKzkkVazh+nB0vv8zM9HRmFxbi9Hj4+MUXCT34\nILXzr5wUseo5c3hr717yolEU8sQrHgiFsAG3VVVd8Jienh7effFFDOEwCuBIPE727Nnc/cADyOVy\nQqEQTqcTnU5HSkoK27Z9wvvvH0AQjQQFFRG/G7fPgyCIBCMQIUQ4EsCk03C4tZFso4nu/j6GHO04\nQyE0zMAT9KMVPAj6bILuMJqIQGVUwhONMuLoY1SbSoUmm66RERbNmoXfYsFsNlNTU0Fzcw+jo2p2\n7nydrq5RVqy4laKiUoJBH2+9lahRsmTJhYvctbW1Ub9/Pz63m+KqKhYsXozxvFULAokLAAAgAElE\nQVRUkkvn5ZcTLpovy/r18N57SWXki+JyuXj++Y14PAZMpnxcrgAbNnzAbbeNsGLFss88XpIkXnnl\nLZqbvRiNxcTjeQSDUZxOF3p9EKVSiUIhw+sdIhyW43A4CAbHCIXaSU2FlJRcWlp6+PrX7+a//uvX\n7N1rw+32M9TXgErKZYZeT5QwzoE+Cgvz8HpNbNz4Mnvee5c0uZxgKIRRknC53Sg1GuKxGDFg/9at\nRCMRZi1eTFdTE4M7drAyI4NBr5eje/bwyf793LJ6NaJSydDQEEVFRcyqreX3hw+Te1ZihS8YZDAS\nIbhnDxGrFa0o4o7HKV+wgFvuvBO5fGrVgSm9uiAIqcBPgAu2lXruuefO/H/VqlWsWrXqsstUVlZG\nXt5e9u37EJ/PQGpqGR6PA6NRy8KFK/j446PU1s696Mc7Ly+DSKQDAJdrDK/VRqpGg0urRSaLEJLL\n6RwcZDAYQZLLUGjDGLVmhj0uuvrrSA95mS3LJi6G8Pr7sHt16GSZeEJuIn43mkiMgfgAdlIJBdMJ\nRjLwBqFnUOC1HQdZUFmA3W6n2+3msb/4C0wmEy6Xi+bmNpqbBxkebiAe91Ndnc/dd992Ru54PM7e\nDz9kbnY2KdpE9YtUg4G5CgV7t2xhzty5yGSyxLm7u5EkiZKSkgvG0Ew1hYWFLLztNvZv2YJZkpCA\nMbmc1ffdR+pZhedOE4lEeO93v2OWXn+m2JAkSdQ3NHC0tJRoJELdtm2oolFCkkRmeTnHm63U1t7G\niRO/QtSmYvM40URjyGVxggyRovTjdR9myJaKOj5MkbKQ/qEeQuEociEDhTwLcCNTB/F6hkgTNUQk\nEa/bisvvJozE0Z4ACoWcgpoawqeyszweDxs3biEtrRalUs2hQ40IUjEff7ibZSsjpKWlYzSWsW1b\nHQsXLhjnstmzaxdHN2+mzGQiU6VicPduXjpyhK/+8R9ftn5JVzOBQMJFc17dqi/E7bfDn/85hMOg\nVH75811r7NtXh8djJD+/EgC93oTRmM7WrfuprZ1LSsr4FNizGRwcpL3dTlnZ9ZSW9nDy5CAgEg4P\nMjCgQafTUVychtvtxe/vIyXFRDTagF4vUly8lKNHG6ipmU8wGEQQtBQUzGbM6cFuGUBAj1qpwqTX\n4w8F2bV1KxDk6AcHMcshLIrYJAl7IIBKkggEgwwBgigijYwgGxpi98svM9rfT77BQEN/P+GxMYoA\nRzBIw65deNPSWDA4iF6vp7S0lDlr17J/xw7MkkQccCsUKFJSMI2NUX7KVR2Pxzl26BD709JYvnLl\n5Ryez2QqA1jlwEvA/5Ik6YLlQc9WRiYLuVzOY489xNGjf0s8rmBsrJ2cnDSqqxei0+mx2w0MDg5e\nVBlZvHgxRuPH2GwWnDYP0YCHbmsXStFLimwEly+GR9IgxbUYZAEMSg3DgWGcQy4KpQCpcgNaUUE0\nHkEdFokKLmRqMz5RT5fbxwylDnU0RCgikqbJYEwtkq2SIw/K+GBPF9bORgqNBrILCtj15pusfegh\namtrqa2txefz4XA40Ol04yZlr9dLxOMh5bxUY71Gg2Sz4fF4aG1pYd9773HaqLdXEFi0bh03LF9+\nOYbiS3HD8uVU19TQ09ODKIqUlpZe9GNksVhQBQKYMjKQJImRkRE6Oy3Yxtzsbv1/zCnIZWlFBSqF\ngng8zkf79tFpM3HzLauprZ3F7t170KrTiQtRvKFhMjW9rCk2MBQMMBYc5Ia8dHqcw/R6XWQaZkNg\ngEAsTKZWi0quR4o5MeijjHrG6AvJcIrZaAQjxAU2t7tYl+cho7+fmhUraGvrADLQaPS0tx1mqLOF\nHG01kTE7O199FXVqKjm5uUQVQwwNDZF/Vg0Dj8fDoY8/5vrCwjMWI4NOR1t/Pwf27OGWO+6YjKG5\nqnjjDVi4ECYiDCkrCyorE11816798ue71jh5spP09HNdynK5AklKfLMrKys/9Xin04kgJBYjS5bc\nQFfXBgYGYsTjIm53O5JkpqqqHKczQCTix2SqRKHQIIpqnM4xgsFGzOblvPfedrKyatHrTezdsYPq\nwnLa+jy0D4yysFJHJBrFbbGQmSFSlqKhNjub10ZHcbpclMtkaOVyRsJh3LEYBaEQpSoV3q4uOsbG\nyIhGCWRn02exMEOSUAgC+lgMS3c3w/39vP+rX1GXlUV6aSnr77+f2fPmYbFYkMlkmEwm3nr+ecrO\n+saLosjM3FyO7tnDshUrptS1O5WWkQeAhcD/d+oBfF+SpANTKM8ZdDodCxfOo7Iyi5SU1HNWl5IU\nQXmRZYvH48Hr9bJiRRUnTjgY6u9H8tspMkCGLsrcnELebBzFpDagMqgozszBpKlkx7GPkYsjaGJx\nIjEfUZSkaFQEIhEMMQmL145OJ0OjLaY94sURdBFQGAmlGClMzSEccCCqQeN1ojYbWbNuBampqfiC\nQT5+4w3KZ8xArVaj0+ku2gdHo9EQk8kIRyIoz8rMiMZiRAUBl8vF9k2bKNZq0arVZKemIkkSBz/4\ngOLS0mkZEGU2mzGbzZ+5XzQa5fQIt7d30NjYh1abgVymob1xL+neIB1qNSl6PTlpaVTm5fHJyTb8\nfj+rV99HNOCk9eBu4tEQFXkidy1aiEmt5nBHB0d8PhYsnIP9eCsxuxKZQoEuriAQaCcmFuIKKHGF\n/bhjI9QUptHnMWGW5RAOBvGGQqSmlLG/2UHtunyuW7aMjRs34XJFMRpdDDQdJFutQCbFUAR95Bu1\nROJxlNEwYtjJh++8wxNPP33mAzM0NIQhHj+jiJymICOD4ydPQlIZ+dz84hfw7W9P3PnuuSdRPC2p\njHx+1GoVoVAYtfrcb9ynfbPPxmAwIEmJEuoymZy0tEKMxhwcDht6vYfCwiw8nkGKi0WWLfsmH320\nGa/XjEIhA0aBOJs2vYdcnsqcOYkcbb/fj0rQoFQMMuLwEQhl0z80gCziJCfVSLqQglImY15BAdvd\nbnoFAVk0Sns8ToVazSyDgVyTiUyzGafXy6DNRkSr/f/Ze9Mgy67yTPdZez7zmPNUWVmTai6NJSGE\nLAaBEYMBmbERzbVN+7a5jW+4o319u23HdUSHHURHd1/7hruxAhBtSRYCJIQlNKDSrJKqpJqHrJwz\nT2aek3nmcZ893x9VFJIlhDAIYdDzK/NErL3OWStzn3ev7/vej4jrYigKEufNMwPPYzQSIWRZvG1k\nhPlcju/ccQe3fOELF3NCVlZW0IR4heAwNA2r03nT7QHezATWO4E736z5fxLj4/18/esPMTCwlYGB\nMZLJHhqNMrGYw+hLGtE1m02OHz/Bk48/w9q5U2zt7SGtqqSUNQTncPwKSSPKlcN9VEyH4cQE3ZrF\n+Mad6JEIeirFFusKIh2Z/naD/GKeTuDhBTIELk3PoUWVy3sm0DsBppslZ9bwVR1NgYWFwwR4CC2K\n7rpEwvGLpx4RwyDquuRyuZ+YxKWqKruvvprTTzzB7tFR5At+KadzOS655hru/da3mD10iCAexwkC\nLMPguv376dc0Jk+detPEiOu6TE5OcubMDLqusXv3JYy/pJztx9FqtThz5izVaoN0Ok4lCMjl8zz4\n9BGE2kNWMrE8Fw+Z06enWTt3inRvFiWb5bprrkERZZ5++gG6XZtm0yGqOFw/mGDrpkGSF9x4fcMg\nZNts2rqVDZs2UftfD+E36wzFksw2HWx7hpZlYRglDENQdQRGOIIeCiH8OGOhEGMDAyw7DdRQjP/6\nX7/G8nKV06eLHDt2jlGvyeb+DIfOnCVBiHDIwJcF8yunuOX9u+murrK6unpxbzRNw36VKinLcTDC\nr2ZM/xavxdQUTE7CB3+Odjyf+MR5r5G//uu3QjU/jnq9zrFjJ1hdLTEwkGHv3t0kk0muvnoPd9/9\nPL4/wdpaDtd1CYUMEgn3Fc3lXo2RkRFGRiKsrExjmiaGMUQkMoCue2zefAm+L0ilehBiActq09u7\nmaGhLL7v0WxmKBRUjhxp4vtLrK1FyaQiVAsFpFIJRUCxcpSHDy/QajUZ0UwmYvuRRIzlSoWoJLE7\nmyU+OEi1VqNZqbA3GiWuafgXkvF39fdzeGEBv16nJ5FAkmUWSyVM26YvHGa52WRyeZn3CsHGgQGe\nnp3lwe9/H6fTIZ5KsXnbNmxVpWvbGC/54ypUKgxt3PimV+G96Qmsv2wEQcBDDz3KE09MAikOH57E\ndQ+SyQg2bRrg93//sxc9HdbX17n11m+yvh5QOP4iGw2DYm2ZK67cScP1ea7RJJrZTrnr8tBMFUOu\nM7dmouhJ4o5DuNulurSEHgqRifSy1miihAaRbAcvaFN1Tea9BkPpHsJSCFd3KLbKBNEsQWcOc2mZ\nfqHiShL59jIN2WNtvsPCwsLFjrs+vObRm+d5NBoNDMPguhtuoNvt8szhw0QlibbvM3H55QyOjvLo\nN77BZfE4fRdOGqqmyRMHD7Jvzx4c26bZbHLsyBFy09PE02n2XHHF67oB/Cy4rssdd3ybM2eqxOOD\neF6X5577R975zl28613X/9hxKysrfPWr36bbjaPrMbrdOQqFGvcemcSqRIhHY5xeLdGRSxjlIptk\nlVDgM2RZlBYXebDTwXQ1OsUuodAwitJLrnOGF9QKSdfl0OQ8+VoFLarT6na556FH2dw/wObhOLNL\ngrOLebQgYFiP0o4Itm8dxysXWZ1fJKyrrLerkNnA/m37qLdaGHqEb33rAXbseBdjYxtotY6yuFhh\nZXWdiV3byUjL2IpM2zdx3Q6bBiLs3TTOyeVlWq3Wxc89MjICqRTr1Sq9F/bR932m1te58qfp7vYW\nANx6K9xyy89XNIyNwbZt5w3Q3jqoeiX5fJ5bb70bx8kQDic5ezbHk08e43d+52Ps27eXAwee5N57\nb0OIYYQAWV7nE594++sKPwgh+MxnPsp99z3Eww8/T73uI4SD53U4fXqVTsem3V5jYKBILFbE8ybI\nZkdYXp5mYeEMIyNj9PQM0O2eZHLyDEG5zLbhISrAUqnMYHgQ/Ay2aGH5DQq5PCOxEPlOB991ma7X\n6XddMvE4cVlmtV4niEYZvXCaLQORnh6C/n5OHz9Ov2kyqOv0qCpxTWOl06G1vs4jzz+P2enw4uQk\ntXyefdu2ke92Ofb44wzt2sWLR46wOZUiHomwXq2yaNt89D3veWM37nXwlhj5JywuLvLQQ0cZG9vP\n+HiYybNHmDn8MMryCmZngf/j5vtJjY7xoU99nGbLJQhGkIMcY9EEyVCM5cUz3Pm1b+CLNH1SlCAW\nIZscZi6X42T+BQxRoy88QCaRIKwbROwuLyydZnhTlIJIEYk7aJZNpVGnEo8Qjm8impBwkymcwCcy\nNkx4eYHk1LOkRBhEFtWXyXgOhcBkra7w8MPP8/73q8RTKbq6flEUvFR4hEIhjh8/wT33/IBisYGi\nCK6//jJ+8zffy7XXX0+9XieRSJBIJPiHr32N3Rs2sH7y5MV1SoVChCoVzuTz3DQwwN//7d8SbTTo\nSyZp5fN854UXeMfNN7P3n2tJ+To4c+YMZ87U2LjxCgB836PdjvHQQ4fYs2fHyxxMf0gQBHzzm/ej\n61vo6+u5sC7DPPfc86RH3s6aVMfTE0SNDaxPPsioEqIjPMKSIBYKIbpdjpybIrLvQ/zmTZ+gVCri\nuh7Z5Ac4fui73Hm6BV2dmLEBr1nA9Du86K2y2pDxu3WmV2axpChROYocNZmIOVhzRfZkMniaQqFd\nIxEapNla49ziNLmWRaP4AlkRMLO4gpbOYgxvYc+eDTyXf5q19bO8be9mUp5LLBrlxeU2XUXw7Qcf\npCwE+z3v4meXZZnf+sxn+M43vkFucRENqAMT+/e/ofv0q4htw223wVNP/fyv/alPwR13vCVGXo37\n7nsERdlIX995H6h0up9KpcB3v/sIn/zkh6jX4aab/hWdjoWqKmQyGRYWjnL27Fl27tz5smsVCgWe\ne+5FVlbWGRrqZf/+ywiCgJDsMt6jUMgt4fspWi2JdruLJMWwbYd6PY4kNUgkLBanvou5OsNOI47c\nslgqvUAg1SmtrCHZIQ62qnS9FrJk0aP102xVuWTrTsxGkzOlKfYO9+MFAYuShJlIsHFoiHQ0SsX3\naZfLnKjXqRUKeEs5qrbDxuvezud+/9/wV//hP1CfmqIvHKbRaDDT7RIKhQh1OiycOEFEVUkXiwS5\nHNrWrQwNDzPQ6XByepobPvMZjh08yGypxODmzfz2dde9oufNm8FbYuQlzMzM8Fd/9f9x7pzMuXMH\nSSZlROk4V/UPcSyXwyoucmmyl8nJRe7+L/+TFT/go5/8E7qdBvEAcrPHidgWTQsSmTR+u8nRlRzV\nto4sD6FLLWQ5x3JzhWQuymA2g+uV2D5ikC9VaZdrdCyHittCSW1gYtvbaTRWsOQ6w9d9CFXViUaT\nlL7yx/SmU3TMGJ4r8IOAntAIrl1lutEgm4pw54MHGN67nctvuIHv33sv6+UyC8tVZDkOODhOlUcf\nPkqr2UMsOUQsHubs2R9QLJb4vd/73MsSdDvNJhv6+7HrdRaWlkgZBkIIitUq49dfT35piXS7zaYL\n4atMPE6vZfHEffdxyfbtr+nt8bNw/Pg5ksnzCZpLS1OcPn0C2xY0GgVuu+1OvvjFV9rsr6+vU6k4\njIz8SKjU6yV0fRDf1xkYybC+cI5Io02mmadKAyWRIhELMdtuIykKQjUIR+L84KFvUSuuk+gdIpGM\n0fEHCckS2wYSmLbNfFcikurjio39rIdirNXLNKwCshSl7Xi43QpurcFEYFPxfVqWCnKIartBux1w\nrPoimYTE7liCED20Kg2s0hy1lWVC2y/jmvd9BmftOXqGB5g+epRSPk/bdbk+m8XsdEik0zzyzW+S\n+sIXGLjQkLG/v5/f/cM/ZGFhAdM06e/vp7e39w3Zn19l7rvv/AnGli0//2vffDP8yZ9AqwWv0kn+\n15ZWq0UuV2F09OWGLul0P4uL05w8eZIgSJLJ9LzMOC6ZHOXo0TMvEyPz8/N89avfRVGGiMc3cOJE\nmccf/zvifpF9PT28e8MGQs02f3PvA7jSFjKZCTxvif7+Hnp7t7Ow8CC6OsXutIbrj6IoKSyrjr1+\niqYWYiQcp+EFqIFLwddxvRhzZYESBCwXc2wdHqFQzPDE+johXWfZdfnIu9/DgSPTlFe6tKwk+foa\ncavBTPXM+XbQmQGu8AZ4/PFDbN67l3qtRjIWw0il8FZW8IOAfl2n4fucmp5lixHBzFd44J77+K1P\n3Ew8Hkctl4nH43zmd3/3Dd0rz/M4euQIJ55/Hsey2LpnD5fv3/+aY94SIxfI5/Pcdtv9eF4fyWSE\nWGyQxbln6G+sU+mC0+iQ7ushEU2ScGwWmy2q+SWevvu/EYRjNJeniXbqGJJMtd1gONTECxnE1DRr\nLQ1dDWgHsHdsJxuHRlksHGbHhijRUJa/ufseYi2frJvGcSAhJjAtj24HarU09foZvvvd/5d9+24g\nlUoh+S2MaBzHCWE5Dogwlge+UOgqfZy2PRSyLB+Z49TBF9g02Eu11KbsyyRHtxNoGQ498zCOM8rE\n4AaKxQarKy1iiQi33nofN930npcp5Q2XXEL+ySfZvW8fawMDFJaXcV2XeDbLp2+5hTu/8hWu+idf\naCFdJ+S65PP5iyGjnzeKIuP7Pvn8PC+8cJJEYgeRSBjPy3H2bId7772fj3/8Iy8bEwQBP0yb6Hbb\nmGYb2+4ixPlmZxGxzqhbQieKpMRI2GV0ucvYxp0MJxII4LGnnyX37MMMa72EPcHa1BTPdUoE4e3U\nRZsTroMmy2iRFKZl8szUGWrNMu1WG8MfxCaMKnQMqZfZxguEgzYrbQlH9BOOZokZ0GzM0jErZEUE\nSUmxWMqhx9IQxMnKEebOTFJvVbn5Y28n3dvL1i1bOPQ/b0XpatwztcauzSO8/7LLaFsWzz72GB/9\n1KcuroGqqj+VEdRbvJK/+zv4vd97Y67d0wNXX31e8Lxk237tOd/gLSAIgpeFXc7/HlzIeXhlOEYI\nCc/7Ua6U67r8xV/8F44ezQEyGzdu48orr6VcUGg3C3zwQuPRt+3czgMHT7NQbpPJgGvHsWttCtUX\naTU7dESeeKqPgl1hdfUcVqdOGI2iabOGjO70IUkuspNDFv043X66IozZGeLFc7OMDwo+dOONCODb\nhw7x1Mkc5WaWtu9SqU2z0RNkAw2BQsWV6ZRqPPfIvXjeh7juuu2cmJtDchz6+vvZfOmlvPDYYyy3\nWpTbFpaI4AUxrI5Crd3iwIFnef/73/mKtXs1bNtmenqaWrVKtqeHiYmJn8qDJAgCvvftb7N25Aib\nentRFIXcE08wfeq1DdbfEiMXeP75I6jqMBMTCvn8YWCAkBHCLQWsFVaRJRtNjXNwrcRSXaLl64SD\nQdZyOS7fvofDxRwDwHg0SUOXOVWcRhraTa3i4ephdDWBrzSZWi7TtWqoqkrbbHPw2aexSm2G5GGa\nVhUvSBEKZ7AaRaaOPIhPHzG9l9bCPI8s/S8mdu2kJSTOFtdImipaoOJLbWzCFJCxHZvB4XeynnuW\neGuVjZE4S88fo4HPRHaQ1ZPP0rKgXm+iGztZKdZARNAROLbBwkKXP/3T/4c/+7P/m+HhYYQQXH7V\nVdx+9CjTq6sMZTKokQiz5TLXvf3t9PX1oWkajue9rAoHwAuCN9RI59JLd3DixA9YXCwTiUygqmE8\nz0GSLHbuvIYTJ47w7ndXsG2bQqGAruts2LCBSMTn8LPfwyouYwCdIGBtdZWxjVcQ6bbZeMk25ucn\nEXILW1cZ1FRmCgWSoRDHCgVMBCPI6F2BKing6niey1Rjhv74ED2eh2nZ1KwOa16DUaPJoKdge734\nTosWJfLE0EjikmKVOkOej6+7mKbA8VtUghCqvgvfWWSpVqPsa1ADVY2y0l3Fo0omKKPNDbE8N8cP\njp/G98bYuWMPqmYwuTDJka/dw/W7R5EqlZeJkbf42ZifhyNH4LvffePm+PSn4fbb3xIjLyUcDrN1\n6xDz8wv09/8oSX19fZHNmwfYtm0b99//PI5jo6o/SuSpVpe48carLv7+B3/wf3L33S+gaeddTRcX\nj3L8+GFS0SSjcZtGp0MiEsHQNMYHUqzWYni2ilKvMBCJ07XaeIpNZSVH2Q4QwsA0AwIvi6wrqFab\nWtcjKZUZcWx6SOIGIdp+kXnfJDA1uq7NysIMP3jCp3d0lKLt8vzhc2SlMKbTIe6uMSx0RGCgCJ8E\nMvOeg1Pt8MTD95KfSjGejbNSLJJuNpEMAzeRQEmlia7LOFJAxa7SLxuYZoelpSpnZ2YIBgZeMyRT\nLpf55le/ilqrEZEkTnkezwwNcfNnP/sTfVp+yMrKCrljx7h6fPyi8LlkZISTi4uvOe4tMXKB1dUS\n0egwkUiC8fFF5ueP4wmJYreFLLWI6R6zbYuOO4TjtRmLZfBci3JQ44kTT7FTkuh0W8x1AgYG+9ml\n6DxZWMB0N+CKeazSMwRmncAS1MpFOkGdWyfbpHWdwDJwVJB8CcttYZrrBG4H4ZUZzGzCoU696xNT\nL+H4wSppI0rDVJBwGZZDmK5DSVSxQ0OAw/LCGZLlc+wdHiUajtByFAY1n5VmjY4dUA76cO0EbXsa\nPzJGNtmDaXUolYoIyebQoSpf/vLfc9112/mt37qJeDzOp77wBQ4fPMjk6dOEYjGuvfFGdu3aBcDu\nq6/m3IMPsvclJyDr1SoilXpDY5Fbtmzh6qtnefrpJ4nHM3S7BYKgxb59m4lEIpRKYb5z1110lpdJ\nCoEVBDwaiWAoCu7sM4zGhjG0MJ1uk65cZXnpCWrFGvONNp6XQJZ7aHlhzhQrtK0iVjaLvmUL2aqJ\nVISuvUzHl1ECj35DsNRaQ3XjBJLAdQMkN04sWCHlyPiA5HqoCELoNOkCPhpx6oRR0ejxbGrBMmuE\nqYhRJClMy/dxTUE6sgvP7YKwaLoZYobHJSMbaK6vMze7Qmu+TEka4IyzRK5aQ/YjeEEP3370DK7y\nHGo4zI0f+hC7du9+w8Jmvy7ceut5l9QLRVNvCB/+MPzBH8D6OrwVRfsRN930br761btYXKyhqnEc\np0Eq5fCBD3ycdDrN+953Fd///mFUtR9F0Wi3C+zYkb4Yonn66af53vdOEolch2EM4romtdp5QbJm\nlClGNO5/9ggfu34/mqryvv17eer0I5TzPuOxLMvFWebWZnD8AAONU9UlUrEMY2P7KK2XaTTXaAgX\nVdHpxUURKrYnIXAIBx3GWCVo1OkjQNh1jh49SqzZ5PCRU/S5CQbVBOu+TwaBHLTwCBN4BooaIeE3\nWLEaBLhEVlvc8qk/ZHp5mZm5OQ7Nz5Pauxf7xBkIIoz09LFYnKLeKSHpMSp1k6cWc/zZl76E67rM\nzMzgui7Dw8MvC8k/8O1vM2BZjLzEOOfcygqPP/IIH/jIR16xH69GPp8nJUmvOIEZ+Ammim+JkQuM\njPRy5EiZaDTJnj3XMDS0wvLyAqdaYQayCdZOnmW15REIGVtS0CWJGgH9A+PkFubY1ZNkpegQi4Ro\nNZsMjqaIrxdx5HOkfINau0vSAU3rwwskUkqYRnueptOk7mlkPEEgEghh4toOrmgjJAnVmsXorhNF\np2bOo/o6pmeQ8McpsIQfeMhKhIhsEPfyIHoJNRcZ1UPUyyVajSaB6+G4Ft1Wm6bWSzg8yGBUMFPz\n6Dp1bKdKrWnieEUkuUit5DEzvYIQKps3n2LPnvOOs+9673t513vf+4q1u+rqq1ldXOS5yUkSQBfo\nRiJ89LOfvXC0+uq0Wi0ajQaJROLH+p+8FoVCAU14jPcrNLozbJjYx+joDqLR8/1+CvlJeto+b9u2\n7eL7yJdK/P2DD/I7N93I+nqRdrsLhNG9GFqrxanmOuluP5LQUSWFIAhR7hqU4xJf/NznuP/+x1hY\nXGNcjCLLCqZVJyJDIhJF7ywTsmcIeVFaVpeWCND9NsJ1SUsKnSCKTJQAiXvETYMAACAASURBVDAm\nJh4eDkmi+OisEaMYdFlnEM3YRMAZLC2OZ0UJOV1EYGEHdUDCsRNMnX4BbzlBx1eIBWFKQYelSptu\nO8pQOknbqiGbDS5JZ5i653tkLYuThw/zyc9/HuON/Cb9FcZx4KtfhQMH3th5otHzjqzf/OZ5UfIW\n50mlUnzxi59namqKYrFMNnsJW7ZsuSiwr732GjZsGOXkybNYlsO2bdezefPmi2Wrt912J6aZRQib\nbjeP41TwPBUhtuE4eVw/xSMvLhAJS7z7sssQQvAbv7GVU0eXyNeLLORzaF4fvaqH7ankRBm72Uao\na0RTcRZthWhqG5HCHGq3iiaiBAIUCVSvTFoIGpJESpJQJInJpknt1Fm2dTtEZZV1a5F2YJHFO/8A\ng4aMhOd6+CjUhEDtmkS889bvm4aG2Do6SrXVYtkweGA2x7pVpt/UkCIZipEMsfRmqo0cH33XdRQK\nBb7+N39DryzTbbWYKxYZ37ePD//2b5NMJqksLbH9JdYVABP9/Txz7BjOBz7wurqDG4bxqhYCpmW9\n5ri3xMgFrrrqMg4fvoNqNUoq1Uc63Y9ltfjUv/4kV1y+i7/+8peZvv8oitfE92yWbIu+4X4828FQ\nQzStDlFVJSxJ0O1y9PRpih585O0fY2lxitP1WTKeQr2zjCVieCIg5MvUfYcWGmVhkfFDBAR0abAa\nNOgRGj3dLu3ARPPCxHFxqdPx+shgUCdOJKiSCifxdY+o0FkTCkM9WdJOCLuyil2uEeDje108T6dE\nQEwShGQfXW3hegbl+jM0ux4SJj1aLzGnh+VTK+SXphgZMdizZ89rrp2qqtz8mc+Qy+VYW1sjHA6z\nadOmH/sE7jgODz74Aw4dmkSIMNBh//6frsvY2bNnefj22xlUVW7cOMyjTx2l4DcZHf0kjmOzsnKG\nqNRm58gWOhcMfaLRKDHDIG7btF2XzZs3sVws8viBAwxpGnFdpyEn8X2HuGuDCZ5wqeBTWrb437/w\nfxGO7SCQ4xQbi0TlDEIYtLwGS9Yqm2WJqzM6SizEYqFJnxUwZ7vI+PSgUKRFFwkXHRvwMdHooBNC\noY0e6HQCBUW4ePYU4bjAMELU6yHybgPhd9FCPYSsGqJbB7eDFEoykE7R6rTwfYmKDbpsUGhWUZ05\n9iXTbOkfZ6U8RZ9hUMnlOHbkCPuvueanWu+3OM8//iNs3gyXXPLGz/XpT8Nf/MVbYuSHBEHA8vIy\nxWKRSCTCtdde86pfjsPDwy9zHv4hR48e49ixBXw/STw+TLW6iGm20bQJgsBG0wK0iMxyOc7XH5zn\nqTN5YlGPq/buZl4u0SrNMSiPMxg20AhodVWmPIk5OWC902B8aDPR1A58q0TYLKKYM+hKgJAEllMn\nE9g0CPB9D1eysUUfSWsN3VVIC52w3yEdwDQ+TXwCVCJ0MYhhBV1ydDHdISRpDavb4Rtfv41UJs3E\n8DBaPM6MUIn1jXB6vo4fHyadmWCDHqNWW0RRm9xzz6N8+S/vIK5qJLQO+1KC7ek0p+6/n28sLrL1\nbW/j1R4dZUkC38f3/de1T5s2beIxw6DabJK6ENqxHYeldvs1x70lRi6QTCZ53/uu4sCB51hYmERR\nBPv2beY97/kNJEliaNNOoskcqujHth0ss0qrWsNXXFJhWGo0uWJoiEg4TKlSZX01j+T6zJw7garr\nBIGDLemE/SQIB1noeMjYdOhFZSVwqdLCw6aLTSB1ifktPLoEfgQbHWgTxcLBQpHC6L5DmgCz3cF3\nAmzdY2xY4OkylY6J7/p4XhvFM9FkhUU/QFPHsLotmpJDPNZLo92k4xRQkNicvpyYlgUsBgYmmCue\n5eDTz8If/eS7oRCC0dHRlxnC/Th+8IPHOXhwhdHRtyFJMp7n8tRTx1/3Xrmuy6P33MPenh6ioRAA\n8VCIxw6+yAvP/D1bdu3huut28syDJ3nmwAF010WRZYRhsGX3biRZptZscmhygcVVh0IuypzqUgla\ndB2Fqt9LKlhDFT6IFCpJ4sFpbNOmbge4joZDhF7PQRUqzUDGwmG7JgiFw8gEJHQFyekyFQSUkBj3\nJbIIyqyzQogOEj20iTGII8KEVJfhvhiL66vEFAslsPC8zQgxiCxXkNQIgaehCImOUychVUkrYSql\nKqoSomlXcJQRVCOGJmVw3TnGFJ8N/UMECNpdi6efPowvqTyXKzA4PPy69uql1Ot1Dh8+wpkzc3S7\nLQYGeti1aztbt24ldGEfftW59VZ4gwsRLvLud8PnPgezszAx8YuZ85cV27a56657OXt2HSESgEkq\ndYBbbvnYq5bwvxTP8zh69Cj/+T//LaFQFljGdZuEQhEsywY8JClPPK6TSF5ONCYwzdOEYkmMIM/O\nbJaZTAZvagbTk1CEoGo51FyHkDBoo9DwTPIVHc/NMT6mo4V9iKiMREJoQmG1WcLptKkIiaTwiWob\nqHkmGaFiSTq2sEj5LjoBowTMErCMhEGAoEkRgckABikaLHOunaVXDLC22mGlnsM125RSW+jPRvEa\nMvn649RKR4j5LmHZJ18o0up7B0l9I77ZYTa/SGl9gbErE+xIp+k4DsVTp2grCuVGg0w8fnH9Vi6U\nAL/e8G4oFOJDn/0s991+O3q1igw0JImrP/hB+Mu//LHj3hIjwMmTp7jnngM4jo7vG0QiFp/4xAeY\nuHAHePbZgxw7XOC6nddwfGoa2Y7iqUkWWgsIf4Fr+3VSIyOc8X3M3Ar5ZoeykmBY0SgWbURQp+Za\nxAkRZo0E4PoSdSxa6KQQjGJQQcImjoJCIE/hBSaOa6BjYCMQJBB42Jis+wZZ6kToUvW6VF2Zjf19\nbI6pHKyus9BqE+qY6IGHHO2h5rt0tTQhOUXdNZFjSS698p2srJyiVuvQyTcJSVGEsMlk0wghSGhJ\naqWVn+taW5bFc8+dZnh4P5J0/uhUlhWGhl7/ycja2hpyp0P0JU36BgcH+fiH+3h0YYF/9b99lG9+\n8x957PFDjFdLbErEyQz1ElYUTj73HPLAAE+cncHu9DOQ2URt5QQ2gnh8gPbSAZQgTky+hMDzCYC2\nX0WnRTiQaNlzxMQECS1D1S3g08GSsyREG0c3mfM8wq6LLSksWYK2b1DEoEODQRzaCHwMNhAhTwtZ\nctCogy5YDqr09upEG+f3YsE6S8Otk0hEKK1XSCi9SF4TmwqIKm3HxbdtOmvgxuJI9jq269G2NKJa\ng0DyqNRbtO0iHQfS6W1YgUfRFHzlK9/h93//5tftnFutVvkf/+MOarUwk5MF6vUurnuOzZsn2bKl\nj89//mP09fX9VH8L/9IoFuGZZ843xvtFoKrnuwHfcQf8p//0i5nzl5Wnn36Ws2ebbNhw9cXXSqUV\n7rrre/zbf/uvf2yFiO/73H33vRw8uES9PkwmM0wk8i3q9SdR1QF838T3c6RSDrHYTjQtQbW6SkhX\n6DfCGOpGTi/k6UunaSfjnCnVabUTyHICXU/i2F3anSIea/iteTK0qa36yEZAzNCoxxX8doemJlF1\nJIaDgLLr0LIc6lhkZB1JimJLTboBqIGHjiCNzzo+VaLU0fHJoiDoModKGl0fJaZFkOwwC9UOHeEy\nbofYNTDKxniWp178PpniFONDE1TaTQbjm7BbDpXWEhkjSa+apW61eeTEOd67ZxuObTMeDtMeGeHs\nwgL9rRbxUIhKu01Z0/j4q4TnX4uxsTH+zb//9ywtLeG6LkNDQ0R/Qp36jw/ov8EIIQaEEEeEEKYQ\n4k17H/l8nn/4hx+QTO5lZORyxsauRNMu4c4778c0TQBOnpzB7vpY3SZhr0lftEx/vMGmXp3tI1Es\nSWLn0BA7evvQ1SiSkWXr0OU0NZWwKpMQIUBhjRoKNiIQCBxcPOIEeDTwgFEEEbr45DCdNoVA0MbD\nFW081umwRhkTlxYWs1jYTAqFNSMM/b1sHB9jviGjdQYYSV9ON7SNKa+fST9N5JKPoEQNGt0lFOHg\ndlY4duQu4vEaV111DYYuoSgtYnGdwPdotSuomk1vT+Y11++n5XzIREFRXn68qmmvP4dBURS8V3nd\n8310w+DOO7/HyopgW89GvMww657G5PwqS8UiR1dWKXky665B10hzfGWFs9Uyk6trzCxU8fwInj9L\nw52mERRp+fPInGUYh7BvIwc1QEaSFBRZJaIq6LKD0CN0JZloXx8Fz2Ou7iP0Xgylj6y2FYtNrGMQ\nJoROhCI2FTFALhSj3hemHFNJDKT48MQobxvawP7RMW4YGuaKwSxb+sfpT4VwvCnSyjK9SpGk26Xs\ndlkRDjNOC0cK4wgDnHUiYpaN8Ti2olIq5SiUF9iy7XIMI0yh02R8xzWEQuM8/vjB173mTzzxLJaV\npVbz8f0sw8P7GB5+O8WihW338e1vf/91X+tfKnffDb/5m79Y748fVtW8Sgj+14qDB08wOLjtZa9l\ns0MUCh3W11+1zyoACwsLnDixxsTEleh6mHA4xXXXfZ6JiWEGBlokErPoegFNk1hbW2Jm5jDl8jRd\n0+X0/BqleotWx2bH5s1gGAxETBzJRNNUNE2l4hXxMQkJn8s1h3fEsuxU02xyAxqmSW61gGFkGE4O\nYjoec26AQ4DpNGk4FvO2Rdtq4UsyDUliTficxqWDYBsdHAJ0xjCIYdBFRsf3PVLpBE1VJe95dI0+\nhNSL8FssrE5i0yYmuwwKQcKrogYuTkdC6ToQmEgCZEkQkuO4ruD08jIDAwP4vs9Afz+f/uIX6bnm\nGpoDA4zccAO3fPGL/6wHDVVVmZiYYOvWrT9RiMCbezJSAW4A7nkT3wNHjpxA0wbR9TCVSgHb7hKL\npanVopw7d45du3Zx/OghKrPPINsOfUiYWgg9PoQsJ4knPYJwmAeWl4kFEus+6LExkqEUZ+QwSiBI\neIKwCIgGGgVkfBwiSGSJoVCjSoEOTWoYtHBII5MAPBzWyOMFKj0EWLgMoaIhMICqHCETSuJoCjdc\nug1Z05k+u4ZZb+MJh4ar0pXGke0o86ceZX/fMIutJZa7NQIvS9AQnDlZYHVhmba7Sq4eILfzRKMh\nJoaHaNtttu7aycGDzzE+voH+/v6feb1jsRiGEdDtdjCMH/VDMc3Wa4x6Ob29vRi9vRQqFfpf0n14\nanWVzPg40/M+hmEgVJ1Nmy9ltZxnZnWGZ+eL9AztJeRtpNHMsd6t0inN4bldgiBAshtoAThECTFP\nDJ8EATEENRysQGFYdlj25+nYc/QFLhHJx6fLgl1jWrQJvfgijgddX2NZsukGo6Q8B5cQBRI0KNLC\nxKIHTUSQrBVCbY9o0KY0XeRQMsmwiOA16tRsE8XxsFWboewwpfI8tl0m4vmYgWAwsBkHTgc+K5ZO\nPLmBAdskmtTosowSUVmr15DbGqfm5zheKtK/8zL2DmwkCHzm559/3Wt+6tQs6fQ+Dh9+hmRyEwCK\nohMEERRFZXW1TqVSeUU36F8l7rgD/viPf7FzXnXVefOzqanzHX1/HQmCAMuyX/EAAyCEgm3bP3bs\n3NwimpbFMAxGRrIsL6+TSvWzYcPVJJM1zp416HbjBEGI2dkpHMcgGvVBGsaxHc4u5dg8HGLz8DCx\njRuZffYF+kI1Gn6TgmnRAeLhS5HMp1hxNBY9DzuwEL7PmGQRBHCumGPelJHYiA8YdGj6JgYS0EYL\n6lh2gI9LSwh8SSHpB5RQkIiTpoBOhT4EDhoVPGaXX2DP+DWYqRQdU8aq5cD20YIm6ys+5coS8ZCg\nWa0i6WE8v4jihlEUmXbgIXseptdAV1yWHYfxwUGOFwpcuX072WyWG94Ee/g3s1GeBVhvZstigGq1\nSRDA44//I/W6hxAGllXGMFzGxwX//b9/hRcfOEDWipzPFZDaDKoBS5V5qprLjbv3snXDBmaCgKfv\nexDX1qg3q5yqNQCFlgr5bh1XkenzOuhBEiPQUAAbEw2TPqCXNpO0SaMQR2UIBdAAjSlcVpHZQ0CS\ngBodYijYXptTHZt0qJeGJYjLAasd6Hhp5CBETIvgUqTj1Il6Hfxaka7nklF3kIhm8YFVs0WjUUGo\ngyhaP3gR2l2JF2YmSffYmNb7eOCBWTzved7xjh285z3v/JnaTCuKwrvedRX33PM8fX07iEQStFo1\n1tdPv+5rCCH4wMc/zre+/nXyi4uEJYm67xMbH2fTzp1Mz08RiSQoETCi6mzs38BSpU5au4Te1BiJ\nsc3YgcUTjx0iJA2RDm1HjWnU20tEWKEpNLq2wnDgEUXQwaYBdLEJeza6sBjwQyREhIgvaAc2G+kQ\nC4fIqCrHa200wqQ86GIRFmEMBD5hiqi0SSOIIfmzjPkdNlk6fakwitVldn2dI67PpYksY8keirUG\nJ1rLJDIeOgWq3Qw+vdgErNEkxioxP4TvdggFLm6nw6IZoMb62TyUYMXMMddaoze6hdHxSynWuhw9\neohMJsbg4OuvYAqFNGzbuvCE/lLDKRdZVhBCIvgVfnxfWIBz5+DGG3+x8wpx3hb+e9/79RUjQgh2\n7Jjg3Lkc/f0baDabVCoVHMdG05o/9ql9bW2NSqVIu10HYNeu7dj2cdbWZmm1ylSrk4yO7iWbHeGp\npw7j+yaq6uF5IQIklis5+uJV5pfb/O0d3+H4YofV8ChhKUYoFCYZ76Uy3cS0CyjBAF16cLw4JiYy\niyz7NhEq0HIR9GITpkfR8V0HjzWyrDFMQEgI2oHLEhALwApghRhLgIKOTJFLUBBINBEIQnSsKs/O\nHmNwdBedylFG3TYbI/1orsBqVhhyW4Q9nX3RJI6isFJepOyAGpog1dPH4uoZCObp60nhJ5McX1tj\n+/XX/9R5ZD9P/sXnjARBwPT0NMePn8X3A3bv3sqWLVtedwfC8fEhbr/9NlR1B6nUALncKuVyQLn8\nHMePP4XdEuySIhhI1F2brmdQMlfJBw5tLcX9z+S4/4VZ+jcOs2RGWG8WcOwG/QT0CkGPEcdFkBdd\noiGJSrvCHGEMApI0CeOT5nw5rAXECBjFRgJkQmjIbCDAxiMgRSBKqEBZSChBgCZsYtEUp07P4dQW\nkZpZDDwsIrT9HmQ0JH+Frl9gplWlzQDpkIEky9htE4FH1/FIRUe5dtcm1ms1Cq0WUmQfg4MG4+N7\nkSQJz3N5/PFDbNo0fjGX5qfF931M0+Tyyy9D0zQOHHiOpaUWmUycT3/6Bv7qr17/tfr6+vidL32J\nmZkZmo0GvX19bNiwgbNnzzI/9TSKq7NayuM3q4z1jVFumPT3xqn4/vlutrMzeJZC3XUInDKaJIFw\nSOiDNFvHMQOFSXwS+CSQ2IBKFpc6FlrgksbEl7pUPR8hC/p8lWKnS0OYZBGYSGRRmKFJEEToImPS\nRGEEjSEC2iRwGCaE7EvUKjUMPAZsmyUEjXoVxXFpdNrEAhDOApraT+AkCCHoBTQyLBJgUyNoN/C1\nJsWOjSynsR2bNbnCQHIfpdYL1Jodhn2ftbV5ZmdbZLMaV145yOTkJNu2bfuJ63311Xu4776ThMMK\nZ868gO8LhLDo6zMRQiKd1n+lT0Xuugs++tHzeRy/aD7wAfjyl+GP/ugXP/cvCzfccC3T03fy5JPn\nKBQsHCfAcVbYuTPNuXNT7Nr1I6v3drvNXXfdy+xsmW4Xnn/+IM1mk717r+Xqq6+gXC6xuHiQnp79\nrK3FmZ4u4XkZUqkrgYBm8zSNRo5YupfVEsw9fQRJZIgkdpBMx7CsOp4+ht1pIyjguBaCDCYhBBEk\nVFQmgDUa6HiUiJHAwiVwHUrYpPAunLw6JAMISxIZP2COABOfPDYgI9FBRtBGwgAMfNrUMADdq5Fb\nPEVc5MnGNCpeg6BZp9suMBy4zHcDAiEYjsW4rsfmO6vnMH2bdrfAVTujfPDKjzCdzzO0fz8f/MhH\nXrUC6RfJL7UY+fM///OLP19//fVcf/31dDodcrkccL4L6cMPH+D55xeJRocRQuLYscfZu3eSm2/+\n0Gt6XPyQgYE+bLuLLKusrKxSLLaRJNC0QdrNAnHXwNBM+uNpNL9MudVgOZBRxSB9IopcU1j1k8zl\nS8RFBMVPEg/OsBXQAwmzU6AkzldXPN8OcMigECaDxDwp0uTJ0mUNSAEGAVECLGQEoOOj4hPCw8fH\nDEDgkxYgC5mCJPDy01iORZ/nEqDSIkYTj7bbIMDCwCTGRiwvoBa4hD0XxWlhBx00Q0e3QlimR36l\njuXatM02fT2X4PtNHMdC10PIskI4PMyxY2f+WWLk6JEjHHzkEexWCyUU4rJ3vIMvfel3CX4Gl1Zd\n19mx40eJr9VqlQP33suEX8VqKQz2DnNyZYbJSoGi49KbTVMtVxCVCnFZpz/SR71ZgG6RcDRJQtM5\nV7ZxvR4iZFBxMEUTNcijqiqKUyGNjCMChgPBouchk8TzAjpUsYAgkIni0qbOGnHW0XFRkSgTYCGQ\nEIBEBgWBBvhOCwMXV/KxAJmAsm3jBQ0qeAwJmafX1+kGW+hHBQK6F7Jm0sQoUiISGKxX69SDML2a\niusUWVtuYScjSCKL25nn8MElQtF9GKEE+/ZdyqZNm7j99gf5d/8uS/YlycCvxpVXXsHhw0d59NEX\nqdfDCHE+x6hcVpidPcB//I9f/JlOzH7Z+e534SW3o18oN9wAn/wkVKtwodnyrx09PT28//1v59Sp\nr9HTkyUWizE4uJtarcif/ul/45ZbPszQUB8vvniW73//MWw7xJVXXs/WrRMYxjCPP/4AnU6F0dFN\nQJUrrhjjscde4Nlna6hqH6bpIYRA00aBNo5TptEwaHQSILLo+mW0rS4hR0NRZIrFF3Gd88FXmxQu\nUTroyJgI2rh4dLBQiOCxgkeVFiod+vGwiVBAxyOFwCDA9300wEPCQkEhSwB4FNDQ0Qnh4dHARKMB\nCAJkMnIDw7cJazpdT8ZsO4SEjhtIBFLA8XyeyVKJcCTC6OgA7775AwS1GqVSnbsOn6N3bJTrL9n5\nioqkXC7HzLlzAGzauvUN78AOvzxi5FXvYn/+T/77jx07zj33PIbnnU+GabdztFpw2WU3XRQemcwg\nx44d4tJLZ19X/w1Jkrj00stptXQOHDiKYWRIpzN4Xh/tapdkZBPr7VNE/DqSMJDkJoGbxhch2rZE\nw5NIRnpptVRMqUAMizQ6McLYqMxi4gRR/n/y3jRKrvO87/y9d6996a7eV+wgAQIkwX0TBYmylphj\nK7ST2PKS5MxxjhN78iVjz3yanDMzJ2fOaOIkYzlxbDmW4sgKZdESJUILCRIEFxAAAZLYG0Cj9+6q\n7tpv1V3fdz5UCxKGlERTliFK/3PqS9Xtum/f9956n/f//J//U/UcDGIcPFws5hhAZw2TImdYZjfg\nAitImpiYGCgMXCI6KFx0+lHEGASY5KXPOoJ+Cf0hNITo0XxAmxXaGJh0EeTIMIRNjKNimsql3CkT\neGk6tsFIeoBq6xoD2TFqrTpmHKJ1fa6dO8nEzhQXL56mXC7jOA7FYp4g+MG6EaUUy8vL1Ot1stks\nY2NjnD51iqNf/CK3DQ+TLhTo+j6nvvpVwjDk4Q984IfO0bvFq0ePknVd7vrgB5ibm+PKlUUOjPaz\nbMP2TJG5c3NQ65JIJFhtVHEDkz5T0a8J6iqk1o0JY4kt0mgqpkNIR2VpksILawR43G8IGtKnpsDA\nwUfhYRFi4KETEAMJBglYYgPIYnEZhU4HmwgHnUEkDh2SeCgc2jQJSUkNE4iBs4QUQ50pzaRt2Sil\n0ElgXlcTBZsyN4VGiIvCxSAWDitxG5sqRA6dRovt2/fR6LQxjVEkGZyiwfbtW0kk0ggxyBtvnOHg\nwR88Dz2m0eKjH/15PM+nWm0ADomERS5Xvt6I76cRa2tw7hw88sjNOX8i0Tv3oUO9oORnFVeuLLBn\nzwcZGBin3a5z9Oiz+H6OTmeSz3/+RVZWFjlw4IMEwU6SyQGOHXuDO+4ImJrazeOP/zLLyy/wxBO3\nU6vVOXToLXbvfoxXX/08ljVIrbaMrvusV14mjhcJQh2lDJRqYhjg+/NIGbGy0iKdThAEPpZsMFXM\nMLPu0Q4lHl2gjiCPgUIjIkOHcSJSuNhABQuTFJIuJoIADQeJhqRMjx0fRpBDwyXa3FiuUadBb2tq\n4VOgS0hHJrF8j5TuoeptErZBPlsk9mJanoeQPntTCbqAcBxWUik++Su/whe+8DRSpPjgXbtxHJvn\nn7/M/PwKv/mb/xAhBM9+4xucP3KEgU0a8Mxzz7H7kUc4+NhjP9YNx00LRoQQBnAI2Ad8Qwjxvyil\nXvt+x5fLZZ588nkGBw9g2z1Pg9On21y6NM8tt3SvO3gKIUgmhzl3buZdBSMDAwMkEiHDw1PMz1fI\n57dQq63TaJzC0mM64RoxDspv0KelaURtXArkgZyA5ciAjosMXSJWsGjTwiDG5BoakmlGMdhAx6CA\nzzpZFulQQDJMlS4ZoAhEwBopFJIJQgQ6awSsYFMlR5sa/fikSXKSFhEJ0ujo+BRUyAaCRSQpMpi0\nCNAx2YmGJEbSVR4ZobGiVlHaICrOc3XlNI5ZIfQlXjBAXWmkMnnCxgzV2Q4XktsoFrfTbnvMzBxj\n794Hv++19DyPv/zLp7h0aR0h0ijlMjGRplOe547h4eueIAnb5vbxcY698AL33Hff2+rXm80mrVaL\nfD7/rpxZlVIcP36S//iZz5OLDY6fX+SunWPsvXMPzU6H4No1VmurRF6VlYYLcZGkEREG54itScqx\noNwp48UeJuvkRY51dIQaxBaDhKpKGxOHDEtyli0q5jgGEkiQpQG06cchZJk2A/i00VjGIcEQGiZV\nKnTIIkgSs4JCp84El7nAJBGjCAwMVoABEoygOEPAhMxw3mvjME2LOj55FBYaOpKAiBpZQipU8ZWJ\nrrVBGUiVwdAjtBgqq9ewMiEpp0A3iPE6dYIgQEqJ46So11s/9Bp7nkel0mJi4va3fbaw8Cr1ev2H\n+j28X/G1r8Fjj8HNdNF/7DF49tmf7WDE8wIMo/cbcv78aaJoiEJhJ15xYgAAIABJREFUDClXqFZX\n6et7kJmZFYRIkkjkMYxbOHfuLcbHt5PLFZibU7z88imefPIQqdQ4e/cWuO22vVy6dJFEImRt7QwG\nOpY2iiddoAb0qsekjBAiTRSl0fUtBEGbMK6w3MrSCT1iWkAA7NzcHqxjMESbi9TQaNEihUU/Vcq0\n8YjooFGn97vfBZaBfnQ8HBK4DBBzFWhicQ2NAVI42LTRKOOgEWHRRyX2aChFot1CdQM8Qjoq5o7s\nELHjowPewAAf2rePJ//iCyixjX37vpvWmpzcy9WrrzE7O4tpmpx74QXunZzsmZ0B01Jy7IUX2LF7\n949VU3IzBawR8KF3e/xbb51D1wevByIAyWQGKe2eLe62bdfflzLGNN/dv5ZMJvnQh+7ia187hZQt\nzp49jut2kHKdpqvRkBtoyqJqWMzFVSLaWAgmxAABYMuIKKiRo0YRxQgxTQwuUMNjhCw2ihiFiURg\n0k9MhRwuJnmaRFTo3fbzOCSYYoMuFdZR+HQYoM0wGhZNClRZw8DHZjslCgToLLJOi3WSNBlAMoZD\nC48WXVZZRmdyMxPpIIWFroFUc9j6PMLWmJrcwtLMAjVNx3H6aYcVIqoMRWl8t0GUjel02uzYcTuX\nL2/QbDbJfo8pznfwrW8dZmbGZ3Lyu14A166dY+HcGR7+2MEbjrVMEzOKaLVaNwQjX/7y05w8OYOm\nJVGqw3333cpHPnLwB2qAjh17jaeeOk46czv5SCGE5D8+/QrFjMFgYQuvnL1MrEzu3H4n3dY1Ytmh\nEy5zt9OkwywroYGjAkxcdupJbDq8qnQ8BvGVSQyYGGRFgpZKoqsmTQxcthDi4JJgEIGky1WW6bBE\nlwIpduCRok0V2A0kN5M0fehUsPFYZASXC3TRidCwSTOIhYuPBrxBSAuTFGkiDJrMkWIADYhYo491\nfNIYGICOLV3SooUggadilLYBwsEILBbLp0AMYaULfOMbr2FZIZOTCT760e/vIaCU4urVq5w6dZaZ\nmYvABGNjE9eZSCljlAp+qk3PvvIV+Pt//+aO4eBB+PSnb+4Ybjb27NnG2bPHyedLLC+vkMvdg1KK\nOK4jhEE2O8j6epM4bhPHEaaZoN3W6XbbrKwsMTu7xNjYfVjWPoQocPToSUZGcjhOAc/zQCmy6dtQ\nKsT1yihSSDWIlD22U6mAOF6m1ZLoeoFYWTT9EI1+NJaRZBHUAYHARrCBZCsdWmSIqdEgRYM0Nimy\nlHE3UzmwDoyibTLiggIWNhHgcRxFkgnW0VEIfHLk6aPNEtClgg1qGEUBKRWBlkXKZbz2EtIQxOk0\nj+zdy9233sofHn6VvXe/3X1Z0/KsrKzitVsM2fb1QKTVatGo19EaDc699dYNwUgcx5TLZXRdp1Qq\n/cisyU9KmuaHotXqYJo3elEMDo4hxAlct3P9vTiO8P0V9uy5+11/90MPPUBfX4F/82/+X86evUyx\nuJW15SYi2oKFSUwFQp0uAUMEZESHulwnpeXQiEAFWPoGaWUTSJ1hbJoE9LqIxEgUERKNGB2DGA2B\nRR13U0Mwzgx1OmiYZEiQZxWHOinSDJAgJkUDgzSruHiMkCOLho3EQ2OIVbpswUUAPhEBaTLEdKhu\nxtgdwCWSDdKaT1LvJ6FJdK3J7JWrjDu3kLUcAiS54i5W1gzMQodksotprjI+bjI6OoDvV1lZWXlb\nMBKGISdOXGB09MYbfWxsB6+/ElNpNCh9T0OmKI4JNe1tzMeJExXGx290Zk0kXuLRRx9+x7mLoohv\nf/sYo6N3YNtVLr36KrEfIeU2Wp1V+jKCZpCiL3UrDRe2Tm6lvLjIxvo6k6KM61eJojyT9iBerDEb\ntSjikcJGMyzCWCEwCK0c5aiKHgvO0MsrRqQJKOKQoMM6GQQaJSQbmAwSY6Bw8JAICuhY9IjaJgY6\nijXyKBQ6JRwsTCQOIYoWCSJMAkIsOgQsYrEdiU3EIgkUMW2WMIiwaTOIvRm6TlgFkqbOWmcezYJb\nt97K2dUyi66PUjn0MIGtqgRRhZXZSxx8eJS9e/e8o3bn0KFvc+TIBZLJMZLJcZ599lluueU27rqr\n17djaeki+/dvfVc+Au9HdLu9PjR/+qc3dxy7d4PnwdWrsGXLzR3LzcKtt97K1q1nOH/+NVy3jq7X\nCIIWW7cOs7jYII4DNE1j27ZJZmbmSKVKKOXTbNY4c+Z5du++l+XleWYuvIweaaSMDEfeOszw5AGE\nUAhhY5ltbt8+wqFjJ/DCbUCJHm8BoAMxSs3S19fP+noOPx5C0aJAlQ4DWGjYKLqUCcjhUASuksBH\nZ5AqMT4GCXwmyLFGiyRtkoAEXEz6KCKICYnRUSRRSFpYKDwMIEWMQsemRZ0uCWyxHV0U8VDkM8O0\n3SFqcZvZbpWCGaGEYLVaZXCkhOe1gBu7L0rZJZNJ0201EfQ2IefOnGH1yhWSwFKrxYV2m9179jA5\nOcmlS5f45l/9FVq7TQwkBwf5xC/90o9kfHjTzMb+pti2bYJO50Zzm1yun6mpLFLOMj9/noWFCywu\nvsrBg3v/RnSSEIKRkRF03WLHjrtYnptB6yqG9CwlK01GZEgiCEgQaEX69ByausJq/AYtzhOwiNR1\nWo6iKRQ12hRxUIT0OIYGkgUkS3RZJqRNE0FMgxJZcpRYZIAqOjW6tDDpYGBRpFdfo6FTRMPBxEaS\noYtBhEFACh8dRYENdFrELOHSwKVCAosWVWaQzFOiyQQRe5XBNr1XBWFKyEqTMIopWCmKmk1zbY5i\nro+qH6ElLJrNNktLMceOnee1117CfYceA2EYEsc9N9XvhWEYDE9t483FRfww7B0bRbw5P8+t9977\nth312Ngtb3NmffHFU8TxO9mc9ZTznge2nWBkZIShXbs4u1QhVknm1pZ58+LzZA2HTqPM3EqFgb4+\nOlKiS4dLsUnFGqbfmCQtExSNJEmtSEOksEWLSF5FM+psHZtk+9R2QsuiSosyoOMDy2RooNPYZLh0\nfBrUCXCpU2WDKm/h0cRliYg5FDUE9c0ANU0XEw+DNUJcYmr4rGFQJ0NAm1FgApsJJCOsoRHjcyuL\nDLPGEA0G6TCOJE0OCweHiIAAgWUaJM0Mhy+WeXMtg5R70IRLUszRaZ5i+5DO/ulbufryy7x27O2e\nI8vLy7z44nkmJ+9hcHCCu+/+EPv2bef8+Zd4443nmJ9/iZ07HT7+8Q+/62ft/YbDh2H/frjZhUJC\n9ISsP+4GfT/JiKKIfD5DozFPp1NhdvYZdu7Msn//bWzbto2VldOk0wZ79tzKPffswHXfIJttMTUV\nMjaWZ3Z2niOHz5JQY0TdDKvlJRKRjVO/TDLRolQoMD28m3rLpbfJHwESm68M0AEaCGHi+8MYRha0\nChYVsqTQqOMgSaBt8px5JD4mEhvw0DYbetRoABepI/FokOIaBeZIkgAkLhUaXKXOBVroeAzjMYrJ\nFhKMsUGXJSIadOmgiSwJu4+AmFBLUO/WCeMQG5PpVJG7cyWqZ8/y+UOHuO3Aftrtazf4OjUa6yST\nLjt27GD77t2s+j4Li4tUZmbYUigwmM+jpdPcOzbGX3/ucywsLPD1z32OW2ybeyYmuH9igsF2myf/\n7M/wf0gzvB+E9w0zsnPnTqamXufatTcplSZRSlGpzPLoo/v42McOcvXqLFIqtm370N84OqvX6/zR\nH/0F8/MdksldKO8VDJUETWDpOoE0GTIK+N46Hj6aajCBxwIJYJwEDpqVwUiliOxZcJeoBi4ugjR1\nBjHIYuGzyDLtzRKwJYYYwsShjYliEJ82LlfJkkSQQtEgxEJQoYkiJtjkW1L45Gjg4RAjCOjQxiNk\nHIMhJAKdBh2uoohw0dEJgJyWJG+mieMuelwnjtr0J5Kshj4rnSr9CZu+bIK6Lqm5LkNBPwMDvfxi\np9MEfF5++RS33377DbRcMplkeDhPo7FOLvfdygzXbbJr1wT33L2b40eOYEQRoaax9wMf4JGDN6Zu\n4O3BjGU5hKHC87x31I8kk0ksSxGGPqZps2PXLs6en6O+4VLsSg7ecjun5zuQKLBQnuWtmRn0OEZz\nLArpfgx9Gn+9S8cLCJHk8jmaLUEYb6CLZTQjRa06i9aSZOQC47j0pJwgWEQBGhoeFgEuedbpw0Cn\nQUiFDUooJpAM4+MiuYbc5EgS+IxSIMBmhhmKmJj0+hCts0E/5ua8xUgaJNBJUGMDD0igMUZIB4vd\nxCyRoAkiS0c1Sdk+pUwJJXM0amsEooBBDunWiZw0yrKYW/LZZiUYzec5/dJL3P/AAzdc2ytXrmIY\n/TcEh3fc8TCl0iD9/XV27dzCwsWL/Nm///dsv+027r7//ndM372f8dxzvR4xPwk4eBC+9S34p//0\nZo/k5uCLX/xrZmYC7rzzk9x2W8zhw4c5ceIoQgQkEhZjYy36+9MsLZ1CKZd/8k8e5vHHP4ZlWXz1\nq99gZgaqaxvoUhJ5McrL0tDmmKpL4lREYnyKSmWOWvsyQWijsQ4YaFhIdCQuMEAY2HRFCphEqXUE\nFXIkaNJAsoSgH4OQLk18PEIkC+h08AmJsPGwCfBwmaOPPMN4ZFlnlkXKm/WQkhzwnVxAa1PAqgMZ\ndCwWqBECbWIVUQuqYPaTzxQJ/A2yCQNNZpEpn8V2i6Bdp53I87WvnUSpFqurC0xN7UGpmHxe8Bu/\n8YskEgkmJyfZ/sADPPWHf8hkFLHcbLIWhoxs387OiQlOzc/zrUOHGNZ1ct/zezzc18fq3BwzMzPs\n2bOH94L3TTBimia//uu/zPHjJzh58nzP+Orv7eHAgTuwLOtHoodefvk1PK+PvXvv5IUXziIiA0WL\nTtjGjwOgSYIcQgT4ss2iiEggqVMiIkEZg1Ig8Lw2yVQf+WKI78fskpJUq46jTKTqkCNmmIgVXGY3\nq8ZDbHoFuBKDNDpJ2lwgJoVFF40aGltQJLGo9cpNaaDh0CRJjI9JjEmLLfRKewUhgg5NArpkEQwi\nsXFtEyHXyQqBjCVZzadgCYRwqeLhDEygJZP4YYiyA7YOb0UInWp1CYhIJBQHD36I1dUzVCoVBgZu\npPo+/vFH+c//+Sk8b4Jcrp9Wq4brzvKpT32E3bt3c98DD9BqtUilUt+3hb3vd2/QBblug1zOIZlM\nUqlU6Ha7lEql64yKaZo89NDtfPObbzE2dhumadHXl2buwst8cPs0g7l+LOMcaH1MDA/QFAItnabc\nnKNTr+B7NbS4jzx9NGOBaAQEUUBX08im+wjDCyS7AaoD02xQFFBQcE7oDCmfReZoMEZMnj7WGSKP\nRgIdjyQGOi5LNIhIk8SmxRARTXQWSWzyIwZJfPJcI0DQBRqYNDGRmNjkEEQoNkQdWynAQZAnZA2d\nrRgiRayGaHGFgrJRaPhxFdUdw9NCfK1AHKfw3UVslSEOspjYNOMuM4vXkLKE1+m8bS503XhHIzPT\ndFiZu0ZiZZ5tg4OYjsP8Sy/xX8+c4df+2T97V6Lj9wsOH4Y/+IObPYoeDh6E3//9njX8T3EV9Tti\neXmZS5cqTE7eTxAEVCplJienyGRMUqkNnnji59m581cJgoBarUY2m73ue+O6LvPzazQa0wR+AXwf\noepEapaCbnP7WB/HO03G9k/z/PKrbDRjlBrYrG+popFE4NNT9vURxRB11ugFByE6G/gosihC1hE0\nSRHQpAkM41PCQ8MhRGcVBxOXgHFgCReTNjkUGgbraGwjZBTIIVhFkQdmUUSsEV1P5nZJAGObK1FZ\nvkZX3oLq2ggRASvkshLfMJhbKTPVP4y3scraS88wPrKFlh6S3jHAL/3qrzI5OYmmabTbbRYWFpjc\nupXx22/HKJcxHId7h4cZ7utDCIEpBGsrKwTNJi+trWHbNlvGxihms6Q0jWa9/p7n+H0TjEDPV+LB\nBx/gwQcf+OEH/xD4vs+bb77FW2/N8OyzR5mc/ACl0jie9yyh3kZGVdrEGDKLQ8BZb4aAZSY1SUk6\ntFD4pPBIYusFVkIXVAyNLguNNUYyfbQ6TfrlADYGGjERHoI2EBLTpIZLiIaJtmn3XsNlnRAPk54K\nulfoGZJknTySgBKCKgazdEljYaKzTIkW/dhEKC4SE5CmTT8GDhYuKXRUYNLSM3SMDk7soukhRSNL\nhCKK51ha6ZLecRthWGZ4vIRhDrF1ay9tYlkWxWIRXddpNAzCzZTL92Jqaorf/u1f5ujR11hcvMD0\ndD8PPviL11NmlmVRKBRuMKnbt2/XDSZ1i4unGBy8hXQ6T7NZZX39HI8/fg9/8id/wezsBppmo2ld\nDh48wEMPPYAQgocffgApJS++eIw4NikUKgzla/Q7I0SRz47+DKfmTzI4tIP19QZzixcp0SAb2nRC\nhSaqLNAkZAQ9cugSYJpbiIMJEnGLYdVFx2XYSdMJJK04IsBknSQNTJLkAZc+IMkQIRKQaKRx0NAp\nI+gt0IoOkho+JeokqFMnJkCQZwSPKmsM0kER0wdsoYtLAqElyMuA0wg8BrHoBcwQEKoQkLjCASvA\nNjQ0qdFyDFYEuLJDWri05RIhO1Bk8cM2Ml5iV/8wr5yd5WO/9naF5vbtW/n6118lDKcxzZ7IWMqY\ntbUzDMoWd+zcf50d2zU+zpn5eU6fOsUDD37/iqv3E6rVng373e9efvZjxeRkry/O2bPwHjef71vU\n63U0LUOz2eSll17H90103cb3FY3GLL/3e1uxbZu1tTUajQZCCAqFAkIIzp49h+NMYtsZKt4qlhQY\nwkYTKQy5xlp9g/6+IS6efYv+/r3E4UXcapVuZBJhorAQaPTKdnUgiSIkyTLjxCRwyOMi6VInJETg\nIjHRiTBx6UcR0GENmxI+RVw2uEIXmxR1PAIalAgpAkP0qistFEkgBHIo6jgokghMPCpsI2ZC19Gt\nBEPEzPivs+avEqiQnNNiuCswyxtMI1isLKAZJluzfTSXr2IXhymfOs3c/fczPT3NiROv89RTz1Ov\nR9Tr62ysz3HngMMH77rr+hxEcUwlDFmv11k6dYpd/f24ccyzly6x/847aUhJ6UcgBd5XwcjfFoIg\n4L/8l7/k2rWAQmGcTifFyy+/SV9fmunphwi6X6M8F5PDRtckvkwgqTKKz4RIEWMxpFlUpUBgshG3\nsAhIofAI0PFwWytE5JFYSCQOGg5JArpE+AjatFkhg0WRLC2W6NIkRYEMG+Tp4COp4ODRIomOTxpF\nlxQZDFboYwmBzRQpWuSBCJeAGkOkyeIwgoaNj0tdLDKobIJYZ8ldZsIKcNL9rHgeFa/NXjNN073C\npbPXaFJiShWItArXrh3ljjv2sXfvLQgh6HbbOE50AysShiFra2sYhsHQ0BBPPPH4O153pRRPPfU1\nXnttnmy2Z6LzxhvfNakD+Af/4CEOH36NubkGg4MFfu3XPsyLL55gdTXB5OQDm+cL+PrXT1Is5tmz\nZw+6rnPw4Ad48MH7aLVaOI7Df/g/oFhr4LYa3LqtwIc/sJuFapU3nzrOdrPJbmHTDDzKWsyG1Cgi\nuaYbxLKFrecpZbbhBxGhF6ILi6zmYlv9uKFkmRhPJZEkCVBkcDaLpy0MTDQkAaAIiLAJCLApEtFG\nsIrFNCZZQgQao/jMotGiQo4sVZIYxMSk6AllHSLasovCIU2EzgaCQSyyRFzEZpmiiMjqAQ3hs+SX\nGc4k2GgtkNUstoctItFgSKSpqAu05RIJYTOQtBDYnFtb4fcOHHjbfJVKJT7xift4+ulXEaIfIQRR\ntM727QX6K/7b1PNDuRxzFy781AQjR47A/feDZd3skXwXjz7aY2t+1oKRXC5HHLc4efIMUKRY7Inh\nW60YTSvw1a8eotl0WVjoIESKMGywZUuOT33qCRYWVlHKZH19A7QcUdRF12NMPUEku1yqNRkvDbGx\n3sBOKXZsv5eZU1/Gjy10NQV0EASY6ISY9Ep46wxTJb35lAZo5LBoEhKgsOjDwCFGJ8sqMV0k2wjJ\n0KEGDBMwR561zade4tMgg8ShtzCb9IwwV4EuAoVBgEGTiDQOOhH1uE0uSDCSsDAsMPRVjJRF2m2y\nU9mkbAtdmCS7bU52fUSrxhbTYr0yz6rZ4fDXv86O3bv50peep1KJWFpqoOsjhFGWLxz9NkEc85E7\n78ALAmbrdeyhIbYtLdEeGMCMYwZyOUpBwDeff577nniCLT+CuvpnJhhptVocP36S8+evsb5e5urV\nJjt3PkAYhmzfvos33rjCwsIGqVRMIj1J/+QeaqunMUKXki4I9TQFmWbISlPtttGEgy4qoAxyWIyg\n0yEgwQpbEMxt+qa2aeKRwEUg8HHRuboZMRfpkmeeAAMPi2FGMVhmkjQ6EolPjE+bzCYh2CEigYZL\nCoMUDhIHAx0QdJCUsbDIYAMhvQ6RCbJ0lc0qHSIV0cZDiyHXqNFQMTudPPlIse538YISJXsAfb1D\nVwasqFO0WnVsG3K5FJ63wD/6Rx/G3DTEOX78BH/8x3/J8rKHaSr27h3jn//zf/y2FA70OmieODHP\n9PQ91xey75jU3XnnVQBuv30/t9++nziO0XWdlZUV5uebTE5+12nVNC36+3dw5MiJG/KTtm1fLxN+\n9Od/nte+/GVu276VfDrNRrPJpWqVfsNiX7YP2eoQxJIhaSOBDWJSho4b3UEcX6PjVtFUH6Hop8o8\n1QgW2nVUHAI2y3TJIMmgSCBpY1JHox8fY1MXHuHTREOSw8LC2zT8D4iJNmttPDrEGBjEWDQoELCT\nBOvElIhoAwERTQQeGjr92EyhyBAxQIJXmKaKo0qYMqY/7tBJgKPr9KkWg6GHpelU4jpXaDGpbWXF\n1pBWH914DuFeY+eAwV9/9rPc+9GPct/9N1ZD3XvvPWzduoVLly4jZczWrR+gWq1y7L/9t7fNb9f3\nSefz7+0B/QnE4cO9xf8nCY8+Cl/6EvyLf3GzR/J3i5GREQYHLY4cOcvExEMA+H6LIJjnwQcf4ckn\nv8KePR8kldrGmTMXqdc7vPrqZZaXl8hmEywtreH7MVK2UZqBrzQ6co3hYpG8BQOjaQpCZ3BwJ5cv\nn6EdatjKoUsF8HFI0aVIzw2kiI1DEgWUAQOFhYXBAJIYezOR4jNGgT4Ea+TQyNJEEKKRBmwGadNF\nYGJh0qJGtJkccjZfJj3Z7FUkAh+FTQOT4c1ONf2AjCOCbkCCGEeE2Nk8WSfFZT/GCaoUIp91FPt1\nA1NGFKwMcdBlupjn+JkzHD36KqurHZaWPEqlO75nk+HwVvUNppSif3SUD//CL3DkmWcYzudZ7utj\n5tw5unNz5Pv6GBoZ4a6HH37XbVjeCe8qGBFC7KYnLT6mlGp/z/s/p5Q69J7P/neERqPBf/pPf0Gz\nmUHXczz11EssL8/z7LOvksmMMziYIZGIiOM65fIVPA8y2QJJcxqrukImjqiFEZ6n0Q164cBq3GIQ\nnwodXFKEGGRxGcYljWCBkDYmLQbJb6qpOyQps0bIMII0Xao4NGmQQzJOnZghJIqALBoKB4syBll8\nJAl0wk1rtCIGi+ikMakRYuIQYVAhRCGJAY8mFgObC58gj6JJjaKmKJJiSjPQY49V38VT0EFjWBRJ\nhDH15TVsM4VhKjrJGkePfoHf+q1f4bHHnmB0dBQpJS+88AK///v/FsfZT1/fXuI45MiRK5TL/xf/\n7t/971j/vy3lzMwslnVjPXrPpG6I8+cv33Dsd25q13UR4u36kkQiQ7Xa/L5zfvc99+A4Dseee47G\n3BzFoSG2HjjApZdOU91YZ8BOk0451NqCPqFTjupEMgESpMoQeVUcZSFRXMIiyRTDsUMdnxbrTCMp\nENGgQ0iNJDmuYXEVjyIRAp8qBhtITBpUOUtEgMYoBqMIIKSF2gwkJRohOjqQQJBAp0tECaiiU0Yj\nIkUDkzwSB5cOLjaKBC4WMZrSMFSXSd1ksVVj2HQYd9I0my3G0alJHzPRZSw9QNlf5u7hYabG+rnn\nnp0MDA5w/KtfZWh4mOnp6RuuZalUusHQrFgsckjTeP3NN7GUIpvPU+jrY851+R++h9Z9v+PwYfjj\nP77Zo7gRjz4Kv/M7ICW8i24XPzUQQvD44x/hxRdP02gcB3QSCZ377ruLdLpApdJGiAxf+cq38Twd\nx0mRz2/jmWeOEgQ1hCigaSWkdIhZB9ZJWZL+dD8BdSbvuotTh17j9ddfpNkEP3QwN3Ue0CYAIkx6\nXOVqz7MJA0EJRY2IDhVCXCLmiYkxSeCSZ2BzW2nQxSAkxCDcNHvow6JLihThpn5sjiUGSVClS4EI\nAcwBCg2JQ5YCQ6QpM49FhI5AwwCp4RoahulwcSFi/9CtjA4WWVi8yka0gAhXGUdQ9z1WVZVcqUjC\nsmislvnc577ClSsdlJpC12v09fW0NolEhmx2B3c/8ggHNpnTZ/77f+fk0aPko4hiGNLodtmYn0cZ\nxrtqv/KD8EODESHE7wC/DZwH/lQI8btKqac2P/4/6bmo/kTjlVeO02rlGByc5tvfPorvJ1FqB3Fc\nw7L2sLHhMTwMw8OSffsGeO65M3SaddJRgCYEjqmR1rJUugGNzaqULpIUMToRtwD5TVszG2ih0IgJ\nyKGxhTVc2uj06tVLmGTRyRAxS4sZ8nTxuEoXQUgHjwCFwAS20OISF1kiTWpTnDqMoolGxBANYmos\noSNpYdJEIACJSYKADhtomJuNpzsMUGbMtLkWuLSloB8wpeICAkgQyYA8bTTyGMom7XdpBQYDA9Ms\nLS2TzWap1Wo8+ed/zuEvfYXkso/InmE9aJLK7yaV2sIbb7zC66+/zsDAAPV6nVwux9TUFKapbxoI\n3YieQdE734q9RbCNlPH1qg6AWm2N8fEBlpeXyWQyZDKZG/5OCMG+/fvZtXs3p0+f5uTJ0zz91Fdp\nri2ghQax8IjDCKF0grhFE0kY2uj6GpoyEbpBO/Rps4bGCDE6y0QoFBpDBFymSEQGnwZztCiQQLCB\nQZ0EASliJGlqDKDRReKh4xIBOpIu0IfCAsqbfShaSLKcp01qvD7QAAAgAElEQVQHkw6SYUJMFB1g\ngzothhjCIcAHPLIoDBRJaiSVRaiZaFKiZIxnaiyHHRIEJAT0CaiGy6w0qpRSabZMb2HfvmnGxkYB\nmEilePPEievByMrKCufOXSQIQnbs2ML09DSaprG+vo7b6XDu3DnyUhJGEbVEgt/8V/+KycnJ9/qY\n/kShUoG5Objzzps9khsxMgL9/fDmm72S458lTExMcN99+wiCMRKJNI6TQtM0ZmfPks/n+cY3jlCt\nJshkBvH9mIWFDTqdKpAjnR4DLgIOmiaI5SLtMOKtZostW8fxpcS2TFqtU0TRViwCBCtoDOCQJmQD\nRURAFUgSkqRCzAgJdFwsQhQOZWxgCIlPnjV0rrFOgRYSKGEhiSltWse7pDEI0YAuDoOs0yXGw8ag\nDEREJIEUFjqKFgu0SG86DwUk6VX2VVWH9TCiHCq6THBhpcpAIs9Q3zjlDZ1VNkhHLjkipAntyOfY\nzBUoTrNr10PMzT2LEAXm5yuYpkE2myWK2mQyaVqt1nWmuhOG1JtNzHabjKbRXyhQ932evniRY0eO\nsHfv3vdsfvZumJH/EbhTKdUWQkwBTwohppRS//Y9nfHvENVqlW63y6lT5+nv38fKyipB0MvIGYaN\nEAqlOkCSIDDodhv81m/9r9xzzyn+t//50/QXJlmLoO16BME8kXA4HdmkEYSAj4GkxTQShb0Z20Ib\niY+GQUxEg5AkPcOcKoJdCJrE1BikRj/FTQ2AxCOkTMggEG326TVQFOhi4lNGQ9DHCiaQQiNJSEST\nDBGTSLJAHajgMkgEWFRIskGOChlCNGKsIOIWJWkpDQ04i0OLUYZJ0iTLOhKLBnacJtBCymtnqdU+\nwqFDV2i1PoMhNziQy5DtRtj5CYJAMXvpNRYzNZKpCVbqNT7z6U9z7/btpOn13LGGh3nwsceIotOE\n4RSm2WNN4jgiCFbZs+ftroBRFFEulxkacjhz5kW2bz+AbSdZX1/m0sXDxFWdr1w5hyclW++4g498\n4hM3sDErKyt8/jOf4cLRY/iNmG55cdPpNOKa18SSCk9GLBoa7WiQnNnCNou0/AWkqhFTQ6cPiwEc\nBBERGjV0uhiYCJqUsDAJMamwDvSRQtKgTUSAYoQSOTQCsnRpcpkVQjQEQ0gsFBtAA41xIqpcYRGD\nESzySGLmWMehhWSQDvnNZN884yQpIYmISRKRQCcgwgwjZpWGpxQ50yBqNqmaOnnDhNigZDtEhRyf\nfPhhHj5w4AZaNWHbVFs9a/hXXnmVp58+hmEMomkGR44cYv/+ET75yb/HoS99iXsGB/m5J55grVYj\njnu9MJrV6t/yE3zz8Pzz8NBD8B57OP5Y8cEPftf/5KcNy8vLXLw4g1KKHTu23dBJVtM0PvnJn+Oz\nn/1rPK9EIpHDdTfIZpsMDSU5d65DsbgdTdNRStJstllbWyKdHmJjY5m+vltpt7t4Xo0o2oGuu3T9\nLhfOrLJw+b/ihZJu1we1wShlBA51FmhiAn2AApL0DNxdyrTwqZInRmAQM4RgijwGEU26XKafDerE\nFMnTZg6NcXzU5loxj8M0Eh9JihYQksMgyQAaDgE6NSJcFggYQSMmJM0GFjENFJcASUwKnTImDUok\nGaIddHnmwmV2DxSJlc1qbDNpSNKZPJatUcrlWKrU6Zu8lS1b9jA+/jrnz18glbqNpaUlgqAOqs7l\ns+d45elFzr7yCgcefRTh+wSOw1y5zFgyyZrrsi4Et05OUrl0ifn5+fe8IXk3j5r4TmpGKXVNCPEB\n4EtCiEm+T4O7dwshxP8D3Am8rpT6n36U7/petNtt/uqvvsalS6sIYfP66yeYmkpgmgk0zUTTdGw7\nZmPjEkqt4DjDWJbFXXfdgu/7jI6Ocs++IRbmVmjJDUJ/DcNrEsnt+OQ2Q4cENg2SzLCAzygGCSQV\nYpbRUCiMTYlih5Cev1weQRMdF4NFilhoCARpUljkyNPCZYYWXXzSSBro6Bik0OlJJvMkyVAhxiRg\niRUMRgnpwyGJxQAB/bQ5RUABg0Wm8Slu2vBoxOxUMesIdHQa6EgGEWQIgTQedTJ0sSnLRdYJMe2d\n9PfvJwiWSaVu4cVvfJb7PnGAbDbJtWs14q7GVKrIpWiNYuoWymvXkBdj9j/88PXg4PLyMm8eP87H\nP343zzxzDOgJIqWs8Nhjd7ytfXWlUuFLf/7niGqVpFJY7VVePz7D6MQ0hh6yOxvx6LadmIZBLCVn\nT57km0LwiV/4BaCnvv+///W/pnL6TaIgQdZKcn++xJsKKvUaBdXFSSdY9RV+YppsJ0Wf9KgFF0jI\nRSaVywZpKphECGIgg0VEP10WEcRscjYU0LiMTh4dRRYDo9cviCYRbbrkN+8YGCbiGk1AIakCNlBE\nRyfGI2SYFL2eSgECjd24nMJmBybWZp3OFQI0khj4SEIiuig0TBaUhgtsIybp+9iaRhiGvOX7hI5D\nf6mPR/buZandZnFhgWqlgu04jIyPs9JosOuBB6hWqzz99CuMjNx7PWhUaopTp15jZOQVupUKpc0K\nqdHNbr+xlLz41luEv/iL1/VE72f8JOpFvoNHH4XPfx7+5b+82SP528Wzzz7Pc8+9ia73Urnf/vab\nPPLILTz22MHru+2pqSl+93c/xalTb7K+Xmd8fDu33baXP/iDP8K2j9NuL5BMlqjXr9BsXiGV2oZh\nZEmlHDodlzhuIEQ/hnEVJSWhnyefv5Vm5zzIETTOoZBYwqGhQlwEMeP0qhrTCDIoDARXEQzSZIkG\nVTR2k2eEpNCIVIRLlxY5TrJOkgwlxlC0qHEJMOn16O2JYU3kZvOPPA4xkyQAe1MvEpBGMoGOwmIY\nGCDCImJhc1QrKKroaIyRJkmaNLrIUlENzm3USaYzDBUHyY6UiGWEjCMu1Ks0DIfR0ii6bvCRj/wy\nQnyRy5dPEIYGQ4PDRBuXePyeae7fuRPX8zj+1FPUGw2m+/rAsnCDgJRhsD2X46LrktM0qtXqjzUY\nKQsh9iulTgNsMiSfAP4EuO09nRUQQtwBpJRSDwsh/lAIcUApdeK9fl+j0eCl55/nwqlTnH7jDFpq\nB3fe8zFsO0EQOLzwwlH277+bIHBpt2u4rkEqlSWV2orvX2NkZJKZmdP8xq8/D52QlbmrZJwJHt73\n/5H3prGWneWd72+9a97zdOap6tTgKteEy7iMB2wTaAyGkBA66ctw3YTciI6UCPIB3VZ/iJA6Uqu7\no1Z0OyhRmktDAuFGEC7pbsaA8YApj1Ueah7OUOecfc6e573m9d4Pe1NxAaHB4Lbh/qUj7dpnndpL\na9rP87z/4a28cOESz609jWQCiUmWJBKNmAwOdTx6XCbAJaZFbmwDXMengcssgklUNtBoYVAii0JM\nDxODiCQKCgYmoJBAMGCWLUASMcBjBkGCiINouKzTHmec2Djo6AwpoJEnRsWhj0UKQQGJSp4MCg6S\nPgajun40IIQUMatoKKRRUGmOjXZy9OgS0mMNVT+OnVrE9wdMT+cxDBMRF/j2E6eYnypw5sVT2Mo0\nqp4jivpUWufIqg2OTd1ErVZjbm60BLA8Pc13z5/n7b/+6+zfv5erV1eQUrJnzz/7IbKrlJIv/83f\nMOd5zI4v7KNLS5xeW+PmB+7i9KOPcuymUSECoArBoYUFHj91isFb30qtVuNP/uiPGJ4+Td6NUC24\nWi8TGCa3Ts3zTTdk6CUoZBMsxjGr0qHm1un7faaFy2E1wo7h6ThDQEiPDiEZFFQ0VEIcQvp0gAEx\nO6hskSbFHApJfKpoDFhCx8WlT4CkgiSJRTjuov4xHlEZs0VCKkh2M8DAR44XhVJIlgkpo7EXhQGC\nkDZl0gTsYUAPSRmDDkVcUizHPm36DLstckLDUAW2lHQieH0uT29zk6d6Pbz1dQ4UiwyiiKdOnaLw\nhjfwW697HefOnQMK1wuR8f1KNrvI2bNX+GHnkesbvdzb9zWHhx6C3/3dV3svfjTuuw8+/GHGjsev\n9t78fLC1tcW3v/0CCwu3Xzc+jKLdPPzwkxw8uP8GR+1CocDu3YuUr17ie2ee5dwzT6MKhTe+8Q08\n9dQZ4rhBGG4wN3c3zeYKqlrDsg6jqgk2Np4mn48RwqBVNzCtKRL2FJ1BGUvPEURHGQbfY0MGwBwg\n0NlPwA4xqfHs20PBw8BBoY2GT588XXWevuzgyzOMBLlHqNJGsEMFh8x4xqqhUCOiT58GOXQMOoRA\nB4PRtFoQ4qMiMdHoYyLYJmAGddy4+KhExNgEBDRIs0SGAX1C+mikSGHTigYEkcvuuSluO3yCWrfF\nwOlj9bPMRS6aOmocdN3kvvvexa5d54EyfnObd9x1G/NjrljSsjg6O8tqs0kjitit6yyPG5Fyr4ed\nz6Mlkz+0XP7T4CcpRh4cH9nrkFIGiqL8S+AvX/Ynw+3AN8evvwXcAbysYmQ4HPI3/+W/kO/1OGzb\nVIfgehVeeOpr3HrXr7F79yEqlS2uXj1Juy3xvB6qGlAsHkfTciBDHn/0G1hRh0XNIo1gITIg7vLI\n43+PZ+5DAXQUNHwCHBQyQECfgDVsVJZwmMFCjDNzn2GCLC3KwDYmLSxcIEQjTYiCgg+4jBTloCBw\nUTDGZvIqDh1Ckvgk6WADGWAXPdbxsVC4xDQKU6ikAJUI6FAjHq8wDojokGSIwwQ+DtBnxNQeEhPg\n4RMTk0RBo4OPpYTEiocmDTwlRTavYdsOhw/fyuXLK1zbbqP326QWFjCMiMBdZ7u3wdCwWMoqTOam\nGAwG1Go1ZmZmEEIghEBlJAP+QULkD6JcLhPUasy+5AGkKAr7p6d59rHHCAcDEqXSDX+jCoEJPP/8\n8/zVn/4p9toaJdclaHcJ9IAlM8FztU1sBJZtkTJtmnGfZqfGXCKLHbSpxUOiOEZRBFUZ08VHoURM\nGZcOPdLEtElwjf2ENIAyMRsU0dmPhk6f/nUKa3WcwayQQhKgUkMisNnBoYxgkZAEkiIenTETaJSF\nE2OPfUQkKmJMalUYoiOAPCF78PBRUdDRmURykJAQGdWIKeAS0ZQe+Vgho+ukcxMMai1aCZ1FVWXh\nyBHa/T5hGHLTvn0MbiAc/3BhoSgKyWQKfWqKSqvFVD5//XdrlQp7jhz5pZiKlMtQrcKxY6/2nvxo\nTE7C3BycPg0/QpH9C4nz5y+h61M3ODCrqoZpznD27MUbipFLly7xtU9/mv3ZLAfn52n3+5RXL+I6\nKd72trfzwgvn6fXaeJ5LqZTi7ruP8/DDj+E4KVS1zMREkWTyFhq1U2QTecIoQgiJEBGx3AFMXCZQ\nmEVhjYg6kggFG0EXhRCTiAI2ETpF+lzjDJ1oEZXz6MSoHBgrGW1AGcenjnygTHTSNEnTpYuOREfg\nADO4xHQZjBtVFxUPHwUXSYjAH89lVAQKMRYhMSEaKklisphsscJA5gixiNmikM4RDnRWr64SuS4y\njgnDHn5BZeC2OfvCY+xcfR7Vd+n7Td753l/D29KuFyLfR8q2mSmVsA8c4LEvfYl9rkus60SpFHsW\nFggmJ3+I/P7T4H9ajEgpN/6J9yXw3Zf9yZADVsavO8ChH7Ptj8WZF17AbrfZt7hItVrFHYYETpv1\nS5foDATHT9zD7be/hZWVCCkDrl6NaTZjGo0acVxDRE10cswYMUcyC/i+Q6XTJdJDEkOftneBBWJ6\ntDGYJqJFk3ViFoBpAhL4RKgoJIQgjkfJMS4wi0aDGvtwsAhocIUBJhGSOi5pdATzODj0iQiYBCQ6\nUEXDIUOXKiYGDh0kFh4xLWLAJMYkHlvES1wCAiIS6ECWKTwCNtgkjUGAhzc+0J6iEiPRZcSAGhr7\nsLQMUvFxwzJ5tYXQJImpHsdeN086nebKlStcuVLFzGXYGW6y2mkzuXiE8upzTC2VeNeJE9QqFc69\nuMP2YIBpWZxstTj+hjcwDAKsYpHsS8Ly/in4vo/+I7psU9cJPY/0xATtfp/cS8LZvCBgCDzxjW9g\ndLvcsrDA41vbJPyQbmuLSFExZchZ5zw7uoUTK5QMlRk7Sd6yScQhi4rgjJQ0gR6COgEeBoISkhaC\nKik67KOLCWwDDUAlT4xFm21iJhAUUdnNFo8zyRADgUEGiUIfh2OoQJvLXGRIHoc1dNrk6dGmAOTw\n8VEJUOgi2UCQRhCPKbBdHCLOYZGgj42ki4NLB5jAE4KSTOCRIasM6EV9HKmgtDr0Bgk8S2N/KUPs\nebzjJWsRz127xsbGxviB8l2CwH/JMo2k3d7gne+8m0LhLr74qU9Ru3aNjGnScl2CQoF/8da3/tT3\n7msRDz8M99772larfN9v5JelGIlj+SOJj0II4ji+/m8pJY9+/escLBQojqMH8uk0v3LkCI1nTyPl\nKocOTdNun0fTPBYXl2m3JSdO3MvW1iq6rpJICHTdw7RG53joVQiCPq63SRClEGJmJAGmw6gPr6Ax\nA0gkBtrYfkyngGQHkySzdBjwFdKESA6iIvDokEWlh0qEhUMakAyoUGSbJKlxly8oYdGkimSRGjtM\no6FhINmkQ0ADQRaTOg5TgEdAABTGzicBPVpMMI/BLIIefbrUUZRtiopNLZAML5/h+OIykYioeG0S\nyQXaO89y4bnnyWk62VKB99xzN8PVVc5vbXHb3Nz16TNA33FI5HL83h/+IUdvu41vfOlL6EFAPptF\n37OHX3/Pe155ae8rhA6jRh8gy4h5eQM+/vGPX3993333cd999/3I/2hrdZWJ8RdTtVKhubXCdG6Z\nXbZNvVLm1KOPsuvwPo4cuQnPC5maKpFOF5BSsra6yslvfAenWyWnqghFQVN1TKFQH4TosUJOcZnU\nF1GCMl26OAjEOEtmpHmxkfgjOlGcQMMhiYnPRXRMJvAxGGBikcbGJY1Bkj5tavTRaRCTISSFjkRh\nkwFJOuQAjTJZBG1UYloM2UYhg04F0EjisYlDHxDECFT65DGYxaSLTZcsdTavFyLngAkZYgF5BMs0\nucz3iKNlEkYKtAZWwmXx6OsIrGnW11dIp3exs7NNpXKRfN5gZvZtXGjt4LnXkOlZ3ro0T6/TwWg0\nuHligs1kEiuRwG80+Najj5K7+WZ+7UMf+omY1tPT0wxUFdf3sV7SrW/Wauw9fJi9N9/MP/z1X3Nz\nHFPIZOgNh5zd2WHu6FEG586RtG22yjuoIsFOMBipnGIYSIUaNhktTyeo4jhdwuGAuujQikaKk2mg\nKiVrWAgEgh2GYypxlxYJquygsIqKScgUI1OiDlsEpFDHMeKSNj0m6BKSoEESA8EEGim2uECRgGVC\nKgzoEbOExiwKz7BGGx2DCTQiJFuoVEekNCqMXEdChkyhYeEywKXKNHlyDKgQ0qaIkHWS+HiRRguF\ntaiArkwwmYy4dWKGodflwrVt3vaS4x4xklQXi0UeeOB2vvKVp9D1aVRVw3EqvO51Uxw8eBBVVfnQ\nRz/KubNnadXr7J6b48CBA/+kxf8vGh56aEQSfS3jTW8ayY4/9rFXe09+Prjppj08/PA54njXddVc\nHMc4zjYHDz5wfTvf9+lWKhR/gJdgmyY3Lczx5g+8C9/3WVjw+NznnqRWmyaVylGp1BkOK3zsYx+i\nXK5y5kyZ7amIjWuPYGOgyRx+uIEkh2CbmDyjZNs8cImYPpBC4qMxRMGixSUmkICOTkSWBiY2zjhT\nV0MS0yckjUWeDDuohCRI0SSLg0objQgFizoqGSwi+hRZoUaSASo6CSJSRDTp4aPQJ2KaEePkCnAz\nFnl6nGEHnxJJRjGeDj0Wk3mW8Fjrd9mxpjjZ2aHeqVBMGmjnLmCEPu89cYKJdJqW43D+4kV+5d57\nOb+1xXeef54js7OUSiXCOObF7W3ueM97EEJwzz33cNeYX6brOrmfg7/Qq1mMnAQ+DHwBeDPwX39w\ng5cWIz8OmUKB+oUL+L5PZXWVg/NFyo0WQ6mSz+SIYpezz3+dt771Q3S7Xc6fv0g6fQeqqhLHMUHo\nYps+QagShAG+HxBHAVHgI6WLZVokDYtJKTDDNhUsLIZjVUQJlCyK9IDL5ACFDC1eZDd9pnCoE1NB\n5SYkq2TJsoxEoTxerumyxoiuqI/VFRoQoGGgM0WRDiZJdlAZYKGS5woKDl0EBhFFUlTHlfw8YmwB\nPxjn+WYwmRqXPDv4HESSB7pADYVFDAQ+bW2TXpRBKEX6CZW6V6JdCVGUDa5dO0e32ySKLKan72Zu\n7hDK/BHC0GNj45vM3HqIMw8/xO0zM8wvL3NPOs2ltTX6rRaVIODB3/7tn3iEZ9s2d7797Tzx5S+z\nK50mbdtU2m1qhsF777uPUqmE8uCDPP4P/8Dz166RyGS4/Td+g1Qmw3fPnWNxfp4nXjiP7QX4mHgE\n9OOAa4rGhDDJRQNk7CHRkbJEBgOhJKjKJj0CQgQLZLFYYEjMFkMaFBEkaJMnyTRZVIa00CkDTWAP\nsISGjklmbE63hcIuBvikyWKh4o+VVoskxwssESFdqnjEmMyRQOUcKjYRsIhCFochFygjqGOisYsh\nKQJCUuQQmDg0KZCjiMt2nGadCJst+qTwMInJklZ2IRkSWAb1YUxKJhm4LknLojsY4FrW9XH4XXfd\nwe7dS5w9ewHfD7jppmMsLy9f9xJIpVKcuP32n+h8/qLhO9+Bj/7c6PSvDO69Fz74QQgC+CVYGWNx\ncZE779zL448/hW3PoCgKw2GZ22/fdcNzQ9d1VNvG8TxMXafb7SKEIJFM4kvJ7OwsyWSSr33tMe64\n4y6uXdug07lMHLvMzk5w+vQ50ulZZmb2YRgp2rW/YtDTGIZpJClUJLEcpaUrio6UOSBLzDPoXEES\nEaERkMEkT5uQDjuksQGVFAMCgvFTRBtHgJgYXGISHwOFbUKGzJLApIBKDwWYJ0GHRRyaSNKkiMZm\n8DpXsPGZZ2QP32dktVZkpNE0iChhUqLFFsNxxrDk5tLNlAyDXDJmzrtAV6kRiwVuKS5RVC1qOxv0\nhw2+c+oUdx44wPzEBJO+z5lLlxhUq6y5LufOnycGFg8f5tcffJBbbr2VRqOBlJJisfhjl9t/Wrxq\nxYiU8rSiKK6iKI8Cp38W8uqRW27h89/9Lma9ji4lywuzhKLMpWqTyWgDVQS0m0MeeugaELO5eYZu\nt8b09AFcr0EsVtk7P8Xmyhqb9QoJJUHf8wlkl5ZwkFFAKayQMCcgcujRwVMUckqJlGrRinxCaePL\nIhXZQqfCEgOOYqARkEPQQOdFYgQ5BoQ4qARY4xD5KSyu4ePRJUOEhyBCkELjEkXaY/+SeQqUsHEZ\noDJgD5IrJHCZJEENBQ+dJAkiNBr0mUUhYkgeGKKxQEBm7EWSYyQQvqxIprQ0cVwkVAQVDHQlzcpK\nnXz+LlqtATMzu4jj5+n1Kmxv1ykUVpmf34OqjiZDhw7fjN5tc/tL1nbfcHTEb3782rXroVU/KU7c\nfjvFUonTTzzBarPJ4h13cP/tt5Mf8xQOHjzIwYMHCcMQIQSO4xCGIX1VZf/0NN8wTFb6LZIihSdc\nthSLJZFiJnTRNJWCouFjsRN5ZISBkAYJMpRpsIROiEk8NnefQjBgiIdJjt0UUdFRsDBpoyKpAwYG\nXTIUkGOXlwiTBC3EOJvIZDTXSCCw0Bji0cHHpwgUGIlq2+jEHMKjySiOPEWCEgl0nPGkKz8uVF1i\nYjQsHFxidjDQ8bmKxYAl5rGx2cZniEI7LjMp57jQrTO1fJT+sMLlzU00w6CtabzjAx+4QRo9OzvL\n7Ozsy7wrfzGxvg69Hhx62YvG/2tQLMLyMjzzDNxxx6u9Nz87FEXhHe+4n5tv3s/Zs5eQUnLo0NtZ\nXl6+YZoqhOD4G9/Io5/9LN52izjWAUkr7HHLu9/J9vY25XKZ7e02Bw/ej5QK5897aNoC1arD9773\nEO9////BgQOHOXv2SfL2Lrx+lYS2G5QEblAhlnNADiGGRFEL8BAUETiMIk2XSZAgHhuYgaTFBTyS\n6KhYVIgAjwTQIM+QJVRsDJJATMiAAQKLNAo9BGkSBDjExOiM+G8ClRYDkvgcQ46VdKPn9iSjpYQQ\nqGKTZoKiEuCLRdRoQNLoMmVNEMddTD1F15ekMwXmbYuDiRzrlR30QCWhZEkNh5y7fJmg1yM9Pc3J\nZ54hlc/z/je/GaEotPt9zjWbCFXlv37iEwwqFRTAKpV423vew8LCws/lGnhVVfT/Mzmv53mUy2WE\nEMzNzaH9gOi/XC7z+ONPs76+hVac4tnVy2y12zSlJC4V+cjb34aUks9/+wzzc69j164RI216+iau\nXv02i4tDzp/fYXZ5D+efO80w0ulKDytoIYXHUInxZQktbhAG26ixgiZDbBHR0+ZJqEmC2EdRAmJq\nCAYMpEYeSGEyIGIUrCSZRGOLiBYaLjYWJgY9IhR8NGCCGG08GdGRpIioIaljodNHRSWPwoh4qmKh\nYyMoUeQ0LllsZlGpYTKLIIOPRpl1MlSpEpEaZyv0UElhIICQgFBGdOMYJRbkVWgZHradxnFSNJs+\nqppBUVQsa4LhMCYMu5TL29j2SJuzsFBkaWmJ6toa1VaLyZcQGxvd7k/MFflB7Nmzhz179vzYbS5e\nuMBjX/86XqcDuk5yeprza2uYmgHJOdbD0aMkHcZMKTaKIvGjPkosSAgTI/boBT4+PnUkGikYW+4r\n1JAk0UmiUWXIJCqCNiEaI/M2lzQhbTIMkGMnEmMs2RaECGpoZHCBCMmAIQW6dFGpE9EnR4p5EozE\n3xFpNtjmGm0CcgwQBLQpoLCJR5ssgiwONRQMVFQEw1GeheLSlTUKWMwxi4tLgzpdEhRYoq1WMM0s\nU/NF9h+5k3b7GfInTrC4tMRNBw78EBO+0Wjw6KMnOX9+lWTS5q67buH48Vt+ZqfF1zK+L+n9RRAG\nfZ838stQjMCoIFleXv6x+SZhGFLeqfOFkxfQhh4F0yBZmkQtLvH5v3uES2sQhipPPXWWatWhXg8p\nFk8ghEa5XEbTbuKb3/wa09PP8PzzT9KtuRAlkSJEU87UAcYAACAASURBVFVC2QWmgBRR1ELT0kSR\nATIkJEaiElOkQZsiw/FdbiFIMjV+hkyik6BMBYchA3LYhBSvSwViVPIEdBkiSY6ND0cKnSYRISli\nQOLiss0yEsFI6qCMf7KMloe7CIoUcFBoAIFiEGgJkBpVt0XeFoS2RZTNEml5Mkj8MMRzHAASVhYv\nGBJGEXIw4OL6Om3f566jRzHHI7eJXI6ZXo9P/6f/xAPHjjG1sMB2o8Hlixf503/7b/nDP/qjH7Jm\neDl4DVr6/CP+3b/7c9rtGEWRTE6avO99v3pdw3z58mX+43/8v1lb6wIWvt9nakph/xvfyIzvc9v+\n/QgheOyFc7SdBEdf/4+tjmUlCII8jz56luPHf5UDB7IY1kM88tB/x9QMSlN7mSyUOPnct5h0PPZq\nE3g2VPs1hPDQTA1drdDoRwiKgI8flxEih64WsWKPUOo4OGTHCppRxRvTx8HExiUiwCGFBNpjqzMb\nhXkUUkCdiBQ+GjVWyKAxZNRZBygExGOCk0CgkSRDgixdmvRYQ47Z1irb7GFIB4UhAkjRHl/cJoKY\nBA493KhPUSToqTHZ7Dy2ncY0Nfr9AYlEEkVRSKVydDplJiezJJMW+XzAvn17ieMVdu3aRSaT4Uuf\n/CRdx6GYTtPq99kKw5+YK/LT4sKFC/zDZz/L0akpsgsLeEHA2WvXmDl0iGytw9nHrjH0CmjCYlD5\nJlEQIonwI59IKGT1JKrn0ZY+MRpdbAIcMtj00YnwSCDp4RChE+MzRCUHBAg8BD4WMWsEeORRCKnj\nYeMDBpsk6TIgJjPufDLUsPBZGzPxBUtEY/vnJIz7rBJDmswxYIBOBZMaXdpIYpKEdIk5jE9EAkFA\nBUGFvoS+kWTox1ykQ0wJ2IOuWvjUUWKHgVOl19C5/NT/y71HZtg6fRpdCG45fvyGY9tsNvnzP/8c\nUTRNsXgc33f54hefZnu7yq/+6tt/7ufytYLXsr/ID+JNb4L//J/h3/ybV3tP/tfhq1/9Jl/60mlm\nFv8F6XSOXq9Cy1lHHwbE8SEMY5bFxWkuX67w2GOPMDl5jFJpVDw3Gtv0el0Gg5DV1ccZDieJAhWN\nDrbcIQxb6OQJqAATKIpAShNVjQnDMtBiRHOMUYjok0VgI4mJqVBiQIDHVUIiQkIWMAhRGDIqZdQx\nmyTCBhpk2QFcDAQeGk20sSwXFKYZEuLRG39yf/zpU4yWaXYYZYP3hE4dSZUZVDWFEDlCv4uaijlw\n9CjrtVUW3/B6NhtJVi48T58+ke/TkyGa00MqIZVmj14YUbFM7jpxgltuuumG497sdLC7XUrZLN95\n+mnam5uIToftcpnfefpp3v2hD/Gb73sfxWLxZZ/b13Qx8swzfeLYBiSrqx2azc/y8Y9/lEQiwac+\n9f9w5YpLsXg7ppkmjkN2dl5EVaskD8zxV989STFpc7XaZmLPrczMzhLH8fWubn29ytTUFBsbFdbX\nT7OzU8eyDzCZaHH7oVuxDJtL5x9ml99AY0hKSZC2VWb0JJc1DT8OSGazGKrN0DXo+rM40SyqWsNU\nLIIwoIOCioJBzBCXBgoqbWK2RsobHFz6SHxU5onYwmI/o8wDn5Fja5odLAy6OJTRKOEREuASsYmk\nSYTJAAUDDwONRdK0gBDJBCqzZLCRXMMlIsQde8gahHSJaIoik4qJJGBgl8hmC0xMzOF5bbrdHcIQ\noshGSpdkskMuN4Fp+kxN2UTRGv/8n7+ZOI6xLIvf+lf/ihdOnWJ7c5PS/v2898QJpn6GWOkfh5Pf\n+hYHi0WyySQwUtscW1ri8UuX+N9/+wPo9pM0GoIrV9apB7soN1awIxeNBIoM2PIbdJQYVUb0SdIm\nQxqVDgNsNBwEMQ16QJ8EGhtETNDEoEgKA4UWVXQCcrTokyNBdpxnUSVFSERAkTVyqNikMNFpEbFC\njEqRGA0PFY8MQ0IkQzJY6Eyg4JPHx8FjhVFSUYhAYiLwiLDo00TFIyDLVQKUKImu9tC116PJ6fE1\nrxOSJAzXyYjz3H/0Xt549AClbJY4jnn2qad4cXmZ173E0vPkyacJginm5kaTKcOwSCSO88QT3+PO\nO0/8TA+d1yqkHBUjvyhf7vfcA+9/P3gejPMhf6nR7XZ56qmLJBILBIGJricoFHZTq/msrp5mcfEA\nzWaT8+ev4jg2QZDi6tU1BoOYqakCjcYqYVgkiuoEwQRxnCEhfNQ4g5QmEdukmaPNCjHPoWkF4rhJ\nFK2RTksGPZ14vNAiSWBQRKAS0MDAYoiGTZsWMZI8GvvxqeOxgwlI+kQMyGCwwwAXcEkCfTzKTNDl\nXnQsApr4NEd6Ry4SUABsRuw0D1hHsIpGjIUZa5jaHgwZY6oOsVBx7Bh19x7OBW1uftPt3HL8MJ/4\nk0/hGzq9fh+nOyQlXGw5pKEpTFoZrnoBd7/zLSxNTl5vHoeuixcEbFSrzExOcunaNZzNTUr9Pv1G\ng/koQqvX+fKf/RlrFy/yr//4j182mfU1XYwkEssYxoihPxx2efrpp3n++Rc4ePAAL7ywSjb7Bkxz\nNFoWQqNYvJnvfe975PO7safvo+Y0IHWZjbWzDGpdFF1nYe9e9uzdS6u1gabtZmenQSYzT7FY4OqV\np9h2ewzcPpZhkzQTJIZtErFDRkJdgctDQSP2CI0EpmEipUW+kKdfP4MhQpRwCyGHNGgzgUoDlRCF\nCjo2sEiPIRcISKLgMKDPgKOAjyAmxiAmxEIngYoQLkGcok+PPi18VAxaFBklRnaRVIEETTwS2EAf\nFR+TBD0mAAUVnQgLlR0EkgGQp0lIWxmNGLtKlY7UyJUS6GqFfq2LN9whnU4zNTVLPj86xvv2HWRm\npoBtd3n3uw+xtLTIE088yxe/+B0URce2JQ888Ebuf8c7XrHrIooinnziCb72d3/HvG0zOTnJsYMH\nmcznUYUgqSjMzs5wyy1TrKy43HLL/Tx10mbzVJN9aUG/WsEMY84OA9Z8Ax2TSMwg4pgJklTYRuCj\nE+DTpIuOzZBJ+iRpMcCgTBZIYdFCkmCfInhebtKmhYVHBuW6e+sdaBhYCHR8RomdAR41IKJNliUy\nmHTxUfGJaGOgEJJFRZLHHRv1u/ToMeqPVFQUJJMvyQmOmJ7KMOxcwB/6CDVAxiBFSECXRLrE/bdN\nMl3IUW93SNk2lmGwu1jkhSefvKEYuXBhjWLx4A3HXQgVIXJUKpVfymLk6tWRkdj+/a/2nvxkyOXg\nwAF44okRofWXHe12G0VJMjmZp1qtkEhk2N7e4dyZi7Q7NZq1p1lZgX373sDU1CzgcuXKi5RK0/h+\nlURiAcNIsb19DiGOIeM6SdlBU1Ij4rocZc9oxARKFUXxUBQwzR4zM3u55itoYg995xQRC8RYRAxR\nKJPHJELQpTdmlCVQ6GGyQ48mSTw0bAJs1oEKWXT6pGnSp8wsQ1KoeIwsFzQMEkgaJAkJeQaXHB55\nYlYw2EYnYJIQCx9BGDvMmjaRFHSVHe69d4mPfOR3WFqaJ5fL8a9/7/eI66v0Gw3KjospfSZig56d\nJmOVWMjlyUQDvKHH1M0389Rzz1GpdTi3VqczjBgKhzv3z9BfW2NKVdmpVgn7fWQUsb9QIC0l6ydP\n8vm//mt+72VGSr+mi5HvFyIAiUSGWi3F+fMXOXbsKP3+gJmZzA3bb22VkTLDxMQeZmeX2dra4NRj\njxG7ayRKDjOlfayeepKN9eeYnJR0Osp1h9Bs1mD38h7On32OtZ3LdAcNmsMmeX9IPmnT1U00pUTR\ntLjSXkdVkxhSJbYd3DhEYYDqnmJJSOaNDJVIpUePAV0iMoQkOUSEhiCDgo5KjyHhuK+VKIRATJdR\nVqSJAxCHKDiopIjIk2GbeXQS4whrD7iCR4M+DmVCJjBREDjobDKNgkfEEHdMa9U5T4ZNRkRTW9FA\nvYqeTkIcs5jRmJQeatRjPuPg5gXpeZft7VNks1mWl5c4fnyZd7/7AZLJJJ/+9OdZWYmZn78LIQSu\nO+Bv//ZhUqkke/fufUWui29+9atce/xxbs3lmFVV+u02Dz/2GL9y770U0mmGUlIqlXjwwd/ixRfP\n8OyzZ7GVNT78vz3AYDDgiVOnCLtdXiclrK4jwpgmAwJRwpcBSlSiQ4ygyQFmuUKPA3Q5MDZx9hmy\nic8GXZYpcoGYa7JLBoFKCo9FrmLgI5jhLAEREp+R1dyIhOYT0ecwJmsMaBKRw8VHp0IOhwmyxCPt\nCx4+BioKFhlqdFknZgbIIhmFNaqKRJgKCVvg9IvEIsCX6+i6SQCki1kMq8BGzcbSDcKoQ+L8Br92\n11EMTSPwvBuOcTabotEYYFnJG96PYxfbtl+R8/pq4xeJL/J9PPAAfOUr//8oRjKZDHE8oFDYzXD4\nXbbWTrFRdkioGUytTzFt0Wl5XLywRqk0ja4b7N6dRNddLl6skkxOAVvkcgaum0bqoPa30eSAjKLi\nyhohApUkgUwSxyphOEBReiST02jKJYSvopMjoI5Hg9RYuxghaSIJyKEwgwRSXGUR0JnHoUefBm08\nHA6SRh9PTiUaHofwWUMnwEJFjE0SDUJMfGwCFulTZ40aJjZzFK9z0bbxGcZX6bgemqqQnJrgE5/4\nE6anR5PRv/iLv+T8yTPcVtxNNZugKYZ0emW6qsEubZqskWa702d2eZ5hf8A7fuM3+D+ffI7vPLZJ\nRqRJZyfIptN879IqS1qVXMJm2O9jSElsmhRTKbqOw0w+z1Pf+Aa/8+EP/1Bi+0+C13Qx8oOI4yGp\nVIJkMsm+fXOsra0xPT1qY8IwpFIpUywmyWQKdDp1HvnyX7LLG6LGkly0xrWNNRaWlukEDrO7l/nu\n46sEwT4URVCvXcJrPcPCtEon3ESpXeJY1mJAEqGq9AcxjhITJkOSc3tRZcBO16dfS6JIBS9MM8Uq\nepyg7nroWGRQSQIVInRSDOigoxCjo42Nfkdjv5EKZuRyMVoK8PAJgJAWghwOk4RsMYeHzdzYBDhE\nJWYanT4ZbAIyVGniMI2JTYiCwMfBQjCDwgoOOkkC+hSMNDnbZULNk0uoXBhskG5XEPoEqmayVEqw\ntG+WcNccH/zEHxMEAZZlXVe07OzscPlynaWlfwy5G0V37+ORR556RYqRVqvFhSee4O5du9g2TS4+\n8QQL+TzRcMjz588zMTPD8vHj1wmzt956nJtu2k935SyL+Tz69DRz+Tyf/MIXuLK5hfA9DA28aB1H\nghtr5AhJ0sakwcbIN5b9SArEGGP3jwQR27hs4NMiTZMOJjEeBlAiJocgyZAaWzRJ4hPRI8SgS0Af\nA0GERRJBnz5dfFxKbFDExiVmxKd3cAjpjQW+ginMMbk1IBh7MypI2SOXKKDILPMlHy+TYiJnoWsG\nqhCUey0mZhYoJmbIpwuoYopWr87Dz11k/9Ik+97ylhuO8113Heczn/kW6XQeTRsR2er1MoUCN7hh\n/jLh29+GXzTftne+Ex58EP7Df3i19+SVRy6XY9euPP/9c3/BTZrNlfpFYmdATbgsTs6iG10c18Tt\nD1hZeZaZGcGb3/w+arUyKyvfZn6+wGCQw7Jm2Vp/BiXwGMgGBX0KoYQkgxA/DhhSRXIEoiyaMiAI\nKlw99wgTps+m+zzheDI5pEBIhD5mejmESKYQ+IDKBAMMCkh8LEys8QSzxYAJ8gxwadIgQ0gdhQSS\nMj7zqIy+ExTq+BgUmUIjYjcuQzJExExhY5NSXCzpUzfmmbCvocQRm/U2D37gd7nt4C4m83n+9n88\nxLKeI22l2Ilr5JKzKG4TS6q0RYhBB5UhneolxNQyW1tbXHhujbccv4ekNWo8/DDgzHZAU/c41djG\ncxz2FIvszmaRQEdR2GVZVHWdZrPJ9PT0T31+X9PFSKu1Qjo9N05gXCef9zh2bCQX/YM/+Jd87GP/\nF5VKiK7n8P0usMrRo7eRSuV4+pEvMu267MlN0h263Ll7FxcrFV5Yv8BCMknK0Cn4Fa5d/QK18gZ2\nY4uEEFiaiuLr7D12mF36HlTH4ezWFtc2msRCpTi7n/3FBU6tPMlwWEaEBUy1QCx7ZIkxqBKgEWEx\nMpafZYCDS52QmDlMJIIUA3wkXYqozBByCkEe0Ig5i4KHRUAKlz5TRDhYDMZDuZGtToTERJIjwiJi\nFDjtMYegQUwbnSZ9poEEMTtKREXqLJgKXe8iBCUMNccWEWu+SywTeLHKwaV5FASNap1TjzyDf/Ys\nhCHvfO97mZmZuX5+ut0uqpr6ofM2Mhla+aH3fx6o1+tkFAUhBMWJCZid5Tvnz6MrCjudDr/z7nfz\n5vvvp1wus7Ozg2ma1CoVXnjxRXquy9B1eXZtHUsKDufzVFpdkopgEAxpyvNkRYogdpkVAck4Znuc\nA1FAIGHM65CogEXEKi1cUtgcxKA5NnAHgywRgj4zlNlhHh8bD38s3A4Q6JymSB4diyp9kvQwsKii\nMYGKgqCLRhmXPB4D7FHXhkSjjoKOx0h6aJpL3H33b7J1dQ01MkGepZRZxDA0au0qrdYl/tnb/wBT\nz7J29gwF00RTEzy/UmXy0DK33nbbDcf5wIEDvO1tNR566CRSZpDSp1TSeP/7fzaXxdcqpByZnf37\nf/9q78lPh1tvhXYbrlyBV2gQ+ZqBlBLF6XL3Yop+w+Ga7DGrR8yqFu3IJqmpDIx1/KFOPv867r33\nXdh2Cs8bcu+9t9BuG1y58iSDrassSIEIE3hyQMuvoGgJMoksO/0ukkVM0qhIEtYEA1fF8RpUvT4G\nXZK0CZA4OPjM4WMA14AiGioWLSIa47yxNt9XyqgIDFwcNtkmIKJJmj5JNDqE7CKkSsgFRubzLQRt\nJrFJ0UQyyhuHOWJqVLDII6VHEkkl3Gazb2Ia82jqBJdecCmvvsDdhyfx2j06rkZQCNE1laHbBzxE\n4NAb9MgrE0wKhdhQyFoWn/vMZ0hgXS9EAAxNZzaZxcnM8oa3/wpf+7M/Q2garSCgHMfsmp2lF4YU\ndu162ZPT13Qxks936fdrgEKppHPixAn27Rslmh47dow/+ZOP8vnP/zfq9W0SCZ19+5aZmzvIYNAl\naFcpZvL0hl0yCX0kia3VCIcOW6FGIemh9zo06quYQ4e8uRddzxEEbWRth9PPnOLW33wPvUuXeOuh\nQ3TiNfxoF7GeZavZQLdmKCUc+p02brCKwCciSZKIHjEBJUIMIgJ05pCEtDlLlwiVAhoZAvqETGPh\nEqIjmRqTExexaGJSZYoVZqmwiUcWFwWJwciwS4yH/0NiYoYkcQiZpUuEIKCrSJrSpIdHDp2MzLMb\nHTccohIjjASVQCNh7iZjR3QGfVZ2Oij+M0yGAZGqkUgX0FTJoUSCb3z2s+R+//evV72FQoEo6owe\nEi+ZbXc6dRYWXhnSaiKRoO151DsdHjl5kpTrcmhigu1Oh342yy233cZX//7v2XjuOXKMXFtfvHCB\nWw8f5isPP8mVay16jkVCMbhoCSw1RgybTMqIkgKzeoSwsoSaJJfIUGjucHLoE2sqMojQx0I8BxgC\neUwskvjk0OmQoM2APgFd4vHyW5IEKsGYrJYgh4+Di4tNiavkMCkRsAroTKMxSwOHUTi4QoRDl9FD\nUpBEIAjojK+jSaCGbeq02zViRRKFLmnbR7LNTiNNJlHCNJe5ePEKt912K0fuvpvNtXWGnksxvZff\n+uAHSSZvXI5RFIX77ruH17/++PWibm5u7pdW1nvmDGQy8DIDR181CAHveMdoqeYjH3m19+aVRbvd\nZlCt8ua776LT6XDx3IvEcZZcapJe0CNtzjGfEvhyhampSVx3QKOxSRRtUSiUWF2t4neGHEjtRwQ+\nQdCgYE5gdnfYEB5Nz8YlM1r2pIUpptGlBAZICoQETJBF4uBTJ00WhyodNCAkwyS6EjJtaNQ9h5A6\nEh+FFIJJLGy61FDxydGkiYOHTxadAIMNPFK4dBHUMOmzG4sCSXx0FAJGDW8fhR5VpuiRR6WDRz9W\nCdiPG5iYuIhIpz+4mcdeXEFG81zzN0lWt8Br4rcrJIVNUxmyW1UInCpX8xnuv+Mu7rntNj796KMQ\nukg5yukC8AOPzqBKfkrjQ7//+7hxzLc/8xlmdZ3ZbBZhmqiTkxy5886XZeMAr/Fi5F3vOs6LL15B\n01Ruu+0Qb3rTG2/oyo4ePcLhw4fo9XqYpkmz2eSTn/wi5bKF6wwoJFQa7TJHlnfT7PVYaQ+5PMgw\nq++ivmrisUi/f5VZOUcUpdA0ST6/SBAUKTeeoOd5yFyO7VaL/XmDL595Eax5ZmdmGTQr/x95bx4k\n2XWdd/7u23NfKmvfq7qq9wVodGMHsXGHCIKiYJOixSFjtIwkygprLE9MTMwowjOyJyTLYUsOx4Ql\nDYOSg/s2JAASYIMglm6A6AVodFev1VXVtWZlVe758u13/qhkiwRAUwKaACF/f2a99+rEuy/znXvO\nd74P2dKxZQZTDCKkwjIzuGygIbAo0URhAwOPPhwahKQRDOGLEUIMArmKpIjeKe/pjODjo7FIkjVC\nGtSJ2EFIiTV66GeZCIMyXeRQ0dnEYRmf7QgECiVUXCIQAlVLkUjlyVZX2CFyCARu6GGEFjY2ZekS\ns3Yj1IhqvYwIA4SWYqHh0mtGpCKHs0sX0IwR6rZNr6rynW9/m8mpKeKJBNPbt7N//xgvvXSawcEd\n6LpJrbaBbV/h7rt/+bo/DxcvXuSpRx7h7JkzPD43x425HNMTE0RRhOv7jI2N8Zf/6T/R7fvcOj6O\nlJKrp08z5nl8+dEjODKL74aoUuJEXShBL7VoEz06w7Ci41MjlBFELrYd0AgChnoLyGWfY16b/Z2f\nFZuQCygd3RaDOGXWWKebiH4kl1jGJ4GNikmTOKIjHN+Hi03AOgV8NvFYRTBBmxwac/gE5MmQBFJA\nQJsWEh0HQZI8slNxs8mgsYyu9ZKyeogldK5e/haJXB92fZVYrELdyRCzUrR9wfZd+9G0fk6dOsX7\n3vchug/dRLm8Rjqd+W+WVJPJ5M+N+/OLhCNH4L773u4o3hgeeAD+4i/+8SQjUkrOnDnDsWMv0Wza\n9PVl2bt315bycueYUqnEwPBOrpyfwXZjSCFBkZRbVaa3Z/n4xw9RLJYZGhqm2czxwx9W2Lu3m81L\nLzMY76FebxAEFn19vTiXbEzfp67uZGuAtoeQFoHcwI2SCKGhSLXTakki6aWFh4JKikHaRAjaCHwk\n0A4CYnRTx0bDJkYfESabVCiiENDDCmdJ46GTpNSxvUtiImlygIhnkaj4+NgkMHAIENToRiUOlDHY\nRKMXnwgXjQQRBnm9n6pbwRcJ+tIFPL/IjuFBZmYFl+vnuUHxSMXjLLk2ga5gduU4NDzAaszi9oMH\nsQyDke5u3OYSq5uzdKWHWS1dobx6kXZzjd7efXz329/mN3/nd5jato1TTz1FXEpELEb/zp2878EH\n3/C6/0InIw8//GE++tEIIcRP1alQFOVaJjYwMMDv/d6vcerUy3xp/YeMmwoHb7yPlStXmC8WuVC3\nKPRsR8EiFiuQ04Y4v3AKTTewrDiqGqHrFppm4FZjzCwu8on3vY/lpSVePnIEqW+imAbFWg1Lb1Ai\nhSK7CVA7VZBeKswy0Rm29Tu76KtUcOhCMo5PGuQGAo0kLgEgqaEyQESAYJZhVujHJMRCENHCA0Ic\nAoZQsVBZZhNnS7yYQSR5UngIWmKFPtGFp+hsGt0s1UqMGXFCH5zIxcYmwCPApO41CMMy+ZhORiiE\nuoZlxCm1FV5yVuk3ChSlwa7MAb59bAnpzZFNxrFuvBE3inhW03jPP/kn5HKrHD36Q3w/oq8vy0c+\n8kvXTZXvR5ifn+fRz36W3fk84/fcw/+7uIhTLPK869I9MMDEvn2MT07yH776VQ7ecw+e5/H88yc4\nd2Edt92mXCyRFg36pdlxd7lA2V1FUfbiyyFa8gq2CEiRQLpxND1Bud1ivWLjJXop+UVOSge9w+VI\nIBlHsEaDJm2GOgoCATBAkyVsFNJEWGzZjmfxcZCsM4EKJIjjoeAyAwxgASF12qjUkbQIOo6dggRb\nLJ0WDlvEMJUUqBpCLZJM7CSf1enOZKiHBtZASLvWIG3lURWFlhDs3beL2dkVSqU2s7Mvk0ymMIwK\nDz30K9d1nd6pOHIE/tk/e7ujeGO4//6t2Gs1eIOb0l8ofPe7R3jqqQuYZoHTp8+wsdFA149w6NAY\nQX2TnOdhVxrkcn3sOpDkpTPPUwpVmrUXyQzl+MSnP8a73/135kL/5b/8Lel0L7bdRjdN4ok49XqL\nKPJYWztHGLYJIp1UdpJa9SIyrBGQJIwWCf04vmwRsQZ0IwmICDHowWUNnQwQECNJyAJS6oTRVkU8\nwGYOFYMWkio2ASYuaYoMEwIpDEzSRKwiSJLEI2KNJgZJUjhUWcfB6Cg+S2qEuPiIjvHeLLOoRPRj\n0sCBsIiUJjEtQ6VRJ58O2Dk2zHKpTKWicUW0yRsGo6MT3IBk0fMYGhrEs23arkvMMIin09z+3nu5\n9MJxzs1+F3W9yFjMoH/fBO++807OnzzJ9zWNBx56iNvvvptyuUwymXzTEg6/0MkIcK0sHEURp0+f\n5oUXTuM4Hnv3buPmmw+9pryczWa55553sX37FF/5q78i8jwmDx7kYiBorzTpEjqVioumNVBViUuB\nctQmpZg0vHWatosf+lQ0wdgtt/BCqUQ7injZhr7B23A8Qb1VpdGuU/cXOnLAfZi4SOYokCPAxaJJ\nPyoqKhYaF2hQQ+nskH1gBZOQLIImVTxWkFhkWWYQCwXwaJDBQ0WhTURIiV5UsljkMfA6ImpJxaIY\nOQR49EmBrdTxMIiiAEvRaEeCTdVDRpt0AwqSCh5FXNrUSMRG8F0oxHRUxaThB/ieQdvoYiSp09fV\nj92us3Z5ifs//B6mOmp79VaLJ776VX7rD/+Qe+99F57n/dwmLZ5/6im2pVLk02lsx2FoZIT9sRiX\ny2UO3nknuVwOKSVhEKBpGjMzF6hUBGBytbxM0jJu0wAAIABJREFUX6SyEbYo0GQADUHEChvMy3NU\nyVIFFBnjvG8wKARR2KSpKazTw8DoFFVeJl9eJUvYYbtDEhcFlxV0LEZRSWLTwGeTBBU8JC46G7QZ\nQOLRZgAdHYMKEBHD7FBZ50jgoKCziUedHhS27qTPZdbppUDAOmvUaDCAJIFpOPSlcwRUKNdLSJnE\n823uvmOaSj1Js9m3JYgXBJRWVrjnnls5ebLF+Ljg4MFJ9u7dQzqd/m/c9euLMAw5d+4cp06dI4ok\nBw5sZ/cvgO56EMAzz8Bf//XbHckbQzK5NU3zyCPw8Y+/3dG8OZTLZZ555gzDw4d58slHkHKc0dEe\nisWrPPvsIo6zwRntMlmvgS7j5AfGyB68h/1mhnrdxbbLXLmyyPr6Oj09PQDkcmnW1pr09Y2gpNJs\ntDdxnBKeFxGL5bCjBm19kMitoBtZIncVEfkELOHKFJJuIrZTp0KIR4oGCpCgSZuzeHSh0iSNQ4KA\nSEo0QrSOt7pLHQeDLgJiCPpQ6AOaRGiEpDCRBJRQyJDBpkVIQESWJG2iTtUli0DHp4mCz5ZlXz8h\nNyI4j8MZGuTDHFXpgJS43hpJPaJcrhGP6UwP7mR/VjKkaeTSaSqVCqvnzrFSq1GJItx2m1fKZbbd\neCPv+9CHeGH/MVb/+I/Z1T3B2LZtjE9OYpgmu4aGOHriBPe8+93kcrlrAw1vFm9bMiKEeD/wZ8CG\nlPLOn3X8N7/5KC+8sEhX1wSaZvDkk4ucPn2J3/iNXyUej7/m+IGBAT71+7/PmVdeobK+zoRmcmzu\nNA3PwgvLSDWi7gUII8NyGFCzL6JEMXSZox7YJLpGOHD4Vu67724ef/xJvvitM7ScHA27RbWRx26l\nkHK94/qxhEEBCDGQZGjQjX7NgzeHTYoUAS5NNEICNAq02MBngxg+KqtAiQwBLZKotEnRJEdIhRAd\nFbdTCNwSLzep4WEjaUQBc2hkhEZSS6CKPlKKSTloo4cZ1qIio0bATjWJDANU2UaIiD2q4JxaIp7d\nT+jqZOI67aBGt2ejaClSKZN2KkXcSnF59gQ5K0fqx15e6USC2OYmCwsLTE1N/VxHPotLS4x1/G3i\nlkW2UKBWq5FLJPD9LSPu5Y0NxvbuZa1aZXFxHc8ziUSSCANfuiRwmcJAQyciopc2NbnJJj62opBW\nEsSjURap4ouQtIxTrydonV/BbvvESQAuBRRMQhq0WUWhxTixjuiRZAKXFA4aChEqcYo08aiSRhCx\nJWVn04NglQgTjTZF6qTJEVFkDImJRdhRZtyGzRo+kyTpRXCRVdbJkrEyJGMh9aBIKt7NZrOBIddZ\nWdJoNhrMr8wxlpmkHYasrq/TPzLI+Hia3/iNT73lDrtSSr761W9x8uQq2ewIQgg+//nn2b37wlsa\nx+vh+PEtrsh19Px6y/HRj8JXvvLOT0ZWV1cRIsvm5iq2bdLV1YOUEaVSgyjSGB+/m1yuTjaT5tnv\nf4lRM0MoNfz21ijv4GCAlMP85V9+ic985pOkUikOHz7AyZNfJ5s9yM133Mszj3+NllMkFqRY8xqs\nRm08MU3ogK610PUhFNaQfgxdH8EPs/hhD6oW4vovESGJMUeMNlUSQDcBIUlWyBCnjY+gQZIMeVQ2\nCKgTw7jWrm8SIEkR4BGiIDqTeG0ctrx2NJrUOk3abhR66UXpMA9TnfRng02G2JIKiBGSVTdA1bEi\nlYZfR4oWSW2cudVVWn6D4d4kN92wm7PHjmE4ztYGLpXiOzMzJHM5yk88QXpkhN/+1V/FNE1uOnyY\nk4cPc+erpuc0VcWQEtu2X/fd+0bxdrv27geO/KwDV1dXOX78CmNjt16rlCQSu7h69QynTr3E7bff\n9rrnpVIpbr1t62/Fyt+i6sepejkaGARNG8XKks5tGSIViypCjGIKhb7hLj7+8Qd5+ukZ9u3bzczM\nJRSjC6elUG8pKH6anGgjhUdb5hFs4uKi0sKgQQpBHBCEgIGPIIWGTYk681j0ENuS1qGLOgY6FjVU\nLAIicjQB6EeionYcDHRW0Gni0oPGJio+WRL42NRpqgo+KZp+HEsRDMXj9Kghq6Fkw/EZ8BpUhdbp\nQ/qkUIlpFnNRhXL9GKOj26jUlhhNhfTEuzhV92llMwSJYeabLUQqSX/BulaJCsMQ13WRYUgURW/6\nYfhZ6OrtpVIuX/O9ObRvH08++yyNSoWuZpN1x6GZSPDpz3yG73zlKyxWK7QrPnaQoK6bGPYawwg0\nAgQhKhEqkgIu66KGGzmsRAqaCEmbOQoRVMI2vmzQanuEhFwhTpUkZWxcKngISh3p5hJ1YkwTUgNG\nEcSJqCFoI9lNmRlqpDFpkCTd4cprCFIU8RHE6aMGwAQhLg02gBg6XShIHAQxUorFNAFJa5W+0TiB\nLxnNHKDlO5hqnR4ni3ulSC6qUw0j1tuA0kUulebk0S/wf/7p//qWJyIAc3NznDq1zPj4zddarrlc\nLzMzP3zLY3k1vve9dy5f5Ed48MEtzkizuVUpeafCNE2k9PA8ByG2ntNWy8ZxArLZFLqewPfL7Np9\nC7l8D5cvP8H8vCSb7WJsrMDU1DYsy2Rx0eb06Ve4/fbbGBkZ4aMfvYtvfetpMpkYuw7u4ZincGXN\nxtT7CJwmvr+MIvpBCoSh4bQ30fVB4rExaq0yQimjKAWEVcD15nEjmzKTSMZR1R5CKbgqV0nTRpM1\nhsgR0ouLjUuaOBZtwMeiSYIUATnaCFQsoNH5PVqjjkOOMgoByxj0kqeOgk+EwCVPg0pHfcSmjkaD\ngIppcVfXKLbrcqm+xLlAI50dZnp6HFW41O0K1UqRrsK72H3rrVyemeHM0hIzts2DH/gA+6eniZkm\nfhDwvS9+kd7eXgqFArF8nmqzSfbHHqq26xIaxhsmqv40vJ2uvVXg7+VZsrq6CuRew+TXtBhf+9qj\nbGzUmJwcZvv27eg/xU+7VCqjqjqm6WH0jlCrFXGcSzhOg0RCYWRkG6nUAJommJjopaenh2KxyeXL\nsxiGghXPsLB2iUYjgSV9wjAkKbUODVGgM8tgp4S25b24Zam0jkMNQRql48p6FYV5QjzUTvmtBw0T\ng4gkm8JDlU1MoIWCgUIVSQqLDbKsYrJJSIwcJjplAVKtI6Iq7ah3q4cZxZhtrdFjCWKmhxEI/KBN\noGukhUaXmcYPAooIjFQX8STce2CAneO3c/XqVZ5+6SWcRDf3f/C3KBS2WjKnTiRwLn+fXC7HxYuX\nuHhxEccLuOA2GbvnPqanp38u/jM/ws13382jf/3XxC2LZCxGJplkcvt21vfvJ3fDDRT6+ti9dy+J\nRIL/4Xd/l8vLGxz5wnfRzH7C7B0EjSV8GaAJCGUTXwoCITCkS0Z4DKOxIBu0ZAUlyLEhPUoyThRl\nUGhhkCSiyAYN1sh3zL8XCBlEZxwXSZ0UkhVgGjpPhY6NhoLcGpamhIOFh0kehYg6q1RI0o9CAZ82\nkEXFEAZIlxKSGAqakCT1Fn5YR0Qhg2qcM5dn8YMJVlKXSVhtxoVLT6GfjaUmeUtwRz7NU7UFsqMq\nd980SaR0v8Zs8q3C7Ow8ptn9mmckHv+H6xFcbzzyCPzrf/12R/HmkMvBbbfBo4/Cww+/3dG8cYyO\njpJK+dTrEbA1qef7Hp5Xp1DYQbu9wfDwVvslm+0hlcpy3303MTDwk4aaiUSepaV1ms0mMzPnqFTq\nPPjgu4jFYrzySp7jxy/Sm99JV6qLpfUKdXuNIJwlijYQogtFa9FyUtjeKqAhpQvUMM2QdGYYGKNe\nXwFeAnQUJSQWVMlj4GOSJUMLh01CItK00EiQJINGDQ+DkDgNXCI2aLOGgo2HwwAecbpQaGAjiaPQ\nBJSOqEDQ2Zr41EWKV1SPMd2jz1BZLs3QCGE+EsTNGJacJ6P3ceuBPYz27uALR4/y5OXL5ISgkU5T\nBh7YuZN7brjh2n2LmSZ91SpnXn6Ze+6/nzvf+16e+Nu/ZUcYUshkthx819e5+cMf/qnv2jeKX3jO\nCGxly+D9xGdLS5d55pkfkM93k8u5vPDCUcbGTvJrv/bw6+78PM8lnZ6iu3uSVmsdKQsIcYBTpx5h\ncnIQw9hFOj2AZSXY3FxmYWEB09waWd23byd/+qdfQGjdKGqOwFfwow0ibBSSaBSJUyVFHAeTDXxm\ncbAAHYGGQo0aJfpI02YHOkkSBNg4BNhIYqgIYTFh5VhrR0hcfFR8wESQwceghIWByiguBiExsmaW\nml+gHS1jkKKCwKWNkDHm2xeZJM8UBm0hcKVkDZWiI5CoFIMGOcsk02zylcceIz88zD3vex+/+8lP\nsrFZ47nnZlhaqiKly9CISWL0Th49eozNxQaxRBclEbHtpvfx/e9fIh6Pc8cdr1+huh7Ytm0bU3fc\nwVe+8AUUxyHV3c1N99zDrz7wwGvaQ8lkkqkdO0j2nMP3+7H0JLaRZ8XbIKFIUkKi6yp5z2MxDLk5\nnYG2Q8XXKWJTDZJ42IQUMNFQyeF2Jp5MdGIMENGgThudDA4NdNZJYRGxQYsr+PShoaDQIksdFejC\nJ6CLNer4VBCEHcXFNDFK5NCIiKgQ0Y3syMfHaAhBSwgSnkOGrRHkZssmFqkklIhos0JFrLAr202p\nfRVpmix7AWtlF1/EsBJd9OaztD2PoNPSeqthGDpRFLzm8yh6e+L5EUolOHduy+flnY4ftWreycmI\nrut88pMf4XOf+xq6XmZu7gcYRpqtgmgbw9hkbGxLE6dcXmX37glWVpqvuY5tVxHC5N//+7/GdTPo\negLXnaVYnCGR6KPRcJFuRBQ1kCKiv7CXavMEMoRAFImirYk2RRlHCEEQLBFFPr7fRlFUuru3kUop\nbGysbfmn+VvjtzXawCZOx0NqawR/jgRxfBKYDKAzxlUcymyQxcemTQIFm0FcklTQ6MHDRNCmixIl\nEkSkO78PW6olCoqWQbMCArHJaDbNbFBnyc8RhVkUstQClW88e5G665CNm8yvrdHwfbxmk51DQ2SF\noDgzw1ldJwq2vpu9AwMkTJPa5iYAu3bvRvnkJzl25AgvXrxIrdkkmckwf+EC2VyO7a8y1Hsz+Lkn\nI0KIXuALr/p4TUr5sZ917h/90R8B4Ps+q6t1urrGSCazeJ7DiRMvomkD3HjjTXR3dwPDzM+f5vjx\nE9xxx+2vuVZPTx+JxGXa7RaZzDBRFLGycgldT9FqNVlcPIFlNYjFVPr7B5mbW2J6WmV6+t08//xx\ntm27gStX6gitCn43vtRwUIkj0WmQxiJOhE+Eik8GSQFJHI0WIQ1CQqoMoRJHR1Ahh4KPTgWbJhED\nioqCTlKY2FJSJWQUkwyCJh49OKygkcYkRRwfScXZoEUaSQFVdeiKFBRp4hBioaN4AQk1Rj45wXpj\nCUvLUUgPcLW6iqdmyAuFCEFCSXLpXJFy9AP0/CDvfvcd3HrrIVZXVzFNk9HRURzH4X/+g/8Dxifx\nk1l2Dm8nl+vBdds89dRxbrnl8M9t533ku99l9tlnuXNyEsfz2HRdkLKTqP4ktp6XGg8//Gm+851v\nUK83sbK95F2dUnuDtiUYMAxmKhUUy2Iin+dsqUlOibMvMczpjSIekCJDHoGHoE2ys49ZRyeggc2W\n0mqMJJcZJsBgAkhjM88aNSIGMPAp4NKmzFZ3tUQMjS1JuF7SxCmzgUMdnYheFJYJ2ZARbQzWgTkU\nxqRClgQqkpL0mZMxIhRq0QZ9Yhw7UthstOhNxVnaXCOfTrFtaDd+u4ZlbOfrz1wgnvUwd+/GisXY\nvn376967nxd27tzOE0+cwPNGr9k8+L6H666+ZTG8Hr7zHbj3XngD6tW/cHjwQfgX/wJsG65jK/8t\nR39/P3/wB7/Jgw9e5oUXjjM7u8aFCxt43iwHD96Lpumsrs5iGBt85CO/zOc+93VKpSUKhUGEEFQq\n6yhKiYsXJZa1i97eAgBrazHOnTvH/v0xJidvYuHyJcDCdoqoyioTfZOs19v4ikUkU3heGSkvImUX\nqhoBZ4EQTfPo6+tlz57beOSR79NsmrjuHAExQhRc6ixRJ4XKts70C8RpYrPGLDCKh4JCjinKBCi0\nkASkiFDIoNJEdGZ32tTIUaSESoSPTxUXQYaUX8XoSXDD9ptYuHCRBbVAPrYTvyFoRRYZs5tmK8aR\nZ8+xL9XCTFq4vs8tPT3QbLJt2za+fvw4pbPn6O3qJptJsZq6QDOf58Ef61vu2LGDvr4+/uY//2fG\n43EGcjns1VWe+OxnKb73vdx1993XZd1/7smIlLIIvCFT7h8lIwALCwv8zd98k3I5xuZmiVqtzi23\n/CgR2UJ39xgnTpx73WTkwIEdXLjQwPMSLC5eRVVVhod15ubq9PR8hERijVKpQrMZY2bmOUZGQn7v\n9/4nenp6OHNmlgce+DAzMxc5evQp5mZP4NGFgk5ECUmBKi7T+Ci0WUdhBAVJRBENjxRpkuQpYiAJ\nqVEggYlJEx+BTxWDRKTQbEe45KiwThYXC0ENnw1CepAoImBThihCoElJFkGZFioemjDIGUkanktM\neiTwSRCgxLMkdRvPHOGsY7PkGMTUPgZUiyv2BoNGjpRrkZMFFufh299+gRdfnOGhh+7kgQceuKbt\nEgQB3T1jDA//ZAXENGN4nsC27Z/LdMby8jLnnnmGm0dHUTutOiklPzx1issHDjD9KmczIQSKIujp\nGeLhhz/FlSvnOXvaJlq5QNxXyOYSLK6vY6VSHMzliCUSxO0YC06EFxqECqgRWJgdyXWJikaMAJda\nR1cggyCGgcoAMUwCBCtINDK0CLBZI0Sjhck6/XhYpGlhYyKp4tOkic0KSQIcIspI4vgoisrJKIZN\nBodukA5xFunFYB6DGkPopOnFpI5NSa5hkOSqV8atthGaTstPcGphhqBnlIQneOVSjcmBFsqlS/zw\nzBle6O7m4U996rr3fX8aenp6ePDBO/nmN59BymxHTKnMBz5wmH/zb96SEF4Xjz66JRr2jwGFAhw+\nDI89Br98/WV+3lJomsaOHTvYsWMHsMVRO3HiJM8+e4pKZZF9+ya4666P0dXVxac//St84xvfZWHh\nOQB6e5Pcf/+dfP3rz9PTU+icHzAz8zKaFufixRl27DhE27YImnVUJQDpUKoXafkOfpDHdUFVI1RV\nIkSFMKyhaS1GR3dy0005IMHJk89Rr1cJwxxSbkdHdNoosMJVdhIhgRCPiBox0nRR5yqzFFCAgBYR\nORRUFOZoIcjSj0EZBxsD0TGkEOSYo46PTT9pVBxMvU2YHKZg5vAHhpi/AhtuhBEbwPM8Wu0mKVJE\nUQwHhRtySa7WalgjI9jVKqdOvsRipck2qaGJBG5bZaO2RsXzSKZSP7EePzx6lG7HuTZJmU4kKGQy\nHP3e97jh4EFSrzr+Da35m77CG4QQ4iDwb4E9QojHgV+SW42518Xo6Ch/+Ie/xfz8PJcuXSKRSDM9\nPfWqo+RP/X/79u3lxRdfYWUl4q67biQIfJ5//hEymUGSyTzZbB+p1Bpzc+fZ3LyKYRQ4ffoiY2Mj\nxOMWUkYcPnyQ0dEevvKVL3HhbBUZtojoRiWGj8F5ztOPJEFIGskiKiG9CAYAlyRVwELiUcNGx8FD\nUibJOhBIhQidWofOKikiREgan52miR0ETJuCb9jr2NLCAiwiTKp4hGhBH6oBMV2h6pUZxSMfT5Md\ny3NltoYu+jD1JC2vByVYpUwTGfYhhIOhS/zAo16tc/ZsjFarwJ/92be4cmWNT3/6n5LJZEgkEhiG\nxPOcnzAxdN02UWRz+qWX8D2P4bExJiYmrpta55XLlymo6rVEBLYSjsFkkguvvPKaZETTNPbt28aZ\nM/MMDGxj796b2b37EGdOP0N1+RgT44OUNjZQSiXWL16kXq9zuiVp6NMIZRAj7mC2q7jRGpHMEhca\nSBufZULanTVVgFKnmaJ2PHSTwFxHmizEYwWLDW4koEKsI+KfotXpD3s06SOgG58GgjlDxYlUNhjG\niwaRmokmbHx/kFVsNOpUKJAnQwaDLdF5lTYRPvNUUUE2yCk9hPEsNS1LV7aPpUaDvRPTFPJlxvr6\nGAMur6zwgyee4EMf/eh1WaO/Dw4dOsjU1CRzc3NIKRkbGyPfmZB6OxAE8Pjj8O/+3dsWwnXHRz8K\nX/7yOysZCYIAVVX/m5wzVVU5fPgQhw8fes3furu7+fVf/wS1Wo0oishmsx2e4db16vUyx449xZUr\nNZpNnSgqoutnCEKfui8J0Mjm21Rrm+RSO1hbC1HVNFE0hqIsEYtt22rnyFeQsoVl9TM767G+7tBs\n1lHIoyptwkjHxAAmgGVMDFqoQBqBg8DpmJgmqNLCpMFZFIZRCBC41InRh8Ajj6BMiEKFPqokUdHQ\nSGKiUSLCpRHLEe+dIFJyIIr4WkAYxbCsFAo2piII3AppI0m2UEAqDfpVldVajS5d58LlOW7qG2ej\nWeVM4BI3TMzUADv6CywvLLBr165r93j2zBn2vMqpW1NV0sDKysp1ade8nQTWE8C7/yHnGIbB9PQ0\nIyMjHD/+/9BuN4nF/o7lWyrN88EP7nrdcy3L4tOf/hinTr3ESy9dxDR1Dh4cZ3y8iwsXFomiOAsL\nK3iexcDALvbsOUCz2cdf/dXXuP323Rw5conx8YO02000rQ9FjRA0kVEaT1pIIlZZoYlHHA3DsBBh\nHFVmEdIgkiE21paDKnESqCioRIRUhUNDpmgbU+DrRPgklSaG9EnKFqqWphoKnGCDZOSSkUsoNNGV\nNJH06ZU2ESENKpTbOXQ8fEqsq2naZpJSaZ2urmGWyi0ifYx8shev2sYOlkgYGgmhYWgGl51NVH2E\nyO8nnR5Byjyrqwaf/eznufPOw8RiMW67bS/f+95pBgb2YpoxXLfN6dPfJxbMM/9EE0NVOf/kk+R3\n7OAjH/vYdSE5Kar6umlmGEXoP6Ut9J733M3S0hdZWDiJYeTw/Sb9gzr/2//+5/T19XVE0Z7nL//k\nT7g0N8fipiRrTKCaMYb6DlBbOkbTbuHIKk6kEkVtpFTQGUDTxonCHIG8RMBlQmqoKB0/CoWUMGlK\nmzweJgHrqIRAkxguEU0C6gySp0IOSVI0OTjSzwXN5GwxiRJOkrKSuFEc220huYrHMHXOYZHEYGuc\nr0GIQ0SBGAoxutUhpOlQVHxi3dPsnr6TcvkFskqClAG9+b/7roz39fHs6dMEH/7wW0pqzWaz3PBj\nhLm3E08/DePjMDDwdkdy/fCRj8C/+lfvnKma//gf/5L19RqZTJx7772ZG2+84Q0T4X+8ytfb20sq\nBY1GhePHnyUMhxkZmebs2RkMYxuXLjUZHCzQ39/LysoPGB3NU61ux7ImabfPUSz6gEYQZGg2zyNE\nHcNIAJtcvNgmnT5ELueyulxCJY0f1WhRIqAASEIUGoQkKSBJIgGBR4AkJELSZiCZZqHlUpYG3cTZ\nh84KV/A6NhAWbVQaWIBLyAEVLBHiCZUVxcQ2LGS7wfNr80SlRRQnwveg3lJxVAPdsoinPXqtDJrS\npDef53KlghVFNGwbVUugCpVCMsfu6RtJxNN4nsNa7dJr/KeseBzXdYm/io/pwxty6H09vCMIrK+G\nZVk8/PB7+Pznv4uU3ei6heOUmJxMcdNNB3/qeVsv01u57bZbAXjmmed4/PEr3HffrZw+fZqF+Qpd\n6TQhbXRdI5XKUa/nCUPJoUP9PPfcEZ58/GnmLpVIksCTEZ4wMFQFN2gAdTzSeFoMU4noFjoykATR\nVkG+Tr6zd16kRAOBBghMEZK0uvH9GpoWByVOLBxkI1oiIzKkNBM/dGmR4XzUJEabcWq4UYM2goRl\nMhAJLntVIiXCliZZYweOtJB+kmoQUDSqODGDXGaIffsOcvF8nCvnztOv1ZHoLDlNNoGBzDQVb40o\nCpHSY2OtwcvPHSG2eBlhmjiJBDffvJczZ07ieQJF8YmHV3lo/15SnUb1JHDq3DlOnTzJ4ZtvftPr\nvW1qihcfe4xx38foJDdhFLFs23xw797XPSedTvPbv/1JLl68yMrKOl1dE+zcuePaXLxhGNx1113s\n2rWL//v/+lOaT89Ra1TQrASO3WKzVccgx2jvbjRDZ3b5PEJuYun9+FEbD0EQ9CKVFsWoSU+n/WKj\nsCYrVDucIYHGMgmahAg86miUUQnZQKeCUD2ErnPVdmgZcdJWD1EYQ5UadrsFQkeyRd/eICCBT9iR\nh45Q2aJ2+xgIdNMkk4mR0RWW7BUURduSyg+auEqFA5N/JzDWbLe5urTEsaNHmZicZHBw8E2v0zsN\nX/4y/Mo/MgHa7m64/Xb4xjfgE594u6P52fD9MUZGcrRadb785aM4jsvtt9/6pq+rqiq/8ivv4y/+\n4m9ZXi7S1TWK79dJpWzKZY9Uaphi8RUmJ0Puv//9HD36KK5rMTIyhqoatFrHaTaXcd0KijJPIrGN\nnp5BhKgSht1Uq1cprYcoYqsWLkSWSFr4zKOgIgkpUkdDYAKCLA4tSoTo9KPrEj9TYCQTp7X8EiYu\ncXR20cYjZJ6QDCZBKkU2CLjUbnNGUbAk1GRITejsT3fRmJ9hM/BRvDZ39xf4fmmBpXaFuNlLO/DZ\nOTBGu7LJZF6jL5fjmGEQui5xTSOVTnOhtMb2gUni8a02i+M5NHSFqZ07f+J+HrjtNp7/0pe4KZG4\nVvFer1SQ6fR1c/F+RyYjADt37uT3f7+XmZlzNBo2ExN72LZt2z/IUfTAgX0899xLlEoLrM7PkXLb\n6GGNhLbGc99Z4mh6GF23KBZN/viP/xdOHnuacTmPGquhMkGj6VGP1qgE0KussTfy2bAStKIkS47E\niXvE1ICG6+KSQIZxhFikm4ABEeETsiYjasLAsAoI4ijRAKqUBIqDE/QxRxnbKaMZMVrJEUrtMonw\nKioBDoIqOj16HkfWUVBoWxFxMYCl5fBTKWqKSdtRUdQuRkfTZLMqrdbLFHpaVMugygbLfgFViZMn\nRiQdTD3E89okEiF+aZ2hTJ5tg4NkEgnOBFLHAAAgAElEQVTWKxXmL1/gX/7Lz+C6LouLixz7fPla\nIvIjjHd3c+bFF69LMtLb28vh97+fFx57jB5VRRGCku8zfccdjI+P/9TzDMNgz5497Nnz069dKBS4\n4dBh8j13MPPKKyyeP8NmVGS4/1ZKpWWKm+eJJeJYiSQj49uQMsbK0ipRs4WMFMCnQRfnqTFhJFCE\nTskN0AjYxMUmRZ0ubAoYeOSRNBBYXGVS87glmUZGIUUv4nS7jidtVMVGiSSq7xHHpU2bkA26SCHx\n8UngEdHCICMCNLVKl2pgR00ULU6hO4MsLzE7+ziJRJ1qc529mRwiCJBSMru8zJM/+AH5fJ6rTzzB\nqe98h2233ML7f+mXfq7j2b9ICEP42tfg2LG3O5Lrj098Aj73uXdGMpJKbekGJRJphoZu4MiRH3Lo\n0MHrstuemJjgU596iFLp82iaS7ncwDQthPCJok1SqYi7734X8XiKo0e/j+9vjRJns910dWVpt9cw\n1DK5VIxEDnp7NVqtNKX1JaqlRTR/iqQwcaIaUm6RwU1cYpQYY5Ms8DLVjvmpTpsMNgOEyhK37NtP\nKGuEnkaxOMjF4Cp5WmgEqAhAYU2J+NCePeQsi+UTJ9hUFGLxBJEb8dDgFClNZ6Zept+waCoRXjbL\nYV3nQKPJWqvMmtDYaLjcd3CasLLB4wsLpKemSAwN0dfXx/rpCyQGd1C2G2iVdaIoYra6xC//5sdf\nY+ex/8ABVhYXee6FF8gKgQf4qRQf+bVfu24u3u/YZAS2XGNfj6z690UqleLXf/2f8md/8h+gcQpD\ncdneP0KxnkC4PTSqSRKD0wSBw5//+eeYPXGC8VSKUKyw5J6nJmM4UgFq7NE1xhJd7Ch08dzKEnGZ\nwBUTtMQySnycKMjhtl8hJWukRbBlJ60IMuhUUwXGdu9n4fIsbmUFkzRe2CJUXAytl6ru4yeH6e7e\nRebKN+m1TbLkSBDDJ+RSw+OsyGOlyuwfmaBk9wAxhscnKGsaoRanXG5x001j7NhxI+12i+XlM7zn\nnkH01WXmV+vMzm9wYXGRINBI5AoMDsbxGg5JQ8HUJelOstGTyzG/sECxWGRkZGSr1ytf20QRQhCF\n4Rtem1fjtjvuYHJqiksXLxIGAXdMTTE4OPi6L08pJWtrazSbTSzLot1uo2kaw8PD6LqO7/tcuHCB\nq1dXyGZTjI/3c/Toc3jlJrftuomnTj3LRs3CSk7TlY6T6ClQqZYol1fRtE0IBHEtia1XCPxFsoqH\nqyRZMA1inoeqajRClw1imIyQYYIcCk1CKmySwUbBo0HESafFsG6SNEyEXaVvMEUgVZbX6iSFQSh9\nAkoMUcVQUsS0LjbCFVJWDyVnmTY10rEkTixPw60Qr9cwRZOpWIxS9QVGu0e49caDnDh5kscefZTe\n0VEuLS4ylctx5113EU8kiKKIF48d4/zUFDtftSP6x4qnn4ahIZiYeLsjuf740Ifgt38b1teho4j+\njoBhWPi+Rq1W+4nBhDeD7du3MzaW5/TpKlIW6Orqodks4/vrqKpKPJ5CCIGux+jpMdjcPEs8Pkit\nuozmLtGtNNhmDtOobbDSmmP3oXfx1BPfIAoTGJqFYSSIex4tuVXvlLIMeHhMsQYU2GCROh5dWw7u\n2llMJcRt1THMKmvrTXZ2TXJh3ceR6/QhyBAhCAl1jedPn2Yyn0eoKiO5HB/8wAd46luPUatt0pIQ\nIhF4DGWSXF5b4/0DA+iZDKutFlpfH+vd3ey45x5ymQz5/n4mJiYYGBhAURTW19f5r//1G8zPlymV\nN0HYfPI3foeHHnqt2Z2iKHzwwQcp3XYba2trWJbF2NjYddUaeUcnI9cDXV1dKG6D23f0c27mApvl\nJepeLz2ZAVq1Ep63zr5997Kycp7FtXWyQqKrCTJqD/lYkoYTsBomWBE1RlIJik6NAk2k2eKSF7Bt\n7H5k5DO3eoaE2CBJFkPPEQqHhO4zFkjabhu3vU4yE0epzRP5RWRYJ6e0yes7yfQMM9vUsBuLFLw6\ncdUiiDI4UiCIyGBzSQpiDY/zl86SNMs00Wm4m6R6t5HM53GdRep1yeKijudtMjmZ4+677+MHjz7K\nnswGB7cPslDs48mZVXYc2M/U1BRHHvv/MLUy7z204yde+pqiXJNgHx4epq6qOJ6H9WO7mYVSiZ0f\n+MB1Xave3t6facbUbDb5whe+wdxcleJqhYVLp5jqNdkzPU6USnH/Qw9x5MhRVlZCTDOP5xVRlA1i\nsQqt+hWqpqDlVGm0LUZ6xkklYrR8wcTEdo4efRpdGyZGL8lUkqYWUW3kIdDoVuPosSRRbJWMu0DK\n1qj4Q0CIj8QHHFQsUigU6aJFMpBshgEtzSQRBezoyaAPQdNWicmIxdVFgmCNEVYYUZNUpEuohdw0\nMI0nBM7KMu3YTnp7t6HKiMbGZVrhPLa0uXHfHvyNdepRxMTAANPDw1y6epXHX3qJ6YEB7rnzzmu7\nT0VRGEmnOXP8+H83yciXvvSPr0XzIyQSW06+X/wifOYzb3c0f3+EYYAQ/mv8xn768SGrq6tEUUR/\nfz+bm5scP3aM9aUlugcGOHjrrQwMDLBr1zBHjnyXQiGFYcTwvKsYhkMqNcnq6jz9/WNks5KJiX3E\nYnFOnjyK5p1jKm7RZfWQSZgMWBlSjVWOHX0SPerGjwp4fh9B6KKIq3RbMVy3gqNo9CvbyKBCFKGG\naVwWaSlLNOUI/am91CI4eWWeoVyFZGCz0agTV9r0Rxl02cCljgbUXZea59FwHKxYjJXiJv/2s98i\nR5oF4SOpMp5UGBse4tLqKl2Arii0PQ/dslDjcXb19bG0vEY7MFHjLQzDuNZm6enp4Z//8/+RpaUl\nPM+jr6+P5M8gGnV3d19LFMvlMq+8/DK1zU36R0bYs3fvm7IE+e8+GXn+2LH/n733jpOjvvO83xU6\n5zSpJ2dJoyyNAkhCIJDIYHAGY+MXeG3v7Tq8fM+FvV3f3d6+7tbrvXuevfWuExjbOKwNNskiCZCE\nhLI00sxoNDlPT3dP59xdVc8fIwaERJYRwe9/JLWqun9d3dX1qW/4fJk4fpzVNhtX1frZ032aoWgE\nHWYkSaSzcylWqxW3209O1JNNRUjrKnFoLjRFQZEUzIqJtKqnJzpFp0lmqcfJeDRKVC+QzyWQpDzl\n7kWUZBFnSYegJrEINgqEsBnyVOntJDIpzD4vszMJjIKERS9jdTYxkS0yOTNJQRApJuKUl0JoohlE\nN0kliYwCGFDJUqEp1OZzpEthqh11TBVCVLo7sFt0KPkYN9xwO8lkiq6uLFNTdn72s2eoqnKw4vp1\nZBIJFns8fK6sjN7efiYmZlizzk1VTkfNq26vcoUCaVGk6mzVn8Vi4YpbbmH3b39LpU6HyWBgNpVC\nV1vL6jVr3vPP8+GHn2BiQsZma2Pw2G5W+NcTjo0h50s0evT8v3/399grL6epadXCPqlUjGTyedZ0\n2LCISQJRgaKSwWk1kS8qyGYDweAwmqaiKhqaMkMmWUIrzeKSGsmrCaxkKWWzGCwVhPLTuNUCvrOt\nwQnGMVCGdHbihJ1xFqNRIUhE0IgWiiQMOsrKyrju8qW8cOgYY4FhFutjVBugUNAjqOp8zlmJIcuV\nhBPTCKKbltaNuH1+hrtfwqH3klEFqpfZ8bmdqIUcUqFAIBKhvbaWlW1tBBMJtFzuvDC4LEmXzBDt\nvSaXm68XOXr0Uq/kj8dnPwt/8zfvfzGiKCUkSUZVFSYne1m3rvUtzTuZnJzkV796jHgcQCSTmcaU\nnmVFVRUNNhuRnh7+7fhxbvj857FaHWzcuIFkMkU6HWfTpnoCgSypVJaBgWNIUpA///NP0dU1QDxe\nwm430WSxYlOM+HzVmExmQCM/O0Ypq6Pa14qa0gjlE6iqCb3Oh91VJBCN49H5kVUd5PKoaGiChE70\nIGkFHDorgpzFqGrYqhchG7MooX3UWWL0x2P4NBUTCgIwDrQAaU2jAFgNBnqLJnSlCgoGGx2VlWhS\niWSyi2A0yqyiUAaEUimihQKW6mpqamrYvecQs7ZK2pe5mZwUOHLkl3zxi7cu1HmIoviOaj6Gh4d5\n9Cc/oUwQsBoM9Jw4wZE9e/jMPfe8Y7uAj7QYSafTvLRzJ1uXLyfR34/L4WBDewuF0wEyjiK+6g7q\n6uoAyOcTbNl+FUd/9lMEzYjLbCaTz6MIAgaziVQ+hUmUaSr3EslkCIoiLb5KZKOeuKgCfqZLMYRi\nDCkDHoeBgubGJEfJ5FRcZhMz8TwFyUmd2Y9JpyLLBdzJM6QKcTx2O2opj5rPoalGShTQY8DIfGGj\nEwEfoACKmkQRozTayxgc3UdFhZcWt5GnHn0Mq2cZjY3b0OnmL0aBwAinTg3wpS/dtRD9qK+vByAW\ni/GL73+fvslJyh0O0rkcY6kUl91yyzkKeOWqVVRUVtJ78iSZVIp1Z8P9F9su+M2IRqP0989QU3M5\np46fwKXXo5f1eJ21HB/sZlVrE7PjIZz+c9W/1erEbK7EYIF2sxmf00y+OEwseYJoVsQkmSgUwOWq\nweNahKuQIRYMMJWYRaea0YQsCS2DT6cjkkhjUIyIUhwDBSpUKzEtR5jxhSk29RSwIYCmohdE9IJA\nud7InE6HxWSirbGW3OluWux2MqUiKZORXCoJiorFpsdoTGI3yJhkL56yWhwOD76qRqyZBKm0hM1j\nQRBFNE1DhXNaot12O4P5PCVFQX5VrncyGmXVB31Ay1vkkUdg5cr54XgfVrZtg89/HgYGoOW1Dgjv\nI6an9yMIZlQ1y5o1zezYse1N98lkMvzkJw9jMLRRU+NF0zRefLoXT3QaT3MzdosFu8WCI5nkuUcf\nZdnGyzAaZ2ltfcVmV1EUurtfYvPmKm644TosFgubN1/O6dN9PPlkmANnZFbWdTA2NkM6XaBYVIhn\nw1isjVi8lWhaBIfNRTKfJl0sghjC63dRYa5DzUExGERLZ4gpecJKgTxm6i1GPGUOQskcNYvWIYpF\n+qJdmAtZXLKIXCwiMW9Q4QO8QBao1OuJKQJVmpGiXkGwWIgoCj6dCVFfwbQwhdTQQCQaZUKSsFVW\n4qquZt/ze4hkFBqcdTB0gklJprrjMh57bBdf/eoX3vFnpigKT/7mNyx1Ohdm1viZtwvY+9xz3HDr\nre/oeT/SYiQQCGDTNNpbWzkajTIaCmEQBMxSnsHwKLfd+gVEUSQeDyMIIf7yL/8d3x4dpvdwmICq\norfZaKypISPL9I73I2aDDCgKNr+fqzZt4rGXukmm4sTkErKpROOSKxk59huqxByKZCKey5K16HEZ\nZDJCnmQ6Rlpfx7AWxZaNImlmgkUVTV+HVrTir7ExPLwXf0lFUueQsBKhRBABDwUcgoYNkXEBlpbZ\nkdxmpiYm2OKcL4r99b5jlC2u5qzWAKCiooGxsQNMT08jiiIv7trFWH8/ZquVRatXc+XNNzM+OsrM\n2BjW6mpuWrduQay8msrKSiorK9+zz+5C5HI5BMGAIAjkc1lMZ1tWdZKeQlFFUVVEDYqF8yMAoiix\n42O3cWTPHpLRKLIhh91Yw6olyxifCKEodqamXsDlcRGdSpFKFygWQdU0NFEjLTspFksIhQJlZh0r\nyms5E0qB6sBbchLPpDGSxkwCB2CTJFKqRlhTSKkFXFY3Kzs7mTUaieXzTBcK5NJp7Ho7mt7MBGlm\nhCLkZkjbHNQ0tSMkyiiVokQiOTRZZjYRoMqro7qijAq7lcMDAyQMBvzeeeOnQrFIzmjk8ptu4tDR\no9RYLOhkmel4HFNTEx2v05n0YeO+++AL7/y3+AOBLMOnPw0PPAB/+7eXejWvz3/8j18iFoths9ne\nsnFWf38/2axtwdAsn88iZFM4LeWMj0/S0TFv7+Cy2ciNj1Nd7cdkOkQkEsDtnp+FFI+HqKwUuO66\nHQtpIaPRyMqVK2hvb+Mrhw+TTIRobaklnckQCEwimIrUNLTgr17GSOEw2UgMCQGFHPZyB7d9+iaO\nHpkmHZWZFATGxqfJaTZyShpZdDCuWCmVNGyV1TidPsLhAdxON+FSAi2TYACoAayABATP/ikrKpl8\nHkkU0KQSlWfrP8an+olFp/C6YevmzQz19UEggM9k4vTRo4xPTOFrWUNLRT2iIODMJBkf6kIU/aTT\n6becDnsts7OzkErhfE2Ra315OXuPH+f6W255R4XwH2kxotfrKaoqsk7H2o0bmZubIxaN0llfTzEw\nRyrVSzot4vGYuPvu+dDWn/+n/8S3/5+/RV+qxmFxkQHc1ZUscSXZ4q9jWUMDRoMBQRTxVFXx/Z1H\naK1fTiSioNNJ2GuXEQr0kkpHkeQim8sqkXw+mlpaePZMP31jOuz2dYyMnCGRmEYpmHCKNkyWSiyS\nh46lLg6fehGhkEMijYIRCyZUijg05scoCRITsThSocDisjKMOh2BWAyH3YUxW2RsdJSWVxmFCYKR\n8fFxDj31FPU6HRvLyjh+7BgP/v73mGpqaGpvZ8XmzWzeuvWiGZn9MfB4POh08xM/PeXlBIJBbCYz\nyUyMCrdlvkZdX6L36KPMTRzDV9NGTf1iSqUCJlOJpUuXsmLFCqanp7l8aor9+08QDmcJH++hsrKR\nlSs30H3yJNG8yHQ+C0oRlSGs+lpkyU2eEDohSJNDxKXXc3mFRERJMpAoIpUilJPFUCgRBWZVDdAo\nIuA0WUgV8rSvWMFn7riDZ555hoMHjxMSNAKoJFOzeAWZJYJExmykpqqKdddew+n+EDpdI9lsCUVR\nGB8RiE4doKRWEEinCfl8WCwWJsNhVE0jpKqsu/56NmzcyPCqVfQcP042m6Xz2mtZvHjxex7JuhSM\nj8ORI/Otrx927rlnfhrxX//1+9fu3mw2v+0x9IlECkl6JTIrSTKqICBKetLp3MLjqqqiAC6Xi7vv\nvp2HH36S8fFBACoqbNx228cvKIBMJhPf+ttv84P/9R2Gx3oQFBVdnZ1GfydF5qcKt63YTCQSZGqq\njzpXhu9851usXbuW++77OTt3dhMrahRkJy6PkfLyRpLJPMWij1h6EsmQpLvrOSRdmAqjAY+jjJ5E\nBCfQLwjoNQ0DUAeYBR0pRaYoQKCQRjOVkSgUiAwdx5yYolHLUClaUXt70UcirNiwgXgsRmBmhjpv\nJXKpAGddTpxmG6Nz02SzjnflLSSejbq+Fk3T3tX14SMtRvx+P4LbTSASocLtxufz4fV6OToywp/f\ndRetbW0oioLb7V5QeqvXrOEf//U7/OAHP2dgIEgmkSQ+cJIVK5sJ5LK0FIvE43GG+/oYnp7GX+1g\n/dZGBgbGCAYH0EkGBuYUIskgtbLCUDxOi9/P8fEpXFVtaKMnOHHiFFqxEh01QAOqpjCXDmBN6Oio\naaLfM0o4DeaURq2qUCJ71u9TRUbCafFwJp6DXB4hnmFgcBSLUYfmdDNHP4w7FsSIqipAkpH+fqpF\nkWqfj1MnTqAGAlxTX8/RWIxFViunn3kGo9nM+g3v3gPgj4Ver2f79g38/vcHsdnrGDcZOTM5iFkf\nYcOSRr7/2GOEZ+co5uJExyeYOX2UvrJKlnSu5O67b104Qf1+P36/n9WrVxMMBrHZYP/zk6SjU1hS\nk6RDEzjUInmxgKivxKQvUFSCpLKDWIRRjFkDitlLMBKjQpKo1olYKixIKZGeSJ4MGnZNwwWUiyKK\npKM7HqBz/XoMBgMtLS04GpZiMscZHOqhRXJjk8zMFpKoJSNaYI6uPXv41Fe+wlNP7SOb1ZAkjZVr\nXGz55n9BKZXQ6fV8rKWFZDLJ8OAgoiRxdWsrZWfrfxobG2n8MLaSvAnf+958y+u7qLP7wLB4MbS1\nzQuvD/LwvNdSVVWBonQv/Fun0+OuaWO8Zy+L2l7x0hmcmaGuowOLxYLFYuErX/k8sVgMTdNwuVxv\nePe+ePFi/vaf/4mBgQFy2SzVNTWEQmG+971fcvjwY8Tjytk24Dxr167niSde4umnX2J2dgafz0uh\n0IfN5kEQYC4UJZXMk0gNgFJAn9EjKkGsYoLJUp4yTyUeq4WpQg6jIFAly0RUlaAmYVM1dEqBvGxk\nVpcnlSlSI0exlaaoEUu4jCIVDgfjg4Msb2ggFo2yZe1aZgMByqMJhkMpstkUFvP8mI5UMsqWjoZ3\nNZeqrKwM2eUiHI/jfVV9yNDMDIvXrXvH9gAfaTEiiiK33nEHDz3wAFNjYxgEgbiqUr92LavXrHnd\n/umWlhY+8+mbeeL++2lw1NNQWUkinebF4WEeOXWK2MAALqOR8poaNjY1MT01yp996U6isRj/8I1v\ncGu9nvK2DubCYYbicX7/4gl07hXU1trp6Lie0ZEnUEpxBFlAlKqRZR0GnZ5gdILTwwJzCQveCpm4\nMMZsKkKZUsSDxoRsQm+2kJN1pPV2dOk51ssWKr1uZJ2IQprjwW6mzXZU9UrS6QQ9Pc/jdIo8+cRx\nrmqqIpPNMjs2RpPLhSgI2AWBVDbLkqoqjrzwAp3r1r2voyPr1nXicNjZu/cIxaVGCjkvNtnJYKlE\n/3SGJXXbcFrcRONRpoJjkJ7iis1LaXlVYr1YLLJ794vs33+SQkFhuP8U6dAk2azKUqOJuNVLsBCk\nIBkICBApRXCoQap1CpJOoD+RZiJVQDNbOVkoYJIkbDYzAdFOSBbwllQGAR05jFqJKjXPotpq8vn5\naQiFQoHmpZsYkk8QHzqJX2ciqBTBWI7TIDM3GWd28lnG4nnu+dIXqKnxYzabKS8vP++zsdvtH0lD\nswuRTsOPfgQHD17qlbx3fPnL8C//8uESIw0NDTQ0WBkZOUVFRTOSJGN1lxEptzGllsiMj5PWNMw1\nNdx4ww0L+wmCgGt+/O9bwmq1nuMWbDQacTrtdHRsolQCVY0xOjpBJFJOa+sG9u7dw8GDYzQ3g8Xi\np1CoIT4Xp5jpRhZl7PiQtNM4lQJWj59gUENFYM/sGNdWlbPeYubY1BT9qkoCCY+oJyGLWOxuzBY3\nKw0melOzmE15zIkY1WVOmuo7cDmdTB86hKSqhEMhZEmiyu9HU1V08TiRyDijQRibC5G1GVi8uAVF\nUd6xP4goilz/yU/y8P33MxOPY9XpiOTzyH4/m7a+ozF0wKWdTXMv8HLm9v/TNO2Xl2Id5eXl3PP1\nrzM6Okomk6G8vJyKioo33EdRFF54/HHW19fjOhvm8zmdbGlp4SfPPMPipmYGh8bJDE1TTORoaW1g\n986dxNNplhgMrDyba7PY7RzomiCRFPC5FyMIFfSeegm3FsSpA1UYJSGmUEzLiOdk8vkkkUAaRdCj\naYuwuRvICy+RLRVAUHHbdIi+Wlas3crRo8exhk/Q7KvEIM/HaFNpaHGoBKxzTE3tZnh4GEkqx+db\ny9SoxBMvjdLmD2DXNMSz6janaZgMBixGI4XZWYrF4ns67fWd8OoBWy/zT//0L3hsETyO+ciA1+PD\n6/ExPC3S19XF9muvXdj20Ud3cuRIkOrqtUiSjhMvTSBLM9i1GQTFjE6XwGPMkcGAaJTIZAM0GvwU\nspPorG4CiTyZUhZzKoXVYmdOb6A/LVPCTUa1okpOrDoDJZLo5Bn81iKWigry2SwwX3+j1+dx+Jpw\n1qzFhIQQTSOjoJOzRJIiUUkj1RPl/vtfYOXKSu655zPva5H4fuCBB2DTJmhqutQree+49Vb42teg\npweWLHnz7T8ISJLEHXfczosvHuDgwWOUSgrr17fx7//9PxOPx4nFYjgcDmpray/qObFv3yFstjZa\nWxvRNI1dux6lru5KgsEgu3fvo7d3BklaQl/fSVIpjWQihUV0g2ajWEqjI4tMjmDKRCJvQcWOQctj\nV4ycDs5hMRso8/sps1h4cWKG1Q3raG1ZhMlgXEiNRPY/zKeu3cTU0BBrXjXXyet0Mjo3h+lsVfaq\nxYv5/dQUpQofWR0MzghInhVcdvll/O53xxkZmeQTn7j1HR+f6upq7v761+k7fZpENMqSmhqam5vf\nVar3UkZGntI07QeCIMjAAeCSiBEAnU53zp3xGxEOh3nsN7/h0NNPM+VwUOX3s3rJEqwmE6IgMNR3\nhnTfONVmO4Ikczo6zlQoRvnSJkKJOG1mM6l8nvF4kr1DU4yFbaiKlUSyyODgEKZoP3UYcdsdZHLj\n+CgymD0GUgMmqxdFLOGy+vB42imVcmQNemLxAHqXQO2qZlatuZrx8T4kSaa6to1AIow5n0UG4qUi\nJp+XDWtXcuMdt3Dffc9QX9+JIAgsWraG0/vzjMwGqFRz1CkKgXQayeGgzOkklkph9Xov2hyC95pQ\nKI5Bf34PvaKaeXU569zcHMeODVNff/m8cZuqYjLZQalGjk/gNKhoyRzxXIqMVqSg2hELSWRzGIPD\nhK+yhtzIELWim0Qxi2Isx6G3kS2MEyxZsNs7KKQnMCGiFz1EinmC2iyNDgfesykUr9fLhg3tPPDA\nTkRbFZMzZ3AWS+gNGrFkllhuDskmUJ+PEeh6iZPCWg4dOsLWrVveo6P5waNUgn/8x/ni1Y8Sev18\ne+///J/ws59d6tVcPIxGI9u2XcG2bVec87jT6VzogLzYDA1N4nItolgsMDU1yNDQAF6vj1QqTyqV\nwWSyEghEURQ9mmZD1WbJKkVk4qhqjpQWwCZkkKgikgtQRxi/KKOTXUCaRS47U6LIVdu2MbtrFx6X\nGYvplXqaTDaJy2FF1umweL2MR6PUnk2TyA4HoVKJCquV/okJsqpKbWcnDr+fp5/soXPHvOeKyWRC\n0zS6ug6ydu0ITe9CmVutVtasPX9w4TvlUg7KGzv7VwUoXap1vFU0TePYsWN8/+/+Dk8qRWU+zzKT\nicjMDLvica7bsoXxmRlKkTirW5oxyPMKsVxROBGJEO4fpqGlnq7hYTITaTTNx5mgAUUrJ62EcJsd\niMoIHsECcoJsMU2Zy0G5qwJ9eJLDiV4s1jKc3nry+fkvqE5nIpMRMZkkwvFRFK2JQGCQdHqYxYvr\nUcNT1FTVk07FUZUSNqWEo0ykvkE6/IgAACAASURBVL2d/v5hTKbyhfxeVVUl2RUr6Dq0B0XSExwd\npaa2lm3r1hFLpegOhbjmzjs/sHbhS5a0cXjvJJl8DrNhftiToirECjFWvMoPJRKJIIrzroyJRILR\noSEikQjp4BzFcIhOUxVCSUNvtjOey5PVK+iM5YAep9NAXlMpR8BtdJDXmUiVzMiiFYuaJ58vIOlz\n5BAQFAmraALBwUQxwrKGhnNqOK677hqMRh3/8A8/J5B2ki6O4JFkJrIRdEaBbdVLEVTwWsyEJofY\nt8/5JzHyBvzsZ1BTA5s3v/m2Hza++tX5aNDQ0EcrKvRuKJVKnDlzhp6uLuKzszi8XkqlPKnULL29\np0gkdGQyIhMTIaLRMRobm+Yn+IolFKWA0einVDSiZE9jlgcplvJUawoCeiRVJCfE8GgiIgI2WSKr\nyQSjMWYQGYzEcJSXozOUCM+NIoomNK2AKGXp2NhJ0mymqaGBYeDg7CypdJqC18vn/t2/o6a+nmAg\ngMVmo7W1lWeeeYGO5W7Ky18RaIIgYDSWMzDw7sTIxeb9UDPyZ8D7vrZ97+7dPPKjH1ERjbLI5+NU\nIMCuA4doaWggE48zND3Nvu5u/O5ykvkMetmOgIAsiQipOKcnihjLFrF/OI1T9lBt1SEKRnKaGUG2\nkMtNYBZyGPVmVC2NThcjr6pEUyo6IYHf72Ttxk8wOwvR6BixWDfFokY43IvZXEZLSyeSpEdRJvgP\n/+HL/OpXjzM6aGBo4gy1NheyABPBM9gqFrFx61a6u0+jKOdqwKbmZkSpwNKlm/G47AydPMnRcBiH\n18s1n/vcOSOlPygoisLw8DDFYh6Do8CZSBCPwYKgaYQyEdpW1nLFFVcsbG+321HVDJFIhGMvvohb\nFFlcUcEzQ6fRlUocn53FWgDJaMHl9jGaL9DcvhZLeIpSNonZaEIVCkTzCWR7DWosRyh0hlwuj4ZA\nNKWgk9wUhSw5oYhsMKLonVx+zfZzcriiKLJt21X4/VX87GePcPA5lchcANkssrWuHbNOTzidpsrr\nRU3PkYiFL8HR/WBQLMJ//+/zaZqPIg7HvD383/0d/PjHl3o1fzw0TWNsbIwzZ4aQJJH29haqq6vf\n9vN0d/fw4IOPcWzfCSyUaPbbWNVSQ3J2lpcGXkKnX4HX24KmGRgaGsJodJ+1SPditWZIpeKUSiNI\nchpZF6XGJEA2j1t1MlnMUCKLHgWLqCMrCGSUEslShqRiRvL6OHimgGZz0FxfQb3RiB6BEhpRUWTD\nbbdRW1fH7iefxKAo2CoqWLFsGduvuw732bTNqwWG0ahHUeLnvUdFKWIwvL+65/7oYkQQhHLgV695\neEbTtM8IgrAO2AHccqF9v/3tby/8/YorrjjnovFekkwmOfrss1QZjVjsdqLJJMmSkYLi5fhQmpKU\n42RxD8tWdmBIayiKkYl4CL0gkMxnmStoeGvXsGjxFnq7ExTTJoazs5SMblQlTU3ZZaTTp8gIOYKp\nYSpMJT5358cwmQxEolEGMxmuX72Ovr4S09NJ6upW4XRO0dW1E6+3Gb+/kh07LsflcjI+3sPg4Cg3\n3HAF3/3uD+mJxDgxMYzLLnH9bTfwyTvvoKKiAk3TeP75kxSLNeh08zUgxWIeUZzjyis/Nb/Njh2U\nSqUPbMtnsVjkV7/6Hb29c5hMZVRVtdLTcwSLuwy32861S1Zy5523n9PmVl5eTkuLl9//9kmqdU4c\nFhv5Yg6rJcfVTe0MhcPMFkTsdh8edwVL9EYaLt/BmVMvMXDkSerwEjPqcct6ZEkhkTiDIDgxOZox\nqybEnJdiAUriDK7yalRphiuu2s7ISOCC72HRokX81//azM51f+CX3/se+dwsyUSMQCGHqtMhzIyT\nKEa5svWK9+iofvD48Y+huXm+XuSjyte+Bu3t0N3NGw6O/KCiaRqPP/4k+/cPYjBUACq7dp1k27bl\nXHXVFW/5ecbHx/nFL54lMKmjwbkIg05HMBrmyJkJbty4gmcP/R5neZFodAxBgLo6M8Vijv7+fkql\nUerrV+F2f4aenh7AitPewPTwb2lEQxQ03CaZYDGKUedGIYdR1FOQM4gFF7LBxHheQc5ZqPF3ECjN\n0bFyJYGxMZweD9ds3sySs4U/n777borFIpIkvWHdx5Il7Tz//CmKxdoFo8tCIYeizLJ48ZXv4ohf\nfP7oYkTTtFngvBJbQRD8wD8AN2kXalrmXDHyXlAsFjl9+jQDA2NYrWaWLVtMZWUlMzMz2AHN4SA0\nOUlgKobNXI3NDKF8Hs1tJVtVw9otazk8G8KUNeOtrEcpFUlNjpLKGVm3egM6nQ5/bQ06XSMz06ex\niwVMJidDQyfJZCLY7XZCuhLrOurxVpRRVBQyuRyrN23iqh07+PnPHyIcHmNkZIJcLoZeb6auroZl\ny5pwuZwAlJXVs3v3AWTZQH395TQ1bSWbTVEozLF87cqF4tzKykpuvHE9jz/+EprmQtM0JCnGTTdt\nXNhmfoDU2xMiytnheBdrkuO74eTJU/T2xmho6ASgoqKe9vZORkdf4C//8q7XzS3fcsu17HrkEbL5\nELm8DoO+yKpmC612Gy6Hg6iix+VqQSfrORGdxWZzUdeymNUbahgYCFKwOtDF5zCWUujNMmkcZG21\nuCU3s7MjoPciigqaYZyG+kZUVU8mk3nd96HT6WhobMJW10FgcIpIcByDwY/XUkk8nmGaLDan+7z9\nNE37QIvJi0E0Ct/+NuzcealXcmlxu+Gv/gq+8Q146in4gGZbX5fh4WH27x+irm79wsVZUerZtesA\nixa1LoyveDNeeukoJlMt0+MvUkjkKJQk0DTOTIRZ1hjAY7Owdv1yjEYjsixjs9kolQo8//wvGBsb\nQaezk8+n8Xr1CIIeKLJs/ZVkzuzHoRlZ1byKwdEuZhI5huIxKmTwWm1Y5TJ6EwmMdZtpaNpIPp+j\nu3uQG2908hd33rmwvmQyycmTp5iZCVNZ6WXZsqUX9Ep5+dyvqqrixhvX8cQTBxZ+50Uxxk03Xfam\nc77eay5lmua/AGXAw2frEK7VNC33xrv88cjlcjzwwL8xNpbHYimjWAyzZ8+v+djHNuP1eihoGotq\najh09CilgoTdLFEolcijILh8LOnYRCwWZ+V1Ozj2h50kImEUVeT03CjVK7bT0bEcVVUwGArodCK+\nsmoaGiy88MJxBMFKY6MLl8uLzdZCVJfkSDxOeUUF6668kmXLlyNJEvfeeyfbt48xMDDAmTMDHD4c\nYNmyjdjt9oX3oWkaIyNjtLZeSUVF/cLjpVKR5547wIoVy7BarciyzPr162hra2V0dBSYt4F/O61v\nr2Zubo7dTz/NcE8PoiTRvno1W6666h27/F0Mjh3rxe0+V3AYjRZMphoSicTr7mez2Vi9YhEdZ62O\nbWYzo4EAJw8exKSqrFzRzsnuYWaSRZTKRkKhARobLdx555+RSqXo6eml73Qvk/39HE/mKcgdSJof\nQRUxGOIYjWaSyXHs9g70+kV0d58A9ExMTJw3uhtgbGyMX/ziWRYtup7RgQAKsxg0mYwSxeYvY3Hr\nFrq7J7jhhgxmsxlVVTl08CBHdu8ml0rhrqjg8muuofVVRncfFb79bbjllnn79486X/7yvM/KE0/M\nD9L7MNHT04/ZXHVOlECSZGS5jP7+wbcsRoLBKJrmYzKQoMzsx3HWkG02mmbnoW7KvRYSiQBVVa/M\ntspm06xbt4RvfvOz3H//o4DEypVLSaeD6PVRtm3bTs+heqTJSWIzUer8leiKZzAYTSxe1sGxniFi\nBRHPkluprV0OgNmsw26vYPfuY1xzzTXIsszU1BQ//envyeddmExOurqGeOGFo3zxix9fuIFUFIUD\n+/dzbO9e8pkMPr+fTdu3881v3rXwO9/Q0IDT6bwIR/3icikLWP/sUr32hTh69BhjYwr19a98yQqF\nah55ZDdf/epnmM7nKQwNUdfUxK7gANF0lFg2g7u1gw2X3YSmqeTzOfw+D3KZj0hpmrLaWm66/kqC\nQTexWAyr1caqVZ0cOnSQRCJHqdSMxZKlslJHU9NiKiurKS+vJRIJUN2o8OlPf+ycNYqieLbHvoGt\nW7cSj/8Lrw1ABIMj6HQSXu+53hK5XJozXd38w3/+z7g9HlpWrOCKq6/G5XK9YwHyMslkkl/98IdU\nFApsqa5G1TQGDx/m1xMTfO5LX3pXbn/vhtcJuL1pEa4kSXSsW8fEnj0sO2t93+z30+XxsLevj+79\n+ygAtpoaNm/t4LLL1tHW1oYsyxgMBjZv3sSKFct5/OGHeX7XfjLJWdy+Sly+aqqrnXR1HUOSiuh0\nMsHgfmpry6iv38DDDz/FX/zFF89b3759R7FaG7BYHOjM5eja15COjZPOzFG/cjPt7SuYnDxOMBik\nvr6e3c89R9+zz7KsqgqL281cIsEf7r8fvvCFj5Qg6e6GX/4Sensv9UreH+h08E//BPfeC1u3zk/3\n/bDweuf6m/3fa6mvr+TgwRM4PI1kExmMeg0BAaO+RDxtpGVNPe5KjbGx4xiNHgqFNLI8x+c/fwt1\ndXW0tbXR3d3LSy8dohQfxq4zMXGmj41XX81oXx+lM2cw5HK41i9he3MzZr2e6g2zPPz7fsrK6olE\nhhEEEVk2YrGISJKD3/zyl4RGRzly6BgY61mx4XocDi9QRTg8xaOPPsO9985HT57ZuZPxfftYUVmJ\n2eslFIvx6I9/zK333nuOZ8r7kfdDAev7gmPH+vB6z72L1uuNRKNF/sf/+GcEoZbDPX0omTniShFT\n2XJamtpYtXY9oigwMHAAozJE2ZyNjy1bhtrRQe/oKLv37SYQUjAbGtBb3NS3t9LS4sdmS+Dz6VDV\nelatuhpJeuWjsFgcjI6eYnZ2Fq/Xe8GUh06n45OfvJaf//wPRCIedDoTuVyY+noTTmc7+XwGWZ5v\n+8rl0nTt/R2e2AxbNmzC7nAwfOIEv56c5K4vf/m8MH4oFGJychKdTkdjY+Ob2jWf7OrClkpR//Ik\nSKC9poYjo6MMDQ3R1tb2Tj6Sd82qVYt56KFjZ0/ceQqFHIIQveB8nVezaetWHgmF2N/Xh10UCSST\nTEej3LV9O5Ki0HfyJIGxMY4/9QRaKobT6VwwFysUCvz6vvuwx2J8tnMFOw/0EQgdYSIxgd1bhap2\nUVbmI5vNIst2xsdDaNo+/H47p0+fpqmp6Rwvl3A4itXaDIDJZEYUvbhcdUQiU9jtZWdbkHMYjUbS\n6TQn9uxhY13dwiA8j93OIk1j/7PPfmTESKkEX/wi/Lf/Bl7vm2//UeHqq+drZ/76r+G7373Uq7l4\ndHS0ceDATlS15lVpmhKlUuicAXlvxoYNa7nvvt9htbaQF10EI2GK+RkslhyCvYqNW69i69Yt9PX1\nMTY2g8dTTkfHjQuTaiVJYs8zT9G/axdNZjM6kwnyeQ5MTbHlk59kxy23UCwWcbvdiKKIoiiMjo7y\nb7/9EkePhpFlP5qWQxCmWbduJUf3/QFfpI7V7e3MaQYEVeHU3t+x4oqPY7U68XiqGB8fJplMoqoq\npw8c4LK6uoXhmD6nE0VV2b9rF3V3333xD/xF5E9i5CyiKJynoBWlRHd3D52d22lqaqO9fT1zc3Mc\nPvwUZnOJymovodA4mcwsNmsCd0wjHo/zRG8vsiyTmJvDm8uxvnM1M3Npxmb7OHXgCJ++59N86lN/\nRigUYmbm4XOESDqd4fnnn8VojPB//+9vsVrh5puvOs/EC+adYL/+9bvo7e0jkUhRX7+E5uZmjh8/\nwUMPHaG+fhWiKDE9OYAhOktTlXfBBrm1upqjY2MMDg6yaNEiYP4O4qmndrF3bzfgAhT0+l185jPX\nvaEPS2BsDO8F8pZOnY5gIHDJxMjy5cvo6Rmgr+8QZnM5pVKBUinALbdsftOhXAaDgU/ceSfT09NE\nIhEO7t3LDU4nXpuNQ889R4vNRofbzeFIBGc8zsM/+Qmf/4u/YKC/n50PP8zwwYN0Ll3KosVt2GwW\nDnf10TN9Cld5iXS6jLq62wmFwkSjaVTVwdDQCQRhhEwmR2WliyuuWM3mzfNeJ3V1lZw4EcRkstLc\n3MKJE0N4PB1ADrPZQjA4Rk2NjfLycqampjDDORN5AbwOByfHxlBV9SNhjvbd74LVOh8F+BPn8t3v\nzhexfuYzsHr1pV7NxaGxsZF16+o5ePAgRmMFmqZSKMyydWvH23Ig9nq9fPazO3jggReQZT1GSxGf\nr4nW1uVksxM0Nc1bqS9fvpzly5efs6+mafzmpz9l8sABtvn9hDMZxmZmON7fT8vKlTz76KN8/a/+\nauHmsqenl0ceeY6pqTC5nBlJKqeiovpsxNTGc8/tp9GUJGbzcDLfA6i4rQ5ysTCTY720L9n48isj\niiLhcBirIJwzpRvmBcmZsTHe7/xJjJxl7doOfve7E9hsr6QspqYGURQdNTUNwLzqLSsrY/PmG8jn\ne+jsrCCbzdHaeiVdhw+z98E91IoiLRYL8ViM0cFB9C4XgqJwy+VrCEQi9IyMMj06RDabpaqqipYW\nD8eP76GmZhEWi4tnn32GTCbMli23Y7O5SKcT/PznT/KVr9gvmPd0Op1s3Lj+nMdWr15FMDjH/v37\nEAQHo/37aLKrrO1ccU4KwCHLBAOBBTHS39/PCy/0UV+/EVGcP2HS6QS/+MUTfOtb975uhMRVVkaw\nv5/y16R70qUS9kuYm9TpdNxxx8cZHBykv38Es9lNR8fWt1W4VVVVRVVVFS/u3EmFx8PY0BAOUcR4\n1vzNLopIoog1k+G+f/1XDHNzuCIRlsky8TNn2DkywvKWFi5b3cHq1UtI+f2UlAmCwRmiURWrtZZI\nJIaqNqLXlwiFSixZsoadO7swmUx0dq5h48a1HD/+C8bHCzidPmprg/T0PIHH4yGROENlpZFPfvJW\nBEHAZrORUZTzREcincbqdH4khMjJk/Cd78wPxPsIvN23jc83f3zuuQcOHZqf8PtBRxAEbr75epYv\nH+X06QFEUWTx4vXUno3Wvkwul2NgYIBkMkV5eRkNDQ3nnRPXXLON/v5pCoUyysrqAI1AYIi6OvMb\nznOanJwkPjqKS69nKBwmFgxSq9fjNxgInD7NUDDI9N13U1NTw8TEBA8++DRlZSsoFo/T2Hg1MzOz\nhMMTiKJEsWjHZPJT7Y3i9TQSCk2gqnmSyQgOo5nxufnuu2BwjObmCiwWC1arlWSxSCwWQ6/XL/xe\nx1MpHB+A8OCH4Gv49kin0wwNDZHP56murl4Ye79y5Qr6+obp6zuEXu9BUQpEIj0sXtx6nuuoLOsA\n4znuf7ueegpTKkVTXR2qphFOpajM5TgxNoaroYG8InByJEGxZCMyPEumdD/tbT6io/0Y5oY5cOIP\nZHVGVJ2XHTs+sSCKLBY7yWQNhw4d55Zb3loRliiKXH/9djZu7CQYDNJ11Eixt/e8YtJ0qYTzVZbC\nhw6dxOGoXxAiL79+OGxneHiYjtfpCVy2ciUPvvgivlQK59miz5m5ObI220WLigSDQY4cOEBgbAx3\neTmrN2y4YLHna5Ekiba2toV1hEIhjhw5gizLNDY2nlP8+0Y4PB4SoRDZVArDq9JaL9vlh2IxJsfG\n+OSmTUxIEpOTk3gEgb7uMzwTKFDtqWQyNolng0ZjYyPDw6dR1TLS6QSxWBi9HrzeSrJZmVQqRmVl\nBy+8cIi1a1cjyzIec57je35DKpaiaDBw++3XsG3blTidTqqrqxdEpsPhoH75cnpPnmRxdTWiKFIo\nFumdnWX97be/gyP/wSIeh9tug//zf+BNMnEfae68c94I7n//b/jWty71ai4OgiAs1NRdiJmZGe6/\n/yHSaROiaEJVT9DYaOezn70No9G4sJ3dbueeez7J00/v5vTpF5EkgbVrF3HVVVvesEswlUph0+sZ\nLRbJB4OssVgQBQFFVSmVSpRKJXpOnqSmpoYDB45hMtVhNtsoFovodFba21cxNtZ19trURiikEo5N\nMDTQj6oqSPosFkucyWCAXFULY2NdOJ15brxxfvDQyPAw3WfOMDE3R4XFgquykpYlS+ienqZ+0yYO\nHz5MRUXFOb8X7yc+UmJkcHCQBx98nELBAcho2kt0djZy003XLdxFDw8PMzo6gdlsorp6Mz/84UMU\ni4WFHm2AcHiCLVvOzb1LqorRaCSTyxGemSEdDpMvlbBoGlP9/RztS7Fy6TaiqTRNtbVomoGHv/dj\nvnTzdrZs2YSqKOw+coT9MxpOp++c57ZYHMzOzrzt9/tycarP5+NnZ84wl0jgOXvxnQqHydrt54iF\nXC6PTue4wDNJFIvFCzw+j9fr5ca77uKphx5CGR9H1TRsVVXcfvvt55zk75TJyUke+uEPqRJFGux2\n4v39PHTiBNfcccdbNmLTNI1nn32eF144CXgABUl6nttuu4rly5e96f6rL7+cJ++7D4/dTmR6GrvZ\nzGQigehwUO5ysa+/n2rbvHNrRWUlfcePMz40ToW1nBkEJKOVoruOdMYCTFNTU0Gp5CWZzJDP69Hr\ni/h8NQiChqKUMJmshEIZCoUCv33gAaryeTbedB3K2XbvrtAsTqfzgoLs2ptu4ilBYN/JkxiAvCSx\n+tprWfVhicm/DooCn//8fF3EHXdc6tW8vxEE+P73obMTbr4ZPuylRJqm8etfP44kNVJX90pkdHj4\nFHv37ufqq8/13PD5fHz2s7dTKpUQBOEtWRX4fD4yoojD6yUwOLhQIZzJ50lLEovb25kaGgIgGIxg\ntc7XKFZV+ZmZGcZs9qDTmQERg0FHPDqKOaeSVWM49WbCkVlqanw4W71svqqTxYtbaWtrw2g0cvr0\naQ787nd8dtMmjvf2EpyaYnxwkOcnJ3E0dBA+EuXo0TSadpClSyu5/fabL1ljwevx/lrNH5FsNssv\nfvEEdvtyLJb5C7Kqqhw8eISmph6WLl2KKIo0NzfT3Ny8sN+OHet5/PHDWK11GAwmYrEZ3O4c69ef\n68nvKy/HsGwZw6dOEQ4EcJhMpCwWJEVBEY1IWRNTgQBFq432pkbOHH8Wv8FDMh7H7XQiShLLmpo4\n0LeHeDx8jiBJJMIsWVL5jt+72+3m5i98gaceeoj+iQkUTcNRVcXHXyMWOjpaePzxXux2z8Jjqqqg\nadE3dTJsbGzkS9/8JqFQCFEU8Xq9F019v7BzJ01GI5We+XXZLRYc6TTPP/YYbW1tb+mHYmRkhOee\n66G2dsNCjU4ul+Ghh56jrq72TVvdWltbid16K7sffZSBQoHe8XEqamrYuGIFpycmMPv9WM56rOj1\neqqamxkai1DIJAkKIkgSSy67GUUpoSh9hEIB5uYUvN4KAoHTGAwyLlc72WwvTqePRCJCWZmTyclJ\n1FCI+rOeKJIkYbNYqEunOXbgwAXFiNFo5OaPf5zE9u2k02lcLtdFEYXvZzRt3vY8HodfvdZi8U9c\nkMZG+Ju/gbvvht27Oa8z78NEIBAgHC5QW3tuiraysoUDB46cJ0Ze5u1csL1eL82rVxMPBlHtdkYz\nGdRikbiqsnTjRvz19aTORo7r66s4fDiExeLA729ifHyEcLgXTcuhaWlGRvbi1sOqRTsYmzjJxNw4\nHruRrtlZ7vriF7n66qvPee3De/bQ5vHgtFrZ2tlJKpsllc3yvZ17aa24DL+/HpgXZSdOHKO+/hjr\n13e+jSP4x+cjI0ZGR0fJ561UVLwSlhdFEZergUOHTrF06dIL7nfZZRuoqqrg8OEuEokwGza0sGLF\n8vNSHss7O3ni5ElqW1uxqipeh4N6VWVPMEgwrTJXUkAUuXLzJqxWK9lUFLfehKqqC8/h9niochkZ\nGeli6dItSJJMODyFKM7S2XnNu3r/9fX13PuNbxAOhxFFEY/Hc942K1Ys4+jRHkZHT+J2+ymVisRi\nI2zZsgSfz3eBZz0XURQvupFOPp8nODZG+2suunaLBSIR5ubmKDs7YO6NOH68B4ul5pxiYaPRjKK4\nGBgYZO3aNW+w9zyd69axbPlyBgcH6TpyhJnhYXoyGTouu4zrOjt58J//mWgyictmw2wy46tuY6JU\nYNW666irW4QgCEQiAerqmrjppu38/d//gGQyxJIlTsJhjVism9Wrl5LPZ5mb6+Wuu7aTSqUwXUDU\n2S0WxoPBN1yv3W5/y2moDzKqOp9qOHIEnnsO3udDpd9XfPWr8JvfzLf8fu1rl3o1fzzmIxznqy1J\nkikWL95otB033YTN5eIH4+MUslkqKyrY1NGB1+fj8NgYV916KwDr1q3m8OEHCYdNeDxVrFmzma6u\n5xCEFI2Ntex54RButRxNU3F7q3G64dp1iygpCvIFfg9ioRAtr6rZs5pMxNNpUBxnoy3zCIJAWVkT\nBw+e/JMYuVS83pdRlnXk86+fggDeMA/5Mk1NTay+7joe/tGPUHM5kno9OYOBT9x4I/F0ml8/P0pj\nR8dCC5jVXUl8YAS3+9w6jNrFrfhXNtLXtx9FUWlq8rNjxycW5g68GwRBeENRYTKZ+OIXP83x4110\ndw9gMhm55ZZtl6wbBubvTARZpqQo6F51l6JpGiVNO6cF9o3I54vI8vnbiqL8himo12I0Guno6KCj\nowNN086J/tx81108+uCDGKJRcrksPekA7etvo77+lVRSPD7FddetZ9myZXz/+/+LI0eO0dc3Sig0\nSzKZQZbnkKQin/vcNbS3tzM5OUniAj4JoXicyos4MfODSqEwf2c/MjLvLPoR0F4XFVGct8vfsGHe\nCO1VQeEPFRUVFRgMBbLZFCbTK9O7g8Exli+/eDkqWZbZsnUrLW1tPPzTn6JLpQgWiwxMTbF827aF\nrkiv18u9936cJ598gaGhF9DrZW6/fSNXXrkZo9FIQ81POfz405h02f+fvfeOjuM687Sfqs4RjW4A\nDTRCIxCJAcxJpEiKoiUrWrIkW9LI+hzkMOPxN9m7nvlmxzvnTLDXk2fHXnstW7ISrSzREhVJUcwZ\nmcixATTQ3eicq+r7AxDMv9Cc7AAAIABJREFUqGSSAEk85+AAqND1Vt2uW7+69w0sKLGyqHwdFqOR\n9qEhdAbDOcd1VVQwMTBA8WmOqplslgwiJtOZ1crVai3J5Mfv8y4X14wYKSkpQVHeRpKyZ7wd+/1D\n3Hrrxfkybrj+ekrKyvjJP/4jNXl5VLpcqFUqzAYDRlsbWdlHIDCGJGUR9ApisY2EJGFVFFKZDO0e\nDzVr13LnPfcgTUdEXO5U3gaDgeuuW3dOhM5soVKpWLh6NR0HDrD4NM/4vrExnAsWzIi7j2LRoipa\nWg5jtxfOLJNlGUnyU15+TrWCj8XZ01But5tv/cVfMDAwQCaToajlFMeODTMxMYxKpSYU8lBTY56J\nXrJYLNxww+aZaruKokw7s2lmPru4uJi8mhqaOzupcbnQqtV4fD68osi2dXOjjWaLQADuuw8sFnj7\nbThPHz3Px6C6Gv7yL6fysuzadXVGIGk0Gu6+extPP/0mGk0xBoOFcHgciyXC1q0PXvTjuVwuvvXn\nf87AwADpdBqXy3VOX+VyufjqVx8kk8kgiuIZ081btm1joqODVUVFM5F78WQSH3DrdP9xOus2b+a5\nn/wE9eQkztxcEqkUo6EQdpcJjebMBp2YGGTjxrnnJCR8kux0lxNBEC5UsuZTs2vXe7z5ZhNmc9l0\nQjMPLhd87WsPYLiIPVlLczNvP/cc1mnnp6AgsP6WWzCYTDQ1daLTaVi+fBFarZY9b7yBd3AQrV7P\nso0buW7jxjnnWHS5EIRzc73AVDjei888g7+rC4sgEFcUdEVF3POlL31sMZLJZHj88V/T3R3HZitB\nkrKEw4Ns2FDJHXfccrFPBZgSF93d3Zw40UoqlaGhoYaFCxd+YoGZSqXYu3s3zQcPks1kKKmuZvNN\nN81Egl3pXKjdP4z2drjzzinnyx/84Or2d7gcSNJUMrQHH4Q//MPLc8xP0+6/K6Ojoxw71ojfH6aq\nqphly5ZiNps/esdZ4Ojhw7z/6qvYFAVFUQir1Wy7914WX8ClYGBggPd27mR8aGjmeaLS6Nix4zBG\nYxl6vZFQaIzc3CTf+MaDH5lr6VIw3ebndSacNTEiCMLDwNcAHfBTRVEePWv9RRcjAD09PRw92kQ8\nnmLhwkqWLm24JM59sViM/v5+FEXB7XZ/aMNns1lUKtWcDLe6nHxY56QoCh6Ph0AggMViwe12f+Kc\nGZlMhubmFpqaOtFo1KxcuYja2tor5rrLsowsy1edWP2kD6WdO+Hhh6dEyFe+cgkNu8bo6ICNG6eu\n7+UIvJoNMXKlEYlEGBgYQBAEysvLP1atr0wmMzW9Pd2vDQwMTPs8xqitdZ/X5/FyMVfFiFpRlKwg\nCCJwWFGUVWetvyRiZJ4PZ2JigraWFhLRKO4FC6iurr5sD79rpXOKRCK0Njcz6fPhLC6mfuHCizoy\nd6XxcdtdUeDf/m1KhDz77NSDc56Ly7PPwne/O+UMfB4f94vKtXK/X0wymQynTp3C09eH2WZj4eLF\nF8Wf8HIxJ8XIjAGCYAB2Koqy+azl82LkMtPU2Mi7zz6LUxTRazSMJxKYq6q470tfOifx26XgWuic\nPB4Pzz/6KLnpNBadjslkkqTNxv1f+9rvXLDwSuXjtHs6PRX5cegQvPLKfEKzS8l/+2+wb9+UQ/Cl\nfIG+Fu73i0k8Hmf7L39JdniYPIOBeDrNhCBw60MPXTE1pz5MjMyqq5IgCP8D6AQe/aht57m0xONx\n3n3hBVY5ndSUlFDmdLKqvJxkTw8njh2bbfOuChRF4fXnn6daq2VhaSmlBQU0lJWRF4ux+803Z9u8\nOcvo6FQis/HxqYfkvBC5tPzDP0xF1dx1F8Ris23NPB9waP9+VCMjrCgvp8zppK60lGV2Ozt//etP\nFBE4V7nkYkQQBKcgCLvO+nkaQFGUvwWqgEcEQTjHi+j73//+zM/u3bsvtanXNAMDA1iyWQxnhcqW\n5+XROi9GLgqBQID4+DgFZ42AuJ1Oepubr4oO5WLz2muwYgVs2QIvvjgVOTPPpUUU4f/+XygpgU2b\nYHh4ti2aB6D16FEqzsqpZDEa0SWTDF8FjXTJnQEURfEC58ROCoKgVRQlDWQAGThn6Ob73//+pTZv\nnmmuFCfOea4NjhyBv/s7aG6Gp56CGz5d9PU8nxK1Gh59FH74wykx+Pd/P5Vq/yrznZ5nDjGb0zTf\nEwRhF7APeF5RlMgs2nLNU1ZWRkStJp5MnrG8b2KCRVd5TZPLhd1ux+R04p2cPGN5v9dL5ZIllz2n\nzFzj+HH48z+HJUvgC1+YCjVtbZ0XIrOFIEz5j7z1Fjz+ONTWTjkPd3RMORPPc3lZvGoVvV7vGcvC\nsRgpvf4jy3VcCcy6A+uFmHdgvfy0NDfz9vbtFIgiOrWaiUQCa00N9/7e7807sF4kRkZGeO7nP8eW\nTmPRagmmUiRtNh545JGPrI9ztfJBu7/6Kpw8CTfeCGvXzucOmWvs2wdPPgk7dkzVAKqrg7w8sNmm\nhIssT+UricWmfqLR3/7+4G+PZ2ofuDbu94tJIpHgmV/+kszQEHkGA4lMhgm4ahxY57QYmW0b5pln\nnnnmmWeei8eFxMicngGcq0LpSiYWi/HTH/yANQUFM2mGAU7297Po9ttZd911s2bb1f6mJMsy/+ef\n/okFgoD9tCIq3SMjGJcs4Y577plF62aPq73dLzWJRIL/84MfsNJux3haAsfmgQEW3HwzGzdtmkXr\nLsx8u197fJhv4lVYhWCeD2NwcBCrJJ0hRGAqaqbt+PFZsuraYHx8HDkUOkOIAJQ7nXQ2Np5RwXme\neT4uQ0NDmLPZM4QIQHl+Pm3zkXDzXCHMi5FrjAspU0VREOcjai4pgiBMTa6ff+XlNWaeq4YPvaev\nxqp381yVzH9TrzHcbjcRjYbYWVEz/T4fC1etusBe81wMCgoKUOfm4guFzljeMzpK3fLl8w+OeT4V\nZWVlxLRaoonEGct7Jybm7+l5rhhmszbNIuCngAS0Kory+2etn4+muUS0trTw1vbt5MNU1EwqRW5t\nLfc8+OCshpdeC3PIw8PDvPCLX5CTSmHWagmkUlBQwP1f/eqsVNGcC1wL7X6pOXXqFDufemrqnlap\n8KVSWBYs4L6HHroskXCfhvl2v/aYk9E0HxTKm/77UeA/FEU5cdr6eTHyKUilUqTTacxm84c6CwUC\nAdrb2qYK4lVVUVlZiWqWYymvlc4pEolw7OhR4pEIpRUV1NbWztkHxuXgSm/3dDpNKpX6yHvuUjM5\nOUl7WxvxSISyykqqqqpm/Z7+MK70dp/nk/NhYmTWomk+ECLTGIDgbNlypRKJRDi8fz+djY0ogkAi\nm0WORtEIAuaCArbefjuSJHGqqQlFUahdsoTq6mpEUcRut7NhuuxpMpmkq6uLbDZLSUkJmUyGQCCA\n1WqlqKhols/y0pDJZOjv7yeZTFJYWEh+fv55t5NlGY/HQyKRoKCg4JxcIB6Ph+YTJ0hEo5TX1LBw\n0SJ00yn1M5kMx44cofnQIbKZDLXLl5PndHJ41y6iExPIgoAsSSxYsOCSn+88U0L96JEjtBw+jCLL\n1K1YwZp16zAajZ/q89LpNLveeosj776Lb2SErChy/e23c8fnPnfBz1QUhbGxMcLhMHa7/Zzv3cjI\nCD6fD7PZjNvt/kRiIjc3l+s2bPhU5zLPPLPNrOYZEQThTuDvgKOKonzlrHXzIyMfQjwe51c/+Qnm\nyUlK8/I4tH8/nuFhCmtr2bZ2Lb5QiFePHKGooAAzkMpkUJvNVK1fzx2f/zyRSAS1Ws3Y2BivPfUU\nxnQaJImDp05hM5lYWFFBTJaxV1Vx9/33f+oO+5Nwud6URkdHeeGxx9BEImgFgaAsU7t+PTffdtsZ\nfhuBQIAXnniCjNeLVhCIAIs3bmTrTTchiiLHjhxh74sv4tJq0arVdHq9iIWFfPOP/giTycRzTz5J\nsLWVBQUFqFQqWnt62NfWxhe3bsXlcJCVJDo9HsTKSh78yldm3qo/eGCl02kKCwtnxM2HIUkS4XAY\nvV6PwWC4VJfuknA52l2SJJ557DGS3d1UFRQgCAIDExNki4r4vUce+VjX+Gxe/PWv6XnnHdIDA9hE\nEX8ySWsoxMKbbuKPv/c9rGdFTcViMV565hkme3tRZbMEMxmqV69m5bp1yLLMkb17mejsxCoIJBQF\nVUEB9z788FVbzXl+ZOTaY06OjAAoivIK8IogCP8uCMJnFEV56/T1p9em2bJlC1u2bLm8Bs5hGk+e\nROf3U+d2EwgEECMRri8v5/joKN7JSTSKQqKnhzePHqVApUIHBFUqDp48yammJoyKQjKdpqO7m7tW\nrcJVWMiR1lbc8Ti6RAJXfT35+fmc6u/njR07uPsLX5jtU74oSJLES7/6FVWiSL7bDUyNfhzdt4+m\nkhKWLV8OTAmCF598krxIhNLp7SRZ5uju3TgKCqiprWXPK6+wxuXCGwhw8NgxtOk03hMn+NvhYe76\n0pcYb2tjbXn5jMjQJpOUpFJMhsO4HA7UKhULy8o40NODx+OhpKSEiYkJXnnmGRJjY2hEkaRazcZb\nb2Xl6tUXPKeW5mbee+015GiULFC9YgXbbrkF/VmhntcyPT09RLq7WX1ayd9FZWUc7++nvb2dZcuW\nfaLP8/v99B0/jjw6ihZo8ngwSBKWTIYDL79MRW0tX/ryl8/YZ+fLL5Pq7ibp8zHu8RBNJHjz5Zep\nW7QIm9XK6PAwn7vxRsqcTmCqTMCO557jS1//+u949vPMM/eZNfd9QRBOnyQPA+dMmp9etXdeiJzJ\nYGcnRo2Glt5eTnR0kEwmEQQBiyzTMTjIqa4uOoeGqEsk+KzDwQ0OB1t0OkaOHmXs6FE2lJVRo9Xi\n9Pk40thIMp2mt7eXGrsdh16PZ3AQgBqXi4GmJqLR6Cyf8cVhcHAQIRQi/7TpFlEUWZCXx8kDB2aW\njYyMkBobo/S0YXSVKFJbUMCxvXsZGhrCKssk02kOHTpElSCQAxSo1SRPneKZn/8cUzZLJBIhEAiQ\nzWaJTE5SmpPD2NjYGTaZBYFgMEg2m+X5xx8nPxJhvdvNqtJSVjkc7H3hBfr6+s57Pj09Pbz95JMs\n0um4rrSU61wu/MeO8epzz13cC3eF4xkcxHEevxyn2cxgd/fM/4qi4PV6GRoaIpVKXfDzgsEgxOMk\nYjG6h4dZqFZTZzRSpdWSF43y9H/9F4FAYGb7cDjMYGsrw4ODiKOjLDabkf1+bjQaob0drdfL9XY7\nBw8dIhSLAVP5ZyYHBvD5fBfxSswzz9xkNkdGPisIwp8yVa23D3h9Fm254vCMjtK1axeVZjOpRIJT\n/f2MBoNMhkJY43GGx8cRolGKT/P5kNJpFokigyMjAGQliRKzmYlwmEGvFyQJjUqFRqUiMd0Ri6KI\nWhBIJpOYzeZZOdeLSTqdRnseJ0OdVksyHp/5P5FInHc7o05HfHISURSRBYHuwUGM6TTHRkawZDJo\nZZmEIDAeiTApijTk5aECsmo1skpFNBbDWlp6xmfGFYWcnBz6+voQAwGKp0diAPRaLeVmMycOHqSi\nouIcew6/9x7VNhuW6Wk0tUrFotJS9re3Mz4+TsFZJcevVYxmM0lJOmd5Ip0mPycHmJqWe2X7diLD\nw2hEkZRGw6bbb2f5ihXn7Ge1WokrCmPBIEXT90jX+DhKIkGBSkVqbIwf/s//yZ/+1V9RUFBAMpkk\nGg6TnZyk3G6na2ICuyxTaDIRTSYJTEyw1OkkP5Wid3iY5bW1AGgEgXQ6fWkvzjzzzAFmbWREUZRX\nFEXZoijKZkVRvqwoynz6yY/JxMQE0ZERSnU6yqxWFrlcVBuN9PX0kFWr2VRcjNtgwCbLBDOZmf3S\n6TQmtXpmnjbXZiMGGIFUOo3GaMQfjxNKJHBMi5hoIgEGw1Uzb11UVESIKSF2Oh6fj8qFC2f+dzqd\nRAThnO1G/H7K6+pwu90ktFr8k5MMjo9TpijUmExYRZFVJSWY/H6GJybIMxopt9spMxqJ+f0cDwbJ\ns9tJptNkJYlTw8NYKyooKSkhHo9zPs8Fi9FI6LS37NPxjY5iPyskWBAETIJA6Kx8JtcydfX1+EWR\n8PSoA0A8mWQsm2VRQwOSJPHcY4+R4/dzndvN6tJSVubmsufZZ2dGpRRFIR6PI0kS+fn51Kxdy0gy\niSBJjIZC6FIpjCoVNrOZGpcLWyzGa9MjVHa7nRignf4+JdNpDKJIMpPBYrGg1emYjEYxqtXEpm2M\nJZNkdLoLOlfPc3UxPAx/+ZfwF38B0wPT1xRzujbNPOenu7OTKpsNw8qVdDc3o5NlQpKExWBA0GoZ\nDocxOxwIOTkkEgm84TAGjYaELOMXRcorKwGw5eaSV1bG6wcOYEkmUdJp9g0OUlFSwkMOB2OBAN2h\nEFu++MU5HSL4SbBarazcto3DO3dSabNh1OkYmZwkaDJx62mRCBaLheVbtnDkzTepyc/HpNczGgjg\nURQe3LwZnU7HLQ88wL/87d8yHgiwODcXXyyGPicHUaslXxBQ5+fTnslgiscRgXFRxFRZyWtHjyJH\nowgGA+tuuYWvPvAAgiCQn59PmKmH3ukhot7JSUovUDMov7gY/+goRQ7HzDJFUYgqyjVbBfh85OTk\ncNtDD/H69u3o/X4EIKbRsO2LX8TpdNLT04Ps81F22qiUQaejwmLh2P79JOJx3n/jDRKBAIJWy/JN\nm7j985+nra2NY088gSkSoUSrxWC1YrTbSVmt1LrdDI2M4Pf7cTgcbL7lFrYfPUqJyYRJr6cvmUSl\n1WIuLMTmchEIBvEGg9RVVzM8MUF/NMqWL35xVnP/zHN5eOcduP9+ePhhUKth3To4cABO+zpe9cyL\nkSuQbDaLKAi4Kyqw5+XhGR7GEw5zXVUVaaeTtUuWYNDr+YUkMdbRgdNiwWqxIBsM9Pl8bJkuNy3J\nMpOiiGIwUONwYNRoWFVfT+foKC82NbFhyxZuv+8+qqqqZvmMLy7Xb96Ms6iIkwcO4A2HKb/+em5f\ns4ac6eH6D9i8dSuOggJO7N1LJBTCvWQJD27cOPOmWl1dzbf/+3/nbzo6iKtUuPLzMRqNdHg86A0G\n8u127ty2DX84TDqdJtrSguT18vC99yIoCtFkks6JCTweDzU1NbhcLlxLlnCysZGaoiJ0Gg3DExNM\naLV8du3a857Lui1beOmnP8Wg02Ezm8lks7R7PJQsWTL/Rn0W1dXVuL/7XYaGhlAUhZKSkhkn31gs\nhuE803JWo5F9ra14WlpYnJ+PrayMZDpN6xtvkIjF+Iu/+iv+t1pN20svUeJwoDca8csy+rw8ivPz\nGR4enqk59NlbbqHtxAk6Dh7EolaTdDiIqFQoajUr6+sZ9vkY9PvxarVIVit3PPAAldMvDvNcvezd\nCw88AM89B5s3Ty2zWuE734FXXpld2y4nsxra+2HMh/ZeGI/Hw3P/+Z8Iw8N0HD+OKp0mFI8TU6u5\n8/77WTQtHmKJBP/1m98gZ7PIkkTdihV85q67GGhvxz88TDyVou3UKVY7HNRWVZGXn48oikiyzP7h\nYb763e+eE554Pk6dOsX+/ScIh2PU1rpZt27Vp5rWuRJD/RRF4d///u8RurtJ+HwIokhOfj7dp06R\nV1PDoupqdh1uorW9i7BviFXFhZRVVdGwahUarZZT3d0MGwx860//lJKSErLZLIcPHuTEvn2k4nGq\nFi9mww03nCEsgsEge3ftoquxEbVWS05xMVGvl3Q4jKJSsXDNGrZs2/apwlVng7nQ7qOjozz3n//J\n+rKyM0aluj0ejo2Pc2NlJXmnidV0JsOzR46gLyxjMhRnuKsVSyxImdNJRXk5S6qriSUS9AgC3/iT\nP6Gzs5NDu3bhGRzEHwigV6uxmkz4IhGMej02mw2V2Ux8YgKHRkNWURDtdj734IMUFhbOxiW55MyF\ndp9tenpgwwZ47DG4+ebfLk+loLYWnn0WPiSQ7opjTmZg/SjmxciH81ff/S7Hn3iC1TYbBq2WrnCY\ntnCY9YsW8cD995NIp2kbHaVq0yZuuvVWYCocsbenB4BwJMKb27fTsmcP661WRJOJXLebFWvWoFar\nOT48zM2PPEJZWdmH2vHee+/z+usnyc2tQq83EQiMotf7+eY3H8But3+ic7qSOqexsTEGBwYQVSq0\nWi27nn+eAkXBajQSiMXY19mJVaOlfyhFaDQLikTE38HyQguLKwroDwaxmUzkaDTsDwQoqqzEWFLC\nrXffzZKGhgvmdYlGo/zqxz/GHo3idjrJShJdo6NoFyzg9nvuwWAwXHHZXOdKuz//zDNMNjZS53LN\njEoNSBKhcJjb6+pmtstmMrz37ru8drgZS8l6rGYn3kSEVMbDTUucFBr0eEZHCRoMfOmP/xiNWs2u\np5+mzuHAbrEQiERoGR9n4z33sGbtWgRBoLe3l1d/9jNWFRfPVNTuGBri5OQkdz/4IDW1tThOm4q7\nGpgr7T5bTE7C+vXwR38Ev//7567/4Q+hrQ1++cvLbtolY87mGZnn05FKpRg5dYr1CxeSTqWIAMtK\nS1mUyfD28DAvt7ZitdsRTSaaDhygu6UFTU4O4f5+8kWRVCrF06+8wjKLhSKNBqJRiMcZTyQYdDqp\nqKwkJkkfWSslEonw9ttHKStbj1o9Na9dXFyNxyOwd+9B7rzz1stwNS4viqLwzhtv0LZnDw6Viqws\nMykILLvxRpBlAl4vVW43N3/nO/x/f/mPeOMRskoEhyMHtSqMXmukf8xPIjhB5YIFZGQZKRymPBik\na3iY3ZEIxysquP+RR847utR48iTGYJAs8Jtdu4jH4+Tn5yOFwwRuuOG8ETfzfDzuvOceDhQWTo1K\nJRJULFzIAzfeyMtPPUUwGsU2HU3W39dHf3sPelMhNaV16LUGCtMp2n0G3mptoSFfT3FeHoscDt57\n4QXCySQ3lJVhnk5Gl5eTw0qNhuN79rB6zRoEQeDkoUNUWCwzQuRkZyddbW1kQyEOShKH7HbW3nYb\n68/jOxQMBtm3ezcdJ0+i1mhoWLuWdRs3zueZmcNks3DffXDrrecXIgBf/jJUV8NPfgLXQlPOi5Er\nkMnJSeR4nCqHA8NZzm1l0SifufdemvbsoQQodrkY9/l49bHHqF64kEVr1nDg+HEqslkMqRQOp5PR\nsTFqtVr8oRA9HR1MKgqqoiLGxsbQaDQXDOkdGxtDUawzQuQD8vNLaG09wZ13XqorMHv09vbSvns3\n68rLUU1na02m0xx55x3+nz/7sxkB4fV6cRZVISoC0cFujDoN40oB/lgAJRShWJwKKz02MkKD201R\nbi6o1WRkGXssxp633+Zz9913zvE93d2Mj48TGRpigcWCMScHfzDI0e5umhob58XI74BGo2HTli1s\n2rLlDCfidVu38t7TT7Nco8Gg09HX1cVoMo2tpAq9dkpg6LU65EgcnaLlrs2byZ0W8mOBAE/v28et\nZ6X8txiNREdHOXr0KFarFb/XS+X0E2d8cpLu1laW22xMACV5eTgLCzm8YwflFRVnlGiIxWI8/bOf\nYY9Guc7pRJJlunbtwjMwwANf+cp8Jeg5yl//NQgC/K//deFtCgpg2TJ46y24447LZ9tsMS9GLoAk\nSfT19REKhbDZbJSXl8+ZiBKj0YjRbmc8FsN9WsREKpMhplbj9XhwyjJulwuASCDAstxcBkdGCITD\nTIyOYtJqyRFFNIC7tJSW0VEiqRTe3j4K9YWUilU8+eQBRPEN7rjjelavXnmOHVPTAefmQEink5jN\nV1ZK8o9L64kTlFksM0IEpnKBOIDmpiZy7XYymQxWq5VIJEBH7wj+wRAWQw6yIuJDJJtJMkkKZyaD\nw+GgdjoXiAAosky508nepibke+4552GiMZno6upim8uFenpdgdmMKxiku6UF7rrrcl2Kq5rT/UYa\nli4lmUxy8M03EdNpmiIREjYHCwprz9gnGgxSUKhBo/5tt2q3WECS8Pn9OE/L+dLc28fbBzoYiO0l\nHo/j93WyqkDHrWtWMzg6ilOtnsr3w1QEmFajoUCtpqOt7Qwx0tTYiCkcZsF07hoNsMTt5nBvL319\nfVed8/nVwEsvwVNPwdGj8FGPlM9/fmr7eTFyjRIKhXjssWfxeiWmsnDEKC7W8fDD982JxF9Wq5X1\nN9/M7scfRyUIOM1mouk0+4eGaLjzTsLj49ScNsQvSxJqUcQmSUxGozjMZgYFgYyioJJlqvLycNvt\n7Dx1CkPhItasfwCDYeo80+kkL720l+LiIlzT4uYDSkpKyM0VCATGsNunnOxkWWZ8vIt7772KvK5O\nI5tOoz3P2+aYP8Dux17BWbgIQVAjy35OnDiGKK7GmFsKqRQWfQnDviPUVJRi1Wu4e/Nm2vbvB6br\n0aTTLC0pmZpHF8WZB2I6nSaTyWA0Gil2u5EzmakIjWk7IvE45pwcMqfl0Jjn4rJm7VqWr1hBKBRi\nwdq1vP3EMwTCoxTap0aiUtkMoWyE60sLZqZjAFQqFZb8fE6NjJCfl4coioxPTvLsnnZU1kX09kpA\nLolELY83v4ZWPVW6IZvNMuj3Yy8tnYny0qhUZE/LGwQw3NND/nn6JJsoMjY6Oi9G5hijo/CNb8Cr\nr8LHCXa7+Wb4l3+59HbNBebFyHnYseMtJietuN2/vZE9ng5ef/0d7rvvc5fFhmQySXd3N+FgkHyn\nk8rKypmRmXQ6TX1DA80NDexuaSEyMEA0EqGyqgp1NsvY+DhFFstv56idTlq6ukgw9RbvrqxkoLeX\no14vy/Lz8UajjMXjjOj11NdumBEiAFqtHq22iMbG1nPEiEql4qGH7ubxx19gYGAYQdChKEE2bKhl\nxYrlF/2aBAIBerq7kSSJispKnNM1PD4ukUiE9rY2oqEQxW43VVVVqNWf7BZYsHgxB5qazsjrEU0k\neLdliPWf+TqFhcUAjI8PEo0eIy8vg8ZuJDSZYjg0hDEnl9Kltdx2yyY69+7FL8vI4+NERZGc0lJK\nCwro8nioX72aZDKMaeRFAAAgAElEQVTJu2+8Qefx4wiyjLmggGXXXUfhwoUMjY+jzmaRFQXBZKK6\noYGJjxH5NM+H84GTtyRJlJSWEolEGB0awmKzUVdfT15eHpu2bqW7vR3v2+/TMTiGjJmIFGH5dS7K\niqaEg6IotPf3c6yxkXA8TpdGw+D+/Sx0uzne3Y9kLkeWc8l3VEyLziIUJcW7vS0sry3Gn05z08qV\nuKen3RRFYSyZZGXtmaMxVrudUG8vZ+fZTcgy5o/w+Zrn8qIo8Ad/MCVGLhCpfw61tVORNX19cLXP\nwF5zYkSSJJqamjl2rA1Jkli+vI5ly5bORCBEo1Ha24cpLd14xn5FRQtoatrLnXemLnnIpNfr5blf\n/hJ9OIxRFGmSZd53uVi6bh39XV0cef99irVaGiwWPOk0Xr+fpRUV5NlsFEkSXX4/u/v7uXvDBvRa\nLXl5eWRtNvonJlguy4h6PXJBAeacHLIOB72pFJmiIupsefT2jiBJbbjdpTMOrBqNnmg0fl5bnU4n\nf/InX2dgYIBEIkFhYSF5eXkX/ZocOXyYfa+8gl1RUIkih2SZpTfcwJZt2z7W/v39/bz82GPkZrMY\n1Wq6du/mkNvNfQ8/PFPlNp1Oc+rUKUb6+7HY7SxctOgcJ9L6+npa6+o41tFBcU4OWUniYG8vtqIl\nM0JkcjLI0QMHCPvSqLOjuKvKaGiox+ncjE6nIZls4eZbb6V+8WL27d7N+2+8QbHZTEJS+PeX3kJj\nt/H1W/L46X/8B+NHjlFgtFDsykcXibD3pZcoXrgQi9NJgcmEShQxmc0cHxpi7e23X9yLfo3xm1de\nYccTT2FKpLHmmOjwjlGen8/y2lqGMhkO7NzJ7Q89RH93N8lgkOIyJx6vl5I6N/d+8Q+or6/nuSee\n4OjAAF6Ph5PHjmHVaFi/bh21lZW0DA2hdrsxxhRGWkcxGrOYzXGMRhMAFosDs7mSL3/7EdoaG/Ge\nPIkhGERRFIYiEUpXrqT8tEJ/AA0rVrD9wAGcicTMy8dEMEjMaKRmOp/QPHODN9+cio555pmPv48g\nwA03wLvvwte+dulsmwvMWmivIAhrgX8GZOCIoih/etb6ix7aqygK27e/wMmTEzim30j8/kEWLDDw\n8MNfQKPREAwG+dGPHqesbMM5+w8O7uF73/sGJpPpotr1AS0tLRzevZvdr79OicnExpUrser1jHg8\nvLlnD6q8PPJMJoSxMcwmE+OA1NdHkUpFymik3O2mPRbjug0b2NXTQ7HLhUUQyMgyhqIiSqqrObp3\nL/FIhLoVK9DpDXR19KLXqxkZi5JKWWlr82A0LgDCrF/fQH5+Pv39x7n//rU0NDRckvP+gAuF+vl8\nPp74l39hdVHRTLRBVpI4PDjIHd/85jkd9Nlks1l+8qMfUa/VzkREADQPDFA+LWhisRhP//zn4PXi\n0OuJZzKMShJ169djy8nBWVg4MzqVyWRob2+ns6kJtVYLWi2HD4coL19MIpFg12uvkfSP097fgdVU\nRF15CSq7nY033sjExABr1uRy222/TSoQDAb5px/9Jx0dYbQaAxrS9A93IY10cuPC61CrtSSTISwW\nmbKacqipITAxQdfR42hkGZ0jly2f+xxbP/OZM3wdrhTmQojnO++8y3/8j39ksa0Mo95I+0A7xugI\n5aUuVm7disPhwB8O81p7O/V5eSx1u9Go1cSSSV49coSYIIAM5rx8VBqR9154gWUmEzUlJSQFgbBW\nS0N9Pc8cOEFB9SZ2725Cq10OZCkvL8Jmy8HvP0lFhZFvf/sO6urq6Ojo4FRjIwD1y5ZRW1t7hg+R\nz+ejp7ub3p4e+pqbsavVyICYm8sd999PcXHx7FzMj8lcaPfLhSzDihXwN38Dd9/9yfb96U9h376p\nXCRXOnM1tLcfuEFRlLQgCE8IgrBYUZSWS3rA/n4aG8eoqFg702lbrQ56eo7R0dHB4sWLycnJweHQ\nEw77sVp/OxQ/OemluNh+yYTIgX37OPrqqxTrdNRLErZ0mt+89hpWtRoxGkUZGeHU0BD2nBweWLoU\nbzTKRFsbC7Ra7AYDg/E4akGgRK2mZ3CQ6uJibnvkEQB0Oh3JZJKXf/lLygUB0WLhpcefJyQ7WbHu\nBg4ePkEiEWHbttXE4xlGRsbRavM4dOgIixYV43ZrqTstz8LlprOjg3xRnBEiMFUQzmUw0N7U9JFi\nZGRkBHU0iu2snCkLCgs5efQoW7ZtY/+ePQgjI1S7XBh1OsLhMN27dvH8/v1s27CBFlnmwGkjKQ0N\nDTPirLe3l337nkeWJbq7upjo66NUr6fYKJPMDjDUn0Dtz6Ep30RFhZbrrrv5DDsGBweJRE0YJC+5\nMT8GlYaeviGITpJOJ8mxOjAZLfgDo0T8k/QcPY5ocqNybSIry0hCHK8vjCzLc8bJ+koikUjw1BMv\n4jYXkZc7NfWXTqcoU+cghSOMeTw4HA5Mej0TnZ3cVFFBatp343hrKxNHj5NMKdgLauh4r4Xu2Ci1\nWigzGFCCQRZUVDAejfLm7r3odYVUV6+gt7eX/v5uzOZq+vu7KS7WUViox2bTUFJSgkqloqamBq1W\nSzwex2aznSFEDuzfz6HXXiOPqQ5eD+QuXMjGzZspKiqaj6KZY7zwAuh0n86/fO3aa8NvZNbEiKIo\n3tP+zQDZS33M3t4BtNq8c94eTSYnHR19LF68GEEQuOuuz/Dooy8Ti7kwm+1EIn5gjAcf/PwlsSuZ\nTHLorbdYU1rK5OQkg34/A+k0w6OjqHJyGAtmiCYsRCU1neOT+Ly7WFyQS3YyiFdUkwlGGVeBNDJC\nPJ0mHA6zwGqloKAAg8GAoij89J//mXqzGYfVys7DjdgM9dgEA76xSSTJjtVazcmTh9m06bMMD3fT\n39+H39/Dhg0r2bZt66wm0spmMqjO88avPo9D3/mQZfm8IwaCICBLEuFwmO2PPoo1EqGzqQlZq2V8\nZIQcWUbUaNBqNKwuKqJ1cJCdO3ZQVVuLSqXCZDLx9tv76O+foL+/i/f3HCE4GkMTT9Cvz5KRQ9iN\ndgJxH0PDXRRPCnzzH//tnKmf9vZe/CNDlGYzFNgLCYXD5BvyCcYDePpayctzISBgsdhp7GzFay1l\nw6Zl+H0ewj4PGoOZgwf7Wby49ZKPXl2NjIyMkM1o0KmnvuPJVJxEMgpqHeFQFCk71TUlUimikQhv\n7t2LQaUilsnQ3tlJeUxNWBEZiXgozrWTiI3TH46Qp9OijcfRWSzkOxz4mjsw1lRiNFq59dYH+M1v\nnmR09DiSlKWwsAGn08hNN60gJycHn8/HY489RyAgIAh6FCXE0qVlfP7zt+P3+zm0YwcrCwsZ8fsZ\n83rRa7V0HTjA+o0bzytEJiYmOLR3L33t7ZisVlZs2MDSZcuuyJG0K5F//Vf47nenpl0+KYsWwdAQ\nhEJwVsWKq4pZ9xkRBKEByFcU5dSlPpZer0OWz314ZbNpjMbfhshWVFTwne88yOHDx/F4Rqmvd7Jm\nzY2XxBcCppzm9JKEoigcbGxEjERwATbg1WE/MbmCKrWJpCKRlacKtgUne7GIAg5nOQMRH/3JOAui\nUey2HCSdjvHRUfx+PyUlJUxMTJAJBnGUlpKVJPpGQ+TnVIEAnWOjpNMK2axCNNrPxMQw5eX1lJfX\nMzi4lw0b1s968qSKqioa33yTKlk+o6MdiUa5YdGij9zf5XKR0umInjavnpUkujweajZs4NnHHsPi\n97OmoABfLMaBlhbSgQALXC7iwSB7DhzAftNNJKJRXvynf2JRbR2pbJbGoUkWrvg8NTXrGOkZoVjq\nIxlpxS4IBOMq9MbFVNndLHAIdPp8ZKQ8BgYGz8lMq9WKRMYGyCudck4UBAGTxsCk3kwwFiKRjGPU\nm4gkopyaDKASKnjhFz8iT05R5ixC0OsYS0TZsUOcFyOfArVaTY49D58vACPdxMeH0ScTDMfGUIQs\nS6e/Mx1DQwTGx9lQWEipxULv0BAdXh8ThiJErQmjYGIoECARj+CQs8SCQbJqNe+fOsVNK1YQySQp\ncS9Co9Gi0Wi5++6v0tfXRmvr+2zc6OaGG65jwYIFKIrCU0+9RCrlwu2emmpRFIUTJ05QVHSQnq5O\nOo8fZ4/XS54oUldQgKxSMRwOs+PFF/mDP/qjM87P5/Px9I9/jEtRWOFwkEil2L99Oz6vl22f/exl\nv97XGkePTomJz33K2Ae1GpYvh2PHYOvWi2vbXGJWxYggCHbgP4BzszsB3//+92f+3rJlC1u2bPmd\njldfX8vOnYdIJuPo9VPptjOZNKnUKA0NZ2Y2LCgo4PbbL8+NajAYSCkKPR4P2kgEs83Goc5OUokE\nyYwBgwrGUikKgbQgIGPCr2iQpThvjfQgiwIVgkggEsWXTLBgxQpuqKvjrZdf5ivf/jaCIJBKpxmf\nnER7VpK0QHCUUDJLOGxDEFS8//4+GhoCOBwFlJXZP1WNmY9DIBDg+PFGRkd9uFz5rFix9ILblpSU\nULVuHYcPHKDEbEYligyHQuQtXkx1dfVHHkur1XLTvfey88knsWWz9A0O0jcwgGI0slivRwwEWLF4\nMb7ublpHR1mk1eKRFXrHA+gsJoplmad37qS5pY1QTEM4WoRGb2LEL5HJHCAWm2CwZT+GdJJSETKZ\nCGm5GJMGgskkGiCpUlFYWMeePUdZvnzZGfY1NCwingzQ1t9GLB5EpdIQTqXJN1mZ0JloCvkxxCOM\nhMYw51rwDp6iJBHDrjYSGhihuLKKWqOFrqOHyGQy81VePyHFxcUUFVk5PmhivOMYC612SnLyOBKb\npMhiormpiZCisH3nTspzc+no6qJTrycdS2AV1fTGJzCLVuxSgmDGT34GEiozGSWXWHSSRGyCp44c\nIXdxA6JGpK+3BUmWCPs8DHcchdQoh9+IE/EOsunmmyksKsLrTc4IEZgSqIWFNfzqseexRUbIer0o\nvgBjkoqAP8TWJfUssVho3b+f2COPnDGdfPD99ylSFCqm85PotVpWGo0c2LePVevWzVd3vsT87Gfw\nrW9NiYpPy+rVcPjwvBi5JAiCoAaeAP5cUZTx821zuhi5GNjtdu69dyvPP/8OkpSDIIhAkDvvXH/R\nnb2SySTj4+M0N7dx8mQnkiSxcuVCNm26DovFgizLDAwMcOzYCWKxKDFRpL+5mbTPhzmZZIvLRefA\nAEpWYEwaJyrZSar0+KUEZnzYyOJAJECWsCxQIGoQFcgIAt6uLjobGxGrqwmFQjQ2trC7aYijqVEM\neogngyjKCMmMQiAaJS9/EZHIMKIoolZXcvDgQW64oYp77vnWRb0mHzA0NMTPf/4CslyAyWSjq8vD\nvn1NF9xeEARuueMOuurqaDt5krQksXHJEurr6z+2j0RdXR22b3+bf/27v0OfTnPnpk2UuFwca23l\nRFsbS2+7jf7BQUKBAPqkTDytJSBpKMx10doxyBHfEIasngVGC+nxXgYlNaKpgd7WvSQH9mJNBCnR\nG0iqNAgqPeGkjkA0SlajQa3WENFZ6Onx0d5+EptNy8KF9ZSVleF0OrHZbORYRNJdzZSb80jLUVLp\nSXwCTIpOkjEZozFOjk2kPKui19uO1eBCLaeRJImO1ibKFhRRUe3A4/F8pA/NtUAkEqGrq4tMJktZ\nWekZicLORq1W89BDn6P58H50eU66o2Gy2STLljWwYuUyjnd1cWxkhJV5eVzvdjPh8zEyPMyOsTGU\ndBaTIpJVvHTJWXKkBGnRSEY0I8gq9GoHitrCmJKgUFAYO/kKoZTAkN+HJZ3AYdCwsqKMWCBA46s7\nGGtpwb1+PaJ4btJASVLo7+jkS+sX8devH0SUS9GJVpLZCN0He7mpzk6F283AwAALFy6c2W+gs5Nl\nZ9W1UatUWBQFr9c7L0YuIek0PP88HD/+u33OmjXw619fHJvmKrM5MnIfsAr44fS85fcURTl4KQ+o\nKAp6vY6ysjyGhkaoqCji5pu/+KEd1SdFkiR27drDe++d4NixDiKRNA0NK6irW82hQ4N0dj7N1752\nPy+99Do7XnwLZcJHjiKTUCL0B73YgkE25eaSFARclZWMdQ1TkIKkGCehaFALASoVAZUAhYKaqAxN\nyGhUWvLVIqJaIZTN0tPcTDQa5Z//4Qec6kmzdOU9dLe0IaVSxJIifeP7CWe0ROM2YvEJBEEkN1cm\nLy9CVdVq1qxxX5LCXIqi8PLLb2Ew1JCbO5UdITe3AL9/9EP3EwSBmpqa3ylc0efzoYtEsektjI5M\noNVoKC8qoqelhYGxMVatX09jcztqkxmDLo0BHWq1EX8ghSqVpUbvoMg6lalIHh+hOfw+VSoj2fAk\nhUi4rAb8iTBpiwWtkkSfseNXBMzmIurq1+L1niQWU/GTnxxm2bJJcnP3cf31i5DTce5YvZoxi4W0\n30+eSoUurPDORIjl192FKFrpaz9Be2sLDk2IXCFBJOlF0ecSTMSZTCZRNElSk0Pws5+x7dZbWbps\n2SVztr7cJJNJTpxopLm5E51Oy+rVU0L0Qv4Ora1tbN/+JpJkQxDUKMpB1q+v4bbbbj4jguP0/UtL\nS1m1op4R/zBmtRqL3oGiVZEcH6e4oICUJGFVFBLpNPn5+XSMT1CoiOjUOcSVNKIsIUlJfEoKUc7F\noTcgq9SodFryzXrGUsNEugfIUVlQ5ZhxCWnq8ixMRKP4x7yEAhEyEgyndXQMvoyjbjlO5yK02t9O\nkfb3d1CZb+H1Y+2khCU4BAd6lRqD6MQb83LI5+f3rNZzfeIsFmLx+BkO4ABpRZkJa5/n0vD661M+\nHx9Rb/QjWbkSvve9i2PTXGU2HVifBp6+nMd8++1dvPNOKzk5FVitRXR3ewgGd/D1rz940Tru99/f\nxzvvdKLRVKIoAiUlLnp7O9Bq26ivX8nAQCPbtz/LazsOo4wOU51XgjPHgSRlkTOHCIfDiDk5JKJJ\nZAmsBpFQOo4CRNBSpKTRqBKYFAlZBhCxAKNSEpdWj06lJq4odI+NoddqGRIs6OVKOk80UrdyJbIk\nYY9WY/Ia8XqDhMM15Oe7sNlyEAQIBE7gcn2yZGKfhHA4zNhYhLKyM6dlPsjgerGPNTQ0hCAIuFwu\nfvX4MwS6JtAXLUCWJQ4f7sbtziEnN5eOvj5qSkqQdSaygg5BZaTevYTx8Qlichyr3oqg1yGIIvFY\njHy1AWvKg1ptQaU3ISezBENBbBYNCb2eNU4Hr3UGUOeUUVBSS3//MXy+Vhoa7kOSoKWlB4vFwp49\nT1DtSvHQ2tU4c3Px+f2ko1GGmjpZXr+QPFcpXY2dLHVVEPZ4CGbaWeMsYGR8nHgqi06dj1VvIJNU\nE1LraT/QSV4ySeP+/Tzw9a9f8W+9qVSKRx99muFhBbu9hGw2w+OP72LDhgHuuOOWc7aPRqP8+tdv\n4nAsn0neJ8sSe/cepqzMxdDQCAcPNgMC9fUVbNt2PQUFBSiKwoTPRzabRWcxkxUECs1mgmNjtKlU\nrKutpbioiM4jRyiUZXpGxnHrTQzFExhttYhqPZmIl5GkF4PFhKjVUVbkwqDT0T05xkQkyfKichRB\nh8acgyEYIjDuJZOM4fWHcZpzUUjTOzFCTvECQiEf/f0HsdurMRgsBINetNpxHAU2DjaN4C7eSMTn\nBwSQJeyGcsLZNKOZzMzIWCAQQFEUlm/YwN6nnybHZEI9PZI4PDEBublEo1Gam5unsylfminZa5kn\nn4QHH/zdP6eyEiYmrm4n1ll3YL1cBAIBdu9uwu1ej0o1ddoWSy6Dgy0cP36S668/N6/IJyWTybBn\nz0mKi1fS0zOAWm1CpdJgs9XQ3X2c6uoG1GoTTz/6Y4z+KC4BenwjHFckKkrrsOhyGRcGOT7oJUdr\nQlSryRjtCEkPsXSCeHaCAtLkIBJGYRAFPSCh0CODOZ3ClM3gE0UCBgOfq67muD+FwypiUanpaW3j\n+s98BlEUmPA3UVlZxciIjN3umHmbEoQChoZaqa+//ne+Hqfj9Xo5dvAgfZ2ddLZ1YTYvPMOR82Ln\nGzh86BD7duzApijIikK7z0+/X48zpwCDfkp4GgwWBgZ6KawsBYuFQ14vEYOBvf4Y+WojoeF+4iqR\nSYOZFVYj8XiWQDxOOBojJWVRIyGrAhh0FgJZSKQjONNG/J4Q6nCYXKuGnolGhOQ4OQYVBgrpOdVL\nLC0hijHWrFlJOi1y4NhzBJpbWFheCoJAWhBQNFZktZZoNIZOymLQ5VCY56K3p4XNRbl0BoMEYioK\njQK+RBzRrKdh0RYy2SSKpGCPRtm/Zw+3XuHVChsbmxgeVigv/614tdnyOXjwIKtXL6ew8EwR29PT\nQyaTc0YWYVFUoVLl8Wf/7/cwZATMFgdmp5tMJkpPzzP84R9+iWQySdDjYTwYJDM+jlGtplVRUFmt\niGVlJNRqXMXFSJJE89GjhDJpbIBoyUWnU5DkNDarCRM6wlYj2bREWIozHIvTm5WwW/LRa4wkZAW9\nzkBEo0NKycSiUWS9BRIxJJWaXL0Oz0gfzqpFLFvm5Pjh9/GOjFOzsJKvfe0LPPerXxGKREiLg8TT\ncWKygigasdmKmUymuP6226aiw37xC0IjIwiAIS+PvIYG9re1YRUEUrJMWK1GiUbZ9+STqIG3geVb\nt7J569b5CJuLRDIJO3fCj3/8u3+WSjU1wtLSAht+90fVnOSaESMejwewzQiRD7DbS9i9+yBdXYP0\n9XnQakUqK4toaFhMVVUVRqPxYx8jkUiQzQpotXr0eh2S5AdApdIiyxrS6SRdrfspzqTRav5/9t48\nyLKzPPP8ne3u+5b7nllZqk2q0lJSgTYkIQzIBowHA27sxh3ydHvcETi6e6L7jwm7Y9rj9vTg8LTD\nHtvCAgMyq8CAVJJAa2mrfc2qzMp9v3n35Zx79nPmjyxKSAgMDskIrCfiRuS9ee53MuOc833v977P\n+zwBas0KUdvC6LQ4X1zBkhXauESTXWQlGRfQLRPVdvilZAJfFjlfLlNyXZrABBAAmsCwKLIBNHwf\nNxhkuFBgpVZDLNepF+voSggz3o+q3owsC9i2xshIH8GgzszMZXw/jCAIGMYme/fGGX+Ny+hPina7\nzYXz5ylvbJDt7mbvvn00m02+/jd/Q78ssyseZ5o2zz76MLfc/f6ri8nW1uI/6Xyvh/X1dV7+h3/g\nYF8fwStkzqXVMp2qSz0RotSqongSHVWl0m7RTEv8H3/wB3Q6HU5eWiAaSZEIR9F0Fd2X8aMVgmGd\noAyXl5dQbA8HCV0R6U4EUGWPhuAhui7L7TZtQaBXEAgrCjsiIqFQlkBCoVG3sBsl2qZBOg1nXvo2\nQcmFRh3ZbhCSIBqNcnFtjZcrDUh1M+GFCNkBfD9DMhFkSfZ5rtFAUIIU5QJ6NI0lWBzad4hULEu7\n06DaLHFgYoTHnnmGUk1jYWGDWCzMO9+5n4MHb/q50iK5eHGBVOrVNgSiKAFpVldXfygYcV0XQXj1\n/2dZFidffAlno8qdN24zACv1MmvtOn07b+Do0ZPEYiHMzU0+vGcPxXqdaq3GgO9zsdnEXltjWhBY\nOH+eQr6HGSvEkhtBE1xGYj0M5XsRBOjYBsVQBymbxw3kuFAt4nsaqlFEFPKcW1tk9/guupM5VkQR\nU2vhOg5dpk7b6HDGdchGEniBIMVTz/LN9eP82u23kx++lrPz8/yXf/NvqDebWI1lQCEf6MeRFUzF\nxZSbjAzmaTQa/F//+T9zXSbDofFxRFGk0mwyMzfHr95/P6ZpAvDIQw+xN5+/KgLouC7Hvvtd+gYH\nfyJS+Nv4x/Hcc7B3L7xR1e59++DcubeDkZ97qKrK7OxZLl26TDAYZGxsgoGBHZTLa5w/P8OhQzuo\n13NcurTIo4/OMTp6lh07uvn4x9//Ey/M0WiUUEigWq0QiYQRBA3D0JBlCVl2MU2D9tYlfvmGa/nW\nd18goas09TaDrssQPoZpccKx0fKDVINhHNtkzVDpCYaR9Q6FaIRaOMyipjEMOFdcPdueR9b3iYgi\nwXSaGU0jK0nckMngJxKcnS+jSDLH187x+ON/j6ZpFAoyly4do1DYi21rtNsNfN9Flle4557fudpC\nu7S0xNGjp6nX24yN9XPTTddfNe76Qei6zveeeIIv/+VfEgd2jI5SS6U4+fTTEAgwEYnQfSUT8qFb\nb+Irz5zgxWe+zg2H7sbzVAqFV3ZjrVaLVqtFKpX6JxkTXjhzhpwgXHW1BUhEQsiWiUYP3zz3HCG9\nTjoSQsVlj5ugWq1y6exZ3rt7nLNzmzQ0i0wiQ9RpUkn5PLlWQWwb5D2TuGBSFkRSkTRbgk+6WWEn\n4IWDqLZFJBJBSSbp1TTslE/dKLO+JiLYNrLfS0BoExOiRDoadb/GdekkWTvIzOoqng84Hr2egKYJ\nNI8/xXo4TLk+RrneIdd9kI12ibq1TDyXpLdvL512m0xmm8vSMVtkEyG++L2n+cbzl0gmlsn3DHHD\nwf18+9vnKRarfOhDPz+y8aFQANs2X+c3DuVyma994QvUymV6h4e58dAhBgYGgOdwXefqxmNjfR2z\ntspornB1159PZGjXNjF0jfn5NfoLUbLBIAv1JtMVE92K0a5vEfZURicn+cgdd/B///03eWp6g5AU\nR45ey6bapNPYxNAtUsk4y3qJkQOT3P2hD/Lk499jbnGOgNqkIMO661APp1goLlOy2sxWGqxaEr1S\nEMdzAdgnisxaOmOZbkS9wbAbpFKr0VJVVs+fZ6hYJG1Z7Myneam+iCFLSFKWZFRmqXiCcGyC//qH\nD5GqLqHmk2wsrnPbbTeTSyaptNssLy5y6+23MzU1RdyyXqVGLEsSw4kE544ffzsYeYNw+DD80g9X\nEv/J2LcPrgjy/kLiX0QwUqvVeOKJo5TLIqnUOLYtcOLENM1m/Ur55BbK5RZnz67Q07OTQmEXzeZJ\nQqFJHnroEf7jf7x/20L85RPMzCyTTMY4dGg/k68xrTIMA8tSeeKJvyce34HjmNTrp4AWO3bk6XSm\n2HPNMLFclm8SXyQAACAASURBVJbTotZuMOLaxGSZju8RliV2IbDRrDJ0zc2cXbxAFogZHWKRMNlC\ngYGtLRqmCb5PQxDYmcngCwKb7TaRWIzkzp1MmCYFyyJ9hZx2zaDN2fkVBLVNq1LjXe/5GH193fzD\nP/wtJ09+nX373kcms50VKRT2cOTIeQ4dOsTU1CW+/vUjxGLDhMN9HDmyyYkTX+D++3/9VeRW0zT5\nsz/+Y05/5Sv0WhbhUIilapXK2BhduRzPTk1x6Nd//erxiWiU33rPO/nW2bPcfHOK8fEDjI2N8alP\n3c83vvEdTp6cRRQj+H6HW27Zzb333vUT7+YXFxc5/PDDhObnWY3HSRUK9PT3kwyJzK9P41fDREM3\nEoh51IwSfbkKv3pgP0989asYhsEdQ0PsHBxktVSiqXWotSRm1+NE49fjuW1ajk5HKrM/oCK4cFZX\n6ZEVVNdg1/g4bqOB5Dgc39ggCjQsi9FehaXKFqlogoZbJa6kMAybqGQg28v0hQcQfZtIPM50tcFk\neoCo77Poymg6VLQt5qstdo0dYKR/BFXvRzQncMQNhvaOUVmroXZ0HLeDIlc4OdPghaNTpIMT9ISz\n2OU23/vWd7nvIx/k5Mk5br21jKIozF6+jG1ZDA4P09fX95ZMz99ww17Onj1MJtON63p0Oh08z6ZW\nucjFpy8ymU4zGY1SPn+eL505w4fvv5877tjHk08eIx4fRJYDLMwdZyBnkiaEYXYIBsMICOA4XJ46\nSj6/m3Ykj5Iv8N1j6wTFJFVVpdkOYwsOXR5sVCpkEhPkGxqDhQL5XJYzc4usbIrM+2vIuLz3Nz7A\nv/3df8sXv/hl7KUq+3r3gqri2Boho8KmIrPkQWm+iUQ3ffE8KcmkYy8z4TToCoSwDJ358ho7M1mo\nqXznkUcJiwLjjoNgWZiWxU0jIyTCTc53NhH9Mo4jsiObREpcj+C5RBob1NY2MSqb1Irr/NKvvJ9E\nKESttN20aFkWr9f8HQwEaL7t/PyG4fDhbc7IG4Vrr4W//2dlWf7z4hciGLFtm7W1NWBb4Oq1RnYv\nvHAU3+/hnnuu4eWXz2GaAQQhx4kTR0gkPNbWGszNTWGaSer1Rbq70wSDEXzfwzRjnD59mmeeOYVp\n5shkJtjaUnnwwSd473vL3HbbK4Z6X/vat2k0ohQKKWZnXwJkQiGHj33sLg4dOkihUODTf/iHHHv2\nWQqGQcm12PB8BMsGwWfJE9nwYxhNn+LLT7EvHkYOhHC1JglFRm008DyPlCwj+T5hQSDousRCIZRI\nhK2uLu694w6eXVhA3thgrlSiVi6jtlqopkM2VqAVDrCyskGlUiOZnCSbNQkG14hGE0SjaeLxDOXy\nBlNTU3znO0fo7j5AsbjMuXOncF2XSETm8OEn+Y3f+F+AbXXTxx97jLnHHqPbshiNxUCWObaxweXV\nVa7buZPm/DzffOopfunWW68y+iVRJJ/Lcdtt7yTxA26zJ06UGRh4B6Io4boOR46cJRx+gTvvvO0f\nvQ/W19f5h898hslEgnIohFRr8MKpC2w6Di1foG4nCXmzJGKDgE8kpBMMSMTDYYLtNk3LwrAsoqEQ\nIz09OK7L3z3+Ejg5Ygr0dMfxVRVByKIL84yLBpfbbbryGTKJfiKizHy5RthxCeETk0Rcw6C4topo\nd9gXT9MJmzy/cZGAI9Iblgh5BsVakd6AgIeAhMRRrcNlXUBHJCKFiQojhAIh1rc2adQuIYVjJHv3\nkIh14Xuz2GKbsxsbDKdD5GMyz7x0DsV16aWBXFPRBYGQ0sXR51/i5lt38eLzz7N46hQZ30cWRU46\nDiM33cR7f/mX33Iy4mNjY9x11x4+9+CXKK60UHwHmyqFhMeBu+4iecXMMRYOE6pWeeaxx/jYJz/J\nyMggp05dQNfb3Hr7ILOPnENdmqG9uowST6IpIUpby8QTUWIbcU5cOs+xi0uk8xPMrzbR2nkkv4uO\nr/L4S3MkQjF8vxfPqDC3Os2xWQfXEwgGRW7ZvYuxvZP8/n/9AzY2Njhx5Ay7usaYPXcRyQUIs6la\nLLUvUve7EBkASSVRyNMVybNV92n6bQq+het75HqGcQSBjZZGtVFjNBYiHA4j+D6GaVLXNJKiSFBw\nGMsmqPlxpnWXntQIK5cPE+zUGYukwTcRqnVe+t73CA0Pc+311wPbc+QR38d7rYhgvc6OW275GVzl\nXzwsLkK9vi1W9kZh7144f37b5+Yt9pi+Ifi5D0bm5ub48pcPo+vbi1wwaPLhD9/DNddcc/WY6ell\nMpndhEIR3v3ud1Iul1lcXKbRiDA9fY5otBtJChCNZlGUIBsbFbLZ6pW2OpmjR0+h61kgzIULsyiK\nTE/PCN/97nEOHLiOWCxGuVzm5MkZ5uc1JGmcPXtuxDCarK6+zOGvPEysUeXc5cvItRqS7SC7ElkE\ncqLAmu9R80OU3X7ChPBRMRsGp9UmCirdnkuq0yHhOGi+z5brIgsCKc/nfMsg2rao+xZdO3dS7XQ4\neOed1GZmUKemSEYiTPT1MbNe5sxKh7WlJsGUhKYJzM6uEIl0MTAwyPz8HLOzKr4fwLabSFKNcHiA\n1dWXmZ+vEY0OEI0mKZc3+Pznv8lAf4ELL79Mp93m8COP0LW2htnpsC5JLPs+mVCILlEkJwhc19VF\nZ2WFY+fPc9uVCXGhWKR3cvJVgQhAf/+uK5wAkCSZvr7dPP/8SW677R0/NjuytrbGn/7J/0t9dpGx\n3jzzqsb6zAK+rpL1PTw/QLcQpOKvMDIxTCwUJRUfodZeodxs4vs+8Z4evvn44wzGYuR7ekjk81Sa\nNqF0DqNcxnI86ppOJqigCTLBVJiA7yNlM2yUK0iVJrZlgi9giBJ6x6TsuAgEKSLy8OVNImHokiSC\nrkraELAEkZlmkUo4jKBbnLMUfHcclzyykMDwymj2FPnAIGElQbnhkDUKXC5dpONVUdfyfOCde1mQ\n41TrdVbKNnJHY2cgTkQOE1Ii2J7DrLFOcV1A07o4/fQp7hofJ3JFWdfzPI69/DIzk5Ovem7eChAE\ngUQ8wt6cxz2DBYKBAEFlgscef5yly5evLrAA3ZkM04uLOI7D+Pg44+PjWJbFX/yP/4HpOOwcGcSo\nNpgvrbNSK9Ff6OLWWw7QKhZJ1+s011ZY8CWi8l4CYQnd6BALF9Asi0eefQ5LmWCt3AKhh1BwiHQ8\nQ0Pd4PkL0xRGtnWKFhaWcd0A5xcuoasu2XCKqlFjrqUTpIc4A0ik6bg6FzZLDO2epLdnhHppE93V\nsJQYJVtmpgWqKmGQpGyqiIk462oHV/R4bHGR3mAQU1LY0ktsUkbNTuC6JlnPxYmkqdoGScFD1A3m\nL11iq1TCTSZpViq870MfYuKWWzj+wguMZjIossxatYqZzZJMpTh+/DiJRILR0dG3BfT+iTh8GN7z\nnjc2aEint19LS9vdNb9o+LkORprNJl/4wiMkk3vJ57d5DLqu8tBDj/Pv/32OfH67jp5IRGi1tlVX\nA4EAzWabUslGlpNks9fS6Tjouocsr5JOT+B5TTzPuMLIr7O1pbG8bNNoCIRCSVzXZnHxEvm8SrFY\nZHx8HE3TWFraRFGuJRbbbo3tdDSCegSzZbGnq4u5M2cYCQQ4rRr44Th2s0rbsegAm8TpJYJKiWEg\nLYWp2j5twWVLlqmZJoKuowEaECbIppwlKiu0HAddlOgrNcm02wxubrJYr9Pe3OTW4WFkUWSlPs0a\ncfozw3SaZTIje+jpGWVm5llOnChSLPooyiAgoOtFZmfbWNZzrK15KMpuqtUykrRJNpthbVXjs//P\np/nobbcip1J8Y24O03VJhkLgeZiGQcJx0KNRWp0OQ5OTCKLIS1NTRFMpXFkm2NvLh19HH/m1BONA\nIIRleRiG8SPbr2dnZ/nc5x7h8ozLaGwfq6UOF9ccNNPgYCCE4HugJBgMDTFXX2VxbYW7brwLAN93\nMC2L6WKRfk3Dcl1OXriAcvYsWjxOLTLINfuv49GHH8XxJKKhLGvtEqZd5mjHoJXLca5SIdVoEvJB\n8EXmbYMt1waCBMigksIjju3E0NorJEId4orCSadDnyTxznicimUxbRm0vAHiwX4kgkjE8fw4BjXq\n+hqauRfXS1HV6jhOEheJy4ubfNlscsdggQFRpJxK0ZJFugMK6+1NAulhFFEm4/tsGUU0bZXJRPBq\nIAIgiiLDqRQXTpx4ywUjvu9z7OmnOTg6elXKv6VpJGMxyqur6Lt2XdXKMG0bORB4VdA6NzdHVNP4\n4L33cvTMGVSg2mkzIKbZf/B6NhfmCbZaKIZBj+BR82RqHZ1gIIznezRbFRTJp215NOwF8AaIBMbw\nbCiWi0SDOqrXxZnZVUzT5MEHv8jTL50noPtEBEipJVpWkRh9RBBoYBMRAsQIsuGbHJmbY9dAASkc\n5HS1ypoUx1bTIPSi+iayJLFpn+Vkc51xQSFuO8iCzZrjsyFJNJI5Gr6AqTWp15boEkUSuUlWy7Os\nGusEjDYTI8McGB3lrvFxpqenefSb3+SDH/kIU8PDnD92DEPXGbz9di5OL/HQQ88BcaBDLvcsv/Vb\nv/Z2y+8/AYcPw8c//saP+33eyNvByFsMU1OXcN0M0egrhMpwOIYgdHHu3BR33XUHAO94xwE+//ln\niMVSuK7H3NwaoVAC3/eIRvdgWW02NuZoNC7jecskEklisSzLy8d417v28thjz1IqCfT0vOJc63kp\nFhYeQdd1YFvdtVarMjj4in9No7RCQlQgkqPW2nZVzSeTmLWzYHoMhZOU1BoV30EgShWVPB5BIUzb\ntokiEfRFDM9CBkaBJLAMnKYb2StgSSGGx4ZJRGMsr55iZyzGjmgUzfdZ9zymTJP5zTLThoxGhJVy\nhYBp0zu0i2DQQ1GKXL4cpKvrVxCEAJal0t9/CMNY4eLFKWKxe0ilBvE8l1LxDMXZ48QDJmWpzdPi\n83imSciVKTs+TsejInmYvo/l+6zrOplUin3XX080GqWRTrPrvvvo6+tjaGjodUsCpqkTDL4ixKRp\nTZLJ0I/savJ9n+9852nS6T309ik4tTrpWA7LKSD5y4wn0zQsg1Q8w1a7RW8kxVR7i+VqBcE1sN0i\nC0aCiCwTqtUYA4ShIRq6zkqziZuWOXPmBMn8CJsbS0StDrZdIynYdDJZhrNZOisrNC2bLSlEHQi7\nAFEqxHFJkWQQiQCikAFfZtG4gODpxBSRsOOw0Wggx+Mk8/1kKlmaXgffFwEbXwCEHJa3QUhIYng1\nIl6IOEFCgQIhUaa4usJmuMw1o6NUOh2isSCe7ZJWfDrmGr4foNbcQOjK0OlIHJs6TcR2uWbnDoQr\n10ASxauGcG8lOI6DoarEfqANPBGNkioUqC4vY1nWVTPI6Y0N9t1556vuq2a9TkwUySYSvPe221B1\nnedPniRcLrO1vo69tkZfJEIyEKAQFDldrhCW+0lGYjgimJ0Wut3AdXV2yD6LnollLSIIYUTRxvc9\nHDfCsZePcfPNd1NZF1G8ARwphmmXqNsOKj4DBIgh0qKO5WeRCKMQZsts0147z2iPRyccZb0eIRga\nwBcCiEqMeDhFvV1D9tfIRiKoHZem55EKdRPKZOnefRuKH+apMy9SrpxAMn2CLuQiYTRERvJD+IEA\n8StiaDv7+3lhaopWq8XevXvZu3cvAN/61qNUKlGGhl6Z47a2lnj44Uf57d9+E1bVX2AYBjz7LHzu\nc2/82Hv3brf3fvCDb/zYP2v8XAcj7baGLP+wgmAwGKHZVK++3717N/fcU+aZZ15CVQUajVl6enq4\n/vq7eOmlS/T07CKfH2Nz80n27NnHzMxFEoktRkcnGBsbJhh8Ac9r4fveFQl50PUaoZCMc2UCTyQS\nTEz0sbo6SzY7gqIE6ahNohhksjEioRB9fX1cnpsDy0QSgliuTVKJEHRt2q6JA0SQMH0dBw8LgQgu\nvUAGaAC6IFDxZWJCCFcUCcoK+UwWtVqlEO2irZlEQiGuGxtjcWoKzRJIF25hwtHpWB4L5UW2aiUu\nXVK59tq9yPI1XL5soygu0CSsVEBrUGnUEEUZSeqgqhVqpUtE2uvkRQHb0lHrFfxyiBdnFukKD9Ay\nOyw5DbrFOCWKCHhEs1nuue8+AoEADVUlOzDAoUOHfiwvYW3tNF1du4jFUrRaNSqVi3z843f9SHJl\nu92mWtUZHEwzND7B2SPPEQooJCJxipUgdVNHDEcoJLOYTom1eoNoppfIQBTbbPKrH/gtevv6ePKB\nB7DLZYaumCEOAiO5HH919jS6FSai9CLHJFa2ZohJHUYLOyg1l8lKNQ4WClRaLeRoN8fmzlMlQpYY\nVaKI7KCKi4tD0F8mjQ2kyfgNIpZNt6KgAm4gQE8sxFrDR04E8UM5Wi0bfBe3VUWhheMcRfYEguIw\nrh8ERDxE4kKWlXIZa8glGYsxPD6KurJOp94mFoaGWUPJJ/jgR/93CoV+jm8WefHF85SLm1yzexe5\nfJ7Vep3r77rrp30E33QoikKmu5tqq0X2B0p6N+zdy9+VSlyoVEg0m7R8n949e3jn7be/6vvZfJ7v\nVSqsrK1td5Hl8xQKBc7Pz+NoGn2KQiwUwvN9IskEuXaDprFCx/ARbI18zKfeatLrOwwmCpiqj+c4\nNEQVSe6i4ZQICDW6RZv67DpRZTem2EETBDzBxxOT6J6AhkeeIH0EWWeBDjEsDDIU6Q7IUNEQxBAh\nKY4ixRFDSeq1Ks32FkG/Q1wIIoYztEyBcDhJd7wHVZHQtRZd/X2Mjk6S6LVoF5eQnS3kgIiw6hLT\ndZZrNTYMg7VKhYn+ftqCwMrKCrZtk8vlcF2Xkydn6Ol5rT/XEIuLz1Ov19/OjvwUOHIE9uyB1/hh\nviHYswe+9a03fty3An6W3jQ9wCPANUDU933vtcc4jsPW1haSJNHV1fVDC9LQUB/PPjsHjLzq806n\nzOjoDT94Lu6++05uvPEACwsLuG6Fa655H7KsMDbWYHZ2mUAgSjqdo902cByN0dG7WFkJ8kd/9ACt\n1jrZbA+12gkEIQWYRCIWe/bseVVN9ZOf/DX++q+fQFXXaLcdEpkgIafD2ECCRCSCCzyzsICoaeCo\nzDouTURyuDhUgRA2Pll8bHyKGGi4WMA62wtk2PfpxUHyK7QcH0WDc1NTDKVShOJh4tHt9Hs+lSLV\n3c3Tp1a48+CtCHaNs1NLOF6ORLJAu73O5qZKNOoQVARk2cBvnadfhHggyppWB6NBS5qhqjWJqGVy\nooJvWQhscm1Y58LURcJiBEOErniK9U6ARqgbVVAoS2X27t2L6/usVyosqCrv+cQn/lGC5Ec/ehtP\nPXWU5eUmXV1pfvM33/0jSweqqnL61CnmZi5im930DfRzzcGDXDx9GickU3E0pgyBnak8teoGolaH\nkMvNd1/H//q7H2BsbAxBELhw4QIbxSIHXuNOvNJokDVNBnuGKPRNMHN5mkHdxZXi5GJJHE0gpOts\ntNv4nsdW6QJ5y6KFh4NHBxsPDxGBEC2SeCgImEg0bJMoHhuOg+X7qKZJJmJgm03KJYV0bw+yX4FW\nkbQ3xw5BRcNCJYbrORTpQ7Ez4KmkgiEM22euWmXnjTcix+MkgkHCzSZDO3Zw/NISIxO3MDg4Sa1W\npK42UMubONVlasVN2tEo+++7jz1XdslvNbzjnns4/OCD7AKyiQSqrjNbqfDb/+E/MDI+jqqqZDKZ\n17V1qJbLzE1P02sYDORyWMvLXNA0WskkWr2Oo6qsaxoVzyNbKHBvt8OT67P4io8iilhOhQmliuxB\nMhzFa63Q9DwEL0rNdXB8HcsvE45KNDyPiBiiaTrYfpGUt05KEPAwKVMjSoEECilC1GgRZ4UubLr0\nBDHPp6NY6M4yTb0H1exD8QxCSOC5IJhonSrhaATFc3Ask81WE9ePUim2aYRtdqa7ueX9n+DYsWMY\nZ8+Si0YpaRqS7+OsrLCytEQzHmfN85hbWmL/vn0EMxnufP/7cV3/Klfr+xAEAUF4ZcP1Nn4yvNEt\nvT+IvXvhv/23N2fsnzV+lpmRGvAu4Bs/6oA/+ZP/j05HAlxyuSAf+cj7XzXhjI+PMzx8jOXl83R1\njSIIIltbi/T0iK+7gCWTSfbv388992zy8ssXGRjYze7du4hE5jl16ikGBoK026u8733/Cl1XOXHi\nOI6TZGNDRhQXOXBgP319wwSDYaLRBPX6WUZGXgmEDh26mVqtwbFjs0AGTRNZv7zI7uHdzKysUFtY\nYCIW52zZIBIK4ugGZVekjEmSOhksEohEkVBw6cLhJFBCph8FG1Ax2CtAyDeZo0lCSNDsdFiVRQ6O\nphjufkXKfcfoKC+ueiy22zQ1lQougUw/gUAWXV+gWrqAKG6RU3IszD9DXqvRCCSpuBpGZ40UKqrm\nYDvLiITRHBlZbDCqNIk4Mnlg1bPQFZ+2pTPRdw2JcJaFSoBQIcnE+9/PhU6H3NAQH3znOxkaGvpH\nb4rrrruW6667Ftd1fyxhdWtri69+5jMkdJ3hgMmll7/L8uwQe2+8EUVRSIc93n3DJOrlixyfP0M8\nGCSSiBPsH4Bqlc//5V/SMUy2mh7dvaMcXWqiyzrv3jmOLIq4nsfFYpGJfB4hJFAtFgmbPuFwEsvU\nKLa2COAQtnxmGi3CrksCARAx8HAQ6UNmiRVidGPhEyaKgoBLHYiwisqA7yMBIwh4epukr1H1LlLZ\nKJMJSQTlGhOiRm8gRqvZ5jI+YVKEWcf02gQkhYZj0lZVAmWF0sUGoZCJHIsR7O/H6e8nJOTZf+O2\nEuvMiSe4dWASo3uYhZWTpEZHkQWBkZ07CbzGu+SfE77vUy6XAcjn86/aeExOTiJ88pM8/8QTnFtZ\nIZJIcOMHP8gNN92EIAh4nve6Cr6apvGFP/9zRkQRyzS5cOkSYiRCdmCAkYMHea7VYrZWo0uSKIRC\nbK2uU9R1cuEAw4MuttmhVWowkYix0GhxrjrDgNMhTZMSYVp+AAEXwYmzZvRT8VZo6yZRKULKqzLq\nK0QR6Edgg00W0AmSwMYhSZNePFJIdDsCniSTkgO4gs954wKGHCEZTGJaTRA1Or6DYrcRwi4dCy43\nDJYlGaml4XlrDAdMetoBohsb1OfmOLhrF8FAgKOPPophmtwcjVIyDMr1OoVAgHilQsp16fV9Hnvo\nIfL5PqrVDXK5VwxDVbVBIiG9KR5Vv8g4fBg+//k3Z+zJye1OHdOE1zSN/txDeKNluH/qP0AQngbu\nem1mRBAE/9OffopodDs1W69v4boLfOpTv/0qcyfDMHjppaMcPz6F53lcf/0uDh06+GO9Zmzb5okn\nnuLlly8CARTF4a67bqJY3OSzn30W0/RZXl6gp+cd9PVN0G7X0bQlyuU5CoUs6XSOnh6J++//MHv2\n7P6h8efn53niiadZWSkRDodQUDnz3HMMuy5zi0WaJZ+0JG/rWPgGDnF05jiIhwaIQBQwgMuEqJBg\nDIUwIjoqORoEgWUhxJbSRTqRZ0tocP/73slt111LOBzGcV2en5tjwQgzOfkejhw5Squ1PWmbpo7v\nX6YXk14ZphsrnD63wKAbREYggEmEBgEcFpFQ5R7yrknS7zAQkEiFFGwB1l2TGV8kNXIdttKD1QYB\nkBMG/+d//9+4++67f9p74SeWhf/iAw8Q29qiP5/HsCweO3aO6ZU2Gx2BXMBmZ3+UXV1JXnz6adRi\nkUXXZe+ePYyOjdFeXaXYVtGjk4RC/aiiQnagj2e/80WuzXfY152j4XkUdR2xXKYvm2VheYtW3SEg\nS6hWFSUcwDc1Bn2RVU3H8R10oImHgYhJEB2ZFiDQS4AM3Yg4NBHZII1GCIt1fDJAAWgDJtsZsGkE\nEoEw6XCcmCmgyBKWYbPpqNQIY6KgBUcRPI+Gs0osPkx39yCC66JEFMb3JvmLv/gjAoEAf/zHf0Wh\ncJBGo8TykW8wGk9jWSbxuM5tt91Cu9NhxvP4nd///Z/qer1REASBv/r0pzGrVQQgkM3ySx/+8BUB\ns1fDcRwkSUIQBFRV5Xvfe5bTp2fwPJ+9e8e4557br5YUvvaVr/C9P/sz7hkevhq0zCwtsdHpMG3b\nxF2XUVEkGY2yvLKO68tctC1S+T5unjiAIjcptitcOnMGwbZRVJUxBCQEjuIjEEZCwaOXtgBLvoCF\nQkLw2CGYpDwXjxoZNJAUTrgaJiAjE0JAQGAXEhEEPFx8WQIlzAVdZYY8spjD82oEadNNh4zgYMsi\nmhChToFg7np8R0DR1xjN1Ll9zxB3v//9fOvJJxHrdbr6+1mbmaGyvEzBdVlptwnKMqlQCC0cploo\n8Huf+ARrlQryrl1MTRdx3QKJRA5Na+A4G3ziE+9900TQfprn/ecFS0tw8CBsbr557be7d8NDD23r\njvy84co1f92a+1uaM/L9QAQgne5iebnI7Ows+/btu/p5KBTizjtv5847b3+9IV4XiqLwvvfdy7ve\ndRuappFIJGg0GjzwwNfQtDzhcARJClCpuDjOLKlUBsfxiEYHcZwy6XQUSfKp1xv4vs/6+jrtdptk\nMsn581P86Z/+HbquMDw8zvBwPx2zio3I+vIqVsNFcUUW9ToBQEbAIEgHGRuLPOABKlAnSIgEEhJR\nfGIIBImi0kHDRZCDhKMyjrdFJupzeWWZucsz9A8NkRod5cb77mOipfGZBz7D7Nnz9IW7cR2L+foy\noihSsjq80CkTdAyi+EhIdCOSxSYBuEAJlw2nRF4KIHgWirhdX3ckhVokQG8yT9eeWzh0x4fpdDps\nbS0wPAzvete73pib4HWgqirlpSUmryxWoUCAX3nH9dy8q86ff/3r7MkNYpXqPHlyik6zxTWpLD2K\nSAQ4/eKL3D05yYvzJfpGc3Snc1RbTXBcbrzzA5x86UtEukUmhgZYW1/Hr1QIOQ59ERFaNbyOQdH3\n6I4kkYGnVI0cIh0gjUcXChI5bCRqGLQwcVlEpk0HnSgOI3jkAQUZBRuD7QB0kO0HMoaEhguWieAB\nUhjXHIqDRgAAIABJREFUaKF4MgoCQcGh4Wu45iUUySEnhkl5ZWRd4fprb0UQRObXVvn61x8mIoDd\nWOaly/O0OxL1i+doKHEEocOtt+67qjXh2fabdr2+j06nw3PPvcjx41P4/vbG4bbbtnkKg7ZN/oq1\naaXZ5OG//Vv+9ac+9UOt37K8PWXZts3f/u2XqFQi9PS8A0EQuHRpieXlL/G7v/ubhMNhpk+eJBmN\nXs2yaJpGbbPIesumJIcIpbqZ6ZRJt7fwUfA8l6QkYmZ6OKU1qJVX6XQqNJwovtFkHyJtPDbxcZEY\nJ4yBzCYiSZL0oLGIgeVvofodTFzCbFs32K7FfkBHRieAT4ctAERkwMOj4gikfYkAIiG2kD2bCHHi\n9LMd1qyDYFF2exgZvRbZ92nVavSEorQ7Ooubm9i2zejICGc3Ngg3m0SjUZxMBq/RIBQOMxQM4gPR\nUIhmp8O5y5cZ7u9Hdxx+7/f+FSdPnmF5eZPJyQw33viRH5Lbfxs/HocPw733vrk6IHv2bJNYfx6D\nkR+Ht3Qw8u1v/9XVn3fsuJ5oNEmr1b76mWmaTE9Ps7CwRjIZY9++3eRyudcb6nURDoevZlleeOEY\nudxeisUSnuciigrRaBeNxjKGUSESydLb200kkuaGG+7GcWy+/e1nOXHiPJWKiyhGmZ4+xcrKBsnk\nzfT1DVGpbDA//xhDQ4O8fHKGdydiWKJFy66TwcfDZRkfSCMTYAMLHTAJYxDCQmIdhyQJ6rRx8Whj\nYwKKEMCLFxiMTrLWbhOJw6/dcw+WbXNsfp7YwABPPv08jz12grXFFo7ms2GexHdrBHBI4RO6sisP\nILAMWLiM4qKwvTjWAQXI4pCIpGh0LOpygHXfoybBfe97HwSDmF0ZVlePIIpw003j3Hvvu34kN8R1\nXaampjh16tK2o+j+nezZs+fqIvOT4PXIrIIg0JVOo5suWlNG9mNkwh6CGWS1VcePGAyKItW6xsNT\nWyzWJdRVlUZnmfG+Lk6fu0Aw2Y8fGGGq5LOolunOh5BzOWZWVhgOh6kgsGLbKIJA3bKwPJ8SISqE\n8ZHo0KELBQcVD5MgkEOmSYAUHTJY6Fi0kRDwUfAZAFaAEBADLAB8OkANl6zjojsNBgIyuutTRkD2\nRTooZFAZdAUiYoooAqXaZV54YYmh/p2U2zWe/twCH33ve3jXQB+fe/GrnJ6tEiREOmQSicY4dmyG\n2UsXERJxdn3gA1iW9aaVamzb5rOf/TIbGzLd3TcgCCIvv7zA7OyXgG2O0/eRSybJtFpMXbjALYcO\nve54ly9fZmvLZ2joFRXknp4xVlY6nD9/gQMH9hOUZdxcjk1VpScWY35pibImo4kR4ukxUqEcltLN\nzOrz3JBI0pPrRlSbTC9ewHFMzI5O0w5gB7qwPIdLuJhEcUkQwuUiOnl8fIJ4fpAwHRRsXHR8LApX\nrqvOdsawCQi4SHTw2PaVmsejlwAGIg4+bVdjAw+BNApZfOJUMRExsP0YEbdKDJXV5YvcNnEt1USc\nlOMgWlHKpQWajQY7h4Z46cIFyqKI2OmwoGnETZPRbBZUFZPtzc6u3l6WlpdJpFIMDwyQyWS45543\nbxPxLwGHD8NHP/rmnuP74me/aHirBCOvm7a5777fedX75eXjdHdvE1M1TePBB7/MxoZLNFrANNd5\n+unTfPzj72Hnzp2vN9yPxdLSBv39k3hekDNnpjGMdQQhh64bhMM2uVwfpdIFEgmd5557jEIhx6VL\n87Rau9i16yZKpS2q1RzNpkUgUKdUCjIzfY52e4OpqRl0NcERu8iQbzPiS/jIaHgMEGSVTXbioyEx\nS4gcSTx8NpFo041ECx0JiyZ9iIBP03fZsgzaXotYOs9E/wDTK5tMDnSzsNzg60cepFR1cK0xFDuD\n7izQRZlBXOJsT0YuEAQUfHrY7taZArJXfqexTQ3eEHy6AmHWfCiGgwgC3HX7IZLZLJk9e/jQRz+K\nZVlIkvRjFzPP8/jqV7/JmTNl0ult/siXv3yM8+cv87GP/eo/eo08z2N5eXnbayQQYGF9nbH+flzX\nxTAMFre28OM9mIEwflMnKMsk4gm2yiqbukbKdChZBcb9QWLhCp4dYGGpzcb6OoYSIWrbiIbK/rHr\n8XyPIy99k515gRsnJvjKqQsImkM/IQzXpdVUiUhhdot5HM+hik2DND5lJrDIINBCYQ2LawgioaAQ\nJkcLHyjiM45OHoEKPpuABDjAIh5Btks3OiYNoGZ51FFwKKATw8QlSg2fJppXR9BaDEoBJM8lpbfR\nagsI2SGy8TgL8/PIjQ539AxSDKfYWl8gsrmGYqmsizZeKoruOPiWxb/+d//uTQlIZmdnWVuzGR5+\nJas5MLCT5eUzr3t8PBikUan8yPGmp+corm/QLleJprvo7Z8gGAwTiWRZXS1y8KBC18AAQUliamaG\nUq3G6WIVlRTtcI7J/p3UNzZIiRE8L4GgKNgInFyfZ4fn4lkGNT9LkgiOvo6AS4AAOgHq6PhINBCp\noRFFJUwUnw4KJcax2Qmk2Q5A1oAutgP8DBISLuBjIzBNHJ0gUSQ8dOp4BPEQUXBJEKCbCAJVpulC\nJe+6WBjo7iZnF3V2DN7AZkWlo5cY8Q2+8tnP4oWitLp7uPnD7+Pi0aMIsszW4iLdokjdtlFlmXwq\nxXAmwzOlEvVQiF++7ro37mL/C4Vpbrf0Pvjgm3uePXvggQfe3HP8LPCz7KaRgceAa4HHBUH4L77v\nH/vBYzY35ykUhvA8l83NWYaGIlcJoy++eJRiUXmVtbiu9/G1rz3Bf/pPoz/1hJrLpVhdbTE5uYNC\nocDRow7Ly3NEIhGy2SSzs8/iuk1Cof1cuLBMs3mcen2VVstnaamFqtqsrNRx3QCN2jkUf556u4Hr\nFPC9CIJfoOI0KEgqVQQcZGwUfDp0YeDhUUJhk24abJdvWkSwSNPCI0udnJBClwzCgkBIUBiIZtiQ\nPW7efwCwWS/P8/ixM1xYNCg1BHyvC4FNXC4yQp0DeCSBBNuBxgwQYXvCDAMttgMR8crnw8AsoPs+\ny55Kf083ZNNcd+P1TO6/ll0HDrB7924kSXoVj+dHYXFxkbNni4yMHLya3UinC1y8eIy5ubkf+13D\nMPib//k/KV28SCEcxnccHjh2jKzvE3BdpFCIWjhMJrcHP9vLSuMEwXYNJRhkPRxG910ulDQMMUPJ\ndckGI5TVy0QDI6xVVJSojW2c4vodA/i+ycWl81TaGi+WS8yvl9BbGvs8jxywIHgUfAHVjdPBI4hA\nDhmVGiY55nFZoUMCjwQCIYJsLyEi4JADBGx8fIoIyMDmlVcQ2AWkEGjgUyBAAJ8VRNIUWCOIRZw4\nm2SRCRFGoE3MDyD7CmkEVraWGZeh1Wzy1W88RnV1mVq1RSAYYnWrSiKUp+KV6FLixMMC16TDREyT\nC488wrl3vIMbbrzxp3p2fhKsrGwQCv0wETISef1MZt0wuK6//+r7TqfD/Pw8lmXheR7HnziMML9B\nKjtIa32OE5dPce2tH8AwWuRy2+W7W++9l4f/+q+ZHB/HcRy+e3kDU+8iFM5SKRYptlqsGgYCQcqu\nyom1BhHLpFcUWPMVXCJ4tCkg00HEQ2EAjQQuAj5JRDbxSLJFgzJbQDc243h0s/1chdgOSorA8Dbl\nGRHwMPBwiREhTS9zFEmhMEgWkSYCCZrU2EQGJAoYJFCQcBHxiZGi0+lwZOYoCAFkymiGhNTQMIMO\nflMg//I6+/ffzAd+4zf4sz/8Q1ZrNaK5HL2xGEng2MYG+QMH+PX77/+hctjb+Olx5Ajs2vXGufT+\nKLydGXmD4fv/P3vvGiTZXZ55/s795Ml71v1eXVVdfVXrjiQkBEJIICGQYgBBLBh7jYNl7PnAbDDr\nnYmYtSO8M4aYWBze8G54wONw2NwMY7BZtUCiJYSEpL6p1Wr1vaq7quuelVl5P5nn/t8PJyUuuiAx\ntADB0x+6uiozT3X+85zz/N/3eZ5XBMCrKhz37DE5ceIJVFXhlluu4O1v/1Ek+DPPnGZg4CfZfCKR\nolw2WV1d/QmXy2vBLbdczxe+8G1SqRz5fI4777yPM2cOUq/PUShELC9vsmPH+7hw4VkUZYZsdjfl\n8mEWFyMymXmiKE+zWYL2BsKbpyMZ+FyLShoZFx2JFP1EYYOQNkkkXNp0iCd2ngICNJLkcFHpEKIj\n8KjToEUvLcCkoCi0Ig1PT5K3dJxGkefOHefC+iKRd4FSS0ZmpNtssZBx0OgwSoRJXBqGuCXQB2wR\nk486ce7iIvEuzgROA88DhZ07+f0//mP27t3Ljp07f65JugBzcwuY5kst2pY1yLlzF1/xee12mz//\nkz+h8uST7MnlqHY6rBWLXG1ZHF5fZ9fQEB1d55Y9e3jg0DkMfYK9d36MQz84QFZRuXI6RxDOMbda\nYXb2JiobG4hqichfYqk5TyAEpquSsfKsb0V8/+ADJH2dnghaUZKFss80LgVFw4sCBCEJJBwkQBA3\npAQGKQymUHBpobDFBnk2iQCfAiEVPDwcBH73vXYRVInFypPEJX0FKCKRQiOQdPpEghouOhZ5ynRo\nkiNExkEQogIJPOywhiNZpGWFlusS1XSqzZBqaROn2aHRAF8xsZ0qgxgM60lU3WYklWKj3aZgGBx+\n/PHLQkZyuTSet/aS77tunAc0v7bG5EDsBFssFvHyeXbt3g3EgvAHvvQl0p6HKgQPHz7MVQMDWAUL\nRZaZzA9gNSqcfOYA49sHufLKuwGwWy2qnQ6P/uAJypUaZRdqTYspEbDp28iRTLUDodLk+jtu58KD\nD1KQIhIRRFis0yAe0GDRQUJDJiQki0MZjQgVGY9LCHRCWjjMEicqbxG3ODUgB6yjUAF6iGcQNdCp\n4SJo4uKSISKPgSDER0YnJI1GkVVU0hQIkIgISJMniUNEHxorQkWIJjo72cLGkKrkwxC16XDw0f0o\nyr0UV+axazXK5TJTqRSSEFTzeWbuvpuP/+EfvuwU7mq1Sq1WI5vNUrgcgRlvQuzfD3ffffmPs20b\nbG1BowFvJg75q9KmeVl88IPv5wMfEK+oEXg5JXYcTPb6p49u27aN++9/O/v3P065rBFFHvv29fLB\nD/4Zp0+f5tIlhcXFZ+l0UhiGArQwDB0hCpTLK6SSNrnOWXKBhoKFJ9qUmadCC0tWMYWLh0kLmSEC\nehB4xBWK54AhZFQS1FFRSFPCZYuAtF5ABHU8YREpJqUooCM0NEZZW7MpuxKXtk7Qx0VMPPbQi0mZ\nJiFFNpDpAUwU2rzwbvnEpOSFtkAbKAGzwCaxVgTi26yeK/A3f//3XP8LuEGZpk4Yei/5fhB4JBIv\nvSC+gMcOHGDj2We5dXSUpK6zNT/PsBA0ymX2ZDLsGh7mTKnGNx89TSbXz8Gnvk+95XDz7e9j/txJ\nzl06zA3XjKKOjtHTt48H//EsbvEUEyJkJpKxRZnQl7lQ3MJdvcSUKJAghSJLSGqORW+FCiFRCJYs\nIaIID0GEh4WKR0SESoSCS4SNDySQGKROhRQRGjISFhIhZVrYxOQv2/07JPa6K8TE0EbCRMIUIdBG\nIsKnRQEPFZMMCSp4jNDBIyaUPgEl12ZKTeIhEwpB6dxRsh2bPk3hhN8iJbI4UYQfBdT8KlcPZdBk\nmSgIUIUgfI3uhvX1dZ49fJhKscjQxARXX3/9q960du/exUMPHaTZrJJOx24X224Qf/LAuuIKfnj8\nOJIkMX3FFXzkzjsxTRPHcdj/5S9zRSZDNplktVxGqTc5t1IiOzSEqjbpdFLISDQ2Fvmf/uQvyefz\nsaPtH/4BZWGNG8avx9qV4wfHnuRY/Rx+SWdCTxBIAkn1cUWDwwcPErougSzjRxFNPBR6sFBRkNEI\nUBEIcgQEQJqLqERkCNFRUFBZoMYGg8RVxgxx/9kGWggUDCpEaERY6KSRUYAa6yg4JDCQ8QjwEQQI\nHBL4hAh8AhL4JEmhABlCIjx0MrgUCLEpsMpIaCKLgKZXwfVaHHr4H5k1fD6yexfBxATHVldZDkMm\nslmuuPHGlxAR3/f5zre/zcVjx0jKMnYUMb5vH++9776XDCD9LX4S+/fD1752+Y8jy3EF5uRJeAVJ\n1a8lfqXJCECn00GWZcyfCqS67ro9PProBSYmfhTUZNt1EgmfkZGRn36Z14Srr76KvXv3UC6XMQyD\nQqFAtVrl0KFjlMtLeF6VdHonfX0pstkRbHuTRqMIWNjlZ9muJIm8i2j4qET00SSiRL+UwySkLoUU\nhcMAsZCtTnzjTwNyd1ckWMVnjBQmDQSm5ZNU0ljaNpTQQfLq6J6C74UUvRo+CXpQEcAEoGMgodCD\nTBaXOk18Emx1f+50j+cQx8rbQBkYIy4lF4ERVDQtSdXKMrzvJpaXN/hFbJZ3797JgQPH8LyJ7hBC\n8H0P399gz563vexzgiDg7NGjFJLJF/M/2q0W29JpyuUyimWxUKmx1siS0wtsH9sB2gKdzipPPjnH\nfffdwTv/j//M7OwsFy9e5DOf+Rwby6e4QZWIAoEXlhiQ2oSd2MacIoNJIpYTShIhEj0kWEJmg4Cp\nSKaFIAtYNHBQAJkqClvoFFgiD+jUqOLQokMLhRTlbhUswkZiCsF09/9oAvPEN64y4CORRKB1i/ot\nwEBBpkQbjQygd6szm4S0gfPEu3ArDKk6Do6SZK5RZzDw6EiCtqLgSzIiWkTDohjWGUtbjGRHqXQ6\nZLJZzrou77nllp9egpfg3LlzfOfv/54RXUePIs6eOcOJp57iI5/61MsGj0GcUPx7v3cfX/vafpaW\nJCRJIpEI+J3feS9/9mf/lvd94AOE990H8BP5MgsLC1ieRzaZpO047H/6BOtV2JMco91Uyfcm6e83\n2L17B7lm88WK6KHHHiMfBFR9g3whrpsLx2EnDgnFRRJNMrpJjyK46AZcXFmBKKLoeV13kyBBng2q\n9KGioSARItDZBCIkYBgVBZc2Gh4KA9SpIeOgEp9nAE0kUqjYBPShkkXGxmcdlzQaMi4hAQoBJoIm\n0KCERg4PDQXBJjYTuGjkcIEUEUXipp+PQ5Zl9mKSwERRLPywzoXQw9m4RN/0OKnu9fOdMzOcrVTI\n9/Vx/vhx3nHbbT+xTo8/+iilZ57h5vFxZFlGCMHJEyd4JJHg7ve//2d+Nn5TMTcHrdYvdkrvq+EF\nR81vycgbhP/2377MwsImkiTYvXuSu+++/UUm/9a33sDc3CUWF5/BNHvwvDaKssXv/M49Lztp0nEc\nlpeXkWWZsbGxV9SUaJr24gW10WjwhS98hWo1RTK5Hc/bYmOjhqIsY1k6mYyGqlrUakvoYZmkrJLR\nLVQvwJFtFsMtRogYoDeOdhdtMvgsE9/4LeJWSQrIoFInQMEmYpHN7sVPcvJIWpIOBS6EK0hODeFq\nNHGoI5Apo+OTJyIJtKiRJEkbFwufIi1CTFxi/UeWmHAUiV0cCrGDYxFoYtC//V/hahnswGVkeIh7\n772Lo0ef5aab1l/xRvNa0d/fz733vo1vf/sJoih2T8hyjfe//yaGh4dfds1OnTrF4tISPdksq+Uy\nk/k8UvciKRSFShAQtQRZs5+2GyDLMpnsIHe/5z2srBzkxhv3MTIyEg+Dm5wkK2/RmyjTsjtkQo+J\nbvtqFcgi8AlR8BHI+CKgFTi0u/6IZUIahMjEVYw4sL9ICZU1chgI+lFJoCIRkKWJDUhkSVHHoMM5\nIvrRkBHUAfBpEleq6sQi4jaCGQRbQIs4pbcfWMKnjU+BCI+QMTxEd+2SxOJImZCTXkBHS2MqKdJh\ng0TkMa7KJA2D+aCDqTtshirrqsrRchlXlvEMg9133cUNN9zwqmtYqVT4wv/1eaxyhdNbJbKaimUY\nbLou/6Cq/G//8T++4nMnJib4zGf+F9bX1xFCMDQ09BMuqpcLuQuC4MWL1NmlVfxwkGQ+oNNpoeoJ\nenomKJUuMre6yvC11774GuX1dQpISFK8m4+EoNWp0OM5ZGWDjAiIgoj1loMLXDs8zOT4OIePHmXJ\ncQgI2aRNSJ4OTfoRBETUaeMjoyBIoNEmIkSihoNMCw+DIzhMEWfGlIE2MhIqGXzSSOjICEIG8Kng\nIRMLxWOCCwNIzOOzSJEOJi4VEoSsEmLj4KLiIfDJdVNPSvQjsFAJhUfoRyCH9CNYDnw0Q8dutei4\nLoqiENbrPP344/iFAlYqxa3vfjfj4+P4vs+Jp5/mxu75AnEFetfoKE8dOcJtd9zxmrRhv4l48MG4\nRfNzFOV/LrwZdSO/0mSkWEwzNrYDISLOn1+kWPw6f/RHv4emaSQSCf7gDz7K/Pw8i4srZDIj7Nnz\n/pftf5448Tzf+tYj+H4KSRIYRocPf/guCoUC5XKZVCrF8PDwS9o7R44co9XKMTExQ7vt8sgjh6lW\nt6hUxiiVygwPpxCijedFyF6afCQwZZVA2CTCDhoNksh40SYSHgot+gmxidsjk8SViTpqV1MCG7gM\nkMAkYgtwXR/Jq1BrnyCjGhTdWDuikCRFgz7krqgtJAu4uNQxSZBDISKkRi9VNGI9wipxuJYDZJAI\nSKJYY9hhAi2psm3bPvr6ZgGo1YosLi6RTObY2Nj4HyYjANdffy2zszMsLi4ihGBycpLcj9k6X8Da\n2hrf/Lu/I2HbpMplitUqZc/DjSKUVIrn1tcpJhKM9fSw3AjwohAjlaLcatG/bZKFhVMcPXqcTscn\nm32cqakChiZx7swZVEUQhh2yxOJcNxKkgCwRy4Rda67CKhHQh4egg8kK6+i0MIHB7to5QD8BLg1C\nBBIDOFgolMgRkURmkyp9SKSQsRHE8sUkFSI6xETE72aVjKPQwOUSIRZxCy1CIkKnQ4okbTxCAlI4\nRMg0aREyjkYaiRYyfWQoqRp54dMv6yhCJ/BtZE1lMpGmmEsxODhIcniYhusyNDrKHffcw53vfver\ntjiLxSKf//zfsHhqHam+xWjgYemCmalRtqdS7P/ud1n42MdeVa+lKAqjPyZM/VkYHR3lgBAEYcji\nRpWMNUZ6vIdnnvseecWns3yelY01gmqRa4xR5v/Pv+Bd73or/SMjdCoVosgBwPNc7PoW+UggCY9a\n4OF7cTXKlyQuVipMTE9jGwaO41DrNs9k+igxSI0SEQ4eLUZQaOJRxcXHAspYlJnBwMREpU0Tn3ks\nEvSjk6BJkUEkGiRooQEuJgIbh13EomWPuFLaQXTthYK9qARILGFQx6BMB4k8OhYBPjBPhgAJQYsW\nCgZC+EihIIo8bCVgdWWFXLNJUlWpNZucrdfZsCxoNPji5z7H3/3VX3Hfxz/One97H1IQoP/UZk5V\nFFTizcFvycjLY/9++NSn3rjjvRln1PxKk5EXooklSWFoaJpLl44xNzfH7q6wTVVVdu7c+apW3mKx\nyNe//ij9/ddimvHk12azyn/4D59nfHwcyxogitpMTmb5yEfuI51Ov/jc8+eXUBSTAwe+TbFYpd1O\nkc324DhFBgZS6HqLmRkJWR7hqYfPUYsE42Ya33cIJBCSjiWHdJQqsh8QiQAd6IUXg648VFyyNAjJ\nYiLjskqbEhoeIIlJEqxSiNYwQ5eACMEwCRrsQMMkQQOTGh0ahEiksEiSQKJKSJJeQEanThqFZjfc\nzMVinTzb+qbQE1lMZZBsIcvS0kl6eqaQZRXLyrKxUWZ62vqF9ouz2SxXvkpiTxiG/MtXvsKMqtI3\nMcG2XI6jjz+OWi5Ttixk0+RiGLJndpbBRILnn3qGcrvK9Mgo/Tt3omg+zz67QCazix073s7ayjm+\n9PkvYtWXGKhucaHToRxFbANSioIjBKvEbY4AjyIbBFjIzBIi4+KR6zZHmsyj4qITawIqxHqPEh4+\nLVQSCDxUmuiohARotMgjAxK9wAoBaWwietHI4FDHxWOUYUxk0qwiCHGR2EYOlSRbBJxHp8wgMmUm\nMGl3c0sUwJI0DFlhPexgSXnAJyVrNIRHghBZSGh+m3YoOOG0+d//+I/5xCc/+brWbf/+R9G0SULl\nGP1CMJztw/NdllbWmd0+xYiuc/LYsdctHn815PN5rrn9dg49/DCu71BrNVivlqhq/UTWKKdX1mi3\nFd5z8ztYW3PZ3Kzw0EP/D9dfP0becxBKm43iIrV6GzcMaSkKVuiiASPE2o6UEJi+z9d++BQDvoRP\nEphARyEhbdAS8bnYpkyKEUIMLCq4dGgT0McGu5Ax6RBi00FgoaMyTo5kNyHIBPoJaaLRg4mERxmV\nDRRCEsTtugTxpsEGBjEYJImGwMDnIgpbpIhYJ0BlGzY9uJwljQO08MnioCCIpDR1PUENFQMotlqM\nZLMs1uvM2TapTodp10VSFGqNBs9+5Sv4lQqOLFNrtcj9mEi91ekgJRK/ddy8AppNePpp+Kd/euOO\n+UJlRIg3rhpzufErTUZ+GqqaYXOzTJeLvCacOHEKRRl8kYgArK2VWVszmZoaZmxsLwCrq/N861sP\nct99d3HkyDHm5pZ4/vlTnDy5QW/vLXhem1zuGjQtTal0mr17p7nqqqvZ2DjBxz52G3+VUzj43/+F\ncqOKJSVoCxVbNhhQZXQridwqkvIDRogFpC+EXIXIbBHiYbJChwUi6hhINFBRCXiclAhIdLUBCTJY\nuCTxMNG7YjiJqDvrRCdCw6eDYBONNFkcQKLBIhJNegkTY6SzKQYGbmD79h4GB/t47rlL6HqaSmWB\nRmOdXG6MIPDQdRfLkpienn7pm3uZsL6+DrXai4mc2WyWG9/5Ts7PzXGwWOQDn/gEn7nuOqIoolKp\ncNsnXf75nx9DkobI54d46KF/AgbZt2+WMPSYO/w9RhyVph2xra+P4soKiSjiEpAPQxzialEEJPBx\n8GmRxOwGl+0gvmlVMXCw8HB5nriylSG25HYAQRKTBB4BESYBNh4CBRmBwOvueHMobKCQR0HFokYb\nCYUUEQbJrg7IZbV7mzKQyaDTg0ubHsrkkLGR0IhIMorGpqigiwQtEgQiwA4VlgKXfmHRFG1MQvxw\nykkqAAAgAElEQVRQwtUttg+PsnbiBOfPn2d2dvY1rYnjOFy4sM74+K2cSmUJ1xcA0DWDlt1gpVxm\nYts2GtXqz3il14+3v/OdjIyP8/ADD/Dst56kKXrYc8W7CcOISvU8eXOYp58+zPbt72ZgYA+2XWd5\neZW51jxmu0S7tMWFlXVsfJIEeN212yCuFOYAzfUxkWgSIdFLAZMqgi2hkiVCId5AWJzHJ42KisoG\nSST6kH7MdithAsdJomEhAQYym1iEaCiYqEQ4qPiYgEoViRoBFnTnT8WV02TX/+YREBKRRKOGBIRM\nojEmBTSEwh5sSig4gIIGqGyIDiV1lP5sBj9TZ7PTYaHVYrHd5kpZRgDbdZ20aXLBcVgvFsm029DX\nx8lSiVnfpyebpdpscq5S4db773/VWVG/yXjwQbj5ZvixfexlR9d4RrEIb5aQ3F8rMhIELXp6Xt8o\n63q9hWH8qLTYatU5ePAJwlCmVvtRqNLQ0DTPPfcw8/NfQIgh8vkRXHedixdPYpptfN9BVRP4vkcy\nmcW2BYaRQJZNfN+nZ3gbueFtOEsVHE/BREbGZi6o01uvkok8JOL+/ggggAtI9ACCDi10trCok0Gj\nxAguOm73AhNrAmLbp0AnIkuI2rV1GkCAjEBiHgMZixQGKiYNVGxMamSoKNegaCMk0iWmpvrp6dmG\n71dZWChSLFaJojqOU6dYfIIg2Ee9vsxb3zrCxz/+kTdUSR8EAT+d3+oLgauZCCPF0NgYCxcvcuLg\nQdqNBuOzs3z0o+9lcXGFM2fmMU2Xt7zlevr6+lhePo/WqLPVrOA4Nk1ZJifLlLvvqUcsNOwFnkKi\nRR8qbSwURjC6YVdgEmIiUIlj28Pu77VArPPIo3KWBAYtBlARyKwR0UIwgUSLsDuzRmYcgzUk1kh3\nQ/5dplHx6QBy949ORNS1D8etnB4kSoRdQ6+HikEDlS28mNgYeZSgwarfYCizl2JlHV/yUYVMTkmQ\ntFKcDwN2pnvYlcvxxEMPvWYyoigKsgxRFLL32ndxdOEkGbuODtQ6LfKFKTIDA4xeJtI6MzPDzKc/\nzWbN4cCBTTY3F3HdDlBlYGCMpaUWURSvimlaXDi/SkHVuGHfLkbekuah73yHp+fm6FcUlsJ4ErZK\nfC6WAYGEimAYuZuYalDAwMVhjZAefHoQjOIQ4pAgDqV7FhmFBDIhKhoyPkl0QgQdYoIbIBHQR4kK\nvYTIRCgErBLhdeXuSwT0E+tMikAdmQlMAtRuIy7EYp0EYOAjST6rkkQoQnahYAEryGyikJAK1GSV\nfO9uMlqNG6Z6WFhZoRGG6NUq40DJdXFsG1NV6VMUlsMQ1fcJHYf3feITPP3oo5xZXaV3cJA73/e+\nnytI8jcF3/gGfOhDb+wxJelH1ZHfkpE3ANXqJvl8f3ei5zK5nPeaL54vYGZmnGPHjtDbO8Lx40/z\n2GNPsb4eIURArbaOaabYvftaAJaX1xkbu5IdO+ITb3x8mtHRIouLZ7CskFptHsPIkUxazM9fJJs1\nkaQl1tZGCMNBvPwoCxdqDEgmjiwo+XG6YokiCgZ5PK7sBo/5QAbBHIIVFEBCxiDDFkPEI7sTxBfL\nqPt1D7BMmwZBN79AECLhdjMnIqCBSZY8FjIe4KDj4uHIs2BcQd9gFkVpsW3bJPPz5wCZ/v4pEolL\nrK9v4jh1NjZqTE9n+d3fvZMPfvBfvawg+HJiaGgIR9dpOw6WabKwvs53D1+k2jKwxnby2f/8Vaid\n43dvv4nC4CAbi4s8PDfHhz/1Ke666w4URSYIXvhoCxqdFpFTYVqEKK02sq/TT4bzQBGFfsokgDZJ\n8gxTZp1eAlq4BBi00QCFBhUs2rSJKyJJYpIQEpPMHnwiCpRxkBDU6KNOEwWbJhJpZNLACSS2SJFA\nRkYCJCo0usTHwwU8dBza9BEhoeACDQQSAXlqjCJjIdFEsEhABRstKiELl/60RbN1CilSWUVGk6oI\nLUmvkWREqLj1IhOjozyxsvKaI+A1TePKK2c4ceICo6OzbFx/J81LZ7DCiJGZIUZ37mTTNLnqmmt+\n0R+HFxEEAZubVRRFJ4p8wEVVFaJIQpYtoig+b1aWn6OzegRhynz3/1tlW38Pim0zJQQrYUgoSUhC\nYBKT0YAkLh4RARYqMuAg4eCj45NFoOJgEKAyRApBnQZzdOglwkewQcgAKiqgESLTRqdDlnhgZxON\nIgNssYhBh4CQFhoGJkZXoWIDTRSKxEQnViK5GLgkEXTwmUAgE4EQOAjGEOQRSEgkkTmDQb/RTyj7\npBIG2STYrkuj2WR4fJzq2hqu6+JJEglFwWm3cTUN3bIIhCCTy8XEb2bmsq3jmwm2Dd/7HvzX//qz\nH/uLxguOmjvueOOPfTnwK01GLGuNpaU5IGLbtj7uu+/+171D37VrFyMjx3jmmQN873tHsKzrSCTW\nUBQZSRrgm998kOefX0DTEqyvn+Gaa+558bm5XB+Fgko6Pc30dIqjRw9SqwmqFR81XOWJteNMjgR8\nrTxPeuhGZLUHzxhk2dFw/QpxmHcehR1k8GiwyhkusYgALFxCitgEpNnGICqCkAYGNmni8LEX0jlL\nxNbcLULarFEmjY6PjkSHFhE+y93kkDWqbJFFQxCyHgsglT50aZ1GY4Xh4VGEEEjSeXx/iPPnnyaK\nhlAUn1yunyCwOXduhcnJiTeciAAYhsFt997Lo//4jwwoCt89fI4gmsDsLbB7z7U8+8QTJJVJFjZK\n9OfzjPb1ERaLHHz8ce67/36uuGKKL/zVl0noBfJD29jymoyGDr7fpomFRg4FGMBllQKL3TkvggI1\nVBwK6GywxTIOU2iYRLRQaGOTZ4EN8sAMEBLHuceEUVDBR8MghSBNgE+DfiTqgIvBGgZt+hFksJHR\nWWEEhwQuBgGbrCMhU8IjS0RIHY8cGoIWMr00GKLebd6ohHgUaJIGDCVkJpXGSCbpVKuUvSplNISs\nMaga5DUTL6iSz/Xh+j5aIvG6ZgK9+923USx+g6WlZ+gdmWUlsKlX5umbmUbbs4eP3H77ywrIf1F4\n/PEnabVkLCtNT0+8YTh16hBra0uEYZFEYh8bG+epn/0O41GEaDaYzEKP73PK87i2v59vb2zQKwQX\ngZ2Ah4KQshRFoxsymGCEFCc4j06OXgwadDCoksKgCfhYJNGpUUPQYIQ2pW6FSgdaeJTJoGDT6uaK\nOMThbj4TuChIZDBokqFFjTVaFDGJ0EkgkeMCbZp4jHYN4VuE9BFfExzgJBGDAiLFwI4EhpCQZBiQ\nYMMvU1Y1pgs2b9s3ywOPHEButTDX1ylHEX4QkNE0ykGALknY6TS53l7qqsrbb731sq3fmxEPPgg3\n3nj5U1dfDldcAQcPvvHHvVz4lSYj/+bf/D61Wg1FUV63eOrSpUscPnycWq3J1NQIzzxzGDAxjA4z\nM0NsbdWo1SrYdi/Vap3+fgnL6uGpp45w5523o+s6up4gn09z8OAPse0xSqU2tdoidJaYyWQYTiYJ\nyzal6jOcOvQsgTVF4F6iz6+TJ8JHZxOJLQxUevAosIBLDykyyGwhqNGhwBYJ2ng0CWkwQUiKH0VJ\np4Gn4EXR5DoOSRyKyN2RWyYhQ9j047OCoWxgJFM4jk0U7cUwpjHNOtmsRCIxQKVyhsnJ67jzzo/w\nzW8eZGlJx7bb5HJjpNPDOI4NzPOFL/wTg4MDv1BB4mvFviuvpKe3l4f276d5vMLMrusYHR2jXq9j\nAr2ZIc5cOs0Nu+JK2WChwLH5eQ4fOsTJAwe4bTTJ8uICi08fodbaJBW2CSOBhwVCwiYmEhIgU6CE\nx7TcQ1NWuRjkudR1zZg43ZaIikuOUEqyLjrUaVMiwiIuq0sMMcwEKSI8Ito0yLOChIuKRLur//BJ\n04NNLA9sI+gQISEQ+AjStFlBxsJkkwCbNgputxYmsZsOGtDGp04Lh9iJUU+n2VUoYIUhzUoFQ5IY\nkSRkEVAJPLY6HlM5hchUGZ2d5dTqKte8972vONDwBXiex+HDRzh8+CRhGLFv3yw339yDbXfI569j\nZmYGTdN+rqDB14MoinjqqeNcddUdHDr0GJXKHMnkIBMT05w+/QCWVWdz8yRbl46zzzKxq1UCv0ml\nYVBp12nj4A70099xqdkttEhwRpZoBhGeFNEUBSw2aRDgEjJMi0Fq1FGQ8NGx6EdCIcQloATYqMgY\nLOORJ2AQOIPBKsPojJJGJkChgQ2sUKCHEstETJCmQRYZFZkk0wTodGhQI8Qkh8s4Jc5gYeMguJLY\n/hsCiizTiCLKqEhKgg0CzAg0IXCiOuu6y+w1V5PtiTh4YZ4dExMkczkKsoyVTnNmbY2W77MURdSD\nAFSVq/ft46p77uGaa6+9rOv4ZsMvo0XzAt5sM2p+qWREkqS/AK4FjgkhPv0yPyeff30aEYAjR57h\nW996EssaxzQHWF7e5Pz5VcbHr2N0NA5J0/VFGo15FKWDJNW55ZY7aLV28sQTR1hdXWNiYoKjR4+z\nuhpQKGisrc1RrbYxgy3emu0no+pU3TpZt8lQSqFf+JxafYZRr8Y0EKHRIoeFgsIlKgh8fAJmWcNm\nHRsJCYMkAo+ITfJErHbbOApxKyckdt1kuv/eAjw0mqRx8HEwCRlDJgmYaGYaWGLXrvexsnKJVquK\nJGm47hDN5hYTE70UCgU+9KF7MQyDf/mXw/T2juD7bZLJOOsjDF0KhSEg4sknn/mlkBGAkZERbrvj\nDhaWYWwsLht3Ojo+IBDIP3YDbHU6aIkET+3fz1tGRjA0jZ2Tkzz22EHWKk3qLR9ZJGh7OglFQw0F\nRVw6aF1JoIQcRSjCpo1PQIYOESl6ULBoxc0uNCEjY5LHp9AN1y8h4VEgQEZHwcCjhwxbpLuR/wqb\n5GihMYqgnz4EASYVCihcwsHAw8NCR0HHZRWNDClKtJglZIyQNaCCQo0UAo02bSZpA+DLMv25HGvL\ny6SJdSwoKm7gIysavgRPV+vo+Sz5gQF233orN/6MxKROp8NnP/sXHD++Tl/fGOPjUzzxxBr9/Qt8\n8pMfe0kQ4eVEEAQ4TkB/f5ZbbrmTxcWzrK4uYBgab3/7Xv7oj+7nG1//Zx756iYEESguWTlPSjKo\ndlzqkccDK2vc3DeGkxtmtbFFfxTREBErnTRDuRnOl1UWog00OuSIyCIhEbKGYJKQPhI4xOe2hss6\nAh0FH4NLBETIlDHwmcQnS0AHmQCJFC6D+MhkUAGVXkJ8QCKBhsBHoY8Uq7iksdGRSHat4Vb3miCI\nw9g6UUSSuAXXCVNkjAydsEkj7FA1Va69ci837dvDroEBHn3yScaAmmmSSSbZWSiwZ2KC7ywsQDbL\nO++4g3vuuYdt27aRTqfpdDqcPnWKzbU1evr72b137889/uHNjmoVHn4Y/vqvfznH37sXTp+GKIpT\nWX/d8csclHcNkBRC3CpJ0v8rSdJ1Qoijr/acIAg4efIkx4+fA+Caa3a9OKjtBbTbbb785QcwzV0o\nikU6nSeTKdDTs5Pz508yMrK3GyUPudwkmnaGt73tHQwMTNDbG7C0dJ7z5x+jXp/hzJkz9PfnkOVp\nDEPB6yyh2x4yCltOC88tMZvN4TsNTFUi4TcZJiSFSgufgAYWLUaJcChiYxBQQMOlQNS1fsr4aHhd\nFb+MYBOHNLGIc42YhMjEYskNEmwxjcc4ERniZAIFlG1I0ga6Ds3mRdbXV2g263Q6HYQ4hKYN0GpV\nWF6us29fH+l0mkwmw/R0hgMH5omiUcLQx3FaJJMyhhHS1zdMuVy7PB+A14jR0VEMw8G2GySTGXK5\nLHoux8LqGe64tg8APwg4XyoxfvPNlA4dwtA0gjDk0acO8/jzp/HbDWzPJo2KLZrUhYaDg0+SIWQi\nbEwqLOGzJYYwmQJ8fEo0SCJwUFEwcMngENJmlgCZkAoSAWlAZ4MO/RgYKFTxWUPHAEJ0Eli4QAKD\nNhI2ETIyCi4ZArYIGcfGQqVFSAKBA2iYdOggABuFIuOMkUVCxqVNkWWykk3Q6dBRVTRNww9Dqo5L\nTrdYl1wUzaQTBQxdcweT2yf43f/13/7MrI9Op8PnPvd/873vrTIwcCXFosPa2jNceeVuikWZU6dO\nc+21l08f8tPQdZ2Rkd4XdWQ7dlzNjh1X47odarVj7Nmzh/ndJ2nunebsD49hiT4agY3nd4gQ2GqS\nAJVnayUmp/cRmCmeq2yQj3ws0aZOld27r2Njc4mVzZPYBGQQpFFIEOLRYYuQqBsKb6NgEFDGx0Cn\nSY4sfd349iQWdfq6Wo4mAhcJCR8fgUJAiI6EjkMNmwAPFxkbjRQNNvDJUMClSZIULk1CDEAlpNEl\nL1UkQuGSihqYgUNbeHRCQW1ujkY+T3Z6migM2dbfz8rWFk4yyXylQtN16SBxz/338z///u+/2Pre\n2tri63/7tyTqdXKmyVnX5eCBA3zoE5/4hWQMvdnw1a/Ce94Dv6zRPZlM3B5aWIA30Ox42fDLrIzc\nADzc/foAcBPwimQkDEO++tVvcvp0jVxuDBB85StPcfXV83zoQ/chyzK2bfOXf/nXHDmyRjbbA6yQ\nz+vceOM13Hjj7czPf5bV1YPk8zMEgU2tdoqRkRSzs3G1JAh8crkcu3YNEYaCIJimseWxvHQWS0/h\nNOfxQpmtoERSVVF8j4VakYTqoyeTyJqC7kW08Gggk6SFTKo7DLyMTwKBRpIEDgkCfBJIdHARmBgI\nUiSoElJFJk3swGkRE5EWEk3GQZ8k8mLTYOwDWUKSLqCqIe32FqDQbPr4/gBhaAMlPG+ddNpg+/ab\nWFp6iL/5m/+OqlqoapK+vhrnz7dQVYmBgR5M00PTWmxubqEoDgcPHuaKK/aQTCYv00fhlaFpGh/+\n8F186UsPUq32oqomPYMakiSwVYlnlpexJYnr7r6bgaEhNg4dwvE8HnnqKQ499hi5toMu6XSEylIU\noWKjRDppEgwQssESPVLAHknmhLCpiQCTJglMfBScbqPEQiDhUafEKA5ZVNpELKNjk0CQpUVEgxYJ\nBBERgjY58tSJ2KLZfUwNlwwKw0jkuEQFiWXSRAwQ4uJ3nTOCTWSSaGygskmER4Y0OcpI3WD5BE2S\nNIRHMgg5uLDIqIjIqSqWKdPQU1w7OMlousDBdoMbb7sfzytx9uxZVlZWGRjoZ2Ji4mVbNYcPH2V+\n3qNQ2EcyGU/WDYI+Tpx4luuvv565uUtvKBkBuOuut/PFL/4zQeCRy/Vj23UqlfN84AM3o2kanSDg\n9JmzrDkBs0pAQgjaUUSVEEfuwZBtJLnFJZEjP3wL05MpLi08idw4S1+vQiBqoHWYTGmstTqcI4mM\nSkCDBAEaISHQQMJB70qck7gYZBlCx0TuzpMx0PCooWChENHHFr14bBJRwu9mmXiojKCSRkJjg3UM\nqkzRYZkODSy2k2WVKmkibCICwEGhRYQgj4vEVgQpI4MlZPbIJTZabR45eoLT5YhmQ2J9fZE9fSYD\nhsFCqLJYC3CS0yxekvn857/Ivfe+k3PnLvKNf/gqA60GN161i+GREcYUhY1KhYe+9S1+7w//8A1d\n618H/O3fwn/6T7/c3+EFR81vDBmRJOkWoCKEOC1J0juA64BnhRCP/A8cOwe8MKq1Dux5tQfPz89z\n+vQW27a95UcvkOvnuecOc/31i0xNTfGd7zxCsaiRzQ5QKMQth1qtyPPPn2HPnhne//47kOWI558/\nQirls3NnyI033kGxeInjxw+yuLiEridR1avY2rrIxqrDtuQwQ4kECauHWjLBZmWBFTnADwPsIIcZ\npoicCpm2Ta+qskgcMSaI0ACDJiXAQKcPm3VkdPZikqZKmzKraLiUSdHCBVQckiSRsamiE1BGECBT\nZZyB4XfSbIWEwiYIthCiH2gTBDqKMkEYVkgkbsK2A8LQRZIGCcMkcBDb3mJl5WFcV+fYsVUKhR5S\nKZ1q1cO256hUzrK5mWF2dgdCJKhUzjIychsPPHCG73//CH/wB/fT19eHEIJ6vY6maW8IQdm+fTuf\n/vTHOX36DPV6i8nJdzEz8ykqlQqO49DX10cymcTzPJxEgqeff55wdZWcGzCk5+KUBjXB0UaRYSx0\nXHxa2EhskwWmapAxMySaLQq4yASEeCSw0GnSoYpNEw2JMVxMLGxUTiBosJs0KZq4wCAB6a6apEFE\nggV0BEHXGFqmgkIOAwmfeMKIThUJhXXO0cAgYAgoIyEj2CDOL1mk3q2XAHRQEAjAJ8U5GkzKCvV2\nxKLfJhAhQ2aCiXSSjGHxfKuG3D+GoigcOvRDgkDCMLJE0TPMzGT56Ec/+BJh+PHj5+jrm6BSabz4\nPVU1gCzl8jLZ7BW80ZicnORf/+sP8oMfHGRx8Sj9/Xnuvffd7NixAyEEK/Pz9PiCTqaXpZZMJFxc\nSWZT5OhhiEJvnWIF0uEoQ0NX0m43kBhmqbLKYO8QhVwf5+ZKOG4crp9ApwIY5FmiSQ8tEnikiWjS\nponKEAY1esiQZgtwKNPDKjmSdAip0iYig4mLQx2FYRLksJGRGUTuJs1IJPDYRojNGjoWKj451glJ\nkuQSIWkUBCYddFrItHGYwsKS0mQ1g7q3jh9m8YOQTXsCe8nn6h27KW9s8ej8PImFp/HlKUKlQHYy\nT6EwQ6fT4N/9u89y9dV3QFtnIDfL88+vU602uP76axgsFLiwtES1Wv25WuZvVpw4EWd8vOtV585f\nfrzgqOmOdfq1xs8kI5Ik/TlwG6BIkvR94FZgP/AnkiRdI4T4Lz/nsevEUgiIxzK8pB/wp3/6py9+\nrWkJLOsnbb2SJKHrfczPLzI0NMRzz11gx46bWF19gHZ7C8vqIZvtY2VljmzW5777buPmm99Ko9FA\nURRKpRL//t//OXNzLUqlDqY5hQhanDx4AUOHM6eeYOi62ynk01SqDZIJk0mlyUIYUot2IzNAJGQC\nfFrRIm3vDDZgELKLiAwKNQQ5IkZxuYhKDxoSy/ho6PgEtFGREfTgoSMhAwk2qbOARMgIUEehhp6Y\nIhIhmtYL9BIEK3jeIkHQAkYIgiaaZiJEBt8PEaKCJHkoikwUZUgkMiwsLFMo3Ey7Pcry8hqrq88h\nSf0MDLyDwcEBlpef5+zZw0xN7eMDH/j/2XvTKMnO+szz99499siIjIys3LNKtVdpA0lICAFaMDaY\nAZsGY9y4jX3UH9z2Od3MdI/tM32m50N/mub0abeNZ3w4gz09TTdgMwYZkDCSEKBdVVpqU1VlZeWe\nsa837n7f+XBDAlkCZIFUYszzpSojbka8ed/MuM/9/5//83ycQiG5K67XN/jqV7/JbbfdyFe+cj/t\ntgtEHDu2yPvf/57Xva88MTHB29/+Uo3D9PQ0g8GAwWCApmmYpskvf/zj/MFv/zbz3R6oKv1ghFRT\n7Iz6lJFUFRVD6KQ1jSCGldjF1yW7+PiEKLpGOvBRx061FgYd+pg4FCiRx0OisYZHh2lSzAAaA3YI\nOEPyaxyhomORQ7CQTGywBcwyREdFJYWGRMXGwmEOQYBLlr2ss0UGxtlEIwQhNtNIuoywGSEpkmGS\nmJARfVz6tMMYxDLZXBGpBFz0LrG5s4q2u4av6hidHqfP/c/sO/YO9u//fv7MyspzfOc7D3PnnS8N\nTFNVlUqlxMWLu3ie86JXTxj6hKHNtdcee133+4dhbm6Oj3/8wy97vN1uI2ybmcUDeJs7nOm4WHIa\nkxSWAm6whT/0EMYewthmbfUJejuXGfWHZMxlnjz/HKMwjxlVCZFIdJr0SbGPDDp1LhFikGGIjmSb\nmJh9NGnh0aI+rlLtwWMZHZshaQzKdKnRJcMs22SpUMLCYJMRkgwqAocBISoQkaZExIgOETEuDuVx\n0tQ0babGYmebCgZC7BLKJnbQJpYajiwghIIvFPLWDLFS5NLOJnOVBS7tbhOgcnRpgfmZeSzD4OTD\njzA5v0C/nyWVKiAUBd8LUdU8ly7tsP+qDsWJCV5djvM/LvzZn8Fv/RZcaR+448f//2ML/2oqI/8D\ncDXJMEcNmJNS9oQQ/zvwGPBaycgjwD8HvgjcAfxff/+AHyQj9977LR55pPn3DyGOA0xTJwgCpFTQ\nNJ2bbnoHDz/8IO32LmDS653l4MG7uPHGJHo2n88TBAEXLlygUtlPKiXZ3JQ4/SGm7aOPPBYrU3Qz\ns6ycvY/ZvbcQCJe2fY6S6uEHZTTmAJ0hIRlCdAIyKGNnxySRVxJRRiFG0BtPS0gsyhSwgB4hXQxc\nNrEJCLEQRPh08fCRzJPk6SqErFJKWXQ66wjRJgjssZdGC5CYZpVMxsJ1O4xGgkQCGyNlijguoqp9\n4ljiuja+b9BsRnQ6HVz3KuLYY2PjMtXqNNdf/0ucODEik1lEVb8vUKxU5njmmXt4/vltpqauZWFh\ngjiOOXduhW73S9x99yd+7GTGTxOu63LfPfew8vTTWELgaRo33H47t9x6K9ffcguDp09heBbDrS3i\nyGA9UjGZ4XxsIfQh+zKS/ZpOY9jGLxdJaxqqqoDrkpOSKPQJgR4DirSIsMgyxMJHQ+ESEhuLEIjY\nZIIOBVxifFpkcdlDRAqNLho5TFwmcOhRZQT0KJJ48CZS1IgMJhnWaHEN2jjdRpJB0sMgR4SBwwoa\nPiU8ekjkePYjg84ecuZBwriBaWjk/RSzmkU2DCkIlV27TdsoE6yd5ukT93Pt9bcDsGfPfh555MmX\nkZEbbzzGX//1Sd72tqt54onnsG0tiTkIn+eTn/zUFdMQrK2tcerkSex+n8UDBzh85Aj5fB5VVTEt\ni2Ixx9H0DDu799IOu1ikiKSDIg022iYd4VJNu6jxLpW0QTBUSWkG9khBiZYwOMsMI0wS348umyhc\nheAAa1wmQx6THn0kGg4lNEwcXHYI8cmRZoiPQoY0MVksNEJqxMTswcFGJeYF0/kIOZ6v03CJkGMv\nVp8UGhoGNgU8/HEFDfJMEaJqBmGYYUSNJUWwGQTkAU0IPAlbzTMIfS+5Xpdes0MhU8DXRsfZCXkA\nACAASURBVFx94BCalgive+0WKyvrWFYB13XZadnEnYtMGlm6ToenHn+cg9ddR2Fm5udVkR9As5no\nRc6evdIrSSoj//7fX+lV/HTwasiIL6UMgVAIsSKl7AFIKR0hRPxa31hKeVII4QohHiJp+fxI8eqx\nY4f4+tf/kn4/IR2VSplcLkMc1zl8+E5yuRyVSoZ+v0WhMMmdd36AZnOLTqdGsXiMT37y4y9eLJ9+\n+hnuuefbPPnkCr2eJAi66PoBnNY2OTNFGEIYhGQyBQ4Vp9AnepT3T+L2YloDH5cMJiCIgRiLXRaI\nyCG4ajxuu0ySyBuPw8ZzSC4RkSKHjYpDzACJiyDAQbCDQ0xIlsSsOkOiB7kEdBEix3CYIo5XCENJ\n4nIRAzNAiOc9g6LsxfczKEqXODZI9Pc6Um4TxwOiKPEOdZwmcTxBt9skDA+jKB5x7LO2ViOOYxQl\nRxCEOI7zkorH1tY2hw/fTi6XfDApisLMzH7W1h5jfX2dpaWl1/rr8A/G17/yFfrPPsutc3MoioIX\nBJy45x7SmQzX3Hwzp2o11i/3CLNTrA/6IJbQpIYuBFpcYtXpohl1hkTEmsZ52yaIIlxvl9V4wGhs\nHG7QpURIDp9JppBo5PDZh0aTIQF9JukwyQSCHaBCDpUOdZocI8AgyzYGKXLoBAxJk6eFi88iiQC5\niSDDLm2qxONUYMEIgxImKWBrbAeeRsFhF9iHxCJEAjVCVmkPAyQuuX6HRV0gY4W5dI7qxARVx+ZR\nz2FP6ghnH7uPo8dvRdcNVFUbE3n5kvHc66+/josX1zh1aoWjR/fQ7bZQFIe77/4jjh9/41s0AI89\n+iiPfeUrzJomnVqNhz73Odqaxm3vfS93/PIvM7m8jNJs8eiDz1CMdXKqQTPsYZMnqx4gUq1xtXCW\njc3zaKbLqOfQD7bxZZYUNWaBNAoSnRQWKRx22RxrO9JoZPAYMUJlPzoVJnAZYCEADQ2VgCwCFZUI\nh4gQSYg69oUR+EgKqLhs4TOLhkWRgDYODjYZrkanTQkDkxJDdilhA1u0GeFi4IQe+rjZ1xCCORlj\notJHpTSmSFtxiCdVijkFvB473Sb3PvkkC1NzLO+poAuBO+rRaF7m298cMKmVsNND9NADJeD8pUs0\nymU+9Tu/c0X2+82Kz3wGfuVX3hzOp4cOwaVL4HnwBppkvy54NWTEE0KkpZQj4EXFmhCiSHI1fM14\npXHeH4ZarU6nU2NlZQUhykSRzZ49If/6X3+SqakpAD7wgTv47Gf/htFonlyuhBCCXC7kE5/48ItE\nZG1tjS984UGmp69jaiozfu1nOXPmfqpqlY4uCIIBphmRm1CIA4+nnn6aBUVhsl4nDALS2GNj7xQh\nIRZ9DHxyhGhj++4KyV2PMVbTu4CGpMMIkzxDXEZYKAzRKTCFyjYNQsokXqt5En/IaWAdKQW+v04y\n7DtLsnUvhCEkWZ+Oszs+vkOSvDHDC6kqcVwmCBpYVh7HaaOqIapaQMqAOLbHDpZZut0huu7g+31M\n8/uVkXp9jVTKpFSq4nke29s79Ps2hUKWMDTp9Xr/8F+A14hut8vaM89w68LCixdQU9c5Mj3NYw88\nwMfvvpvVc+fYffBRIi1NS6kw1Ay00COlmWiKgilKXHR2GZgK1xcKXN7ZoRKE+FKlhUaagCoxGgVc\nulSJGDEkS5EeQ3xGqDTwUMmTRZAIhyFAR6EINOkhmCAmRmWIwRQTCDpsopPDB5KoPYkkIqKBjmRA\nYZxbMkAhjU5AhM6ANAEuJss4GDCe1YEZJA6C/ePXeoQ4EPh00SIDRVEwVB3dabFba9KhzokTD3PD\nDbdRr69z/Pj+l/mEaJrGxz72q6ytrbGxsUkqdZiDBw+8JEjyjcRwOOSRr32NG2dnOfvcc2w89RRz\nUmLGMbtPPcXfNhrc8qEP8e2tLerBg0Siy1AVrEUGoZjHESaaopKzCphmm4bTY7XfIq24WHTxmSNF\nD4MMIR4CB0lEliwqQ0bYFAjp08VGI4NKmiIeQ2JiYAoDh5g2gioxLt5Y8rqOjkMFlwYeHhKdAxSo\ns4U39hWJCVDYImYKB4s8KiV8fCCiiE2HKgYhHhopPGwCtcVbp/eyNayjuBE1X0Wo84hIIYeBEdfw\ngwyrjV1SSpm9pWOEeshWq0e90wHFZoCNohjYLYesaWGl5nDyAVEY8bYbjuOVSky/Ga66bxK4LvzJ\nn8C3fhK15E8RpgnLy3DuHPyI7NGfCbwaMvJOKaULIKX8QfKhAb/5uqzq76Hf7/PlLz/IDTf8E669\n1qfV2gbAtmuk09/PnVleXuZ3f/ejPPLIU2xtrXLs2BQ33/yRl5SUH374KTKZJSwrw/z8DGtrz+E4\naRQlYhB1KFp5iHVq3R0mgxornS713oCAmChIxm2ztBmwwoh5JAoSF4UuWSIiBEWSCRgNEEh8EtWH\nSkyPy+g4xOQp42MRMmIGly1ypAgBjy2SlApJ0oaxx1/nSELldZJhX5VEerOHJFprc/w99fG7O0AJ\nWEBRBIoCQdAik9EJgnVUVSMMzyJEEUVZJo5DXLdDtaowMxPS7V5mNMrh+30KBZe77rqFU6fWuXCh\niecZ6HqK1dUtHOckv/Zr171Ou/9yDAYDUorysgtoIZNhsLZGNpvln/3u73J6tcbzp9ZQ1mPKcRbR\n3UWNY6IwRDEMbKEzoUT01tY4EkmCKCaQE5SJaWJjMY0/vlRNE6DRoY9HSJaQEiYODo0xEUkh0DAo\nAhEhiS14wJCYDgVCFNqk8DAwialhUwNyaIBFA5MOIwyGqASoKGTHQ6VDIItBHhdvnIyioRIDOjFt\nYiZRcVC0KlE4TYcNimg0wxEZ18EeujiKIB7V6AvJffc9xJkzT3HXXddyxx2vfOcrhGBpaekNrXj9\nMGxubpKPY4b9Pk8++CB7NY2MaYLv8/SJE/zC1BTnTpzg+tveyQOPr3G6+y1mNRPTDvADlVgq+HGP\nSmGaQsFiNdokRURGCOI4YsQKUECQR5JH0kdQQ+CgomIQ4BGQoU+AgTLOLQrpAwYClTQT1BiQQ8FA\nIaBPH50+y0g0VDRiLDwa9DFI0UNFYxIfFRUHE0EKixgVSW+c3J2E5AkC+oywURiRZUDZEuiWxWSU\npmqlGHRs/NAhqdC4yLiFiBdxA42rqhWyms7U/AJhaHP68gU80eQ3/tm/ZXd3jce++TeEVKm3O1y1\nZPDrH/glitksD21vX9mNf5Phv/wXuP56OPojxy3eWFx3HZw48Y+AjLxARF7h8SZJxtTrjtXVVeJ4\nAsOwMAyLTCbRvXY6E5w4cfYlZeM9e/bwK7/y/h/2UjSbXdLpxMRraqrCzEyOixc3yOePEfvP0nEe\nY6FSIRVH+IOAdqSTNdKURx6ZSCdNyBxDHmMdnyE+2jhafDh+B0mBpKbRB0boSNK4pOgTY2KRwyQY\nd4UnSdF9wTOAkBCNhFCskRCQNIluRIxfsQe0EOIFAlJCyhcs0g6Mj3GAHELkxtM2Q0wzh2FIguD8\nOOgv6T+bpo6ULqPR04ShII6H3HTT2/nAB34RXTcYDEZUq/s4fPgQ3W6XL3zhjwjDI0xOzhLHEb1e\nh3y+yNNPn+P61zGX5AdRKpUYCUEYRWg/oCBr9npMzc0hhMCyLH71w+/j/2z9DT27jtPTWFg+Srvb\nIAwHmDnBZEOh7EvywIxpsSY11EAnxKaI4CIxKiUc8lxkhGCHHCoWZRI7fxcPhwFNpsigM0QjJkan\ny4gIB4N1plgjTY6QmKT9FuDio7FECoHKNgcZchGVNiEWNbLkCTCp0aFPCosFHLYJ8QnpopEhZIRg\nhI5JhINEgdghQqfHkFk04sjmcquOrWh4ah7LLJGemCE3eS2+v0kqZVIsFt+QfftJoKoqoZScefZZ\n8nHMxHiKy5SSMtBYWSEyTS5sNen2CpQXP8T5C9/BC4pIKujaFBg6oWywu9vCUK+iGteZkioKBXQu\n0qSOT4DBNBJnPM5tAypp1sigkELisYtDFo9tDASC/PimY0CfEjUqGNSI6KOwZzz/ItGYoY8c++6e\n4jpi6mgoFOkhGAIqHVwUXHLYFAALny16pBmQAYooDNCx0Z0eF2vr7JkqEdgRFiDxkGqAFBFlZQ8o\n0FcLVCtVunFAF5VMfpqjN8xRb16gWp2nVJqis/osC6qGkFnK+YByPs96rcbyzwPyXkQcw6c/DX/8\nx1d6JS/FjTfC448ngtqfZbyp7eBfQBzHwMvtpoVQxs+9euzdO8vjj9fJZPIIIThwYB8bGz06nRUW\nF29HlSP89gbrq9vU+zaRB/uCAXswCDCJ8Jkm4q0MeAoPlzRFYtZRGRKRI6lXXABMdEwqCFS2kKjM\nEBHTweYwmXFCZ4xghIvDiAIRMQn5uEBCRKpoOKjkCMgT4wCXkLJCEp+XaAaScv0Lfq0pIEJKgCcR\nIosQk3jeBQxjABQxjCG2PcA0lykUMszMBAhRR4gM7XaWe+45Q7EY8pu/+SHm5+cByGQyLC3NUqv1\n2Nx8ACEk+/fv5fjxX+HSpSewbfsNGfXNZDJc/fa3c+KBBzg6M0PGsmj1+5xtt3nfeMZtdXWVe7/0\nRTK158l1W+w0FIRWYmF2nsnpRcLgMspA5flRiB0q2H6AKcBSFJwYOqj4zJKjShoXFx2BhUuDSUJq\n2NhMo2CzPR7DTezsajQxaTOByQ4l2rRIoVAgRYkIhQYxNgdRx+RFJcm2sUkxjURDocOIEUOGTBIz\nSYo+Nml89qDTRSOFjo6LRKGHgo1PiiynyWu7pGK4KPs0owg3shkoaTQlTWFqiePXfABdT9HpZGg0\notes9/n7OpPXE4uLi7ipFDs7O6iGkUx4SMmG57E4P4/vOAwGA0ZKGU3LY7sdQn0RxB58d5so6jJX\nOUQYdun3R1iaR1GYyCgCVceIKhxnhadpUSUkg8IAQUSKOcooOIRY46pE8nnUIkeRYGx/1qWOicsi\nUMJlRIYsEYvjsd2IIQEOWWCKOgWeZIhFkz4+DiV0DCQNAkJgmYAc0EMSEnKYHrvkiNGZwCamTI9+\n5GEOBmw4HrEf4COI1AnqUsEIU+haDxmGXNze4cb33M6NY9fd06dPYjtbAOi6ydI1t7F78gEmhSCM\nY1Z2dtgBfu2OO96Q/f1ZwNe/nrRFbr/9Sq/kpbjpJviLv7jSq/jJ8TNBRpIPygcJAh9d/37CaL1+\nkYWFCvfddz/T05McPHjwxwbpve1tb+Wpp/4fGg2LcnkGyzLY3X0aUHHdKUDS9mJqnoNlSqTfJaMo\nxFFEhBwXZ5PL/hQ+l7DQyJNFp02XHUbjAHG4TIksRRwUXCZJkcIkYESLPlkmMBniUqeFjwUcJhkN\nfYgXtABpXEwmEBiESGwyRMwAJ0jaNhMk2pBpkupIlRfyP2ESVV1ACI04rpNOa5TLBzGMI7iuwsKC\nQq12nlbrGRqNENNc4ODBG6nXdXq9Da655jo+//mv8qlP/fMXXW49L2A0KmCaGUDQaMQMBvZPZ6P/\nAXj3XXeRzuV46sEH8ep1itUqv/Rbv8X+/fs5d+4c/8v/+G+pDiOm0wsU57PMT7c5u7YBqsehhaNU\nc8t85pnH2IjmmYgy+EJlENWQcQcdgxoaGiVUlHEiiUUdFYU0PTQ8coRESNL4eKwzSYcmMT4CCWgE\nOGxRRZKjj4GGR0R5bN+fJeQRfDyK+NSZJINFGROVBlkURoRASJ0RDjEKFXQKiS+FqBFJBUGAYIBg\nCZMNFuIek2pMysxCNGKYmaSHRteYJ1e6g0g1AA0pY4SIMYwitv0P27/z58/zzW9+j+3tJuVygXe/\n+0auvfaa15WYGIbBL3/84/zh/feTVRT6rRaYJtlikblCgb/b2OCqmUV0Zw7fP0kU6ZhWCU1bQBtJ\n4riGoqzhedvk8wVKZgWl0UC1HaQQiChpiQzIYBNjEuOiMIOgMA6k7NPCpY/CJCZLqBjU2WGEhz/O\n9lUYElDDoM40Jg18IqZQUDHGpmkObTJchUaaBjso9FkiJmSAN17FiB1CGsToOMwS4aIzT0TECIOQ\nHpdjk2tRuOi6BMVFPF0hcBzsUCGIBAWrxrSl0HVt/FyeoRsTx5IgcNH1LsvLRRxnSCqVZWn5GFYq\nxzOP/r+k56bIXncdH7/lFiYnJ1+3Pf1Zw3/4D/CpT8EbxL9fNa69NtGMOA6kUj/++DcrfibIyMTE\nBL/4izfxta89gWHsQdcN6vXz7OxcQNdvxLJUfP8SpdLDfPKTH/2RY2jlcpm77/4I9933EOfPfxvb\n7jM7qwJ70LQYXU/jOh6+d4mJ7AJhv8tOlNzVKMQwdgToA/WxA+oOAzRMMlTIM6RDb+yqatBjGo0c\naVIYRAgcdHr4dOmioyOJMcZJGC/oQSSMvSgssiTVDh+FGBOBQw75YluoT2LTIkiErzV48bnLCGGg\nqhZCjLAsl8XF9zA5eYDV1TOoap9sNkUYziDEEpXKIZrNBq3WDuCxtfVXHD26l/X1dZaXlxkOh2xt\n7aAo01QqSbXE80Z861v38+EPH35DHVoVReHmW27hbTffTBAEGEZCUm3b5nOf+zKGb3LV3AIAsaxi\ntC6z9+0z3PfUSR47rdMY9LkUVikZJTqezyiMUON5HDRMbNooGOOsXdAZYQAxKurY1G6SpMGjo7BL\nTEifJVSy+FwgIYNvIYeCZAeDIgEuISqSNjE1BF0MHLJMsYHPNCkgNXZXHZAC9qDg0EMZy1gjPBw0\nCnIClRiFCIUODs9TGAfwKbEkb2iktSq+muIpd4gfCjqdNsXiHJ1OF1V12beviqJ0XhSAvxKazSZR\nFDE5OYmqqpw7d47Pfe4blMuHWVy8muGwy3//79/FdV1uvvltr+OOJ5qwT/yrf8X3vvAF+t0uwWCA\nnkrxnUaD6g03cNPbbuSLX3yaUmmOSiXNE098AcfpoSiCfF5h//4Ss7N7qdVa4Gp0ADvaJXIdarTY\nZgqFJVQmEQgEK+zSxGFAmpgRLnmKxOOap6bq5NV9rPm7xMhxE2cHCDFIY6GTZhcfhReca5Kh/4gs\ns+gIdAYItjBRiOmSR8fBokCFmDQOMTYhMElEk5AASZ6ABSxaFGSKlNth7oZ34gwgaO/Q3jmLFcdE\nYkRWz1EtV5ma17l48WGmplwmJ1P8+q/fQSaT5r/+168ThkWE0InjNh/75K/yoQ+9/yURGz9Hosm4\ncAE++tErvZKXw7LgyBE4eRJ+TNzUmxo/E2QE4NZbb2FpaYHnnjuL43hIKSiX38v09OKLx+zurvK1\nr33rFU2RfhDT09N84hMfIY5j/uqvvsrk5FvQNJ21tYsMh3VmqirpaJ7NnW1Uv8Ucgjl0eoxokVCD\nJEE3Mx7gm6ZLZ2z5PaKCxxzwGF1CfHR0QkJcHCI2mWVANPZlHDGFzwSSLBEHSLwntoAnx7m+OcR4\nkDhigEYdDYMACRwk0ZA0SSoqDRJNwqGxIVyTuTkbw5hjcnKOweBZDCODqurMzCwzGDxNNns1YbiC\n5+WRUmE4hCAImJk5xGDwNGfP1nnwwe+yvLzMyZPPcfTo27l4cZVOx0HTcgTBgDhusH//e37qe/5q\nkPyc36+Wra6u4vtZdO37jylCoKppLp0+R2HyEJVjt7HzyNeZtFL0my0iYVGTIESKSMok4Eyfxwlc\nQpIRbgsdAxuNDiNmCCkBfVT6aBwlYJeY0xhMoLIDzBDRJqaPzgCPDAEpNEKgj0cPjQ4+OXaI0YkY\n0cVFYJFHAiEePTpMo2JRZJchOmlGIqQpDQwmEdRRmCMSQ4qKwYTpMF80mCgW2Nz1cAIHV1XYu/da\nVlaeo15vkM3OcfXVe0mnHd761quoVCovO6+NRoMvfelv2drqI4RKNgsf/OCdfP3rD1GpHHtxvDub\nLWIY1/HNbz7OW95y/Uv24vXA7XfdRa/VonX+PJrr0g8CKtUqH7v7bqSUfP7z9xJFFVx3i3R6Hkgj\npUEqlef8+VPMzc3zznfu48kntnDbaWptSdNtEaCiUUIiERhYZFE5Tsh5QoZAl2Ac5RAgaOGjyiJK\nwDhpqofJGjpNLEq4DKkTMgk4NHHQcdAJqaBzFEUEhNLDosYkAWV6NMf2YgEBPm0UzHEgRIKYLhFT\nGOjo5NGUNIqh0xkotC72qFYXGbYeZ07qTJgWfjhi5LToZasYxiHgJIrS4v3v/zXa7S47O3U++MF3\nEkURvh8wP38bc2PN1c/xUnz60/B7vwe6fqVX8sq46SZ47LGfk5E3DHNzc8zNzdHv9zlx4iLz8wsv\neX5qapGzZ7+D4zikXkW9Kooidnfr2HaWyckqpgqDwS52d5fIl6hynTJDyqrOIPboyvjFy38dgzwZ\nVulTx2TBmGehXKYzPMOct8l530fHIWQFnwE+Gio+WYZIFnFoIQmooxJhkLRaRiQjvUlfGS6N+8ez\nxEhU1knRoM8kCR3aIWnNTJBURK4hmbaWgEEcNxgOPVKpIY1GnV6vRbN5HwcP/gKGoRMEPhMTFcLw\nNOVykVptGyHyaJokilyE0CgWF3n++Rq9Xo9ud0i5PMPCwmG2t1fp93vk87PAnpe0z64koijCsrIo\n+RLd0YBiOhlF3d3dYHV7wKA6Tf2BezFcm4xSQs1UcZwBAZIeeaSIEELBsg7jK88QBzYZUULIAWq8\nwaTicSluA+skY7QzxKTQUDFoopMmQ4oQwZAKAS4qc4S4aBhAlohtVDrEWJQQlCig4RLTwGGXiDIW\nIQEWAT4FighsCkpMX0boMo2KgUMLBRWFQwjZpxt9F0/NEk6keXpzh75tMhIWbb3IcOMs8/PL1Gqn\n2LevwKFDgre//RpuuunGl51D3/f53Oe+hO/PsLCQiMNtu8fnPncPjjPkyJGXxswbhkUQaPR6vVck\nNj9NmKbJRz/xCTY2Nmg0GmQyGfbt24c+vkp89KN38kd/9J9oNCTp9FvQ9Q6WpREEXY4dO87sbIZ/\n8S9+hz/90/+Dzzz+DdpOFzPOEoklbFlEEiOp440nZCQGkKZNnZFSZBAPGDFBhI+ITWJUgvG0m0aB\nCYqASwXJCFhDx0IhpEWfMjHvQFUFbrSNxWX24qOiUSSHxYgBPn06RETY+EiK41dqwliRJhmiM0KX\nEdueR0OaVLUqKXXIzOQevM6I9qiFqkpmZ2/BUFWGwyHdbpb77nue++//X9m79xqOHj1CFF3k2LFJ\nPvaxD/+8GvJDsLUFX/sa/Of/fKVX8sNx443wjW9c6VX8ZPiZIiMvQEoJiJcx+ORrMX7+R+P06TN8\n+ct/x/p6nZMn1zGcJlelDezmEN122eldQMYjlkxBVgZ4AvZESY1ClRIHsIlIIdBVlx1K2K0uui6R\nhQKtrk8lvcRObw04T5Y9TJJGMsEAHYUJHFbGeTQWCQmxSS5yOpAmIqCES8zz6GgYRNRIkQhbMySk\nI0XiKaIBD5MYpU0jxBaGoeM4Gq6rEIbnMYwsntfk29/+c0qlCY4fP0qrtY4QNt3uLt2uh6r66LqP\nbffJ5SJuuOFqpGzQaDS46qp5zpw5Tak0zfLykRfP5dra48zNzfxEe/rTwvz8PEI8wFVX38bzj/4t\n5U4NA8HTl57HLRxgas9xsrvPoesZnry8jikrKCJLBsFQqolLrvQIwzNABkVvE9BEo4khfRrkkb6K\nqoyQZInjFpI0BiME/tgSPk3ALrCLj8THxKKMzgiVLVQkOgKDAVNIJGryXsyRYZsNtrFI0yUmi44q\nMiiKTlXPkY1adII6Ayx85omZIqYBSBoYbHg9jkwu0F/1sEWKHQQuB+g3BzQaj5PJlNjYaPK+9xW4\n+ea3veJd8MrKCt2uxuLi95N9M5kChjHLxsZ3XmIPDxDHEeCRTqdf591NIIRgYWGBhYWX3ozUajVW\nVjapVkusra1imk1mZuaRMqRSsXjXu25hZ+dhLly4wFf/+htkpIpROsigFdDz1LHfbQ6fxPRLxCkQ\nMZ7IEzCPZJk1dtAJMDAYcQaP5DMnRYlJRugkLj8tAlIEGPTIkyaFyiQ2O/wtw+g6OjRYYBMNFx+D\nOgKBho5KFo0JDDo06LOBS56YuXHGc2KXGNDHw+UxX2WERbP5JH7H59pMgT2zM6yu1jBTBXL5aZrN\nVVZWnmd29ij9vodhzDMaTXDPPV/HdUd8/vNt7r33Af7gD36fI0eOvNIp/0eNP/kT+I3fgDfz0NmN\nN8K/+3dXehU/GX4myUihUGBmpkC7vUup9H1DnmZzi337pn/oh2Icx5w6dYqH7r2Xb33zEeYP3MaR\nI3eyduHPEbttLl92MIwCUTBiWityzu7iqJKyZbIVhGQRxHFMW0o6oowuFhjFKkHsowpBU8mTM7uk\n81XmRRFCmyljgrN+RIoy4Vj+aiDGnp4TGPRwaZBUQwKEmEfKPLCFy14alMmwjUvMCB+fm0iIywSJ\nO2uLRDOSIskeXEeICEVRCcPsOKNmFSigKPMIsYiuR9j2JufPP4Nh5JidvY1ebwfbjnCcNq67yvLy\nLO9730dIpXS++93H+cxntpib20MQbLO+rlGtLhHHEbXaRfbvL7C8vPx6bvmrRqlU4s47r+O++55h\n7vg7aDc3efbMIwyq+1hYfBeKUNAFTGYr5MQ52t6IdGqZKO5DvINgLwBhOCAMLCAkEA3y2Rxaegln\nNIMiDVKpZWx7k2QEu4tFk0l8wKSNjsEMgoAhJtDDJcJEI880IRE2DQQWfXxUGqQYopHCRMEgTZsC\nHlVS1JGykIhRoxUUcuRJs/vi3FabpIqmEitltvSY//bEc8iwiiemcMQyvhOhKCaKYlMszjM19S7+\n7M++ydLSPO94xztedg57vT5CvPxvKJudYG6uytbWaRYXr0VVNeI4ZmPjDG996/4rkur8Amzb5rOf\n/SKwyHve89t0u/836+sKZ848M9Y7CU6depZcrs+//Jf/GxdP2QhZxg8VRpFNSqkiZEg4HucO4gGG\naaMbcwSBA8EARVyFHxv41PEpEDNJUpEso+ASo9DAIWYRgY6gjskImzpFCqTxMRmwHl/c4AAAIABJ\nREFUwvdwMIgxcSiNc4kUQMcmYhNnnEFTxKOMRoSkiakO8SIdD0Goqqip2xgOL6KgISODYeSyPTpH\n5G8xM5MjjiNsu0Zt2GZ++QaKRYPBoEIURVy8eJJOJ2R+/mYsC5588jx/+Id/zKc//T+xd+/eK7aP\nbzbYNvz5n8Ojj17plfxoHDwI/X5SxZmdvdKreW24YmRECPGLwKeBppTy5Z+IPwYf/OB7+Oxnv8TG\nRodUqoDjdEil+rzvfR/5od/zjXvu4fLDDxPsNjig5PBXn+OZxgbFlIlZSHGp2UKGCpPZMmlziXoc\n8LyzieHr7J9c4HJnm5Hnc4EMM8oc3VjgY+LJadS4hSrXyKYPstPyuGZ+is0L9zMXDkljkQLyBIRo\nOOhjSqKTYhKJJGCHGA0pOyQmZknmTMAsXZZJ9CA2iftqQFI9WSRpy/RI3DgT51YpV5BSJZNR0PVJ\nhsMeun4NQTCgWLwKEKRSBwjDRzCMCCE2qVangBVarRZzc8e4+uq96Lrgy1/+b2SzVZaW7sTzRvj+\ngKmpNsNhF01Tee97j3PTTTe8obk0Pw7vfvc7WVpa4MSJU9RqU6j6XsJTPisrJ1HVacqBTdkqUVZV\ndNUhnXXQ1R5dr0zohwhZQoZrWKKAySFipYtGD9+NcEcBmpEnihpEkQOUkTxLRA9nHHxnMEWGIi1G\nqKhozKCyRpkCMR36hCjsHxtqQZceIetUkKgUCRkhKZBGMsCizgaSNJIKCkN8PFymUZQ8cTyNrk8D\nXVKpKRRli5Y9wDBuRdOmUYMARRkCKaRcIZ/PkckUSKUO8td/fd8rkpFKZRIpT77s8cGgyV13vQPP\nC3jkkYeBNHE84tpr9/JLv3TX67yrPxqnTp3GtrMsLiYVOtNMo+su2ewBJibK5HIFnnzyW0i5iT1c\nJq9ohCgMbElEGssIMAKPQG4jZYOYEaqWJ5PJ0+uNgIgw7GBxkRQBaaaAmB4RQ5Tx37WPZAadKj49\ndDQEJQIUbHqMMAjQxhNQFfp0KFFFwSFpw0zioGNTQqoGQnSSyR2xScbIMpsLWGs3GUbTqPoUrn2K\nAlnK6hSx72KjUEPB7LeYnc1RKldx1QKGprK0dJxebx3fH2AYGYZDl1TqGoQwUZSAiYlF+v0RX/zi\n3/Jv/s3vXcGdfHPhL/8Sbr0V9u270iv50VAUuO02+Pa34dd//Uqv5rXhSlZGHiERObwmY92ZmRl+\n//d/k+eeO8XOTpPZ2f0cP37sh9pV12o1Lj76KDcvLfHoTotipkgqlUW2d6iPBsR+QKgUQNOTdobf\nw8CjQY6zQcx6c5dBHKKrEIbTOAiisRH0hAjwRZpQmphaBl0r0HQCdCumgpE0X9yQLDohw7E9/IAI\nm5AJYpZRySFwx2r704CLYZiE4WXieImEcCQW4QnpiMY/WZpE8JoBNki0JA5x3CKTqWIYS/R6bXTd\nRUoXx9nBMEqYZgHPMygUFllaKnPw4HFU9Va2t1ucOXOe558/wUMPfZU43kc+X+Hv/u5hrr/+MFdd\ndTP1+mP8wR/cjWVZvFkxNzfHU089y7lza3zvexdpt/OUSgeQssVad0g4eoS85ZBVdPxwiJuZoVKc\nZ3e3jvTbWELFIoumGujaNH1vHY9ZFEUjjof4vkOyBxl0QibJowM+GhJvPK5dJk1nbOwdoSGxGaJQ\nJI9JiI+PQGeKITZVhvRoEmJikTTqBgS0qAKT6KiE2MS4SGrIeBIhPBSliaIopNOzjEZtVNVAiAGF\nwn46nSZCqCQxUqMXp6BMM0+zufWK5255eZnFxTTr62eYmdmPoqg0GpuYZpu3vvX9FAoFbrvtFjqd\nDvl8nkKh8MZs6o9ArdbGspJ1DIdDdL3K4mLA5uZZGg0d05xhdrbCyZO7HNh/lJ32ExT0LI1hnTgs\n4sfbpIx5jIzLREmn2+0yNWXylre8g29963tsbY2AS0zTJERnxCoWM2TJMmIHjymGxJjkiImI8ZDE\n+GgITOoI8hzGeDGRaoIePWqMKBOjkMLFZQuTkEksPQXYRNE2btTGd8GLNAK1wuz81RhGh96Kz5y1\nlyCI8XybeS3FelRmI9oh3L1MxQK1YDG9dJhOZz0hU1adINiDlALXXWE0mkBRBLOzB4iiHBcvrr+h\n/jFvZkiZ5ND8x/94pVfy6vDOd8KDD/6cjPyDIaXsAj/RL32hUODWW9/+qo7d3t6mKASKolCpTNBo\nNkmlspTTec4Nu6w0L4Pr0I3T1NwNrMgHYZERe8GIcVICN44oVktsXGhixGAoKuk4hyosfCWgg4If\nKQRBk9YgJh+q9HWFchSxxSYXySOZGHtUuJiUCTAwxSxSQkTiGxGyF8NYp1o9ys7OCeJ4jcTTNUkK\nTizeAxKCkugFkhHfZAYjMTzLoGkzxHGDOK7heUXCsEwUtYmiTXz/MPm8jqaBpumUy4llvqal2Npa\n4cKFbTStxKFDd2CaJkHg8dhjZ7j99huI4xStVovZN3E98Nvf/i4nTjQZDtPMzt6Bql6k1xtRqVzF\njbe8hZWL91GpDOjuDpDmASbUWba3t5BygBAtFG0ZU1NI6QI/8BAxqGpELpXDc0eosSDGY0AXAx2b\nJRx8HEZoCCQFJB5ZFAR9Qpp0aSCRVEgjhUCXKRqExAg0pcj52MNCISJmhDNOBfZIsYyLhouJJioo\nMkQRbRTNIgz7QBZNKxFFQ9JpDcPIEcc7OM7z40TWXWCApikvkpHhcJN3v/vAK547RVH4p//0n3D/\n/Q/x+OMPE0WSw4cXec97fu1F4pHNZl8SonilsWfPJI8/fgpIBLiKYrJnzwF0HY4cmWL//mt56KGH\nEEKlVK5SL+SIhz5lQ2fT38YPN9GMEUuL17NnzyE6naeZmdG4fPkShrGXfF5n2P0OQ0xUFlEQ2FzC\nYIRFzIgUNuDSQcNDYNPEpISBQw+VCWx2ccbJNxIXyQTbZOgwQKGKi0fENOCjaSVMcxFd36DdXiSM\n6rjCxTRNhEjB6CJlw0QKiAnJGRpZTSPtWeyKKlgTnN/UyXsh1epZFCXF4cNv5eqrF/nCF/6Cfl8j\nlTpGtzvCstoEQYUoCqlUJn5ORMZ44gkYjeBd77rSK3l1eNe74E//9Eqv4rXjZ1Iz8lpgGAbB+P/z\nC3OsXNqg12swiiOcbgNVS9FWMhj+BH7sscMuaXwimuSVJUxjAi0K2K13sdQBWVJkNVjzBgip4cgG\nKSuNH0f48SqDnsFccZrTwxqOm5SCfTJEpIiIkWTHVZEm4CfTLdGQOAZDnwIi+v1phLgWIYZIGY7/\n7ZK0awQJ8dgF9gL7SYjKeWCEEDsIUcayWkxNHaDRSBPHJqlUBcMI6XQe4xd+4Tbq9S0MI9HTtNtt\nHnjgezSb50inj9Nutzh79nkOHTqAZVmoaoG1tQ0KBe9HTis1Go0X75qvRMhWFEU8/PCzzM7ewOnT\nf0Mudz2ZzCS12nm2th4ln59lbj7LRz76fk6fXuWxx9Z4/vnvEQQKqtrFkDNEcYq+r2KoklB2qKQr\n9BQXogbFUEMVGWxpY9Pk/2PvzaPtrM4zz9/+xjPPd56v5gmhWYySTGMM2GATz4HYjhM7jiupVUmq\nq1fVqiyvrlq1vKp7pd1d1b0Sm7KrHMfGxlUQA0kIxgxGQgg0IwnpDrrzeOb5G3f/ca4Vy0AFbEAI\n5/nrnO/c79x99j5n73e/+32eR6dnRR01jUDgkMUgj0cXVUoEmKcbF0MxyPlNXBw8aVJDUCOJRw1V\nmEg6gAI6q2nJgBtIEiuE8n4EAXRiGKaO57chlDk0LY2i1EkmE6RSUYLBELlciHR6LbWaRy43jmHk\n8DyLrq5VSCmZnj5JODzHJz/5+6/bh8FgkDvvvI3bb78V3/fRtHf3VLFp00aeeupFpqdHCIVS+H6T\nUmmacLjJ8PBmVFVDVSWRCHhek4ENO5gbO0VANAg0cjhqmUz3TiKRNIXCCdatM9B1nx//+CC23YOm\nGfiik4ZMEkclRAyFNBYXV/x2HVQELlN4bKJV06VTJIeggo6BTTs2EXw0WlPvCFCggUYrsxlDAJIi\njUYZKes0GjaKkiCZ3IXjvEIsZmLbs3hWnX4dFuuzqL5JKhxAAgVPQ9MhE1qHjkLHwHamp5+is9MG\nZpmfz5PJdOP7GqpqEIl0EAxuYHz8KB0dko985J9fqSF81+Eb34DPf751BHI1YMsWWF6G+Xn4OTu2\nqwZv+wwjhOgAHviFywtSyk+93f/757Fq1SqeDAYpVqskIhFuumk3Z86e55EXjqK6Lh19OwiGfBbn\nS2i+JOKaZJlDRWHUWmQooFGr1Cm4FXQWyVIj62XwUGkwhyZtmo5Go7CAL21cR+HYUh1EO6pox1MW\ncfw2ILyiwyjx0PAwacpRPCeCAGzpgF0BFnCcxIrvTBpFOY2UMRSlihBRPG+RVibEo3U0U6VVNxJH\nCI1IpExPT4J8XmXPno8wMXGBqakxwMY0TcLhOKGQw6c/fROapnHu3E954YVThEIZduzYxvy8STTa\nxcWLU8zORlm1aghdN5mdHWXXrk2kUqlX9bFt2zz00KOcOjWNokTx/Spr17bz8Y/f/Yao1m8VHMfB\ntj103URVNfL5RWKxNnp7t6JpAk2rks/rHDtWx/MMarUZwmGTQGAL+fw8zfIMuD6uGyJbyxMiS8VP\nY8RsFHsWiKAoETx/CkmAOsFLgS64SMI0OQ7kqaPjouMSpB2DGDEmaGIRAlwURUXIJp6XpVXE3ItF\nBoEOOCtCWSo6FXQEnmxQtRq4QiUcKaBpCtVqmXx+Ed+3aWtzSQZd7Oo5EskBursHgV6Wly8QCFTJ\n5R7h+us38ru/+6f09va+Ru9dDkVR3lX1QK+Fubk5pqenwckzevIn5PMWhVqTUDzDLbd8FE3TyeXm\nicfrbNu2hlzuDJWKxnJxhmJpASXSZNf2W5mfn2BhYRTTVDl0KAiEqVY1pJRI6WOYvdjNClUkQaor\nYxTGZQoNi6C6GVetULdHaOU5JS4W/koeVKxkPUBZMRAwaW0mkrQynJ20RPZ8PM+hVluidQw7j+No\nmKZPPJ7BNOvkK0WqjQUyepGcFaVUj1FVJBZNhjPrCIcS5BsVCoWLFIuSWi1EV1cPlUqe1auvQVWX\nOH9+kmx2ClUVhEIVfvd3b2Pnzh2v0cO/fqhU4Ic/hLNnr3RL3jh+vm7kk5+80q1583jbgxEp5SJw\n4Je59ytf+cqlx/v372f/r5AvCwQC3H3fffz1X/4lwXweHbA6Mnzgs7/J8ScOEQ9tZNSZwdCTzExf\nRHGjKHTQrqrYUmWsOIIiLSLU6dd8kl4OT+bIoVMRUJcqBbkaxbsG2zmBqg/QtJqE9fVIfxnbX0bS\nuyJrFKJFDF4GHFzquNKkVRNi0HLdjaxQlKsI0YUQEQKB7biujmE0qNdn8P0BWkFIlFbBawpNEwSD\nMZLJXrq7JeVynXp9mp0713DbbbsolUo4jkuxOMYnPnEzBw4cQFEUJicnsW2X1avfx/LyDLOzx0mn\nN2NZDaanDxOP16hUptm/f4B77rnzVf3reR5PPvk0J08WGRi44VKqd3T0HI899gQf/ehdv/TYvVmY\npkk6HeYnP/kJS0sN5uePYprDxOMhyuVzdHRcw6pVQySTvZw8WWBhwSAe1+jrG0aIdtzYAPn5F8Ad\nQxENJAIUm7DSTgiVkObgyzpRFPIIPFIIOvFRYcVxqJW5SuGtuIm4GEz75wmKCo6MrIwXGP4UGnVU\nBqlSwCNJixWloBHAJYRkApcC5grt1GUJoQgqFUkiFKIt5KEpRYqLk/Q7bdy4bSeT0xNcHDtCavsu\ntm7fzu23f/o1NUWuZti2zQ9+8NecPTvPmRNjOIUZupJw1/uuJR4O85PzF3CcUebmxhke7uXeez/P\nxMQUf/Z//L9MvPI8oapCuxnDDEeYOH+crsEbWVqymJ+fQ8oynjeN55lI2YllGahqHPQqVecEGg7g\n0aCJQoj2cJ6CexREGkERSQ2V1Aoh38IliCCIJAg0UCijIJAkcelFoYnCMi6S1iYjRivbGadVO1Kk\n2aySzQaJBFW6QlFWr9+AurBAZ73CUnkRKQQ97dvoTA6Qr5dRI2GWl5cJBjdjmlVUNU4k0suzz57D\nNLvZuPEDNBo1ms08vj+ClK+WS/h1xfe/3zr2uNoyDO97H/z4x/8UjLwpCCF2AF8FNgsh/h74kJTS\n+vm/+flg5K3AwMAAX/yX/5KJiQkcx6G3t5dcLsdzf/ssEV8ifVA0STCapmy3CJpJXUf3BaYdwVgJ\nHlajEtFNZm2LBAq+hAKCiFfGUidRlF6QElXpo+lr+F51JQVfpCVu1qKAtiacOVrHLh6tiaew8jfB\nldcEUtbxfbDtRXzfxfdnUJQBpMwgJahqCt8PoCgFDCNAPN6BaWZZsybKhz70BY4eLTE9XWRqqogQ\nClCjtxeuv/76S7veWCy2ch4tyGS6yWReJpsdo6NjLbrus3p1jFRqNf/qX/2zyyicc3NzPPHEs5w7\nN8GRIyfYtOl2fN+/JKDU07OWEycOcvvt74yJHrTqkExTMD19jra2XQQCKWZnz3Px4jyhkEZvbwKr\nVuaHf/UQeCHcSpKp/BkajWcJBDYTTwxRK1cImxF6UwU2drQxurzAcjNGNr/IOjVA1SkiBAjp4hNB\n4tGq42l5p7ayHBHEikG8TQ3JMHV5FlgNqMSYR6OOg0KMNlyK1PBoUXZDSCSGSGHJESQzVFFW/ocD\nXhRI4boW8USIQnWJQSWCWmwgbY8NQxsZtAaZrM/xhS98nO7ud4cOzFuJZ555jnPnqoTDa8kvHMa3\nTRZzgvPTL/K+7X3sGuxFX9/HPZ/6hySspmm0KxbxrnU0G2ESiTSNRhVrfoLlpVmWlwWNRgPT3Eiz\n+TLQhu9b+L6NlB7ST+KTosR5VPrxCKEiafg2GzffQLmyzPx8mUoljUcXHnV8NBTqQAEfFxUBlFBR\nCGJQx8cggUUMhRoCC5+tyBWfmtZckF0pno5QLR7nxq0x/uBT93BidJQz58/j5/P45TKerjFZyRHr\nGMIIqoiajufVCIUCqCosLGQplUrE421I6RMOxwgGg+TzLzM2tkC5XCYWi12J4XxX4f774d/+2yvd\nijePO+6Ar361VXx7tcWVV7KA9SjwjvMBTdNk3bp1l57HYjE27NzMU397nOVclXpTo2Y1qYk6UeFh\nyzBNmljoOAh68NB8SdETNEgSJUoQSR0dWwmDO4MjtmG7s/h+BolDK8BI0doNV2kVoras9Fqp2Sgt\nRswWWpPPBK2ApERrUTuFlC5SltF1HzBRlE5UVcNxgijKDJrWi5RZEgkP1z1FR4fE8yzm5pY4cuQJ\nTPNaEokBXLdBvV7Eslo1Ij8rQk0mk/T1JVlenqGtrZe9e9/Hyy8f4dCh76KqLqq6k7vu+shlAcXy\n8jJf//qDGMYQPT03outLjI4WaTZPsmvXdoDWMYTQaTab71gwUq/XmZ+vcuedH2Zk5BxQZdu2VYRC\n6zlz5hUyqRjPHDlKR3QATTXw6x52HRampxHGLL29B3CsLNFgCSEUzswtYYQkMc1n2VTIuVkCJhRs\nHzwVGKM1vm20siJZWhTsJK2jljStbMckrfGOoZInShyXKBYNbIqo6LQC0E4kApcanizT+s600aoR\nMoCW2JeKiutVmMhWUd0mw3oHll3m4HPPEY9mUFQNL1RkYmLiPReM+L7PoUOn6O7ezZEjz1IsqfSm\nNxELC8q1GS7OCzx/lsFfUKqanJiAfJnurkFmZ6soikKjUSepJ5nNz1GtVlCUDWhaB6o6i+vGUdUE\nvj+LImoI1cV1bRQ60EQnChbQTb4xR/X046hqBNuOo6rr8T2BpAwM4/MSPnkUkhiksakC82h0oFOh\nCfgkViTUVFR83EuMuQZCKEi5hGUtY/jLxBI9HDpzFtfX2LB2I3f3dfHS3Bwj2SJP/2QUZ8nE9so4\nXoiu7n40rcnIyCzZrIEQHvX6ONPTLqlUHEUp0t7eh5QatVrt1z4YOX26pdfxgQ9c6Za8eaxeDeEw\nnDzZMtC7mvDurkp7B6AoCvd9/rM88fT/imX0UG+qWAoo2iKqWEDTVYRiYNsNhnEwEei+YAmDMCFU\nBI4ApILityMoIJUcQoaAJv/AdonQynyM0lpw2mhphCRp7YQNWtmSBi2dkQo/o45CH6oaADIEgzWa\nzWl0PYCux/E8cN0sQpzFdYtYlk0mE+aGG36P7u4hxsdHsO0EfX0umrZAMBhkcPBmXNfmpZdOXsaI\n+Y3fuINvfetBJieXcRzBK68cp7t7I/v23QJ4/PCHz1OrNdi3r6VNcfDgEYToJpPpQUpJIhHFdaPM\nzuZYu7ZEPB6n0agSCkHiHZQvbDabgEEm00Mm8w+fz3FsLlw4zbnTJ9CVMJpqsLi4RKlSIGqkUZ0Q\nBWucycmHCBhNNKWHoLqOUEgwUythu0Xibd1MLc/hNDU8GcS7pKDboDVmBq3xG0dhM1LMowlwfWgx\nngSQX7FN81tHQBg45FdsEF0kZ/mZA5JE0vqeWLTsAtKoajueV8IniOM7qLIT189StRoEiBJQU6iy\nQcxI8Up2iscf/zHXX82mFa8B3/dxHA9V1Zmfn0c3e1ayfoBQSEY6OD91jI23XG6aqRsGvoBoJIIQ\nOWzbolqrMVZYJOebeF4vQkRpNM7S+t3m+BmVPh3toVK7iEeupZGqmQTUDjxFxW2AbefRtDBS9iJE\nEFWzcd1WXUnryGUEQQmfLArTBFBXvGciyJX6E48cYKFcyp4KoIaUBTxPRdOGCATbOTrW5IXRBdb3\n9ZKM6Rw+e5yGkuMju3Zy82+28dcHT7GQrzGTc4jH+zHNAKbZSzqtsrg4QTLZg+u6wDLr119HrXaR\nUIjXrAX7dcM3vgGf+xxcrer4d9zRkq//p2DkKsSZMxe49f2fAIKMjl7k6NHT5LNpDF8Sy5hML5ZJ\nqTninmAWnTgKkgASQRXJrPQpE8NEBTRcfwrd2IvCFI4TRMpVtBYTjVYQMk9rYWqJyrcCFXXlsbFy\nfZlW8NIEViPlGUzTwLICuG4D359jeLif4eGtTE5OMTExQjCokEh4tLXtYnq6QF/fGgwjQjK5nUpl\njg98YB+G0dIGKZWyFArFy/ohk8nwh3/424yOjvLYY3/Pxo272Lx596Ujl1gszRNPPM/27dcSjUa5\neHGORKJFDxVCsHnztRw69AKNRoBiMY/nNSiVRvnkJw+8o74X8XiccFhcskf/GZrNGjt3ruHIcyex\nnDilskaxMo+q5OhNriFvW4QDOpFIgMXFV0DJkE6FUE2Xpdkl8hUBahlN60MNr6ZeyQIXEKKElG20\npPhtYAaBis80SIkUErhISzHXADwcahTRVn6ANSyaqGxBYRkPB9iMouhIWUaIbnz/JDCAEAFai5uN\nxEBKE0VEcUSEvCzTQ4iAGcX1qtTsLFo8zUvPv4xlWZim+Y6NwdsNTdMYHu5mdnYGTdMIJdIUyxVC\nAQNddZHSp+yrbPqFGXn16tUEejooZrP09XVw/Pg5srUaeTeIavZjKCZStuN5KXz/RXxfpZXRqlCu\nX8Bzp4AaLlFM6WK7HpbXoEWvjqIoHkJIXLeMlB6qauD7daQMAR1IIigsEcUjgsoiy0i6MXFwxATI\nBh4+rSCoDVhAoYCPgiKixGJJIhGd2ZxLf9tq5vJlUrEQRbedanWJ4a4uAobBNatWUarVePLoCY4t\njlEqdZBIRNC0JTo6PFw3SiLRjW3PUi4vIuUUH/7w599T35FfBs0mfPe78NJLV7olvzzuuAP+/b+H\nf/2vr3RL3hzec8GIlJIzZ87w4jPPUMrn6R0e5rr9+/+nmhiLi3lisU4CgSiNRpNm02V2dpaZiUUa\n6gzRYIG14TjZgo5oapwlR4AGEKKMQY0OfDooUQTKeATBG8EMuEAU36/gupJWRiRNq2bAolWomqO1\ns7ZXnhu00v4/Y8moKIqNlAHC4b34fgPfB98/y9xcEM8rUq3m6eszSaW2YFkL9PdvJ5+fYXZ2llgs\nhqJMImWQarV4ST6/VFrkuuteLStomiabNm3isceeZf36LZcFEZqmAzHm5uZYt24dmUyc6enypQW/\no6Ofm2/WOXToEWxbob19DR/72AdZ9Q7LF6qqyu2338QDDzxFIrGGaDRFuZyjVBrhi1+8l7VD7Txw\n/4PkCwvEDJNweAhF6NT9Zfr71qKqOqrqsmP7zWTnxrkwOodU16LoQRTlIprWoo6GokksqxshyjQa\nZxFiAUUJIKVOILCZZuMMviwhWaQVYPbT+skFkQSoYRBARXIBhQIWuZVMSwIhsvi+gWkG0bQmltWL\nlD5SNvH9wkpQAr60cP0sghCLuEiRw2s2sPwFmgQZ6L2eaqVIvV6/tNDkcjnOnTlDo1ZjYNUqVq1a\ndVWapN1228184xs/RFFc4kmTvGczm5ugrytMXlPZvGvjq7xW4vE49/7hP+M//+//AWtuiqZqs6DV\nUeOr6Ex0UCpVqFaLqKqK66YIBMBxphGihOuG0NUehC9wSNLwymjSxSWGSw3hNfH9GlIaSLkVaNVr\ntI5ga4CDj41gnhQ6DhYQxmaZsGqRMHwadoyaFwVxAUM9hS8dPC9F6xiwBlRwnArxtp2UfQfqDi9O\nz2O70Cy5PHf6NAe2bUNVFBKRCB+6fg+cP8/4UpNMRqW7ez+OcwPPP/9TpqePUC5fZNOm9Xz5y7/D\nzTe/aSHs9xweegh27IDBwSvdkl8e+/bBxz4G+TxcTYmu91wwcui55zj+2GOszWTYkE6zODHBg3/+\n53z0i198XSpjX18Hhw4tMTFxnmzWIxrtJJWKsrAwRlVRsM0gy45N+8B12EtzSCfF+eoELjGiDBAi\njIOPr1goRoq43kXvwA48bx5F6WRx0SKXO7Oyex6m5SfSBPpo7ZZfAlYhhIeULwMmQrSj6xlct4SU\nM2jaOur1OlI2SaXWousBHOci1WoTzzNob1/N4GA7S0sKrtsgGEwwN7fMddeaJGXeAAAgAElEQVT1\n09kZ5sKFs/j+dhzHZnFxglCowJYtm1+3H0MhE8tqXmaIBiClc2lRu+GGnXzjG48QiSQIBFpeJo5j\n8f737+bLX/7cFaWEbt16DeFwiKeffoGFhRG6u9v5xCfuZmhoiFQqxdLUFD/5m0PkbY1yM0+VCqG2\nFN3dm8nlziOERW9fL45bZJU2SDZrIefKFIuLWJaJEGl0XcX324nFutG0boTIoWmDNBrzeN4JdMNF\n0/pxnDlcN4ZgGN+3kCtWAB4nqBMmTDeCBmlFw/FFS7NEJPHwUBSHcDiKokhcdxLXzeC659G0fjQt\njuuWUdUcmjaE1aixLF0WmnOEzXYGonuYWXBoqPOMjo6ya9cuXj59mh9///u0CUFA1/nJT3/K0bVr\n+Y1PfxrDeHc4L79R9PT08Pu//ykefvgxHnzwGfoH1/H+D3wIwxBUKhf5yEduec3PtGfvXlZ9+5v8\n2Z/935w4Ps9Q3SGVuhFdD5PNzvHKK2eoVn0MQyEabVKptGwYfHcQ6fogZhCyiSvj+EzhUkAwT0Am\ncaW5wogZoXVc5wM1VGUZX6aRcomWlmsKIRyk2oWuJkh3Behpb2d0/AhWqUAyrLFpaC/pWJKnT87R\naDZw/Sq6HqVcLlCrzazUj0k8OjGMCPnyJN/78cs0mj637b4WQ9fJlkps3bmTNZ7GzIx56djywx/u\nZ2zsBJs23cZnP/ub79iYvdtx//3wxS9e6Vb8aggEWqyaRx6Bz3zmSrfmjUO8EYfbKwEhhHyzbWs0\nGvzFV7/KnvZ2jBVLcYC5bJZqVxef+tznXvO+XC7Hn/7p/8WZMwo9PVupVMqcPfsi0aikrS1DubzA\n0oVnMPwQvtuF1bQoeItIwvjYqKhIbISaJNLWSU9vG4GATT5fJZutEI+vZnz8xZXz6DSquoyuaziO\njuu2UvdCpJGy5UcDJTStF00L4vslbHsCTbsFIVRCIZXu7gyxmEc4vERnZ5zjx8/wkY98kv7+1YyP\nv8zJk5OYZjft7YJdu7YxMzNCo3GWdLqD2dlpGg2LRKKdWCzEjTdey8033/AqUatjx47zgx+8wODg\njktBRaGwhKJM8Ed/9IVLO+ljx47z2GM/xbZ1fN9maCjNRz/6wV+qRkSIN+a4/FagUCjw4AMP8K2/\n+C65kk5X/266u7fhOA0qlWPAPKrazsWLUyjKahxHwbbrOM4clhVBiEESiTBzc4voeh0pZ+jpuYZK\nZYR6fZ5AoAMpA6TTaS6OHcG2u9G1IHWrREsLRgKzBM0A7Z6GI2fxKVF127CI4NGLaggCgTiOo+B5\nz2EYcYSIIEQd217E8xSGhzeTzxdRlH7y+Wk8p4iphQhoaYLCoCmnWT0YZ2BI4w//t3/OS08+yY50\nmtDPSfkfv3iRaz78YXbv2fOO9P0v4q0Y9+npaZ5++jCTk3NkMkn27dvFhg0b/qf3HDnyIj/60Rkc\nB06fniOVWg/A4uIEk5OnKJXOE1AF1WqZhqUhlC2g+PiewLHzeNIDljEooJPAI7RSkBqhzCweJTQR\nRUqBREGINlRlGUEGxz+HlCXMQJhYbDu7du1jcnIUKRvksufIBHtJxXqYWR6haUUpN07h001b+z4s\na4JSKYvrSqLRMKtX78Z1a+Syh5BND12b4drV7Qx2Jol2JvjcH/8x0WiUb33rB2SzAlWN4PsVurp0\nPvOZj72uhcbbjXfy9/5GMD4Oe/bAzAxc7adVf/VX8L3vwaOPXumWXI6VMX9Nns97KjOSzWYJ+v5l\ngQhAVzrNU2Njr+u5kE6n2bFjPRMTR8jlDjI3t0Am08Xg4E7q9SzJpMbS0jCz8xYhYWJ5ORQcFEI0\naBAUAoSBoQo8v0Rn55qVVG8Kx5llcvIYvu+iaR5CVPB9g2YzgK67aFoAz7NQlCCeBy3mRCdSWkSj\nJprWw9JSE0V5BUVpJ53uIRx26OjoxDRddu++henpaVS1RcsdGtpIuVzk5Mln6O29lsnJ5+nri/Cp\nT/0x2WyW++9/hMHBzUSjSWy7yRNPnKVarXHXXXdc1ifXXruV6ek5jhw5RKt2xSYadbj33nsuS+lv\n376NzZs3kc1mV/Q90m/5uL4dSCaTfOFLX2LD5mv41rf+mpGRItPTz6CqZa69thcpNzA/HyAUsiiX\nfWzbx7ZnSSY34vseudw5fH8IXV8iGGwg5TKuO0EyGcU0e9E0iapCOrWahekLaEoGRdRp2jGkbEOg\n4Mtxms0sFS2JL5qElQCmp+LLLIg6vh+nVssBFXy/gpRJFMWjo2OQUKiP5eXzSAmx2BCuu0QwWKUu\nPVwsqvY4IgiZ5CAbB9fhe+M8/N/+G0OJBKFfOLIcamvj7EsvXbFg5K1AX18f993X96bu2bRpI088\ncRjPS+E485w9O08wmEZVizSbowTVDF3JAcbqr+BLF98JIAUEApJIdAfl8jmQM3QaQSr1RWpSwaKB\nR5ggKmpgPY7v0bBnUWmgqgbJ0FokJg1LRdefZ901Q1QqC8zMPE61XKWtLcHGm7czen6C6ewpFnI5\nJDV8PJLJTmx7EjDw/SkUJYKUHtXqKLXaBUrlOpYFmuoxUw7ix7rplQahUIhkMskf/EGrHqxQKJLJ\npBkeHn7XK+u+k/jmN+Hee6/+QATgQx+C3/99KBbhHeQO/Eq4qr+JlmUxPj6OZVl0dXURDAZp+v6r\ngo5as0koGn1dQZ+JiQkunHgRvTxNPJqkqAvS6R6WJg9RLU7Qv3aAvr5eHKdCITuF0GP4joFNHY0E\nQgaoyRplu4JZy5LNZkgkdgPzuG4MVZX4voqUEwixFUVx8H0Xz9MRooFhrMdxSrTqRgZQ1WE8bwzb\nFrS1DaPrLq47TiJh0NbWSTIZp9EYY/v2nZhmkI0bu6nXz3L27Ay6HiSVgj/5k4+xadN6IpEI3d3d\nCCH4/vd/RCKxjmi0xTAwjAADA1s5cuQg+/ffeBmlT1EU7r77Tq6/fpmFhQUCgQCDg4PovxDotd7H\nuGqpozfddANbt25hdHSUXC5Hf38/ExPTHDq0xObN61hamueJJx5DUQaYmytRKs0SCHTR0dGJYRRI\npUw8L86WLXsYHt7Ck08+SqNR4YYbduO6kuMvXSQRjrK0eAgTgyQ6VUpYMg7EkETw/HYUM4LUPCKe\npI0uKkaDgtWg7o0gUYAUnmfieS653AUMvRsNjaX5n9LWuQchogjR8otRRAK7cZ5IuEBHai25cp32\nhEJCUSgUi6/ZD/67aIf6TiEcDnPDDdfw1a/eT60WQFEqlMsjDA/HKRVMmkWDhdwUifAOGtZZ6m4O\nXetFOKPQOEhSeLhKHemaxI11hGyTktRQEQgxj+NVUIQBVAiow0ilStObxvNBiDqGqnL7rTtJJ5Oc\nePJJFmWr7iR7apRoJIOTCtFhDABhbLuKZamEwxLDUIhEVqFpJqXSOPl8mULBxvO6EcLBcRbJ14r8\nxs0HqNUKvPDCUe688zZ0Xf9Hs0W/rnBd+K//Ff7u7650S94axGJw4AD86EfwW791pVvzxnDVBiMz\nMzN8+9sPU6+3VEt9/1l27x4mNTTE2MwMq1cWR8/3OTc/z467737N95mfn+fh//Jf2JVMYMQWCIUT\n5M4dZHb2DBvb1iJEnXarwvjSLKYZpbN9E80KlIuLRJU0dW+WBsvorMcXgnAYJiaK1GqHcJwA0IHr\neivCZRZSTiKESUu8qoGud+C6TYQYRlWbSOmgaQqaFsL3a3jeFLXaJKaZw7Yl58+fJxZL0dvbx6FD\nz6JpNlu2tKMoKpXKItVqg5tu2s6dd37gVZXx09OL9PSsv+xaSwckcslL5hfR1tZGW1vbWzBi717E\nYjG2b99+6fnBg8eIRjMUi0WefPJ5JierNBrP0mzOoaoe4bBAyiDh8AChUILJyWe5eHGOjg6NLVti\nrFmTZOvWa2g0Ghx98TBW4TyD3gI6CSBBg1Eu4tLgAELkcMQcMSWDqSVo+McJmzF0ox1h51BI4xED\nNqEoLTuAZm2ExdlJksFBNEWhlJ1F0ZO0t+/F8xQK+SaGriFlhkptjqDhs74/RSJicr5QoGFZBH/u\nuzGRzbLpgx985zv+TaBWq3H48IucOHEeXdfYu/catm/f9ivt7JvNJs88c4Lbb/8dfN9DSkkut8Cj\nj/6AQiGF4TvkKyWioSLhYDuON4HmHqdP0Yngoioadddjwa8QMXWEEMQxqEmbhgyiewsoSpmAZhEw\nSqhmHyGzB03VaTqLVKtz/N3jz2MuL2I2LfLlPOuTbayOJzk+fo54cjXBVBe2p+O6PkL0YduL9Pam\nGRgY5Nix41QqBRqNFLq+a8WtOY+i7GB5eYpjxw6xe/fNTExMvoUj8d7E449Dby9sfv0yuqsOH/tY\n66jmaglG3t2mE68Dx3H4zncexjDW0t+/jf7+TfT3X8fhwzMMrluP3dPDoclJTkxPc2hmhqGbbnrd\nFPSLBw/Sp+skIxEGBjLksudJeyWitSUWyiOYyRjJcIJuzaJWydE7uAVVESiKjiJMNIIowsTUJeGA\n2jKrKpRwXZ1wOEMo1AEk8TwVKYv4fhJwEWIMRRFEIoP4fhFVHUFRLDStiBAnUBQNx5HMzp7C88qY\n5nqazQia5lKvw+KiIBDoQdfbeeaZMcLhDezY8RF27vwEFy44PPro46/6rO3tSarVy3fGLd+N2hU7\nN343orMzTaGwzAMP/HdGRxcIhXqJxVYhRA+BwBBSZqnXHebmFmk2x3jf+/axYcON6Hqdj370dkql\nMR588Ad897s/opDP0ql4ZMIRDNVEpUpcDdJJiHA4gGGGwYhSsissVSsUhcucX8fFo+nmkQTQ6UNV\nFUDDcQCC4PZRbxRIGlEUqZIvLJHNHsayRhDKBTy/gJRRsqWzrO1z2blumKphcOdv/iZHFxcZmZ1l\nanGRlyYmCKxaxbYd715Pkkajwf33f5ennppG09bjuoM89NAJHnzw4V+65sC2bZ566inGxuYplbIE\nAmGklBw/foqOjv1oRhvRyADpWA+6JuhvTxMNZehUTXoT/SSTCdau3UMq0k2aADl7AYcGPk0QKi4h\nhNKgqy1NJGxR9ywS4QE0VaNUL5ArLuCLdi6Oz6D5SbKeSaHu88JClb8eW+TlimQpV2Fu4hAbN6bo\n7c1Qrx/HtpcZHAxj2yWEWEZVG0AY1y1j2+MIUSceH0RVBzh//mWq1RLt7VcRpeIK4f77W6Z47yXc\ndRccPAhLS1e6JW8MV2VmZGpqikpFZ2DgH+oTFEUhk1nF6dOjfOlLv8PCwgL1ep1MJnPJ9vy1MDcx\nQe3CRU7kGwhhtoIG4RAM6Cz7CZwllfMLJ1nTFyDRsDEDFr4mEaqD55eRAixMDC2K0EykzKNpJori\n4/s2zWYTz3NpiRfFEELi+1Xi8VWoagEhDgI5dH0t4XAviuJRr1soSoV6fRzP0/C8JNVqB4qiUyzW\naGvz6e7uY9++vRw8eJRkcifj4xdoa+tFUVT6+jZy4sQhbr31cmnnAwf28J3vPIVpbsM0g/i+x8zM\nOTZv7r8kdjQ7O8tPf/oC09NLdHamuOmm3QxezTy3XwI7d17L1772h4yNFQmHN1IoNCiXTxAOdxGN\nDtFonGbjxg1YVp1QyGZ5eZlKReXUqWWeffbbRKNhenrizMycxq2PIbw6aBGkdPAJoAqdmG6QpYmi\n2/i+iWIGcGwVTQ/iiSK5ah6fPBpt6EYQV4RWmFU1BCF8USVkSLKVKsHIGoKmJBTSsO0KkUiNUGaA\nenmW7Wti3LRlNaeXlth2663sO3CAjZs2cfb0aRq1GjevWcOaNWveUIbB8zzGx8eZmZkjGo2wbt3a\ndySIPXXqNEtLGgMD/0DTDYe3cfr0YW64YZr+/v439X65XI5vfesHjI9XGR/3mJ8/im0/iud5FIs+\nnZ0RwmGJosVxypP4boRyrUTDmqNHCWJZdUwzzNLSIq7bxFQiKEaSqr6eemMZHxVFuITTBjfe8UFq\ntRyHnz/LYuE0lgWqouBTo+mGqOd8jlVLVJsQUXbguzV818MkQ9Uu0d6+mtnZLPv3X8/OnVs5ffrv\nSadzHD58lJ07r8OyXObmTDQtQLPpoutJTDOKbQt836XRmGLv3nve6iF5T2FqqmUu9+1vX+mWvLWI\nRuHuu+E734E/+qMr3Zp/HFfSm+YLwM/oLf+PlPJ7b/Rex3EQ4tW1C7pu0GhYCCHoeoMOR3PLeXLT\nJdb0tc5SVTXMmfIIdijFddtuwNRDKEKwUDxHT1eW3btX0ZZWGT1uU6nqTC9XMNQIiXgXNbeIakQo\nFl00bRTLKuM4JkLUV5gyVaTMIoTE8xps3LiP/n6VXO4sZ84IgsEOSqUi7e2baTSmgBlsO4Gu78L3\nfQwjiq4HKBaPU6nMYVkWjYZFPD5MNnt0pZ5gHsexqNVsqtXqZcHI5s2bueeeBo8//jy2rQI227ev\n5o47Wqr8Y2NjfPObjxAKDRGLbWZ6usBf/MXD3Hvv+9m0aeOrO+89Cs/zaDbBMDoRQuD7Dpq2GkXx\nkNLHdRWSySFUVeHkyf/O4OBeMpkeyuWXCAZXoSg+lpUnHu9AkSEC9TniQYOGPQpODcdzqYoqTfsl\notFNVKs27e1dVKtnseoqmrYalCKGHkF6NpY3RiB4E45jI3BQaBAzLUxNw/M7MNUoulqhv3+IoaH1\nzM4eYcuWYWq1Nq7b2U2sv5+911xzadFub2+n/ZZb3lSfWJbFd77zQ8bGKuh6EtdtYBjP8dnPfpiB\ngYG3Yxgu4fz5CWKxzsuuCSFQlCQzM7NvOhh5+OG/o9nsZNOmbiYmnmB2dpp6PYKmSYRIMz4+xbp1\nUTKZDnRziIvjJ7BUk1RbgMbSPGnVQNfbVkTNEkh1DqkZoGbQzQiue55gcIFrrtnD7t23cvbs8+zZ\n6zM/b9JsaiwsnGNpSeC5JhKVitWBItK46CgKaEodRS0TCPZgyTqRyBrOnDnF6tV93HXXPo4dG8f3\nVzE3Z6AoATwvSySykVCog0plhmZzEds+x+rVq/jUp26hr+/NFfb+uuHP/xzuu6+1eL/X8Nu/DV/6\nEvyLf/Hu96q5kpmRx6WUXxdCaMBh4A0HI61iyRKu66wIcbWQzc5w881r3nADHMehYmuUA1FqVp2w\nGaLZrNHUIiy4BruCMQy9JcldtcNcs7MTKacZXt2Da9V45fQxFH0cVUlRsS+S6ejGtlNo2hTBYBeq\n2kYul8f3s7T8Jdagqu3oehIhCkxNvcz27Zv52tfu5xvf+Et+9KMXaDYVPO8UqZSDEFFKpR6ECOB5\n5RWKrYeq9lEszhGNRonHw1QqWXQdnnzyEep1DSkNKpUzPP30EJ/4xOXsl927d7Ft27UUi0VCodAl\nvxgpJX/zN0+TSGwgHs8AYJpBQqEojz76FOvXr7sqhbF+GZw9e57e3k1MTIzh+8soioOi2AjRS72+\nSCxmYtslpATL8ojFumk2awjhEQzGCYejTEycpVyuk0jtZrE+D+UFTHMVimJT9aZphruIa0FqtZNA\nCMsSaJqOZ7RjGklMz8RzFTyh0XQnUNVzqKqGRwUhZoloXbiuTSScRALhqEs47FEozOI4knp9hPvu\nu4sDB/a9JX1y6NBhxsZsBgd3XbpWqRT43vce4U/+5PfeVlZGLBZmYqL+Gq84hELB17j++iiVSly8\nmKWvr+Us3dlpMjKiYJr9VKtjQJZAIMn4+Biq6rNnzzquvbaN667r4dFHf8r5Y02SZjsJM0Gz2aTp\nOSzZLh29KQqFYzQaFTQtgaZ1kcvlWVqaJhj0WbUqwcxMHgDfb0NR+tC0ZTxvDa4XRBVgexqa4mKQ\nRgQqRKJxKm4BKRssL1/gt3/7Jg4fPkdn524uXnyFZHKAcLid5eWvU60eRFF6UBQbeIVbbunj29/+\n/wiFQr9y/7+X0Wy2jmiee+5Kt+TtwU03gWXBiy/C7ne5afeVNMr7WVWVR8sB7A0jFotx6607+du/\nPUIsNoRpBikU5kkkquzZ86E3/D6O4xAOJ0nesJWRU88iCgssVXLUulajOVHGczmihkETiHb3smv3\nBvbvv44jR47T1TXI+i0Kx4/2YwbiVKoVpqcX0HWV/v40S0vTOI6GlC3nXeghEFiDprn4fpFYLERH\nRze33fY+Ojo6+Df/5o+54Yan+dM//RpCRAmF2ikUplEUD89roOstCy1FsfH9Kp2d7RiGwZo1/Tz+\n+EOEQgrx+B5isQTF4hw7d97BqVN5hoZe4rrrLq+X0XX9VUWpjUaDxcUK/f2Zy66HQlFyOZ9isXjV\n0HZ/Vdi2g21X8LwmjtOHaSaBCYrFU8TjBu9//0cZHT1PLlcnkYhQqeTwvCJbtqxlaqqOEAlMM4Ci\n1BAiQEGEyVlZQmSxnCZ1NUYkuBadEsFgiXj8ZpLJNczPHyQY3EqzOYMeiKD4NVYPrCOXUwiFLGZn\nLxAKxYlEEjQLDVQfSvYSvoA779jP9u3Xks1mmZkp8uUv38W2bdvesj45cuQMnZ2XV/dFo0mmpjRm\nZ2ff1uzI9u1bOHLkYWy785KdQbVaxDDKrFnzxjcfAK7rIoRyiVnnOA4bNlxLsynJZoN4nkWlIlHV\nPsrlIC++eI716wV79/4GIyMWicRaTrzwHDPVaTzbZtGvorT1k8mswnWXMM0eyuU8kKVQCPP1r/+f\nfPzj+9mzZysPPfSfmZ938P1+VFXFMOLU601ULYOUy3iKiSdtdN1EqgoyJLj1xvfT1zdMNJqgv7+X\ngwfn6OnpJJVqaY3E4xn27Pk4S0sHKZcnWbUqzWc+8wXuueeeKyo6eLXggQdaiqtr117plrw9EKLl\ns3P//f8UjLwR/B7w8Ju9ad++m+ju7uSFF05SrRbYsWOQnTu3E4lE/vGbVxAMBmlvj2JZEfb+L/fS\naFSpVos888xBeiPtbN91DY7jEIlEyeVeYevW9XR1dfHBD7bz0ktHefLJIuXqWTb2r+G66w9w8OBL\nSNmBZeXo7jY4c2YEVU0jpYqmteP7DTwvgOcV6e9PsHfvNjyvNSnW63VefPEVOjp2UKvFSSQ66O62\nOX36BXQ9gKaFsaxZ0mkFRakzPDzI9PRLKEqDT396J488cgrbLgJVtm4dYGhoiGazyqFDx18VjLwW\ndF1H0+Srsk2+7yOlS+DnRLLe62hvTzE3N8eOHbcxMjJBsVhEVUNomsHwsE48Llm3LkI0GuPUqXGS\nSYtNm3ZhmiaLi8+ztDRCb283uq5x7tzz1OsF9MBeil4IdFCVIqlUN7Y9gWEMkUolaDbrqKqGEBJN\niyPELNdfv4N4PM758yNs376OgYEDzM259PVtY3l5ltOnj3Du3FmuvfYAe/fuXmGEVNmxo5+tW7e+\n6nNZlsULL7zIkSMvI6Vk+/YNXHfd7je0e/Y8D0V5dWZMCAXf99+Sfn899Pf3c/fd1/Hoo88hZRTw\nCQSa3Hffh960E3QqlSKVMimXc8RiaQIBk3LZIxQy6enJ4DhhenujTE4eJR6PcM01B3DdOZrNJopS\nY+vWGxkaWs/ExAiu6xAYmSCTidJoNFDVOKZpY5pLJBI9pNO9KEqG6WmLF198lK6uHThOFVXtJ5ud\nIRSKYlkTSOkgpUUg4BCLpZHSJR5vZ3AoSiaT4ejRxxgc7OR731tiacmnv/8adu26lqNHT5HNjmHb\nDTIZg//4H7/CTTfd8LoSBv+EyyEl/Kf/BP/u313plry9+PznYcMG+OpX393y8G97MCKE6AAe+IXL\n81LKTwsh9gAfAD78Wvd+5StfufR4//797N+//7LX16wU3/0KbePOOw/wzW8+gm0PEYulURSVeLyK\novicO9dSCFSUCnv29LNu3ToA/sf/eISjRxfp6NjM+vUhjh8/x8TEGAMDGzh9+iyJhI+mxenr20Es\nlmZ29gxSVhAigaKUGRoaYt++PUCegYFWbcvp02colYIcOHAbr7xynosXJ8lkBujpOUOz+QpSdqLr\nGp2dKh/72J184hN347oumUyGxcVFlpdNurq2oqoqitKajHTdpFJpvqG+0HWdXbs2cujQKwwMbLl0\nfW7uAlu2DL7pSf/djkKhwMmTp8nlSvT3d7F58yaCwVbKPxAI0NXVR62WZ+3afmzbxrKK9PevYtUq\nl9/6rdtIJpM0m00OHz7M3//9UYrFBRKJNKtWxRkZeZ5Uqh/TNJicnKOtbRfLy0UsK4quQzrdDywj\nZYNm02d5eZyWsJxKpXIW3w/T16dz883XUSot8v+3997hcV3Xoe9vTy8YAIM2g95JohEEexObSIqk\niiVZvVuUYl/LjuPY1765L7kvyed745c4fknudfIiyZIVx+q9kjIlUWITKRIkQYAAQfQ+AGYGmMH0\nct4fA4Gk2EmAA5Ln933zcXgws/c6Z+1zZu29V1mwYD1PPvkQKpWK2tqDfPzxLpTKKPPmFXHvvUtx\nODx0dn6BQiFRVVXEpk23njYrjkQi4z4fQSyWMoQQfPZZB01NbTzxxIPnLZBWUzOL3bs7yM09ERru\n93tQq/3nrPs0WSxatIDKynJ6enpQKpXk5+efMefN+RBCcOedN/H88+/gdmdgNps5enQfZnM+qalm\nRke1qFQKiouTWL9+E2q1lv7+CAMDw6xbt5APPjiA2VxCZeVCnM4BEhP9jI3Z+fzzQ4TDBVgsaWRl\nVZCTE1tFsttjeWG02gry8xPp6/sMIUCpNOBydVNYWIrfP0g4rCE9XaDRBHC7W7FaE7Fa0/jqq62U\nli6lpKSakRE79fVvotfvo7JyEcuXL8LtdtPWVst99z3BDTcsB2Jbrm1tbTQ0NKNQCCoqZk44oQ8O\nDhIMBrFYLFdd+v/JZs8eGB2FDRviLcnUYrXGImueeQZ+/vN4S3N24pYOXgiRTcxIuU2SJOcZ/n7R\n6eAvlZ6eHrZv/5Kurn5yciz4fC5qa7tpbR2gr28YjUaipMTC2rWLWbVqEb///R+xWOZit9sJh8P4\n/X4aGw+RnR1Gq1Xh8+lpa/MyPOzEZhPo9am43UeJRJIxm9MpLbVQWhx3rgEAACAASURBVKpj5kw9\n3/veI2i1Wl599R1aW5WYzRaEEITDEXw+H1u3foBe7yEpyUokEouYqKhI4wc/eHziYezz+fjlL/+d\njIyFqNUnflT6+tqoqtLx7W9f2NZVIBDgtdfepbGxH4XCRDTqobDQzP33335FjJGpSg9ts9no7e1F\nrVZTXFyMzWbjhRfeJRJJQ6834fU6SErysnnzfaSkpNDW1sazz25Fp8uju7sfgJwcK1qtIC1thDvv\n3Mhzz73MJ58cxO2OEo2OkJysYu7cOcydW0FOjhWj0YjRaORXv3oBtzuDnTu34PWmkJFRhUZjoKvr\nE3Q6B0plAZmZ5YTDLpzOXvR6H6GQmxUrbiA1NYGsLC0PPngnycnJSJKE3+9HqVTi9/vR6XRoNBok\nSWJsbAy1Wn3WFazm5mZ+97tPT/H5AOjoqOXeexeecSXlZNxuN7/97csMDioxmTIIBDyEQv3cf/86\nKisrLks/k6H3kZEROjo6ACgoKDhnOYJIJMLg4CD19Y309w8zMjJMd7eLvj4vXV2jpKUZWLRo+URR\nya6uo2zaVMrSpYtpbGxk165anE43ubnpNDa2IkQ+IyNO6utt+HxqRkeHqa5eCsDw8FdEIm6Sk5dg\nMLhJTJTYsmU3Pp+ZUMiNwRDAaBzmttuWUlhYSm6uhdmzK0hPT+cPf3iNjg416enZqNWxDMvNzc3s\n2fMeK1duJCEhmbGxAYqK9Dz88N1otVokSeLttz9g374ODIYsJEnC5+ujujqT4WEX/f0eFAo1anWQ\nW265gblzJ28r72KJdzr422+HdevgqafiJsIVo7Y2dr6trXAJNvykMV3Twf8VkAG8Ob6suFGSpAub\nxk8i4XCY1uZm7O2NaP1+bO0O2gYksrIW0tnZQHX1GoRQ4HQe4vhxH21tL+F2J1NXt4twWIcQCiTJ\nS1ZWHuXlaqqqZvDhh5/gch0lHDai16uRJCNqdQGBQAs9PfV4PBGKi9eyfv0TEzNSpTLK3r3bCQYV\nqNVKCguL0evNeL0hFi5cRn7+iRlpR0ctx44do3I8Q49er2fDhsW8884+kpKK0OsTcDoH0GiGWLXq\ngQu+FlqtloceupuBgYGJJGhfZ2+9GpEkifff38KePccRIhlJCqNW/xG/30tGxmJMJjOBgI/e3i4+\n/3w/H330KTNm5FNZOYtAoJeEhBwWLIg9rCORMB0dX3HzzSt5/vlX+fTTXjSaRRQUpBAK+bDbD1Jb\n28jQkAf/mB9HzzF06jBeRQKLlj9CSsrd7Np1gEDgGG63B4Wil7lzH6et7UsikT5ycytJTDSSmupm\n+fJcVq1aSmJiIrm5uQghaGpqYsuWHQwPj6HVKrjhhhpuuGEZELvBzxdi29HRg1abdtpxozGDlpau\n8xojJpOJ7373IerrG2hr6yE5OY05c1ZhsVguUTuTx5df7uWDD/YQiSQjBAjxGbfeuoxFi07dJA8E\nAnzx6afU791LNBwms7CQGzdsIDs7G7fbTV1dHX/4w0eUlq7BaIylA/B63SiVDsrLY/dfWVnZRBbT\n3bu/pL5+jLy8EhITRzlyZD+DgyGcTj/JyXUkJEBhYSY2mwKfbxSDAfbvb8fnUxAMtuHxtGEwWDEY\nUsjISOexx+6dWK2IRCJs3/4ldruWaFRBQoKOyspqZsyYQSg0j6KiMCZThLKyRZSVlU1MTNra2ti3\nr4OCgsUn+cVk8cwzTzN37jJKS2NGkt/v5fXXd5CamjLl0VDTkaNHYysjL74Yb0muDHPnxioRv/EG\n3HdfvKU5M/F0YP1evPo+mS3vvkv/V18xPzsbnUbD53u+ZLB1lKEhDQZDFkpl7CZXKtPxev309HTS\n3HyIoqJ1pKRYx42RKI2Ne7DZbNjtBrKzV2E2B7DZWlAo7AQCfvx+CUlSkJiYh9Wag0o1k5df/pin\nnkpFpVKxf38zLpcas7kCtVpDc3M7IyN7MBj0ZGYWnCKzTpdCT8/AhDECsGTJYtLSUvnyy4M4nTYW\nLswhKSmHd9/9I+FwmOrqmVRXzz7vcjyA1WrFarWe93PTnYaGBnbtaqOgYPGEv0N/fwe7dr3JggUZ\n2GwDtLU1olYX4PPl0ts7ikKRSldXPXl5Fuz2rYyNlaNQaAEX69fXoNfraWsbAVIxmWIbsGq1nlBI\nRU9PiLDXxgxdiIrMMgL+MZoHm/h8y8ssvfFuLJZMNBor/f21aLXgcHSh0ympqrLg8fRgMnkpLNTx\n3e9+55QtiJaWFn73uy2kp1eSlxerKbR1awNjY15uueXC1phNJiOhUO9px4NBH0lJF2ZQ6PV6FiyY\nz4IF8y/o81eC/v5+3n13D9nZJ1YFg0E/7723h4KC/AljSZIk3nr5ZfzNzSzOykKtUtFvs/H6M8/w\nwFNPkZ6ezrJly0hMTOLNN7dhtycghIQQLmpqitm3rxarNY2ZM2dO3EPt7b0kJKQRDPrZu3c7SmUe\nmZk+nM5aOjp2sHLlcubMWcaxY7Xs3r2XQCCbkRE9Fks1PT3bSU9fg9GYQkpKOm+/3Uhq6ps8/PC9\nCCH44IOt9PZGSUyswGBIwu8fZc+er1i+XEVCgpabb95wxvQFDQ3NGAynTiAcjhGCwTQikRO+PTqd\nAaMxnz17Dky5MWK329m79wCdnQNYLCksWlRzRbb2zsU//AP88IdwPQUb/fzn8N/+G9xzD0xH3+bp\n4MA65TgcDoaGhjAYDOTk5EzcqA6Hg+MHDrA8P39ijz3VlEiu2seBznqyi4sm2hgbG+TQoW7cbjUj\nIy6OH28mLc1JYeEsIIrb3YFen0NeXiwfR1XVHLq7vQwODpKSkkoo1Elq6hySkrJRqbwMDnpJT89m\nz579aDRqtNoC1q6t4eDBelyuKKAmFBqjoKB4IoLga0IhD2bz6bkDvvahkSSJN954lx072jCbC1Aq\nlbz11mHq6o7x6KP3XtJe+9XIV1/VYzYXnuJ4qVar6esb4MCBTnQ6Aw5HMpGIj3BYkJRkwWKZhdOp\nIDk5EyESuO22uSQlJRGJRDAYDAwPDxMKKYFTr+HoqBOFIpngYCvFNfMRQqBJMJMXyMCaEKWp4T0K\nCkpoaNhCKORgeFgiEEghMzOXnh4HZWVFmM1pVFRoTtPPtm27SUmZNVFTyO8PodVa2bbtK1asWHrG\nNP7fpLx8Flu27MHjcWE0Jo634yESGWD27DWXeaXjR0NDE2q19ZTtSY1Gh1JpoaGhccIY6e3tZbi5\nmSUn/fBmpaXh6+9n/5dfsvHW2FZmVVUlpaUldHd343Q6+eMf97B/vwONJkww2E5Kym42b76P5ORk\nUlOT2LPnGDabjYEBifz82ORArU5BiFE6O9vJzNxBUpKCm28u4YMP6ohEtNjth9Hrs8nIqCYc9uF2\nj5GcnEdDwwB9fbGQ/X37jjF//ioOHuxCrzeh0yURjRazb9/n3HRT1VknCwrF6VsfwWAQUBKL6jtB\nLFKu63JVcE76+/t55pnXiEYtJCZmU18/woEDr/Hww/Fz1OjuhnfeiW1ZXE9s2gR//dfw1lvw7W/H\nW5rTuaaNkUgkwtYPPuDY3r0kCYFfktBlZXHngw+SnJyMw+EgUREL87Pb7YyOjCJJETQiiIYIXq+L\nxMQ0wmE/PT2HMZlqGB3tR6Mpxu3uwO3uIBodICPDSGKigdTUEwZCamoK6ekp+P0FpKdr0WrnYDKV\n4vWOkpKSSCAwRmJiGl1d7SgUChITc0lISObGG1cwNjaGENDXl4jH08LY2AgJCbE9cJfLjkrlpLz8\n7AWvuru7qa3tprDwxFJtYmIqbW21NDY2Mnv27Km98NOEQCCISnWqk57TOUQ0mopabSUSGUGny8Tj\n8TM2NkZOjh4hQKOJjQ2r1UJfXz9ffFGLyyUQQonH04fb7UaSTl1N8PlG0WgSydDpCIXDuN0uIhGJ\nSCTK8opyMoXg/j95DIfDwf/5P2/S3h5Fq83BZDITjYY5cmQfZWX9LFjw+Gnn0dMzSG5uOaFQiP17\n9zJms2FQqbCNHud3Tz/NE9///nkjYpKSknjooZt55ZWPsNu1gECt9nLffevIyMi47GsdL/z+wMTq\n5ckolWoCgdDE/+12O6YzbDemJybSPu5r8jU6nY7S0lL+/d//AyggPz9n4m+9va387ncvUV5ewvNP\nP81Xe3vw+Y1EKcY2sJ8ZM4swmWDt2ptpbj7AunWlrF69mmPHjjE6aubIkT4GB/UolWUoFEoUChU+\nn4ecnAyUSjPDw8Pj4ccJFBQUMjLipr39GEplApIURJIGuf/+28+6dVpZOYtdu94jGs2dMML1eh2R\nSC8Wy6k5Z0ZGBlmyJOdMzUwaH330GSpVAWlpsZWQhIRkPJ4U3nnnkynt91z84z/GkoGZzXETIS4I\nAf/jf8Bf/iXcccf0Wx255owRr9eLQqFAp9Px1b59dO/ezfKCgomVj46BAd595RUe+e53MZlMjIXD\n7NtXS1+fCyEMSFKYQUc/QpfE6Ggjbncy0egAkmTA5QqQk1OI261Ar5+Pw1FPONzDTTf9lPff/z1p\naYkMDAwwNDRER0c/Tqcdh6MHozERSfLi94+hUoXQag1YramMjY0wa1Yq0WiU48fdJCQko1AIEhNj\n+/86Hdxyyyb27Wukqys2mJKSBI8/fuc5fQQ6O7tQKlNPe2CZTJkcOdKMWq2mo6MHk8lARUU55mv0\nrqyqKuHDD5snVhQg5qyck5OPRuPC5XLj8wUIBhXjdYJiTrrhsIeEhEQCAR8ff1xLScl6srOTGBjo\nwOv10t1di0rlpr8/RFpaIT6fA7XajU5nJKRU0tjYQjSqGU+K1kGKRUvO6pVkZmZy6FA9FsssSkrS\n2b+/DofDgd8fwu12YbWmn7H6cUZGMu3tLezedZDRvmFMBi0WswGLUYnOZuPj99/n9nvuOe/1KC0t\n5ec/L6C7uxtJksjJybmgbbvpzMyZxeza9UckKX9ivMecNm2Ulp7wg/n6Xu/t7cXhGMVg0JGVlcmo\nx0PKGZJMjI6O0t3tJC/vhHNuKBSirW2Q9vY9qPgjzg43+Ql5dEt9hCJBRoZ7aIr2csutaxkZGcFo\n1JKXl4cQgoSEBLTaANXVlWzdupVweASVyojX68BoDFJRUUIw2EtCQgImkwmPx87evfux2UaRJAmV\nykNRUSZFRavPeb/m5+ezYsUsduzYi1qdMZ4xeJDVq0sZHe3DYDChVmsYHOxGpRpk0aKbJlEbpxIM\nBmlr6yc391QjyGhMxOGYsm7PSW9vLO17fX18+o83t9wSWx15+224c5pVCbhmjJGBgQE+ef99Bjs6\nkID88nI6jh9nfmbmKWGOBVYruzs7sdlsWCwWXAoVHU29lBdUoRQKAuEg4UCAwqIMVq9ZQn19E11d\nEp2dY5SUZGOx5DAwMIjN5kSvz8HtPk5Pz1EKCrTU1e2lqWkGXV2DqFRKkpLM5OUZGB1tIxQKkpmp\nJT09H6XSTXb2LPz+NpYsuYtoNMrhw2/h96eg08V+EAcHu0hLE6xYsYIVK1Zgs9kQQmCxWM6bzCgW\nYXF6Hjmfz8OuXftpaHCg06USDg/y8cdf8dBDm5hxlWf9ic0mxSlZYufOreHgwSY6O+tITs4iFArg\ndvcwa9ZsZs+eR2dnO7t3f4ZCkUN/vwOVSoXf7wIGSU+fQXv7bkymArRaA1988REjIwokSYt7KIrC\n/zlGg4FjvSqsBcU88sg6enudfPZRNyVKPSk6NcGgnaycQva22pjzSGzVLBqNolAoMJlMLFu2gC++\n2IPP50erTeXIERu/+c3zPPro3afUUyorK+DFF1/AM5JBdmopSFFa+45SnGWnumgZu+vq8Nx88wVF\nPKnVaoqKis77uauFoqIiKivTqa8/QHJyHiDhdHZRXZ1xynmmpaWxr7WLepsHS5KVaNRF7eFj6Ioy\n2fzoo6e1G8udcqoxf/x4K8PDUQyGdGxttRRZFyNFoggFjIR9eP0mhhxj1NcPAZ0olU3UVBnZ+sor\niEgEd38/XjHEggXl7NixH5/PQUKCxIYNq1EqQ6SlCQoKCohEIgwNddHVNUp29lwUCiWjo4McOLCd\ne+89t6udEIKNG9dRVVVGY2MzQkBFxSrS0tLYuXM3u3fX4vMFqago4sYb75vSiYhSqUSlUhCJhE/J\nXRQrznlReS4njV/8Ap54As5g818XCBG7Bj/+Mdx6a3wja77JNWGMjI6O8uqzz1KgUDAzNxdJkug4\nfpxPtmzBmZ2Nz+cjOTmZqrIycjMy0CoU+P1+BgcHae5ycNwn0Vq3B2tKGuqkdPIXb0Kh9LN48Xwe\neOAe+vv7ue++n5Camo4QCjIzrSQkGOjqqkOIMCMjx2hq6sfj0TI0dAghrKhU4HAc56abNpKaamH3\n7vfQagfQ6bykpKTidO7n5ptXEAgE2L59L05nD/X1h8nOLiIlJZG8vCTuvvuuiR/XM82Yz8bMmTP4\n4IPd+P2eCeMmHA7R2rofs9lCQcGJCq1ebzavvrqFn/2s4KrMOzA0NMTWrdtpaupCqRTMn1/GjTeu\nxGAwoNfr2bz5fg4dqqOhoRWjUUdNzZ1s396GRqNi5sxZZGSksGfPp4yNddLX14fdbkcZidLZ/AXz\n5hcTNebS3FyHy2UkOTmP3mMfUiyU6HSZaFQB0nMyIC+ZzZsfpq6ujs5OB7aeLpz+bjJSUxlOTCGz\nfCFHj7aSlXUEiyUVn+840Wgex44dZ2xMQ1ZWHnb7QWbPXsPIiJ+33vqQxx67f+Ich4ddlJeXs2/n\nHsZ8Q0CQ4qwkEvRKHC4XKiEIBALXXC6YC0GpVHLvvXdQWdnAwYNNAGzcuJSKiopTjPbdu/eRUbCS\nUUMv7UO9qITAo0ghU5N8xnsrOTkZqzUBp9OG2Rzbkmtv70Wp1KLXq+nwOBnw7QUBksJAVOXFNtJF\nIGyit/cwOTkJJOgT2f7Cizx06wa0Gg2Vyclsq69HnWNi06ZiBgYchEJadu58E7NZxaOP3kEoFKKl\npYWsrCqMxgDd3V8RCglCIRfp6WmMjZ0pLf6pjI2NsX//YWprjxGNRhkaGmH9+pWsXh17SZJ0RSLk\nlEolCxaUs2fPMfLyTjjb22ydFBaeHtk11bS1wWuvwbFjV7zracWGDfDrX8PTT0+vsOZrwhg5cvgw\nKYEA2eMFocT4w1kzNIRKpWJJXh4jPh9f7tyJb8ECvIpY1sh/+7eXGBhIIKfobgIBF7axVuaWVpFf\nUEFX10EikQgQKyxWU1NIQ8N+tNpcVCo9oZCd5GQPY2Na+vvDOJ0qLJZy2tubMZvVExEzdns/s2cv\nY9Giddx+ewX79x/h2DEber2F117bQXv7iyxdejOzZ99Ffv4wPT21rFlTyY03XrpTYXJyMvfcs47X\nX99GKJQICIQYITERSktjeSYikVgeE41GSyCgo6en56qbMY+OjvL0068QjWaTk7OCaDTCvn0t9Pa+\nxpNPPoRSqUSv17NkyaKJLLQx575t7Ny5GzADYWpqsrnnnhp+//wb5CpU5KdaSdbq6Wk5Tt2xV1Cl\nVZGScgMuVy9JARch1xBKnQmFIgmDMouu+m5+/Q//wm13bKKiYiH5mx7D5xsjEPAxMNDDtm3b2LXb\nRX39IGlpCahUPtra9lBf34XRmIvDcYiSEutEXovjx3cyOjqKQqEgFArR0zNIdfUygm4w+MdIMiai\nUWkZcLZhczpRmM3nrEx9raNSqaiurj5nePL+/UfJz5+HpnQ+Ho+LSCREQkIyvb219PX1nVZMTgjB\nHXfcxHPPvUl3twO9PgmHo4OkJD2asIfcqI9MhYRWaaDL1UVn0I/RcANqKUBGRg6RyChiZJAUvZFg\nIIBWoyHZZGJVeTkDCQnc8xc/4l//9Xd0d0eYP38tkiTx0ks7eOutbcycmYckJTN37kI0miM0NLSh\n1c7E6XTy9NOvUlRUQFFREU6nE7VafcqWbSgU4oUXXsVm05KZGcvGevx4N52dL/ODHzxKQkLCFQ3V\nX7NmBQMDb9La+iVCmAAf6ekK7rzzLp544oqJAcSiSX70I7hOqlqcFSHgV7+C9evhoYdgujw6rglj\nZLCnB/NJs8JwJEJ9QwNLc3MZ8vtxut0kGo1k+/28unUrVetu4de/fhqlsoTy8ipaWlyYzTkkJGRw\n7NhBsrOLUCrHJsLPlEoljz9+H88++w5ebwghJLRaE5991jLulJpJIKCmv98BBHG5YMaMLMLhAKFQ\nzIlOkrzU1zfR3S0oK1uHJEm0tLQBFXR0DJKVVUBKihWDYSV799axcuWKyyo+VllZQWFhAW1tbUSj\nUfLy8nj22ZcRQtDV1UV9fSuhEOPF3ez4/csvXQFxorb2EIGAmZycWNVWhUJBbm4ZHR37aG9vp6Sk\n5LTvfL2MPX/+nIlEaPn5+fz93/8rKeiZN2smivGHtVFnxNu4k8auOkymhQQ8w2jG7IiogtTUfHw+\nJxqNjtz0fJqP9Y0brw4ikTA6nZHGxoN89tkhQqF0Cgpm09sbIRj0YbEksWxZLu3tDRiNPiKRZMbG\n1LS0tJKbm0MwGOI///N1+vvdCKGkra0Ji0ViVvUc6nbvRu0PIfRKxrzDdI6l8O0HH7xuihheKpIU\nnfgR/jqaKHb87Em3srOz2bz527z99nscPVpPfn6IcCiRVFeA3PJ5NNcfJhw2o46ESYtq6QuGqKhe\nTG5uLnZ7C56uI4j8bCLhE1sSqYmJHOnupr6+AbtdS3l5NXZ7P7t370KILIaHRwmFfHR3H0GStBw/\nPoTVOhshFIyMhMnISOGf//l5MjMteL0gSRFmzszitttuIikpidbWVnp7wxQUnDDMrNYCurs91NUd\nYenSJVNwdc+OXq/n8ccfoKurC4fDgclkorCw8IqP1y1bYom//uM/rmi305bq6pj/yP/8n/D3fx9v\naWJMM3/aSyM1M5MR74nlyzGfD1U4jFavp2bpUhSZmXT5fLQ5RnEHdai0FdTX22lqshMMhjAagzgc\nvQQCAdzuIK2tn3PLLTecEqEwe3YVP/zhvSxalE1enpLMzDA6nZni4rWkpcW2OPT6UpTKVLzeLlyu\nETyeAaxWK729x8jJ0dPRMURWViylfCgUwOMJkpFRyOCgG++4/DqdEZ8vNuu/XIxGI1VVVVRXV2M2\nm5k3r4yGhq/Yv/84Ol0OZnMRBkMmg4ND7N9fd9n9XWk6OwcwmU5f7lUqkxgaGj7nd9PT05kzZw4V\nFRWEw2GGhkZJUWsnDBEAndZAfmYuJTlGnM5DRPAQUQdJS8smGo2gVkvo9XrcIT8JKfmMjnpYubKS\nrq59tLXVcejQUUKhWEIrq7WUtLQKhoclolENAwMuKitL6OwcZWQkEbfbwNGjw2zduo0jRw4yNJRA\nbu5ycnOXUli4in37dhAOjzF3xQqC5mSODLaRXJjMQz/+MZVVVec4UxmAefPKGRhoP+WYxzOKwRA5\nY74OAJfLxUsvvUdfn468vFXk5i7neMNuPEN9mFMs5M+YgV85SFgZxqzXkpWlJi8vtsKSkGDF4fMD\nfkwnhV473G5SrVba2nowmTKQJInDh/ej1ZaSlJSHwWAlLa2ApKQCPvnkPTQaM0Io8HiGUCrtWCy5\nHDjQg92eTG7uUnJzl9PWJnjhhdeIRCL099tQq0+f6hqNqXR2DkzeBb0IhBDk5+dTU1NDSUnJFTdE\nxsbgBz+I1aHRX1yR52uaX/wCnn8eGhriLUmMa8IYmT1nDnaVikFnLKu8Vq1m2OMhpNNRXFTEnHnz\nKKmsQpOYR2ZeGenpOaSkpGMyWejoGGLOnDKqqjJJSvKTkSGxefO3WLBg3mn9lJaW8uSTD/FXf/Vn\nLF++kMTEXKLRCCqVZnym0oNSmYTBEMLrrcfrrUWvH6WiwsB9932LcDg64cilVKpQKCQikRBCKAmP\nz56i0QgQmqiTMpksWbKI0dFmgkEnPp+dkZF2PJ4GVq/eRHOzDbvdPul9TiUZGWa83tONNknykpR0\n/twbX6PT6VCrFfiikVOOR6IRQlKIm26+idtuK2PBwlkEk5Owjw0QDDrJz89i1OvGodKQkmrBZDKw\nbt0aNm/eiNE4iNFoICsrkaKisokwS602g+FhOy6XB4/Hh1YbALwoFBJKpYTN1kQkYiQrq2RiJp+X\nV8TcuSvo7NyBx9OINSfEk09t5J9+848UFxdf+gW8jlixYinp6T46Ow8yNNRDd3cTTmcd99yz4awr\nkDt27GF01EReXiXJyekUFlay+Ibb8IedGI0eamoK+N5Tj7NoyTwqaspJTjUyOjpEMOgjEPDh1SjR\nW5L5eu3F4/fTNDzMojVrSE42EQh48Ps9uN1+9PqYI2kkEiQhwciNN64lGh1jZGQfTuc+DIZBli1b\nycBAD0plLhpNbKIkhCAzswibLUJ7eztmcxLhsOe0c/F6XaSnnz1F/rXM978PK1fG8mzInCAzE/72\nb+F734MprnV5QVwT2zRms5k7H3+cj99+m+auLiQgsaICo1aLcvxB09MzwHAogrWiGqVSRUlJKYcP\ndyBEKmNjYxQXF2IyKUhL015Q6XW9XkdubjqDg72kpuaRkZGLVqvn+PG9FBSo+NnPbmfmzBJSU1PR\narW0tLRgtw/Q0fE+s2bNIT09h+LiYurrGzAaEzAajUiSRE9PI3PnllxQJdWLRa/XU1paTGlpDsPD\nw+j1ieTkzCEhIZnu7lFcLhepV9GG6rx51ezZ8zJjY6kTeViGhnpISgqdcYvmbOh0OtasWcTvmtqx\nuexYElORkBga7iFqNrBq40YKCgpobGwkN1fBmy++jkGvpTXkRZWURvGsBYTD3ZSXxwrQlZSUsGHD\njbhchzh61HnKHn00Gsbnc5GVVcTYmII1axZy4MDn9PQcICEhgfLyGbS3n76qU1BQil6v54EHbh9f\nhZOneBdDQkIC3/3uwzQ1NdHe3ovZnEdV1UZSzlHG9PDhZjIy5hIM+untbWN4eAilUoFLl0xmrpXi\n8QRqSakG6rpcbNz0IAMDdoaGHCiVffzwz58kx5rK7v37UUsSwdta1QAAFcpJREFU6PUsv+suysvL\nSU1NZceOlwgEkpCkKJIUJRj0o1T6sFqtaDQqamrKSErKp6hozoQj+sjIftRq5WlRMEIYcblclJWV\nkZCwC7u9n9TU2IqP2+1EiEFqatZP0dWdvvzDP8S2Z/bujbck05PvfhdeeAGee44r7sPzTeJmjAgh\nHgE2A1rgaUmSnruc9nJycvjOU09NOP5ptVo+fOcddtbVYRSCw6NOojkzKZoRW/EoLCzH7XZx+HAt\ng4OlCDGI1arh3nvvvCAHr9LSEnJzd2AyJdHZ2QaoiET8VFaa+F//6+cTobLRaHS8ym8PJtNsmpqO\n0NGxjVmz8sjNLSIxsZa0tAh9fXVEox7Ky7PZtGnd5VyKc5KXl4XDkUxu7syJY9FolGjUfc7iYtMR\ni8XCww9v5K23ttHdLSFJEbKzE7nrrrsuOjJo48Z12O0OPnj9PY53dKMihMlq5pEfPjVRrXnOnDnM\nmTOHVauW8eKL7xMKGdDpDEAP999/0yk/bDNmlKLX76KwMI2WlnaMxnQUCgV2ez3LlmWxcOFcGho+\n4siR/bhcetLTlxKJhGhvb8Tt7j5NPpdrmJkzrde1o+rlotVqz+voejIajRqPZ5T9+/fg8RjQaMxE\nIj5sIQN7bDbs488J1YxillWZGB1tIynJiMkkUVY2l7vvvg2tVsvqdevw+XwkJiZOrMJYLBbuv389\nb765DbXaTXf3XtLSLCxdOgedTktv73FWr17IyIgbm62N1NRcIpEwweAgaWnpp40DSXJjNpvHfTTu\n4tVX36erqw0hlCQmKnjssduuqonG5SJJsYiR3/wGdu6E6zDQ7IJQKGJRNWvXxooGxrNMUTyr9qok\nSQoLIRTAPkmS5n/j75NStdfpdOJyuRgeHua11/ZQULBwYsnc7/fS2fk59967HqvVSk5OznlzeJzM\n4cN1vPHGJwQCJvz+IBqNhw0bFnDjjasmPtPS0sJvf7uVgoJFCCFwudy0trbR0rKb226bz223bcRk\nMuF0OklKSiItbWpD3lpbW3n22fdIT68iISGZUChAb+9R5s+3cuedt0x8zufzcfjwEZqa2jGZDMyb\nVzVRhnyquNQqnpFIhOHhYVQq1WU/cIeHh2lra0Oj0TBz5syzrkD4fD66u7sRQpCXl3fG5GGHD9fx\n+uufMDQUpadniGDQxtq11TzxxCN0d3fzs5/9gu5uPcXFy0lMjCWpGxrqwOnczqpVt1JYOBulUoXD\nMYDf38JTTz1Aenr6ZZ3fdCTe1VvPxs6du/jnf34dny8HlSoFh2MIr3cMnW6MVassPP743Wg0GjLH\ncxn19/czOjqK2Wy+4NpOwWCQpqYm3nprK4GACSESAA9ZWWoeeeRulEol+/fXUlfXjFarpbQ0m08/\nPYTBUEpKipVIJEx/fwtZWWH+5E8ennh+SZKE3W4nEomQnp5+Uc+1K8VU6f3YsVgNlrY2eO89yMub\n9C6uOX71q1ia+M8/h8uImzgv56raGzdjZEIAIfTAFkmSVn7j+KQYI18jSRIffvgxu3YdQ6FIASIo\nFE6+/e01VFdfenp0l8t1SsTKN42J997bwsGDHqzWglOO9/a2cMMNGaxdu/qS+75Umpqa+PDDL3A6\nvahUsHTpbFatumGiJorH4+HZZ19kaEhNYqI1tv/t7ea22xayZMniKZNruv4oXQ5fj49IJEJ+fj5m\ns5kXX3yDo0edHDrUQGurknAYzGY9GRmppKfrSUuD3NwITmeYaBRyclK55ZY15ORMberueDFd9R4K\nhbj33v9Cb28Kw8MhlMoE1GrIyDChVrfyL//yY2bNmnX+hi6ASCRCW1sbIyMjmM3mc0ac9PT08P77\nn9LTY0ehgJqaUtavX33V5ZmZbL339p7ILvrTn15/hfAuh2g05lMzZw788pdT18+5jJG4+owIIf4H\n8CTwl1egL26++Sbmzaums7MLlUpJSUnJRS17BwIBWlpacDicpKenUVxcTGJiInPmzDnrd1Qq5Rlv\nOEmKolTGZ7Yya9YsZs6cidfrRavVnubAt2/ffoaGdBNF/wBCISsffriHysqK85arlznBN8dHY2Mj\nR486KCxcQG+vHa02lXBYhd3eTlVVDkVFxXR317Fu3ULMZjPNzcfR6XRXZUK6qx21Wk1FxQyGh0cp\nKipEq9VgMiWiVCrp6Ginru7IBRsjNpuNtrZYNE9paclpkxalUklpaekFtZWTk8P3vvcIXq8XlUp1\n3Y+N0VH4u7+DZ56J+T00N19/dWcuF4UCfv97WLIESkri4z8y5caIEMICvPyNwwOSJN0vSdLfCiF+\nCXwihHhDkqSxkz/013/91xPvV61axapVqy5bHqvVesFLqCdjt9t5/vlXcTrVqFQmQqGjWK07eOyx\ne89ZNbWiYiZffPE2kUguSmXscofDIcLhIWbNWnWpp3HZCCHOOpM6dKiZtLRTH4xqtQZJSqKnp4ey\nsrMX6ZM5N0ePtpCQEHMszM8v5KuvjpGaWgXkEolECQa9qFQu+voGeOmlbSgUsW2ZaPRL1q2by6pV\nK+Io/fVHfn46kUj/RPVfAJ9vBLPZSE+P84La+OST7Xz66WEUirTxicmXbNq06LJzfkyFk/vVxu9/\nDz/7GWzcCIcPwzW6eHhFSE+Hjz6CFStiaeLPUCVhSplyY0SSJBtw2l6EEEIjSVIQCAGnF4LgVGMk\n3rz99hb8fiv5+Sc2IPv6Wtiy5RPuueeOs34vLy+PNWsq+eyzvahUsdlQJDLETTfNPWt+g3ij0ajx\n+0+vHSFJ4ctKxCYDWq2aSCQWepmdXczAQB89PQcZG5Ow240YDDZWr65m27Yj5OQsnggFj0RK+Pjj\nvZSUFF2z2zXTkUWL5vPmm7ux2+tQKpORJD9K5QizZ9eg04XO+/2uri4++eQIubmLJyYjoVCQDz7Y\nS3Fx0SlGjsyF4/fHcofs2RPzC5k///zfkTk/paXw6acx466pCf7mb+BKLbzF06vpL4QQnwG7gDck\nSXLHUZZzMjo6SlvbEOnpp6aMtloLOXKknUAgcM7vr1u3hh/+8G7Wrctj/fp8/vRP72PlyhumUuTL\nYtGiKoaGWk/ZXhobG0Gv95MfT3fra4CqqjL8/j4ikTAKhZL581eyePEc8vLc3HffPP78zx8lGhWo\n1ZZTiosplSo0GgtHjzbHUfrrjxkzZrB4cQVz5hQyY4aB6uocbrxxE5HIGIsWnd/XrL6+Ca02c8IQ\ngdgqo1JpoalJ1uWl0NUFN9wALlcsZFc2RCaXsrLYda2vh5oaeOUVCJ3f7r5s4jbNlSTpb4C/iVf/\nF0M0GkUIxWkhv0IokKSvK3yem8zMzCu+EuLz+SbCnC+Gmpo5tLV1c/jwlwhhRpKCaLVuHn741utq\nfzpWit6HRqOZtBWh/Px81q2bzbZte4BUIIpC4eTP/uzRiUR74XB4IuLrZBQK1UR5AZnJIxKJ4Pf7\nMRgMp93jWq2Whx/+Fr///XsoFCaEENhsh5k7N5c5c84fIhwKnVmXQigIheJTufZq5pNPYvVUfvpT\n+PM/j9VZkZl8LBZ4993Yts3f/V2soN6tt8LNN8dCgKciw4C85n4BJCcnk55uYHR0mKSkE45nw8O9\nFBVZp10CKpvNxocffkpraz9CQFVVIRs23HhO35aTUSqV3H33t1iypIfe3j4MBj3FxcVXnbf+5dDU\n1MRHH32B3e5BrRanRRxdDqtXr6SyspyOjg4UCgVFRUWnJLGaObOYzz//AEkqmPhxjBlGA8yateGy\n+5eJEYlE2LlzN198UUswKJGYqOWmm5Yze/ap6fULCwv5yU8209rais/nJzs7i+zs7AvKR1RWVsKX\nX25DknInPh+NRgmFhigtnbrItGuNaDSWwOyf/glefBFWX/kgxOsOIWIRNps2xVaj3n4bfvtb+M53\nYO7cE3+brGoUcQ/tPRuTHdp7uXR1dfHcc28RjWZgNCbj8ThQq+08+eQ9l+QQO1W4XC7+9/9+Acgj\nLS0bSYoyMNCO2ezi+99/bFJ+TKeK6RLi+XUulrS0SkwmM6FQgJ6eoyxcaOWOO245fwOXiSRJvPXW\n+3z1VTcJCdnj+Wm6mTcvm29/+7ZpmTPicoiX3rdu/YTPPmshJ6cSjUaHx+NicPAIDz20loqK8vM3\ncAFEo1Fee+1tDh2yYTJlI0kSbnc3ixcX8K1v3XxFK+hONy5U73Z7zJnS4YhtGXyjwLLMFcbrhe3b\n4cMPY6snBQXwl38ZWzE533Ce1nlGzsZ0M0YAHA4HtbWHGRiwk5OTQU1N9bTLiPnFFzv54x87yM09\nNeKlo+MADz98w7SOhJkuxsgzz/wnDkcqZnPGxLFoNEp3907+63/9zhXJVBuNRjl+/DiHDzcCMHv2\nLGbMmHHNGSIQH717vV5++cunycxccoo/h9vtRKns4M/+bPJiGyORCM3NzdTVHUOhEFRXl1FaWnpd\nGyJwfr1LUsz4+MlP4L77YvkvpvFc6rokHI7p6Be/gJSU2L/nWrU6lzFyzT3Ztm/fPmVtp6SksHbt\nanJy0li1asWUGyKXci49PYMYjacH2avVSdhsQ5PWz6VwKf1MhmwX20ZPzyBJSadmcj1+vBaFIgGn\n88LCOS9XFoVCwcyZM7nnntu5557bmTVr1oQhEo9rMtXtTEWb52pnZGQE0J9iiACYTGaGh0cmCldO\nhjxKpZKysjIslmTuvvtbzJgx47IMkemmu8keA34/vPoqLFoU81f4i7/Yzj/+4+UbItPpfK8VWVQq\nePDBmLPrqlXbefJJWLMGdu26+LZkY2Sa9nGp/VgsKfh8p1eyDYfHSEk584x+Op9PPG42iyUFt/tU\no+PYsQNIkveC/W4mS5bp3MZktjMVbZ6rHZPJhCT5xqtkn8DjcZGUZDwl++l0u1bXWjvhcCxHyL//\nOzzwQKya7L/+K/z3/w4HD8Lw8PSQczLbudZkUSpBrd5OY2PMOHnwQVi/Pubf477AONlrzhi53qmp\nmY0QQ4yOxiq/SpLE4GA3ycnBiYJvMudm9epF2O3H8Ptj+UCi0Qgu1xAVFTnXVbGxaxmTycT8+aV0\nddUTicRWQYJBPzZbAzfeuPi630K5UkhSrHbMfffFcoasWgWNjTGfhNtvj2UGlbl6UKth8+ZYFtyH\nH4Y//CGWlO5CkKNprjFSUlLYvPlO3nprK11dxwCJgoJUbr/97osO8b1eKSsr4667fHz88W6GhkCI\nEJmZeu644+Z4iyYziWzatB6V6lP27t2NJGnQaCJ861sLqak5e3kHmclFCDh+XK6qe62h0cSMkYcf\njhmcF8K0dmCNtwwyMjIyMjIyk8dVF00jIyMjIyMjc30g78jJyMjIyMjIxBXZGJEBQAixMN4yyFw4\nsr6uX2Tdy3zNtTQWrrltGiGETpIk/xXoRytJ0rkr5F18m/OBJUAyMALskSRp/yT3cSYDVABbJUla\nO4n9VAJhSZKaTjq2WJKkLy/w+wnExuekFFCcjHFxsTqfDH1Olr4uVx/jn68BRiRJahdCrAM0wEeS\nJJ2/ONPZ23xKkqTfjL+fdjofb+ei7/XppPvxti5b/+PfmfQxcJ7+Jm1MXM3jYbqNhSl5FlytxogQ\n4n7gJ0AYeBv4fyRJkoQQn0mSNOWVC4QQH0uStH4S2/snYgrdBowCScCNxAbNjyaxHx9wpkFXLUlS\nyiT18WsgAwgB6cDjkiQNnks3QojHge8DHuA54AkgSqyi879cRN9TNi4uRueTpc/J0Nel6OMMbfwb\noAX0gB9wAy4gR5Kkxy6wjR2AROwhCmABioAx4EdMQ52Pt39R9/p00v14O5et//F2LnsMXEAfl/0c\nuBbHw3QaC1M2DiRJuipfwB5iockC+C/AO4AZ+GyS+9lxlpdzkvv54mKOX0Y/tUDyGY5vm8xrdtL7\n2cDnwIJz6YbYjaYYH+DdxG5eAey+0uNiMnQ+WfqcDH1dij7OJTdw5KT3n19EGz8GfgesPknnH00H\nnU+W3qeb7idL/5M1Bi6gj8t+DlyL42E6jYWpGgdXdZ4RSZK+ztn8b0KIWuBdYlbfZJJGzPoMnnxQ\nCPHHSe7ngBDiaeBjYpZmIjHruXaS+7kZ8J3h+GSWg1UIITSSJAUlSaoTQtwB/CdQcY7vBKTYEp9P\nCPHM19dbCHHRW2GTMC4mQ+eTpc/J0Nel6OObKE96/3+d9P6Cl1YlSfp/hRBaYLMQ4ntAArGl3umg\nc5i8e3066R4mR/8wCWPgApiU58A1OB6m01iYmnFwOZZMPF/AnwD53ziWDfx/k9zPRs5skc6bgnOa\nS8yS/wtiS5U18b7Ol3geiwDLN46pgPvP8Z1HANU3jmmA//tKj4vJ0vl00eel6OMMbVScRT+3XaJM\nauBZYkvocdf5ZOp9Oul+svQ/FWPgLH1c9nNAHg9TOxamahxctT4j30QI8aIkSQ9cgX5ekiTp/qnu\n53pnsq7zZIwLWedXhumk88mUR+bSmQwdyOPh6uBaCu3NvEL9WK9QP9c7k3WdJ2NcyDq/MkwnnYOs\n9+nAZOhAHg9XAdeSMSIjIyMjIyNzFSIbIzIyMjIyMjJxRTZGZGRkZGRkZOLKteTAapEkyXat9HO9\nM1nXeTLakXV+ZZhOOp/MdmQunel0/8rjYWq5ZowRGRkZGRkZmasTeZtGRkZGRkZGJq7IxoiMjIyM\njIxMXJGNERkZGRkZGZm4Ihsj0wghxAYhRJMQ4rgQ4ufxlkdm6hFCPCeEsAkhjsRbFpkrgxAiVwjx\nmRCiQQhRL4T403jLJDP1CCF0Qoi9QohDQoijQoi/i7dM0wnZgXWaIIRQAseAtUAv8BWxegGNcRVM\nZkoRQtwAjAH/IUlSVbzlkZl6hBBWwCpJ0iEhRAJwALhdvtevfYQQBkmSvEIIFbAT+KkkSTvjLdd0\nQF4ZmT4sBFokSeqQJCkEvAx8K84yyUwxkiTtAJzxlkPmyiFJ0oAkSYfG348BjUBWfKWSuRJIkuQd\nf6shVv3WEUdxphWyMTJ9yAa6T/p/z/gxGRmZaxQhRAFQA+yNryQyVwIhhEIIcQiwAZ9JknQ03jJN\nF2RjZPog75fJyFxHjG/RvA78aHyFROYaR5KkqCRJc4AcYIUQYlWcRZo2yMbI9KEXyD3p/7nEVkdk\nZGSuMYQQauAN4D8lSXo73vLIXFkkSRoFPgDmx1uW6YJsjEwf9gOlQogCIYQGuBd4N84yycjITDJC\nCAH8FjgqSdI/xVsemSuDECJNCJE8/l4PrAMOxleq6YNsjEwTJEkKAz8AtgJHgVdk7/prHyHES8Bu\nYIYQolsI8Z14yyQz5SwDHgJWCyEOjr82xFsomSknE/h03GdkL/CeJEmfxFmmaYMc2isjIyMjIyMT\nV+SVERkZGRkZGZm4IhsjMjIyMjIyMnFFNkZkZGRkZGRk4opsjMjIyMjIyMjEFdkYkZGRkZGRkYkr\nsjEiIyMjIyMjE1dkY0RGRkZGRkYmrsjGiIyMjIyMjExc+f8Bo2OouhAS2pgAAAAASUVORK5CYII=\n", "text": [ - "" + "" ] } ], - "prompt_number": 3 + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn and evaluate scikit-learn's logistic regression with stochastic gradient descent (SGD) training. Time and check the classifier's accuracy." + ] }, { "cell_type": "code", @@ -89,7 +102,7 @@ "clf = sklearn.linear_model.SGDClassifier(\n", " loss='log', n_iter=1000, penalty='l2', alpha=1e-3, class_weight='auto')\n", "\n", - "clf.fit(X, y)\n", + "%timeit clf.fit(X, y)\n", "yt_pred = clf.predict(Xt)\n", "print('Accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(yt, yt_pred)))" ], @@ -100,11 +113,19 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Accuracy: 0.763\n" + "1 loops, best of 3: 499 ms per loop\n", + "Accuracy: 0.756\n" ] } ], - "prompt_number": 4 + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the dataset to HDF5 for loading in Caffe." + ] }, { "cell_type": "code", @@ -139,15 +160,69 @@ "language": "python", "metadata": {}, "outputs": [], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn and evaluate logistic regression in Caffe." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "def learn_and_test(solver_file):\n", + " caffe.set_mode_cpu()\n", + " solver = caffe.get_solver(solver_file)\n", + " solver.solve()\n", + "\n", + " accuracy = 0\n", + " test_iters = int(len(Xt) / solver.test_nets[0].blobs['data'].num)\n", + " for i in range(test_iters):\n", + " solver.test_nets[0].forward()\n", + " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", + " accuracy /= test_iters\n", + " return accuracy\n", + "\n", + "%timeit learn_and_test('hdf5_classification/solver.prototxt')\n", + "acc = learn_and_test('hdf5_classification/solver.prototxt')\n", + "print(\"Accuracy: {:.3f}\".format(acc))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1 loops, best of 3: 240 ms per loop\n", + "Accuracy: 0.752" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], "prompt_number": 5 }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do the same through the command line interface for detailed output on the model and solving." + ] + }, { "cell_type": "code", "collapsed": false, "input": [ - "# Run caffe. Scroll down in the output to see the final\n", - "# test accuracy, which should be about the same as above.\n", - "!cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver.prototxt" + "!../build/tools/caffe train -solver hdf5_classification/solver.prototxt" ], "language": "python", "metadata": {}, @@ -156,9 +231,16 @@ "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.099238 2129298192 caffe.cpp:90] Starting Optimization\r\n", - "I0905 01:07:27.100469 2129298192 solver.cpp:32] Initializing solver from parameters: \r\n", - "test_iter: 1000\r\n", + "I0307 01:34:29.141863 2099749632 caffe.cpp:103] Use CPU.\r\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:29.418283 2099749632 caffe.cpp:107] Starting Optimization\r\n", + "I0307 01:34:29.418323 2099749632 solver.cpp:32] Initializing solver from parameters: \r\n", + "test_iter: 250\r\n", "test_interval: 1000\r\n", "base_lr: 0.01\r\n", "display: 1000\r\n", @@ -169,42 +251,43 @@ "weight_decay: 0.0005\r\n", "stepsize: 5000\r\n", "snapshot: 10000\r\n", - "snapshot_prefix: \"examples/hdf5_classification/data/train\"\r\n", + "snapshot_prefix: \"hdf5_classification/data/train\"\r\n", "solver_mode: CPU\r\n", - "net: \"examples/hdf5_classification/train_val.prototxt\"\r\n", - "I0905 01:07:27.100630 2129298192 solver.cpp:72] Creating training net from net file: examples/hdf5_classification/train_val.prototxt\r\n" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "I0905 01:07:27.100988 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n", - "I0905 01:07:27.101011 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n", - "I0905 01:07:27.101022 2129298192 net.cpp:39] Initializing net from parameters: \r\n", + "net: \"hdf5_classification/train_val.prototxt\"\r\n", + "I0307 01:34:29.418416 2099749632 solver.cpp:70] Creating training net from net file: hdf5_classification/train_val.prototxt\r\n", + "I0307 01:34:29.418583 2099749632 net.cpp:257] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n", + "I0307 01:34:29.418598 2099749632 net.cpp:257] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n", + "I0307 01:34:29.418608 2099749632 net.cpp:42] Initializing net from parameters: \r\n", "name: \"LogisticRegressionNet\"\r\n", - "layers {\r\n", + "state {\r\n", + " phase: TRAIN\r\n", + "}\r\n", + "layer {\r\n", + " name: \"data\"\r\n", + " type: \"HDF5Data\"\r\n", " top: \"data\"\r\n", " top: \"label\"\r\n", - " name: \"data\"\r\n", - " type: HDF5_DATA\r\n", - " hdf5_data_param {\r\n", - " source: \"examples/hdf5_classification/data/train.txt\"\r\n", - " batch_size: 10\r\n", - " }\r\n", " include {\r\n", " phase: TRAIN\r\n", " }\r\n", + " hdf5_data_param {\r\n", + " source: \"hdf5_classification/data/train.txt\"\r\n", + " batch_size: 10\r\n", + " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc1\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"data\"\r\n", " top: \"fc1\"\r\n", - " name: \"fc1\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 2\r\n", " weight_filler {\r\n", @@ -217,72 +300,77 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"loss\"\r\n", + " type: \"SoftmaxWithLoss\"\r\n", " bottom: \"fc1\"\r\n", " bottom: \"label\"\r\n", " top: \"loss\"\r\n", - " name: \"loss\"\r\n", - " type: SOFTMAX_LOSS\r\n", "}\r\n", + "I0307 01:34:29.418692 2099749632 layer_factory.hpp:74] Creating layer data\r\n", + "I0307 01:34:29.418853 2099749632 net.cpp:84] Creating Layer data\r\n", + "I0307 01:34:29.418879 2099749632 net.cpp:338] data -> data\r\n", + "I0307 01:34:29.418905 2099749632 net.cpp:338] data -> label\r\n", + "I0307 01:34:29.418918 2099749632 net.cpp:113] Setting up data\r\n", + "I0307 01:34:29.418926 2099749632 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: hdf5_classification/data/train.txt\r\n", + "I0307 01:34:29.418992 2099749632 hdf5_data_layer.cpp:80] Number of HDF5 files: 2\r\n", + "I0307 01:34:29.420812 2099749632 net.cpp:120] Top shape: 10 4 (40)\r\n", + "I0307 01:34:29.420841 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:29.420852 2099749632 layer_factory.hpp:74] Creating layer fc1\r\n", + "I0307 01:34:29.420866 2099749632 net.cpp:84] Creating Layer fc1\r\n", + "I0307 01:34:29.420872 2099749632 net.cpp:380] fc1 <- data\r\n", + "I0307 01:34:29.420882 2099749632 net.cpp:338] fc1 -> fc1\r\n", + "I0307 01:34:29.420894 2099749632 net.cpp:113] Setting up fc1\r\n", + "I0307 01:34:29.425689 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:29.425709 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:29.425724 2099749632 net.cpp:84] Creating Layer loss\r\n", + "I0307 01:34:29.425731 2099749632 net.cpp:380] loss <- fc1\r\n", + "I0307 01:34:29.425739 2099749632 net.cpp:380] loss <- label\r\n", + "I0307 01:34:29.425747 2099749632 net.cpp:338] loss -> loss\r\n", + "I0307 01:34:29.425756 2099749632 net.cpp:113] Setting up loss\r\n", + "I0307 01:34:29.425767 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:29.425781 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:29.425789 2099749632 net.cpp:122] with loss weight 1\r\n", + "I0307 01:34:29.425801 2099749632 net.cpp:167] loss needs backward computation.\r\n", + "I0307 01:34:29.425808 2099749632 net.cpp:167] fc1 needs backward computation.\r\n", + "I0307 01:34:29.425815 2099749632 net.cpp:169] data does not need backward computation.\r\n", + "I0307 01:34:29.425822 2099749632 net.cpp:205] This network produces output loss\r\n", + "I0307 01:34:29.425829 2099749632 net.cpp:447] Collecting Learning Rate and Weight Decay.\r\n", + "I0307 01:34:29.425837 2099749632 net.cpp:217] Network initialization done.\r\n", + "I0307 01:34:29.425843 2099749632 net.cpp:218] Memory required for data: 284\r\n", + "I0307 01:34:29.425961 2099749632 solver.cpp:154] Creating test net (#0) specified by net file: hdf5_classification/train_val.prototxt\r\n", + "I0307 01:34:29.425984 2099749632 net.cpp:257] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n", + "I0307 01:34:29.425997 2099749632 net.cpp:42] Initializing net from parameters: \r\n", + "name: \"LogisticRegressionNet\"\r\n", "state {\r\n", - " phase: TRAIN\r\n", + " phase: TEST\r\n", "}\r\n", - "I0905 01:07:27.105614 2129298192 net.cpp:67] Creating Layer data\r\n", - "I0905 01:07:27.105664 2129298192 net.cpp:356] data -> data\r\n", - "I0905 01:07:27.105698 2129298192 net.cpp:356] data -> label\r\n", - "I0905 01:07:27.105710 2129298192 net.cpp:96] Setting up data\r\n", - "I0905 01:07:27.105717 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/train.txt\r\n", - "I0905 01:07:27.105813 2129298192 hdf5_data_layer.cpp:69] Number of files: 2\r\n", - "I0905 01:07:27.105828 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.109418 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.109501 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n", - "I0905 01:07:27.109522 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n", - "I0905 01:07:27.109531 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.109560 2129298192 net.cpp:67] Creating Layer fc1\r\n", - "I0905 01:07:27.109570 2129298192 net.cpp:394] fc1 <- data\r\n", - "I0905 01:07:27.109590 2129298192 net.cpp:356] fc1 -> fc1\r\n", - "I0905 01:07:27.109618 2129298192 net.cpp:96] Setting up fc1\r\n", - "I0905 01:07:27.115136 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.115190 2129298192 net.cpp:67] Creating Layer loss\r\n", - "I0905 01:07:27.115198 2129298192 net.cpp:394] loss <- fc1\r\n", - "I0905 01:07:27.115206 2129298192 net.cpp:394] loss <- label\r\n", - "I0905 01:07:27.115214 2129298192 net.cpp:356] loss -> loss\r\n", - "I0905 01:07:27.115224 2129298192 net.cpp:96] Setting up loss\r\n", - "I0905 01:07:27.115237 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.115244 2129298192 net.cpp:109] with loss weight 1\r\n", - "I0905 01:07:27.115260 2129298192 net.cpp:170] loss needs backward computation.\r\n", - "I0905 01:07:27.115267 2129298192 net.cpp:170] fc1 needs backward computation.\r\n", - "I0905 01:07:27.115273 2129298192 net.cpp:172] data does not need backward computation.\r\n", - "I0905 01:07:27.115278 2129298192 net.cpp:208] This network produces output loss\r\n", - "I0905 01:07:27.115288 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n", - "I0905 01:07:27.115295 2129298192 net.cpp:219] Network initialization done.\r\n", - "I0905 01:07:27.115301 2129298192 net.cpp:220] Memory required for data: 284\r\n", - "I0905 01:07:27.115622 2129298192 solver.cpp:156] Creating test net (#0) specified by net file: examples/hdf5_classification/train_val.prototxt\r\n", - "I0905 01:07:27.115644 2129298192 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n", - "I0905 01:07:27.115656 2129298192 net.cpp:39] Initializing net from parameters: \r\n", - "name: \"LogisticRegressionNet\"\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"data\"\r\n", + " type: \"HDF5Data\"\r\n", " top: \"data\"\r\n", " top: \"label\"\r\n", - " name: \"data\"\r\n", - " type: HDF5_DATA\r\n", - " hdf5_data_param {\r\n", - " source: \"examples/hdf5_classification/data/test.txt\"\r\n", - " batch_size: 10\r\n", - " }\r\n", " include {\r\n", " phase: TEST\r\n", " }\r\n", + " hdf5_data_param {\r\n", + " source: \"hdf5_classification/data/test.txt\"\r\n", + " batch_size: 10\r\n", + " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc1\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"data\"\r\n", " top: \"fc1\"\r\n", - " name: \"fc1\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 2\r\n", " weight_filler {\r\n", @@ -295,194 +383,176 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"loss\"\r\n", + " type: \"SoftmaxWithLoss\"\r\n", " bottom: \"fc1\"\r\n", " bottom: \"label\"\r\n", " top: \"loss\"\r\n", - " name: \"loss\"\r\n", - " type: SOFTMAX_LOSS\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"accuracy\"\r\n", + " type: \"Accuracy\"\r\n", " bottom: \"fc1\"\r\n", " bottom: \"label\"\r\n", " top: \"accuracy\"\r\n", - " name: \"accuracy\"\r\n", - " type: ACCURACY\r\n", " include {\r\n", " phase: TEST\r\n", " }\r\n", "}\r\n", - "state {\r\n", - " phase: TEST\r\n", - "}\r\n", - "I0905 01:07:27.115854 2129298192 net.cpp:67] Creating Layer data\r\n", - "I0905 01:07:27.115864 2129298192 net.cpp:356] data -> data\r\n", - "I0905 01:07:27.116004 2129298192 net.cpp:356] data -> label\r\n", - "I0905 01:07:27.116024 2129298192 net.cpp:96] Setting up data\r\n", - "I0905 01:07:27.116030 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/test.txt\r\n", - "I0905 01:07:27.116080 2129298192 hdf5_data_layer.cpp:69] Number of files: 1\r\n", - "I0905 01:07:27.116089 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/test.h5\r\n", - "I0905 01:07:27.117313 2129298192 hdf5_data_layer.cpp:49] Successully loaded 2500 rows\r\n", - "I0905 01:07:27.117348 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n", - "I0905 01:07:27.117357 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n", - "I0905 01:07:27.117364 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.117377 2129298192 net.cpp:67] Creating Layer label_data_1_split\r\n", - "I0905 01:07:27.117384 2129298192 net.cpp:394] label_data_1_split <- label\r\n", - "I0905 01:07:27.117393 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_0\r\n", - "I0905 01:07:27.117409 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_1\r\n", - "I0905 01:07:27.117419 2129298192 net.cpp:96] Setting up label_data_1_split\r\n", - "I0905 01:07:27.117427 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.117434 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.117444 2129298192 net.cpp:67] Creating Layer fc1\r\n", - "I0905 01:07:27.117449 2129298192 net.cpp:394] fc1 <- data\r\n", - "I0905 01:07:27.117470 2129298192 net.cpp:356] fc1 -> fc1\r\n", - "I0905 01:07:27.117478 2129298192 net.cpp:96] Setting up fc1\r\n", - "I0905 01:07:27.117506 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.117519 2129298192 net.cpp:67] Creating Layer fc1_fc1_0_split\r\n", - "I0905 01:07:27.117527 2129298192 net.cpp:394] fc1_fc1_0_split <- fc1\r\n", - "I0905 01:07:27.117534 2129298192 net.cpp:356] fc1_fc1_0_split -> fc1_fc1_0_split_0\r\n", - "I0905 01:07:27.117543 2129298192 net.cpp:356] fc1_fc1_0_split -> fc1_fc1_0_split_1\r\n", - "I0905 01:07:27.117640 2129298192 net.cpp:96] Setting up fc1_fc1_0_split\r\n", - "I0905 01:07:27.117655 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.117662 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.117673 2129298192 net.cpp:67] Creating Layer loss\r\n", - "I0905 01:07:27.117679 2129298192 net.cpp:394] loss <- fc1_fc1_0_split_0\r\n", - "I0905 01:07:27.117687 2129298192 net.cpp:394] loss <- label_data_1_split_0\r\n", - "I0905 01:07:27.117696 2129298192 net.cpp:356] loss -> loss\r\n", - "I0905 01:07:27.117704 2129298192 net.cpp:96] Setting up loss\r\n", - "I0905 01:07:27.117717 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.117723 2129298192 net.cpp:109] with loss weight 1\r\n", - "I0905 01:07:27.117743 2129298192 net.cpp:67] Creating Layer accuracy\r\n", - "I0905 01:07:27.117749 2129298192 net.cpp:394] accuracy <- fc1_fc1_0_split_1\r\n", - "I0905 01:07:27.117756 2129298192 net.cpp:394] accuracy <- label_data_1_split_1\r\n", - "I0905 01:07:27.117764 2129298192 net.cpp:356] accuracy -> accuracy\r\n", - "I0905 01:07:27.117774 2129298192 net.cpp:96] Setting up accuracy\r\n", - "I0905 01:07:27.117781 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.117789 2129298192 net.cpp:172] accuracy does not need backward computation.\r\n", - "I0905 01:07:27.117794 2129298192 net.cpp:170] loss needs backward computation.\r\n", - "I0905 01:07:27.117835 2129298192 net.cpp:170] fc1_fc1_0_split needs backward computation.\r\n", - "I0905 01:07:27.117842 2129298192 net.cpp:170] fc1 needs backward computation.\r\n", - "I0905 01:07:27.117848 2129298192 net.cpp:172] label_data_1_split does not need backward computation.\r\n", - "I0905 01:07:27.117854 2129298192 net.cpp:172] data does not need backward computation.\r\n", - "I0905 01:07:27.117861 2129298192 net.cpp:208] This network produces output accuracy\r\n", - "I0905 01:07:27.117866 2129298192 net.cpp:208] This network produces output loss\r\n", - "I0905 01:07:27.117877 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n", - "I0905 01:07:27.117926 2129298192 net.cpp:219] Network initialization done.\r\n", - "I0905 01:07:27.117938 2129298192 net.cpp:220] Memory required for data: 528\r\n", - "I0905 01:07:27.117985 2129298192 solver.cpp:46] Solver scaffolding done.\r\n", - "I0905 01:07:27.117992 2129298192 solver.cpp:165] Solving LogisticRegressionNet\r\n", - "I0905 01:07:27.118026 2129298192 solver.cpp:251] Iteration 0, Testing net (#0)\r\n", - "I0905 01:07:27.123764 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.646801\r\n", - "I0905 01:07:27.123847 2129298192 solver.cpp:302] Test net output #1: loss = 0.690777 (* 1 = 0.690777 loss)\r\n", - "I0905 01:07:27.123888 2129298192 solver.cpp:195] Iteration 0, loss = 0.689469\r\n", - "I0905 01:07:27.123898 2129298192 solver.cpp:210] Train net output #0: loss = 0.689469 (* 1 = 0.689469 loss)\r\n", - "I0905 01:07:27.123915 2129298192 solver.cpp:405] Iteration 0, lr = 0.01\r\n", - "I0905 01:07:27.127096 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.128094 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.129258 2129298192 solver.cpp:251] Iteration 1000, Testing net (#0)\r\n", - "I0905 01:07:27.135226 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.745599\r\n", - "I0905 01:07:27.135296 2129298192 solver.cpp:302] Test net output #1: loss = 0.573658 (* 1 = 0.573658 loss)\r\n", - "I0905 01:07:27.135315 2129298192 solver.cpp:195] Iteration 1000, loss = 0.49682\r\n", - "I0905 01:07:27.135325 2129298192 solver.cpp:210] Train net output #0: loss = 0.49682 (* 1 = 0.49682 loss)\r\n", - "I0905 01:07:27.135334 2129298192 solver.cpp:405] Iteration 1000, lr = 0.01\r\n", - "I0905 01:07:27.137315 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.137358 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.138335 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.140410 2129298192 solver.cpp:251] Iteration 2000, Testing net (#0)\r\n", - "I0905 01:07:27.147435 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.746399\r\n", - "I0905 01:07:27.147514 2129298192 solver.cpp:302] Test net output #1: loss = 0.582127 (* 1 = 0.582127 loss)\r\n", - "I0905 01:07:27.147541 2129298192 solver.cpp:195] Iteration 2000, loss = 0.555272\r\n", - "I0905 01:07:27.147553 2129298192 solver.cpp:210] Train net output #0: loss = 0.555272 (* 1 = 0.555272 loss)\r\n", - "I0905 01:07:27.147565 2129298192 solver.cpp:405] Iteration 2000, lr = 0.01\r\n", - "I0905 01:07:27.148572 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.149441 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.152377 2129298192 solver.cpp:251] Iteration 3000, Testing net (#0)\r\n" + "I0307 01:34:29.426126 2099749632 layer_factory.hpp:74] Creating layer data\r\n", + "I0307 01:34:29.426311 2099749632 net.cpp:84] Creating Layer data\r\n", + "I0307 01:34:29.426331 2099749632 net.cpp:338] data -> data\r\n", + "I0307 01:34:29.426343 2099749632 net.cpp:338] data -> label\r\n", + "I0307 01:34:29.426354 2099749632 net.cpp:113] Setting up data\r\n", + "I0307 01:34:29.426362 2099749632 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: hdf5_classification/data/test.txt\r\n", + "I0307 01:34:29.426484 2099749632 hdf5_data_layer.cpp:80] Number of HDF5 files: 1\r\n", + "I0307 01:34:29.427692 2099749632 net.cpp:120] Top shape: 10 4 (40)\r\n", + "I0307 01:34:29.427711 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:29.427721 2099749632 layer_factory.hpp:74] Creating layer label_data_1_split\r\n", + "I0307 01:34:29.427731 2099749632 net.cpp:84] Creating Layer label_data_1_split\r\n", + "I0307 01:34:29.427738 2099749632 net.cpp:380] label_data_1_split <- label\r\n", + "I0307 01:34:29.427747 2099749632 net.cpp:338] label_data_1_split -> label_data_1_split_0\r\n", + "I0307 01:34:29.427759 2099749632 net.cpp:338] label_data_1_split -> label_data_1_split_1\r\n", + "I0307 01:34:29.427768 2099749632 net.cpp:113] Setting up label_data_1_split\r\n", + "I0307 01:34:29.427777 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:29.427784 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:29.427791 2099749632 layer_factory.hpp:74] Creating layer fc1\r\n", + "I0307 01:34:29.427804 2099749632 net.cpp:84] Creating Layer fc1\r\n", + "I0307 01:34:29.427813 2099749632 net.cpp:380] fc1 <- data\r\n", + "I0307 01:34:29.427821 2099749632 net.cpp:338] fc1 -> fc1\r\n", + "I0307 01:34:29.427831 2099749632 net.cpp:113] Setting up fc1\r\n", + "I0307 01:34:29.427845 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:29.427857 2099749632 layer_factory.hpp:74] Creating layer fc1_fc1_0_split\r\n", + "I0307 01:34:29.427866 2099749632 net.cpp:84] Creating Layer fc1_fc1_0_split\r\n", + "I0307 01:34:29.427872 2099749632 net.cpp:380] fc1_fc1_0_split <- fc1\r\n", + "I0307 01:34:29.427881 2099749632 net.cpp:338] fc1_fc1_0_split -> fc1_fc1_0_split_0\r\n", + "I0307 01:34:29.427891 2099749632 net.cpp:338] fc1_fc1_0_split -> fc1_fc1_0_split_1\r\n", + "I0307 01:34:29.427942 2099749632 net.cpp:113] Setting up fc1_fc1_0_split\r\n", + "I0307 01:34:29.427955 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:29.427965 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:29.427976 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:29.427991 2099749632 net.cpp:84] Creating Layer loss\r\n", + "I0307 01:34:29.428001 2099749632 net.cpp:380] loss <- fc1_fc1_0_split_0\r\n", + "I0307 01:34:29.428009 2099749632 net.cpp:380] loss <- label_data_1_split_0\r\n", + "I0307 01:34:29.428017 2099749632 net.cpp:338] loss -> loss\r\n", + "I0307 01:34:29.428026 2099749632 net.cpp:113] Setting up loss\r\n", + "I0307 01:34:29.428035 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:29.428048 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:29.428056 2099749632 net.cpp:122] with loss weight 1\r\n", + "I0307 01:34:29.428064 2099749632 layer_factory.hpp:74] Creating layer accuracy\r\n", + "I0307 01:34:29.428076 2099749632 net.cpp:84] Creating Layer accuracy\r\n", + "I0307 01:34:29.428084 2099749632 net.cpp:380] accuracy <- fc1_fc1_0_split_1\r\n", + "I0307 01:34:29.428092 2099749632 net.cpp:380] accuracy <- label_data_1_split_1\r\n", + "I0307 01:34:29.428102 2099749632 net.cpp:338] accuracy -> accuracy\r\n", + "I0307 01:34:29.428131 2099749632 net.cpp:113] Setting up accuracy\r\n", + "I0307 01:34:29.428140 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:29.428148 2099749632 net.cpp:169] accuracy does not need backward computation.\r\n", + "I0307 01:34:29.428154 2099749632 net.cpp:167] loss needs backward computation.\r\n", + "I0307 01:34:29.428161 2099749632 net.cpp:167] fc1_fc1_0_split needs backward computation.\r\n", + "I0307 01:34:29.428167 2099749632 net.cpp:167] fc1 needs backward computation.\r\n", + "I0307 01:34:29.428174 2099749632 net.cpp:169] label_data_1_split does not need backward computation.\r\n", + "I0307 01:34:29.428181 2099749632 net.cpp:169] data does not need backward computation.\r\n", + "I0307 01:34:29.428189 2099749632 net.cpp:205] This network produces output accuracy\r\n", + "I0307 01:34:29.428324 2099749632 net.cpp:205] This network produces output loss\r\n", + "I0307 01:34:29.428342 2099749632 net.cpp:447] Collecting Learning Rate and Weight Decay.\r\n", + "I0307 01:34:29.428350 2099749632 net.cpp:217] Network initialization done.\r\n", + "I0307 01:34:29.428357 2099749632 net.cpp:218] Memory required for data: 528\r\n", + "I0307 01:34:29.428388 2099749632 solver.cpp:42] Solver scaffolding done.\r\n", + "I0307 01:34:29.428412 2099749632 solver.cpp:222] Solving LogisticRegressionNet\r\n", + "I0307 01:34:29.428421 2099749632 solver.cpp:223] Learning Rate Policy: step\r\n", + "I0307 01:34:29.428431 2099749632 solver.cpp:266] Iteration 0, Testing net (#0)\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.158655 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.696\r\n", - "I0905 01:07:27.158746 2129298192 solver.cpp:302] Test net output #1: loss = 0.580239 (* 1 = 0.580239 loss)\r\n", - "I0905 01:07:27.158761 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.158768 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.159765 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.159843 2129298192 solver.cpp:195] Iteration 3000, loss = 0.476517\r\n", - "I0905 01:07:27.159873 2129298192 solver.cpp:210] Train net output #0: loss = 0.476517 (* 1 = 0.476517 loss)\r\n", - "I0905 01:07:27.159983 2129298192 solver.cpp:405] Iteration 3000, lr = 0.01\r\n", - "I0905 01:07:27.163079 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.163602 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.164567 2129298192 solver.cpp:251] Iteration 4000, Testing net (#0)\r\n", - "I0905 01:07:27.170277 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.745599\r\n", - "I0905 01:07:27.170344 2129298192 solver.cpp:302] Test net output #1: loss = 0.573658 (* 1 = 0.573658 loss)\r\n", - "I0905 01:07:27.170364 2129298192 solver.cpp:195] Iteration 4000, loss = 0.49682\r\n", - "I0905 01:07:27.170375 2129298192 solver.cpp:210] Train net output #0: loss = 0.49682 (* 1 = 0.49682 loss)\r\n", - "I0905 01:07:27.170385 2129298192 solver.cpp:405] Iteration 4000, lr = 0.01\r\n", - "I0905 01:07:27.172350 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.172374 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.173084 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.175192 2129298192 solver.cpp:251] Iteration 5000, Testing net (#0)\r\n", - "I0905 01:07:27.181659 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.746399\r\n", - "I0905 01:07:27.181710 2129298192 solver.cpp:302] Test net output #1: loss = 0.582127 (* 1 = 0.582127 loss)\r\n", - "I0905 01:07:27.181730 2129298192 solver.cpp:195] Iteration 5000, loss = 0.555272\r\n", - "I0905 01:07:27.181740 2129298192 solver.cpp:210] Train net output #0: loss = 0.555272 (* 1 = 0.555272 loss)\r\n", - "I0905 01:07:27.181748 2129298192 solver.cpp:405] Iteration 5000, lr = 0.001\r\n", - "I0905 01:07:27.182734 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.183248 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.186180 2129298192 solver.cpp:251] Iteration 6000, Testing net (#0)\r\n", - "I0905 01:07:27.192646 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7684\r\n", - "I0905 01:07:27.192751 2129298192 solver.cpp:302] Test net output #1: loss = 0.574538 (* 1 = 0.574538 loss)\r\n", - "I0905 01:07:27.192766 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.192773 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.193936 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.194007 2129298192 solver.cpp:195] Iteration 6000, loss = 0.464052\r\n", - "I0905 01:07:27.194036 2129298192 solver.cpp:210] Train net output #0: loss = 0.464052 (* 1 = 0.464052 loss)\r\n", - "I0905 01:07:27.194051 2129298192 solver.cpp:405] Iteration 6000, lr = 0.001\r\n", - "I0905 01:07:27.197053 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.198092 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.199162 2129298192 solver.cpp:251] Iteration 7000, Testing net (#0)\r\n", - "I0905 01:07:27.205195 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7684\r\n", - "I0905 01:07:27.205298 2129298192 solver.cpp:302] Test net output #1: loss = 0.574549 (* 1 = 0.574549 loss)\r\n", - "I0905 01:07:27.205327 2129298192 solver.cpp:195] Iteration 7000, loss = 0.495483\r\n", - "I0905 01:07:27.205338 2129298192 solver.cpp:210] Train net output #0: loss = 0.495483 (* 1 = 0.495483 loss)\r\n", - "I0905 01:07:27.205353 2129298192 solver.cpp:405] Iteration 7000, lr = 0.001\r\n" + "I0307 01:34:29.471674 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.4532\r\n", + "I0307 01:34:29.471724 2099749632 solver.cpp:315] Test net output #1: loss = 0.694067 (* 1 = 0.694067 loss)\r\n", + "I0307 01:34:29.471853 2099749632 solver.cpp:189] Iteration 0, loss = 0.692695\r\n", + "I0307 01:34:29.471878 2099749632 solver.cpp:204] Train net output #0: loss = 0.692695 (* 1 = 0.692695 loss)\r\n", + "I0307 01:34:29.471890 2099749632 solver.cpp:464] Iteration 0, lr = 0.01\r\n", + "I0307 01:34:29.483834 2099749632 solver.cpp:266] Iteration 1000, Testing net (#0)\r\n", + "I0307 01:34:29.486868 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7424\r\n", + "I0307 01:34:29.486896 2099749632 solver.cpp:315] Test net output #1: loss = 0.601764 (* 1 = 0.601764 loss)\r\n", + "I0307 01:34:29.486922 2099749632 solver.cpp:189] Iteration 1000, loss = 0.472665\r\n", + "I0307 01:34:29.486934 2099749632 solver.cpp:204] Train net output #0: loss = 0.472665 (* 1 = 0.472665 loss)\r\n", + "I0307 01:34:29.486944 2099749632 solver.cpp:464] Iteration 1000, lr = 0.01\r\n", + "I0307 01:34:29.498821 2099749632 solver.cpp:266] Iteration 2000, Testing net (#0)\r\n", + "I0307 01:34:29.501900 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7364\r\n", + "I0307 01:34:29.501941 2099749632 solver.cpp:315] Test net output #1: loss = 0.60818 (* 1 = 0.60818 loss)\r\n", + "I0307 01:34:29.501988 2099749632 solver.cpp:189] Iteration 2000, loss = 0.6863\r\n", + "I0307 01:34:29.502003 2099749632 solver.cpp:204] Train net output #0: loss = 0.6863 (* 1 = 0.6863 loss)\r\n", + "I0307 01:34:29.502013 2099749632 solver.cpp:464] Iteration 2000, lr = 0.01\r\n", + "I0307 01:34:29.513921 2099749632 solver.cpp:266] Iteration 3000, Testing net (#0)\r\n", + "I0307 01:34:29.517227 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.6964\r\n", + "I0307 01:34:29.517300 2099749632 solver.cpp:315] Test net output #1: loss = 0.604707 (* 1 = 0.604707 loss)\r\n", + "I0307 01:34:29.518105 2099749632 solver.cpp:189] Iteration 3000, loss = 0.617542\r\n", + "I0307 01:34:29.518154 2099749632 solver.cpp:204] Train net output #0: loss = 0.617542 (* 1 = 0.617542 loss)\r\n", + "I0307 01:34:29.518170 2099749632 solver.cpp:464] Iteration 3000, lr = 0.01\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.207471 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.207489 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.208534 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.210860 2129298192 solver.cpp:251] Iteration 8000, Testing net (#0)\r\n", - "I0905 01:07:27.216624 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.762\r\n", - "I0905 01:07:27.216704 2129298192 solver.cpp:302] Test net output #1: loss = 0.574515 (* 1 = 0.574515 loss)\r\n", - "I0905 01:07:27.216723 2129298192 solver.cpp:195] Iteration 8000, loss = 0.524565\r\n", - "I0905 01:07:27.216733 2129298192 solver.cpp:210] Train net output #0: loss = 0.524565 (* 1 = 0.524565 loss)\r\n", - "I0905 01:07:27.216743 2129298192 solver.cpp:405] Iteration 8000, lr = 0.001\r\n", - "I0905 01:07:27.217738 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.218291 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.221294 2129298192 solver.cpp:251] Iteration 9000, Testing net (#0)\r\n", - "I0905 01:07:27.227104 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7688\r\n", - "I0905 01:07:27.227171 2129298192 solver.cpp:302] Test net output #1: loss = 0.574278 (* 1 = 0.574278 loss)\r\n", - "I0905 01:07:27.227183 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.227190 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.228143 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.228210 2129298192 solver.cpp:195] Iteration 9000, loss = 0.461831\r\n", - "I0905 01:07:27.228240 2129298192 solver.cpp:210] Train net output #0: loss = 0.461831 (* 1 = 0.461831 loss)\r\n", - "I0905 01:07:27.228252 2129298192 solver.cpp:405] Iteration 9000, lr = 0.001\r\n", - "I0905 01:07:27.231314 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.232293 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.233417 2129298192 solver.cpp:319] Snapshotting to examples/hdf5_classification/data/train_iter_10000\r\n", - "I0905 01:07:27.233680 2129298192 solver.cpp:326] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\r\n", - "I0905 01:07:27.233795 2129298192 solver.cpp:232] Iteration 10000, loss = 0.49554\r\n", - "I0905 01:07:27.233814 2129298192 solver.cpp:251] Iteration 10000, Testing net (#0)\r\n", - "I0905 01:07:27.240015 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.768\r\n", - "I0905 01:07:27.240099 2129298192 solver.cpp:302] Test net output #1: loss = 0.574488 (* 1 = 0.574488 loss)\r\n", - "I0905 01:07:27.240110 2129298192 solver.cpp:237] Optimization Done.\r\n", - "I0905 01:07:27.240118 2129298192 caffe.cpp:114] Optimization Done.\r\n" + "I0307 01:34:29.531672 2099749632 solver.cpp:266] Iteration 4000, Testing net (#0)\r\n", + "I0307 01:34:29.534873 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7424\r\n", + "I0307 01:34:29.534920 2099749632 solver.cpp:315] Test net output #1: loss = 0.601764 (* 1 = 0.601764 loss)\r\n", + "I0307 01:34:29.534950 2099749632 solver.cpp:189] Iteration 4000, loss = 0.472666\r\n", + "I0307 01:34:29.534962 2099749632 solver.cpp:204] Train net output #0: loss = 0.472665 (* 1 = 0.472665 loss)\r\n", + "I0307 01:34:29.534973 2099749632 solver.cpp:464] Iteration 4000, lr = 0.01\r\n", + "I0307 01:34:29.546567 2099749632 solver.cpp:266] Iteration 5000, Testing net (#0)\r\n", + "I0307 01:34:29.549762 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7364\r\n", + "I0307 01:34:29.549789 2099749632 solver.cpp:315] Test net output #1: loss = 0.60818 (* 1 = 0.60818 loss)\r\n", + "I0307 01:34:29.549815 2099749632 solver.cpp:189] Iteration 5000, loss = 0.686301\r\n", + "I0307 01:34:29.549828 2099749632 solver.cpp:204] Train net output #0: loss = 0.6863 (* 1 = 0.6863 loss)\r\n", + "I0307 01:34:29.549837 2099749632 solver.cpp:464] Iteration 5000, lr = 0.001\r\n", + "I0307 01:34:29.562142 2099749632 solver.cpp:266] Iteration 6000, Testing net (#0)\r\n", + "I0307 01:34:29.565335 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7476\r\n", + "I0307 01:34:29.565373 2099749632 solver.cpp:315] Test net output #1: loss = 0.59775 (* 1 = 0.59775 loss)\r\n", + "I0307 01:34:29.566051 2099749632 solver.cpp:189] Iteration 6000, loss = 0.664614\r\n", + "I0307 01:34:29.566086 2099749632 solver.cpp:204] Train net output #0: loss = 0.664614 (* 1 = 0.664614 loss)\r\n", + "I0307 01:34:29.566097 2099749632 solver.cpp:464] Iteration 6000, lr = 0.001\r\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:29.577900 2099749632 solver.cpp:266] Iteration 7000, Testing net (#0)\r\n", + "I0307 01:34:29.580993 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7524\r\n", + "I0307 01:34:29.581015 2099749632 solver.cpp:315] Test net output #1: loss = 0.597349 (* 1 = 0.597349 loss)\r\n", + "I0307 01:34:29.581038 2099749632 solver.cpp:189] Iteration 7000, loss = 0.456775\r\n", + "I0307 01:34:29.581050 2099749632 solver.cpp:204] Train net output #0: loss = 0.456774 (* 1 = 0.456774 loss)\r\n", + "I0307 01:34:29.581059 2099749632 solver.cpp:464] Iteration 7000, lr = 0.001\r\n", + "I0307 01:34:29.592854 2099749632 solver.cpp:266] Iteration 8000, Testing net (#0)\r\n", + "I0307 01:34:29.595973 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7568\r\n", + "I0307 01:34:29.596002 2099749632 solver.cpp:315] Test net output #1: loss = 0.597265 (* 1 = 0.597265 loss)\r\n", + "I0307 01:34:29.596027 2099749632 solver.cpp:189] Iteration 8000, loss = 0.673885\r\n", + "I0307 01:34:29.596040 2099749632 solver.cpp:204] Train net output #0: loss = 0.673885 (* 1 = 0.673885 loss)\r\n", + "I0307 01:34:29.596048 2099749632 solver.cpp:464] Iteration 8000, lr = 0.001\r\n", + "I0307 01:34:29.607822 2099749632 solver.cpp:266] Iteration 9000, Testing net (#0)\r\n", + "I0307 01:34:29.610930 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7432\r\n", + "I0307 01:34:29.610960 2099749632 solver.cpp:315] Test net output #1: loss = 0.597777 (* 1 = 0.597777 loss)\r\n", + "I0307 01:34:29.611558 2099749632 solver.cpp:189] Iteration 9000, loss = 0.66526\r\n", + "I0307 01:34:29.611583 2099749632 solver.cpp:204] Train net output #0: loss = 0.66526 (* 1 = 0.66526 loss)\r\n", + "I0307 01:34:29.611593 2099749632 solver.cpp:464] Iteration 9000, lr = 0.001\r\n", + "I0307 01:34:29.623009 2099749632 solver.cpp:334] Snapshotting to hdf5_classification/data/train_iter_10000.caffemodel\r\n", + "I0307 01:34:29.623209 2099749632 solver.cpp:342] Snapshotting solver state to hdf5_classification/data/train_iter_10000.solverstate\r\n", + "I0307 01:34:29.623319 2099749632 solver.cpp:248] Iteration 10000, loss = 0.457922\r\n", + "I0307 01:34:29.623333 2099749632 solver.cpp:266] Iteration 10000, Testing net (#0)\r\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:29.626454 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.752\r\n", + "I0307 01:34:29.626484 2099749632 solver.cpp:315] Test net output #1: loss = 0.597362 (* 1 = 0.597362 loss)\r\n", + "I0307 01:34:29.626493 2099749632 solver.cpp:253] Optimization Done.\r\n", + "I0307 01:34:29.626502 2099749632 caffe.cpp:121] Optimization Done.\r\n" ] } ], @@ -492,18 +562,33 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "If you look at the `train_val.prototxt`, you'll see that it's simple logistic regression.\n", - "We can make it a little more advanced by introducing a non-linearity between weights that take the input and weights that give the output -- now we have a two-layer neural network.\n", + "If you look at output or the `train_val.prototxt`, you'll see that the model is simple logistic regression.\n", + "We can make it a little more advanced by introducing a non-linearity between weights that take the input and weights that give the output -- now we have a two-layer network.\n", "That network is given in `train_val2.prototxt`, and that's the only change made in `solver2.prototxt` which we will now use.\n", "\n", - "The final accuracy of the network we'll train below should be higher than for the network above!" + "The final accuracy of the new network be higher than logistic regression!" ] }, { "cell_type": "code", "collapsed": false, "input": [ - "!cd .. && ./build/tools/caffe train -solver examples/hdf5_classification/solver2.prototxt" + "def learn_and_test(solver_file):\n", + " caffe.set_mode_cpu()\n", + " solver = caffe.get_solver(solver_file)\n", + " solver.solve()\n", + "\n", + " accuracy = 0\n", + " test_iters = int(len(Xt) / solver.test_nets[0].blobs['data'].num)\n", + " for i in range(test_iters):\n", + " solver.test_nets[0].forward()\n", + " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", + " accuracy /= test_iters\n", + " return accuracy\n", + "\n", + "%timeit learn_and_test('hdf5_classification/solver2.prototxt')\n", + "acc = learn_and_test('hdf5_classification/solver2.prototxt')\n", + "print(\"Accuracy: {:.3f}\".format(acc))" ], "language": "python", "metadata": {}, @@ -512,9 +597,50 @@ "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.466722 2129298192 caffe.cpp:90] Starting Optimization\r\n", - "I0905 01:07:27.468166 2129298192 solver.cpp:32] Initializing solver from parameters: \r\n", - "test_iter: 1000\r\n", + "1 loops, best of 3: 333 ms per loop\n", + "Accuracy: 0.818" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do the same through the command line interface for detailed output on the model and solving." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "!../build/tools/caffe train -solver hdf5_classification/solver2.prototxt" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:31.589234 2099749632 caffe.cpp:103] Use CPU.\r\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:31.872560 2099749632 caffe.cpp:107] Starting Optimization\r\n", + "I0307 01:34:31.872596 2099749632 solver.cpp:32] Initializing solver from parameters: \r\n", + "test_iter: 250\r\n", "test_interval: 1000\r\n", "base_lr: 0.01\r\n", "display: 1000\r\n", @@ -525,36 +651,43 @@ "weight_decay: 0.0005\r\n", "stepsize: 5000\r\n", "snapshot: 10000\r\n", - "snapshot_prefix: \"examples/hdf5_classification/data/train\"\r\n", + "snapshot_prefix: \"hdf5_classification/data/train\"\r\n", "solver_mode: CPU\r\n", - "net: \"examples/hdf5_classification/train_val2.prototxt\"\r\n", - "I0905 01:07:27.468351 2129298192 solver.cpp:72] Creating training net from net file: examples/hdf5_classification/train_val2.prototxt\r\n", - "I0905 01:07:27.469081 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n", - "I0905 01:07:27.469100 2129298192 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n", - "I0905 01:07:27.469110 2129298192 net.cpp:39] Initializing net from parameters: \r\n", + "net: \"hdf5_classification/train_val2.prototxt\"\r\n", + "I0307 01:34:31.872687 2099749632 solver.cpp:70] Creating training net from net file: hdf5_classification/train_val2.prototxt\r\n", + "I0307 01:34:31.872865 2099749632 net.cpp:257] The NetState phase (0) differed from the phase (1) specified by a rule in layer data\r\n", + "I0307 01:34:31.872882 2099749632 net.cpp:257] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy\r\n", + "I0307 01:34:31.872891 2099749632 net.cpp:42] Initializing net from parameters: \r\n", "name: \"LogisticRegressionNet\"\r\n", - "layers {\r\n", + "state {\r\n", + " phase: TRAIN\r\n", + "}\r\n", + "layer {\r\n", + " name: \"data\"\r\n", + " type: \"HDF5Data\"\r\n", " top: \"data\"\r\n", " top: \"label\"\r\n", - " name: \"data\"\r\n", - " type: HDF5_DATA\r\n", - " hdf5_data_param {\r\n", - " source: \"examples/hdf5_classification/data/train.txt\"\r\n", - " batch_size: 10\r\n", - " }\r\n", " include {\r\n", " phase: TRAIN\r\n", " }\r\n", + " hdf5_data_param {\r\n", + " source: \"hdf5_classification/data/train.txt\"\r\n", + " batch_size: 10\r\n", + " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc1\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"data\"\r\n", " top: \"fc1\"\r\n", - " name: \"fc1\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 40\r\n", " weight_filler {\r\n", @@ -567,21 +700,25 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"relu1\"\r\n", + " type: \"ReLU\"\r\n", " bottom: \"fc1\"\r\n", " top: \"fc1\"\r\n", - " name: \"relu1\"\r\n", - " type: RELU\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc2\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"fc1\"\r\n", " top: \"fc2\"\r\n", - " name: \"fc2\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 2\r\n", " weight_filler {\r\n", @@ -594,84 +731,91 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"loss\"\r\n", + " type: \"SoftmaxWithLoss\"\r\n", " bottom: \"fc2\"\r\n", " bottom: \"label\"\r\n", " top: \"loss\"\r\n", - " name: \"loss\"\r\n", - " type: SOFTMAX_LOSS\r\n", "}\r\n", + "I0307 01:34:31.873246 2099749632 layer_factory.hpp:74] Creating layer data\r\n", + "I0307 01:34:31.873276 2099749632 net.cpp:84] Creating Layer data\r\n", + "I0307 01:34:31.873292 2099749632 net.cpp:338] data -> data\r\n", + "I0307 01:34:31.873332 2099749632 net.cpp:338] data -> label\r\n", + "I0307 01:34:31.873352 2099749632 net.cpp:113] Setting up data\r\n", + "I0307 01:34:31.873361 2099749632 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: hdf5_classification/data/train.txt\r\n", + "I0307 01:34:31.873443 2099749632 hdf5_data_layer.cpp:80] Number of HDF5 files: 2\r\n", + "I0307 01:34:31.875783 2099749632 net.cpp:120] Top shape: 10 4 (40)\r\n", + "I0307 01:34:31.875816 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:31.875829 2099749632 layer_factory.hpp:74] Creating layer fc1\r\n", + "I0307 01:34:31.875846 2099749632 net.cpp:84] Creating Layer fc1\r\n", + "I0307 01:34:31.875857 2099749632 net.cpp:380] fc1 <- data\r\n", + "I0307 01:34:31.875875 2099749632 net.cpp:338] fc1 -> fc1\r\n", + "I0307 01:34:31.875892 2099749632 net.cpp:113] Setting up fc1\r\n", + "I0307 01:34:31.882478 2099749632 net.cpp:120] Top shape: 10 40 (400)\r\n", + "I0307 01:34:31.882505 2099749632 layer_factory.hpp:74] Creating layer relu1\r\n", + "I0307 01:34:31.882524 2099749632 net.cpp:84] Creating Layer relu1\r\n", + "I0307 01:34:31.882532 2099749632 net.cpp:380] relu1 <- fc1\r\n", + "I0307 01:34:31.882544 2099749632 net.cpp:327] relu1 -> fc1 (in-place)\r\n", + "I0307 01:34:31.882555 2099749632 net.cpp:113] Setting up relu1\r\n", + "I0307 01:34:31.882565 2099749632 net.cpp:120] Top shape: 10 40 (400)\r\n", + "I0307 01:34:31.882583 2099749632 layer_factory.hpp:74] Creating layer fc2\r\n", + "I0307 01:34:31.882609 2099749632 net.cpp:84] Creating Layer fc2\r\n", + "I0307 01:34:31.882619 2099749632 net.cpp:380] fc2 <- fc1\r\n", + "I0307 01:34:31.882632 2099749632 net.cpp:338] fc2 -> fc2\r\n", + "I0307 01:34:31.882644 2099749632 net.cpp:113] Setting up fc2\r\n", + "I0307 01:34:31.882663 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:31.882678 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:31.882694 2099749632 net.cpp:84] Creating Layer loss\r\n", + "I0307 01:34:31.882704 2099749632 net.cpp:380] loss <- fc2\r\n", + "I0307 01:34:31.882712 2099749632 net.cpp:380] loss <- label\r\n", + "I0307 01:34:31.882779 2099749632 net.cpp:338] loss -> loss\r\n", + "I0307 01:34:31.882796 2099749632 net.cpp:113] Setting up loss\r\n", + "I0307 01:34:31.882810 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:31.882833 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:31.882844 2099749632 net.cpp:122] with loss weight 1\r\n", + "I0307 01:34:31.882860 2099749632 net.cpp:167] loss needs backward computation.\r\n", + "I0307 01:34:31.882869 2099749632 net.cpp:167] fc2 needs backward computation.\r\n", + "I0307 01:34:31.882877 2099749632 net.cpp:167] relu1 needs backward computation.\r\n", + "I0307 01:34:31.882886 2099749632 net.cpp:167] fc1 needs backward computation.\r\n", + "I0307 01:34:31.882894 2099749632 net.cpp:169] data does not need backward computation.\r\n", + "I0307 01:34:31.882904 2099749632 net.cpp:205] This network produces output loss\r\n", + "I0307 01:34:31.882931 2099749632 net.cpp:447] Collecting Learning Rate and Weight Decay.\r\n", + "I0307 01:34:31.882942 2099749632 net.cpp:217] Network initialization done.\r\n", + "I0307 01:34:31.882951 2099749632 net.cpp:218] Memory required for data: 3484\r\n", + "I0307 01:34:31.883157 2099749632 solver.cpp:154] Creating test net (#0) specified by net file: hdf5_classification/train_val2.prototxt\r\n", + "I0307 01:34:31.883189 2099749632 net.cpp:257] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n", + "I0307 01:34:31.883203 2099749632 net.cpp:42] Initializing net from parameters: \r\n", + "name: \"LogisticRegressionNet\"\r\n", "state {\r\n", - " phase: TRAIN\r\n", + " phase: TEST\r\n", "}\r\n", - "I0905 01:07:27.469447 2129298192 net.cpp:67] Creating Layer data\r\n", - "I0905 01:07:27.469467 2129298192 net.cpp:356] data -> data\r\n", - "I0905 01:07:27.469493 2129298192 net.cpp:356] data -> label\r\n", - "I0905 01:07:27.469503 2129298192 net.cpp:96] Setting up data\r\n", - "I0905 01:07:27.469511 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/train.txt\r\n", - "I0905 01:07:27.469558 2129298192 hdf5_data_layer.cpp:69] Number of files: 2\r\n", - "I0905 01:07:27.469569 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.471978 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.471997 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n", - "I0905 01:07:27.472008 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n", - "I0905 01:07:27.472015 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.472026 2129298192 net.cpp:67] Creating Layer fc1\r\n", - "I0905 01:07:27.472033 2129298192 net.cpp:394] fc1 <- data\r\n", - "I0905 01:07:27.472045 2129298192 net.cpp:356] fc1 -> fc1\r\n", - "I0905 01:07:27.472060 2129298192 net.cpp:96] Setting up fc1\r\n", - "I0905 01:07:27.476827 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n", - "I0905 01:07:27.476857 2129298192 net.cpp:67] Creating Layer relu1\r\n", - "I0905 01:07:27.476865 2129298192 net.cpp:394] relu1 <- fc1\r\n", - "I0905 01:07:27.476872 2129298192 net.cpp:345] relu1 -> fc1 (in-place)\r\n", - "I0905 01:07:27.476881 2129298192 net.cpp:96] Setting up relu1\r\n", - "I0905 01:07:27.476888 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n", - "I0905 01:07:27.476896 2129298192 net.cpp:67] Creating Layer fc2\r\n", - "I0905 01:07:27.476902 2129298192 net.cpp:394] fc2 <- fc1\r\n", - "I0905 01:07:27.476909 2129298192 net.cpp:356] fc2 -> fc2\r\n", - "I0905 01:07:27.476918 2129298192 net.cpp:96] Setting up fc2\r\n", - "I0905 01:07:27.476932 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.476955 2129298192 net.cpp:67] Creating Layer loss\r\n", - "I0905 01:07:27.476963 2129298192 net.cpp:394] loss <- fc2\r\n", - "I0905 01:07:27.476969 2129298192 net.cpp:394] loss <- label\r\n", - "I0905 01:07:27.476975 2129298192 net.cpp:356] loss -> loss\r\n", - "I0905 01:07:27.476984 2129298192 net.cpp:96] Setting up loss\r\n", - "I0905 01:07:27.477005 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.477040 2129298192 net.cpp:109] with loss weight 1\r\n", - "I0905 01:07:27.477051 2129298192 net.cpp:170] loss needs backward computation.\r\n", - "I0905 01:07:27.477058 2129298192 net.cpp:170] fc2 needs backward computation.\r\n", - "I0905 01:07:27.477063 2129298192 net.cpp:170] relu1 needs backward computation.\r\n", - "I0905 01:07:27.477069 2129298192 net.cpp:170] fc1 needs backward computation.\r\n", - "I0905 01:07:27.477076 2129298192 net.cpp:172] data does not need backward computation.\r\n", - "I0905 01:07:27.477080 2129298192 net.cpp:208] This network produces output loss\r\n", - "I0905 01:07:27.477099 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n", - "I0905 01:07:27.477105 2129298192 net.cpp:219] Network initialization done.\r\n", - "I0905 01:07:27.477112 2129298192 net.cpp:220] Memory required for data: 3484\r\n", - "I0905 01:07:27.477455 2129298192 solver.cpp:156] Creating test net (#0) specified by net file: examples/hdf5_classification/train_val2.prototxt\r\n", - "I0905 01:07:27.477480 2129298192 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer data\r\n", - "I0905 01:07:27.477494 2129298192 net.cpp:39] Initializing net from parameters: \r\n", - "name: \"LogisticRegressionNet\"\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"data\"\r\n", + " type: \"HDF5Data\"\r\n", " top: \"data\"\r\n", " top: \"label\"\r\n", - " name: \"data\"\r\n", - " type: HDF5_DATA\r\n", - " hdf5_data_param {\r\n", - " source: \"examples/hdf5_classification/data/test.txt\"\r\n", - " batch_size: 10\r\n", - " }\r\n", " include {\r\n", " phase: TEST\r\n", " }\r\n", + " hdf5_data_param {\r\n", + " source: \"hdf5_classification/data/test.txt\"\r\n", + " batch_size: 10\r\n", + " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc1\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"data\"\r\n", " top: \"fc1\"\r\n", - " name: \"fc1\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 40\r\n", " weight_filler {\r\n", @@ -684,21 +828,25 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"relu1\"\r\n", + " type: \"ReLU\"\r\n", " bottom: \"fc1\"\r\n", " top: \"fc1\"\r\n", - " name: \"relu1\"\r\n", - " type: RELU\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"fc2\"\r\n", + " type: \"InnerProduct\"\r\n", " bottom: \"fc1\"\r\n", " top: \"fc2\"\r\n", - " name: \"fc2\"\r\n", - " type: INNER_PRODUCT\r\n", - " blobs_lr: 1\r\n", - " blobs_lr: 2\r\n", - " weight_decay: 1\r\n", - " weight_decay: 0\r\n", + " param {\r\n", + " lr_mult: 1\r\n", + " decay_mult: 1\r\n", + " }\r\n", + " param {\r\n", + " lr_mult: 2\r\n", + " decay_mult: 0\r\n", + " }\r\n", " inner_product_param {\r\n", " num_output: 2\r\n", " weight_filler {\r\n", @@ -711,222 +859,200 @@ " }\r\n", " }\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"loss\"\r\n", + " type: \"SoftmaxWithLoss\"\r\n", " bottom: \"fc2\"\r\n", " bottom: \"label\"\r\n", " top: \"loss\"\r\n", - " name: \"loss\"\r\n", - " type: SOFTMAX_LOSS\r\n", "}\r\n", - "layers {\r\n", + "layer {\r\n", + " name: \"accuracy\"\r\n", + " type: \"Accuracy\"\r\n", " bottom: \"fc2\"\r\n", " bottom: \"label\"\r\n", " top: \"accuracy\"\r\n", - " name: \"accuracy\"\r\n", - " type: ACCURACY\r\n", " include {\r\n", " phase: TEST\r\n", " }\r\n", "}\r\n", - "state {\r\n", - " phase: TEST\r\n", - "}\r\n", - "I0905 01:07:27.477839 2129298192 net.cpp:67] Creating Layer data\r\n", - "I0905 01:07:27.477850 2129298192 net.cpp:356] data -> data\r\n", - "I0905 01:07:27.477861 2129298192 net.cpp:356] data -> label\r\n", - "I0905 01:07:27.477870 2129298192 net.cpp:96] Setting up data\r\n", - "I0905 01:07:27.477876 2129298192 hdf5_data_layer.cpp:57] Loading filename from examples/hdf5_classification/data/test.txt\r\n", - "I0905 01:07:27.477902 2129298192 hdf5_data_layer.cpp:69] Number of files: 1\r\n" + "I0307 01:34:31.883535 2099749632 layer_factory.hpp:74] Creating layer data\r\n", + "I0307 01:34:31.883548 2099749632 net.cpp:84] Creating Layer data\r\n", + "I0307 01:34:31.883556 2099749632 net.cpp:338] data -> data\r\n", + "I0307 01:34:31.883569 2099749632 net.cpp:338] data -> label\r\n", + "I0307 01:34:31.883579 2099749632 net.cpp:113] Setting up data\r\n", + "I0307 01:34:31.883585 2099749632 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: hdf5_classification/data/test.txt\r\n", + "I0307 01:34:31.883664 2099749632 hdf5_data_layer.cpp:80] Number of HDF5 files: 1\r\n", + "I0307 01:34:31.884842 2099749632 net.cpp:120] Top shape: 10 4 (40)\r\n", + "I0307 01:34:31.884860 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:31.884870 2099749632 layer_factory.hpp:74] Creating layer label_data_1_split\r\n", + "I0307 01:34:31.884879 2099749632 net.cpp:84] Creating Layer label_data_1_split\r\n", + "I0307 01:34:31.884886 2099749632 net.cpp:380] label_data_1_split <- label\r\n", + "I0307 01:34:31.884896 2099749632 net.cpp:338] label_data_1_split -> label_data_1_split_0\r\n", + "I0307 01:34:31.884909 2099749632 net.cpp:338] label_data_1_split -> label_data_1_split_1\r\n", + "I0307 01:34:31.884919 2099749632 net.cpp:113] Setting up label_data_1_split\r\n", + "I0307 01:34:31.884927 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:31.884934 2099749632 net.cpp:120] Top shape: 10 (10)\r\n", + "I0307 01:34:31.884941 2099749632 layer_factory.hpp:74] Creating layer fc1\r\n", + "I0307 01:34:31.884951 2099749632 net.cpp:84] Creating Layer fc1\r\n", + "I0307 01:34:31.884958 2099749632 net.cpp:380] fc1 <- data\r\n", + "I0307 01:34:31.884989 2099749632 net.cpp:338] fc1 -> fc1\r\n", + "I0307 01:34:31.885000 2099749632 net.cpp:113] Setting up fc1\r\n", + "I0307 01:34:31.885017 2099749632 net.cpp:120] Top shape: 10 40 (400)\r\n", + "I0307 01:34:31.885030 2099749632 layer_factory.hpp:74] Creating layer relu1\r\n", + "I0307 01:34:31.885041 2099749632 net.cpp:84] Creating Layer relu1\r\n", + "I0307 01:34:31.885048 2099749632 net.cpp:380] relu1 <- fc1\r\n", + "I0307 01:34:31.885056 2099749632 net.cpp:327] relu1 -> fc1 (in-place)\r\n", + "I0307 01:34:31.885064 2099749632 net.cpp:113] Setting up relu1\r\n", + "I0307 01:34:31.885071 2099749632 net.cpp:120] Top shape: 10 40 (400)\r\n", + "I0307 01:34:31.885079 2099749632 layer_factory.hpp:74] Creating layer fc2\r\n", + "I0307 01:34:31.885088 2099749632 net.cpp:84] Creating Layer fc2\r\n", + "I0307 01:34:31.885094 2099749632 net.cpp:380] fc2 <- fc1\r\n", + "I0307 01:34:31.885103 2099749632 net.cpp:338] fc2 -> fc2\r\n", + "I0307 01:34:31.885113 2099749632 net.cpp:113] Setting up fc2\r\n", + "I0307 01:34:31.885126 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:31.885138 2099749632 layer_factory.hpp:74] Creating layer fc2_fc2_0_split\r\n", + "I0307 01:34:31.885149 2099749632 net.cpp:84] Creating Layer fc2_fc2_0_split\r\n", + "I0307 01:34:31.885155 2099749632 net.cpp:380] fc2_fc2_0_split <- fc2\r\n", + "I0307 01:34:31.885164 2099749632 net.cpp:338] fc2_fc2_0_split -> fc2_fc2_0_split_0\r\n", + "I0307 01:34:31.885174 2099749632 net.cpp:338] fc2_fc2_0_split -> fc2_fc2_0_split_1\r\n", + "I0307 01:34:31.885182 2099749632 net.cpp:113] Setting up fc2_fc2_0_split\r\n", + "I0307 01:34:31.885190 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:31.885242 2099749632 net.cpp:120] Top shape: 10 2 (20)\r\n", + "I0307 01:34:31.885256 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:31.885267 2099749632 net.cpp:84] Creating Layer loss\r\n", + "I0307 01:34:31.885275 2099749632 net.cpp:380] loss <- fc2_fc2_0_split_0\r\n", + "I0307 01:34:31.885285 2099749632 net.cpp:380] loss <- label_data_1_split_0\r\n", + "I0307 01:34:31.885296 2099749632 net.cpp:338] loss -> loss\r\n", + "I0307 01:34:31.885308 2099749632 net.cpp:113] Setting up loss\r\n", + "I0307 01:34:31.885316 2099749632 layer_factory.hpp:74] Creating layer loss\r\n", + "I0307 01:34:31.885330 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:31.885337 2099749632 net.cpp:122] with loss weight 1\r\n", + "I0307 01:34:31.885346 2099749632 layer_factory.hpp:74] Creating layer accuracy\r\n", + "I0307 01:34:31.885360 2099749632 net.cpp:84] Creating Layer accuracy\r\n", + "I0307 01:34:31.885368 2099749632 net.cpp:380] accuracy <- fc2_fc2_0_split_1\r\n", + "I0307 01:34:31.885375 2099749632 net.cpp:380] accuracy <- label_data_1_split_1\r\n", + "I0307 01:34:31.885383 2099749632 net.cpp:338] accuracy -> accuracy\r\n", + "I0307 01:34:31.885392 2099749632 net.cpp:113] Setting up accuracy\r\n", + "I0307 01:34:31.885401 2099749632 net.cpp:120] Top shape: (1)\r\n", + "I0307 01:34:31.885407 2099749632 net.cpp:169] accuracy does not need backward computation.\r\n", + "I0307 01:34:31.885413 2099749632 net.cpp:167] loss needs backward computation.\r\n", + "I0307 01:34:31.885419 2099749632 net.cpp:167] fc2_fc2_0_split needs backward computation.\r\n", + "I0307 01:34:31.885426 2099749632 net.cpp:167] fc2 needs backward computation.\r\n", + "I0307 01:34:31.885432 2099749632 net.cpp:167] relu1 needs backward computation.\r\n", + "I0307 01:34:31.885438 2099749632 net.cpp:167] fc1 needs backward computation.\r\n", + "I0307 01:34:31.885444 2099749632 net.cpp:169] label_data_1_split does not need backward computation.\r\n", + "I0307 01:34:31.885452 2099749632 net.cpp:169] data does not need backward computation.\r\n", + "I0307 01:34:31.885457 2099749632 net.cpp:205] This network produces output accuracy\r\n", + "I0307 01:34:31.885613 2099749632 net.cpp:205] This network produces output loss\r\n", + "I0307 01:34:31.885632 2099749632 net.cpp:447] Collecting Learning Rate and Weight Decay.\r\n", + "I0307 01:34:31.885639 2099749632 net.cpp:217] Network initialization done.\r\n", + "I0307 01:34:31.885645 2099749632 net.cpp:218] Memory required for data: 3728\r\n", + "I0307 01:34:31.885685 2099749632 solver.cpp:42] Solver scaffolding done.\r\n", + "I0307 01:34:31.885711 2099749632 solver.cpp:222] Solving LogisticRegressionNet\r\n", + "I0307 01:34:31.885721 2099749632 solver.cpp:223] Learning Rate Policy: step\r\n", + "I0307 01:34:31.885730 2099749632 solver.cpp:266] Iteration 0, Testing net (#0)\r\n", + "I0307 01:34:31.901005 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.5944\r\n", + "I0307 01:34:31.901049 2099749632 solver.cpp:315] Test net output #1: loss = 0.693021 (* 1 = 0.693021 loss)\r\n", + "I0307 01:34:31.901177 2099749632 solver.cpp:189] Iteration 0, loss = 0.693163\r\n", + "I0307 01:34:31.901192 2099749632 solver.cpp:204] Train net output #0: loss = 0.693163 (* 1 = 0.693163 loss)\r\n", + "I0307 01:34:31.901203 2099749632 solver.cpp:464] Iteration 0, lr = 0.01\r\n", + "I0307 01:34:31.920586 2099749632 solver.cpp:266] Iteration 1000, Testing net (#0)\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.477910 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/test.h5\r\n", - "I0905 01:07:27.478999 2129298192 hdf5_data_layer.cpp:49] Successully loaded 2500 rows\r\n", - "I0905 01:07:27.479014 2129298192 hdf5_data_layer.cpp:81] output data size: 10,4,1,1\r\n", - "I0905 01:07:27.479022 2129298192 net.cpp:103] Top shape: 10 4 1 1 (40)\r\n", - "I0905 01:07:27.479028 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.479038 2129298192 net.cpp:67] Creating Layer label_data_1_split\r\n", - "I0905 01:07:27.479044 2129298192 net.cpp:394] label_data_1_split <- label\r\n", - "I0905 01:07:27.479058 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_0\r\n", - "I0905 01:07:27.479069 2129298192 net.cpp:356] label_data_1_split -> label_data_1_split_1\r\n", - "I0905 01:07:27.479079 2129298192 net.cpp:96] Setting up label_data_1_split\r\n", - "I0905 01:07:27.479086 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.479092 2129298192 net.cpp:103] Top shape: 10 1 1 1 (10)\r\n", - "I0905 01:07:27.479100 2129298192 net.cpp:67] Creating Layer fc1\r\n", - "I0905 01:07:27.480850 2129298192 net.cpp:394] fc1 <- data\r\n", - "I0905 01:07:27.480871 2129298192 net.cpp:356] fc1 -> fc1\r\n", - "I0905 01:07:27.480887 2129298192 net.cpp:96] Setting up fc1\r\n", - "I0905 01:07:27.480908 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n", - "I0905 01:07:27.480978 2129298192 net.cpp:67] Creating Layer relu1\r\n", - "I0905 01:07:27.480986 2129298192 net.cpp:394] relu1 <- fc1\r\n", - "I0905 01:07:27.480994 2129298192 net.cpp:345] relu1 -> fc1 (in-place)\r\n", - "I0905 01:07:27.481003 2129298192 net.cpp:96] Setting up relu1\r\n", - "I0905 01:07:27.481009 2129298192 net.cpp:103] Top shape: 10 40 1 1 (400)\r\n", - "I0905 01:07:27.481017 2129298192 net.cpp:67] Creating Layer fc2\r\n", - "I0905 01:07:27.481024 2129298192 net.cpp:394] fc2 <- fc1\r\n", - "I0905 01:07:27.481031 2129298192 net.cpp:356] fc2 -> fc2\r\n", - "I0905 01:07:27.481041 2129298192 net.cpp:96] Setting up fc2\r\n", - "I0905 01:07:27.481055 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.481065 2129298192 net.cpp:67] Creating Layer fc2_fc2_0_split\r\n", - "I0905 01:07:27.481343 2129298192 net.cpp:394] fc2_fc2_0_split <- fc2\r\n", - "I0905 01:07:27.481360 2129298192 net.cpp:356] fc2_fc2_0_split -> fc2_fc2_0_split_0\r\n", - "I0905 01:07:27.481371 2129298192 net.cpp:356] fc2_fc2_0_split -> fc2_fc2_0_split_1\r\n", - "I0905 01:07:27.481379 2129298192 net.cpp:96] Setting up fc2_fc2_0_split\r\n", - "I0905 01:07:27.481387 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.481392 2129298192 net.cpp:103] Top shape: 10 2 1 1 (20)\r\n", - "I0905 01:07:27.481401 2129298192 net.cpp:67] Creating Layer loss\r\n", - "I0905 01:07:27.481407 2129298192 net.cpp:394] loss <- fc2_fc2_0_split_0\r\n", - "I0905 01:07:27.481413 2129298192 net.cpp:394] loss <- label_data_1_split_0\r\n", - "I0905 01:07:27.481421 2129298192 net.cpp:356] loss -> loss\r\n", - "I0905 01:07:27.481434 2129298192 net.cpp:96] Setting up loss\r\n", - "I0905 01:07:27.481446 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.481452 2129298192 net.cpp:109] with loss weight 1\r\n", - "I0905 01:07:27.481466 2129298192 net.cpp:67] Creating Layer accuracy\r\n", - "I0905 01:07:27.481472 2129298192 net.cpp:394] accuracy <- fc2_fc2_0_split_1\r\n", - "I0905 01:07:27.481504 2129298192 net.cpp:394] accuracy <- label_data_1_split_1\r\n", - "I0905 01:07:27.481513 2129298192 net.cpp:356] accuracy -> accuracy\r\n", - "I0905 01:07:27.481521 2129298192 net.cpp:96] Setting up accuracy\r\n", - "I0905 01:07:27.481528 2129298192 net.cpp:103] Top shape: 1 1 1 1 (1)\r\n", - "I0905 01:07:27.481534 2129298192 net.cpp:172] accuracy does not need backward computation.\r\n", - "I0905 01:07:27.481540 2129298192 net.cpp:170] loss needs backward computation.\r\n", - "I0905 01:07:27.481545 2129298192 net.cpp:170] fc2_fc2_0_split needs backward computation.\r\n", - "I0905 01:07:27.481551 2129298192 net.cpp:170] fc2 needs backward computation.\r\n", - "I0905 01:07:27.481557 2129298192 net.cpp:170] relu1 needs backward computation.\r\n", - "I0905 01:07:27.481562 2129298192 net.cpp:170] fc1 needs backward computation.\r\n", - "I0905 01:07:27.481569 2129298192 net.cpp:172] label_data_1_split does not need backward computation.\r\n", - "I0905 01:07:27.481575 2129298192 net.cpp:172] data does not need backward computation.\r\n", - "I0905 01:07:27.481730 2129298192 net.cpp:208] This network produces output accuracy\r\n", - "I0905 01:07:27.481742 2129298192 net.cpp:208] This network produces output loss\r\n", - "I0905 01:07:27.481758 2129298192 net.cpp:467] Collecting Learning Rate and Weight Decay.\r\n", - "I0905 01:07:27.481766 2129298192 net.cpp:219] Network initialization done.\r\n", - "I0905 01:07:27.481771 2129298192 net.cpp:220] Memory required for data: 3728\r\n", - "I0905 01:07:27.481814 2129298192 solver.cpp:46] Solver scaffolding done.\r\n", - "I0905 01:07:27.481822 2129298192 solver.cpp:165] Solving LogisticRegressionNet\r\n", - "I0905 01:07:27.481844 2129298192 solver.cpp:251] Iteration 0, Testing net (#0)\r\n", - "I0905 01:07:27.488900 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.4924\r\n", - "I0905 01:07:27.488932 2129298192 solver.cpp:302] Test net output #1: loss = 0.693168 (* 1 = 0.693168 loss)\r\n", - "I0905 01:07:27.488962 2129298192 solver.cpp:195] Iteration 0, loss = 0.692972\r\n", - "I0905 01:07:27.488973 2129298192 solver.cpp:210] Train net output #0: loss = 0.692972 (* 1 = 0.692972 loss)\r\n", - "I0905 01:07:27.488984 2129298192 solver.cpp:405] Iteration 0, lr = 0.01\r\n", - "I0905 01:07:27.495033 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.495604 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.497684 2129298192 solver.cpp:251] Iteration 1000, Testing net (#0)\r\n", - "I0905 01:07:27.504875 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.7744\r\n", - "I0905 01:07:27.504930 2129298192 solver.cpp:302] Test net output #1: loss = 0.486552 (* 1 = 0.486552 loss)\r\n", - "I0905 01:07:27.504955 2129298192 solver.cpp:195] Iteration 1000, loss = 0.660151\r\n", - "I0905 01:07:27.504966 2129298192 solver.cpp:210] Train net output #0: loss = 0.660151 (* 1 = 0.660151 loss)\r\n", - "I0905 01:07:27.504976 2129298192 solver.cpp:405] Iteration 1000, lr = 0.01\r\n", - "I0905 01:07:27.509419 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.509467 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.510288 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.514822 2129298192 solver.cpp:251] Iteration 2000, Testing net (#0)\r\n", - "I0905 01:07:27.522342 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8004\r\n", - "I0905 01:07:27.522444 2129298192 solver.cpp:302] Test net output #1: loss = 0.447153 (* 1 = 0.447153 loss)\r\n", - "I0905 01:07:27.522483 2129298192 solver.cpp:195] Iteration 2000, loss = 0.505697\r\n", - "I0905 01:07:27.522495 2129298192 solver.cpp:210] Train net output #0: loss = 0.505697 (* 1 = 0.505697 loss)\r\n", - "I0905 01:07:27.522507 2129298192 solver.cpp:405] Iteration 2000, lr = 0.01\r\n", - "I0905 01:07:27.524762 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.525921 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n" + "I0307 01:34:31.924612 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7556\r\n", + "I0307 01:34:31.924646 2099749632 solver.cpp:315] Test net output #1: loss = 0.511002 (* 1 = 0.511002 loss)\r\n", + "I0307 01:34:31.924684 2099749632 solver.cpp:189] Iteration 1000, loss = 0.38536\r\n", + "I0307 01:34:31.924696 2099749632 solver.cpp:204] Train net output #0: loss = 0.38536 (* 1 = 0.38536 loss)\r\n", + "I0307 01:34:31.924706 2099749632 solver.cpp:464] Iteration 1000, lr = 0.01\r\n", + "I0307 01:34:31.944727 2099749632 solver.cpp:266] Iteration 2000, Testing net (#0)\r\n", + "I0307 01:34:31.948729 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7824\r\n", + "I0307 01:34:31.948763 2099749632 solver.cpp:315] Test net output #1: loss = 0.489214 (* 1 = 0.489214 loss)\r\n", + "I0307 01:34:31.948799 2099749632 solver.cpp:189] Iteration 2000, loss = 0.532582\r\n", + "I0307 01:34:31.948812 2099749632 solver.cpp:204] Train net output #0: loss = 0.532582 (* 1 = 0.532582 loss)\r\n", + "I0307 01:34:31.948823 2099749632 solver.cpp:464] Iteration 2000, lr = 0.01\r\n", + "I0307 01:34:31.968670 2099749632 solver.cpp:266] Iteration 3000, Testing net (#0)\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.533335 2129298192 solver.cpp:251] Iteration 3000, Testing net (#0)\r\n", - "I0905 01:07:27.541055 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8144\r\n", - "I0905 01:07:27.541146 2129298192 solver.cpp:302] Test net output #1: loss = 0.421441 (* 1 = 0.421441 loss)\r\n", - "I0905 01:07:27.541160 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.541167 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.542178 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.542261 2129298192 solver.cpp:195] Iteration 3000, loss = 0.242177\r\n", - "I0905 01:07:27.542284 2129298192 solver.cpp:210] Train net output #0: loss = 0.242177 (* 1 = 0.242177 loss)\r\n", - "I0905 01:07:27.542310 2129298192 solver.cpp:405] Iteration 3000, lr = 0.01\r\n", - "I0905 01:07:27.549348 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.550144 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.552340 2129298192 solver.cpp:251] Iteration 4000, Testing net (#0)\r\n", - "I0905 01:07:27.560089 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.784001\r\n", - "I0905 01:07:27.560227 2129298192 solver.cpp:302] Test net output #1: loss = 0.4395 (* 1 = 0.4395 loss)\r\n", - "I0905 01:07:27.560286 2129298192 solver.cpp:195] Iteration 4000, loss = 1.01631\r\n", - "I0905 01:07:27.560302 2129298192 solver.cpp:210] Train net output #0: loss = 1.01631 (* 1 = 1.01631 loss)\r\n", - "I0905 01:07:27.560315 2129298192 solver.cpp:405] Iteration 4000, lr = 0.01\r\n", - "I0905 01:07:27.565016 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.565101 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.566145 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.570286 2129298192 solver.cpp:251] Iteration 5000, Testing net (#0)\r\n", - "I0905 01:07:27.577373 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.802\r\n", - "I0905 01:07:27.577426 2129298192 solver.cpp:302] Test net output #1: loss = 0.463582 (* 1 = 0.463582 loss)\r\n", - "I0905 01:07:27.577452 2129298192 solver.cpp:195] Iteration 5000, loss = 0.632809\r\n", - "I0905 01:07:27.577463 2129298192 solver.cpp:210] Train net output #0: loss = 0.632809 (* 1 = 0.632809 loss)\r\n", - "I0905 01:07:27.577564 2129298192 solver.cpp:405] Iteration 5000, lr = 0.001\r\n", - "I0905 01:07:27.579649 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.580368 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n" + "I0307 01:34:31.972393 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.7956\r\n", + "I0307 01:34:31.972411 2099749632 solver.cpp:315] Test net output #1: loss = 0.454184 (* 1 = 0.454184 loss)\r\n", + "I0307 01:34:31.973024 2099749632 solver.cpp:189] Iteration 3000, loss = 0.541374\r\n", + "I0307 01:34:31.973057 2099749632 solver.cpp:204] Train net output #0: loss = 0.541374 (* 1 = 0.541374 loss)\r\n", + "I0307 01:34:31.973067 2099749632 solver.cpp:464] Iteration 3000, lr = 0.01\r\n", + "I0307 01:34:31.994829 2099749632 solver.cpp:266] Iteration 4000, Testing net (#0)\r\n", + "I0307 01:34:31.998638 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.798\r\n", + "I0307 01:34:31.998663 2099749632 solver.cpp:315] Test net output #1: loss = 0.456348 (* 1 = 0.456348 loss)\r\n", + "I0307 01:34:31.998705 2099749632 solver.cpp:189] Iteration 4000, loss = 0.490437\r\n", + "I0307 01:34:31.998718 2099749632 solver.cpp:204] Train net output #0: loss = 0.490437 (* 1 = 0.490437 loss)\r\n", + "I0307 01:34:31.998725 2099749632 solver.cpp:464] Iteration 4000, lr = 0.01\r\n", + "I0307 01:34:32.021085 2099749632 solver.cpp:266] Iteration 5000, Testing net (#0)\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.586956 2129298192 solver.cpp:251] Iteration 6000, Testing net (#0)\r\n", - "I0905 01:07:27.594288 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.822\r\n", - "I0905 01:07:27.594327 2129298192 solver.cpp:302] Test net output #1: loss = 0.407026 (* 1 = 0.407026 loss)\r\n", - "I0905 01:07:27.594338 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.594344 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.594861 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.594897 2129298192 solver.cpp:195] Iteration 6000, loss = 0.214342\r\n", - "I0905 01:07:27.594910 2129298192 solver.cpp:210] Train net output #0: loss = 0.214342 (* 1 = 0.214342 loss)\r\n", - "I0905 01:07:27.594919 2129298192 solver.cpp:405] Iteration 6000, lr = 0.001\r\n", - "I0905 01:07:27.601003 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.601380 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.603358 2129298192 solver.cpp:251] Iteration 7000, Testing net (#0)\r\n", - "I0905 01:07:27.610307 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8264\r\n", - "I0905 01:07:27.610323 2129298192 solver.cpp:302] Test net output #1: loss = 0.403283 (* 1 = 0.403283 loss)\r\n", - "I0905 01:07:27.610342 2129298192 solver.cpp:195] Iteration 7000, loss = 0.894732\r\n", - "I0905 01:07:27.610352 2129298192 solver.cpp:210] Train net output #0: loss = 0.894732 (* 1 = 0.894732 loss)\r\n", - "I0905 01:07:27.610359 2129298192 solver.cpp:405] Iteration 7000, lr = 0.001\r\n", - "I0905 01:07:27.614289 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.614297 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.614701 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.618602 2129298192 solver.cpp:251] Iteration 8000, Testing net (#0)\r\n", - "I0905 01:07:27.625637 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8216\r\n", - "I0905 01:07:27.625661 2129298192 solver.cpp:302] Test net output #1: loss = 0.402446 (* 1 = 0.402446 loss)\r\n", - "I0905 01:07:27.625680 2129298192 solver.cpp:195] Iteration 8000, loss = 0.500503\r\n", - "I0905 01:07:27.625690 2129298192 solver.cpp:210] Train net output #0: loss = 0.500503 (* 1 = 0.500503 loss)\r\n", - "I0905 01:07:27.625707 2129298192 solver.cpp:405] Iteration 8000, lr = 0.001\r\n", - "I0905 01:07:27.627665 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.628075 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n" + "I0307 01:34:32.024950 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.804\r\n", + "I0307 01:34:32.024981 2099749632 solver.cpp:315] Test net output #1: loss = 0.46184 (* 1 = 0.46184 loss)\r\n", + "I0307 01:34:32.025017 2099749632 solver.cpp:189] Iteration 5000, loss = 0.467703\r\n", + "I0307 01:34:32.025028 2099749632 solver.cpp:204] Train net output #0: loss = 0.467704 (* 1 = 0.467704 loss)\r\n", + "I0307 01:34:32.025038 2099749632 solver.cpp:464] Iteration 5000, lr = 0.001\r\n", + "I0307 01:34:32.044390 2099749632 solver.cpp:266] Iteration 6000, Testing net (#0)\r\n", + "I0307 01:34:32.048216 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.8208\r\n", + "I0307 01:34:32.048239 2099749632 solver.cpp:315] Test net output #1: loss = 0.423084 (* 1 = 0.423084 loss)\r\n", + "I0307 01:34:32.048790 2099749632 solver.cpp:189] Iteration 6000, loss = 0.480104\r\n", + "I0307 01:34:32.048809 2099749632 solver.cpp:204] Train net output #0: loss = 0.480105 (* 1 = 0.480105 loss)\r\n", + "I0307 01:34:32.048827 2099749632 solver.cpp:464] Iteration 6000, lr = 0.001\r\n", + "I0307 01:34:32.067795 2099749632 solver.cpp:266] Iteration 7000, Testing net (#0)\r\n", + "I0307 01:34:32.071524 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.8124\r\n", + "I0307 01:34:32.071542 2099749632 solver.cpp:315] Test net output #1: loss = 0.423947 (* 1 = 0.423947 loss)\r\n", + "I0307 01:34:32.071570 2099749632 solver.cpp:189] Iteration 7000, loss = 0.447471\r\n", + "I0307 01:34:32.071617 2099749632 solver.cpp:204] Train net output #0: loss = 0.447472 (* 1 = 0.447472 loss)\r\n", + "I0307 01:34:32.071626 2099749632 solver.cpp:464] Iteration 7000, lr = 0.001\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ - "I0905 01:07:27.634202 2129298192 solver.cpp:251] Iteration 9000, Testing net (#0)\r\n", - "I0905 01:07:27.641368 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.8252\r\n", - "I0905 01:07:27.641412 2129298192 solver.cpp:302] Test net output #1: loss = 0.404175 (* 1 = 0.404175 loss)\r\n", - "I0905 01:07:27.641422 2129298192 hdf5_data_layer.cpp:99] looping around to first file\r\n", - "I0905 01:07:27.641428 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.641960 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.642004 2129298192 solver.cpp:195] Iteration 9000, loss = 0.201587\r\n", - "I0905 01:07:27.642016 2129298192 solver.cpp:210] Train net output #0: loss = 0.201587 (* 1 = 0.201587 loss)\r\n", - "I0905 01:07:27.642026 2129298192 solver.cpp:405] Iteration 9000, lr = 0.001\r\n", - "I0905 01:07:27.648680 2129298192 hdf5_data_layer.cpp:29] Loading HDF5 file/Users/sergeyk/work/caffe/examples/hdf5_classification/data/train.h5\r\n", - "I0905 01:07:27.649211 2129298192 hdf5_data_layer.cpp:49] Successully loaded 7500 rows\r\n", - "I0905 01:07:27.651327 2129298192 solver.cpp:319] Snapshotting to examples/hdf5_classification/data/train_iter_10000\r\n", - "I0905 01:07:27.651476 2129298192 solver.cpp:326] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\r\n", - "I0905 01:07:27.651564 2129298192 solver.cpp:232] Iteration 10000, loss = 0.935422\r\n", - "I0905 01:07:27.651582 2129298192 solver.cpp:251] Iteration 10000, Testing net (#0)\r\n", - "I0905 01:07:27.658738 2129298192 solver.cpp:302] Test net output #0: accuracy = 0.826\r\n", - "I0905 01:07:27.658782 2129298192 solver.cpp:302] Test net output #1: loss = 0.400826 (* 1 = 0.400826 loss)\r\n", - "I0905 01:07:27.658790 2129298192 solver.cpp:237] Optimization Done.\r\n", - "I0905 01:07:27.658797 2129298192 caffe.cpp:114] Optimization Done.\r\n" + "I0307 01:34:32.091625 2099749632 solver.cpp:266] Iteration 8000, Testing net (#0)\r\n", + "I0307 01:34:32.095410 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.814\r\n", + "I0307 01:34:32.095432 2099749632 solver.cpp:315] Test net output #1: loss = 0.423586 (* 1 = 0.423586 loss)\r\n", + "I0307 01:34:32.095461 2099749632 solver.cpp:189] Iteration 8000, loss = 0.386258\r\n", + "I0307 01:34:32.095474 2099749632 solver.cpp:204] Train net output #0: loss = 0.386259 (* 1 = 0.386259 loss)\r\n", + "I0307 01:34:32.095481 2099749632 solver.cpp:464] Iteration 8000, lr = 0.001\r\n", + "I0307 01:34:32.117184 2099749632 solver.cpp:266] Iteration 9000, Testing net (#0)\r\n", + "I0307 01:34:32.121587 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.8208\r\n", + "I0307 01:34:32.121608 2099749632 solver.cpp:315] Test net output #1: loss = 0.419969 (* 1 = 0.419969 loss)\r\n", + "I0307 01:34:32.122161 2099749632 solver.cpp:189] Iteration 9000, loss = 0.468262\r\n", + "I0307 01:34:32.122181 2099749632 solver.cpp:204] Train net output #0: loss = 0.468262 (* 1 = 0.468262 loss)\r\n", + "I0307 01:34:32.122191 2099749632 solver.cpp:464] Iteration 9000, lr = 0.001\r\n" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0307 01:34:32.141635 2099749632 solver.cpp:334] Snapshotting to hdf5_classification/data/train_iter_10000.caffemodel\r\n", + "I0307 01:34:32.141860 2099749632 solver.cpp:342] Snapshotting solver state to hdf5_classification/data/train_iter_10000.solverstate\r\n", + "I0307 01:34:32.141978 2099749632 solver.cpp:248] Iteration 10000, loss = 0.441529\r\n", + "I0307 01:34:32.141995 2099749632 solver.cpp:266] Iteration 10000, Testing net (#0)\r\n", + "I0307 01:34:32.145747 2099749632 solver.cpp:315] Test net output #0: accuracy = 0.8148\r\n", + "I0307 01:34:32.145771 2099749632 solver.cpp:315] Test net output #1: loss = 0.4216 (* 1 = 0.4216 loss)\r\n", + "I0307 01:34:32.145779 2099749632 solver.cpp:253] Optimization Done.\r\n", + "I0307 01:34:32.145786 2099749632 caffe.cpp:121] Optimization Done.\r\n" ] } ], - "prompt_number": 7 + "prompt_number": 8 }, { "cell_type": "code", @@ -938,10 +1064,10 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 8 + "prompt_number": 9 } ], "metadata": {} } ] -} +} \ No newline at end of file diff --git a/examples/hdf5_classification/solver.prototxt b/examples/hdf5_classification/solver.prototxt index 040162076b8..65a6eb9e9fb 100644 --- a/examples/hdf5_classification/solver.prototxt +++ b/examples/hdf5_classification/solver.prototxt @@ -1,5 +1,5 @@ -net: "examples/hdf5_classification/train_val.prototxt" -test_iter: 1000 +net: "hdf5_classification/train_val.prototxt" +test_iter: 250 test_interval: 1000 base_lr: 0.01 lr_policy: "step" @@ -10,5 +10,5 @@ max_iter: 10000 momentum: 0.9 weight_decay: 0.0005 snapshot: 10000 -snapshot_prefix: "examples/hdf5_classification/data/train" +snapshot_prefix: "hdf5_classification/data/train" solver_mode: CPU diff --git a/examples/hdf5_classification/solver2.prototxt b/examples/hdf5_classification/solver2.prototxt index 32a3693b4a1..32b9feba346 100644 --- a/examples/hdf5_classification/solver2.prototxt +++ b/examples/hdf5_classification/solver2.prototxt @@ -1,5 +1,5 @@ -net: "examples/hdf5_classification/train_val2.prototxt" -test_iter: 1000 +net: "hdf5_classification/train_val2.prototxt" +test_iter: 250 test_interval: 1000 base_lr: 0.01 lr_policy: "step" @@ -10,5 +10,5 @@ max_iter: 10000 momentum: 0.9 weight_decay: 0.0005 snapshot: 10000 -snapshot_prefix: "examples/hdf5_classification/data/train" +snapshot_prefix: "hdf5_classification/data/train" solver_mode: CPU diff --git a/examples/hdf5_classification/train_val.prototxt b/examples/hdf5_classification/train_val.prototxt index b9ccc1a93ec..d5e8dbfa169 100644 --- a/examples/hdf5_classification/train_val.prototxt +++ b/examples/hdf5_classification/train_val.prototxt @@ -8,7 +8,7 @@ layer { phase: TRAIN } hdf5_data_param { - source: "examples/hdf5_classification/data/train.txt" + source: "hdf5_classification/data/train.txt" batch_size: 10 } } @@ -21,7 +21,7 @@ layer { phase: TEST } hdf5_data_param { - source: "examples/hdf5_classification/data/test.txt" + source: "hdf5_classification/data/test.txt" batch_size: 10 } } diff --git a/examples/hdf5_classification/train_val2.prototxt b/examples/hdf5_classification/train_val2.prototxt index f9ef731fff9..8795e8facb6 100644 --- a/examples/hdf5_classification/train_val2.prototxt +++ b/examples/hdf5_classification/train_val2.prototxt @@ -8,7 +8,7 @@ layer { phase: TRAIN } hdf5_data_param { - source: "examples/hdf5_classification/data/train.txt" + source: "hdf5_classification/data/train.txt" batch_size: 10 } } @@ -21,7 +21,7 @@ layer { phase: TEST } hdf5_data_param { - source: "examples/hdf5_classification/data/test.txt" + source: "hdf5_classification/data/test.txt" batch_size: 10 } } diff --git a/examples/imagenet/make_imagenet_mean.sh b/examples/imagenet/make_imagenet_mean.sh index d3d0c9af5d2..57f43766c4b 100755 --- a/examples/imagenet/make_imagenet_mean.sh +++ b/examples/imagenet/make_imagenet_mean.sh @@ -1,8 +1,12 @@ #!/usr/bin/env sh -# Compute the mean image from the imagenet training leveldb +# Compute the mean image from the imagenet training lmdb # N.B. this is available in data/ilsvrc12 -./build/tools/compute_image_mean examples/imagenet/ilsvrc12_train_leveldb \ - data/ilsvrc12/imagenet_mean.binaryproto +EXAMPLE=examples/imagenet +DATA=data/ilsvrc12 +TOOLS=build/tools + +$TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \ + $DATA/imagenet_mean.binaryproto echo "Done." diff --git a/examples/imagenet/readme.md b/examples/imagenet/readme.md index c2dd62ec963..a6bdf49ca4d 100644 --- a/examples/imagenet/readme.md +++ b/examples/imagenet/readme.md @@ -26,7 +26,7 @@ We assume that you already have downloaded the ImageNet training data and valida You will first need to prepare some auxiliary data for training. This data can be downloaded by: - ./data/get_ilsvrc_aux.sh + ./data/ilsvrc12/get_ilsvrc_aux.sh The training and validation input are described in `train.txt` and `val.txt` as text listing all the files and their labels. Note that we use a different indexing for labels than the ILSVRC devkit: we sort the synset names in their ASCII order, and then label them from 0 to 999. See `synset_words.txt` for the synset/name mapping. diff --git a/examples/net_surgery.ipynb b/examples/net_surgery.ipynb index 2932687da6a..75c9889fb5a 100644 --- a/examples/net_surgery.ipynb +++ b/examples/net_surgery.ipynb @@ -4,7 +4,7 @@ "example_name": "Editing model parameters", "include_in_docs": true, "priority": 5, - "signature": "sha256:811097f2151652d2b630c016a5f1de23bd824df3dfcfc72aa0aeb23b2d9686c0" + "signature": "sha256:f21c804f76329e70847ccb87e28a91e5d8a375f5da0ba6dd85d3b87a05bebd72" }, "nbformat": 3, "nbformat_minor": 0, @@ -15,15 +15,221 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Net Surgery for a Fully-Convolutional Model\n", + "# Net Surgery\n", "\n", - "Caffe models can be transformed to your particular needs by editing the network parameters. In this example, we take the standard Caffe Reference ImageNet model \"CaffeNet\" and transform it into a fully-convolutional model for efficient, dense inference on large inputs. This model generates a classification map that covers a given input size instead of a single classification. In particular a 8 $\\times$ 8 classification map on a 451 $\\times$ 451 input gives 64x the output in only 3x the time. The computation exploits a natural efficiency of convolutional neural network (CNN) structure by dynamic programming in the forward pass from shallow to deep layers.\n", - "\n", - "To do so we translate the inner product classifier layers of CaffeNet into convolutional layers. This is the only change: the other layer types are agnostic to spatial size. Convolution is translation-invariant, activations are elementwise operations, and so on. The `fc6` inner product when carried out as convolution by `fc6-conv` turns into a 6 \\times 6 filter with stride 1 on `pool5`. Back in image space this gives a classification for each 227 $\\times$ 227 box with stride 32 in pixels. Remember the equation for output map / receptive field size, output = (input - kernel_size) / stride + 1, and work out the indexing details for a clear understanding.\n", + "Caffe networks can be transformed to your particular needs by editing the model parameters. The data, diffs, and parameters of a net are all exposed in pycaffe.\n", "\n", "Roll up your sleeves for net surgery with pycaffe!" ] }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import Image\n", + "\n", + "# Make sure that caffe is on the python path:\n", + "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", + "import sys\n", + "sys.path.insert(0, caffe_root + 'python')\n", + "\n", + "import caffe\n", + "\n", + "# configure plotting\n", + "plt.rcParams['figure.figsize'] = (10, 10)\n", + "plt.rcParams['image.interpolation'] = 'nearest'\n", + "plt.rcParams['image.cmap'] = 'gray'" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Designer Filters\n", + "\n", + "To show how to load, manipulate, and save parameters we'll design our own filters into a simple network that's only a single convolution layer. This net has two blobs, `data` for the input and `conv` for the convolution output and one parameter `conv` for the convolution filter weights and biases." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Load the net, list its data and params, and filter an example image.\n", + "caffe.set_mode_cpu()\n", + "net = caffe.Net('net_surgery/conv.prototxt', caffe.TEST)\n", + "print(\"blobs {}\\nparams {}\".format(net.blobs.keys(), net.params.keys()))\n", + "\n", + "# load image and prepare as a single input batch for Caffe\n", + "im = np.array(Image.open('images/cat_gray.jpg'))\n", + "plt.title(\"original image\")\n", + "plt.imshow(im)\n", + "plt.axis('off')\n", + "\n", + "im_input = im[np.newaxis, np.newaxis, :, :]\n", + "net.blobs['data'].reshape(*im_input.shape)\n", + "net.blobs['data'].data[...] = im_input" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "blobs ['data', 'conv']\n", + "params ['conv']\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHNCAYAAADVB5V4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuMZdl13/c/tx733np393T3PPkYDUccPsQZiaRkCYpE\nCYklOwYhfwjCIAEiJDLswAkQf3AQIEoC64OcIEDiIHESBAiCCAkkJ4GtJHCM+KHQjmGZtmxKJBVC\nwxkOZyac4Uz3dHe97q1bt+7Jh+r/rt/517499ER008xZQKGq7j1nn73XXns9/mvtfZq2bdVTTz31\n1FNPPfXU0z86DR52B3rqqaeeeuqpp57+SaXekeqpp5566qmnnnp6j9Q7Uj311FNPPfXUU0/vkXpH\nqqeeeuqpp5566uk9Uu9I9dRTTz311FNPPb1H6h2pnnrqqaeeeuqpp/dIvSPVU089/b5T0zT/RdM0\n/87v97Xv0s4HmqZZNE1T1WtN03y5aZp/6v/rc3rqqaeeSE1/jlRPPfX0vUBN03xA0suSVtu2XTzc\n3vTUU0//f6Eekeqpp55+X2kZItRTTz319L1IvcLrqaee3pWapnmuaZr/s2maO/dTZH8E3/2399Nz\nf7lpmkNJn7n/2S/hmj/dNM03m6Z5vWmaf/V+Cu5p3P9L9//+yfvX/Kmmab51/55/Ge384aZp/mHT\nNPeapnm1aZp/7x9hDK80TfNT9//+95um+R+bpvmVpmn2m6b5naZpPtQ0zb99/7nfaJrmn8a9P980\nze/ev/alpmn+WLT9oPENm6b5j+63+eZ9Xo3+Ueegp556+u6k3pHqqaeeHkhN06xJ+l8l/RVJ1yX9\n65L++6ZpnsVln5P0S23bbkn6vyS193/UNM3PSPo3Jf20pA9J+sl4RLn2Pt2UtCPpcUn/iqT/vGma\n3fvfHUr6F9u23ZX0hyX9iaZpPvttDiXrGP5ZSf+dpCuS/qGkv3r/88cl/ZKk/wrXfkvSH27bdkfS\nz0v6j5umeeHbHN+flfSMpE/c//2EpH/32+xzTz319F1OvSPVU089vRv9iKTNtm3/bNu287Ztf0PS\n/6Zz58n0l9q2/TuS1LbtSdz/z0n6b9q2/b/btp1IqqFIDf4+lfRn2rY9a9v2f9e58/T999v+fNu2\nX7n/95ck/aqkn3iP4/qbbdv+1bZtzyT9T5KuSfqz9///NUkfaJpm5/6z/nLbtl+///fflPR/SPrx\ndxtf0zSNpF+Q9Kfatr3btu2hpF+W9M+/xz731FNP32W0+rA70FNPPX3X0+OSXovPvnH/c+kc6Xn9\nAfc/JukL+P9B10rS7SgWP5a0JUlN0/ywzhGej0palzSU9Bfepb1l9Bb+nki61V7svpnc/70lab9p\nmp/VuYP0IZ0HoBuSfuf+NQ8a3/X71/7WuU8l6dxp7IPYnnr6HqF+MffUU0/vRt+U9FQDT0DS+yX9\nP9/m/W9Iegr/P1W55tvdPvw/SPpLkp5s23ZP0n+p77Aea5pmKOl/lvQfSrrRtu0VSX9ZFyjag8Z3\nS+dO2Ufatr1y/2fvfoqwp556+h6g3pHqqaee3o1+U+eo0J9ummataZqf1Hl90a/e/76p3NPg878g\n6eebpvlw0zQbkn7xAde+G21JutO27axpmk9L+hf07Tth75XW7//ckrS4j079M/h+6fjuI2v/taT/\npGma65LUNM0TTdPw/p566umfYOodqZ566umB1LbtqaQ/IulnJb0t6T+T9C+1bft7vkSXnZnyWdu2\nf0XSfyrpNyT9nqS/c/+akyX3P8gx+tck/ZmmafZ17rD8WuW53w4t6/Ol/9u2PZD0b+jcYXpH57Vh\nv14uevfx/VuSvibpN5umuafzonYW6vfUU0//BFN/IGdPPfX0j5WapnlO0pckrX8vHpz5vT6+nnrq\nqUs9ItVTTz19x6lpmp+7f57SFUn/gaT/5XvJyfheH19PPfW0nHpHqqeeevrHQX9M52cxfU3nxxv8\niYfbnd93+l4fX0899bSE+tReTz311FNPPfXU03ukh3KO1BNPPNE2TaPFYiHvqB4MBhoMBlosFuV/\nO3n+3TSN2rYVnb/FYqGVlZXqc05PT7VYLDQcDstnvLdpms5z3Jemacqz+FzT2dlZ55n+brFYlHH4\nJx1VjpfP8/0cvz9L8rPdL/PS95DIV//tdufzebl/MBjo7OxMknRycqL5fK7FYqGzs7NOv9xX3ucx\num3zb2VlpVzvfq+urmplZUVra2vl89XV1dI3f+/71tbWNBgMtLKyUr73vb7O/fAzJWk+n+vs7Eyn\np6c6OTnR6empjo+PJUmz2Uyz2UxnZ2c6OzvTdDot43Pbq6urha85d23b6uzsrDM2X+f+sR32lfeb\nb6enp6W/Jycnl9bBYrFQ27YdnrkdEvtLWXAfSOvr6+U6yvLKykpZU+6Tn3N2dtaRi9PT0yIz5oHX\np+cq57Bt2zLffObZ2dklHZAyzb7kGC2P8/m8fMd1nOs++8223EZtTS1bl9RVlo1cp+4jn+371tbW\ntLKyUtaI52gwGGg8Hms4HGo0GpU2LZ8ep/uc7fr5ptXV1fIzGo3KnGU/Z7OZjo6OdHJyXi9/fHys\nk5MTHR8fa39/X7PZrHOv1+dgMNBsNtPp6WlHH3D+qE/5v+eLvLWs+Huubz8v9bWfSX3n+9q2LfJt\nvtV4Zdvk/1dXV8sapL7ydysrK1pfX+/MI+ns7KzMK9e9pKKL5vO5ZrNZGZ919Gw203w+78ilx8Hx\n5/z7/tXV1aodSVk+OzvT2tqatra2tL6+rvX1dY1G528yGo/HGo1GHVvHZ7m/bdtqZWVFk8mkyM3R\n0VFn/LQltD2eY/LIY1wsFh09NhqNihxT1wwGA62trZX7PW+cX//YP+AYTk5OOuvTbQ4GA62vr+tv\n/+2/Xd1d/FAP5OTkp3GpkYW7ptxSWbr9FOhUvlRwXNxcvOwrhY6LM9uuKWE6HxQMGxLyo+YUuR90\nxmqGM9twX7y4OEb/b8UkXRhezwevYz+TJzlGj82fe6HZQNvBPT09VdM0Rei9+Gu8oMHwuOikeBFQ\nyfNzf0cn0f3zdTZSVLocHwOAmhOZPHe/05Fi36yI3A5/WxH6s1zo6USQas6Vx2eniW36ev+4Xx6D\nnU+PwfflWkonM+Uz1yWNDOfE8lbTC/zMz2a77puNPOc428hgin9TFvkcyg+NOR0o3pPt+38avGXO\noQ0Ency1tbXyXDvGkooTs76+Xox/ytNoNCpGkkZrNpsVZ97P9H1ux/JKPnrsdrBozNx2zQiTGBT6\nmXTO2VeOJYljTVmkITWPvG7szDMoonw/SD/bAbY+SpmhLPh5/JyBrXShE8kH/+9167mogQm5HpYF\nIPx7fX298MUOYwZZvp5OiHnlZ9jx87gsjx57ggnU2an/amtQurAD7hPXBfuba926NGWQPPZaok7k\n2GvU10j11FNPPfXUU089vUd6KIhUQrn+jPAeI5OE52sRrz8n2fs0qpJ9yL+XpfLyvloUZGLkW0sL\nEalh5OroIlNUCb8yYuczE4FJpGRZipFtJIrk69KrTwQvowf2MXnrMRLpWBZZsm1GXgnVJkpkfrmv\nhMKTl0wFcYyJspHMH/LF0WimpXiN++7ok+1ndJ9RG9uuESNnPt9tE+1gSnR1dbWkGCR1/jZ/2KZR\nKCJTfC7TTSbKVkah7kvKlL/jmBMFznRAppm9/i1zNWKKJJ+Ra8Tk9ZmIOsdBhNd98N+1SNkoD++b\nzWZlXayurmo2m5Vo2eiU59XolPm2vr5evtvY2CjtNE2jtbU1DYfDS+j+6elp0Uuz2ayDco5Go/L/\ncDjU1tZWQZ88Bqd6c70wzWIko5YZyPVCvZI6jql3y1eiGWyH3zFd5LY4T5mKdB8TJed6MoLj/i7T\nr9PptIN0MIVHOaFey/Xk750GJI/5P/mW65F21qijZcufU8aJVhnlNLHf8/m8yJd0IcMea9oWzgOf\nR31qtNa6iXLpezKN7jWWKHUikkTkh8NhR7+kj/CgbNlDcaRcf/Fuxt1Uc6DSmDJ1lQ4RnYma8ksj\nRZg+IfmaEmV7tTSGKVMstVRDpm9qfaNgGKZcljpIZZFUUyx8tttIaPhBqRbynIqByiH7QMeC/6cS\nrEHUNn40DHRoamkBGi8aWjs7mWo1eRxe3CmH7EfNYGTagvfW/qahogzm9w+613VblhvWszgNQyVF\n3pBvNvRUnBybx03nz2Pl5zXFV1uHOXfpcHK8NbmiwiRRRjIwyrXJOc60L/ubTikdVxuTWuqVfXU9\nUuq7tbU1zedznZ6eajweSzp3bE5PTzUcDotTZePlmir3Y21tTRsbG5LUSfNxLJwnp3S4Dj3no9Go\nOFDr6+udtK9rVuxQUV6X6Xp/TqeZDom/s5OVASmvqzlSKQM1R9/EObKusZzSUTU/7EzQqWAKy8+z\nTuA95pn5armhfiDvycO0cymzXNt0UsgPyy9tyXw+13g8Lk6465DMG9dImS+cQ/d/Pp9rOp2WNl03\n5vor8t68qQEP7Bf7kGRniXWzGYBxjdqZo8NF8lpjepZB3zJ6KI6UF4SFS7pcgFYz1Mu+s2BZ4DhR\nifRQGOmAJWqVTlQ6QdLFxFppsdbFPxTgzDcvMwrJq6RliJT7zfFln0kWuHQaaTxS4dXQoFq7OR5G\neUYkzLc0IHSe2J4VP4lzV3MibYASAXJBPcfN+7wg0/GmE8L+nJ6elgXNaI/oVdb+pANtviRRcTEA\nYXTlfidfbNzIRyKAvocKfjablTXFfvK35SZlkQhBLSp3PyhXlI1a/RINajqWjLhrwQCdu3T0jejw\nGdkn8sY1M0ROEo2lImbUTIch5c28MiKUhtE65fDwsGOwiFKxEN3y4s8530YW3Bfy1M82atS2baf4\nmePZ2Njo1MK4bW+YmEwmHcTEsmLjzfusbygfUleW+LnbY11dGjmui1zH+Xmi0v6faycdcmYUqAey\nXsnriN/T4bMT7Pmn82TKNUZnJvV+Xlfru5+dn5mnGxsbGo/HpehcunAkE6RwW9YVRjo9jpOTk0vB\nittMJ4/rn85eAiJeX9ZDGSBbxiwDXjM5hpqudV8pLw9yoEwPxZGqIUy16CWNeP5tIrPTuFPYsu0H\nOWwPui6NgP/f2trSYrEou1aYJnFfahD0g1I2y/rIsdfuz+hpWXTO67NQl22z6JTOIgU8F1cqr+SX\n+WOlYCcrHRRCvORbRlN8Jp1rOgUe2zJidOO+1CJct51zyfHVEJRlz2SElPPNtOayaKtGq6urGo/H\nBWHgzhYTETj3n3NsR9TP4hzTQNBYZWFmyhwRwORVBjQcZxpSts/ou9Yuv2O0nw5YRtyZcq31xd9R\n4ZM36bRJ3eJ6ts35d8GxkbDFYlGifbc3nU5L0bh/M4jz3Cca6X6lvNJBbZqLtI/lwCksr8ssql5Z\nWSlIhh0pOoCZikkkcVn6jP30d6mj89osneC9lBcaaDpl5Jvn07KUc8ni+uRpkp9np9t8zLS626L9\nYhsu3M6AmTwl+sI2OPe+zw6OHWXu2vPGBfMisyAMZtimHTMHZ3ROzUvPZdM0nfRibWMTx+Q5465E\no6UMHIiaWi5qjiUdd+rEZYEh6aHXSOXkZzTo73xfMraWusnrKUzLnDQKbEaFqYRTCXJS1tbWyk4Q\nRnFMi+T2WaJiOU6OaZmx8PcP4lt64eY9lUrNQawZjexD7m6wMUklQqXExcBnZ/uG2wkNW+F4LrjA\nOXYa0ZzD4XCoweC8ZoEQt6FoO1E1VKo29uTRMgWakL+vpbKko2H5riGYbpPjZd9Go1ExfHQIrTCS\n7/4ud9xQdigbtUiQqY1Ee2ikUmbYb/fTz6OyzfVrfqX8p9NOxeiaFtaskei85Nbx/J9rP50nGyFJ\nHSRpWX1JGj1f73XIMR4dHRVEwwbKCK+PNXD7dL69ZigDdBz8HP6YWAs0HA4vbcl3W0YMmE6cTCaa\nTCalTfaPfeLcEkFNBMW8zpS+7880UNqN1HWeW1IGbzT81CmWd/Yz26/ZN/PCa9N1aJI69WfZT/eF\nNsv99fe0d+lEel2srq52HI3hcFhknulIP399fb2DJtLhp7NP/lt/s+bJ8s5Uam3Ocodd6o4sUSAP\n0kHjZ9mGx0J542/Td50jZcNVixRraT9peY2Pr2UxJwdsRcRoS7q8JdXPdxtZdFZLV9UMLRUwhdTn\nGTnq4aRyLKaag0dllf2mYUo+8HmpjDhu9sNKxHynQlldXdXJyUkR5OSplXsa2nRslzkhdBjIJ6N9\njlqcguAC5pi4aDlOR5D+YbrM33FuyYNaFMb2H4SqWBYtI4mK0DAxuk6lxmtSeZq2trYKMmA55BiT\nT/7OxbBO0XC7Mucx5akW6XJeE33NNmtyaaVt+aUO8PNpGBOd5f+cRxrudKLosKaDXgsoMuBiSsHE\nSDjboQwlslBzEpb1M5HDZWlSo0Scd39HXrN/kgrCbid/ZWXl0hZ9/3bAkw6h+zibzTprkQ5IyhQd\n/pQny0Q6Xrkm2Re2l8FlIra8j+k+857nQBFdYmDGZ5qfnO+1tTWdnJyUtLHJ/5vfDMLolJlqtsPy\nyPVFJ8q8J/9cX+dn2jln4FFzUt2GA14Wn/se2xTKs9vMAIJjMVrHdDBlv7beag6S+0rbn8FpbcPA\nsr6R+uMPeuqpp5566qmnnt4jPbQDOTPKq6FG9KLtmdvDpIf4btub7ZHXoLlEpdgXEqOUjJoyIkp0\nROqecJ31R0zfZX/ordfgz2XpUPcvd5cxQieMnMgSU5isr3G06wiMCBn5xkidffV15GFNFjJiIIJF\napruDrq8z5EzecCxZHGk++7xJ4pX47XbSpSHfOD9teLFZeki3+OxMLpMlCZl0SdjJ1rj6NKpFp7s\n7qjRhcS5LjJNlM9mio98ItReGyPRkUzp5L2mRLRr7Zp/mW5wn31PDTFIMpJIPZTPtpzxwEq2lyla\n98upx5QvRvcei8fgnVTr6+saDoed0+qlCxQoU4mudTLKQTTfJzsbcUl0inUjHH+tEJwImVN90+m0\ns0s06+USTSIim8iK5TtloIbmE6mnPPD51mdMCfm+1Lvc1epTvLmzL/Uex8W++H/zk8+ZTqcFESKS\n46yN9UGuC46fetyUpSmsf2V7zLb42UQbieS5Xq+GEBFNTH3FbEnOI/mWtaFEnCgXtCGLxaKzucKf\nmy+5zolAZSnEu9W6PrRi84RqOQF0qkz8nLAmHZvcsr4sx1z7nukOCkme8JoTkbuiMi1QG3M6WZzA\nWrqBcHS2nUJbG5/vpTDkIqnxhqmFWlrExtbPsQKuOYT+u5aarPWBCns2m5XCz6ZpSsFtykC26e/G\n43FV4dChS55L3WJ46SKnbwcjnWHKbebseS3Tekk5127DhjudePLSZ/ywz3aoTk9PL51kvb6+rslk\n0nE+BoNBqYtKntJJ4v/uS65p04MCnVwL6dSQz7mGmfbw9emcS11D4X5n6j7byDQ6yddwvec81NK+\nNVmgk5tOlmstaRhNbduW18bYmWIK2k6mj15gOtxOgHWC15P153Q6LXJuJ+Hk5KTU7XitppNlXZi7\nYRk4DofDjp7mRgrztBbs8RmcS/Yhi4M5jzTgdog572y/dk8G0Jyr2k7dTDXZWWaKzs6mZYXrx8Gf\n5yIBhlpqjzqXa/Ps7OJsNPPXNi3H5P5m2pf6x33hphynNy3/eTZVHjPDfvs3bUDWidYCL96f7ZFP\ntM8eS8695SH9ELe5rLSo3P/Ab79DlB6xpEtOUCoNDrKm5KloKVC5GKmUiKC4DT4/nTbpcrFerd7h\nQQXINBKpMOgQJoJUUxxE8JaNnUqa9S6JHGRk6MJSP5vndNjL39zcLAiGpPJOO+/oSWfB/a1F6nkd\n58F9pAKSLuoWjLBwYbB+ywo6597jT4TTfXc9h/vrV2cQeWQ/+ZnHSmXj/qURrjkS5A3XCxWDDaT5\nsLW11eGjjdrGxoZ2d3d1dHRU+LZYLLS9va3RaKQ7d+6UNnwQI5V7IhxE/2p1UP6byF+2ybmmovfc\n+TvKbN7H+fVz0iG2A+57cq5oGDgGritS1riQWBz/IMoaEuoBFvOyP5ZJRuj+2zUtvM+8MAKVemrZ\nGUZ8rxvfpejaKq8VoiLJ76ZpOs+0HNZqmIhGZ7Evn+f7OH46Tpwr94sOXOqOZSgI+0RdlYdVeh7d\npvVNDSXjLjW3a57O5+fvdyMSLKmzycOoejp9bIsyTEcg1xydS7bj+wgMJL/TiWWAaVnyRgR/58DO\n6FDKqNtLnuW851jz+mW2tMajmm6l/LHuzv1LPZD00IrNM8KkN5reZio+Ks9EWUheCF4ED0K5GPnx\nOct2SjFVlEJaixj8PxUcBclCT0hRulC0NaPt8SfsmX3xdTXEh5T8JgpkgXMagUW1VAwnJyelSJlG\nwuN3P2qITE1RZBrUPPH1VmY1x6XWf99H5ctFxIgwn+d5SDl1mzxnJ5E5olC1uXI/mD7ytcsUsw/I\ncyR48+bNslPqnXfeKdecnp5qd3e33Pf222+X+bh69aomk4nu3r1b+O31lYqf823+1tApU64nUhrQ\nWuCSCs/r1G3TWJCX/Jv/p7OUn7vdmoLmdwyg3FemhdIxJw8sP4z+a333d9ztRCTNhs2yk/rB629l\nZaUEOOYjdcpkMuk4S0Q/WLCeaF/bdl8+TSTH+pFrKA0j1zADOF9L3lMfk9/We6nbPC88r4j3mV/L\nHGXzO3Wk9Y1l0f30phXOB8fqteTfNYc3X0xs/UEdQseKzgvXpK/jeqJc0V6kbuHc+R7zkAief3t+\nfQ4g1yjn1A4mN5J5LrJ/tP2cm2WOTM0hTB1APcY0N51Gy6EdYT7T6+BBAdJDfWlxzdNLB8O/GdVy\nUVKhZhSZ3icdsHSq0qPP74gyeRGn05OMToXsyWB7fp5pPp93YHorJEPAtYh7mYfetm1nl072iahU\nwpzul3ex+XsrDSNWdChPTk7K2SNEp6QLYeQ81RQKHeokf8++LjPWnEsrvExt1QwrDYd5z+sodySO\nj4suFbhlmONINCFRHo7F50K5baKHbduWk69v3LihtbU17e7u6u2339bR0ZGuX78u6fxcn9lspsPD\nw9Ju1g3RGfQY6CTQkSYPa5Egx5Jkx9HP5trLtc01yr7WiP0xcS5qn9eIc+F55VpchnLVomvKKB1s\n95MpbD+PazvrS7z+bBxtJPy/9VTuvGTazrszJXWcLc8j09uWbbfLQJMy7TXDl78S/aND7HvdL+kC\nxSD/0rmyM1ALWjPQoQxTj6ceomNSs0F2MqwP3ad83Q4dW8tv7nZkP2vItOeBvMv7arYz/2eQTr6Z\n31yvzEBYr9euTQczn8s1zN2H1il5vqLHknqYgAPlxfaT81rjnX8vC/D4TDtQPCDVtEyfdZ639Jvv\nIDG1k8rQSp1MIrOWwX1s10Tna1k/an2g8NGIuE0LU0ZQjAJM2feMVPK5NbTKW1LzoM+MElOBJyKW\n4/CPo41EAMwHKw/pomaMyBTn04Wk9u6Pj48ldbekppPBhcGo3v1gfj0dVyploj5OdzCKSx7UiBGO\nlQcXfipn/5+FuaZMP/jvjJrSQaHctW3bORiPxteo0GKx0ObmZvnuySef1M2bN3VwcKCjoyNNJpPy\n3Qc+8AG9/vrrZW6YSl5fXy8pQLfrvrKPHk8qHMt1Takn4snvOFeJEPmzNJZ0rLh2/L/vf7d70zmj\nM7wMOeWp3RwDU3OMvNk+ibojnVken8IaTqn7qhdTbrDwuiJvjXycnp6W2iiiIGybcmFq24vXgWQG\n4Ozs7FI9mvvuYGEwOD+7rZYez/FQzmvBLddIBpl0ZLwxxp9nDRd1dKIXWRtjJ2NlZaU4fDbAGQCw\nbaLNXstOnRo1pI7w3JlPTrm7n3TkExRg8EEkTFKnRMPz4e8SRWf//Qw7+wwWrRcsczUEkGsqbSDt\nEJ/rdhPl8vW09ymnvt6orufJPE2AgKlyBjKmd6uR6o8/6KmnnnrqqaeeenqP9FAQKUag9AIdtWYx\nMj1XwvzSBYxKDzyjHXvoNXTK9xiG5n2MhOid5q6mHIPbleq1SPa2s76Lz6WHzfTbcDgskWTuwMn0\nFseyjByhJTxuqNPeu/njQnOfAM7IzGmP09NTra+vazqdFt64borRPOeZEQERKc/bsnoHp0L9HWuc\nvHtkGQLFCGcZ8iFdrhEyn/muMcPXhLQpb45wKTNZNJ8pahMRCkZGa2tr2tzcLJGuEUvpPI25u7ur\nnZ2dMi9GoK5evarr16/r9ddfL+/CMgrld7OZL5kCYyEmUVWmUGuolGU607fmEefORP4k3J7P+XbQ\nxkT5/Dd1jqNfR8+JDpovNaTLfU20mXNtqqWOjDrVULbFYtE5+dqoIHcVU9aMmJ+cnHRQJKdWvD6I\nuvl+oyOca88do/WcX6fgBoNBKaD2PBoZMPKQNVIp8x5jTf/6+TU97756TnP9U3e4nUQ6vA5ZYM0U\nK1FZ6WKzi9vwvLh9rzGj26yt8jWuIaJObNu2HNZJniWyYz5ST/n7zJ4wxWbExqldv7DYesx/u6/U\nB4nUGnk6OzvTbDbrvMrI/aghzrkBoWYDPQ9ZT0hEjvcxE8W5kbqZllpfPO+ZPXJby+ihvSImoU8q\np3R6qLBS4aZjlSkTTmItx8kUhZ9nITPTs0DQ189mMw2Hw046qJbek7q7c6y8MiXoSSTM6X7ZmeF3\n8/n5m7a5RXYZ7G7KflGJ0JhQwVhxmKy47US5P3agzs7OdHx83Jk3GlH/JJRL2JUK27tAEr63M2Ml\n7q3e7qPbzfScx5MpGPOBcDl3z7iPi8WinL2USjyNZi5YK3grMc8VDRqdkpRFzqGV9COPPKKrV69q\nY2Oj1D299tprOjs70/PPP6+bN2/qox/9qL72ta9Jkt566y09+uijms/nevPNN3Xjxg298cYbki7O\nrjk8PCxjSXifxj8dF65fKl1+nulAy3SmcNJBSsPhdUl4nqlUznemK2igm6ZbJ5PzWktJe3x0CMwf\nzzEdoizArfWtZjBMLIJ1X3JuPHYWmVueuRuMDhSdf6/PxWJR3q2Wzo0pa+TcB6+tmlNsObBDTt5Q\nb1JPMmXjdQ3XAAAgAElEQVTmsbEPNYeWupz1aVI3jc2Uln8zcGOtls+Isp5kP1nL5jmiDuBOQZ7Z\nZp75eazH5JxmKpLymPV+Hn+m9vJ5Juph6zvrIzp9rN/L1B5tWwaUlEuvGcobbY774+eZbPMpF9SZ\nDLS5GaUmgwYjaIfcN65df0Y+1fyH0vbSb77DxHy+yYOhopa6RbX+30QFZsVSi158H+8lCkIB83OX\n1XI5ak1kidFMkoXmQYhHjtvfsSaFyJmjPBdFE5FIHqTCoaHLKNERlGugMjqwl88IVFJHQM1bCn8q\nnozS6VhwjshbzqHbc/TD9mgUJF3ajcGaq+QLo1YrFKn7mh+jgZxLjikNCuWMBsD9TiPNdsk7Opmj\n0Uj37t3TRz7yET3yyCNaX1/XU089JUm6c+eOptOprl69queee07r6+v65Cc/KUn6W3/rb+nWrVtq\nmka3bt3SzZs39fTTT0uSXn75ZY3H4yIDHveyeck1STmhMeN6ZzDAufF1NTSu5iDlOiNKkcYy17rv\nz8g+dQCfx3lLRMbkuaoVufp7yonXYU0vZD8oz+ms5/qiI85de9xR634QDUjDukyXmXIe+W5H8571\ng2ncs+CZ75hjQbudw1owkWvMn+drW0y0MenUSBfvS01ZYzt0zoiomoeJHvmeDOASkXMfvM4dsLNG\nyqgibSI3FNjpa5qm8xotPpPjJRJJuU0UyfNLdDGpFjjyu7zH9XzmH201bSllhvzKoI38tM1wm0bb\nbdusc8gXBkk1gGQZPTRHih2WLhu+7DQhVSo/MjMdErfFk3zTqcq2pK5xqDlHXCw80JCQYc2RqSn1\nGlHYapGfF8XKykpJ9+T7mqww6bXnWDk2evBGunxaMu+z8FEIs2DWO/c4TjuS7sva2lopuuQ1jpJN\nLIhM40g+5a5GojhWOHTUKHtZtGhDkzsPeSihr8u5TxkiWZ64lZjjoPznXFMeeH7NI488ojfeeENP\nPvmkmqbRk08+KUl6/vnny0nDu7u7Ojs706OPPipJ+rmf+zm98sor+o3f+A198Ytf1O3bt/Xxj39c\n0rkDNplMOjsy6cRkVFyT41RuVpJUrjRSuY0+EZlc69Ll1IKJfaWM0imwnHp9cK54v40FnUQGe+m8\n0FFLBIrPoXLnRo+a/jKvanog+WviWvOPZfjo6Kjzkln/li6/A9B6js+jHqYsrqysdDY7mAf+24Zw\nMplcQpXT4SS/2QfqgKZpHojy2SinbufYcnzmW81hzfVMx8X6xbzMAJJjoZw4ADYRYUxkxw6H26It\nM3JXmyuuAT+j5uCbqAuJkltWuP54rBCRP+qMmu5gH2sInHmaPKwhssvsKG0ZgwofYJs6ymhwzX67\nL7UyHdNDc6QywmJ+WOoqzZo3SONrhUPFY2rbtqSGEnXy5GZEWPuM7fG5XIyMLjMdSGXi6/L0VypE\npqjSM+dClFS2xHOXj3fPuR+LxaJzuGSOh5GdpOJI2JmiwNqBS0fKnzl62d3d7QgqPf5UwuY1Uw/u\nl6Mxzov5xV0knlf/pvLKM214GnGiSjQ+dKT8ORVM8sXPdrsZXZMYlVNZpKKzonQQwV0/TzzxhNbW\n1nT79m29733vK/UOH/jAB0r91PHxsTY2NjrG4YMf/KAef/xxrays6Dd/8zfLePb29rS6uqqdnR3t\n7+9rNpuVs6nsrNaMV40Pte8T5RgOh5d2PDEV4rXkwCWROj6vthY5B9Qn6RBzXXBe+Bz3z7+5Xmv9\nMjF4s8HLNu3ceczsB4POdAbT+PB5PteNuojrKxH6JKLfHpeNptEJ7iYdj8edde51s7a2puPj4xLQ\n+hTs5Fc6hBxL8p/6vuYseb0ZqefaZDvkAflGZM5EpI0vXmZg6d90Ij22WpqNMktngzVHadeIcllf\n0AlgDW/WBNlhIJ8YxJhPltNEssyvwWBQMgHZL64njt/31Wwoeez77Cj7ANuac+rnp27Ndk22UUYc\naWct27ad+RqjWnul30u/+Q4SDSGVBhVeKuGMKGvtSZch17wuryVUz+tqk2XKiUul6EnnIqXR9iRT\nAVjgEy2hAq05fL7GyJRzy/bYLZBte/5ONX+fC90RBWk6nWp1dbVTB5ZGh4rPffC1VrLkjdtN9MZ/\nGzqmQvEb0lmv5HlwZJZpIc6b2+PBcUZc3A+Oz/PDE4fNU0fCXnSUX8uR26SSSgeJfzOiJQyf1/l5\n5vnOzo5u3bqlZ599VisrK5pOp3riiScKH40M3r17V2+99ZZ2d3dLm1tbWxqNRvr5n/95Pffcc/rq\nV78q6Vxp3L59W0dHR0WReR5v3brVUaxpxAi3M4IjUmpZdztZDMr167Vkw+S5JF+WOQK+z+uG/aEu\nqUWZnkPqJ/ZP6m5Q4PhJD0LXM7peJhs0ooni+blek+aj0Wkjy4lsUEdxzTCgyQjcBtCoizc6+DR9\nR/mM7JnaW11dLRsajJa7Xc/PdDq9NHbq8gySqS9zLqgbciwcR81JJg85/zxjiGvb93IsWXdF5zJR\nKo7R9zEtad1Ane0atpoz74Brsbh41xyDb+otrkU6Oa53pa1hip/zS/3IwJ1jJAJMnZi1x/6Ozu+y\nmiWvQY6PNpKOpHThRPlz6h7y07rdtLKycum4k6T++IOeeuqpp5566qmn90gPDZHKVBu99kQVMs1H\nBMFETzej5Myzsx0jNlmMyjQSUYAawkQiGuXn+HpHGPbQCSUTlchtljWkKvvg3+6n05ncESNdbLl1\nVObt0X4O+ekaMEYtUjeK4edMXWb9xXA41MbGhlZXVzWZTDroEusKHNUwtcd0G8fCCM1btjOn7zER\n6WHUnKkm/+9+sC98aSujKs6R5zxTCYz6/X/KSKYS3B/3aTablWMlpPPTy0ejkV5++WX9wA/8gK5f\nv64rV65IOo+w3nzzzVJUvr+/X3izubmp2Wymxx9/XB/5yEf0Iz/yI/rhH/5hSecHeX7+85/Xiy++\nqJ2dHY3HY+3t7UmSjo+PC5roiJnjYoTNNcA14ojYKJf54/Rezhl1BaP3lFVTIsWMXIkmLSuWJd8f\nhFqx3exDjsPXU96IvhMNTj3k56RO5JrPvgwGg1KgnCUG7A8jcLfp9qTLB4kSOTci5ZP0R6NR2cGb\nKRwjwX4Gj+JwOUKmWvlc95fjp84wypBrMtM2kjpF2pkupq1omqaDkFlenBZiX1Ivs99sN1NZRP4S\n4WzbtqS0rAN5Unwt80JdQyTG9WzZN6NVlOFEizIDwCyH26wdrZEy5XE6vevrs9+JjmY2wGSEKNeF\nEUDLh0te/ByvfaNRfAUOUU+vYfL3QfTQTjbP1IB0udKfE2xlk4bP1zP1lQVzmUYxURh9rT9nOo1K\n2G3U+s3vqCjdZjo2CVtL3SLXGl+o6MwLwqYJYbN+RLq8s80GkS8o5Xis9OgAMD3jv/kdU1BeNIb+\n5/O5hsNhqZnwmN0f95njcF1Fjd80FLyGdQPpMPk7Kxumarl4CB1L3ddS1FJ1djBIGSi4nZRTGoja\nGK1YCZtL0s2bNzUej7VYLPThD3+4GKjf/d3f1dnZmd555x1NJhPt7OxoMplIkvb397W2tqZ33nlH\nr7/+un7oh35I165dkyR95jOf0ebmpn7lV36lGGKnb3Z2doojVXO+M/VMnjLd4rQj73EaplaLkE4U\n5yd5ZaoVv7JfXitMybjdZW1ynDXj5fVdKy2gHiCPqEcyrev7MkVZ60c+Lw1zli5Yx9RqTzwPdGra\n9rx2bTweazQald88X25zc7OzY4w8cnueZ6b9uIWdu9MexHePwXqVRpG1oi43MC/sHFnfDQaD4ugl\nr/k89zk3TfA3X+GSThHtE4N6yijtDNPiKSvWo9Szqd/YN9a6JSBBuch6Kq6ZlPn8339z3bnP1KWe\nf/JGurzjnZtO/LLjZQ5NtufnUMdLKvK6srJSdqSzTpf1aAQ0ci3V6KEhUu4wJ4DKiDloT2g6QVJ9\nNwCvs/GjsyXpkkKqCUoKHYmL40FjZD+WOYJEqzx2GlYbgqxjqil/fsa6CTujuZuitquJyv7s7KwT\nmbkIcTqdajweV2savFgyGnCU52ttNGxouehoUHgoHZU7ayD8ORVQOpzpyORWX5MVe62Y10q65kh5\njMztZ4TlvtSCAUZvGV1KF2c8+d7t7W1tbGxoOBzqySef1Gg00sHBgSTplVdekSTt7u6WImC/a+/g\n4EBN02hnZ0f37t3T3/t7f0/PPfecJOn973+/fvRHf1Tj8Vh/7s/9Ob300kultmp7e1u3bt3ScDgs\nO/tqyttjqJ35MxgMyo5Of055Ic8sJ9QDiVYl5b3uT35HNK2mJNMwsX3qo6w19PzXiqRpYHLd1IrW\n+fzUUb6PNX35uREFGiE6OenweCcWDSgde4/JheV2pqRzI+X17ppKHgHQtm05HJY1l8fHx2W9Oyiq\n6dRcw4lisPCdSJTl0s5S256/j3I2m+n4+LjzPKIsdhwZGCXKaOImjET/GPzWAnDqmVwvPKIiA29m\nFtwW73Vfc7NS8nQZyJBBtR3cxWJxaSe3+8YsRKKaNdCA9/qZ387mDY4xgRKuFdsM2yBnIszb4XBY\nzgo7O7s4FNXEXZL2I5bRQ3OkclspvXIbHTpZUtfA0wgnFGeqRZspyLnjgp9LFxNTK3JNRyq9bio+\nomqLxaIUYEoXsKLh7fl8XlUK3u1CA0DnLJ0398N9zyJAeuDkMyMS981C5VTfaDQq51ZZGG2cGD3T\nAWPERYcgF3TOIXlAZWMDYgeKBom7P7yguEuSz6PT5rlftvCtMNJ4eV7oRC07Cdd84nEMLHBm35yK\nGI/H2tzcVNu22t/flyTdu3dP73vf+7SxsaEPfehD2t/f1zvvvCPpfCcnnTOujUcffVS3b98uBaUn\nJyd66aWXyjgef/xxvfDCC/qTf/JP6hd/8Rd17969wksrJZ/JQscgnUTuRrUhcfqHfPKasKJLhTWb\nzS6NoRYQpTHy2HNrOJ0IX2M0M9dAznPqnkQQTHQImRJhBC5dTj+lsU7jVou+ibrxc/Yj0RMaQV7r\n9HHy13z02jfCvLm5KUklbe8f8oaHJTqtzBS85cjpQgcDx8fHnefWguma/na/fR/XFI29EV7LN7MB\nRCvIB88PUS/pPMgxcs5+2tbZEU2AIOeH9pDBLG2X15LfaWr9UUMz6az5XpYscC3awXBK0denvNWC\nBzrBtIvD4bDoMKKPlgdSolWZHTDRuXefM4PhPo3H47Lr2HK7vr7eKTx3W3SYjL6aLy5HWUYPxZEi\n/EbHhJNH4a9F8bVJkOqKlWhA1qjUUCde475QELN/CYXaSBoVYlv0oi2IfAlxRjbT6bQ4VRlh+28v\n/vyc/SS8yv6YlzTs/p588ziMipycnJSddL7PzpIXI5W062LovDJKdt+86PmdFSIjBPKNn1H4rbgy\nH+5FxAiICB2VGCkVcsoAIfTc5s4goIY6sT98tuVyOp1qc3NTu7u7xei//fbbOjk50QsvvKDNzU29\n8sorZWfUeDzuGBJH4B7H5uamJpOJhsOh9vf3y3dvvPGGVldXdf36dX3yk5/UH//jf1y/9mu/VuTE\nDv3m5mbn0M50jIhgmAdWZKzZYK1aIs9U+jT8nAvzOI2sece5JVHXZAqHCj0dfAYuNWJ/OId0OGtR\nNNtMncF2Ui44Hn9nw+LPuK551MQylCJ1BvlkJ2I8Hmt3d7fops3NzeLoJxopnc/XaDQqiBSP8ODu\nNPJhdXW1yCWdbfLUDlG+fsnG0zz02hwOh8Xo2/FhXyzTlsd0TrwGmBJ1/4zapLxZ/6S9oLPu+WLA\nTh2e99GhN69qQEAGJ+Qh+57tM4VpIqpG+bOcZLbD91C+yQeibqlvbT8Tacv2s4+eN6d0LVeSyi7m\njY2NS3o29S9tg9TdRVijh+JI1RAiTj4jRv9vAUiUigVxTC+4TS6IjMw4yWyTBZMW5HTA7Mmnckvj\nSzTIDhKRJPLBjh6L9Tx2e9FS1wh4TFRG0uX6L1/PBZWpARqrmmPqZ9uBmk6n2t/f76CLnqM0Nv7O\n/Ga7jjw5HhoT95Nnq5AsLxsbG6Weh3UX/skCecoc+2o+1QxwLeVmYvRpPibaZR4SefB4E6Hk+H3N\nyclJOb3cZzCNRqNy0CL57eMbtre3y3k60gXCY8XStq1u374tSbp9+7Z2dnbUNI0eeeQRffazny08\n+ut//a/r1q1beuONNwpvc55yzjwezz/XHakWLNkRoIEhb/09EWkikbw+5Zjrj/PKYGYZlF/7PNdL\npuG9tmsGg0Rlzb/tNCQST2cnDbT/rvGUupKIlJGcROL9HCLiDo6kc0RqY2NDbXvxmhG273SeX+NE\ndJiGu2masmFie3tb9+7d0+HhYXl/G9cI9Q7bdDqH43E//Zm/51pz4GGdyPokyhWRZPKPzn3Kac4R\n76s5tERu/Kxsk31IO0S9k1kZykTqMK4l1yaR6PQksGHUqYaqWp+ynwyc/f+yWljy1GvLjhJ1Ltfv\nYHBej+ngmnV9NX8gecYx0xmvUX/8QU899dRTTz311NN7pIee2kuyx8xIK3cCSN3TgumVp3fPIteE\n042QEAnxd0ahEuIk9J1pDf9v+NdtsU1He/S+7aUbceEOOkf2fB+Rn+M6o6zHcB8Y+WaemZA9UTJ+\nxzF5PIvFQkdHRyV1xKiUp50TRWRbTrExFTEajQoqZf4y1cK31fOt8szpr66uanNzszPHTCXx8DVC\ny0lG9/w3EUt/lvNO/vhzX8f0tH9nOol89r3ug1MRx8fHunLlis7OznTr1i1J56+B+b7v+z5NJhPd\nu3dPg8Ggc0DidDot8u+onfPQtq2Oj481HA4LyvXWW2/pm9/8Znlx8fb2tn7mZ35GkvSlL31Jw+Gw\nvAqEKSojYIxgKfs8AJXwvmUk6yNMRKWy4DNlheTvslDXfeVxC7X1kygJ5/DbodRDWbzL/jiqzoM1\neX1NjrJeqsYDj9dEtDhTkP48i65zXOZNFnhbXyZaQV09mUw6qV2+SirRupWVFW1vb6tpGh0dHV1C\ng6yDbTPMI89tns7t+3ywZqagXcvDFBbLFvycGm+o9zIzQvQw58K8y9Qlvzffc8243bSP1HNcg+wz\n0UyiW6xzytTaMp0mdXdMJxLLdvLFzOYP54Xj5701ftTG7DlwnRNrpCgTiWQxm0L/hHV/y+ihvmuP\nTEoHZTAYVIu7crHVlJyZyxxzwtlmIhcajRknY1kaIuF7P8f3OB2V/VoGqXsCCQUzFeYxMK3pZ+WC\nIa+YussCPvahVvxs/iXseXh4WNrxd94FYSNLwTOsT8eVRngwGHS2PvNskhTgNNBbW1udRSGdpxpc\nO8E0gPlCqJltpszw+Qn3kprm4ugDywblmw507mSh88zFa/Kuu/l8rmvXrpVjDO7du1fOeDo6Oiq8\nl85lw68O8jO4Q8XpDab5pPPjFKbTqU5PT/XWW29pPp+XZ3z2s5/VN77xDR0eHhbDz/Xk4lfzjfzK\ngIR8t4JmutkywFREprEywGEqxm3znpRTpyJc72fesG8pe3ROavorZYJj9L1Zp0THufYsqZuySKK8\nkuyEZtG05S0Nhv+nI2XyOVHuv+uceCaQ5YHjM9/p7NCRog5lIOr+uADdgRDfTpA6knzzZ6PRqKNP\nneZhKpmBE4NryoIDEf9PvcAAsTYPHCuJutfjYMCa9oN8YZCf/K6lCik36XgyXewaSPOP4/Uc2PGh\nA+71n7qNfcqi+dS9Kdt0dnk9++T+8Dm2C9vb250dwizzsNwycJIuCtW9Rthmja+mh+ZISd0dUYwA\nzUAKXm3Bs51Uam7T7WZ9TBaP83lUPInImHhfLdedn7EgPCefB3IaqcozlvwcjoU1IYmq0YCmQ0PK\nXU7J67zeSptoh9tfX18vhXzHx8eduqRapFbjl8fPwkUqNO7cMwLjxULH24vFirEWlXuRUhFlzVjN\nOHFeajvz6IRSvnPREgG0o1RTtk3TaG9vr/TNr4F57LHHdHBwoMFgUN6rx7nwWpK679jKiHKxWJSi\n3qY534llBODu3bt6/vnnJUnPPfec/ugf/aN69dVXS7s+zsIKisqPjkPTNJ0dQrXAJ/+3c8KC1JSZ\n5HFuIaczYWeRhdJnZ2c6OjoqO8W8O2eZY0OekdyPWtS6WCwKsuj/ExXN3XIcQw1x8+c0TPmbR4+k\n0V5ZWSlzZ6Jc2rF3NO/59Vry2qJjaX1UQ2Rc32dZ5xk9RCJSLrzDb2VlpdQEShfvvaS9MCoyGAyK\nk0cbIF0UZbPfzAwQ7eH8UJ97HdYQ7XdDDjkHXCtN0xRHlXzhGniQ7ubaqq1B9s9y6uvZPx+BYd7z\n6ADKLeXO/XIfszA712wN/MisCANa8pXPTvnjs8xPZyXMI/Iq+2J+5TpKB7BGD82RIjQpXThDiSxI\ndeYTkqNTQ3TG1xMFIZMYfSSSkyhPKjg+k/e5P+5zOiRMabF9pjDoyBB2Tg/cCsLIVKIudkxTCfiZ\niRqR7x4HF6ev8TgN07qNO3fuaGNjo4yHi5/jcrt0lty33L1SQyXpEBh5srFMBIgRCndH+jOPp+bU\nZeTGOZO6BaHpaPvamvPC1Jafs1ic72piFMR55HsLPSdXr14tzs729nZnZyPnKZFTO/WLxfnuPaMy\nbntjY6MUoR8eHuq1116TdP4i5J/+6Z/WX/trf01//+//fQ2Hw04Eyg0VngM/j1uOfX3yquZE04ki\nQpTBUo33vmZ19fx9kUYjNjc3S6G9nVCflWWnygXOGUHXdBPny5/VrnP/aZBqyrlWwL/sWj47fzP6\nTj1iHhH1oIGvjcMOCueRc0X0PFM0fs+nn8/1QmeBzzeiTF7wXaE0tImAEikjcuZ1b91Hp86o+Orq\nannjQ65394W6hkF8Bpcco+Un9QvRJY+HtjB1VCKQLv3g/FO3Uw+nDSR5rLYni8Wi6AXysxbsWYd7\nHmqbInztsvVkOfB9DyIHZh6b2/RcOxPB3ZzcIZz2mTbY/OffecRC0kNN7ZGRhOvSm+bA+b8pvUUK\nDR2ZTC+QGLGnocv/0ws2WZC8rdaT7edzIaW3bQXhA+1yh5UdDC5aw7CO9mg86LC4rxmheNFTgMk/\n54XTyeR30oWCefvttztGiwgJHUGmmPzbfXA6h8o9HT5GFl40nuucE+6upJIiakR5omJNOcuFRqeB\n0b/b4XzkMRyMaJc5YX6ODztcXT0/w8epNu9COTo60tHRUUHnfJ+Vsf/muU48ysDX+buDg4OyTbhp\nmlKTdeXKFe3s7OgXfuEX9Morr2h/f/8S0mEZ4XpyKs0GLAOTRFY8T0aGlim3TD+0bXvJQJtvw+Gw\n1I8Nh8PO29/NV/N0a2tLd+/eLTvGshaJ67eGkqeO4Vr3d4km2AmmrjEyRCPNdWpngvLiZ7hNH9jK\nwMzGZzqdltf+SOdonE+u39jYuLRLaTQaaXNzs5wK7Tny8y1PDpJshL3jji8e5zqx3nS/6NjYaZlO\npwV99Tim02lHpknWw0agiCwxg8HvzDd+R1lMuaXj8aBAP4NtrvuU4zzA2DxKgKHm0JDm83kHzePu\nceox98NkmTMaRbTJ/cgxEgBg/9g+5SFBCTrFtD1+pueMQWnbth0AgbrGZ5p5/lk/ZSSViGj2iXbJ\n/cua46SH4kjRqSBCYsOUkQAdq5rjlUyoRWi+n/VQVDjShUB5cVsAKPz8P59DuDEF3wLq79hvQ+gW\nKAohoef0sH0tD/JkxG7BdxtUxIwcLJQUOI49Bd9zyDSbpFK4fPXqVW1sbFxygPxcj4dG2FGVx0LF\nmIbZ/XFNEGHxmiPlRZpRo/lFRVKL3hKpq6EqrP/yew5JdKAsWx6H/0+5Yv99Bpd0ntKTpOvXr+v0\n9FRXrlzR0dFROQHePKKD3LZt5/123/rWtwpKd3JyUr6zw/nyyy/rySef1M7OTlHub7zxhnZ2dvR9\n3/d9+tznPqc//+f/fAcBTAeRqfJ0GhOp9bP5WfIwgwB+nvrEz3JtjzdHSBebIlzrw/XN9WXeZH+s\np2ho340YDCZKTMeW7dmYzufz0s9lPGBQ6sDCr3JhytAp35OTE02nU+3s7JS05p07d0p7W1tbHWTB\nNUC7u7vlEM50wGm0vTFEOnfQZrNZqUWjUaqlZ8gDf2b0k2gdt+eTN/P5vByQaUokM3lm3vj5RolS\nf1E3PSjtxGcQnaE+9Zp3m5xP62X3MWXN/as9x/22TjU/PBeUOc6h+0hbTBvFYDSDTEkFzSNvmO7n\nmNxP88/ONFE3IvR0Bq0jqW/pgDrATDAhUSg76f6uht6THoRI9ccf9NRTTz311FNPPb1HeiiIFD1E\neoeGOe3B1iJSe+iMBjINmIVn9koZgRDy8zUmXpcpMXrDGSEmesMiyoycMirNMTIScORs9Iw8My8c\nYfo5rkfw27YdpdRSeO4fa0ocjTgSIILAnWFEegaD8xeA7u/va2dn51KkVsudmxw5JYyaUQqRKR6s\nxjRAzkcN4XR7WdPBOq1EG9ieEYREURxZZUSXc8Z5Z+SUtYOOkFwPtbKyUg4sXCwWOjw81NbWVgcC\n931N05RXEY1Go/L6mBs3bmhnZ0eHh4flOIPs087Ojt5+++2yU1A6j2Zff/11PfXUU/rZn/1Z/Y2/\n8Tf0la98pcgM35uW0bXnJ1MgHgdTwEYyrAcYIed8eM48ZpN56fTW5uZmQd34olLzyZ/x9RLb29s6\nPj6+BPFzTDUZqaXDvd4T4TQxDZztEY1KXeFxUGc4micSR9R9dXVVu7u7Jd3ilOd4PNbx8XE53dtp\nEukcoeLmDacLqcM8bs+hd5c69Xx0dKTpdFrejmB+14q7PT6XBBhx2d7elnS+yaFt25K+IpJPBMTI\nCwuO3V6mjGg3skyAO1yznsb/ExWqyYQzCjn/RJf42+Pw2k67Rt1Lm0iZHI1GnfGPRiNNJpOCXrMe\n1WO27kv0jfq+VlrD+2jj2/aifpXpS/+f2R6P3zymXXKbRPX4zjzXBPI1Rn4e++BnEH0mkkey7XpQ\nKjnPKggAACAASURBVPWhpfZsrCmMUtc5oKEhcRKpaBOay5qJGiN8L40iUywJxWc/c1HQYCQMT8XP\nGqOac8WCXQtL1mpJ6jg1fIfV0dGRDg8PO4oo+89UE5Uii1FNXGyZYjVf19fX1bbnBcqTyaSTjmIO\n3M4ZF5D7njl8G9larjxfvZBwN52brK9ZZpS4iGj8zGv3hw6hf7uP5gnrPehgpFNPma3VdKytreng\n4EAf+MAHdO3aNd24cUPSxXsPV1ZWOu9udH84N3aqJZXi9Dt37mixWJSXyXIcOzs75Vr38+mnn9bd\nu3d1584dXblyRT/+4z9e3tHHPngsTgExnVdL6dlgch5yLtwu55BknpJvliPWaEkXRcxMN7Iuh6nf\njY2NToEz+5zk+2xQsg6FNTWcbzqXqVNYK1MzOqytoRH2uxntUNkh4vqxo82TnyeTiQ4ODnR0dKTV\n1dUyh1tbW9re3u7UJJpHnGMXldORmk6nRR9NJpNLtTQOiLJ+zvWS7jeDG+uS3NDi75qmqZ5tZIPr\n52RQnnNL5zSDHM6770sblAF56pxlujTrsUjWpZRVyluuET7Xc+e6M84HeVlLbXq+M4DJeaL+8tqy\n48Z3rHoNso419T5fNZbz4vlz2lk6l2E/3zaTfeHOSJa6UJ9btpgO5jqs0UMrNk+vj0KQyA6/l7qC\nkUzmwpAu76jI+yjEiaBIlwuBa0xN71zqFpiyfdYBpDKmgfd3VpBWuIz2M1fMgj575o4Ca7n7RPWo\n6ImI1ZAlf84jDoiCnJycaGdn55Iz6cVI48nC8tzVlPxlTZt5TMRjWR6bjkTWYBHJ4Ti4Y8zPM+/8\nPfnC+fNcL6ujSKc+60PoHLqW6c0339TTTz9dovLj4+Ny3IR32WWNnJVh0zQlKt3f3y+v03HBsR0J\n7tZ79NFH1bYXL0l+6aWX9PTTTxcD9ZnPfEZf+MIXJElf+cpXyjvYPA4GClxn6cRarr1TKpWax5OG\niBF7KjnPh2Vxd3e340AQ3Uxk2nyaz+fa3t4u9SWJlNaM6jKqGWyPy455onXkoYO9Gio3GAwu7XAb\nj8elVsSvb5G6Dt3JycmlQMTHRPi9eeaZD2H12p9Op6Wu0+QNL0bHvd6MlFsXEzmnYfX6zfF7nnks\nhXVdrUaNZ4IZmSDiTP2R69AOO424eeMgg3Vgfg71fda/5nzTVvn/DDCI1qROsyNkPcJ15r76O/Oc\ngYp1aC3AJD/zuXS4zs7OOvq7NhbykwFAOoveYJU7IS0L1gt08hiwMiiyLrRdqqF9zCZxzZ2cnJR1\nneOrIVWkh+JI0VHg71RKNApETxLtyfY4aURcEgrNScuitGyb/2fEwbG4vVT6fv76+npnWz8XhK+x\n58x0ngWHHraNgRe/PXMW2h4eHurw8PCSICxD17wAiRrVlJ2VO2Fz99MFpjasHJv7SjTHz0vHmI6b\n+7Ys8mKxbkbvVHyeC8tEzWCbP+kAJVLKSIwy2rbnxd3cKJAF/OnUu082NtJ5im13d7fsrnr99ddL\nKsbGxQaF27w9P8sCDKd0DPtbHr1LzTvX2vY8rShJ3/zmN7W2tqannnpK+/v7un79uj73uc9Jkn75\nl3+5nEVl5yNTJaREXYgOuM/mn2WDc06+8fOcL6e4KYt2HhghU76NJI7HY+3t7XWeeXBwcGmDQlIt\n+Mr5zbm3/sl5IvqQn3uMTA1LKs6QkSgfESKpUyJg9Mgyar5sbGx0Dr6U1HHGzs7OdOXKlY5jaWM3\nn89LetAy7LSeC9B5BMPJyYlms1k584cpXPPMYySKb7mgw8FDfKfTabmWeiERl0zB+rk1PlvP+dkk\n7pDLIIEOaepU/zBtlXLBYNnjM9Vkwp8zKKeuNzmDYKKO5C5rPsdrikS+pXPKlKf5TZTPx5BwZ7J0\nUV4yn8/LC9LZLsdFB2wwOD/OxHYiAyXzn84Y+WV7QBlt2+7ZjjV6aK+ISQdF6uaFU1AZkSbMx4ms\ntWuEhY4EhZnwKNusQbTsT418n710tsn0BCNDO1JUloyevZPIcCUFkc6LJ9zf+TMbhcPDw6IguTuy\nBqsm6sa/ueXfi0G6gGrtbFH4iRxZEWVNQzpG5jOdI6kL4XMea9dauedCsJLKZ0vdLd0ZaVJB+RrP\nF99kL+nS4rdMZFpQuoxImccnJyel9ujatWva2dkpDkvW+vDZnDeiUtK5UZxOp7py5Uo5NdpGggbR\nNVR+3iOPPKJXXnlFkvToo49qa2tLP/iDPyhJ+uQnP6lf//Vf15UrV8q5RUQ6SJl+tazZUHKebATp\njHhcNYNCR9IoyOHhYamTklRSzozMuaa820k6l3GnOf0MGlIiVL4/dZfXGuWfz/M1RksyeMkxkm+1\ndJT1pA/IdUrO/DSfnN5JI0vnn7U1Dtq2trZ0enqq0WjUOX/MaUE7MpYbIlRO41OvOhiYz+cdFMj9\n8o5jzgtlImWDc+Qxcfx01Kj3GOQlgs/gjz+c41ow5mfWgq90KhIQqAX7vta6hE40x0HggI4UUaPB\nYNBJdVHnMOjM7x3YpszbHtVsG2XSMmXnmSk46gYequy+cwxe47lm7FyZL5TvRPjoLDGgTvR7mb0v\nc/zAb79DRGHK/LLULTL1dxnFkdJrJ3NqxiUpUa6muXxCsimNbhLh0dp1hFtTgRlB4EK0YBqqtJBI\nl9+czsiHaT9GyHZ6eIJzIiSpwKXuIloW5Tgf7v5RSTP1NBgMOhGj+bGyslLQFTpVVlKpYP15LmyT\nc/eOotIQpdPlz83/B6EollfLhqO7RNdShvMMLbdrBMcnYNMZ83sIr169qg9+8IOlH8fHx8XZsXHj\ndmH+9tj8vIODA+3t7alpGr322mu6fv26JJX3FR4eHpZzenzfZDLR008/rVu3bpWCd8/JH/pDf0j/\n4B/8gwKDM9pN5JOyZnQza9PY35rjSiNB2UjndD6fazKZaH9/v6REfd6WI9laarAWsPlEdBdMs1+O\n3qmMTYlc1pBOOti1ddi27aW5JD/pKNtwO+3hQEpSOaOOAQ8DI+qf4XBYeObPHnvsscLTw8PDok/8\n2crKSiknsKwfHR110EGm6KizF4uFxuNxZ66ti/nj75zyJrJNnnvbvwuJOUbz12UP/s58qRnvNPQZ\n2NUCh0RoMmD1/+4j59BE5I9tZPCYRLTOlGtpsVh0shj+3g4nA2/OE/tDx9C6r3aauH8c0PCQ3lyH\ntJF2qDLYdXBOu2eZoZ3MdWE7yzSybQk3G5GPtTdYkPrjD3rqqaeeeuqpp57eIz201F7CqvSsCd2Z\nGCHYm5S61faZ1mPqypHgsr64DT+LxXgZRRAurD3PkQCjRLaRkYuvZWozoWEjUtx95H44leI0nr+z\np15DJ/w8w+xE/Lg7LfvOMTGSky5OsDaqwkjJJzS7qDhrpIjesG0fYkqkg2NwxJoIEcl9ycithjqY\nh0RNWL/A1FvC6cy953icsmKtBIua3Uby4vT0VFevXi01KbPZrPqeMm9ZJ2LjPhPql87lb2dnR2+8\n8Yb29vY0Go107949Sec1Ui7Y9An95Nd4PNbNmzf11ltvaWdnp5yy/gM/8AP6sR/7MX3+85/XeDzu\nFPUmypepW6ZmiEwxhZG7fKXL6VDWybi/5u90Oi0v2t7b29Pu7m4H4eb6NkpDxMdk1LUmb0ZULW+W\n7zz0j+05Emb9D9tj1E2+pZxTJ/r7rKeULlAAIgxc5y7Mns1m2tvb69Tj+aDd4+Pjcp3bPTg4KDK6\nv7+v9fX1zsu1XWDutczdfp73GoJOBJ96kbKSfOManc/PDzM9OjqSpLLJwvqA2QevedbPEL1x/410\nmizT7Lfvs462vuUYuLa4a9FjYEkB7yM66bXBZ/vafB6/8/wbneH8N01T3syRqS+uE/aV9Vsso7H9\nmc/n5a0BlEmm39Lm8busS+Q9HANLZJj29HfWI7QdHvsyf6TmWyQ9tGLzXBiZWuNvKjoyzERG5nOY\n6qNSNLxdWxg0hMvqO7i4KVy+Lx0iO2W11JH7wUllLQPz2ePxuJO+Y/7d4yJ5gVqxG25PA0VF8CAj\nzDGyv5LKrq2VlZVSP1WD6W1obPRy9555JV0cjZBC7fGzHfad8uScPw1rKqZ0lphL59j5N6Fo85Dp\nnZp8u26KTgqdQ9eJcDv+wcGBHn30UV27dq3jTHj+bAzdrr8zP1dWVjppVs+Nzxh75JFHdPfu3fI8\npxn39vY0GAyKETo7O9OLL76oGzduaHNzUy+99JK+//u/X9J5uuynfuqn9Fu/9VulH56X7FMqb64z\nOw1+HgOTTM2mE0wZpiI/OzsrDqKkcuK3HdlMdzhtYLlg3SGPUCC5H2tra5cMPOWmlqJin5M3/HxZ\niQJl0uR0SNM0nZPNmSIxf53281EXjzzyiLa3tzUYDEoK98aNG9re3i4bZZzGM28Wi4Umk4leeeUV\n3bt3TwcHB7p9+7akcyfLcp2pZwckDjRynFzDdGz43r408uS79b+duoODA21sbHScZfbFMuR58HfW\nd54vrkPfY1lLvUd5oRzTTtQKuK3rrLsZ6DNgltTZaMLnZZlJreyEOsrjyzSm+UoHlm15HP4+Azq+\nOSFLQmjbsy+skcrNUgxk3Kb7bnua8k7HkDxggbl/aEseVGguPUREKhnN7xKtSuOYHjaNewoIJ5vG\nlJPp6Jl9SVQpc+ZepMwXu22+HysXTTorbIuLlWPm7jwWgLpGytdYEXEMZ2cXB3om+ubizVTQOTYq\nMCstKg86du4Xc+P+zblh8TcNTxoTL0z3g44UUUH3mbJBhy0Vbcpg7hSqXeddSFY2vK9mABlF0SGw\nA0bZ5HXk5Xg8Vtu2evXVV/Xcc89dir7m83mnxoFIrevSjFy5rz7uwKgCjy0YjUba3d0tdUV855qN\n8ze/+U0988wz2t7e1te+9jVJ0vPPP6+Pf/zj+qEf+iH99m//dqeIlTUJKQvpBGQxqNcFgxBTLfhK\nZctgwQ7h22+/XXbkOYJ9UCBGA+W16LlNVCz1jL9bLBadukD3k7UZeZaWg7UMukyscyJ6QCczkWEX\nmA+HQ929e7cU/EoXxuSZZ57RE088UWpZ3KZloWmaUjtjlM9y+MQTT2g2m+nOnTudnadt25ZCdD/L\nY/W484wpz0s6Sh67P89gi8GjdK6P3RejLhsbG5eCcr9qhDLJfro/KRN0qmqoI4GDtDF+tsdBnWRZ\ncv0Ui8G9nrkDk4ec+twmB9ocP20Sdaafz01RdHzpQFK+ySsGDP7cbQ6Hw0u7eRlc0TFK3ri/Jjo8\nDETNY/fDgImJtpU6yXx2XRg3DyzzVUgPDZGykjClIlvmMS9DrR5EVmy1CNbMpLPg5xMGZV+o6BMt\n80QmFGiBIkqQSJZU3/XjiN3CSMPJXXtZrGcD6iiSkYzb8PjZn+wzHQb33f3JQl1+xqgmIyvyzYuT\nxeFUgu4jHU1+RyWVY+Di5gLiSzlrEVRtkwI/q6EDVKKeM0ZMNtpWLLWNAU1zcUaMdH6UgFOljOo8\nfvN8sVh0dgmapywg5X1OeRwcHGhtba1zCvXGxoYGg/PzgO7evVui5a2tLV27dk0rKyt688039eST\nT5Y233jjDd28eVN/4A/8AX31q1/tKH46vJYLosScIzquRGoyIkw5sZzSWSPKxbTA8fGxbt26paa5\neDkvHWmmB1ZWLl6ybWTP17VtW9YRneNEKx1Ysdja/fS4ZrNZcfRIteCAc05jwzEyrcj3zjnNaaTq\n6tWrhYcf//jHNR6PyzEHPAvq4OCg6Jr5fF62mHuuvDPw7OxMx8fHevHFF8tux/X1dR0eHhZ0wIX6\nOZ/Sxa5RjtFGjevbTobT3Ua6PXY635z/yWSiO3fuFF1IXe5AjjqlllHwT6IbbIuBsK+xDqDTb0ff\n88M2vbvT64UbVZxCtt40uiypnGbPF5jXUpEpWyYGB5Qby5h5b0pEiQ6h5d46jw6S+8K0JrMNBDnI\nG8+Fx8xANEtGMuXJFGQ6fj4KxH/nLu8M0kgP7UDOGrIkLXeMUqjzvmXtSl0lx8nI692WjWzNgTNl\nxMG2fD2dojS87CMXLe+XumceJeTq2qlEcKSLt5XTkDONwL+zBoPoWI4/HYFEVjJyTEoF5DYdrVuZ\nUcAp8Ibq2S86ZRkRsS80zF68OU9ECog+8DMq6UTFEh1LRMrXEmXgCe3kq3Quizdv3iw1C1kjxZcl\nS906Pzr9RIGsFLxD0kZSUjnt3G0SXZ1Op+VU883NTX3rW98qp6xbeX7iE5/Q+9//fr366qvFIOdr\nPDzH/i4jdZK/YwrH91EmaJSki/Rlyj35Zscl0WErYM8ZX2lhw0wjTdnys7lm3OfRaHRp/N496zcY\n8Dsew+G+UY/4+XZaGTDQkBtpki7Sd2dnZ9rc3NTe3l6nxlE6d5oWi0XHsTPPPB/7+/saDAYFtRqP\nx+UF10dHR3riiSfK8QdGQO2cE1XmWqTO8Xd2Aiw/lBsHrBwvx++AJJ2lyWSiyWRyKcVEBJq6mHzk\nGqfek7oHRSYxWDIxPefvaAedVq7VgtlR4lEF5A3Tlk3TFMTZgQKdUup56jP3TVIJNvy7VotYmwu3\n5QCEjmTq7CQH+Nmm9cD6+volxNU6hvqYAR11Nx1MO06WNcoNAYBl9NAcKQsNPVAqykSkzBQLAiPv\nGqLk+/w7J89EtIqeMgWthoR5EXNh0KAnJE9KFIewcRp2OlE5PqJmvofnpbgOhwiS28iIlsaM11uI\nOG63beVIheLDD33eVUYRTClSUP3bCtufpdPE+pKcZ7bFv6m0pctQbUa6td/mGduuBQOUIzpPlAf/\n7evMRyKN/vv4+FgHBwfFmRoOhyWt4joVO6J8Xq3+w+RonA6Yi8Z5zMbJycmlV6RYeTs1dufOHUnn\nhvT27du6du2afuInfkK/+qu/Wgyz59XHONDBI4Kb8yd1z+5yCofzkvLhKDxRpVxzs9lMk8nkUkTL\nZ1rO6bAxXcqUjr/3WFibkc4WD8H0GrGD7Ejbc8+1R2rbtjwjr3EbrGUispDnS3l877zzTnm2ZdRy\nwwJ7vrbDmxSm06meeuopvf/979d8Ptfbb7+tN954o/DTZ0ml8+F0EcfFcTDYcr/8nWU8nR4iShnc\nORg5OjrSysrFq5DMGyKSXgeSOnxhvzj37F9+R0TK97qGzc4wgxZf73f82RHx2P08llFk0E7kOWXQ\niNcyJ8a6g+d2ea68rlkfx3mlHfU15hvTcP5sOBwW20A59fqrpbXJf9sd88P9sfymjqasZEBn+8Sz\nzuiYLaP++IOeeuqpp5566qmn90gPNbUndSMMIiLp9WfkQTQhIdiaB0qoT9IluJf3JPJAymsTlXC0\nUEtvJTTPNphXXhaFJp98jZGIjI4JzzJ9yHvIN+4scXTNvDL543otv9eIzzXiwAiC8LSjSSJSTK0x\nKneapZZeNdzKnRokIh+sb2IhZO5ASXTMCAfv804jzkHOT0aJ/t+RXqaGnd5zlOr7Njc39c477+ix\nxx7T1atX1bZtOSSxlupxv1w/xlohzgdTyOT3aDQqBy1aDswDoxyurfJrHaTzlJH/fuGFF/TFL35R\nL774oqSLOh1HdpwX84vpJ/LbP5nyJeTvcXOHD+WcSLH7Y+TTqZFMszLtkOuCaG7qKP4mMmk95XVj\nVNF8JcrOlB5TO3yeI2ZH7Jl2MPJiVNH3ra+va3t7W4899lipvfPuurZttbe3V1JyTJUahfIrXYhK\nSedr8eWXX9bx8bHe97736amnniqI1MHBgWazWVmvbNd1kSkTHj9RfSKXTt2SP5wz6j+md4i0JNrO\nsVhP1bIcqb/8eSJinHuWZng8Ror8mZEZqVua4M1C/s6viyKaSznMbEIiWJYfp8ZYZ0d7zNIQ1jx6\nXFk/lWlBtuP5OD4+vrROfA/TaSyi91xThxqFMgLFNCX5n74Cn2fkyWN3loQHG5syhZj00F8Rs8wh\nkrpwKeE6MlzqnjFFyjRPLnw/w0zNepeawSTcnUVwNYcmFyn7kBNL45Y74Hhf3s8FQGVkQ7psgbN2\njAbZ4/D3rK+xQLnonekk1rG4XS5MQqdURHSePM8J3abD6jYJtafTx8XJwkM+I40seWuZ4Pg4Z0yN\nOQ3AtCjnKCHlnE8rJhbq+5mj0ajU0qRR8P9N03ROjGbtjJ+dTkittm57e3tp6nV1dVWTyaSsCzoZ\nt2/f1mg0Kum/F154QV//+tfL/NJRYB2QeUpnOp3ZDIJ4jechAyz3l0ERee96pMPDw3J2jttlHRxl\nwkePsPYqg6haXyV10hdMCY7H43Latp06OlmuU7Pj5k0BqWtYsNy2F0Xwg8GgPENSOUZjfX29HCng\nWjaniF1/c3x8fCmotMHPtKXH5Xd67uzslB19k8mko69pkOkIcD3Vxsg5YV2VdUeWEdAusL/Wqaen\np2VzBftjouNaW7/U+8sKnF3D6HtdC+f2WR7B4nemFdm2pPJuzIODAx0dHRVZpo1aWVkp7y5Mcn+8\nPjxmy13N0aGeo041z1JH+3fWiKZ8+z47dix3kM7XDc8gdJseo3Wfr3dtMIEajoNpugzgrUPTznq9\nflcWm6eDQQSEkTOpZkxr6E86MqzHYnRDR4TPtHedhsREQ8I+0VDVIhn+zu+8aK0AuNg8Tu768vO4\nm4K1AHRqKOQ0DrUIgv0h8sXtvlZaPKvG13GXBZGZs7OzcijfdDrt7M5hFGCnyn1jcWBGRUTaPH4q\nHY/B8070iY5dGk06TMnTdBAzb+8fKnLfK3Vrl+gwWO7NT19vh7VtWx0dHWlvb68TmXpXGR0/z4Wf\nkw6/eeMt1E1z/soYSSX6tYNBnrImZW1tTUdHR7p586Yk6cknnyxnB924cUOf/OQn9du//duSpC9/\n+csF/fCOMcuT64WIDDEap9Odc0F5TVlm8JU1cVyzdgzzkFMHD+yP1731CZ1DKuZ0pIispHw1TVNe\nnOx6GAZvXvd2pkzus5/l89u4LuxM+6wwSXr88cfLLrq7d+9qNBqVQzfNaxcUz2az4mS48Nl9tYzb\nsTP/XMg9n89L/dTx8XHp7+HhYSeA9jg9L/zcTgiDaK5/FjBnYOI+Uh48F24z9buv9QYT2gXOXxpa\n6wXLS47NP5wP85TBF/Wlx5DHMUgqcuL31uWLoP0Mn5fFPuVL1KnLXPtkZ4LOIj/zM4gccr1kbSj5\nbjnzeGwPiNZ6jK4Rs8xxI4n1JFFok+ePdZJ+LgvJGdB5fEQqU5d8VzpS6Zyw01wIy76rOSTpEPgz\ne7SM9LmryTA1i5GpRBmB2WkhEsAIhM9t2/aSA+J+EzqksvazCX1vbGx0JpMQp3f8WBBYGGzv30WF\nXnAeR+7WoPPCBUBjRIifaTXpQjEsFouyy4xKyhGg0zw8kJNpnFq058VRi3rMl0T4fJZKfm/lRQPJ\nfhLF4UGWiXqRT0w/JprpPtYCAUkdRWLHx7uhbCxt3BeLRdmBY8fU8uPI3H1z6iCDCMv9/v5+MZg2\nSrdu3dKNGzd0eHioyWTSiYwXi4W2trbUNOdpo93d3YI63Lx5U5ubm7p9+7aGw6H29vb0Yz/2Y5Kk\nb3zjG8VZMr/9N/vsYxgSWXCxMonri06Tiam/RF0t+0ylUUlyfdsBdL+Hw2Hnt7+zzNpJyt1J7kdG\n6nTMrE9YMM+XRtP4e/w2wr5WUjGgq6urunbtmp577rmyu9LOj78fj8edFw/7hdbz+Vy7u7udAnmi\n4zwSgzw9OjrS4eGhtre3O+82XCwW5Qwh8tv60WuVAWwi/5yj2WzWQWKo21PvkO/mEY02HRDziHIm\ndXddJ/qSG4H4HV/Ia96lA0J7Y6JOdpE39Y7bs+5nitO8YIrPtFgsinNCGeL35gnfUWg95H7wAFHL\ndg0AoBNpvUo7fXJyUnYPM303GAzK0SQuIWEq0Q5UHutj3tgpTTTK65OZEbeZoE6iqOmzkB7aOVLS\ncsfH1zxIiGt583TAfC8njwbaz/H9Fg5H+L7GELifQeVMg2xhYr64lvYjDOsx1PhT+34ZqkSIW1J5\nsSoj/qwncF9SUVGY05HisyaTSWdHiL/zYmPEbqNjo03H1ULshcr5I6/pbLK/fmYaL85NKhOPPb8n\ngkc0i3Of6VL3hf1ynzLFJ3UjXukCUmfaIaNdG1k7pH62+WVHy0bX83pyclJeK0Q5tRJOtOr27dtq\n2/NambfeequDgNnAbm5uljHaWL766qvl9OvDw0NtbW3pmWeekSQ9++yzevnll3Xr1i1NJpMSAEjq\nIBSWEc6/x0fEmrJW0xecF8su15SVur+jfuDRJ1wHbsuBiwMFyg+DA0mdeUqEl/1msEAnxfpla2ur\ncyq426bjRQdkdXVVe3t7evbZZ/XMM8/okUceKam9w8PD8iJsG1Oi3l6bfIOC2yTysrKy0jl/y47N\nYDDQZDLRlStXCppFxDxrdqgfExmyPjdvanrR37NNrtM03EY5vHbYLp1a/8/vuBYTcSYaQ5mh02O0\nj4Eg7VAafn9u5IWIFPXN6upqOVyX/LN+YzDkPvl5nhepixQl32o1n/7bKUnPF/WXx2S+e90kETXy\nfUZnadfyHuoN3+dn0mHluDK952t4QLSBApORs2X00GqkpMsOAyNnevX8nI6TdPmwvzR8CfsSaaEC\np+J0WzRSCeslzMwxME1QM7hExTgGIm6e4IQt3VeOgYaGxXPz+bykzHy4HpU0n01DX/uM47ZSsLAl\nmuZ7jaR4/P4s0zR0XIhGuc00kukUWYHxPvIuoXH/zWcl+knFSH7bOWQNivmdTjnvraX52K75aaed\n9QCOnv1M3s+am5WVFV27dk3SeYrl4OBAOzs7JW3GQlMXDNtYeJ6uX7+u4+NjXblypRzWuLu7K0nl\nZGIbYjtt0nndxp07d/Tkk08WRW9k5Q/+wT+ov/gX/6Jee+21gvJRTj0PXi+eA6JQRBaTiBBQ/jLt\nRmOQaUTODwu5a3LjfhNtdpDAVLvJCB4NLeeQssu0Hw2T58h8Yw2JHSmeQP+xj31MH/vYxy6dvrc/\nrwAAIABJREFUNeT5c1qIemw+nxe0k4Gi+U8EINO+liOiFXakxuNxObcpEZCcz0wL0R6YJ76OPLSj\n4zYzPWN++YBiox8ZtLRtW+SXNiiRQCJLNUcl0TFf75IIPs/rm/qDZQupS63zvH7tnKTusT1I/jGj\nwbqspmnK6fKUCfeHmRnKomXI7xLl/LqPBhess0wM5ms1Ys7iJALIPrNNpvXSQczAlo6U59sBCkEH\n64ka8FPmfOk3PfXUU0899dRTTz09kB5qsXkNdeJ3JOZhE8LnvYlYMcqtwaZug78Tgq+llfxc5pF5\nn68l8sOomaiTP7PHTlTNEa6RB46PuWAiUJIK+sQj7xlB8pUCmZ92JJq8lrpQvGsi2A75lFEjkTMi\nWb6XqZsH5aN5j3+bb5zLWhoz57kmF+4no06PwXPjiJGvafFziJ4wUuV883OmmbxzhQfhuZDY6R3e\nS2RnsViU2qoPfvCDun37tvb390sKz/M7Ho+1WJzXzB0dHWk0GpWDCV2k6jm9d+/epZSvC9L9XOmi\nANZydevWLT3xxBOSzuunPvrRj+rrX/+6RqORvv71r1/a4u/0Bw9tzHS4PzMP+TvXPefc8kx5oewx\nneb2t7e3L6XgPVde71xPXGt+VY+f5znzHGQayykl7hiSuqiEr+F78c7OzrS1taXNzU2dnZ0V5PBD\nH/qQPvGJT5Q0GwuWXV/iOiqn5KSLHVKeY84va6pMREHOzs5Kql86r4t63/veJ0n60pe+VJBIZhY4\nfq+Z2roncsj5MBLhua6l6WtZisViUY5tIdJDquk+t5kpNPLBlKll2wmmkKQLdMVb+TNb4faJ1BEt\nN/JLefahsUZNyVMiPqx/8nNcx2Z9lkhc01ycks7UN9FMfud2PM5MJRo9slzTlvjHa4d8Z73Zsg0/\nHlOt1mnZ+1f9zLTBy2SzjHfpN99BSgeGn5m42HhN5m5r7TA1ZUbX8ut0bhIepDLnThovBvaP46FA\n53NTodfG7HaoDFicS6GxgNE5ch7XgmJl6bbIKxqKWmqvVpfC/rVtW2otpIttuXR4afgswKenpzo5\nObmUQkwF5b/Tsa7l2HnysMfGugm2S6ctZTFrNlJJsn3D68mbmiPm9A7JbTntdnp6Wk7/9nyPx2Nd\nuXJFW1tbRTG6wLttz0/y5u4l75R68cUX9eyzz+rGjRv6vd/7vc66WVtb03g81vb2duGF03RUoDs7\nO5fqZFZXVzvOmR23vb09vfPOO3r77bf1+OOPa2trS3fv3i3ffepTn9KLL76or371q521Y7h9e3u7\nGP3kJ+dgWSrIay1T1myHae1MvdLp9ny4loY8cPDkMTBtMJvNykn0kkr9mNtyP3k2mbe/MwWeqS2m\nwi3nW1tbJf24urqqra0tPf/885KkH/zBH9T6+rr29/dLoOW5dyrQKRwaVAYJJpYf1D73b+vIzc3N\nkh65fv26pHMZtm7i7i7LFNdJzhsLgvk9U4TWK2kvfG06Jf5tOedYUr9mfQ31BuWCuiJrNX29HQ46\nGQw8Ux8nr/J0dbfB8fhvp9n4mZ/DoJ3OkqQim4PBQEdHRx1nQlJZE7zPMkTeeR0zRWqnjvPCE8S5\nHmtUq/NiDRo/J/8pw94tzlRr8i+DNa/1lE3SQ0OkpMuM4UKgAGW0mYZ12QBr9VNs320lYsXiRgs3\nPXMvIhtTCrgXiwududi9WOxMcXw03ByPc73Og9cKQL04lu1CqDlDHov7yMXEZyS//DcRuf39/fKd\nx8KdGKamacpWaBohOjFZm5BzmMTIJZ9nZyqjFCqCZYuGTnWNd7PZrER+fB5rRei4Ek00OkgZtDGY\nTqflBa+SdO3aNY3H44IicZ7sxI7H44IG8fUNX/7yl/XpT39aP/qjP6ovfOELnV1z0+m07LjiqyLW\n1ta0t7enjY0N7e3taTgclgMbrbRu3rxZNjP4u+l0quvXr+vu3bu6ffu2nnrqqeLwra2taWtrS5/+\n9Kf1xS9+Uffu3SvPu3btmkajkW7fvl0KvRPFowOURa+pI/Je8pjyRmQv5d9zMB6POzUtNEBZQ2LZ\nnc/npX7M49/a2tJ4PO44UkSBiJwx8nX/WQNnx9UbE2ycXnjhBX3qU58q/Day0DRNeRWOx+pNA96B\n6bE70KOxJZ2dnRV01I4TdYwPap1MJjo8PCx9HY1GOjo6KhtTuHvZ+rOWOSCvuZPS47dRtA6nk+Qx\neI3TcfNYjPARkTF5rhhYEY16kD0iscYs2yBSaR3vdliDSTTHcph94jwOBoOy25Q2iJS6h2M2r9fX\n1zsv6SaaSN3pAMvPotzQGfT8kXfc6ETUyXNG5yrXdr4OymNIZ4rO6bIA2faoZpf8Wa0+s4xj6Tff\nQaoNJCk9bE52DZ1IzzvbMtGY0nEjskO0ytcQzqfDlTvWfD/bYB8o8Bnp+p6Eov3MLJz3c3xCLXcv\nWNhtfGyk8l6Po8YbOpnkVRp0Gzqfa+Q+5qIx0uIIu/bcdJgcXaVzSbITkjCuF3A+h/cRQeIz2Qb/\nZwSbznBen/d5oVrpUA7Mb74/TVLZReXv8rBG78qzcaMyXVtb09/9u39Xzz33nD71qU/pi1/8Ypmv\nlZUV3b59W+PxWMPhsKT2RqORRqORZrOZfud3fkfXrl0rZwUdHBx0ItWmaYqxPDk50d27d7W9va13\n3nlHq6urJdV0cnKizc1NffjDH9bVq1cLAiWdozY+qdmK00YkAwCmSskjGpZENVksSwfFha1EtDj/\nTpNTnqhrnI5JBW4ZPzg4KCjfbDbTzs5OcWyI4jolOhqNSh/ZTyKrGxsbHSSvbVvt7OzoIx/5iD72\nsY910Anzw8+kQW/btqQDiSS4/3zpsvlomamhPJYbO2+LxUL37t0rsmEn38XtNb3q5zC9af1Dg5pz\n7rESfaFT5nElb6SLwnMGcgxyOfd0lOmYkYwQUu8zsGqaizPD3E8H3rZx/s5rwO2lLuGp5H4Wgwzb\nDAYB/s1gNXV5on8ep4M195lrzbLMsRJcsENKR8z95f98Hn9nxsKfk9+cA17Hde8+ZGDtcfvHjj2P\nEkpdkPRQHKkak7jYPclUhnRslqFLKfyMcNJYppOTCFfNGSJZ4BhdSZePDiBs7udYIVGAPEZuF+XY\n6FARWXBkZiVDqJJ9snGkoWFemLzzXHiBU2nWFpL7yC3VNe/dnr2h/xpilouNjgkVninnkHUS3ObO\nOaYD5Pmlckv54hySx4TpM7XkvjG6sUz9v+y9aW+kx3X2f3U3t17Z3MlZNKNtZMmRBVmILTtAYiBI\nXuQDJB8zrwMDToAEcmAgtmF5kceWRtss3Ju9sJtLd/9f8PkVr/tM9fhBgD/4vGABBMnue6k6VXXq\nOtc5dQrLDWsPIEWMhMea1Ot1bW1taXV1Vfv7+wXFwHsZgz5WUTK1Wk2/+93vdHZ2pnfffVeSUqLM\n1dXVl8YizBDMWblcTiCr1+up3W6neBhYEUnJlTQ/P6/t7W11Op3EeBGPs7CwoH/4h39Qp9NJbR+N\nRur1emo2m1kWk4WORcMNBQAPMvG+oX9w0+X6lD7z+UYf46qLOY9inKLHelE/r6N0BSQ6nU4BCPE+\nAMjy8nJi43zsA9ZYFPmuWq2qVqvp/fff1w9+8ANNp9euSxaC6XSq4XCYwDHfwW5SvO2MO2ff+D9+\n7vPW9R19yEHYMKpnZ2eFDNTStTGK/nFDJWdw8h3sK+2OAJT7AYbO8JBihDEQXe48K8c6RWDEOGMe\nRXbMZYxud0Oc+jOu6CeMFGQZZYB+djlR3PXs7JfXBUPAgQfXe/yQvxdDjvr4uInrsRtDMW7W6009\nYdBcLzuL6sCH+YlxSR38N22JBhc6mXr5muAy8v89UfSscqOuvag0XTFKxbgFSYUJnANSPMPBGdfl\n6E2vx6xn8L8LnBIBhSNtH8S83wMmo5JCCcXB5lR0nJyOrKMFyXuweBcXF1+iXKH4I5PjFGickF5Y\nOBzMEFCa2y46a8HjXn+/09juZo2Fz5FZbmI4iKUAXN1K4X1en8iMIo+4zRfZO6vo48i307pyoS88\nv4orzuXlZa2urqb7/LeDKK8730lX42Zzc1NPnz5N8njnnXf01VdfaTKZFI6EkZTOZeO+Xq+XtrEv\nLCxob28vndN2cnKSWJeLi4sUH0OyzuPj49QGAPmPfvQjPXv2TJ988omkq7xGc3NzheBn6l6tVpMy\nd/aQ9jmgjf3vGZxJ6kc5OztLDBBHongBgPtGDy/UJbKdng/M5xtjkbbGvgRM8JmDDbKL48KD5bl7\n967eeustPXjwIMkN5pD0BuVyOeWDclckCxcyc2MA3RoNDNfBzElnQ3q9XtpoAOD0MQWIgEnxfowG\npRf62RdtZEwfO+Ph/7Ogx74g4N6ZOJ7JQhvfFxlIXzPcwGf+AyRoswPPCAiYby4X3GWeEoAxzHPo\nAzemab/Ln+d5/6M3YzC6G3s5r4EHj0e9yLU+X3I6MgekfKy5TNGF/r64TkZQ5yW2gXnNOx1El0ql\nZIS4N8VJlVnlNv3Bbbktt+W23Jbbcltuy/+y3Cgj5QVK190Tbr3lEKtU3CKdYxMokcVy68AZBO6L\n/uNc8HGMAXImJiJjrBwsFd9pAOLGao8umsjQuMycAYmWG9aA+9mxPthBA9qOFoYzVU7x5vzVbrU6\nMxNpXSyw/5uSe0/s38gI5O5Hlu4yiNf4Lhsv0QLxMRRZTHfHYPXEuByvp9cFFxrf+3ur1Wpyy47H\n43QauvTyIaMxNgHZnJ+fq9FoaH9/Pz13a2tLz549S3LxhIV3795N57GVStfn8O3s7Gg8Huv58+dq\nNpsqlUqJkapWqzo5OUnM0ubmZnLt9Xo9bW9vp3H093//93r+/Lkk6csvv9Tq6mo6u8/7olKppFQC\njN/IVk8mk8RAeP8wT0lWiXUvqRBgDBvkO7fG43HBwo9sLX3oO8WcxXEWkn7h/1xMEC5x5En8GKwA\nMtnZ2dH3vvc9SVeM1MbGRtrsERlgdGJMKsrRNq4/fRyii2i3x5j5XCqVihtfPEi5Xq8XmJRarZaO\nE8Jl4y4678/ofnW2LvaDMyuuc91FiFxpJ24+5orrBeass518B2PM974OePwP7iZPmOrF2wGrRhud\nOYPdh6113Z1zqcH08T0/rAk+7qhvZGLpGx8Tcb65ro/rqbvKXc/TV8xR6hnjqHLxxu7x8bAZ+hBW\nytvn3h2fE+jmuLZTR4qvWcjA51Ku3DiQiguNC44SP/MF1EFWdN/4OzxAmBIX5lgnv4YSXUG54oPI\nFRGUN/V3xY7fnmf7QuHuzBiTxQTmJ4LB6I7ybdbIEqrT+yK6M2McgU8kjxVwGUZXm/eVKyvq4e/P\n9U2MD/J2eFvj85Bf9NXzd3Tf+ef+XQS4noMHJcKmBffNS8UjNrg/F8jsLimvOwHZUnFzADFAUP2u\n3NklxcK1srIiSWlH2srKivr9vlqtVsG9MR6Ptbu7q/F4rNXV1eRanJub09bWlr799tvCdn7qOTc3\np16vl1IfkGVdUgpsr1arWl9f15tvvilJ+sUvfqGHDx/qyy+/TItwjPNzsIfy5WDcCJ5wb5HegfiZ\nubnrHEgeNO1uLx83nqLAXYj+PhYGisdfeN+SQ8jBsy8mlUpF/X5fk8kkHRZNYbdbs9nUBx98kI7d\nwX2DHHxMMxZzAcnj8TgdJxJjupAxYy5uhnFjNbo26/V6ci+Wy1e7xtjNe3BwkPKD8R1GgMe4sGU/\nhnT4WIj6hL/jtQATXLu0JR6L5Pe5DJEb8xG9xSLuMqVdDsbdMGGuu37mmWSId93FuJCUYhHdwOK9\ngIlofDlgiK47ZOOGneeEc/eyGwVc60ZLNK75PoISrvcNNv69g3BfU5CZAygv/r/r8wj6vf5eZ5+n\n/O1B575+uIGRKzd2REwEL+5fzgXu+gSL7JE/NyJQrpkFfCL4kGbnM/K6xvZwH4Mp904GDR3jPnoU\nTByccau8A4ToF/a2OEBwAMC9npDTmQyuiTvLPGaLQZiLZYsTxRfaaMHFgenxBy7jyCZF68Pb5e1n\ncswaK7PGUQ6MesmNJZ7nIMrPIvPnUDePY5pOp2nnGjFtkhKjguyl4hlu0Tp1ObAIAHq4ttFo6PT0\nVA8fPtR4PFa/3y/s7un3+8maHw6HiXWCFZmfn9fz58+1sbFRCGKGdTg5OVG73U7vr9fr6na7SbFX\nKhW9/vrrkqS/+7u/U6VS0ZdffqlWq5UWFuRE3jFig6gLKSLK5XKy3GM/1mo1bWxspBQNyJRga2Jl\nSqVSAmAe3O2ypj459sPHADrAYyqiFc/BwNL1OZ6DwaAwXviu2+3qnXfe0d/8zd/o3XffLYyZ+A5n\nnRhHcWFj7AFmfHEhsSNxJxE0utHGO/0gWTf+FhYWUh6x4+PjpPt8Wz6FdtOmWQZu/Mxj5+L85V2c\nM+l6yA0AB7jR+HRD0BdzB1XIzUGox+xEo5Rn8B0gwjc0eJlMigeR8xtA44HuDoKk4maXyITybJfp\n3Nx1agoHP15vX99c3m44O0BBVm5I+3v5389qpNBvThRQDwAW4zc3ZsAD/pn3aW58zTLm2XE6q9x4\nQs6ceyUCohwL4YtdziLxvx0g5RZBlEROUHHB9et5Zlx4vV1u4cRdGxQGBZOK66TrbMN+iGJu4nN/\nDqCWSqWXrFY/Zy1aZi7zuIgzIWYpPL6jTUxEFnNn9OI7ojWE3Px3LA5KvC+c2s6BSd8pFJksCs/k\nM6w8V6QR7KOA+S4mWgRk5erqk5iFfTKZqNVqpfxbw+EwXVev19OCSf9HOno6nSYQg6uNpIyHh4dp\nUd/d3X1JpixuruQrlYoePXqkn//859rb29P29nYaA6PRKD3Xd5hJ0vr6ui4vLxNoe+eddyRdWdy/\n/OUvtbm5mWTk4HMwGKher6dF/uDgQJKS27HZbOrw8FD9fl+j0aiQZ6nb7erOnTtaWlrS7u5uem6t\nVlOj0UjB8O7O6PV6BVDqIJ6+BWhEpoffkX1gXNBPjUYjyQYwIykxRfx/eXmphw8f6h//8R/1ne98\nR81ms5B5fDAY6PLyMuUzi6DKx6iDLPqGccf72MXldfe+976JOwwBLuRCajabevHiRRrDKysr6T2e\neNUX0eiqpt7Mm5wB7nWNYGVhYSHNEWek4n0Un4/MfTfg0M38eAoLngcD7CcTVCqVQrJixgrXoQsd\ncHHd5eXLyZgByugR9Jm3x92akfn2dcTDQZyVcX3F2HBQ48+h/hg9zlTGtd6BIbJy8BVZNzcEvH9y\nbkBvk5MhnjLGQ1acKPD54kDV5RZDQ7zcKCPloCIHnFxATPwo1FeBKJ4bBc3n/LiVEe99FXrl82hx\n0inxHhRqXLRzlLJTwyhtrPHImDEAvLNd+fCOaJlGoOGyoQ0RwLgrINdObwvWi8uTxccBSqyffx5B\nl7ebvs/1H7KIoNyLy8bBsFvpPqEcpPg7KN6mONldfs5cSMUcOLjqyAoNK4QbYDKZpOzl1NsXSp5D\n7iYYLZcfTMf5+bna7bY2NzcLB5ASi0U6At9F9utf/1rNZlMff/yx/u3f/i0pxfX19SSDxcVFdTod\nbW1tSVJy8+Eqcbnt7Oyo3++r2WwmV1y0okkCeXJyosFgIElaWVnRYDDQ9vZ2WoTPz8+TG/L8/Fyj\n0Uinp6e6c+dOYRdTq9XSxsZGmleDwaAAhKiDsz/Ilv7zRcP7dhbgZ0HF1ei7utziXV5eTvVcXV3V\nv/zLv+jDDz9MC5AnJ/X4Ltg1xhA6gQXQD8rlWCcHiPyOQCrqYFy/MfbGGQyP95SuAD8u236/r+Fw\nmL5zN5P3Pe+LYMbnDEZQjEcslUopWanfEwvpE6KOJHcb4FG6BiYOopApfed6z2NaeQbAKc5VBy3O\nPvmC70apg3hYJ5e3M/7EYfn8zoW5eH1cN/m1TlqUSqXCWGQcuyuU9zmz5V4Lxr3rLx8XDvId1NFm\nd20i47iL2cGSr/kAVAxW6uceIF8PMVhmlRuLkcoxPd5RPnmiVeXFJ/2rlJgPEn675enfRRDiEzEC\nM+9gt/KYBD4wQPQM5rjQ+mT0giIslUoFZer5g+JAdMDiSsHb6NS/g5VoBfrgd8siV89o6Uag4axc\nlBtK0+XmblIHcF6c5ckpTW+HPzOCea7le4CmTyiPr/B7HdjHxcd/A5oi8HMrtVQqpZQDq6urhbgp\n4mWk6w0DLGrRIkdJLC8vq16vF5L8Sdfb6z1+6ujoSKurq1paWlK329XR0VECbtVqVdvb2/r5z3+u\n73//+3rnnXf06aefSrpSRLjmkLG7KZ4/f6719fUU7IwcG42G3njjDR0dHaW6IO/hcKg7d+6oUrlK\nHor7ULpanEejkba2trS0tKTj42PNzc0lQNftdjUajXRycqK1tTXdu3cvxeyQH6rZbCZXoh/Jg6w9\nBQLyctYslzrALVrfch7Hrh+FA/hksUaGP/nJT/TRRx+lxdQTrp6dnaUxQlySxzH6ppZqtZr6Yjgc\nprEdXUK0m/EYxxQ6hb6NBgDhAnNzcxoMBml8k1eMcx2dhUOfOgMa57dnAOc+mC83TNzQQYa+4Ho7\nAKbOnvhvdLT3E0HkDqi8Da7XeBbzk/a5nnWd5TqM+2BromuL692QdN0OG0ecjzPV1NHXyhhIHvWh\n/x1BepRbpVIpJK8sl8vJm+Jy4b0+h9z4ZL30+CnXkV63uB7nSATGEYYM49XHYfQUOIj+S+U2/cFt\nuS235bbclttyW27L/7LcWIyUU4QULBO37vk8d38skZbmGe7Ci35P7vPfkbmJriU+i/WI9ZaKO344\nYwtrA2Tt8UcxUN0pdtiKGMjHdTnXpLcHi1e6tkz9x60PD6qNLI/3ndcBVO80u9cBSz7uwnDLF3eF\nWxO+ldrlS8wK78n1UbR8uQ8Llrp7H2AZUdec5YNbIBa3GiNzF92XOVerM5q8BwaAA43dJePxJe5q\nWVhYUKPRSBS5W4kkhsS91e/3C1mou91ucsdtbGwkGRMDNT8/r88++0zvv/9+YSegJJ2cnGhpaSkl\n+pSuY96m06lOTk5SrJZ0xUh98MEH+vLLL7W3t5d2WUlXc+bNN9/UdDp96Vy49fV1DQYD9ft9ra+v\n68GDByqVSsmd+OLFi7Rt/Pz8XPfu3UuyYdciMT0cU+N9wbmHPv7ZIYcrh9QM0jVDAuvqTAZ9BOPm\nJwz4Nm7k/d3vfleS9PHHH6cYIuYOLGNkij0mDVYAZpN7pesEpeiZuDvJYxhhc/iO96HHfHzzu16v\nJ9chcwHrH6aoVCoVErnCftEfHrTONZS4yyo3ByNrHOeZs81+P890pi6GX9B217fuqor6hHFBH56e\nnhb0tG8cQeYUr0fc1ODB2Yw7Z85h24jNoh3oNR+r8Z2483Fx0n760IPcaT/rAN9TX1hU34zg7Yiu\nZ5eNB/C7bqMdET/4/XF+0L9SkSGO7FMMu+FZHg+ZKzd61p6XSM9KL+9K43tfFB3Q5J7B/fzEhU56\neUeDu/yoK/e50uF3nIw5UAM1jyKJgMip2/g+BjfvdpcJ7iYW/5xbKbo1+SzStj6YiLtwCtn7gN9x\noPr7HTS5C8Tlx/uoP0DKARLvdjeWv496xnFBO6K7gD5jcriLlXoRMO4FGSHn6EpEMXCNj7EccMr1\nU7lcTjEl0jX9Px6PX4qxQJ7T6TQtjr6dnLPEeBY7xarVqkajkV68eJEWBZ5JTNb8/Lz6/b7G43GK\nO+p2u+p2uylA/eLiIgWNf/LJJ5pMJmm3Xr/fT66nWq2WXA3n5+cp8zb1X1pa0vb2dprb1LdUKmlj\nYyMFkQNeJOn+/ft69uxZajPKn/azK/H09DTFTtG39Xpdr7/+ejoTr1arpfE2GAw0HA7T0SoeG/H8\n+fPC4uKbO+IGg3q9np7pQCIu0Mi2Xq/r0aNH+vGPf6y7d++m9hOcT7wa7/PjOkir4gv7ZDJJ7fL3\n+bhkAXMXlYcC+DP5HEMMUO+yqFarKf6JnWy0g1xo0S0TF6cY3uC6OQKfaFC6geHueR/fDhSje348\nHqfjQHDxutzQNa5XqDNz1PWj1991lwc/O+hxfTGZTArxOw4wmevVarUQfkA/siuVthGHJF27ganj\nxcVFwXCJa6XrWtqIcRL7zOMHXUdFgzKSBOPxWLVarQBWfEzmwmDQ24BPH4fI0o938uKbmbyO1Cm2\n3denWeXGGCkmYQQccSB6ieDJ75GuFxX3z3pQ3iwAx/OibzjH1jh7kmO0fOI6s3B5eanRaFQ4ssGt\n1tjGHGKOSsGBI8jdFV+Mf/IB7YsuStrl6Qye3+fvjBaft3cWqOJ7X4Sk66DTGACbezeFfong2tvA\nfXFLsjM3sX+jn9yfQz/E9rm8aa9PRrfk+DzGFszPz2tpaUmtVkubm5vpPq5xS5H6oJgnk0kh+Z/H\n7GAhelzS3bt3NRqNdHx8rPPz87RrjzHx4sULtVotLS8vp/tarZb6/b5OT081Ho/1hz/8QR9++KGk\nq2Nndnd3NTc3p7W1tQT8GF+M9Wq1WrAIy+VyauvZ2Znm5uYKixiLPYwN+adWVlZ0cHCQ7iVuBfBW\nrVbTjr+VlZUCS3R+fp7ivV68eJEC05Hz6uqq+v2+ut1uYvYYC91uV9VqVXt7e6pWqylZ6eLiYprb\nEZwTy+a79ohzm5ub04MHD7Szs6Mf/OAHevToUQqo51w8jl/xnWIsypPJJC3MjLVqtVrIxzULSMXv\nnGHGGPBnELPiDFHOIAIY+DuRR6lUSjuRee4sHUyhjtHIjgHY/h1g0AGTlzjnkWluF5df4+tBbLs/\nO8rX2S4/z9CDs31xh7lyvcm4gGmGIcbopQBmAb7O6GMUjEajpBMcFCFT+j8GYUd96H3IZ1EvRk9K\nlKXPGV9TfY3wcQoAjOBTejlJNv3KdzC8MUYK4Orrohv/eJFmlRtjpKTZOR+YtDF4PLIOs57rHZUD\nTxQGOJ0dF0x/Z5x0fOef5awsB10XFxeJ9naWZJYC8Xq6fLx9HsD+lwAfVib1woLIMVbNoBA5AAAg\nAElEQVT8H9vktDsT2GXijFGuDX69W6xMiOj287r4s/iMCcrf3mYHz66IYwB5rAvyjPKj0AbfKeUB\n7MjWAZvLE6XqYLnVahUAA0yFM0ywTNEyAizB9khXSmA4HGo8HqvdbhdcLQSRz83NpUOIed/i4mLa\n7dbv9zWdThOQIMAZmQ6Hw7TFfXNzU0dHR9rZ2dHR0VHKui1dAYK1tbUEdnI0/fz8vFqtliaT62SY\nWJXSdWZpXHflclk7OztaWVnR6elpAl8csHz//n19++23qW6VSkVfffVV4Z1ra2taWlrSN998kxa3\nra2txKhUq1UtLCwk0LO8vKxf/vKXkqR79+5JUsrQ3mq11Gw209i5vLxM7tLLy0vt7+8nQLG+vp6S\nlU6nU/3kJz/R66+/rmazWdgphsvW5wxjhnmPLqG+PJOxG4PC3XXF/7NYZZ//LKIwcoxFZ3oAL+TG\nikYbCzPsVHwH/eosDgA3GtgReHAv13JNTq/6LjhnzaOR6Bt7pGICTC/OwvgpEhQHZ36KAQYF48X7\nwTdA+C496QpkLS8vF9IveFvH43Fy9cZksLQRttrXIeonvRw+47o+rhes1bMYIOofx5p7UtCbMYCf\n9zkYRn5sbvA6OVhjjEQwyI5b3K6UXKZ36unzMldubNdeXPidpZKKYMQXRQdb0stb1x2URNbLQUjs\n1AjauJ7nxEnqVkmcWKDi2AYUERYqFrKja97hbJUj9bgIUeLgjjKKCsD/zsU7uEuJ334v1gz38hxn\nBN1aYNLE/vH2OdPjQIqYEj7PTdY48X0x8rHDd0xaxohbH0xaLHIHp66U/D2AC2el/J3l8tVOGg6K\ndgW+urqq5eXlQpZjwATgCCDuCTqh5d3a9fpcXl7q+PhYnU5HS0tLCYQ0Go0U34OVS+l2u9re3tb7\n77+vb775Rufn52nXnscEEbtFXqf79++rUqlob29P9+7d02g0SjvsOJqmXq/r9PQ0ue4YAyh7EoXS\ndsYeliPAhvsAeLguyJvDvYypxcXFgrsUpocUCp7QczKZaHd3V0tLS7p//74uLy8T67S9va2NjQ0N\nh0O9+eabOj4+Tu9bW1tLB+SWSqWUdkG6isk6Pj5OuwRXVlb02muvJRlsb29rc3OzwC7RhsFgkHSF\nL7YsyL64O7uB2+fi4qJw9AhWuRth0fD0xcf1jt+HHH18X1xcaDgcpiNicE3htmEeA7ioD7o4GqSS\nklvT6+7y8RL1irMqnlID4BKNwxzbDpBzYywaSFLxwGOvvzMgl5eXic3lOweiEdDCYJPdPMrHTyRw\nIxnjEqAUZZvbeUeh/nH9Qk86MRHXC5ez61M3VuNa5nL1tcP1aAwHYQ1x74X3oRvXDu54Pu/LxYf5\nnIhEx/9zrj13OVFyHRcBkX9HcRdaDoz5gI/0awRITuNG4BCZnhyTkwMKEYxNJlfHfYDSuQ/wFBdE\n961HEOXMSZSf5yOJbZGKE9cDq/06romWqU9qR/HuPnpVX0Uw7FZyToH7/dTX+8V9+7n3RoDj488X\nXq6dZZnEz/xzmAGnlv0aFJQrGGc61tfXC3JlUaxWq6luvMOpZw/69PPhptOrRHQeIAojs7y8rFar\npZWVldRnyOvk5EQnJyfa2dlJ7IMv7hz1Ua/X1e/3U3+Nx2P94Ac/0L/+67+q2WzqwYMHCfSsrq5q\nb29Px8fHybJ1sD2dXsd4EeTtckeBN5vNxLqwmI1Go8RkEawsXbk3Wq1WcoksLy+ne2GfUY5vv/12\nSs5J8tJyuaytrS0dHBykDN3Ly8vprLvFxUX1er3kaiQf1tramkajkY6OjhLQ29ra0tbWltrtdqrr\no0ePJEkPHjzQysqKut2uGo1GgVX09Ca+oPN+xtTi4mJyTfAd90XWARkAzOOCEQ2VaOGjc3KuL8IX\nYEvctUsdMb58caQ/Yhwlz3QdGHUG88H1jjNu/hljiXrnGHnGGqyF3w/wyQVG+4YAN74uLy9Tugfm\nY9Rx1CGCGt6HG8p1lQNpAICve9zLc/075rvHFzLe3F0GIOE719tuXPv4ikHZORIjpx9zfebXOHBy\nuUWm0kEqfZHzGNFu17cOsNyVR91yBEaq58xvbsttuS235bbclttyW27LK8uNxUhF/3V0jznDEl10\nUtFajbTjrOc6LRn9sfGeWeyY18198Xweg92iq2E6naadE46icduw84jv/IBRp0K9bjwr1ps2I6/I\nBHhf+H0xwNktDiwWrEqnPB25R9nwt/c9snE62etMiS49ZxGhi5G7x3A5W+fWR2SkIruUk633Z2TG\nvJ+x1tzS9oKrpd1uJ9cXiSyx4huNRiFOqFarJRePW8rIE8uScUUbCU4mlob6Xl5eptQBxBhw38rK\nSmLKWq2WPvvss0LsDZZ3v9/XyspKkvdPf/pT/dM//ZP++Z//WZ988ona7XY6YFdSCmzHNcb7iO9g\nDnBen3R1XAsJHM/Pz7WyslJweeO+4jnuNmg2m5qbm9P+/r5qtdpLAc9YpbgUiTdpNBrJyr93715h\nR9/Z2ZmWl5e1tbWlo6MjbW5upjMDcSG+9tprOj09LewgbLfbeu+993R2dpZioWCk7t27p+FwmHZI\nuruHDSndbldzc3Oq1+uFecVZcoxjZ5uIRXJmgvsY/9HCdgYkMuO569wVw5iDKfPn08eUONf4bmFh\nIW1G4H9cY7C1pE2AjYJB8PQPzmTFbfcwsLCfOV1D+3zuexJR3zSCvEulYqZvCmwS7cgFviPLqGvc\nJZZLH0Aak0ajUWBMiN10t7jrLMIxmPvOxqPfyIbuSTd9fXWGyF18zjrSBt9gE9dw5izPi54I17fO\nSLkrPvahrzPU3dtAXVzvwdwiIw/hYI3IzQXKjR0Rk/vbK5obUP5/BFIMpAgK3BXnricfNO4ik4rb\nanOgyoGAd7RPiAi2eC5t5JwsPmeL68LCQmG7KvVmsWTw0TYHQj7RUCbuWnLKmffy/Nh+H3A53zCK\nzb9HmTmt7TS2pylwBezuAeTj9H6ki2MbKQ4yaVsOIHk/RJDubq44IePCk3M7UmIwu4OrWq2mVquV\ngpHZhcOus3K5nOJryMe0sLCgfr+ftrxLV6Cn1+sVYlc86z11pA4eSLq0tJRSIJRKpbTl/vDwUIPB\nQIuLi3rvvfc0NzenP/7xj0k2CwsLuri40Onpqcrlsh4+fCjpKg7mD3/4g/7mb/5GP/nJT/T48eMU\niP3aa6+l3Yaj0SgFuEtX8yDGUQDkOGPy9PRUlUol7aLjuk6nk44CKZVKKdUB3/d6vXS8Tr1eL+RQ\nYwGpVqs6Pz9PQeqNRiMBrJ2dnUIG8efPn6tWq6lWq+n58+d69OhR2jWI+5D3EA8nXc2DRqOh0Wik\nu3fvamVlJbn9mCPlcjmlnWA+cYTF4uJiih9jnNVqtcLxQb4zi52o6BPGvI9Zro9g4lUGqeuZ3Lwh\nTxY5z3zxRp/4pgzGov/tcW5kRwcQcai3z6+cEeSAEBkzvqiLH/HjOsRjV12nOnhE7/rOQ3SX52vj\nuxhG4bqd75Fl1BezAOjFxYX6/X7Sv37kD/d7oHkuhMFBDmNiNBoVdJdv9oi7OP1ZzGFPpUCdfYOJ\n63gHUBFoIWMfM5FA8L99DXH554Ab19br9eRGjwefu8wwSnNrCeX/mYScCNXZHf5GqB4r5H59BxPO\nOknFAemLCgLnebNYp1f9HYFWfMcsZotO8h0pgCmpuGDTJiwMX+gdxMV3uYLMLfgRXcdB7GxNjMuK\nfmvfWeZH2Tiqd7AZg0QdtHmbeaYra1f63j4UucsGQIgF7s/hubTD5ZHbeOAy8wB2Z8d4N0yUB8fy\nPWfKOetUq9XS0RONRqMQBI51CAiTrpNfkqSSg3Ynk+sUCFjs0jVbQyEoGiC0u7ubxuLi4qL29/dT\nrNJHH32UgsVZtDmmhmM/JKVUAp9//rnW1tZ0//79FFv05MmTdN7dYDDQ6uqqjo6OJF2N05WVlcSa\nEf8hXTE5n3/+uQaDQQKdFA5Hnk6n6azAk5OT1P5Op6Pj4+PEhngSTPoNgIRlLynlOgJYwWwxLhqN\nhg4PD7W9va2dnZ00Z2GGlpaWNBgMtLm5mdiTubk5nZycpP53UEdaA7ajOxvtfUVsmlvq5Lwi31Uu\nnQqpHpyN9E0Uvgghe58zbs3zG7DjDKBvkmDXo4N6AG88mBggyzPcMONZ8/Pzhdg3qWhEOosmFRNZ\n+rzkHc6y+K48wEBkQKQiG+vrUSzOZiFv6ueAC7nwHgenPMe9G9EoBJwBPn3XJmsLG1Pi7jT0FzFb\nsY9dH8aYo9zmHTeCWB9z8UxRz+aCyGNx/ZoDUoxVnxcY6nzmYx/miX6MORl9/Yj1jMaylxtz7TlT\nJBWDvyPI4joXWGQiCLp11CxdT87IELGwuuUewZlbynFi+KCIgYyzAJjXyf+HNqYNkTaN9CzFd6BE\nMOagxJknfwaLM5MtHnoqXU92X4jdredACgBBPiR2nEhK1mR0fXqJioa6OECNQLVcvj5XSlKBXmdh\nRt5x4lJmWToAtwjMseLiThsfa5EBcPaOzN8s1ix0c3NXKQvW1taSUjw4OEgMTaPR0PLycnp2v99X\no9FI9YhAEvkhV2dkyNLdbrd19+7dAogmPcKf//xnTafT5KL77LPPUsLNarWqdrudFsZms6nJZKK9\nvT1VKhX1+33dv39fkvTs2TMdHR0l4HJ6epr6C9bJ3XQRDBOAvbi4mNoOqzQcDvX06VNVKpXkAkQ2\nJDCdTqfq9XqFjOrj8VitVksnJyeJ8eKdnjuq2WymNt67dy/lxHrvvfd0enqaZMpuzGaz+RJwnZub\nU6vVSuBxc3OzkJhyNBoll1g0gAighxFAhufn50kG1NkX/hgADMhiDrprzMcKAAmd4Kw548i38FN4\nN8bAZDJJQNqZ8Og2kZSyhQPeXId5UL2zEvSZy8t1pq8hzjr5WpErDgR8HtNXtMcXYWfYo25Bpr5G\nuPHL+yJL78Wv5x3cBzMVE6tSf/SXyzSCUd6L69HXSGf+fL32NSzu1va1MQeE+M4/yxEkcYOQ6+ac\n68770L1TzrgRtM96621Adk4WuNxfVW4s/QHF0agzSpHpcUSbE1xE81JxJ0BkZ3IAx5/ntGPOzeiD\nJT4jx6b4NZHNYEIwyH3iUWcW2lynspDG7cFeF6eQkQ2f+zX+nQMtL+QD8ngDr+dkMnnpoFBJiTbG\nVRn7IMrE2+9/u3wdODu1jPLMKThXsLHvXFnH+3zbMHKPIMzl76wQ7WNR80URGQOeut1uAk8wRMvL\ny2mM40765ptvUl4y3gtbBYhl+ziLvKTEiJ2fnycGCcZnc3MzuajW1tb0+eefp636b731lp49e6at\nra20Q5B8SJPJRBsbG3r8+HGK9Xr27Jmkq4Xy4OBArVZL8/PzOjg4SIrLY17q9bp6vV5ix87Pz3V6\nepp237EDSroCUiS4PTw8TOObsUiM0tHRUdr5GN81HA7V6XTU6/UKOygBbMgQUAXwYoel97/3Wb1e\nT4CUvsAVurGxUdiqDkNydnaW+tF1FSASl68fZYPBkmNH3Z0ymUzSfaQiQDd6pnbmOzl2HJj7tnYM\niWjwsQgvLy+n7Pb+nRtlnljUM7TD0lIf+hvWhkIfue53FsWNUi/oCGf/XScCGHKuNZ6NDnI2y0GR\n60w3DqM+LJfL2Tgtl7e7Fr14HCtydkDM0TC4mf3gc57nTA2/Ac/uPeG+VzEygHlnwakfMqHe0bWZ\nY3xcp8d+BETlXJbUBZzgOjmGdPg7Z3leeF4uts3Ljbn24t+RzYm+TkpcfHM0Y6QcX1UPBzpxAQWd\nguy9XpEx8+flkLkruxy4inFSvuUcpQ1Qoi7u7nNWSnoZlLhcpGvXn3/ukwwQgO/dQZaff+TUqLMu\nTDwGJwoSK9KtgVmgxutOXSN4AUx5P9AGB1q+yLpcZk0s5DwroNzfkyuAXq+bM1goOOk6psVlR+4i\n4p5wRbEpQZLu3r2rg4ODQiyMA0lYDNxOjKm9vT3t7u4m96Iv7E+fPlW5XFaj0VCr1dIHH3yQsp5/\n/PHHKfblzp07hfQHJOF87bXXdHh4qHv37iUgQXwQGdidybm8vNTJyYmq1aqWlpYSuHHZkgRUuorh\nQn5cQxZzADzy73Q6Gg6HWl9fV6lUSvVZWVlJQMzjtnjXYDBITFG3203f+fEh0+lVHqu9vT1JV3Nx\nZWUlMWCueAkmb7fb6XzDmBsJ4O/noqEPms2mxuOxTk5OCpnbfUz6/AEcxAB7iusvNjDwOXLGxReN\nK+obj3rhXvQfAJV7ACjMgQj6kIEv+gSv49Z0dtjdePGZ7tpDNhQHY9Et5HPevRg8IxrlOUOQee9t\n8Lr7WkJxNscZGgBN/C664hiXXj9csLzb+xFdCIDN9bkDKorXjTWH+kc3mt9HuyOQ9M8iGHbihLbG\na/06lyUGNG1xeSF/Z55oUw60eVti/b3cpj+4LbflttyW23Jbbstt+V+WGz9rzz9zZB9jU/w+t/Yc\n4ef8svHZXtyi8Ngbtx6im83r7e5Ify/X5dgTvoufY8mxiyfGOlF8G67/dutAKh6D4vEN8b1uKbql\nhKWCLHiW76BwFoXvoEj53PvJ73Nrz/s6bvF1tixagN6WuLPQ5RDZJi/eTq53H7l/h5xol1tDtAmX\nAnL17+MOKq+DBwq7TGEkCLx1BqFer6e4qtFolCh+6YqZGg6HGgwGKb6IY2Cm02nabt/v93VycpLi\nmVZXV9XtdvXs2bO0sxD249tvv9VHH32k//qv/0pB8wSbj0YjnZycaH5+XicnJ9rc3EwxYGQzx2UU\n4zDm5uZSwPd4PE7PdHfQ0tJS2qVE+/r9fspaXi6XE5MkXbFuJIdkZ6AHeBM4zvNhndi0UCqVdHJy\nosFg8NKhrsyBXq+XXGacL+jZ351V3traKiQp5b1cs7S0lA4C9nHA4cfD4VDVajX1BSVa5BRYKbK4\nx7ntbimKu9LcVcf/uMR87rpudAaj1+uljPgwStQnZm93necsLjqLjSvO9uMuGo1GqS0xLMDnr8sV\nl6WzM7Sf+9zF58+mzh7n5euSewK4lrZEj4W77Vxf8Zn/758xT3x9I1Yq9gn9iEzZnYb7PDJyfiyO\n93OMp/O64bnw58VwGG+Hx4u5nH0NdhnPWr/xqsDoI1PWaHS/uw4jE+XF5ZbDHq8qN3pEjPun3f3E\ndz6IvXN8q2903zld6ILzv7kuuuR8wfVnuBDjzo5IK8b3xLpFwBjrzAGqEZz49fE+qNgczUm7oH5z\nrqp4X44ijyCGAc6ZTXyHK5CJkMsODNjIKSnqk6OUZ/nDXVFEZRgntFQ8UDjGUHkgql/n97vS9B1d\nsS0eixFpaV90AEiMG3fvlMtlbW9vpzQIfiwEu+iov6cVQKkuLS2pVqvp7OwsxSxVq1Wtra0VQDLf\nvXjxQtvb22o0GumsPgDR/v6+VlZW9KMf/Ui//vWv1W63k6xqtVoKIh+Px9rd3dU777wjSfr000/V\naDRUrVbV7/c1GAzSM5eXlxMgKZfLyR1B+0qlkjqdjqrVqkajkdbX1yVdufZIf1CtVpPb0OXmO8U8\nSL/T6Wh9fV2tVkt7e3tqNpupHaenp1pYWFCn09H+/n4hoH4ymajdbmthYUGHh4fqdDppASmXy8nV\niXLnSJpGo5GymhPk78HPABvGFAvZ8vJyWtzYoRmPLJGKqUgYT7jdoz5yoI9LzMeuv8MzYpdKpeQi\nnk6vM9H7/CIHF24fAHG/3087yOL5dcxfAJXPFeYkOy/dYMTtie7y+NAcwPG5y7z1sADeG12CLlPX\nDVEnMt5ybiDqGF2CXnJhA9GYm2WIo2/pNzc6yYPmIRjoYNyH/jmbJnzd8Ho5+ImAzceUgyXuibGx\nLovorvT+i/o3gpoYv+RGu6/VOdn52sp4zgE3xwe5ciNAKsfSxMBct0z43zvKOyAyQ5HpYtBHNA17\nQp1y90cg5ZM9x6rxO8eexMU0AjcUwtnZWWp73GLs9QMYuV/YZexWU87CQTYeb8Dn0ece5T2ZTNIW\nemerqK+DXZe5x1J4wK3X260tnp+bRMjMA1EdBPl1OYYTWXrf+I4mZ5m8n/jbF7PY92z5jkwZz/Zn\nETjLZ8T8UOr1ekoZ4IzHcDhMC2/c2dnv99NuMIKrHfCenZ2lNjabzZRYcjweJxas0Wi8xHL96U9/\n0ocffqjvfe97+t3vfqeNjY3ULoDX0tKSdnd30/EpDx480LfffquFhYWU6yla4+fn5+r1eoWFliSc\nl5eX2tvbSwHXFOK4Tk9PdXp6WkiTQODyZDJJweIebF6tVtXpdFQqlVSv11NcFuOh0+mo2+1qZWUl\nPRNZnJycpHgrz7NTqVQKgfLEsrVarRQXValUdHR0VOh7mCh0FIlap9NpYsSiweBxUNHQ8kLgsxuh\nFMaLL+LEyw0GA43H45eO1XHwHVmG8XicAu4PDw8TI3V6eqrRaFR4htfVAZ0zNj7HAIWA00qlopOT\nk7QLK7e4unziAcBe58hI8W5nYCILhfz8ep7v4DTKPzJMDrCkIoj0Y2Fi2zwONbJYvnMZ2Xl6E2cX\no25HbnE98fWK7xzY8T4/fskL66XLIm6eijsw4666CM6oO2kZ+M7X++hRoJ3udfD6OQDzdnnf5MqN\nACka4gJ3cCS9zPRIxQU957abBWxmuQn93U4ruvspChUUz6CIuxAc5efa4J+76y0OKLaokiDOF163\nrgAsUbFRVxZoH3z+fe47B4IRhfv1Dpx4Hp9HgIEyy2X7pv3xN+/LKUGvD5alKxXkG9NkUBfaFunq\naJFGCj0nZ68b9XHLN/YJ1rTn1OFzTjSHsQFknZ6eJpBBfT0BJYsf/7NhYTQaJYaL+2q1WmKTjo6O\nUp4o6XrXXq1WS2yW57uZn5/Xr3/9a/34xz/WgwcP9PjxY0lXLsFms5mykddqNX322WeSpHfeeUdb\nW1s6PDxUtVpNzIaktOtwPB4nBgr5kvxzOBwmMAjAnE6narVaajQa6vV6iSVhwTg7O9P6+rpGo5HW\n1tb0xRdfJNns7Ozo4uIiMU6VyvXhy2SY7/f7Gg6HSRa0fzgcpms9NxUuQRZ7LHuuI/AfEBcBGODS\n3Y24JH2MUdCdjDVP5AmoRj85WHB9xqYRd6XBXkS9B9gdj8cpU7zrb+YtTDWuXtrIgdy+GErXrj3c\nuJHl8va6cU2KCgwGX+SiPvWxn2PUXb5xIafkwjuiPkF+/n5n5HOAl7nv45428C4M5ly4R2StuAdd\nyLmu7vHwPHde3JXO3677Li8vC260yJC57vc2UrdYT38/oC6u2c42er7C+NychyquM85GRRAY1/FZ\nBMmscmN5pFAALpRIm8YFK+emcQCUE5yzBjlQwPc++HOupPjuyIJxPZMzUoRex1gPJpIzVQwyXAHR\nkpKKh9ZG1IzFEAdZHAw5CzEqsuhT5zeT1d1qruzZSs3fsT7uFstNagqLQW4iu8wcaPO90+LeB67Q\n3c0GMJzlKuDzCOhcbihkbxMWJM9nt5h0tWDW6/U0Xk5PTxPTs76+rkqlkoDU8fFx6mMWZIBE3GWD\nWygqNrKX3717V++++67G43ECPU+ePNH29nayvuk36Sq+olS6cvH84he/0A9/+MPEQJDZu1Qq6fj4\nWGtrawlwbGxsaHl5WZ999pnef/99DYfDxOgQq7S2tqbDw8PUTr7DeibBIDIlj1C73U79vrS0lJ7r\nQLRUutqx50zP4eGhFhcXk8uQHWZkDO90OikDOUAT9ypjsdfrJYYEcFyv19Mi7WARQEr2cgAhu6fO\nz89Vq9USy0jdfVy5geIWd07xs+jEWKiYxwlGjDYwj2CiuN/dRmxzx1UnXemdVquVdjQeHBzoxYsX\nkq4TwgKkHBTAqLreirrdx7XrBY5TYnz4fHNdF9l1xjR18bnhRxbFtcWZGP8OudBHrof8vXEdcjaf\n+nqKCPRWDBuIDBwAweOUGCscVwQ7ik5gjERGLK6l3kZY0EiCsH5hOMb1za9zOVCY53EtdYOduvvz\nXMe6PvZxE+uRc+vFZ7uB4t+9qtx4ZnMq68Aqgo8cEpzFTPh9lEjR+vty11McrUa/uwM9f68v8v5e\nB1252CGvq1sG1NkT03G9M1X8OGp3atgBDP9T3+hqcjlRd7daqR/KyJUcn/E83El+xEClUinEDxEz\nEhk03o2ijdZ1rj0RzDhT5f3p8oiWkPe1T1a3DmO/0W4K73TQ6xnFYZ+k6+SSyJkz1CSlWKbj4+OU\n/RoXU7/fT3ViAfZJ74uW1wVAcXh4qFKppAcPHujjjz+WJH311Vfq9/vp+IRarZb6kKzdFxcXGgwG\n+tOf/qTvf//7kqT/+I//ULfb1erqqiqV4nEun3/+uT788MOk2Gu1WmIr6B+Py8HNhpvT28N1uO2m\n02mKTSLbuqSUDbvVaqWxR7sZY+vr6+r1egl8SUouv/n5eT169CixMPR/r9dLR6D4+Ot2u4nFgFX0\nBKS4ttzNwndnZ2dqtVoFd5RUPIMyxxD5vHUm3DckxKNDYMcWFhYSuPNgesZ/Tic68EC3oTOYU8zR\nr776KqXNaDabBeDi9fF4QPSGMwPOWPFZLO7CkpSAqYMU1wvIl/e68edpW2AZeYfr3siuIXvYwMhy\n07bIcmF0U9/oofH+dmPZjWcMWHfd0z+AJdhv0ktQZ89BFw3I2BfULweGousuelsiGxX7LxdLyu+I\nA1iPXafTPuaCG9gRMM0Ct9Er5d/lvFqF9s/85rbclttyW27Lbbktt+W2vLLcCCOV84NH2s9RfbTK\npJfPBZrFRkl/OUaK/ymvYsmcLXHmxe9zRO/Pd1QeGTF3F/q9ntk310be79aCdL2Tx5/p97q7EuvE\nLbMY60OJKD3Wh3uwUN2K4L0wUl5XLM/4TH93jH2Iso8smltApdJ1+oH4XLfA6V8fa96fbpG5tUMf\nYtESB5Qbd24V81xYClg8/77RaGgwGKQz9Zyx6Pf7Bfrft9Xzbqx+2nN5eXU0DNv/+NEAACAASURB\nVLv5Pvvss+RK/Ou//mu9ePFCv/nNb9Rutws7AwlY55iUP/3pT8m19f777+unP/2p5ufntbq6qr29\nvcQQvHjxQqPRSN/5znf0+PFjvfnmm4VUEH4gM+d/IQuez/xxFwW76y4vL1MyTwLDp9OpOp2O7ty5\no5OTk8KzeD5xUCcnJ8lFSX0Zw6PRqBCsPhqN0u5EUkxISnFtHNexsbFRiO1jbFxeXhZciXNzc1pZ\nWUnsoo83DxFgfrubh0SMuNr8iCfGYHQPuWuOQHafF7QNViuyuDGmkLHIYc/I/euvvy4wb5eXlynj\nvVv73h9eN5cD7fTPYLDRXe6+jjrDC0wGzJjHllFc57vegrF5lYsuriuRifFnoveIRYrhFegw+j4y\n3vQFOoHvnYVEH/FsXzdhgmg/qXXQpT5unPmMupV6OKMY174Y8+WydsaKQqD5rF3m0W0X5eaeIR8D\nUR97G+J64mM/d6+XG01/EMGLL/qu+HONz4GK3MLl18RrEVr0d0dXTw6IuMuM4oPBO5L7ZlGE7Jbw\n2IroovJMuV5PlEKObuV6B6HRHeauPRSauy9zz+Td7pLzukXFIhUP8kVZOiBgkYnxaUxKJpaDRV8A\nfOAjU+ofA1wd1MZ20g+4LqPCwN3CIufyceULre71c1eMj3XiMYiT8bgN6sd5ZJ7ZnN2dBNxyFArP\nRG7UEeVDgHe73U4uPOKAPvnkE/34xz/WeDzW48ePC1n2J5OJWq1WYXz+7Gc/kyT97d/+rT7++GP9\n53/+ZwKKjKfV1VV9+eWXeuONN5KL2uPjut1uOryWQ3wlpYznuNsGg0FyeQK+CDp+/vy5SqVSAoTj\n8Vj1el3T6TTFJVFYmDmrkENfpeucR2trayk3Dy466kVAvR/Ci/tpfn5e1WpVw+Ew1ZU6jMdj9Xo9\nHR8fp2eurq7q4OCgoB8cEDHucDF64D/uLOaTZ8PHJco9vquJcToajTQYDFLby+VyOv7JA+l5JmOb\nnX2ckShduUSp997envb29hLIRK68Z25urpA2wtvJLlPGm8vF9RfzEiBExn2+o63+29vvbkZ39cWY\noXgWKz+5+BqKz21AbXSBUpdXHYTsYQQ8N7bHQWHuulyOLdf77qKkvnwenxU3UeXWtigPX/MiqKfN\nubXU18hIPLixG6/1+nBtdB1j1Hhf+3XMj7hevKrcCJCKbBPFhR3LXwJZOSbqVWDAhR0X4Rwb4u/j\nJ7d7y+vkHcDCnrvfF+b4DAdmOXYJ5ULOHJ/AXEPshreT9/tgoj7O0ETZuH+5VCql+JOc7GKOllm7\nHT12ivt8gDs4iLtpnNny4sCFNrkSnjUuXLEDcCi02Vk2f360RL3Qdx7z4XEVPGNhYUGvvfZaWoS6\n3a6WlpbUaDR0cnKS+ky63ogAMGDXG++LQNG/YxFtt9taXFxM+ZlOTk707//+7/rud7+rN998U0+f\nPi0k1uz1eqltZ2dnaXH85JNP9JOf/ETvvfeeHj9+rLfffjvFQVUqFR0eHmp7e1vtdrvQf8T/efwT\niv3s7EyDwSCBneFwmN5XKl3ll1pdXS0YACwcS0tL6Rw+gCjfVatVHR8fp5xcvnAAwFZXV7M7iZBj\nPJSbpKCTydUROLAX0vXuu/Pzc52cnGhhYaEQp8aGkbiQ53YzurHCoj4YDBLYQg4AeYCGz0tnjTkG\nB7l4igKPTYLRY74BtABEMOCMcQ+oJz6M+DL6h/vo8/F4nOLy+M5jhdyoof6VSiUlLfVzJt34cbnB\nTCMjZ8f8sxyz5HVx/YGs/FoK8qbdUcc7iIk6aRZ7ghxgbCIRwLNyejGuaaVSqXB+I3PBUw/4vdwT\nmUnaHdcSH2+lUqkQExfzlEXZ+H0RSHG950rz+/w53r/kP0PWcY3i+d6W3HiI5cYYqcgeOYiKSJXv\nvTFxh0ZO4H5fpPykIkqPwMgXzdyk4v/oTpo1ESJlGJkcf0cESx7E7c90Cw2ZudWAAnXZxOKDLLJr\n3o4I0FxOEehwTw7J85mDPs9cHCcoLgyXQ2RYfAL44M/JiHpGSjdn6VLf2CYOZEbGUtGV6u2Myozn\nO5CiXXNzVwcZLy8vJ3dSr9fTcDhM6Qg8WauzOsjJZSEp5aSKliesG4kw/Qy3fr+v3/zmN3r48GEh\ne3mlUklsCu0FxNRqNf33f/+3fvjDH+r4+FiHh4cJnJE4czQaqV6va39/P7Xv4uIiBYS7K0u6OhMP\nppSFF7AwnU5TmgG38gFjyARZT6fTAmDl3cfHx2q32wXGl0Dx8/PzQjbxvb099fv9BOaRnXQF6AeD\ngS4vL5PLlPd5biUysR8fH6f6EhhPADjtx40Ia+JuL85J8/HjDDvti/O1Wq0WNg9wuC0yLZVKaVcl\n6Upon+sBZLOysiLpWn+Xy2Xt7+/rD3/4Qxo3tI/rfBfwwsJC4aBiX8Cr1WoBJLixCVij3cvLy6lf\nB4NB2gzgoIPCAuqbiCjMcXeTIZtZBhj/+4acyMg7s+X9BLtHHzpzGg11b4Pry6gzI8ng/eZrIHKh\nbgSfA6Zc3r4zm3t97UA+zvTzXW7N8Hrm5OUGfJS3h7FED5DLgH7MuSf5cfZzFlDKAdJYbhxI5cAS\nf3tnOCDwweyf+//8nXtvfNer6ujv5D63TCMAis/09kj55F6vqrtfF60MR+xOO8f7uNcn8asKiN2f\nH4GGKw1KHNi5+jJR3RqIC0DOEgIkxFQFOTDF/65I+d9lG60l3s3kcmXlcgFE+ER010fsa28/MmH3\nFIX6AZhY7LDkWVA90Sk5lIg9OT4+LgAN2k1eJAABixPt8ASZsGylUknffvttSnopSQcHBwUL2McT\n7Ngf//hH7ezs6IsvvkgxSZIKC/Pl5WViQVjM6ANneZrNpvr9viaTSXL9eU4n3FbT6ZXrDIArXadV\n6Pf7aRcdfQWw63Q6mpub0+rqagGc8myMHZi1w8PDNKbYbk992IXqiw8A6uLiIoFBmEXGiOeBg7Vi\nYQNkYnS4BQ+w4jPfpQYAcZemg3Zip2JsGCwPdcoBCk5emE6nWl5eTiDIgfrjx491cHDwkoXP+Ped\ngs6kkXrAY6Y8/YbPRXdn0U/xIGf6zRdzxgJpMVy3M58B5jD9tG8Wy4PB6u2Nxrwv7BTkgpspMln+\nd3wvYyKn1328R1adfvb1wvUVLmQ+c93H/25oevt4ro8FXI8w57MMa36cdXNZ5tbVSJrEEtdQ3OAQ\nDuVyuTAOkRVj1Q2uWR4Myo259tx95MU7MS5IdFSOvXFGK4KzHGp1cBDBEt9Ht5a/j9/eDlcW/uP3\n+n2UHADJsVk5dsMRtS/s0rVF6otELlbC2+PFB7bL2SeuMz456nmWjN1SoN5Yq94uf2ccDzEFg/e1\nB3DGieHxVrHdLPTOOEUmh2dFxeegKrKHbgAQW+Z1ZSHAFePsCYkuWeR8PHi+GS+0ATZrbW3tpQWL\n3Ee0mffV6/WUUqDT6SSw8OjRI/3+979PR7y4S4ws5AcHB1pdXdX29rZ++9vfSrpKyPnWW2/pm2++\nSS43cgytr68XkpMuLCzo6Ogo/Q0bA2hyNxT9WKlU1O/3tbOzUwCgk8lEe3t7KpfLKQeU98/p6alW\nVlbU6/VSbNXFxUU6VoO0G34sC0BnMpmoVqsVguFZYKrVqlqtVqprt9tVo9FIwDfGazHWvH8kpWN1\nnFGLqTdgKXEn0vbpdFoINneWi884VodYrnK5rKOjIw2Hw5SGg7pwzXA4TGklGo1Ggammbl988UWB\nOY3jH+AQxzCLpqcxoF78jgHV7sql0KbFxcUCm039y+VyYuP8+VEfuJ7Luboo7gWgfa7P0RU5Q5a+\n8jABCuPU3W2xvr5eevF1ahbYQL+78Ukf0Rf0P2CRseRMofclbfF3+LyL6zHPiW3n8wg+vU2RJYtt\np66+5g0Gg5QPD4OD90W2zcNjcu8p1HfmN7flttyW23JbbsttuS235ZXlxs7aiy45qbjl05Eo1CwI\n0+nKiJBz1rn7cyND5MxERNZ+vTM3zkJFdyT1iCyNF0f9/r+70WL7Irviz3Y6lffCXBDP4Qh7Vp9E\ndsotIH8n/QFl61uTx+NxsuTdx4/FBXPjfeIxYlht7pKIQZ65MRNlwv/4+qPF5+xh7BtKjKOItG9k\nP93diwvMZe50+Xh8fcgorrVy+eoYHZI7eh80Go3CziTq6vFafvTIdDpN5+mdnp5qdXU1WZewVH4+\nn7sEkRf98/z581Tvv/qrv9Jvf/vbxLJQTxiX6XSqJ0+e6P3330+uld3dXdVqNT148CC51VzGjAt2\nE/Jetuefn5+r0+mksYUsSYwJ++IyJXM8FrufUUiMTr1eV61WU6/XK7hw/Pw2d7kgU+arxyzh8iNb\nOi5FSYnt2t3dTQcQM86azWZKIIkrC/YHGUyn03TUj+90JZi8VqsVDl5mZyR95pnDYfjm5ubUaDRe\n0jVY+hzl47GCyI34KM803+/300aCzz//vHDWoOvZ6M733WG5mB2uja50nussD8/2eCTYHK7Bvcwu\n11lsDnojegNiLA/1ZE1wN60XxpE/09/HNTzX3cRRb8d0D9ENi070NcjlzHfI2tcRZwvRYd5+7wNv\nB+uWxyH5dzyLMA3azXPdC8C7WfMdL3gfuPzi+3xNoO0cW3R+fp7YXmSLq9xZOu8Xdznnyo3HSPnC\n5YMxN9h84vgOM3+eDzCnKqNwfeLOKgxOFnJKfPcs12HOt0vxyeH1jT5i6pkDOu5C83bxXQRl8b1O\n10a/eK5OFAeCXi9++0Sb9Z23sVK5znROfXzBQBky6aPvmzrlQBZtdFBHvXLyczrZY6GQl4MlL1zH\nZIwuDL8vN24mk6szBQ8ODrS9va21tTVJV2Ot1+up0Wgkl59nRC+VSqrVappMJoXA4VLpamcZrqle\nr5dinXCF3blzJwVJUwAvvgGA2JMnT57o+PhYDx480N7enjqdTsrbtLS0pOl0qrW1NX311Vc6PDzU\n22+/LUn6/e9/r/39/RR8PhqNkrsQMEgQt8fPICMCyl0J12q1pAhZyPgtXcczLS8v6+LiojAPzs/P\n1e12E9B1fQKoJf5pPB4nQNjpdJJ7lTgij4cCfA4Gg7RxgL5/+vSpJpOrc/iI+aKfqPfCwoLq9Xrh\niJzFxcW06CNj6Tr4m+t8LuB+Qx+6C5b7PcM+4BOg7ptU4qJHigXGLMAWF9XPfvYz/eIXvyjMfQfl\nxKjEkAx307iuBQSib3gm+sLnl8vA527UGeQGI5YoGliMQZcr/Z0zkh0k+G+Kt99dl1IxX5LrYAcS\nHrrgxXVWdI85gHRjNxqOHmLgcyjKk/7MuUEjkeCyQQ/6dZ4LDpDHdRE8x3f5cyjebjeAaF+Mj+O5\nfvIHxgt9HGNdGaezyo3FSDnAkfTS5PJdbc5QRLTI4HOrZ5aCiXXIoVj/n/f5/17HaAnwfbw23h9B\npC+yEUhxr6NyZ8vi5z4QmdBY/R6zwOSPu7n83T4ZKLQ5go/c79inKAQGpstnfn5e9Xo9WYIocBZP\nHyteFwdC8XsmDXLwAEhn7mLxseH9y+TKxR9g5ZfL17lwYEpcJihNB7T47OkPtxKr1aomk6st9eQu\n8tgy4og8jsfL6uqqer1eSnYpXSmyUqmUzoaL89APl4bNka62+B8cHKjT6ejh/9nRxzEg7XZbo9FI\nKysr+uijj/SrX/0qtYHz8J49e6aFhYV0jIyktHWfmJxoffti1+l0EgAh2Ju+JUkodWUbPfmLYGZ4\nJgqzXC6nnY2SEgBhwRsMBinHFs+o1WppPLH7ENZoOp2q2WymYzh4X7/f1+uvv54OknZjDPah2WwW\nFmr6pNVqvcRQXlxcJHYIoOnjGz2ZM8zYRQeocJBFDBvv8DkOw8kBxC5TjIb/+Z//0Wg0KuSDijFR\ncS57ey8vLxOQnk6vg+jdoGQsejwl7ZKUGCe/L74PMO9B+sjW3+9AivfHXcC0ywEo8o5y8A0RPCN6\nYCgOUKKxHAO6I5Ci/own5oV/F4sDCNoZGfrIzOWKr7sRADrL5aQJ+jKuHb62u072z+Oa64SLvw95\nU38/gzC3WzIG2Odklto185v/H8sslia6Lf5v7nEw4f/783Lo2d/B9/7OCILid3TmLKZo1jt8Usd3\n8LzYabPAoE+sOJGcYp1OrwPzInjMBWo7xctzc4MxFpdLtIAdFMf6475hMfBJSpbvyETmZBHZTVeC\nUlFhRyvPxwoTOwaMswPF5e7bwwH8OWofWXhQPbvTYHVYAE9PT3V4eChJKdXAwsKCTk5OCophaWkp\nHUrKOIQFKZVKaZFst9sFWhowNhqN0s4uZMN5egCTqIiazaZGo5GePHmihw8f6sGDB5KUDk4eDAZa\nWVnR22+/rW+++UaS9NZbb6W+63a7Oj09TYxbo9HQs2fPtLi4qFqtVkgQiTtrY2ND3W63YD2zm+/O\nnTtqNpvprEHaAWODK40M5rSBnEjIzXNeAebn5uaSK4Ax0mw21W63dXp6qmq1mvrZF3wHh9x37969\n5L4k672kJGvqOBqNCocrw4wRkM9iT9A4bfCAfT5nUwGg2cegu0ApjDV3+zDWAa4LCwvJJeb90Ww2\ndXh4qMePH6cx4uwK4zsyHa6/+d4Xa8aNt5P61Gq1wmLnQIh5mtsUIqmQnsJ3s+JKY065Tndg5oCX\n+vE+13+uRzC2XP+7PGIoRFyrouHphjLGAe2gzrTH74061HeuUWi760fX0dLLa6n/xA06sR8ovuZ5\nyAxj0Osxi5HzZ6MDeJ6z2xEgwyzzGc/if5dnlH8sN8pIRQTti3kEKJ5QMqJzR/VxMeV+f7dUzBvh\nCJdrIsKN9fe/fWDm6sX7/PscUONZkcl5VT1dls66xIGNBeM+aWepooKL7Y1AA/lGpcgPLJJbH7CM\nDMw4cZ3idUXkTEUcN3Ey8z/vyQFwv86vl/QSUPLfcTcKypFrsHLoo5gIkd9RwRPDtLy8nNg42kuu\noqWlpcRmeH14Xr1eTwkfKQCtxcXFwjZ3j+/y3VaSkiXPmIFpkVQAH8PhUM+fP0+AaHt7W71eT51O\nR5PJRFtbW3r06JEkpV1xx8fHWl9fTwf1Ikd2WE2n05RLSbpypeFOK5fL6RgS6frIEel6dxdJO6Vi\nhnrkRjuWl5c1NzdXcDGwQMMI7uzs6PDwsJCvaTKZJFchYxR537t3TxcXFzo4OEhuWMBwq9VKQI++\no54wYIyZxcXFl2SDm1K6XgzcZc11PtaY39F16ZY+xwj5PHT3ui/OGA3Ulfgqxs7S0pJevHihwWCQ\n2Dj6h3Ea89rxXPoqzlfXa/QRdT07O0vPR67OWJCtHpYwB+oODw/VbrfTfaREmMWA+5x3wwRWmLa6\n3nM9lFvzaGduIWc9jADJgUJu115kI70f/bn0ZXRReh187Md1x3VnjMHiWg+HcD3Dc2gPrlpfj3yM\neHtyxriDb9fhs3atOyj2eqObfU3PvTeWGwVS0svAwhfZiJzpeO+UyP64cLhnFqJ06yKHeON1uef5\nPQ4aaENEuLHjve0OinJsGiXe6+62Wf5ip/ula4WCTzwCy1z7JBUUBrLwNmHFovy8Pq5QXKnEtpbL\n1/k9PKgWl5wHHEcLNgJQ6Gh3Fc9iF70OswAY10RXabw39hvuPMaO5yDCxbK+vp6sfZdNuVxO8Svu\nlkRJ+3EkvtUX8BHbPD8/r+Xl5bQVfG7u+pR7z8nD4k+fE6sjKQUj4xJ78eKFHv4fd9/nn3+uWq2m\nra0tSUrs1tramobDYXo27WPx6Xa7arfbhQBnWB+UI+0hfgSgSYA0rkaAFnpkNBolgFIqldK5hZXK\nVdZ1Tz2Aa+ji4iJtoZeuWBfG9NLSUkq5gNx3d3eTpdvpdNJ4gz1ifHKeHfcRXwWrR/txazK2PTga\nwJ0zPAEC5ATyBdENEs73gxEtlUopEJeUGFzP+ML1x5jwTPPkjiII3ecHLEXUP4yBuB7wd2RXuI/4\nQOLGXJ8AfsnHxoYE5Mj1zBt/B6DIA6f9Pmf6vS+8vq7znIVDJ3i6BF/0ud7/dtbvVSW6cX1ceCxf\nBHSxHyJIieuJ3xuD2ykuG/6OOtbf5zJ2Wfi6lGP4Zxm4Odl4/WcZ2G7Ax/v/Uh/cpj+4LbflttyW\n23Jbbstt+V+WG4uRihRg7nv/3691BBwtAK7nN6g3RynPctlFZO4WHc/IMQ/+/FdRuJGFi6xW/H9W\nPR3pe5yB3xfp8ZjUTSpSntJ1nEguWN/jAairU+peR7doYnxEdG1GOtzrQrwKrI7Lm+udiaFNLsP4\nTGfgIqsWrSQKrAL3ujylomXq7Yp18DgX6SpOqFwuJwqeQGLpiiHpdrtpezwuFuk6Lqler2swGKhU\nKqX4GjKnkxLB5w9xVT42fEyen5+nw2vZvYcs2NVG3BZsxvHxsb744gu99dZbunv3rnZ3dwtuz8Fg\noI2NjXRWn8sb90ulUinErszNzenOnTuJ/SFRpnTFkBwcHKRjSk5PT3V8fJzOW1tZWUmuoFLp2o1F\nXxADc3x8rGfPniWmq1qtpizya2trevbsWRrDsBvNZlOl0tUByeyE3N3dVaVSUa1W08HBgZrNZpqL\nsAqkYBgOhymRJzLe399PrkN2xhGAz7Eyk8kkMXkwh6QkINaKvvedZLEMh8Pk9pyfny88s16vp2By\nYsXoQ092yjzgiJjpdKovv/xStVpNm5ubOjw8LMjb52rOZebzJbIgzhI4kxePyYl6kp2TMX4M5oln\nxOOg2ADAM/jt9Y6bVKKXJecujQHV3p7IgsNGodNzCUFzepDfjDnWLpexrwHTaXFnZgyr8DahL5yd\n4ztfE3O6nXti7JS33XUy7BQyiOuxe314D/3L5zw3rmGwgjG9Q9zkEduRwyqUG0t/kBO4lE8JHxdo\n/yx2dBRu7HAvs1x+sZ6z6h1BgdcdheG+aQc2sU1xEsY2zHI3eT1iQWl4YHW81mUQwcirZDDr3T7Z\nAAVeUAg5ypjnRXed74gjZkq6jhXwieiBkF43fPDIxXeLvKrNsW+4z92ptIvJCfij/rwTdwlxRij3\no6OjlFH78PCwENAJGADE+JEZAEtkRDslFVIhAHwBZ6SUYIz6zqVKpZIWUwLPARk8x2NS6Ceu/f3v\nf6979+5pZ2cnZSiv1WoppmZlZaUQW3V+fq5+v1/Y0YSbbXFxUcvLyzo5OVGtVtP8/HzKFs691J8+\nAdiUSiX1+/10BpvH81xeXqbnHh8fpx2R9DeB7wA4z09EsHmv11O73U47+o6OjrS9va2Dg4O0K47+\ndfe5dH3AMeOi3++nLOIARklpiz7uW8Y8fS9dxZEdHx8nN5F0DVYYk65PAP+lUinlEqMsLS1pcXEx\n7QScTK6znrN7FODNzjyeu7+/n0DmwsKCms1mQd4s7tQvtzDGOQyI8LUBGY5Go/RMP42AMcz4xMWb\nc+e7PJApoQmz1iDXGf48gGckAZgjtNHbE3VUDNlAl8Y1g7lLmzyujXul61MafDMJc9/1ZE429LOD\nWIwP1x08YxaYQu/52aouHzd4S6XrHGLueozuthgDhZy5L24q8uczT2IcmceMSUU3I3L0I71iufFd\ne7kYmhzQ8EGSA1ZxMEjF42Z4bw7A5CZNrEeOaZrFhOU+i+xQrDuK3n3Ksc4RgLjcpCJ74pOWCeug\nwLct89utowho/F0OyqJf2weoD+r43BjMx+TOAVvui4faslA5WM69i3fk2pHbXejxBV6wVD0Y0Rkw\nt54cTPM9DAJt9P7qdrvJqq7X64WdRDADsBi8k/iQ4XCYApy9eAoDrHDkxgISGTg/Uw2FBcvD4ghj\n5TE7zWZTrVZLe3t7+vbbb/Xw4cOUNwo5Hx0d6c6dO5pOpwlkNRqNFFNDu/xYknhsCjFJT548SXEy\nx8fHiWEBEMG29Pv9FMDuCnY8Hqvf7yd2DmA3nU61sbGRFO7y8nLqC1IUDAaDtEvtyZMnkqQ33nij\nwJDBMHl/cTizB6n7FmxA6+rqqiSlg3cZF6VSKQGbwWCg4XCY4s88ZQjy9nnlgMkXu+l0moAymzro\nU98VR86u6fR6QwBsmHR1DiPzghgq2k/us5gnSCoaNdTLWXVf1H2BZnx6OoE4/svl8kvj1AOvc7tr\nHfR43zkwoES97LtnfQ2Kuj+uVQ4wYn5B5BO9JP5/9B44cZALnAasxu9harwdvivS5RMBLjokgqUY\nfO/P4p2+frmcATye+oj7y+VyykkWAZEHlOc2RLFueeyYfxeJEq6fRVhINwSkfED5YPTspt5RPtii\nK4LveUZOaLmJwSBx1E+JFsmsxTX3zFyd+Y6BkVv43Q3i9zkzw4DJWRBu8fn7Hb37wIkZdiN17O/1\nz93ag32h0Gc+MWPwJIrFJw3PdUsnBhACpFx2pE2Iz6H+uKV8h5P3xSwFFUEz32PNeQCoL5al0nUG\n7cjuucUWz/9ikrKzzHeYtdttnZ+fq9frpbP43K0wnU7T585yEczurtWYXLFcLqcdgoA0gqt5lp9h\nxnNwk7HFXrrOA4b1xvcUdtTt7+8nNoiyurpaOBDZmRUyfff7fTUajUKeKNyWa2tr2tvb02g0Su8E\ngJEtfW1tLcl0Op2q0+no6OhIlUpF7XY7MVmA00qlklg5ZONZ0BcXF/X48WO9/vrrqR3or6dPnxaY\nw/H46gBlEoE6eDk9PU1gD8DR6XTSdw52XMmPx+Pkfp2fn9fZ2VkK/G82m7q4uEjnM/pi5fmV4nZ2\nUkq02+0EopA3Z+fV63UtLi6q3W6r3+/r008/lSQ9ffpUz549S2kqpGvwS9JXNy4cUPlGDN/pyvcU\nZ914Rr/fV6vVSrnCuMfnsB+ejewAhQ5Ambe+9Z7ncP6gj1Ha4GsV8nLGh7ERQygim+5sHC5v9JED\npZgMljEdjTvXUw4OnFVyhg1DEcDuxp7rwmggUz+u9b+p19LSUpbJiyEYvtHC1wNfg319cIDsz6Rv\nc4QMsvNkrD7O4noRwXGu3NiuvRh/49RaZIn4zF0KFAZhrpGRaswxHfx4TwFGhwAAIABJREFUR8V3\n5wCa05l+X66O/h1/++/YbkmFTowskN/Pfb4TJL4j0pY8n8U0x9ZE+cUyC517O3KTfTKZFNiOXF08\nRoH/fZK7dcRCkdsGTHGFJb28y8Pfx3UoPt8lyL2ePdwXfe5nl5gr92jJuhUFyCHvj7sbut1uco0N\nBoPEiElKO9V8YWLxcmq8VCoVGAkSV6JM/H5yLF1cXOjk5ERnZ2cp7oodZvV6PcU6UZfDw0MtLS2l\npJIcaispHajL4gu44btWq5UWpnq9ntxYzWYzKXRX8NIVqCGX03Q6LWyHR8bsIptMJtrY2Egs2MXF\nhV68eKHz83Otrq4mpklSyhE1Nzenfr9fAFKeFPWbb77Rd77znSRn4qI6nU7qI9/tNxqN0vOk6wXX\nE46i5AFEDnrYoYdsAHMcanx4eJjaT16ti4sLDYfDgpFUqVzn1mGhhHGEjQCcEQ/H+K7X68kQkKS9\nvT39+c9/liQ9e/ZMz58/T/mmfDHF1c0C7s/w+cxY9QU5lriwMzY855VUdEMBUmmjszCeANS/5x2u\nC6NR6+CE/6MBFY1b7wv+9/UuhoJ4mhreDwvpMo4pGZwl8ne6Low6nOc7U+3tYc7yXGfbnY13efI/\nOjwayf5cYta4z+vlhjfPAtC5256x68asy5R+zK0Vvta7fo6pgnLlxoCUlA/qll52wVF8MMRANWee\nfAI6rejvcnYiMkQ+SF4lcO5zVOvM0V8qESjG9nhdIrijDdEycBk6tT8LVTt1THGmyQGdt93bn6Pp\nY3ELgwU8WiOU8/Pzgq88x+xJxVPX/cfllusLlDkTKvYhn3m8hLfP7/dxxP/R2vbvqXe04ACYABz/\nDkajWq0mECopATVXwrS/Xq8ni5Y2AQhZSFhk6vV6Yoj6/b5WVlbUbrc1nU7V7XZTX5DLqtlsanl5\nuZBpfHFxUXt7e0lxHh4eJtfe3bt39cUXX2h+fl6tVist3LSPWKbT09NCP3nQdMwWPp1OdXx8rHff\nfVenp6daWFhIrI90tbAzH8mvhdwGg4F6vZ6azabK5bJqtVqKS5pMJin/0NnZWSGZ6fn5uZrNprrd\nrjY3N1Uul9M5hH5kCcCQPhwMBhoMBqlPPE8YdSiVrpOpspisrKxoeXk5sYPOZLGwDodD7e7u6uTk\nJIE0smkfHx8ng4B+Ylx2u90CK8m4gMXsdruFc/+Wl5eTW5MA7idPnujZs2eSpK+//lrHx8eSrty1\njD36Siq6jaNedcPKmQc3Lp0d9zAAnxO0D9kDUnOMCnJ3vepMdvR8wFTA2ObcgrQ3gkBAkbuI0ANu\nOPmz/HnRoKUNyCgaks6qeH24Ltc+13PIis+cTYt1hX0GmDtrjj5wDwhAy2N3+T0LrPjnrl+5h3oC\n2kql0kuhILTNvSr+3auAlMd45cpt+oPbcltuy225LbflttyW/2W5EUYK1iYyKJE5ir7yyAL4fc7k\n5Fx/0cXiSJT6OOvi90dGJJacHzbXPv6HcvZ7nIVw+pPngaKjdUWJMTsxritHc0pK1rFb0FCZzvL4\nu5z6zvnpvR/cEuJ6WKbY97zLGTK/nrbkfO3RWsj1U2SW3MqLTJ67Jn3sRKvT6X7+90Nn3dqNY84t\nday5paWlAo1PQOVwOEzuMncJnp+fF8a0M4icNUe9vK1xhxdpDIbDoY6OjlQqlXTv3j11u920Uw73\nI4k5t7e3U3vW1ta0ubmpr7/+Ol375Zdfpu8fPnyow8PDFP/jcsC9R0B4ZJ5pC+ySdMXytNttDQYD\nVSoVra6uajqdpucPBgPt7OxoMrlOsuhM3ng8TiwLLkTpipFrNpvpuJrpdJrYHDK3r6+vq1wu69NP\nP02xVbANGxsbmpub097eXiHJKQlQOdAYeRMsfXl5qV6vp4uLi/RMguVxKzSbzUKKA5glSVpfX08u\n2J2dHX3zzTeJKXBXFkyRu0KZTzCc/X5f4/HV0UI+ZkjkCuM1GAzS+2EL6TPfKBB1k3TNMDBXIjtA\niUyLjw1SGLjrkPZ4SISvCc4I5dxMzhbFGBrXMzEkwtch1xMuv+jug5FCfq5r0E/+vwdRo6PcpZlj\nwSLLhHvcw1N812L0rvhuYK6P6yXXS9fZ4WFHeQb3+uYAnulhFc7gezs8VQGyQ4d6HxI3GHWe1zPG\n+VJPLzGeOHqtYrmx9Ac5msxpyjhond6MrjenLv077nFQE104PMMFGRfXXB2je8vb5fWMPu+cO4//\no9uMetLx8TtoTad5o5JAcUSXoVOYuUHigy0CFXff/SWQ6c8DZMQ4ghg46FQ3sSHIMbpgXe5RplER\nOQiKSpD7omsSSt4LSsTdePyNYnAglGtjrg5LS0taW1vTysrKS4dpslvOFwXmideVwnfEL7iSvLy8\nTC6l6ErExYbrp9Fo6M6dO5KUdonNz8+rWq2mLejS1fb3+/fva2NjI7m76OejoyMtLi5qbW0tHdfi\n7QYocpiyu0vn5+dVq9VSfJMbWx988IGm06sjbLrdbiE24969eylA/f79+wXXBGOBYPKtra2Ca8Az\nrzt4q1QqKYfUkydP1Gq1Ul0XFhb09ttv6/DwUE+fPi24KdgNt7CwoO3t7cIiNBgMUgyZL0CSkqsM\nl9vR0VGSHf2Fu3Fubi4BW462ITj+8vIy3YfbHBBFSg3+lpQ2Q3jwPkDq7OwsudIIaOcedE2cL/SX\nAwf/nODpCE5Y6Nyoc/cSICqmHMG1xFxkdx/1lK530cbFGdkChqJbiOvdFUm9GcuzAI0bkjzPQyti\nGINfm3Mj0r4oN+qUixt1d53Xjb+JL5L00noBsESWOYAbQa2fCQjIimttbhMWesANUJeFg+SYQgH5\nx91+Pi6p46xd68jK25aL2aPcCJBy364XX+jcYvfvGfzRj87fcXHyToiD1FmeHLqOFkKuxM53688X\n8pwfexbwiEyctyUu8pIK8UR+ve8yife6bDjV3QdVZG8cAPJ9ZFlif0Vrj+fE2AmXBbFUDGrAA/3n\n8kXeKP7Yxw6iHXSgPHJWcO45XqLypC4XFxfpwF2sLn8Gipd3+nfEBhHg6+OGOBW34KPVyPMiWCLR\nZQShi4uLmkwmqlarqlarKf6G+9bX1zWdTnVycqLDw0NtbGxIumI6zs/P1el0UvyQA8P9/f20oAMo\npKsYqadPn2p1dTXFMnEO3fn5uRYWFtJxNXHss5MNBoTFfnt7OyUcZUz6MTDr6+sajUbqdDqFJKK8\nc319PTFRvjhw7A1xMHt7ey8tYi9evEggjLl3584d7e/v6+uvv9b8/LwajUa6j12OvuuTPvdUErBH\nfDeZTFLKBMCLgwWPkVxeXk5B6hyTQ7vL5XICaHHRp89d5uyymk6nSd5bW1sp0H5ubk7Pnz/Xt99+\nW0gc64Ze9Br4HIxgy3VTLkbGwbPvBHTd5EYqC6TrCWekKBF8OFPO9TFInT6KAIT3UHIMObJ1ubtO\n9vscbM1i62gP7YyB5+icaIi6IRgJBQed/kyuYwz4e6Vr8Ersp7fD11NYRNrq60g0aDFMfSely8lJ\nFwwD2useAl+fXQfnxoIDuly/zio3mpDTBeeMQnR95QZTZJ18MMRreFdOqN7hOSbqL4GF+D11pSMi\nePF2+vu87bENgEe/JrbdFaR0rUxA75EFkl4+P+ovtYvfrkT8ur8kN1dw3hcsckwMduHwnQ/+XB29\nPpGKz4F2d+vNYrH4PE4o6u27jngmu/+cuvadNFyLIoqgrFqtprPMottlFv2NFSldMwnS9YLkIMnr\nNZ1O07l3npiRxXN1dTVlB8d9c3R0pNXVVT18+FDn5+cpaaV0BQYbjYbq9bqOjo4KFvuTJ0+0sbGh\n/f39lG+KOvf7/SSzo6MjVavV5KKinwhO9vY1Gg0dHx+n3Uunp6eFvEeekZ30AsiEnFGNRkOLi4s6\nOTnR5uZmeifzgZ2JjKl2u62jo6NkXVer1fTM/f19dTod7ezspN1HAJpS6Srj/GQySekTkDeygAHi\nsN04xp3RpX9xP7G1HBat1WolNyRnEXqoAAA6MiTMGZiDfr+f+tDPLWRe+Fj3TRi8L+fSY5FzfcOC\njqEUd58xD6LrKRq/OSOTOZkzsHie3xeZKN9oMZ0WdxtG0J9ruzPcABpf8+LGKC/oPndVcp/rxOgO\nQ0dQF1KyIA8HQQ5OMbwBRQ6IeP/i4mJqkwMR5rsf4Iz80PvIyF2Jrr+jjo8g2ccw7fVdlnyGfnOg\n5f1OX/hvD0GJfeN9MKvcaPoDKZ+cK9KZjlgpzjRxbw64IGyu8XdxTWRXfEJQfDJEEBffGRWT9HK8\nTGRWqAcd5laGA6bcJOUnunpoAxMkKk2UjLt2vF3ezthfOTbJnxFp2UgZu/sO8MQzPWmey4G2e2oE\nnxA5+tstsRxwncU00g9eF1eE9JUzOa7sooJ21ysLIDuwAFXr6+t64403tL6+nurqOxMja8Nht6QT\n8LiUSG/7mMKdwnURLJbLV0enNBoNbW1tpQSRz54908HBgdrttpaWljQcDhPImk6nGgwGarVaWllZ\nSRmupavdZ3t7ezo8PNTe3l7haBVPM7C4uFjY8eOU/+XlpQaDQTqS5PT0VPfu3dP8/LyePHmi7e1t\njUajBCbm5q6OV2k0GmmnndeHfEcsHN7HAB2+Y6EiLQI5s0qlUooJq1arunfvns7OzhKIoQ/b7bYu\nLy9TXJK7t9F3MG++MJRK11nbkTHfjUYj1Wq1lJ9rd3c3AdDT01O9ePEipeAYj8eFQ6JhTJlTOWaF\ndzmT5Qu4J22kPrTB3VWMMfQkfZljA3yR5XPACzu//D76iXnncpvl9YgsSGTAoqsoMkNeT2f/3ZCL\nxm7Uy67TXDY59xzxaPzv33G9h3fwnR/6LhWPtHFQ5M/FMPA56O+gnbwvxlnSB143xpqzRN4XDvD8\nN/L1dcRBDr9ZA/jOCQPGm6/B3t4IYn0cxnq+yq0n3XCMlAtHyi/S/O8LofQy2+RsQRzgkYWKdWBg\nxIWYEpE59faO9Pf5AMm5seKE4V5AD+4G6eWtns5kAECov8fm0C6PDfEFwwdTjrqMiiNaVTw3IvUo\nC6flkQvWq7s3PLeUTwwHq5EN4kw0+sLb4vWgbx2gM54iaMTH7+3zc7pcBg7+vF1cc3l5mRYiLDIH\nMCxu6+vrWltb0927d9VqtQpxOTArvM+34RKYPD8/n7b3u9XmBoQrTrJrw2R4WgHaDuDb3d1NeZSI\nwWExJiGqdJ1p++DgQLVaTffv308Le6PRULvd1u9+9zv95je/0d7ent566y1J10wHBg8uG+pNIkT6\nhe9gVQ4ODnT//n21Wi396le/SvInMJtUDp7G4ezsLKVmGI1Gunv3biFLfrl8fUwNzI10HYD8/7H3\nJr2RJdcZ9psDp5yYHIs1s6pbPbpbguV2t2XBhlcybMswDHjjP+Bfoj9hLQwv7YU2hleGBcmyBQuW\nujWrq4fqanYNJItDzskpM78FvyfyvYeX+gADH8oLBkCQzJv33ogTJ87wnhMnOELm+fPnunbtWppf\n5rXX62XQquFwmHgV+nkZg9FolMoODIfDjHyglpTnW9EvQsHUGdve3pZ0nlvFPLJemF8M1tFolAw6\n52EQqfn5eXU6ndRPakjxHa+6Lk2rsEej0NcNfEe9sLzGPNAfZFrMu8LA8qOY8iIH7nj493y9u0Mb\nnW3+J18MY8EdZl9zUe5LU0PSc6/4ftRR3m/KYWD4eA4X33MHmXdjCLGuvOioy2r0jL/bHVZHcV0f\nRPQvT3/QkLNuYLpsHo1GF4w8aZpbSl2yKBd8fhwsoXnZC3cQ3Dj3vjugEJ9Hvl2e3k79vvTKVbtq\nV+2qXbWrdtWu2lX7re2FhfZiTBQvn8/ycm8us3zdMnUPK3oljjzkvdc9s+jhRE8DT8bvc+jb/6YP\nHhbKS8b0xOIIDXtIzhv9AK3KO/QRjzYvHOf/e5/IwYgoHda6JyV6rk+E7/E2yGVxyNmRFeYh5k9F\n7895hmt58+vzEceK5wV8DO0ZNyEmxu4oHp68lx2ABowbL8w9R57n26qZy3a7nRCMiHKenp6mzQBx\np8l4PNbz58/VaDTUbDbTLi/6zI9D7tI034Px+hhHo1FCB4H5QQnIX2LnXa/XS8jN4eGh2u12Qis+\n/vhjbW5upv4sLy/rzTff1PHxsf77v/87FeV89dVXM4VGHVVrtVqpTADhS0827na7Go1Gaadhv99P\n+U+lUimF+hqNRgZd4UzAcrmcDib2eSwWzw8JJgne5Qhz0Gq1tLy8nEEj2IHHcS7saINGVKSuVCpp\nLsjfAl1yFODo6CjDl9IUkQINJFwI7aVzhJPiqCcnJ6lgKWOgsCqoMHRhbguFggaDgVZXV9OOTXjJ\nQ321Wi2Vm2A9sCvw+Pj4QhK7y9cYwsvLbyI5n2seTnMZGWW1py04isM4kGFRXvBc+gPyTp8IZ0EL\nR5cd4Xcki2f5mqbx/Lx0Ft6Zh9ZEZAu5m7eVn3yhvBMPGKOnD7jcjkg98iymvXjOKYiPo/eMg3fF\nyuesOUeP+Bv9R64f7/PfzluuS/NymgqFQioZAdrL+JiPiEySo5m3EYL2Qiub+0RFZZgXxvN7vTk8\n6kS9LByYd837gjL1PBoPsUVF6VClh/5iHz3c5de9pD2Lwhl/ZmYm1X+Ji9H74QvaG4ImCo4ovKLh\nyt8xXMq9LK7LaBgNKRcAvqsGgXd8fJxykrwPeVuVoRswLcnePhfQLxrP0ZCHhtI09MGzyuVpzR/p\nXLmxUH1buYeX83InPNRBKIZ8H86oQxF7Um0Mx7oQw3De3d3V8vKy5ubmUs6Sh0ViCLZQKKRjYhCc\nGOCEBfr9fjKgyGfqdrva2dnRcDhUt9tVu91OFdEHg0FGIEtKdaSq1apu3Liht956S++++6663a4+\n+OCDNBe/+7u/m+hNjRtoTV6UG48+9kajoXa7rW63q+vXrydDo9VqaTI5r8x+7do1NRqNFE4iVLSx\nsaF2u62zs7M0RsJwGCrk4EjTXXDkt1Wr1Qy/nZycaH19XZ1OJ9WEct6gDpjLDK8eDq9ieKEA4VUP\n73h18Gi0HBwcpPAeBwjDQ7VaLSlMjDCMTww5Qm++K3MwGKTSD5PJRPv7+9ra2krhaY6iwSnyDSMo\nKF93zivufPm698R/1pobC8hiD81JyhgnGL+eM+gyNG+9IpuibMOBzHNm+U7si38HI86dF5+bPBmH\n/I+Gp5Q9DsodTO8jz3TZ5/LOaU5/XIchAwgzuoHiuoA+Rb3ndKNFh93H5M+hb8PhMHNMF9+LBhXP\ni8ZfNMCgqYfMXaZ6eJMxuKGa116IIcXCcYZmwl3x5RlNlz0rzwDLQwz8f97B4nHvjwnweiVSdicB\nfY3GGoT3Fo3GaCzEBFC+S2yYvvg1mD3G+Z0u0JUfZz6PCUevEPrljSV6UZ4/xf9R6UNfvuu5EG6w\n8l0/c8nRPV/4Lizz6O3NFwbNhQ3KjIKYfM4p99K0TIHv4PFFSt9Go+mBsp4AC+JCfhHe/a1bt1St\nVtP/PkZ/ni98+gfNdnd3tbi4mIRrr9dLAjFv+zD5McPhMON50zyHBcTm5OREvV5Pg8EgGfa8n2NQ\nQCZmZ2fT+XW9Xk+7u7va3d3VO++8o69//etJAf/sZz/T+vq6ms1myvXy8/QajYb29/eT0QLK02g0\n1Gg0MsebzMzMpOdKSjWbTk9Ptb6+nnK2QBzhH/f6QbLckIwHLC8uLqZEbwzpo6Mjrays6PPPP9f+\n/r7G43EyzvDIQb9w0uClSqWiTqejk5OTlCMHT/nxJ2dnZ5mjXsi7QslCm263q0qloqWlJQ0GA43H\n43RftVpVv99Psuv27dvp/na7rVu3bqUcqclkkkE52RVZKBS0sLCQ8uLo69nZWeZ4p+goueyK69Ud\nzagXaKenp4nelL2gxXIK8H1EtZAD7uS5HGAMHnHgmTH6gHInh4bPHZHy8UQUzJ04v4f74jvdaHeU\nnmuelI7ecBnPNf73HDeeyz2+s4659PpcHiXxvvF3RIgYX5TD5fK0Ph5zLCmdFdnr9XR0dJThq3K5\nnDn4PebpOu1wJPk8LyGfZ/qZgP48jyxd1l54QU5XRLHD0RCKVn7ec3wSY2jPmxtWIAwIG0dA3GCg\nuVJyJc67Y7jJ3+fM5EzMJMbdML5DAi/UPSAWKko2IjKXIXL+WTRE8CJ4v9M30t7H4EnoGIbc77tB\nCoVCStiVsmfGcTCvJ3g7miVlC62x6NmdRPOQLf/TfGHxf9wCTL88JEphRTd0HBWAlnNzc6pWq7k7\ngkCjVlZW0m44BBhKcTgcZubYlYDzcqfTyQjU58+fJ/QM2hBm8uZnUFH6gO9Qe0qahlxdmZCYPplM\ntLW1lc5a29vbyyjVQmFaXHJtbU3r6+v6/PPP1ev19M477+i9995LY/joo4/0+uuva319PbPz7tat\nW4nH2GVHTSsgen6q1WqmmjjoCYVHZ2dnk0G4vLyc6metra2lZ9AODg6S4u/1eokX6/V6GhPolBsN\njx8/VqfTSYg28gQeps6To06gJZPJ5EJtKuiIMejXUD6TySQV9GRdLC8vq1qtprAeuxelqYIaj8eJ\nV6DL4uKiSqVSQis9SZnDqOFJisYiJ1izzj+OADhq4vLGx+jKj4bB4uuB3474ufJz58vXOPd54nKU\nfW7E+qafKOejPCHsGGU7Y4qVy2PDOOE6eiAqf8bgqQk+bu+r6yEHCfh7OBxmdG4EMByRw/Fyg42G\nER3RLZ4BAkoo3YujuhM/Go0yjgmHbiMTfC4uAyy8FAwFhGNqBjrTZT3Og28K8qjG/0lEKioh6eKO\nvTwDIFrs8XtReUYUKvbBITtnKPcY+a4r6Rg6dI8xD53y/x069cbkgWK4IYXgjQuL+1wRRzpGQ86f\n63TLW1AufBwh4zs+bj5DaeWF9tglBs0Zhx9jUSwWNRgMEvrjyB8C67LcABeQ9Mtj9pE2eB+E86Sp\nUef5OI6UORSN8PP5K5VKqbhiXHiEJ/CSab1eLx0Ey04zlLCjt3hhLqyOj48TD5ydnSWlyMGxfM/7\nipD2XWhueJ+cnKSjZUBnaDMzM/rkk0/08ccfq91up/ltNptaWVlJBwR3u13t7u5KUipU+fLLL6tQ\nKOi73/2uvva1r0mS3n77bf34xz/O5M8xBs/LefLkiVZWVpJBACJWqVTS4byLi4uZStuHh4epLldE\nOqgGHnM2MIjn5uZSuNLzi1Bi9Xpdh4eHicbj8VhHR0eqVquJDhiE5AdijOzt7WVyvQhZYcDAN5VK\nJYUoaV7eASQjOhGEZlutljY2NjQ3N5eKo8JHlUolGVv0BZStVColQ5F1we5Q1ujW1lYy4JgrR2Th\nL+aC9XuZIQEPe9X734YoeJjPQ3fcVywW09qgf1L2yBKfU2kq0+C5mP6BDIGP3Mnk+b9Nf+UZPN4c\nwY7ymXEyFpe/7sBznSgL44sABQ6f6ygv4hlRGZ7jMuiyCI8jWh7xkZQxbAgjM1cuF3mO53rmyWHu\nh0as30JhehwN8oSadfQXR5LnnJ6eamFhQcViMcOHkRZ57YUhUlJ2e6kjNlI+9HvZ/x7LdCMEBssz\nplxxwFS80xPOohGH8OVaREriePIQNg+5eYNB/HMWz2WIHEzkXkikny90f5eUzZ9y2lzGOL/Nq4qG\niqTkwWNYuEfkW7lRNggSlLd7K3nGCc+OxpmP0ekkTQtXYvR55XA8E2jgiA/3AS37O1C4hAJdUDnt\n4MlWq5XGuLKyorW1NXW73XRkB7TEyKMf5JHRH/rEewhDgSwQKot1bwhpoeTceAZRYS5JKB6Px3r0\n6JEePXqk1dVVvfPOO+mZGF+DwSAJS0J70vmxJT/60Y90+/Zt3bp1S//5n/8pSfr617+uW7duqdVq\naTQ6TxynL9TNarVaSfG7x8r5dZw/eHh4mMJpHJ3C2LwcATWYSqVpFXFQJzxnjFQ3vqrVqqrVqkql\nkvb29iQpjRGkgxy6crmcQolSNjG20WgkgY6QL5fLKemeNeDH1BDm8/XN9v88VF6S7t69q1KppKdP\nn6Zx0n8PbRLGrdfrajabqWJ8THyHN7rdrj766CNtb28n3vDk7rhJhfe5Yo/IOTSYn5/PGKfQlnn0\n8wvpG0fe+FzxTi806++Dbi7PovyMCdXRAXaHBqM2bsN3Zw59EeV4RG/ynu/6CXkdoy8xlOp08Ocy\nP25EQn+nNXSg8VnUGc7bbigxNz7XbpxLU+c30gT0i/C56yScAfrAdfrGuNA1rMNqtarhcJjOksT5\n4X0e1o3AQp7u9XZV/uCqXbWrdtWu2lW7alftf9leaGgvxsOxTGNYioZlmBcuk3QBXuX6ZSiKow6e\nyItHGa11aZpwnLc7w3dm0A+3onkm34khNA/rQReS/AjNxHi3NPXOYsIl93uOgickYrF7aMPv9/F7\nWMjzFfx7oB6Mzz0sL3LJM+KuGI7RIL4tKW0/d8g5eoqEqEBhoI3nUPl8eg4KeVuOnPnWX0/mhWY+\nB5E/Yq6df+4e29zcXPKUlpaWtLS0lLbF+8G+HrpkDhw98d03Hgahyvh4PE4Jm3yX890Ijzl0DX3J\n83Ke+eEPf6jHjx9rc3NT9+/f13g8TqharVbTvXv3NB6Ptb29rQ8//DAViGw0Grp586YODw/161//\nWp1OR6+//rqk8519GxsbOjw8VLfbVbPZ1N27dyWdo1i9Xi+Ny+F2UEOOueEoHBALwqP9fj/xFfNP\nAje5dRzNAo3L5bIGg4G63a7m5uZ08+ZNSeeIzWg0SiECCpTS13K5nBK8fU15Mj+8xPomz4jQ7tHR\nUSZ3rlKppBBj3GzgoSA/mqNSqWh1dVXHx8c6PDzMhGZBNiaTSSoNQa4UoT7CIn5eoKMGBwcHevbs\nWQZ54JxDD+nAUxQP5Xnxe47Qe0jQkVb+j6gL93jyM5EJ1qnv+IKXyOmKyc+g1NDfdYK3y1D5PJkY\n9VhMGne9wXOZ7zw94zoNGefj9wOkY46rz2NMRaGhZxw5Qg64TPMTeIfZAAAgAElEQVQUiUKhkNn4\nwXPJDeNdcTccz/Z0DX5Dk5mZmUyJEs+Roq8+DsYdU2FYn41GQwcHB5mdxsgEohuMA3qTunFZeyGG\nFMrpMqOD/z38xvUYMosQZzQAYj6T3wdjeE6P95GJcKPHq0DHfvLMvFCfK3ZPTqTPl+UnMR5PRI2L\nzePgzuRudPhhm/78crmcyTuBVozDv8dvTxr3PhMKYes4Y3aa+o8rG3YkUaPJc0HcQPSQKELZ87Hc\ncKFPvguHZ7oBzmL1a7QoZKELMLXTF8FLnonPh4doKYWAUV6pVNJxHhhTHlpzge+hamBtpy3t6OhI\ntVpNMzMz6cw4F3RUDC+Xy5mzuNhtt7KykujKmXGtVksvv/xyygH65JNPUj//+q//Wt/85jc1mUz0\n7W9/Wz/72c/S+7a2trSxsaHr169rdnZWn376aXrf6uqqms2marVaypnAEF1YWEjG7vHxsRYXF1MY\najAYqNPppHDY8+fPUyiAeTs5OVG1WtXCwoKePHmSqpC7oGXnWwwZd7tdNRoN3blzJ/EpBomH3uAp\ncutI0vZdqXNzc+mYGkK3zl9UT2fsbiwQNiL07ZtAMIow0n2LOs5Ds9nMhDAItUwmE62urqaDpKEp\n/YG/WWvwt6Rk9B4dHaXnDgaD5MwQBvPQPXK2UqmoXq9nTifAWYoymudgXGHgMYe+/d/5P4bnvOQB\nOoS16u9zY47m8pK1F0M9Hg5i3vLe50Yj11y+eGM80RBivA4OxGcQBsbZyDNIXZZAN095iLlVPge8\nz/O5XPZQwZ5rrudxeumnb0iIvzGS3NihLxFEcAfa6/ThFDLuYrGYSs8cHR2lXansRqY/MfE/LyTr\n7YWVP5CmsWU+c2MoWuBuIPl33cJ2tOeyez0eDaFhnFj+wBcgzyQJ0S3heK6Rx8TdMCKZj8mPcWhf\ntO4JOnLkAt8RIJ7jaBFjcis7Wu4umJyJIxoXc6rcKHNDB6HIFnNPOK1UKpn6Hb6gyI8gNyXW0eIZ\n9IexkBzoBp40PYeLz/0QW77vgtvH54LGBS3KiyRs956ZGwS078LkXkfEXCnym+e6kVmpVDJCGCEq\nTTdFYJi5cVgul7W9vZ05FobGdmKEjOcPNRoNXb9+PR0KPBwO9cUXX0ialkTo9/s6OjpSp9NJ1+7d\nu6evfe1r+uyzz/Rf//VfevDgQSYBFPRnc3NTZ2dn6Yy6L774QpubmwkB4+gVaXq4cKfTUbVa1eHh\nYernwsKCer1eMmYWFha0vLycFDv8B/38oGTnW+bX+ypJL730ktbX17W7u5sM3mLxPHEVXn769Gmi\n69raWkIbG41GJgF8PB6r1WppZmZGzWYzs2YpU0GJh9FoenSS57dAQ+dv1kChUMjk0LCearWaBoOB\nFhYWUu7c4eFhQhpJuPdSIyA4c3NzCZVi7unHRx99pF//+tfJGJfOdwqWy2W1Wq0L5T0iCu3rwvO/\nkN+OxtMvvutyEdnA+o1OKHI9yjzkjxtqPB/+QH66QeDvdkXrxmNMRI9Ik6N4bpAgV6MT50rckRzf\nwYlOcfni80g0g/FHnRbpTT5qdL64lmdw4pgwFjfc3RjyvkAXdKkbVjEq5QBFdCjcWIJezCEODs8g\nlxEnAzS20+loMBio3W4nECCijpcZvdILMqQQbl4dGqXmFnQ0iPw3zY2qy8J3Pil5VqUbINLUyMqD\nQ52JokdAX9x7YUF5COUyWNhDV+4J8ByMg7goHLXxcTBmxuf9QcAgkECSpIuwebT46SOM70JiPB6n\nitNUUJay9bAYX0wM59BdR8mkqeERz4byMGM81JR+etjTFx8L2o0f5oDfEYJGgLK7LhpZ0FVSQpbc\nS2auKpVKpj6V0xtjMHrJrJXRaJRJoHXUz2FsSaleEPzoyCOKhERdlB51jIDSt7a2MrA6zxiPx2q3\n2/r4448lSf/wD/+g999/X9vb2zo8PLwAxX/yySfa3t7WX/3VX+nOnTsp7Lezs5MMZ3amgqy4MUsi\n/r179yRNE0cRsLVaLe06o62traWk8MXFxTSPviOS/32HIyjZw4cPNRwOExK1vb2dDKnBYJCSsuE/\naludnJxobW3tgsFPmNWVQqVS0XA4zChGxo+xzvNdLrC5wQ0FD+d7EV+MJp7dbreTMePoAcU74Tl3\nYpCjn3/+uZ48eaLZ2Vldv35dd+7ckTQ9KJn3sUNXUtrMwRp1p4KxoUzdWMI4gM99rKyZPAeTPvj9\n0fHOQ3s8zCZdlKWuk1wnuEEQ54JrbuRFHYSh5P30Z0QjC3q5LnFjxdd1XuiL70cnAoTb6Ro3C3na\nRtRjbvC50wK6Sd9iaR2fozz9nocGuc73uYevmV93LpGrDqLQz8XFRZ2dnWlvby85kI6AeXQpr70Q\nQworGQUhZb3DSNQ8WNIVTbRw/buOcknTxQETQtTotdBQwu5d5oWrGENcsL7wfBE5IzIekB9nHGcY\nqj5HONQ9qZjP44apI1NUTHakxoWU09f74yGFuPBR9qAEvssKo8qVZJxff5eHEjGGIqrGIuH7cUGB\nHlLMLQpI6O4GJgsQNAuEjO9HWrkwdto42sd15/E4RvjBjQefY//tUHepVEo09R0yGKSE7bygHcq7\n0WioUqmo2WxmtrljdJ+dnen58+cJIVpfX9f9+/f19OlTPXjwQF988UVCqbrdrr773e9mlCdCqtfr\naX19XX/yJ3+ibrer5eVl3b9/X9J5uHB7ezsTDnNjYX5+XoPBQKenp1pdXU3ywncyIRN6vV4y9Kgb\nhWEKX0rnQhM0HBkEbywuLmp1dVUffvihtra2tLe3l4wxPHz3bL2AYK/X0/b2tubn53Xt2jXdvn1b\nklKxVZDGWq2WUSz0BYONNcOBxI4MOArhvO/PPDs7SzV0vCSH8zwGOAcsQzPCUp6GQD/ho8XFRb31\n1lsqFosp7Ht4eJhqXVFSwQ0RR4fc+I9r3sfqDnUeCkLzQ5kZY8xDik65p1e4PPdr0RH250MTb76m\naY42RV2U56y7Lotz7LqFZxP6d0cRmmBQudz3vkJj+kzJC0nJUXCZS6Qhponk6U9kH+MnxcKjHXnp\nON6vmEfnY/P38CNNkTGMwIjSQ2MPl/uzrl27poWFBbVarVRKBRpFw9rbCwvtIQTpHLA4CEqeZR5D\nTnzGdy6D3pyJnInzlC/XWHwwsDOvCwKfKDxNlJ0vYO7xYmSeK+EG1mUT5go3b4x+rxsXLogiIsU9\nk8kko6QQYpFGLtjwIFGAIFInJycJteFeknqHw2E6Sd5hW0e3HCEhbIWX7bzB3EAT7qFRP+gyHuCd\nk8k0eRyli6HpwtJp6CFO5wueQf/8fkcb3SCiinS/38945v5OTwz1CuhOtyjs+RkOh6rX68kgWF9f\n19LSkubm5rS8vKzV1dX0TN5Nrlqr1UrXqIL9+PFjHR8fq1arZbbv00/6Tu2ir33ta/rnf/5nXb9+\nXd/61rf0wx/+MOUr7e3taXt7W2tra6rVahnDnjPkMIYoh0A/q9Vq5oy9vb29JPxWVlbU7/e1vr6e\nBCcGg8P/rAPmaW1tTVtbW/rkk0+0tbWlk5OTBP8fHx9rf38/vcP5u9lspurr7XY7U3/r7t27mpmZ\nUb1e19zcXKb6er/fTwavo42SEj0KhUIyqHi3r+3Z2fMzAb1ulTRF/t2Bm0wmqlQqiWcoc8A1UM9S\n6bxWlssitq5vbGyo1+vp0aNHevjwoSSliu2lUikpYS8O62vC1wUKDKXNPHMfSiwiNr5+ovHiKLEr\nY5rL8+g054X3aK47ohGV1w8pq1Ni//yZ7tzRMHrduPNnIJ9cDvh7MaJ8vNzrBpwbGsgRZDL85jly\n3i9ohV5wB8XfxbWYfM+8eppFpE0e3fjfIz00dBkbHBxVjYac1wpkLeGY8pvNJXnzm/py6ZWrdtWu\n2lW7alftql21q/Zb2wtBpGIYRTr3EoHwpWyYzi3ePGuY7/O9COu6BexQpSMMjryAfLi34Ie6ekJk\nDHvRp+gh+PvjAYz+DPrnniDjImnav4MlHT2bGELKg7h5LiiEJ56DAGHNx/FyL3A/38HjYOs176PE\nAIm0bFmHbtwbkzNp9IW8J/rioTkPJ0lKOQI8O26rZl79fXg5EeHxuQHBil6mh1N9bqWpxzM3N5fQ\nSMJpq6uraVwk3Tp/gyzxOeE0kCLfbekhI77f6/VUr9fTdn3QJGjFOXHQrNPpJN4i1wKeAtUajUYp\nX8jnIo+XqdYuSd/4xjf0y1/+Ml0DceQ+RxUJNbAb1HOZOJvPER08UNqtW7cyyKgjJLybfuB9DgYD\nPXjwQHt7e+n577//vqTzbf/j8TiFNwqFQipI+ejRI62srKQDmmdnZxOtoNft27fTGLwEByUH5ubm\nMoc2exXpwWCQCZl4jhDoIfME2g/qRC6gNEVx4fFGo5HhH/hyfn7+QkHRfr+v58+f69GjRyn06QUN\nQZ3Zru6IqyO5jojQN5DgvDwZR2Sct8bjcUJdPKzGu5ALLhNiuDFuTuJ95MS4fnG94iiP6zPChY7y\nECL1SEecQ5c7NO5hw4HrLniDNY8c87Expx7qBIl1FNuTzPPSHqTz0DU5qjEq5KkXrGNPGifKwPOj\nXM3Tz9I0r5aiyR7S4zehYPrNOgDh96OaYi6xj4WixZ5o7ykdHvbMay+ssjlE9wUuKR1NEaE6Wh7T\n+zOjoRCNMY/d+gKI7+NZTFaEuJnkmAjnCXdepZi+8jyH9z0/wPN+fFw8mzwG+uGhIs87wvCAKaBp\njEU77X0MMHDMEXADggXt4QgXFJyTJCmFH+iPjwNY340dF1okqca5QKD5dQ8lukHk4QVXpIzf+YT3\nRLjZ89ycd7jP5zEaYhHCdv7D6OHvvIZwZ2cfY4SWsb4ZCobkXg6klc75qdVqpcOSS6VS2gZ869Yt\nzc/Pa29vL13rdDpprJzfxgGyvrXYeX00GiVF/OMf/1i/+tWv9NWvflXvvPOO7t27p0ePHiUekabJ\nnp7PUSyeJ0k/f/48JTcj3I6OjlLdKencAKrVaommCwsLqcYU+W5u2LlQ9TDUb37zGx0cHKhUKunj\njz/WBx98kIysV155ReVyOdHl5OREL7/8sqRz+H9vb0+dTkfb29va/H9rbdHXR48e6fT0VNevX8+c\nN4bh7IYBfMORMfCTH6jteV3UrfJEe2QT8+LhDPKgeJevXwwPwu+04XCojz76SA8ePNDu7m46UxDD\nldINVHf3texhcH77eoOPvNwD19yAiakL7iT6Mz30XigUMgc/j8djdTqdjKK/zMjEmXCa+t9OH2Rm\ndKaQ2R7ii4aIO/yuh/xeNz793Dv64sayPwPZFx1Txh7HwD1OX0kpzNdoNC4Yux5mhA7uQPIdZBH9\n9ntiaNNDdhhwOOzoi4WFhcRzHr7zvlHeRDrP/8TIQl94TnHcUAVtvL7fZe2FIVIQz2PVoEJ+sCbX\nsHLzkCiEUF7CmjOpeyckf/oCdwHuk4G3KCnFXrGCowfucVs/qd29n3K5rHq9njEanNHjDgHGHhOP\n/dnRO0JY461FoQADe66FX3N6oZSd3ixCf6YbC3hnMN/x8bG63e4F71SaJukTQ8+L2/vYnE5x518U\nir67xQWy13rxFvnMkzw5kDVu3aZdlr/mz/YaJ7Tj4+N0JhzfcXTT+cHfwaGjlA4ALZHODQm8Y/7G\nWFpaWkrjQgixqwtEolqt6vj4WM1mMxk9JHNjsMzPz2dydpg/R6do3/nOd5Ln7GjkYDBISeHUfPKD\nh9kZRzI18wLyMTMzo4ODg4zBDW1wJFqtViqTAQ0lpdyc5eXllFD/ySefqFQq6YMPPtDW1pZ+53d+\nJxmprVZLtVpNrVYrGU0Yi3fv3tWtW7dUKpX05MkT/epXv0oG7+///u+nk+wPDg5Uq9USqsjcgrrF\n/BKvSZbnXIGq4ZkzF752XUZ5DguKxJF4EE8SdWnPnj3T+++/r52dHXU6HVUqlQwC6geQ+1rmnf7b\n/3Y0HIPAnUFvLjOglTs70aElP4j3MOeTyUTdblf9fv+Cs+vJ3t4cwYnr1xEndILLLzf2XI77zjZ+\noqHoxlV0zBijb/GnId/i55PJJIPEuoFGf6GpG0yg0/BpnpxDx4HqMA84C1HP+j3+Hh8jMr5cnu4c\n9/NQ0XMur73vp6enSUaNx+OUG+rGMu8tlUqpbInLeZ+zy9oL3bXnDMdEoWQxpqRpnR3PuvcWEwlp\nDpdicSI0CAPBOJcRih0o3IfgcYXoC9+VtBsEpdL57iqu+YGaLEL3XC5D3mIisu/gi54C48vbzgvt\nYWIXWg5rw2ARwcLjdIMXeh0dHWXqKkE3qh+XSiW12+0kfKXpAbwxJIrR5mEBNyiZW0cQI72id+ke\neKR3Xo0veMoVU0yadQWIUnAlRf9coNBAE/CwIq25ZzQ6rzHkByyDUMVdRihqR2I9pLy8vJwEVL1e\nz2y5J4zW7/d1+/Zt/eQnP5EkffbZZ3r77be1sbGhg4MD1ev1lGwOneEdRyRefvll/eu//qt+8Ytf\naG1tTWdnZ9rf309zgeCl7pivmcFgkNBFDFnoMjc3l6rAU16Ae09PT5NxiTfruxuhO8YZu89KpZLe\nf/99/fznP9d7772nhYUF3bhxQ9J50vzMzIz+5V/+RR9//LGePn2q3/zmN5Kkhw8f6t1339X6+rru\n3LmjV155Rf/zP/8jSfr5z3+uP/qjP0qCOu5Q9Lnz9e3hFb7POoXnMX4iz7MuCZU6MsAP6zvyqMtl\n5vfBgwd6/vx5CqXWajUVCoXMRpN+v5/ORCwWi6l2FQY4KCbvYoyOFGOUSNOyCcw5JUcYI84qitWN\nA75TLpfVaDQya351dVX1el39fj9zigLoBXTx8J3Txku50G8+Zx7c2XKjwneKeXg3hq0YXzQQ4QGc\nJJ7tzpbLGZqjfN5iArsjatHoOTk5UbfbTQgNvMVvZJTfE/vhOgq9R+kPd5Sgqzu8DoK4rPPGHDnC\n76Hr09NTNZvNJAuc3ugexu0OVwydxvbCdu05AiVllQLXvRAewsZDPvzO+0y6WGsCL1qahr48NMH3\nHd1BIbjXRtjL86akbKVXR0P4DMFXqVQy9ztyEE/kjjuySqVp7YsINTqS4SEm6BENO98h5iG7PEHi\nhgVGm4cJ6Cuxe+8n9+EdcA0GR7HAyDHEF3Mr3HBzr8EXqUPTLI5ocLv36MYp70XZRGMLgcii5T6n\nl3+fvyOs75464QcMhHgf4/bDWd2QZY0QhuNoFOZydnY2ha8kJQPliy++0K1btxKywhw2m00Nh0O9\n9NJL6b6nT5/q/v37ajQaunHjRiasu7OzkxwM5pJnbmxsaHNzU5ubm2q32/rss89SHSlCZeQgDIfD\ndEQK9OI3/XLazczMaGVlRd1uV8fHxwkFZrfe2dmZlpeXMwUrWRPkUOzu7qb+7O7u6ic/+Ylefvll\nlctlHRwc6G//9m8lSffv39dnn32mTz/9VI8fP86EZD///HNJ0le+8hVtbm6qUCjoq1/9qiTpgw8+\n0MOHD/X2229rfn5eS0tLF5xEZJ3PPeMDBfDDtTGMcfScLwj9ECZF/knnSJ2HbvydHimAr0Hqut2u\nZmdnVa1WE6rIu7gX2Ug4zeuWeb4WcyBNHUBkgpdeoY84HnHdsw5xin1nYAz9uQFKIVHCieyuJJRK\nOYFYVsEjGB5tYP3RJ1fCjizjgPnuaF/bLqOcBp5H5n2JqJLrL4/CuA5ANzny7yFYL9/ihvh4PE5A\nAPPr749OkOtQ5j2GHuN8Rn3J54wlpn3grLtByfy4AQzPtVqtBJwUi8WEqtKQlS7XvX/RCPX2Qgwp\nGI7fkpJlSjjKjQK207pXGhebM08MFzqC4JPpC8Ohcb4vXTw13EMYQH4OHzsjucVM3+i75zu4V8Di\nd0YE8kaZ+PcjeuNWNJ4aRmgst+BGhi9MDJIYuqM/0Jjxe4iO552enqper18IQRwfHydUB0OQd7li\n9sXtc+lz76HSaDT6onQjUFJKXHTj1BUUhlwU3tAGOju9oXOEgZ3fvN8+Ni+sGIXGZDJJStKNVGiK\nAUJoDCRqOBxqMBgkVMYRuWKxqKOjo1Tn65e//KWePXsm6bzEAfkxc3NzajQa+ou/+AtJ0re//W1t\nbW3pS1/6khqNhmq1mjY3NxNNd3Z2dHZ2pnq9rnq9nkoc3L9/X/fu3VOn09HTp0/V6/US3L60tKRr\n164lujv6OxqNVKvVEm+4MmEeQDmWl5cznigKazgcanFx8QKSDTpULBa1tbWV5uxHP/qRlpaWdP/+\nfe3u7urTTz/Vt771rTSODz/8UL/4xS/07NkzFYvTQpeDwUA///nP1Wg0VCyeh+ReeuklSdK9e/f0\n61//Wq+88ko6XsdzOlhPzH9EQz3M7kfkgA6VSqULqRDlcjnV7skLpzgdWIcoUt7p9zWbTRUKBT19\n+lTb29uJ/xk/RgnozmQySX+jzHy9xPXhoRiUImhVXiK6RxSQAdDUNwNEFNuPTWFzB/dVq1X1+/2k\nb7woI/IcerthjhFBGDY6Zr6BypU0PI+jAxrMMx0Zd32CIYAcI5KBzAAphF5Rz3K/yz/nRQ8pusxE\nX7KO4pEthP7iGvZ5j/wd5SjONXLO+d83Q9Fvfpw28EOkG7UM2+126qPraNflUa/6JpC8dlX+4Kpd\ntat21a7aVbtqV+1/2V4IIuWQs1d/9nCbw9g0UI3o9Tv8L13MJ+KZviPIUSrPF5KyOwccAaHF/BgP\nJ+FF4Gl4c+TGUSU8Ct+Z5mPhWt72T/di3RJ3Sz8vEZ93eOl/9xa57igJNPWwnoc3vG+S0sGZ0NIt\n+5jkyfwyx44A4vlERAqP0hNy3fNx+sR58FCuezRxnvLi+/CLe3ru/TmdHBVzT5/vcM0RRK/Czvc8\n1OD8xvyCzDAOjioBWYq5JtJ5AvH6+romk0kKb2xtbaXdcXjvX/7ylyWdH0z8T//0Tzo5OdFrr72m\nV199NSFZjUZD165dS5WvFxYWtL6+Luk8Efv4+FhPnjzRs2fP0lEi0jlac+/evcwuGkcyCEWBfsQd\ni51OJ61tEuThPRLX+/2+6vV6Ji8JBGN7e1snJycp1+lXv/qV/viP/1gzM+fHpxwcHOj73/9+4gvy\nM8gTefz4saTz5P5ms6nHjx/r9u3bmp2dTXlXN27cUKvV0uHhoTY3N3V4eJiQHPg77mBlPfDseGYi\noT5HK10mgu6BbHhI38PxyIDI3/AqIaz5+Xk9evQo5eiVy2UtLy8nmvouPg//QG8PpUfe95BgRMsc\naSKEJGWPlfFoBvcREuJvD4c7CgiaBL3n5+cTUutFVRkLGxg8dQGEKk8OcT3mPfpcez6lh/24j+9E\nBAnUDRkIj4COsf49GsH3Pf0ElJOwPvrA0z3Qoeg3T1iP8+zz63nEHvWIcxzTQTwqQ19i2BCkymU8\nvO5IHrLUUcR+v69isZhJaXA6Oy8yv//nyh9gMBUK091w3nFCETHmy9EjfkafQ5F5hhSMErfHe95N\nvIahRp9cCXk4iZBZzB/yyfSdK/Gdnn9EvN+ZTsqe+8e27XgfeRRugNDvaHjm5R9Eg5V4MCFMh4H5\nHAZ1hR93wnlyM+fLkQOWR1P+R6B5X3x+aZ7LFYVVNDDdaIcmUbj7vd588btAQHAyBr93NBplFq40\nFaCRb8jJKBTOD9eNMXrmAJ7zZGlyF2IomvpP8I7vpIH/hsOhDg8Pde/evZQLMxwO1W63tby8nLa0\nM4b33ntPZ2dn+vd//3d99NFHeuWVVzIlFZaWlpLBs7Kykvr57Nkz7e/v6/Hjx3ry5In6/b7eeuut\n9MylpaUUhpKm8L6HMqPxSSkNkvNRHnwPZUHYC2HoczUajbS7u6ter6f/+I//SOMYDAZaXFxMPMp9\nMVS2v7+vd999V5L093//9+p2u/rLv/zLlEtG3lO/31ej0dDDhw/10ksvZUoLHBwcpBCtK3v4pVQq\npVIHHtZtNBrpvEFCQjEHxY/icp5GWZFAy/ji8U3+vrm5OdXr9ZTPhiJyxYTRxkYhngv9Wa9x3dDH\nqIRZYzzHQ0bu0Hi4SlKmz9CQZ2I4eWI79CZv1WVv3LnlxqafBoCBhbzyNAnvL84BdOEaITMvbRNz\nlLgG/VyfeIoFaSOlUinVLHPni+YOKc8tFqfnevq6Y7zu8PC+4+PjdPg2a5Fxs1EEg8flmstn3uU6\n3zf+uHMJ38VcP7/mNPV15Ruwjo+P01xwYHiU/d7XqCe9vRBDiol2hMgXE9Yh3hCM6YrbGc7jtj4Z\nfO5x2ohIEWuPgojFhzESvQGu8bc0tb6Pjo4y3oSkTN/jgpemQjNa1M4o7G5wA4Ux+f3+uQs70Atv\nLhgQGp6T4P3nN4gagjYib57jwPtWVlYyuzUdiYzootMIpU8phWjUFAqFzELNi2NftghiYdTYZ3jO\nG/wAvZwH3PvyhF/64M/wnTrulcUcQBfMeKmeiAmCM5lMMsUsOR4nb9wuXCaTiXZ2dlIS98HBgQ4P\nD9MhwZVKRTdv3kz9/tM//VPdunVL3/ve9/Sb3/wm9XN+fl6VSiUVnPzss8+SkHry5In29/d1cnKi\n27dv691339VXvvKV1B/QlFarpeXl5QsKHTnAUTfSeY7QYDBIGzcoxeA7Qbvdrmq1WkrWdidqNBrp\n4OBAJycn+sUvfpGOOnn99ddVqVTU7/cTyuJzgUGKwUUe1BtvvKHJZKIvf/nLevz4se7cuZM8fZQi\nR8fcuHEjGYutVivxDgVOuc8RtF6vp2azmRK4WXfkwjgCTm0dFKLzP7vckE2+BqIB4M6ldL7Tk/wh\nCp0yHxsbG4mnQUYZB0izI0H+Hl/HGCTwKfweZaYbQO4w8kwpm4zs73MdQk4P/IbxC784wuyRCuaF\n5lvyvbmBQ1QBWUCRSt8BTd+9vlF0yAqFaeFadCYOlXRuFKD7Ym4PRp/nULmMIwE75g9hJPouUd6H\n7Op0OsmA5l6KDzO/oEvMJfLS88Gk6Q5NRxldB7sjGuntxtSHDXsAACAASURBVJk7EY4oxQ1bbhi7\n0cr4fpuRJb1ARMo9CulixVk3INjaPBwOMwwmZRWYL0qu8TlM7tAh/18W2suz3uME+sJ0ryomoktT\ngcq7HT1yS9qZGOHD7+i18ONGGPR0dMsNQ677ova+02Agfyd9wphwpnODiPGw2EjC9Z0qjkB6crfX\nBXEvJm6P9fsvS6CELg7xEk6IgpdrLijj9mApm+gaF58bsD7H7oF7P/2dIK7+LgTfeDwtSMccelFX\nN4Jpk8kkCaRCYbpV3UNGo9EoY4DcuXNHn376qdrttk5OTrS/v5/CG3fu3ElFJf/8z/9cT58+1dbW\nlqRzo6XX66nf76dyDI1GQ5L05ptvSjpP1n7ttddSbSfpHMlYXV1Nhsv+/n5mmzNnyEFXFF0eAhnX\nBmfNYVR6An+/39fBwYE6nY4ePXp0wRFjzbgh57skUQhUPaf90R/9kf7xH/9RxWIx0W0ymSQkR1LG\nADk5OdHe3l7iQUdquR8E6+xsWguMHYeOarrCdgXrCsnXILX0PHTmzkC73dbTp08Tz/iGB0cnpOkh\n0SBkvqYIwzm6HCvi8/fMzEzmnE2cEeSzjxHHMk9ex52wXhEe2cU73bByB8/TN5hz5Gh0SB0dc6PH\nE8BpjnK54xVlKWOIpWSYI+iKYQzdovHhOpF5B0XyNcOuV+q3uQHukSP6HY0Nkud9HN6Hy5LF+cwN\nd482EMb2ufVdgG6sOhLlfeNadBRopJqA8rtDze//c4gUSiYS0hefMz+xZI/7xu2sLFAnqiv7aGU7\nLMr3WNzsLMObyVPmjqA5oR25cc/fDUWHLaUs7Ivw9jFwD4vAFzdbi6OX5EYZ/fawIH3CSHMm9v7g\n1frzPVxALgn3OXM3m810NAjC1xeI9xXYlXH6YnMB5kYIf/v4ozFHv3wREd93oRg9PubQaYYScuM0\nhkn4wYhyzxEh7krTeQPkxPMBWAduYDqfQlfmw9cQ9IlGB8LTFQgGymQyScgH92P0/PKXv9TGxoaW\nl5dTHtTdu3fT+Hu9no6Pj1PoAeFHXaHxeJzqPnldJL5br9e1uLiYMfjw4ieTiWq1WmbHkPPJaDTS\nwsJCBlGoVCrpfz865vj4WP1+X8fHx+noFeaCMTSbTa2traVipDwTfigWz0OYBwcHkqTvf//7WllZ\n0RdffKHV1dULKAo7KJFhoDWSUj2jer2uyWSS6i+BwJXL5zui9vf3M2jG+vp6urawsJBZe6QBsKsL\nHoanWUuOdji/cw0Dm12RXvdrOBymOlPD4TCFSqJDRugZ5cy7oA18jbPgzi4/8LAr2slkklkbvr5x\nHAhN815Hn0ajkSqVSlpPjs5hqHitp4hO0zzHh3v9OciEqLxdt0QDzA03xu10Jf2hXC6nuXc0n5Aw\n/EZzhNyPQGGMR0dHmbUfHVIvT8Fv5oS5cLDBU0EwpqIsykMZoYcb3YzPneMo23m284kbdYwLmvJu\n6O3z4EZtDCFe4IFLr/z/2BB6UlbxMwFucUtTaxGh64odr8qPJXBF5YiOv5fPHcXy0J6jHHzf+8tk\nupXqaAMLzwUHiIUngvIsxl0qZWuUuBeHAeoGT7lcTudaRYQvGlPOcBhJQOmEOaXp6dmSMh4a4/Dw\nq38H+o9Go5R87BWcCTe4MSZlK7tTediRHN7nc0Y/+U1/XNjkhXt5Jt+PixR6uWHngsLDCf5c984Z\nkyspV3L8RslzJIlvn3ZepD+VSiUjFOfn5zN5BG7U48kiiNyoo7I4Qmxubi6hHw8ePNDrr7+e0KTl\n5eWkLLe2tvT48WO1222tr69ncrNqtZpu376dnAnQCeaB5F3oSCixWCympN5qtaqDg4PE/zdv3kzX\nYvXm/f19zc7OamlpKVVuh57MB+9nbhgHhhly5fr166k/ID7UrFpZWUkJ5V5uAJSJd/zZn/2Z5ufn\ntbm5qddffz3jOC0tLenDDz9Mxmez2UzXZ2dntbGxkYx0H4PnQYE4gWRhmPua97p7jhxEBCbyyGUe\n9/z8fOKDVquls7OzlPPS7/d1dnaW5pRilh6miUoxbrDhnRhtLtelafkDlKajV55aQCK0ywMMtOhc\nR4TaDQP4pFAopDyvuA5dznj5FkdUXC64jKO5XGJu8kqycJ2+er0vngky6AYDxpmffZiH5HtaCDRl\nTuv1esYodjmSF0WCj+AP3zwRUXJaBBOcT+EXN7ScNvBxdISjHcFapbmj4O/jOfQJPe28mJc2kmh6\n6ZWrdtWu2lW7alftql21q/Zb2wtBpNyLd4vXEQXgNGkK/wJnel4SrVAoJOjYw2uO4HhYiP95t4eH\ngMTzPDXPrfFkRN7n/XcvgebhnejteB6No1LQBuSId/h2V+D2mMgHbfCmHHnxcKKPw61vwlTe/6Oj\no3S/h1l91wvHMNDHuG3Z4XYPzzE+35Lt0GqEjfGU3LuAhngdjN+PifD55FnQzcNh7s2BinmxPM/P\ngC/wjguF6Y4ovChyCDz05Vv62YXm+VCMHTrAU3iOc3NzKcE3zj88QEjNx8q1+fn5FPqan5/X7u6u\nbt++rZmZGbVarTTGlZUVraysaG9vL+UreliXM+SYM55ZLpfTLruYe3F0dJSQlGfPnqnRaKTk9u3t\nbZ2dnalaraaChYSaqLxO+KJarWowGGR2RFE2oFarpZQASemok2LxPIcPpEg6r9B+eHio69eva25u\nTrdv304oFaEsX3fuJd++fVs3b95MHi9zcXR0pPn5ed27d0/j8TjtCKQtLS2pVDo/ONqPEDk7O1Ov\n11OpVFKz2cygOu5Be94SDbTcEU34AATHQ/SMwcPo5NCwThiTo1p+BA3PJeXAk8ZBl0B5PORNdfKI\nEoCaOgpCA1FnPbLBh77Ck65H+Ix3kqzveWYRRfbjRRxB4TpzwTuRYS57I2ri9HYky/OgPAISc7I8\n1IesdmSJ++hLDH3RJ89f4hp5WRy7xPh9HplLGvoZ/vTSNi4foJXrFubIdSp8RfFpaO85rdAgpi64\nTvFxQxMPBTpPOQ+A9EJz+vt/rvwBE+KJfvGaNwSBJw56UqkzkCsan5woNFxBwhi+APlcysKRMSE9\nLnCYwnOBeCafMR6vTcJCiBPMQuK6LypPjmRBusESBZkrVsbvRpw/18OeHj6g5o3npHneGefFoZyc\npv7jdIZOMfbNd+ATD8MyL4RQPabOPPBdFlpefgbN4+EeSvV++iJEEUUB52FLF4wuXD3kJE2VEbzr\nix+F5MLGt00TXoDWMVmdkADhb+hGWPD4+FitViuFYFGEz54908bGRjoYWVI6sLhWq6W54kiaSqWS\nhO/KykoKu0nniehPnjxJQoqwGOPDIJqfn9err76awoyE7xYXFy+EIfjbDyeem5vLGFLwJvzhByWf\nnp4mo+wrX/lKSqr+zne+o1arpW63q6Ojo1TlnL4+evRI/X4/5QthgL3xxhtaXFxUpVLR+vq6Zmdn\ndf36dUnSp59+qo2NDX3pS19KBz5D04WFBbXbbR0fH6vRaGg4HCaaHh8fpwOm2Q3nBj+hynK5nMm5\ncgXP77hLNtZr43PGxTwho1jTGHvNZlPz8/NprjCaJ5PznaeEqpgL6B3DzOTM4AS4HB4MBikP8DKd\nwNx6GgX9Zjen0wKZyfrwJGaX3WwO4JnkmmG0ut7x/zE08px3fjM+FDbhMN+xiLyOubw01zGkS8DP\nhOiga5xnjE8fL59jYLLBwx1ND6tiODNGjFNo6/XO3HiL4TF3FF1+uy6DFk5HPotpGy6r81JPPEXE\n+cLpEw1T13mXtRdiSEnTE+89iRtC+g+NwWNoOMFhJI+3SvlZ9s6M/M+EONPExEGP0zrRPTcGYsMY\nMblbyu7mYwwoO09487G7co7GAnHpuPARSDCg7xiENhhIeUmSzvw8j8Y4o7c4mUzSoaW1Wi1T9yUa\nsR5Hj0aWG9gYj84fbsyiMKNQiDHtyE9unHlzRYWAjgY1dIlJvDFvzlFB5x9H2XjeeDxOxgAFJn0e\nHaUgb8XzFuhTXPyMIa4l6Ibhi9Lb399XtVpNO+bq9Xo6zoX6QeTr1Go1vfzyy5KmhlSj0UhePsKU\nHX3wC8YNdGMHGqUE9vb20jPZIo6hj5HBuieZmBwdRzLxrD2Phnv5DgbA3/zN3yT6/tu//ZsWFha0\nubmpxcXF1C9ytXZ2dtTr9TIHGq+srGh5eVnNZjPVW6I213g81nvvvadicVpry8cPL0VnqFarpXUC\naudGRql0fhB6vV5PO7ecTx1Big1j2vOHHEXnbD2nmaMcOIKuvCmNgIx2WUM+EgaTI9WOivsczs/P\nazAYqNvtXuBvrh8dHaU8HHcEPRcGY0OanlHIs8ijYox+LmC5XL5gnFA6wOWwO3OsZX8mfWc9xh2L\njN2RWuYlOoHch1zMyyFinlgzLnujg+rXyJMdjUbJmHZn3J1830HNnDJmR0ahhecMR+fSc9NcxjrI\n4u92PRk3AXj+a3T0Y3PdBZ3yDDmci8s2G0gvsLI5gtYFH2f1sBAcxpamXmhUkggbBCS/+dyNkDyh\n4te5H2MNRvY+RIal0T9HnbwvhHMQntEgQsFFVCImC8YEcASJhxqkbH0VBI2PH0ECPf0au/W8j4zR\noXH6Lk1DU6AjHq7MQ2YcYfECilL2/Cfo6kYTDQGVVyk9Gg/xkGdHoeKigV5Od+YCIeZhRgSJI2De\n3Dsaj8eZooTQi23e7hTwLt9Z5IiUG+Vs9+c9vAtl44Kf7eMYaTxzcXExVfvd39/XaDTS7du3JSmd\nUQUidXx8nIws+kPYLKLGJycn6nQ66dkYGZQCoCDe06dP030U3IQvBoNBJnzK2AqFaXKwIxCgB0dH\nR3r+/HlS3uPxOFOC4Pnz5+lcwL/7u7/T7du39YMf/EDb29uZxPg33nhDd+7c0dOnT9O7QN0ajYbW\n19c1MzOjnZ0dff7554nfvv71ryd6Ly4uJgeA+WQTAQfm0nzchK9cRp2eniZ0rFQqJVSKEIsrSd9I\n4oaGKxOuz87Oql6vZzaUgJYSembuuI7cOjs7S3PjssNLMlA+hDF6+gUIDc/k7263m4yxPP7m/dK5\nAe6IQ55D7hsOeLeHHklRcNnG+3mnPzOG4P0a1z0iQd/c2fZdgr5bMG5k8bnCqCgUCqlPrBl38vKi\nKqx9rrm+YLefyxPmEn5yGkNXdx7j+9xR9ve5QelyE4c9Jrl7n93h9eYy2sfHHEQHw/WTy3He4YZ6\nXnth5Q9KpdKFwpIwqsOWUjaj38M/fq80NVbcqne40eE+t4S5FhET3h3hQ+6PiwbDyo0ynunvjXCi\nozaSLjBFtJz9+xiKjhjFZ7iF7kyOwo4GmAsymhu1eILOzNDNi606OkPf/VkojV6vl4xrN/x4tiMo\nl4VLyf1wIeWGtKOYCB6Emgt9F4bRiHbh78oKWjpyxTuhJYKW/sZ3ouDwsBBcXqSP+fOwiHukEf73\nuffG3LA2+v1+ConBS+RAUWtJOq8jRWHNRqOhcrmc8ocI9ezt7SVPlrDXwsJCKpzJYcrQqt/va2lp\nSc+fP0/0dJ7Z39/X0tKSOp1OhsaEik5OTjJGkh8vUygU1O/3U0gKeUPeFU5NpVLJKJdvfvObun//\nvt5//33t7e1pd3dXknTv3j3duHEjoRR+bMT8/Hw66HZ3d1czMzP6gz/4A0nS9evXtbi4mKrAu9OC\ngURdH4x45oK8OvJ3XCZSvsEROx87Ctx5v1QqJcMdJRTlkZfX8C3yGBnQyx0QLyQbUysmk0lCVmN4\ny5HXGNZ3RHs0Oq935sqUsaI7nDfQJdHBos+uZGO6Bu/Mmwuuz8xky74gbxivz5O/y3kYeeeos6M5\ntLyQkst3csloGCCEDiMigyGNXvS+QlOv8C5NjQl3uhwBdSfd+RvUk888jxdaxCiO08Zln/OT69po\nLDtgEiMKrI0YhXEQhPF6VMSN3Lz2wgpygiy414oCc+UhTZWpW/ZMIorVESC3JF3ASNm8p2h5RqOI\n97qC8smMC889BEfP/Nko4RhmcwvaDRunB8LGvUAWe0TjECJuSFwWxosWPd6nx7lpbt1DD0dbPKbv\nRkg0grxCu9dEifkA9N29pwj5+uLLQxzpP9ecvyKky9iYHxcKPl9ReGKcYUzG8RMWkJQUJ7zf6/VS\niIZnOJ/hYYNIwPt40+5lu2d/fHycqg2DdjFPGDQgOghw7kFZNpvNJECePHmijY0NDQYDbW1tZeYe\nZOr09FTLy8tqtVpJCbNVHgHvypYq4o5GraysSFKqk4TiOz4+TqG44XCoYvH8rCzQHPcyEfjwEyE5\n51PmOVaEPz4+1o0bN7S2tqbd3V09ePBA0nn5h36/r7W1Nc3OzqrT6aRxzMzMaGFhQd1uV+vr63r1\n1VcTQrS8vKw333wzoQbdbjfRhm3mEXFxvkXuueE+Go20tramcrmckEEPX3nivz8LXvRTBmigOhhv\nvAc+9FAT80l/UDY4Ai6joxL2xGHWPHlefo338dzT09NMiNPDVB7BcF6DLzzfhtAzazI6rhhzvr6L\nxWlNvUKhkElKd3QK+e3IymVRjEKhkJDbvBCs6yg3YFyGgzQjx5hHN3SjQeKGtiPHUVf6/9Bzfn4+\nJYI7vSLw4PIbY9aRJx8jY3FgwkOzMUeU5t/3CIbznzsR3i9/xmV/+xiY88vaVfmDq3bVrtpVu2pX\n7apdtf9le2GhPazkeHI0Vr+jFzHG7SEch57xXGOozGPQvsst7uCIUDSWvlv7niiN9+ZWdR7E7u9z\nBMWh0Jij5Pd5oqaHIfC4SU52KHoymaRdLx5j9nc7XT3M6t5iTOaLfXXP06HqiCwxnyAgoBT+zLzQ\nlHvi5DA4H7nnEPuCV4ZH4fPrf8fkZ7xkUCafE88B8Gsk+0JTP9yWcXg+w2QySWEoShMcHh5qZmZG\n1Wo15RLhMTqSyU6piJbG8CJrCVSHa6wZeP/o6CiF70BboLdXfiYE+PbbbyeUhjyjVqulZrOZPH6Q\nHfpZKBRSgja79OgDzwdl4L7RaKRarZaKY5IL5bzJTkHCG3HNg9SMx+PM2Z3j8TjlVfFu6Txct7y8\nrGKxqO3tbd26dUubm5uSzsszfPbZZ+r3+ynna2NjQ5LSurxz546Wlpa0tLSkO3fuSJLu3r2bvGd2\nusFvlJIYDAbJ4wV1mZubS+VeGJMj1YTT/ABneNFzq2LVc3gFnnQaELJCzvJM37zg/YBu8AnoU8wP\njSg7c0zpDT+CxMN9nr5QKBRSmBVEknHFXXSRTq4TWBPIQEddPNRfLpcTv3nKiSMl8CIHSzNOR+49\njyeGoNBbCwsLaecqYwA543sxBIkcgUYeMuO6pynwXD73VBau0U8/cJpxcJ0ctzwE0HWAz72P2xFH\nvhPDlz4unutzzTgdtWPMLs89n9jXEbrb0T34Im7M4t68aAfthe3ak7L5Qh7aizHPmBDnTIVyizkB\n0lRB+24Qh+c89IdB4u+MuVL+PhohFZ7n59e5AeaGBWGFmNvi4UoPGWAEIDDdyCJMgZCOyd2zs7Mp\njyLmn9Avvu8LA0aGSV0A+/z5gmIO3AB25vUdZg5VM59Oa38mi5jdYv58X7D+2+nOHHkOhQsbTwBl\n3t1gdoHDnBIacQMMIes86bSCtz0USp9RhMDYKBoXTswDhhQ8i5FFjg7PBIanVhPPJEcIh4TDhqXp\nUR/VajUpY3ik2Wzq8ePH6vV6un79ura2tjIGEXk8sXYYIeilpaWMESGdVxJ3nlxcXMzMKWHHaDSy\n65e5hAZeOoDf9Xo9HXHCZ4Q+l5eXM7zI92/evKmzszPt7++n+1566SVtbm7q4OAgbfGHT/v9vmZm\nZlSv11Wr1VLld655MrRXjPZSAyRvsyszHtp+cnKSSh6g6DEgOfbG+cplDrxIrlretnaMfHa2ebKx\nO7cuF3xrOUnmbpAx/mKxmHbzEj72eWKN+LrBKKPf165dS7TZ39/X/v5+UoieK0gf4RHfXetJ+O54\n8H5P8vZ58jBYdPDJOxuNpqUIvKo/zcfl72T9u87zkJ479JJS7TRSFKKBwbvQbZ7LRp/43FNFnDZx\nfpHlOKHuJMZDlX2M0RmPG5Ccv/IMFX+fy1N/j+sc9Bx0dX5i7vicMKyk5LDgQLizDV/G0KK3F2pI\nuVESE/fi99wTcIJjQV6WPBm3lXKNnBGIHHNvILQLDe8PfXEmdSvWDQGuMcEYQM587j24cYYQQLl2\nOp2EAsQjEHwnGIoUb8HzaWg+Nvci4uKPiA33+Xj8+/7bcy1Y+NzvBihjcMPM54u5dM/W+YfF5tei\n9+xIHuN3LwSaci+L3sfA1m0UhSNkjlZFh8ARMObMx+bz4kUZOZ3ehYkn6iIASOB2Id9ut9Xtdi+c\nt+aJoAsLC1paWkr39Xq9dJwLXrgfsFsqlfT06VPNzs7qlVde0ccff5yZ52vXrmlubi4lpdO84KIr\nPeiLJ+65Lxh4vmPNjVA8Z3jYUU7qD/G+g4ODC7l0IFWNRiMZIdK54m80Gtrc3NTy8nI6mBmHpFar\naW1tLd0vSbdv3047VkEXXJkOBgN1Oh212+3ER1wjGd/5h7nAAUCper0vDghm3WDAzs7OqlqtJofE\neRTjGuXmCtHRdwxsPxhbyh4/43XicFRBOKNc8N1x7igNBgO1Wi2tra0lxNydIMbKO/mMQqrPnj1T\nr9fLlH/w5HNQHYzavOTjaARwzdeTO708PxpU9N1lOwn7OGFuuLrjhdHiaE2j0dB4PE5lPFwusm4c\n4Y7INHzmaBXvRR67E4NsgQ9cfqEPQSYjmOBghvcFJ9hlvRtn3Iej7cgp/fSiqcxhNLppPk7PCaW5\n4Q1tGTsFSBmrjz3SMLYXYki5weBKLn7mqIF7V27YYBx42Mq9DAwB/57fx3e8MVGXWcHc4wuC+7xf\n3lhkLJi4w8x3gvkY4k4BQhmS0inejnDF/pbL5YRauBCRpohcTA6FST3k5ve5gHGUi7njXR7mhJYg\nCA6VuvCkX96gD7uWomHkcxLhWIRCRMrcwHJe4HO/5vOM8ILWcZ49fJdn2Pnf7vGcnZ1pOBwmRe0V\n0V15ueBHWfMuR+vOzs7r+kwmk5TEToP+JCWfnU3PTPNwtyd2S+eKHaH405/+VN1uV6+99pqk8yrk\npVJJOzs7mp2dVaPRSMYRAovQRblcTsiKJHU6HQ2HQzUajQyi5cUroSXjAP1wD9drvRBuQZlGBLhU\nOt9R2W63Va1Wtbq6Kuk8FMh8YGRRK+vp06cqFM6TZ3d2dlSr1bS8vCxpuhbb7bYODg6SIUtfQYxO\nT0/TepSUhDdhMUrAOJ9AE1c08OHi4mIyiuA1SiJgPPuZeb6BAqXiiKukhKwQrqJ5gj686SEz5ATG\nlKcRuIJ2HgZhbTQaSR5FpN6dZN95yc7R/f39lKzvdEPx+9rDoMpbhy7X/Fm8j3mLUQopmxjOnDF2\nR0L4Lu9wkMD7Ca1Ho1Faj466QwfWo+sqlz8eGpOyTpqPnf9dzvNZ/B9edR3gYcUoazEuYz9jgrh0\nsRI6z4jOPe+IwAV84oag09SdefhUOl8zbsz6+JibSBtvLyxHKi9kJk0VWYQAHQFy1EnKHiAcLXNH\nsBwqvsxAkrIeBlCtowe0PIXo3pR7EL51HkMqz8LFI6fPHC8B3Hh2dpZg8ajIo6EUDVanGcYTNPOc\nBv72ReRM5ULGPTP3SpyxGZfDtB6iJJTJos9Ddng2z5GUqu/SPw9h8C4XPh66dFp7P+l7Xi4UC9MV\nkBuRKDc3RPNCopPJJOUfSVNkqVwuq1arXTDg4Xno7eEHDI3xeJwQCqebdG4cYCBJSmhFq9VSp9PJ\n5MIgpFHmbgwPh0PNz89rbm5OlUpFrVYrveOtt97SgwcPEvo1mUwyyrvT6ajT6aR8plarleaiUqmk\nHXClUint2qvVaolWPu/c52sIw9DlCoYViATzjiKAfhyYLJ0bNr1eLxnQrVYr0ebu3buSzsOR8CRz\nwa5FQm0YI5JSeLDZbGp1dVWTySQZks+fP09ozdLSUmaXJP0ndFQsFtN7OKjcUVU3+KEbx+vQ+J6v\nF6eZhzucD0FffY1G5YJ8hZaO8tEYkxuSyDQUsstaDsYmf4n7yG8rFovpmCTeF3PzYjqAh4MceXDa\nRQfSDXJfi1xzneMKHsV8fHycZFBUyMhUDA6eQ4t6BpmLfIm5t64/HAX2e/29jirSD67H6I+HF/ke\n+ol3gy5JyuUlR/8JU8aUFEekGEdEEpHREcn1eYifMca8cGGv10sGvfclomx57YWF9rCSo+WJcnJm\n8Obb4Pnfn4FhIE0RF9plMVhX6DQEtYd9+NzDSW6ouSCKW1URbCT+ej4WC8WtaDfm/DgHXxTdbjfl\nungOkDRNrEeoRIPQtxnHxc3CdG/V0So8fZ4X0SpHnXyRuoHhuQaOvsXxQxc3WmKIyo0hD236nHiM\nO0LrvuBc8DD3LgAcvYoOgfOeP9/7g+Dz7zlqyHV/hzsVjspEDx0Uge85UgGfwDd4uvSZBGeUAAab\noxI4AKAqfg4dob6dnR3Nzc1pZWUlw3uHh4cJNvcz3ECpNjY2knDDURgOh6pWq8kYALGTsoVR3YBl\nXZGXw2eOFg+Hw7QOMZKgL+u+3++rUqlkio4SEqvVarp165YODw/TOm+1WlpeXk5lEU5OThJaRaHU\no6Mj7e7uZsofNBqNZEyAhMEbjka3Wq3kcNBfR04xJJkLHDme6xW64TNHQKQpkgGPuzHo/Op1mJzf\nxuNxJgEbRBMDx2tNxdxGShsUi9M6adFZcd7n/cgML+9BhfW8/CRPXHfnimc6XVxfFIvFdO4hSfDR\nGeczlxHoAhBCn1+/n7G6I45T4mvR54nP3fhgfqJMdFnvecbIDebMk61xRugrtPPQGPNKyRdfZ5Gu\nPjZpGn5nc4obTvydl5cEnTxE6A5VnFOXl5737IYiNkW/309OixvHEaSI7ar8wVW7alftql21q3bV\nrtr/sr0QRAqL0eGyGOby+Lt0bvV60bKIZrgF7l6WpnlYRwAAIABJREFUw5ERLnWPztExLGiSa90b\n43sxd4O+eJzcty7H+7zPHp6JSB1eF/TwEBxhnHq9fgEB8rHiDbg35JZ+tLTxKkhU9O/i7UAbpy/0\nxGuLCYlA9XhDsS/s7oIm0AjvM4ZuQSfdW/KxxDE73O5zH3O+3BuLKBPfiV6W52F5zpmP0Z8TE9VB\nQvCu47lwjMPzgCibgJcYn0li6Onp6YWigXjwEQEkNEWBUA8lg4IQUjs8PExzvLu7m1CuVquVQW7r\n9bru3buXSbZmXP1+X9vb27pz546Gw6FarVZmLZMDc/36dVWr1QthBzzshYUFDQaDlM/FPHh+hoci\n8DzhJxA5r/rN2YEehvMkX6/83Ww2U8ju7OwsHVgsKSFXoHeFwrS4nyMglCpxXiQVgP44gjYanVf7\ndj6E1+bm5lSv11WpVFJ4zJvzaVxrjm47euu8GkP30JhwuydcU6iU8caQN9/znarMEzssvSyDNK0I\nT+5YPG7MkXN4BNqAUHvaAeNnPkAgXA6Dxnq0ItLUEXDG5+vLS7j4PPO/o+0gc6Br/j4PsXp+sfON\nI+YxGsNYR6NRWjOe1H9ZXpCvJ66NRudlSCgc7HPqiBCywyNGbExgjI4Qud6JuXrQir8jwu95ZP7+\nKIdjdIGxlEqljAxmfV7WXlhoD4HkQhMmdKOD5nF+h0AhMELXBYpDiRFOdQZ3uFPKLghnFr+P5/J9\n7xv9Q5FL2WTz2D/uY3HH2DC5WrzLc5TYEeK7UqTp4sNgcLiT5wDh+tjjeKCrM7JvKfYF7PlMHhbk\nmv9G2NJXDARqYUV4mAUQIVYWALT1vvh8xnExZu5zvvAcCJ8jz3vK29gQDS7PJ0PxewjXhdtoNEo7\nvuI5dQhe4HMvY+BHo2BUeV8IYdF/KXuUj9cHkqb5WhhNvkaHw2HKgeF8PM6hW1lZ0f7+vsrlstbX\n1/XFF1+kkM6NGze0sLCgarWacSQY93A41IMHD5KgJSTEmX67u7va29tTo9HI5F0xTgwFD4EeHR1p\nPB6nhHXPyUMpQ08EpzQ9p63b7aat+t7Xs7Mz1ev1FKaCh4fDoRYXF1Wr1VIY/fPPP5ekZIhxkLcr\ndniNWk+EO+AZjAHyUJzffKOJ8ypOAJXgnQ+LxWIKGeXlfDj/ezmVmGODonGe93URc+tmZmbUbDZT\nyMplKPlHfIbRPxgMLhxjkrfGfG4ZPzIc2eKyIO6o9jQMHDNoFp1rfij1IU03PtAXf4enUuSFhtxR\njGkuHK+CU+Iyx8N4HlL0OWRMl+kcxsF9HuKLYTr4BjkWUxh6vV7iYz+Wx0uEcF+sHelz4Dt9XUe7\nUSspY+xFeRnH6LwL7aKcdJuCcCONOY285+2FIVIoWzdUnACxhpNvHwWJ4FqMgeYRJ8aRaUySE4oE\nPBZUzK+JBoJ7AihLR1G8nxhMbix4P5lkzyFA4dP36A1yOrqfxcXY+C4Lwxk3eofeQHmgqfeP/0GQ\n8oxU/z7XnDbRw6C/3OPCDhpwj+/U8DnyuXHPKjaMU4SbC2Ke44nJvpvJ+x8NYUd3oJ0vWBcwzjd4\n024Euwfr3hJ955ko99PT0xTbp98Yu9Hz9fGT5OuJ75zhJp2jCRQHxVA5OjpSs9nUnTt3UkFK6mCd\nnJxocXExIUnSuWIkgZvSEYyh0WhoOBxqZ2dH7XY7c5YdXjle/P7+vvb29iQp1bmamZlJRo/zEMaT\nF3d0/rp27VpS3l5jqt1uq9lsql6vJ/TBd2CBrrTbbTUajTR+0DAMv4ODgwwiA1oHmkd/oTXor+fm\nkP8yHo/VarUyCsNRY+QT95XL5VTmIDYcFhR3dLBYe6PR6ELNL3f0+D8mdjvq7oU+eaaXZYBuo9Eo\nc2ZgrC3F+nalTPK25zG6sQTtPe+Q53Edg9aNHnd8HBXBIHGHDkfBd/T5sUQ0N8xcJnk/oyPohm5E\n0FkPzEVE1uDXvIRq3umomOuEaHi5nnVD17/HmNgtGo3a+H7+j7miMUrgfB1lu+v1GOVhTIwz6ieu\nxYiJ63mQWX9HXo417YWVP2CSvXPA79HC9glD8XtyGYwNokFjEUVPTsomW8ekZfrg3pMjYlJWEcZJ\ndOQiImQIufg+/s9DSHzscSFijOL1OUyNgvV73HBFAMEkjtxgBDrCxjU+82J89NWFex6NXajSFzcM\nYpK+G5RR+DN2Ry4dUnceiIKNcUNDpzPj8ARgf7Y/x+nqhil9cx5xj9ZDdAhNVz4YLzMzM6lQY/TK\nxuOxBoOBzs7O6zB51ft+v5+ZTzfOR6ORWq2WisWims1mZkcbCgpjxsOCa2trWl9f1+LiopaXl3V2\ndpYqTVerVS0sLCRE5tq1a3rppZckTcN+MzMz2tvb0/HxsZaWltL4OCC53+/ryZMnevjwYaL322+/\nnalBFR2ier2e+LTb7aYQEn0hxOWhn1qtlgxEjF6eS82sYrGYUUiSdOvWrVSramVlRfV6PaNoQIY2\nNjYyPAdqzLMGg0EqjcC4QK1AIZxnkBuTySSF9nBwfF1ggGBEM1aMNmgaEWeXCePxOJVrcLq4IwTv\nerjJEVUKh8LLlG/o9/sJIfME/pOTE1WrVQ2Hw/R+nokxByLjicq0GNpiXB6Kjjt2oaevwxhNQK5y\nDQSOdcizjo6OkqEML+bJfcLv0bGJ6zo2n2saKRJuNESEjM/9+S6XcK5dvrkD6062n5JAnz0dh2cR\nMne56O/IQ4yYQ9cJjqhFMMTnijl0fenrB+NWypao4DseVYImDoDQN/9uXnth5Q+kiyEkfrvnz/dg\nzsiEKJr4PClb5ZrnRw+M+9w74F6ER4TGvS/+Tmd4R2VoPvlu4fv1+Ey8D645EuLGGl6XMx39xkCN\nwobvIDB9YTP+iBa5IuO6LwYY2+FhaOPeZRQehFtAbdyw8bF680UQjWEXir5wfOzej4hG8nekNzQG\nxXKUw9FN9+SlaQ5JNGjpC1vg5+bmVK1W03VQExSDw+2gO9xP8U3o7R4dh+UyDmgzGAwyVbfdY+eI\nEp+LmZkZ3bp1K5VpYO11Oh198cUXWl9fV7Va1bNnz1JtppWVlWRcg5RwX7FY1Guvvaaf/exnSQCT\nk/Xo0SNJ0le/+tWUS+F5IxzKu7e3l8lroq/Ly8t6/vy5ZmZmtLq6mikb4YUu3YuGP8mD8aNuWIvM\n77NnzzJClu+vrq6m3XnM4Xg8Tjk+boCheEHYyFOBZ4rFYqZ6uedtTCbnRy4RSozoZ61Wu6BIL3Me\nnYd5nh8P5OEOz1V0Be1Oj4eicEbcwfS++hz4WsWYg+cdOfZ1hMPosg9ax13XvBtaRjnkSLKjfMgm\n6Bl5kdwa38rP2PNQZPriO089SoGR6norprf4uJze/O8Ii/fHHXGXYYyPH78XOnNPNHqi3Isy03WQ\nP5PfLjv9Gs+KRpQ/33PnHL3nur/P6ev2RHy+j8H122XthSFS0chwQyYaGRGS88/cI3MDgGsolMss\nTUfG/D4IDTP6pPN5XiKyNI0x+4T6IkHQRBr4oo+QL/f5Ncab56VhkLl1DsLm1z1fI2+B8S6Hvwk3\nYThFww6kxJNcHbFBUXHNi/X5Nl+nFfPl0LAbQTHp0FG9aNj4QomwMYYgfYn0duPMBa17xXmIYl6h\nOeh9dnaWcnNAZ3guBgtz5/yNouj3+9rb28uc1VUul5NRsbi4qPX19YRm+JEwEdIej8fpSJlbt25l\nwsGdTkeTySTVpapUKplK23Nzczo4OEjHzGAIraysaDgcamlpSW+88Ybu3r2rnZ0dSefe/PLysh4+\nfKhKpaJarZbZ/j43N5feu7y8nMbeaDTU7Xb1gx/8QMPhUOvr67p582bqz82bN5MCu3btmiqVSqb8\ng5/RWavVEgKIHOE9cYMGZ/7t7e2pVDqv8s41jDlChSi+ZrOZQqU80z1ijm1xj5lroMyj0ShTTBK5\n5Xlu9NPRRWScG06eM+JhHvK+CPGQjA+fOMobHRt39Hxtcy/rGNTJEQcadYV83Z2cnCS6ttvtzLpC\nxvLj8gQnydcktGHduzFPX1xWRLnvTpWvcYwWp4HLG3eqHTmiWjm6ydMIMDw4ncLpDV9joHpfaPQ3\nIkf+OTrMdYRHBdzw4R6X59FY8fvzDEeXt1yj72xggHf9xAJ3eJyn4GU3vrnf590NTje46bPzQDTS\nfFy/zZC6Kn9w1a7aVbtqV+2qXbWr9r9sLzS0Fy1MrMq4s0fKFr+MaBXJeDFkhPXru/ncUsaad4+F\nZ/JO/8019wzyIMdoPXMtjimiEzFBmc/xOt0z9vt5L8+gb3hkjNefGyF/p6l7sTEUhWeKNxP7Sh6A\npMwZSR4y4tkewsBLBZaPuzdIFo5esHvakb5eAC/Gznl/pLc0RSH4gd6efE8ozufE8y/yaMp7QBAc\nlej1eims46FoPCveRSiHRjjppZdeUqVSyXhWJOeyRvCEgcMpXMj3Jen69eu6efNmJkzhOULkwTBe\nEm5B0zj3rFarZSrw1+t1HR8f6/3339fKykqmyvrp6aleeeUVvfrqq/rpT3+aEsrX19dTUjioJTRu\nNBpqt9uan5/Xl7/8ZZ2enmpjY0Nra2uSlBCg1157Le3cgzaLi4vqdDoJ5XPecPQABNDlFeGmcrmc\nkCRpyuuERzz3hjybUqmkfr+vdrudyQGs1+uZs+Kcx2dnZzM5bI4cUhYBOefP9NBODPnH6tlRniwu\nLmZQEmjBmgeduAyRKhQKF8JUhEVBUTxFww9e9yOC2HnJYe2O9Li8uCzMeHZ2lo7f8fF7qkRML3F9\n4PzGeAm5OTrlOUGOULMu6JufFiBNiy27bPD3gVDFHDDkl48/6hzPJ3ZU2fWTy1/e7UfqRP0BH/A+\nL6kCiuwomfNU3i5RR6cI27JuXe7FKBR9dR3k9IsoMo359p3hUX/HcKd//tvaCzGkXAG7wvBtkXlG\nhw8o1p3Ky6WJho3HfTFQYtyWZ+T97c/knR7HxjDx6uvOUHmwob8nT5j7fQiqGD/mcw/deR8RCm4U\nRIXtfXVI1KuUx37mJekjOKLQIAEWmsd4P1vDI4zqELL3w+mdZwzzfU9I90RK+MHDdD4WX4get6cP\nhUIhkxjs8xgTWn0c8L7fh/Kl9IGPE2UymUxS2QFCPAgDkjzZgsx9nU4n5UB1u900F5VKJRk7lLIg\n1Lezs6OtrS3Nzs6mvCT6WqvV1Gw2Ux6UH1o7mZzn0NTrdTWbzZTzIZ0fZFyr1TQajVJYkGTrfr+v\n2dnZVAX83r17qWwA32F+Dw8Pk5Ld2dnRysqKvvGNb2h9fV2dTicl/DL+jY0NLS0tpRAY4yD5vVqt\nplAS97EumDs/gYCE9fX1dZVKJT158iTxzeHhYeLjw8PDzGG/3EdOFzvXpKmCYZ16uQvCugh+D6/B\nU3y33++nd87Pz6ter2tlZeVCjhC8xU4zDzXhsHlaAv2Efq6Y3chmzbrz4XKYH56T91w2NvBMQtWe\nOxlDNxiMLpfcyKHOFErf0zx8PUtT5Zw3BvgZ2rmT6degnctVrnsNKfriOWDQimuj0ShzDJYb+Hlh\nVsbhBpXTl/64DIrGhNPVZZTfE8OlkpLjxVqNG5D8XV7r0MPZlFZhDl0H+Pj9ndSWuywM53TBgKY/\nseyP0yLqmbjDMLYXhkh5zPj/q7myzLO+EUTRg+Q91FpxQ8aVKj/+mS+2SGAEQhxLRKpcCdEvR8jc\nWHJG94WIhc+z4sKPnqN7tQhRvgeNpGxNDZ7lSt8XdqzrhLCNxzz4vRiT8X1sAZemxrBvUV9cXNR4\nPE04ZsyMwenGc6NR7c0NV0c882LifM8VgiuhiAa4oI2Cxb1b7vW5cyOLuk7j8Vi7u7sqlUopURtj\nAMHmieGDwUAHBwfp0N8opClTcOPGjZRvQf89Afrg4CA9c35+Xjs7O+k4lnq9rhs3bqQ+j0Yj7e3t\nXdgNOj8/r+XlZa2srKQE7T/8wz9M4zs+Pk41oA4ODvT8+XNJ50jO4uKiCoWChsOhNjY29Hu/93uS\npO9973tqt9u6du2ahsNh5nwvvOdGo5F2dvX7/eTRbm5upnPtfDerpHSe1sLCQjrj77IdqD7vXuD0\nyZMnOjw8TP3hfMLDw0M1Go1UM4n7MZiQRfQT55E+sjtKOs/lYr2g4P0IFlCw+fl5ra2tZRTt3Nyc\narVaoj1j8YR5jDTPS5mbm9PJyUnGoJEuJuPCC87PvhvXZbQrIMpS+C4ul3kcFcM4MPSYb2/uCHpD\nHrrij3KY8XteqctoFLAraMbFNZf7nj9E3/gNneJubUnp0HGe48f8QE8vVePNUTn+93f7/Ph3XGZF\no8MjG1EuwhvIz7ixBfTQnQ/0rkeUXLdE5Mh36kd0z/vNNXJxvZ/8dqdIyj9jNfIFfO15he7MX9Ze\naGgvfuYejn8nWolu9HiiX9x9Fqtrx/c508SwEf+zeOIi8V0SUci4ceJojRtYeUiYe3A0klD9fp9g\nWhw7cDhhHEeu4vj43xPRoSmL0Q1H0AeMGEdzHN1hfrjGOykG6coNZYPiYzFSI8u/616bG9f0L9Iz\n/h0RxzyliRDzOYyhAPckfeG5F5YHZ/PjZ5AVi0VtbGyoXq+ncJ10zsP9fl+tVkuDweCCl1gsFtNZ\ndGdnZ6l6tiS9+uqrmpubS4U6MV4ODw/VbrdTeNEF040bN/T2229rcXFR9XpdhUIhKbB2u629vT3d\nu3dPMzMzevLkScaQmp+f19LSUkooBgVot9taXFzUycmJKpWKBoNBotvi4mIKG/V6Pc3MzOi1115L\n8/yjH/0onc3nybiFQiGdNUl4cG5uLhmgJO/Do76+KSIqKSFWNEcoozc/Go10eHiYDJ7hcJjmaW1t\nTaenp8mwdXSMit+sj1hKxStzgyZJ00Oi5+fnk2HrmwngVWpRYaguLi6mUC4omSssxsX8uAHmRReL\nxelZjhwuGxPNY/Ix97oc9MR4D3kyj1xHtsGL/js6KnlIiitHd4b9e6BJ/l3vT146B/c5Yu46iHWI\ngo7Iuctrn3uMEeRuRD1w1kAaY9qG089lE2kgOErufGLwwOcxhMV4oJPrC3fc3ZH2sDN0YcygcU7z\n+L6oe6VsTauo/91gxCn0cLUbUW5MsksTfvJNEcgK31R1WUpPXnshhpTHd71zEVZ1uD2iQ/GIBYdz\n4+4NRwcgKu93RoxKGGPJr7mFy8J3YeJVkn18LnjyGAMhlGcscY+jJdALlMLDA5KSp8nnvMNRN++X\n/x29HxcMbtRFFEy6KIAQxHEO3DBCkTvaFz0p/+19dqHCWHlm5C3vI8aw84H3Jc5PHCd8E2H3+Ky4\nRVk6V5CTySQhPZQHoB0fH6dilpJSjg+KMdJkNBql42Lu3LmTnnl0dKQnT56o1Wpl6NHtdtXr9VSv\n1/Xmm29qc3Mz4wnjkXW7XT18+DDVOPp/2DuTH0mzq+w/MWRmzBE51VzuqnKVwe1u2thmYQMWyF6w\nQLDA8sIbNkjwB/AHIGGJHYIVYo+EkNhhscFCCATGlsCiy91tuqvb1V1DjpEZGWMOMXyL+H43nvdU\nlBeWvq+8yCuVsiLeeN/33nPPPcNzzj33F37hF/SlL31Jq6urqYAm/dzY2FC5XNaHH36oK1euZDzF\ner2uvb091Wq1lMuEAULJBsoZuKL5xV/8RQ2HQ73//vuaTCYJ9ZHm/L2xsZEOBC4UClpfX08hQnYO\nzWYzPXv2LB1hIWVDRqVSSY1GI9EfIwNDxY341dXVZPhtbGxof38/7UwsFova2tpSpVLR+fl5JtQm\nLarST6dTHR0dpbngeCcKi+7v72fyxwjB1ev1tBsSfsMoZbedoyteniKirsViMdHfETCcB+jnaJXn\ns7COfe3BX4TvY30m593xeJxBnTxUFHP5YlglIkTugPv7YijUZQHVvCPiAQ2WKU1kho8d2YaBBdoW\nZQ9oJAaGyxdKYVxcXKT8O+dRaOe7mV3Xca8bjDhI6AqXQZ6H6boMvkA+x5AwNHR9Rx9cF2PEuXEO\nksp6ipEP5i8ada4TPUrjBhyOvId83Rn2fvJcvvPwpfMA7/u5N6QkvaBMXwZdSgs0x8NbXFuWFxTD\nNq6o47OlbK0mKZt8iRHjCjMmuNEQbjAyyak8i78RDaI/XgkY5nQhuAy1c0TGFw0CCBrBxMvQomXh\nMfdoPDfBjR1JGW9gGWLj/WEcFG1bZtz4/EkLxYYR6d4V73PjOyJA0Dl6phGJ8rg9itT77v3x+YyL\nyz2xOD62+t+5cyezHf/s7EzPnz9Xr9dTuVxWo9FIyAN5UYRoff6Y48FgoGKxqPv376dnPnnyRLu7\nuwn5Ojw8TPkH9+/f1+uvv65Go6HpdKqTk5NkLD158kQffvihnjx5onv37unLX/6y7t+/L2muEHZ2\ndlI19OPjY925c0fSPBH90aNHunXrVqrUDa0wtnK5nI6Pj7W1taVOpyNpjsbVarVkeFDQU5qfbVev\n1/Xaa6/pv//7v1UsLorZlkol3bp1K/ULw5FxsKan06n6/b46nU4mFA0iihHCfHLGIHPp/IwSGgwG\nqtfr+pVf+RU9e/ZM0hzlY47q9XpGEDuqM51OVS6X0zgwgAjDFgqFlBs2nU5VrVbVbreTse2hcnLq\n6H9Md5hOF8U13Rlgw4I7DTRQlUKhkEFAkQcYLKxDV2oeuvH6Y6Di1FviPVyjeXV/xkCfXQb4HPr2\nf5fR/P5ljuMymYDMjmkOPk8YQq7YY0jd++IoDzLQHWE3XjC24BXQQ2rJeVjbK5s7qkdfHWFx9Gw2\nW+T9scnHmzujGKM+Du+HX3OH1HUbMgqa+LqIqGHUifH+6NDmcrkMiABN6SM868aiz7ejuq4nYuN7\nf05sl+UPLttlu2yX7bJdtst22X7G9kpDe26dT6fT5MViSTu64DAcno+UtYpBlRwhoUWPDQvUkRKP\nj3v/PLbtFq9XwKbl8/lMbpJDiR5KdCg6wot+HIB7HctCTo5ERTTId6q4FwQ9HEHyQ0OlRTJvDF2B\nxkHrZYX3JL2QC+G7uE5PT3VycpLCMHhMjjbGEgJOD0cOPXbv3owjf+7x8AxHtvg9tOdIlkIheyYi\n4Q7CmiQO0xeeC/+ANEjz3KObN2+muT08PEzb/GezmdbX17W1tZWB3aE7OUXc60m3FxcXKaTV6XT0\nv//7v5IW4Ya9vT3dunVLb731lq5cuSJJCTV9++239d5772k4HGaS+3/9139dv/u7v5sKJHJky7vv\nvqu1tbWU/P2lL31Jn/nMZyRJH3zwge7fv6/BYJBy4Ci6Se5Xr9fT1atX1W63E5JTrVa1vr6eksW7\n3W5CZCaTeXXyUqmUPGmOO8nn8zo8PNTW1lYKAcQzEx0NXl9fT7xEQiweP+ERflsqlZKH7+fVgUav\nr6+r0+mo1+slnqZvIAVnZ2cpfBbLlziy6Ghwp9PJhCdB1yqVik5PT9O5gzTWCYnzhC6LxWLKr5rN\nZpkxeOh7OBxmKqmDiudyucy8QLOzs7OE8pGYzpg8ZSGivJ6rw3rx/CfQW0JunpRNLmbc3eboDQWC\nvTmCwO5EaY6Gx9MTXMYgg+AHR6T8N45Yx7AUuYWMD7lPOJmGjGJtR1SeMReL86K73hfkvW+coTnS\nwljon/fVc9Ocn3h3TIXxXe4uh52OoF2MExnMrj7WKrRhXXiIT8rmspHL5PobuRw3Ifih79DHedTR\nSqcFctfDiVyLvLCsvdLQnpQ95sMhQBSrtFAKhUIhwb8x+ZvJdXjOE3sjZOehwhhLdQibWi0uaIHE\nHZZlDBgXCFRPOEXYAxM7zIjh4VtsvU8ueDx8xBhiXSPot2wbqn+m327YOYQew6YYuzCeL9IIIUfD\nxnPRvB6SH67L2B36J0fA4WJpsUXWF2dcGNGY8t/E3/FMfgvP+UKM74jXeMfR0ZGuXr2q119/XdI8\nFDUYDPTkyROdnp5qdXU1JQejCKCNCylCT4RaXGGdnZ1pY2NDa2trev78earhJM1zj+7fv69f/dVf\n1XQ6rzSPkfX06VOdnJykPJpcLqevfvWrkqTPf/7zms1mevr0qd5++22dnZ0l46XZbOrs7EwfffSR\nfu/3fk/NZlP/8A//IEn6whe+oE6nk0JOBwcHqaZTo9HQ0dFRRily1h6J0iTck0/BtW63m8Jh7O6T\npN3d3RROKxaL6eBinjscDjUYDFIJAEnJsNnc3FQ+n1en00nV2TG6qMWFYvN16gqnXq9nQnT0OeZn\n8F25XM7MG8fHjMfjlEt1cXGhg4ODZEg1Gg3NZrPEL+7soEhWVlaSjIqGg4fEWB+Mp1KpJFlCvpKf\n6chZeYyH44I8/OJj9PUXw0HIUd9F7E7WaDRK8oAdrNxHf2NYhbIVvBfjnfuiLkCeUHrCFbfLNpdR\n0Wnh2fl8PmOc4TRLC8cHg4ISIR4SpJGDhkPmNMHo8qRv+IR3oadimskyYzOmNcTf+mefP5dr5IBJ\n2dQFaEZf/HeM4fT0NPGx76Jz+eppLM67MYyMUQXPY6BBE59znBjo4ZXj+T3Nx+o0cgPvZe2VGFJu\nKPhxEK7Io3XqExCRqlxucVaZx+F5xstivW5tR0TDUQxPgKVv0cCSlLGafXcE1zxnyN/HgliWz8PC\n5bu4CLgvjg/r2xnSx+zjcXQOertgdAZ3uvNbN7b4PcIyGoLQ5PT0NOXJ+JlgESX0RYMQdsOV/0cv\n0xEpWkwe5J+PNyKf0ViibkmM58Ob5OJ87nOfyxSlfP/991UsFlWv15Mz4CgnPFAozI/RQNGurq6m\nBNyoTDY3N1UozI8pYVfXa6+9JmmOgF1cXOjjjz/Ww4cPdXp6qs3NTUlzhGhlZUX7+/t688039cYb\nbyQj4/Hjx/rud7+r6XSqO/83lwuaPn36VLdu3dI3v/lN7e/v6x//8R/1jW98Q9LcsGm323rw4IGe\nPXuWMU6fPn2aFMZsNlO3202Gy7Vr1zQajdTpdFSr1bS5uZnuY+MGByxTiwq6oPAprTAej9ORLRsb\nG1pZWdHBwUE6JNllTqPRyORCuWEH7yJzlhlCppsiAAAgAElEQVRHp6enaWesND+SZjgcZoxCFJ8n\nN5NT6CU/JKXiorncoihhq9VKNAPZJM9NWmz9hj94JgdWk7wPcg3dcIBAIDCUY86Rrx/y8OBfrnkC\nNDxMf1nzvtNvMsluGuA4Igzo2Sx7cDnyHX7yYr8gaM4T0DTumHaEyHWL6wuXc1EOkd8GasEuRu7D\nkJhOF6VFuObRhOiUg+6DfjvKRV4VPOtOcsw34tnQG7kG/VyGOV19jMhT14duaKFH/H7oTdFc1z88\nE7nMvPuGERBR74e3QqGQduBGlM/H7GgVQAY8Fw0kDDDXwe4sxSgI8xeNTm+vxJDyRefGEwsOIsRE\nSAScewMOm7KwIQDKtVAoZGpbSItznJZNoDMU/YzJ3whYfidlk7dBFqLydsjVkRVHY3yxwfguDJyJ\nQKVisjj9w1pflnTpXpsLTf+Nf/YxuDHjY0LYMfaYfI1wyOVyGU8c796NMd7HYojoEYLU++EGpRtW\nbvDCY7lc7oWKu8wdxlUut9ghyli8rAY0Oj091WAw0LVr13Tjxg0NBgO9/fbbie4bGxtpmz50cDQW\nbw5aojDhXe8Hc12r1fTJJ5/o/Pxct2/fVrVaTdd2dnb08OFDTSYTXb9+XaVSKSnojz/+WDdu3NDX\nvvY1ra2t6dGjR/rP//zPNI5r166p1WolhUGI7jd+4zf0rW99S3//93+v7373u/qTP/kT7e7uSpL+\n53/+R7/1W7+ld955J6Ed+/v7iRd7vV5ao71eL5UpYIciCE+3281URB+NRnr27JmeP3+eCoLCa5xD\nRkI1nq80RwQ3Nzd1dHSUwtwo2lqtpp2dHTUajYSaOW+AjDC/8CL1jGazWapF5UphMBikAqNukGO0\n+G4q5p4xsJbX1tZSiI534Siys0uaG1nVajUpCUcBMJ4o0YCShm7w/draWjJEJaVaZMhi53NQEyqF\nQyuvTZbL5ZJR5sVqmRsfj69TKuXDb27YQB8pu8MQtAqZ6SHBqAAdxcUQc+XqSKEjPNHpXCYPJWXk\nKCEsGmvOFX5Ev/nnCJCXoaBPzGGlUkl99eZhQeYQw8+NTcaGDHLH0ekWoy3QOqblsBbhAV8zfM89\nvhOU+fRd6ZGu3Of6D7p4H/xengk/eckU6OHz7WOHHu5c857YP2+vLEcKoiwLq0WDgYFAvBgy4nvy\nVuKxF75N0mE/mD8iHR4qwrr1PANX2tGi90XonoiP0WP9/kynhU+ab8V2rwkjjlwW6Me1WD/HFx6M\n6WHRZdtdY3/IEfJxOZ1h3rgwHJGjyKDniTCH0cPA21kG3XrozpWTt2VehKN9IJnRMOL50+ni0M+4\nIJ3X1tbWdOvWLa2ururRo0fa39/PFGVkQeN1RzqzgKMB6AYkixtl9eTJExUKBX3uc59ToVDQ3t6e\nnj59mvrIrrZcLqf9/f2kMH/t135Nt2/f1s7Ojr73ve9pOp2m/CnCUCjMbrerb33rW5Kk3/7t39af\n/dmf6d///d/1V3/1V/r444/1N3/zN5KkP/iDP9CjR480HA61sbGhZ8+epRAV5R7y+bwGg4FarVai\nwf7+fkIk9/f3dXR0lJn7Xq+XQngHBwfpGjTAYMD5cAMUob++vq5+v58MtGazqZOTkwza4sYLeVCg\nEq6EqUXDuue+2Wym27dvq9frqdvtpp190jxnZjAYaDweJ2QBg4/SBuwgdKeH/8OH7kB2u12trKyo\n1WqpXC6nqunch+HjRUzhaVc+VL1n7B5W8xpHKPLodNJXeHOZg0LlfMK4HrpHTniBV+aYtYK+cHnq\naFihUMgYWYwTGrgSZh25AcUzI52Q/VK2sCS0c+cUA8KNQP4SMuU3NJ7hzqwbM/QD3oi7z0A6vV/M\nHX1mbnxsjrAs251MP9zIis4ehjbXYmjS6Yh+ZSy+0xP5zbuiDOc7l+PIRw8lRpmOzPR8Yzcsya1y\nnec6OxpuPifL2isL7TEZLGoEYYxRSwvhxtlfJD1KWebHy3KPyT0c95JcIUe0xicFyxwlxLlKwPoR\nDnYl6KhaDAM6WgVKgzfoC4p+OJ2cjv7u+NcZwuF13unM6McOxMR1F2DRA4ihMxSPw9vMDQYL8+9j\n8WNS/LkonmXeAM9yGNdDdD5OFxhOP/rM4naaYaS6t+ILdDweJ8V9/fp1HRwc6OHDhyoUCtrY2Ejo\nEzTF0Ed5wFN4UCAAzvvkRfFdo9FI5QRarZZu3ryp4+Njvf/++8rlckmx8//pdKrd3V1tbGyksF+x\nWNQ///M/q9fraWNjI+M4tFqtlM8wnU71R3/0R3rw4IEk6Y//+I/1ox/9SH/xF3+hZ8+e6a//+q/1\n+7//+5KkDz/8UO+9956+8pWv6O2339bW1lYydp4/f65Go5EEHLlA0tzIGg6H6YgVVxgkom5sbGhj\nY0P5fD55+L1eT+vr67p7926iLUYxvEgpA451oQDqeDzW3bt3M0fgYNhgTLhj4or24uIi5SvhKdPX\nfr+fkC/QHknp2e5A+FrL5/NJbrkAZ7s9hokbMl6Elf67AYKhByLtRgNhSWlxdBPjm06nKfQYz7v0\ndRBReBQhChX6QEOQiIh+gJaRguGKD345OztTv9/PGEu+5jGaoTdH/0A3KZuT69EEeIXmBkFUnBhC\nUbG7XIFHvHAqSCn9cb3DPw+1SXO5F+WNn20XoyLQmbF6eM7LSsBv9N91QnRSlzn76F9Pcse4ch51\n3c24HLSQFuUu6K+/zw1PnAgaBqvrX+83ujXqY5A5N6Kcdq7vI2DhdFrWLssfXLbLdtku22W7bJft\nsv2M7ZUgUliCbp3iNYFouAWI93F+fp62N2Kd492BuPhZbngwy5IJHdqN+TVYrnjPHtfmXVjYETIF\nPWMc7iFLCyTK0SqPOwOn+xjc+vZ3OgoTz9SCbn4gaYSjl4WzeG5EBX2M3tyL4V63+B2OxrMA/o9J\nooRo4tEx7lG4Z+zXPCwW++noEvSO6JXTlOeBTrjXzfyTwEyS8s7Ojvb29jLFMz1/rFCY747ifuaE\n/uAF4ZVznyNlIBR+9t2jR490cnKiarWaQSXW19dTmOn+/fuq1WqpCvfTp0/VaDQySe940OThNBoN\nfeMb31CpVNKf/umfSpqXOPj2t7+t4XCoP//zP9c3v/nNRLfvfe97+trXvqZ33nlH5+fnunXrVkKA\nHKE8Pz/X48ePE6pGAvx4PE67AkHqKEwLD5OHxNi73a5+8pOfaHt7OyGZ9Ofk5CQV+Mzl5gnc5GV5\nflIul1Oj0UgIzebmpkajUUKcCU1ISrk8vuPHk61Z05RXIJ+L9z958iSFOZFfoJTINZdX0gKVIiwM\nD29tbaVjacitol9eSBNe8iTtQqHwwi5AGmOH7r6OkDOeb0VzWRFRVc9dk5RBeZERyE5kIHRzOeso\nPsiCI3ye+wId8/l8Ji3DUzG8f3x22kfaxFQNv854GQPP9Dyf09PTlNrA3PNe0FRkgqPkUnYjE9f5\nLSFhxgWa4/98bqABOiGmpiwLZblczOfzmXQLDkFnvTqaya5UEGKQbqc7esxRLr4HQZUWu279uiNv\nfg863PnCx4T+8eiVz3HcrPDT8qOkV2RIufJlkMPhME0GDBljtyROrq2tZeKzENNL1fu7mHQ3LNxQ\nwGjysFWcGD6fnp6mEIxPFs1/G5nbf+Phqphs579FUHreSIz3swBdSEh6IW/AjUdpkdPEAqL5+COM\nDa15tzMqxgl0cUOCcfpvvDHv8fwvp+WyPDeO2BgOh5n8khj/j2OAVvCiHx5LGJbvfacUeRMbGxtq\nNBop2XowGKjRaKT+YxQ6HTmjjbmPOXGE+1yIorhIZL97927amfbs2TOVy+VkvG1tbaWSCvzmzTff\n1Onpqd55553Ulxs3bqR+oqD5PBgMtL29rTfffFOdTkff+c539MEHH0iS/vAP/1ArKyv69re/rS98\n4Qu6deuW/u7v/k6S9JWvfEW7u7t6/PixfvM3f1NHR0fp3D/4YDwe691339XBwUHKycKIWFlZUbfb\nTYnqtEqlkpKcY2i+VCqp2+2q1+vp+vXrKdfIebHb7SaDgOT3arWaDEmMNuQC4eVer6dKpaJarZaZ\n07W1NY1GIx0fH2cMm36/r9lsfuTH2dmZnjx5koR0uVzW9va2Pv/5z2tnZ0fD4TDlJRGy4kxJ8p2k\nxWn1s9ksGZB+Dh/H/GCYMIbJZL5V3r9jnITJ4H3Pg2Ke2CEa1y5yK4aHoI3vMvPrxWJRlUolY9Dx\nbIxjHEZPZu/3+8mwi3k+KF3yc8iTYhzxnLooT1z2I08wSJCTHpr3vFf0k+8ixxDwv9yHwR5DRO4I\ne4gLesKXXuaBFhV+TMXAeVwWhowy3Pvq+UfRAPH8KE/LYcee3xv1Hc/w0C0lLxyYcJ2PY4EO5zmk\nLPBstyegacy387HDO17Z3Q3ISNNlhmVsr2zXnpStv+ELJSZ5xTONJGWYOE4awrRer6d8D1pMLoOB\nx+NxJmeFiUBxxnipnx0U4/7RG+A7FDv3eZ4AAsHf7+9zD8SvwdC5XC4lwtKcGZbllNEiquQGD/31\nEhAxjyIKBt7jVj39Jt7vi8YRMBdk9CUaQd5XDKx4FIYbmC4EoEukQ8yLw+tC2UiLwohXrlxRo9HQ\nwcFBJqeBfBMEsOemMEaMJTeynD88l4VxdLtd3b17V9euXdN7772XQXNASTBGHj16JGm+Vl5//XXt\n7u5qd3c3UyQQ5AoBPxqNUiL2nTt39ODBA/X7ff3Hf/yHnj17pt/5nd9J1/7yL/9S169f15tvvqnv\nfOc7+tznPpf6//DhQ73xxhs6OTnRzs5O8iA5Eqjdbms2mydls0ZJRMaAmE6nqSAnhTEvLi7UarW0\ntraWntntdjUej1Wr1dTv99Vut9VutxMK5Nv0e72eNjc3kzGC0ba9va3pdJpKL0jz3X7Xrl1L/cbQ\nZC7I4dra2tLe3l7GUD84OEhn+l25ciXN4fvvv68PPvhADx480L1793R2dpYMnM3NTe3u7qbSDhgT\n9NNRCd8Qsrq6mg5HrlQqGfQon8+ng4pBqd2o4zid4+NjnZ2dZersYEBFNNqT3vk/yJb0Yg0eR5ZY\nRy4naOS2cY8jwOTMYpThREtzxxsjwfMNpey5psj1iLogR1zWggxx3RVxjAa4HnG6k4PFvHFckiPL\nnm9K8j2ffe6X0Z3vkNluUDl9mUvmE1SOunTuTLreoUXD09HSaEiR2+g6ItbfQh56Aj/vH4/HydCO\neg9ZHDdNoH+hgzvc3D+dTjMlStBryN9icVH6g+8w6N0Ai1GpZe2Vlj+I4RWuRUXnqAGLzWvwuAUu\nLWpTsf2XZ7higzFhRkdPllm3fOdIFCG4yMA8fxk0SovhQv/snoB7ThgmnlQak/d8sfEXYzPC1u41\nLoO8uceNHlAh3w0TaUMfPawHfV1A0JgHr3zuwg2FT58iDX1B+wJ2YeOhVH7rnlNMvuSze+ydTidV\n6X769GnGaEeQubfufY0GvNPGw7IYDyAW0+lUn/3sZ1UsFvWjH/1I0+lUzWYzzTe0nkwmevz4cUIz\n3nrrLb333nvq9/spMdlDJqur8wN4B4OBhsNhMoi2t7fVbrf16NEj7e3t6Ytf/KLeeOMNSdLf/u3f\nam1tTV//+tf1gx/8QJubmwlZ+qd/+ifdu3dPzWZTDx8+TMpaUjIcqMFFQry0qMItKRUXZQx4rCAk\nHhIC3cNgpjwA1eLxkCn7wMHP0hyRGg6HaSdlt9tN7yyXyzo+PtbVq1d1eHiok5OTNEaQO0K+t2/f\nTkbteDw/Y293d1ez2UytViuhg/fv31er1dInn3yijz76SJ/61KdSSLjb7WpzczOz08/TFigLUijM\na10x/nK5rFarlRwZ5328fJwLr7JObS2cQd/peHp6mupcRQTEDauIRjlf41h6oV5kJE4U5+5J86Kj\n7BJlDL7rmjA6ss+RWl/7ntYA8oVeYFMB64n+8zvWBfzkCJOPzZvLa5ddpJa4MTgcDtVsNl9A/3Gc\n6JPTOK5VeIwxOMpLf6IRQbiU58R5ZAwxnOYOfkykx9gEZaQ/k8n8ZAJQ0KjPXb5GwGFlZXHWbTSy\n3CDEWGbeWPfuJMf3+Q5RjHtHv1zPoNfdLuEZUWbH9soqm0dL0hX9spikI0Su6JzY0ROKjOKK0xEC\nD7FIi91Cjib5IvVn0C9+xyQsM46WhQ5p7hksM3r4PsKV/r2jeuQp+S4VaOL3+dg9bOIonOcQeUgs\nMq1/Zp6iUcg/wmfQ2+c0jh20TVKGmemLe2a+gOGxlwl+DKzoeUbPmRDVzZs3Va1W9cEHH6R3RQ+K\nRUeffEwYvRFVBfGDn3q9XurPF7/4Rc1mM73zzjva2trKIBSOmh0dHanVaqVK6j/84Q/V7XaT8mW3\nmzQvHYASPT4+1oMHDxKS0+/39fjxY3U6HX3qU5/SV7/6Vf3Lv/yLpHmpgq9+9aupQvqDBw/03e9+\nV9I8J+vq1av66KOPMiUBpDk6BGKCcQA6JM2VKYLSqxSPx2Ntb2+nWkJuEJDDw/b9brer0WiUlDCo\nFoaJO0r9fl+NRkPD4VCtViv1T1oYS4TN2FUoKRlm7NDL5Ra7JPFor1+/rk6nk3LmJOnq1asqFou6\nevWqjo+PtbOzk/qC3Nrc3NT29rZ2dnYydANtpWYUeV4gV9DLHQjqDFG5HVROUqasBQg265ADo5FV\njjCwnjwC4IYM9HHD3u9HniBzuIahkM/nU/6YI8cg3yC4zD8GCv33d6EDYkRAenF3lhtuoGPIYnda\nI8LMe7gPQ593sLbhFxwC1xcun5BD/szZbH6qA31y586d+dhXnsc15sr5zcfE/GPwujykP+gk3xEX\n5eR4PFan01G1Ws2EmT186cgZzwIJch3kBZZdn8Zn4rC6QQSvcJ/vlnd+nkwmyThznQa/RNQxpqN4\ne2XlDyCCw5yxPIDnO0Cs6XSa8iUkJRgVD8ULcEmLMvFskY6Wsof3YBp+70iHM4ujDTG2CqNGQ9DD\nhT7JjNUNymhgRu/DFzPCC7pwzfMFYojN+wSNovfinmVMAoyfPV/Ncx+cBj5u5t29S5KcHZWSlHJS\nMAhdkEe0zY3VZWGz+B1CPdLbjUEQA2leGuD999/P5DxEg9iFAzShRZ6Iwh0Pazwe60tf+pKkeS7M\nkydPtLW1lcJ4sTLwYDBQtVrVgwcP9MMf/lCSUuhqNpsl4UZ+DTRrt9u6d++eSqVS2jp+cnKi4XCo\ncrmsr3/96/rggw/03nvvSZrXn5pOp3r27Jm+/vWv6/vf/34aAxXNz8/Pk3HBPHEGHWMcDocJrSHJ\nmi3VIEXS4igXkuFdkeEtr66uamtrS5VKRfv7+5nt7lTNxmjHWPTjSjDGIk2RB2tra8kIqdfrySBY\nXV1NOVf09fDwUO12W81mU81mM4VLyaeqVqup6CjPLJfLKhQKOjk5Ub1e12c+85lkZBJyrNfrqYK5\nG2Ae/nWnzfO7CP8hW6lnlc/Pa3p5xXzyqtzQcCSBNQOy5A6WK0hksstMR/ZdTrhMZDweappOp+lY\nFyrHS9lcUfghIite/HaZE8tadz3jjpAbRJ5CAY2cNm4cehgOQ5CNJg4SOAoS9QblVTwVJKJVjq7x\nGZryvRsb3lx/xc0DzI8bL9CYvkqLvDsMOXdefW6YR57reh4dwxp1MIUwOmkTPrf8defZxxYNVmlx\nQoqHdmkOHCwDCCL9Yrssf3DZLttlu2yX7bJdtsv2M7ZXVtl8GWrjiINbgVTFBaJ3OJaQAYnP7pnF\nEJtbqR4Lx2r30Foul8skn9PcYvZ3MC7QMjwNt3KxxuO4sY6BlB1B8uQ3fxcNZATvI3p6NJ4f7/dd\nHQ638z7y0TxEGUNmEblb5mW6hxI9JLy22WyWPE6Hos/PzzUYDDIesT8rzoc394aW3edQcPxMlW4K\nWT558iSTs+C8Bv1JwPV58PHQV/f2oif8xS9+MXOcy9bWVvJw3aMDEi+Xy7p586Z+/OMfp/fdvHlT\nhUIhJXrX6/V0rVKp6OTkRJubm6rVahoOh2lMnU5HpVJJv/zLv6xOp6Pvfe97mfypf/3Xf9WXv/xl\nffLJJzo4OEjI2f7+fgoXMW+OVnCeGuE5Txrm+Bj6QLL3ZDLRcDhULpdLOUfOh6xfkJ5isZjQHBLq\nz87O0tE5eN4cIAxd2BXGc0GqSqWS1tbW0lxMJpPMkS6UmJDmSepbW1sqlUpqt9taXV3NHD4MsrCy\nsqJyuZzkFzvTrl+/rna7rcPDQ92+fVvSHAE9OTlJfEGIS1qUqWAHs6+vUqmUDnFutVoajUYJjRuN\nRjo4OEi7pOE/SWnrOghSDPGQq+K5avGsPZAFR4DjX/f2nffz+XwqeAwP+fu9ErWXGYj5jvAFqFQM\n7aND6AutUChk5sZD9/TH5aj3k7BgRHeQ2WxUqFarS1F7T0+QssnmHh3gt9AceevrLSLvUfbGtJoY\nxiPfzHW0R2u43xP8QdCYT57tRTddVvp9Ple+KSqmMUQd5FEBD+F6mDtGB3yXYNSPjjJ6WNT56mXt\nlZU/gDBO3Bh2g6h+ICeJyIR+/MDbmD8VQ3A82/sQ4VZvL1O8LNxlzEainYcguD/C5MsYnmd6EqFD\nzX4tQpH0j3e4Eo+hPR87zO+5O24oOUPD7AguLzHgRumyBUVfCYH63DBXlUolIzDJn+K5KEDnGQwf\nFrP3xQ0pp7/f799Np/NkShKU7927pydPnqSx+1lvMf7uysWhblrcAeSKhVyKN998U+fn53r33Xcl\nzUNG5+fnScE5bYC2b926pQ8//FDn5+cphwbnA+PDw2nklty/f18ffPCB1tfXdXR0lPp55coV1Wo1\n/du//ZsqlYo+/elPS5IePnyou3fvajKZ6Mc//nHaoSdJ7XZb5XJZs9niuAhXeoTa6DMHVhNGG41G\nGgwGunPnTqakwMXFhba3t9OOLYTb4eGhisViynUqFAqZ0gmNRiPRmWNYaLPZ/EBfHB/CB8wda2w0\nGqlarWaMEDe0kT3S/NBmwqmNRkOHh4eJNzwHaDqdqlKppDVVrVZTWPXevXvqdDqJptVqVdevX8/0\nx3NvCoVC4lMMTuaekLi0yH2Cv90YdMeA61F2Od3cGXTjhdCay0xf36w/N5r8uW4MeZ4Kn70MgrQI\n7eFM+Dp0w4O+esiXtYeydHmATGNMbgTCq/CwyxqMqWVhTYwCjC36wkYAdxBdTyH7kc2u5H1Ti4+b\nv8ucTil7ogXzj0GELEWu+fzTb88V4n2UF4I2uVwuc1KAO9yeG+ty2R1JrvkufU89ic6pAwhuC6DX\nYx6w/3Vn1sPB6AGnWdyJmKHrS6/8P2wwckQsmCQG4szIonHjQXpx6340ijze7sYFBoDXIHFjhAXF\nPW61x91+rhCZnKi0Yx5PFCbu/TjK4wvK+0FjXCgwT5zkOh4L+QL+DsYRc4ig9TLjww1UN+IcTfO8\nKf76HPr4PTmQPjoiR/9Qeo4IuZBywcH7lnktywS58wwIzb179/T8+fOk6La2thKdoreKkPBFHnPf\naFEAcqbc66+/rkKhoB/84AdJebvh6YUqec7du3d1eHio8XismzdvpmeSE4ji8x1fBwcHeuONN1Ji\nOFvppbmCvnLlih4+fKher6e33noroS6TyUQ3btzQw4cP9dprr+n09DQZYHiWKysrKadtmSeHseve\nHjzMQcAIPpQgOUTNZjMhWSAXrLVicX4+niMN1J2aTCapxAJ8ShK285GkVDcKw2o0GqX/s7vMnTfy\nwVqtlnq9ng4PD7WysqKNjY00XycnJyoW5/WyUO6u2JvNZupLvV5PtCF513cAxvXN9m2vBcZ2f0/M\ndqXA4dmerM77kBUYf4668Bd55LuzoKPLRZrnvsRcoLgjzWU0vH92dqbBYJCS0eGbXC6X+uD9cBSK\nZ7BmPB+Wa8wvypq/GO8+BpwEd8ygE0ZCPAbGnWaQWcbqDpfzpBs60MONE9/p7JuJGIcbi06faIDF\nXXkuN7z5OpXmfOhFfHluRMdcLtMvT4BnLPCeG98+p8yH85rTBqfBDVmPPjEGR8B8PP77ZXrWc+CW\ntVeGSEVvgAXkW0edGV3hRyKjLCCs38dnRzWkxena7k24QeCWa9z26My3bBeVlD1lm7G4Be5j94Xp\nwp37CFPAPP5MlDfM78wArdzDdCUMYhQRK198LlwYFwvXUQenB3PrNM3n52UrKpVK8phdgHk9Ga+H\nxftZIA7/updTrVYzULPvPooo309DLkejkVZWVnT//n3t7u7q8PAwGTXQHW/YFx+Cwo1Fn2P/nRtY\n0jw5eHt7W+vr6/qv//ovbW5upi3ppVLphSR7DJvbt2/r9PRU+/v7KREaYYvRCXKyurqaDjS+cuVK\nQoCuX7+uZ8+epZDYm2++qbOzMx0fH+v69etqNpv6/ve/n64dHByoXq+rUCgkowEa0uKacUMfGmAA\nsOWeMFi/33/hvEBq7TjcXiqVUlFK+Mnf4d5sqVTKOFigVawrL2EC33O/8wbPZoeRG4icrYhjcXJy\nksbhSeoxZOGOXj6fz5SpINyJYRQNF+hHKBKaEkpl5yFrh2u9Xi8ZZigx+uBJ5DH04fNHX52/HVXH\nOZWyhy+jbL1+IPxBzS760+l00tgpdBpDcvTLjRU3eHh3RDPcEXeZ7YiYh39Ys/TXHUhkgRcVdsMN\nA4vnxffR2OggLeQo7/czYx3hczr47js3FrlO8wR8N5iQrchtvyfSIqLxrgscIEGHOGrkKB86Cx0T\n3+lRKnfM/LcYcjRkL7rRjTPGEcONcWefyzN3NF7WXokh5bUcfCHCrExU9PidgSEwQoJ7MVKkrDED\n8Vwo+kKIMK4rSW/AxChmRzdAYpYJWpjbJ9PREzfc/L0oAIQ0O7ekbL4Mz6E5I/g1/42UPc7BLXdn\nVheqvgjZeh9RN1AFjDXeG70NLHyUi0PKTgMgfebPCwhGQy1CvPSDvkM3N8jds5nNZvr0pz+tw8ND\n7e/vp5pN3BcNYV9cLuigqxfCg095N7h5EYgAACAASURBVAJ1Npvp/v37+vDDDzNFJ6UFbC5lC/FJ\n87DYxx9/nN5BCQBJaafQxsaGisWi2u12osPGxobeeecdffrTn9bR0ZGePn2awnflclnvvvuu6vW6\nbt26lXK0GNdgMFChUNDx8XEmhOEoXS6XyxTQY35Resw1fW61WklJ+nE1w+FQa2trCVFgVx80A1Fp\nNpsql8sZR4bPGOZxe/x0Ok15Y27w0r/JZFHh28Pl5Hyw9v1929vbOjk5SXPLfZubmzo6Okr3E7Zg\nDuEVvHx4Gjq1Wq1kFDgPu7Ls9XqZHLBGo6GjoyO12+2UIyYplT5ANnqxSj+6hHxTmq8XZFUMdUwm\nk4yj5buAMZDimnGEl3XiyIs7Tr57ixAlhqTLU69L5DmW3hwVZ57YNey5tl4MmvfyrmhE0hgn1wjf\nebqCpFTSwvWZI4AvMxzQhS4j/fnRWYPHoY3f4wYvOtL1pNPL3+3hO0/vIBfR14zfE1EgRyrd8Y7o\nk/OTG2mML6YR4GC7bIeOrmNdr7GmPELi9/209koMKZhw2YQxaIQZjQlwr0b66VYiSssZMoYb6EdM\njsQTjedROVEjyuXP82R2vnfDMYYgY/NFkM8vtoL6AsLLZcGzCBi709SVF/1B0CBsXIBH9MuFoguh\naGTF0KnDq87sLgQiIuCookOxCGoXfGw2YDyM2yvfYlBFqNi3NNNviizu7e2lc9pi0iH/j4YEig6e\nc6FRqVQS7fC8UQpvvfWWTk5OdHJyoq2trWQk8B4EXavV0sXFhe7cuZPmFRqBQvgRIlQ7n0zmSdv3\n7t2TNA/tEQra2dlJuTjSPNfn7OxMt2/f1mw20+HhoX7pl35J0hwhwHhAWbrgo5SAI5LSXGHMZrOE\nrk2n0xRKrNVqWltb0+7ubtrm7gUpye0CpeQaBoejDh72nc1m6XiZwWCgs7OzDGKzurqaSkdg4DCP\nlUolHaPi4XI3yN3JcF5cX19Xv99PeUjSHGVbX1/XYDBIxSF97YNMQBuUHc/wyt/OfygFEDaMTLz7\narWqvb09HR0dJb7Y2NhIhUORCY7EYwCyNjyMzrPpI8Yt9zImHB+XffSZe11JTSaTdMTOZLKowo1S\nIxyGUc08YQT6OqOvhHXdEeU+D295or4jI8gLl3/+O6cJfXUEKeonrjs/zWaLcDbPdic56hVH1Tz6\nAO94OG1Z/7zvL4tGuA70cjRuzDnYIS3yWD0czDUHMBiDR1uYf3+u98V1lDd4BX0RK9vzzmhfeFgx\njpfv/cgb6B2d+9guyx9ctst22S7bZbtsl+2y/YztlVU2jxCee0ae8ChlD98FtoyICxatW+7ErTmC\nw98LUuHImG//pzmUzX1StsK2X4vwqo8Ja53+R2iWPvlz/C/hBqzpGJaI4/PcIIctoQ395HvfXovn\nEMNi9NNDavwmhrYcoSKUhyflYUlCL+4BuKfg+R2eqOyJxqB9HtbFc4vevHs/oBnb29vpHQcHB0u3\n8ft5WXHuCWeBmhGmdJrwDEp13Lp1S9Icefjoo4/UarWSt+xhT1AuttQTbvzJT36icrmcEIBGo5HJ\nk9ja2tJgMND+/r7u3r2b+vrJJ5/ozp07yft68OBB4rPHjx9re3tbtVpNH374oT71qU+lZ3Y6nZSz\nE7fcxzCuo4NsCyfk6/Sr1+vq9XrK5/MpCdoriROWAXXx9QBKRYmDZWdNeuVveN5zU0DWfF2Anjlq\nwTvdo/UxwrP5/GILP3PY7XZTkjo08PCG78bz0hkXFxfp3fBWDLGAHvmZYp4bsrW1pclkcXjv0dFR\nJuxdq9WSbGR8oC9OTx+foz2OcEgvljOAN1xOsP59nnwnLs9knhwVhjfOz89TtCDKZvpWqVQyPMl9\ny/oIvaUsEsh1wssuXz3E5DlMzoPwu8u0uGvP86J4vufUkccHDVyuQEvnN8aFXPcQGjohFsWkr85f\nThufb/76fVHWRxntNHfd47zq+sYjHvyW98XcMH+mp0wwdp8n15mOZMYcLQ8zgnzH/ERvr8SQ8h1d\ncRFIC+jSt8y74OE7aWHoOKzq0CawJzF6h04hJIvCDRImF8HihoQrN4dG3QCKCtQhzBgW8LFFmFrK\nVgYmLwQ6OoTpBp/XQpEWoQeHpRmz00GaQ/OEA3kXjXF435ctcIzYmOdGDoX30YUJRkSEyLnmAgD6\nR6bntx66cKPWoenJZJIOuJWkZ8+eZcJGkUfjllzfYcUYWegxGZd+wVMksR8dHWXqKPEbxkjezunp\nqba2ttKRNZyLRm0iwlTSPAx4dHSUduzV63X95Cc/kTRPtkbJrKysqFaraXd3N/HU5uamRqORzs7O\ntLW1lZQXOSrQLcLt0MHHyBwyFxgSJNNj5PgxICh96j35jjP+3+v10vEZGC4YFdJi7RNK8zwpDHKc\nLMoy0Nh55ZtcmFsfpysMd+JwNLiv0Wik0BUHX8d1yvMuLi4y9Z2oiB0ru0fnLobYp9Oper2eisWi\ntre3085TjrdhPUAH5gLF48+D9h5Cmk6nGUOD8UYFSH+QNR6Sgaaz2SwdsoyM452e9xjrA/EvGgcx\nvQF6QmdoGEO2LwurOU0Zq8tL1gP3xfvduWYt8EyqydN884anH/h46KOHTz3XCefAU1RiiobLQ5dR\nUT/Q+J6wrBsd5Hl5LhLXyAEkdcT1NHzkaQIxYR3+WOYIw3PeF9dlnvLB+2JOqxvfDqp4SkVMi1nW\nXllBTppPJpPOAD2BDSJwDWF7cnKScitoy4jlRI8txpZ9YlDIEUFzgUJjDJ5UySJmXPw/9sMXZrSw\nfSzkSkmLAzLph48Pj8obAkpa1KGBrhg+Uva0dvdupGws2WlHczo5muRekRt+cVwkkMaF43zCczyP\niMKEPj6nSUycxfjGsGMbvyfLgti4gRPzASIqw/MRLNzruV6j0Ug3b95M4z8+Pk5b9xmrJyMjgNip\ntrOzk/oKz7I13Hdjce3q1avqdrsZgyiXy6Xjb4bDYRp/o9HQ6uqqRqORms1mJvkXI8gNKDd0oZuj\neIzBd8JGpKNUKiX+j3mTXD87O0tFKOlLsTgvicF9nuCNAHdHweeH30JrLy3hAtw9feiKQeG86Dtk\nURaeqLy2tpbZYUfyMwYt8gyeoy8Y46PRKPGC96VQKGROrpfmMhEniPIJbBhot9tJRkUv3BW2O45c\nQyYPBoNk4CPfQP5YN45u0Ffe58aBK074wx0txo+hRJ6bNF9vw+Ew7fzkWezYov+e78J8npycpHw+\nrvmuO+acvjAud64iKs+8R+TCjVMvRcH7iDQgk2Jz3cD7MKIwUKKRwDhfZtS50euyHP70fDTGH9He\nSBvWPQgaY+Qd0MF1lDs/HulgvplLd2Kcv3wOpMWOc1+Xy5x+tyfoCzTxCBfXvIbdsvZKQ3tu6cXd\nBK6EmAg8TJ/g4XCYMXQgspQtyhhRHkcOHE7m/dy/bCJZ8PxzFIb+LjOy/H73ylwASNmKt7wbpnHF\nxbsi4sL30WB1SN3hVA8n0D83pnxuXDHRNz+VO9IuevHU6IlG1mg0SoUKfRzMk/fXkTNpAcV7UiJC\n3oWW0wIkBGHMOyPKiHJgLugTgtHnyeuXOALDc+k7ioqE6/X19QzShUEiLUI6w+EwheMcquaZ0+k0\nHXIrzROca7WaxuN5HZ79/f2MwphMJnr8+LE++9nPZvh0ZWVFpVJJ+/v7L6CR7D6KiCT8Np1Ok8Bx\nA9SdDmjjYV0PZTnPjsdjVSqVZMBGfmJdIDh9nUIznCw3bHgnOykdJSA04LtI4e+oXFxuuFCPaxEn\nhT4Ui8VUGoECq6urqzo4OFCz2cwkW/NsP/8PmoIsxdpc1WpV+/v7ms1mKfSLAVIqlXRwcJAcRJeN\njrS6rJAWu+TYVYkh62iOe/XR4KbP/jze5aGfaNjRT1BZaMM7MKCiQeTP9rICIJw44258L5PRjuzT\nR+R/lK9uGMT5j6g/9zha5rqEviOjXCYh1/ykj9hcTi4zxDwFwOcdvneeg97IIubI5wnDqlgsvuDU\nevgbow8a8xzGG41vB1aWNfiA++KcuFHtCJ3rWH7rPOm8T799TLG9EkMKgRhDGFL2AE4fjCskFoc0\nF+7Ao0yGGzYQE4+I5kwTIUf3ZD1u6/dy3YVDRE5cKLjRxjtdCHOPf/b3oTSXTaaH0HyxuTCEYXkH\nIRpXdm4EITToq3sN0NIFJ9d8oU0mLx5QyTEi5MPQN1AB3hm9OgS3P8/r9rA4oA87thxxcwMEmuLR\neR4MNMUT8flw/nOkwo0anzdoQ60jDH88aUnp2AjWA8KB/pRKpRSe6/V66RBlpwUoE6hTPp9Xt9vV\n1taWLi4u1Ol0tL6+LmluEHS73bQGOaJFkprNptrtdjoepd1uL0UjoSW0ccdhNptljDDPYcPo9XxE\n+NBzqWgYp74e+X46XRwPE50dr6lVr9cz3j4CFT731AGQL5TCbDbLbJ3HSKTPUUn4Goc28F+5XE5H\nwmDYOILdbDY1Ho/1/Pnz1O9ms5mEPmFIaEwlefoCrw2HQ127dk29Xk/dble5XC6NgWNjjo+P03yx\ntqE1CBlHN0lKBpTvzIryxRVWlFWsaTcOeLcrSoyjOE8R5ZTmiHS/31+6sxraeuiGayhXdpnSQMBc\njsXwliOnNJANL8Pj6wNDD55wOvGswWCQdglDT/gqAgHIK48wuG5DntJ/50WniecK0Z+IskeECF3j\n78aRWVtbU6PRSOgzzyT1wlMdoDe6gntcfsbUgEg315sxBSSO26/x1yM40UFzZ8hPqnhZe6XlD9wC\ndQPDPXIpm38SjY6Li4t0ijmEcwKw6FHEoBggMRgcLohiMqgbGQgaFJ+HYaKFLr2YyBe3k0rZHLDo\nDbrFjoewzDr3cBTPj6iYK2j3KmAoNzSWbTf1FvNHeD7IAO+KaN3p6akODw9TWBIa8Xs8dubZw1fQ\n2o1oQjoYEs5PnmPnAhMDCQ/Lx+rJxHHufeMCvOiekAtdFB/0phwBZQcoBkl/oNtoNMoYhBge165d\n02w2S2evMccIae8j/cEgoCo4vxkOhyoWi7px40ZSmih2aLK5uZnyetyD9NwiP1sMYe/oqKPNGJ7c\nB51d2KOkl9UXQzjG0DpJyswp/MZ6psq6o1nUawLddofHc29AxRkHiBzKxBFY5AKKOOZVephvOp2m\nY2BKpVIqJkvtK96HcsV4435pgVqDTLlRXy6Xtbe3p83NTe3t7cnb6upqOoeRzQMuSz106coryiqQ\nHEdrQY4ieuZORlRS0cF1g4z3ufNGMdp2u61Op6PRaJRxlnlmRCFidIB5jAoSJA0Z5nlH7oiC2sOn\nHtaK6A9/oYPzDHoE4xyk0hGTZeF0nsfv3HiLzq0DFjTPeVtWlw955AYRNOE7z0X2DUNuQCN7+W10\nMNwg8ve5PmOtRUTT5yKGbplfv+bhd3Sj0wlegHfd+I4GZmyX5Q8u22W7bJftsl22y3bZfsb2ShAp\noLqYFOiwZ0ycc2/ALWyPdQNpxriztAjnYFX6MSigU25p8zy8ZYfwHRWhD9LCK/XYrKMnPt6Xhe88\n74P3ee7Fsti8o27QiERVYFCq9Triwnex7IN/F0OGeD+OaMUwnPctzkOlUklQNqEm3zkEZO0hSsYH\nyuR5GdDXUR3eTZ7U2dmZhsNhJpQYQ8Ee3iB0Bz0dPYE+8EnMI8Lrgda+fd3REZAp+u5ek3t0QN6z\n2Uz9fj+TX8Q6ICzmPMmOO0J8jUYjobEgIH4mW0Td+v2+Op1OJpwK3aiu7/0GFQNtdh6KIXPewTVH\nTz3PjblwuoNAkZjPmuD9vr7IJSH/jrmCVnjY+Xw+0cY3bzgCxzyBHHGUkCevwksgadAND7nX66X+\nMffT6TTNE/PMbk4qvoPSeYmDtbW1TO7WaDRKOXf1ej3t2rxy5Yr29/cTXxwdHalaraYE/1jIkDE5\nMsG1QmFxYgHzDG3gQw8X+TVQIa+iDd8gN6EV1wj1n52d6eTkRN1uN4NwIxvIvfT7QHaWIfggHPTR\n5bcjzS6/YvgohsRIFvfIivO3o3sxRER/+v1+Zh0iYx0xlV48XHmZfqS/jvwxF/7OmM/lSI2fsIB8\n9f44Uh378LLQv+809L4yZteLjnw6AuXoZgzR5fP5FGb06IS/j40oZ2dnaR3CB45EMU/I5J+7HCl2\nRTj8D5GA9GLNjphQ5wbSeDxOYQhnWIgJ7OuGDIaVQ83OmD6hcSK4z5lLWoRFPIna4UHizDHPy0N+\nMcxIc1iS5pPrDMvv3eDhfX64I4I/JgE6LWL+QTR4vbmx5cbdsntJBJaUhB6LwJU39HRFGUMm0NaF\nCwvD4V1PsPRF5H2Hbg4Ve/gC3vAwQhy750qg+Mrlctqqj6B2qNpp6sJlOp2ms+16vV4KD/JuD6O6\nQpIWtXbIR/PwFRXDNzc39cknn6QxEuI7OjrK5IpAN54Td8eMx/OSBqxtDxl4cjrzi7MzGAzS2J3v\nGHsUkl4ugDAh68XvHQ6HyWiF990gi+vS83I8h46cM8bPETC5XC45R9KiFIXzCvzlxr7ngklzWcjB\nyBhCXKvVaiqVSur3+5pOpyqXy2l+STR22UHb39/X7du3VSqV1Ol0UvkFv95sNtVoNDLGCXzLnLsc\nJGyKzImbMlxBY/jF/CJXok5/7keW+mYh/7uyspL4s1CYb9bo9/tpJxxzyCYCz6+j8Q4PQ3sC+7L0\nDJ9fl9sxrcHlko+d9Q6Pej4wziCGD/PkMnFZfk50QDx86e9nrG68uEHnSfp+v4c16asfneMJ3m5Q\nxYaco4+e7sDYPOzpciJuGvO5cWOXZzM2aIWD5SkG7vy4HGJM0MrlKDSJ4Ie3V2JIocRcAPjCcqXE\ndwhmGCjG7skV8YXo9VhgYveSPLk5xmqjZezM4p5LNPBQ7iwYjwfDoHGBR2TImbtQKGTQBhecEWWL\ndHRh7n2jP57LED2u6I25UetM5YsnIjf+/5gzMR6Pk5JqNBov0MSfj2CGyb2kQMxXiomUHrN3Lxih\niVKFvi7oUAq+gLkHgcIz/YgdjPZogJPn4Tk4Ths3lnnncDhUpVLJCBrnzdPT04yn6M/0hHgXTKA1\npVJJw+FQx8fHyfu8du1aQntA3OBFDghGeHnuTqPRSOPb2trS6elpymdhNya08fPkoDfjzuVyGeMU\nwYgA5j6SwumHtMhDk+aKn0N7QV9pjImSEX5+5enpaabGVswJmUwmOj4+1vb2djr4mb6en58n1MsN\n8F6vp62trYSOuhJqNBo6ODjQzZs3VSqVtLe3lxAplECtVkuGgj+fPmJQ+zN3dnZ0+/ZttVotPXv2\nLJXFIKe00+mkg8PdwHb5OpksjmthxyLXWAtuSDuP5nK5jOxxxZ/LLXarYZiQ67gM+QGJdh7GMWKz\nkdP0/PxcvV5PtVotzYM7Zi4jPB/RDazYD4wol2M05A7PcWfax+y6gPfxGz67ocx6eFmeGs8GdHAe\nd2cg5ke5g02+IM375jIN2sOT7vQgn13murEGzd1A94bcch5GLjA2jClpsS5wkt2I9dyuuDPPHQD4\nhbEjW9BNTjdHFV/WXokhBdzui1jKLjbpxeJhy7wF32be6/XSdmLu9+fjvUrZM+PwFPmtJ8H5byRl\nmAjjLFqvTKQzjPfXGZlxw6jRK5eUUY6erOh082fxPh+jCwnGiJce4WM3fvy6tEBsXDi4R8f4HYWg\nXxg18ZrvluFdKAyEK7zi97KLCMM1himZI/ruStiRB7xFSal+kgtXD28u+ywtFjfC2Xd9eX8wpNyL\nwnhgTXgjVI1g87nGcMHoiXyI8wE/+UkB9Gd/f1/5fD6dxTadTtXpdFKZinx+Efaijg/PGQwGmZDs\neDxORh9JwJJSwjSGhq81+AgB5vSl0KYbbnjsfOcVwz1MxWYCykCAwsGf8AAK2qt7S0rhLxwZeIH/\n9/v9zDolJE3BXFcm5XI5hfXG47Hq9Xqm/tfFxYX29/d17do1NZvNTKjJlbSjqNT6OT8/13A4VK1W\nS2gNu5ifPn2qzc1NXblyJaFdhEdxAiPywmdkH/10z34Z8gHtHAHhd+74uBNKgy4oTXhqMBhkduau\nrKxk5IKHoXw9TafTtCmDNephb5Q78tbRDHiS8bjyhDej/JayDkFE4pAvrHNf9yh7N2y4z51p5zV3\nfn23myMtbkR55MLrWPk8Mj/u5FGfjHc6os9ccj9GOQ4j13AcXEY50oTxFOfQHWD6HA1JlyFRJmLc\nxbIyjrTGqICnvTgfuC59WXslhhQMMxgMEoTpuyJgDI/PuwXqCgNisBiBIKXF4nfUwKvmRqQlQpxu\npXpD+HPNJ1FaCHnfbcFCwRiKhddYaNE4cW8zekku3OJ16BghXxo0xnJ3A9YZk2fRyFECJXMER1LK\nVWARuOGG8sbQ8mrmzIUjTtJCQYGgOPODqJF75EaGG4DLcgG83EVUJih8Dzf4/PpY3IDl/cViMeXl\n+OJzIeOK1qv+giJh2OBpOr85n1E2IvKb51xFZXJxcZGOXGEOaaPRSMfHx2o2myoUCpmQEDQpFovJ\niPKDgKfTacZo4RphzZhTJCmDTETlPZvNUj5iPp9P6BvPxMEZjUaqVquq1+upsGg+n0+5Qzha7rFX\nKpXMTjjeSSXx1dVV9Xq9NFfQhtw+cqRAwAqFQkJtQEC4Ro5Po9FIxU85HgjlheLf3NxMMsrzNzwc\nCG2Y37W1NR0cHCR61+v1NEftdlvXr1/PhJPgW5QhNEWZsT593cN7rBPWoaMwUS77kTVuPDgaKy1q\nziGrmRfWkhum/g7kIs/3UDJyCEXqSEt0LB2hYh3jlHm/WW8Yd97cKfOCs47cwa/uYMfwFY2ixC5H\no4L3yIwjbdDKIxfRCIhzTR8wrqFhNDIdJPC1DHrtckxaGEE8MxpSGDvIRm/IWHSGOzQ8x1Ej7sFe\nQCZ6mBSZHp0Cj4TRF19vP9eGlFeQZSAxP0palA7Awo6TCMNRh4OQAswCsSaTSYLiyTvBYHOhwXMj\nyhO/xyCKFr1Pki/gyWSSOVfLkR9fNBGxkbQU+YpxbM/9wFBwL93H4guc+L8LFH+/zwXv8JwWZ0bC\nPREG5zufLw+9IjThgYgigYa4VwqcDHJxdnaWKcCJoPctzNLCAMNbKpfLmQr0bly6kYERFI+qoJ94\nVuQSDYfDTMKml6/wZGQMXk8kduOfMYD2uIcFXbnHnQCEKciNC0OQXHdemCcM1uFwmEnu99IUuVxO\n1Wo10QLjk7wcSSmchLFHWNCdCJQ568jzGMfjcTLMHAWF7ryfJHxqdUU+HwwGqlaraS69rg31tZin\nwWCQ7u12u5pOp+kcRtBBDHdXQvAO/6bTxekLhUIhhT7X1tb07Nmz1JdGo5Hqqk2nUx0fHyderNfr\nGgwGGaSVvnmdp1KppHq9roODg0TTZrOpWq2mfr+v/f39NAaUGjSM6IkbTM77HiJGFruTOpvNEtrI\nd/7X0xBcLrjXHzcMQAfqRbEBgrkZjUaZUKSPYzqd16wrlUpJefoYWa+OgtCgj4egoR3z6WuG/jP3\nMV8PZ8XTSOhL/C7qC+gR3+UOEnPuERs3MFyfYOCSY+dGLX3H2IuOOfzip2JwzR1WB0E8jSIa29A0\npsHEecBJiZEap7uXICI1xulEX7Ah3N5wurtB7AjVshCpt8vyB5ftsl22y3bZLttlu2w/Y3sliBRe\ngO+0kBZbX6MV7TlKeNNuffN9hDB9VwLWJ3A5Xjx5Jx6iW5bI7qiWtIBVydHxPvgYPHTI/REWdm/T\nUTfGF70/moevsLCdLuSL4dXE4nt+5EcMYcatqIwxJgo7hOyeDP32Pjv0/DKY1HMWoBdhHWjl7weV\nwrPzHVKgMSRV837fnUSI0mFwD3sug8Qdqvex0Rc8t5jo72E0dng6rUHQ/Nlra2tqtVqZ3V2OrNBf\niksyRiqT5/P5dOQJYyyVSqpUKol3IuLIswmpgOKyY3AyWRSq5BqI8MXFRTo30cP2nn8Sd5uCUJAH\nE+kqLZLAHcGQlBKxybPjPfSPhGkP33ruWK1Wy6QY1Ov1FAqqVCoajUYv8D6J7s6LJycnKhaLarVa\n6na7mTAmsoudkq+99lpCViiWWiqVdHh4qPX19SQTDw4OVKlU0rsIG0pKhx8jc6rVahr706dP05mJ\nXOeZV69e1eHhYUItnPehvW+2iOkOPmcgbMyHh1P8OdzvKEoMeSMvHCUgrM/8np6epkKmg8Egg675\n/DoSS5jJ+x+jGTTPxQK18DF4WDLK4xjCYwzwPv1zPcP1ZZEPR82ibAaBQd5BTx8Lc+n5SdwbkWrX\ney77PFWCcSM3HXXztBX0jaNuUVbGHFPfUOP84ii0I6TINdYDaKjzgYeLvaFjY7qOpGQLsK6ivv25\nC+3FGKa0UK6eMOehplxufvwF8LFDtcCsCGlCCoPBIC0OzwPwaw5B0iIM7TkULlxgSodlXan7ex36\ndYXuY2fBLEtW5Lozt+9UWQan03dnZn7v35Mo7MYbv/N58P4wB77Io0J0iNeVNXT1kGAUSjGHjFwY\njkfhORGG9dIAHlJgx5TPdb1eTweeevgPvvB4O2N3g8WFF+En8gToj2+f59muVBgHApYkbXgYY9F3\nFXpI2JPXi8XFdl5Ch14/zBUkpwF4/See6YKVXCBo67TxHD12XnIYrNdzgx7wjdPUQxf8DpkQwyO9\nXi/ljjGOXC6XzhR05c14PXXAeYlQKPLEE3AJA8Y8P9Z+rVZLfENeEnPELqjRaJSZe+7v9/spnCfN\nDaLz8/NUCoQdgZJ0eHiojY2N5Ei4bMARPDw8VLVaVaVSSeHJ9fV1dbvd9Pn4+Djxz61bt5TL5dTv\n91MI10PM/GWNunyGfzG+oowmpyY6oi7XPOeM5o6X50Exp+R8EY6XlGrDjUajlLvmTjnOEmvbZY3L\nQDd6uMfTLFwuYZygxD30487ksrFhfPn1ZcaXG2D8nv5CNzdeMWzcifbwFDLM5wSZ4RuopGwSdwQz\n4H1fFxHMcMPG86DizmKah9wY7wx+SQAAIABJREFUl++q5xr3MgZSBFZWVpKj4yUpXH/5fe7AR31J\nfx3kcN6PvBDbKzOkpOwuGBYRdYGcmX3LJcmgL1P0nkPiyjx6JeTHIDTiuUu+8GPekxtlnrPjkxhr\nQblBgYG1LHkQL3qZVx4T5bjm8XBHvlBQMLAnrFIXxlENV7RxzJ634h6sN+aM/i+bFxceNM+PirRh\nHnK5nLrdbsqVcrp4bg3KC0VG3hxJq4zPhbcLOEfpEFKMHYTPk03dqPYYPAaK57RgZCGwobcbsvTT\nBRi5IPCUe4l8T/I0yoT6TJ7PQp9Zc8tyLVZXVzM5Z9PpNClk3wQAT4DkrKysJHQqn8+r2WxmjkXB\nAHFBzrW4y8Z3zuXzi91lvta5JikZyZPJJPEGyi2XyyWEzNFhp3m1Wk1jA7mMNIE3ML4qlYqGw2EG\nkWN++I0rfWQF6KDTEsOsXq/ryZMnqVDt5uZmMtbK5XI6MkZa5N00m03t7e1ljGj4T1IyPNvttiTp\nk08+SUgaRnJ0zNit5aUvkAls5kGmeF06X7P+GUcJ5MmVqSu9WEqmUJjvMPRdYr6ZwlE/5Dnvg2/g\ngShvPJ8tlirwxPeYa0S+oiNLEUlytMbf65EKrsX6bm4AeH+9MU+uB6Nzwl+MLXe+3DF3HUxzpMkN\njhixcGQPGTMajTJG2nQ6zaDvEamkkVwfEU7klveF/FpQc0kZxI17ItDBvLpucoAk6qWov6KRnKHZ\nS6/8f2oMxFGZWI5AUkIV+v1+ggJpKESHh6WFx4FH4krIt2iyaNwzQcm4B8YznUncM/EE4ig0HKJ0\nb4FrrvSk7AKMi8sXhe9MdEaAWfw7XwiumDAWfFEiLFgUy4w+3w5Lv/BYfNsrz3SGxmjmmgtCn0Pn\njdFolDz6+Ezm370kdmx5ojH9dAPI6c32dRCX6IWMx+NUksGVLQYS4cJlCZQo6Bi+5Z0kS/sWZVcK\n7F7knWwBPzs7S4nRCBZ2tXm/3OtCaLEVnvuYF++/hwTZxeeGCX2B30iqd14sl8sZoy0meVYqlYRW\n0RcMTujrCac8k3n3Q7AZBwn3IDaEWkulUlLM3O8bHxyRjggGic/senQEwWUGoUinD8qg0+mkWlHS\n3NjZ3d3VbDbT/fv3tbOzI0m6cuWKZrNZojk7CRlDr9dTo9HQxsaG9vb2kgFG+BejbWtrKxlgBwcH\n6axFjAZXvI4yu7zkr4dpMUi5Dt2QKS6n3ADC2OQZvvYcdWONMPcbGxvJAOVA53a7rcPDQ62srCRj\ncTgcZvjMDRR39DCMXA7TX490SFl5DGoa9YDLV99Zy7hdXjlN3QD19/g8uOHizv0yxN/nCVq70+nl\nYnwton+Q226cYbxwn6PYLkPRl5407yUfPNrgG2TcePP+05/pdJoxeqITCA09fYK1HEGQSKtItzg/\n6MMIHGTue+mV/8cNQeXKhIUdyw645ctRCfFIB6oMe26PL14gxmgQuNXuXiJ9YzIc/vZQlgsbXzTk\nYdBceCDk8PRd2Xp/JC1V5jFMiWJ3w81/Ez1FWoSP3bDxMGS01KGVIzreVwQgNJdehEljWAx6uoHp\n42XhttvtpDAwXD3M5M/kO4wTF94uBCP6h2EJH7pQRMCAzMW+QuMonJ2uvBN+IwTFNb6Dbuz0xFjg\nNxj1IBxxjNDTlSD3IRQpPgl6QpgJHq1WqynshLfJM30MhUIhra9Y9gHUFvQMhIY+wS8YN76O2I0H\nEs2acdRZWuzwoiFHQDMckaTvGKWuAFdXVxOS7Uguz8TYoJinOxHkHcYdRqCpoH3Hx8eJ3q1WS7lc\nTvV6PckE+lksFpNRUCqVkpHOGDgCh/wSP3amWq1qNpvp9PRUR0dHKSS+vr6e4a1YooW59TAufOwG\nV2wefnJji/44oo1xxDXWE0rXDX54mPu8LAxGfrlcTv8kpSKdONCu9EHumFt3CN2QQbbE3EkQJEel\n3UiIYSDeH1Ef7nNDwNdMTPFwow5UzGWypAzi7iF71yfMN7IR5JG+uuPsO3ahG2vSnV03mvyvzy8O\nBv1j/CCX1WpVuVwurQv6Dh3cAPIwHjI/6m43imN40sOMEU2MMlrKRlpe1l6JIeXK1xU/lmycfP4P\nE4BOcB9QNZ6gG1BMeNweHpnWlZgXFvNQjLTwLN3zcmbzyXBhykSAvDgi48qEMUbPxQ2b6CWxEH2x\n+W9iAiA0RRHEfCYXoPzWn+dJrE43+gJNvfRAhPBdaHk4D2Xq84QhRyiBRN1Wq5UWBOEi91pIUpWU\nEqGlrDCP6JcbHs5/PjZHIL1sAsYyOTh4kjwLtMYRU+6l/xhF9JuQIOGfZrOZoTVIEIrd+wzNmM8I\n+TMfrrzK5bKq1Wo6wmdlZSUTLoWPp9NppjgnlcwJxWD4SUp/XRn7GkVpw08uFFlH8KnnOyDo4TVJ\nGZTUESi+4zesa/rkfOMGrgtU+gji5l4q6xJj1uVLtVrVxsaG9vf3M4i4ND+updPp6M6dOymx+ubN\nm5Lm4dlcbh6a3NjYkLRQlqyhQmF+VEq9Xk8IGDWUSGAfDAYp72p9fT0ZLO5QwI84gIzHUQdHOOLa\niblobjhgrDhCEGUYdPU1y/PJsfFrg8EgI/fW1taSg4XDRT9clzCvzoeONHAmZwzbuTLGMIgIPk5b\nDHO6U+eOmZTVbV5KBznEO9A78EA+v9iA4+gTz+T9OHvu7COLGBv9iY6Yr0UcEUdefV3wFwPPESJH\nnx3hHo/HyWmDnu7QwROu+7iGTmP+IoAA7ZGPPpfuOMQxLPsd8/bTEKnL8geX7bJdtst22S7bZbts\nP2N7JYgUHjH/5y/oSYzB+v/xTN0KBk4HGsTKBBWQsltipQVUipfkcDQokyNDHm4gqdg9EknJK8GL\nLRQKS3MvxuNxpmK0hyVizNif7+iMtEBWfBu209h3UWB9ex4JNC+VSpk4NgiG5625VQ+aViqVXoj7\nS9ljCNzDcm825o/xnBjXZi58PGyB9u31Drszv4yj0+lkvA88Grxsz3uLSKUfseJ5EA47S1rKW/48\nxgBE7iFozgoDbfDjR+r1etrizxhAYz1s4Eiu040QBXzCuNwb9VALiea+bZrfehI8eUfHx8eSlHbU\nEl7xkCD9ogwFHih9cWTJ+8k4crlcQr/cS8Rj9nCDIyMcqUIyuXudyAue4+iuh3IdqSUUCv/5/FLI\nFP7yKuy1Wk0bGxtpLgjJwcO7u7uq1Wq6fv26Dg4OEuI6nU5VqVS0tram/f19VSqVTF+YPzYjkFhe\nKCx2W167dk2dTkdPnjyRND9LsdFo6OTkJK1xRyuQXR5i4X3QBXkTc+v8rLwoH32+l/1lHhxdZA6J\nVCDrnS848cALHZfL5RReBmGLaSKg376GCUsPh8OUauKyDVlKzpfvEuS3RBw87EW/YxiZMTv/uc5z\nOeKoKSH0KO88ooKcyOVymfWETGP+HGXxlI6IwjjS7XMlLVAnZImvs5iDxe9pKysrqlarGT0F3Xxe\npAXKGVFG3zDhyJznbPE7Px7M+xTnxHmWOf+5C+0ty4ORsnkt0gIu9tAPBPSdNAzQt/T7NReO0UBx\n5ReNumVQnicNejxVyu6mQJF5zJw8EPrpApm6PlG4eZiTd8fdA4QjnEFYZD6u2Fxw+liBaGGmeD/z\nFMMtbEP15H7mwuclhtNeZsTQRw/DTKfTtFOq1+slujHHbmRiBCAY/UxAr4DuNAKyxuhxQepKnJ1L\n9JOcMeD4yWRxBE5s/M5LGpCbE+FvnoWy6HQ6SYB7KIF+A/djPBDmITEb2niYyoUG9Lq4uEh5Ni6I\nvczA3t5eorcf48GuNnc+SH53GktKSeh+/puHMPr9fgrNuyEFHQmzESbwUDJHuXgCqjQPCxWLRTUa\njZRb6flT1KSify7AJWV2SMK7pVJJBwcHKcdpZWUlnW/nmx4Io/phz81mU51ORwcHB7p69ap2d3cl\nzcsW5PN5tVotHR8fq91up35Wq9UU9sW4g1cbjYZms1l6no/96OgoGRrlcjnxB/zE3+h0MR9SNhzH\nOOAZtqa7sewGmPTicRueL+WGDc9uNptpo4krZXLSqLHG8UCc0cda9PG7gYCc9XVdKpXSDsnhcJg5\nbox59pQP+k2/MCqiEUAozvOuWEse2o9pBp77CR29KrnT1+mIYeWywmnMmvcNQe5g0S9fs562Eg0Q\nD126TuR3LivdGWAd4czGtBzG5XSBv7y5rOEdkS5OG/rJc9zgjnMHryzLc6O90mTzuPXWDR4pG2fH\nw4GJ3fOGqRD6nguDIuL5TlQEeoyhwiwgTO4NYNTwTGcoR1RIzPMcAjfmPOmTmjRs54yJqjC0K0LG\n7tvmoyfA/f5bz+lxo89zBYg5+5gjbfB6Z7PsjifPt0HQ8X4fU/SEY86Fo1WMP9Zqgf4sYgwReIf+\nnZ9nz3X0vCHmw/OePPfC0U9frNFbjXF8aObCgO39GE6ef0Bx2uihgiyQByUpoT6+MYO8KlCg2WyW\naqX5Thv6QpLuxcVFRmGMRiOVy2W1Wq0kaKANNC0Wi8mYhaYIIBACzy1y4344HKbDpqE3zgWoI/y0\nurqqbrebHAWKjNIXeAjB6qgTieascYxRaa4M2+12QgZB9Hgn84FCZJdot9tVv99PxoLvoiPHo9Pp\npKNy4Nd+v5+UKIoWJO/s7Eybm5u6du2a9vb21Ol0Uo7UaDTS8+fPVSqVklHrMgSDYX19XblcLuWy\nYXCRP+U1vfDKJ5OJGo1GRsaCmIGauqz0HEyX2e4oMo8Yt3G9LHOgmRt36GJOGrIBtAia9vv91CeX\nO9SOQjY67/OZAqY+BpzRXC6nZrOZWRedTiedh4h8XJbcHQuAujPtiBbrkH6Px+PMXHgNtojgRxQZ\nPeXyGsfTaUB/XGe5IcncO/rt8+VoD7/nGeg+zyHzOfRIi/PFbDZTt9vV5uZmJtcpRgEimuybuXw8\ncWxuKHqL4AHothuKnieHM/iy9soQKSlb/A8C+4J16NQ9nejNO3waCelM5Ra/MyLMHqE792p8dw7/\nPITFc9yIiAmO/hnBIM0X/mAwUL/fT0aBG1N+GCpeOGNA4HOIrHuRjCuGeHim0xvPXFIKPYAwQQPG\nj1GGcojhBmmx2D1k4uiGL2D66ugh9HZUCKPNkwW51409voM+9B+0JgqVKNxZUI6AMk8YtvCLe/GO\nSlGLxwWqoy0ejoXPSbaVshX0p9NFUbtarZbmfzyeV98uFovJwHEDDFSJPkLTZrOZFO/JyYkGg0ES\nEhg5hIpWV1dT4i5n2rHrx7fw5/P5lGgO4uKGryN9zsMgUigD3+aNUYPR53OOondDilAP72TcGHnQ\nFgOy2+2q0Wio2+2mOQBJG4/n5/wdHx9nPFPO4ltdXVW1Ws0Ydvl8XvV6Xe12W51OJ+2UW1lZ0fHx\ncQZ983PkDg4OVK1W1Wq1MsjSrVu3NB6PdXR0lMocEPbb399Pa5jq6Kyt/f39tFmg3W6rUqlk6LK6\nuqrBYKDBYJCKXcJ/Kysr6vV6mfCUtNi2jtzEcHTHwefbP/MdssjloPMEz3Sd4Oi/8/Dq6vxgb0fB\nkb3T6VRHR0dJHziS6YhJDLHj3PCbZrOZ1tPNmzd1fHysw8PDF+QIhtrFxYUqlYoGg0HqC3ICZeyJ\n2NAIGRuTpplPxu9hPJfdIOz+e2SNI/qMkZAfutPlq6Pb9MPXk8vVmMqArHW9znwv07ukTVxcXKjf\n76eNELwXmhJdYI3GKEnUwf4XR5r/u33gupKIhTvJUb9EFMzbKzGkIAQCi8YgY4jPF/HLYpUgDD5g\nz8dhsh3K4zdMnuc4oEBjuXgEOOEAP3oEIenWuS+2aDnzvmq1qmazqV6vp06nk6nDgXKMuxHoy2g0\nSn2M6JiPCUMFj458C6dZDBl6PJ3nubEgvbibhLnyujnMoSMI7iWw2MhVi8YwjOwhHK5hAHqoVVrA\nscu8ESlb3iIKMJ8zX1DOBzH0598zVje0YtiVIy68IcDc4HT0CCic+6iQzeGsoJrc50aXI0tra2s6\nOTlJlahBoJjPfD6fUI5er5cEGErm4uIiGVkuMJkXFI0LftYSv4EvvX9eYI9GYU/oHUOJjh572QWQ\nDectp7OHElx5g+LBF6enp3r+/LmkRRHQ09PTNEavebWzs6P19fV07AxrrdVqZXZFOnK4sbGhp0+f\npsOJq9VqOnz44uJCN27cSEprPB6neep2u2q326meVb/fTzxYr9fV6/U0m83UarXU6/UyW/xbrVZ6\njit2jAsMIb/2snCfI66OPLiB4msoOi08N4ZseTY8RmjPHRMMH/8nLQwi8mEwcrmG4UFZDjfqKVHB\n+mUOqWO1sbGho6OjVM8QfnLkGqSLsftY8/nFzjRH4h1NlxaIK0rd830xuqCdGzI8F752xAuecmTL\n6Y0+QFZ42kbUxT6PPB+eiXPsURynB/IRtN2dZJB4R/lorAU35J1PGTeARPyNj9vnbDKZJEfKkTv0\nyM9djhST7MRxDxxl5IrGjSDPhaEBWfs1FiiCiDCCtEB5IJIr71wulzGm4nZYJhzP3WOxDmnGpDqY\n31Ei7gO+r1QqyZiiRcVMX0lQBhWKi9Yha5jLoXGO1oiJyowD4RAhfBQasCkhJ4e3PQ9HWuRPYfVH\ni58xQlenNwIHujJOX+TRiOY55IBEYc2z3ZD2732R+n3D4VCz2eyFGmCed8AzvK/+1w1Kfyd5VVQq\nZ+6bzaZms1ky2kE6CoVCCiVBJwwUN7xIEmecFxcXac5qtVpGQVUqlVS8sd/vZ5AlQkLr6+tqNBov\n5EJgnNIPFBRhR5CoGOYFvcVodIEH71LTyoU+1cOhJ+UXnKdc0TAOeAVFQZkH3nl+fp5o6qgKYc9i\nsaiTk5O0hqDbZDLfCNFoNLS+vp7Cn/1+X2tra4kX8/m89vb2JEk3btzQzZs39fjxY3U6HV2/fj0l\njTO3IJWj0SgZCxsbGyoUCjo4ONDx8bGazWYqcXB6eqqtrS3l8/mUDwafQjP4z1MOMJqZy8ifHhFw\nNAReJNcF+YCx6bIPnqb5M3yN++eo6Jknz9dzY9kNAXiLZ3iVexwUl5PkjzGv6CCOPiqXy2o2m5nx\nEK7O5/PJIIghZuS3K3b41Mfocvb09DTj5PlGCtaJy2k3pKLT7mE4eBoecN2L7HXHi2vISpcl0iIv\nzKMuzjv0B0fYZQbzNZ1O1W63E91Btd2I4ZkR+VwWVeC96BRo6sgaz6Bh0LEunJ+QIS9rl+UPLttl\nu2yX7bJdtst22X7G9kpzpDwvya1ELFCsXodmsWrd4sfLixWssdJ5llvYeB+gEsRheSY5Jngsy7bz\nAz37zg7PoXFvi/AbeSTAuTwLpIIkX3b0MbaYM+M083HF/B9P9CQZVFpsscd79G3+9A1vyMOXHiKI\noUB+47C2Q67QGfSJRjI11z3h3p8B7UFTqIbrYTV+U6lU0vM8KRUe8pi9o2N8xpMBMfG+4hnzDnjN\nm4cbuc5nQqCMkZ2HhBocQSAMCM03NzczCEK1Wk27lnyMlExwpCgmvfpBtzHZ/vj4OIWqvcTB9va2\ntre3k2fn/AbsX6vVMonMIDyE7xwFYN5YS77DDvQXr9l5n3dyD0iXh2JAoxmHI1148iAT9JXQz3Q6\nzXjxtOFwmPG+KWMCPc/OzlLOErTFm87n86kUB+NHLlSrVXU6HXW7XW1tbaX5JndyY2MjMxcgH1ev\nXtXp6alOTk7S+xqNho6Pj9P6cH4vl8tJZlar1RQCpPnpBhGtZQzuoTtaxPeeH8Q1p0MM+UOPiM6A\n0iLTPbTL+6rVakIuaCDirGtHxkFnhsNh2nrvaF21Wk0hPtalNA9FHx0dKZfLZULi9AXZ7yVCoCdp\nDsh735zjsssjH15IkzXsCA7zgN6bTrNlQ+I8eiPC4JtVoM2yXDI+cy9z7PPE/TGC4yHG2BfWGCiY\nhwx9Fy3NUy5Yo8idGK70MUTZDA966oXThmKv0GIZChfbKw3tRXiQheOTICkxL/DtsoXoytYJhyHl\nORP8zkNInjhOTJbPnpDp7ywUCpm4rm+H9rCgtKg2TG6Vw6D0DRrk84ujMOgD43f6xHABz6ahiFgQ\nhLukeS7IycmJarVaUnBc4x62pJOgKGW3lcbjPpxpPWeCvjjMyuKSFiEcF8o0n1voxHXCEB4GY34R\nhvADCpBn+sLz8BXX4T8Ox2QOuE4OQ6zD4mFSD0V4/pYbbdJcKcLbhJY8QZKq1hcXF5nq2OVyOSUf\nN5vNTBVfNyIQnL6rqdFoqNVqpfXhQhrjoFQqvXCcye3bt1NYxQ0+nI21tTW1Wq0XDGDWQrE4r8UU\n6cZYPckWGlIXxw1Fz1tjXJQEkOY5RPQD3o73YLw6f/sxOIRW3KFjDDyLXCdoQgV6D8PBA27c+4HG\nbIm/evWqjo+P0xomv6ndbms6nWp7ezu9jx17udx8h5lvVMDR/Pjjj3X//n3l84tK39Cy1+upXq+r\nXC7r8PBQ0sLZ8ZIgMVzEPGD4uAxHkcawoCs3NwyYC3eOPZTF2kc2uGL3UguDweCFGmOeUiBlD1jn\nnUdHR6pWq5lD0Ak/k2bBfa1WS/V6XU+fPk3r2nOkMN7gWc/Xgmb0P4a0uG82W9Tvwtl25xQ5h2MM\ncMCzYniLMgluaBDq9PxCGjTk+S7rXSaTvxyNWt917noQR5nP0bBBPjmwwjy5/nCZCP/lcrlM6onr\nyJin5uHFGIrkXujkub/sRP65M6Q8UdStWowCz12SFrFQj4W78I2eavSE3BuAcRCgeFGTySQJ00Kh\nkMkr4WR23he9KE/o9t11rtjJV3Cjx/MLXPi4scA4XAnH+DuoGEYP78N4cg/YE4exvGu1WiauD5OR\nD1KtVpNy7ff7L2yZdgZzIzkuVOjmNa6krLBbhjrgWXp+EeMnd4aFzDg9iXk6nWpnZyfNr3tgvkCZ\nCww76Oa5bCwwhCnjw9vybceu+MkZId/H5xihiVDwhHqMY99Vxv/Z5o4RRa4G7wPlmUwmCdWS5krB\nk4o9H2JlZUWj0Ui1Wk29Xi9tTZbmeTnkEZBb41vAy+Vycjp8Vw9jn0zmW+7dqPHET8bl65fdSPCA\nK0hHEjF6oJsrAebNnaGY/8Y4jo+PkyxgV6rnSoA+uNEhLRwxch056w0+Y/yVSkWNRiOjIAaDQVoz\nd+7cSWj0cDhMOWIrKyva3d3N5MCR/9Rut1Wv19PYz8/P05w9f/5cN27c0PXr1yUtjhyazWY6PDzU\nxsaGrl27Jmm+2w/aMTeO0mNMIWfoG3yDvMMYijtQkZfuUPFsd2gj8uLN6wdypA7y3XkYeRELZIJA\nsc6Pj4+TbGfn1tnZWUJrvbwHBpc7UsxT1Gc0lxGeCwhfoNMwDlzWuG7DwZKU+os8BBTwHGJoiqzx\neXJjyR1VdIUjUzGfDQMK0MObz2vMr6pWq2lzFAaozzXvjAY4SJYb4xhsroPdOYVW0N6NJc/txRnk\n/egnDD8cZ9erL2uvrI4UzVEIFIkbSdKCyBDWEwtRVjBEJJq0UHIxgcyTes/PzxMKRKVgdu240kMJ\nwEg+GUxqnEhpUaOl3++niefd7gVGhM3LC0jKKBPQD4eMPdnPBZdXv+b69P+w92bNcSTJubZXFdba\nCwBBsls8PdMtyWQmk270/3+HTBppemOTxF47tirUuajv8XwyAM4xmxt+FwgzGghUZWZkhIcvr7/h\n8fSUBQ9BXxhT/oaR93Wz2SyVhh0bI4U4o54DPscg2ZGwYbNT6TF8CYp9eHiI+Xwe/X6/FmEY/h6N\nRnF3d5eLESPsiNpRsN/Z0Q6GA6NoObTz6OJ0VkRcV5JcQQ5RzhDO6SvXHR4exv39faZ3cBym02mM\nx+M0pBFVpXFKHAwGg1rKCDmkFADPA+WcTCZxe3tb21aPs2qyqguAUnDSBFjmje97bCzDODuHh4f5\nfRwyI0fICagdRTg3m00SvekPuqR0epvNZiyXy0z3eX0Nh8N4fHyM33//PW5vb6PX69UMJrLKVnfO\nd8MIg1j1er0syEn/jTpjlCOihl7d3d3ljrrLy8v44YcfUg/d39/nPb2eKYtQBlHff/99XF5expcv\nX+KHH37I50HKJ7jj/XAiTIou0/Wk/HkXZw0IPrneiBx6qly/DprKdCHvYqfYz6NsDDQMnD7QIU4M\ncCBhvdtqtWI2m8Xnz58jotrtt7e3F91uN25vb2vfjYg4OTnJnbPc004z7+T3Mhpmp4bfccIc0KB3\nXL6FQPDg4KBGK0DPGHlBx9AX9892pqylZP3n+eE+zE9ZKwskz0GPn4dOsGNDoGJ7Y/DDSFfZ0L+l\nHudap+/op51U981/MxWGz0D6PVZl+2aHFkc8R1e8WDwANtr+PaJeUt/oBZ+Zf+PUF9G60QCUG8gR\nk7RarbLw3tHRUUbzTLDTG/SF7bW0p6enhGJvbm5itaq2MhsdK1EQSgmAPhmyNHqCk+g6TQituQk0\nc8eIfDkQF6HmPoxdxNZAobS43ve141im0Lif89u8I3ONo1qmd90XO9r0A36ZHRvkaG9vLw84jog4\nOzurFb90dOXUAs/wIqOPdpq4jvdx+sOQM04YP82V4D4UT+R3EJmDg4PcUo/DT8kMUhTv3r3L6s6k\nMjebTRwfH6czyVwwPhgdxnmxWMR0Ok1EkmiXMUVRLpfLWK1WGR3DM8KBJQDhM6fl7dAj61bQDgzs\nfHo8nRZBSeMA8kzqBCEj5XrFadjb28soudnc1oI6OjrKHZolmttsNrPK9j/8wz9ExBYl8K7hw8PD\nRIVwghjj2WxW01seX6rwR2yNxcePH2M0GuW7mJPF2DQa212SfIZczGazeP/+fbRarUzfwbVC3zIf\nPI/+WG7pJ/Lp+WKOmTtQCa995r00eNzXKR0jNjjApnxwPWsC1HQymeQc8l7WBbS7u7ta6vjp6SnX\njJEhIx4RVX2xRqMR/X6/Nk93d3fx5cuXdFhKZ6m0S/x0yQOQetM9IiKrz9uh4B3M1/QzkTPeE/5k\nRD3NZXSROUT3Oo1G4znQlcQrAAAgAElEQVTofzsmDlL4x+/MG2AGzwNdh3Pm9zdfinnxuDEX6AE3\nvttsNp+VajByZRCg/NzoGrucX3LoaN/EkeJFHQl6sGn+nIWLcPt7pOe4j68xAhJRrwpNdMXCx8ki\nKid6RhlHVIaN/jFZ3NMpNfcfoW+1tvV0Li8vcxFRCM/kVysy0DgXKPV9nb+1E8n1NDt/GCGihdvb\n27z/yclJonJE00aF6A+L206P58UOSukU21H2WKGk/TzGrYxmiRRIN/V6vVpKz5C30z5v3ryJq6ur\nZ2fWRUSWaLDTZg6Y03aOrpBN38upD/rj8TLS0263U1mTKmA+WdDr9TrJsBGRROS3b9/Gu3fv4vz8\nPB0JoHQqOF9cXKTiI9rmHo1Go3bsDvN9d3cX7XY7HX5k5fHxMZERnO/JZJKcGxxjnucjUuBg8RmE\nXgcKNIwaypA0JWOGPDsQ4v2n02k8PT3lVnUcRsbUKU8McERVvBMk8/r6ura+1+t19Hq9RHJIh5EO\nbbfb2S8/D0QB/mGZRgdh44gS2nK5jMViEf1+P4uv0hfSfefn5/Hu3btaBN3v9+Pu7i6ur6/j+Pg4\nn+f5BQUtaREOFLhnv9/PscZR6ff7tWCANf21lL4DjDJYcQDlOTYK4n4y38vlMkajUQ2RMpqPrXDt\nJgfsDtTOzs5qqS3P03A4zA0cm82mVrmedTYej58R7bkfSKsDQSNCfs+Iuq7B0fS2fwqu4owRUPO5\ny594TB3QYt9sa0iVYte4jrG13JpT62ft7e09qwcH2uWswXq9zlMACLyQC4IyB90voZ/o4ZKHZ3kx\nIl7Oq+WUAIPvORCkT19rr+UPXttre22v7bW9ttf22v7O9k0QqdI7jqgQG8OCL6V1yobXivdo5MJo\nARGhOTy+jpxyROSZTkTWTik8PDzEeDyObreb6JLRLqI9oinD1I7I1ut1QsqHh4f57yUeCv0tkRz6\njAdtUp5TnUQwjnhIc8Jz2Gw2yb2BF0OEbFQEBI9rzCEqI0iQJBqRRZnXNnIHT8gRnSO4rxE67+7u\nYj6fJ+pEpEVK1VBtt9vNcSTVxj2J0LnW/Xczt8fzY5JoCXHzXqSzjDQxxhC4TTYHOdjf369xdhqN\nRhwdHcXp6WlcXFzE1dVVTYYjIneQHR4e1sjIFF/kXDwQKeQHJPb4+LgWQW42m0ylnJ6eZjoJefLu\nWqd5SV/v7e3lwbkRkegOCBa8loiopcPm8/mLu2cdKVufEBGTCt3Z2amRRyOqSNqVv3d2duLm5iba\n7XZu4LCOgB94dHRUK5uAfgKpNSeLNCD9PTo6yr7e3NzkGmPN8RlI4GQyScQKeSP19Pbt27i+vo7p\ndFrjTi6Xy+j1es/Ghf6hmyhaS4Pgz0+nQ50JACn02ofyALroNAprxUiUm9NeXnNePxH1qvmbzbYw\nLlX4fYAy6TnKh5R8HlAxo2etVisPjEZfcB2bCbrdbq5V1hgNFBKUxe9lZMU62iicsxv0z1xP68nH\nx8cYj8cp26ZDmIu0v78f/X4/7Ql2wNw3I4DwbOlvWe7GXDnbY5A6l12IiFoqj3krsy3oB1LpERVf\nj7EzkshGF9Bs22DWGciSx4W/I2NO7TEvzoS4OQX6UvsmjtRyuUxDXC5EG9eXUmMMhuE6Gy4z/0tS\npHcM9Pv9GlmcFFlEJIF3uVzmoJvrQ5Vh0hhMOKRh18yx42K41FwnyuHjeDiNV+aHDeH2er0kHZKf\nN7fJabX1el1LDbpys53EiC3JdTQa1e5Z7myjMnxJFmWsmBf6jZOA8sChiqifS1gSI73Dq7yOOUVx\nw++J2KYn+X7Jw2COn5621XSBpCO2C4Zq4OxktMNTjmnJPSgNAQqM+SdVWpIoSQN2u90aERmHnrG+\nvr6uOQKdTid+//33+PXXX2vwt+uz7O/v1w58Zf1BOLYjwWdHR0d5BI2VIjV4UJDMzeHhYRow1raN\nrrkzTrVA4J5MJuls4dCzAWRvb3s4MNvcI6LGI5rP51nV+6VAAk6JHQ3k7PDwMPr9fo17BHcKZ4/3\nYPcunBX6yPMIAnCoPE84mKT9vIZJk5Q7ER8eHmI4HObzdnZ2stxFRMRoNMo0ignPHGGz2Wzi5OSk\n5hDg7Ji74p1wm80mdwOSiqYvOC5sImFnI7LhnXyUJ2ANWBeU3CqoEHzHzhayYl4b78hYoYPNYfTa\nLDfsoG9MWI6onLUvX75kCqokY9NXc2qPj49z8wb60ilYGlSEkn9qvqb5Spa9kgDeam0PjR+Px5n2\ntS3F+Wg2t+VhTHmgtlWz2cwdnNzX5Hqc6YhI6oedFHNccdzMt/NP8wBpHlvLDWPF707hWX5wPkt5\n4Tmkey1rdqJMLzJlp+wn41H+ze2bOFIoDNcO8ouVAo6j8NKAmfVfogcmOeLRGnWByGfUIyLSiOL5\nenGjhGezWU1pRlRRGwgROWeui6gfl2FkAWPJ9Xyf92bC2+12EnyJNBwJo9iIflA4fM9ePlGto5OI\nalcP48P7cJ139ZhoiLAhwL63uV5G13h/R26MZUTFY/DiodnpZp4wiLu7uzEcDmsOjI1fs9lM3sf1\n9XUNWWCnXKmQnWOH62J0DDmDk2OFihIm4qNeEfLGuEIadt0ucyks49QA+u2336LZ3O7eAnXa399P\n5wbjyDuyBdx8CRzQ/f39OD4+zhIJds5ms1ltl54LFhKx9/v9DF5sSJFvxtDzDc8DJNZOHcHV/v5+\nzOfz2m5GO43j8TiOjo5qSBS6wdwWvg+azM4/b+4wVws0EDnF8TCiGxFZfgInGa5URHUsCQHgZrNJ\nNJqz8iaTSa5H5ALjjNMN18bvzHjjEEZE7uK0E4nOiIh8NjJgcjKGnkDBvBR0NgbTzhFGF46V61qZ\n/8QaKblAyKGdLAdQjLMLNYKQ0Ed0DbqV9VlykVxuxe8ACnt/fx8fP36scX3evXtXQ73MAXr//n2+\nP+gu64TSMgTrDrzpj5ESO2BweYwYMZ7YyMfHx+Qy0tA95lVxLbWxyr9H1DM4ZSbGtpi+GszA1pVZ\nCl/LuDG/3vTCGL10sDyZIda+gYPy+Cv6jj9gW2o7w3f8O/JZcvicTfha+2aIFPCjvVKEvzRQbDfF\nGBmaRKBsVC0cEdXuQBuM8Xicu6Ps+NBAqIBCSyfu4eEhC1rSVqtVnquFI8Y9Oc+M/mIgI56ft+S/\nIbikE9g1yHjR77u7u1gulzXHjR0RXA+iEFGv3cTfrZAgpTpC57MSBbTTw9+NwHke/E52JB0VeT75\nDGVq4beA43iwaKbTaabIdnd3M2r3+D49PSVZmoKFKGbQG4qO8n4Yw3I7vjcmYIzKBYlBcXTHM/f3\n92M0GsVyuYzpdJqfsTuHMd3d3a0V5ru8vKyRkO2A/fHHH7mmdnZ20slqtVqJuu3u7sbHjx9Tpt69\ne1c7a4wUV0RFTG+1WjUZjKjScDYIGG/vnMH4ITOcUWcHwcVo7QiQUqRRKA8iL2e90bwxwrKIgcII\nNRrVGYXj8Tg/Zw4wmsi+yeNGejCS3NO7kwhiQHJo0+k0jo6OkjiNg4a8UawVp4fdw6DhIOPL5bI2\nphFVxH9/f18rqnp8fBzj8Th1kKN4jCznLJakcKPpNm5e8/6c64xUMpYR9a3qvKPXN7q5vCeBMYGe\nnQMCRxxop4xsP1izRhp2dnYy2P348WOO5eHhYQYWd3d3tcOON5tNHi4dEXFxcVFLcXHPfr8fq9Uq\nbRC0AtaFA90yW2CHwOPWam2r36PjGDdnUjyHvINtHboDOSO16+dhswjMnbpmDNHFpp80Go0Yj8c1\nZ8/Imfvg8j00AqKX0r22LfTVwArjVqaN0f12XO10EehZDg0YvNS+mSOFo1HWdiihuoh6yf+I52k/\nrmGBeNEwIHi13OPy8jIhUXbgGHK1cJQcA/rCAkWAfcgkCsZw83Q6TY/bSsXva0SDd2BR9fv9OD4+\nrm3fZUFTKNPoEnD/SzsfykqtpQG6u7uL2WyWKbwSdXLK0gqTMStzzM73G8ou71EufqdBQDoYb+65\n2WwSLaGuz2azyd1hOLSOjHiGDX7E1rCRCigjEaJw7u9xK51hnJ4yMnNEi7PWarUSmcCBpeFEAX0T\nhUVsiy2SZnMJCT4DugfFNNcJZ5ZSB6enpxFRHVrsVIudVJAuZNw7COk3z/WYGFWcTqc1hA1DaLSW\nz5h/UtpO+2LQUIzUzoqokKTSKY/Y6h+UOsbYZVHgwkREreo96xv+htGNRqORTvt8Po/JZFKjCsCf\nnM1mNRSl2dzWcgIhd+FUZHS1WuVRKIw3qaxGo5FpHYIBdBm7BHEoIiL7hVxjFLknjsJLKAifIxfI\nON/DGLK2S0NsQ+TUj1GA0mChU0BhcCRxWp1iZ06hbTiVylpzCYuI58e0WH4Xi0X89ttvOYd7e3tx\nenqaa8K79h4eHuL09DSf6xQsBpy1w5iy/gj0Pe78HzuJc887WKdHbNefHRUH2dZBrEHWRWn3LJsl\ndYMA0s5yRKWj2u126k7kbWdnJ4EQAioH0N6xbp1BORPWmNex5w29ZweUMfD3Pb92Mj0uZeqZvrAG\nPRZl+yaOlB0iT4YJ2eWCInoyehFRRUlfi4RQsiX/YDqd5nli9MOViLneqAF9tyPnqMKNCN31QFjU\n5GPt0ePskRpAsaM8gWQxOtyz3W5nVP709FQ7IgPl4cjTwsACsMJzIxq2ssWgGdp11MQYMU82mBCb\nPcY05omF7c9Br7inESKczL29baV2HAIW0nQ6Ta4PRsjwMcoEZ2p/fz/G43HWBLLxwnh47mlEMRgF\n5rfkSHiMGBsUyGKxyLl8KUrGqPP+pF+pE2OEzBw4jkpB9jl7cLFYxGw2i9FoVKshxjiD2pToJQ5i\nu92ucYvYdm1ieUQVCB0eHiaixD3H43Gcnp6mUTT5GafZ6Xka/BUI88gx/Tk8PIzpdJoy5+tbrVZM\nJpOsL0ZR14jIEgpsL/f823ihr2x8qR3X6/VqnCWcNcb58vKyljrcbDYxHo/j7du36Ux73jE0RmuQ\nd7huBwcHmdpDzlqtVgZvFGNFznBOmTtkEoNXcly4J3OPAeMeln/mztE+uofPuS+o0EsN54v7EtTR\nH28Isq4muFytVskjfIk0XRpT7A/oZavVirOzs5wnMg3dbjcDQsYPxInrnGJmvggoqC9GUNRut+Py\n8rI2DuhcEFlnTEgpI4/YFuQG3UM/SsTfa9z6ySCEx/5rnzm4Hg6HGeigNzzPPinA84S9I0h2cE2t\nMGrWOa2PLCGXzkiVjlIJzDjgLxEwnMASDSxtUtleyx+8ttf22l7ba3ttr+21/Z3tm5U/AE4vSV3A\naEZ9TGorURV+N0TpnQMgJ2XxMaoge7eeIV6iE6NkEdXRDEZo8FS9VdxQLPcEYscrN4wJOkL0Tp96\nvV40m9tihiAXjoJBL+B5gMiwo8MRiMcNCJ/IvkSl6D/ImgmSRAdEyOYmfC3CJIIhumLnSETUECYi\nJafIDPn73iBEIC+bTbX9ttz5BkrCPU2iB02IqA47ns1mWQyR8QaZ8E42o3IgUEQ63tUGaoq8Okok\nVcDYeNs/HB/QSqMum80mi11CNId/0W63o9lsZuFAE2Cvr68zHUTaz++PrLhQHrJIfzudTiJaXOex\nKNEa0m6kf4w6lfJkJOv+/j5LjXjMKMTI2EJidRmDiCrl4fQd6Aay6rMM7+7uEuUrd6yCbEyn0yyh\nYe4gP0tKAPL1+fPnGA6HcXJykmm4+Xye5UY415B3cIqZ1BnIIf25u7vLOXdK+OlpewzN09N2ZyqF\nQweDQepf5MmlVowYGB2EgwVxHqTMZHSQt3INmxeKnka/+YxP7mPUmjXD+5G+YrfmZDLJzRnIovlJ\npJxchRw74vQ13zfiaMTmt99+y/V8enr6jBvbarXi8PAw5QI9dX9/XztyzDqB9wFJHo/H+X4uwYOe\nduoJu0W67O7urpYWfvPmTXS73WeoozM76HiPt7M6RqGMyDgVH1Eh4yCnLt/DGsammuPY6XSi1+vV\n9KH1JRxHMifuJ4hdeV3pT+AbML9896XrvIZLpNJZopfaN6tsDunS3AQgY/NpIuqpL64v4bqIisNS\nOlJc59om6/U6rq6uotVq5WGsXlBwjJyH57py4fM8titzD3avRVRcGlIe5XbL8p3NHXMqE+PIdzA+\nZYXmXq+XaQOnapyidArUTi3vaD6YF2TpkJnEa6i/5AeRf+c9Pb+kAvibn4dhsiPGMyIiFY3LW3Q6\nnRw3uB1eiOaAeBcZ0PxgMEgip40zysaKKWJrsHu9Xo5PuduO56P8Sr4W88OmCjvqfMamAhTmZrOJ\nXq8XvV4vBoNB7kLjeRi66XQas9kseRtPT08ppygQVynm0FacNB9MDBeFQARZhMzPM73RAqNlo23Y\nHGcKSJ7PkF+nLklfff78OcbjcZycnORc8M6MGw4xir80Jjs72xpSe3t7ScTHKCGvTm0if/yfOmue\nX/7v9CwpnIeHhzg7O4v379/H999/HxERv//+e8xms3jz5k08PDzExcVFzg2OASR6+FsRkSl9+Dns\ntLVMR2x1xHfffZcpf9K6cOvsKJqrxDrAeTY1ATk1dcG80nIe0Sde75Z9gsjyc+tjpwkjtnp0NBpF\nu92Oi4uL+Pz5c82p44DccrcfPDYH5earUavLzg73/PnnnzO1f3p6mk4PdIPd3d3cBEDjOBlvNnJA\nt7Ozk84+toZGEFTWaLI98Lj6wPLxeFxzdmgmerP2vE5JzZV2zo0+IqdsdrFN9lyQZsbGIteXl5fJ\n3bTsMBfoG9vtiMo2YJvKoNTy5XXJvHJfBzu2Azs7OzVubglgvNS+iSO1WCyi2+3mqecRlYNQ5q0j\nqtonNjQl8Szi+eGNEVXESzOxDkK1OS18dn9/n9diqCMi0S2T5miz2SwVnL3biEjiJ3lrO2fkilGW\nnnyTxyHUoty63W7uyAFxcATpBRtR5ZZpLJaXOChGDNww7DgFNvrOjZfGi3cxP8zRAO/OvUsuhccJ\nhcFzcCIajcYzZcP7+XBWO3k4KeaeYPAZZ4yQeR+QX41MeYdVSdy0I9hqtWpOr7eJl3WSuNYKHYNJ\n+YtGoxHT6TQuLy9r5F/Q0svLy2fRKmR3uGPeNRdRIQWgSdzz4OAgLi4ukoeCA2K+Ds4X48YYIB/w\nixh/b2N3gOHxZc1hEI+OjuL8/DzG43EiU3Y0eA6cJ7gy3BdHC+ffc0DfkRNkic0LvV4vDRyNaNdr\nzLv9QCx2dnaSmxmx3TpPLbNutxtXV1d5Peub8QJFoi84Beys9KG2GCbkyBsqeM/JZFLjlFoXY1TM\nLWLtEUjQJ88xrTTE5pRhyHgWusC8Ke7JWkLv8xwQUHSpDyVfLBZJ1LaepR/ozJdKGURUMlnyWOfz\nefzlL3+JiO2affv2bW1s0aPwVWnU3mK8zQOy7nXJCAjW9K8s90FggSx7Mw3BAI6Kg6G/NUdc6+DB\ngTdj8/j4mJwxvz/zYV7heDzOABDEivfiAPbhcPgsu4FcMF7mfzIGOMIlclaid+aHlcR7fw8nys+I\nqIpQf82xjPiGdaSA1S04JrI2GlXNDtINwO2QwSLqSBYL1AaaKIsB5TMWGdtj2ZFAs1duh8AGytEY\n11xfX8f79+9zG7wjZCM3VtAoKXYuONWwWq2yBhDXcwAphoNxKdNvCAZCUO6cscJ0BPn09JR9YDdc\niSQ4vUlzasVpjYioGUeMJvcy6ZvvlM1RiZUbCp3UDg4DCBHOgNG4kjRpZw8ZIVJzygoHl0jeuw1J\ng5IyczTt8SaC8n1BLFCMfv9Wq5U7hjabTa6FiLqhubi4iMFgkKTi8XicAQGpQjugJrY7AudcN2Tp\n6uqqtmY+ffqUaSP6HlGhAPzfxGjgfeScjQfMKwiQU7t85rVO8BNR1VMjdYIMowiNuJJWQgZx+pA7\nnGDmcTAYRK/Xi/F4XKslhMHiEGKnIXlf1oB3JqKXkJtms5nPYzcuaES3262hKAQkpSxFRNYiI/VB\nPzn3j2dbTrnX7u5uppyMnJEmJO3reyLDTrcYuXEw6PXGdfyzsbJeZm34fU0k9z3v7+9jOp3GfD7P\nINKpZe6NETbST//L9B3zBBpZkpFJt/33f/93UjwiIt6+fRv9fr+WFkS+CfCo9wXhmnXhcSxRet4b\nh6IM/spyHh5rdgSuVqssMRIROT+murhaPJ+VZHGuZeeuz4QkZY9N8BzTN9YKp0wwT5QLQmegv12n\nr3T0WWPIh6kQ7HI0SODnObVp++xgmubf7ZC91L6JI0VU4BwukCIDGFEtCIwaEwlcT/OC9o4TrjH/\nyErKQmUIFEH1IncUgVEnJWDEgpQHBs3KxIrQPBv6ybMbjUZ6+YvFImvTcN3FxUVEbKPSfr+fEDYL\nw2NHH1AY9s4Zu/Jv5LkjIg+9LT9z+orxRmiJmGwEiSiJTO3U2VB+DVJmPnBYIup8nlIRYQRxXgxh\n42AaheI6Fibj0mw2n/EhnBb03FJ9m3e0kUKWzJHi+fAqQB8sDygGnCIcK8/xZDKJwWAQx8fHKRs3\nNzeJ0LGVGwd8NBrF0dFRzt3Ozk4t7Uf0XMrm5eVlFr6cz+c13kCZHnPKBMSHQ27hBzGGZYrFaxSn\nxQEJ3+FoFYIu6wHu65Qh6xRZeXp6ypIDyPdiscgdhoeHh7VyDCh7jDHpf97ffD7Pz3q9TlTPfWbu\n2u12HB8fx2QyqaVqCBBAI7w2QE1IL1qeneJpNpt5rE1E1OZoMBjUPiPtDBLPESQRUeNi2pGiMf9l\nmi6iChydDbD+dtBXUhkw7mQj0IO3t7exWCzi+vo6ZrNZ3NzcJHeQcSGrQP+4H84aHDCjLU4rmi+G\nc9Dr9WI2m8Uff/xRQ9Dev38fw+GwFoQhhw8PD3lEE44//bRjRzqSz0xRcbPxJw1lXcNzcdycwrLz\nUKI8yLepHXxOAOD15RpbRnaMAjK+pPBMIUGGOJLJKHxEvShniSxGVHxlI/bYGOyrx9H0HeTMAT/2\nhb45GEYvfq19M0eKCWVx4Sx0u91EpgzxItQYHRe1sxCVSM9ms6lxhfge0C19QPlHVAsfQTWSRX/M\na3EF54eHhzQUJQHXxtSCaCSM97EA47mv19s6KiiM8Xgc3333XS1Sd/TsiAalWiIk/M1OCNfh7FAf\nxOOGcff9LNQlQmZIn7pHJScCBe7owPMF3O2/MVe8L9eBpkG4xZGjL0Rt5fgzNyas2tB0Op2asXMk\nxHl/m80mick8A0XO4t5sqvpjT09PiargSHlMzGcZDocp36Cpj4+Pefo8lfsp7gjn6e7uLo6OjiJi\nuykC9PTw8DCPPYnYppoitk46zgTOGTVvxuNxDIfDGAwGNePNlnNkx2PocXZ6g/FAcTFXbqASNgIR\n9XpYjImLJPL/3d3d3DwQseV2OJrHufGY3t3dJRLochnIp+tX8U7oC1LQ5l9gXEkPYyQ4qmi9Xsdo\nNEoHNaKqiI7+wrHj3Y3GEYVz3dPTU4xGo5RDnGgoBryPA0GCANK68/m8ZtzYiAFFwc6UdSuOq3WD\n0W47SzbWpY7iu4xP6ejw/ZKaAMWBcSiReE4S4O+uQeTMAXKEXNCgpfz+++8REbk9v9FoJDezTN95\nffMZRZRZO+YAEkQQJBtZKYNHnlHyIymZYi6fU2W2eTSjcoAb3JN/LiVDfxy42OGHG0bQYuSauSHo\nto4ukTCCYfrCdxgX6xP0D+vM64lrcKIcTGP3Sl4ZY/a3Unuv5Q9e22t7ba/ttb221/ba/s72TRAp\nV0AFlcEDhqjmHVx8F++SLZMRzwnUTmmRljCHwMToMp9ryJHo05wgGh44SJCPdOD75HrL9B3Pw3uP\nqLZj4xW7EfltNpuE4bn3bDbLgoRs68Wbxksnp00qgvubl0BzJEhU5bw/fYWXYb5TRHWUD1G5ycJw\nPZhn+sW4GUJ3lEoapNlsPktfUrCRSKkkxnNWGRGtU4lEsMD/JYGdOTcBkQjKRe6cxmEXC+jh7u5u\nLedPJE+EZs4WUSXjYggalJY0j6s7r1arTNd4LcABgYR7cnKSpOxms5kV3N+9e1eDsQ8PD+P333/P\natvz+TzTfp4DCLXMhdNJ/B10DJnneqMXzBncs7JyOYgRXEDewZwu5o/iqxHV0TZw2Q4ODmpbr9l2\nPpvNaqn0RqORPA54m47m0UGz2axGQ0BuSb964wDrl/WBvHBPdnrB40L+XGyVeyBjy+Uy05mLxSI2\nm00WemQzw/X1dTw+Pubh5lxHdE9fWYf7+/tZeb3T6USn06khnMwTqIJRHvNI+Y7XKTsPnSaNqBAb\n6xyuM++pTAeScoeyQQqYe3JNibbTyrQNc0EzV5JmXWZu0ZcvX/JZ3333XWZNIipOEjtgjcjAXzQn\ny7u7fWSKU8wgn+i2EgE0gluiK4yxETyPK3YDGeE9QI2Rf3S5x8VZBLImnP5hhJdme0img2b+mGk2\nfMY8W5/SB8aynPeSMO57+vlkmoyo/620XsQ3cqTgffj0cNJgy+UyD3p0jhTBgA/w0q4C7waKqCox\nM/mGlBFMLzTXmYFo7PPreI65EE4R2dBCBiy5AsCU7ouJcUyihZz7Qy61crm+vq4ZKj6DtI4DFvF8\ntxqQJcLnviKcJiZyD67HSHFPDKGrIHvXGtA2Qu/UH/fBYfYCZvGXhFM4WIx36YSuVqtadXen13A0\nGE/SGyxMUsl26Hkm8uSFihyh2E1oZu6oQA2J1TvFzLtzmgaFwE4aFFQ5hxgrzz9jz84uuF7spHn/\n/n28f/8+rq+v01Eej8fx8ePH+Omnn2J/fz/++OOP2vPYmec5jYgsvcBzz8/Pc54IfEib9Pv9WorK\n81DW3oIUz+5Z9EWj0ci6PdPpNI0LzhL9wFBRwZw5pB8oTO+KfHh4yBSNS7QQAKF/LFPIgnfY2Tn3\nBoVymzvpPOTK+oS0IEaHtUw9qZubm0yN8O4nJyexv78f19fXcXl5Gbe3t+koHh0dpRzhoOLsI3/W\nTU418R3mxtyUiNIT4uAAACAASURBVPqZiqXjwtqwE807Wpas+1jX5uyYI4ccUuPKaRrGmmtMlShT\neE4X8jsBgVNbJVWCuZ9Op/Hzzz9nKvH777+vkfTR+RDNTSlA19iZ5B2wSegrPrNDznt7V58dw3KO\nnPJysOY55R39TPSMuXJeMyUXzYAF/eE0AZ6Hc4atsCMLtae0V34/NveUTryDe2wbn9nxcvBt2cOB\nNMfT7/RS+6YcKZRjRCX8cFt8ECsDw8JAwURUpG3/4zOQLeeTza/xYnG0ZOfIzkFEfWssiuElcimI\nlksQmExdKiCfG2akg37wHAwmz+G5OAZ2ePb29qLb7cZsNkuF6kjQjlTZrPD8HROsebadPqIj3tXk\nd39mAqQXyUvRFU5NSeQkp47slA4I48czeQbOCTL1+PhY49yZy2KjgsIyqliO2cHBQQwGgxiPx7Vi\nnkRl3W43I2krqf39/ej3+9HpdGqEdrgSlisWPwRuo7m8NzsWaaPRqMaB6/f70Wptj8C4ublJwzyZ\nTJL/BKLhdQgyhsNII2hpNpvJEyy3RbN2HSThJMAH6fV6uWa4/2KxyKAGo9/pdJ5xbZjLiMjjYVCk\nm011Fhv3pvbS09NT7lajdg99tTGFd+UDmr3e+J3Cu6UM4/S3Wq0aemIOFX2IqLhOyATX8xm7C2ez\nWUwmk1qtqNFoFN1uN/UjyNLd3V3WmHOQwjwhl+hGxhc0gb+zc4u58jiXQZ3J0f5/RDwzlNZ9BLTs\nLiQ4Zf585pwNdkTUdIERCyMXfk/aS0ET1/l+pVFdLpfx6dOndIg+fPiQ3+X8TJwozz3oD/LrjTd2\n9Kx3HVRGVOcuGjFjLl3OhHHh/Wl2Qvx+Rsj4O8iSv49Tiw4y/3c4HCY/cblcxng8zoDOa6l03OxQ\nl05WRKWLIPI7iPZ7l/23g4cd4n4RVSBd8mbtAL/UvpkjhXLlxahU3Gg08rBcYHwcIe8Y88ChMCHm\nmZRH9F8So5kEDCOVjiPqOw9emkATX7l/RL1eDs6Zya8+T8zIEue6NRqN3KpaLiKiGveHseB0eSLK\niK0h7Xa7MRwO4/T0NI6OjuLjx4/x6dOn7I/RljKdRtQCoueonEVpyJ7rQK+4v50Q1+1x1MC7WwE4\ndQt6aHSHcSOqhiDrKIt+eZu4ZdCOL8+DZMt3mAM+s3PpqsxEMJCCcbQg+W42m9qZcJyxRXMK17tg\nvB3dMhMR6QxFVHA+le13dnbSAen3+9Hv9+OXX37JeSNt5nGmn8fHxzGbzeL6+roGaTPeRLXz+TzH\n+O3bt2nYKA1g2WLnICiCkYjDw8PatU55+7mDwSBRF8j0rDHWFmPKVn6Mk9NE3M+puDLap7iq09r0\nmX45GLC8+fBymoMKgh7eg6rQGCru3+1203kHzfAGFXQMxTI9T2dnZzEcDlOv0beHh4cYj8e1mnZ2\nbkj5euck7w6yB1JnJxuZ47ukHRkbjzFjh7w5ELXO5X7oKeuAzWZ7KDkZA3Qhn5UImNNCRpbskCDX\nLuRJXzy+nkveD1v26dOnrOsXsUUACSL5ng/MdkbA5GeQX+ocgpggf9gQgqzSSTDqQnDjsbS+s63h\nPr6GBuIMiuvxdnbB5XIIjPb3t2eYejMF88DmI48pDVtQ2m/0frk5oEzzEahEPC/MXM5p+a72Ixi7\nr7Vv5khhoFlsi8Uibm9vYzgcxnq9rcxqZAkhQ2mWRQxBYxyVRtQPYeV3mp0JFwIs8+r+/+3tbUaH\nKGlzDIzAkIZ0X15KQUVE1p4pUS63l9Ajw8wYJcYM2PPg4CD+z//5P9Hr9fL63377rbZw7UwwtmyH\n7nQ6z1J0TpfSMGzsfIIr5ftznatw8/58r0RrSv6T+Q3A4nxuY8U8Mp7mp6CULRs8nz6wuMoImXn0\nbhgca3hM6/U6C81FbFMwLM5ytyBKkaNscIIiKqMABw4Dzzyt1+tEbz98+JDzf3Nzkwqs0WjEx48f\n0ymjvyAWcGoiqiNEPn/+nAiMq8Xj6OM4ukK6+YJ2Eh8eHmpVoMv16EBhNpulowxvkPWOgxoRGWwR\n/WJUmH/PA0ggYzOdTmMymeSOTo7T4TOnZm2EGQvvOrZSJjgEXSnRBYwPCKrHbWdnJ1E20negek6J\nI8MYK4JA70SEW8WRI5SN4XnsYsTBAmFoNps5lre3tzXqhWkMjKPLERA4OLBk3Fhv1oVGQaxv0Q80\n1j8GmbHBdrBTlh1wEfVijS+labATpeFG75jfWaZ+rBuMUDnQub6+rqWTkK+yZATBL7XDVquqMCzP\nYcydJcHZ5HrmwoiSUS9nRuyolnbG70WgyJgSKDgVztg4aOD/zC8OP+l9H9zO2vd4GDWnv6w1j53p\nFS5uzFwQfON00hfbEds/1qydVSPRphO91L6JI4Xxc54VztTu7m4MBoNYraozxVhgEZWxttMDxIz3\nWW67jqgKcFrxmXsFzyCiUho22I5aICgjbDQiFStgC6qjVgs7wsmCtxGKqIwP+WV7zwg/aSVQPB8h\nwdh1u9346aefImLrnV9fX6dht/OCUJX5dfqNUkBp2glicZRl9UuyngnVjAOwagm3c1/Gx6gTi4E5\n9LZcpxfNu+Iz8wz8dwwWkbnROBbb7u5ujXsCemAC5Gq1So4JKetGo5GGjsZY4oDCRYiIJFHD2+G4\nCcZlOBwmInt3d5elCnAqWCs4CIxzp9NJJ+jLly85z4wTqI25KJztxljjvEdUpFKu6/V6NXI3SAtK\n3ak9z2WJ1JpXiEMUUSHDk8kk1yFHOiFfBwcHWazRpPx3797Fr7/+GpPJJA4PDzOdyVzQjzII47mP\nj48xGo1q8oQMErUTLEZUyh3U7fb2Ntc4SF2z2czaetSgm8/nuQ7hkJbIAqgQ1bO5DqRqOp1Gq9WK\nN2/e5FzjRONsgZru7u7GcDhMFNOlH5xGIx0DtyWiSqF4LZUpf3SHxw2HCGTExhWdxHOMvKFbQKWM\n1iMbjJObMwoue8H7o0OYZztE6Ogyw8E8YKdw/iMizs7OYjAYRL/fT7TLxpo1wPyyLthYhBPselfI\nptPPdrIZu1JfMidOJ9q2svYAFYzGAjY4qOXnfD5PDibyaF1DUMPmFY+bwRTzA5EXv4vXE/d239zo\n50upYt+3HBuanVTG+yXELJ/31U9e22t7ba/ttb221/baXtvfbN8EkQKKM6ROtOjdTbSSiNxut2v5\nTbaKgkgRRRF9cE1ElbYi2ii9fK5z3p5nRzzfjeLcrmFEPP5yq2ZE5WE7v813F4tFonM8F/SGNEwJ\nxxIl2isnAiJ6IqKk/2/evMldUOW4ma9E2tRoHTs3HM3w/jzDxUhp5go48qSPRrYctRFxedMB80TU\nYXlhTBkfEB9D3/7n7zsq4xk0okyiYefbneJljLyLCcTUkDz3plimizPSnA6CbI2MjUajJJvTD0oV\nrNfr3P1KqgN0zMTw6+vrTA9GRI1nSPFGiOjr9bYg7GAwSETCZ7k1m82MTg2TszGDXTZeX57XMvJj\nHszT4TPu2Ww2M93OO3neSP9Np9P48uVLREScnp7G6elpnJ+fJ7p2dnYWEdtipaQjymNwWq1WdLvd\nrKZdbnN3BAySxHvs7OwkCd27Dw8ODmpn5a1Wq0Sk2u127nRiPTo1wc5ckEjmt9vtxs3NTdzf38fp\n6WmmeSO2aNzt7W3tXNDPnz/n3LNrmirlfgfSlWzbd2HGErkreThO+fi7rIWX0n6sXZPCzZvyhiMj\n9Tc3N7V0nrmMcM1A9FzklP6AtnqTERXvWYtlio7rSM0bbRqPx/Hw8JAHHTslxvuhA0GA2CQEKlva\nnVKX+TvWMUZWPE8eU+tK72b3GBphQhasv4wE2656w47l2J/RvHnDfK8SvXZDB9CQC/PzLGv+vtG1\nkrLi76Gb/lb7Jo6Uc79eiHt7ezGfz/P8HZcjcOopokoVke6CK+C0gQmPJsnyGUoNY2WyuEmK8J0i\nqoNr7dwxyIbd6S8ChRBxv5eEIqKqKG2SekSVUvMuLjtm7EJid8779+9rBGyUlQn1kHCBcO0EsojI\nh9uhdB7d/TB5Ex6CU6nMO5/RcNY45sHj5gUFhMtckLu2wjCviTktOUkYJBZPSXAu03M0O1+bTVW9\nPCKS00ffmCufUQbEDZTPHDN3BBMR1aHFm80mIfPLy8tot9uZhvIOMI5egVuFMWTH03A4zPcnRbFc\nLuP29jYNMM/lvZl310QjWMDQuEr24+NjOhdwQ3h3O4iMH+/nTQOWJwcH7D7z/G42m1pQxc445hg+\n5d7eXh6lFBFxfn6e1y6Xyzg9Pc00JGOMM1Te//DwMIbDYe5CshzjgMFnImBk3tFNDpQeHh4yLQz5\nHYfv7du3WZkeA877XV1dxXw+z40k8/k8rq+vIyLi+vo6hsNh3Nzc5Jicn59HxNbh7XQ6cXR0FJPJ\nJO7v7zM9jY7iMHdzwJgXBw7mgNqBLIOskjPl/5vrik3gnjaQcIa8gQQd1uv1ckMD482OU9az7QCG\nHhkpUz+kWZ1KJMBwSozmVBMbB8o00e3tbczn86wJhwyjd91XvzunZJiyAtfHQaavQdegH80v4r1Z\n27ZDUDrQiTs7OzUSOY10ozlbLjNSliPwmvBZkgRGTrGV69ubFPiJfBG42z4/PT0lxw1dZeespOv4\nnpZtpxzNT/ta+yaOlCMdIz9MAJFZ6UmbNMxLW+lF1POeOGclxyqi8kbhTxhZstKCe1Q6LRhtGwV4\nHDzXdZTw9B19lVFGxDbyYSs8jf6ASpnESnRAH+DInJ2dxZ///OeIqKNm9u5RROYyRdSj/VJx4Cwx\nBnZ6PEdE5GVES0RjYry5co+Pj1nQknd3P02AtbCzMPx+kCPhgXn3lftqArhliPm3sXx8fEwekzco\nREQeVOv6MCa/866Mh40UxOCTk5M0yMwFCq3X69V2fEG23d/fj5ubm7i5uUmjGLGNzN+9exftdjvL\nMfAOnHPZ7Xaj3W6nEWY8QdSWy2U6bnCROp1OlhdwLR+IuuzOY2wODg7y7D94QOZGWX7Kmk44wiYB\n05gDnE0jmRidbrebO4W4L8URkcXxeJzrzXxEEGLvsqL+krlaljfWi/tqAixrzeRfrsVpYp4uLi7i\nxx9/zHpQ5kCenp7GbDaL8XicBoq5o4gqKCYOQ0TkeZD9fj+Ojo6Ss8V4QuhHLzpYctHViEhuF5+j\nL6xHPVfMqaN9xoyxLPUJP12ehuvgG8HDsU3Z3d2NyWSSx/3QIFC7bz5KCJ2F3rGjx4aP0sFGP1G/\nyw6RETj4jSCONvKsA6NVBwcH0e/38/BhGn1DhyOrHmtsA0i59Tc8Y+aNcSVQcNDrHX3Wl3ZC7Nw+\nPj6mvvCceg4NWHgOsJ/0hXEpuV44SThaRn/R7eiv0nZZPiPqO02NJpZc3BI9K9s3caSIQDlDKqIy\n3nj0EVVUjjFx/Smu8w46tjgbqjWZ0QvRA9hoNGrbZ2kmDzMZbDlfLBZZVdnfZ2Jd04d+skAdRURU\nnjKRhreP4nnTdzsdhndZaOxq+f333zMtQ7TgCIT7EiUTVTBm9JV3MOnSEZ3fEcSNcTOsDDyKovbu\nDZwkl7tghxmIAn00wmTFWUYNbPsGHSzJ5jakTichQyhmO8MRkc4TqI4RE8afcaU8BH3keqe0+Wy9\nXsfNzU0isTa09JsUK+k7vutzKvnuyclJ/PnPf47lchk///xzbhWOqB9EfXx8HJ8/f07jPRqNYjgc\nxq+//hrz+Tz++Z//uVYVm8NFHfkxbswrDqxRB2TBKQ/mmnQRP/kOzyIt7bQA+oJ7r9frRBsiIonU\nEVuDPxwOawocWWq1WrkJICJqKAuyhh7yzjmTxbknShvZZg7ZtMD9ymAKA8V72Rn8/PlzljGhDk9E\n5CHVpAmNLA2Hw3TIkDWnMJrNZr7z6elpzhP6zP1xw4DRP4zf175HY97soNiB8Bi4ryCg/N33BMkB\nmXKwvL+/n7tbcTiQCxfxxa4Y4XbWwrvo+v3+s4DURHtqc5UoHn3l2aChEds0MmsIh8Zzwd/R29wX\nmTdoUAatzAGfG3lhNy/3N9JlPVrW0UJ2cIYcKNDu7u7i/Py8tmHqawAC9zOyxHqCkmD6i9+FTSH8\n3fbRqVv3zde/hJqCFtvu8+wShSzbN3Gk4D3YsUEw4BLYCOGEYORQ2hFVntXIhJ0bL+oSbiUatEce\nUUF5XsQ0Sgrg1ft6eCFlnpdnM4H26vkek8f2YxpCBkRv6JvnoaBd1+Xm5ib+53/+J969e5fCZQVp\nhYZAITgU7iQ6dMqMqAyj7pSox4n7enu0OQ3sooyoc6eOjo5qc2jDymIuI136X0bQ3mJeLgI7qDYO\nGGyQH1cIp+9sqfZOGuYVQ1vubCHqB+Wy88a7LRaLODs7i7dv36byhRO1s7OTqRhQIJxElJDTficn\nJ/Hly5f4y1/+kv3zDsPNpqoX9fnz54ySj4+P4+zsLH799df4t3/7txiNRolWWX4xHjjuIFdOjzA2\npBeRX6J65qaMcC0z/KS4KfNE1EgARbkC5Jt1NB6P4+rqKtN7jPV0Ok0E0WmKiCrVzPsa0eC5rENz\nID0nBFPMuWuh2Tn22mQdeJcoyBAHSCNH7DRkTq+urmrlD0hZLZfLWvqK9XxwcBDz+TwajUYeLbNe\nr/NvZb0vHEXQcfpq9LB0dkp9a2e6XMN2tLxTmLHCqfKa9r1KRAZaAzqSNCsZA3Y6Wi+xhlxjzfOE\nLLDuGXsKozqQtGFnLnd3t0dGkbpdr9e5S5L+WbcbzbFT5NQZ3/OYGpHC4TH9gnHmsxJUMD3D92TO\n+d32koYjaX1HfwEXPN6lnJjr6rXC2mGMCFT4WdpaxuQlCg0yZkCDuUeH2PHj2S8FDbRv4kgRuboy\nLguFgXZ6A8ElNWAym6NQBJ/rgMxfguVs8BAmC1TJb7IzRokGCgnaaDrHbAWMAWXyjDI5V1ymgEyU\nJJowcR4BiKjOboqIVB7z+bzG5fEc8E7l+FDg0+ifieCPj9vCgERKJqLjZLJ4HQUwN1zv8WbR7u3t\nxWAwqD0P561cGDyj2Ww+g7Bfmu8ynWDj4kVq5edUKoYc5NBFXDGIZWqpJNAbCXPj3rPZrKYYSDc4\nrWsiPGvp3bt3cXx8nPP/yy+/xHQ6zaNOOp1OGszJZBLtdjvu7+/jl19+iVarlfys+/v7GI/H8eHD\nh3j37l3M5/PkaQyHw5r8N5vNTCX3er1ajTdqNDH3pOFKYjC/o8C95X61WmW6y2uAe2LQIbguFot8\nj263G7u7u3FxcRGtViuurq5qDjG8osViUdM1oGJOG7h0ByiYgynPhcm13JO0JH8j6kU+HBARFdPM\n2cH4R2x1InXnms1m7QgcUw9AjbzWlstlOsOTyaSGkJC+RO78fnakcX6c+kKOy9QcDgY6z4GN0WUC\nytLJcurdDgrlLUD8cEYw2qw3r2mCddKY1lFlOYSIqK01+KmksZE10Cg7krZJ/GSMQH+vrq7i4eEh\nhsNhGuoyDYUzGBG1NWAebqNRnbhAs7Pg9394eKihcLYDlhs7aJ4fxsuoIt+jkLBlH33pFJznHBvy\nUvoM5L/MKPEM7KVTm3DJsF32Byy7OHhG1bDRRspoZUarbK/lD17ba3ttr+21vbbX9tr+zvZNECm8\nXrZXR1TpHVAHIqaI6rgHvlOm0xzhOq1Cjtv5WrxhQ6cR9ZOg4QuZ4OocMz9NzIyoDtk00dqRJ5FE\nyZECojQnx6mCMlIFIen3+5lLh2zqCGq1WuVWbXviEdUuxvL96A8RD1GRUQLG0DslGEM3eCvM79PT\nU0aKoD00ECLuBWy+Wq3i06dPNZlwpE8EATrAeNNPoxCOMEjLGLrnJ5Esc2GEymkdkBe/O1EQiKej\nKKc2DRW7j6vVKrflR2yRE9AIdn8xx0TU8Jqurq4yKifVsF6vs/gmxwPNZrP48OFD/P7777XvMg/t\ndjtLHPzXf/1XjTT++LitdN9sNuPs7Cxl4c2bN9FsNnPXJegC/VwsFnF/f5/8LG//h+dIpI7M3N7e\nJuLGdaQMXO4EVMtnSTKHoCx3d3fJL6JYJRtVqJJuuQDlckrFKACy7J3FToN5rTkt32w2a0flgBqA\nupacndlsVkPHQEH29rZVvklDNZvNODo6iogt4vH0tC04aY4JcxFRbVlvtVq1Y4g6nU5uvTfa3GxW\nh7qDrlhu6a+Rp5KozHecRrWclOkwo/boBtYr6x2S/nq9TvkZj8epv9kFDlJrkjVjZBSbOYB0bfSf\nMeC9jVSD1L6UAnKKESSNOQDd4h14X3N0sCfWr4w140wWhf4Y8fb/yRYwT6UtMupotMopwXJOjcSW\n5G9sEmvA/GXslncVWg85Q2MEDLQJm1pSe/icfjjzgNz67353xtlySfv/HUeKF/cRA6PRKCeuhH9R\nvHd3dzkQziV7EixQm80myxsgXObeuLq04UgTmq0sI+qnjuMQmE8AlAgPiPuQnvT7lVwonC/qCdFw\nsJzO4O/NZjMNCNWdIyKP2iAVEVFPUdrZLHPWKOYy1857wEkBtvUCN9HeHCAWC6RnUlgRVe0RHFvn\nw9m94maFTr9NhORvhoDtKHuueJbLQhhKN9yObABzo8QtM9SegdvCHOMIO13sBR5RGRAO8KU/du4a\njUY6mcDTjcb2CJj7+/sk7GMIu91u9Hq9+Otf/5ppuH/4h3+I6+vr7AOORcR26/xyuYx/+qd/irOz\ns7i/v4/vv/8++4JcTyaTuL6+jj/96U8RsXX4qEeEUTG8z/U0r1FkCGWJXLCeSdm22+2s6u5UD/do\ntVq18g+TySSJx+bBwTNrtVq5Ziw3yBHv4DIVbJDxzuGIKi1kQ0Nj/drIUKZkMBjkPLCbkLno9/vp\nBN7e3uaOyIitQ9Tr9fI8QY8JKRGcTHZBR9SP68HBcKmV+XyevJ1Wqzo6yBwlAgzrTBuy0ijyuR1C\nZB3jzBq2TrTTyucmXOPYOOhinnCsKDvA+u71etl3TgswSdsUE2p88RmnBUDdsAxzHf0qid+uis67\nE4ShKyIqLmV53JhpC6Qynford6cxFyXlgPuZjmJnhb+x7uzYoYuYF8ubbabnCVACp9XOGUEA82c6\nDQ4R48r6sSwtFosMLO0M02/e28G8OVpl+o7xNAWHd/9/tW/iSCFojlparVZuyTYxNaJaGNQ2Iaec\nL6H8f0RlkDA0zp1bgKzwbbxNfkZImQy+78E1zyuiyqdagP0cFizfJyLHWHAwaERF7ja3onSkMO6t\nVnWqPErJx+V4MZHzNzfFAscYec4iKtStRFx4BouMe3vHE0YIUisN48+7lk4m6BmOFgufd2ShOUpy\nn5h7I44eEzvtzHnE81PVPdc4IEayMDL0uVRgzFXJ40IJ8hlISUTUtqYTQTI/OG0gKJxnxdwdHR1F\no9GI//3f/62VMWi1Wrn79OrqKtrtdjpB0+k0/uM//iPG43FMJpP405/+VON2YNzn83kMBoN0sggU\niPpANRjnZrOZu5ow8owTHI+SbE2Q4I0NyKiP02H++v1+EnnH43EiZPAIcUIcUCF/DixK3pbrW/Ee\nIJKus+N5K51GjAZGkXty5l+3242dnZ2YzWbp8D4+Pkav10sZIApHLkajUR4bRF+RW8uvOSQU5+Tc\nRIyRx3uxWGQRVgez3IuAzOuC57sfNtDmQZbcSX/uYMgoNU42fWVevIMYmaJILXO9XC5rXEWXJzFX\nEp3NWjY66KKTBC9G3HBOGK9y3fNeluFms5m6H9vAO5Q7PyHJc2/GxFkVmjdyvBRE4pzj1JtfxHiU\nG4jgWuGk2H69NJfmKbNxjADGGwbIlpT8KPsBL70DcsguaaOcrVZVWsd/517oW29qMO8aOXVdSNb+\n19o3caSYFEogRFQkQG+pNgmw3W6nYvYL2XiWRE0GgAVgeJAokf7YQNuz32w2uaWbe7qhcLknjk7p\nnLFLDQ/aaBgCjxDv7+8nhE8dFJwMjwtRCv2zQOHBf/nyJRVEGUXbgTBaRZ9N2LOQY/DL+zlKIerk\nXovFIueY75FSWK/Xeb7i7e3ts8gU+N2pFfrvui1W0I6WIuopX+YbZVo6p3ZCgcLpJ3Lj/3NPGjt/\njMp4zB0EMI+kPIlE6f90Ok2UBkTECoxgABTCjjSE5GazGZ1OJ43jYDCI/f39OD8/z5pd3PPf//3f\nYzqdxs3NTbx9+zYJye4rNa9+/PHHnEPqez0+Psb79+9ryDBGwakNFx+ldhrIsaNg3os5NXpyd3cX\nnU4nlaBR0JubmxgMBnF5eRmj0ajmZHqDCGkVxoZ16ajc+sBrFJlg/hlHo5Zch0EhYOH9IUvz7tZf\nk8kkv3t2dlbrC87saDSqUSUYt3a7nboLRwuZmc/niXAdHh7WUD7Gu9y9ZxKxEfcyrU/gUeoZrgcB\nt/EtEYDyOtBEB4bM/3K5zFIPzCk7StF7dly5D3rE5x4yXhGRBh/75E0P9LcM6HDSyjQvc4Ls29nC\nQIPaYF9wPuyg0kB/SC8b4UMWsYu8p8EG+o4edzBgRBF55Zl2gMpd97x/SZnB1nFff8Y9WMcObgjI\nCKJs51kv5WYgnjebzTLA9o5Vnm09YZuHvbPTH1GVdvlb7Zs4Uru7u3kMjA9njaiiPhucdrudfCoW\n+0vfL1EXDCyD4PyseVYINM/jXkykBxXhKhd4RJWuMcJkhW1nwGkfvm+0A+EYDAZxcHBQ40PQ4ExQ\nHM4CBe9qsVjkifXcm/6U/xzJ0Fe+S7OBJCX3krPA4ud5KCHm0NfgLLIbzgubcWOePcceU3+/7AvO\nUOn0WaEy9+zEw/Fy6oPrO51OLnBD/yxCO+WlU8DYGlYG5cAZ8Nig+Oinjfju7m5GyqQxnGrkmBC2\n/r979y7l5suXL3FxcZE7Z/mMQ2zfv3+fUT/je3R0FHd3d3F4eBhv3rxJ7mLEdm1NJpP48OFDNBqN\nmEwmKfukz3AEHh4ect3zDGS/THmyFghCGDMCBYw6yINT0IzV/f19HB0d1Zxq5AinlzH10T4YMqf2\nLQcg3jwPAE5hCwAAIABJREFUJwFuF89DP1EM0ty6vb29dOyYCwd+Z2dneXyQFTpcQZ4F0sX8Ird7\ne3vPnIxGoxGLxSJPkCC1wgHAIC42sow7awkn7KXGOkX2jcgQXDht4u8ZIUJ/oJuNLhCQPj4+5vEt\nTl8a2bYRxrkiI+Lgw4gEuyl5b8pp8CwQScY7YmuL2NHpNJkDVgelOE7oRae2kF9SgiWPEn3vXWpG\nUMq5cMqs1OvuG84EffG6NE/L/2eesKnW0fSV59pRs+PJWqPhYGGLDZKUjqRtADsHoZ+UTqZ3QZfO\nJ0h1GYwzfmUA7PZNHCkWLk5ARIVycO7US3WkUHoR9e3t5aQZAkUR41BZEFjcLxlZ/k4E4QgDZ25v\nb68GG3PfiEp5um9WEBYM5+TL55HTpdQCW8jd106nk3V0SpLf8fHxM3Ih/cHZiqhQg4gq522iu+F/\nuEAsNISYBY/w+/1xOIn0rRSbzS0Bt9vtZmTgaN78CCslX89Y+DPfAyeN3/lXKvanp6c8S5BoyqkK\n5h8EjWgex8oRr+UUeWPeS+XOfZ2q4h3m83kqCwxuRIWacL3R3C9fvsTT0/Z8PY4FMX/u+vo62u12\nvH37NlqtVhLRV6tVjEajNDj9fr+GvoCQUJuJfp6fn8fR0VF0u93aWW4RdUI5TjQ6gNpwpOncWPc4\nJ4bXGQ+cEPhnyCn13g4PD9PZNCeP4An5dkFSlCny5Ll0WsVGH8cGI2QjjGOy2WyyZhByA0cKOWu1\nqlIUyNf5+fkzsj1oCRsRkAEaaE273Y7j4+M8IgbHeDAYxGQyqSHdh4eHacDMSWFdeCxIMzr4fMlx\nKj+zbuY9+P0l9AXUGB2OA4qeaTS23DIQHdZFmWLld/cNWXHNI5OUbaAxvs5yGOVh3eOA81zkxMib\nZZifOF8u8Iu+LtOFpfxRssOZnPKaMsA0guTUHsip0dWI6lxcxqG0lw4+nTovEX87Z5av0pnFcUMf\ne+5xlqbTaXKg/TwQfBxinmPqSGlnDCaUwECZxn6pvZY/eG2v7bW9ttf22l7ba/s72zdBpEajUcLU\neLx44ERtRiyI7rwLjobn7Dw73rijVe8qiKg4UnACSvIcKTryyWWEY8Ia183n8/SE8d5fSo85vRNR\noTygbsDKfBcEp4wCgURB9oCxI7Ze+9PTU0KcLrZGg+DL+72EANK4LykK+ASGPP0dw9f8NNLn1Kqj\nJ1IP/szIAXPnVsLX/I2oDfnwThpSL07v0k++T3Tmwqr8PaIqLBtRFTEl3VtGMKAN5PSRL48XyILR\nKpAx754qd6yaQwWfaXd3e5grxNvpdJr3JAV4cnKSu1dJUfGsvb29ODo6itvb24yS4Uydn5/H+fl5\n/Ou//muSu5fLZXz48CHu7+/zqBvI7WzxdukLk3+R75c4jUTcpLG9RknhuOQDRG3QwX6/H81mM5bL\nZaJg+/v7MZ1OE/32bjgQpfV6neiaURNHvE5v0CdayRMBRWw0trsu6TNn9+3sVEdcse4oQ4E+cLqQ\nMfVmmpLW4PQIpRFms1mmUTgPkesXi0WmF42yMGZ7e3u5/b9E5Iy8Iqfl+nbqzH8rKQ4eR3Qlusop\nHOYNBJjyFug0Ut9GGczrRCa5rtfrJUrDeHqNIqtGuv2u/CvHxTQCnut3QBdYlmxX0G/Wf6Q2ndJl\nDYO2Oo1Jf8wlJV3qFNbj42MN9UQ2yh13nnOPATbTGRzktCz7UqJm9JvP6OvR0VFSgXxPTsG4v79P\n/vR4PM77QXlxdofM0EsoE/rbxw5FVPawTPG7fTOOVEQFaUZUC/D29jYrxZZnv5FOi6igQBoD6p0T\nXGuCop0pjFu5648+4sSYQ1OS9pyiW61WydPwYvLzEG5PMEqfrcdOa5owCJmXMSOdAFfHfBYWCie9\n25BFVAbMBDveA4fMZx2WitJpljJX/lLqAy4AzgsOB9fjPGAw+Iz58Th4btfrdRoGO4p8D+VgJeCx\nZ1F5yz0LB8K2nSzabDbLVAjX4WTZKTJUzZbykhPnvnItjflhF9r+/n7tOIl2u52E29vb20wLQeTE\nEYLPxvwOh8N4enqK2WwWnU4njQl9xYCbl0NZh0+fPsUPP/wQ+/v7cXl5GRHbqthwekgn8e6LxaKW\n0sTBpy+eAzvJpPuQTXMOcaSY12azmbvfIqrDu0nvcbxOxJZSQLqUtca4jcfjXL+c+4mTRfV2gjOn\nr1iLcFbKtPbd3V2NZI5Sht+GnJPG5DrkBFnhmJvd3d24ubmJx8fHGI/HMRqN8jtsIMDxMmmY47fg\nm+3u7qbjtlgsYjab1Wp0OdBAFk2JMK8ThwXdUKZIWL8lcZfxdnDFPfn8/v4+D5+m0Q8cPJxFKtZv\nNps86BvZn81muduPPvPZZrN5xlWyjuP9GAtXkmcOv+ZcW/e7XA625SVnCV3h4Jl72W7B47Njx3g6\nnY2cEpzyPrwrOgSaQFkuh8DFqVOa72XqBoFjs1nVXfTYOnh0OhlnuNvtRr/fj+FwmOvCO3b5PjaR\n6vN7e3vZJwe+pFDNieZ5zBv3sK9gp/ql9s3KH5DnfMmrXS6Xz4htJRHNxpt6VPP5vEYAxji3Wq3o\n9XrPJp9m40YzEmSSekTdq+f3iOqEcHvldgjg6UBwtHOyWq3i5uYm+v1+HB8f15w/cuB2eiIqD346\nnaaxwcj6Pfr9fvJQTJDEszefw9exNR1UgDHFyUIB2EB7F5sdD4wBC6fMj+O8lWRrE05ZqH+LM2Bl\ngnJizFx0kTEw0sX7gS4xXy5GimPC2PjdI6LmyL+0HdqLn35gdOwMlvwpHG3X1aLEguXE26XhdGFI\nmA8iOWoQcdRIxPaMvuPj47i9vU1ekhX/bDaLH374IT58+BAfP37MvnBg8tPTUwyHw+h2u1lSAYNr\nJWpngeOCvCOPuScQYi3ZAcEpJ9o1fwynDIeJDRuMG4fQQkZnHo1QTyaTLD4asTXCw+Ew9YvHNKIK\nviyTyAF1veA2cU8MoI054w2SzK5GNt1EbJ3B9XqdZ+xdXV3lzkOcAwwOHEueNxqNYrlcxmQyyaDB\nc2iU3zoRuWQeza/h3c0DMv8S/VeuU3OCynHzWqH/5Zl5BC82dAThOMDwq5ApHy3jYA++TatVlTJw\nRgF9CZeJvoMOsjvNtovfzZGzjkKvY/i9KQgdav1Iw/EoESCutS4xj5U1ZSeS96CQK+jL3l51HFm3\n242Dg4Pc0cnYRlR6jHVjgMRrgrl0AImjz1zwGU4XZ0xSuJNxA7TAsYNz6B1+Jd8Jnc544eBFVPYQ\nHqht9/+LHxXxDc/aM5kuooLrcDIQLD7jOgsEn2HsIGPbATMZknSXrwdJKCMoP8cKw9FxmbZD8bCg\nPAFMEg6NYUyUy2q1iouLi2fn0Hk3CgsronJIqeHT7XZr6TkWY6vVyoNqEVQrH0dlfueI+kLgmShU\nE/Y9h95JYqfBBFEraIoGEkWXAu77lOPNvf0ufIdxBbXw9w1D27FzGtCy4zFtt9uJQLwUdQMNO51M\nUUWQGRvhMvr1+/r/L6Xh+I7J18yb0zBOC+Fg7OzsxHg8joODg0RyTk5OotGo6rusVlUNtdVqW+l5\nNBpligiEBIfkzZs30W634+bmJpXb4eFhbm9eLpfR7XZr6xfD43pREfVzJnGkyzpeGL71el0bm8Fg\nkMZnNptFt9tNYz0ej/N9n56e4s2bNzUna2dnJ1EdIwiz2Sym02kiH05RsduNMXeg1G63c+fiZDKp\nobm8vw/Z9U6p5XKZQRYOCeMNujSdTms7KNlVulqtsnQK+ouU/f7+fqbGXOsNB5Q+uoYW6TICCqP9\nOFjonDJN85Khj6ijURi5MmhGL3gOJ5NJjMfjdAScgqWvh4eHiT5ZbhycujmtizNhG8R7gcw6eLIu\nsL2wYw2ibH2C7POOTkPZoS3BA+anJK7zLGTE9sDX4jiUtm13d1unsdPpxMHBQe2gc8CPk5OTmjM1\nmUyy6KkRQt7D+tRZkzIVuLOzk/ccDAa5RiHvs+7YMToej2M2m8VyuUwHm/WKHSkDGmcn7Jyie7Dt\n6BX6+VKGye2bIVIMnAWNhU9kWfJWIiKhca5DiBlMFg7Piah2BrFV0v0oHQHuzeQzgDx/PB4nKkB5\nBDsLPt7CSA9pBN4F+J/rIrYTNplM4vLyMgUYp8XRkB0pIF5H1VyH4eEdOMCUZ6LsEXBD0oayvWBx\n2jyPFkbSli+l4UB/XkoJehu455doHYcXeSjlyf3h/dmlQXTl6Bk0g0Jx3lpr9Mi5cuYd5Wf0D6O7\nWq3yfu4nyr6s98W7olDMV/Bc0Mx1enp6yiKQIDJOlYN8PD4+Jl+AvqzXVYHbo6OjWuQ/Ho9TuQ+H\nw1rEyRZ+EElQECK54+PjuLm5iel0mn2hphHpFiJ+xtvOyO3tbXKrdnd34+zsLKNhR5gYHvpFGpax\nwXHzESl2el0qgfIQEVVNK8ogePzZ+Qj9wIYYhxVF7Xd0KQbk3Gv+/v6+dugtzgm7eClT4CrmrAfG\nZjqdZn/u7u7S6eB+vAMIpE9a4J6grfTfc4NBQmdbvpBhr2enjNCRyFRJvbD+ceDgNc/cIVMgijc3\nN6kj4Qcy9kbduQ9oFSgPcxZROTY8z2uUccSJBGHku+h1B+iMhdGl2WxWQ2boQxmQeecfes16AHk2\nCMCzmQsQd+tFEDBnTEqH/+TkJB0ngghKDlFU15mDyWQSFxcX8eXLl0TNjbZbfqj7xrh5N7jt/HQ6\nTd2DrqVw87t373ItgdRbXzqgtn13MVFnDdy8Tkod7GC+bN/EkQI2da4VQwSU7Tx1RP2sMje2MuMY\n4KxE1CvQAsWW6R0iMASSZ+EIlAt/tVrl1u7BYJDRD/dcrVapwHg2DQ8ZI4/iM1LTbDZrXAAbAD63\nh2042FESzgef43Q5p0wEQMqkVBwIpAWohJq9oFCWOAXmifCe5lvRUNAQbv0eVrLlAn5JPvhbyVPw\nIsXweu4cudlY2JHi+8yJiyc6jegjbTx2yAPGAiOPkraDamSNOXcV84jIjQk4py6Sh1LEYcfxYdwu\nLi6i2WzGn/70p0x3RGxRl8lkEu12O3q9XoxGo+wLHC/m3+nynZ2dODo6iouLi5hOp3F4eFhDbs7O\nztIRfXqqOFInJyeJvJQI3/39fTq9yBuK9+7uLobDYRoC82AiIonpjJ1lkfXJfSeTSQYuGFqcKVBA\n3h8Hi3F1oUenFOBXRWyDr/l8HqvVKrlnyJvnDF3E86bTaTorOKomhiPTIIrML6kOc2l43nK5TN4K\nfCGaNwHwTPpGSgr9Rl+dirLDYn5VGQQZ8WaNOJApr2NcrQv39vbi+Pg4ms1mXFxcZLAQsTXsLgJp\nbuhms8l6WWUpFqNRERW/LiJqWQb0rtNb9JE+lzoOFAj9xpihR5BTb2xAp30tyDVqwv24FufO+svf\nKYNYz816vT2fs9Pp5Pu32+3o9/u5PsqyGaenp7G/vx9XV1d51BHzyRhjSxwsUtgVmgLyDeL4p//v\nCKqIqNlLBxi+J6iYuVZG/rHRzJODIQc/zohZfr/WXssfvLbX9tpe22t7ba/ttf2d7ZshUnjbJiSa\n0FdG0EQ/L6FSRKrwHJz2wyMGHizRqpLgF1GPkEgdmo8CeRS40ygI7wTXgqjFRDzQFzxeUBATac11\nMTpjIp/TlbwL1xEhE0X5ufQHJAK0zrwl8yQcCXIfPP8S/jdq5pQoCN9L3r1TcyCTHm9kxTwN3tE7\nkIxaMqaeX1f+Bf3kXQ19g/LwLMshssR7esemPzf3B9kiMkOGyk0McBQcUXEvpzrpN3NNuujw8DCj\ncu7DmB4eHqYsXl1dxXA4jH6/n7sPzeWCHxGxRUW88wfonvsz3p1OJ6bTaczn8zg8PIx+v5/jPp1O\nk7S+t7cX19fX+e69Xi83aJTrwOgb/DTLN2sK9MnzX3KV1ut1DX00Z+b6+jplsNvtJmpwfHycCDl9\n6HQ6Od6gPfSHdJA5fhGR6BQ6ylxN1hbIsPlqFNXkHg8PD5n25FByZMSEcsjUpIE7nU6tn8gKRTlp\nICnmOprnVPJyjIiUKSzTNlgL6HGnAXl/aAfmMpYcxZI7tbe3l7tPXSKk3+/H/f19pkJNGWAeeUdz\nhDjmaHd3NzqdzjPEgjWPHbKu8fp01sDjgAyASNlegLTzzu4jNsgFnEE1bRPMvcIucF/3weP4EoEd\nefTmFdZlu92upWkjtutpMpkkSuq0O/PN2HlDCMgmyHC/36+lruHvnZycJDKHfG82m2i324mce10w\nV8yvqSQvcd4i6kdCoVdsZ5xyfql9E0cqImoGJ6LiCsDELw0uLwMR2/UtgCLLVjoShnip4RFRKQRv\n/0dBt1qtrKsTESmgKFgbWsimCA7OVMQW3rcjZ2WK4baTiJJkxwVQKoQ/PmMcymrZGGxvC3WDw4NC\ncjqJBY2xNMSPQWIhe9EwjzYS7g8OdJmiY+xw/nhfnuf0BlyTiOdbhCOeVxKnHygVPqMBt5fEWDuv\nNDtY5iDw3jYmfj73Ne8CnhJ9Nr+MHYHc105A6fQhN5xHaRnm3hgTZIXSBJPJJDlhvAelRyIiU1t+\n/+FwmAqu1+vlO04mk+TsQNTFAfHxMHBMUHwofQjqb968yXdAcQLhe4dRufOHs+EYJ2TtJUODs3B9\nfR1HR0fR6/WSGM9643NSD8gRTjvvwrhhaNgs463nfEb60QYTmSFVtFgs0iEidcpacOBJ3Ti4TlSj\nZ9zYgUddHe7poBMjxpiaIE8Kz5whO0AOsvjd6VNzJO1A2ajyGY5CaYQdhJS8V/NpGU8+Q3fiTMFl\n5Z6Hh4exXm83J3gnM2e0HRwc5Lt7V6EpBQ6CSse5lDWaAxsajq0Da77rVJt1B7KHLkCmmONut5u7\nTW0T6Lvvb3oEY4jceA5sr3EibfccBDsgd3r56al+EgYyjH5zYLa3tz2Q+NOnT9Hv92upctb509NT\nDAaD3LEfETVZKpvTdeUckj51CtU25W85URHf2JEynwnhoh6SvXwf6UDEXZaUh6lvTo/RAr5b5ovN\nrfEgRlR1RUo+ixcCzhR9iKgQj1arlSRWHEUiCyMlEXUis9+dhU2UZwFGKWA0/G7O/TsqMXEawjWL\nwxwLhBEhsmHG2D89PSWpnnmiMaZGB1G8cNUsnDhrnhP+bifI8+moECVvw8911BVBdnB2MXg20EaV\nkM8SBUXhY8j8fp1OJ4nfcP2YKxt5lE5E5dRybx93gbJk/I3KMkcYate1ohAr48WOlIhIRwgkh7pR\n3B+HiF1m8BTa7XZuK+/3+zVuAuOKscAp8NywPr0pA6I1xoTdpbwDRW4Hg0H88ccfz9AKnETOoWTn\nGvdBH3gNU6YEVHB3t6oVZQ4RjqePbMEhIEhxkUCQnv39/bi5ucmxwYFip5yRYwIjxsbIOhGynWOj\nIHA97u7uktcWUTkSg8EgHVT+RiAKR5Pgj3vyDAIbZNS8KFoZLDDHpUOEzkCWHbTZAfW93JAHjCdj\nMZ/P80xHry8QRcoZ0Ad+8rz5fJ71qSIiZQG55lgUnodjYieQcbCz4t9L0nKppxkTdvq6n9hIvufN\nD5ZDdBtIJqUCuLcdYNBfxqa0ew5KvduTsxlHo1He344lc/4SL8tghscJ+UAOncFoNBqxXC7jr3/9\na3S73dpOdnSFuYXmN/udSn4v4+hjZbgOzuNLOoZx/1r7Zo5URLUdMaLa1dVsbgvrmXnPIjEpr0x1\nAA/7IE2ntPg/SondTjzbUQXXEFnbeKHcOBAxooITXX0VR8GHyK7X6zg7O0tDiSDyLAx/uf3fKQ4v\nZP6P02RBdASJILu4ohUdC9aKj7+h9LgvTiJGxM4LDh3v5oWDwjcK5uKEXMP1jvSdtijlwgRiRw6Q\ne3l/qjZH1HdR8f7e3cU1yJU3ExC1QFalLzx7d3c3d0yBakRUu8QYS6f9UGxOmdlZL1Msjio9vrPZ\nLO9pZWGSPPcYDodZc+3NmzfpSFBD6/z8PO7v7+Onn37Ksb+5uUmnlIgeWez3+wnH23GKiHS6GVOn\nw5fLZTpSw+GwdnYl6X4czfF4nDKD3JGKw7B4JxVjS/BjFAtj6iiV63hHHEOjk8iCHRPmn1IEvV4v\njo+Pc+5vbm6SUEs07RQ7fWa7uY0//xgDy4GbN68wt7PZLPr9fpyenqaz4Cr9EVWtqojKSfduMho6\n0alCI2tln8pxIxgrEVCjxegwf8b13BvnFnSf3bDMtRvoJ+PHmOJksKvTwRCBK880Gsma3d3dTTQF\nmbG+c5BM4OC1YGcY+4Vd89w7Y+G0FBt2ms1mnJycxGg0yvM0I6qAnnfkLELmiB3eOO4+NcF63rLy\n9u3b3DSBzCM3nN3J2idgiKjOvESOLVM+H9YOFM8/ODiIq6urODs7i+Pj47zOB7y7dhdjit5HPplD\n9LptrQNUHFQcQaNjBBlfa9/EkcKgl3lH5599HAwGC2PValXHSKCIyM96m3fpmRoiJqL04LphpHDe\nzK9gCyi1j2g3Nze5Wwlnw5yN0WiUUVS5swBOR5mic6qp9JT5HAiaBc13vKWY7zki4HqUl6MhBBIH\noOSC8E4ggYyNnS732TwJlH6ZejOCUDqZdgZ8JIajWws/ix2F+/j4mHA1KTA7Fu4nsgZqZbSI8QSx\n4h2QCcaj3NV0e3sb0+k0VqtVLkyUDeUErIzdN5QCn7nOEE400WU59kD8ZVoxYpviGwwGcXNzkzJ1\nd3eXu+7+5V/+JXZ2duLjx4+5Joge37x5U+sLjg5Ov2vJGIWF20DwwXgC3eOs0T92wOFgMU/IAcaD\ndelUFGkE1hD9WSwWMRqNMqq2o+5AgMYcYrhZr/P5PI34cDhMWaBa/Nu3byNii2idn5/HbDbLsQE9\nIEA0j8cRsPkz1KKime7Q6XRqOhGe1OXlZS3A4z34HnwYZJh5QoYdtCCPBF1Gap3WQ19aFq17rL+d\n6isLspbUDHQ2Y0S1+sVikXWtPGe9Xq+GSPK8vb29Z0eO8BnrnUDbaJJ1aYmGe94c7PJ3nDfrBBA/\nbCFOX0S169rv7lRxt9uNXq8XJycn8ebNmyxXEFEhw+zeNGcrorKnrCHzDnkutov3R2bX63Vyahm3\n29vbuL6+TlS4PFrM8mAdtbe3l/QAOIK2ewTrFxcX8fnz57yOEgqMnxEwp5BZP0by+D/p3bIOmndV\nO/PDevha+2aIlJViRDXgX4NOidZRelYGl5eXtbowL8GK/LPBiKigVyMPEfEsAjDSBPy3u1s/dXu1\nWsVkMskT3bmWdxiNRmmE5/P5s8VtVMOGvSRK+p5GjEqvmYX48PDwTJmyOBGSElpnQRGlsRCJql/y\n+JvNZjoE9NP3xAlDgJ3ztsNYCjGKgMXFO2IAcAKtLOC2tNvtrHhvmcFZhDPibewvGVOPGYrHUTeG\njrkD2WAe2+12HlVCLRnky1W+TRKNiNqYlP3BkMJzKQMHIPj5fJ6IRMTW6FOj5fPnz8lRYixHo1ES\nrc/OzvI6qmh/+PAhlRXt/Pw8NptNPtM1hkC+4HFA6o2oUvKk3rwOcQR3d3fj/Pw8DVJExZtC1kAP\neP/7+/vke4FAMf/U8+r3+7UjnRhveJcmqtNASymFAFnb9XNAdJCpdrsd3333XVxfX2etLNY0ZSqo\ni2SU3s4I+stIR6/Xi6urq6y5Y94Z66vUNUTzjFer1ao5w+iBMsB0msjGruRHlpwg/5/rLd92jP0M\nPmOdsP7p6+7u9hw9Ni4YHcWAsjGA+3NPOFOWPcYNtJnvligX34uoHCcHob4f98CJQh86o8B3+LtR\navfZDgpHIR0fH8fx8XGMRqMa0uXMBmND/6iDBvhgvYiux6G07ub4Keut0unhPubaYTvshJR8T9LL\nFJ+NiOQEdzqdmM1m8eXLl1oxVmdg3CfI8GRyeCfLk8fJQZK5WvSdn6V/ULbX8gev7bW9ttf22l7b\na3ttf2f7ZkfEEP3Q8LZNirbnC6cGb9yRxtXVVUK4jpCA/ZzWcCMyMyRN/0zms+dKhWwfKeFidxA/\nv//++0SJIioO2GAwyPcGiQDFMCzpaAC40QRC99epMb8bKAZcAUctvh+5eROjndp0lExRRj/H6UtQ\nMg6VdPRFuhCeBOPmSAfI2OfJ0UjXODIwCRRZ4XkgI6RESn4IHBzzrnhXw7vIB7C/eUnMJVwk8wcc\nvdOXbrcbk8kktwtzHxdmNBoGpwjuUpmChptjNDOiqpoMB8SIBf3+9OlTNBqNWmXz4XCY79xobI/D\n+e233yJim7L6x3/8xzg6Okr0lfcHoXGBW6dFQAxAnoxwEpG+tA6bze0RLxcXF7WjZUBwkRe4Hy6S\neHd3F/1+P49Q8Rl5lGTgOiMKpGzhiZQ8zogqfUaKDmQL5IS+8TwQ6VarFbPZLGWROfPGBsYNukK3\n2817mwO2v78fx8fH8fPPP8disYiTk5OIqPM/WRs8zzoXlNq6kY0+ROGgAGQEQBiMftIf5q1ETtHB\nrB3TGpBhj1MpB3zXOyEbjUa8ffu2htL5uZSHaDabcXx8nPNGMU7QQ/NRkdu7u7uYzWZJ0aBvfMfp\nf/5m7pr1kxE90si2Ud5IYKTOckmanNQdx6dAwGYuTP6GPkHaE1oDRzvd398nLcbVxUHOGo3GsywG\nRzAhH6YKlHxNyxm6H26ZU6KQ3km3IlOsa747mUwSHUcX8t4u8kza/eDgIMfAdBcoNKW8mF9b0mSc\nQvxa+2ZHxJBSQVCddmHQnTIjL3x8fPxsgqfTaUK8hhAZjOVymXAlCoVjK1CIdnpQ4F40Jp4BObIr\ny1uL2S01n8/j5OSkRmREATHRJQ/IcKj5BU7vGHrEsJK2wEiV42zyOO/BgsGAe7cG6T4LpwWcbdMm\nYPIe5gdhCCIqDgWOoB1CeDU7OztJjCQVdXp6Wsu505+ISNL/09NTpoCsoHEG7ExFVAbKaRs7mGyJ\nRtF64aMwkJ0yzUjeP6I66JM+c583b97UlC0y4/Sc5x/DYz5aREWQJI1jhxLl3mq18uwsV8zGQcO5\nMmkhkt0rAAAgAElEQVTaHKBPnz6lXPz4448xHA5zfqbTaXz//fcRsd2qP5vNkh9kxx4lv9lsnjk1\n7XY7FotFchst+5BlF4tFEstpOKlwS2j8v9frxePjY+6apSQA98WYMJ/mOpEOGAwGqacsT+gJ6wWC\nOxNTS7I19+cYHuYeRc3zvL6pB0VZCesI6iQdHR3F1dVVHhLd6/VSR2JomcMyYMKR5XfWMPrQgRCO\nJ30z36Xk8TmIYK3hpNqRMuWiTHmxFng2mzV4XrPZjHfv3iWV4uLiIiKqndQ+fxV5Y5ezd0mXwUmz\nud39ae4kzrW5tuZysW7os+/pVJF3FZsP63sgM8gQARpOrY9HIQVHMG254d9yuYyrq6uIiORE+VgV\n7zonqME+OAVrWgNEfd6L5xLsWrez3gBD0InIBGNmXes0LqAL74Df4DReuQOeMbF9KmXRtpRSMuif\nssaf/Y2X2jdxpDBgCEPENlLodrs1h8oC2Ov1otvtxmAweLaLrtfrJQfDEYa5P+v1OksrRFSCQKT1\nUqTPdXZOUBAonPKIBQZ8Pp9Hp9PJd7i7u0uP26eS01j4Jpry004Mz46oHByEAuMfUW0RRTFbYCOq\nMg54/RgtmqNLowXeMs7C9+JnfECu2I5Ozt+L15wGBJnf6ctkMkkkwjn1iMhCkpAnqVWEXPj+cIb4\nHcSsRPkiqoJvLGZzIUz+Rh54P5w/5LBE71C+RJn0r9frpUOE019ypIzwWG4ajUY6w5YNR9soThck\n3dnZiV6vl+/nOmmdTifm83n89ttv0Wq14ocffkiZmM1m+fPDhw/x7t27iIj45Zdf4vHxMR2Yku9h\nvt16vc5dOBDwefbt7W1thw7bwr2jkbVAYNHpdGIymdTOokPeMYiHh4c1gjsOD/LE+9/c3KQjuFgs\nkksVUW0Hhw8C8Z7nEZCg12xgzEXp9/u1s/2oPUVJCq/DTqdTc9iN0j8+Pia68vbt29RTIBGLxeJZ\nfT2cdProulV8hgPW6/We8XRwvJAtI3nIKfrdXCcHUs4CRMSzde8xjah2hxmlZ7yQ3ePj4+Q2zWaz\nnNfHx8faMT+gfqwnb1CgD5vNJnlFXt/oPO7r/ltPWy4YN+yZSzIMBoMM4sssDI4fusubNwgeAAcg\nlLuMBRshOPeSsQFVp78GJQgEmGPPE0619aQRKH56juirHS4K0jK/XttuzmBgGxjz6+vruL+/Ty4n\nepl7An5g+x0o8BP7YE6fkaiXHF6/e9m+iSNlD9GQa0R1fpgJzgjSwcFBIg8M3N3dXRrQciLxSL3t\nGWO6s7OTqTi8ZUf7EXVkyIsNhc5EMOh8B0V7c3OTC4LnOP3C+3nRWfmWf4uoH2ZpR6bVqh8iasFi\n0TjCREiJhktCrYXGSAeLkJo5VnyOaJ1GjKgIgihTFFJEVQQRobcimkwmuRMSpWKUp9frJXkSo8J7\nozDLVEO/34+9vb086BXHppxD+shnpHvYUuw5RA7Yudjv93NsI+rVeBl/pyy4/0v95fuO5HjHMpK1\nY080zrg6LeICkc1mM2Hz09PTWK1WcX5+Hu12O46OjvJdHZV2u9346aef4j//8z8jIuLLly/x/fff\n55g7JYaTiLM7GAzSYHz+/Dl+/PHHRHF3d3ezphUlLCIiKxjbgPEsEN7r6+taIMK7objRMSBuTg16\nXgguMCQYIeoKgUyQjmMOHdHaCFuBs4UcRwrjRSDlYIgxNBLqgqSs7Yioka2Nitl55N3t8BnBR77R\nF6Sc/dn/Ze/NfttKkjzcIClq46bNdpXdNd3ThcG8z8z//zbvszxMowvdXVWu8iJLJMVVEkXyPhBf\nnu+EWXMvGhjoPigBw7YonpNLZCy/+GUkjhB/m2aADHoOeHc+CGT9ApLF851KZ24oEWKn+8uXL8X5\npC4Ua+j0k20Jz2G9nGoz2szY6IsPJ7muodce5y2ntXl2pp6QDuZ2CdsY0DcCIh9Acn9ADq3bHx8f\nyxhx1HPmB8fNwT9OKQVJjWT6uzyP/2MTcGLywSWc16enpxiPx2WvcdIVe+D0MPuBFKpTa+yBxWJR\nDs0gF7bZgCXMKw6R9asP+jhdmIOEiK9Ljrg9iyOFoXReFUTFhp5FBGoEdnRkCvxoFr8dJ35nX979\n6uqqHPE3IsJ3zdfKCEREvRQA/+cZ+fJdPGyEzekqn9CwgPI+KyU7Ofyco98cX2bM3mygWeZlOVrw\nWvAOlIznBUVMmhDEI6KKonB2XI02IuLz58+l767ezfwQnWRFZJTAGwqZQOHhOERUl6yyUR0xNhqN\ngmJOJpOYTqdlI5pX5e/zPaf5zK3i+ZvNJobDYTnlwjvZ8EbNnMJxCi+nxVg/UEYaa4TSdzkGGwXk\nysejKRrKZyBL/X4/3r9/HycnJ9Hr9eLm5qbICHPSbrfjj3/8Y3z48CF+/fXXiNjVmen1etFq7W4C\nIHWFLFrpNZvN8jlXyXz58iVOTk5qx/hns1lJGVLoFIQT5Utqo9FolAKUEXXFSGqHlCvGhdQA5Qci\nKmNiOUWm+I7RFaMQ/L6d5Iio8RNZJ8YBaomsgZSyLk6h2ZiCcNMH73eOoeP0g5AyPtARZDsHH+io\njCDjuOIQ2Olx6svpE9YC3Yc8O/jCCTBixR7z3np8fCxyMxwOY7vd1U776aefagjCZDKp3SQB8kRf\ncDLYI+bd2TEEDeH/lhHkgf5hh3xaknlzZgV7gsxwMTVcVFqer5zuJ2ADmSOIo6/8Xg607JRnxwDZ\nR5/4e6D+rIOzNDirppA4S+Gxr9frGI1G5bsEVft4S0b/cxqZ/X97e/tVCpaWKQHIL/OaA1DQOnwI\n15/ah7bV5u43P/k/bJBNM78moiLp2rnAyOBQmSsQUU3C/f194T5F1AvamfMTUTkXh4eHcX5+XgTT\nffGGt/OCcsLZQ4CdIgT+dRqPiJwog2gPw8uC+eipNzqC5X7a4XC66PT0NO7v72M8Htfy+a7fYvjd\nggJ/i7WwMgAyJUoAQeJ7kAm9KVnzu7u7WtToHLiJmCbwHx7urv+4vb2Nb775poaAkQpmDhyZgDbi\nNHgTMI84TBR+i9ilBQw5k86IiBp0jvOeG4oKkiPOC7VPkDk7x0Sc/DxHdGx4Uo05vcP4HHmjzKik\n3el0as77ZDKJzabilqFsbm9vCyry/v37WCwWBT0hzfv999/Her2OX375paBHkNTZDzlNzd1+y+Wy\n5pxTDmG1WsW3335bS+kfHR0VxJDvei88PT2VUiibza72D5wvUoYYZ6OujoI56OAUhh1G1oc55boo\nUil2pHESMUTWQwQeFN1EvpElxujaVOhJy7D362q1u7KHAMlXJ6FDcL4cXcNHwzgbBffvOqjjWayd\n6QXIBnKDrs0omH9GY96sX7Jjw7sp+hoR8Ze//KWUdZnNZrWq94+Pj3F3dxej0WjvO3E60BE0HE76\nawd0s9mU4MxBDt/DGcyBEJ+xh0FCkYvNZhPT6bR25Q/vA2kFdTL6CJeU+xhtB1gndEJOb+EU0XJq\nzw67i53iQFFY2QgVeg0ZNRptp7LZbJZnsu/gf5liYRlj/DRz0VarVQyHw9qBAyOa+AQenwEPyz4p\n0+12G5eXl+V7Dqp+q72UP3hpL+2lvbSX9tJe2kv7O9uzkc3xsJ0qIXVDysL53Ih67tunB5bLZYlk\nfRWII8RMGMMTBZ4178oeaGb98128cPNlQC84yulrBHxCDvQBrxj0yDA+jdSVI1/Dpk4LZGI06RsX\nWvMxf3OfQBsidkgPiArpEx91hXsGIudCaaBSRHT0td/vx/n5ee24Os90Cq3RaNQKrrK20+m0kCB5\nJgif8/JGwCi8eHFxUTudBBpHtH9+fl7m7fPnz6XyfLPZjF6vVyO3A20z10ReVKbOJFM4KqQMF4tF\nQao8DlJMrC9yg+wR6eVjxUS8ufAgEV2j0SicB/q6WCwK+R5uzZ///Ocip1wcvtls4urqqqBqj4+P\nhZMGcsWpPTgN7LHlchkXFxdlDOfn5+VdFNnzWsCXcCoVOeWOP1Jk9IVn+UJvk/RBnFxgMaJ+d+fR\n0VG5EobvwVdh7xjl4y4+iqBa3s7OzopucqoNlIt97JOd6BDW0ukl5IoLhnOa3frOqaGcnrMOI5W3\nXq9L9G19wv/z/XdGXMxDYQ8zJ6TNXAAVtNlrYHQwo2B8ZhoBKAmI47t37+JPf/pTOY15fHxcTi1C\ntAe9v76+LnMGgs6+MfnbiB/vN3pkjiHzynwbQXYajv0AsmYkGp3tAsG/deraGRquJyMTw/s8x+wr\ndPg+JNDUCGTRtIrtdls7dQ6CZ9pNRHXlljlGNBBPp25pli/G6cwP68WhCMtFRHWbAbo+Imo2Bf1u\nZJz+OCXNZ+axIR8RFaUhnx53e7Y6Uvvys0B2FsKIiq/EJaZ2LIBoUdIWRlfhdh6b9xkeNK8h9y0r\n9oj6qZmc24aUahg3oroPDkVkweCkFA6NlT7v5TSG+wdcifLEkJsH43oa5lhYMbPRI6r7rJz3z2P0\nfBmqHY1GtbsSPX7nnd2YE893zk8/Pj7GfD6vEY4pXQG/zmuHHGGw+/1+MV7Ox6MQ+YzULWkBH7k3\n9M8fO7gYdOqaWE6n02kxyigik+3NPbHTYwXK85z2pQ+sh9NRrCm8JQcmOHWbzSZubm6+4hUeHByU\nK41YZ47ncyEvvDVkBsNwe3tbg+k7nU40GjsC+jfffFOrst7tdmuydXh4WOSJe/jgpzjFTPkG0kL0\nP9emg+/glCjryB42n+fg4KCWQnx8fCx7kHc1m82yp3wCibRw3i+ZrDqZTEq6lEuOfR+aDz64XlZO\nl6Hw5/N54Y4yb+wNc3voA4aNAM6pYhtjX9rLHuQ0qoORiJ0+YT1szPiuqQKu+5MdKq8xP3eqlGd+\n//33MZ1O4+effy57mGdyKTdpqsfHx8LLIViPqNJVdlxt2E3E93jZd7YXDoqgNfh96HtSvH4mOjYf\n+OF7OEbMC79r0rdTf8wVTj22yH1FN1g+sJ/mvxmwADzIlBaew7p7LQj06Yc5nsw/e8Z2wGn57PBZ\nXpgnp/74jHIL5qQR4LpeGu/DGXVql/nM78/tWRwp35HliCaiykNaESGAkOtM8iVfbKKueTJm7OOh\nRlSOAwrWgsiC47ka6fFkmrjod+wzbC4+aVQmokKWUELk/pkHPjNRlL7QB4yOyeYRUa6eoFaRyd8m\nv2dnEUcTwTI3w/NgxcRJOG6iz+Rnk6OtNMwLy84skS3v4Th7RIVs8jveTMzN09NT3N7e1hzefr9f\n5tf9YAyvX7+O9XpdSKusPQ6ueRM+DYPsse7mBzCHh4e7m9p9TYg5UHa23SdkgEtA6bsdYDuuPA/5\nwAgig1YioGX0BfmHAP7dd99FRMT79+9LuQF4OD4J980338Rf//rXgtjRF+48Qz6/fPlSHIl2e3e/\nHg5Uq1XVQluv14UvB5cCzuHj42MMBoNy3Q7Iqfc7z8Dw55NX/r85REavfTzeAaBRK+YebmFGE82x\nYl1w8EGocJ7t9KC8XZ6AqDiTmH2whbnHcTFnpdGoymUg03bUMSDZGcr8VAy8kTzrYOtJ81TR4+ZY\n8V3WwEiWUSC3VqsV3333XaxWq/jhhx9iPB6XS6LzNVWQ0plvo2lPT1UNIjss7DnztbLOsk7EmWMv\nZSfSyBTOPmvBWB0g571sp3W7rV9jw3hMhqeved54nrlcRt2Yf3SZZdkHqH7rpDey5+CBAHKzqd+P\nyfdyPSrPKTIMQsozsZW2t3zGOuZx2dml8UzLApmynC3LqJ7bszlSEVGL9vedmjNZk0ldLpe10xTA\njUYJeA5CbOWQoUR77vaWgQRttCPqpHicDBNHSRHiRLBJ8YJZlExGRZE6VcczgcbZqBYEPiOKR/Fg\nHEgvTiaTWoFMKzungZg3lB19zg6h4W0TGTebTXz8+DHOz8/LJsj9iqg7ITyPZxpiR1njGLkKNesA\napCVDf0jIjVakZ1jK7eIKCkEn1BxypENZ5QDBwj0xOli+kZUjQLlHTmNQN+QWaJ9EAEa91PxnuzU\ns69AN1gDR7NOeyLDkMK/++67eP/+fUTs7tP7l3/5lzg4OIj/+q//ipOTk3j16lVE7NCqu7u7uLm5\niYeHh9oJuuPj40KMHo1G0Ww2y95nP5+cnBQHjMb36QupNtYCB2swGNT2IWNcrVYFBXXFcxwrZNx7\nitTPyclJQW0dYPkAxsPDQ1nH5XJZCosif3a6+Bmpa/pDtG5Umd93LaN+v18zrugDn5BiDCaS814b\nK4KPiCoFyr9B63LAlJ0a9BljRN68j63fIio9472f98i+tHYOkCKq0hDdbjfOzs5iOBx+ha47lWZn\nkb2KfkT27QTiODozwHx7bvns6ekp5vN52btZlxIgWyc6Bcf/mWMHxYzB9AocGZAp20v+DeqaM0Am\n1FuHIYPoQztLnGjDEbXcoa+dQrNjY/TecoGso989r6wZyBF6ivlA9jJKZPuBw8n7MiptB4y95YDP\nyPD/5kRFPCNHCpjQJ6EYCM6DlRtGgdM4hjkRSBbMgunN3GhUx/+d42YBUTa8z6mwfWMAIfCx44OD\ng1KBGmXDMxk3C2OjDG+C/rmuDUUa7TFH1IuWNZu7o9PwUlAk/M7Z2VlMp9PixFq48e4zPIpQMUf8\nnO9ZcTKnmbPGWuAIYJgcuUdUjit9M/TfbDbj4uIiNptNjMfjEl2ykdhUTiuguKxQmdvPnz/H09NT\nXFxclOs3aCim9XpdjtxbBtjw7i/f8+ZEdoz0oLhcUZtnGv1zetvy4XpbXot9R7lx9H1qC3kHwcTR\n6PV6ZS045XJ4eBhXV1dxfX0dP/30U0RE/PM//3NcXV3Fv//7v8dwOIx//dd/LcqGAp6r1SouLi6i\n1+uVyJNIdbVaxd3dXa3QIykh+m+nEM4NhsnGAM4R8+UghHeCxOB822CyD1GuDgY4IccfdJSjV97j\n9R2NRnF0dBSnp6dxe3tb5AM0A+fK6SRzwAiK+B5GBHQEh5Q+MH6CwGzIrL/sKA+Hwzg5OYlut1sL\nPpAT9o0DW+TNDpMdBpBYI6R2bBzY2CkAMaSBavF962bXykIv3t3dFZ7jt99+W+YUBDYHZk45s/7Z\nkWLNfNqXZ7AmDnZZH3QvThXy7XSaUR4KCmP7DAJQOgbd5SDCts+OhlEwvo/TlB0pI0UeI2vCz+0Q\ngsqwJ5yWRdcgG8wxKWaQZdKCyBvlQkDXLcNGvtx/mp0yo77oWcAMAiyP9elpd20aY/B7mTNnHv63\ntF7EMxbk3Gx2VYfhprD5DTd6EUlPAeHnaIXFiqgEwkRRCwKfkU4Cyt/Hs0FBZIcK4adYZESUu8eI\nsM0Hyn3K0WVERazjGfQhC7ohRzsr3CPFfDin3+l0ym33PCvPsfPFkEeNGvFOoiiUt4XThGZvRMPb\nfg7vxtBlB6vZbJZrBUBmMN6Qwp0eyAKPkXGqCbI0Ssx5dKJRNo8RoMFgUIPqGTPNKBKlJ0xUJ9WW\no33PrbkRNL6DwvY7I+r3eTk4oC84YSgU114CjSEtAupGam80GpU73H7/+9/Hf/zHf8Tnz5/j3/7t\n3+Lg4KDcwweacHFxEZ1Op2bYIf2Px+NinO7u7iIiyvwSqXvclhUUW1ZuzClOodcR9IG0t6NKp7iz\nXsDQMEdGfChrAkqUkczr6+v4/e9/H4PBoMwp84qSdnXn9XpH+saozufz8j6QDiJ2owB8F+fEe8by\nwVF/p3GPjo5iOp2WquYucJs5S5YnHCfQIKdoPLfoAOstZIo96vQ0Tk+O/NELjH84HNaoIOjRX3/9\nNT58+FCrMYb+y6lG7ADy6WDI+jjrXPpNf7wORu3zdWNZ39uOIO/+mR1MO6I4h7yPdK5tofeGUT07\nxZZr5NzvJDDNDhGyYOfZhynM87Q8gIYSkFoWjV4yT0admHNssPc26+xglPHRRwcrXif+jUzzfZxB\nyke4EZT9Vnspf/DSXtpLe2kv7aW9tJf2d7ZnQaSIgrfbbYki8AINM2evkOOOERUxjWj31atXBc3I\nRHWnBTKHxnCiv+Ncqb+XoU4QE8ZALhkYmsjT5F9QFEcYQMwHBwdxd3dXoGFQJ8ZgLxoEj0ji6emp\nnE5xocGcQuS7GbWyx79arQqXxH01zwfSrlMRoIdOtzF+5of3Eb3QR9bcXBcXkiSV6iPw4/G4Fn3k\ndAScj30RBkRpl3BABpHRRqNREMfBYFDSMhzH5b2WXZCu2WxW3uvrjUA1kFOjCVl+Sd1RcDFD8Ya8\nc/rLc+so2b97eHgYHz58qJ1aQ/4hf799+zYidoVjf/nll/inf/qnaDab8cMPP5Tn9Xq9glQis6RS\nKbrJGt/d3RUOWrfbraWSHHmDUBKpWp4gLVMtfR/Pj1QDe8R8Ra+XOR2gFIzB8kSVc1CJdrtd9BdF\nNofDYSlOCtrOaT5OnZpG0O12y54h1eQUItwxUFCnzeDjUWrFyAJyStrESHG73S5pPd9DR5kMo0PM\np9FQo+smamfU38greiNzQPm+9YVRDfpwfHwc5+fncXNzExFRkI3VahWz2Syur69L1XPeY6TE6TD3\nLaNBIDXsT/oHdwiujrlNRpXg74L8I3eupo4Mm6vldDJzy+9EVFeMMXbSUqZYmH5BSswcNMZhBDvr\nHsaVv8ucMJ+et+l0WuNist8sF5R9MVrm8bP3nYJ1RsPvM9/Up2/ppw+BOP0H2gaH1adSmXuKg4Ke\nMWdkxH6rPetdezYKuYZFRAWr+pjzdDqtOVksFEezqSHi75uv44Xi+0wQv08/yAXnnK8JqoaiSYdx\nrBxnhGe3Wq2iGP0+w8ZsZHhAzAuGwmOgTz4tyPdGo1EMBoMiuIzfuWAElZQcY0FpzGazr4y335lh\nXOaAvjpd6E1hUj7PzFwEGu8xNI8jxf175tPxPvM1SCXQX5cnmEwm5ToXZM0pouPj41K9G9gew0Xl\n3IhqA6NsmQPWmtN/+5SbTzJlhwBlBx/CcsO7rODNyzGJ3ScoI6rLiVG4jJFgBeVsnsiPP/4Yg8Eg\nDg4O4qeffqrtQ4wavBSud4mo7iEkvdftdsta4Fizp+BM8b31el3qkrmEw2KxKDwQFKpTNexNHGTL\nDYbCqXGXDeH3ebYPKTAnOOLmlcDjIWXGs0hduoQHqU0CHhP/aRj236I74HjhCPG+w8PDmM/n5YJp\nOwStVium02ms1+u4uLionYayc4BMe1+iJ3BqkVn6gx7ACWNPkpY2l4fP0G3sU1Me0AV8p9/vl0Dx\n06dPZf/haHGAgT3tZv1ASQS/x+PHaYUSEVHtNVNJkEWCcfZvpoGQpuMAQ05DZZ1Hc3radtHpKObX\nup13klKz/s7pzkwo93wZZDAvzCnXiCicYM8ffeP/7HM79TzTZHPr74io6T2aaSmtVr1avKkX1PZz\nag/7jVwxBkAG9IjlEAcs98PtWRwpn8JyLhfuBpvfXIHtdhuz2eyr0194wiyE66kQBZjPY+8UD5p3\no8Q48mzF4U1DTp8J9zMbjUatcNc+j98kWhqb1E4FY2DD2TGIqAieRol4H0iNDbEVscm1/pu+mIRn\nATePANQhH1HO/Cs3b+j8MzshfE4EnSPkiChEcdZvPB4XYXd0heLwprGMmFt2dHQUl5eXpf8YGxoG\nFufNXCnehTNhJGy9Xsd4PC6cFK8xRscbnHHC/WMNPW+sqb+Xlfs+hMAcFu5sMz+u1WqV8gzv3r0r\nBQ3n83m8efMmRqPRVzwYnHWcJDun0+m0zMnp6Wmcnp6W+W6323F2dlYrAGlnIvNYTLiF94Wz4b1j\n3eGCuTyDtTPi4sYzzTujzArzZMU6mUyKEV0ulzEYDGpGAQXOOqMjZrNZnJ+f1/a/+2KF7n2BU847\n4Z9FVLWpbm9va/IQsXPczs7OYrlcxmg0in6/X9bJKHuzWV0v47ljbtCN/NyBlZEd3m3UOQd0OIWZ\nf5iDDTiRrOtkMinXax0cVJfvbre7y6HNu2PeTHTGCTMyjqHH4SIQ9ljQHy78zNhAbjwGozmscZY1\nnr1PZxJoZztjMr6dU+wrJ44dmKEPQEF9yIh5wgm5v78vzim614RyNx+gMDqGXKPjzKNFJoyk0bDr\nBKoEhW6np6eFe+q5Qvf7PsKISkcTKOeA3air14gx/P8OkUIAXQzOpxqIThnMdDotkbEJ4jzDxjIj\nKxCNjUDxN9+xoaTRH28svscC5VNUPoaaIU76aCE0ugN0aCFmfETBRi1o9/f3JXLkhEREdRs8pyLy\n0VtHXRZ6GhsOpZg3yXq9rtWgYb7tvPAczztzYEK9YXcrWMZxdHRUijpmcreh2KOjo/jy5UttLdjg\nRIQRUUMvQF981x7RyT7EjY2P7Jocyd+OTP1ODDOy7RQeP8uHG9brdYn4qOPC9wxn4/zbKWUfGRX0\n3KHYSCdH7Gps3d/fx2QyiTdv3hRSckSUC4SROc8p+wQD7wurqUr/9PRULikFOb26uqqltI1yeX5B\nMbMz6HnPSIdTe/tSnqzJPuMVUZH37bw6qs4pMwzcarUqRTE9RqJyggOex7w1Go1YLBa1u8Gc3vIa\nYhScTkOGDw8PYzAYxOXlZQyHw1gsFjVndDAY1Iq+IudGVdin1jXMox1E61MjLXZemENSJH4na4HD\n4aDNcz6fz0s1/YgoqZn1elfaJdM5kIl8QtZrBvpLAy3ySTHS/ybH08+ctnfQk4MX1shzwNo76LRO\nzMG/aRL8n/2Sswa8D0fKFBXmw7YpoiKxozOQS2QKCgpyYEQMPZsDOmRjX4rut5xG5gFHDzn0HiBz\n4EwNDRTKJ8g9pzTsgufWiFruS5ZLt2dxpHL0SGMRnCKIqC6hHAwGZUCuRE3OE0OEMFJp2sgAk+MU\nGY6ZNyDRsbkdfGYUKC8GjhyolRUfAsz3Mupjz9kKmg1jQ0lf/LehdrhGhljzOJhzDHwWfiMlOdok\nYvA62Vm0gucz5p+xu6w/x40zUkZ0gJPVarVqhoZNxdzQz+FwWFIscAqIvPv9fkH5Wq1W9Pv9MhtC\n9csAACAASURBVPfj8ThGo1G5VgauUET9VCVpHRfUw3lpNBo1tIjvUtOIOXdqNxsiO6AogG63WzPQ\nnst9yCLFP70eNIIOInMbttvb2+j3+3F4eBjX19e1S025WcDHxiMqnpkRGXPn6Av9N7IAsgkny4YG\npbxvfHZA8l4gzb/dbr+6mJi153lGSLzHnPrmd/luhvqREwzqarWqnYRkDY6Pj2vHrk9PT2sGLKJK\nsdh4ZFTCOoM+Iac3NzexWCzi7du3cXJyEp8+fapF9uv1rrQHCIn1IIEhhtfp5Jx6+a3+sSbeNy4C\n6jnNgSF7ww2DuFwuy5w6C5FT3/BgnPFwIJ2RL2SGOUUGMxJPYIIsZS4jc2QZYl54b9bfvpjaOtiB\nKE6PP0OOWDOPlcY6ZIQsol5RPqfh0PsEBP6eHUP/DNTNzhXzho1AXrz2/l3LIv1gDbzvSWmDGNpR\nZt32lU1ANul7Djz5PnNtR9N7b197tjpSTIaPUOI547wYNvYGv7u7i8+fP0fEblK5EoAjxI5aEGJD\nuHzPnrkFdTKZlPdtNjtODEaYRUBI891ILJ55DxFVJMMCYWwjohwl5nlGjpgbNkM2mnZ2ECDmjD4w\nVnN2UKKsg9NGKDMbNKNWQNsWdsZv/lHuq//vjcia0R8r18ViUYo4np6elhIEEVWFcqITOGoRu036\n6dOnaDabJXWVSbwoNztnIE1E/Mvlspb2g+fCMXWnNa2QQRDpa6vVKmkv0kom2rKGrLOLweFInp6e\nlut3WAvkFjn0++gXCtxpXRAp1pO1ABWK2Bnkk5OTgjrhBJ2entaQWBpV9I+OjqLX6xWEhLFThXy5\nXJaUAc/AMXdai3Ejj4bcQWDNZ8u8O5AxG3vmBLQHJyobLtI11guOaJEPv49CpHCUkJvJZFLumWQ8\nfMY8YhS979ATBCx2Fk5OTspeIxBhDDhxh4eHcXl5Ga9evarxXxyYGDkkELWsECjY6PAuIw04EZSV\nsaNtZBuHynOKfDr1x2c8p9frxWg0KgjRaDQqe4mrgByIoivZG8gV/cQhcvCFEXbAuY+a4SrvEdVd\nbOxd6wKPFZ1pZ2a9rooME2Qx3xnFsSFHDvdlU0yQx07ZnmRagtfQNZc2m00tLc5tFYzP+x9b43Qz\njWdZfnivnalMk4moHHkDHwYWWG90opHinPFgv/B31hf+/Qw6+B372kv5g5f20l7aS3tpL+2lvbS/\nsz0LIhVRoTf2ToGAiUrwJDudTrmvCxgUb3E4HBZ4m9QADSg9R7K8L0cPJtxyegjvnb4AJeLtG+Ll\nma5ebk8ZZMnpvYiKqGfYme+Z3EckmcfoNF2upA4MTVTrKsJwvZjT3IjIHZU5ktvHsbA372ie+SL9\n5TQkaVqQSJPB4XJMp9Ov0qytVqugUPATQJaIrrgvzpEu/fGamQtA/0CKHBXBZYO/gzwxB/TfRFDG\n0el0ylp6/pxeZT0cQdNAF00AhfuWo0sTYA1le+zA1ZkAyrvOz8+j1WoV9ATCLKmr4+PjghAQTT8+\nPsbl5WVst9vCu3r9+nXc3NzUIkhOCSLrIDzmV4BiGC0yx8Gpa+bM4wB5Y0w+qs+cIY+ZX4L+MeeS\nSDYjiMhup9MpJ7PgNvLZ2dlZ7bQSn0G+59Jic9pIXbLfTD/g+piDg4OyPtxfyOXny+WyoIBG+tB7\nyJPTmv7/er2uFevkfXALM5ePueP53hMglcy/v+f0EjqQNeVz0Fini9FfyKOv5yHVSRrazXxF9ilj\ndDYgp5G9R9nnNL7jK7QYX5brfSn9XC4G+TLdxPNi7hConhGyiPq9kaZ8gEbxPc+p18LjQdfSV1A9\nt30onNN4UEJymtH20FQQ1n+z2dRoHx4zupj3QeNYLBbl1B7rT6ke9DNzQV/Qp/TJ47Fc7mvP4kgh\nXDnHTPO1KxERl5eXNeVmSI4FYELyUUg3Q3MIl6Fl+tBq7a5dIH3jflp49zlg/DyTVHkuStHQ6sPD\nQ0lTkN7zpZQIN6kvK33Dj84V+7QfQmHnBW4RZDwLqlOShtw9DpzgbrdbOy3z+PhYq3HiOcjOgSsj\nt9vtUmHc78KxWa93FapJu7LWlCdwOoy1oPYKc+sN5ZOjHp8rImNg2VxWMN1uNzabTVknDDlyZEct\nojpJZQVkp4d1xRC7BhPrinzSH3hT6/W6EGX5HStpxumUAo6lT7DRjo+Po9/vx3q9jru7u9p6NRqN\nmM/npW6bHeXhcBjdbjdOT0/j48ePNY7BbDaLt2/fxmKxiKurqzJ2k6uRGada2PPZcDHHrBHGhblB\n6ZNmyukkjD77g8b6oRc875Q8wfnabreldhE/e3x8jMlkUkuLcO8ka7BcLmsne5GFfLyalA8Oix2p\nx8fHwp/EqSAgefPmTdzd3ZV9mnki6DAcGr/35OSkpged4uPAj51zp5StQ3LQgs7L3CrG7r9zehdZ\n9R5HL8FF9clqKrfbuTHXyzowE5U9H6wp823ZcH9tQzglZtvAPOMY2DlCdnmO+5Fl1in9ZrNZLt7m\n3XZQPE95/dk7dnwjqjJD6E1/bz6fF71p3ULLoERucETN5aPlAzbMW54P5BK9g33x7y6Xy7i7u6vt\ntxyI4RSi55kXvsPBFq+hSf/72rM4UkRk7pw3dzaKLDboko8i+tilnxNRGSgEMp/ow/HhcwutT1b5\ntJCjyexgRFROIv3KUYSRMCsQrjIBgfE77DQ6V8x3UbDmSHmzmkeSCbdcG2PUjZNsFjK+B4mTwpjm\nQjAfGGcLI3NHP3yShJ/zvHzM36dIjORERHE6KHZpx6Xf78f5+Xnc3t4WdJKx0wecRvME2LTInfP2\n/IHvxPhwXDE2djD8TkfBzK8NFHwOHDQ7EE9PT4V7FVFFyVzr4popILy824VTGZORMPp3enoajUYj\nJpNJQTUonkl/cN6enp4KOsbJvIuLixiNRjGZTMr7XQ6g0WhEt9utnThkDTNX0QGSOS+WH9bIDq9l\nln5STJN5pKFzMv/EPCbPv3lOllN0GSccvYcPDw9LTSe4Scz34+NjDSX2HvHJPMsf/cZpIyBiXBym\nQP8YxfOpMiPVPJ/Cif1+v7Z3vT9wUO2E2gEBrTLXCZm37PE8DCm6LuvX7XZbC/iYbxwk86/y2kdU\nqJf7b32Y+XGWB+tL/nZGgrVgvDhc5pfaeWTd/Cz+YLDdT5rl00gd+tL2xDXzmPMcvNEXo5XsRes8\nvjeZTL7imjmgx1HKBU+t67D56IzM1fL3CP58ctCymJFsnLP7+/tasWTuDaXPHq/BG+ya0S0aeigj\ncG7P4khl5nxEFe0b2kYxLJfLWhTrNM1sNqvBjo44HH2tVquSBomoCi9CfrUj4X6iII0eRFTk2Kz4\nnTbxGOzx0kwIRpggnXoj5pMtdgaBN7OhMRLTau1OplF9mv6hwKjwahQK+B4HkOPqs9msEDyppmxj\nYkXgzYZhMYnfhsYb3uNHQVjJG+2h72wOKz5QKCI3YOqzs7PyTKBek/Adydh44eTiwKA8IuqVh7vd\nbjnubhnmO6B5bMzBYFAzJC7ah2FmnC5Y6Sj17OysKB/mwcqVOeFv5N3KkHGgoNg7duSRN2q4/O1v\nfyvvf/XqVQyHwwL98z3WdDab1W4BoC/ed74zE0eGk4cumZERaeSK+Vqv18V5NCLLd3wowg44cmxn\nne+BAmVEgf4Q3FHj6Pz8vMjpbDar1eui4QDjJHst0FutVis6nU7NWWIMpPEGg0FBxwj+fKDAhzB8\n0tSNgHGz2VXuN/kZmSf9yLr5WP1isahlDLLcgP7YUcnZAxfKZO2Y97u7u9rhJHQ6joWJ8RRB3Ww2\npfAsDUeSPZ77YDI573NAbuSZz2zUnU3hO+i+HODYKfL+xTm0Pst2kfmzvmbeeKbfwXPQi0aimBcj\nkHYyQao43OOTvkaUmWcHqw5OszPCvBFkGHiwDUCGvE7YOFfnZ3+ia72+/r/T1/zNHzt2/1/bszlS\nCJ0XignDAGSjjxK3sCJEKIEcgRkFMofCG4SJZVJt8A2vRlSX4PJsvwshsZKmsUAWanNvaAhb5gyg\nEB2xue+kdeBJ0Afms9vt1hwOUlMooNPT02LkuJYFgzudTktF4Zubm5jNZsWwRdSjJUfQmXvCnLFu\nVkSkTbbbbTkSzvfIkV9dXcVwOKxFszgkjIP32Jgb/aGhuFByKAM7ShiyvK6srRFO5oHSCKQ881F+\nIh87z61WqzitPi3GOKbTaTktd3JyUjuSTP+JmByJ2nnI6CiyRXMwYJTXaCwRW6/Xi8PDw/jxxx9L\nPy8uLuLLly8xnU5LZGp+Dc8EeYRbhdHjRCRONeOz07her2scFAwpKQkj3OawOeqPqAzlvlOpdp69\nDp5DHC2nIXFAQZ9saFD0PBuuHGP0dSIeP+gXgUu73S6O4nw+L6dYr6+vYzAYlNSejQHOkCN9dMLx\n8XEtDcX4SaNz/Qw/d7CZeVfsocViEYvFIrrdbi3wRR4dlPKZjet6va6lS32adj6fl8/u7u5isVjU\nys14j/N//tDYM9ng+3PrWJprGtlJ9Jx6DH5e5tPRsi7M+xE9470ZUe1t1sDoLA0aAXbNto3Peee+\nkjPMH8+ECoHddHCPHWde/D50tJFABx/sTzvEPNOBisfPvgQBNBXFJyfRK+bbunZcDjyxs/Q5gyIZ\nGXN71jpS/DuiXjMmok5IXK12VW1R8laoIEvm2xgVceVjIyYQ0djY+wSZln9uQ5sdAjsvhi1ZNH5m\nHg1j8sJmiNNEbvfNYz09PY0//OEPERHxzTfflFpAKACuhmDeyHmjJHDCLi4uCnrlO94idh4/5SbY\nQEakiKAzIsV8OJ3qqIXfyfW3OE5NBGrCaUTUkJ19iog1cRQHomK5YA3NQ2EtfedSRP26BDcTGTFQ\ndpascB1EGPrfbDa1NBTcMQyUAwX33xErfWFc/HwfAsr/M6q6Xld1jRwZomB++eWXmE6n8Y//+I8R\nUdUuQhlxPD9ilxYAHXI6lebUjfe2jRafmScGoRvlbh3AOrGmTvs5LcdagWbY8cp7kTlpNBqlRpXn\nnOfe3NzEdrstTsh0Oi10hG63G0dHR8V5coCUG7wUHMyzs7Ov6kH1+/3CCWL/sv+Qt4xms098PQ9j\nJyjJFALzM9lXzElEFQifnJyUK1qcsmSuLYP0x/rAKf8ff/yxHFggoKCOFI6rHSnXrcpVqL0PMyLm\nz2jej/QTR9loFg09jd7Z5xDk9zgr41Sbn5mRVPpMJsHBtZE82x2PFydhvV6XPeqK+Ov1rkbjzc1N\nDS02Gpf1DSgi8+IsRZ53+ue/XbvJBzKs53P6nb2HTWF/8x70DfXreAbBtm0/fSGNaB+EZzr7sK+9\nlD94aS/tpb20l/bSXtpL+zvbs15abC8TDzNHAfxtBAteQ0R1RNepQUeiJmI7kgKqzoRL3mEv39B/\njvqJ4mhOqWVOQ/aE88kuIitDoxEVXGluS0SUO6aOjo6i2+3GH/7wh3j79m1ERLx9+zZev34dFxcX\nEbHjNs1ms9oN4qAfoAA+Xpr5NY4GOJmCB+/0EWkF0lB8xpyAZEEWzc8nSqYvPkoOkuESB+aYOIom\n0oQUbzRusViU+QfRyjJHis/jZr5BedxPTovmS2f9b6ORLvEA/8L9cfTj9JGRFbiB5ld5HI5M3R+i\nNaJV5Io5Zf5AB/M+fP/+fSyXy3j79m1J0a1Wq5jP53F4eFiuILHsk3o1GhQRBX0zkdVE9Ha7XfaR\n9y/cIFASyOqG4ZEzUCsib9bWvBcaew+emtFM9i0pN0fQpG05en12dlaTN/YGiBbfm81mZZ1ms1lB\nIPke6ZsvX74Urhj9BE0mmrZeZa4sE8gMc4IuMeeLeTd6zzPRdei2xWJR43WRwuGkKY15A7Fwf5A5\n+DXtdrsga91uN3744Yd4//592WsgebPZrKR12FvIIqgRpUqc9gM1ps/eHyBilllkkrW27XF60NQF\n/vAcf25kJu9xpxSdWja/lPVxWo7DJk67MlbQGo+Dz0A5mW+4T6A4vV4vPn78WOvPPp4Rssfesb3E\nrpj7+luZg8xTBpXaR0WIqC5mNhUB1MlpXacS2fvmyTEfLn3A7zOfWZfm9iyOlCczOxrAooZHgTEh\n8ObTOXmy/UzXDDGnATKdDbEn0NCtnbu8MBmyxanj/2x8uFUYMDZ6xNcXpnperCgMtfI7bLZXr14V\nQnlElIrUHAuGw+ATC9PpNCaTSTEOFn4MkY1DRJQUDMIL/yWiSgv5FBpzikLYx0tBHphvX6HhtWm3\n23F3d1fjlrHxTeZmzTBKrAnv5lQHp4tcD8qp2cxpILXs/iMXOECu++UUg1M4mYOB42QOEZ/jSNJP\njjvTH4/VhiFzwPibvttomODrlCrf8RpmR8GptsViUaqbO53GuwzB40S7wniv16uNgXlErqgLRF98\nuXjm63kP+znMG2tFX/fxL9in2dGiwrv5gA8PD4Wzg9zB58GYEIBQ+Zx+ku4j/YcjtV7vyka8evWq\nlP7wZcd2RglSIqq0rnlpNHN2rDcZOzqSdbV8M9/cvmB9xL7BiO2rsZRTJl4v7zs+f/PmTfzDP/xD\nfPr0KX7++eeaY4Ne4m/vfV94i6OaCdUOALMD6n3itCe6n72fnS70pfUE62GOrNP25jRa1ngWcpaN\nOHKNfeNQkZ/l9JqdZMZ9cHBQ+I4R1Z5Hh5+fn8dkMinyZhsRUbdRtpfWNU9PT6VMB7LH9xhDXgeP\nMac7mRvey/tyqtY0C+s20zasA9G76Gm/E93hwDi3Z3GkuEjRCorOo8gwDhGVo2HByPlgC5qVG5sP\nz53fQ0idh7YC5/8Wdt6dOUCMA4XokwruC0oWAcpKDG+aSJoxwxHJRticqdvb27i7uytH1REIvG82\nJnMIMoQR4lQMfeX0w2KxiPF4HNfX1xER5eJQO0GOchzx4QTwbzgNKLKMAkEOZK4iKqWL8nGNMRwV\njPF2u62dCkMpgo4Z1eT3MWw+1ZSNqBUUyFdWpqwN8mbHO/+NA2huD2uBrBoFYtMjd2xoHAHkBXSR\n/iAH9DnzkuxgGJVgzjGKVryQuClyyjrd3t7WDjA4aGFuTERnPZfLZRwfHxeZAS2MqE4TEUBlDiH7\nmeKUliVH56BPNPPKspKOiHJpOL/Hszi5BFJnLshyuSxOLtwgDmiAAKFz7BCiP1jbjDqydw8ODsr9\njqwNe/zgYHekHI7QfD6vRfmZH4bh8ykvr5M5e/4MZIf1MoLQbDZrwaKdbOSKsWYHzOvi1ul04urq\nKl69ehWfP38uPDzWlz1EaQlzGJnv1WoVr1+/Lg5oNqz7goh9Db2GPgbd8BryPoJGf4YutjEngHIZ\nD88Xjvd2W5WPoOGsWu4zX8/rh2wYgYd/SnPpHPYwzYTx/PsEJoAY3lfojPl8XkMC6WPODNkm8Md6\nxO/2qWjmAd2JPFgX23ly4B4R5UCHA37z3DJCm9uzOFJAslmR2ZGKqBdwRMF6siOqUykIKAY7ImqK\nDoXjUygoLjtQEdWE5z8R1f197rOdOgTVhoxnm6DthtF2VGWvPY+B5k10d3cXv/76a0GkECjSA0S0\nPAsh5FTeeDwuCvf29rY4J5zYc2SCUiEStjJlg/NzNpuLdLrvfI/oiurkHjOONSfTjICB1jAe5pa6\nUtvtNnq9XvR6veK4OAWcU2nZObYDYifWp/toRlptsDxGZMtwtCs+ZyTATjvPsXFjHKCKtIzQOl1s\nxWL0xZ/xb6dFPAand5jvo6OjUmzSyHC32y0nPdfrdUwmk9phERwiyOpGajFOGBTWkEMmoIvcA+YT\nSDZq9Js1zWlBIygEBxgv5n69XhckifG56jvvbTZ3aTp+5nsFswOCPsEJc3QNAmkSLPN2enpanEvI\n8qzTarWK2WxWHGtkzvKMI2CEBCQCPbYvTY0MnJyc1MpR4Dz5cnA31iEj1TaYdrQiKoI5znu73a6l\nkh8eHmqnDhkHc/b4+BgXFxcFlWbd0FM5E0F/9jlWBPaM3zQCUwsIFu3U4AxYv0fU64IR0LD2yKj/\nuGwCiKzXJ6N7/J71EjaIvd9sNuPy8rLIooNYzw1pZWeETGsgzZyzK+gnp81+K6BDhrxODnqzTTBI\nYL2Zi7b6XTwDxyjTL+wLeA35/Lfas6X2iIhyNEREnL3ziMrQ2KAhDBg2BCWiyrFuNpty8ozvkS4k\nWmVj8Uw88OzZs6jeMK4ldH5+XsZhLxbPG0Vh1MFKOI+PPru+UebWsIE/f/5cvvfhw4fo9Xo1Lo5T\nEaTfiL7H43ERlOl0WjbNcrmspREYF+vFc7wWFl7PN0JOn5364XcoxWDOAQaFSB7HAycQZMhoAI7U\nZrMplbqJynhOLnXAM73OHguKxbJqfhiN73kunKrOCKv5LVaYPNcOljc7xh5ZArXkfcwd77Aj2WzW\ni97ug7+RDxu29XodnU4nnp6e4u7urqwFNbZms1ntOif6zJH42WxWLpyNiJJudo03o0qkBbbbqthl\nxM45cd0uZNsOsHkXeX1sWCiSyfdQ1Ow15sPFOBeLRY0DaQUNkgsKQloSFM9OJmm/09PTcprPaBpc\nQp7F9/j9VqsVs9msoDK8jz6x1zIagM4kOrdsGbFzs0PtcgARVYV65txyFFGllDCkpk3we/yM/4/H\n4xgOhzEejwtPkjVHz+/jaq5Wq1gul9Hv9+Pbb7+NXq9XmxsbZ88XDogDnoxy2WDn1BJ2IZfIARWx\n/vX7jCx7LeyoYm+YHzvCOSWGg2bUzGthRNU6CocfJ5QK/bnlWlA8i2yL9RA6HwfMto2+OP1Og4u6\nb76ZD/4YbGCsyKKBDuYNnWlk1HzBzWZT6iVGVMj4PvS69Pc3P/k/bEymNzjohr1Q13rCkWAy+QyF\nyQS4mCHCizFwuhBPlujJi4SBtEIz5MjGQeAsrL1erxRH3CeEjNFRgo2yo7WIeg2WvLkRCMZ5f38f\nP/30U+lLTgu9evWqjJd0l9NYNCJ0ogzDyk7d0V8LGvO8b4z8nZUshgXFYRTEBGFD0vTl6ekplstl\nOca7z7BRbweZcS2nzWZTyMD8vg1QNsI5HWBo3NwQK0Q+I4XH/NPs/Dv9yzgyguE0If1DBjL/wpwq\nr2FO69B8LYn7xJgwRBi2nMZCpiynnz59Kr93fX1djFzEbq/ZIeFqk4hdhW76MZ/Pa1XWIf7jZJPi\n5Tkc03bh3Jz2xOBmNI/5zqjqer07Mk4aLyOOrBXf974g9eGAjM+8DkazQdvRlQ48mX/SKqTzaK1W\nqzhuRrLMi+MdONSgqBhhGz2cWWTOSD7vc9rLzYEl85gDFjv1ds5ms1mRj9lsVvYwP+OP9yEBxOvX\nr6PX69U4kBh97EROw7OP8rpwbN5IjsdHP7J9MocUXZXBA6NA1sME3kavWSeXSOFZdnT9HT/T6Sr0\ngwvfdjqdstaAHTxzMpnUHB4jZNbpdl7QTfxxOhLZ9p+cyeFZDj6wldb1zCllfdB/OKm8L4MmzqZg\nf0A5vU5G7fe1l/IHL+2lvbSX9tJe2kt7aX9nexZECh4PKauI+nUAREQmFhJRkgrAO+Q0gSMiPHVz\nHfZFguZROJIy6gEilGFtPNSMVsBN4DnO+RKRZoSAZs5P9vrzBaaMgWf7RE1ERX5l/PAXvvvuu9JX\nOGOgM/AP8Pg5CeIoGUTCpEXe6agSNIfv5cq7hsmZe9ICvJv3Ad+SAjL5m2gb2aEvpJJAKUDgeCbz\nvF6vy/U3EbuojHcSkTtqcYqk3W7HYDAofWm32yVyBWkx3wUOivk3ERWXjz+MhzV2FOl5A0HwPDvN\nCroFquj8v7lnTjnkfZQROU6DzWaz6Pf7Ze6Wy2V88803ZQ06nU45vLBareLk5CSGw2FBDowac8ko\nqS1QUw6lgEY4KmUeOEGH7JgjR9TtPW6Z4gLsfegwiMt8Pv8KjSZq9VrQWEuXMXAKgetjzC/h2fCS\nHM1nsiyNiu6gwp1Op/AYjWRAZjafJyIKSo/cek2MOBuRMPJJoV5H7ehN5HFf+s78JMZtVHSxWJSD\nLT/++GPc3NyU+SRrQV9ZcxAIp8EuLy/j1atXhVuVdQbr+FsUkswZBJ0BlfIBBqOdNMbkTAPvxj6h\nz9AlOWUGwpznk3XEZoKe5DQga+uMilFs0Ni8xhEV9QN96u9jO7K+dzqT+QC55XtGeninm+0e46a/\nRobJotAPI1KgrKSC6QtpevaH9Rr6Mp8gZ+ym4uxrz+JIuQ5Q6YhOugGl0XELXq/Xi06nU5TUwcHu\n1nmcLhsMjGur1YrJZFKu2fD7fA0Dgsh34AH4NJRz0iZsMx6qOJMW8+kNp2S8kCbPmSzHZwhuhhaZ\nKwQtp30Wi0XtuorxeFyc2IuLizLfOBZWUu43HBTGb8VmZzFzg5zeYf2c1vX7nBO3s8hzXQfFBFcT\nIDl9yLtcSTqiqnzd7XbLFRhOtUbUT6Iwl3bqbFRNqiUVyrgg1zudhlzCAcMJ4fd8EsUwOfNhBUEf\nzPewMnNqIh9ggPjtk4xuOCSso8fQaDSKg+6ThxcXF7Fe747rX15elis8InYpuvV6d/VHfmbEzglD\n8Tvd//j4WNtjNsBHR0cxHA7LaVyUK86ygxKUJ59tt9uSJsIZcaAFiZnx2rGBU2jj6DWMqBxu3ucT\nUyhxE4XZKwR8JrV6b5h7Yl7hPgcIvg7cOT5rt9vleXyGw+u6e8ynU3AYLIy/Tx9SJds63XNjMnUO\nSPiMNNft7W1ERAyHw/jy5Uvc3NyUfjCn7Pmjo6Na6i5it7+4VDyiCjhYi/l8Xpxrp0tJW7EGDlCc\nXkIPZHqCA+4cQNPsrFh3M347vDzP9AzWnL3CuzL/Kn83Uywi6ulk+or8kDbn9+ERIgfIkcdIn1ar\nVbEzzLlTxt4n9I858DOzXaEhR6QJj46Oio63Q+p38n8feMjyjZwyd56ffUGT27MV5KRjTKr5P0ag\nInYL2+l0Sr7bXKfLy8tyuoPfN2vfJ198XJJNDwKQvdNc98mKD6HNRhjF741KM/pGiQN7cuaZAgAA\nIABJREFU+0Zw9kVJzjPn5/K3NzInVY6Pj2MymZRo1YRrol0QJ96FAOLxm9th7sS+/ngtnU9H4aMQ\nLJR2HHL0YWQwol4HhfcTkRodQ2HacLCGg8GgnEZEDs0twunx/XcR1Y3z3mjmchHxgK40m80y38yd\nx+IoHfn0VSl8xkbGONuRYo585RGySO01F+20XIFYeZ38b6M/rCHPxvFzNHt9fR3v3r2Lx8fHuL29\nLcVgW61WQUDY10bH7u7uiqNkZ4kSHEblGN9oNIqnp921RhDfOegREQVtshHhu1wwjYEFYaGvrAEH\nIzK6AKfOhHcrYpBzrzt7DfK8uUrIE9w7O0kYKYI9notT52icv3GGMhpPX+gPjm5GG/hjRMrIBnw/\nrslBVlqtVgkiHXCiC3imZcpZAAj8vvOz0WjEdDqNu7u7mkOCTNsYw7vjeivGsVqtiv4bjUbFwfYf\n+uRg0HPD5+bLZITCqG7mq+F4O1DgWXZK7Chnuc3vyjwkyw0OBXvA/DT+oL/4HgVzWU/khDmNqLiJ\n+4qJmvzOGLmmbLFY1AKiiCoww75YLzCH7Ll9iHJExYXMTibv8il7I1roGfsf9IF3+5nes/vas57a\nc2TiiMUQfkRFGPalnBZwECMMGMIAYuLFyKkFnuf3sThGmvievXwrWP5er9dF0WZ0jN/B83ZxTIwN\nEauFhu9ltAIHaF/EgYM0GAyKU+XSEHd3d+VyYMPWfldEfKUAbSTw8C2Mnh+iTfrKJsMpcIrT76Zk\nA435oB/8LlGjjYn7iUywvswbztfp6Wl5Hv10VVzkyugQlznTB9aQlKChfJNPeY+jX69tji5pJmIy\nD5yuQdmRxvUYGQsKgNRvfq5TmJZvO+VGDj0OR3+j0SgGg0EcHx/Hzc1NzUA9PDzU0micqEGGbm9v\no91ux9XVVQ3lIaXHOhwdHdUKnOIocmLNaTCQYaOG/i6OIM4xDSSTvkXU7wPNhOF82ADlbQXOAQoc\nYgJC5pTvshd5dqfTKbKBYbChcRBH2pi1NaqELuAzBx9eZ+ZovV6X6tbIBQEuCADpdx9rd0rMe4Q1\nxcBaRjFcm80mPn78GB8/fqyhIOx75sDGjGet1+vodrvFPmADWK/5fF4cKcopoDN8uTT6hSAb+WDt\ns/PiMaAnmYeMzGU7wJxiA52moy/ekwYd6BcoEXonIz127GxPCKLYB3bY2C/0w4R21w9DtzLfRhit\nh5BBkN+cRuf9GXVjL6NLeRbvcDbFjib7hXkxoMHPQdWto+zcGeVHzvZlhNyetSBnxG974M1ms3bM\nnQ2XYT7gaRaVCDyiqprcbDYLKmWDzXuJtuwQdDqdGl/Eih+h9QZ0P1Fe3hg+RbRYLGppODsVhhv5\nLKLaDPboOZHE9xCSiKpOBv188+ZNOaXEGszn84K6tNvV1QwHBwelrhSCbmTICs0Kk4gUAbXwZcVj\nZYPQ2oB6LegDa4/xyjLhuVsul19d6WIl2G63yyWwpM0Yw2ZTpVet+PicyMUKkrlmI8/n8xgOhzVj\nDLJgY4hMoTBAshg/6Rbk2gqaueNZv2XIcKic3jGaiNPPOOgnishjZD+gcBhfp9MptY2QVd53c3NT\nngNSxjPH43GsVqt49epVbY6RUQwgR9iNHOH8b7fbePXqVRwcHJR0Kf1yqQmvP0EVDpX5JaxFs9ks\n6HLELq0E5+L09LRWK4o5Zy/ZOQaFAgFEL7EW/swpG+YQx4a54Hs4GMiU0xvZWPoUlNfRkT7yh6xY\nnzCudrtdUnsOWtl77B+nshkLv2ddT2s0GjEej+N//ud/alyv4XBYgg4bffYf6TmuguJd6Ajq5+Ec\n45h5r7oiPDo2IxDoc+su17Nj7tA1diKRUebF68ReyWkjO5vZgDvt7sDSmRh/17bKTibyz/epEcj+\n9HNwgAAYXE/KJ40dWNAX7MA+gMIOIHuDZrvgvhCws17WQ+wVZ7XyiXyekZE1z31GInOQmtuzpfZA\nV+x1I8Sk2kyMJL0HidQGGqV/dHQUJycnNSKnc8URX9dsMgRKY6FwpvZVGiY9kBf58fGxcDYspDzT\nKZYcmTkKsKKxIsybG+VFxIZgoExxJNjs5onglCBUvB+j9eXLl6JsvGmazWZBFWz0czRmw29HcTab\nFePCmHxlT85He/1cBRujZ2XC3/BxVquqSByfHRwcFFTn5OSk5iw4PWPlx/f53AY3okpDrdc7ntB4\nPK5ddWP0Edkz0Zh1hLPB99jscNI838wVCF+73S6KjHQfht/H3B00MAZHiY707IBlHgHoC880tG/+\nFc+hRIERzul0Gufn59FqtWI+n9f4eNQwOzzc3QmWUWoU5uXlZUEyaexpAq3tdlvmO9d/MlLdaDQK\n0mKibESUK0dwQFwviL3Ivttut7XinZ1OJ2azWTG2fMbeZOzHx8fl0Md8Pi+6pN1ux8XFRY0OYAR4\nX4rKQYYdKe99O7zdbrdwi9CjdrIODg7KtSy80/okI2o0B0n79jd9PT8/j81mEz/88ENERFkDHA1n\nDjy/V1dXtVQqKPVsNovJZFI7MICxNippZ5B5zKi5ETfmz0FMDqzcsjNqZ5AACf2HnsXBdSCZOTv0\nOZdMQQcb9bYNw+7hMBnpQS/jlDrAZD/wXdpsNis8O+xNTouZU+h9jKPDM22nT09PS61Hk8at90hj\n0+xcOpNB35AlAg/bWfY032cMDhB+q72UP3hpL+2lvbSX9tJe2kv7O9uzIFJ4fYY5ncckteDoa7lc\nxsePH+N3v/td4SFF1AskEj3zTLxhIganAEnvEB35Ql/4FkRX9Ie+m+Nl5MynWohmTIzm/4bhI+op\nwdVqVSumlnPgPqFANAliMZ/Py7xA+uQZRH1454Y0STkalQAuJ32R89P8ntN+pD2JZI0G4dEzp0Sw\nEfW0QYb+Gbu5YE5tIkv39/c1/oWfDZJjFILn7LsihnUAgTKXy2k4TnDxPdaXIndOERoFog/MI/07\nODgo62ekw1GnUz+kYUCDvL6UKCAd5aPjcAUcsTqSZm9mNJF3wDHw+Ej5cBKOasZ8HxknCvbVMp1O\nJ25ubgqnyVd9kCbNp+Q8P5BZ1+t1QUjMU2TPMR7k5uzsrJYG8vg5AZq5TkTDeZ1Mokb2+d5gMCjr\na54X3wPJIso2Wsh63d/fR7/fL3uf/XpyclLG57W0jBuRcoqMvWuS+uHhYSkbYmTJZT32Veo+ODgo\nl0475U4DzUF+8v1/8/k8Wq1WvHv3Lv76179GRMRf/vKXMldGQJBFOLFOqyOLyE3mwvD7ZD7W66r8\nCYdzzImkWX9xwnkftYODIs5EGJHKtAh+x2lFv9Of79PZzLXRHNaI5zklStkM0LDMn2JtSFVmCgxp\naCO8EVFOiIO6+io20HdTdLyGTm2a9oCu4BAOaX2nZVkrj93FYp2iZbzOhNh2weFifLaHeW1ye7bU\nHik54Nl9REQb7O12d+/br7/++pXy8xUPNg4IHgbAKSIUD5PLwkVUqSSMFD/j7+zE0Xy6ACeC76EM\nUZqZm4DSwdmzEnLe3kqRNBdCDs8gYkcmRzHgVGUuFpsJ5Y+goqAMWTOOXCU455+Bh7mbyRuD57Va\nrej1erWNQVqS8bBOTi/kzeO0RualoEibzV1tL6fSSGUwt05HopQx3CaqIh/MiU+Bkj5CcXv96Ctz\nh7IyRw5lgpNi54W5gOjs+SYNmZ1znL7pdFqD11lDxm5Z5x18hlNppx4Zx4jb2WIdUNQmd/NeHCx+\n9ubNm0KWJ8XnvQ38ztqavI9D6Jo53kco88yjIDXL/uWEntcWJ86pD9/7x/zntUDmHx4eSvqYtI2v\nZWJNcXKdmnFwieyuVtX1OxFRHCjz++zwO3hysMNn5qv4vayRT3wxZ5YB7xnkm1Srj+7z3cxz9BH1\nL1++xPX1dTm9eX5+HhG7E1+sz2QyKfIYEV+l9eywsP7I2eHhYSFR41ijD1wtnc+tA/I1Sk7xmU5g\n59QBNLLDuNnfrCFEbZP2mWfsGjrOOop3npycFF1rh81XOzHmiPpVPXkd0dHor/v7+6/2EH30wYej\no6M4Ozsr9eDMceX3Scs6aMXxJI0KVYZ+5sDJV9hkPeDmOUMnWQ5x6H0LiteH30Un4hhbTnJ7FkeK\n/LvvEuLOK5P17IRERHGmvKFQ6iwWiE7E/gt/zYWBmGYCZkR1CtAnmuyouViZERqe6xolfObTNe6D\nx0Cfs3PG99hAvvA1olp0bxgULwgJCBNzavRsNBoVZU8fbDC8Kc2DwmgYQeDdOGlshG63W5xnjKIj\nXjZqPo7P/DpHzffsYBgl4Xsce2Z9fS0GRGUXFuVZ8OPYvBQInE6nxXnAYNj5NCKFY44iOjk5KQqa\nKMyGLyKKExJRlalA1n1C08TKrHhsFJkDHKqM5vD7R0dHNZlDEeVIjDXDaTNP5OnpqTZG9hbvYY1w\ncJkX+sZccRiDhpJlfRj7fD6Ps7OzYtTyiS7ewZ7YbKoSJr6yw46X55H18T133PdoZI/G+JCzw8PD\nWgFYz5NPipn/0m63Y7lc1vQD1zUR0TM3Rt7Mn2PO7FQ4Kke3Mp8Y84j6lVOg6uarwfkDseZd/M1Y\nWHcHbehR8wojojg50+k0/vznPxf0IWIXuPT7/RgOh2VvWxbfvHkT/X6/hi6zlvP5vNiTfGKVPqGn\nzE3FHvCujNagoxzQ8Szz0RxgmnNjXqFrwjkI9Lp5Tfy9x8fHghzybJ+cs23KNsrBF9kefk5RWOvi\niKqgMDaIE7MRVSYCGwu3EZnieaBk5pbRjJ4xBmqcAUBkJMu8RjugRvzQD36HMw40Aj+cqX08vyxD\ntbX6zU/+D9tgMIinp6cC2UdUG9E1nfZ5/Cb70fgMJZWNMIuybzHwkBGuiChRPBOfC74RJWcSGu/y\nouSIzgrUhhSY1saKMZjg7MjAkRb9otK2U4pcagp5LyLKEeyHh4eYTqc1UjFwP0egQZkidoam0+nE\n4eFhSVOwaVzPC8PoU4Kkl3AADDc7mjXUi3PCGtqpIxXBnBjJsuIl8rFjiDE7OjqKbrdbDBOGm8j8\n9PQ03r59GxG7i6A/fvwY0+m0GFynEp26cLoyokKzDLX71I/RKUefRNXIi+UwHyW2I2Vj5tQn7wCZ\nQMaNMtIn0q92sDEoHLawEeZ7rFFWRkSBEZUjAEG52+1+lfLFqOFEWg5pmVhqMjLvY208V5BUiWjt\nUPF/jGx2vCy7GR0FcTWSgfE4PT0t83Z5eVm+z95zmg9ZZJ2NqCIXXHjcau1qX/n+RAwvz3IaGUOf\n5cnpG1LD3k927iOqUiGsO303OuPPLCfMN87J0dFRPDw8xIcPHwoCTDDm0i085+rqKi4uLgrq4EAY\nfcfzbStYx31IBuvtAxg52GF+fa+na6Txe9bftO22XqqFuTZy58AZvQBC5LX03X9ZNph/9lpGB0Eo\n6Rvrip05ODgodRstH3bkcrYFHbJYLOLk5KScAMdeYEc8DkAH9oRJ9F5/DgyAQiKLOH527AFP0AXY\neM8N+9GOm9OOzhCwFpaFfe3ZECk8SqfJUCZGnPjMnAh+FlEvkmZBjqgfjweWd6TAd4wiRVTHOfnD\naSO/1wowIwTeHHzm3Kx5LhH1iMX5/Ih6Ne2np6dSE4pmRbPZbAr0z+Lf3d0VxTidTmunQhyxcxop\nIkpF8PPz8+h0OtHtdsupjHZ7VyZhMBjEwcFB3N7elv644vV8Po9Op1PWdz6fx/n5+VenLGi8H4Qo\np1RRfrkuiIv/2ZFgXTKfLSIKqoDSd8oXtKrb7ZYNykW5r1+/jm+//TZ++OGH+Omnn2qOMgoB5QhU\nbcfEacucFvIm9rhZWzhARnEjvr740w4hcgDfh+85TZxlzkoj86BwdLiWxcqbz1DKRrlIkbCP+/1+\nkZmnp6fodrsxGAyKMbXDg6PbbrdraZiLi4vYbDYlGON5KFu4Vqy1nR8cVT7DeWbe7HSDgrNOpB55\nhmUZeTDyGxEF1To+Po7RaBTdbrcYmi9fvhTejiuFe16pbeV1Ql8S9IBO0A9+x+P1M5E50yIcyeNw\n8SxQepDNRqNRDCTzZLTBXBh0jNEr1mk8Hsd0Oi2lQqbTaaEnYNhJi67X66Lfrq6uyryxt5GN0WhU\n6uRhMJ3aJHXO3rdtITjBbiDDGFZslDlLPN+oDA0nHtk3hSSvVXbQWbd8GtIBFPbPzqplmsLLDqyw\nP9hEZzEYG+vFvFGyCCcJPcH6bja7WwXOzs6KXeEz9Ln3GfOGDMKvIigHEGk2m4Ub6MCCtSM16ufy\nbJ5vm8+c2yeIqCqiQ4Oxw8sa5L3p9iyOlBWz0zM4Ihg+p/Qi6l5+9rAj6gXaIqLGVzEUyLPYOEDW\n5oegLDFMjjxBxPyHts+o80xvTBtvzwnHPf08+spYzWchEjUxMGJnSF6/fl1+h42BoC6Xy1J1FofD\nqS+M/Wq1uyft+++/L+/E0YjYOcWOhDEkpAIMm/NdhNbKHUXovDzzwsZHRowCOS3CumUZIRLMUDyf\n+2gt88RVRL1erxi9VqsVg8Egvvvuu/jTn/4U//mf/xnD4bCsL0bW8DTrStSKI2VEEtTJt5bbgLHu\nKAejjTiEzIH5T0boLBvmXvBzFBGRPc+m0Cj9BOEBceT5RpNBHu3wub6YDUGn0ynOOd/xFVI4y6vV\nKhaLRRkf/BajypPJpOwd7u1j/3ivYWAc/duxg6SMM4GBtrJGvrLj4CryyBRR+XQ6jc1mE+fn5zU0\ng8Kbs9msoL3MKVE58m/n1U4VBomfo18w7Nad6CbW2PrV6Y8czDp1OZvN4vT0tFbAMafrbaQyOokj\n9de//jVubm7i5uYmvnz5EqPRqHbHqp2gi4uL4khh6OCKUeogoqp677XyGK1PPI/MicuheI6dqiZg\njqicTPa7qRrIBuiJUTxSdqyJMy12kIx2Mh70DX/b3uRg3ugRQQLvpaRBRNTmbD6fF3pKRJRUHraN\nqvo8v9lsxmAwKOUznCpnXo0wM6fISa/Xi6enpxKwj8fjGI/H5Wo3gxlXV1clqwV5nn6iW0Cb7ACZ\ne+xMB82p1Jze+9+cqIiX8gcv7aW9tJf20l7aS3tpf3d7FkSK9J0JmeTA8c5NArTnmKNLokJH8TRg\nPaNbjsyI7vHQDXHzBxItzeRW0kw5dwp8nI8QO5WYYU6e7Zw4P8PzNnxLP5fLZZycnESv16shK0RA\ng8GgHAflZFnELjIZj8clmjHScX9/X+654udEwhwZBynhpA9z6xTtdDqtpW45jt/r9Uqaj3nh+Zy0\nc7TCWuS1N3cORCYjYEbzvE5E0ETRPBeiJLwdrpKJiFIcsd/vl2j8v//7vyNix58immV9OZEVESXd\nQ9RDusMyBVpocmxOJxithCdAhEqqw+MzGZ1m+crROXsPJMipa6LXfr9fSyVFVAVJfQqJMZCaY67N\n2QBhcArHiCtzBtrE73uujci47IW5aKR5eC4IIRGs0UHGn1PJlq+cnvfedVorouJUNhqNODs7K6kM\n5DQiSuTtS7aREVLGRqMiKg6JTy7yPpel8PicyrJei6hO6zIvvjnBd+ixVk6BHh0dlfQWaAoNdGBf\nqnG5XMYvv/wSNzc3MR6PayejWAf2InLE+9DPy+UyptNp3NzcRESUA0kej/Ui68ffToM7HeR+ooc8\nNsuCT95ZT8GnMvLrkiiZo+jsijl/tm3m8NAnZ2accqMotVE+xpdTwNjZ+/v7ImvoPqPi2CKfggUh\nuru7q6FORgKZX5p1HPab752fn8doNIrb29u4vb2tpei2223JhDAe0wGcsTCdJcuBqRnOLpGVYH5A\n0X0gJ7dncaQMX9q4sehZUIEUUXImgtnostA53cBGtlGwYPq294jKkQKKNMTpMaBkrbzNE7Bid5/J\nPTtdyN84BZ4Xb0znyk9PT2O9XpfqzxjciArGxKHKRFE7hAiQlcuXL1/i1atXtes8IqLwWRBscwVI\ntZ2cnBRY1afafK0A9YNYdxOUzZNptapq3/w7H6unL05t9Xq9kkqh9pYNtMefa9Q8Pj7Ghw8fipJi\ncwMh4/Sfn5/HH//4xzJnP//8czHA9M1ke1KakJF9Qo/vLBaLWK1WNeeN9edIvlMSXjPzXZgXnIFM\nnrSxxfGPqO6OI3VLfRi+d3V1VQ5nWGbg6TC/BwcHZQw+4YWh9TVOELwhKzsdyd43p493MC/T6TS6\n3W7hbiFfOFOcfDMH0EECZG3Gj9NOanofcZh58/gxNjg4yDckXMZ/c3PzVdrMxHGnIni2dQfvpuU0\nhJ0Dp4b4zKevTLrm/zjlJlR7jUipuT/oGTsFTjUhY+bLsP7w37jSibWg7+fn57XDCBFVSQl4NfP5\nvAQivnEiOxnI0j5iOGuIo5ADV5PQ85wyfqetmQOCOQIJ82ztrDm4MoeL5+f+8gxsm/mVPjDhsbLe\nXnf+9tyzf7PdIUC0TUQv4dS7Vhpj9z5yStDcJI9ru91Gr9crJzdxrCKinMhsNpvl5C6O4mKxKAEs\nNoUDWOgA9JffBzjAHwfX2JBcb87t2RApIi07NgxwH3HRvBOUcUTl9CCEv3UaA+OVo90cqfAZKA7H\n5BGMXq9Xi/JyVIp3jBfrz/OxUnvYmd+VlTdzY0/ZxMDJZFK7RgOHk/eiyFyqwIiaBX29Xsd4PI5P\nnz6VInteJyKd4XBYnFA+I6ImmspFGVFuNiSNxq4WDgqMUxyM24RFbzhQCis8RxEoAtbdPAHeAVJH\nY21Ho1F5rj/v9/tlXMhQxA6pe3h4iOFwWE4uOorCECHXJp0iWyjxZrNZfoZzimPsvWBFzJz6KDN/\n81k+vWIjQWOfwIcyIjsYDGqkbDtnzCVzYkeRnyP3j4+PBVmyobGjxztwrEHIMm+Sz7iXLyt371Hm\nlNIIrIk5HeYNsXZGJRy5Zh4MsoS88TmBgU/yOlCYTqe1k8Pwh3CiGWNGpPJdmzwTh5r5Mr+H3+Xd\nx8fHNZTT+xK0h59D0sYJ84lhAhk7GEY52eM4P+adcfqY+TWKPRgMCprrZ7NX0NVwelgL+owM2JEw\nNw7Zo4GoIgdGI1lHZDyjSOwH633PtYM5non+Bi3JzyIzs4+jg244OzurodXsNetgB9jMPX8bPYXD\nyqEmH5Biv+D8eE5Bxwjmrb9AW3HQ2fsg271erwYmMG/sFUrRoC/JIFm3ucYfVwKhvwjwWN+M+vFe\nuF6MzXNuXb6vPYsjhaA5ZcciUYsmoo44+Hi5UShHQHzPzsvBwa7iro9UR1RwIv82pOyjtrlmEwoa\nRYkDwHvZtPzbDtH9/X0h7x4dHRWFmcmduQaJj8lamZg0mNEhb2afhLNTsNlsahdX+oRZRMTPP/8c\nh4eH8bvf/a4QOc/OzmKxWJRNul6va0eNqevCOjraYa0cDUdE2Ujr9boUdWPecCqog+Xostvtxng8\nLmlG+mC5oFKzDRupM5OYMVKGrUejUfk8YpcyePfuXTl16jlrt9txfn5eNud4PK45B5vNphRbpZ9O\nb1HzKh8tRqFzIMCKwAaCuWK+UfoYbTvpGE8Uh1E3DAunffr9fq0vjup86pZnsDfsuCJ7jMPGiwAK\n4w9hH7ll7/Ne3ud0wOHhYQ3Cj9idAmWd7UBH7BBAB17IAb/D2tLPjEowDqcw0GcuIEozCsEYjGI3\nGo0SgNhxPzk5KU4suggdh7OGgjdiAZkeo8d88Rnr2263a0VVI6qsAOiokWwcL6ejnBnImQajpfTj\n4eEhrq+v48OHDxGxu9B6u92WuwhJ4zFG3/lnfYIzZtQw2wEMO3/TN+8fp7iQJ88Hn7laNpkNIxY8\nL1M97HDxu5nEDJJnpNbUEz+LuXbakv3mQxrsa+qEeR1Jw6JnrBetz/LJNf4mEEQ2jfjzPAchLhzt\nvUFAy7Ndm8oEe4IyZw6MdkbUbT52EefeqXJsBX2xrCAbIJ9e1wya5PYsjhTXN1i5w6lwusLKDUcL\nA+S6ETgsmYXvWin27mn8m1M7OdpFkFHk7hMbzt68I4yIqI2PvrLRDg4OSkRHCmq73Zajzl5Ep1Ai\n6mgDEfBms4nxeFw7Een0m3PqfM4fjAf95mTJ09NTfPr0qbbByIHj4JjvwfyyoTi6zjiMlqCw3U5O\nTuLi4qLmnD09VSf92ARG8nAOObWFXBi+Pjg4iMFgUFN8zM8+B9Och+FwWIz3x48f429/+1tcXV2V\nvlhm2u12dLvdchLUChwFtNlsas53RJRSCzhChtSdTsBo2CjyO0a8aHbOLft2uLMRQsmcnJwUR8bO\nMO+9v78vR8xZu/F4XL7PdS80X9KbT3AZ3bLRZb5Q0vP5vMgQSDFjmM/ntdQEjj9Ij1M/8PDy3EVU\naVY7oMw3eySnaDwOR7s23kTQcBORfRxQAh87505pwm9kj+IAohvNAWPeQJBwcJFD5pqUGuPgmDnO\nXaPRqBkvn9g0AoBsZP2ZeTKbzSYmk0nc3NzE+/fvI2LHLZxOp+WkpGvj5bSQUQF+H7qAg1bQGfYf\ne5z5zs5OPkXOnDnNCvqDg2FEBj4pfbUNYxzIVj45bgfI82l9QeDptCZOFH0hOOdzbA160KnrvE6W\nWWeEvFcZE/bNgRJOFb/vsfMs+mL7i5whk0axj4+PaydCTZPhO7ZtjAmbTf/tyLKmzFd2vplj5sB2\nNtuq3J7trr2IekSNgC8Wi5qXzO8xmdmjt4OTc8mZN+L3odgwxuYD8LtEnxGVgIPgIDSOYJw7t7Ph\nvlowvbldNfjk5KQYHsO9/G52qoBNMeARUbvviOjJhFRHMhjr/BlHi3/55ZfyPjYKzzMSgBA7heTr\nLugj68mmGo/HpTZJp9MpRUJZJ37O77iiLZEsRofvMcfMj4nf1DhiDb3ZqLdENLfdbosBvrm5ievr\n6zg6Oiq1tLzx2ZxET8iy5xTFYmeKqJT0IGhZRBUJU+IiEx7t9Du9Y8csNyJxp1wcpbMXMWyuobZe\nr0tpCx80GI1G8fj4WI7vcww6Iso1O8fHx3F5eVnQtX3zZmdhu62KWObrGUBnSCuY94PJAAAgAElE\nQVSwnuZ44GA1m82vCvrRb2TJTqmd8OyYImc4Wk5fgSqxd3jm4eFh3N3dlSr7nU6nli5cr9c1nei+\nGBGwzuC59NXBHo3negyZk+Pv8Bz012AwKEGESfggFXYm0InIh9EMdMt8Po/RaBTX19dFp/z8889l\nXeCn7HNCqHhuJwD9wdwYeWCeKbZrpGNfHaKISlc5Tcn6Ukep3+/XSr4gO1nvOzuC3aLmGbIPqtnp\ndIoDa12a9y79w+mgYDDvdWrc+hzbyb+dDcIp4TOoECA5Rn6c9nbQwPtAY/cFagZO6FdOXZLGQxYY\nHylz0zdAnAiGnSqnL6BgyEmmBjgrgL50cGZd6nna117KH7y0l/bSXtpLe2kv7aX9ne1ZECkiOnt9\nIA1E5M5dR1Qn8CIqz5xngdo4qqZlbxwPNJO6IyqIk1QZUYUJzuSusyfL951+dPRHdEmaarvd1nLM\nnKwDIs6pBiJhv9upJZNJI6I2f0QB5k0ZkQIVMCJnyPXx8TE+fvxYPnN/XOiUuTafIeffibR8pQVo\nA+lVUkMRUS5/7ff7cXZ2Fp1Op5zeoHgn7z08PCzRLRyC4+PjGrE4IgqR0vA5c5qRyXa7XQpykl4a\nDoclzcRnRqcajV1BTxNAiYDgpZkL6OrHHDGnEaGDHJGqolGdF/k3QmDo3PuA3yUyN/JKOmO73ZaU\nI+tLZM/cRkRBAJfLZUENT09P4/GxupDcldDhZ3iOQZ2I7B01kk5gHzEGkGHkb1/qYD6fl+dxMCKi\nOilIP4xuEO16n2d9wt/ef4PBoBCjiXzNzeI+y8vLy3KCL6KOGu1LheX9nnmgPt5vHovTki6M+/T0\nFN9++21Zn1evXtWQGF8XQnqQ7202mxqnynJozo0RTr57f38f4/E4bm5uauly+mi03il4dBYIqfUX\nqInTmMgwXKter1e7TxCOGDqKdHxElbr23COnoNfw1rwPzVXi3x4DXC4u5zYRnfkCrTYCxhyB8PgC\nYb6HHjP3yOhK5hIh8yBjtl+M0ffqGZXhO5nWwrtZR8+Nsz408wOZB2TYfDX/rnmc6C37AT4FbOI4\nv88YeB9/3E/rJGea3M/fas/iSJFnt5JCmbFghvJQdk5BeXAokXwKyXlOfteTYSfKBF/exxHqLDQ0\nE8D9PvrkmiEoChwKw+pWCjyLaxLgFiFkwM55TOv1unYCh7niGRkmxmjjKLnuj51baifRbm9vi1IF\n5vcpGxSH6y/Rz4gojs9qtSopM04GQgLmvRE7p2cwGES/34/Ly8saN8ZH8/meDS4OAQqSucGJg2Rs\nXgpkZxxCG0QcC5z66+vrr4jIPKfT6USr1SrOhDkO2XCSQrChpK9Uusc4+AAEyqXf79fSB6w5f5t/\nSF8YXyZdcu2HFbTLP0TsHBR+jqGlZlm32y1zk3lXcEmQG75HatPGjX7ijMORywEGBs9lTlgL0rNw\naVgr+G/MleXTwYeNE59l5ZvvroTgbsVMgESq3Pucgw7oGe9tZA0Z9jrZ6Nop83dx2nEc+Z3RaFT6\n6TQnv8dcIXeWUeQok6gz/cBtu92VU7m+vi4pMo6kOz2ZHUf6i/PB6S3LFO8y+ZuggxS703AEyDgL\nrorN/HvvmANmI22Hn5+ht+ycIMP39/elrh7OKsE0e82cpOVyWTtV6nRZPiCQObQ4LgRMtl84Uug4\n02hciiBzGVn/fbYWGUWGLafIinl6lmGn/MxJcyqRMZijad6hHTUfdMmfmSKUU/c5Jcm8IoNOA+5r\nz4ZIkce0cmdBF4tFiWojqlN0VhgmAdrDjKgjUlmg7LVHVJGtT/9F7ISVSMWePXwM+uuoFGGirxZg\nnCeIeZC8eT4C4FNZjBXBN5LAZwgu9TMcsToK9ZHoiMoJzBFJRB2ZazabBWXguXDZIPtlwvV6vS53\np3kc/L3dbmvcGxRoRBQukB2pXq9XDJUdglzozsfBKRgJyulrOYhy920OSLy0HIW02+1ymedisSik\nZiNvdrB5FkYeZWO+mhUR/ATL9z4eg+fUXCWOFi+XyxiNRjVukeeb92I8/H1OEbo//D7HzHu9XtnD\nrBNF+a6vr2O5XNaOHXOlDPObo2ATRB0A4DxhYLn3sN1uF86REVLGa4SPUg6eL1AyuFRGDmmZC2Id\nwbyBSBIg4UDBzaMvzNf9/X25sDiiQs326Sbkx84s/UNGMBbZiex2u3F1dRXD4bAWUCK37D/zchz4\n8ZmdM0jdyI33Po19tc+AsQ7Hx8fxzTffFDlFpphro0cELaAojJH+cTDH/TBaYx4o/YPUTLCH7Ltk\nQHZcCbaM+toxwJYhwz7NaWTDwQABBCimneNer1fj6nkf0qzHMn/H8uFj/qBQ7p9lw2vm/zM2n6i2\n3s+Ode5P5kcxfvalHXRkzXwzj8GIK33LfC36lfuAc4bM8Dsmydt583j+N47UszhSEdXmslHMpQZQ\nLK5ia2URUZ3QcLqQzzxwNoGFJqJeA8QeL+kfo1/8PpMOouZNyu/Td6d7GDffNbLCO4l0MELr9bqc\nUGETW2g8T2y8ffPM73lunN7LiAVz2e124927dyWCPDg4iMViER8+fIjr6+ty1NRziIL1vXMRO+eG\nQmlee6pio0x4BvPGpsGhBEngokscUSt+iKTeAD7pSZ/pK30BqWKuXHsLInqr1SplLPxZLvppdAXD\nCjKBEaAPGWmFdOm0TE7rMF9GRmgcqaYir42knUWfaOIz1/ixQzCfz2O73Ua/3y9oCXJBSYjb29uY\nTqdf3cGIXK3X69qJHyJ51jDXSkKZ8z2fArUDleePVC/pZxO3nY7OQZRT2tmJzk5UruoPQooDZ4cV\nJ3KxWJQLvZlj5iaiIuCyzqvVqoYYOdVkXZNTEaQuz8/PizPFOlHM0vsmoqpLxR2DnK7mmegtB2me\nN36Wg1bQee5TYywRlW4nNejTWjhCOGEmm/Oex8fH2gER5tQHJFhz+hJR7U8/E6ceGbTu9NxmKgl/\ngxQ5jQ5SttlsirzwTJe5yXaDvWKk3X3nOw7a6SN72nKc0SDmyPbE5RDsDPKunG6zk4XTaxuS598Z\nn4ioIetGqegfwRzP9cELbI33gdfHQYazV54rk9SxMaxXdqL2Oatuz4ZIWVAiqguHSY84usTb57SP\nuT4oUzaVI3anL1CWjiZc3dn/NqQZUVUi59/2xP1/n7TIkZojZBSdDaRz196k8FIYZ04z4gAxpz5e\nmzemlRvPw9jbeUF5PT09xdXVVbx7965E0XDZUEKu0sxcoJydhuSKBxTV01N1QSXKzDwaR0bb7bZE\nrg8PD4UjxWWnpImbzfqlxYeHh8WZWiwWRUHb8BrVi9gpb4w1StqpS1If/K6LanJaCYXK/PJdw82O\nkkk1ohidFj0+Po7JZFIiea8pCginpd1u12qTRVTH/532pNbXPmeXsXAdB+OK2O3Rs7Ozks61zGw2\nmxiNRjGZTMoaY5C63e5XqKidN/YFStFyaDlHtiIqFA45Y12sNFk/5pp3mk/D33xmNMjPiqiuVLHO\nsiPE6cJmsxm9Xq98n9Sd69tkPgaGwwbHCLfTJpZv+uZaWOiPyWQSl5eXcXV1VagCj4+PBRHPJSqc\nZmGvWSfakBA0OkBEpnKgiB7nJgbv06enXcFXir0eHx/H+fl5RFQXWm82m5hOp185vBSX9PUnrA/7\njHUxv4Y+YGP4HmMB/bZ843wakbPMYD9arVZJyzFPToWC6tAX9KxRPq8HqLBr0DF//Az9nU/XGm2y\nk8n/87iNKoFkGbhg3rBHNH7PKBeN72E3vE68y7yyjN4x3znNzvwbyOB7ZEroi/WJ05m23TxzHxrF\nc3Jg5fZsjlTOiRKZkitHOCPqV8Uw4c4zO41mD5QUAgLqlAK/7yObNnoYdoSZ75G3diTo5hQBSpyf\nO9LJUR3OgmHKiIpfAYKR04UR9UiIfqIgMpRKy9F8RNTG32zujqOfnZ3Ft99+W5QbimA+n8fFxUWN\nxEsDnneEQiSGMnRfSYeYJ5TnYLFYxHa7LXVoInaOFFXE90UNfAcj5Tz6ZDKppVFdxgDndTab1coN\nEOkBz9tw46zbwWg0GjXEwiiA1xGD73U0UntwcBDj8bimNFlPIjWiQqclURLMC/LnO9bgLTn6zKgi\nxnYwGBQ5BVXzPpzNZsUxtzPIAQH2qvcTc0Pw5OBqX7rL+gIUDB6ZycGuep1T5uZeuA/MtxEeI0Q2\nFDhyTnMYMTZnx4VzncbhmSDSEXWUwgRukEnWkGCF9+V0NJXCHx4e4uLiogQH5iV2u92vUpcusmrS\nsB2pnO5FxtiH7EXvfdJ6yKJ1NH93u92SAmZuCDJ5nknFjUajxo3LurjVapX37iu4Sr9zyQGccHQB\nv2eZPTio6j/1+/1arb19NQkt40YVPV/W18wRAQjrijyxV4w+edz8HvrP8sZaOrhzX/m3gQEH5Pvs\nBfNjqk1E5YA43UtfkWHsutFRUoiM0/1jDf1er72DVQcfyA2ygpPKs60XbIP+39CoiJfyBy/tpb20\nl/bSXtpLe2l/d3sWRMq8JLxNkB48TUjZERUE6sg5F+jjuY7YHanjpRLR+Fl4tDyTyACY0MRgIEaQ\nhcxJ4r0RUXumI2O8crxhCOxEWY7YSE9Cms2et087MRaeCfzriMARBlE373AqA+Tl/Pw8zs/PC6mW\nMRGR93q9EsHyXubTcCwRkBE9omM4DnBAKAQZUXHnptNpjEajGsEb0uxmszutlhFHIF4QAtIboGPc\nydRut786WkyF5cViUb7nQoMgIiawwzEhskGWmDfzuEA8WWOOR19eXpZIO6Lil9CXiApRAqbmea6I\nTz/4Tq4kDzzPeJk3n2KKiHj9+nV5H3eaudI4awgyBEJGWobPQBtJhznVQLROFLnvdAzrnPkO7G+e\nYZ1BQw7yQQz+D+GXfyMHGeUwVwVUxgi00wTsd55Jior0tm9IAMEgtZWJ7+xVEGv6ws/pp6NrUr4g\nGhcXFxER5aAEXKmMyvl+P+s9kEanzbLOsO7KqASIFQiYUQnmB1n25cOkG41gR1TpXtBSI4DIGIgK\nKcCIqJ1KhGJhPhPIdZZTz5M5Qcw340ZOzQfy+M3PY//RF8s988d8k6nhfTldaKQLnh7fz5kJ7xmn\n+Iw25TUEoeJ5mROHns0ps2xT/DOjwvYJLN/IisfnPmcCPuNzCnYfny8j404L0y+vef5/bs921x4E\nWCuqTIpjkOZBIUSZxxQRX8GcTushjBYU/m8YMCJqBu7u7q4cteYdbHz3KaJevRvIOJ8iQsE1Go3a\nVQi87/HxMbrdbg1KBdL3JoyonBYfo+dZKCHmgLGa6Ggh8nzCZeEklisDNxqNcoy30djVSxoOh6Wv\nvIP19aYhXYTRd6VpGv2lkfZgQ1CLhTGgFEgb2hCycXHcmDvGjoK1U9vtdktKkFQRY3eqmMa84Xii\nnDMXxOuEcvW1DfP5PMbjcTSbza+u+0DhGvpmvlkrO6i8o9lslgMMVN2OiCJ/PjThqu849Dj9cNIe\nHh7i9PQ0Op1OjMfjuLu7K+M/Pz8vzh77zWlmO/sm9LJuKDCcFH7PTpiblSAOgOXIqSV+3/w5GyP3\nh7QkgQtX/dAfHNRWqzotyDNxnigZwglKZI7ncGkycoODzjvMWbEzQwqYMftwgxU9PCzW8ODgoHzv\n4uKiHJRwatDzjZPvNCvzgMNgg8P7bVhJcyM32VmhOe0KfcE6ykaPtCjr6YMS3pc4xvQNKgJzwx/2\niw9TOJhGrhiTU+WZ5wa30Zcns2bMGfrdTkY+KJXT8ayRHRE7eKxBPjDiFJWDk+wg2kFxmo059QEV\n/rZzw/f4m+fZJtqJRp95juHcGgTJB0gcqJgaYeDAfzslSrPNxkG1DfS8ICu0HCjl9mx1pEA1zDGI\nqOpV2NP0orMomQti3pI3d/Y+feO1c8QINf1brVYFjbAy9ak3E9loOC9EdNlRBAnx9xCiw8PDUuoh\nEwfZ1CipiHokZOGIiK+EYh+HiD7tO1p8eHgYvV4v+v1+DV1Amd/c3BTlgcGAr2RkwdwWNia/Y+cM\nRUg/mTeUD3eCUXbBMmPFzmeQna3cnX+3HDIO5AJl02w24/9h7816G9uO8/0iRWrgrKlbPZwcx7Gd\nxBe5yvf/CrmKgQSGY5+xWwPFUdTA4X9BPMVnL6nzAwwE+l9oAwc6LYp777VWrRreeqvWbDbL59B+\ngWdaHhgr9wIhKBFA3tuKkUObiZTX63UFIeNdQSu4Z6vVSie72dydTu/1dlEFMudjOHgnV81w1Mtm\ns0mSr2VqNBrluY6sPf2jQHqMuiyXy9xDyBLybeJteSQNCtPor5W2ESj4LDinRoNZWxsDxsO6lRG7\n+T3WP8yrCcIRkc7m2dlZrhXjwDGv1XbnJfLeGBbzjqwbjKCbs+LWDQ4m+Fuc/hLlQ74YC+NizlwN\nbX1C0QGOD/e23ubffM8VrUaBeD+ew/2QbRBn7yHW3xWl3gu12o6PCPLptXPTUeaM90QGkR/0YRn8\nWFZKPYQzjB4uOWsEEzg3XAR1jJP3dXEEsm6bUNo47oXM2sFwUMk7IgPmFRoFM3rDZ3bYjA67kIR3\neMnBfykY4vcEhdYZ7K9y3tAJyJsRN9aX35nj6MCgfE8j3gRLdpTtcL50vRrZHI/ekSnRHMrbhzAC\nyTJICziTRqqjREFsVDwZbHaTObnKqjYuOx4lyc2wtpUe74KhtyKO2LUUKEt2+QyFz0+MBU6NEQVH\nl5Ab/Xt+lv2NTH5/fHyMXq8XJycncXx8nEhSxK4/0WQyqVRxROwqYlqtViyXy0rkidLiXUtvn7ll\nbR2VktLg/nxmJMrjZlxl+sDpFH9vs9nEzc1Nju/4+LjSfqJMm7pSy6kkV1ExZiOLjppL2Biir5Gw\niEgnCceOXj68mxEltw6o1WpJDjfszjjYLxg4R/MoRObIChO0gmfyPcr6QQ0cwd/d3cV4PI7T09Nn\nqbvlcpkHPS+XyxgMBhUSvpFjOzxOwfJOzWYzU3Q44KS2bXSNABg95WKeQTztZCF/q9Wq4rhtNpv4\n9OlTrvXBwUGmqJbLZeqhsqAEpIX96ojdxODlclmpsOO+rLXXd7OpUhgODg6yTQUo27eaDWMwmW/u\n6SaQdsDsSFnO+X/eEyNV6tOyn5VRBJ7PWNw0GFTbwZQd1/v7+wxQPFcgXiCP3ofYH+TOqLEDPAoZ\nQDgh0e/t7eWJBg6wnJosg10yDUZb+Gl94u/ZObLT46q+Ui4sG8ivG1OWf29nhe+VqCdjtHOP01fu\nU/7fziK/s71zGg5ZYC1eyrzw3g6S7LCXqT+nij0e5tdj9/h4l48fP8ZL16s4UpTfGhpm8vf29ipQ\nb8R28CiAiGojRnvKbGxvbgQ/Ip4ZBd7B1QMRu8V1btbGG+XKhHtRcRJ5vo2eo3/SVDwvIjItYo5K\nt9tNw4TBszBTOo9Rs5E3j+Ilp8/polqtVulrhFFiM/PZcDjMXkERUUE6SDExjs1mUzl+wfCyv0cv\nKBwsp6gwJmx4O1lErHt7ewmps/bL5TIbiZaOratznNLleWx2KtOYb9YF2fHam7tiKNpGx6kWR/PT\n6TQajW2PJH5vp8cw9tHRUUWB8zdE5DyPPWY0xfPmVC97gHsxjyAlvCfOFYgw88CF01dykFgbd/3m\nYrwYE7fMwLjyPjZ8/lnyRSIinfnxeJz713uYOeEzR+VOx5RUAWQVx4TvnZycZAqJZsI2bGVazIEJ\nvCnm1I5brbbtEUagVzopDsqc9np4eEjnez6f5/vSBd9pYsZAdSzrZ0TnJU4NY+OZGCKOTyK15/1m\nQ8k4jOx4vzm7wJ5yqtyVya6EZK5IGRnhRodaT1uWMJqk+fgeDp9TWuV7rtfbNg1lypX0LO1YjDQZ\nTbRuL/meXien60BquFdEpIPpLIT3vmXEOpN7gBg6gC51q4NXZ16MSPOuZAf8rp4bAsgSEeX9S54X\nqBm/cxrPDlxpn0E9zVFzup99yrt5f9h2vnS9iiOFQrUBIx1mpe6XJ8IrkSwGD2xHuWvETuAwevy9\nL4x06Z3ymSN137NUaFx2zCKi4tXyfRSK/+alKI73tYMU8fwIF/+/HSkUgcnbfk+E3pAtYwWtG4/H\nFY98Pp/H1dVVxZHiXTG6jO3+/j6jcvrEcE5V6dgYKnfKxJuSsTvt4jmP2PHbvC4o6JKHQsRiWWy1\nWhkplqkWNqI3ael82+CU5FEcSIyf4WUceZQysmFiaEQ8i/aQXZxfv7Ojfz+vbNtgQ+PfEy2bM4jM\nYKRKbgKO0NHRUfYJe3x8TJJz+RwQAIz7YrGopFlRkvTS4XKKiN9b8ZNKIQVUIqA2gmVEzBqXaXue\nQed9Chz43nA4jHa7nXMKgkTK9eDgINNWfk/4PG53YHl7qfyfMdspKNtbYCjr9XpcXV1FRMT5+Xki\njpZP/t4yab1UBmJ2cjyvj4+PMRqNYjKZ5Fhd8GJDGVFFwTDWDjjtPDkwZQ9j/FmXiK2s0werdP5s\nL0rUxYgTMsI6cS+coYidQ848O2BjfUgxko2wrsFAOwiwA1JmU+ys2EkHWfJakQYt18jvWepKO3Ps\nuZe+R2BnFMiBg+WUlDV70ek/9j3tKdwAln1Arz4HhbbT5gIjgyXowUUgQ4sPZITLDqqfZ+f7W9db\n+4O36+16u96ut+vterverr/zehVEyhBmvog8QBAbIy9EbF+/fs0IIGLXFRVv8yWEiIjOeVe8fxCi\nx8fHZxwSOBg+M8xpP3OlPA7gW+fYSRcQfZSQNvd2RBQRCY9TyfWSBw2079TH/v5+JRLyO0fsCLUg\nCEYlWJ/JZBKXl5cxn89zjIvFIptDgiAYfjdMXKvVErm6vLzMKJ1xOlrwmUu8f0Q1lVrmykEk+N3T\n01MlLdpqtXJOLHNGuZADIihIwuYGOPIyP8ERG6kpGlh6nZFToiy+zztAFPe6OBI2OuV0Ycl/sBzy\nPubRlGhQKUc8w+lAw9pEa6TpXF3Knux2u9Fut2M2myXvDITRcu/IezweJ6/IqMVLKTEjGozRqT1z\n/0C5PL989lLpP3JH9Oln80z0DWgL8jaZTHJsnPPo1NbBwUEi5bVaLT+zzuMZrD0I5WKxyK7gXE6h\ngriA/q7X62y4WSJL7PdyP0Rs036k540UMc4yg+DP2WOkS+7v77NtyGQyybWwfuQ+INRO7XAxp6Cu\nRl1AlCk0MOqE3ivXl3EYqXKatF6vV1LQyBP/b46uW7QwbtA3I9Xs9TIlxmeWeSO7RnzNmyRV6H1b\nVtvxk33guWFe0R2MH/2FTfQ+BRUrW4lE7NKE2ALrT/QF/GYj4/P5PCaTSUyn0yxmYN7oLO+xlf6B\nEUX+1ilmrxHjY6z4AeZou9mt9aALN751vYojZTj8pTQVEJ8NBsb04eEhxuNxLobPGGPA3B8yrY1m\naRRQjK4g5FnNZjPLxl1NYAHld9wfISuNt/+O3zFeFIgFmqtMQbD5eE/4KqVSsGLCGBviRticRuFA\n2Ha7HZ1OJ2F6Q9Wj0SghYypcmF9KxuEucGZXROT5a8y1nQW4TvAySGexvqQ+MG4mx+JAeQ24p1Nd\n3hg2zNwPmeEdgY1xnlgXjDYKGUfZaQH+zr2bHCggW4aODeWbS4Iswk2yDJMKsUL0+pPSBFb3OMwj\nfKnC06kzKykcdkr8kYu9vb04OzuLXq8XNzc38csvv1ScHj/74eEhq/0oJmCt9/b20uFgLcwh8bxQ\n5epAxHID38dGnr/jd8w53yv7PJXpKK9xs9ms9IlbrVYxGAxis9nEly9fct6Yq4eHhwpHLmJXFeie\nYE6R0LUd54Z34Z4ljwvZf3x8zM7vrgi0nvPfc7HvTZC2nPjvS74Uzs5LKWHSKdAPvBcptPF+9HPY\nR66EhFPI+Gy80ROuYmUt0D1OCzp4Q+59aD3ri8OHTjDdgj1tPpTniJS8gxsCATvETtkh4yV/iL93\nxZ/twsHBQQY5nAHq9J15U6QA+Qx7gcNnR4SghL1kpwQnsky/uYCAcbh9Tdn7rpQl3tNBtp2aUn8R\noJdcLJ7Pfbrd7jMfw4Gm0/+M+3/jSb2KI1VykiJ2+WYLpD8jv8rkwL+4v7/PzYliLKMaR2V2qngX\n8rB2spi4b+WfEWRvGjYlQgCfJGKHKJngZm4RwoKwefwRO6cBEjHf5z3xzM1xGAwG8d1338X5+Xm0\nWq2KMWEz2alAcdATqNvtJoeFPiyz2SyVXuloMI8oG5en7+3tZRNAjlOwMR8MBtFoNNJw4yBjeMoq\nTeQCRcUmsSNlZ4J59k9vLDsLlh9zKDC4oH2utkEWarVaOpLmGeAIehy8K+Pgd+UzI3ZOnJ0g/g5l\nUvYcIhJFIdsB9Rwhr6xFKYMlz8pyDA/o+Pg46vV6/Pzzz3FzcxPr9boS5IDSULXGe5qXQ38lG2zP\nQ8lnMukXQ2J+I8a0dArMH3PJOmOFH4czYGVrJQ7iwjg4hxDd5BYH3Ofo6KjS84rAAq4HbWGYb8sJ\n+43vbTabLEbBGeWyLEVEBallv+Bkm8SLE4XzZSPEVRotPmce2ScOFAkkcJTKwg10ETLIOqHfCEyM\nUtiZcGBWOkasKfOG0cTJ9vid4SgzDZ5H26/FYlEJMGxn7LTd398/O07LSJP1jmU1YleswnsSfPKe\ndpY5K3C93h0VZD6Ugy7QPp6Pw4+Dilx5/AcHB5XeinzP728bhc1A1sp+buj9EiXF5iNfjKF0suxH\nMNcGElzNjGw6mOL3PAO9aZl3kPrS9SqOlHtqMBCiDgwKJMyI54eE2mGgDB/hsSHkJHEqWGww7JE7\nRcTzUKQ2WhE7Q4tBsYIGZrYidiRgheJIgPfFsBvCRkD5XlkeDBR9dHRUUVBEVN9//32OqUTIeA+n\nSSN2yABGzaRFHK7RaBSz2awStfD3rsC008K8OvXFGLk/CpjPkAEcUxSgv1c6H8wpBEi+42jWG8My\n46qxUjEzJ6yDDRsG2+OyYfeckzryOkK2LNEFO78gQE6fGrEp03yOqrzOL0r9hz4AACAASURBVP3O\nc4dcl+/C/sFB8f3puXZ7e5tIru9Zr9dzHx4eHqbs39zcpEOGs4Eclmiyf1oOHBRYEZNeQzbKlAqH\nPbfb7WeNF7mXnSyu1Wp7qG8ZYBHlPjw8ZHEF42AvcLahURcQEAyyAzN0kBHCiKhE8uzX0qkhSCwJ\nuI7mPS92bko5tRyUTr5lir/f399PhLvT6cR8Pk+ytaN/5Iy9Y5kxisw82CjyDuwRrxMpOJBpp5Ih\n8GMsjSxxHwwyzye1aj1jNJYABwfArXt4P9a9dLDZ34vFohJkg046dc09jWyWjp9/8re8K/Ns3cgY\nsVugwk4XMk4cP9Au1ubu7i5Tey+thQn8pk3YGbIDip4BZHjJibGe5p6MCafY54qyruwr20KvRakT\n3bvsW9erOFI+zJcJAolAkRkSPDs7q6AB6/U6ERJY/44AHLWsVqvk5XhjIJj8zoYNQXGlnb1vIEnn\nZvk7M/+tMCJ2R2WU71mmpdiQEZHpMZyp5XLXrNNdq2mc6YNinZZxGsP/5t44OqwFCIbTSoxhsVhk\nry8rcO6JoLIGjJdndLvdilNrhIn343coIs+nq/0ceXgNidAeHh7SkNkIs4m5p40skTmGtIwOee58\nPq8cj4OSQMm9xGGAK+IxOnePgfQzUQx3d3cVRxrkzsiUEYQyhWUFgbPQbDYrvA0+93whn8w9zoK5\nR3S7xzlZLnedrUnBHBwcRLvdjvV6nRwjl+m7WSDPc/TJe/szO9F2GIjYQczKI6VIa4OQ2rlE6ePY\n2TmDy0FQxNyw35gDZIh79vv9NHy0u4jYdZnnvc3/xAFgjNYl/J53LXtMkfqLiIrzgWzZmHndmW9+\nX6Z1mTsjwdyX4LAMQJhDH95cogteY6eHQEeQ17LlB/sJ2eK5HLtT6nf0kINgyxTpV+7tzwjcTDPx\nvLFOBAsR1SOHarVapmr5HqgQ+ob5xlF3IO35BG2jythOqNsfcFnv22EwWIAdMOfMz8Qh4p2NcEN1\nKOeUABZns3TIrbOcvgP4YL6tj1g/ZN+ABWvG+hlZ5/vYb1/MM/cymlvazpeuV3GkHL1zTSaTNAoM\nngm4ubmJ9+/fV9JbFxcXEbHdGNfX1xGxg7Md0TldZ8PGxOBNm+vTaDQqTdmswIigMEDm4fhyCsrP\nJ+r0uXkIE0JuRypi1y6CCJNIr9frpQOFE+UNbJjdabOInWFHQbzETSBn73QSUCkG0Uq5zEVHRCUy\nY1M4zcTziMR5lhW0N1KJALo8vHx35p1/28ii/MrvReyOsWDuzCNDHsr1ZQ4pjy55RyhzI6Ceb2Qe\nJWjH1albyzBjQg55Dz8Tg2+H11E66+/0ldEIo4VE1lZcRlXZC/QS42JPksIiamUNO51OOjYR1dJ+\nFDsOjtFbK+ASOWYezYHyOBhfrbZNxRrNQS/wOXvK84ETyTv3+/0cM58xDvf0Yp6McuIk8zfmZ3lf\n2pg4pYN8uImsZc6y5rUmALWuKVMlvr71e9Z/OBxm/yXLAAEXAbIROQw0PEgjsDgfNpZ2CsfjcUwm\nkwzOGBd0BBtExohcYMTt1BHcWhaQbzt0XiP+Dr0MbcGcLL5vhCxi197h6enpWcoXuX3pNIX9/f1n\nfFOey7NIETMHvofTe6ZN2KlhzxlM4KfllTESPGM3S7TSOpw5YT/xX1kcAIpdIuMeh5FF1rdE6nGw\nmW/aLRjYsD5hH3rflaBIeb21P3i73q636+16u96ut+vt+juvV2t/QITq/HBE1fN1ftxw+MHBQZyf\nn+ff1ev1jEyMDhF5ANGbC8G9iFzwZHk/R4dl8zpXiZRRGpGL78E9I3ZwvSvaHL3CsXqJbN7v9+P4\n+DgRqZOTkzg5OYlOp5P3dTlnibgYdSs5Fa5KAP0ADSovUEFzzJhv7odHz2eOyl9Ci0Cx+K75S8wf\n//kzZAli90uctBJBIqp0tUz5Gd9zJOQIjfUllUqqGeTDuX/e1ZwA39scn9VqFbPZLNtGkKJiv7hR\nKBG001tOi/C5Uyfl88rCDCNQ/J3HwJhANElvgP447cVe6/V6icKCGrvM2UhfCfXT0gKUmKtEHplf\noytGJRyVU/RQq9WyZYD5J/V6PQ/HdkrU6XhQLMYxnU7zeBAqW09PT/OePAtOFu9vvpWRGd4flA/k\nkDEQXYNu8V3uCZ/I5f6MgfE6nek58Bw7feN5L/92tVrl8VF0f/dFA0SoCS5CgbdkYjlrityiE01V\nME/V5fLORLD3ywtd5H3Id5jTkmwPr2ixWFT0M4U8JSUiYptpYZ+5KzvPs36zDsZeGTn3+Fh75MDo\nGegtYzDvzkiUES4+Q5eY5sGFHeVz3sfyVtpFo+geA+PAxrJXGT8Vty5MK3WG19JrZ/3mtK5pCeY5\nM3ZzqKwv+L3f/Zk8ffOT/8MLgaP6KaLK27BBjIiKgel0OhUYM2I3CfB2bKCB050LjqgeFAycW1Yd\n+Pe8D++LMDrdgECYTOhKMUOGFgR4PKR29vb2ctPxHoeHh9HtdmMwGORxD/1+P51DK1su4Gt3fmbe\nECIg8zJlxGfmCHEPBA3n16kENpBTcVwWTDs2QNBs/NJxZSy+v58LBF5+BoT7ktInpYtyNMRrgw4X\nis9QeDhSXE6fMu67u7sKb8NKsuQKoERQGK5429vbVizBh3AVHf9h9O1ksZeczvX6mmjrNCX/NmTu\n9eX7ZcGE95KfV3K0GEtEVNIlOAplhSbpIKeRS4fWijtiu9/m83mlw7TfCw4dh1bbyYzYVqdiBHG2\nTk5OknfJmiAbe3t70ev10jiWfXAwpCWBN6KaHi2JunzHqbmIqOgm84UidmkZ5NH7wuvpg3x5vg1Q\neTllw37kfjiIw+Ew01gm+k6n0xgOh0lPYF+wn9BVnh/0noMeOx4UGC2XyyTxezzWXXaGMZLs+9KR\nIlhxyhzj/fT0FMfHx2noeQ56mKIpdON8Pq84dawJ33N6nnEx9pIK4fQVOsp8L2wGwQx2xHw587NK\nHhx6sV6vP9OdOEqr1Sp7RlmfWM+UdADLnNtU4CTh1DlFT4BBmpgUdcS2KpE1MoeW5+E/MH92epGh\nMv3Id5HB0jcpeaTl9SqOFIrB3q4/Y+HttHwrJ3p4eBjHx8c5kdPpNAfMwqNkOJcuokrYI+r3RJUI\nFJNO9YYjayt3Frd0FGkOyec8N6J6GCz/76gMQWi32zEYDJILQW4aB8oePQLKBkUZWWkbkXCE8RKf\nw0aR79vg8T2+WxJOXQ1j5c9nRBUoVBs2bxLPm9eL55pbZQNbVuYYBZvP54kAMa9uGuiqOeaUcbjK\nhujqJQVeGusSBSNyQ24wNETMNipGM3DAN5tNxXChDOBSlO9kx82KDkeWy9ElCt+RnflMrBtryBio\nKmO+zdlxBa8rJrmnnT4jWciyo0iPg+/aebVj4/5xfO4xwpskUkYuCOJoOsr6ttvt/B5z73Mmedf5\nfB7Hx8fPKuTm83kiM8gbetDcTz4DAWMP22Cw9+v1eiLHNvrw1Ox08xlrbqJxKQf+W/+u1WrF2dlZ\npRcV74osLhaLRPsYP/qXefMasiceHx8rhHKjjA7qeFf2DQ4t62tSN/NipGhvby8mk0k6zC60oAlt\nxNapNtmc90YueR/zLZEh5NC/512M6ltfWrej890nq9SLRq/s2LAHy3YZETuHnwxNeSHDAB6WU/it\nOB3sReYR3e49bsTcup95BGBwdTRzaGfHAaR1RhlcMW/fQikJgLH3Rj/xJb51vYojRQrK8CLOAwrD\njhQKpOwSHrEbJH2Ibm9vnx0GzN/b8FHeiUPHYZ4RUTH0LBZC6vQUxslwu2HIshEeqIU3dkQVkSgh\n8dlsFrPZLKNcHDKeV8LEVnCMA+E3cR4hMSQKSsBGxGgYSgXdw6GwsrXX7k0fUT3YMqLaKblU9GXK\nibFx/5J8yf+bSItjiuIsz5djDkBH+Iy/x6Ep78n7oCCtvEBPTKwso31ko3x3fl8qAae5/OyISIXN\nnNgQsZ5EipYtPxuDY6cWRYpi9Pjr9XqldLpMFaH8+/1+9Hq9fJ7nn4g5IrLAxIqb5xHcuJKG98Sp\nBFFiznEmn56e8vDcx8fH6HQ6FZQPJInneYwgdXQrt+O6Wq2y0SXGnfk2quk0Ow0nI7YEaVAmPnPk\n3Ov1KujB4eFh3N3dZbDIe4PSm7hsnYIBoyu6969TSHaEcKxLJNnz8i3ECv30D//wDxlIcb4fa06F\n3Xw+z15bOKyQtUHleCYBEfLswBCd8NJei9hWi56cnDxrqExAVDqLrBE6zvoN42rkhcvBvasumRfL\nrh3ziCqR2VmTcs96rdAfBG2mKHgty6pPfg8aD6rmTIEdJWcA2u12xV6bUM+cmIjv5/k+1us8z/Lo\nLIWzG8iDn1eiTRG7fVGigJYZO9LlM2xj7GOUgUR5vXpDTsOLrug4PDysNJFjkah6s7I1d4NGiRGR\nB+E6D2r4l/41RKgoWibN0W5p2Bzle8IjdgJi5WblWkZfhndLCBZFCZRa5v9LbgljtdOAk1GiYDy3\nFHKcKMZQjt9jdprSOe0SIWBMzEPpPLF5S5jdskIEZ0eyREts9EAh3ZgyYufU1mq15Ok5VeQmjd7k\nvA+yw5xylQqjTIUgVzb8yDAb10hZxK6CzakUfoeMgP6AmEREVnAig1burJODFz4Htkepl/LhVILR\nI5BkIjnzH+2Mkjbgu/v7+zEajWKz2SRKZLlAVh4fHytNc5EjHPqyxBkdQosQzw0VZYzT69TpdOLo\n6Cj6/X7SCcyLQk/ByXPTSebIFYqMA90C4meHAL31+PgY0+k0uVWknknPG80wVQC5cEAHgvISr4O/\ntZFnznAGSK97r5WpXu7FvFv+G41GnJ2dRcSWJ9RutyvHQKH7Hh8fU9czJuQb59oojeWYvktO1fl7\n6/U6kQR+h+OGDjbKGbFLNZPa4jOcZ3qb2YCjB9AXTsWi7325pxPPZJ+xXk5/od9LVA1g4FsIo9e6\nRFwJFo1WoZP4jN6EEbsejugEUn0ROyeTVCJ/53fgOy/xmZC1MlAyqmZ0GVnBttmu4TSWVZsRO32C\n3vcaYHvsK/gq5b68XsWRIlLyyyKEeLZGQVgEoHZ7vD4+BO/TpEujMm7Qxf1BXSzs3NvRhx2oiCr8\nXUblLIpz+ihroit3cDbkSMTA8/b39zOdiDKz0ua+Nj78tIPGRi3hSZQFyjpilxJljCgej5t3i6j2\nmmEM/J0Rx8VikeMoOVne/IbUuS//BoFgDdm0PmIj4nmDTMPDKHLWyLwFKx7Wq0yPls5TxC5d7b8x\nsub0FH9jTgFyhBLge6yd0wEocZQgcmFIHQOBsrSTaeTBqdqISKcTFPju7q6ShmHdUESMH+4i7/ZS\n6gCn3Kli1on5K+fX6S4jLqAbDiJKpMTGxdwyDOJoNMpxU6rf7Xbj48ePue9ms1l+RmoKBMVR+d7e\n7mgbHB4rd4ISCMTlWXtHR0fR7XbzKBXemaNJ3KIhYpfa6/V6z6Jq5JuAwagDsvgS+kTaDcfXaV4b\n1ZcCU/7tgIG5+fjxYzw8PMRkMsk14Ygg0pO8q/d6q9Wq7HenZF7ah9bhZDB8Tqgv97FCZ9B4mD3v\nZxOUkWYk4OIeDhSs25FJt5owOsYzvDciqvu8RAedtsaZdMBjNAfdZkqLnSPf3+vKu5Ryw/1s2/xO\n6M5SPzDPJurzLp4/yyL7y8Vb/I2pIyWAYPv7UnoaPet7lrL0/0Kgyuut/cHb9Xa9XW/X2/V2vV1v\n1995vQoiRdSNhxux8+SJSs2DMgrTbDZjNptV+Ex8D6jWnuRqta1EaLVa0W63s+IN6JBqC6eJeEci\nb0c0RsmMcPCTvy3z4URQjMvvSTQBauBUA+9qr53vAXUbPSrz3eTS7amX3zW8yZwSBdj791hJGTnq\n9/1KzpbhWSMSjMeImc+jMp9psVhUogh+wqugeZvvCdTsgoG9vd0p5D6Lje85Bed0AvczIuo14Tus\no+ebOWc+WRfuQXQGImkkK6J6dh7vY9JnCet7L1jOvPaOQP08p2Udwfoz/h5koV6vx3w+r9zT1atG\nijkuhHE5Ted7m0uETnCE67QUqcQypQ3fqWwCyzqR5kCfXF9fZ1UQ62V0DR6To2DGAZJepsBcNk+z\nSGScDtLr9TrTkOahWMaMTIAar1arRAiM4h4fH2c0D8rPvdiDPId5ubu7i59//jkRI9MInOIvES7W\nGFmzfkJGTk5OYjQaPePDwS1DVnkOa4TuYs5MqEfG0N2me3A00MPDQx58zjhcqWlOFrrFdBDrIjeT\nNW8WJA1kyLYEdNkpTC70DjzUzWZX7UeazEiTdSlotCv4LG/oEfad541CGqNIETuqAP9vHeGWISWH\njndFr1pn8BxQvpJzauTfdt52zVXnrIPPRLScIofoe2d3/G9/h8/M5yrRqP8XOvUqjlREtS9HxA6C\ndG7YJ6tjmBEuSpIhYnJEgxcRRwjFcH5+nlUflNzDJbETVCozbwzSaCxI6SzYcBreR/DNbbCBdkrI\nm6fdbsdqtaocemwYsyQplkosYnc0jeF2ExlRHM4bG6b1JkWZojycu3Zqz+vM85yDt/HGCOFEbTab\nSqFBrVarVNaU/CwUpufe6VycPjs9GGZIw76nFaONIunoEj5mDOU8lXPn9zcvC4XKOvozy5G5BIzD\nKXGKESKe9+3y9xgbStXOcrmWJYfECg7Dz9w4RWlCPX3OaO9BKoN5I03HcSnu7owjxHqRTvERIHDO\nms1mpUs1c8062MnC0eK7yD69kNbrdeWEBMbulLDnhXdjbY+OjlJHRew6apdOtOeKquKSb4U+KI0q\nfCIoC3YIeNfSCPN+dL72PmSfQQR3+op9XXJZuOysvxTwnZ6eZvXedDpNeePZ1ouWNfau0/YRUdnX\nflZE5JmVDib9XVMwXI3FeNFRbm/B2HAYLIvI6XQ6rZTsI084NAcHB9HpdCq8NRwUeLp8bzgcZqq1\nXt+dp8p32NcOKk0xsb50/zVS9qUsW26cAuNijzL2krbAWpqu4HVFfsqiCJ7LfuR7OP+WQV+m7fgd\nDFJgG2yD+Ftk34GfbZd5bsyRdUJ5vZojhQIzh6YctDcbCpfIi0E+PDzEzc1NLJfLODk5qZDUjIBw\nnAqIlPuE+D24rIh9WZnxd3ZsbGQtiCi1knPF91CypXPGpnHU4Dm6v7+vKGkrTiIEHAcLDpwNR3tu\nroizxN+VeXVHJnYWI3aKqlRe3rSr1Sq5IDRDvbu7i4eHh2cl0DgRcHe8WT1PZWTC5xg9rxPjs/PO\nOqGIcGxMDvW8oHg8H1yes/JznAOeSwsA5vIlpW+Oj50eGzhImH4+37eSctNMoxWWS+btWygPChFn\nASfOCBCK/+DgICaTSdzd3cVms6kYE/rsOOhwBErFFc8teRwlWdZVbEZBPQ4bCxSqHQH4NSBwPiII\n2ej3+xVC/d7etiEmfXsspwQyPiLHFWKME91hvcc4eV8739wDbs/x8XGukx1P6yz2EOthOeTdMZKO\n5nE6/T6WF+aOvy2NFAgC+9vBVjleF1Ogf8rDlz2H7AEjciZS39/fVxwL/h4HxeiJuZvmMXpvlkES\npOnj4+OKrPOerDF7mHvSRoN38BjgJ47H41ittsTuk5OTiKg6X+xDEGjemywGQSpzaoQeveJed0bN\nvYYgd0aMvd5Gs+xk2WHj37ZB7Fk7+tyTIK9Ef9n36CGADcue5cpZCtYfXWJdShaGgIL7uGnw/68c\nKSJMR7sIJ8JhyNWKgAm08DuCt9PRarWS+NfpdKLT6VTKw70IpbfJhsHQlsiKoycvsqFKDE/EzpHi\ndx5TGcWVqJqf53dhYRE4k5S5DFeWa0BF2mq1rVKhlxKC/1KqwlEFSoJ3L9MGRqv4LkalTOE5rUn0\nw+UKmnq9ngfeopzYjE5TPj4+xnw+TyKz54D1JrVXEtuJ4hyd+DPkr0zbMX7ey0bR8+X3QE55P9Ai\ny3OZ9nIbENYXcrRJno68mWPWAdlGzsoKUu5txcQYWd/5fJ7Po+qsXq8n8ZzP6GiNzJrETKoMOSNg\n4p57e3sVON5pNubZCKoVMpVWbhkQEYk0gvZ6bozg8b6lYu52u9mfiXsPBoN8frfbzdYLPA/nkf1G\nawhkEATRUT1/64CGq0SgV6tdbyDObavVahXjwBoyBigS3Pf+/j6urq7S0D49PVUQfN+n1CeeO+sL\nf9ZsNmM6nVbWCeeQUnwbVQJg9ken03nWBw8kj88jIh1FZzDsDDNe94XiM9ae/9wShv1QOv7IVqvV\nyoDdhHIj7g4wWCOj1A4MaZtB3y1kjc7x/X4/74cNQKaMRtqRBIHHvrbb7bxvq9VKXWPknbkh4C2z\nDuhzvlfqRuaPueC92HNUNpZZg4idzsGx9zpxeV9gX+wQ2uHl3yU6xj7BL0HfRuyyDS/JfL7DNz/5\nP7zgVdiZIOpwtFimvnBq7GFH7LqN4wjwbxaIA33tGXtTgIaVufLSEYjYRWZMtHO+CKEXiO87j196\n2SgEQ5yGbMt0lh0polkcQvfJcjoNBM7RkJ3RWq0Wo9Eo70seuoyuKRu2YHkcZQqJ8TO/ID12bOwQ\nAZ8breLvqWIqBbzT6VSUKrJgpWfHl02JQ1XKoQ2BS3lttMu14KfHUkatdkbLYMDzao4U70/AQJQe\nsUOW2u12lu3zWYkUGpFB2dEry9GXUT07/YyRMVOF5L28Wq2Sm1NGqSBLyCNzCoLMvnLHaI+XPWpU\njd42/K3XDbSZ5pAOtsyNQnka6cABMeKH7DPPOP7oGoKyXq+XaJajZNZ8uVzGbDZLY9pqtRLB8Poh\nM94vOFx85pSRKyZBWjD2Jd+UdAmHnXstZrNZjMfj+PTpU7x//z4/43slks5lXYBuY97QFRcXF/HL\nL7/EZDKpIGt3d3eJbMJbjYhKaxrGUvIxSePhhPNZxI7n46o1Ak90vA9BtjPDOOxIGsVw8OVgCZ1s\ndJW/Jw2LE03F4ksUg81mE4PBIPb39+P29jYzDxERV1dXcXBwEIvFIo6PjysBpNcKYIKAmPHbDs3n\n85Q5pyvLVjvWOWUGh7kkOAeB5Hu2oQ7M+DcZJv/eGSrskd8FfYk+9t72XHh9uJfpEB57xG7/Gzlz\nsGLH29erOFKUAFv4mVAm2oYPRWIHxz1hmBQWEWEk3WCinC9D/mXulsm0YeInC8IY/FlEtZeNvWWn\nRkoHzZFQqbDKCMAOJhsGo8jfuVGjkb7SeLvkl4teKygaFFrEThGhbOy5R+xIzn4/xr5eryvlryaA\nGmms1+vpSBGlYkBwxnhPyKG8P99DiTKPjoQctSBvzAv/9tzZWbLxtRwyXygAjLHRLOYLhekNz/qx\nyZk3lAVOhlO7oD5HR0e5RjZodl4x/FwQX9l3VjZeh729vZxT5BQ0wKmter0eZ2dnKRtloDMej+P+\n/j76/X4lPWD5Ho1GGVCx9hg2ggK/hwOSRqNR4SSZY+GjLSwjpLRLw2jH0c5bt9uNfr+fjliv16ug\nfZB6F4tFdDqdvA9pmIeHh0QHMIroJkrr2ZO8B3KCIbFu855oNBqp5O1A7O3tPTsiBONeBkSDwSDO\nzs7i6uoqhsNhdLvddCTYY+zjUkdZNlgb65TNZtt5//T0tOJIU3hA/zJ3y0cn4IC4iS/B3cHBQTZh\nZt6sYwm6S/SDe5VG3UHAS4G+G8va0BIA8rfm8rF3Sb+zTpzNGLHricV7gkahb6fTacot5xYOh8O4\nvr6OXq+XGRfGCMG+2+1Gq9XK3mQcm2QbwkVmAtsHCZ6/I5jFoXXwVdI/bDdJ6aOvcLJw8tEXTgki\nI+wVOH3smdJhdxNuZK8MvngmOtGpuvV6XeFm2jllj/xviNRb+4O36+16u96ut+vterverr/zerUj\nYpyrjagiPnzuPHqZV/e9QGWI5k24dXrFED4eJ6iT03gmpJE+chRC7t0oUsTz9ge+uIc9bv8/0VHJ\nxwD98vw4mmg0GpUT440clZV6TicZDiU95tQTYyO68PeIIohATUB39Zyf91LDUxAER+AgPY5mI6pH\nrHCRrpxOp8/I3bwzESbrybu4fNZRGd8zF6DkpvB+Xm8iT1IA7gzu9ycK87uSkqRCx6kII6Dm80VU\nKxOdgoyI5Nu4oWYZXdfr9SxUMFfA6JWP1/A5ZUZBI3aVeYyRueB7e3t7cXx8nKgNa8EcLhaLPOTZ\n8srflpwNokZS/uaXMDfMf5lqdFdzIlOj0SBUrD+f0VkdfpXPY9zb21YzzWazePfuXRZORET0er1M\n7Ww2m0zpMEZQzvl8XiH/Ov2IfjKJud/vZyr4/v6+kjJiHGUqharAyWQS19fXFVnb29tLQvPNzU0c\nHx8ngR0OCUhQicow58yPOTqmFFxcXMT9/X1WBpJROD09TT4biBRpXloHkHVgjKQw4ROZqE3aeTab\nVc7RRKch204HIwesu2XKyCNyZ3tkGgGHi/P3Tota7/vs14gqknN0dJScsPv7+zg9Pc15ub29zcOh\nn562x72QrWGMNHAFmTLCPZvNUtfw91ymOpTZFNJpjNk2x2uPjkM+jAwig9yj0WgkXWOz2VTmDR8B\nmoptt9+7TNuX2RxTQbBZ6Eae5+akoI6uAPbavHS9Wh8pJhdIDkUBdGiYz04GisWKDw4M3YZduYNB\nYUIt/NzX/CU+8zvxDvwkzQDUWRLmMXwWRnLFVtrepOZ6OD/rXiLcwwLFu2AoyiNFSOuRZrLgYODg\njvEOjIs18HyzSXhHuGdcTqnZiXW6hE1Vcmj4W6d1MeQYPVI1EZFcFfd2spK0jJgL4TRR2d6CDe3/\nXiJAlukLp/DI+Tt9h+FHFuxoNBqNyuHDJrlioG1UbYT5m5IXwLOXy2VWBdqpZR2RN74PP83Kn5QB\nBgpi9P7+fhrtw8PDJMTCLbFjfnFxkfLhvd1oNGI8HqdD7nQK6QOfVeegCGiesZE25bt7e3upFHFk\nLANWsrxP6XSTGkPe6DtX6gVSU5yJN5lMKlxNUu3wR5zWZp65h51zZty5IgAAIABJREFU5gPnCqcY\n5wkeE2ensb6sn3khXKSkN5tNFmREbB2+wWAQ5+fn8ec//zlub2/j06dP+TzmjHcxRcF6kfn1vmE+\ne71ezk9E5AHBR0dH6dyXQSMBBE5DxNYoci/SUcw3jhzjs55Bbzt9Z2I478tewz459YMDx1jZa3Z4\nuRfvjd7a29sVTEwmk9QTpOjNLdrf34/BYJD3gxR+enoa8/k8ZrNZchUPDw/TkTZxm0CDi/Sl9b+D\nAeaeQNH/RhZxRlyggp1lvbx/0K/MMwGGKQwR1cKOl7horD29wSKi4oiyTgSVJYVms9mk00YKnjEw\nV4+PjxUqA/OJ7fzuu+/ipetVHCmM4mQyqZC8yH1inGyEMDDk/b2BUaRE515ghMWC5av8bkS1HQGX\nnSs7e5AhuZdJch6D+Tg4Jy+dJehoKGIX0bzkDaO4XqqE87g3m03lfLmI6tlJKBQT3BFilw0zfnPE\nyKszBngnlN8aBWE88EScY4fcXvYCQ9HxO6MgzH2z2axwrzzv5irYOcVxRGF4fm3kjYQaGXELAeYH\nzhBrwv0Zo422KxaJeOzYgNa57Ydl1GtiJM/IktElc8Qwshhjj3k+n+d5YrwbChoEEKVP9VrE7lgK\n95vBYGDovbfZv6PRKLrdbnS73exFxcW6gpx5r3G5cMGE65ITVxp9B0LlfrPjYUIyjToxmsgtzzg+\nPo5arRZfv35NI8hYceTQEcy7jRxOPe95d3eX+wgOVnle4Hg8jnfv3kW3283v3d/fV/af0WfmhKo8\nOwv1+rby7J//+Z/znZFDxm7DbV1aoumuBqTQgmDQxSvIHA64nUzrByOEyM1kMsl97AADOUGnQKqP\niCw8cjDvve9WJF4bileoiOv3+xlEWCaMoETsAivkxXLIGm42m0pbHr6HE8R+LZ1veHfwj3gf9Lz1\nTYnK8H3WhGc6qPa7urChtG0OwAmSbEtKuSt/Vxbi8DwCJYIM6yjujd7z941io7N4Ns9C97EPWTf2\nPwic19BOXXm9miMFzM3EEXljoL3R2EQIvZUNG6hETfie008mlDu6x5Ba+B2VOJ3GpmZRTCzEMcEg\nsJBc3MPoD89zJFymCN0N3R42UYBhdkdXjIE5sxDzXgioFSH3NNnXwmgFbeIiY0dJ2Qnh/VlL3olx\nOO3puXEaDfKjHeWIXeWXWxawVm4LgNFjzKQFXlonZMLpOUPzoHyeb77HvFkmUVCO1IwuUGGGo2mE\nxA6BI33GjOK2Axqxq3h8enrKrtIREefn5xkhllE5zhxOoJE92hogo14nnK+Tk5Not9uVoGU2m8WX\nL1/SKTTZejAYxGAwiNlslvc1wRljWDoeyIxlPiLSsVutVs+iahupTqeTMmw95GianzhSOJRHR0cx\nGAwqyh0jNp/Pk1TLvqDP3Xq9TjSrdPoJdpx6IoKG6mA0qNPp5P1ns1mcnZ1V0sFG4O3Ez+fz7Pfl\nc/UitqkmUmKnp6cxHo8rRh9HxwbFASYXDhjvY0OJw+t7kO6lp5gdAnQ21YRGemi/MRgMKtQE9k+t\nVsuSft7PvbXKjtkQ2tF/TpfjALNn5vN5fs9NJ/lbX/69U6F21Ph/3un+/j7u7u4qjnCJ4PO+Tqnx\nXfQBY/VnzE35GYE8Py0bUGYIwCzDpsmURS04gbxPidJbzxmpZkz1ej11tG2wD1dH5hiDnSD/P/vA\ntBzLLTad5t4GAco1La9XcaTgZZToEIuL0WdybKwxWChMO0OlJ44gvAQxR0Tl78o0nqMrvhuxi7wR\nrDJ3iuEHtvQCIIQ82/dGAEGK7JlzLxtyX077OOK384PRsfFjs7AeRiF4FgqKuUIpMV+eT1BFxmfn\nzP8PemOHyBvBUSLRFuMwQsAY4SUYdcKI4kjRw4bne60pr+Yq00dWNI7mQJ4itkbIfDrQIKInlBCy\nY2eCjU0bh9IZZDwoPe8bFOxqtapEX+T4QUJc0eaO7ay/kRXkqByj0yk4OXyPeV8sFomQsE4Yebo+\nTyaTHCM9fzBw+/v7le7OtC9g7v085hKn1Nwr5IP9Z5mi6SSIolOjGFEiUNYlYme84DzZWQDZcSNE\nIwI2EsvlMt69e5f3vL29TfTKe5T3Qj/ZwSb9y5Ez4/G4QjFg/Pxng4i8vXv3LmazWQyHw3w2nEO6\nj/O84XAY+/v78f79+0rQYVn0c1xJy/xw+agUOoX3+/18H+sCG/DpdJopQRA1HAjLxnw+j06nk+vl\nlO90Oq0EgZZd0ousgYNkDCuUBHMVqR72XHu+cXrpeF6mz0Cbms1m6oTpdBrj8bgSYHDPdrsd3W43\nBoNBIvLsrYhIDtR6vc4UZGn37NzyE3QXygR6jjUD7GDflylDrwVygY1wWs+UBv+t6R4EFryT9V63\n262ker234fxhw6wT5vN5OuPouPIwZ9r9lClP3udb16s4UnjmHiQoTwm/R8SzyMAIkR2aMjoyIlMi\nOl4YOx08A6NneJl7WhE42vE72bGL2B3L4fE7SjM6g+MTUeUm+Ds8z4RSc6CAmf18O4i8z3Q6zZO2\njQ76dPsS1sRDd08jfm8nAqfDa+LowBvRzlnJaWA85cZg/HZczTGwk+s0Fs6YYWzek7/HCbFzimGB\n01Gr1dJRQpEBR7vFQsQ2FYGicT4+IioGAHTNRtfBQnkRWSPbzB0ybc6aI3YMD6iKo0s7Guv1rplh\nvV7tTO20gJEfDLs5Qhj+VquVTkNEJCkbuXl4eIivX7+mTADfk9Y0pxIn0YGGHSLGZaQ3YpeidBrR\nQZtl0k42aSee69QexsmXCdaz2Syenp6y8zWoy97eloR/dnYW8/k8z7iL2BrEwWCQZxiSUo3YcdJs\nOLz2ZdqjROWm02keWcKFjJJaxnBGRHz9+jU6nU6cnJxUUh5lMMyYXiKk8/ePj49JYqeRK4Yd3g/j\niIhMk3748CGfMZ/PKy1fHHARkDqjYCSe37t4gPfmHe/v7/NsRNYSR8sE74hdGgo7g/5kfDj6tHYw\nR4iiBdBH1tD6g2DRuhOOjx1NIzbsXTew5ZmkzJkXy7cdIqNgOJfQR0hxsj7YIWy1u9MvFosciwPh\n6XSa6DV/Z8eG/e9CAr8L7+jAkzYSs9ksgwZ09Hg8TpQPvqMDVZxd0ro8k33vwKC83tofvF1v19v1\ndr1db9fb9Xb9nderIFI0net2u5WUAHAw5FQfd+F8v73okuhWpvJMGHYEDWzp/K0vf6+Exg37ObI1\n98fRCZ+5SsH3NApH+uqltJzJ5L5HmT/mJ6kBR6VuWkeUDKfDc1Ov1xOVKvPz5OXLc8qYj4hdCtQo\nChGLIz+/s+/h6Jq5dKqC9eVepLbKiM5oHnNkNJGUi9HB9XpXAgvMy2dElLwPqQY4DSVqSGS2WCwy\n2gbp4AK+BmEzodMIYhl5mi/C35lfYySiXq9XiJWr1SpLzS3Pnmfvs4hdStAkfaJSGoKC2O3t7cXl\n5WVEbGW41+vlGji6hne1WCxiPB7HZDLJyhgaDzKuUgYh7ZeFIVzNZjPu7u5ynzBfpFhANEq0FfSK\ndyyPweF+Lpgg9cPBvCAu3PPdu3dRq21PDzg8PMzP4YQxR+12O6uGTC7u9/uZxouIlBPWx80qQbxB\neYzG8f/NZjOGw2EeJ8M9QQ+QPeR7NBrFYDDIPVA2OGZOeHf4ZP4MXQE/kfUH4aCKyqg632u32/Hx\n48eck19//TVub2/j8fExptNpHB0dJWGbPWsCOJf/TSf5Ml2KbrLe8xmJzWYzWq1WpZDIfCzzcthn\nk8kkDzW2HLN2EfHsMxAwPydiu99/+umnaLVa8fnz52i1WpUO9XDdSH+RrWAtQKE3m20bD+tT0CGI\n8MzNdDqt8EKhUzCnoMW8g9OMpPJB6vis2WwmcmS9zthNGuf9IiLT5mUxmmXYSBM2k7Y3/DS9hLnh\nvpZR9pFtb3m9iiPV7/efEaVZeKcIUKJAm6WR9uW0idsfRFTLLF9yiMoc8ktkcH9mx8RpL94ThWGO\ngR09vyvfsxPonK/5QEDI3li8e5m69P2YV48DJ2N/fz8VuVMzODMoD0iu5qGhaEziJu8MsdYVOHYG\nXjJezKVz6lwoRhO8cXR5l9LJgqjLmpSlrqS3mNeI3WZ7fHxMhcQ68V4mW9o5wXFeLneHantD2zjb\n8FnR8878HcrkpTlBLsw3tJwzJ/x0t/iDg4NMq6GIucy34DwvrxOOIDwUPiPlzVph2AgAlstdXyvP\nAyX3h4eHcX5+nob98vIyvn79mkqYd2KdPEfmhjHvpSNpIm8p915j9h96xEax5P255Hy1WmUBw4cP\nH/LZm80muYb1ej1OT08zvQkvg7PSHHyw3pzjt1qtMiVIwDkajZ5xNR2gMXe8M2kpAoYff/wxn3Nx\ncRF7e3vJ+cEoRUSutx35cn5Jozw9PcXp6WklBch8Ybw9hxhSjJu5o+w/HF86dLOncdapqkOmcGbK\ntBjrhMNYr+8O3iZdt7+/n0UB5f5GT9mQ8z4Onpm3xWIR0+k0gyh/pySMs2a8C845vEG/J7YR58z0\nFOYNh8N6n98zH6bJIHukrk3mHo/HmX6MiMq5tegTU0NstyJ2nf/dl86yiW607ceeAU7wPeSB/VLa\nNQ6C5vsELcynA3cHnoAG3NfFBHAgv3W9iiMFv8QbnFLE2WyWSrdsjbBcLp8hHSh3lByGkM8c1Vg5\nIvA2qiYBskAIlhcfgw6HyGgQThjfc57fqJcFGI4P72CUy/wunmXBZxw2xtwfJwpCp4UfIiLfh2vD\nWhjpqdfraRS9EZbLZSoK3gfjSgk2Df6IDNgwRlFwEsh7LxaLigNmlMToiT9DNphvVw/S98ib2orL\nhwTjzOF4MBc8zwrGjhuInpVNyZGDn4ACRR7gTiBn7iVEWwSTwK0I7EDaocI4sf7srYht/5p2u51j\n8D7EUUJe4YNFRFZM4jAZPSjXZr1ep5Nxf3+fDQRZXwyBW4CUvb84+mIymeSxK1w446ztZrOpkFVd\nQUQ06R5TyD5G0bJBNGpdwT0ho242mzg+Ps53wvnCKWy1WhX+FEYCUrEDSNaQ9i8YxHK9MfCeAxqY\nGsXEEJgTyQU/ptlsxvn5eczn8/j5558jIrInHLLkgojT09PKWYA2XlzD4TCdhaenpzg/P8/7Gm3o\n9/s5pwQrIKB2KkAwyh5cyAqGcTweV46IabVa0el0cj+iX5lvI9F2bB4fH2MymWThio2py+XLAiRQ\nVs5/5F6MD7lkndFtIGd2Rrkn2Rre1foLvtx6vY4vX77E1dVVdDqddDJBKuEq2Qnhwqk3Lwv5ALFG\njvx71n+1WiVaOR6PMyDAiWK+W61WxbHCnkRE6mz+xs4g+9D6xM43z8D58fE8OFLYcfsK2AuDD7xX\n6QCaU8n+/Nb1Ko4UG8PnDi2Xy1yYiK2nXSo3lGaZSkLh4927Uy+OgjdQxC464vtl2i9ih2SV8CJR\ny0spKf/OhpaF4/dWmCWa4FRdSTT2GHCqcBBLlAujDOpgpI1IkPG5d1Cn00nFUaYMy54pEPj4Hqka\n0CiUBukUjJbTRhhunBejNVyeozKdC9HRf/f09BSz2SydH883/2bdDdOXFWwPDw+pFIhkUTTInNea\nEn/elfsapmbjGz0ySdNKA0Iz8LmhaN6JMVlOnMqlWaMPgnZUaqSHMfV6vTg+Pq6k39mDdqK81/jJ\n+to5pfM5KW5XUD49PeV+9/52ZGiSqsfeaDSyms3IImO0EbOSZq5x7P09HEIqPm34WDMcKt4VJ+T4\n+DgPkWbv48RiOIjgGb8rOtFHjO/x8TH3khFnZMmHRrsTc4mMcpHq5Do7O4tff/01IiKur6+j2WzG\naDTKTvNl2icisk+c5Y13gjjO3zE31qOcWcczifR5X1fzGiVx81/k+x/+4R/iy5cvMZ1Oc/yz2Szl\niOIP3p1AG7mxjttsNnkfnDHvfewQOtepYhwk0CH2DM6ou4+zZgSi6FqjK65QLnWxEfzLy8u4vb2N\nTqcT//iP/xgRW6f37u4uKy+dwbGzQoViGXwR0BN8+8Jhsm6bTqeZ9nexBPLd7XYzVYjjHLE7g9J0\nGKfvmBPmyfckwMMOs/bOWrGmzkyVtAWvPTbQBQl8xnO/db2aI+XNErHjCtgLR4iZ1Iid124DTzXL\n0dFRVjFE7BQf9/NCEa2+hEhF7Jyoer3aOJNFJ3KCE8JlR8e5WyNc/Nscl4hI6NwX0eFLjpc/Y+N5\nDAgNyFmZ52V8KG82OPNDVdfj42Pc3Nzks1Fu9PIwT8ZIhisqUJ7T6TQjfkeXKGbQKTcJRHGVKQxH\nk0YXGDu9glBELuPHEep0Ool2shb+Wz+PeSZlYNTCDpbljMtjMjISEdkHx+lkvk/FFvLksmvfG2eC\n9QX1JQ3A+0VsjSkGmujOfAAcJDeAjNhVQlr5sYZHR0f5rowFBMyBCdWc5nvgyIzH46zi4TOca4xs\nabjLd/Kc4FywtsgL1Wmnp6eZUuTIEpwdI7KmGDC20omwjKxW26o3o54475PJpIIcgsItl9u2A+X+\nZ1zoqjIY4//tfDutz2XklPeBk+Z+Zg8PD4lQ2ZiQlqWS8PHxscLfwSEwWoMscuAs8miHEAe/5LlE\n7OQdvXVwcFBJF8PZIhC7urrKzwgU+dzOGvdG97uFCVVim8321AY3ypzP5xUeJPdEN79UBet0J++P\nPD09PcX19XU2Ae12u4niYuOGw2HyK603bONwtli3m5ub5Dk5A8G7EpxYr0ZEBpS1Wi3Tr7bTzWYz\nUWKvE20aCAqcdvceKoNPbKhtiCsTcfSwX85QsW/YHw5oWXPGYn0CKu6/s1yw1wxKOEgmqCqvV3Gk\n2IQWRoQDEmmpGMo2ByguTih3p2WXXfO3GDffs3RMXOrJ37CgRkEQRj7333sBrMxwEF4qZydyXi6X\nKYR8RoqKVCeRdsSuf5QNq6Nu7gP6YljVJHLIo2yQ0og4ZcIYfLSE58bIAj2AIrZw/sePH19M3WL0\ncEyIbCOqKSPmzQ4U788clGRc1qtsqVCm9vw9b1Dn7RuNRoWYW6ZoWJunp6d06rkvcDNRIo5KRCTS\nan4RRoj3wTA5LYlcUTTg93FLhdlsFrPZLBEp0CBImXAXmJtWqxW9Xi96vV4FAUMuFotFpX8N74G8\nMUfwgHDkut1uclYs+/v7+3k0zXg8TjmEQGtyr1NK7GnLCM4pv38J5YXgihEy34V7gGSyPhGRARtr\nRCqbiz0FksTcgCQul8sYDAa5fyKqPZVAyMq+aaXTFvG8hYoRXkfZyL+dqna7nWmsxWKRzsL9/X1c\nX19X+EBGCGazWfK5cEDQ36PR6FmvMuTs8vIyzs7OMt1p7hUBD7zEktOzXq8zZbi/v5/zxhwMBoNn\naMZoNEo6iA2p18IIr8ePM4hMIP+DwSB6vV7ynXD+uCfPQAcwPsYLFxBHLWKbCr29vY1arRYnJyfR\n6/XyXY6OjnJPuK0Ka02gzx7FyY2IdMj5e/c0sywQiFgPky6mNUAJWIAgO7CHqmCagBFXUp7ePzwP\nO+LsAt/D7uLEsLcJ4nge9obvkUWgeawDKZxI9jfvUrb7wcn0nL2Uzk5Z/OYnb9fb9Xa9XW/X2/V2\nvV1v1/96vQoiFbFDb1zmTxoOUjQRBtE1HiIRc8Suyyu/A+aPqDZfK/Oe5hQAIePV4qkTdZdduM0d\ncCrP0KMrGiKqh6Jyf5+CTarPUTZjBloEPnbFmzkEnk/fn6hof38/yd9EMUDOpF24iHhOT08rCOD9\n/X3c3t7msRdOYQFBN5vNuLi4yFw68wB35P7+Pm5ubrLihkoi1sh8FhAJ5KNM1RC1MWaTjb22/D+y\nx5zzfe65Xq8T+SSSK/lZJkA6SgE52N/fz7QiqBPRD5ENURzf46wx5tpcHJNejbKAtPG5D1IFxr67\nu4vb29uYTqdxe3ub8rDZbOLu7i5arVYlgl6v1/Hhw4fkh7iBIBGlU8tccEQYt2WRKrFut5vRIvdg\nfagUBJmM2O7tyWSSyJHTRUSJruRxeq8krnodifo3m012OvbeBSWjczhrSLoDBNQoJ6gDJH7uxXwj\nw6ytkTMIwRzfwkW1WSlnXOZt+iqRca8VSDx7ZjweJ3K0Xq+zkzbNfE0S5mw7UNyIXWX1ZDLJcdJC\nwBwxUqkUGjgbYESURqDMN6gnc2YE1BwZ5I55I4UDr4r5RieBZJti8O7du9xTf/vb3+Ly8jLRSLiC\nZA8Wi0UlXcj68LlTnEZWPHdwhU0hccYApPrg4KCS4kdekUPub2oAe4GWBdbtvJtToMwbmQlQS5/d\niv1hXaGC9Pv9Co2A9DjyBk8MvWAkz4R4tyKhjQiFCS4icxEUGR5XjjOf6GrTWdBp2HCnGXlfUCn2\nCLLnOSyvV3GkDNFZ8WP8MTpOvwC5NpvNhFkjtpArsCGGpCSN45zYyUKYTGg1L8ZKyqkmFh5j7Od4\nAUkZlL0nSKeZX2MHjs3B2MsqpJIcyLsDR5ojw7sgJFQMcT8UP0oPnsh8Pk/eDrC7HUNg6OFwWHFA\nIXhzoOfp6WnOM1D/4eFhwtAUFxjqhwhqZwkeh40Pn8HD4vsoPhtzeGKG39nQ/I1TQFQXomic+qU9\ngavbWEOgYZTYarU7nNaON8qV78Kp4H7O+TMe5MJwe8TufKgylcU7oPycMiH9sFwuK5VOEbuzJCm/\nNu+F1B6p2Ol0+ozX1Wq10jHFQMORcTDBuLjXbDaL//mf/4lPnz5VeB3mL5YOiA2LeYDMCzIC6Z65\n6Xa7eU9aQJiTR0Uba2UHHNIzhtXrw96m+7kvnGd+z/dIAeOAOD1JdaCDv5JD5fSd+Zhlaq50fn/8\n8cf45Zdf4pdffokffvghIiLXDb3h3kSs93g8juFwmPJrWkOZIqWCDQ7i9fV1DIfDuLq6yvf5/Plz\nrFarXIf7+/uURThDh4eHcXl5WTla6OnpKf/daDRiMBhU9v5oNIp6fXtOG5w1xsH7LJfL6Ha7cXZ2\nlu9Zq9Xi+vo6Wq1W9n6KiPjrX/8am80mixFM4KZikDS6U0a1Wi33m6t2mTMcdrh35nHyfdof8C4E\nSRRbsN7YRJO4S04xuo3fHR4e5vdwyPr9fnQ6nQp3ydXMvLsLoFjDm5ubrNhmHPSXYqx0qOcYKZxS\n+oIhPw5WsFURO1vIO9jusW/MozU/DOcQveiebcgd+5R7WuaojCyvVzsipiSZmaMB2dXcG7xqNjCL\n3+12K1VEVrClsxRRRYbKxbJiRoFjcEy6NEnPRh/BZSGN2KDkMepsAr4HImXDx8W7sCnsIBKtosh4\nFyrWut1uEqrhRUTszvADzfM5XggzKJ+JfnB9Wq1WnJ2dJZoQEelYrdfrPO/KjgbGdTabJaLFZzg6\nVFawEak+eXp6ik6nE/1+Pw0NCh9jbyN0eHiY0bUbF/pdeK433tPTU9ze3maFGvwd5MgOrWUHJ5Uj\nJFD0boAKFw1FZySBfzebzcoZdjaSbsFh2cCg2VlAMUBwNZJ5d3eXCALfN8o1Go3i4uIi59XGm3nm\nM8Ywn8+j1+tVOCYl/xFZtVNLddvt7W1cXl7G999/n2sI4ReD7v1kbhTOsM9pA91lbzjwMRfJpd7c\nl7/B4XXgB9dlMBhUIv29vb0MRHDwuRgz/DFkj+cgZ0Tkrk7ECS0vO03+6eulz9Af3W43fvjhh/j6\n9WsF5YO4DErgyjT2Mghjp9NJPdzv95Pv1ev1KoRy3v/y8jKGw2H8/PPPFeeFvwP9M1KPk7xcLvNM\nxojI/m8cIG10EINIQOq+aIvFIvl833//fXz+/Dnfj+qzZrMZHz9+rHA8r6+vM0C28xKxa0PR7XZj\nOp1W+EpUTeOAuZgCfW3+qxFAG3DOlIuo9h5D/l0JisOGk27Ujf5ZzJ/RQPYUPM9Go1FBSGnLUga0\nkOmR61arVRm/Hd3Dw8NEhLl3q9WKH3/8MatHI7boIIEo47NzhF7CmfJa2HcwKMHvcbDN/eUe6BLr\nKObeRWXl9SqOFB4/qYKIXZrGREuUBZAnyAiebURktZ4hfSYOMi33QjlGVNM73vS8Cx47gmM4FAOO\n0eciSjHCZGXGIpYwPc83cdROHY6Vn8U98chx4Bx5Imh2AlEoJktDHvQGKTe7WwKYqOd3Xa+3J7dz\nOOT+frWBHmOgaswRTbPZzLSIoVrSCybSlmgdisXOCQoTAqMhbJNDnX5jDKB5QOtuD+BGfXYwOPvL\nzrdLdjebTbb7oEqtTF8C+1vxMzZkHIjcc0GUWcob84Fzhwz3er04Pz/PoMCEzL29vWzCiWww9xSI\nEFg0m7tDVnEuSYc2Go1ce6M9/OQ9HQT84Q9/iH/6p39KeUKZsUalM4mzZqTWjhSyj8zxmZ10fucW\nBzwLeXUUjtNN9Rb6CyfPzifzTVoCh7Hb7eac4KyQYrdcszYgp95rrDFz4ZSJr9Lh4vr8+XP88Y9/\njEajEb/88ktEbJ26i4uLdOZB33kG+xAdQJuMiIiTk5NKisnoCo56u92OXq8X33//fTZJRO4JLF1B\ne3l5mfNNmgd5I3im99Z8Ps/xk1qnrUZEpOOGLJycnMR3330XjUYjq91++umnqNfrcXJyksEn3+eM\nSWTVpHfQu/39/TwzEaf6+vo65vN59vsiwEaeQP673W4iwKwXc469scNJ2pM0FX/Dd5F9uq1bt9Me\ngiABpMdpx8vLyyx0QhbRX4yVtUAnIefD4bBS5X1xcRGnp6dxfHxcQeS4SM0eHx9XwA90OM6d28qw\n50tainVMxA6t5nc8m7Qun+Gs4jQZxTMq9q3rVRypn376KQ/AZHImk0luGLxKVwyB5BwcHGSVXsSu\nEWLEzrDYKPgqnRUz+3EmuBDkiGr1HdEIC2whBeXiWf4en6HwXYEEYkZkAlQasSub9/f5HgqNyx2q\n2bR2QBy1wB0gHWeB63a7cXx8nM6uOQDAtFTzMVesBc4xBtV5ZuYYZIbnkbZCeTtFAGepXq9nbxsj\nK0QkODAuVQelLNM9Ebv0FhGiEQSMqnkGXkNXCNmpw5gy7+4UsmdeAAAgAElEQVSpwrrhDODEWN6I\nwGq1Xcdslzrj+JuP4UojpxvgMhilNWxObx93eGaOQOGM6DAGUvAEF9zz7OwsOQ9GYJgjy5dTVMjJ\nb37zmyynt8PrikxHmlRa4kSU6AdoIYaGCJzx48DwXSNk7Dnv/4hICgF71cYNjh9BQKvVyrUg2KEx\npR0+UHlKwc2vKZ0j6zPzRMrP+NyyZYcKR/ff/u3f4vz8PP70pz9FRMTf/va3jMxPTk6iXq/nfgI5\nw7EldW+uar1ej8lkErPZLFNyjIMg+P3793F2dpb8Ghxz5s6ouRFy5h3ZgL+GY2I9jL5Arh2Ut1qt\ndPqoRByNRilTpGVJGzK/2BuqzLx3I3aVsDihXBzBwjtafzebzTg7O4uLi4vodDqV+xoNLZ0DgkYo\nEdy3lAF0nzuhl8BBibjCqYLX5s7upMDJZphislwu4+bmJn788ce4vr5OO/Tx48c4Pj6Oer2eus1Z\nGgc8FxcX+Tz6eZlS47lBxzBGxg4tASTL9JpyT5hSApIIV5U0PfNOFuZ3v/tdvHS9Wh8pBAoBRdkA\nRcIZiKiSxolQmACUK0rdyA0RFBNuBMEGGLTIaRiUHRGqF8opBtIL3BPDY15FRKSBsZPgz8qGlb7Y\nnBgxnodBAHKGm8R3UMxwGxiP35Vn9Xq9inMKFPvw8FCB1P1Ow+GwQthzygtugCMs5oBxGBUiAjFE\nz2c4OiBzbg2AcmWjlRvPyrj8f55rpQj6CYfLaT8rDjapnXjWFwSl5AXZ8TRpnVQehvGlxoOklcqj\nZTilHmXk1IdRjLLHD+sVEc8CFu4LAsU92UMYKUjZzBv/Zu4dtPR6vUSEnUrEwdjb20s5A62A81ii\nunwPeUPpGVUFLSOV7NQAwYAdDL43Go3i6Ogoer1e1Gq1CveGdzGHzbxKnndycpLcj4hdihxODo5I\nxM7xQxat7EEjmLPyYr1BO/kuMmjUzwEXOoriHMZ3fHwcP/zwQyVAtL5g7kGWnOrAOWu32xmYcoHU\nWuczfpOzkVXz22iJcXR0FJ1OJwMzsg04bEaVSXsh86vVqtIb6/Pnz/Hw8BCXl5fRarUSOcXxs5Na\noiAgzZYBvkOvNgfQIDgEJp5TAk/k3I45xhv5cUoNZJo97gIQv6s5nqwdzzcSbfQbcGEwGFQI3rPZ\nLKbTaTYX5V4RkfQP+GHtdju72r979y7pGI+PjzEajZ6BDQ5Y0VEuggENs1OP3seOOZXnFKP5ik7r\n4lw70+LCHSNnZVbkpeut/cHb9Xa9XW/X2/V2vV1v1995vVr7A/LXPiOnTKW57BhSecSu8iBiV2WE\nZ+roixwqHnvptRslMcGZz0AJTAwnbQWSYfiXdykrhhgvkVeZ1omIZxEE98DrJgppNpsJp4Nq4D0b\nkYrYdrgdj8eVqMrnBc1mszg4OIjz8/M4Pj7O+RmNRnF7e5tpv6urqxwHJeBPT09xfHxcicoobWZO\nzEkDigd9Ia3EBSLJd3keZEo4KU4ZQfY36lKmec1ZKc8+g9zrFAroz3K5jPF4nKlkv2ez2cxKHSOP\npC+BsEEakVneGfny2XfwPfgPdIG0K3C+OXbA2jwbtAR5Iu9vLhrvCnRffg+5JkJzIzyiMlCr9Xqd\nc8NZeCcnJ5n2dfqAdyp5hbVaLStHN5tNBf11I8Fyv4Aqcq8yLdZoNLJQAaTTvAkjJlTY8r1Go5G6\nibQE8xaxa1wIf433odksRFmjZ666fHp6ynmjaenBwUGlOMLvZX6m0Tn0RKlTQK2tm5za43c//fRT\n3N7eVhoY+2Bi0IWI3eHV3BfU2e8DQtRobFs5ONUGmowcG6k1b9IUC/ZQt9vNfW/dyl5jTfiMOaYU\nv9lsZuPUyWSSxHGQY6O/7AkoI6wheh1CvOeWfUl7D37H2Lm3ic58ZpsF6o48L5e7o5WwR8goVdDo\nNmcq4KchS65II3VHwYCzAOg2yPHmItdq22bLVEN67Z+enmIwGKRtwlZFbNPF7969yxMEsCnsGeTO\nFYesL3YNuos75XPGK60xnE2JiCyEGI1GqSMajUbKMPdE9imS4HP7CmU7k5euV3GknNYxHO20gSFE\nJh4yMpsuYqekKB+1AuM5CJoNNFCzKwAQejYKn1nxY8yBVc1TYCyukDLXCRjbpFnehffEULp3FmlH\njL85G+ZWmQD59PQU4/E4SdGcgYfgkEOGq4QTELGtvpvP53F+fh79fj8FkrExJ+fn53F6eprjphIP\nhe9UKmNibsxboNKPdJuNScSuvBiombnlfSE/WnlHRCpmO2X+CX/AFTERO/gbUqmNM4YrYpePj9ga\nWXqekNLs9Xr5txhSOA3wMCIibm9vM4WEQvUY4SqYtxMRWQlnA2p+IAaFTuSsPRwtZM18AO5FqiIi\nKsrUMmtyLIaVdOfNzU32rfr06VOlKhM+G3NIOshEb+Zlvd6e3k7lqGXGnEg4HIbq4UAwPubG6wxH\nh3lttVpZcUl6yOnC0pnlYo0wXE4FjEajuL+/j4uLi9QbdhA5YHc4HMbd3V38/ve/zznmvexc8NNp\nX1+l4+cUph2AiIhff/21shakmajEYn3h0tGhfLVapT7ivlQK2wGJiOSp8ZnPW8Owsycs41Qzsn4O\nrr3PXIwQEan3cMwbjUaSzd+9e5fONfLhAMs8QvY7Y8Bg8yz3WGK/8X52os0psj7abDZJQuff5hE2\nm81nnEDWyUUxpMC8F1ln0ocGF/hbFzogJzinFH69e/cuIrb74vz8PHmfOFURW71/fX2dsr2/v5+6\n7eHhIb58+RKfP3+O3/72t5WWGlQ3kvqM2AUWyB56db1ep32bTqdpo2q1WuVoNVLAFHfM5/PcH4Ax\njLOsji/9Bj4jBfpSej2/+81P/g8v8pauFrLQIAAm7bnizYtvZ8ZRe8QuakOoysi7JJv6+Y7WbUB4\nX75vwhoT7aM8jEiZO+LokucQJfmAWQiuEdXjSzwvEZF9TJgXzoUyKdh8H8aHMbGRQqFdXV3luxkh\nwUHBkHFPIiScO3MFUGxU5pTVfigj5huFxLuxdo+Pj1kRgwNNPh9SKhdzyvoSXeMIs0a0V+Az+A/N\nZjMmk0muhY8cQLFBMkU5mC8GGZ41RkGVJG6M983NTUZJdsBQligpomsCA+8HG0nmjEDCzhKRMEEL\nShqSPPJghIggBXmwIqLvDITddrudlTu3t7dZHYRM2JB6PxiNQ1lTseX9hDOCM4Excdm1uUIO3vg+\nssG8sm4YgYuLi3j//n06oKAjROwPDw/Z4BY940OEicprtVpWJF1eXmY0HLFrDsraXV1dxcXFRc4N\na8feL7lOPq7HqCqf2/HyxTEnrJsvdK3fjYOM2+12GtcSAaXJoVFLyyRkZZotRuzadCBXnU6n0rCS\nY4WWy2UliGJPE5QSaPC8h4eHSpDI3v/06VNcXV3Fjz/+mH9vJ4PgaTKZVCpPHUwQNDDfkJRxvspC\nKS72hwPvo6OjdBr29/fzPV19yl5zxsSOEtkdZB99gHMLZ4h3KHsnOTihgq7Z3DY/paLz9PQ0UZ5m\ns5nBTcS2Jxm2ECAE2UHP0yeuXF/QSc4UZD9RHW1nz/J0dnZWCdC40D3YDXNRsYMEciXflmpcOGLI\nBUjd/8aRehVHqtfrZfUVAoeRR6ggUEZslTT9Rdg4DAohgnBtEqArrEqCNwtvhWxSLUqI71uwXWXm\nijZHT3yf55WOG85ExI5UawKuy/95BgbIZGM2L4icET7DxlbsEZGQKIRODBIXzsavv/76DMlbLpeZ\nhjAigrMUEdmjyO0tVqtd1aBJpURyGFEjUihLkLjJZJLPoFM6UW7Z/NTpY1JmXKQFSf+xvm6QiLLE\nsELCxvnwe/L3pBIwLEYzkGGIklyuvnt4eIjb29scI4qBtfeJ9LRJsJxZ3phn5p8xvkRCxjljD+Hc\n4FRzT5dwu5JmPp9n5Vmj0YiLi4uMIC8vLxPZfHh4SKPJO7CnqMJCLjqdTnz58iVubm4SBfHl/cS7\nIgPj8Tg7R5OO4sKhx8AYWSEAGAwG8fHjx6jX62l4Op1OBitfv37NMnq+NxgMot/v53p6bgkMv379\nGk9PT/Hb3/421wXjM5/PkyjNviC1amPhtWPOynSpf/rid3/5y1/i69evSX6PqBLmkTsCBc6WI5r3\ngbPIHc7GbDaL8XiccorRvbm5Sb3utbSDeHJykg7/aDRK4i/Ov59HyfzR0VEiZr5nxO4sv48fP0bE\nroUHAbD1ED33aFECshWx1QsnJyd5Xp4D7H6/nwcFWzZ5D/QsQSQXusAUBC47otgGf45MzufzyskD\nEVEx+OhPNwYm1erKNr7X7XZzb3BuasRW3i4vL7MIxRmMDx8+5Fhubm7i8fEx3r9/HxFbBJB7zWaz\nDCQiotLDirV030Gcrtvb23S6IrbOsPUgKDj/z1yCaPJ3puo4pcvzsPvoBFePImfful7FkcLbNC/J\nPTrgrhius1Iw94R7kB4gguOeEbs2ARZENpOREITf1QFGXriXK8Kc0+edHHWXXi2esPPCKHtSNVQc\nROyiOJQNqE/E7qBcKhfN2Tk+Po5ut5tOG/NtYzqdTmM6nVacFuYXJKJUUEDFdujYUMw/EZs3v6tz\n+En0hQNK0zrGG7FzMuGL0MuEd0Ehong830bpnKagfQYOE8aP77m7up1T+EY0uDMCRv8bokKUjbl1\npJ7NiWCN6cCMgkSWcFxecvpIkRDRW7nxfBSt03esNUqjjLZA20i7oKhRJn4PDJtThKSMkW+qfVwp\nZCcatKHZbMZ0Ok14/+LiImazWXY+dnNUno/zBKrG5yAoyCHOIWPHmWU9uZjHz58/Z4QKKkHAAc/D\nUTl8OuTf1ZU2lvf39xUuI++F03RxcZF73zSFMpXotSJ1478xEv/SdXZ2Fn/+858rUTkBKXwXc0je\nv3+fmYThcBjHx8eVSlgHHvV6vVLVh7NM1oCu8BE7ngxzY4dsMBgk3469ZNSNYA39D1JNzydoIEbW\n/uM//iP+9re/JQJqFAhH6eDgIA9wdpNVgiiCVqNjFxcXGWAh74wd2ggUBKPmpMOQSXQC6+dWMdgg\nAg8jfebVEliwFiUPiipAjgdyS4mrq6u0ieaj/vrrr3F5eZn7xg4KegLbhTOGTLnNA9V/rP1sNsvK\nSYKSiN1egydFo9SIHXcQvW9aDgEujp3Ts656pNLTHEdQbeaQMczn8+SGfet6tdQeL1miR6AWODFc\nNCpE8ThfjIOCw2Pjzabi9ybkAY1yH6MpNr5lZIeQowAdXUfsjpkw9I0D4ny/eQ/mcTkqZ554ptMp\ntdquLHM+n2fkHhHxu9/9Ls7OzlLZ3d3dxWKxSMV4cnKSKUQrOq8Jl9N+KFenVu30mBtg5Q5s71Qk\nyoYGccDMTtE0m9vu68zL6elpKj7Wlw1vrgibCyccQxWxc0AgkptbZIgaJ9KRtZ0OOzVE509PTxkt\nYVAiIlMUoI0YgIgd6RRehOfNJcOgB3aWcbQYn5EJ7k1EbzSWZ5lLxboh1/BIUHDwFnHI4b2wTqQv\nacaKHHW73XRqHfn5e+xheDYRW+T64uIifvnllxiPx9mhPWLXTBNHj+eSTnRKlvVzKh1FaeSZ8eME\njMfjXD/WolarpfL/8OFDBf2Bs8i+9BqQ3jg4OIjvvvuuYoRYb+TGTq05ayXnECQLZMpGmJ9GHfle\nrVaLDx8+xHfffRd/+tOfcl+s1+uM9klPMY5+v5+BAHqMwhLmFK4L+sIBH0R25NdkbNoGNBqNisGC\nF8dVNlBdr9dxdXUV4/E4ut1uXF1d5d9++vSpksr/7//+74jYpqHa7XY6TJ5XN1TudrvRbrcrfZSQ\nU5xijK6dwdlsVkH+4Sbyvm4Zgt5uNBo5d+xD7JMLNRzoghzbufIeNg/R6S36ZsGpfXx8TJtxd3eX\nAUir1UqHGlm6uLhIp84ZjM1mk73a3r17lzy0iIirq6tETWu1WnKbkKkPHz6kvqGfGrJIsQPAirvT\nw88iu8VagIb2er3UucwLndVxgh14LJfL1LHT6TQ2m02ll1/JTy2vt/YHb9fb9Xa9XW/X2/V2vV1/\n5/VqVXv9fv8ZikAUQ8qh5OxERPKjiLJo3mkkxCiBkShHZvw/qIJTGE5dAJmaiM47A3OaswT5GmjU\nsKKhSRNn+W6ZiuAivQWPjPE9PDxEr9eLwWAQs9ms0pQPGJr0C+gNUQrdyyFmkl5hfUjBEXkxX6CJ\nvIcjOqBpyNucvxWxRU+ISIG/mQ84KXt7e9nh3pAr9wbeJzL59ddfk/sEWmLSN9wJkEevuSMyCP4R\nWySj3W5nBF6v17NBJJC40w1EQrwTCBc8EsYBYkWq1VVdoJ6gjfBPIrYVlHAZIHkyb05xR+w4UxE7\nzhPRoFMBEbt0KpEu72IEjlQLc+Mzp0B/TbilupKUmDkIFD+4fQZjIAWM7MJNAP3sdrt5aC3R83w+\nTzlbrVYxHo/j69ev8eXLl4iIbMLpZo+G9tm3oGtGkyO2lUgcqsp+A9kGGQWZYQ1Bl7g33yNVwnuU\nCCgoFrxEX6y7OYq+zDcyqlYWiXA5ffTp06f4z//8z/j69WtEbLtQU5FFusa6lEIH5PPk5CSfyfhd\nEcp8s+YgLFSbITfozX6/n5WvjAPSb71ez/eMqHY2J51DupRnn56eRr/fj9FolCm63/zmN3lP9Dry\nFrFNRXGI88nJSaKxyB060aijK/u8xyMikRGqip0VsN0A6XXRCLaNLt9lk16eYbsVsTuuistI12g0\nSltxfHxcscHwzricMmOcvJf5kegEF22QDm+328kZfHh4yGdHRLbccUW4Dzv+y1/+Eo+Pj/Hu3bsK\npxQ+LHrbPDeeR8aHTA4XSDq2hjHQtoH9ad4pTV+/lV6PeCVHCoIwXKKIHcHaUDSTymIDZXpiSF2g\nIJz6QqHhSNmZgluBUTRUyb9R5O4zQ2oRCNgOj50gv1fEjgQXseNQmcM1HA7j9vY2jo6O4uzsrMIF\ngW+B02LljXJ+9+5dDAaDLDnnMFIcxF6vVykzpSU+aUYrPgyQjygoOzDbGSyrGZrNZh4wbOPNvLqU\nmDXkflSN2JFy6sVVJ9fX16nQmRN3jPYGY+28TuamADePx+NUDDiNjI9UAwaYiilklZw+z3AKezKZ\nxGQyiffv3+ehruaXMHbS2nx2cHAQJycnCW2zlsiwKzLPzs4yJYqRwIA7XYwjAXfKF9/ZbDaZjsAI\n8Ty3DWCPNhqNVHDIuVMGw+Ew96DT2jb+vCvfpwUBzvloNKpUxV1fX2e65/LyMn744YeUDVIbTj07\nnWR+n7ll5h26fxjPpOoKjh1zM51On6XeGCOyzTjtNBLsNBqNbDOCc84zPAYrc5ws7lOm8JiH8t+M\nt9lsxsnJSVZmXVxcRLvdjtvb27i9va0Y2f39/ZjNZsmFwfFjXKTfn56eKkUVvCdkdSgRDkx9TFOp\nL1xp/C//8i8Vh+bo6Cg+fvwY4/E4uWLIHSn/6+vr+K//+q98HgUDi8UieaSlc0p/osVikfrUtgqe\nJrIPb5WO3m7Pg2Pp9J5TsI1Go1K0ZMcV3cT9kQvmCeerPOYJ2UN/m1B+fHwc5+fnqVOto8zDxB6a\n7oKsQlnwHnIHfMtNr9fLoB7Agz36888/Vzh64/E43+XLly9ZWdlut+PDhw/JdQOU4ExDgi3mhrQ0\nh7M7ONpsNnlW4V//+teU/cFgkNV+OPTsLfMUqagtr1dxpMjvll4tXAKicxaDc6vgdNhbRGiILB3R\nIfw8y0LsEmYiDCMroAYvlT26Ms4KjHfDWDi/D1JhQ/GSMn16eqqcgk0+nzy0S5U5uBKSMgowIioV\nSzhiJo1jmMy9MdHO5FAUE99jva6urrKiISIy0gS5MRF/MpmkU8icMd84RxDcjZwxTzQ75NkRu8rC\n+/v7bNpnQ4sCKvlaJlkjP3wPQvPt7W3c3d1lg8GIyL4lJiszBhwX/m3kBJn6/PlzNn0zQsSYuU9E\nVGQEZTkej/MMsIgtx6DValVIoW5iCzLGs8z3idg1nywDGivR5XKZUfnd3V1cX1+nvG42m6zOGY/H\niW5yXxdTLBaL+Otf/5rvyBgIjnDQzGlAXnD44Yt5fYfDYfzyyy9Z/l46y+7NZXlCJpALO5n7+/vR\n6/Vivd6Wj1uhPj09VQoL2A8gIxgiE1kJPlyk4mIZgod+v18x3qvVtscUjkvJkzLS5gAUgjLyXiId\nzHOj0Yjf//73cX19HRFb9BMngfdkPs3fw7Fzs1f+DWJhfXN7e5tFA3zuRoinp6fR7Xbj6Wnb+45x\nwFEimIIvE7Fz3AheTEbGOR4Oh3F9fR2r1So+f/6c+4tiBypljQ7u7+/HH/7wh6jX68mVYX0jdsU/\noOARO87O3t5eHrXFPiQQsWNqp9aBi4P59Xqdfcl6vV5mFXgXZBi75vWnsMOOmREbkPQShUXGCRQN\nWHDQNnbawQH6nMpTAsKIXQaDNg+Q1nkW3+cIM/Rwp9OJ7777Lm2BA2KyGlSOl4EQsjUajWK5XOY+\nRPYbjUbc3t5WirOwQWQyptNpIpVfvnxJbuO//uu/xkvXqzhSGGorN2A1elmQzop4XhHiRfa/rTAi\nqtEYRp1n4kRZsTh9BcRpUjn/Ngpl5wylhqE1ub1EVFarVTognU4nzs7O4unpKS4vL2M2m1VSMwg6\niBJCOhgMYrVaZentcDjMzQYi5qpDN8KL2HWqxng41eQ5Yw2Yb0iSpCzc0I4Ig/n0mWRuzIeBiNgR\nJSFrU5USsUuXsoGdLgWaRolMJpOMMChHxyh44xNV2yEBirYThcPgA0kpjUZZo6hWq1Wl4Ruywbz1\ner04ODjIChDkLGKrpLrdbnbh9Zwyf/f393F6ehrj8TgV0XA4jF6vF/1+P8meyAo/SX3a6WONTMJE\ngbl1B8gYYyQQuLm5STQLgu9kMomjo6NMp9jQNBqNdISbzWZGft5POJcuCliv19nAD3njXZ6enuLq\n6ip+/fXXNL6Qmnnm/v5+7sMyILLzaDSW7xE5+zMj2qPRKNFDLirPQFGcJiEQwhHBwUa2QQBBKCIi\nx2wEzeR+UMCbm5tKew/3PeNykQ0FHfRp+vd///eIiPjzn/8c9/f38f79+6xAdGrdzjl72A1+F4tF\nXFxcxN7eXlxdXVXSJpwIQWDrVjMYRQJXO0uQ6NHRrD+2gvHa8NnB/OMf/5jBW8SuSo6siPfFbDaL\ner0ep6enqedcsdrpdOL6+jr76xmNbbVacXt7G4+PjzEYDDL4QHbH43FsNtsGnD6hgzYZ0FV43nA4\nzDUsq2fZowTAzWYzyfPIGvOIw++ihVqtlojLarXKeSNd2Ov1YrPZVA6md7NN1sL91QhiIXsbBQLp\nwvHD7rFP6MdmSgt945A1n6WIXf348WMS/HmXZrOZ6b6IXU/EiJ3TTqFVt9vNsYOaEVw53U/BgB3O\n8noVR2o0GuVklGkTHBcizojIKoKyd0TEzilztRUbzCgEShBhxOiAjjl9BDLmlKCdOlAl7m+kh0ox\nIjpHCfA6rMS5Hh8f4/r6OkajUQwGg/jw4UOOgQZ2bH6X82L0cTKZT3coJvdMaoL7YvAwinxGrvzw\n8LAyT8w74yKv7Bw9qZiS74JTgbFjk3udWHfn//f392M0GqUid0oQ5OvhYXuwMohAxFb4z8/P8+gN\nK2FgZqMXLlf2cUSkynhexBaVc1TI83C6eE/Sg4yfZqblkSVUQ/EujgQZEzC+2wpQsQTChpFkjPRK\nYZ95/DjROOpOKcBls6xHbB2u9+/fZ7PW4XCYn83n80z9oNjMa6CSjxSIy9hJT/L/Tr+jwIbDYeVI\nKar8kBVX/vBdl6lTNcsaI+dl+tcVbziOlmF+T/NAo6TsQ9AVyxQO6GKxyCNKeA6OPfwbBxFHR0eJ\nhP5/7Z3bT2PZ0cWXaWMa2/h+AWygQd1z0+RlpEjzNA9R/uZIUf6GSEmUzGS6e7qbuzE2Ngcb8AU7\nD9avXMc9Tzx8LX3aS4pmJmBz9j5776pataq2NyaDwcA0Qt1uV/1+386Fp6cn5fN5NRoNc+wZsy+D\nZw/SY4keTugJaTnB2IfDoTG0s9lM5XLZfu6ZQh9YsjdoLMzvw7qhWUGz49cw84PzcXt7a/uRWwzG\n40WDXpxHSbEeQVw+jWNCdSB7yTughUIhlkb1aT/YmGRy0SMtiiIbM+mgYrFoQS3znEqlTCPFmcLY\nfcUx5yOfQz8E00c7EtYte4Bn8sFnIrFoAAsryhnP+/dOIMwkc9Pr9azSHUJDWuojsSFeO8j7A163\nR2YJFsy/X9bEdDqN2SLWMA4NAZQ/izc2Nqwz+tPTU+yKGGwCJAu6Sc4yxlWpVGLNrjc2NhRFkW5u\nbixwl6S9vb3PslKr+GKOFHlOf8UGBoiXhiMlLfqerN7qLcU95dXGljhZXpzOP3E8+JxPbXEg0pTO\npwYw+Gh9VoWqvHwOFBYbEdNkMjFD7e+J6vf7ur+/j/V/YnywB3jXUPGMhwjf66d4HqJrFqSfN3/I\nekeKUmUcH1/q64Wk5N854DFoLHif10+n06pUKhaBemeL78EZ8NojhMsYPH8Y4wASBUlLkSMCxX6/\nH2OUeC6cDy/gZHz5fN7WWSaTMUMaRZEd3slkUvl83lgHjAA9oXzKyn8WJxvjKS30bL4Tt3fcYXJo\nDUG5tLQwfHd3d7q4uLCDnO9kbBy2vmCAKBedQavVsvFXKhVlMpmYTocIkkN/Op2qXC5bBM+eoS8Z\nzgfr4P7+3kTorH3ffyuKIpt33/bk9vbWUl69Xu+znmf05vHOFfOdSqW0u7urXC5ne9TvYd4Nh60v\nRAB8xjsJXkbgtV44egcHB3Z3IoYtiiIlEglz6DudTswpIogcjUax9D3P9vj4GOsIzb749OmTOfTd\nbtfE2AQ5iURCh4eHtsZY+1yjkU6nY+lQuq/joNLzin2B0ebM8OkmdGX8fXpAScs+aQQ8RPjSIm3y\n4sULFYtFY128EwLTSfoHNpbg4Pb21hjVarVq84Yjvds4flYAABpXSURBVCojuLy8VKVSMQbEBwqM\nzeuEGD8sm9fq8jlK6nkXJycn+vjxo+3RSqUSS2Ph1LF/vH3yDBD7jRYFPoD2bDfnLnaBdw0DuLa2\nFkuZkW2AdfdOCM4cbCw6QXp/ITHAxjGm9fV1W+f5fN6ehQantLhJJBK2Lkhdsjc8G4m8Zjpd3DTg\n2ejxeKybmxtdX19bcMI53Gw2VS6XrR/dN998Y/vm9PRUNzc36na7xjwyPjRssMypVCqWpfAp/t9D\naH8QEBAQEBAQEPBMfBFGisgSz15apoyIeL2omiiBiNAzPXzOs0M+XUgEwb8TmZDaQH/gWS5y2TTm\n8+JQIlHYJ88e8D1EKz5iI/r1FKFPtSDApE2+pzHxzCmt9VE3bA7RrNcekGZBFLqaZ26323YPmk8p\nUa7qU5Bem4KQ1bM4kqxBny8/ZbykJom+faqCVImvuOK7vfgZ9o3IgL9HOs6zVfP5XFEUxS7s9XMP\nlcuaIKLhxnjP4nhNQyKRUKlUMrbOp6g8k0ZkzdqA7vaVekTXzGsURapUKrHOz2gWSKnQDkFaUOOU\naHe7XQ0GA0v7oVMj/env/4JV444wIjRpQWP7zxBtsmdYZ8Vi0VJCfr6ZcxgWaZkW4bn81Tlra2vW\nyRwdG2uYVDjVUIVCIaZr8lE7TLAvXoGlbTQaFmWz3tifpCt888LVFCP7Ah2FL/HnPdF4sNVq2dzC\nkm5ubhrbBotyfn4uaVmZxtodDodWfp/JZFQsFjUYDCwdwfhgXa6urmxvsZ9I+VarVV1dXcWqDz2r\nSVqeNcn4SI3V63U7hyaTiQqFgqV90MOwvmHuYWN99TSpTtJw6KukpS04PT3V5eWlVU9Jy6tAjo+P\nbd/5DtbpdFrffvutcrmc7u7uLIVDSh0dW6PRsGqr6XSqVqulXq+n3d1da8DIGGBIYBR9yj2dTqvT\n6RhzzPh6vZ5ub2+VTqfNDrG3T05OYvqaRqNhFyhvbGzEpABek3RxcaHxeKxisWjsmdfs+AKp8Xhs\nejJpUX3Z7/f19u1bTadT1Wo1NRoNSUu92uPjo7GDvvCB4hWfqeBzSAzQXPobQPh39LPsb9KjsLGk\n8JjTfD6vp6cnE3/zOa5SWltbU7/fj2lqT09PrZ0KFYOcw71ez4oLuIMVZml7e1vv3r0zFnK1dQxn\nP4wqa41Kep8hW0XC56P/r/CHP/xh7juKS/HOvb6qQVrePF0qleyaAg5pShlJAUBPSktdFNVgXliI\nocO5QTAnKdbrhJQXC4VUIY6d19r4sUAN+2oPxoTjxBxQiVUoFFQoFGJ6Hi9EXK2k8BUHOAYYCyp3\nvHaMPjg8D/obRKS+vHY+X5TPYpg5UL2zhR7M38pN1RYb1lfYcXijWfFCVRYwug1f0dfpdKwvjK+M\n89oSxsq88Tv0+2Fc/AwHGI0RhxsVHVT7+ENwfX1dg8HAel15fRhOFWlRUr9Q6rxn5hCaXJJpPxD6\nstalxdUc3nm+u7uLafJwmK+urnR+fm4GAz0S2qDVi1RxJEajkY6Pj23d7O3tqV6vm0aCdA7PjbOO\nQN47SzjfpDh8FRWaqcFgELsf7MWLF7aGWKf+3V9cXCiKIkvdMAacUu/o+3TLcDjU1dWVXr58qaOj\no5hg26exMZZ+TpELSPFu2uPx8hoJAhMOV+4lo/LHH9TVatXaXuBA4GSVSiWrTuNqDap2EeJj3Lmv\nkDn1lc/VatXu70NTRnBRrVZjmlKq1Xgf3rn3GstEImHPyTlJawPmwwcuqwVEjB8ZA2lFr6nhwu52\nu22OEHuxVqspkUiYpsj37aLgYWtrS+VyWY1Gw/7e4+Ojzs7O9P79e1UqFX399ddmvElNzedzC1p5\n11EU6e7uzopkstls7Cqf4XCof/zjH2q1WlZJzbyVy2VLaW9ubprGdTgc2rUrs9nMzkVpmYJFD+xT\nR/72hVwuFxObJ5NJczbb7bY2NjaUTqdj/dem06lVVfOM0kLE7SvLCYwl2XdSiOXtF1WO8/ncbNT7\n9+/tc999951+/vlnnZ+f69WrVyYHmEwmVrFYrVZjmkNsGmelT7NeXV2ZNhDNH2NAZ8zZtrW1ZWlP\nbFK9XtfNzY1++eUX2/dc+5RMJk1Ty3qChFkV1EsLG/LixQu122396U9/+vwCS30hRmptbc0Wva/4\nWl9fj/Ur8oyHL/30bAaHBRvcfweOEwI0aekI0HuD7/Flk2xuX0Hm8/ZeaLyqn2KBIub0wlm0PkQX\nfCdOXDqdNgbJN5dDI5FMJnV3d2cGmJyyv27Fl3Hzt7i80Y+D/49oCPEq33tzc6Pb21tzGLy+SFoc\navl83iJDPnd8fKwoisxArGpO+BuUOktLUS0OnXeqiXIxGNLygKbBo2986ZvjTaeLcuZUKmVVSowB\nbRxrw98Ej1OLRsUzefx//X5f8/nyMlA0DGhyJpOJNfXk/Xujg26En2HEiIo51HC40On4y3ARB6dS\nKTUajZgmDQ0U7CG6BklWyQhz5LUwtVrN5gxhOIfpcDhUNptVFEX6+PGjXr58GdOlsI8ox/fsEUYf\nFpDnxCHDEfHaCwpMBoOBGVPYK94xjrkXpjJvu7u71vx1Z2fHnBgcvnw+/5kDRrk9/02jWNYG0Tdl\n8J5Rf3p60qtXr5RKpXR1dRWr6GT+0ZH4829nZ8cYG9hHSeawZTIZbW1txYpzuMQ5n8/bO2Psm5ub\n+uMf/2hOt69ikpZnA/uR8U0mE9NEnp2dmZPC2KlalWSVxexJzksKMWhPwDhms5lVl/p1ivaRJrj+\nXEAjx88RiEuyd3t+fq7T01P9+uuvtk8JKJvNpumT/HnCBbgEYN5phhm+vLy0fSVJ+/v7kmRViVzS\nzXeyBrPZrAqFgmq1mj1Lo9GwSt9+vx/TjsFKYavY59ij+Xyu6+vrGFtDtfZgMFCn0zG2knfDfqvV\nauakMEaCx2KxqFwuF6sQz2Qyarfbury8tHXGvPG7vrCJYI++VNgwX0jVbrf1888/K5FIaH9/X6lU\nKuacszZWK1ZhqllfPhNBQOIzUfysXq+r2+3qw4cP5tijGbu/v9fXX39tLVXIPDHfZJl8wCgt+l35\nc/f38EUcKV6sd5a8ANRHCR7Q8CxWaekskbrxgjWMCYccDSH5GVVLMFK8RDxvnomDQVpS6kRglO1K\nMuMLwzSbzWKfI6UAo8VhQrNMIkSfaqI6hMh0MpnYRsRRQ8BNVAuurq40GAxULpftQPKVPbAgPL+f\nc++g0UZAWkZK9OfxY+RAvr6+Nq8e8JzMi4/6+S5SDr6ij8ibCAm2h7mRllU6ns0gDeK7gnu2CoaG\n6MynYPl9L+Zk3aZSKe3s7KhQKNidVdLSIYBBHA6Hlu6QluJvbj/P5/O2hjlcMHoIM/2cEmV6VgmB\nPv+sVCqWFoJRXF9f/6xhIVE3hg/hvCS7ccALSZlv3gtj9OwDQk0ON290cRx8xZhvnOqDFtLYkqwn\nTb1eV7lc1vHxsfWiqtfrxprgTOHA8s5SqZQxdDQ2lRbCcIKZ1QDOV1nCkHpDy7/Dhnr2m4o9qjc9\nfOd932NqlWH1UTKXa1NE441JsVg0doGzjLU4GAz04cMHOxP93/BVU2trazGGiRYG9GvyDBWGnBYO\n7C//7Gtra1ZtNhqNzEg9PDxY6s2LwKWFker1etrZ2dHu7m5M1sHav7i4ULvd1uHhYayaud/vx6oM\nWVPMCeyXvzOR85ssw/v37038vbW1pUajYa0OfLuYx8dH5XI57e3t2VlzcHAgadE24uLiQgcHB/Zc\nf/3rX+3db25uqlqtqlwuq1ar2edgx7BhVIIy9qenJ/373/9Wt9vVV199Zc7Z4+OjOVc4jY+Pj3rz\n5k1sbp6ennR5eRlLpZKi7Xa76nQ6+uqrr+w5j4+PLcCjnx7I5XJKp9M6Pz+3NeADpVarZa0/fIFP\np9MxZom0N2xVpVIxSQupQtjITCajfr9ve2U8HltWhH2Gffad67e2tpTNZu08ffPmjZ0BOLG8y3w+\nb5/DtsDCUpAgLc6LQqHwWR8+jy/iSElLw7BaTUeE6L0/r0WRZAyUpFhUwMHBYYdhJQLCuPjPScvI\n1lfu+FSA/11K2HnOVCplC2NjY0O9Xk9RFJlh8uwBDgRXl3iWLZVKxQ5aTzn6hURuXIrrQGARfOqO\nAwWD4Z0byvFvbm60v79vz8ff9NV62Ww21tuH3+PfMV48697enu7v79XtdmPMCvOcyWRMTyDFW/6T\n5vOUMiwfhhNnAmPqy/R9+wMOKFJ0bAR6LvE8/A3WAhEO0aq/uBSnpVAoxFI7OBZoJXDQvd5HkqXD\nRqORbWK0X8wpjirrTZKxlb4ykxQpTCjODHOKgUGz45me8Xis09NTiyz5WbfbVaVSsaaD3qmCydjc\n3NSrV69ipeI4it4I+opc5pFUnq9mJXIkKmW+ifRpnVAul+1S4tFopHq9bqkftFnMDbokjGkymYyl\np5PJZKwa1AcgrEVYUNY3jiLVXL7FA3uPYI10DOPHMPr+PqwpHEbmh/3ty+ZJA/n9S4n34+OjisWi\nORn9fl9nZ2exNKgPaljz3lGSZC1SZrOZKpWK5vO5rW+MDAEk/+N7PfOKDsr/rFgs2lUng8HAzsft\n7W2bS3SrrCmY0mw2qw8fPkiSVYNxsflsNrMGioyfliewO9PpVH//+99tHD/88ENMK8Waurq6UrFY\nVLFY1DfffGPMBXNKehVHAaaD88obaJha9FS3t7eW5oLl2t3dNe3PbLbo1M/az+fzxhaxdxnP/f29\nvQ+qoX/99Vf961//kiS9efNGe3t7lm73QeRgMLCbMzqdjtrtdkw2AAt8e3uru7s7c8B++eUXTSaL\nZrTdbteaFUvLimQyF94BOzw81Pb2tq6vr+1KMt/nrNlsmmNN5oWfkeYmJbxaOV6v11UqlfTbb79Z\nWvjdu3c6OjpSOp3WxcWFOp2OzTeMKHKN1bYzrP9EYtGTkO9EcuOD2FV8EY3Umzdv7I96r9azVJ4d\nyWazajabajabdhXKKiNFPtl/bnNzM0bT+V4eHGb09PG0OX8TI8LhIC2vOaGkFO9dikcY5IN9SwGM\nKekkL+QkDUa6yIvicQRJOWH0cbwwpOSbpeXhiWCYnileIEg39GKxqHK5bAc/hobfY76AT9PA4PA5\n5nI2m8Uas2HwPdPCd2PQ6NQNCyjJ8tnj8ViVSiUmusTB4iDzuhxvCH27BsbkmcHZbBZrrocjiYbA\ndzDmbzDnvj8LzifsTyaTsUODd8PcIZDnXfnrUNDZSDJDAgNA2llaOrw4qYPBwETMk8lEzWbTnHDK\nhaVFzn82m+nk5ESFQkHFYtHGkU6ndXR0ZEGIF2JDfTMOr4GDcUokEsZUcngzxxyI6+vrsdvacZIz\nmUyssaJPAxLt8g4vLy+Vz+dVKpVMlI5j7PcbLC3sjbRwGCjEYJ/jMGD4WNe+mSNGiBQsncj9+ycl\n6tPtOMY+bcm6YO1ykPvmqDC1fD6bzZp+6vr6WtVq1fYbjLUkffz4Uf1+X5VKxXRABJ6sJVh6f/6j\nb/RzBDCQPgDxzhntOXq9nvWfYm2Q1vPCZu8s8844N3CW7u/vTRf38PCgdrtt5xeSBa+VI/2Gg8V7\n297etu+czWb67rvvNBgM9N///tfmhGeCASSI5NnQ5uKcE4Qyhul0qlwup3q9rul0ao2BOUvp7l6p\nVIxZgsWhaMQLuHk3tIB4//69sc3FYlHNZtMC0kKhoMfHx1ivLNjLFy9eGLsmLdiV+Xxua+ef//yn\nrUlauLBPYCiZ70KhoGQyqX6/b20kpMX9hTBLPvCQZFf4UDCw2sKhWq3GdHO+8IFiGPYSNmhjY8Ma\nvh4dHalWq9m8+X1Fip3zq1Ao6P7+XgcHB0qlUjo9Pf3MzpF9effunc13rVYzfe6PP/74u/m90P4g\nICAgICAgIOCZ+GKpPR/1A9gGSpuJaGi5f3h4aBGBb8znNRt48ZKMHYCN8lQeeWUvOvNVe6RQoBzx\n2onI0WNR0isty/FzuVysek5adv1GaEyULS3ywVDl5H6JoHzFIZczetbJ642iKIoxPgjCqTxCayUt\nrzuRljQqgl4odbQOiBn5XaI92ir4KMIzUC9fvoyJJ2FbEEaSvoI59NoRvyYon+U9ep0KrRRWq0Bh\nfohMYG2kZSsGnseLi3lHjMVXdMG2sG589QxMBu+e7t6rVY+k9Gq1mr0rWC60G76qqdFoxNpf+Co6\nUlCsL0+pUyk1Go2UzWZjFW++ioW55DlhsHhnPsXu0zXMtW86+fT0ZCJjr+fyjANj5Ge+mSzr2N/R\nxz9hBoloi8WihsOhMUFeD8TckJaGWeTZ0UCORiO7fJWIljWQSCRUqVS0vb1tUXm32zX2qFarxdIU\nrEvSML6CbW1tzS7D9oyetGAc2dPZbNZ0UcwvImXSf+g20JewFhEC8956vZ4mk4mq1aqlzhib36/s\nE9Youin+vmfj8vn8ZzIBXyVJVV+pVDJmivfOheykvP0NE7DniURCJycnxpx+//33ur+/V6vVMlaN\nux0zmYwxmA8PD1ZJJi3L4/f39+09UdGYSqXUarUURZEymYwqlUosnba+vq5Wq2XXbXnRNZeHYzNW\ndZwHBweaTqemS5IWtms8HhvjynnIvMCc3tzcqFQqxdJl7AW0WrQbqdVqenx81MXFhYnVacgrLbRO\n19fXlmbE1krLNgYwvWRBpOXdjsxrJpOJMTU02iSteHZ2JmlRFLC3t6fvv//e9pIvwkBPxt737Ws6\nnY7K5bKKxaJubm7MBlEhy92kPo3smdS3b9/GtIpktWazmYrFog4PD40dbLfbKpVKdu+fP4Npm0Cb\nlL29PdtrnU4n1ij29/BFHCn0PF4czMv1OUsqRprNpnZ3d1WtVm2heR0Uh+Jq7x5+zu9jlKVlB2MO\nAwyOtDhsqPJCk4Oh9v13cHa8PgD4tAv/jfKfNKJPM/qOsqSpJFnPHp+DZuzoiXheUiSMi3nx6VNA\nmoV0kn8en9pjzrxjiFPKeHylpbSk6P1GJP+NaI+KM0km2vYlyjwrjiTl8b7s2Au5MZReNM6cYcAw\n3qQg0bj5d0cVG04oTiZrBiMZRZFGo1HMsHuRsNeU8IwYGsbAoVGpVLS/v6/xeGwpKl9FRtsI//x8\nJ3uI9UOKCoeX52Wt8E7b7bZevnypV69exQwiDgn7yd8diGH1zhxGyAv4STXxOa/V8gJ/aXkZKul8\nr9sh2MBh8p/jviz0UxRvMP7NzU29fv3aCjF8FSHp+XQ6reFwqPl8bmuYzusIWqVlpWCz2bR0DC0r\n/NrAseVZ/ZnB2m00GrHziTmjapYUGWufefC6KRBFUawTOs56oVDQTz/9ZOl8f0m0tLy5IZvNmjMl\nLYwsvXS8/k1apso5f+hkzrPidBDclEolGz9BK+ezD5IfHh40HA5N3Hx9fW3iYAqESH1vb2/bM83n\nc/X7fX369En/+c9/lMlk9Oc//1mS9O233+pvf/ubvdurqyt7lv39fRO8U8HH/F1fX6vX61ngQQWY\ntDijRqORbm5uLDDlO0ulkg4ODpTL5ayS0t8GMJlMtL+/bxd38zPGiXgcHZYk7ezsmGHf2dlRs9mM\nVd1GUWTONSloNGKlUklRFOnt27f68OGDisWiOaC0wuh2u/rLX/6iy8vLWNsM0Ov1VCqVLA25vr6u\nXq9nleOz2Ux7e3uSZPo8HHgf4GF/0Ce/fv1ax8fHkqTffvtN+/v7pv3LZDIW0JBibbVadmOCdzLv\n7u6so/unT5/sZ1QSl8tl9fv92B6tVCrWfoKqeR+UTyYTs0tessJND6tBvscXcaQwAD6CRI+Bx5/P\n5+0FHx0dqVQqWdWbP/gwOl547V+i1wBgcKRlybkXY3v2yH+nd14kmcYDLYuvvmLRUEHkI3iqmWA6\nvBeNsUBfgdHMZrNmFEejkW1saeFhJxIJE/H5y2Dp6USeH20KefT19XVjD+7u7jQcDs1xLRQKiqLI\nhMVedOpF1Gg3mBsqZdDVJJNJE/pxsSq9YbiZW5IZNd+rZJV1KxaLarVaJnjk/cIgrYp42WgwEl4D\nx5hon4DWSlocamhn6FPCoe/XmL8+iDFgfDDCvE/mBp1QOp02po/P9no90xkkk0ljOemngnbL9y3z\nwmzGxvNQHcPfZQ74e+gO9/f3zdBJS90Za9M7WRSH4LzxvKxhHL7VfegLQFj/vsEtBpZ97VkO1jzP\n7PuxPT0t7q/b2tqKNQCVZD2ZqIJj7nlWxjAajWJCUuZ3OBzq+Pg4psekMo3rb3BUWIu0i1htYYEm\nslarWSNLH3TBcMFqegaPv1Mul62VA2ux3W7b3+eqDJ6F99bv91WtVmPsJ3osKX4mSkstkGd7JVnA\ngGPD//gs+2w0GlkLBOaUwJnz2/dE4qwrlUqaz+dqNpuxYJerbjxjydpgDb5+/VrpdNrE3/P53Kq1\nYLN5/lwup9FopNPTU9uLvmGptHBwGo2G5vO5vfv5fG6OPWcgWj5fsIF2lv2Lxomg0velQ7TuGW/W\nfq1Ws7ONd4GTcXJyonq9bvde4qQwN9wZyN+cTqfmvO3s7GgwGKjdbhvb46uSh8Oh6Sa73a6tE/RT\n0rKdBU7W0dGRstms2RyaB/OdvEscSeaNZsJeowiZgQOcTCb1ww8/6OzszMb/8PBgVc8EugQY+Xze\nAn2cTMbHuQNp4jWeBPIEXv4sqVarsV57v4cvIjYPCAgICAgICPj/gCA2DwgICAgICAh4JoIjFRAQ\nEBAQEBDwTARHKiAgICAgICDgmQiOVEBAQEBAQEDAMxEcqYCAgICAgICAZyI4UgEBAQEBAQEBz0Rw\npAICAgICAgICnongSAUEBAQEBAQEPBPBkQoICAgICAgIeCaCIxUQEBAQEBAQ8EwERyogICAgICAg\n4JkIjlRAQEBAQEBAwDMRHKmAgICAgICAgGciOFIBAQEBAQEBAc9EcKQCAgICAgICAp6J4EgFBAQE\nBAQEBDwTwZEKCAgICAgICHgmgiMVEBAQEBAQEPBMBEcqICAgICAgIOCZCI5UQEBAQEBAQMAz8T90\nn59+FodZjgAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The convolution weights are initialized from Gaussian noise while the biases are initialized to zero. These random filters give output somewhat like edge detections." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# helper show filter outputs\n", + "def show_filters(net):\n", + " net.forward()\n", + " plt.figure()\n", + " filt_min, filt_max = net.blobs['conv'].data.min(), net.blobs['conv'].data.max()\n", + " for i in range(3):\n", + " plt.subplot(1,4,i+2)\n", + " plt.title(\"filter #{} output\".format(i))\n", + " plt.imshow(net.blobs['conv'].data[0, i], vmin=filt_min, vmax=filt_max)\n", + " plt.tight_layout()\n", + " plt.axis('off')\n", + "\n", + "# filter the image with initial \n", + "show_filters(net)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAicAAACbCAYAAAC5xzv6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVuMbVl2pvWvfb/FjkueW568VN5dXSUbl4sHbBBYbYRK\njRqEJW7qfkD90MItN4gGgQC3QHYJiwdejJFfcNvgRtBuaBAPyA9gt5FBcrnc1bbLVemqPFmZlZdz\nTuaJc+KybxH7sniI8839rxFrx4lMU7mjKveQQhGx97rMNeeYY/zjH2POleV5ro1sZCMb2chGNrKR\nqyKVdTdgIxvZyEY2spGNbMRlA042spGNbGQjG9nIlZINONnIRjaykY1sZCNXSjbgZCMb2chGNrKR\njVwp2YCTjWxkIxvZyEY2cqVkA042spGNbGQjG9nIlZJPDTjJsuyHsiz7x1mWHWVZ9jezLPuVLMt+\n7vF3P5ll2TvrbuNGNvJxZKPbG/lBlY1uf3rlUwNOJP2Hkv6vPM/7eZ7/13me/0ye518uOzDLsrey\nLPuL36uGZFn2lSzLXsmy7KUsy/4wfLeXZdn/mmXZ4HE7/s3vURv+8yzLfuOqXm8jH0m+X3T7Z7Ms\n+2qWZZMsy37te9iGjW7/4MiV1+0syxpZlv3q4/sfZVn2tSzLvvQ9asOnRrc/TeDkM5K+ccljc0nZ\nx7lJ9lgu+L4u6fk8z9+Q9EVJfxgO+W8kTSTdkPRXJP1KlmWf+zht2cinRr5fdPs9Sb8g6e98nPtv\n5FMp3w+6XZP0XUn/bJ7nfUk/J+k3syz7zMdpy0YeS57nP/A/kn5b0kzSWNKRpFcl/bqkX3j8/U9K\neufx378haS5pJOlY0n/w+PN/StL/K+mRpH8s6Z+z6/9DSV+W9P88Pu+lC9ryBUm//fjv/1LSz9h3\nXUknkl6xz/47Sb+44lqZzibCW5LuPz62H5/Jjn9L0k9J+tLj+5w+fsav2XP8oqTfl3Qo6X+TtPtx\nr7f52ej2iuN+QdKvPeG5Nrr9Kf/5ftRtO/6PJP0rG93+c4z/uhvwCSr670j6a/b/r0n6+bIBlPQd\nSX/R/n9G0gNJX3r8/z//+P+nTDnekvQXdMZG1Uru/289niDDxxPhkaTp40n3UGcRwhckDcN5f0vS\n/77imf6apG9LekFnwOZ/kfTfX6CU6bkk/Wcca9//Q0nvSvqcpI6k/1nSb3zc621+NrqNbofjv6wn\ng5ONbm9+vu90+/E5N3UGqF5b8Uwb3b7Ez6cprSOdp/wuSwH+VUn/R57nvyVJeZ7/n5K+KulffPx9\nLunX8zz/Zp7nizzPZ/ECeZ7/ep7nuzqjA39c0j8h6ev5WS51L8/ztyX1dKb0LseStla0669I+q/y\nPH8rz/OhpP9Y0r+RZdllxjXT+efPdaao38jzfCTpb0v61y6iO59wvY18cnLVdbtwyiXatdHtjSDf\nN7r9OP3zPzy+7rdWtGuj25eQTxs4uYxRLJPPSPpXsyx7xI+kf1rSLTtmZdX44yLXgyzLDiT9hM6Q\n7uuSfujx9f7dx4cOJPXD6ds6Ayhl8rQknxzf1Vn+8+blHqtU/Dm+K6ku6dqf43ob+WTkqut24bRL\ntGuj2xtBvi90+zG4+A2d1Qz+7AXt2uj2JaS27gasWVYpffz8uzqjyf76x7iW8jx/KGkny7J/XdJP\n5nn+M1mW/QNJv5zn+W/bod+SVMuy7JX8rPBKeozUV1z6fZ1Rg8jzOsvR3pf0rM4oPklSlmVVSdcv\n0d7nw99TnVGhw495vY2sR66abl/qeiYb3d7IKrlyuv2YpfhVnenNX8rzfH7BPTe6fQn5tDEnWfh7\nVQR3X9LL9v/flfSXsyz7F7Isq2ZZ1nq8xv6ZFddeJf+kpH/0+O8vKKxmeEzx/QNJP59lWSfLsn9G\n0l/WGRovk/9R0r+XZdkLWZb1JP0Xkv6nPM8XOgM6rSzL/tJjqvHnJDXt3HuSXgjUXybpr2ZZ9hey\nLOtI+nlJfz8/S05+nOtt5JOTK63b0plhzLKspbOgqJplWfOxsSyTjW5vBLnyui3pVyR9VtK/lOf5\nyROut9HtS8inDZzk4e/4P/KLkn7uMXX3t/I8f1fSvyzpP5H0gc4Q+b+vomJfBoH+mKR/lGXZU5Jm\neZ4flhzzNyS1H9/n70r6t/M8/+aK6/0dnQGX/1vSmzor2PqbkvT42n9D0n+rs2KpgYrU399//Hs/\ny7Kv2jP8hs4q4u9Kakj6d/4c19vIJyffD7r9t3Wmo/+RzuoBxpL+0xXX2+j2RpArrduPlwz/dZ2x\n3PeyLDt+/LNqj6qNbl9CsscVuxvZiLIs+x2d0aCbfSg28gMlG93eyA+q/KDq9qeNOdnIk+XK0Xsb\n2cj/T7LR7Y38oMoPnG5vwMlGomyotI38oMpGtzfygyo/cLq9SetsZCMb2chGNrKRKyVrWUr85S9/\nOZekCIyyLEuf+Xfz+Vzz+VxZlomi4tlspkqlcu68LMs0ny9XcVWrVVUqFdXrdVWr1XTtxWKRrn1y\ncqLpdKrT01Odnp5qPp+rUqmo0+mo3+8ryzLNZrN0D87ld6VSUa227Eramee5ptNpOrder6efarWq\nPM81m83SPfM8T8/Eb4R7rRKes1KpFPpoNBrp8PBQh4eHGo1GmkwmkqRWq6V+v6+dnR11u13V63W1\nWi3V63VlWabFYpF+8jzXfD5Pz5HneXrGWq2m2WymyWSiyWSSnqNarardbqvVaqlWq6Wf2H+z2UyD\nwUCDwUCnp6eqVCpqNBrq9/tqNBqF56ZPFotF6jPuxzP/0i/90lrpzV/+5V9+Itr39kapVCpPHOt4\njYuud9H5ktKceNI94/3iuWVz+Xsh3g7mELJYLAr9x/9IpVJJduSjSBwTtzVl7XKhjd622K4n3Q/5\n2Z/92bXp9q/+6q/m2LQyvfPvsixTtVpN8x374cKx3pd+jfl8rsViURgvPwZ7Uq/Xk82bz+eaTqea\nTqfJ5ktKfR6FNmHv8jxXs9lUrVZLdm48Hms2m6XjKpWKqtVqwZfQJv/b27xKoj9x27m3t6ednZ30\nHHmeazKZJBt+enoqScln4TvcB/A37XBbmee5Wq1W8hvIZDLRdDot9L/7JMa13++n/qXfR6NRei7v\n78ViUdCLarWa/pakn/7pny7tpLWAE1dIHsIH1X/TQThHHKJUBAeu6NVqNSkeA7JYLJIiRwDkk4iO\n5LjJZKJKpaLZbJaMigMAfrvB4brT6VSTySQpXLVaLYAkFMCvw/O4cG2fqP4MgKdqtZqO5X7dblfT\n6VTHx8eFezl4wtEvFgu1223V6/UCOKH/mcDcs1qtponLM/mz0GfxWfgNMGPSTafTdJ2Tk5PC9eKk\nbzQaaVLw+6rIk8DCRd9F57nqWv4Zf18W2JSdf9G5ZQ6pXq8XxiuOzyq5LJC66LndgWHoIjBxo4qU\nAZPLtCeCCZ8HZeevumbZXF91P5ePMq7fK8EeRr0ps9m1Wq0wZ7FLZcdK520ZgRzAbjqdnutvArvF\nYqFGo5HscrvdVqdztq0HNoa//VkcmEhLH9BoNJL/wLbQ/2778RMuEZSUjRuflQE7+rjZPFvpe3p6\nqmazmYJnAl138LPZTPV6PbWTfvdAzn0e7SSoZKzoW9oT/Ztfl/H0gBj/io9+EhB3gLdK1gZOVhkz\nV1SUCCVzpFn2wN6pDlBwgigyqDse32g0JJ05xvl8npwm1+ZcQI63l78BOKenpwUk2W63VavVkqJE\nR889eD4HMPzmud1ReLQSjW+WZUmpa7Wams1mgb0BOTP5K5WKTk5OzvV9jHrimM1mszQ5nOHiWb1f\nYl8xrovFIhmDarWqk5OTwiSj78oM+3Q6XRkdfdKyKk16Wad8GWCyShys87dfo8xYOuux6l7+OYbp\n9PRUW1tbOjw8TON8ERtQdq3LHFfWB2VO0Z8FvYlOpOy8y/Y38yu2LwYL8RnLQJIf/yRgcxWASZmU\nAVYPPNzxuO2SljrkOkp/wELX63U1Gg01Gg2dnJzo9PRUs9ksARJ3qOieO7xKpaLT09Nzjpd7u45I\nSmxtp9PRcDhMPsCBQ5n9KdMld9jeXxEAcGxZH2APZ7OZxuNxsovYSreLbi+jTjMePkawHwBAAnhn\nx+O8oG3z+TyBwQjEvH1+Lvf38XeGfpWsDZz4gJYZT0fdPKArFY4Qx9hoNAoUn6QU2U8mk5Q6kKRO\np6Otra10DgKFxjVRjizLEtXnk4BJ522ez+caj8c6ODjQu+++qzzPde3aNV2/fl27u7vn0iX+TGXU\ncewvZy3cOPj1XHmhODudTkqz0KeuhDAPtMEpc48cmCTev0wg2A4HElGBXQBP3q/uaGIqD8PlkYBH\nFFdB4qS+rJQ522j8Vzkqp7WlYpRYq9XOgcuyNrtReVLKIcsytVotjcdjtdttNZvNRAf/eaUsOl/V\n5pjCicwg7fUo8qLrMqcjOPC+LRunVePs7Yu2bdVzl9nCqwBQyvTanRbHEM27vfbghPnbarVSSt0D\nT/qZQKrVaqnT6Wgymej4+Lgw7gQ3BCcEYNgp/IPbGA/wuFej0VCn09He3p729va0u7uru3fv6lvf\n+lYBxHiKxO1wTJdIRV2LrLrP5/l8nnwLwIE+nE6nqX9w6O7geVaCT+4V2X8HAbBSLm4jYGHo0zKW\nCyAzHo/TfX3uR9CBXjAGjUaj1B9EuVLb18fJyISI1BPoF6Wez+caDAZqNBqpbgKFAlkS7ZFGWCwW\n6vf7Ojk5SU6PHwbdmQRH85ERoO0MynQ61d27d3V8fKw7d+6o1Wrptdde087OTjrfjZ1UrKvxSYRE\nJ1+WYuI6brABE51OJ01CFB82yettOp1Oaluk3SKIoH8iwPJnojYIVio6UcaI7xnvmNPlbyYq+kBE\ntSpCXaesAiqr2IB4jn+HnkfnBT3rn7luODApc3CrAoVVMpvNUkqtVqtpMBjorbfe0quvvprSPE8C\nQ2XyJPamTFzPpdWgCp2LYCY+r9sc7AzzJ9okjnlSn5UBi4vGn+8Z2wgA1iVRT8qYImcxnBXlWBwZ\ngQ/znDmM7s7n85TSkJapFmdxZ7NZsj1+H2cYCJy4p1RkNTwYqtfr2tra0u7urgaDga5du6Z+v6+v\nfvWrOj09TYGXAxO3ac7oRJ3it/cZ/9NWB0C03dPtMWW/vb2tWq2m6XSqo6Mj1Wq1VHsSWQq/N+1E\nt/BZHijzTA5u6DcPDGkn13Uf7deJ9gUfi/1eJWsBJ2URR9mAOgBAkRytukIvFosEOnB2gJp2u63h\ncJgAyng8LkTmlUpF3W5XnU5H9Xo9gRMv4qxUKmo2m+doMB9Q/j88PNR8Ptd7772XFPj1119XpVLR\nj/7oj6rVap1jI4j+YW98Mrlxc9Dlfed0JROW8+r1umq1WipO5RiM9sHBQUpB7e7upmO8FofnRdEA\ngEyK2Fan1RlTV+qYMuK5pSU4WZXC4nz6bTwep/OugpQ5H5fLOOA47tF5oSuec45swpPuA7BBd570\nLO5QpLMxxaB/61vf0o/8yI/o3r1758ahjBW8yDnH+z/pWdyOxGfxttBni8UyP17WRgciRJVlrN+T\n2hgDDI6Nx7lee/uvCjApk7JncGePrXb7TP8zt3k2D0QAGpPJRNVqVVtbW0nvtra2ku12Z0ywhW5i\nv6QlYI3sh7c7z3P1+33t7u7qzp076vV6Go1G2t3d1WuvvaY/+7M/03Q6PcfoxYJsrue/yySCOMTZ\nFQcMkgoByNbWllqtllqtVlqEcHx8nOYzz4ofAQB6mguB8fB+cWDjwMnH1ot30XPaXMZ+wtjAiNVq\ntQS6VsnarPmqCer/0wH+PYpdrVbVarWSg3MmAjbAacTt7W0dHBxoPB4rz3MNBgPl+VktCJG9MwMY\nfgdHeb4szooUtg/u0dGRPvzwQ12/fr3Qtq997Wvq9/v63Oc+l5AmE9cLQF0hHAVHZfYJ6MoelcfT\nIdKyGKler+v4+Dj9gIxZJZPnZ8VZAMHJZJKcGSxVZLicQncj5Mg6gjoHOzxPjGzoF66d52eV9JPJ\npJBvvQqyiv34KOITvuxaDhgwzBgmJj46EZ0wv8uKBS9qN846y7IEZmu1mkajkV599VX96Z/+qV54\n4QWNx+NzLAXyUZ1tBFyrjnHdiM/qc4h+jaDM+9vBAde5KMXyUcbWxy2yZdgDTx84wL8K4kDK7ZMH\nE94fMZCEiYYNKWOhOe/k5CQtSCAVlOd5Ykyk5Xh3u10tFot0DHaGa/mqFPwCz1Ov13Xjxg29++67\n6vf76ZkePHigl19+WScnJ/r617+eGENJKYD1e5WB8LL+879dD8rAidtM2I56va5er5f+h0Vqt9vn\n0usANoABLHNkEGMaKjInDsRoN230AFM6X/vJMVmWJQbfGaxVsjZwsspI8dBx6arTS16Y2uv1VKlU\nCstxpSV9RwdDhTmDMhqNCoWwDBJ1DL6s2BXaC7OkInXGtZ3+ZnBarZZ+53d+R9vb27px40YadBSG\nNsQIRFqmfWLNhRsCn3z+nSs9AmKdTqcaDoc6PDxUp9PRaDTScDhMFP3Ozk6KMukPnE+r1Up9FyMU\nV2D6gHbHHG1kg5xyjODQQd14PNZwOLwy9SZl8iQW5Unn+AQuG/PIapQxIe6cy6K9J4m3oVar6fj4\nOBW08dnJyYlee+013blzR7du3UqRZtRJb0vZfSKYiueW9eWqzz0d48EEn3n9lKfDykBVbIvfO0Z/\n0dCXtdXHN9a5OO1+VdKVcT6uAiZxoYGk1M8EjNgRZ6W5hzu6xWKhg4ODlN7xAAfWhBWJsGHScixd\n19BFZ2l4DtrMKh/sb7fb1f7+vl555RV98MEHOjo6KqT5ELdJDty2trZUqVRSAOX9dhkh0KDfZrNZ\nWlgR9YVAsd1uK8uylLL3gBOGibmAzXCGJj6b+1//oZbRAX0ZuOY3qRxA6WX6YW1pnbLIAeXE+Xva\nxsEJBbCgQtIxdLIPihubfr+vyWSiBw8eFFAvUTv0GPdm8HyZFuKpE58Ep6enGg6HiUrziKDVamk6\nneoP//AP9VM/9VPn2JgITBBWDh0dHanRaKTalWgovD9daWjrycmJ6vV6YovI7boBBOgx2Q8PD9Ne\nLyg97WWyMOl9nBAin0j3emU99CMKHp2rK7IDwNFolIAg7MtVk4/D5jggpT8w5mV7zUhFJ4lOO+D1\n65RR2xe11Z02UZh/x/UfPXqk3d3d0rlS1h/cNxbVMedie1a1z/UdXYxRnt8vgodY4M6xq+7nNmVV\nSuxJUSHXdwaRz914XwVggkR2QzrvgMrASWREAa5ZliW75Owv18uys4J59AqbBLCsVCppXxIvJPW2\nOcDzFIQX7WOXHWQ6ADo8PNQP//AP6/d+7/cKwTHX9lU93BeGoNlsqtPpaH9//9z2CNzHWTmENDwB\n7uHh2bsGm81mYkAkpS0Y6NsI0PCVnkWgX13oE/ezPgdIoTN2+BS3KVy7bCybzWYqZ/Ag5KLAcq1L\niVehJx7cnbsPIP+jcKDySuVsVUpc0uQFkxQ8eWEQyBy2hOO5NgPEPWO+2qvOAREuXItamLfeekvv\nvPOOXnrppcIyZ681QbIs02Qy0cHBQapYn06nunXr1rlVNyhEBGW+YinPc21tbaW86nA4lHRWdNbt\ndgt0IaCIPCGrMlBO9nBptVrnDKwXvcYo3pUVwxLzm4yBF5pxzOnpqQaDQUoz4bivas3JR2FPykA7\nfTmfz9P+ItFpAdiazWZhXwhnL8qcs9/Hj4/HLBYLNZtNjUajwjgxF/is0WjoO9/5jl599dW04V98\nNn9GB/+NRiPNhdimi8TBEPoSlyo6EPJVYJGd8H5dBS4uSvEgzPkI2Mv6N4I5b3ds/7olOmHXmfgc\nHIPNpJ/ZyoDjDw8Pk+PmGH9e3wQNB+k2we8LK+sRvKTkVNEL199Op5PASWTJmUfb29u6fv267t+/\nX7DRzqxH0Oo1H1tbW6XLoMv6F/vY6/XUarUkSe12W6PRSJ1OJ+ksAdpkMkmZBEAHARvp12azmZ6b\ntK+3x5/BWVZp6fdIZVHbSb8yn/Cl/DgAAqh5H/sqrTJZqzWPhqfMCDnIkJSQNx2G8wbZbW1taW9v\nL6FbV1KQGh2HAjlz4jUidKSnI/icamPoOtqJQfYVC6BZihdbrZa+8pWvpHbGCNcVnPMpaJrNZikF\ns729nZzCRVEW4Obg4CBVd3e73QSMqtWz3Vy3t7fTzn/0qRfH8hyHh4eFfQdA0J7S8bFzOpDnYh8B\nIgxQPUYBgAIThbHnc3ak9Wr8i4qrPilZxWRdFqCUHeOpEXbR9XtFiWm9+Pmqc5/UvhhdMlc85ZPn\nuV566SUdHx8X5k+kvLlfTK3Ezy4q1uX7sr99eaWPCY7Ha9T8ntHJuETgclG7uGYZExjnt9uKSKl7\n361TygJJt3s+z6MNkJbzE6aKbRxwjMfHxynY8Wt3Oh21Wi2dnp6mFIdUXDKLzYTNRTxlBiPMs/h4\n++IDxNkZ2JMvfvGL+t3f/d0CsF0F5ofDoba2tpIPIvijPs4Z0LJgIcuytLqStpElaDabyR/AZE8m\nk7RNBM/M3PQlvzGthb67/+Bzzxigf/gAgnEHNwQYgBDf0M6fId5/lVyNUNMEJXZnE42aU2mLxUKD\nwUCj0Uiz2Swhyd3d3YQ6XZmOj48LkbbXr0Sa2Vf8OICIjIu0rDRnJ9ZoVFBQPj8+Ptaf/Mmf6Id/\n+IcLhYw+mRBSOe+//356DlYE0RaYmbjXC0rHLrGj0UiDwUDtdlvHx8eJTen1enr++ecTc9JutxPQ\n8sIqKEKvDi+bpB6JxsjW0f1wONTp6WlaLeVGmPF0YOaOmijJXwmwbomsR/xcejLl71EM53q06sAc\nAbhBkT8JiFwkcQw5lw2x/BgvHsdYtdttPXr0SM8++2xiQlaxpW74ynS/DCz4/57Omk6nqQZqNBql\n+3r/cB8cV7wHz8hcjP3ubeBzZ17KWBX01schGu04Xv78H3X8vhcSwQbithEpq2vydFWlUkl7Lrl9\n9GthTyuVSmFvJt/XiPGmj5xhdJAEQKC9nuIAADjzTHs4D1A+GAz06quv6s0330w6X8ZM8kz7+/sp\nJQ6r74XAnirx1D7PwHUbjYZ2d3dTkMozTadTHRwcJFs4HA4TewKj7PpJCkwqrsjxOci9OZ82tdvt\n1D+AJHyu22KCXeyTL8xwpsTLA1bJWpcSl004qDaQ7Sr6KyqxVyk3m820vNTpYwbWV/I4OHFjxiAA\nTkCMzgI4WvfNfvy+7mRQqkajoa2tLb3++uu6deuW+v1+ul803NKZcet0OnrqqafSUjqiDBRDWlJn\nbEGPOFW3WCz04MEDnZycpM1wFouF7t27p1deeSXlKD3qJf+JEd3e3k60oufH3WH4+nX2hwE48R4d\nH7/T09NEsUpKBV6+F4tPaqhPwIkX565TLkrp8PdFwEQq7o0AG8H5q4SUT5wzq0DRKsATgaY7UV/O\nyLnOJjIWJycneumll/Tw4cNzqbYyRwujiLgD53tvY+wrImCCBQASbWw0Gjo6OirQ+R51e99Sl+Wp\nhCjOEHrQMpvNEqiJ876MUYvpZ38mB5/rBiYuEUxI51dv8NsBXOxzfzaPvCWd00NAijN1HuC4TvC9\n38tTOlzfA1Lvf+w97cGpSmfg9/nnn9fdu3cLjtl/JBVekwJrwfJZxhVg1Gq1CiUBrh/cd3t7OwVp\ngJLpdKper1cAcWVsHs93cnKSGJdY08RvbDx6zSZwzI12u53OZ9556hI/DChxP8L96DPf22aVXLnt\n66UiQHGH51GEG9o4URgkf3g6BJoVFgCwUMY2oJwMJk7RC2ERFMyLr/xYR7A+Ed9++2392I/9WFJo\nABGTxCu1O52OKpVK2s6Z1UZ8P5lMVK/XNR6P1ev1CuCD9h4cHKRnRrj3/v6+nn766TQGTq3TNz6x\n3QBHQwwy5jsKcaFyffURE86NuqN1trEm1+lRASm2uNvvumQVY/Jxo98IMhyo+GcOImKUGKN6b5tT\nu9L5FwF6VMw9ABOuV5JSpIkOHh8f69atW+eMbhlw8g3c+O3Ax9sICPD2NxqNwl4U7nRI/zEfvG/L\nAIAHKPRFBEURKHoBL4yi93e0d6tW4bi9uqoSmWGeDefjDGZkFaRioSo/Dgax7+48qesjHYy4j6Bt\n/oONQDexydPpNNXSRUDlLI37FnZFvn37tu7cuVNgDZwF85qmyWSSbC2+hPNgfTqdTgqsmSv1el3d\nble3b9/Ww4cP0xJpQMRisUjpbhdf0eR9DuD2eeNz3/2cAyfPKMzn81SM66wR/ppnp46x3W4XFq64\nT8SGx/a7XLm0DsIDOzXkfzttRCdRiOObvDAIsTgny7ICzcY93Vj5oPG3G2RP/9Tr9UJxKYjfn4ff\nLL2sVqv69re/rdu3b+vll19ONTAMphsBT62gVBhjVu7AZjBZAQNHR0caj8e6d+9eyr060oZmRbiH\n52IdEKKYPE80PB7d+KQfj8eF/Uz8xVqknqD+nA2CeiUv7crtIPMqgJMyWQXGL5Pe4XykzJl6hBnv\nW+YAy66HlLUHZ4tRpWao2+1qPB4n44ue0vann35a+/v72traKgCmMom0fAw+vO/cAWCsvQg49h9t\nj8yaj4kDLP6OgRESGQ9vqwcnDq4cTHsA5e2MIOiqAZQYbTswkc4v+faatchaOePktRNeJ+Q6je45\nW4E4YPe+5b5e4O/to/6j0WikGinpzC7B9jrIwOa88MILun//vg4ODs6x/FzfAwVYBHyXB7L4ljxf\n7inVbDa1u7ur559/XoeHh2l5sLOZ9F2z2Ux+h89cnOHwANzrSdwX4GM4lwDR0zP0ny9p9g00fczo\nex8b/MOVBCceOV3EnjiSc5Tn1J2kROujBCA+SYU8FwrCeTi+sloFH7iYX3ZE7jQ6VB/sgkdSRAcY\nyXa7ndIZ3/72t/VDP/RDkooRWKQ8QbTOklDVTVThWzqPRiPN53MdHR3p9ddfT0oDWHNWhWv6+MS/\nHZzEfCbfuUGu1+upDZ5j9T5lzGjbYDAoGHtH+uRcPcp3pukqpHXKpAxQSE92Pm6I4rER2Di1G89d\n1aYyBiMpQdUAAAAgAElEQVRKHAvGuFKpaDQapT6fz+cJqKCzTmdftE21t8FX7EjLZdHoBzaA4IDi\n9gh+ot5GEH1Rf3hQ4Ncs+wyJKdnoqNwplPUvziPeOz7LuqQsRcX/rt8OJImSfb5zDvOYfndWzuc8\nOuWpg9gfDkZivwFwPGrnOrPZLNUlwmjgNwicSMXQvsFgoCzL9OKLL6b3taGzrj/cx5lt6kHm87n2\n9/fV7XZVrVbT3iWz2Uy9Xk97e3t68cUXdffuXXW73QKTT78yt2GkAQ8O+qL/igDK/Zr7VUBPzExE\nNorrkIp33XYw6j7c5wHB9CpZ+4v/yiI7JKZAYuEZD45BJO/u1LMXQ8WqbCJul4gIIyXujhgDjBFm\nmS+5716vp8FgUIg8fQK1221Np1O98847+vDDD7W7u5vaTsWztHQKTFhf3VKtni1T29nZSVvzHx8f\nK89zPXr0SKenp/rGN76RlNHBCG1xqg0nAOJ1YIiB8NwvCsh5fAfz1W63NRgMCikemB6vIXHnw1h5\nvtdRdqTLYc2uCnNykdO/bHrHDXd0WDGSLxO/x0XO5KJniMbeAwKPMom2+v1+Ai/V6tk+P+TLy+4f\nGSUciUdfnqpxB0kRNE4h2hFsA33HRl2rntX7w+/v93XmA/12QB7lMixIZFw8TepA6KqwKBH8+f+u\nn3yHfYm1fW4nqtVqAgkONKXivksXAcxoE/gd9Y3jvJ5jOBwWbJ37iUqlkuqouOZ8Ptf169eTrUfX\nCL4Wi0XaJsHv529Pr1arqT5jOp2mgPrll19Ws9nU3bt3Cyt1XAf5jX8jpRkDFPwshcduR5xJIUMB\n++gMPudFEBHBhjMiMDDebr837QJQrZK1bsLmNGyM5CJ1KC2LVBeLRVpKykP7Rl7QdSBSp8F8NYsb\nD1dkAIpUpOgioHJkyvlON2NonXImpcNkbLVaGgwGeuONN/TZz362sKKHIk/qSxaLRYpUccSOoKG4\nK5WK7t+/r4cPH+rtt99OBhXlYZK6YsGcOE3vRcAcByUZx8z3KaB+gD5sNpsaDAYFI+4Rtiu2KzXg\nj/YRdaAL/HaEfhXE9Tu26bLARFrSomUOq0w8aoq6LRXBwJPa5OeQOiMf7oC+VqsVGJTZbKatrS0d\nHx+r0+no9PRUH374oW7cuJEcE2CWZ+FllDyDt6fMwWdZpt3dXR0cHBScSmy/Py+6VdZ/Hr0zTyI4\ncFra+xsQ7f3vQUCZeFtjPU0ZEI39sA6JtvgiHYr97qwvgQnBCk5SWq6SJEjyKD8yBj4WHvn7/z5u\nnOPpNlZl+UoZT7VUKmepaGwiQPzk5ESj0Uif//zn9eabb6bnunfvXmJ5YPPzfPmqFBy8B7oA7Ha7\nrS9+8YvK81zD4TAxJqukVqulnWdJvWAn6QNP53hKB7DowTttJlB0hhq/6+Prfe/pe0/NegDt/hHm\nijm58hlXfvMJSYzkfEBQSJ8QGKL5fJ5e0+479oEevXN9MxxJBQcdGRE+j4Y8IvM4MSJFyXf8Pjk5\nUafTObcklxc4feMb30jfZ1mmnZ0d9fv9VGtB5XSv11O32y0t4kUxxuOxPvzwQ925c6ewj4qkQkTo\ntB3KNBgMEmJ3JgLwEAvSJKV0kjuvGDWBzmezWWFVldO49JWPlwMo/5GWS5yvyjJil4sAyqrPOM/1\nCIYrpg1W3bNM3LhfxOqUtQ+DHR2In9/tdhMobbfbaVdh6PTnnnsuFW878OZ6MCtPYiCoc9nd3dWD\nBw9KgUlZH1FM6cxLdKb8dqAgFanwstSaf+cAIwIWF783ztCvWcYCXDXxKNiBoAc9/p33PfOdBQpc\nz5lSaWmnfTxiH7s9iAFmBCnxtzPnvm0C1yWAOjk5KWzQSZp+b28v2avT09NUMEvw6YCYcwFlgB3p\njEF/6aWXCqlRB3VefO7MPas+T09PE+jzVZA8j+vofD5Xt9st2EzGIII0fGmWZYXNHdFZZ7kARowL\n13f77cdh3y7S77W/ldjpprJjyj5zcACLQirFQQcTBcV3JOiV1g4wUEhvG2jPAYBPNraAZw8Vvuc8\ntnBn4rVaLY1Go5RzbLVaevDggb7+9a+nDdB2d3fV6/XUbreTIsxmM127dk1bW1tqt9vq9XqSzsDI\n1tZWymV+85vf1P3799Vut5OyQI26ktN/GODBYJB2t6W9zkr4JkYwI0xGJhrHepU2+xSwp8l4PE5M\nCjseSsV9ZRws+q690pItisDEt4e+KrJKj1exKjGl4MeUGWHpyamiaLQv2+YyQx/vhaFZLBapQHZv\nby/VGvV6veSEfI4DumDDKGr1wm8MPgWK3W5XzWZTH374YWqT0+QxWsaI+1b+0Un587pNkc7vRRJp\naY4p6zsvGr9IcHS0fVVNyrqZE6l8pViZDvtxCEtZ3f4QWbte+1g4MPE+8L7y+7ueRlDiwAldhZ3w\nqJ40PIw2tvH09DTt8orNabVa6UWB7EUlKYEF7CXpTna13t7eTun8mzdv6vOf/7yOjo4KBcHurxys\nxr+r1WoqpPUVb85wRh9G4O7jQ0Eyxx4fH6vRaGh7e7uQPpKWQI7+xwZ4MXwZ0wJj5u27qE5wrW8l\nXmUsLzK2lUol0cV0pufb3LBG+imiT0eUfh6f8T8d65/TFpiAR48epTf7gmop2MMAAVLq9br6/X5a\nCsY1j46OUq7ywYMHevDgQWIQyNEeHBykXRO3t7fT81+/fl2SdOfOHd2/f1/dbje10YEJEz72P0rG\nToP0qae3EGeh/D0PvnqJCnOcTa/X08HBgR49epQUlHvQTq7N2Hhxb3TMXggLEIzvi1i3lIGHyGJE\nI48j9vyxg2K/9mVYkHj8ZQEN4gXftMVXnAAQK5WKHj16lPZtIFgYDoeFVCX39iDCgTBAHIDrugtw\nR38jHc08jlE8+ua1BJ4CKBsjaclq+BzlnAhCaKuzQ2UMTexzZ6ViWkhaOqCLVjV8EhIZ7chWxb5z\nACcp7c+E7cLBe996MMkYx927nen2NFxkzOhDHyv0jF3EnSUhTeLMPLUg6OpoNNLOzo46nU56gSw6\nOZvNUl0TOsdqUFI8BwcHGo/Hab+Rev3sbchHR0eF9jq45n/3QV6r4/0FUPEl0PSXrw7ylBrP6nOT\n3ycnJxoMBtrZ2UnAif5kPBwwck3aHcGVA8wry5wgbpjjJEbhPXJgoOr1unZ3d1Wr1dIyWe9wp/Nw\nbjhfN3w4uGh8+Jx2uLLQPo/W7969q8FgkJwpqSYcNxR2o9FIK3qgC3n3Qa/XS89AAZazP7Az77//\nfkL2/X4/PQ/LbA8ODgrpK/rOWROcuhtxd4ZQmBRsuRIxoWNE7wW0gJc4eVDymHsFxERlZgLE8XGB\nsmd8r7qsmowOWkiHRAcaj7/oeh+1HWWO06Mfj+59LwV0r1ar6fr166kYG0cN5Y3RIjXDZmdOfTOv\n/EVwXgzutDPHe+2VR8HofZkRjMEIDqqsb5yBuagfcTa+Gs1ZFq93KTPaZZ/Hvl+nRHbJ+5r/Oc7t\nt5/PuOLcPOXs58OqYBcYW16p4e2QVKh3iixJDFCr1eUW8JVKJTlfzqemDmACi02qGyDSbDZ1fHys\nnZ2dpMsAFrfZbGM/n8+1s7OTNjID9LRarXQe/YD+kGr3vsc2AERgaTxzEAGHVEwvwmDAeESw7+eR\njoUB9Wu5T3Cd8Pussk+XWVl5JWpOLkrpeNrB0THROIM1Ho8L18IwudP1LXMXi0Vh+2R+s7wJRfbv\nYtQonRklgAHtYldA0jYUUR0eHqpWq6U3THJtEDaK4G/JjHUfTPLBYJCQO9ElEUTsz7KoGwNAH52e\nnqrX66VJwcukKpVKWjkU2Rb6wHO3cZyYaDBGe3t7CaBgtGNeP0YKMfqJUZIX+l5FuYgddFDi4kWZ\nZZFz2TVXOTc/J0bA3hb+xlnHdnlRrBt+xvDw8DBFkNKy4FBSMsLs3oxjYjwx1G64HRDx0kFJhcLa\nOObxfwcyZRE+fRuZJSQypav6lmNX1YysoubLzr+qgm0pAx9Ska3wc/gO0Opg1HXJbbczJw5Q2fnb\nARu2OjpX7ulMMedi+6j/o8aCN8pLyxqn8Xic2Hr8xmg0Urvd1nA4TLuosq/U8fFx0mX07+HDh9rb\n20uF4tPpVDdu3NBkMkkpTKkYEABMYD1gL7AJ7veYi7G2kj7gu7Ixc9uLuC6T3nLgF1nQMvvlvjKC\n1jgPy+RK7hDrx0jFqI3vpOUab5TT9/Hw853aoqCTDkP5nSHxIs1IrcXrMYCgUBSY+1AIyq6trDBC\nydnvBDDjRaJOczabzYTqfe07hpsUEbvIes6btnt9DUoMWzOfz/XUU0+lGhcYJU/vuDEo22/AgUlZ\nZC6dpYF2dnbSpHIWqwykeiQR9aLsvldBLtJr5CL9jxP4spT+RY7T7xsdSAQpzlxR5MffjMd8Pk81\nBLCDRJvHx8fJUPMZG0Wx/NLrBciBE7F2u920AohrA0x4TvonRuw8B6ADXY9sifetBygXjd2T+tf3\nybjseCDObn6ce3+vJQJS16OyzxH/HsaEwMf3hHL76nrI+fRrDMY8gCxzkFyHe5AC5Lvt7W09evSo\nsI0COt7tdpPtARhMJpP0Zm4CLJ4DRoLXamAzAeXxeHSaa8d5Tjt4dtrNrq2NRkOHh4eFNCV9hs57\nutT3j/Hr099ufwEWznhGm+TnRabQWZkyPWLMrhw4cbS2yhCUfe6Dx0N3Op0ETBx4+HVitL+KGfBc\nXYww4yT0CB/jCZvB24aZeKenp5pMJglJ93q9lN6BOoQBAnF7kSnUHceDZllr74WEgCFHql5j48vE\nPNed57meeeaZ1EcODKiDAD37mn3GwiPUaLwAN0TDtJH2eZ5eOq/ADtQ8Gohg9aoAlCcBE5eLnOFH\nqTPw9GdkkWI/rWJMytpBv3e73VQsyPGMKztsbm1taTqdam9vTw8ePNDW1lZyJjgj0oaMv+95w28v\nbGZextVKOKYItjjGI7dovMtSxfTLRWP3JNCJrn8UiYCwTJ7E2HwS4vMxMiPuhJ4UcErLvUwcmOBM\no47CcuCkfZmx1+hEhob7wS47WJCUmGI+w45mWZbS8u6U8zxP9YOj0Uj9fj8Fb7B9HvTyDNSxtNvt\nxLAA9LHx+C/u7WlGZ9NY9gzYIPWOfXYg7rZdUtoXCB11QOW/y/rUt7BnjGKhuAf3PLsDTtcjZ7Iu\nmk9r3SGWvy+KHpFIr/rDoTSkTzyq92ugiO6kWbZFDpJzy6Io/xsUy3UlJeWrVCoFxQe1eoFpp9PR\nwcFBUhKuQ3SaZZlarVZSWgAF92S7eYw3IIt2xpwubfZUjkcs9XpdN2/eVKWyLKD1zY+IgJlI9B+5\nT+7rrJKn43hOJrAj6viaAq7hNKRTvlCUPoGvGnsiXc75X/azy4g7Ywd68bplc6Psnm602JHY91Hw\nczudjsbjcVrl8NRTT2kymaTjOA+WLIIHxg8g6rl2dNyXRbrBdMfouhVZIOYiALmsRiGCPBfXxY8C\nFvy6Zd+tEmc2r4I4o7cqOFh1jLS0Sxzrf2MvYhDoq0wcYPi13A54m3CcXvsmLW13v99P774hsHTW\njWCSth4fH2t3dzcxKg5GHJg6U0ib40v08DOkOZ3BJ/h1W0cKp9vtajKZ6ObNm2lxgfs7MgnOtrhP\ni0xiBJ2eiikLCH1MnIkpAyc+Dv75YrHcr+vKMScurryeM3dlipM6Oi83RnyO4vi5rthScdc+BnQV\nq4OCMtherYxzxjgTITIQAAVSM7Sh3++nzdV4LpSRiNKZCNDybDZLG8yRs5RUoBQpFAW00S9Ohzpw\n6Pf7aWmyrzyAxYGy3traKuSMQfoRPfOdgzNH2/QvYxiBifc/Ch4NkhuIyBZcBYlRedn3Uvlqh3jM\nk8Rzyu4sypzEk67rjpSxAhz4d6RtML5ZliWdGwwGBRaPa0GrMzdOT0/TCgNnyDD06KB/54aUom2u\nT/uYG9S/wDgins7x/lgFTGJfP6nffNwvut5F3zmFv27mRDrPUMYoOR4XdTo6ObcV2DBnyNARt+Ow\nLewT4sWZzoRxnAc12FRJqViVZb3UMXkAiW/wPakcsLhjH41GyQ9EIE/bKY7lM3SQ15BQaOsbEqLz\n6DI+ZzKZ6M6dO2m7CPoWf+DbLPCiWOaAsx0+l7zvHdTgT+IGb5H5cAadcY/gB9DHWFw55kQqN45P\nmoD+MJFG9EIg74gIMDiOgZ/NZim/Tb2FVFQMJhMrZvJ8ufeGdAZ62u12KrCFVfD8M9flPQjSkmnx\niQWLsb29nZbfwWYAAlA8FJxzcBL0I5PXKVQMHudyzvb2dgIqcXI7kyIt30nkII22OzCK6R4mBYDJ\no5I4/vSxT4BoAHnusvqXqyBPmnzIk0BKvM5F142OzKPZeL/LCPrebrdTnRDX9b1tpGVQ4Pn3WKcC\nYOUaRFC+2stX8qCnOHEAPufgvAHcvuSRa/imWFFgAr2fvEgWiYAt9vEqoyxdbNcu+i469XXKKtC8\nirGMnzlQZpylYv0QOuLP6oGkM8ySUv0eQvDlRaWIA2VvB2kZbCvMntsdD5YJPvkcxh37SOEsjp5V\nPezc7bpCyh8gDQDHXvL3cDhMby5mKXS1WtV7772Xns/7jDlLX+ELR6NR2qoCJt99Zhwjntn3BJN0\njvWgn3xbB+ZkZGdYVu3nrZK1bsJWZpQR7+zIoETk5wgwrhpxY4rik3/DuVLkhLFzh+vsBfcmP8kx\nAJ5ut5v+n06nqeDJ834MNNvv53me3lBcqVTS2zEpbEVhQdQs6WLlhLTcCt7TIEwWFNEn3WJxtmaf\n5W/VajWxOBH88Vyj0Sg9U6fTSREAtTNuSJl4DkgiW+KTxkEef3uBWpZlhaVnPrb04WWBwDrko4KU\ni/6O/0dAs4p5ig7uojZFJo/8uBcxSstISSpuWEa0yVyLbAS/iRTRHWfYMHCkDQGiq5yPAxOeHdbu\n4OAgLRctEw9mmN+eNvQ2x7+9n1dJBDNl//t13J7F/ZvWLatYkzKWMDo7ByU+Z3H+XuDKddArB46S\nErssFdM53ja+A4QAJObzs51YDw4OUt+SivegFXDBWJAmRyepccQmHx0daXt7O92j0+no3r17un37\ntqTlTso+T/EFgHgCxHgcz+8rO9l+wrePR2ByAFNem8jzMJ+kJfjzNqzyzz5OPqbMN77jGq7vHvyX\nzWOXK8GcXIZFKUPTHq04nYdT90nhk4Gljy5eKOoTMHa8t9UroXd3d7W/v5/W4g+HQw2HwwQMKpVK\nYkJms1kqlIKNYRBxuIAJIrvF4uz11ZPJpJAf5b0KPmkdXBEx+DMTvbIMjt1m2TAr9g1g7uTkJD2T\nMyBMJp4hKqOnG8qYgXg8EzNuj8x5XCfWr1wF6tslPjPycYFU2XkOJi9ygKuu59fwaAn9yrIs0d4U\nCqKPUjHF6uABnfS0ZbPZTICaSNJrqTqdzjnGArDCNXzpOfl2GEvmK20mMqVoHr33fsRIeqrzo4xN\n1OmyICuOC32MREaG/igbq3VJBCDIRcA5SgwkY82Gz3G3Gc4Ee32a109wnrQEK86IwQB4vQV2BhBN\n6poiWAJGQDOpCIJB7xsYPIpUt7e3dXR0pGvXrhXS+ZJS0Ij+NhqNtGzZ00gEtwSasB71el1f+cpX\nCr7OXwXgfVCtVtOKUPqY4NHbDyBxkOMAxD9jTDwQ8DQSx8Sx8jovr31cJWuvObms+ASWzqNjqfge\nAf7ne1dEvvPqZ2m5ix4GxH/8etXq8i2a7hwZTF8JxL29AHc0GiUFJU/INsgc78W6FGxVq1U9fPgw\nnVOr1Qq7DfqKCPoKpZ9MJundPc7gnJyc6KWXXtKNGze0WCxXUrix98nMe3RwLkx2B4kOXGKajGM8\nokIwJvQV+9JgaLyv+Zxr+9heFYnMHvLnASurQMeqlIOfdxG48b99nKTiC+58fjgFj0Nx1gFwzByD\nIcSQslvmfD5PdSc+rr5TbtRFj6K5J22nLVDisKGRoUA8beTR/GWkrP+ik/Bcvh8bGa0I+K4a6C4D\nSB4suK2M33GuB3vSsnCeMfaaDw8U6UPArL9Kg3v5+EXWfDqdpqCPdna73WSjfFsIGAq/frPZTMzJ\n0dGRut1ugUXMskxbW1uJbcnzs4JRtq5Hr7HnnItuVqvVVEDO/XkdCiuBTk9PC6uE6J+oY8wNB1je\n3+6vmMdS0UZ7n8eUEcEqNoF7SCqAHnQ7gkjaGEFSlLWmdZ4k0ZnxmS9L5TOUyhEgiNdzaxxPkarn\np924cLwbLYwyaJQIbTabpSVdZR3uu6JS40I6qVarpRQOk4Tc4mQySe9zkM62t+cNlr46idoWVzzS\nQJXK2S6I/X4/0aCAB87p9/uFCNwnNhMLNobPcABc0wuLnamJURH3ROgHJhy/OY7zPFqJxtrH/ipI\nZCSepO8XgZVVTvMiQOMGK9K1q9icVeLREzVKDgYd9PiSxvl8nhg+38tHUgF0Y8SZp1mWFXLavtTU\nGQV36g6YYEwAUkTDHkFf5vk/Lrvl4NCDk7LUtB/jjCO/rwooQdxRrZprZdF2DBhdB9FTZ8M4x1N4\neZ6nFAVsHPrAvTy9g+33PVHYdZv3NO3t7Wk8Hms2myXWDp1DCLZYgXNycpKCRWqqnMVGz2u1WtrX\nylND/loHBxBcA+Z6OBymYI1AFtDCPiv4ntgXzvhwXR877ycPNPhfUiEdy+cOQtyX0E8OLl2HncXx\nY580v64cc+LG2HONvrTQaSgGzjvfd9tDKdyQSUpvNN7a2kosCPd3IEM7UEoUj/zlaDTSZDLRw4cP\nU1vYbEdabjmM4Cyazaa2t7dTzcbOzk6qQwGhc42jo6N0HRArUaFTZIAVBx9Q8bQ7bnglLTezI/2E\n0A++PDv++CSICk/7vT+YbL6XBeMYqWyPhnmmVVHRVTPkZRNv1YS8iFlZlapxwy0VV6gxHpHGXgWW\nIgDieg5AB4NBum+lsqzLiECM/+fzedoskPomSYWiPwclTnsTSeJUInihnZ7W4xlhYnguj8ovAxbj\n80Qm6knfl6Vo4jh6P3LN2P84m48DkL5X4kyGVEyroytebO/Pgi4CXklre2TPGNI3/uwU4XPt8Xhc\nGNfI3viSWuwX86VWq6UFBzAdXA/QzDVhPL773e/qww8/TGDjpZdeSky7gwdPYfhnMB29Xk+DwSC9\nc8fZM3SAII2XosKMw6awGg4d8XmIX4S98RoQZ+s8PeO2nLZEW+DpVOw540nw7eO4WCw0Ho+TL2Y8\n8SOM50VyJcCJd4Qr+3g8LtQsRNoe6l9aTgBf5hqjO67Npmg46Nu3b6fB9UIg2sObd8fjsdrtdmFn\nTElpTTsG1NMZPpnzPFe/30+vrH7mmWeS4X/77bfPpVycBfJ184AIPtva2kpLKh2hSkuAxhIz6gAA\nB61WS71eL1GcPgYxveVOg+MYu0jX8n1kNHgmLzhD6HtnsRjDVqulra2tc3Qw4814XgVZ5VAu62i8\nT70g8iLWJEayGC4MEQ47nkv/lZ3rKbSYI+Y6vuwR4+VV/b4HD0YaHZpMJmq324Xoy1NH/rlfP+qc\nz3mYRNrBSjwPUlYBvstI7PdV59Ie/i7r5+iEow0k8Lgqeh2BWaTpoftd7zgPR+3Le+N4eGTO9+5g\n2SyzVqvpvffeS9fzY/mbtDN2L8/zlKpZLJZbsnc6neQHsEfs6IrOHB8f6+7du2m7hfv37+uP//iP\n9dprr6ler6etF2ifB7j1ej0x5dvb26mehQ0LY+EpOsGqzqOjI7Xb7UI9yuHhYSpQBwhhDwGFnoql\nb5k3/rcHmnGOeHG6v7xzFUiNjDhz0Oc03w2HwwQIV8nawcmqaJJNa3BMdAAdSt7R99mIOXBfT01n\nYhhx0MPhUL1eLympOwOuNR6Pk5ITAbLja7VaTecDlDzSY2ICiNrttp555pn0Tp7r16/r2rVrmkwm\n+s53vpNQLytnWKNOesXz5+QiDw8PUx945MizMglQVq4Jc0TKJ8/zlPd0gOMvIkRZMUDObnku08Gg\nVCzQ4v84/u6AmQyMG5PQoxPuzTLuq2TEPyoQcXEn7RGNf+8GpUwwNN4nGPoYqbkzdEeBzsQVI+ga\nbCJtxOiwm+y7776rF198UdevX9f+/n7STSJBzvWi2Pl8rna7XajLQhecKfE5DdChpspTIjgqvwfP\n5IbYDbvLZYCLsyM+Vt6fMU3jUWaZHjgI59UA6xR3XogDAkCD70Lq5zmblWVZYkH4H/DiG08ylgBc\nD1xY+cJxpLG9MJ9xrVQqaZ8plu26ffO+JcVMbcWNGzf01ltv6fbt23rjjTf03HPP6eHDh+r3+3r4\n8KF6vV4BRJ2cnCQQ5Kzlzs6OHj16lEAMthpdRtc5j+fZ3d1N/cfxb775pnZ3dzUYDNTtdlMQQNvp\nS57d7UkEc4xfzD4wPtw7BkfYBNh8AmBshjOoi8UilSLgQ1khe5GdvBLgRDpPZUMVoZDecZ5KIOXi\nUT7OHHCQZVlSQOiuo6Oj9NnBwUFqA/uXgFIlJVTtkSPpHKebmSgOFKTlAKE8eZ7r1q1bunv3rp5+\n+mm9++67eu655/T2228n2hBFopaFNtBPtVpNn/nMZ3R6eqqDg4OU+sG4O4iAYaIynPbwHhNyo3me\nazAYaD4/2z3R33SJcXVQUubcpCUDwuf0mdfxOCDxFRmkthh3vvNxB7iyz8H+/r76/X4hPbdOicVf\nUXj+mMZySjTWPMVjPOLw6BqDzrWjM3FnKZ1n9kif8T15dahmZ1PcKANWtra2dHx8rKefflrb29sa\nDodpGSdOixefsVkVhpPrEyT0er1CatB1340gTs2fqdFopP0hKGCMYxMNLp99FHAZAUYZ4PAl2D5n\nvJ8d4DN+6MBwOLwwwvwkxB0tvyOY4ofniCCS60hnzs8jZ9e76Fh5fk/N+EaRnEtRtYMeBzr4Ed+b\nBL0m6CMAbLVa2tvbS6vLHjx4oPv376clvF/60pf0W7/1W3rxxRcLgB8g7Xat2Wzq61//evIXtVpN\nO7tsnBgAACAASURBVDs7unbtWkGXnfEg6OY53WYSrPtKTEmp/ZGlcxbSg3fsjAeWUnFDRw9IPbD0\nNB1tYMsBSeeuSWDMpnHb29sp6F0lawEnh4eH6Y29TmlJZw9OjhADy+C4USbXhXKhfOTDYDF8tUee\n50nx/B6wGjgG1q+DtGkbqN5Xk3hBZ7PZTO1i0pAWIl+5u7uryWSip556Srdu3VKe5/rGN76hV199\nNTEhGEicsG9RvL29reeee05PPfVU2iL84cOHOjg40DvvvJNYGi9clJQAGn06nU7V6XS0s7OT6l7o\nP69TcSqdAkP6pSzKZMJzz0qlkgxGs9lMfQQAZCKgtFyHQjUHOCcnJ2l1Eud6cTFb+q9bYgSN4Mil\n8++J8sjaDQmfx4nu7BjAZLFYLjnEgMT8sUf50SHyN4YLA+ibSmFAY5tY4k4kR8rxxRdf1B//8R/r\n+eefT5sOOqMYgRjOodfr6eTkRKPRSLdu3Upvo+W5HESg4x7FM0/j/j7+3FzPo2g+9/SE9xvnlElZ\nH0tKqV7GyW2e972L2x2PRNclOzs7CWhGUIJN9b6LKSv6nufyMWDuR+BAWkY606+jo6MEWEl90AYi\nfVgWZ3F9/B1E4VjRl8VikcCyAxnY2Z2dnWSb3n777bQNA/bLyxB4Zkn65je/qdPTU/3ET/yE/t7f\n+3u6detW6qNnn322MPeY217/B0hpNBr60z/907QCk5dy0q+k1bgOwV2/30/z2Df29BU39LkXtLo+\ne/qH7/GdtN0XQdAmlj870Gb7C16HskrWAk4Gg4FOTk4K0bm0ZExgC6SlU3KEiZMEnKCY5Jw5l85j\nkOmkavVsKTDvVvCqbpBirPp3qtKdPk7CC0zpcAykU8kffvihXnjhBd27d09PPfWUsizTF7/4xULa\nhAnJczJxms2mrl27phdffFH37t3TM888oxs3bqT2fPDBBwkY0RaPEpm49OnNmzd148aNtINhr9cr\nMBNeGAZoIZ3FVsxx1ZKnxqjNcYbLAYhTmp6qAhy6k6xWq0kvYIFY6QRrRL+tUzzyLUvXSOdXmrhE\nx8k1/douXksiKekyRgrn65FPZAn8mk6FM6e4j7fHDSnXbrfbevrpp3Xnzh3t7e2pWj1b+s7qCF+m\n7sCHe3o+/s0331Sj0UhzBeDuTtpXAEUn79vnOxPhgM/ZO4yug3f6M/a5j0MZAI2sGHOOKNiP9fnp\nTjWCkcsyOd8rabVaqtfrOj4+PrdZI4GMs9e+ygqnzzi7HvEdNsOvQf/AbDiwdSAdGXW+YwxwwlKx\n9kJa6rUDAvTy6OhI/X5fr7zyij744AM999xzOjk50Y0bN3Tnzh299tprGo1GhTe5+7Pmea7Dw0O9\n++67unnzpn7zN39TjUZDOzs7SQ+w8bQNn0NJAv6KawLO8Ce+pBow4i+dBbQA5lh15N87MHFGPLKo\n+AY+A0iyRQD3935mXBgTFkPwve+iHmUt4GQ4HCZFu379emHpFvtoOI3ra8Sl5YubcIiSEhrDsXGc\nKz3Rvnc+CuBK71G9O1sMPwrBdWLxEeyJ5y4p5vzggw/U7/d1eHiowWCQHOvt27fTLrXxWaWzAe71\nenr55Zc1nU71kz/5k6pUKnrnnXdS5TdKAENBPzJhvU30zXA41OnpaaK9URb2MolAkLTLeDxOb+ck\n5+n7VDDJPDVE7Q59DPihXUQibDaH4/IIObIJTAqe6SpJWR2B051OkyORSXSJDiqCFa4VDUMZMFnV\nVj/ewQ3O2hkEDBXOd3t7W2+88Yb29vaSsWcDtP39/TRHfG5xLwBvv9/XvXv31Gg09Nxzz+n+/ftp\njwneiuz9ik4Q1TGXmQ8+F2OqzOt6Yt+UgZgI5Lw/0EdPffnqOMCX0/dRygCPB2XrFBwPAaTXMuFU\nHRB4wEefABKwCW5b6ZcsyxKIc9tdqVTSHh9E5d6HjD22wPXfN5ZE//J8udmls/bOumVZpsPDQ3U6\nHe3u7qZnPzk50ec+97kUMHmNIcEVYOrevXtpB1l05Pnnn9e3v/1tzefztPs2/s7BBH3sATzXp68J\nADkX2x/HzmsVve98paf7Bc6hPV73A6gA/JOF4NrOurhvl4rbgpQFWy5rASdEuFmWqdfrJVQuLfNm\nvkTYKWyUeDKZJOcLymTSewEP/7M9MMp9eHhYeHcLRs4jQo9ypOWyYlJADDaoVVoCKUfznh7Jskxv\nvPGG+v2+jo+PU3+88847kpTe7grFTd1JvX72cqi9vb20E+3W1pb+6I/+SC+++GIaZIpcSZ94eqTZ\nbOro6KhQIU50QF9KS+p8PB4XwAypJgwudTA4Mq8bQNygwWp5HRB7A/AzHo/V6/VS9EKbvAiLZ/XU\n0kepE/ikJLbJUxBScQlvrFPx1BDXKQM6fh83Ur40153mqjQGOhvb68CbucP/njqp1c5eJb+zs5Mi\nOgD/cDgs1ELhgHz+MEcBQq1WS7u7u3r48GEynnEHWq878P7yfo4MqEfmHj171B6Bg+t0HBPEU20I\nKVDf6BHH6mwWoCfeAwdVdu1PWtxGEpljRxz0uZ65TSA1ApChaDSu2PCUEA6+Xq/r2rVr6V4OSLEt\n3D/+po85F7uCA+Y47DTPStuuX7+u8Xic3meDHt69ezc9J2CEZ6fG6tGjR9rd3dU777yja9eupdTP\n7//+7+uFF17QYnFW18hqS1+4gH7GeU4hOS+ZrVQqhb+jfkYGhGt5RoD54+DOQYikQhDCcxIQYMPd\nfpWlr2P9EZ+tkrWAE2coACpQtDj9GEWQi3bDyOez2UyPHj1KqM/BCdfFiI1Go7SMyZXcgQmgyGlt\nlBCA4imjWENB2gRFc6qc9elHR0c6ODhIwGNnZyetNvDVOkQagK8HDx6o3W7r/fff1+3bt/XjP/7j\nev/991NOdjAYKMuyVOXtyyo9lZJlZ8W/g8EgLYEjvQMAo/LcJwoK6n0DuHQAwSTFMPlvV243OIwr\n+wAgtN0NeJk+rTsvLxXTaDEi98/8WSJ7EqlnruHGir50sOZO39sirY5SympfPLWAcfJnwYFznLMD\nfo0sy9JSSNKCFHsDdKncr1arOjo60tNPP63xeKxGo6G7d++eCy78uZi3MYVGP3hhtqcSor5EnXIw\nEMeJzznfr+MADhDiu9cSnfLcTplHBsb70VMX6xJAgDtx1ynG3qNi9NidEscDcHwlJud7bU6tVtPe\n3l4BTDrA9nbxP/3lNgv7AsPR6/VSG7HTjI8X2mIfSdfgY2Dy+v1+quPwFDXB3s7Ojj772c9qMBjo\n+eefV7VaTanoz3/+8ymI4EdSAvn0G5/DzMCOHx8fazabpTovfAdsPMDcwTf+JAbf2GGvtyGAdH/o\nLAzj5sCFQILxYX6UpSk9iC+TtYATBh7QgEL6qg06F4X0CIKHAmGChH0vD2db6CAKX0kr8T3O1pc6\n+YRxx8jkigW7pKN8MnB9KN1a7WzXQFYKsawMNAy74bsK8pykTv7gD/5AL7/8csrns4x4f38/7emw\nWJwVbXU6nbSMMoItwANMyt7eXlIi9nSRzvZQ2dnZKeRDmeBEyETFHhECcHxnV4CcGxlfukzbvDYF\nJ8bfkd5m/KKDX5d4e5yVkFYXyl4kXkgZNz6L1/I0hTs39Bew4QyUzxXO8+8jEHHn4REqlfcYSKem\nqYHxqJe0j9PxN2/e1Lvvvps2BORzVv0Afn0Vnb9i3qM5jwi9H2BmGCdSiHGJpfdtGauBrAI6ztT4\nMQ5guJ+nbiNIiX+vSzwFE/eNwcZKSzbTwYY7X5/XOEoK5r0ImFUcDnqd8fDI3NORzjL6XPE5OJ/P\nUyCGnjrDg83BrhFwYl99bjx48EC7u7vpGjwLYz+fz/WZz3xG+/v7mk6XL4P9whe+oDzPE8AAiNE/\nvAzQnw2bzbt4YJmcjeRZASj+PePEPRxs4acoMuY85pzbfknn5rKPNWPp9i8GWj4/VslawInvnueG\nxYFJGXXqA056wEEOSND3+kCR3aFyHQAAhXh+X2lJZflqmZjPzLIsGVNpSdsSFUhKSNcpN/ZlQMko\nZKI/eDZPZQEa/uRP/kSdTke3bt1KTMP9+/dTbQsRG+DAl4L69UHGrIrgGTDcgDloWJxFrMZnHKEp\nuf7JyUkyAgAsj064B32M+OR3xF3GZhHZew58neJRfFma6UnAxIEt/eJOCpr6IpqfsfHUgVO1fkx0\nxDggDwrQZ8CGM13OdFYqZzsmV6vVtJLAa46cSYyMB/rNNuLsA1SpVBIAB+TTfoCGR2fohzNN6BI1\nAqy6q1arhSJqgIKPW4zI0X2eqQxExH6WlrUOOFokAs1o5CMYX5f4/MLmOiNEu2PahWfF/knLmkEc\nPfVxbu+d0ZBUGNcY+EnLlEEMSr0WBpBB+3G0jCO+AYaClYGVytmGlzdv3iwEWKPRSN1uN6UrmXOw\n4YzjdDrV7u6uJKXNMg8PD5MP8PS2z1X6LabK8jxPzA/PDcPTaDS0vb2d7uX1MzwrYzifzwt9IC33\nBcLfuT1wEoH/GUfGlWs7uPG6k2q1mlhUGJpVsva3ErtSoFxMBI8u3EjCVETamS3pSWc4clxVVBYN\ns1NdKLFHrtwrFvr48lnAENFfrKEhHzkYDJTnZxXdvV5P0nLrfSYTO2iiYL4Py3vvvZeQ9M2bN5Mj\nkpZFuR6NlTl3BxEYhF6vlybmaDTS/fv3tb29XQAobiAc2HlkSyrMDZFTrCg3zoPr+P4X3tdetEVf\nY9x4tqsi0WHFtNSTGJRI9/s5MZ0jFd9p4oYsRiZlxsANl+sKgrF0YOtACbbOHQIggLdYR8AFa+JR\nlxt01wFfAk/huzMS3NeBHM8VozYMa+w/N7re/3EMo5P2Yz1S538PqHxO+nX529Mg9DMOZN3g22l6\nxt37SyruCM24eMqEMaNPsHXoj5/vTpPxhpGDVYhMatRtricVC5xdfxCCOWfZ8SXT6VR7e3uJvWZM\nFotFes8PO2wDZggQfT76LtaAVH+1gz87eoHNi6k9mBJqFKln4d6wW9hfn9c8H3PV3xbOPKxUKikQ\n8HStM1OrBEDjY4feeLqU41bJWsAJnc2EhGrG6WI8fJJiDCWd25QMFO+Rm6cPnC3BAHA/irToLCYV\n9wdBOoKXllXgEZHSdugx2tjr9dK1BoOBjo+PE8KG/bh586Y6nY4ePnxYOBZAEukzwA8Tl36JhhUA\ngALGaJBCVO/b7e1t7e3t6eDgQPP5PBXHQoU6TY0TAdy5UXDAhxFytgxWx8GJR0keaXp7eX6nES9C\n4Z+UuBFELprIUSJbJJ1/s+0qwOKfScs3iK5ybPRbDAa4Btf2JbBu5AAtrEIBqABG/T1P0PEYdliQ\nXq9XqE3ytIu03IAMBsaZEGeDPKqkfRzvDp95QHvd4HqUGMfRDaz3v38fI0dnr6Rlca6PR9QNT/M4\nUFo3g+JpLwcW0vll3P4bJ+6BCc/o6S4Hv4wNfcr40gb00VkWqViXJRXfVs33UnG3agIb9JR24qBP\nT0+1t7eXtlngOo1GQ7dv39brr7+u/f39VPB6dHSkGzduqFo9qy1xANrpdDQYDBJL7bUd9BUCs+CB\nM0wxesk2DrVaLe1Bc3BwUNjw0H0b+o3v9D5xPeWa3u/O6tCvzD/muzM+HhhH9tv16coxJzjLSL/i\nnGIEIhVrD1xhMWieciCSosNw7K6UODnqPpgYbiS5L2jWQZTTrjAbOHDOZ4DzPE9AZDAY6IMPPijs\nepjnuR49eqR79+7ps5/9rCQlULK9va379++nTa24P2iZ/SN8Z77FYlmvg1NwFoq+caBANIRytVqt\ntEmb061MEKdtuT6GiB8fR0CTT1ZJ54wubfA+lnTu7zIHcVVkVdtWRQn+bBGARKcbrxmdm/c5feuG\nJ7anjKGJ90GnAKZHR0ep4I8NnlgOyXujYCJ4Jwg7DwOo0V/moVR8W3GsL0BnKVb06BtjylxyGpr/\neX6Oc3DtDnMVEPC8vDNXXM/ZFe8/Z8oceDqA9PtFVsyPW6fEqJ05T6rWAa7bRbcdnBtBh7O5UjHy\nduZsNjtb/dRqtXR0dFQAks6GeK1RTEtij2EPSN/Qxvl8+cJKnmkwGBRqMQiMRqORXnvtNb3xxhtJ\n927cuKFWq5U2t/SxJRUEsOd+tVotMYX0dSyYxm85AHAbycaLgBQfg8iWOwHA3OZ/dNnvKS2DEfoQ\n8OH2nftFW+L1pD7O3HuVrAWc+EYukRKlvsNzmihZZFK8M1FAf5WzU74cB9BAIdjVj9xejJZQIpCu\nTzofePLsvkS51Wqp1WppNBoltOr7L6BsTJZ3331X9Xo9FVgdHBwoz8+KpmiT/87zs132vEAQEMVq\nIZ4dytInoeeH3TjPZrNEx+OQMA5EgyihOwJfigzoi5PAxwaaDxTN94A6Z4uYuF6z4LR9BD1XRdAh\nf2Y+p71OPUcmQDq/gsMlRj5+fcakbHUF142fex9iqGOhYLVaTcvP2cyvWq3q3r176vf7Ojo6SjrJ\nPjq9Xi+9UG2xWKQ3rjLGtNXtwNbWVnp7baz5oo+IfD2v7oAOI+0sCc/moA1b43Pe+8aPpY9wys6y\nuPGNQMZtEp9H4FlWa8GcW6fQZrd/6IKDQ0kFQMnYOVsCoAF0RLbUI3ie28fJAUbZnOA8Uv9ScYVX\ns9ksFEKz1B0fwsaBW1tbGg6HevbZZzWdTgsgxdP0165d0/7+frKXnU4nvRIFPwbIcp8Vi2djKpvg\n2hkKntltB8ujfUECfYY98eDE2RrYfx8vjvc+4/oRfNBeBzi0i/s7K+ZgO86XKGtjTtyxz+fzQtW2\nVESKjpy9aphruJOD6pJUMEpc2wfG84uei445tYg2uS9g4OHDh2kSOfU4mUzU7XZ169YtvfHGG2mv\nEkn6zGc+k9iRbrebjPC9e/fS1sS1Wi1tXuXbM/tkd+fjL5Ki3UwI0jYYB/o3rohiZcVsNkvUom+l\n7JMD5XblZFkdq3hwUp4C86JZ71s3Sp739PF0AyktAVkcs3VJdPKuz25M/bhoQCNo4btV0bl0nh5l\nbDnGjRbihsIpeNJ3vlcJ+XY3thRwP3z4UJK0t7en09NTdTqdlDqpVCppTpIfJ5XnYBrwyfPgPHyT\nLEmJCseAx1oOB9/SMmdf1keMh3/nDKC3hz6NEagzI+hxGfsbGZCY3vEINdbo+NxYl7hDon/c4fDs\n/I/d9a0MfBx4Lq8n4hxsvbPP9CkLCLyuzZ2wdH7HX28XAIAl7thdtm9gkUKj0dD+/r4k6dGjR6rX\n6wmQE6xRb+JgzVffUKOHTtRqNe3u7iaGnT4YjUYFfwg75G33ue86689JcI5fYe54Gh4g7zrqdjwC\nbrdBTg5gbxkzacnqe8rG/XScKzzXKlkLOHGnifHDwdCB0hJ9oYBS8eVkXiCJkSK941E4g+ab9XgE\nJamwBS/3ccVgUBlY8ovNZjNVXAOQ+Pv09FT7+/vq9Xp6/vnndXh4qHq9rldffVX3798vOKlr166d\nc2i8kA/Q4I45y7JElbfb7aSATFwHH4eHhwVFZsLwjBgC/uYdNlSTO4JfLBZpySh9xfcYLU/heH7S\niyDdALtyM76wWTESiCk9ZxWugpSxHU5rXnRsBB9lkWFkVFaJ1zfECB7x6IbrAVIYY/TGgTuAFkYE\nVnBrayuttpGW0VG1Wk10tjMisB6ka6Ix9JUKDl4crMb+jfrggYszbG4cI5CINTrOfnkEHEEmx0WQ\nHO/BuT4HYnqHc5wRWqe4vZCWO8A6ve/94cDP0+jOlKJTETjH1IuDE2dfsCWeUpCKK85YUFCr1dLL\nWre3twsBEuc1Gg0dHx+rXq8X3gR9+/Ztvf/++3r06FEBCACw0V1W4jA/RqNRWvlCehMg5PtgbW1t\nJRYSVsmDLfeX0tJ/YbO5Hz6xWq0WXtsCWxkzD9gH37CR8cOHon8UIMcgC10ASPKeOXwRUsYyogOr\nZG37nPiD4vCgkF25XBkciNAhoFhp2bFujJwa9E3c3MgNh8M0CHQqiukGg1VC0lmn7uzsFKqc+Z3n\nedrpFGaFHQ7v3r2rra0tLRaLtMxXUlJaUkHsporx95c8eRTi+wGs6ueYSqDGhueNNCAgBYDlG+/4\ne3C8z1E6JqOn7ubzeWJAIgXuQJRaBCYxoIu2eWqOcUFHrgpzQt+5I+SZ6cMYNayKJDwalIqbfEXx\nz9xISyqMb2QSYrqC6JT5546BOUg+3PPTpBiHw6GGw2GqLYFBAWiiP6Q7+S0pGVfvv/F4rH6/n95h\ngpPziG1VSoZ2OTChH/jfdTCCOAdlZaxIHDdnbvyzOM5x/CJb48/gAGyd4u8gw+ETwDAenl5jLB18\n8JuUr1TcFM/HCGE+sacN4JAxdb30FJCDKXSM4+PeSp1OJ62aIbj88MMPtbu7q62tLX3ta1/TrVu3\n0rmw4pJSMMg29Owe3u1203j7bsjUB2IXqtWqhsNh6jMWaNB+T/14qs9tOyDX57mkBOzcVjtjg067\njvoSXx8Tgvsy4M1LCambgc1nVV7Ue59zF8lawInvM+Bpm0ajUaie9sLLsvfZkKP2yCvStC44CC+U\nhZr2NeG+PTMKxKQAuaPcPMvJyUnaVZUUFe8LoYBrPB7rxo0b6e2tktJeEN1uN+Xnh8NhMug7Ozs6\nPj5OeVFpiWpB+L7k0tNhtElaGnAmOIjb2QsUDwTvyl6v19XpdAoOwDcwos/5ATgywbiH9yPiY0VE\nTr97FMwKEHcEPsGugrgRZkLzf5zYZcyJS3SAq6Jov04EM4ALqbgMNBoymDf0JdKwgHbmXHzeVqul\nDz74IL1SHjDqG3b5VvPT6TSlf3ye43iYn/V6PRXPkmZicyrmIYYvpgf4G/EAIj6jU/8OTOh3ZwEc\nlHlfenTv4xL7mZo0HIuDHwf+Mehap9C/9A1stKf+vL0cTx9iE7Ar9JWkBGCRCMqjA/UFAdjCyWRy\nLk1HX1IDRSBHaob9R3hJJMCh1WolJvvOnTt69tlnNZ/PdXh4mBgVxo3/YZjRDYI66Txopm0wLfg8\nNs2MfYg9Rkcig0UfMReYK/Szv0gWYOh22hkVabnSxus8AdBxPJ3d8nHDtwBY6Qc+KwPpUdYCTqDZ\nJKVcHyCFKB2D6KkWAIhU3OwKB+YdhtGMBt1pas7tdrvKsixVOns1P9dhMvlyL2n5ojxPGfkSNopT\nJWl7ezvlOgEH0OC+pT4reaSzHVo93eXGAWPPM/veJExgULojXGdImDhcH6ViddBkMkm5WIq04hj6\nWABkHGUTRftEig6AZ4IxidG8O3oU2yNZANdVkRgtSuep+yhlKZwYua86DvE+8VQEuhxpWfTMUznR\n2fr3jJFveLhYLNKS806nk/LdUnEHVc5lHCeTSdqBk/s5a0nE65/hAHwjQHQJ48lz+1x3wwlL4cDN\nwa6ncbxvPUjiHHeiDubKxgZg7sytAypnspxxuwriAQK1dLQTe1nGbkvFeitsss8NZ6h8IUQMeqRi\nioi0s9sQrjObzdLeH6xo9IAzyzJ1u109ePBAe3t7qlQq6R06bg9feeWVtIs2tXgAHXS92WwmsEKK\npl6vF5hfdM7rIt1e8a4hxNlhDyI9+HQd53t8J+3xNwAzv7wfuY6ngRijWMTq7XW2DIbTx9uZc/df\nzNPoh8tkbe/WibQpoABE7lQW7ABRB+I5LxQZWhjUCPJkwJzKRcG9AIlIgJUmGHTPlznNCqhibxBW\n6zDwi8WiMNC0FWfNJGYwKVyl2Orhw4fpGWBjuHae5+lzvx4/kbFwSjwiWJTIlYX7zefz1E84E4/W\nPYqEzkVR6TeiXQdGPqG4BnsDuPPwqAFGiWdkEse6gXUJho+2EaWUAQOpCABo/yomxK/v/3Ms14hR\nKDpW5ugwth7N+zWYCzgg3/PEi/Yo4KZNkWL3dgJoJKW5yT1dt5zFZM44W+JGjzw+OuL9A1PjdW2S\nClF8ZEK8HoR2O5DzovR4jKfDfIz82Jju4V5loOgqiI8Pv9FlZ00iw+ERt4N0T62hz85QY68BzFyH\nH+wS4IAxZgxarZYGg0EK7tBdauV4v40Hj9h1d8osB+Y3vsB1GBsPoOR1Hw64uJ7Pf+pQXNccIPtq\nJvc9jIEHKwjLo6lpwUc4+0eb+d83yvQNNj3odFvk4A0ggg13sOl2niADPbiMfq91h1iPpjwv5XlE\nR7t0nDtTouroYOkofz03n3M9nL60fK00gMVTFgy4p3VgGRaLRTKwvmLA8+DVajVRbTgBR6m+Ex/f\nocikijAAfn8iOc7BaDD4kcZG+RAHiLSZ+9Bfk8kk9QfGn70saI9PHNrRbDYLbxyFvvT35nik6Xl8\n3/DLz3fnTQTtOdSrIPSDRxXO8pQdy3HovQMN71eu5UbGgbK0HGscLN+5YXO2yYtmnVlwY0X0NZ/P\nNRgMUlQGeJWUisK97RhmB2c+T7y93g/+bMxXH3//m2LY0WhUqC1xI++6Tduk4kZRzsgSLETG1QOT\nuKLHGVVPzfhY8T8GOqaEfJykYsooXueTllj7h02i/7yo3leHEPU7uyGp8L4lAlNsrgNP9MVX7bju\nuG/w8SY9E+0S7aDGER3FefIc6CO6AJvr15OKWxugq7GepowlcJCBfnuQQiDpab+YHo6AnTQ/fQNo\ngBViVZBvN+/Pw/3cV8KEO1sjLQNKxsrnegw0fK56DSHtXKlzH19dP754wV2WZYnmipMRxZSWyL0s\nQqZjSItADeK8iJDcOLkT8S2Hm81mSrG4gfFIwRkRZx74n8EkDeWokgGMlcuR+WEQXRH9f8Rpc56R\n6Nap1LhduAM5Z1K4FudT4EU/kB/mfUKeanOnkGXFF1kxfl5T5BEWz04/k7LCAMUlpYwN11238Ubc\nkESn5SmasvZG50xfer846EXnoqDzzB1pmTLhezc+buydHWCZZdQbfmq1mvr9fgGUuPPl/1V95IDa\nv3M99M/cGdIGdBDw7xGbp3hoB/dCP7FF3g5/YWUE3/7b03T8HR1QZFcisKKdPiel4ovVvN3raEGS\npgAAIABJREFUEuYfOoWjY+7hFLFxMaXIc7vN8fPdPsLUuf1H1+NCBwIplu3CqMR30jhw4l7MHfaK\n4jgKZrvdbqon9OJenyN5nqe0oxfs4icc8MegDNvmPs1ZE0mpXoQ5SDtInTqL5Wwec6GMnfZaEvqF\na/OsnONMErruQNPtugP7arV6Ljhl7Dz4vojtXtsmbBhQImqMDBMZA+FpgIi+fVAADCBmIj6AB6DF\nIylyhp4CYrAoZGXwcdbSkipHwZm4IFSWXcEuOP3pyuD35TiUAQVjsnqE6cyPVKTOPZJ2cFWpVAoT\nFmTNMzu4AszQZnKqCCkj+seNsOeJiaAcvHj6KU5OnsmL2zyCANjE/iPHexUAikfgGBFfpRP7wh2c\ngxY3ZO6YHKwg8RjG1j/HaDImGChPM3r6h4jJ2+eGEPBf1k7GmPb6/PXjI0j36MxXDXCver2eVo24\nrrdarcTuuX57ZB3bGZkVdC8CyAgm/VoYbx8bd8gRUHgwJC1XEjEHGLtVY79OcWYPXUJfcHxeS8PY\n8DzuyLxQlN9uw6NDo3+4L6llUjXMCZhexJkIB03YUk89S8tdrLkvb8L2FSfoFHtKAQDKarK8VlIq\nroZ0fVsF5F2/ou9zJsn/pw95fxvPCHhykIjQj/ge/57r8lzYA/wm53JdHyufzx50xA1IV8naCmLd\nueR5nhz6YrFIqNEpTwwSkmVZWmeP0vmD+rIwruP0oOfGJKVrcV+Mna8SKGMayiIbb6+DBaedI2vi\nLIykhEZjJbz3gVNmOATahIPneXgmz5W6o/eoBkq7Uqmk1RL9fr/w9s08z1OKhvMYPxQYw4XS4yic\nuYpLAgeDQRpfn/yc646ZtkoqGPh1igM1npHCT09XuQNy9sJZCeYGn3sfl9GhTqdKq2sjPJqi3zyF\nKp1/10aZvsc2u+PiHjgPJBpH12HqB4h8eU5nZnxHWHSGueoAnWvHokwXn2+AaS+gj88YgYrn8f0Z\nGSPvQ9oQmRhnsSLLEHVlnRJTVWyoh91y5xMdkqTCSkJ0xAE0feHpIbf5zt5Jy8JQCmIJUNyeuZ9B\nfBWig3P+Z+yxvXxPigib5n4gjqvrBXMqgk/XG19aTTvoczZDlIqr75xB4rquv6RiB4PBOcaDWjHv\na+y2tFzN5Asg0EkCU56XdlDX4sGur4p1RpB+ATCukrUtJfbohY4hx+1gwzsFhfV8l0d50nJDGAwc\ngpIy4DG/V6vVNBgMCq95j4Yalod2OdvAPaRiLUe8B4ZVWg44QMKRsCNyd9DOyHBPJgvHMbH8PlzX\nt12ODs8/Y4L5tsVUmvNMTh/6TpCMQzQuDv5wJEQlzgShA05h8uxMTO9n2uxGaF0SGQSPNBy4SOVv\nUeUa8Vox4nc63A2Ui4N/9IiIDgDh0Zm329uBOEvAvQFA7jSkJSiBAfHAwJ895viZNwASoiyKILk3\nx0Clk250IOXsm7fN54Pbm1g0uEqnIliIgQnX8HP9uh69u464M4y6sm7g7eOEbQag+J5Q7vwdHAOc\neU7pvL3kPogHMP45fzsTjaDPnlrxrd1h5Pk/6hU/vgmhrxQ8OTnR9vZ2wT5LZ2kuavF8rLmH2zi3\nafV6Xd1uV4PBIPlFr3dy4O9MC3rt98MudDqdtGqIOj8YqzhPOY/+5B7uv7DVkgrZDQelPA/j6syS\nB7xcz9N1q2Qt4ITB9j0TcD7tdjtF6OwqGY2Eb5kund811iMPp3opPHUWxB0dvwEwoMR6vZ4oMe5N\nu9iYDeOGOHCJkZgrlztekCfRo2+6xoTjuVFEEDxGnEI1p1g5hr5zytqNdyw8zPOzzeQePnyoTqeT\nHAHH0g6MPffxqJjP3KA46IvgSzqLWlBu0mZs1OW0phv46EjXJZHWjnSrR/YxdSAVNyh0NjBOYhya\nj188zh1bo9FI+yq4XnhaLTpWxo/reg0Q18Wh8wzM6bgB0//X3rsst5UkWbsLAEmRBAHwJqWUWdWV\n1tWTfv8n6KfoQVn34M+bUuIFd1IkAfwDnC/2t0PMLLNj5xQ0QJjJKInA3nHxcF++3MPDFSedP2SA\nZS/aawrz1O/3SxzbwGiz2bRqqyRt4MdaeK5gpkxPO/ZfP8PsksHFH7ErfrcdjtqLtJPh9ah13q6B\nNwYeNhp9C8NVMyteU+bfOjtpwLMBODqM37umTdIYa2TIR2UpZlY7XDyXd3gPAhD4LH848eIj8bDZ\nDlkQ0mB+fHmlHVL67nckKaXsOfbc7XZbzqVrkliOXhunGWhOoM5ms9Lvbre5kbjeJ3X4iDVljMwX\nJIDzfBySS1JspfNvWCPbSDM/r7WdaHQvMoM3q1CfisEzB3ERTsAAsxHIjUAQ2TAUtzGFZMPJBJ2d\nnZX8l36/Xyoh2vMyg2H2wErKeSwgYRKr8PD4ztPTU6mySAljPkfNEo4L2xOmP4yXOeBGTeaUeaDP\nDw8PBRB5bGYzrGxfXl5KP3w6iWqIZk34bg06WHMSz9wvmBfmAaXHJgNUoqyRAZR4zYLtutVMRu35\nWhnz7yRfzXud52HPmTnCGwGovDZ+5Nx1CFCeNCs++vAa4PNaJm2AlDT33hj0o+A8J8iKn2slxak2\nPn9yclL2AUmAlrsk5Qh+rXx5fu1ho18Mcl+rgHl8fNyioL0W9kLt3Lj58wbodlK8tn6WDem3AL7R\nWYBCQjM4R97vSZPDAYiBMcDJS/KV0TXQdTi4Ds8kzUlHDOlisSg6CSDFu10MkD2BXMDq8Zk6x8S2\nijASjjQ2BEMNMOD72AuD76enpzw8PBRZTtp6AXC22Wwyn89LH2zMnVeIDPH7N2/elL1hvXx0dJTR\naFTGAJAycDR7yPqxzn/E0hpw+N9mtW0b2aP/TK53VueEY08gK9e3cF0SAAAG6+npKdPpNOv1ulQs\nZaPUNSUwZISLzs7OSpYzjAqTzh+U1dHRUTmJwIQiyPZoLXQII5vYpdwpve1iQNQyeXl5KQAFRoLv\nwcrwHkJOvIt5dFIXmw+BhP1J0nqH45ZG1QgUz5xOpzk/P28J2ePjY2azWZ6enjIcDnN+fp71et1K\nnvXcYGS73W7rWB7CbwOCEUC54MXYCyGc5Qx5NvUuG2trg1MbLCsuFL2ZBeTc+TU1yIGVIV7Nv2tF\nmDSxdeYfZez+ITNWenVYhL/zDgMiG56kfW8PFZOdkGgDTR/t/dkTwxDQDLapMkuf2Nf2DP13jwnZ\nr6lz5srsJ+NzSJVx+99mof6o1QCIPtWsgvfOrpmTJEVP2dAAdCkmSbVVnEFARb/fLwwo+x02D6BS\ns77r9bqUnTfbAEuctMOIhDCS9rUFNfBFv6NLkS2D6i9fvpRrRpbLZa6uropM8hnkhPpbNfOHTXO9\nKOTW4aSk7dSwp7vdbgHHrgdk1sT7BjmCnTw5Ocl8Pi+OLxXHT05OMplMcnNz05qzpH3akJAnDBU6\nhvA+TiLfc80YrrBIGt3FvDCPh4eHLSepbjsDJ574ZCsYGNnxeJzNZpPLy8si3NQxAG1x3Hc0GhXg\nYqDB0baHh4c8Pj6Wd/GThQbM2Iv58uVLKXnsDYbi4nsg7ZeXpvy9lQiZ4wcHB+XoHUqOI7oGFe6P\n6WcMCieGzs7OWhRqTf8yBhQlmdgYDJ6JoNTMkNfEXiVzBNC7u7vLr7/+mul0mm53W3wIBcM4UCIG\nWoAK1gsFhDJxnxxSY3xsRjaRQeyu2x9R+vzbhgZAggwhn8yhPXkrINbQ+Sz1SYQ6xGAlyl4x2OTz\ngBTLup9Jf/27mtIF9PtZHrdpaOaFOXD+FM9Ejvm+HRFocVdqNjjmfYy1VubIE+927ke32xydd3jC\nxpN1dI6D2SSzZx6rw2ZmpAA2NnQY7F02+mWnxmDu5OSk6EHmnRwHHLGknXsDSLCjuNlsL5CELbPx\ns2fPHwz+yclJzs/P8+nTp9Yx26Rx2JIU55c5RzfiGCFbHCN+fn4upzp7vV4rfGjGwCyecy+QRd/F\ngzx6DyDvPAP9bfmAYa4TcutIgUMosNMAlZOTk1xdXSVJZrNZqVtkB9IOfpLC0iKP3l/IA7YQW8X8\nAF49X0RLPFevtZ1whWx+aHl7cSic8XhcBskC4SENh8MMh8PWEd7VqrlLBmXJxXs8D8UEkkya0uos\nMKeGxuNxJpNJoQWTtJAifcWzB+myeCjPpIkr1hvcFFfSgAH6b5qTRGDTlXjK9rIAPwgtxeWMuu2h\nooTdN97NZ0H7SQozcnx8nLdv36bb7eb29jY3Nzet9XXIis2MgDKPfKauycL6cImc69DYUHhc9jx2\n2ezt160GkihaU7t16IJmNgQ5drGnOixDcwgCI85nbPBQTO67jSR9wuO0MeY7PplVZ+GbvXN+AuNE\nOdrD5DPIH33BmD08PJS9S9+d7O3QsD3vmvVM2iEpzykOk/NsalYEQGSWqw4duBmk1YCtDg/VRmtX\nDX2RNKG6pM2wOVmefY18T6fT3N3dFbYFAzUYDFqsno3ja/KNgfZckWuC00Qfa5as291eVUKpCYdf\ner1eOQxh9psTm85XxBjzbOtwO5zot6QNPM0O8sz6WgSveT0OO5BmL+28UwWXiwTZU58/f87t7W26\n3W2pfYAZc227UTvE2Ft0sKMF7NE3b95kMBgUAGXAn3wdOv0zhnFngcw6KZJNDyqHQkxSyqZbiK+v\nr3N+ft6iwyeTSSsfBG+Iz2AUvdEx+izq8fFxCTsQwwQUWPGv19v7BObzeau0PIvFcSwotjphlf/D\nIDmkwR/6zhxxN06tBJlPPsdcoezt7dGshO1N0hBmfgIUHh4eSp8uLi7y17/+Nf1+P9PpNLPZLN1u\nt1C3vAcgAohbLBaZz+ctRsreODHT1WpVnlsjeoOUbwWYJG1vvQYMhAbxLpxMZm8cpW5g6rwaDJYr\nnFo50uqN79CQmZmaQUNZ0+ekDRAwBniT3W63dd2D9xNj94kL9oUNM0oXAFMfc6bPprMJlRq48HuP\ngfnzvvfnaGYjn56ecnp6WpISTbVbZ/Fun2pjvgzI6+e7ua9189h22XxhqHNBki04oKYUexjG2vkF\nDpWdnp7m6uqqsBKsPaULADfowqRhnWqQjy6mUQeFPplhYAzIO8zYbDYrdznhdD48POTi4qKAT/ar\nQxHdbrfkvbhMPEwQDig2xHuXk0113pMdSjMr7MWkCakh8wYz1jvuN3N/f3+fp6enDAaDXF9fp9PZ\n5nWxh60XsFcHBwctsJM0ABBnEr3f6XQK6ERecLitr+wcvNZ2FtbxZgd0MLmj0agMCEOOUJHwZPT4\n/Pyc33//PUnyl7/8pQgjSt7xTzMHbAh7qfwffSIhyRUQnaTFIq7X67LR7DX5hMFkMslqtc1AZzNZ\nuSKwPMuCwTw4PJOkZexq0IJyt7CZ+UFIeL49EtOJvOf5+bnUSkHw/vrXv+bx8TH39/f56aefihJa\nLBaFnnW+CRubSwl5tt+TbC88PDo6yu3tbbkIsd/vFwWDwtq1R1m31zxrxs66oBBZC5SUq7rWBjZp\n19XguXg4VtoYdCt1+gZFmzQlyfnsa7kkSTs0MZ/Pi3d5cHDQOiHDM90Ps4T0l/+jnw41GiyjHLlo\njZMh9M2gFgVt1oI5qvd8zSYxDu+Hbreb2WyWwWBQQryLxSL9fr8YIxwI1sWAlHf/Eagw2GI9DF7M\nJDhMtMtWM3cGl7PZrMiFQ8BJw1Cx9uSokMxeh/3MRtghxQ54jxAaShoGi/fBwjHXAN+kAcuup4Ms\nwcqNRqOiE2FPfEKF77BnDIScFIr8O1xq+4EsJU3Yh/6anWD+HRZhHSzzjCFpcnHMIn769CmHh4cZ\njUa5vLwsfSbBl0rrOBrL5bLMk2WA9R0MBuWCWIAn+8x2nLlCJjzu19pOwAkCtlqtChVYK1KEyqEJ\nFIizt1erVUHonHCBirWyQchNpTlWzqQjYBYSUDXvBlUT22SSqVdC4hdCMhwOC1PAM8zusMFchZZn\ngtRr78tGi88yHtOKjq0naWWkW9hqmpaGEAKA5vN568TN8fFxfvzxxyTbGOZvv/1WhPPp6SlXV1dl\n7lgLCgsx90bi3FA9GAwKQMMLYS7qPiavF9naRbNhdm6Bc4HwxGmAUtbfe8EsB+vld7mQFYaMdXdy\nLH0hodEx8qShq53Ma08naY5v813H6tmL7FPT2O43cg9I4nkoXCrAoszYh0lal8CZ2fFeZfxmEpN2\nPlXNsKArzMowXupXAJABSxzzr/UHCYZepzpU5PwiJxE7pOPvfwtyzdpyoZ4Ba7fbLbkmBlroHdab\nBEiMf5KiQ2t2CF1qjxsmPGlYSEINOIVJU5CMPpo5MHimn91uN6PRqOQNPjw8lMv7aNPptLAB6Fdk\nDPkzqERODLjq/WkHgn4jxzWg9sknjDzA2HmQvMtrQRgLFufNmzf59ddf8/LykvPz8/T7/cJU4SCZ\nmWL8rjDr8Azrt1gs8ubNm8I+Yb9xYLBjzJEdhdfaTuA4tzGCtGoKuNfbZjo7KxvlhXCs1+tyKR1J\nPu/fv0+SknvCZUcusgMrYsYBAwLNt9lsyoLybgAQzInZGIQNYZzNZkX4QJyM8+joqJzdrz1eK05A\nEoKIYDAn3vw1GjVt6dAAdKLDIg7dAFIQchtH/r1arXJ/f19O6qzX29ye//iP/8j19XW+fPlSlBdM\nF54mG2g0GuXs7CzHx8cl1MNczmazkjeEkYNFcSjQuSrIyLcQ2sHjAVBZGRlwJmltUN/fYUVDjk7y\ntdFiTu1d83dTxQ578T4rfZqVrZWjARaghH2C0UE2AVo29PboanbPgAJgYuVlT5HfMZeAAffdgAej\nRJ/dH36SH2adYG8Vuv7s7KzsJxLsWSMrWIdoaWZJvL/QSzUL6BDft8CYJE3VUMoBMJ66fAMyzFyy\n/y2PvV4v9/f3+eWXX3J7e5vk6zouHP81m5akZS+QQ/QXIWxkG5aGfpMAagCF/uUE6GazKZdYbjbb\n2inoc4fhsQ3ezzgd3tPoXN5lwG9GPPn6vieHzniX9zfyyNzwfOsX7AN2z3P422+/5fPnz8WJAUSc\nnp629kXNShoE+bb5WrckjY5CHmx32PN/1HZ2K3Gvty2ty7XWGHbH1RgwE85mcAiDCbq+vs7T01MW\ni0VeXl5ydnZWkPZ6vS7I3hQpiogFgNZKUsI4fM4erD176i8YEYI+UWCgd55PbNO0lgEAfQDcoJyd\nL2Mq0nkbPMv0m2lNCzBKmz+vGXcAnecBpeDEsOFwmL///e/5+eefi5fJBqX5JAZCbqrdiL1mHmoP\nOGkbU/q362aAmTS5B2xanyZB0bB2zrFgLK5uiaeE3LmxT6wETT/72TXbQvPvDRhNufNsji9D+fp7\nzIPZSwClT9kAYpAlxgFwZ+/WHiJePPLCPrOSRkH6Ejnvj6R9/xF99r6xgl0ulzk7OyuyDQh7zcu0\no4EMADj4WXuRXgMzJX8UFtpFA5TZaQOU1Dk26BvkdrPZFF3A3HAP2nA4LMma7O/Dw8PixLK2lll0\nGBVfsQvIDwYedp71n06nJXcCGYLNRM8AqqbTabEjgAYzNYzV7DaOJb/DtrA3vObsK8t2p7OtVYVM\nERKCkQNsmY1L2owke5F9jk0F1HBSdL1e5+PHj6VvsOlmZer5d4jGa4F981w6fIxMOILxz8D3zi7+\n464RkBMUEAYbwQHJUonVnv/5+Xnm83kR5sPDw3z8+LHcJ3BxcVEW/e7uLsvlssU6bDabkuhFVna/\n3y9on4kjsxtFCJq+vr7O5eVlxuNxQcmENJ6fn7NYLAoLZAqPvBkLq8M7pp0RRv6OssJztZCYQTGI\nMVXufBo2kGPHfJ9/0z/Ago3F4+NjBoNBQc8kLt/d3eX29rZlBJ0M6vABf1B01L6ZzWYFwXvu2Mhc\n9mZU/i0ocp9KcTjNRr6m8W2QDAIMUpJm7NPptMwH62pDyk+vVR3br8MRKG+MDUqfz/sIZNKEWBzf\nBiQgVwaoVm44DYAnn/7BwCFrHovfjw6pCxvCaKJw/R2eZcXOvJOAiJya9qcfPJM1BmjWeVwAsz8K\nbWH88JgNUh2O8nN33WysYH/pL/k4nHY5ONheBYL8JU1CJ04b84gskHBpRpTvO9Thk1rIFM+wswYL\n3uv1slgscn5+3rIjyC3POzw8zN3dXQaDQZKUPCeO3yaNkTUjUQNZO1wG96xvzQwyN94fSQPuGRtH\nfgmHmblzw04AqqbTaZJtjh85exTQJCxGBOPi4uKrkPNr4X7GzN4ghaHuk3WAdRnj/LN8k2RH4MQo\nCiOXNPUCfNwLAANASJp4I4ILc0DZc46hgrwBLlZ4AAiy8k29omAQWhQ2i4nC5cw5qBMljEANBoNy\nXw+KHNSKQPM+/i9p0LJzD2xoWPQ6b8ZGxkLCGHq95g4SmCGAg5u/v9lsslwuy7Hqi4uLcpppPp+X\nSrpJE/46OTkpNCog0JuW9TJK513O3jc74FCDWR7mraZAd9WIN9f5BEnjsZs9cX4Km5c1wUtjnQeD\nQSaTSYslqVkyyzh5LA6JAUCsaGgYGrNryAo5FuRz4SFyooU9wx5gXIAOG3z+Tt9gUSyzjMWKnn4x\nt4Q+GQP9JAm7VviM3z+9r/z/zCmspT1IanA4NEvzfPq9rC3zbwDH/zssVyfJ7rqx/0gypa6JQ1Do\nQyeNouvt3OCAouc+f/5c1skhQcLGzA3OG4ADPeJwh+cRY0y4x3uE3BJYlcVikYuLiwJeuJuGd7KH\nALGMNWnCLWb/AJ8+Zo48GvAawPLv15ws7jECTDEOmllB9g1sBn3APmIDYKeYm8ViUcZEfx2OYy7Y\nuwbiDpPa+Wftea5DYHX4s247ASdQegio2RAmhUVYLBa5u7trHY+lmbbiRMxf/vKXzGazIrg25mdn\nZ0XhsCBfvnzJ/f19rq+vW/kB/LG3RCG1Xq+X4XDYyv6GmnQoaT6f5+LiIvf39y3602yACwQxNwYY\nzIU3OayOF9YCwb95n71e2BqEq45b0oekEXjmC+YKAXcs+fDwMOPxuLzb9QscxkGh1YwPc9/tNsdS\nHS7DiHiDwxpgqGp6fReNsJ6TW+u59Xw79GJwXDfWHY/VANeeNw1gnzRg3sCFviBTDkEkaa3dw8ND\nYbRMzQJGkpTwDvvWILMGy8gVwAS2EoDCs63QfZzTuSkYBZwNF8xij9XhHBpj8RFYx9XZqzWb4vmo\nPWav8WvsVG2IWHuPhfd5Lr6FxtyzF50/Y10MC83eRQ5xPliTfr+fN2/e5O7uLt3u9jRep9Mpzo/3\nNMm0yOBgMMh4PC65SN4/nrNer1ee63oonU6nJPc7ZI9jQCI0uo5+Pz4+luex3sxF0oTlLeNmdy0n\nyBQ63uCJ7zgM62P27HlaDebpB7reoK/f7xcbhO5lvs2UJ+2aNowvafJjzFbxfdbEibrYUsbBuF9j\nf2g7AydsyvPz88xms21n/h+FQx4DKOzp6amEakCA/D+5JLPZLF++fMnFxUW+++67LJfLkg9CApNp\n1IeHh5yenibJV7FzI0F7M0lKYixH4VxA7OzsrNRaIQnr8fExFxcXmc1mRcFyAyWVVZP2aSEzIRjp\n+hSAE14t1LVSR+klTbKmvdTX8lVq5gR0nKQ1h0nKunCjJgq20+m0CuwBEO1tIKSMkXeDtE3D4o0A\nDm1YvBm/hcbcODZPA1glbQBgBozPGbihpNgbSVNDxrQp84BnV+cTmZ3hGZYbhyCs4E1jm85mz6Cw\nGRN0OM4A64aCQjly4Rmy4P7ZmAP4kLV63JYHvFyHaWg1UDGDC/sKMDF97wYoYxyeMzsXnlOPC8Nj\nx4N9w7o4n8PrtatG6BYHwd55khJi8/wyPwBr1pFTWRwl3mw2JTRuBhsmPWkcWnQn76yNtMOi6Abe\nYzYNRw0QAjB9enoqpyt5hpOuT05OCpCuWbhku6dns1mRZxwtwpc03pc0Cf7IIQ4I3wM4sb8sP+6D\ndTfAjn6iP1gDPzdp8gkBZ3Z+vC/tEPlyVpxXO0/YGu8Jvksf/6ztBJxwkgaQYu9ovW5yJJxklbRR\nHII5m80KNTeZTPL4+JgffvihKE0mwFQYhjPZnhzivaakvdjEsvv9flFYRvYoQICTz9vD/mC8fUTO\ntUxQ+owZxYZx5x3O43CyZdIkRdlj9700SQMueJa98JomtJJgY+E1Esqxt2RmA6FHCeC5G/igMLy+\n9NEljzmeSpjEdCNzhwx8C835A/aW+Il8edz2zB3qcZVNA1XnkNgw2itPGian9ubdHLrAwzF4xcOv\nk7JZF8CuT5+5qqaPA9dKCnYiaZJtzRog34At64zXGBEDhKQNAGn8nvmmD+wDlD/j90++X/+s38v/\nA0CSpqAdY6XvHu9rOUe1Ad5FY10BZi8vL2XfY/yRac+Hx4ze22w2Bdz1er1SqZQwO7rRjpbnxbf3\nmvVjLkmQpaJ4XZsHPYXugxkBMKHjFotF3r17V5zXJCVUUoe3GDtOnNkQ+s0e8lzUDsrBwUHJVcTA\nW4/w3VqneA+gg3kG6QWLxaIFprFdyKLnBl0LQeC+Mv8AE+wnzigy0O/3c3p6mtlsVsZe5yH+Geje\nCThxLJ4wAZckkafAImP0+ZwZFehD0DnCfXd3l+FwmG63W042+MiwjQKby4wFz+d5bCaOvjoHBZqT\nCT87OysABAFAufN8WBAnlNWgiGfWeRQWJH7PRnVRMyvLfr+fpJ1RXytihNsCbzBB8hoesalBknYB\nFPQRlgkQgkA6fOexf/nypYCMugLily9f8unTp3KHBgarXstdN9butTAGgAJjY48EEMZPK/I6ORLW\nIGnnRtQGuDZqBgj8G8XjMtt1SMI5JrWxZB1IhERpYzgMovCskZvValVAO8rZ/UShO/GWd3N6ok64\ndKsBcf2TseHIeJ55Xx0qqMGHGaV6TnkO/XutiBjfOz09LTF/+vCacd5VW61WxUAfHm4Lc3HJH+tL\nf2E4yUfiz3q9LqcpMWrIAU6ic/KSRh8RjkAmYLpYD55F+fokBTh0u93y3KSdRA7YIW9fRaVLAAAg\nAElEQVSQ/LzlcpnRaJTxeFyqqCIjTvB2CI69ioPq0EfNQvAcGiGjGihTm8ThSebF85O0i2qyD52Y\nzZxjTxeLRetZ7DM32wLARLfbzbt370rkgfIPdtyxT+S8jMfjVt4g4O3P5HpnR4nPzs5aniBC5QJH\nSVpn1KG8EKLXBsfmnk6nJanWCgVjTJ4KaDlpZ03jSSJkhBUQZJ9QsbFIGkWTpLVQ/JuNxLMcrzV4\nwsCwqGxIxgFAQ/AQQgTE5/WTtMIsDl/VSNyNTUU2NmACkIbBOjs7a3kKrxno2gMCzMzn89zc3GQy\nmWQwGOTt27ctg87zHh4eSoEk5+2wKf8ZTfivaA63Je1L7vhjEMXcWnGYQUIRO+RphgSP1qybjWzN\nxKFAauCAkfV+sjGn8WzABuDUIIKGl83zUVTsQUAoa8j7DX4I57AHTPX7OC4nBRwOShovk797XIzH\nx5qTJhfEAMXryZ6rGZmkCeUBfNgjNEJTPKvX65UrHTBQvpeL/u66kU9wcHBQQALXSiyXy+JUsF6M\ngzXnfjGAHLoCxvrk5KTlqNTsFH9H58HYmWE22EM3oBORdwMgwCb6czgctsrmv7y8lCTZzWZTLv3j\nvRhskkSZH4fqXGTOsuhkaN7P9+i7c7aQFduHmi1BHs24UweGvz89PWU0GrWAjAEeesOOMk65w0AA\nabNXziVinpOUFAjGTB5M8ucJ3zsBJ46bY8Sh1pgE8kkQCo6o4i0xSCdFMll4ecQ5kzbNjQK3EFkx\nW0GS/5A09xmQ6c1zCDEx4ShS2BZT9PaMTHMlTUVKKqryPhuTpO0Vm9qn7yhwV7O0ENoztsKm1cqQ\nTbxerwtaPjw8zHA4zP39fUuRAIxQIqwV/w8bRe4AoKfe+KwL8dvhcJizs7NMp9NMp9PWJWM2LN9C\nAwywLovFohwnN/NQU6pWXjXbhtz5CK5ZIzMSKGP/vVb2KD/+rzaYKGj3mXchmz6NQHM9B4wV/49M\n1Bf2MR7mjv1cy6wT562MGYt/x1j+SJnbg7ODwd6xPDl2bwXtUBzjqZU788T3PM/M22QyycXFRTl+\naxaH8e9avjudTs7Ozop+4WfNusIckDD/5s2bjEajVj0SA0N0tMEE82ZGPEmxB+iNuoYNewT5BDgg\nY4PBoAAn9hZsFiALMMAxdIe9AQ7IHseikWf0nJ0JH2YwE8begnVk7pK07APzw/o7NFSz3F4HLkxl\nTxwfH+fTp09J2kd50VNm4n1K6e3btxkMBlkulxmPxyWPM2lCV+PxuLV29PXu7q7koBjcM78121u3\nnYETJv3+/r5sRAwRwrbZbMrFb6enp3nz5k0mk0nu7u5yfn5ekB4CzHc5qcAkAkT4N6EgNk2v1yuX\nVxEeccEhTiEYyd7c3JQNdH5+XsJI1DCBWeHZ9ma5KM//h2KDxcE7Sxoa38JnWh2aESBkqtGVZtlU\n9kBgqSzkyddeJnkgLlPN/5kNYnPSJ451Pj4+5vb2tgjy27dvy2VTbM6Tk5OyzlwkhZLp9Xr529/+\nVvqLEdxsNuWc/beQc+LcD+hTQhdJ+yivE1aTJg+oHoeVSb1OBqcoUmQV8OB+8dMXU9ahHFPWNuh4\nW8gOBgejAIPhEJEZNN6LwjJrw15ARjE8VuTuZw2meQZgAaXLe0191+Fdym47ZICD4bmjOaeI9aQP\nPqX12ndZAzNQh4dNHQvH4+vQ0i6bnbj379+Xu7Mw2knDGpKXARtoet9z4bW1E2l2CueP8hDsjeVy\nWULJrl6L48g6I5voeeoy3d3dZbFY5Pn5OcPhsPTJIcPz8/PC/CWN00HIBFk/OTkptsvsGzowaVeD\nTtosEM+mhgngjHlHLvj8a7JQs4PsMdh5bNvj42PG43GRW54L2HQOEbZrsVhkOp2WPKHRaFTqoWDv\nCPlTvoO8xF9//bXcVJyk5F9anv6o7QScIKyr1So3Nzfpdrs5Pz8vCh1kbsqbDcDv7L3Y4wE5M+F1\nvJaS9tfX160kURSnwyYk26LEQbnHx8e5uLgoAIWaKp50noERJ/sbpQ5qB4w4Ucgeq4+lMi7mg7Gh\naAFfvMcGkX8zn9CX9ljd/G824cHBQekPioey3gChmnrlrpz1el1qopydnRUwN5/PS80IQCDgjrAA\nd16QYEWpacZX5wLssmHYam/BFK7zY+rEb8BeHa7EINZ5Nc5dQalDqWOUUU42AE5oNFOALFnRE66p\n84ZgBBwqAlgk7evRWdc6Dp40OWhmkQyqHeJ1bROvOc830LYhpKEQ6Xev1yvhT37PT8uX2Zo6P8X7\n0IUSAZP+nJ/N3GO07HHXa/zaWP6VDSPPvjQD4BMayEeSwhQDHgBvBpgwF/P5PMnXYUpygi4vL1ul\nzm3MeRdyi6dPTuL9/X1eXl6KUeb76H/LIbrLOSDr9Trn5+eZTCY5OzvLbDbLcDgsa8iFgDC/fr7X\nzkCf+at1ugEL+525Muv/mmFnHybJp0+fMp/PMx6Pc3p62tpbdujdJ+wbtogaXbbLyCpy7VweGBvW\nF/v7/PycyWRSdAPOLev1R21ntxI7CzhpCrBxXw4NdIey5OdyucxgMCiIFKV+c3OT6+vrEsNk07AR\nENLJZJKrq6skKcKVpCjjTmdbVpubhLldeLPZJmadn58naWJvCDZ9ZtOS2Y7QJimnf0DfPDdplABC\nTaKRKV7ewf85Ju4cEQtIHf5h0zmmbg8zaViTk5OT/Pjjj3n79m0BWgA2U4q8s/YSki0ABMD5lBDv\nPzzcFgTC4LEZh8NhS6H0er2iGJKUo4UHBwdFwe2ysVY0jyVpjKOTHvl9/T0bYf6Nwsdw8516zS0v\ni8Wi1B4w6wTIR+E5QY93+hZeg8A63o2TgOJhPC5G533quXGYludbQfNdxkr/6VM9B47R1wygmUEc\nEHujzhlJ2vfiuLFXTNvzf95nNRPpUBZ70kDRoSj6+Boo/Vc3OyWcisTweK87/OCj/4wZ1gigcnh4\nWMAEpwrRATwf58S5HehNGMKkSYq9uLhohd4xxBwdRkbQRewj9iFsg/MLyauhpD17AVlz3aikufaj\nBhgwOOjL2sHk/8zA8lzn17mZNUEf9/v9UqV7Op2W+Tw6OipgBZl1/hhrRk0r+oCsYutgdxi3c34I\nY9MX5qcuKgkI/KO2E3CCB9Xr9TIajcqxMdcvcUweBWZPI2kqbcJCHB0d5fPnzzk6Osrl5WURIMeq\nnc3NJK9WqyJ8gJ+Dg6ac8nK5bCVrsRimwDabTQEiSXN8kskHiXNMmveafkSgjYpZTN5pDwpa0zQ6\nY+Vn7SlaaQIMkvYJiZrKx+gz1qurq5Zw1rFDMt95LkJNOI21A4SRaMuJD9aYNfDmY62TFIbgNW9z\nl405NPCiOXSDgVqtVq0Mf5RyHYNOXk/w9O+Yz5omJ7wENetEPj4LeHec36EgK0uHUuhTt9s+HQeA\n4CfA254zMlon5nrMZiMwILA3KEf2t/vn/tKs7DebTTlCyvxYlmsQVQMUgIXBC+/lHQ7LmOVinvmO\nAY0NkB2PXTYcxm63W8LUm82m0Po+8p40Ce+Mg3HDMFhnDofD9Pv9Uu8KUJA0BySo5sq6dzqdXF5e\nZj6fF1Z3vW5KqZOT4svreC4sM/NqJoI9RO4fn0U+ABDURzGw4BkOTfkdzAtHm9nvZoutk1erVetE\nGvPL+F4D26wFNsBgnbHDgNA3l9BAXwEeASs+pZo0trMGFzj3SftaBuaYxGjWxvu8bjsBJyjPzWZb\n6Y/YFpQhVI9DMi58wySRF4KBBzCAtEHhpnvX63VGo9FXSUqcxBkMBsUzXa1Wuby8LKd6iGWywCBv\nb0gEpKZq6R/lglerpgAVVBuK0YKO0sZgma5mk+IFmxUxI4JCJ9kURYPRchjBSpgxUAbazUesMS5O\nDgRU8Lmjo6OSfwKFyXhZb7wXQJ3Xj2fbwJFF7hyXXTcbWPeZubQXjGJjHn0S5bWNS3gGZez3Je3q\nrrXn1ev1Sv0Gx7MpxW6PJmnAtRkTP5P3YGQZ7+3tbZG15OuifnXo0r+v6WszL1bGBtR4wyhe7xe/\nL0nrPcx7XajL4MTPq2n4PwI9zImpfINVAzOU92vNc1yzartozq+pveCkAcGeb7Nm1imsF59D/gwa\n0c8OH74G2M7OzsrhidVqVUo5rNfrcvO5nT3XvUoaxp7cEQNlmEROpKDLeQb949kGA8iwwcp6vS5F\nQQHFZop5LzqZOUiaECHvrfdCDY7m83nRyci8WXk+x5idgM34GBd2ot4z2FucSdgXOxyev8fHxwJs\n0S91+NptZzknLPZwOCxIdL1ujgQ6wZFFgFFhoyTNwBH04XDYin+aXvMCARaMcslwJmzDZ8mkH4/H\nX93vw79Z1E6nk9FoVBK4eL69McANFF/SZj2S5iQP40aY7KXCSDB/VhA29DBTSb4CBt48tXGnL8Ph\nsMSGARJQtKPRqCStcmytNjQ+6cDY2AAcC2eu+Q5KCc+FsZMke3R0VPJWxuNxWc9dt3qz4TGY+uYz\nKHKzG/y/4+32tpmbOgznsJH7gPzzbIP81WpVvLg696WmlpN2PgBrTEPuXA7czgXf5Xm1MXKioOfH\n/ajZBhRiv98vSa3Mr2lzGu/h/YASktNfAzTMtefQHmG9Dih6xoF3CWBxWOw1JsbhTjzvb4EVZN2f\nn5/LHrSjyO9ms1krL4X9yzOQc7632WyK08c8OefOyf0YWwzlYrHIcDjM1dVVFotFbm5u0ul0cnp6\nmru7u8KIo9ORJQNjwCZhIPaGk7DtdL3mCBtoGczbOUTu2MPj8bgAK/aiTx9Np9NSS4p38Szm0vuV\n/sG2UHUZ1sesFnaHP8ik5ZXPG+h77wKccLQs28yRc2g4PYrtYy7+zKHc2cV/LN6bN29Khm/STkQj\nDOCbi5O0QizE0lEc0IYog1pYHGbxM8ni/vnnn8sdMTAjxEY5XeLnI9CEpFg8qsk6y7nf75fjgsRv\nTW/buJpm5N9JO3YNdQk9DeJO0jJ0zBkAEBDhvBPmx4aITTUajVoxcjaTGQ4E7zU6ns8CtuxtORRB\ngSYAqr01GxVAIYDQRnHXDRlzSMBMSR0CsPKjsT/MvvB55sThEcB3kq++hwdIkUPytQCZBjVJE9ox\n64NiJAaNguH5Tua2gYUxg2qu995rXh+KzeOm3DlAjX4hi1D+ptiZR4Mt5sXgy9dWeD7quamBxJ+F\nW9A7jMf5RV5L//Tf2We851sAJ4Qe0L3j8bgwqhg79rqPoaOn7dXjYPIdEklxVJLmxIoveSSPjzWm\n+FeSXFxclBwTnNwkBZiQm2ZjDONqJ9WeP418F4d8krRyMpJ2CfgkX4EfO9s4dIASf+f5+bnYRDOQ\nSVqVs5Ft5BkZ73a7xS5RHZb+sS5mwWwja/adubEdOTra3kLtCwRZH+bODjDpDKwF9rpOB6jbTsAJ\nAmyqExCC4TFlhgCAIFFuNYXr0zYsPr/j0j8W3HQehpOjw9PpNOPxuBxXNuJz38mbAM1zmgTlykZM\nGi/w5OSk1HbBsENDsmgIitkNhM+gxSEmFCDjZ1PDLPm6ANN1r8XYaZwmQkDn83lBwvTFng1eS705\nraSZK5QSf7+8vCxIH7kAePBObqd2PhBskzf4LlsdzjGFn6QFXJB9mj0Pb1pkgVBikuKN4inVe8Js\nQ6ezzaKnUJY/WxtYclFsUJFnswcvL+1TSabtMSpWUJ4fsyrev8yTQYGZFL5XG2z64T7YSEC3I6M1\nyHsN/DI/Bkx/tNZ2evh/K3uvR31U3PNs5oY59X7dZXP/0XVmm+inwz0YUoeO0ck2dj/++GMxlA41\n/PTTTyXxlpLxOC/dbnNBKO8HxJJcb0YLucGIUr12PB6X/CiHaJIGePtE283NTS4uLpK0QauZgtp2\nAdjrOZhMJjk/Py/MkcEFwJ659zvMRNfRhfF4nN9//711whPHF0fJDiI6wpEK6w3mmjk8PT0tegTm\ng/3oongAReacsJmZliStfVO3nYETBmGEy6QATpwYSWIqyZZ1YhAK5B//+MdXl/o9Pj7mw4cPef/+\nfasPGEMUoMEMGyVJOZ3iWD7Ik8v9MNy+J8JGGg80aW7KTFIQLuOndbvdcsmUq+kh+PSFXA6O1bHJ\nHPtkU5iWs6JOvmZqkq3S//vf/15OPzFvGBCE0LVZGCPALWkE0HONR09hH7MhSTuUR1iKTeZ7imC1\nmOdvqaGYrCBrqtifsTJN2qEQvE3WGS/NNDdejJkp3luDHcCwlaa9Hj7HOry8vLSO8dJ3/0Qhwzii\nCD02xod8Grj57/5JBdEaCKAjrDw99zyz9kx5BrUf2FMwsZbvOizk/eJ1qoEx64W8m9mxh8q7DHTM\nTmIYd80KAkrJA3OIgpoX9JMxHhxsa5RQRgH9hRO5Xm9DzhRgZE8TipnNZi3g6DvXHMKGOTs7Oyt6\nGO8eveokcbOHw+GwMCE0h1iQF3IDGevBwUE5lcK+TlJkyswZdgU54d0AMj6TNBcs1o5kt9tthcuS\ntPQenzs5OSmXKGKD+v1+kSPWxc4ln7P+sGNbyzeRAW55RmZtp6w77GTyrDoZ/7W2E3BitAQaxrA/\nPDxkPp+X41oGDPP5PI+Pj3n79m0ZGEg62RrmH374IYvFooCBwWCQTqfJA0EBEA7qdrvluPB6vU2W\nXa/Xubu7y9nZWU5PT3N7e9tCkWwO+nV6eloWfzabtSrgEgayUibL2wwLWel4rTYgKEkWlfnjWFjS\nJDBipMjLQDBcPhhWwsJUhwoMvi4vL4uXwp0aCJtPQpGgyhzB1lCQablctvJKSF4jNmwDCUKvlbir\n59JflIiPa++qOW6Ol+PTVIAJnzCycTQgMUPAnJi9SBrji+K3geP3BkJJkx+FrDhJLkmLGbM3Zwqb\nZ7vZi/b72ItmA01z41wYxHk+/e71et1yHPwMK/LaY3YYhd/55EfSJFfWSe4GOjQDTFP3ngvCReQP\nvRYGslfMO9z/Ogl+V409TCVvDh2sVquyJ22k0S8YW4f6ABaU7f+v//qv9Hq9vH//Pr1erzDLPv4O\nUEu28sVRVY7K9nrbAmvD4fArJgJ2mTmFSZ5Op0madWXdyXHju4AR1pe9c3Z2Vu5xe3x8LGwNehEA\nbCeAED9A2KEfxsb+pK/0n9AaMu1wC2P7+eef0+l0ynsHg0GxQWZbfDQc4GcdZGBkub+/v8/Z2Vlx\nsK2DDfJ8mitJOZHJ8znl+WdH5Hd2KzEThGGjABf0fdJ4fklasUcm2YmuKIC//e1vpZLs77//XhgP\n19ZImrAP7wdVQglOJpOStFQfhURw8BDxEBA6jFKS4lkAUAA1pjVrYIDQ2ICgtGAPMEpJY4AYj4ur\n2Ztljgxc2CQYPDb0mzdvcnV1lfPz8yJUT09PmU6nBX2jbOy9stEYvw0fY+X/Dw621XWn02nr4igQ\nPIALQ8lmfHp6+up69Tr5cVeNeSfsQWlrU6woBDMmNdPlcB7KfLFYZLPZFG8PltGJmskf5y7QJydo\nWmFgWFy7woCmNsgoYmSBMZldYE/5HT6uD9BwX2t2ws/lXfz0HjYLQeO7BoJJWvkJyCw6Ablz43Nu\nrwG2+v/sELwmy2ZpkubUi9fyNVCzi4ZM+oQJMu4+moWlKBe/96kPchoosOacBDN2yJBDEg4bdLvd\nwmKQW9fpdArbi/OHc4t8oEMoJIksole95hhS5Isxc5CCPlAtFtZ7s9km8dvZJMfG+XXMpfWfnRUa\njik2yGtze3ubxWJRWJ7T09McHBwU/cqdSMy/dRIy6WRkQCE2zPkqjN25OmaMWGv2LPuL39e5LK+1\nnR1vYNCc8mAxT09PW7dZMmlJWrfr0jBKeIDL5bIYBMI2KD8WwwlWKF0r8Tdv3pRLoJjg1WpVEL2Z\nBaNYgBV1UQ4PDwvFRr//iMLFM4a6dOU9NrfpUnsFVmyAILM7q9WqVXYeJQmar9E3LMh3332X0WhU\ngM90Oi2nZJKtgrcX7zFCx9M/0/HUlXDVUmKksAC+0RiF7qRO5pHnM5+7bsiaDSfr7Lo9fK6m+R32\nqY0860fhMIy7jWzNNBkQ06c6edugo+4nzYra/alDSIyJfwPeUbaUG2eN6xAX7+D7Bi6uaUJugR0U\nU8n2+gz2aDaA6A47DXWrGRqzWu67f+K9Mp9ea/4YjLJe3s8e2y6b8yVms1lWq+3Fosxdt9ttXfDG\n/sUDR48DHLx/X15eyr09m832BBVJnITdAAacgHT46Pl5W6jt5uamgI2kCaPaLsDkuAQFoIFnJe3a\nM96PrI3B8dNTc5ke80G4BFnBJgHOYJWYW8JOyL0rPHe73VKDq9vttu6Xo+G83N/fJ9kCr6urq6Kj\n+/1+2TOuP4N8Ol0A+waAcp6cw2r0FZsDeATIuTI1wM9lOlxA77W2E3AC+Dg8PCxHiaGW8NrJ41iv\nt/FCMsMRLhaNRcSTpJAN5YsREt+DwOZJmnPuKABO3rx7964V/+T39MPC+fLyUrLBWVhOSJCTwsaz\np5Y08c2aumRzgzCNNvmML9FC2aGA7R2b7cFDmE6nRch8OiPZbszT09NcX18XtI1SIDGN00sodYMQ\n+uNcCCdS4snwXl8Uxtx6w9BH1itpjlrbc67DDLtoVmTOF3C+hQ2ywZyNEXNqehlGDuAOa3VyctIC\nCkk7J8JABGNtTxYlPBqNMpvNinzacLsvGCpCfVaivLs23Ky7nQGeC3BlXKbg8a6TNqBAwdpwm4F0\niInwCuMh7Ov+MBeMz3H518Ju/DTA8HgNQgwybYj8O3/PToWdn102mIJut1sMrQtKIluu8oqeRW9Z\nPpOmiCT3p71586YAHwzxwcFBbm5uiuPK2tr7h/0jN5DwMmEHvk+1V9YZHYKuAiyQs8j77ehhqAEz\nvjMIefa6scbOQ0Q3ADRcfI1cF/IpkW3kkXoutVF/enrK3d1dut3tCbR3797l+fk58/m8HB5g39dO\nMe92agDrSmidEgSU9OckEPaSvjNfgEGckJOTk6KvsJlOaH6t7azOCZML9cZEoLgQMiaVBfHGTtpX\nT+NZDYfDVmweqmu5XObs7Czv3r3LfD4vTAiKh4mlL1CEm80mt7e3mc/n+f7770tsdDweF8ADs0Ll\nu9VqVSoeAlBYYECH47NsEDYB3wEEobQstD51YaXMhqUZRAFOjG4BQqzD8fFx3r9/3zp5tF6vCzCz\nd4wn7FAW68Ia1YXaSGp23PXu7i7L5TL39/eF8YI94r4MU7vr9bqEAgE/NdW5iwZbBMuRpKXMknYd\nDRtSGziavWg2N4ZqvV4XeXI5d472JQ1ITZq7adg/yBZrOh6Pyxoa7AAWHfo0M9Dtdlsgy8weDS+K\nz6IY+cm7MHQ0lKi9M8+NqWaHKGFaANBeH3vdGFEfdTaAM71tI2yGw142fbYz4jli3uh/7bHyOdqf\nnWb4Vzb0CuOHZWBvr9fbPD30X9IGacwfYQzGvtlsT4CgS5Ptnri4uChl7ZOtDl8ul+XaEDPi1kNJ\nAzL7/X7+7d/+LUdHR/nll19aFaXn83lxdjH42CLnObKm6BkYAJhxHGISSPmugb3HnzRhS+fQWK7Z\nE3VtE8CRGRl+9/PPP5fcSWp0Mac1W8uJPOfFuW/oGv+byIZPqCKzXNaKHDA3R0dHmUwmhVAgvAR4\nNYPzWtv53TpJAzAwvMk2hENGcJ3tmzRHHK3goP2Ojo4yGo1asa9ff/01z8/POT8/z/Hxcd69e5f7\n+/vWZU6wE/Ymid2t19sblP/7v/876/U6//7v/96qLeIy2NyiybhMVTMWUD4hGJA1G6Tb7ZakYFfk\nIyZqpgCjD6gDgNCsZBEue8EWzMPDw1xeXubDhw+ty99IjCUkxvwAMhiDDTNKiA3OXDFOxgEljPH1\n0eqnp6eMx+Ny/xDvOzk5yWg0SpIWw7XrVlPwKBEbHMBp0lDPNuT+vsMyAAZ74tx9Azvn8AnPNaC0\nMUcOVqvt3VHj8bjE7k1Rw2aaAncYyt4+wMTG3UDHgCppco/s1RkcOB5vb9RHVpFF5M5MlNk8vs/p\nDowLfXBoir7WjIXBsdcIT5zfYVgMZvAw+T3yzv5xmNlMlIHPrprXHXBiIJikhFfq8RPCQH48fozn\n6elp5vN5AffT6bSE1mFAyO04OjrK7e1trq6uCoNjxmS5XObx8TE//fRTye/gRBA5RT4skDS62Sww\nHr9P6cCe83eSVNGTPAfnEjtl5xE7Q+4chp1TUMg/z/HJNqqi26j71KLBl0O1Blnsm263W5z92rFA\n/ngm/aI/dSLrarUq4PDk5CQnJyd5+/ZtyXt5eXnJu3fvis53GsUftZ2AE5BajebcMFj21j15TDYL\nmjR3ukAnUhr/+vo6s9ks0+m0CD6K03TzbDbLaDQqz4AJOTo6yvX1dY6PjzMej/Pysr38yuf4bZh5\nJgbItPrLy0vrfpMkJXHK4SEWmL7gpaKoURCcQGKxXQ+AMYL0if3xXgML+nl0dJSLi4t0Op3iUbA5\n8TApwYzw41WTQ0DfADHMyWq1at1jwsZwAi+XeZkd6vV6mUwmJeRgj4E+7Vp50wwA7H3UoAWAYhYF\nIFJ/1h55kpZ8PTw8FOXtuUZWFotFicED3pAfU72Pj4+lEjIhSYAFMW76YWXm/rOPzNr4plbWDuNk\nJsXxfa8lex85RGc41EQ/7N3jjda5Oy8vLxkMBgVA0U/mhWd5/g1yDJbYdw77OBxjZqXum/OmzKok\nbQaNPrs/u2ibTVOdmfkw8EvSMjoAZYwuupKQu4GBQ3sYwfl8nl9++aXldBGe4B1c8GdWGtaZI/c/\n//xzer1ezs/PW7VPyLuyDYJZRk+ZuQC4cFIJmYYp+vLlS7nFl+fU689ewy6ROEufHBZN2se3yWc0\ns8F8/vbbb5nNZkUPECoCCJCrSWQC547nEqojnMX+5fsOowH+WU/6ip62PcFusK99ei35up5T3XYC\nTqDqoeXxlOv4K4thpYbnDrVFAi3AgEUDZYJQR6NRzs/Pi0HnOCyeJyEFjudi1EiSfa8AACAASURB\nVDHCnKO/vr4ux2lZNIBM0tBgIE5QMoiesSUpRoES2syDj6oRWnmtzgMLPZ/Py2YhMzxJy0ggHIvF\n4quYpY3BcDjMxcVFnp+fc3d3Vyg6AACK5fn5uVScRUEAMnq9Xuv+IjxUxue4a5ISx3S4wmCU9bTB\nR1mgEM3Q7LLVRq/Oi0iaUAVjxMB7szuUSaufiwH48uVLOZaNPNb5ESgW1hKamoZB4H0oe6+J85gY\nh40Q8sizeYZzXKzgWNt6Hth7AHhCePTb4NR5AM4jqBvvYe5qw8gYUZzOQ2OsdijsMAGWeK4VukNA\nrLG9U5prsfjk2bdSw4f5Zw/CZDIvjJN9jyyQP8J8wUJzZUCSMnfkhKD7zs7O8ssvv5TwCyG6+Xye\n4XCYXq9XShCQIE4jwRZWdTab5ezsrADDpMlhYg0JL9nBShqn4fDwMPP5vMWmsD/QQThLXn+zpDBI\nZsmT9u3kyJOPGicNs22W5enpKWdnZ+Xfw+GwsHE4tOxZ1sqX35IzQ8KtIwWbzaY4F94HXnMDMOtg\ngKYLxmGP0GN/BkySHYETFs+5A0mjuFhkKyGEg88lW6GeTqflCBkxZqO82WyWT58+5f/8n/+T//zP\n/8xgMEiSkg9CbQMWltMp0It4p5PJpCw8TASTjWBMp9NCuVGrxUfKfLKChSPEg2GHhWGRYTEQ6IeH\nh9bpn6enp5JgnLTvbUnaxdAAATaEzHfSCNSvv/5avO46zwBFwXq4P7PZrBgLvGLWimdYaQFubOz4\nPJsAT9OeAs9DhpyAtutm78fy62ampO6z859gLZApswBWhm/evMnnz58zHA5byXvkohggeV4NCGBH\nYK1sfGuPB8DPPgB80D9T9zBEZh2QsxrkGKQl7Vwd53y4/6aok6bsNrLGu0xV86euX0FfcDDMCnmO\n6IvL3vPd5Ouj0PZ2a2+a+bIxNMjmd/9Mkf//3egreRW14U22sn93d9eqb9LpdHJ3d9cKpbhx9BZn\nEq/83/7t39Lr9fLbb7+1gB0s7ZcvX/L7778XJxOGhdMp19fXSVJYE8CzD19QhI2TjMlWtn17uoEF\nzAL5LbAesNtcxcI1HEkK++95JFyEPq1BOo4tgIk9hq5w+MdMUK/Xy3Q6LeUwcNwdmfARbPQLDbBj\n9tDF61wegs8zJphMA6mkyQO1LcDu2TF4re0EnKAg8Q4ZGIaTDiM8PpWB8OC9Y3CdK8LGMJvAGfea\nOgedkqOC1+eMafcNj8FKmLL3bA4MAhSfE7WShskgPou3S3P45/HxsSBdh1VYWAwA36efbBrQLz/N\nrPAulDaeMmvCpgKkEM5hrDBfjIHicgYkfgdUqzeikycxnklz4gPa0bkWPNPPr3+/q4airL0uy7Vz\nJJg/fm9Dz3zAeNAMLJyMZ2aBuXXuBobVzbWGkGmHjQA5vIe+Wrm436zVH8mYDTTNjAb/9nN4lgEp\nSX027H424+ffda6OmTr2OR4nc+4QE2EAJ63TT+bN4JG+oEu87vzdfTYw5xlej12HdZhj5/kxX2Y4\nWS/rNeaNeTg7O8tgMGhd4wHgob158ya///57qXhKCIIkWfY8a4jsM5fUHDFgZ47RmQ6zoO8BMk9P\nTyWPizUYDAYF2Jgt9EEKZIm9gt5lDgEe/BtnDp3qvetogNlAy5vvzQH4mZlyWQCHgp1AzN6DyQE8\nmJUkB8YOCn1l7XBasZNms2z7cGjZnwDJuu0sIZYBseBJWh4iAm4lzWKzkCS1LZfLVu0EX5+OYA2H\nwxJrRtFgqK1kOYLMYtugcLSZvtXJdCyUT98gvFRyRUAAGNDb9rq8oGZnmDMfPXbSI2NwXgm/h5JN\n2hUtrdwpuFavFaj86OioVcb+5aW558LrlzT3HBl8mvaHSQHIOUGLGCjKgSQvh3KsAJnbb4E5Sdpl\n59ncZgf8b7NC/p4NMvuD79vTwhvlmB8nmnyCyh4QILQGzEkb8PlEGSEay2gNqF8LW7E3bHQNGmx0\nzaoYrKL42fc8g1AhPz2HNkTur3Ma6j+vGTAD/DqB0CDIFD5j593+Wcvua8+0DJutqEHlv7rBYKFv\n2cMOH6LbACPPz8+tmlXodp9qZF0Ya6+3rVPy6dOnTCaTUjMK7x+QPhqNyj5I2ndKwerCohHyZD19\nGMOna2CLkQHrddbg4GBb1Ozq6qrFHJjdQkbRs4CRJCVVgfnjj8NLDqHQN4dJkLenp6dysMJsnp1s\n9q33Ms7u8fFxsZu9Xq8w+wAa9i9JrXwfe4uuwY4C6gGPdXjSziPMkZm3r2Tu/xPJ/X/RmIDlcpl+\nv9/K+kaIEWRiYb5nxiyKQxCcrWazQ2Nx8Z+LABG/5D2155I0RpiFMRUHyHJcznF8H6mzx4miWa1W\nGQwGhdZ04R17TbyTvmBQDKLot5WhPTOe5TCJQwUYeU4d4fGhaBxjxih1Op1y/wXvNYB0QhS/e3h4\nyGKxKJsHBgYjxHFxnkdCMnRtnW+Dcf4WqO+kWQN757UhB2i+BkoMRGqalFNgBhmwgev1ulV+HaoZ\nGa1Bda0AUUT8zrKbtK9op5ltqWUNA2C2o2YV+J3XzvPEv82esHf4npNpeY/77eewj+p18hg9PkA9\n78MI1ODRTKFPfBhcJE11VN7Dd2vWlHcz1po520VDhg4PD3N+fl6OndvIek7JY0AOanZzvd4eQSWU\nzj4xE8GJD+Ydufzw4UOSdrI04IV5Y3+5sjiMOv3w7cIYSzONDvWgY8bjcVnPxWJR2GKMO/3CFsDu\neU+ORqNi7wyazUIbUPNMg2vmk8hC0gAAHMNOp1McN++bJAUwnpyclDGgS11LBTCHvUUHOyGWvUBY\nzqFkAx3WnLnyd19rOwEnRmyfP38uA2JSXJqcxUgaJoEkK9PAj4+Pub+/z93dXf7nf/6nRUGb6mOR\n6gRNK1Umn36xMIQsMC6msqG0UH7kU5jmRPgxyPaI+DtGwIiSRXYSMMJudsc0HQjdIMfeFwrRyJY8\nAvrg3x0fHxcAmKS1Pg7T+eg34JECPKyvjbWBEkKMR0z/GDfJZKwHsuC8hG+hISvINKcEnMdRb0qU\nkQ21P2MK2Zudz5lC5/c0e/O1ATbI43nIDN6P2UHWnLyOmhkwnc+znNthJsgGwMAaAIz3y3fZW2Zb\nmFOHavkdzyX3hjE5Zm6QTD/tHGAU6JNZQAMgGxjez3gd1/f46U8N8vic5aAGW//qhuwlKXl7GPfD\nw8Ny2zqshfPLjo+Pi3OIbjg6OipHgdEBTjDFsfEJM9bGsgTbwncAHcvlsoB5O4027qwh+nS9XhdH\nmM+ancap4uQiSbe1zLHPqCHV7XZLDiIGnn4Q5vD9WDBUdnRfc5xJGyCEUx+N5hQR8mXG1s49dhEw\nSZkH9CkX/LH/AVnYtOFw2JoH5hUiAAcTmeCzTrh/re3sVuIkBY3++uuvefv2bQuRJs1RVz6XbA3w\nzc1NASgIyu3tbWazWWsToyAw7jAcfMY1P8wu1Emjjlvyf0m7ZPd6vS65MCwg5+2TJiHURsJ9eO2E\nQdJmXQ4ODnJ2dlYUIEdrUcAYBdPTgBL+JM0dGY6R867BYFAMPXPBM3zMzMaI76L0B4NBAXLMOxsD\noOON5DDeYrEo68/vicnCFJCBT3P9lF03xkk7ODgo7B8G3UesARL2tg2yzD7Q6vCBQTC/N4PgdTZd\n+xowtvJOvr7ML2m8OP+ecdMf11PAcJthcz/piz1MKztk38/i72aXaAZtBu7sP7xkgyje4X1P/7g1\nm/U0kKidKOdg4EB5jeo9mDSshMMNfv8/8zD/FQ3n4ODgoLDdm82mhA87nU7Oz89bYAFHp9PpFA98\ntVqVat528Lx/qTyaNGuIHfCRdkLjABzXg8LrX62aqztsGHu9XmHsefZgMCjHcXGIcIAIqWBQzXDX\njoENOwmqgAcDm6R9bJxnWNaYe/YGMtLpdPLhw4dSHHS5XJY8HmSFAwqj0aicXEUXw5ZQ9DJJiSIc\nHR2V5zhXZLPZtHSXw3JmSLDjHOZwHpz3q+3ga21nOScvLy8l+zlJxuNxRqNRUSaLxSLj8fgr42eg\nkWwVKwlNFlyEm9LIbCAEwMmuCJ6peNA/DAt9cJKPY3mbzaZFa1HREM8hSXkmmwZDW7MVTpxz3slw\nOEy32y2Cg8K2N+6Yueun1BsTQ290TF+vrq6SpChYNsXh4WEmk0lZQ/6fRKk3b96U43qOIaN4AGje\nyDSU3GuGOUlr7VH4GNM/ovJ31Uzzkk/g/AvnDzFe+o7HxJpi1A2Ka+NrA8nvMbQGDcylEweRXX/W\n1HLSPk3jMJQNrcfN352QSv/5jD04Pt/pdEqBK37PPgbM0l8Uqve9wbnZOPa5w3/Ik0Mu1McwhY7c\nQ8PX4TbWyawp4Z26VoYdBIdCoMENRgziasC6i8baPT09Fb1G4cSLi4ui28ziWU7MxvlOGXSbHVDq\ncfhwgkEPup938Xz0KBffUXTNBtDOnNkv1o/3WVeaLYZlTJpwEP2z04DMOPdmtVoVloE5RcbsEDAu\nyxiOqI8Bv7y85Pz8vNQyQhe4+dAFz16tVplOp8WZvru7K6zRcDgsZS04rm1WxkeDCTeSc4IcW18B\nYJO0dJLX44/aTsAJx9Gge05OTjKdTjOZTPL8vL1g7suXLyU0Y3TsBpK7vb1tAQrAg9kJKDDTw8lW\nUbtGRK34fILFl0Xx+6RRzgizvUBaTdXzjF6v16Ie6SPAw/+G6kT5+bkWCAw9v6cvbMyTk5NcXFzk\n06dPrRozX758yf39fYvGxkCgRKEh/S5/niNsoPlut5u3b98W+pF5hklwkiuGhDUDxDh8ZvapNqbf\nAjih/ygsFBj0qgFH0sgD6+gxYGQBZK7IiTGzwfNzUHR8x4rB1LhDQABHg2OaZRuQxRq4DLWBDcCY\n33s/0GeHUBhPDdDpk0MLgC2zIwYOyI4ZIBtU1goFy1iQZYM2DI+TC5FLwgKcrMMwAZjsecIgsNeQ\nAYdQzXDV87nL5vwO5KTT6ZTilDhRPkHFOlpeAHusB/Wf0C+Pj4+ZTqetMvgOsxB68y3v1puACRtj\n5r4Ob6Dn0WOwCbWcueFMU6jQjBwAC9lF9jlhyf/zf87hsDwDWJgzfkfVXAMZ5ufx8bFUPsZZ9x1I\nw+GwOMXUBasdysFg0Dr5R2gMJxWwZ/sKI2OWxfoY0I8tYS+9xhLXbSfgBOFhstjk0+m0RemjQJMG\nZTIB9eDW66bcsCvQvnnzJu/fvy+VR/0s3k8SJrRh3RAE0CNelz2zOnwzn89bXpE9fzYZYSjeDXXK\ngidNTgCl7Dudbc7J4eFhPn78WASQd5v65vuuoGoQMRgMSr9RfvP5vFRThN2B1rZiYZ34DgLJuFer\nVdm4HIeG+bm9vW3FmJkPBBow4pwDxk1irpXPrhW3G/Rm0jYwyJqBCc0eZm2M+Ls3P7LvBDzmnO/A\nKFhRYxzNeNhDA5g7pOKcDjyg2nDTLwCMmRrHvW2MDbT4ye+RMd7B/nKOCyymvXIciLu7u3z48KEV\n+ttsNqXgFHJGHspyuSwKmdMlljH0jC+NYz9tNptMp9MkTeEvvEU8f8snesO5KayF6XEML47IrhNi\nmX/6iaOSpDhXLnOetAvLGRADRizrOKo1s9HrbU9Jmv0yo4KMozu73W4xvkla8unQGWwuurHf75dS\nB9gRnLzBYFBSCBgHxhog471pBytpnIx+v9/af3WBM5pzdmCCkGvfrMweuby8zP/+7/8WRodIQa/X\nKzklPAdQslqtWiUqut1uxuNxYU8cwq+jDOxz9AlADOYsSZlfwm1mUrHVq9WqdZKpbju7lZhTB6Ax\nBuBEqjqkwyQmTc4DwubENT5vhsG0k424gcN6vS5389CHpNl8LAxCYDaHeCSbBQYHhZWkJEg+PDxk\nNpu1jnuS68HnWMzaG6QPVEa0wgclJ41woFjtQZIHwVFssxd4JDxzvV7nu+++K7cGI6BO2GVzLpfL\nAmBQYNRGQeE7nGBPHmPrNTVdyvtIXrNnzTiceLirxlrZ+0GR8DszBQYezqEw+HXIBkXHXjFl6zwW\n/pC8lrSP8CdNMSfTywZIhDRN69a1UljjpM0KIpckSdI/My98lvlgTgxOeJaPHpKXgqzwDE51AWLN\nuPEOAAh7HObUoB4ZRTegdA3eAEckzDNX7pdlnXGwLg4TeU39e/d/12Ed+oUcms3wsWLGyHolaSVQ\n+u8OY/Ms7pqB4WIu2Qsu2AlgA6zA6mK8zVpRD2S5XBYHkXcQgmXNALXIkp0BqodTMXw6nRYH0bko\n6/W6nCRlXQ8PD0v+Gf1NUhxPnEY7D4TB6PPnz5/z448/lvfQ5/Pz81Y4HZYFUI0NY2/BXPd6vbJf\nkNebm5skTZ0xWG+zYOgRKtQmyWQyKfk+7K1Op1NO0OKwAozqpN+67Yw5scLivhU2qBcYL4QFc0JO\nTcXWIRdimy6PjsGz0fYEdTqdElNN0gIlzjWp7yZA8fF+cg36/X5B8aB01zhhfNBp3LvgvhntJk21\nQhrje3x8LDcwY/AYL2MzQOAkDV5esjUWVKxlUyDgMCnMNYARJYA3vF5vj7US+3XxovF4nOvr6zL/\n9TFoh5KGw2G53t5AldM/yRaYUGDvWwAnSdtIO7Rg4GHvGAWfpDXW2kM3I8H3AA4opZp1oD+mjU2D\nW76ReYNuvCYzmA6/8NN0Nv2Greh2uwWgAjwZj49U+h29Xq8Y+k6nU+6ccnVk56Qw32dnZ7m7u0uS\nVn0Le7x2KDgOyvcZP8bIFVEd6nJdGeaU7xh08EzXhEhSEiMdRuLd9op5758p8X9FGw6Hmc1mJUy5\n2WxKkqvZMhto1gfd69Cs5dyfJYeCtaQmCrqcvVXX5EC/wDyjV/l/dDcgBEYXgE4fkNXlcllkpd/v\nl/L5sDfkkgyHw1aelKteU0UWUNXr9UrBzrdv35YwIDbC+sEMFHqXMAxgZzqdlitZzs7OSv0Z9Kjl\nE3uArvHlqpxuury8LDbr4OAg9/f3JVTnveB57/W2dwS9efOmBUjJZ+HvvHcwGLwKcl9rOwEnnz9/\nTr/fL2iPP6BaAwyDlKShrI12ASgsJhsCOtDPYlFhSEzvooiTtJQSRWhcCdbxThe/SppLr1DO5+fn\npdwyZ+5ns1kBEaenp2Ujfvz4sVCmLCZAwgmuxLjn83kmk0mZIwStjgEiEMfHxxmNRuW4GPPF3T3c\nO3R2dlYE8Keffiq3FFMcDU8Vj9pJbvydPB+El9COAUntTQN+mCeML5s3acJIq9WqJHMxzl032Cd7\nGVbYSfs4oA1RDVpQlvbqa1Dz9PRUkvKShir2RY3OR0raV7S79oYZMbMF9ioBI6w962+Wx8wO4MPH\n3h2GYXzsQQx90lT9pLAiYT7mzewac8++ZmwYiX6/X/aPy3ATggWgmBkaDodFhwBuksZhcSVNAwh+\n8hzXj2Bf2UGzoq91nR2UXTbWh3Lx3PtVh9/xnM0+ITsvLy9FVuv8FQ4KPD1t70FjvgAcAG+cV3IW\n0Q/sDYq2wWZ0Op3i/QP2AA3kglCUkLmfzWaFJfnhhx+KnGIrGM98Ps90Ok2/3y/63g7acrlslX1w\nQUTfccZ+MTto4Pb4+Jibm5tiG3HYnp6eyjFiElw7nW0+0+XlZcnhZG7Ze+hnbBB26NOnTzk8PMz3\n33+fu7u7HB8fF0cVVopnUUmX577G0HNaDeaSz7FnHeJ6re2MORmPx0lSQMR4PC5F1rxRQXiOjZvG\nht5DWSXNLb945kwu8WQMt5Pb8ITYXH6uQydsQsCL2RnXRGHTQf8dHx/n48ePxXNC0blEMpsd4UZA\nEQjmzoyFQRKgzciYhtBQcwCUfH19XWKNeCv2EjFyHz9+zPn5eZImj4XNxm3Px8fHuby8LEqm3+/n\nl19+KYoVNgvwiFKj0qGPBvJ+EDveDO9PmvhunQS3y4YiQ/EmTQjSYQoa4AEZ9+ZmQ/Nv55JguAlz\nEB6ELQAI1AnEVob2ZpN2QTbei8dXn1hg/9gr9NUIeMfsE+hf9iYyYYbH7JCBFP0E0Fg+aFDNPl2W\nNLebG5TwDkAJ7Bs5KXyGXJSaZsewEqZFfxjAoFdQ6hh0M0WMDwfLYUz6jmLfNSuI8cTYj0ajYswZ\nJ/92bRIcDfQD7LLHjXMEeFssFnn//n055cKNu93uti4WenY+n7cYKBwjJ2EDihxKplihw5jonV6v\nl6urq6KDAVKcvgLIEBq8ubnJxcVFK+zOn9PT0wIeAPuAIhwIZMrH570/Op1OPn/+nPF4XJ738PCQ\n4XCY4XCYzWaTjx8/5t27d+U4NKCF/YYz++HDh9zf37dOz7BPqeHS7/cLwHt5eSml5X1IBObMR7sn\nk0k6nW2CdK/Xy6dPn1q5nIzdJ19J6fijthNwMhgMSt7F09NTbm5uCvrlj+lr0DHAAAEETePZIHAk\ncHKSxLUxKCDExPEs2BEjffrB7/HwQLPkzjjc4mS/zWaT+/v7Et4ALSYp5+kxNMvlMm/fvs3nz5/L\nAkKJs4kAHpQPpnQx2esYqTpxkr4lWyF7//59AWPX19c5PT0tawCFCWLebDZ5+/ZtZrNZJpNJTk9P\nyy3K1DsYDocFyXNjKP9OmsQwMvHxWBw2QkE5qZlj4N1ut8RPURjOjUEJ7pr6TtoFwjCSDnuhMPlc\nHXKjAaIdiknSAiYAcudEGZSaIsZYOmQEPVwrGjMUzDnvR4adz4VhN8vJZ5zUx0kznu2wBrLGH/pn\n8PRa+Mvz1u1uk60vLi6KHDnEQj4CMkSuCUaNPlIKoAa9zAWGxSd96I9ZKEIAyRbkkZPlOeCEBXOF\nIXe4Gcp8l+3Tp0+FPUYfAdDQw4BadJ3HgV4y0HOeHpemrtfrsn7owX6/n/l8Xhi4pDkpCWvtyuDo\nAoA/evng4KB1uzuAK0lhO9mz2AUDVBg/O8Xv378v8orMJimMG+9dLpelRIMdu6TJ2XM+DXOUJD/+\n+GMrD/Ho6KgcTe52u7m+vi6y9+nTp7JGT09PJRyXbCMWRAfMmFIlFnZytVqVUNN0Om2dwOL3OBn3\n9/fFeXz//n0JeY1Go9ze3rZyFZ0bhP3+M4dyJ+Dku+++K7TYr7/+WjqL0kgaj9LCTAO4cConScnb\nICSBkpvP50UR2asajUZJ2ln/UL/2+Jy7AbpF+AEdJH+SBwL9hbInDJI09CheII2wj+OMbHKus2aT\nOyuevroUM58zAqdNJpP84x//KHkfk8mkABs2J8d9uYob2pnEKI4Ls2G92Z6envLx48eSCIuRhgHB\n0Jo+RxmQCAf4OTg4KN5Bp9Mp8UpAJCeG2Ji7ThpMGjk1aE6aM/7IJYbNORxJmxVE9lA0DpMgQ47z\nOhHbMV3nhdigO//EBQSde1IzBKbwUdJJu0gbYyC5EfBppwOljVK2PHNywgAC+XPisOccY0FxMIcc\niZGzHvZQ+Sz5AA6vAeBRog6T4iwBTviMw2f8ZDzkaBBenUwmLZ1E+BZmgXlCXnbdmAtqIpHUiPw6\nFMnet4PnUzaEN9brdcbjcZHjs7OzfP78uYR/Tk9PMx6PWyA1SWGH6UfSsKxm28m9MPuHLHW73cIS\nmLGm/0lzMs2hO4AHSfiLxSKnp6dFpwNIkVvrcoy6k2/Pz89LMbTXjPUvv/xS9udqtSoOdpISImQP\nMKfsOeqHPT8/l9OhLy8vubi4KGF8n8Kibz6B9do9XHzeckG43Swm15sYXGNz7QS91nZWhA1BPDo6\nysXFRW5vb1sdRQmy4fGYLKQYxaSpEooX4qIxxMdM3dm7TBqBtQDxfxyrYvFJuqqpexI/AS0IOooL\ndsBsAcoZANTtdkvlQk4S1OEBjJSFg8UG6fomTNPmg8Ego9GoeIar1aqAKTw1gEeSFoBIthvu8+fP\nubq6KgqVvBLi9ggx3hWKHqEEpGCcaYvFIhcXF0lSlHTSnNYidstJJYcn/hlF+K9qyAwN42dPHw/P\nXrkTWVkXvGg2sY2ewyWsncEPtCxzxHdsKMy0AIJhEgz26pwXJ2w77OmTdvwfYzXLBYhHNvjpEAaG\nhr4sl8uMRqNScdPzTZtMJrm4uCh7ybk4zJvDSfSJtcDR2Gw2OT09zWQyKdU1ofQZD/uZvzNG1pk5\nA4DhicPOcPoBz3U2m5VcBOfcOMS1yzYYDAowpl/MDSCXELqdsSQlodWMUtLkFMGUJMnNzU0Bw0dH\nR5nP562SDxjT2WxWTjlyMov5dWiEhHz2EuNItvoGubYjYUehrqjqPDj2HQw6DDi3KBP2ZI/A5qH/\n2XOE0y2bBilHR0e5u7vLd99918rXSVLsEUCH7wFmcGpJnrXNcZ4abDe6wuweugDGmj7DRB4dHRXd\nP5/PS07jeDzOu3fvWhV6Aeg885tLiP348WNRMHjNzupmEEwkE5Y0J17wPhDMJC0PxJOQpEXRouz4\nO54TeSMu9wuNdnCwPY5GXJTEJP7/+Pi4MAoOQVlJIYwO19ze3rb62utt70R49+5dRqNRPnz4UKh8\nDIKVHQ3l7rABPxk7Xs+HDx9KaAUBwRsEYZOEljTH9mArhsNhbm5uWsi609leioXxQTGAmA3WACn0\nlY2aJPf39y1QyO9B/z7yZgDrmgq7bDXrUBvnpDmNkjTGFeBlWh+ZQZm8dk8GzwNY21t1sjYso3Mq\n6BO5Tj5tZrmh1TkUdUiKPpghq8t3A9wdtqjngmdgAJLm8jV7sRg6gPxgMMh4PM7FxUUxaABjmFiO\nc8IoEXIyo4G+waj1+/3MZrMis/SFNbChMmAz2+Kj2OghJ3QCqiwDzLe91102xojedM4HoMsAbrPZ\nFIBJGBwASSjNdZTI5eBZSaM/ky34xOg6rw7bwXoljZPAmlBuALnjQAAev/P1zDwjH+PxOC8vL6Ua\nK+NBFjnhOR6PW3dpJSmOw3Q6bbFi7DUcXeRms9km5cIU+7Z4HBWiA9ieTqdT7u6pWeRud5t35Rvl\nYYmQL4clfaACZ55QO/ucd+Dk+D48F+D01SWbzSa3t7e5urpq1V75/vvv1OWGhQAAB0pJREFUX5W3\nnYATx43tUUEvYby5cMjUdz35hDTY2CBFBDFJC2UmKQuOADrhFDorSVFahIpQEiBkP5cKfYeHhyVx\n9MuXL61kOLyAwWCQ09PTfPjwoSR64Tk4J+Xy8rIIvFmE1WrVqvg3GAxyc3NTKGIy3AFyKF7m8/ff\nfy+KmYRUo1o2MJRcst1A5+fneX7eVvDF2wQ9A/LwDii0hDJzKGKz2ZT5s5Ew0+R7G0DpTjhcr9et\nBOdut1tYl103gwN7ZfbW+R39xyuELqY6Ixsb4A34cTIfQAjDh4G18nC4wkYWeWLdYFoM+vCE8fr6\n/X7ranlACUod40GoDoWKh2baHcCdtG8ato7g+Un75l+AweXlZYmrQ7UnDciBYTKNj9FjfIC3yWRS\nZI81AHQD2jkh5fViHv1+jDN7xeARGWAPcdoCZy1pEvAnk0nryPQu2nw+L3OO7rSjQWgFXYisEVbB\naTk/Py96EvYoad9Sj1zBUqCTLy4uCvhwAiynYtBhsM/cNO8QJmEQ2DuSe7nUFF1yenqaT58+5d27\ndyU/0CEtFymDaR8MBmWPAAR4H2kMLy/bAyA4pTA/7FHk6/T0tFWXi6qvJAkjQ5wGAnDAFpL3AThg\nj7E35/N5FotFAfTMD3PEQQ7W4e7uriR0w5ACKNnH2DnmfDKZZLPZlr0YjUY5Pz//in0i4fa1thNw\ncnV1VSaM4jhJQ7ViqJ2sljQhHbwLNq+pLZgTFtWeFsbw4OCgCG7SgBc2DcYaQ4+yxgvgvfQJQHJ3\nd1c2MXFBAACb9OHhIYvFosTjfWw4Sen/8/NzPn782Ep2xQNFgfk+BeoDQCPzPd7NnxoYYFxgZCz4\nrrY7n88zn89zcXFRjt8ZvEDrnZ+fp9fbFvIhhHN0dJTb29uyxtfX1616AEmK0XTYjjoUvV6v3POA\nYb25uSnH3fg89/7sutUhPQy+ATbKjo3uvAVySepYuZtzTvA0ydZH2fEee58wDSgj5ARP1EYXdi1J\nAb5JinfI3vLeSFJqLgCOXTDw/v6+gC4YIcsgbGmv1yvAnT3W6WwLOhmooexrFpS97QrK7I3n5+ec\nnZ2VfIHRaFQ8Z/bAly9fSrgBDxanpPbGyX0ajUa5v79vlTj/8uVL2af0t9vtFiaQ5FrCITBT5N5g\n/P+M/v5XNHTjwcH21CNrw3ohT9TaQP5IyiQnDpkGPAPcmDP2RX0a7fT0tIBIdD/rBWipLyZl3gk9\nOS/GuYKwIVS3dn4VsgPwHI1GrRQAZIk54EQN4MRHj7FB3333Xfk8cmpW/fDwsFzpgj7GmYHlZP84\nXw02nWdiW9EvHz9+TK/Xy+XlZbrdbs7Pz8spOoOZ4+Pj/PLLL7m8vCxsliuXA3jQbTAqnz9/bpXb\n4HQXoR1OZDqfaDKZfFvMCYlnKLD7+/s8Pz+3PB6ED48JQUSg7UmxaLVnjreBR8+kOp/CoRDeSzIX\niwyz4eqDgA6EebPZFBTpOKVDTHiBJBk6Ix0vL9l6f6enp1kul63jYHim9JvNnzQ5ISh2F2QzM5E0\nFLNDKhgqnuXwEMfS+Dx06A8//FCOgHNyiPlmDh4fH/Pdd98VT4BTRskWyPB3DC1z6hg13/Emd0Ip\nNQr+rBTyv7Ixz05GTRoQ7JguSof8KR/DZHwOESUN64IHBFMC24hS9f6pQ172dmAnqQ/B+mPweZeP\nhLKPzF45yZCGbAHCkHufdKvDr8zXcrksoA2vEqAH43lwcFBAlStR8j3+wN5gbCaTSdlnzLlP+5HM\nBwgnTOky5svlMrPZrCTX393dZTAYZDqdlpu5fS0GLOJ6vS61fyaTSVkrG3fndlgudtW8fpeXl2X9\nfcqF36PHAQUYNWQQZhemD6AL6+cCk+RNwMSyXrwHMIcXTz/ZYzCEDnOik5ElwvROCH16esrV1VXZ\nG5YT7wdYOGSfvtEIj3D6hfkARMPS+fQN7DQ6HrtBCM3MInIOuwxYBGytVqtSa4s9CghbLpf5/vvv\nW3k6zMn19XU6nU7r9ul+v5+PHz+W00Aw5AbzgCaYxufn59ze3ubgYHsIBSLBl9f+Ues4Fr5v+7Zv\n+7Zv+7Zv+7brtvuqVfu2b/u2b/u2b/u2b2p7cLJv+7Zv+7Zv+7Zv31Tbg5N927d927d927d9+6ba\nHpzs277t277t277t2zfV9uBk3/Zt3/Zt3/Zt376ptgcn+7Zv+7Zv+7Zv+/ZNtT042bd927d927d9\n27dvqu3Byb7t277t277t2759U20PTvZt3/Zt3/Zt3/btm2p7cLJv+7Zv+7Zv+7Zv31Tbg5N927d9\n27d927d9+6baHpzs277t277t277t2zfV9uBk3/Zt3/Zt3/Zt376ptgcn+7Zv+7Zv+7Zv+/ZNtT04\n2bd927d927d927dvqu3Byb7t277t277t2759U20PTvZt3/Zt3/Zt3/btm2p7cLJv+7Zv+7Zv+7Zv\n31Tbg5N927d927d927d9+6baHpzs277t277t277t2zfV/i+IAQDEy/wsagAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Raising the bias of a filter will correspondingly raise its output:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# pick first filter output\n", + "conv0 = net.blobs['conv'].data[0, 0]\n", + "print(\"pre-surgery output mean {:.2f}\".format(conv0.mean()))\n", + "# set first filter bias to 10\n", + "net.params['conv'][1].data[0] = 1.\n", + "net.forward()\n", + "print(\"post-surgery output mean {:.2f}\".format(conv0.mean()))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "pre-surgery output mean -12.93\n", + "post-surgery output mean -11.93\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Altering the filter weights is more exciting since we can assign any kernel like Gaussian blur, the Sobel operator for edges, and so on. The following surgery turns the 0th filter into a Gaussian blur and the 1st and 2nd filters into the horizontal and vertical gradient parts of the Sobel operator.\n", + "\n", + "See how the 0th output is blurred, the 1st picks up horizontal edges, and the 2nd picks up vertical edges." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ksize = net.params['conv'][0].data.shape[2:]\n", + "# make Gaussian blur\n", + "sigma = 1.\n", + "y, x = np.mgrid[-ksize[0]//2 + 1:ksize[0]//2 + 1, -ksize[1]//2 + 1:ksize[1]//2 + 1]\n", + "g = np.exp(-((x**2 + y**2)/(2.0*sigma**2)))\n", + "gaussian = (g / g.sum()).astype(np.float32)\n", + "net.params['conv'][0].data[0] = gaussian\n", + "# make Sobel operator for edge detection\n", + "net.params['conv'][0].data[1:] = 0.\n", + "sobel = np.array((-1, -2, -1, 0, 0, 0, 1, 2, 1), dtype=np.float32).reshape((3,3))\n", + "net.params['conv'][0].data[1, 0, 1:-1, 1:-1] = sobel # horizontal\n", + "net.params['conv'][0].data[2, 0, 1:-1, 1:-1] = sobel.T # vertical\n", + "show_filters(net)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAicAAACbCAYAAAC5xzv6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuMbNl13/c/9eh6V7/uvT1zHzNDzgw5HNIWNInpMCEi\n2wkCwYElBFASBTLg2DCM2LATSAkSJ5GlWDJi5EMAA0ngL/EjkQPFcuIQgREEcCIbAkJD9JhDgdJ4\nyOFjHnfuq2/fflV1VXc9Tj7U/e3+1+pTfe+MqOkmWQtodHfVOfvsvfbaa/3XY++T5XmuJS1pSUta\n0pKWtKTLQqWL7sCSlrSkJS1pSUtaktMSnCxpSUta0pKWtKRLRUtwsqQlLWlJS1rSki4VLcHJkpa0\npCUtaUlLulS0BCdLWtKSlrSkJS3pUtESnCxpSUta0pKWtKRLRT804CTLsk9nWfa1LMsOsiz7C1mW\n/fUsy37+8Xd/KMuy9y+6j0ta0kehpWwv6QeVlrL9w0s/NOBE0n8q6f/N87yb5/l/l+f5n83z/K8U\nXZhl2TtZlv2R36uOZFn2lSzLXsqy7JNZlv2z8N1GlmX/R5Zlvcf9+Pd+j/rwX2VZ9iuXtb0lfSj6\nfpHtP59l2etZlg2zLPtbv4d9WMr2Dw5detnOsmwly7K/8fj5B1mWvZFl2Y//HvXhh0a2f5jAyfOS\n3nzKa3NJ2Ud5SPaYzvm+Kum5PM+/JelfkPTPwiX/g6ShpGuSfkbSX8+y7NWP0pcl/dDQ94tsfyDp\nlyX9zY/y/CX9UNL3g2xXJL0n6V/N87wr6ecl/VqWZc9/lL4s6THlef4D/yPp1yWNJQ0kHUh6WdLf\nlvTLj7//Q5Lef/z3r0iaSDqSdCjpP3n8+b8k6cuSdiV9TdKPWfv/WNJfkfT/Pb7vk+f05Ucl/frj\nv/8bSX/WvmtJOpb0kn32P0n6qwvayjRbCO9Iuv/42m4ck13/jqR/TdKPP37OyeMxvmHj+KuSflPS\nvqQvSVr/qO0tf5ayveC6X5b0t54wrqVs/5D/fD/Ktl3/W5L+raVs/y7m/6I78DEK+j+S9Kfs/78l\n6ZeKJlDSdyX9Efv/hqSHkn788f//+uP/N0043pH0Gc2iUZWC5//7jxdI//FC2JU0erzoHmnmIfyo\npH647+ck/Z8LxvSnJL0t6QXNgM3/Lul/Pkco07gk/SLX2vf/WNJtSa9Kakr63yT9ykdtb/mzlG1k\nO1z/V/RkcLKU7eXP951sP75nSzNA9akFY1rK9lP8/DCldaSzIb+nDQH+cUn/V57n/7ck5Xn+/0h6\nXdK/+fj7XNLfzvP8n+d5Ps3zfBwbyPP8b+d5vq5ZOPALkn5E0m/ns1zqRp7n70pqayb0ToeSOgv6\n9TOS/ts8z9/J87wv6T+X9NNZlj3NvGY6O/5cM0F9M8/zI0l/SdK/c1648wntLenjo8su23O3PEW/\nlrK9JOj7RrYfp3/+l8ftfnNBv5ay/RT0wwZOnkYpFtHzkv7tLMt2+ZH0r0h6xq5ZWDX+uMh1L8uy\nPUn/smZI9y1Jn37c3n/0+NKepG64fVUzgFJEz0ryxfGeZvnPracbViH5ON6TVJV05XfR3pI+Hrrs\nsj1321P0aynbS4K+L2T7Mbj4Fc1qBv/8Of1ayvZTUOWiO3DBtEjo4+fvaRYm+zMfoS3lef5I0lqW\nZf+upD+U5/mfzbLs70v67/M8/3W79JuSKlmWvZTPCq+kx0h9QdN3NAsNQs9plqO9L+mmZiE+SVKW\nZWVJV5+iv8+Fv0eahUL7H7G9JV0MXTbZfqr2jJayvaRFdOlk+3GU4m9oJjd/NM/zyTnPXMr2U9AP\nW+QkC38v8uDuS3rR/v87kv5YlmX/RpZl5SzL6o/32N9Y0PYi+hclffXx3z+qsJvhcYjv70v6pSzL\nmlmWfVHSH9MMjRfRr0r62SzLXsiyrC3pv5b0v+Z5PtUM6NSzLPujj0ONPy+pZvfek/RCCP1lkv54\nlmWfybKsKemXJP29fJac/CjtLenjo0st29JMMWZZVtfMKSpnWVZ7rCyLaCnbS4IuvWxL+uuSXpH0\nE3meHz+hvaVsPwX9sIGTPPwd/4f+qqSffxy6+7k8z29L+klJ/4WkB5oh8v9Y84L9NAj0NUlfzbJs\nU9I4z/P9gmv+nKTG4+f8HUn/QZ7n/3xBe39TM+DyG5K+o1nB1l+QpMdt/zlJ/6NmxVI9zYf+/t7j\n3ztZlr1uY/gVzSri70pakfQf/i7aW9LHR98Psv2XNJPR/0yzeoCBpP9yQXtL2V4SdKll+/GW4T+j\nWZT7XpZlh49/Fp1RtZTtp6DsccXukpakLMv+kWZh0OU5FEv6gaKlbC/pB5V+UGX7hy1ysqQn06UL\n7y1pSd8jWsr2kn5Q6QdOtpfgZEmRlqG0Jf2g0lK2l/SDSj9wsr1M6yxpSUta0pKWtKRLRReylfiX\nf/mXPxQi+l4UEtvpeGfazbJMpVIp/Yam06kmk4nyPP/QfeBZ3uZ0Oj3TjyzLvifjK3o27VcqFVWr\nVZXL5bm+TCaT9JPnuabTqabT6VxbRf0rlUpnriuVSiqXy+kexjkej1OfYr/4XS6XValU5u6jX4uI\nccT+/cW/+BcvNLz5l//yX84jbyAfX6lUSr+n06mazaam06mGw+Ecb5gX/5+/ua5cLhfyyuVtOp3O\nzRs8529Jab6yLEvXweeiflerVY1Go9Q+c12tVueeNZ1O0zrgb6fJZKJqtTonUz6+eN9oNJIk9Xo9\nVatV1Wq1M/KDXMGDRqOho6OjOf75syLf+Iz7K5XKXNv8TCaTuXmhvVKplHglSZVKRePxeE6XwDe/\nP89znZycpHbK5bLK5bKyLNMv/uIvXphs/8Iv/EJOP73/UV9K8/qUuapUKmd4xby6jDk/aB9eO4/h\niaQk+ycnJ6l/9Xo9fRfn3NumH1wHv1038rxoI9w2xPXha3g6napcLs/pQO9TlJ1qtapGo5H0Af0Y\nj8caj8eaTCaq1+uqVCo6OTnRysrKmfF4H+Ap+n1lZUXj8ViNRiPxjOuOj4/nxsrYfc6yLFOr1dLx\n8bGGw2Fq9+TkRK1Wa279MD7ajDIwnU71S7/0S4Vy/X11zokb1g9LRQLuFBUjxMT4Z24wznse90fl\nU/Sc7yXFcUZgsAgouJJY1EdfAJEHvlD9+vOMNb/9B+H2RSHNz5ErtUV9vSiKRpIx+f+TyWQOHAwG\nA00mE9VqtWTEJpNJUgZx/viNMq3X6xqNRkmZwp88z5OBQElmWaaVlZX0MxwOdXJyMqfEHDi5UpdO\nZWA8HqtcLms0Gmk8Hqtarc6NnWdyL226IZCklZWVubl1OULxOQ8AHZubmyqVShoMBmnso9EoAWVA\neZZlGgwGid+AKJ+LaPjgQbVa1Xg81mg0OgNQHNRFw8146E/kp7cT9Uu9Xk/f05eLlu0iYCKdGr4I\nlv0+QIobTV8PyGrUA7QPOT/8ueVyWePxOM2PdCqb8LEI6LAGef5kMlGj0dBgMJiTi2q1KumsfqQd\nN7r+OeCBeV8EZGgzGm3nn+uOWq02txbH43EhiItrlzbQKycnJwmIwYNoY+Gp95U2mGvmAz4w//45\njo9/F/V7pO8bcBIN0Ye9F8TrCq+IXAjcO+e+85gZnxeVl3u3LsgfZhxPC8yiZ+jjdo86Kka/flHf\nIjCIisXbLvL645giL3yeoKJ7fUFdtPKGFoFc/x/ejkajM3JG5AQlRGSiSKETLeDzer2uyWSi4+Pj\npLSyLEtG2b0YPPTj4+M5Beny796YG55KpaJOp5NADWDHjYwrT1fgrgD5PkZ9sixLAMLXkCtI/qb/\no9FIx8fHGo/HWllZSUo3rv0I8uCR95HvmE/4SkQD2UQRF4ESnkVECM/SjaGvEY8yMT50iBvdi6Ki\n56PTisBIlFf/znkcwQ5tMf7xeKzhcJgAZwR7gADvAzxENlwXE+2jP/C/Wq2q3W7r0aNHajQa2t3d\n1crKyplx+frjcwf19AmjHQGNrwPGALjwSJKP8/h4dmxKjHRCHkGBt75WHMg56GCN8dvnhGf5unA9\nwryz/llj/iyupQ+sFXfYz7NnlwacROF3xc4gFqUTuDYqFtqBca7Mx+NxIUiJIaloYCJDI9JEyEij\nYGCGw+HcuD6KMX1aYOJ88v6hUKEIYFjE5wlNVKLc6wClqC9xfn3huAHi99Mq4+hpXTRFUBdBm3TK\nEwwoAMRD1e5t1ut1TadTHR0dzS1wT8dhaF2pYFS5ZjQazaVfUPjIBe3iKUbPB2OxtbWl27dv6w/8\ngT+g/f19PXjwQL1e70xkwI2+K6ToxbkCc7BZJIfOH9YwkQ1JarVac6mQqDjpD8DQAXEE3bVaTZPJ\nREdHR0k5cx26RFLqh4M5riPszbPwHh3ESPNpCj5nrhnbRdKiSKkbX8YICHMg6voB+RoOh8rzfA4E\nwFt0AtEv0hu0U61WU7rD9UdMcbrM+Xc+nlqtlu7f3NzU7u7uGcAcwWSUG5d3f6ZHKhzIuEwCPhmL\nr1kAMSDV1yL30Sb3+bwAvIbDYeI7AHllZSVFBI+Pj1OUMc414+M5AG70E5FeB94Q8o7Me8rX136h\nzC385mOmIhAQ/3ePP97LZBV50QiagxSurVaraTF4LtGjDPGniOJCLJfLajabqtfr6nQ6arfbSaEt\nmhDa+N1EiWJbruQJfcdxRJ48LUUvtIgWjdX5EOf2w3iJboAuC0CJER9XiDGU6/ld8skoGa7t9/ua\nTCZqt9tqtVqqVqvp++Pj47k5PTk5SXJHRMO9UffQAM1e41BUW8GzWC8ffPCBrl69qq985Sv65je/\nqS9+8Yu6du3amVqTouhJBOcobE9HkVuPawpyw4DiJ5oT8+WNRkOtVkvNZjOtP4xATEm44pekfr8/\nxxf66j/0GyPK355Wqtfrc+Fs5ou2I3h13qCfAJ0XRRF0S2droKIT6Y6MO4fMJTJ6cnIyx5PRaJTk\nNs9z1Wo1VavVVA+Bxw7Ydu/d142DEgyvdLYmg3sajUbS1Z1OR1/72tfORJv9N8bYdVcEJi5j8X4c\nlLgmWP84EZVKRbVabU7HAehYKw5OfL7grxNy6vchn57mYd5YU643fC24fuHZ/PYoD+OmRgadt4gu\nDTiRnhxNcIEr8qgQfPecIPfeWShENxyY8ByUJMaiyKAvMuT0gZAcqHR1dXXOS3CKSvV7Qb74ouDy\nG8ULP6LHUzSuou/8WfwuimB5lCXSkwBKfK6H7L8XgO57QUVK3EGiyyB9RvnU6/Ukk0QDfBH3+30d\nHR1Jmnl7ROaoueAHZTQej3VycpI8G+TAUyYYAQpLiZ5BrjBRYleuXNEbb7yhwWCg8Xisv/bX/ppe\neumlBCji+GL0zuc2epIuY+5U+Lp3xc+1tVot3cvYAVrwxQ09hp9n1mo1NZtNtdttVavVVJToBcIo\nZXQLfXej616wh83RHcwv97txdwPjYAj+XyRF+ZXmo9YOYD0S5pE3vHSIQmj/DJk/PDxUpVJJha0r\nKyspCh2vJfpImzyfuXbADbmHPx6Ptbm5qevXr+u73/2uBoOByuWyfuInfkKvv/66arVaKqZ2AOS0\nqPAWPvG/f+eRFo+sMKaYCeDaRqMxB95wUJBVl1F3ODzSQYGy9xlZc7DhEZMIPH1uvZ9Q/Jy16jJ9\nXjbgcmj0xxQXatGPC0VEred53M4IhMsRYRQoyNFqUYgyeuz8T9iR9ih2JIISDWpEzx+Wbx8m2gAh\ndB4yBKzxA7nXzfUOVNwbiF535A3t+e8i4/Mk8jmMsnFRFCNCEaw5Hx0YYticp+PxWMfHxwlgoAjI\nw2MsG41G8iLxJD0SwU+WzarsW62Wut2ums1m8uxj/5ljB/yMYXd3Vzdu3NDq6qqm06l+3+/7ffrS\nl76kP/yH/3AyvihYV7juVHgaxPkUDbb3Cz56SDiCXZdRrqfO4Pj4OAGabrc7F3mZTCYaDAbp+na7\nnfjAs6h5iLIe++QGhz4xx0Qvfe59/Hjj0qkXGz3QiyDkx42RpxGgqIsjsMNALtKdrg/6/X7y8svl\nshqNhiSlQk6cR7xxUm8RyDkQwIgzDgBSs9nU66+/rmazmcDh7du39VM/9VP6B//gH+jg4GBOn/Mc\nN7RRlqX52g8fK3PqNinqDbcJDvzr9XqSWeTy+PhY9Xo9OS+kU+A1axKnh/56dMbnBZ5Hfcb10e6y\n7rmOsdMmc0Yxb1wjRXTx2tyoyOC7Mo+KXZoPAxcpQSeE2ZkXQYkrPE/DeH+ipxf/RuH4fQhYvV5P\n4UwoCsV5qaOnoZhWcP7ymY+3aBwOQiJf+HxRGm1R+4yhCJjEuYsetvOgSBaiorsoikrFveEIpJx3\nLl947fCeYkwACUoRXmH0SP8MBgMdHR0lEIMiajabKpVKKXrHNkIiK6whgI506ulzP+sNw9lsNjUc\nDnXt2jX93b/7d/XKK69I0lz0kv56CNejKbVaTVtbW8n4eMrDr0X5OeCBx3iSfMe1k8lE+/v7CZzA\ns16vlyJHRJgcPFCYzNiJLnnks16vq9FozIH5CK4whi4XGAieG9cl0QSPeF103Un0+KOedPAa16Lv\nDvE0BPPleoBnYXxHo5FWV1fT+gHgABJLpVKqraIWwo2mry/66s8C5Gxubia559nValWDwUA//dM/\nra985SsJ+EvzoCMWlPo8ukGnHw5MIqCJvPAx8X8cBymmPJ/V7xwfH5/RMURamQ9sITyNO9ikU0Aa\n+xejOi4bbjt8jdLfCNDPc6ovBThZ5Pm78EYD6r+5H6YvMs5efOio168vOhOkqL9Q7J8XcxVFQ6bT\nacqNR8Md23aiXy5kTkWGOSL4WFfiHmbkhQtZfJ5714uiSBHMoNyLUm6+oGO0oYiKnn3e9R8nORhx\nBYnMRa8u5rQdyFAr0W63VavVknL3KAnPbLfbyQhIOmMUXQFhGDHkHoHiGnb9uDKeTqdqNBqpPfo8\nGo3U6/W0ubmpt99+W61Wa86ro09FnjJnlOzv76tSqWhzc/OMTEYD7V5qlmUJ8G9sbKjT6SSgUq/X\nUxTp+Pg4pbyYBzeQHnXy3RE+f+5les4fuVtZWVGz2Uw7l2K0AWNADYWDGp5Tq9XmtpNfBsANFUVF\n3MD4mof4HzkrlUpzdU5EUtx4uZywAwuj1m63UzsrKytz9Ti+o0qa9+5p1+Ud+apUKrp//746nc6c\nHOT5bEfb9va2vvCFL+jRo0eprw4YptPpXB0YbTqY3d/fPwOYuJdxR7vCWSYUZUun9SKDwUDSaYSE\nowQAL6R6vYgbOYvR6Qj0pZksu/MUASF6ivn3eUcH+v3IuQcHiDYuoksBTqLCks4KaYxWuHHy3KIr\nGhdOCIYUGcMYFTmPzgMo0fhyPYKRZZmazebcuPyaSD5ejHxUAEX3OWDwugKvbfB2HNxFYLMoolEU\nOYlgpSjSEZ/NvAAaYxGzp+BcqT9tNOnjpKKIjisCohNey+QG04EMhnd9fV3PPfecms1m2l3gSlmS\nNjc3U/rQFZJ0qjC8NsXlMXqm/C8p9fXo6CidFwK4IT+PPO/v7+vGjRtpvD5Gl2FoOBwmQ0y0J9Zl\nuZGPvPXoHbtE1tfXkwfpEaY8z5Ox43mHh4dJ7tmVw3W+U8Lnj3Sbg8Q8zzUYDHR4eKjj4+ME4rhf\nOq0Bcg8dAMpvQKQb/uhwXSQVOVJRZ3vdR9ThjJu0d5ZlOjw8TPdHvT+ZTNTv97W2tpZ4Q4oIAOAy\n7ODaQQggyHUIstNoNPT222+nKBZpP3azVKtVPffcc/qH//AfJqDkZxHRF8YuSe12O60j0qb9fv9M\n3QWG3deqpARSGeNkMtHBwUEaG2uS59Xr9bnUFnLpEZEYNUXv0CfmM25dz/N8Li0J/yPQKZVKyXl2\nHsHvPM/TDi2cjfMcykuxlTh6youiAItQuv/2XOQiQ+/PiwDFnxc/9+cjFBEknNd3aDweq9VqpZB7\nBGcuvNLZA3lA7+4lnOdhwRdH0R49YTzON/f4fMz+nRve6FGd5/XxvSuzIl65QYpeWgRFi4Ddx03O\nM5SOg0+POERvie9dSeEZkbPtdrsajUbJc3J+oPQxbu4teorAFQrrhXoKvBuPCGRZlkLFHp3Jslk6\nBS8P5fn2229ra2tL29vbSbF5JCE6C71eT61WS5J0eHioer2eUkgOLvhxvhEJIbSPfAPQWCNey9Hv\n95Nn6NsqUZxxB0FMM/nfbgBcVo+Pj1MEBcPoUSd4xzM7nU5h5Pey1JxALs940IsKTn2dMy95ns+d\naAovqC+J5+VwiikGkfM8oqfutRCSEljwg78g11flcjlt0XcQSRQGh246nepP/sk/qTfffFMvvvhi\nenae53Nrjn4dHx+r0+mo3++nPnvE0vvsa8r1qzsB7DZy5wJHoVKpaDQapXoOn6OjoyO12+20zqXT\ng0U9Aun1Iq6fIHdeAEWAJo/++RogyhN1huuW85zLSwFOnIqUuit3yBWFpwq4Lxo9v9YFwZVffM6T\nDF5RiLMokhDvkWYTtrq6qoODg4UAyckP7EII/EROH09E5d4/DJLn6KXZoqYvfj/fedqHau/oFRUB\nPO5xPkVA50K/qN8u3P7b5+EygJMiQMtPTMXE8Cq8ByRg2LmeuokYnYNvk8lkziA6CPVnS6cnO7oH\nCDDBu/J+UXTna4o+4TmenJxobW1NR0dHc+uQ53hdAu3WajUdHx9rZ2cnpTvoCxFCV6wnJydzx5QD\nJg4PD1UqlbS5uamNjQ1tb29re3tb7XZbm5ub6vV6yvM8GRwMheublZUVHR0dpV1LhMVjvz36w7gG\ng4FOTk4SKHLDjHcP8EC5D4fDpLv29vbS9bF439fkRZGvX+SKOS46RIwx+LqF7254vSDZD1uDV6TB\nAL4eWfNn8T/8d17SZ98t5LpwY2NDt2/fTp+z7pBlIl6NRkM7Ozv65Cc/mebR0zKu54jisc7ol9se\n6RR8Ai7oe1zL5XJZ169f187OTroPYNtoNObAFHwk6kPdzu7u7plIU0xrQh7tBGQcHx8nvZ/neYqa\nwudSaVb/w5le6BOADOOg/9JpmqqILkVMPBqiGEkpMj5FBiB62R7Gk86erOftegoogpain6J+F0Ub\nivrL/z7xT2NcY2QDwfCtwPw4cPBxudJnESBYLihxvN6Gh+r9uwhWPITqCtsNl/MvzouneWKKzucp\nzstFUwSnkT8+fucByszlNM9noVDSESghH6sbQNINGHg3ENLZd+owN767LK43PGPkhvbH47GazWba\n9bO5uZmA67vvvqutra1U7yGdPeMDD5pUI9dw/WAwUK/XU6/XS/NLvQcRD9cX6+vrunPnjt58800d\nHh6q2WxqMpnom9/8prrdblKmWZalrcMYBJQuqRUHdRGQ0YdYF3TlypXULsXHgCfWnusowObR0dHc\nWR/uibo3epHkMu2AQJqvDfJ+xj57ZCtuKeb6aAN8h5U7O74d1q93z57/+XHD6ilLP5wQfeXgcTKZ\nqNvt6uTkRD/+4z+uN998c64WC4BGP5FrT+MQgXFdiw6nloo23HGRpCtXrkiS7t27Nwf0X3rpJT18\n+DCBEQextE27h4eH6nQ6CRz6kfxuT5gX17kArXq9Pgfo3dbx7PF4nNqG7x5BcSB5nhMvXZLIiRsc\nF7SIvIvuO2+AcUFFA+gTEJ/H/7GPi/qyyMDGBRqNa7PZfOJOI0fbCHdE4TzbkWz0zN3wubH0diMV\n8YB7/Hf8PipUlFKMiPl8u6cDwRsfcxHw8nm8aCoCovQ31kV5usFlIypkf0cHCtT5RtqFe5l/B5wo\nWv52Im3k/UFp4r36rjiupf4Cj5aQOy8AIySOjNHfLJs/HKpUOi3GzfPTY+lRaO6ds8MGg0PE5N69\ne+m9NJ7b39raSpEZ2vFIBn3Gw4N/bsyguIUUXrTb7eRxHx0dndlN4YoanlDzwjjgp8s5vLloQpch\ny16X4PojAm7IQXnRSx7hd9FnyEmUF+msjXBHwKMmvu7oFwe78T9zyX3UdlSr1XS4IeCfefUUo9ed\nIGMHBwcpAkKUkAgCab1Go5E+J/qAnK2urqYic+l0DY/HYz148EC3b9/W1tZWeh59j4AtHtvPvDnQ\nAGRlWZbW2HA4TGkjb8f1yHg8TnVwOADMkRd7e9TkPLue5vg8gfy4KHbQ/4/hzUURhuhFx+tccBdF\nQnhe/Oxpn+nPiQYnEn1ESD1SE+/zz2IUo8gwI2x4iVRzg+i5xqM90Vv035Gi0vH+RpDmz4g7oRZd\n6/fQDwxJ0RwXzfdFURE/XVlHhRBD/ShPL3aNZwsURbJ8J4qkFF2Q5j3aWESMFwWwoJ/MPZES8vIo\nXyIRXH/t2rUULaCY9N1339X169eTMiLiUBTZ41n0kVA6hxiylfrk5CQZ/0ajoVqtphdffFH3799P\n0RdP22BAut1uMvxRHqfT6VxxHuOMCr5UKqX6BwzldDrb2dHv9zUYDBLYcZ6j1DmfAmo0Gtra2tLa\n2loqfC7ayXNZIoLS4vOMfC7ROXENu2MU1yv6ynnvxsyNrl/DHBU5lTyfmhB/NxLAh2jgyclJ2t2F\nQa3Vamq1WslQA8i/+MUvpq3FXmvh43HekKJxsAT5Rg523NC/Gzdu6N69e+p2u6ltr9fAKfCXdhIx\nZfwOIvjOgRXXMQYH9dimSqUyd64S68Vf2On3eaG46zzn1dPQpQAn0uJiUunsdkvprPFeBEyiwERD\nsGjhn2f4i54bjQi/mUxftDHF4Tt3/PtFPPDaDIQBpemFwBg5ThR0PsfoBc9GeJ4kQDFKVPSZG+Ii\nMBQ/cwXlB4Dxcx74uCzgBIpKyOc78pbxudx4sZyDVk7KRIE5yPW0j3v3TnweUziS5jwi+sj25aOj\nozSGRqOhR48eaW1tLX0/GAzU7/c1HA5TcepwOEx1H3meJ0VH2x7hIzrj/SHqc3h4mIw/r2nHC3zh\nhRf09ttvz+W9pdPIEGum1+vNnc7qz8GAeWjcQ9YeZfLDpsitRxBNG6SnmBs/R8bn1SNO/n4TX4dF\n9XMfJ8UIUgQj/p3rJwfi6Jaow1jrtOv6gdRIUbqAtiNQihEvl2lfSxSUAkyGw6FWVlbU7/cTKK9U\nKur1ehrW5XRPAAAgAElEQVSPx+r1eumVBq+++qq63W46D8fXGvYFYz4ej1MxNPO+v7+f1oNHuxuN\nhqrVqj71qU/pq1/9amE0xNO/nU5Hq6ur6dkxosV683QKbbL9mWsdaHhKmDVA/z3KRxlB1Fk8qyha\n7wXn58n1haV1okAXUdFigGHREDpKQ8DPi0Kc542cZ+hoPz6b53vo3Ptb9Ey/p16vz70h1vt/Hm9c\nqFDOCBJ5QhdCVwJOrhAZf1EfXHl4P4rADuPz633eI5/d03I++5xGHsQIwkWTh43jWKFoRH0OpdN3\ns6AckS88Pdp2hVAqlVJOG2XiYXjuQem6d+XrhjHQNxQb6Uc/7Gk4HKbi0U6noyzL5nYkdDodHRwc\n6ObNm9rb20uFrMgDyhjgjOIjIjOdTtVqtdLaAHwBuJ9//nn903/6T1Wr1eY8U49AuTy5EvXP+fGX\nybmsOf88rVMqlZJBc17FCEwEO8iqp46IclHwzPh9Li+aXM9KxccgeK2TdPY9Ng5IvSjSPfJYc+V1\nDp4yiMDat6BHpwj+kTqhn1evXtU3v/nNuWuQt0ajkXa7IHsrKys6OTnRzZs39frrr+uVV15JkRn6\nOp1O0y4j1szBwUGK6CFDnEjsa3djY0ONRkNf+9rXEqDhmuiolEolra+vJ7mODhw8ZltzUVrXHSPA\nNLt7aMPllXucXz6n2B8+90hUUTDgPBt3YRIfjfzTXO/RjKIohBuxmLeN0ZUPS4v6+jRj8IXi9/iE\n8WIyogaOOPkMpO1eeARgLkQUKjqAKIpQOZgoSrcUXRvBm0c9YjqjKAR83o/zbRH4KeLxZaMir1I6\n+xoEUgzRCPGel0qlks4PcCXgQNRBCafLesG1NF+g5usjAr8YwcJzRYkxL+TrO52O7ty5o4cPHyrP\n85RH530kAOROp6P19fX0MsxGo6F2u53qaYoMMAa81WppdXVVrVZL165d05UrV/Tmm2+mAw09ZeMA\ngXngDAsUfVTyzg8Hbhi8RqORdkWUSqW5tJmnn2I6A6OGJ03qRzrd3ux9JoLiHvNlASZRZqJzIJ11\nOpFXZDjLsgQ0pfnDHpkTj/ph+Fjzrv/8OR4diA4S17mMcF7K1atX1ev1Utv0tdFoaDAYzPWl2+3q\n6OgoFVr3ej3dvn07FYYfHBxoOp0mkMvrHTjLh0gKMsazWCdbW1tqNpv67ne/m6KIyA9zgKyUSqVU\nd4Je8JOdnbd8RlqLqInz0qMZfjpyBCE+V/AaZwQeuwMSoya0g+1a9K456YLTOk9jUIquiUo1eub8\n/jDg57xnezvntRk9iaJ7QKEOLpikWq2WlCCH8OCV4TUTpuP+IuNNuC8KUVFfI2iKAMOvj8oJcqGN\nURVXIg4gFwGM+BNTI0XXuyK7aCrqY5GiLIrOOeDm1FX47qAAxeRnl/hceoE1oVeUoSs6nsmPH2jm\nUSjeNQMoIv+OsalWq+p2u3rhhRdUKpW0sbGhnZ2d9OK8d999V+vr66rValpdXU31FZubm+r3+2q1\nWmkcACrm0iv9pRlg63a7+sY3vpFSqRh1D0W7LACQ4AWASzpNxWRZloADaVIHj4T02WHDlmbfHRdT\nS3k+/wK/6XSainIxen4Sp89P1GexgPkiyKMmEfxFUFK0vvmMuSCKwXceMYopyxiB4bn+WTTi/I1+\ncKeOZ+HAxSjXeDxWu91Wo9HQ/v6+JOnb3/62Op2O8jxXq9XSa6+9ps3NTeV5nuqgqBva3NzU/v5+\nKqZFpgDJABgOC+x0Oup0Ovr2t7+dapMAx0RcfJ3zd6PRSLuKWO8uOzzHSww43A2ibZ9H+EBqxiOG\nzLPz1aOtFHxzjTvQ7lx5Oq+ILsVunSdRFHoY5p8tMr5PIldiRSmMqCTOa+e8PdtS8YL2v3npFH0p\nMr6er0YxuwDW6/VU2R1DsHEcUal4SK5IEUTQwT2LFBY/GBGMnxe+RYMZjbYXv0U+LgJoF00xxege\nu6Qzf0MoOQeB7u2xqJl/VwoOYmiLfvgr5d17gSIYcY8ryzKtrq6mLZ3SbE6oLyHkvbm5qbt376Yc\n/bVr15JnmOe5PvjgA5VKJd25c0dra2upePbGjRuSlA4k9L4hL+wIWl1dVa/X03e+8x01Go1k3ON6\nYPx4iHyPUXT+MX4Al/MhplggT29xwixGJAKkWO/AgVxe8Bwjix758fV9keQA2yMXvvadf1FnezE+\n12JIoxfuhhPiHsjr+5AzqfgEW08B+W6cSqWi3d3duV1S3s7x8bH6/b6uXLmivb09ffrTn9adO3e0\nsbGhjY0Ndbtd3b17N0U5Op2OJKWibV7pgLNA9IgDBt999139/t//+/XZz35W+/v7+u3f/u3EJ/gT\nX5ToRa0e4QOgwBPptP4E2cahwWnwaCvpFwcTlUpFzWZTo9Eo7YLz4tsIVvmbscbyBtfPHpVdRJca\nnBRFTfiMgrgYOSny0p8mQnMePcnoUSAUc6VuIPCKHWzgIbohkzS32GiL7wg9YvC5H3544dV5/Xc+\nOblR8ghNETigr35t/OF6H3NRBKVojtyrWhQ18fFdBnAC8HAA4t9FEBG/q1QqqegOmUIxFM2r16AA\n5LyCH9Dsnkw0HG4kAAO0t7m5qcFgkDw8j+Ksra1pNBrp7t27Oj4+1tramvr9fgIopCIBXOyGODw8\nTFEKP1SLtM10OlW/358z1Ovr63r48KEePXqU1hmnbjIOz31zDbUIKFaIHD98oZAYHjH+uFOK+YC3\n7Fhg3IAi6RRYk+9n94M/w4Fn9OrRK7EG5qLoSXo0ppil02hFr9dLL3b03VpehySdvpLB6xe8wJLr\nmBtPdfqOFAfu6Arko1KpqNvtqt/v6/DwMNV3wX/08mQy0bPPPqt33nlHq6urOjo60gsvvKA8z/Wt\nb31La2trarfbOjg4OFM3+PDhw7TLplKpaGtrS++8845Go5E2Nzd1eHiYouXb29sp8uL6nK3ObvO8\nPge+OPjx9c24PApCfYx0un3fnV/kEh3AuT882wt9mV946uvOHQB3uD0yC6hbRJcanCwihI3iokWe\nqBv9mI7wlIrn1NwzeBpC+Xvoscjbkk4LIYuMludVvU8uOIyB0DRj95Coj4G2FxnvaNz9f8YCuXFz\nQiFEfkWQyPjPi4JA/v2i6FURELkM4CT2MRoW5tprRTxaVS7PzsygfgGj6vJQFBL1iCKGlTbxihyo\nuIfrbfs5G6VSKR0QRr0EtVGHh4c6ODhIAOT555/XN77xDT377LOpaHB/fz+BFHLrtVotHRrFzh5q\nVw4PD9Vut7WysqJGo6Ht7e3k5XEYGzwplU6L7QAWrAd2YLhOGAwGc++U8vCyA0PuZx2hwKX5NzTT\nLnKLkfIcOoaWMHcE4w4KXVY8MoFR8JqAi6AYCZTmXwUSx1aka46OjhL4RI+5nHvxtztzGFl4ESMH\nADiXe/rkfefv1dXVFGV79OiROp1OknPp1Dms1+v64IMP9JnPfEbb29spRdlsNnX16lU9evRI6+vr\naZs9RbBZlqW6r8lkovX1dR0fH6dtyScnJ1pdXU1Ag+gNssXuIYA1AIL0Dueg+FooOgbAX9QHT5Fx\n1+MAZ7dBzO3h4WFyQpgj7oenXjsVo2vu9PiaZE6/byInRUJ9HlCITD7vWhjn3ngRFQGUon55uyhy\nR6zSfL7NF07c7iXNv2mVe/k+9qMI6eJlRPBQ5HHFyAb984Iq+PW0Bv+8KJePB4V8XjrN+1TUtivv\n8+bmIol5iukT6XT+ixQyvMGz9+hBBGkxouVpBBSj70yJIXNASpFCl07fXgzguXr1qo6Pj1WtVlOq\nh/6/8847KYqwu7ubvCvAjG9FrtVqGo1GarVaSW7xVvf29hL4wqvc2tqae9mYe4+sK093+Qv7PDXE\nOSnw19Ok8N4jXyhzNwSACnd2uJYQONd64aJ0NprrwJ4x+Prjt6erLoq8765/FgGROE7677s3Yo2T\nA2v0hPMBHeVOoPPR0zX87YA9ptmm02kCDb1eL8k7RdqVSkWdTkcPHz5M87q6uqp2u63d3V11Op0E\n1G/cuJEOajs4ONDq6mra+n7r1i29++672tzc1IMHD3Tt2rUE1Pf29jSdTlO6Tzp1+Oijgw1qWIim\nAlRcTohGcr3bJS8XiM6wyxipyvF4drpspVKZO5TR5QDe0lfa9+exzqNNOS9defGxQp01wNCTIhiA\nE5Ss52+9zSjggIkIIiLQKeqj9yca/hhxWNQHNyr+zDi5Hg3xNj3MyWdFudaisRQBDj7zQr0oeEUU\n+xUpGk7a8blyBF7khfnnEbhdRvJ8bJEc+DUoEul02y5Kg8XuEQ4PmfpcIRNe2Q8xr34GgRuXIs/F\nPVN2VjSbTe3s7Gh/f1/3799PzxsOh+nY9itXrqjX66XCbtIYk8ns0Db30Djbh1DxcDjU3t6eqtWq\nWq1War/T6Wh7e1sHBwdz50YAmtABnFLpB5nBN2n+3VSSUj4fDxmZo4+ef3c9g7Hzc3jgIUXsXO/f\nAcB8pxRtY5zj8xyEXzZy4xQ/j/pWOtXVXgTru5HifQCMWEuCIXf95GvDvXr0ImCS38PhMJ32Wi6X\ntbOzo+l0muYOmTg5OVGn00kRvt3dXfX7fR0cHGhvb0+S9OjRI1WrVT169EiS5opTKTy9ffu29vb2\nNBgMUj/yfHY6OClPf5N4BL6sb+QV4EFxroMaZBMggby6foGfDjb52yMn9MXfZeUAMkZzXQY8MglF\n/fYk+34pwEmkCFDOIwcmfgCSg4kiAxoXhLe36NmLDDDPY4G4MXBh8Jw4HlNUPrEYzp/D2Lyv8f/Y\nx9h+EViifxyh7AdGuSFzKuLfIkErAkdR4S+KvEQD7wAlem2XIYISCyJ90cNL9ySl+UiQdDqvflKo\ne5duOB2cuGFDMXtEzdeKA1/IQS73EOUYDAZqt9tqtVqpgM6jHVevXtXdu3clSbdv3067UDjOmjoa\nUku9Xi8p2UajoTyfFRSym8W9YbZuNhqNubfTxl1vR0dHc4WBPhf0gR+iKOy8cb5JSkaAOYxpMD+N\nNxpVThb1GgCMalxXDnJIJ/h8XBZ6UhTVDU0EGtEgeRTNgbBfx7XS+duNixzEGHWGpxhVQFKj0dDG\nxoYePnwoSXOGn9cMfPDBB6rVajo5OdGLL76ow8NDHR0d6eWXX04vI5Rm9U+DwWCu8J8i6StXruiz\nn/1s6kuWZSlaA6hGlrFjTkTvqtVqAjiM88qVK3PRR8bqLw2Evw7MPTLFevHaNJ9P6s2k+WitrzNf\ni1Hn4VC4bMQIYRFdCnCyqIMx/LToWlfsi4x+UXvuSS0y4ovaKopU+IIqMqxMiEcOpPmdOd6eLzL/\n7cas6CeOORqyRUrPt7vF02adT867+Hlsu8iLiv1b1O8iKrqWti8DOFkkr274fQHHcKqHoFEcnlbw\nNICfVuoy4VuJoyfk6TWPBKysrKQQsXQaYeFtqZ1OJ9WPdLvd1FdqSO7cuZN2K2xtben9999PefjB\nYJC2xWdZltJBHELlbzt2Rea7awiTk9JpNptz4X/4wuFw7iHjMbfbbdXr9RTVIdKysrKidrs9B/BQ\nxvFlmvAR4wWvYkqGfpOi8iiK9xfZyPN87mVsDv5p4yIp6k3vu4OE6JnH610HFTmCRW2zJqRTwCnN\np4ijTme9RaCEnCFT3/nOd1IhN8+aTCapDqrb7aZC8Pv37+vVV1/V6uqq+v1+OlW2VCqlc3sAJBw6\nmGWZer1eems1ckTqhQgOaRppvobGdQNpo9FopI2NDQ2HQ7VarbndY35elsuZF867I89n/qwYBYlz\nhmx7eifaTuagSFd71OQ8AH4pwMmTyJHYede4sY8gJTIvKm5vI3q1/I6LIAIRb889hggmYhTEF/J5\nnrA/w+sQioyhG+yivjoCXiRI8RkeOnUqmhtXsJFvRfNS5GktIh9TUQTlIqlIzqTzAbhTTKn5fbEu\nATmJ9/s9ePIxhcN8RkXB/XhqpdKsKHZ7e3vOgyLsjbePDOF9Pffcc5pOZ8fGk6bJ8zwdPe/e73Q6\nTVuDvX2MXqUyO2GTQ+m8OPLKlSvKsixtoffCWEDG0dFRqhXAgFQqlXRwGump+J4d38kAEflxeXXg\nyLZn37HjxJxyvobPq7c5nZ4e3oVBuGiKssX/nqIq0p2u2xi/R7ljhCTyIepVCH7HKJRHyxyUAzzg\nJXNAZAIZ5kRVj7CwY21nZyc9KxpsUjakVJDvWq2mwWCQZIzD3dBbRTIiKTmJjJs0zv7+fvru6tWr\niZ9ZNr8zjD4SEUfeiorp0QFuC3CiIe+v82uRQ1bkhOV5nmpYnkSXApwUoadFnvR5SEsqTm3Edvx7\nL9RZ9OxoJKLRdSF1Y74IGPiE8TmTR1/8gK0IvBAcF6oIYOKzPXriIWrGGt9YCbmH5+Mo+ryIV/Fv\nH8+T5ioqq6L+xe8vA7msMseLgGzRPX4tcuLjdOXioVWXhQhaUNQo4ghivXjW2yiVSsl7ROlzD8Ye\ngEI0gpf0cWAaY+BE2GazmeozJKWzF3hXDRS3le7v76edESjcfr+feEf+HrDhp2y61ww/SCG50gWA\n+dpwj9ZTOniQXmTJdUS2mJOi9cIzfY0y15VKRRsbG+mguyfpvd9r8r7HtCXfF+nJeK80X3Pl/9N2\nkV7wKBTy66k9AHXR+gGYeJu8o4niV98R5dvwXS+zc4waqGq1qvX19bkaD3bvcJZJtVrV/v6+Op1O\nAiu+TgHHRFLyPE/gGzmiiJgxX7lyRcPhUF/60pfmgCG8lJTOEcKWeGG7g7bo7ERn0mtOWEcAuuho\n+y43lwGf/yzLks5wGSmiCwcnH8br/bALNHo9LrQ+oT5hRdcXUZHxBzV71XiRV+T38Bl98fwqffX+\nRiUXoxBxbA4EihY+/TlvW5eHAKMR9H5HIOb9L5o7n59oCJy/RR4Vvy8jOIHiwuez8/rrCtXBb0yh\nOT+j8kcJujx67Yo/w71Pwtm0hRG4c+dOUkhEU0gBofQIZ5dKJa2trSnLZgdDDYfD1DYeI6+Op5Cv\n2Wxqd3d37oh6SekMCt5zkmVZMtal0unbjxkz/ZhOp+n9IKVSKaVviiJF0ingx/D5IYa+3Rd+Mh6P\n/PB3rBPyNe6yEL1KijABZOVyOdXFeI3QRZHLFmMpchijA1PkuCxyBF0PO7D3M0gcvKG3nDzS4k6d\nryFOXyYt6O9GIm3EGEktOgDpdrtzZ5jUajX1+33t7++r1WqlNGCn09G9e/e0tbWlLMu0trY2B/4l\npTeC8xlgws8NAUhTd8U9bMOPgAfQk2VZqteaTCYpYuF89jcN+7zl+emuONfDrjd4lqegXbdEZ5k5\nKJfLC51hp0tzfP33wsBEIy2dLRr16yJA4XdRX6Kxj8bBQYNXR7tn5BEXvyYqniJDVCqdHiBEWM2/\nX/S3C1Y0anzuJxEWgTTaK/L0igxljI5EAx2ByiLQ6cCEvoHOPRR7Xr8/bloUOYqRr6ioHTRI86k2\nvH7kIPK/KLzqgAMjGz0d/9+VjR/Pnuezw9ZQiLQ9HA7V7/dTGoU0iTQzYEdHR5Jminw8Hs+ladg2\n6UWN1Wo15fAhL2hlCzOeV6lUSufBcFBUls2KLdkBBLDa29tL70/B0CMrfhgbz4L/yFUsfKWduDuK\nNVpkLLx2yAsQpdOCR+aEtFOlUlG73Van01G9Xv/IMvm9IDfuyFuR/Bat7Sfpdl8bXOu1V65HPOoX\nt5Tz7FjP52ke+iQpvbRRUjqXBH3o6wfwwk+n09Hu7q6Ojo706NGjJNt7e3sJxE4mE927d09XrlzR\nysqK9vf3leenKRb4SD+JtOX57K3fvV5Ph4eHCYB5lGc0Gumf/JN/os985jMJELBWkTnebwVgpzYG\nXnkkyfV41E3Rlsb5cZvnTqTrY/RLPN6gCFw6Xbw2N4pCXIS0z7sv/j4v0lIUaYhebRHQiUY3evpu\nIIuMlAOUGIY8bzwOap401gjSokHz36DY6OW4AvfURAQoi7wm+OS1M5GXsV0foytC/4mRFF8IlwGc\nRPDqHpF70UXki93nF1lxBemK1tslUoCxo8gZ3rvH7/1AOaLAULC+RRelN52ebuekMBTDHD3Ou3fv\nJtBAf/M8T9EJPNJOp5N2s3CCLCFy6kl4IRk596Ojo3QYFm1LSvIszYzOs88+qyzLEniCV74LAsXp\n9QKctBvnkX77tmAP/wOq8jyfe3cL0SWAJrUp/X5fR0dHiedHR0fpjIzhcKher5f4d1HkhsrXLt/F\na6Ri3eBrHfl0EEIRqXR6CizgDrklYse8xfXFfMR0mzt3AGIOOotbzev1+txamUwmCbAfHh5qdXU1\nRUNoYzqd6t69e6lwVZoVhz948EAHBwc6OTlRv9/X5uZm2rGEgUYesmwWcXz22WcTSCJFc3BwoE6n\nk05lJr1TpEuJinhqBx4gqw7GpLM1Iu4cYEdcl8NLnksU1a/jXn/FCvqMeV1EF/pWYmkx4o50nkKP\nvx3QuDEsui+GZYuiL0UUowLRc4+G3o2KG1JfgDHCEMfmExk9F7+Pv/1/9yai0iiKgEReLeJ/EfCI\nzygCIQCcGB2J6aE4nqL5eRr5+bjIPUzp7M6LOLZYpOq8imHVmOpxkMi9fI6njcyhXOmT98HPBYke\nU6VS0bVr1yTNe5ooGIwrO2kwuJz/8Nxzz6WTZAHCKODhcKjNzU2VSqW0DZOICHUuKL3BYKBut5sA\nRKVSSR4m/UbxEvLmnJSjo6O5l5sRHaI4t2gNxiJJjzK5zLJrCIIv7AJizjC8Hl0imuURKQAa65Ww\n/WWQb9c5UX/zO8pW0f3cxz3+Sgs8fOTdjR9RN4xp3HYNOHbdCu+Yfz6v1WrpLcPUiEiaq81gLkul\nUtruTirlgw8+SLUTgM/r16/r8PAw1Zdcu3YtHW0/mUxUr9e1vr6ufr8/dzgiO8okpWfxpmLfYlyr\n1bSxsSHpNGoEeYGuO3ExKoWti2Auzi19dpvG36xlj8byDJ4D6HHZcH1FuvQ8upD9aYuMb1yA0fDG\n6xalH/z+okXtBiJWJBdRNCoeQZFODQDfETKL4+R7vDhfZCixaMiLnk/bHlpDKIv4WMRXAAJ9cvDi\nfY33FfGzaJxQkbLyMfqiWAS0fK74zq8tuv+iKBp3yD0QDBJKx+fNlTz3uyLzKIl7J3yHwqZYD+PN\nZ76LBBnAw/cIGm12u11tb2/r5OQkpUD6/f5cmofnjkYjvf/++2lNkU75g3/wD2p/f3/OwPD2bXbh\nYIQBLRsbG8nT9cgMb3ClhgVetlotHR4eJi9zf39ftVpNh4eHqfDWPUw3bBgkpyIdw9p1WaN4Ns4h\n7aInACruzQO82OETI4vU0fhbmi+SXK4jSHH9BQCl/66vkGu2k2dZNlfPAb94hhtBapXYAeYGlvbp\nCwXWGEkcROaKLbzMzWAwSP2gTiPPZ+mSVquVonW8WfuFF17Qm2++qfX1dR0eHiYwSpqTNN7e3t5c\nSqNer6fzUTxq4zxCrr32qtvtqlQq6eHDh4nHjDcWjkunwIx5ijbOdZHLrvPRwZzrHX+NhUe/IlAl\nAuvyQ1v0+bxdaBe2eb7IM47fu9ItQuvS6YFW8RpHjUXPZiHBLPdwInlUxA2FKwz64OHEeI10CoZ8\nuyKLxT07N+DufcOP6Mm5Eigyju6NuJeNgXSvMfY5RmnO84yehiLQKmrHPVT66HxljNHYXjS5B+9j\n9PmM3mD0KF0GIyCMBtJBjD9rOp2mN6CywyXLsrl3vyB7pVIphYclpZ0Gw+FQb731VjrnhFoTFC9p\nFvrIAX7PPfecbty4oYcPH+q73/2uvvGNb+iFF15Iio0UEUdxYxjYNVGr1dTr9RLA4pnc67spqF3h\nSG/kmJ0VhNg93eK89uPUnefS6XkTTu5VuqKNkUnalWay6UYL75/5Y3uzyzP1BYPBYO61EhdNLqsx\nFUy6RTqVraiTJKVI2erq6lxaQZrXbfDVgTRRil6vlw4g8+gAOp2oR7/fTwDHU4PT6VQHBwfpfBHA\nIYcOEokYj8d69OiR+v1+SuXs7++rXC7r5ZdfVrVa1c7Ojvb29tI7dNABFDNzjgkRkclkkl7dcHR0\nlNJ9nETrB6iNx2Otr69rNBqldtyZZA34sf5Eo1yvu+53W+k2gLVEhDOmZwDTfk8En6wJd3QoYve0\nnUdgF9GFp3UWkRtl/ywqZj73ayA3EB4Oh9kIMALPAiCkG9Mwblhi7p8xxdSJF855uCvLsrSjgDyz\ng4w4hggOPGRZlBbx+1iwRX8jSB7OPs/QL4qCFM3tIkBzXnSrKELk98fP/EVul+EsCF/I/O/E+NwT\niTzykCgy6n8zh4R28UJGo1GqV2BHAsaP9rmPMPF0Ok1pD+YCw7KysqLNzU2trq4mxUXhINcAGlut\nlmq1mj73uc/pzp07ajQaun//froXWWs0GnO7glBSKHUMFtuE9/f3kzLloDTGgVIHxHBOCYdmoeyb\nzWby9FZXV+dkiJRWkW5xAwtoIAXB5zzT15MbS/hD2og30cbIDb9rtZra7bakWb3Myy+/rI2NjXTw\n3UVRlNEIqF238L0Db9cvEWi5gwVI5TN457qY9CGAD6BLtAO96G+hRk9Vq9W5N14jy76uPBp25coV\n7ezs6BOf+IR6vZ4+9alP6Rvf+IbK5bLW1tb06NGj5AgAbjgYDd1KnwAApFw9YkEfkG+Koj0dBZh/\n//339dJLL6larardbieeSfORPPhCNJ+2PZLC/+604Fy5HAOK3BnBVtE2KV23y8g2c0f92t7eXgKB\ni+hCwEmR4StS0i700QieB1SikfY2PVLgxsB/IkCJz/britIWHup0bwEEXyrNdh/s7OzMHbftk180\nFv9uOBymfCmvn48RlsijojMuvEgsArHz5s/nJF4bn+s/MaLDuJ1XPm/xejcEjCeebnqRxCmoHs2L\n88l4ve7AIyA+fjd20nxBG4rB594L96ir8LeB4rW7lxu3MuLhoHT5XzpNgfC8RqOhW7duaTAYpBTS\n1eWWozkAACAASURBVKtX9Zu/+Zvqdrv62Z/9Wb300ktzR33neZ68SJQ4qYuvf/3runPnTjpR8733\n3tPDhw81Ho9THt69MdYBRbHOt263q2eeeSalTkhJURMC7+gDPCiKpLrhdZ3gesRPVfb14S91Y9cR\nxZy+tvkfoEbhY6PR0Orq6vdIQj8a4fG6M+E61XWke/VcBy8dpAIipeID2CSllFej0Zh7942ne4g0\n+Bt8MepZlqV0DGeZlEqlBFDoL/2iAFtSSufcvXtX/X5fu7u7euedd/TZz35Wt27d0pe//GVtbW2p\nUqmo1+uluhWijr5u7969m87pqVar6na76VBBZJNzd+hLlmUpagJYLpfLevDggZ555hkdHBzMOTl+\nngm8jRFo191FTiQ6hO9ZHz43RP5xOtx2YM9wcAFBDv6IYh0eHs6lnSNdCDiho0UEo2LBpBtXX9Qx\nQhCNZszZAk58u5g0D1CKDHUEQtHg0PYiTzmO2Y1OPHHSjb0/n/v6/f6Zo+Y5TTIaOG/LxwDqBdg4\naCkCX9E7iv3yZ3h0Jj7XFVpM08WIUXxOnN8I/CjqvEgql8spZOvbvaXT00UdjBbx3fmEsXOD554l\nbaPA2FYLCBkMBnOyg4fjBaHsfHAlBnDJ8zwpUn+Tb7PZTICQN6s+88wzOj4+1tramq5evapKpaI/\n8Sf+hO7evZuOtncAhVfHmiRK8oUvfEH7+/va2dnR5z//eVUqlXRGCooTuUWWnQe1Wk0HBwf64IMP\n5p7JmFHk8JmxU0+wsbGR7uF737YO3x2Elkqzw+oATfSVehj6j+GUZjtCeHa5XE4Rrkpl9qZb6hWe\npMQ/DiqXyyklEQE36xT947sQ4RFGyg02c+Db0Nm2iwzD24ODg2TAJaVIGH3w57tBBbR4Kh1wQ92f\nR7/pO8/Z29vT0dGRDg4OEgjKskw/+qM/qvfff183btxIYJ/TY0nBoOPff/99lUolbW1taW9vT51O\nR3fv3lWz2UyHuBH9oOAW/cFYJpOJ2u22vvOd7+jWrVspWgg/vS4E3npND/0CQLPuPFKOrongm7Xg\nsoDt8KiuR75cLkgTMT8UEhMhXEQXAk4IycYiNGle2KHzAEI0kE/y2iH3knwhFYGEJ4ET/03bEaQw\n8Xip9Xo9CSDG4LxnQyhl0LkrvachN/Iu2M5zT034b36IVng43EFdEahhHh10+vxyfYygFCnCaLzp\ncwRKF0Eo71arNZdvl+ZPW4zRIOYQUMA9Mc2H8uBZbiT5vbKykiI4XBcVNsDItxP6czwiQ4rIdxmg\nzIiYbG9vq9FoaHd3VxsbG7p586Y+9alP6Sd/8ifTibDuIcInjHie59rd3dWP/MiP6Bd+4Re0tram\na9eu6Xd+53e0ubmZ+pRlWdoZ5Ip7OBym39PpVGtra3rmmWcknb4tGDDgRM0BkSQKcldXV5PhKJdn\nu5+Itvi8MSfw1aOu/q6ca9euJWBC6J25xnnylEi9Xk/bq10uLooA1aQMIQC3e+YYxaLUDrKPbHn0\nz42c1+T5EfJ8X6vV0n3+GgCvUUHOmTeOcPc0CQabSICkVHi7v7+vq1ev6uWXX9YnPvGJFBlYW1vT\nr/3ar+nVV1/V3t5ekhGijAAnANeDBw/02c9+Vmtra6rVatrZ2dHLL7+st99+O609BxJem+G6dTAY\n6NGjR0nHsq05rmXpFGQRpcLeElFFPt258dQ4fISXHs3zdDIv9kTuvQaFfnhJA5FcrjvPobwQcOIo\nKxqU6B1LZw20G8sisFAEKiCPlETA4u0vut/BkxtgJiRGBNxAsKjJ2+N9TqfTM9Xn3g/+RvlKpyAF\n9Oy5VhS+K083lBEYOKjwsXsEJQKMeEZEETDxZ/vc+vkQcQG68Szqh6faIsi6DOQL0M8BkDRn2N3A\n8517FxhMN3Iuq26s/H0ylcrsxXwU4BF6paYEGXRvKqYiMESsQQAwnwOMiT5m2exgtK9+9av63Oc+\np+PjY929e1df/vKXNZlM9MUvfnEOVBNRINxeLpeTR/no0SP96T/9p9XtdnXz5k3duHEjhYoxJuPx\nOIElFDMeLcrw4OBAWZalaxzExh1S8JC/8zxPdThEi1DqRFuZL0+ZwTvfygyf+/1+2kkkzYNqDLSf\ntYGecYV/0cRYom6J6535jbIMePA1TjvutXOd83YwGKjT6cztsPG0EO0iC64TAEHU1rEeAJPIFsaS\nqCPv2PnMZz6j3/qt39KVK1fUarW0u7urvb09vfDCC3rrrbfmrqUAHb22vb2dzjr56le/qkqlop/5\nmZ/R0dGR1tbW9OKLL6b0vOvP6NgAxpvNZqpbgvy0VeQG+eRz5o417rwAPCDXRDWZM2p84CvtSzNA\nSHppUaTbeY+M0J9LV3PiCtoNHxQBhhNGmO+iAV3049e7IS66zhXBouhJBEVF0RLvc8zTNhoNtVot\ntVotdbvduaLB6Cnz2z1ljB6nCMJX0DPXR4ASxwQfPB8Z+VQEFiOoWZQGi6AoAotFcxR5Ge+Jvy9D\n1EQ6relAMXi6iTnxhepzIJ3m2B1g+ntouA5gPx7PTl/Nsiy9XXc4HKZ1Eg1CBK/wlIgeJ1jyLC/i\n4zpOaC2VSmq1WukkyldeeUW3b9/WBx98oJWVFX3iE59Qv9/XG2+8kUC17yqg/5x+ef36dVUqs1NR\nS6WSfvVXfzWNtdPpqFwu6+rVq+kcFC/0ZXcOfKUNxoScEPGjfsGP//bCVebJj5B3J4C6EbxtT7Oy\ny6Zarerw8DDN6XQ6VafTmZs7wJ0bcgdx7oFfJLnuQH6YS4pRMXTwOkbjvBAUEOnvbIoRKOk05b2+\nvp54yxxxj58RQl9dL0SnCXANf7nHU6ij0UiDwUBra2va29vTzZs3UwSGqMIHH3yQdtAwlna7nVJF\nyMB4PNbW1pYODw/VaDT0G7/xG2l3jgMwaVaTxPuopNPzdlg/8HB/f1+lUiltmXYg69FInAoveGW8\nRYdvOliWlNaVz/1wOFS3203rAWDNsxx8+NjclhGpOk+2L3y3ThGwgKKH7/fG6ARGgLbckHG/X7co\n2uIKoogWgZUiY4txhmJOD6+YsXnY08eIssqy03QB+X5vw0ODvhDjGBkn18Y3c7o34REmH4vzMwLM\nRQAu8nERuHAwtAgUxrm4TGkdV6DwzV8CB4+lU3lDyfMOGa9NGI/H6Z0apNR8Kx4RGVITyBkKwz0x\nFJbXXOX56fHXblgIiXe7XW1sbKQtuVyLES6VZrUupH3YuXP//n0dHBzo4OBA6+vraRzULjhwqFQq\neuWVV5Ky/vSnP62f+7mfU6vV0sbGhvI8V7/fT4daAeAwGC4X8IVDqwAxLtP+t9cjsEuIufGws+fd\nJc0ZNue3R2HW1tYkKdU9jMenL3gD7MV172tWUoqAXSRh8OKpuA4IkQkIAAKA8HXLbhTakE6PfyCF\nAH/ZPs7ntOeyGx0cwAuf+9t6qe1gXBBRkzzPU1qUF0hmWZZASLPZ1P7+vo6Pj3X16lXdu3dP7XY7\npQi5ZjAY6ObNm2lXCjuujo+Ptbe3p+eeey69t4o1h/H3LcPIICkl5JJ0lNsfSXO7kTyq59GWmA7H\nvnikgwgLgN7TRx6RxDlhTXqBPVE/LyFgbTxpt86FbG9wYXZwIRWnUvzaaIRcoRaFw3ieRwYcYXM/\n//tvfy59g6JhdIpgxz8n1Otj9+vcmDivWGws6hhOxpsFyLinHBdq5J3zyHlJn/2ApNivyBvnl8+H\n3+/9iLyP/HV+xnqUIn5fNLHoUSrwEgXjvJROFbLz0UPinF7JwWe+u4t7UAK+o4a8MvxFMaNg3Et0\nkIhXiMFgyx+RChQfHv/Kyor29vbSoWoUndJfFBDvFsnzPBXt+vba8Xisr3/967p165aeffZZvfHG\nG8qyTDdv3lSWzcLj/X4/RW6QdwoVY3gfJQ94gue9Xi+dGkuhKnPjRjKerYKihgA4eZ4nrxbD5DUX\nw+Fwbr3DDzcCzE+RAr8sKcto1D0lEl8LIJ3qAebD66QAWhg9drBISsXZpBYoBKUWSNLc26aJaHGQ\nmhcYs67QlR71idFExuf9Hw6HqV+sPa5fXV3VaDTS/fv3dePGjQRue71ekmfk5vOf/7x+53d+J9Vd\n7e3tpcje7du35wrDXRfQDv2GH51OJ70UE74y3nq9rv39fTUajZQ29XXucsZ8+P2ARUC02848nx0M\nB588Pcuac2AjaU7efX55zqUDJ1Jx9CMCk0UARTobSXGv2g1nBAfx+ecZRf8+euuxX0zsovbdCHmF\nOH30RbIIWPE94TtHu5LmlKf3tQhgRT575Xusy0Gp+pgiqOK6+H302ov6tyiysug5Rfy/LOAEQxSV\nAEbSgQFGKPadOcXb46Am0gl4kM5jP6eEfhBiBZAAPh3wkqN3BUnaiXQK52+gcDFGKJe1tbUEiCiQ\nIy+ObJ6cnKQCT/rhnrg0MwD3799PRmZzc1N3797Vzs6OxuOxut2uqtWqDg4OtLq6qnK5nA4rc8Pu\nawaPF7DHCZ0ArY2NjdR3UqQu/36qLqeKOo8ARn7GA1ECgIqnIfzcCfhC5MYLS+kD25AvWr4BWZLm\nTkL1vro8QQ5+Me7oE04lpn2ihsg9ckk7yBtpjlqtluQt1re4MfY5ybIsgWYKszHyDk7L5XIC21k2\nezdUo9FQu93Wo0ePEnBoNBpzu3OyLEt9Aij1ej09++yzc0C41+vpwYMHiTfoBUk6Ojqa2x02GAwk\naW69Az4AJA8fPtTW1lYC3f1+P8klER3uRW6RV0Anc0f0TzotjKUvjJE17E6yrz1kwKOTkfe+1oro\nQs9EdjAS0yKLrpfmd3cUGT43aNFTj8/2vxelIGK73nb0PB1sgOr9b1CpA5GYgor9W8QD90YweB4i\n9nsieIpteqjWx8BzvLgzth+f5UayaK7iffH+2M84x0VANgKfiyIMkEcq3Fh5TQOeH+SREOl094F0\nasTY/st2YPiLt040Y21tLSncKLcobZQnoXSPnHnf8/z0BE1PWUizmifSLSidWq2W8snT6TQpsPfe\ne087OztzhhsvejKZHURYKpV0//59jcdj3blzR6PRSFtbW3OGnXfssDuC8UenBD5xjDnPrFar6vV6\nGo1GOjw8TMWIDqaQdULn/M0c+xrx4kCiAQBGalGYQ+acwkP3XH2N8DlA4KJ360jzp0zHrefwnnlw\nHnGvpCRrfuYIJxLHHYsQOg2Qxv1cB8h3HnkE2OucMLYAE4iCbdp0PU0dyLVr17Szs6Nut5te5Ac/\nOOPEoy/0o9VqqVKpJDDFYYmeKgEcIKPwlIMHIecncwCYYf3BJwChn3nCGof38MKjX0QlkU/nr9eV\nQMyfrweXDcCNg9jj4+O5iGehvD1BHn9PKIKBaJSlxSdr+j1+LwrfDRn/S2fPzeAzD+35c4oiDG4g\n+RvwEfvroCgaHdC/gwIWNcLECYg+0TH1BYp1JRB544s0GqnIV69hoX0vmoogg7E7+CoCCQ58Yj+K\n8u3R83LlF2VkEUi6KPK59ggBxh1eOpjwNKc0v0WY00TdCMRthxHEcr4JCoXIgAMTftNnvHdfMw5O\nfYfZ6uqqarVa+syff+XKleTJ5Xmua9euqdvtqtvtpvfroGwPDg5S+ocQ+GQy0fr6evIYV1dX07t4\nUNzscsPDKzr3xQFiuVyeAyikhg4ODtI5Fr1eb24tuC4BaHndBHNBBAFQ5uvK61WIlrILyIGOA/9o\nEKTT9MdFEoALWfXjzeOaRVb523WXdFoQ6cXARKiQ66J6IIwi/PHICjKFfOX56TkckK/JPM/TTjHa\nxKhHp7LZbKrVaqX05cnJiTY2NlSv1/XOO+/o4OAgGVvmql6vq1arpTOp/KwS1hkAGwBLZJLoKGDG\ngbdH3ugv0bnt7e0E8IlMUFDtUSFPFSF/yLM7h0ShmG90lad8yuVy2okGj7PsNPrFmnSHgbXpEc8i\nulBwEv/2/xdFDRaBGSh62UUGyw2iT0Q02N5+UVTC23bDzGLkB6PvR1cz0b5rAgXNhDko8LSL99FB\nwXnRhUXA5LxrvY9utCIoWwQknzR3RXNWNI5F1/P3eW1/3OSgkb4x33gpKOqihelz77wgCoK8EnGI\nxpkdJsfHxyqXyyml4Uo78s5BET/SqTePEWZXzdramtrttgaDQTr1stlsajgcpkLB1dXV9C6Td955\nR/V6Xa+99po2NjZ0fHysl19+WS+88IJu3ryZABTKinqZtbU1bW9va3t7O0Vt9vf39eDBA/V6PR0c\nHCTDRpQGoOCHTVG854dw1ev19PqIRQ4RXiKesSt2+MghiPCN9eLgUTo9CI4CXgwZax4gidKPBdWx\nGPcyECDBAbbXc3i0wmVKmt8KD5BzB9OBN/z0KAPy7R46upPdI/THHTRpPmKLbuVlf/TF3yjtu7B4\njw7plFarpXv37iUZYS2QbmQsgCtOSiZKd3x8nI679xNi4ZHLlO+KcvvlBh9ZdBnzKK2DRa4nzeOR\nDYrvoxPqgJR1QDveLvPt10P020FsEV2aF//x2XlGtIhcwbqHXWQ0i+5zI78I+LAwPFIRDXtM6/Dj\nnqJ7Q9wbIzlsDUNgYsTEyQGC9yn2M0Y9nD+umP160HgRD4uiFbFvMSJ13j1P+r9IJrzP8fOLpEWg\n2MPYfO+7qvgM7wKljpLw8zWk+ZQPyh+P09MKcdcVis5DrgAn5ozryuVy2iq8s7Oj/f19SUpbeYkA\nrK6u6uWXX9aDBw+U57m+/e1vp+3Mk8lEzz33nL71rW/p5ZdfTuHsb33rW1pbW9Pdu3fTZ+12O8nM\nycnJXFSFAkmeT7/39/fT+3IIbVPfE8PPFG8CArxQrwhoO7/9HkAfR537gWFRDkg9SUovaEPXRD2B\nIWRsGIfLkNJxsI3xOj4+TsXNDtx8Z1qRc+fn5Xh9CfqRa2kHOSMFRH3QxsbGnE6lD/F5UX+4LiyV\nSkn+RqOR1tfX1e/31ev1tLGxIUkJLB8cHGhra0uj0SgVnlJHxcF9zzzzjCaTiXZ3d1PfSKtwsNut\nW7dS3+JWYKLngGG3BfDAZYe1y/hpy9Ml7oSjJwDLtVpt7kRXaRbZjzVyABN3ZCLYi5Et6dQWwV/X\nMzGKHulCwEmRQfTw9CKDyWf+A4OYsCiQRdEE/o/P9O9if4uAUxH684XihY9uqPH2JM15Bb5gYjuQ\ng5W4ldH/9ol/GtBXFEWJ+eQoSEVeuIM0R/j+3NjHJ4GQ2OcIxi4LMJGU5ts9NmkeMHq0y5WyKx3p\nbK1Qls3v9qJd2nDgQl4ejw4P39v1Cn28H9rZ3NzU/v6+7ty5o2vXriVFCgC4c+eOXnvtNb3xxhv6\n+te/rldffVVvvfWWhsOhXnvttXTcerVa1b1795Rlmd566y11Oh2trKzo4cOHqe+3bt2aiwAR/uYs\nBWTp0aNHSZFSdHjt2rW0gwhjh1cbPTzAP8bCdzehsPFeAQWsvTzP0xZPzrHx+gqAJP1gHh1oYBhI\n72AQfAt/rNnwGoSLJE9Jx7SXgwIP5QPo/PA66dQpg//u+aMPPUIlnUZpANfw0wG1A37klD4Actrt\ndkqbS0rR7Dyfpe92d3e1tramlZUV3b9/X594fDLs7u6ubt26pXv37qX+MJ5Op6N3331X165dS7uK\nSIOgo0kbAX7oE7JCGoa/PfqDrJHmQV49mg1fWfukGeEV7yfyKCrPJ2pCX4hKYadcN7FT1O0TfOC5\nDjK53+uE4AfzvIgu9E1pRcAgGqhoEBd5/xFYnBchiIwtMqTenwhuojcQEaR7pY463bMo8tIgFh1K\nkv45avYIhxs7FxYMkIeuiwxgHKPzOqJ0+kL78KDICHt7Hkk5b079Pgd0RQBx0TxdJPli8/mm6DJG\nk1CazK90GhXxPLqf2OgF1Q54pfmXruGBsQXTyb105Mp3CLz33nvqdrtaW1tLioXajWvXrunrX/+6\n7t+/r+eff17ValXf/va30yFqHgafTqfpUKkHDx6kMDYnG2dZpnfffVfT6TS93A3ZR8FLSt83Go20\nqybLsuTV0kciLByyhUJtNptzfKNGgAgPfPSdUF7ULJ2+9dm3ZxKZAgj6mqTfkubOy3Dj6anbmH7L\nsizVtJznYX4chOfrY4R30UsHYAFIWMsAOOkUxGC0OU9DOjVcRAzdiaHoU1KKRhAlc6NLv3zbcaVS\nSeuQ97v4561WS71eT71eT61WK23ZBQwTMcGQE+kj8kI9EXUy1E71ej3V6/W5HU9e8Mzc03fO5aHe\nBLlG1hyYOUCD74ABwEi9Xp97NxWggahJ3NLtYA9g5CDddY/rNPjEGqZ/bjOYF+532Yl0ITUnUTlL\nOmPwIrhwigDGFT5tFRkyro0/tFlkjKMhh+neTwcWcYyek/VQM4uVPngVP9cXhZr5P47XozhusF0o\nfPyxTedV5J/fuwhcxL45f523DnCKIh8YBTfWkeL8F8nIRZEfxOVy4SctSqdnYpASQB7gLwvcZYT2\nuV86lVsvAIV31F5IszmlvgH+OQji2RTOkjNniyx9H41G2t3d1Y0bNxKwWFtbSwCFKAsRm1KppO3t\nbZVKJV2/fl2f/OQn1e12tbOzk57Xbrd15cqVOcDCy+6Ojo4S4Njd3dX29nZS0rw4DIPjWzU50K7Z\nbKZcvUc5ABrk5sfj2VuP3QtEscLnlZUVdbvdM/LN2sV4u3PghpJIAd/7WiUS5A6GR2MumhiLH2YG\nQKGmjrEjL4BpN26+K8yjwPz2KLHrEk8JwBdkkigIsu3nbLhOxMAD8PkNCD46OlK73dbKyooePXqU\n1uCdO3f0uc99LoEGTitmnLVaTc8//7wODg4SeNnY2NBkMntpo+tnJ4C8p6IAXgA/PwfH02XOH0+/\nkM5FJr1wtshuoosB+YA/TwOTYiNqCT/9O58PACVRGfrru6YASF4oHenCwEn0umP0IhrEaIDc8Ppn\nizzo+Bn/u1HwNrxNro+G3z93kBO/p6+gzAhsYuErCzrLTo+ALgIqtB9DrFLx7qTz+BB56IspRoqK\ngF0R7+IcxmfEn8hnb8v5ViQTlwWgsBg9PE9/PUTqcy2djVJxvXvNXgNUJH8AEPeuJpNJUt4oC+4n\nVEze/ejoKMmTK/XpdFYQ2+v10q6b0Wikg4ODVOD67rvv6sd+7Mf04MGDlP44OTlRq9XSzZs3kxJD\nWX7605/WeDxO2yzpKx46L74bDodaWVnRO++8o2q1quvXr6ter8/VA0hKQKrVas05AM5vQs6dTkfN\nZlOdTidt4fQXo8EHxs468nSMFyCyG8o9YCcv3GQLqr8XBqPZ6/Xm0m+SUvsXXXdCesBTZkQ8Iuh2\nz9r1CH+ztRxjS7QKcr0ToyHSKbhjcwHANBpUogkeZUCWHcADxh2McvDhgwcP9PnPf17vv/++Dg4O\n1G63dXh4mPrCSbCs452dHbXb7QR0m81memkhMsbhboPBIB13j8zDH+ehR5yQazfqHu3AnkinQJDo\nG/qDrcIANGpPkNF4pL5H4P3ZtOF1UpKSY4b9Qpd4DZFft4guNK0jnU2FFIGLaASh6HkX3Uu78Xlu\nUBGAWLlf9LzIzCJjEfviUaHYTjTCDiaYXD6PQGPRGN17jtd7CqYIREWQFnOb7g1G3kSe+P9F4LKI\nHLBG4AHfiiJiRc+9CPKwLZ4Zn7HwUai+w0M6BQyM3UFYBL1ed5Rl2ZynBSAiWkPBnhdnAmbyfBby\nbrfbSd4wCP4ulN3d3RRNaTQaWltbS4a8Uqnok5/8pN566y21Wi1JSodWYcw5sGpvby+FzzmYyj0t\nDufK81mNx82bN5XnuW7dupVy6BToMt+8MdhfUIjMwg838AAePoOXeZ6nz1HWzIvXj8E/Qu7OS//e\ngSNeMsWGjUZjzsCR3nD9wmfu/FwUMT4MbbPZ1O7uriaTSTK2AAB3Lly/OQhlfTA/1NV4vYIXyyIf\npCIAu34oIPd7xJaoG9GReGR6r9fT6upqAg8uO91uV9evX9frr7+uzc3NZCdqtVrauTYajdTpdNJn\nvJm72+2m55DWAbCsrq6m+gwHah51lU51MM4qtSDOt2gjkElpJoOkdpFBP5rC01r+Ek2iL/5s/o58\nBXSwpgAqpIt4jgceOFeFsSyiCwEnLrzRYC36P6YHitpzA+jILxpd/9tzZjCRRebXu6JyilEfnr3o\nefS3yLh7H5g0XuoWx+5GKoaJ4zVuvIvGswgocE9MuUVFWRQtiW27kfW+0G78PLbp/Y5g9TKAEgjv\nxFNjeBvR2OCFFoX7fSeOG74YLVpUf4JMssMExUfkhGvK5dk5BZwbwlwTfalUKnr48KFarVbanTEe\nz47glmZzsL+/n5Q7yp/zINjNUiqVUuHq3t5eWmMocA8Ru2L0k1f5nDNcMGhZlun9999Xq9VKBZjO\nD5S5F3PSFp4vY+33+3NKnDHCMzxT+MBz3HMtcq6YY+aD+XMPlvs468T10Hm5+Y+LSqVSihKQ2pBO\ngbinsL1wm7nkb9IhXn+CjDPPyCkRphj1y/M8ySM7XphjjONoNErvInPZZn739vbSCwXRo6TmpFkU\n5OHDhymK0mq1EmDHIGMvABt+/o6nVvwsF9fx6ADWsUeeiAQSyfNiY+e9R2C95kOayR4OhKSUNoLX\nrmtcB/CZp+Qc0DBn8MzBpV+P49Hv97W+vq7hcJjkgfsXytvvQlY/MhUZzUUGx41ykQfu3skibz5G\nQaIxxpC4AfVajUUGPeZNFxn6ImO96O84rvOASex/jLoUUeRFUUSDtoqKaV3oY3olzkWRko7GtQhY\nLAJuPp+Lnn/RRLgfZeMH6rlXh7LNstnx6ngZzmPpFHy6N+TFlkQe/FwMvJ2joyNJp2emoCxJY0gz\nQ7i6ulrYxng8Tgeh8fbswWCQ+thqtVQqlbSxsZE8RT/Hh5B5tVpNxtzXOZEXjLenMzD2nNyJwe73\n+wl84IH3+31dv349bWv1gjyIiIgrc4CTg5XV1dW5VC/f4Z1Sy+Lbhz1a5lG/LMsSUIu7QtwbAAYo\n7AAAIABJREFU9TVDv2q12tycX3RaR1J6VwtGJctmLyItSvGSAgKUObBmXaBjIt8isPHdOdPpNAFl\ngAzRAuaQPhDF43/qjySlU5Rpv9frJf6vra2p2Wzq6tWreumll9KBa0RepNOXMZIW5D1NpJccgLis\nui3waI5Hnfg7y7IEgHxt+DX+tvIsy9K5Jg6GJaWieNqFJ8gx/eB+L4D2aIp0GjX09CU6wUEgn7Oe\nACrww0FWEV0IOIkph1j0xzXS2foEpyIjFkHGk6ICRQaU5/v9RZ5LBCb+u+hZ/rtoTP4MB0VFbSwC\nYou+d+8uRje87diWgzS+cwR/HiApAg1F9SI+bzyzaN6LAGgc40VTlmUp3OzFjMhVuTw7O8TD/75Q\n4a0reRSqe0gocLb3ugI4OTlJkQ08FVIGeHL0BSPgZ09Mp6dvhh0Oh+r1ejo8PEwnq0pKCh3jDYjw\nuhiveSqVZmdU+Iv7JKXj5ZEHV+IoP89Rk/LxWpBms6kHDx4k4w94ATSQHqDmhBx/v9/X3t5eeg7p\nL3jqc0rI3Ne8A3XqCeCfRxFQ8hiTuEUZoObgCR3JQVoX/VZir3/gRFN4gU5gfbpxdeAhnaYekHe8\na9aHnx7Kc5EhUooeGaMfGGn6R7qNPjvIHwwG6dC+0WiktbW1BLqGw6Fu376d0ofb29va29ubS82S\nLpGU2jk8PExABdDmYIQUiMsVET36jPz6+if1g0FHFj2tgxwS0YB/jBee7+/vp3uQPyKktEekEp3A\n+Ogvcx3nm4JYIj6eegKQF4GR80D3pTi+XjoNh3tEYhEokeYjAEWGrCgKUtRGvM4X0aJoS4w+xHHF\nZ/j9iwBVfG6MEjgIgBZFLuL951FRVKfoe55X1GYR8Ip9j58XtXFeXwAvtOd8izy7SMLwSUrhfwAL\nyoI6DK+LQP75mwWPMpA0p2ylU6+Hdvmp1+vprAaPfG1sbMzVEPlbVv14aun0QCe2HKLUPRwb+e+h\natr0KA/RkcFgoP+fuTf5cezKrr0XyWB07IOMNlNKlUqlaqBCGTDgkQHP/Wd74omBMuxB+ZWsLlUZ\nTbJvoyX5BoHf5uLJy5D8fX5iHiCRDDb3nnuavddeuzmj0ShiCGhYmzQPNuU6k8lkLVgcC+/4+Fi9\nXi/AHOsJhfHw8BCsD5/n83m1Wi1Jq+A8gMTh4WFcy8fRgwJhcxgzZ46k1fpnTSC4vaGwuAdji0JF\n8bpS20bDWkZRUumUZ3Z2A4XEbzzmQFqPDWGePBbLlSX3llYuRMAbSg9Xxv7+viaTSawr7geQZ8+5\n+yKXy2k0GgWo5ViGx8dH9Xq9iK9xcIjidlkM40OfYTyYe/rq9WBYX8TNYEjQl0qlEicMO5ijOdPE\nenZw7q5JScGKsBYdLACaiQ1z4AngdtcboMVBu7tz0iMfGD93r/6UbtoKOEmVHILNFVT6vzf/zEHE\nS1a7C9KUufHPGDjeS5VrFhuQ1c8s0OCbzNkC71f6e4/z8Pc2ARPGNwUE0odsVFZ/NzFVLmhdgW0C\nkll9TYGEf+6BdOn4+fyk453O6bYbyg0hvlyujlfH/wvA4NmJd/DxcBfL4+PqoD8EI58DEvL5VaZO\nur4J8ET4Iyyl1YnGgBHmAtqcPZDLrU6mdsDkz+JWFPPrbgsEHsoYgMF16BtWIn0mkyIriJW6I5PJ\nJFgVaT3Wi+d2qhoLnZRR3GCwF54i6+sL4Y4y9rWZpnpS2TRVxsRHOE3O3KEQuBfg7CXf/C/RGEP6\nxenOxFGkDCeK2fc8gMtZPMBZypZIq/N8pBVjwTUA4tLq0EjWGSn0WP6S1jJg/CA87uuyB8DFeUvE\nTjkr4bEwLuNYn647iPl4enoKJZ3P54PBGY1Gajaba8xJsVjUeDyO1HWPXUFm8F1nVFOXzGg0CuAL\nS+L9dgDHXJFiz5r273h8FK5ongXWE3DHMyM/YBg9g+ejc+uk9HyqeFzo+nd+juWdotms+6TC25Wg\no9OfUrbuisoCO+lr74d/tokleokNyAIP6TNvep32IwsAZvWH72aBrJeYlyyAuIld8fd8nPn9x8SS\nbGoACJQ9EfNOiUsrIcx6g6VAWaYK390+KDvuh8UE2wCgwcqfTqcaj8eSVtYLlWNx43At7uunrqKo\nAQkIO6wlL6DlwbfME8Cf/gBQDg8P43mxWnHV8Ky4XnZ2dkKJu3uK2BqEPS4S3DRQ8KwbwNTBwYHO\nzs6iT41GI1KRPXiRceZvdzXQRwCdAzKeEQsZRQf4pM8IdxSBU91eQ2WbDSCWz+ejgFmlUolzZgAc\nAGeAKM9DUTAHGYAamlvorG/XDcw54MAzZSaTSSh3H0t+h8xHqTp75syctIqTYL0UCs8p5Nzz4uJi\nrd+AI1jAQqEQrkpnlqgVwrosFouq1Wo6PDzUzc1NxMiQir+3txdrm/GRVnVEvM/S+qnR9I/ibzA0\nqcx3A9kZGElrzC1j6IfRMlfMJ0CJMeYaboAwD27kblxzP7Em/580t6T4m0WYBVyyXmf97da2X9ut\nRGc/+JxreZ98caZKwH/n101bVt+z/mfTOKOQXncTm5EFsHzBpfdPQUDWOPr1oORcaTl4S3/j/c+6\nV/rsWe87K/QSSEr7+jE0D34jvZU5JqVPWs9QQng4IHFr210HLvA44E9a1VdxYeDWFNk0KGqsI3eB\nACCcDuZ5SB10Xz5pv+wbshrI2pHW9xUgi+dgHOinsya4mebzuer1umazma6urqKuCoqIANbhcKhG\noxGZN57x4YwHio+YGRRrsViMs3xQgF5BF3CUji3P4LUhHLxx/g4AhDGWVhY62VKz2SysUUAM13zJ\nwvwlGqnoxeLz4XWVSiVYN8AHqeq+flm7gBtpvQK2xwYxb6wJ1jzzARCEgcDlxfWp+gsL6LLQgZID\nF4AA/fJ96fE+xCJRGBDwSlYagePISWqdpHFPMBeSwlio1+uxhufzeZTYf3h4UKvV0ng8XmMq0Rce\nlMp93XXDXidwHVDsYM/dvO5q4TNpxZB7are0iqNZLBaxXx2YkFoMKHMXrj/PprY1HtyVT2o9Zylh\n/74DD77vf6ef+e9fUmRusUOp+mLdxHRsUtIvsSe0NGjQX/8UqyJ9ePgfLXX90K8sl1ZW2/ScPgbp\nPPjrLPCQ9uelMdoEUP3vrHWz7caGhgJFGd/e3oYVtFyuAj9Rlu4q8FN1CeREqSFkvWiTAxLKtkvr\ngZy1Wk3SiuEYj8drNSZgbRB60opKRymQXSOtZyW5MkAhE/CKNQ2ocVcG/XFB+vS0OjYeS24wGGh3\nd1etViviVvDR397eajweh5VJ312RueXo7M3BwYGq1apms1kcWsjY7e/v6+TkJCzCNEWZeBPWs48Z\njBWAhf6yPrwyJooO5Z5awwCUbYNvntULiaEMPZ7DlZuPcy6XC9cLay0N9JRWAaCMG4yMMykOaN+/\nfx8W/t3dXTApLldh/dIUWGkVh+EuPNYpAJF/0+lUlUol+spawvVIv7yysq83gsu5N4cEEtcC4HPg\nTnVlaRXcTuN77gp0Q8PZIq6Xy+XCJUW2mjN9ktYMEH7DNbPACf1iLJwB4/eMP3sDY+yjc+tIHyqW\n1DJnUJ3BiE7nV/UbpOwsnU33c6o2tczT32UBJv+XAh4WCIvFFby0bv2Aov0zX1AODPzv9Dn4m2fk\n/7SPaXsJMKXf82fyZ8U1gND3PvJbv5d/7myA9yUFWg4Ys4BIuo623dh40ipgFVbDA12d3i+Xy9rf\n31+by+Pj47DolstluD588+MuYs+gAD3YjT2CBZPP51Wv13V0dBQAAEWLkIEpwY+MgnH/MusVgQ+1\nns/nVa1W4364JbgP15cUp7/mcrkopIaiRvkVCoW1k18RgFDi0PmM1d3dnabTaYAg1uVsNltLZ1ws\nnv3xw+EwzlHBiiRYl3vjxqBc/v7+fgRJMjeHh4cxplDby+Vz0TJn0zxYlvcAZvQZZoBr4QbcZkMJ\n+TMAHt0N6e95kDVriJRd1idMG2MPGzeZTLS7uxvuEq7hLAhrQVK4XtyFwP8AS1gZroU8Zn48Xfz2\n9jbqmsxmM9VqtbXUc+K4iFdhbNx95UybtHKNEfwLG+Muv1wuF8xUuVwOoAWAQ9axjp1tdXkLs+PB\nsdVqVeVyWTs7z4UAqTcEY4gx7nuE78KmetCyH/EAU4hr05kcgEoul4vxQ056OEfatl7nxBWLDzIL\nMDpqljoC3N/Lsuidrvq5bAv394Hz97MYHQcHLH5vfn9pHemyQbJYEb+Hf5YFirKUcwr+NrFR3vz7\n6YL3e6NgiAPgmfy7znLxfroYmesU+Ph3/yfM17YbFp+07uZCoUnPwg8LjEBMhGy/39d4PNZgMAih\n4Osd4Uw2gLTKwimXy3F4Ht/xgl5YpLlcTuVyOeYR0OMBbLy+vb2NsuowBgCAu7u7ACLSSsiTPQE4\ng+nxuV8sFlGFFUbm4eFBo9EoBGqpVFrz1x8eHgaQuLu703A4DEt+Op0GzY9gvr29DZDEmAAosBQZ\nfxQMmR29Xk+dTmctVRsXHQoHyp/7UGSO/Y6bgrEB0BUKhVA8KHYUHn0jZkFaFcfaZgNMMxcAMBg8\nYqpwdeTz+QiMfHp6iqw1AlJTme9xG4VCQdVqVaPRKFxqKHCPNeL+yOpyuaxerxfgA8sedxpGgbMJ\nyCzXLbe3t6pWq5rP56G4vZIr5ev9AEoYQBgz9hAgBODOXALac7nnDCTWPrKCQwTZR1RcZX0yBqT8\n+zixXhkv3F2ML+7PyWQSQJjvpG5pADYAmjFAntDHdE3QH5gy/macAEwvta27dbKsYbfU/bssBGi3\n9OGcypM+BDvcw0FGqvAc0HgGBS0LRKT995YK5JRd2PS79Nop25PF6PhzpOzDTynudFz8dQowuB7B\nUSxA/34WQHGLKes+6ZgwB+n9/VofAyDxhoBwZi/1CzslDoBA8VWr1agrgvDyKH/Gm2BWFDtjlBVw\n6+uGoFHcCE5jexGr/f19nZ6eRoE15oLiVADSyWSi+/v7KMmO5eXCFUYHVxcCjLEBVBCfsbe3p3K5\nrOl0GuOay+U0mUw0nU5jrBqNRghTt9x5dgJsPY7FXWcI45OTE5XLZTUajbV6Jf1+X2/fvl1jiljb\ngJ/FYhHKhJORSf3E2nTA5+MFsGdsCVgEOCGH2DPbbE7T0x83DB00My5ulN3c3MTYeFo9Lh9A9P39\nver1uqSVe8FlJmvIZQzVR4k3ccaGFFnkBkyA6wiYQgANwez0odFoBAjzAGfAF4CKPe2l3TnYEuVM\nqq60yuzzNQyYwkB29xMy0d0n3Je1kuoI12G4VfL5vE5PT1UoFMJlCmjCYFoul5G2D2CiX2msi68F\nmBK+6/FkkgJkuR7f1LbGnDiISAEASsfRrLsBeM8VtrtJUFjug+N6qQLmft7c3eA0bKoMAVH+LP4M\nfi3+d0bIAYa7aJyByWIN/Hc/xX6kbM+m7/2UayR1LfEbp/bSACpvKTPibqAUoKRAzN1fad8/toai\n4ZmcKl0un+MnOKnUhaxbk61WKwq1LRYLnZychC/b/b2cnYPF5cKA77A3EJy5XC6qspJNAljxfUGR\nsuFwqLu7O/V6vQA+ngqLsD4+Pg7XTaVSCeGFtcSaIKCS+UegTqfTYBdwZeAGQBATNwIA7PV6wYrQ\nf7fUAGMp3Y8y4r3BYKDpdBq0+uPjYwQlUlr89PQ0ADiAApk0n8+jUirsC1k/HiiLBQ/zhKsJoJey\nZC7PXqK/f4kG8PSaPMzVdDoN0HF3d7fG2mF9o3QZw2KxGIXKYOVYr71eL76DbGEcWS809s5isYg+\nEvPhwbIuS0i1Zd1QGNCDw2G9Go1GsIQYZO5mkhRsDXuJfYSRwHqAQZJWMVuwLtJKX7VarbWYNEnB\nOPl9AFOpPoNdYtzYr+z9arWqYrGoZrMZaxBQ5wY/BgHHQtAH1qnHmrjLGjYQIJS6NJ0B26SbpC2e\nSpxlAaOUvHgT38lyl9DYyExyymQgQPy+mxgUvx+fu4/Tr526irKek/tLilgE+pyOg/fNr+n9yrqX\nK32u7ddxZiW9Jm0TUPPrZzFaKCyEC9Y4NN+mMWH8stxtbiWlACUFsh9bc8oWAY5lxGYlBsKBKwod\nxYrg4RTg5XJVV8BZK0lrygAlTiwKa8796whXMnjq9XooGoQM4AnLE9cRgnt/f1/ValXdbleSAsRU\nq9UIQPVAX2ciid3w4DhcAZ5pgNKn5gjrDvdMpVJZqyuBMiC+wKlqru3gjXXtpxBDxS+XSx0fH+v6\n+loPDw+6ublRrVYLWVCr1aL+CjQ24wr48PTsnZ0d1et11ev1OC6AgnQeU+JAhDX0kuz7pRoMhwev\nQs9j/RIvAguCPCYeCLAuKbKscrmc+v3+mrzwefLMGg/8hlGRFPE5pMiXSiU9Pj6fms0+Ys0AXgCu\nZJAAgmezmQ4PDyOeazqdajqdxtENhUIhGC5nMwGze3t7qlara/sNgIZLw10szkYAEABCDkxdhzib\n5EYAspPYD5ieQuH51Gba999/H2D7/PxcvV4vZA4l+B0wTSaTNTCVxtFwPhhMZ71eD3aFfzxjuv8+\nupgTZyakbIDiAZ8pcHBgkQIMBCuTl7oUHGBkMSnuz/TvbYoNcWXqin3T+7RNrIYDiixmI4vBSa+Z\nAh3+dyYqfZaXmv+WMfK+k/aGEOZzFHN6H1feqeDl9yhhXwc/t7/bbAAQBxnu6kGhSiultb+/r/F4\nHODAi6b1+32NRiO9e/cu3B77+/sqlUoqlUoR4IblDWjBx00DfKBAPcvm8fFRBwcHoVBQnG7lknp8\ndHQUKY+9Xk/NZnOtqNZgMIh55zmxUB0AeCwI848/3dcO7g+Uy3w+j0BEYnWg4FH6WO8oRQQ/v6dh\nCAGMJEVcC5b0xcWFrq6uNJvNIoBwNBqp3+8HRQ27Ij0rOQA7c+nF67g/YA/WivWAZSyt19vYNlOI\nQnbGCEW1u7urbrcbVXV9/t2t4sYZsSleG0ZaGSkEJbMeYUX8pG1JEbd0c3Ojp6enCGz2M2ZYv9J6\nbInHZtRqtcj6urm5UbPZjBRcaZV6D4MJs8iegpmgSu1wOIx1AehBUcPa4ErCJQgrg2JnvKgoDVAD\nXDGOyBH3JuC+Amzn8/lYazs7O/ruu+90cnIS690BCACOvjN/fqAgWXXs+3w+r+FwGPf3lG3PCPI5\nduMpq22NOZE+jBFJmQQam8KVslveuBec9ubzTQyJsyNpQyj4tdLrORuT9peWukq4JwLKn2mTANp0\nff9+FhDx36eAJgVNDubS8fA++7ylsSBewdSfy+fX5yAFW8wFffHfpi69tM+bwNo2WrlcjgwWBCpW\nITVBqtVqHByGICIAEKvR008nk0mACOIVZrNZWN1kq6AomS/PQOC7TvO6ewNlAfXLScNOJc/nc717\n9y4sP5SR08YpcEW4QUUzTwhnLFisbk/XJWaAbB2EMBYqboT5/PmYgE6no93dXdVqtaDlPWbDrX5p\nVcsBa3Q2m0WmD8BisVjo7OxMNzc3Go/HmkwmUdiKuBVpdUbJ0dFRBLrihnK27P7+XuPxOMbEA27z\n+XyUMncrFRZxm42MFeYLZg3wAHMhrWf49fv9UNrI1FwuFwHH7IvUoPI4oVxudeAewB+5wO9gLwCc\nzrK5CwGZAQsDGJ5MJrHOyMrZ399Xr9cLWcTcwEoUCoVw0wCG+/1+BP8yBnd3dyqVSnHfNHaHGCWC\ntcfjcTzLdDoN8MPYALqlVXqwZ/NIq9g3+u01Sbj3zc2Nzs7OIi5rMBjEYYhkFHHtyWQiaZ39Bxgy\nPzwDwNLdbABG1jLz89K63mpAbKrwXeFI2ZZ9VmwKD5wqxzR2IY0RSZU4wtzjPiR9oBxRygixFORk\nKX36nuWuyuoL13CA48+Ttqy4l5TxyGJ2sgBJVtv0HQcXFAVDaKTMU3qvTa+zxiHrs/TvbVPfkkLp\nk32C0sJyQVjhu8XKf3p6Uq1WC8DgAaWNRkONRkO1Wk2np6e6vb2NeBC+JymUJamtrHtAO1kBh4eH\naxYwwIUMoZOTkwAT0qpSpGcx1Go11Wo1jUYjjUajuObh4eGaJQigwEoCIOVyuQA5WKhkIHlwYC6X\ni3RTrx0DLV6tVmOdHxwchGJ5enqKwEqUQUohU8iOrAsKahGo6GD+/PxcNzc3Go1GETtALAJ7i+wm\nB98wUICop6cnHR8fBw3u6a3Q+ihl4hq2nakjKZ4P0OVp68ViMdwizKOzErj0CBjO5/MR8H14eKjz\n83NNp9M1Iw3glrKmKDbkNXEsFLNzxpU1hMXfbrcjQHW5XAazAQswHo91cHCgRqOh0Wik9+/f6/T0\nNIAKDAAybjwe6/7+PornwVZ4TBSGHM8E2GRMYIAc5NIXd415PB/K3uOZGBPe9zLxHtvmOmg+n+vq\n6kpnZ2cqFArhQvWibXyXeXSASdo06xTAB7hEHqfuOgczL63trZ1K7HQQEwhtlrIkWTEjbBYHBkwO\nEdcpU8G1/T5ueWe5k3jtFC2WsQt4acW40Hjtz8HzZ73vv3+J/UhBRtqcbUktEu73c9kGB5D8nQJL\nHzOC0diAKWhyEJHVjzRWI2W80r/T8dl2Y+0RzMfrnZ3VCcLSqjIqqbIAFT5zQeDFw66urlSpVFSp\nVHRycrIWqMh18PljfeFSqtVqa64RFAXXAFAAQqDIEUSHh4dhKQ6HQw2Hwyi/PRqN4nuwOE7rOjD1\nNYFARAjDmiCApQ8VEkBnPB7HAXQoluVyGSmSlFZ3xsT34HK5VKlU0uvXryO1m6BhSuvTp0KhoN/8\n5jeh6FA2rH0swDStns9gip6enjQej6OOhfvykV8wUlyDGKJtNj+SgPmVFHEYruQlRYAz1jVrFEWJ\ne0ZSBMd2Op3YB4xj6pZfLpeRDcTaxjWX6gyYM2KhDg8PA6C78sYIYMz7/b5KpZJms5n6/b5OT0/X\napB4n2DQlsvlWir009OTTk5OIn6ENe8l7l0/sOb9sE2MGUAY7zljwe+llWz2SqywQ9PpNLKGptNp\nPPt8Ple73Q55UCqVwh3k3gPPusHFiosLtokMO/qF/CMTj/ly3fBS22q2jrQ5hsStCd+8zh64sGJA\n2ESpAuVeaT/82t78b++jpLVJ4/O0H/Q9vc7PaZv68tK1NgEWf52CI373U/1iHF2Q5nKrACfG2AHF\nJgDkc/ISg+ULOAU4WWzPz1nsv0RD8QNkR6NRFBtLgyQXi0UEVgJgGGOYCMD3zs6OLi8vI9sHUOjp\nh55xgiA7OjqKuWE9ovQxCnZ3d3V0dKTXr1+rXC5rPB6v+ej7/b6k573Vbre1s7Oj8/NzdTqdtbLm\npEgi8D0DhfXgQm9n57meSLlcjvRqrC83LhCCWJtYyKVSKbJ6Dg8PI27HC6dJ625MX3P0rd1uB0DC\nVYEl2Gq1dHBwoNPT03DbdDodzWazsG7Z62k8A6CCPQGzAGtCf1Do9I2AXgcD226kkgKAUYB+VAHx\nDAQKo7gYG5iFYrEY7k+qrnrWUi6XWzt8zo0g5n00GkXMCnPpzDigfrlcnTkFqwhIgiEAGBDbQiA1\njNf+/n64YUulUrgfmWdcs/xP3weDQewvZ+QlrYFs1nmlUgmw5YYz7mAK0/Gs3lzHIX8BtGQHMgfz\n+epgy8PDw3AX49bCFUvDYHD3HZ/73vKUZGnlsnE9gaHxc2T11mJO6Jy7AFIkyUQ6s+KfO5jxhydz\nwT/jXm7lS1oTGlluDmcMvB9Ob6V0Gc/nz5HlcshiAbieAx1p/SyWrOukCt5f+3ilcTQ/p3mfUtCH\nEHbFyn3cb5+2rDlM2Zm0r+n3eM5N8TLbaARDEvMgac26xipB2HKo3f7+viqVSlwHoYTi39vb09nZ\nWYw97AjWDu9zz16vF2nGzEs+vwoKdX8+1DQCClcJ/mUvtFapVPT4+KirqytdXFysxRT0er3wOSN0\neVbALWwNbq7j42NNp9NgZaDQU0DjLGW1Wg3l7dT83t6erq6uQgG51c7+cZct4wXIub6+DkubAEZA\nFgDm9vZWp6en4cbE/YJbGSXHa/fdM5/MAVYmJey5N/LKD7KDVdtWI/CTDJh0D6JQUdhkzCwWizWg\nC8Phhsx3330Xqa0EiM/ncw2Hww9kDe6Vg4ODNbeJz7G7OZHbMIIwJMvlUu12W7VaLWKtSqWSbm5u\nIpUXEPX9998rn8/r5uYmMlJg49hL6Jvlchnpx9VqNZQx96SPsO+s6WKxqOFwGN+TFOzrbDbT0dFR\n6B0MH28pI0gNFhpxJRgmXjSPuJB2ux3zgsyg0Sf0H2AsZXl5VuQxe4igYFhJD5DfuOb+P67V/1+N\nBQcac79Z6mNMFVjWQLjCZDBoKevCNfmuKzgHCDRX6lhxaR9o7mNN75VOBH3yZ0/vze83fe6MT/o6\n67cOVLKYpU2NOUndYPx+U7wL92RcHISlr1PQkQXYXgJnP4cB+iUaAimfz8dBYAhjWhpLAH2bz+fX\nSmLDfuBmKZfLkcHC+sP/DWhAaRYKBfV6vUj5Zey4N6CE115NFgHi6xsrVFpR0g8PDzo9PVW321Wh\n8FzVc7FYqNlsqtfrrVVlhTFyhoHYA863IXMHYITVS1+xIEejUQQn4h4AFJJ5ICnqlbgxQmPt3t7e\nxomwjUYjxj6XywVo8tIGrLVqtSpJUUOF+UW4M9Yu41BK7hZmrlAU7r4hm2PbwbDSqvbNcrmMmi68\nv1gsAhACQgHCPD/zj9uAAFbcb+VyOcZ0Z2cnWDAHGpLWzrdhrtwo9MBZwDcgG6AprVwOgC32ArV1\nDg8PAxywrk9PT4M18/oixWIxjI6DgwNdXV1FcGylUlk7HZyS9awFCjE+Pj6GEVAqlTQej6P6MLFR\n3BPdxfi7HkHewHLs7OyEsfD09BR1TmAqXRcDIKRn8OLxMakeBqQw/riT2Y/5fD4AkOtP1yWuf7Pa\nVsCJA4Y0/iKNN/GWZWmnQpff8+AgO+lDhSmtKlT6595SpekDysR68/vR3ywl7Ao76/mDW9nQAAAg\nAElEQVSyhGlWS4HIS6/T936uQvcxcICSRZungOKn7uNzlLJN/h02hLT5UMOPAZxQnAyKGSAhrao8\nkh3CuKEI3bJZLBbhTsnn81GqHTcBcRUwBE6XkvYJPetl6z3+gmqs3P/29jZqTvh5KcvlKsaDfUYt\nCIIBPdiVzB/SKgkKdcODfuMuwLqVVkrZ/dXcj8A9Mpomk0kAAmJ63KID3LDn+Iwx3tnZiQqgjAVB\nxjwzAMGtQU+9Zh4BMhgngBqvTSEpsnlwH+zs7ETNGJ4XCh7Fj3LfVuM5sOR5ZndnIBsZAz89GmXK\n39fX12q1WuGmGA6H4QYjaNtTZgnqdiYG5cfe9zAAmBdq07A+fC1Iz2sAlgewm8vlIq240Wio3W7H\n+nj16lW4aLmuV8SFMcMooC/oOhgNwADsHzVvAOLsXZhBlxWSIijZdYUbPbCr7p4qFAoB1mnuQgJM\nelFGD7xl7QM+PF4OGcG1GS+CpYl9ISiW/eHxMWnbGnPiSsxdIh7TkC46ab0UOJPg3+MafId/afxH\nqjy9OTPAPwaU+6TX8gXi7h4HTy/52TYxKylT8VJLwY2zPlnX3XTvrOv6tZ1id6Di4+LzmMXw+Liw\nCdwiSGOFENbp+POdnxqbX6rhz0WJkqWwWCzCGpJWligxG+VyOVJqpVXAN8IWoYxfnO9LK6HE2GC5\n4hvHwuS+xFfk8/moh1IsFlWv16OYGvcDNCLEPQDQBae0yjRAKHY6HdXr9TUrj/7i2vDgOxQ+Cg6/\nOKyNW+XdbjeEP2OJT97dtIwL93d5gJ+fIlRY1s5kMF5ck9+STutWJcoUNqtYLOr09FTSqlDY9fV1\nKB7fl51ORycnJ3r//n0oJZgwYgO22fzcIU9vJh7D9yTfA5yyXjgc0vc88w/jSNYPFrhnllDozEug\nS+sy9+DgIOrfOPPg4A45AggmPdzlGSxFu91Ws9nU/f19VCTu9/ux/wgy9/kk9orrs5ZQzM7wM8/o\ns8PDw4jLce8CwJk16UYi/7OPdnaej0mgH5xFRWA8wB+d5CQB1+CejAX7kixDXJsYP8TveE0fjIub\nm5voB/MNm/WSQbm1mJM0kAzBmga0+nedqXD6yq1oz/ZwMJA1CJtcEln9ZQLT6wKsfHO6/y9Vxs7S\npACB9/k7BThZQjYFSemz+r1dsfv7P/X8PAfPynUQHg5OfFxShmMTI8K4QkO6PzpVMOn4+3h/DA2B\nRL8PDw8jU4D6ByhBT/ldLp991QhmSkZzPgxCAqsGBY+QcaGAi2M6na5Zk/QL0IQFisChgBrBf5LC\n3eNCzFlHZ0G4TqFQCD85+xbQhKWFYeGl2zn0D+XnhaoQvrA3zWYzrgUgoEAdY+/rM907PAOZM3t7\ne3GgG0CDOapUKlH0rlQqSVK4tegrcQfEAJFxc3Nzo3fv3uny8lI//PCD7u7uIn6kXq9rf38/Yg16\nvV5kP/kYe6G2bTVYscPDw1iPBPUSVwPbRio8MTbEHLi7EtcCTCHl/lHiyHXmHjcRABW2AuCOwscF\nhuJ3Vsf1ibt42Fs8F7KN92azmWazmY6PjzWZTHR8fKzFYqGjo6NwMXqqdKPRiNTxQuH5ZOu0lgtu\nU+Qj4AP3JQwe4yqt13hxQznLbYlrCMDMOiVdn/nwWE7XN8hlxphxhP3hc4+fkrQGwIjl2t/fjwwh\n5hhm8iWDfavl63lA90PzubQKQnWB6ErLgUUWg+LXdbDD36mLZhMYSAEIgtIXd9YC8b44EEgVtH/u\n/dv0efos9DEFKllAZxNweak5s+XWBe+l90xdPz4ffo6Fu+AQfq5Q/FousDb1+WNgT9iUtVotrH+o\nbyq7OvPQbDbDZQENzriSscN3AW8IGhiGXG6Vosj8UrgNgUCUPcFqHniZz+ejLsvt7a329/fVaDTW\n4lVQADAjZAwBFIbDoer1etQBWS6XAX5ggLrd7loRKmf1KEzn4wi9vVwuI3DYs3CwwLCqOYBP0pqf\nX1qtDYQna3WxWGgwGOjh4SFiGRDAFFAj/oXnqtfrcaowMqbVaukPf/hDBC7O53ONRqMoZNfv9/Xj\njz+q1+sF4CN1tlqt6vLyUu12W+12O/bCYvGcccG9ttkIcsXNJK0OoUTRu7zF/UOslLtBmKNcblWA\nDyXs4BDXBNflmAHuhbvC5QigGpnlgdmcrkuwMy7AfH5VCwS20M+HAUjAamL9z2YzHRwcaDQaqVwu\nxzEQMJMAq8lkEvdz45uGrIS94Tlx8VF1OmX9XD8CQFi/BOSyVyhS6CnTjDXzcn9/H6wpoI9qyQTz\nM1/EscC0kGnkzOPXX3+t4+PjMLCYZ+YQlmfjmvvfX8Y/3Vwp0lk6zmAyeU5rO13kFfNSq8iBQKqQ\nnf52sOEgCMrRQYffnwXCwBLkBrJ0xOl9cX9g2md/nQVMsoBP+ltpvUaGC+D0en6dn2pp35mTlJpO\nWSF/HhdeCBL3xSL8fbwZYzYcBbLcr5zO6bYbFs9i8RxAh6Bwf720iiPBZUHxMqx1D8J0NwiBbbwP\nPcrrg4MD9fv9KOXOukSQME4cm+4WH4Dg5uZGR0dHITCxdAjgw3WSy+WimuXBwYG63a4ajUYISkkR\nJHd/f69qtRr3WiwW4RqRtMYMMBbEFJDV4zEguLiq1WqwHygSrzXhbiesa99fy+VSn376aQAUhCvZ\nRygq+ozywJ2B0L2+vtY333wTypI6NFSTHY/HqtfroQhvb2+jGNhy+XyOz2AwiL4j8xaLVdDzNptn\niuzu7ur9+/d6/fp1GG2uZDgPyt1S0spVyZ5HNqXBtMgAXDPScyAse6VWq625/AgyzefzGgwG0Q9n\n27kmv+V7xGF4GvRyuQyQvr+/H5VU2Uf0m7lvNpv65ptvdHZ2FnILlxJgmj3hx0fgDkLf4M6RVgdm\n3t3dqVKprAHy1IPAPfkbdpT1RGaTFxcEgPs1AGH0zfuKTGNM8vnnEgMAGK5BWQCO6vj222+1s7MT\nxewwYvw8q01ta+AEAYHQppOe1SB9GKvBd7MUubsA/DPpw5RghLazACmY4btu+TMJULgOQLyxgNOF\nlLb02j/X+k/7mgVwnDFJFXcW+7SpIeRTMOL0Yso6pffgOg4IpXU3TfoZwjllqPwZfU4+BubEQdx0\nOl1LpcPSL5VKQeX70ewoIKwyBMZyuYyaJQh9ytYzPgjrQqGgZrOpfr8fcSfD4TBiVVB2i8UimA6s\nKazHnZ0dtdvtAERuXcLUULW1Wq2q3+/Hcy6Xyyhc1W63I5ZAUliDCORGoxGBvr5e3Vr19TYYDNZ8\n8oAtTrf13wAgAFyMVSrEp9Op/vM//zPWcqVSCQFcrVbX4gOQLWQKUTQLvzsgA1CFC8c/90qg/X5/\nzbWHmyCXew5O9HohR0dHv+Qy/qBR7wPXijPZ/E1AqbSqiwIwATwiD1xBUmUX5gpggouDNfn27Vt9\n8sknwUgShE2sA4odoMF9YDYWi+e6QtKq0qqn4cNQ5HK5AB7sj4eHhwBkvV4vlD/rtV6vazKZRMaR\npKggm+4h1h5AGcaPezvDgovPDdrlchnB48wB44keQ74gi3AxszfSEAWuSeVjjCxncdGHsKcE8MJ0\ncZ3Dw8NgbnE940ZirwKAmLOsttWAWP4hUFKXgH/XrWRpZQXR3NJ2JZoFZJyN8Ws5SHJ2xBkZX1R+\nH9+wriz9WVIAxLU8L9yfmetmgZYUfHn/0s9dIPgc/Fxlzqby1L0UlHDNtH/e99SNln7XY4vSefeG\nsvONxXxtu7E5sRIkhQBeLp/rD/C+pMhSgfkoFothJUrPzwjVSultDtiisBQsIsqQrB4UI6m9pGfu\n7DwfKEh/cEEQr0EtDqhed2EiWGBwmEcCNu/u7lSr1TSdTsOHz/4ikJEGNcxa4jVgi7VArA0CDkuX\n2AOvnYKlxxxIq5Nccem45f7rX/86XCmwP5Iik8iZPvYBLrFcblVTA0AjKZ6T4l+sZ34DU1AulyO7\nC/DEHACAyOaAcdtWA2zwXF6/hXFgbGHZmFPfwz5/Hk9xc3MT68xrdHjGCsCW/tzc3IQ7j2wXzjbq\n9XrhinIwj5uk1WqFiwLZ74wsCpcCf/P5XCcnJ5pOp+HeIgi03+8HKMNw9aBPZ5Wo0QIAd73D/mbO\nPY6MuA/Gmf66/vH/CfJlHeFOJ5CY37u7ibgxZ2gB1Bg36AHXdQ5YyV4i/RkjHpDnpRKQd5vaVg/+\nk7TGYEgfnh+TKuAUZCBkstwt/hsaQt1ZE0lrwpc+eLS4uywAH1ngwMFV+s+BA8/uzEUW48M903+p\nYua19yvr2ik78XObK/7U5w8CBiHzHbd6HYT6c6Vj5N9HKaSMTdY1/ydg6/9lIxiQvkNNo+xIU/Wx\n4IhxgAbCAeEB1Y8w9dLwbpGjkIlfkVZr59WrVyHIpedTcQeDQWRPYPEhuNxnj0JmfAEY0M4ooMFg\nEEqEg9QI5iRyH7CBhYg17a5arn14eBisCs1ZDBTcYrEIqh6GD6sv3eOpLPjb3/4Wlm+hUNDJyYlO\nT0/XXEMoLa9+ydwR0OsAiz55bASKgecEgKHIYbMAhhR8k/STgYO/VAOM4PKAbfC96jE6HuMEGwFD\n5W5a3FiAXSxyxo+6NScnJ2HgoGx7vd6aq4IUYAf3vq88VsUrGvuhlPShVqupWCyq2+1qMpkEW+Lp\nuE9PTwFW6C9rgvWSMtej0WjNPcPzo/xd7klai0NzPUffkROMw+PjY5zf5HK10WisudbpFwwv1wYg\nOcuTpm17kVMYzFwuF3PF34wV90X2URQuLSbnbSsr3gUzDwztJX1odTMZKUDwICGaT6Jfi/eyfiMp\nQE0qBHyROFXIc2SBkPTa6Wf+/K6gsxiILDdJyrD4okmv5X3w/joI/Cmg4vEhWWAoBRwpCPN7ZzEu\nm1xDKMgUsLq/OmVRtt08IA+h46mg1OgoFArxXTJNACJkCBC8R4Go8Xi8llGCUPB/HPXuAuz29laD\nwUDNZnNN6J+ensZhf9KKISOmBLbHmZLJZBL0d+qnptrmaDQKQc6zko2FUmYuy+VyWN4oddYbIMuf\nk/vCNAGaUAoE5iH8vVaGGxCsZ0+rpBLrYDBQv9/X3/72N3W73agMSjVcwKa0MjA8UwX3F8oB9mRT\nqXeeCcbED3sjSJR1vq3GesbSJbaAZ+RzACdrfjAYxNohoBmXg/Q8fmRD+fWYM8aGeKD0b4JtuRaV\nVtNqvMR0cE3WH3EsXJv5lBQxFa9fv1apVFK73dbR0VEcE8EzEPtCn2DDPBjbAdR8Pg/mhnXD/WFS\n2X++dgEQACze93FCjwH8fC8wRj62MGEOGj1+krmAHQG4AaQxmthr3ieeiecjoBZmiHttaltx69AY\ncG+pUnUl7r/jM/6xoJyF8e9nKX82FQuGzYdA8cUEgEoVa9p3LE/pw7LqHheR9TxZ72cpewc0KRjb\nNIap8v+5TAP3YB7S+XDWIgWQWc/gzJNfw8fvJYDnAiprPLbdoO0BGghcfL7SszAjtY6qkCh4LDgE\nG/+7heZjARvglpOn8y6Xy6g1sb+/H0IRv/KbN280HA7jaPhGoxFuFKhlD1ymmqunOXJPQIUH2tE3\ngn3dtYL/G9DPZ25NEZ/j6bX8lvidbrerX/3qV3GGiI8Zc4Hy5PestcFgoLOzsygshsAmXgda2un3\nfD4fisXpbJhExgwXM2wP90bOwB7QcOF5PBtjtG1W0BUmlq9b4SgaWDK+T0CzK02ChpkrAsYZA9ht\nnhngjkuBAGXYht3d3Si9zlxdX1/rzZs30adGoxF9ocEMMl+4OCWtncHT6XTimXG/cShmt9uNzDyu\nybPhBsMgwB0mPQf4NpvNOCfKjT/pue7NmzdvdHl5Gc8qKfa2tJK9i8Ui9hDrhWBtWE836LzyMKUO\nPFUckAcjybh7yARMaKFQCPY1NRB5loODA43H45hTCklS6mBT2+rBfw4ooJC8ucUOCOG7bHoXWKll\nnrp9UuXHd3jPfdQe7Eo/HQihGFIA4nSZswqbmJWUIXpJyaaAImWMfKz8mt4v/5f2fdM9nZ3wBZgF\nJl5ik9L7cg3/XRZTxOc01oF/n+fednOLjIOwUOL4xVH8XscD4QDVj5Xn1pnXG6FWiVcYJVMGId1q\ntXR2dqYvvvgisngIQAWE397ehvukVCpFJolbw2REAJxIBcflgv99Op0GGCDd2EGBzzkWrbQKlE4F\n7c7OTpQSdzD79PQUQcOz2SyybebzeVSklVaH0mFY+BwBkM7PzzWfz9VoNFStVoMRYe2hXGB1UGQO\nynyPM1ekIrsrjWdjjnyto9Bhb7i/P/c2G2NQLpeDhSBo11kCl6EoYjJxcElStt6tddgHfo8iWy6X\nUXUYxoCxef/+vXZ3d1Wv19VsNjUajdayyjgzygsDSgpWAVCFQQkDgKW/WKwOzzs4ONDt7a0eHh70\n7t27tRg85h+w6mAY+QnTAKPEOVR3d3ehrImpYT/3+/0oYoisA0x5zA9Aw8FAr9dTq9VaY7Jo9I1Y\nkuVyFe/F/f2ZMCrQA/SBE8HZS8h25kDSWlzNcrmM88OoZ/TS2t5aQKy31AJOYwiyPk/f5/8UkPji\ny2IZ/LvO4nhglCvh9DXXkFYAIVXim57TNyefu9spvY//1lt6Dd5z4JAFRNJrp83dKVzPwRx/p/dK\n+5mCEx83roew8Of0+ffxcJCYPvfH0BBO4/E4/NZsRKwSBCBWZblclrQKzgaceKbL3/3d36lQKMTJ\nwFiOg8FA7969Uy6XCzAEa0J/qtVqWPC9Xk+S4vvSOgtJH1EmKFmyD3jP0yA5NJDnXi6Xa4oL1nF3\ndzdAGMGf3N+BLPvAA3BdydH/YrEYVUW9FDfZSxgZKErW1Ww20/v379VoNLS7u6tutxtjx72RAfTD\ngzs9+JN94EIcgQ8j4IwI+yVlx3iNhc71PSB5Ww0lg9vK00xZJ4yBpwVLK8DCOHrlUa7nAJaiXe12\nW2dnZ3Fd9grjTAG7k5MTSYpA2vl8HooXF9xsNotAXGmVPdTr9VSv19eU8N7eXhypQAYOIGmxeC4R\ngDHB86XMhJ+fA+PkMUyPj4969+5duMekldxwhp7vL5fLyIaCuQAguvwnEwc56UGurGncOP4ZrBHP\nwDrH/ULfYLEmk4lyuZzq9bokRYwZMSVkatFv2CbG2NmzTW2rbh0pm/Z3xZYCj/S3qUDDqvNYBfdl\nS+spwalyS+/rVlaqPCWtKckUWGSBCr8vCPalfvj9U3bFFTXP5a/93mlf0mfIYlByudxaRDv9SZmP\nLPbCv+Nj6s+JcuFzR/9ZIMfvkQIlf55tNq/DQq0Q6FwKauF7JVASdwaCQ1oVYOPsmPv7e3399dex\nVohFYbypXAp1DWDwuBO+32g0tFgs4tqSgrKFMmd9jUYj3d3dqdFoqNlsBuhxgMj/uVwu6pnAbGJl\nQzFzP7IoHLR4MDBKnswfPzgQBc/4YdFKq7NbsJIZjzSwtlKpqNls6vr6ei0bqtFoSNIHz+fWqwMd\nVzbuapzPnzOg6C8yCFACO+W+fGdWuB7MGHEV22qpocG6Zd0ABjHyYEMAgrh4pBWDxPyWSiV9++23\na0wV1jfX4iA9Ulr5h/wsFp9PEB4MBjo/P9fd3V24DTzFmPUFI0gcFUGgzLfvHwA3VYmZ0/l8HjFT\nGBOAy1RnuBuL1PDZbBaMI24e2CMv+4+MA3ABInDBIPfo2w8//KA3b95Ef9jT7AN31bpBzjjB9HgG\nEtemfguAnnpKzt4AUGFrYHy5Pr93eZDVPgpwIq3T+iwIpzRd4XsQTcouULnSYxMQPlkK0wWCtAqo\nhbb2Q4/cbeD39UlOmQlXpOn73g8sTPrpz5QqbK6Z+il9nHjtQMw3tTMpm1gHru2shlf4pPk9eN/H\nm/fSDYvicPeZsyNZTIz/7QDJx3SbDYsJ94yzSoABXB8Ezs3n80gfdmsd6hXQ/d///d8aDAZqtVpq\nNptRhyNNnweoLJfLtawEhAyFne7v7yPlEEsWAYSVhr+43W6vgSlcq1j1rMeUGSBFkbgJUkM9JVLS\nGlDy9Nzb29sI8JW0JgMeHh50f38fwg5g6AYDAtD3TqFQiGqZBE0Wi8W4n7vPABWAKBSD19IAnLBP\n6Etawh2WCreeM4jufvJgSErE89ttNTKwYDZgTIrFYsQhsa4A03t7e6rX65HCzrNC6e/t7WkwGGg4\nHEbJ/+FwGPVDzs7O1gKxl8tlKGPiue7v7zUcDlWpVDSfz6Omz+7ubqSvshZZ4wBRMn6YO+YZ5sVT\n9InLcLa7UqloMBhEufpGo6HxeBylAxgH4mJwJ+HOgaFhrVGUkb3schX2ETewA2FJ8WzUYEEuLJfL\nyMxjLyAvCE5ljJ2VonEvntuBXKvVCtACq4ZRgEyBFYKB4bkZ75faVmNOUJ4IFDa/B/c53cz7rlSz\n2AwEv3+WZWUDYFLLm3t7rAnXcEvI3RJQnL6oUrZDygYa3I/fg0AdwKRjkQKllGHKAjZ+nbRPKUAB\nlDhtjb/XY3183NLX6dz4M6VMjbNPqWsuZWf4Ox2Lj4E5QXFj2VD0qVwuB42NJSkpAmWxPBC8jLW0\ncgl88cUX+qd/+ie1Wq1gndK9IX3oBhuNRiHU6AM1RlDOpVIp4iPYF36mC/2Bzsdq9APTEGTua5dW\nh4nhk0epsdddQLJm+A1ABmUNa8Hz7OzsBC3PIWysVUBduo4AB3yOZT4cDvX+/fu1UgPOGhIvwFgB\nanzNwtweHByo0Wjo4OAgik+5C8QZE54ZS5lsCL5Lhtc2G3NJGjGHWKLkAFUen4b8QGEBaN09BoAc\nj8dxBhVxGJIiriOfz6+tH2dEAIK1Wi3S9QkAx/AkuBlQCeCRFO5HQClj77rBi6Q9PT2fA8XexV2H\nOwcmVFpl72GU1Go1LZfLyE5yBtNZG9Y6ip97M+YeR8Jev729jfHl3nt7exqNRhqPx2sg3wEO93AZ\ny+f8o+4R8+s6mO8CUJDN6RlgxKwhI16qcSJtsUJs2lLGBBTH9936z7qWC+RNqYcpc5AiT3/tSJL+\n+b0duW5iJFIXS3rPTfd2Ab0JRDjY4O9NIAHFkY41/cpS6ghJrHi+70rQ3VFZ983yJzq4yOqj59an\nv0+BKb97if35pRtMEBtVenYh5PP5UDKkCyOAKJzm7AfMQD6fjwqiHORVq9Ui8HN3dzdYF8YHC2s+\nn8c9Eeqz2UyTyUTFYlEnJyfhIvI+cw8AELUKoO9hflACnp0EW7JcLsMq9cqQktasWd8THrTnmTaA\nEFxhZCM4g0rQYy73XHmWYEiYDE9zxF/vIJIU6dPT03hO3zdY1MwPgtWtbGQN4BNFSd+k1UGDrFmY\nKtaOK3Dq1my7AJukYCoAbACxQqGg0WgUh9tJK/eJB3HDbsGEuUzmkMTLy0uVy+VgJAj4Rg4/Pj5q\nOp3GuLgrHUCDAmZvoNilZ6DDWVGsPW+AnkqlotFo9IHRw/ol7qPb7QazeHFxoU6nE+AXdoA1zLrz\n1HjcvHwPVxagB3ewsyAOcL0YmqSQCa9evdLDw4Pq9bra7XbEvnm6PnKWv53h5zmdQaVfuVxOo9Fo\n7dRo9qob6R4wXigU1tKikTUYKZvaVsCJU92eNphaOG5ZeCaKNwSbMzAgM2cJuD4I0ZV1lssFwcWE\nuOXvAIrN4ddz5erfow8pU5P1PCnocIDm4+hj569TMObf8f5kuZ0khYJxdM3fWYDP++8AhPt5H5jP\nlLZkE6bsioMwd/850k/B2bYaQhyFlcutykBjZeNOAajwTNCiKF18ygiVSqWidrsd6YcINeJVptOp\nZrNZBKzSB5QFJyNLz2xMr9eLVMJaraa3b9+GO9PvjRCjj3t7e2o0GppOp0FLQ1F7jQ4XuoCKUqmk\n2Wy2JpTc0sSqRYCxdgigRQ5AkXNtBGGx+Hz+DrFSBEH6PgUEHB0dxfoiawmmxNlPAgelFbhBuDN/\nKCHcMMQNADYoh88hfmQg4UbiRGbO7Lm7uwsFSbbXNhvZIex9mCDfo8wxQALlieJCkfEe4zgYDAIM\nE4tD7AZjBAPpLnh3Ly8Wi3DjLJfLMBL6/X4Ec3M0AfEcAHECl5k31loa9+LPiFtHUuwT2BxcOs4i\nciwBOgXQ0ev14m8H0hgZPCfj5rE9DiQkRYD3bDbT6empJpOJptNpAJPHx0c1Go1YkzT2jfede7Af\nceEir5En7KXHx8co1AazA4BkXUsKA5R1/ZJrZ2tunSxLN3XneAqSlJ2OmwIaJpSFxaRDO0orq9QX\ndupy4H4eCOclqlOAwYZyxsSpOleeKRhAADtLQz8dIHh/N7l1vG/+dxZQ8XFM54HFJWltTL0/L82D\nP5/f0/vA/LoQwFqHkuQfY+kuH4998Ptss6X0rJdBZ85gQO7v76OgExYkjAc0KoAGCrjZbK4FVO7s\n7Oj4+DjAy8nJSaSkLpfLOCCPOAbp2SKq1WqhdDudjmazmf7+7/9ep6enkhQH4S2XS02n0wAaktaE\nv1dS3d3djZNoHZTzDDBApVIp1pfT/J76m84lhekQdMSI+FrwmhUEJKNAnZ6/vr4O5URm0/39fZwg\nLSmYKAdAsEjul0cws1cbjUb4/AGDjFen09FkMlG73dYPP/ygm5ubADjL5VIXFxeRtYWSZPzciNtG\nc+UKeOT8J0+zBsCg7JkbD2yVFPIXRUgaMHvk5OQk7tHv9yNuBVBEbAYMBNf04PJGo6GzszPd3NwE\n68aa4eDFYrEYgbOk5zso9Mwfz4LjPY8hgSnkvB5irWAVJUXfWB/cI00GgC3K5/NrtXZYt6QYs/7f\nvn2rcrkc6485c28DzJW0SntOQYfrHrwH6EsAp7vkDg8PI5vPjUx+A4PGXDJ+7KWX2tYDYqV1Bc/f\nWEIo7ZRRSH/rn6EIXGm5j5fBk7QWDOQUs8eSLBaLUCAoTfzCLhxTHzLK260wru39T10h/vtNgbbp\nePnfLBJvzuakLEvaAIaS1hYb4CFlgXxRpyAl7TPvZ8WKOABjvLi/F6XyZ/Q5/RyrqEwAACAASURB\nVBgaQtAtSmha1rIfxrdYLMKKZtNiSSEYeebpdKpKpRJVRaXnYk0eT1KpVPT69euwgNg7AAesQs73\nGI1Gms/n+rd/+ze9fftWrVYrghiXy2UIc5QlWS+j0Sj6xj5YLpdRsRPhyjryIk6e5SEpmA2eQ9Ka\n0PQ4BrKYqEnB7wFIAB9PkXT25/b2Vl9++WXsS2o11Gq1tb0H2EEoSwqZ4srX05v9cEGYK8YDpbBc\nLoN+LxQKEWB4fHwcmUknJydRTp9x8WJt22oem8A8eXXjyWQSrB2yCzAD8GROPU4BGcxRCADL29tb\nXV5eBpswHA51fn6uxeK55DqnHy8Wq9NwYV92dnYic6fT6UTgLWufjDkPfJVWp3sDtnDJYThIKxdi\npVKJWj7D4TDqlPhZP8g6YrSY93w+H8yaH8iH7PD1BIDCPeJndbn8ZU4oXEiWHP1y17yzI8SFuIz3\nfcB3mR/YUUA54JQA8FKpFDVdYFZJX/bzqkgj39S25tZJUWKqJFOF5cI+pft5L8vNgXBDODoq5XO+\nm2Y98D36SzomQt+VK6xJFhhx4f0SMKFPaVxH6pZxgJYq5tTl4d93MJU11twb4IVic6Tsvlq/L8/v\n1/F54vv010FICnjS3/nYpCAn7f+2G9So+1NRjDQsQBgqgC3CCKBBsKHvFwJZOVTv4uJCP/74YwSG\ncvZHLpeLIEPiXUhJxYLB572/v69araa//vWvenh40KtXr0Joe+wHghOhh9Chb25tMf9+ABlMEmX5\n3f/te4rXuJeGw6GKxWKkXQLipBXoeXh4CKscEOWsp6Qo1MYhh7hqqtVqGB300ZkVSWtF87xuBGBP\nUsTsMDfMe7PZDEEMMMNifnx8VLvdDmVJo6YMwv0l+vuXau6WSCl/FA8xNrBqzpowFx4gDMMA4ISJ\nePfunY6Pj1Uul2OvkJ1TLBZ1dXWlzz77TKPRKNyTBwcHsRboxzfffKOjoyPV6/VIG9/Z2QlwjkzL\n5XJrqffSSuawTlHSkgJMeTgBVYNxpXjQKsqfZAqehzgUSeFWxJgAiDBuKHJiQZiTXq+nh4cH/frX\nv5akSDtnj7L+eTaMHi80yrOXSqUIdmYfOiD36/ncSor94fLMA969xIe7tja1rYATj1lwt430YexE\n2nm3/gEkDiiklQJDuXJNj/zmunzuAiOrD1zfB9s3nP9L4zKklaWfXjtlNHjt/lkfFwcojpb5LIsV\nSZmctPlvEBhejMp/x/3cveJ98ziStK9Z/UrBafrddG2kQMTB6ccAUsiAkVYCjHXAmsEiQzg4XYq1\nDgXNepNW51DxvAiDf/iHf9C3334bawX2hriP/f19tdvt6ANpxFg91WpVo9FIX331lSaTSQAXrBv3\npTsd3el01hQx9wYc3d3dqV6vhxXK3iKNFoYFS4zxk1br7Pr6WoeHh6FsfJ7z+dUhnyg7LGqAgLRa\nQ/V6PWIXyAyhIit9H4/Hse889Zc9uVgsdHR0FGCDeg9Y7cgQD5hlvljr9C39HsD/+vr6A1Z229k6\nWM7u7pBWGUbS8/4kGBnAiRuPViwW1+q/YDzO5/NYl1jyFBvM5XKqVCrB2BUKhWCWYMlIb0UGeTB1\nv9/X0dFRlIt3txtgCAMAdpKibbTpdBrA9fHxUbVaLeaQe9J3QHy1Wv1g7SCzWS97e3sRsOqynmdi\nLzqYcR3FPFxcXEQsDwHysFoewwJwwPDwSs0eX8j3MCJcD7ph7gwZsh/WB1bIwwHQ+ezdl0D31tw6\nrpDTDroASj9LlZFPkvvOpJWljtU1m83WAAq/ow/4wX2g+S6L0pUv12BSPYDJla0H1aaKmXu5snfa\nk+s7cHFQlLp2fJy8L6nV4wvRf8OiSZWA3yMrONnnk9+81LcUWPn7/tqBj49ZulY+BmAirTIVcONg\nFXq2B0KWAD7qkMzn8zgojTWA0EIw4mKk5kSlUgnL0dNeiRNZLpex7huNRvyWWAq3YJ6enkKgeuEs\nqmQCljjQz0915R9pls1mM6xhd025yxBAAUNBPQj6PR6Pw4XFfsAy5jfOWCLM3UXg1vpyudRgMNDe\n3p7evn0bzwvVT1o1QngymQQIYYwKhULEijjgJAbC4wPcTZWyOPyPq8MpdbdWGZeX6O9fonlGEuyF\n9GGdKQ/+Rp7ALnn59ul0GinxMFme9XF2dqbLy0t9//33+sMf/hDKejgcRqBzv9+PIE/mjXk+Pj5W\nt9uNOiScVox75u7uTq1WS8ViUYPBIIwFAHValp/4kZ2d5xL+nU4n0oKR+yhk4pd4z90bkuJ+HiQK\nkIIxlZ7XBuDfD8xzoxcWBObPARB9J86DfUUBRMYMdvPu7m6NDeL5keNe/t/dQ4AtXnvJiZSNcp3v\n+iurbTWVOO1klqWPJe9AwMGHsyBck8b3sLj8unw3CwSlLhkUSpYSTJVmyoakuehZLhl3ofj104Da\n9L5Zr1M2w/uVunTSZ0mf09Ex1/ZFL62Qu89VKoD9dTrXzrD42Gf1LWu8/Rk/hgYTQJYMdC4Cgvk8\nODgIIeEguFarhfJlrIlNAIBAmcOQcGw8wrFYLEYMBW4Ip7xxOcGsPD4+hvuHPmDdsAb9YDXYl93d\n3cgIABgREMghfJ5iK2nt3g60F4tFZKwQZEs2gINo3D3ud6cRoOllvlP5AmAisBU3F+ABMElBNgfz\n7rYBlHjsDPE4ABoUghtCKDNiUrBqeTaCLAF6Xjxrm40xdMXD2ABGYMjcmPO4E9YfqfXT6TSClmlk\nrJ2cnOgvf/mLPv/8cw0Gg2BKAKgAQQAl65Vr4WKh4i8MJaAfxqJSqURtksViVT2ZfcFz5HK5qOpK\n1hmZVqQvs748sJc96QatuwF9f8CYeI0jGCtn3Uh9z+VyUXeGmDIYP0AB8ge3J64xlynEaaUl7N2F\nxdi7XGI9s6c9xsxjFmFX+NsNe97Pals9Wyd1M3hHnW2Q1svEuxXGIKZWPs2pJqevsHpSRQfVlDIa\nWb4xBxdZz8f9s1xOL4GiLFfGJjdJlmLeBBCymn+eplFm3YuNml7XmSaumwI2bz6H6Xh43IGDniwX\nltOKH0PL5XKxHrHEsFDoJzQtQsozCRC4WGBUfETIuNI7PDxUu93WZDKJVMydnR31+/2ImyAqHoVB\nlL+7GZ+enuJ8mvl8rm63G25OrCVSKBlnCrsdHh6GYELwLpfPgbSUt2aOUP4If2mVxlgoPJcTh93x\neizOjiG8YUYADSgoQI1n6cCccP4HLMty+Vw9ExCHAmUPnJ2dhZLyNObJZLJWAyiXy8V3OIeF50yz\nNVCeADpJEaPBWHgV3k8++WTNRbWt5q6c8XisVqsVGTweuIucxB2I0nTrmvFwA8hjrSSp2+3Ge5Ji\nTCljj2vNg289jgWrHTnvQAP2Z39/P5g0ZwkADfSL9UWwa7vd1ps3b2J9AiDQHfyeNSCt5BX1der1\n+hojAWjGYGDfkUmEnvOq5YwxDCZyBzlDBV5q5mAsAQAB+IBl1j2y3DPj+B5yDCOFNQ4D+fDwEMxq\nvV5fS8VmDIil8RiezDX3v7qCf2ZzS4iFwyJPLX1HY5uYDoQKloyDFb+uRyg79eXg4yUg4e+7snUA\nkirnVKikDI5b05uAht/H2Q+/p7NLKaBI3TJcK32mFHS4Ukj/9nv6WKRuIxfgjDnuN2ennFlKI8bT\nZ0sb8/sSRfhLNVKDl8ulTk5OIsuF01yXy2X47vnuzs7Omi+ZeYWCXi6fT/OsVCpBhUvPTAHpgq1W\nKwA8qcRck+A5XE4oU0/hhomBPgcIEKToaxZKGmHkYJ/r+lkkzmTQAEWwTAi6fr8fghlqXVrNMeuf\neANeu08fEMffDw8POj09VaHwXDDMLe9+v698Ph/z46npnmGD779YLIZ1fXt7G8IfC90L4j09PcX7\nWL8on1wut+ayIn6BGBgYgX6//1HEnJB2TtExrG4HA5wbhQVfKpWCYcLiBhzAXuCCgSGDWfnxxx8l\nKdJmHx8fY23A8mG4IMMBGswf4+3uBcAPgah+QCBz6udUSSt3hvScHUcc1Wg0itfu/gBosl48nmw+\nn+v4+FjD4TCYjWKxGOX5YafcZeiBtZ5qn8vl1kAzz0Z/ACH8TlIYTV5iA0bFgSLvM/e+L/gtHgnk\nN6wfhR/ZkzA+/AZg6s+V1baWrUNzP5srMGc0UvbBGRQmAgHPJk6DT5kIBitVtJI+uDdUHL9P2QpX\nJA5EssCAN79+Cgb4P1W07qvz370EZvg7BRlZjetmATLeTzNm6AfzkMac8L9fE+WRgke/Xhrz4iDH\n7+Eg7aee75dquGVgDs7OzjQYDGLzkx1DWiJBd8PhMKwNrJz5fB6xEIvFQtfX1yG0GQeEEkAH2tTn\nxil4fPsIUKx1qF5OFiYWAncR/u9cbpWBg58bxcp9AFP0kd+j/H09Eo9AITKAAGm1uVwuMiuYX0/r\nT/ekgxQ+29nZ0XA4XEt/JnaAOg24lKQVEKJ+htd7aLfba0fcf/bZZ+G3x0XEPFCKHaFOfBGuJ/r6\n/v37CMSsVqs6OTmJQE9Sc7ddhI2A0Lu7Ox0dHenq6ipOA6YUe6/XizXi2Uh+2JzLBVwjHhyK24R1\nhysBmc9rP4IgNVRTgwi5AVPO/AAYyQZCFmXJF+YKhvL+/j7AGcwKlXwdWFA75+HhIcA2fzebzTBS\nYD9IPwYMejyKr/Xl8jl+6vj4OM7+kVbsN3FvPC9yGMOEa7ZarQBGHu/FuFLbhfguZ7WRE4AXdDUg\nRVoFTLOnXFf81HlRW8vWcWsY5eSxFY5E0996EBwPDHp2IcX3+U0KBrLYAulDhsHZD+9TChLS5/D4\nDPrpit37t6ltYosAW95PR/DOmKTXyWqwTk5p8n2eAYbKr+mAwp89C8il7EYW0PIYnZ8aDxr9+xjA\niWddoHio0FgoFNYOOcPtsru7GyWn/bTixWKhwWCgwWCwxl543Q6sb66PYPCsKwJEocQXi0UcVIZV\niiIlkI/vEMCIAQGzgtDEIkqLHfIdLESEmbRiwjAqsHrz+byazeaav19a+bxRIIC2LOPB3WduXVar\n1TigjmsOh0PlcquTtzncLZ9/Ls3ebrdjfBHUrVYrFCjZQdyb+AOuT+EwytWnqdPSs1X+5Zdfxu+4\nbrFYjBRn5nybDWANqD4+Po60dWIwCKYkboffeQwKTGIu95ytxfrB8nYA7ewX4ABWgXF0d7K7X1D+\n1CFxtxTzQHo7MWGNRkO1Wi3WA6DdS9ATCE7NFGJbeCae1dk3+uSGA/EruEyIP4PFRJbTd1fqPHOj\n0VCn04lzoVibjB+yvFarBeuEnK9Wq5pMJlFN2TNnYDYkhSsOo/L+/j7cZ8wFz89cOpDyjCBneLje\nS4zg1tw6CA4HEbyPUk8VkTMKDgRSl0oW6+DXTpWk/85dLH7frGfwZ+G1AwN3cfjvHJh4SxmTlPUg\n0MrdIj5G/pzpNfxeKR3K93wD8x5CgeYpgmnfHYCkzFQWWPG+p39vcuP8FJjcdsMK6vf7kQmAlUDt\nABQNUf2eaocAl56FBMoxBbesK1wPUMa8pqIq/l1YBizIRqOhwWAQ1CruDoQUKdEUasOg8NRDt1K9\nSN5yuYx6LIAeZ994Bn4rrRgkzisBDOEGgbImawn2hH75tTillt/c39+r2+2qXq+H6ymfz4cwR5mg\nSFjz5XI5DocrFotqt9sajUaqVqs6Pj7WcrlUv9+P8a3X6yGkPXsCgMYc+pEDXKPT6YSV7ZYpv3uJ\n/v4lGrJhPn8u0e9W/9nZ2RqT4NY+INeroXrqPGvC63Z4wTZnWlGIHjuIvHalDQsAkGJ9AmaQLaz1\n5XJ16jPuEGS41xshoBe2P5fLrWWBejgBwGY6nWo+n+vk5ESTyUT1el2j0Shcgyh7AtUBTAAW2EMv\n4Y98KBaLajaburm50fn5+VosCvoRo8VdNhgrBNYyVgAvWD1YRsbOSx8g173AG1lJqV5hTny8/bON\na+5/ae3+jxodoqOgY6yolyxhV7QsSqeM3JriO6BQvzcD48qXhY6wywIqm9gWWrpZfqo548H10zgO\nn0T6lvbBn+ElZe1WRlb/WMg8twcN+xi7a8ybsyHuF5YUwWObruNrIWV9sp4hZcE+hkZAJ6yAB+7h\nXsDC5JmdYfNCR9DXgA2CMKXneep2uwECcDMwf9DI+MYp3EQdBAI1UQR8lz0oKRgKFAtgqFAoRF8Q\nSlDfMBewQghMF1wONsiawIXi1D1KbrlcrlXrRBhK64HVBEdKq+BAB0Kz2Swsxf39fTWbzRgPWCdc\nKChEAlLv7u50cXERgpx4nEajoXa7HQATBU0ALm4Zd/WgINyNhBLhux7UuO1gWBrujJ2d52J+9Xo9\n1mlqOLH33W2PnPOgaOYPNwQFxFiX7qLzOCNcQLjYiFnxfQRw93omHjuBjGbNHR4eajweS1oFLqOU\nnaFfLp/T3DE4nDWXVqwj7KjLtUKhEDVZWAMYAs4+k3EDK0l/KUro8nMymcSeRxawRpfLZRyWiAwA\nJPJ99iUxQwTtHh0dBTsE4wXoB0jDliA3nG1nHQNy3BD9OXFUW8vWSRed/4/iSRVQqkxZKM6+AAy8\npdZ/VsuiiPl70yCm13Sr3wGT38Of2Tcw10uZFq7LMzhIyWImuM5LLp0UoPhnWKr+fK5I0+ulTEgK\nrFDSCGTeS4sJcd2UMXFryIGLA6ZNjNk2Wq/XW2O2UEgwENStALQBRhCazmBxwBifQxmzdk5OTuJ7\n7AEUHkKLM3Tm87mOjo6iCJWXxnYBjFsHwPT4+BjxGg8PD2q1WmsBh7gzyJaoVqtrdTnu7u7Cp43A\nhb0gEM/ZFFxCs9kslJOnetJP4kQIGkawTyYT/f73v9cPP/wQSow9hZAvFouq1+u6vb1Vu93W7u7u\nWqAxwl+Srq6uVCqVVKlUdHl5KUnhbjs5OdH+/r7evHkTIMfL/hPUiuJDmJN1wZziwoLmLxQKQcEP\nh8Ngd7bZvMgce/Dp6UkHBwehHFlLgErWHd8FOOMKkRSH8rnimkwmobxgIJhfDmj0wxy5HjIFAIjC\nBAzzPfoGWIf1GQwGIWM5+RtgTUwjawPXBsXaWF/EbC0Wi7Vqube3txEXwvOVSqUwWtwgZE17Zl6t\nVtOf//xn/fM///NaNeFcLqfPP/9c7XZb5+fnMd6Hh4fqdrtxWOjnn38ewdWwg5QCIPYHME2to8vL\ny2AYiT2BGfYwCcAdTAqynjk/ODiIU6YxNnZ2diLAelPb6qnEtCzl5/9L6wBhkzJKYxj4TpblneUa\n8H6gbLNYFwdE6XX5rVuR3j+UtYMUaf3QQwdnfo20ZkrWOG1yl6TNGZI0IJVN71aFWxlZY+h/O8DC\nopa0ViMhC0ikNF8KPpzt4l5pHMO2G8Iml8sFQ8IYYEGgJBG+7trweBEsLNaSp5i6tUN6LPPmcS8e\nJDscDlWr1bS7uxspiqw7ikQVCoVw95AGncvlAuSkwITfE3w3GAzU7XbDUj47O9OrV6/07t27YHBQ\nFh7Y6lajjxFKJ5fLheLGmnSFzm+Ojo70/ffffwD6+R/XTrfbjbNvCoXneidYhC5r3rx5o/v7ew0G\nA5VKJZVKJXU6HX366acaj8d6+/ZtxLQQi4DlS6Ay92csOWsHFgHQVq1WQ1HPZjP1ej198sknkYm1\nzYZsfHp6CmXMmKcup8ViETVf/ERaruPGBkGfXAOWke+5oZTLrbJTkEUO5mEGiH9h70haS0vf2dmJ\ntHKKs0mrUgmz2UzHx8fBOEgK5o+znUjxf3x8DPbSi6DBRsIgIJs4gwfXln8OaCI+DEAIW1KpVAJw\nYESUSqUoFog7i2DqV69eqd/vRyl91iVz51lKrpPG47EKhULIClytHk8DaCNry3UlZQf8qAr2Li4j\nYrGQJ1ltK+AkK+7DLe9UmWaxAKkyZBFmgQ7uKX2Ydst7/n8KnJxRcfbCrfn0d/7dtG+u+P2+WNz+\n/RQEpQwFr3k+rIV0fLwx9vh1vQ+MlbNbXrUwZU1S3yKbzClePnMLPQU3jqi9j1lAMp3HFJBtsx0d\nHWk8HmswGITCdqHg6w7Wg/GhUiYC9OnpKYSB09x7e3sRLzEcDiNldzQaqVKpRC0T9+mjCFG0lUpF\nj4+PkQo7Ho8D1FSrVdVqNZ2dnQWFjyXocyophBBWEC4ghGe73dZf//pXXVxc6Msvv9RisYgDz7D+\noMBZgzANWHEECRP/QcMq9do73333nY6OjiQpDv1zS53rN5tN3d3d6eTkRJeXl5GBBLVNBsTNzU24\nXCaTibrdbox3qVQKN950OtW3336r169fx5hTeK9QeM4MIYC02Wzq7OwshPZwOAxlDnja29vT73//\n+yi2BVjbVgOIeDwMY+4ucNxjACxcKq68WNvuKuHvarUa7gP2ByySZ/nhpvHD8nBTEKcBIwIIhj3x\nGh2sO+aYf6RzM8/OuuDS8ZgmSQH6fbxINfbzcCRFsC5MJowa+8zl2tPTcyXj6+trDYfDqNHDs0uK\nDC/W2/v37yOQ3c8kIr4M9olaJ9PpNOKoCJAfjUY6PT2NoorVajX0kdc9caa3VqutBcvyTMwba5tr\neJp22rYCTlKa3xVsVpDoJqXjIMVBhLQOaNx6BxQ4LeX+u9Rd4BZilgvBWQxX8B67wqbyw5Q84Dd1\nJ2UxNamLxccMheHtpdgT/I1c29kIZ48YQ4+udjDibhbQONd3PzrXg4KV1ovscQ2fM5/PFJBuYkg+\nBnDS6/XCioaNcJ8rQph4Dg/ckxSvsQTxgTM+BLrOZjPV63XV63VdXV1FiifpuMRJEMSHAPQKrtIq\nELVSqQSAQshDaxP0JyliTVLgWq/Xw7pE4RwcHKher6vRaGg0Gumvf/1rHCdPaiL7CuAD2wPgefv2\n7VrMCowSgcO+NnBd4c6iSBgKBcVVrVY1nU5DaOOeQaGR8nt/f683b95oNBrp6elJvV5PhUJB4/E4\nqPJOpxNj9Omnn0atDVwzuHdS9x3P0u12Va1WQ8AjE+/v73V9fR2gctvZOoeHh+Gy5EgF9rC0OoDR\nDSVpxQjjXkFJA3B2d3cjBkhSuPsA6ovFcw2fXq8XMUH5/HN1WeSpx+DBWHAGD/dmfPleuVxWr9cL\n1xsxFcQtwQgQFE0GjPcdNwgKHtnJ3BLU2u12Y33xTNSD2dvbU6lUisJl8/l8rToxcrXT6ejo6CjO\nH2ItMZ6j0UjHx8cBPur1ui4vL6O+j8e7nZ+fx2GhBOQ703V+fq52u629vT1dXV2pXq+vMVboacax\n0+lEgC/PhPwH3HmsD2Powc1ZbWs8OANGJ1HYTtdlWcbOBmQpb67t10FIMNn8HmXBAvB/ruydyXBw\nk7o6UpDiAMcngb+dqXF/XKqsX+qLK35Xzi8BEw7mInCLDIPFYhF0o48/izIN1iTYy5+dZ8ByT8EE\n8+3X8YBQd004NZ8FTHh2B3cfQ/OUSihwrHFfC6PRKPzADr6wcDgYz4NLAYrlclmDwUC3t7c6OzvT\nn/70p/ju7e1tlLQHbLhf/+npKep7IHQXi0WcRZLP59XpdMLXTroshZlarZZarZZ+85vf6Kuvvopq\nmaPRKGjx2Wymq6uroJwBDAAyZ/d4Pmjsg4MDNRqNteDfQqEQTIVboG4wTCYT/fjjj8rlnl0nw+Ew\nhPrFxYUkRQbT4eGhzs7O9P79e3377bcBAPr9vqRVTZL/+I//CN95rVYLmfX5558H68VaPjg40Bdf\nfKHf/e53uri40NnZWSjw2Wym9+/f6+bmRt9//30E4ZLRdX19HbVWcHdgFQMMt90I1iX+AorejRNn\nirCK2cueKeUxKVTVxdKeTCY6OjqKa/7444+6uLiI2kFY5s4w4jJjHj1biv56HCCFEXERSgogT5+l\nZ4aD+Ke7u7tIdYcRefv2rY6Pj6OEPXPHeOHKBATxOQBcUmTqeFq165G3b98ql8vFsRKMYaPR0HQ6\n1XQ61W9+8xstFgtVKpUANhcXF+p2uyFDOYOo3++vudGkZ7kLY+W6kdL2zDdsO2wSbEmn09HT01P8\n3gvmET/j7BGuXN/LadsKc8LgwhI4kyF9mJYqfRgMK61b/XyH67pVz2/9tVv6fi2aU/BZwa300/vN\ne/4cXhjOn8mZGpRGCsx4rrRvrqjpVxovs8kd4jEv6XP461Tx81tnmWBIfEN5vrz7MRFU6cZzMEJD\nWfvvU7eS9x8q8mMAJ/1+P9wSrVYrzt8gMBMhvVyul3KHlfJzeTz1bnd3V69fv9a7d+8ivbHRaCiX\ny4XCI5J+MBjo4OBA+/v7kVUBhYy7wdcY1iL+9cfHR7169SrcL4+PjwEKYDRms1lkTsAOMIdQ3vyT\npC+++EK9Xi/YNAQejAZKBGZjMBiEUnMWkNoh9N3X+unpqf7xH/9Rf/nLX0Lh5fN59fv9YCg+/fTT\nOHSRM1twnR0cHKhSqYTVPRqNwn1GX87Pz+OZ8MMfHByo1+uFUH779m3EC2EF39zcxLx9+eWX6nQ6\nYZWyfofDYViv1BSBweGe22wAWlfw7H9iJCStzbu0XpSSNePZHZ6BtVgsQtFjYR8cHOj6+nqtjIHH\nmQCaYFIA2/l8PpSfByJLK6UMI4ALSFply8xmM3U6ndiTXq2ZPsDUcQ8qJj88PB+0ScAswbLj8Vj3\n9/dxDZhIDAFYT3ednZ2dqd1uq9lsBqNUqVTimAqP/bm8vNTR0VGwIrBOvIdby41swC9Gw2g0iirR\nuNVcxzw9PQWI9/pInIPkxlej0Yj78Jywj8zXprYV5gRKlsnG7eJgwpVk6m7xQD4EEA/N4nVWw906\n0oq54PceMCd9eGZOmu3D7/htGoeSgiC/b8rKpIrd36Nxf/8/C3hgtbiPL6s5WwGC5fspG7XJtYSw\nTt1NMCxc1+fTx8/nweeGuAqeFWoQJUSgJtaGuxheWui/VGs0Gnr9+nX4wweDQXzGeCKgsaAAIxRc\ng+YGoBA09+c//zmCSbGAfvjhh0g1Zu5JYSRmBaq8UHiuQAvzUa1Wg+2YsFi22wAADWlJREFUTqca\njUbqdru6v7/X+/fv1ev14gyYq6srdbtd9fv9oLMlBQWOi4U5gCXis36/r6en5zN8EIaTySQoYGqb\n0DzgD5eKp0f63mdtjUYj/eu//qsKhUIAEtYLFvl//dd/RezE8fFxKH+Yi1/96leRXYCV7qmo7XZb\n3377rTqdjhaLhcbjsa6ursKydBcQMT29Xk9fffVVgM93796p0+moUHg+4RiL9/j4WL/97W/1pz/9\nSa1WS+fn58EGVCqVX2T9vtS80qikqGPjChUlCShg78IKAGSJayBWCtnBKdsYraenp+p2u3GWEi49\ngi6x7mHscGfSl2q1GvLm4eEhWGHqhgDUAdcwPtwP0AMrub+/r5ubmxiTu7u7AAnIfACcMzruOiHm\nA7fi3t6e3r9/v1b7xWXew8ODLi4uAtTQb+5RrVZDhpAJyDEKBIkTmFooFIIxRXeRNbS3t6fhcBhh\nCG5ISCsjHYaT6rLz+TyK8h0eHmo2m0XW0mAwiGBz9AxxJx9lhVi3zKVVFTnpw+DUTZS9MyQpFeaM\nQvrbl6zrrDgNp23dFZMKRmdiUus+VfDeP6xjty5YmMTl8Gz8QwGkFfZApi81V+ZZAMb77KDQWR7G\nOWVbUsBIywJLPm9cw/uV3tvfp39Z7227Ufthd3c3UoclBQPBZ71eT5LCYsrlclG6HgFaLpcjFTeX\ny+n169fa39/XZDJRr9fTfD7X6elpVOiEyWKs/QTS09PTAAfEddzf36vZbIbVCM0Ne+FxApSX393d\njb+hwWFTiAOAHeJZvXR9pVKJyqCk0GJBISjJoEBIk/rrtD1z7UC92Wzqm2++Ub1ej4yG6+vrKKB1\neHioi4uLqJJLHIefZfMv//Iv+uMf/6hqtao//vGPury81O3trY6Pj6NIG4qFsZzP5xFrQ0zE7e2t\nptOp+v2+Wq2W3r17F0phMBjoV7/6lRaLhU5PTzWfz9VsNiPgcTabxanVpHW+lNXwSzRfCyhGGDkP\nZoeFICbCrWZiDPxMG2JYUK65XC6YM9Z6tVoNQCEpXIAEzRLbRRCzr5t+v69KpRKsBHFHFEr0gwM9\nxdtdant7e3GIXj7/XFARUFutVgNk4eKCrUQu+fpZLJ6L+1G8j/TltL4Q7Goul9P79+/12WefRVow\nz0BtFFL1cZUtl88l+bne3t6e3r59q4uLC7VaLV1eXkbRNggCmD5pVWPGSQJJwfDiqvHxA7jc3Nyo\nXC6HO5tn8Zon6C3A5Ka2FXDi6ZNMgFvgmwJbXaG628PjFVIAkbZNjEIamOMLRVov+OYUV+qC2hTg\n432C+oMuywJSLAQWT/rsLAgUkt8ndev46zQQlbHPcofR3K3Ftdi86fy5cnTwkZV1lILB1DUF4Evj\nbAAsCIO03P42G1aUpFCKT09PoUQRsKenp8ECuD8WxqFWq+nm5kaVSkWlUilcEWSfIHyI2O92u0Hx\nYtl4ZkSn09Hr168j/gWLsl6vR+VTBLRXpnSL99NPP9XXX38dwj6fX52PQiT/eDyO4nD7+/uhyNk7\nxNFMJhN9+umnEYfgRdY8HsOVEJYj5bax0HnObrerP/3pT+Fa29nZ0fn5eVTwvL+/V6fTUaVSWStY\n12g01O/3Va/X9dVXX8UcYOFyCrFnrXlmBcIXt9rt7a3q9bomk4larVYoDdjixWKhXq8XVvWrV6/i\nmVAsxMWwZrrd7tbWtLQ68wVGgrmRFFa2pKgxgkzCzSIp3BiAbsAL9UBcxrIfxuNxVEmGxaAWEwpU\nUoBC9hQn5Z6cnES2WS73nCZLphouV0AzbjT6y29wb1IBuNls6ttvv430+sfHR71//z4y9WC8GCti\ncAB0gKSHhwcdHx+H0k5dH7Crr1+/1mg00sHBQZSdpz4ILKYXg0MWIxOurq6igCCxIP1+X9VqVf1+\nX+Vyee0cH68l49eFQYRZcQAHI8O65VTp4+Pj6AcpzsTLHR0d6fr6euOa2wo4cWbALWRJHwCTLPbB\nFbLTjJ5RwwZJGQAHAmm8iLtiUjeBMwNpbItfA2Xgv3Ol72NAcJQzJ/6cAJAUfEirA57obxpM68+N\nEseqRXk6IOTaXkCM/noKn7uN/He8lz5nyibx/fR5s+aZ7/m8YKGgHF0QfgzghAP4cK84W4JVKK3O\nrECY4uJxVowsGQIEPf0WAUVWEAF6i8UiWA9Ja/e/ublRqVRaYzzI5EHxelYPcRdv374NVxCR/Chn\nr34qPR98+Ic//EGFQkHff/+97u7u1G63w8J6fHzU8fFxpNyizKi4ijXtacOdTidSJXHpQcGfnJyE\nP75YLOry8jLie7gmbq5erxeWLe6mYrEYfcFaB0y12+1gL/Grt9ttffLJJ/EsuVxOx8fHkp73xr//\n+7/r/Px8jRFjHlAkJycnAXZms5n+z//5P9rZ2VG/31cu91wS/Xe/+52Gw6G+++47lUol/fa3v/1l\nFvCGhiyBoveyALhy2ZMEyuKuIw3XwbKf3IzCZf0SQ/H4+BhxPShygCfxSpzwS00RScGAPDw8BPAh\nrklaxUIAvKlSzN7EpdTv99VsNiN+YzKZRDGxcrkc1xyPx2q1WgHW5/PnQnC3t7dhfIzHYz09PUUK\nOewDWTycrQTr9vDwoM8++0zfffedarVaGBMpkEHmjkajuAbjQNwIGTXHx8fBXj0+PqrdbqvVaqnd\nbqter6vX6wUAy+efT+qm0ByB7GQuSc8kA/Ep6DBcRLjGOp1OABp0C0zv9fW1Wq3WxjW3tYBYaaUU\nWQy8RkE58EibB2O6i4j//Tog9JRtcSYCpYqC5n3/nMWIsqehnL1YlIMgSWufp0yI99vZF5Svu3/8\nu84s0CevnAiwQUg6COS5UpDg93A3C699Q3g/nd1wYOMti0lJmTKfo/Q56QuWhYM67/s2mxcNKxSe\nT/2EhaCeAIGqOzs7QQ/DMmDJSSsQR0YN1gen1+Jnr1QqYT2NRiNJq7gurBssc9wXgChX3jAmrNX7\n+3udnZ3p/Pw8zn85ODhQq9WKYmOklxLV//j4+H/bu5ue1LUoDMDvFTgqWFMkCEIwAXVi/P9Dh/4I\nYqiJaEqjhWoVP1J7BifvctN7z/S6B+8zMTEqUNu9115rf+Dq6srKFWVZYjQabax+mM1m1kkxc1KW\npS2p5cTEVqtlO4hGUWSTFFlX5zVI09TmCARBgDzP7fnmCJAd1tfX10aa/uTkBNPpFLVazZZis2yR\n5zm63S6GwyHiOLZM0/HxMZIkAQDEcYzVaoU8z1Gv13FxcWGBCBtvNso8ZPHm5gZ5nuPw8BDNZhOT\nyQQAMB6PrTFfLpdI0xSDwQDb29v/2uPl/8bMFu9rlm3YTjCY5QRPPgPsiHivMhhlW8XSAveX4fPM\nElG9XsfDwwPOzs4se+Q+829vb9ah8vX5/2WwzeDFfYbSNMXe3h7CMMR8Psf+/j6SJLFdVtmOMRAr\nisLue95HRVHYEngeHMh7lJu1MUhmWxzHMXZ2duz1mVXjnBVmjhgcu2VeTrTn5+Z9zdVILy8vNieH\ng471em2bnTEw6HQ6GweSdrtdCzr4laWp5XKJwWBgc6QYJHFwxLYoTVPMZjOcn5/j+fnZ2nVm/5gt\nzfPcdqvlBnJ/86OnSXHU687cdoMNtyNzsyBu4OGO8quBDP++W4JxV5fw9/l9t9ThcrMQ7ByrnTw7\nSzewYWdZ7XyrWYIqN+gCNiebVssg7nt0rx8/t3sNq+UaVzWoqAZs7s9Ur4v7XqrZE14XBojV12dq\n1v271WyTG6Qx6OJruV99CE6YIfj4+LDDvjhSAb63Pg/D0HYK5ZJDjhIB2Kiv2Wyi0+nYrq08iTQI\nAmRZhjAMbT4IJ1YyK8Dab1EU9j5YvgG+Z9qz7MFOhUE4/2+slXMZJScsukuD2aE3Gg30+31kWWaT\ndFmmKYoCcRyj3W7bKO3u7s5q54vFAo3Gn8PMtra2EEURgO8SJ1dAMbOSZRmSJMFyucTR0RHKskQc\nxzZ/jW0FU+gsD7y/v2OxWNiW5aPRCFEU4devPycEJ0mCwWCAy8tLALBSQL1eR7vdxnQ6xWq1Qq/X\nw+npqa3E6ff7uL6+xnA4tH0mmPpvtVq4vb3FZDJBu90GANuwi/uZcE5LrVazn+H15qFvP4VbnvOz\ncGUR2wTOdeA2/rwX+Bn5DLME4GYBWBbic+IGLNyXZz6f22ohzm1ie8jyEjtkZlYY1PF7LK8wU8Hs\nDOdBuFkaljFZVuPnYhmZmbMgCGxSLU8qZtnIDeA4x6LX61l5lgNR7jDLVUYciLJcyu9z1Q8DRban\nHARwPhcACwhZvmIWpt/v2yq0x8dHHBwc4P7+Hru7u7ZUmXufrNdrdDodO/n46enJBjd85jnp+PPz\nE+Px2PaKeX193TgLrNFoWNvIoNTdb+m//PO3DlJERETkJ/z8YSQiIiIiDgUnIiIi4hUFJyIiIuIV\nBSciIiLiFQUnIiIi4hUFJyIiIuIVBSciIiLiFQUnIiIi4hUFJyIiIuIVBSciIiLiFQUnIiIi4hUF\nJyIiIuIVBSciIiLiFQUnIiIi4hUFJyIiIuIVBSciIiLiFQUnIiIi4hUFJyIiIuIVBSciIiLiFQUn\nIiIi4pXfPRZNtgyLF3IAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With net surgery, parameters can be transplanted across nets, regularized by custom per-parameter operations, and transformed according to your schemes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Casting a Classifier into a Fully Convolutional Network\n", + "\n", + "Let's take the standard Caffe Reference ImageNet model \"CaffeNet\" and transform it into a fully convolutional net for efficient, dense inference on large inputs. This model generates a classification map that covers a given input size instead of a single classification. In particular a 8 $\\times$ 8 classification map on a 451 $\\times$ 451 input gives 64x the output in only 3x the time. The computation exploits a natural efficiency of convolutional network (convnet) structure by amortizing the computation of overlapping receptive fields.\n", + "\n", + "To do so we translate the `InnerProduct` matrix multiplication layers of CaffeNet into `Convolutional` layers. This is the only change: the other layer types are agnostic to spatial size. Convolution is translation-invariant, activations are elementwise operations, and so on. The `fc6` inner product when carried out as convolution by `fc6-conv` turns into a 6 \\times 6 filter with stride 1 on `pool5`. Back in image space this gives a classification for each 227 $\\times$ 227 box with stride 32 in pixels. Remember the equation for output map / receptive field size, output = (input - kernel_size) / stride + 1, and work out the indexing details for a clear understanding." + ] + }, { "cell_type": "code", "collapsed": false, @@ -37,101 +243,17 @@ "output_type": "stream", "stream": "stdout", "text": [ - "1,2c1\r\n", - "< # This file is for the net_surgery.ipynb example notebook.\r\n", - "< name: \"CaffeNetConv\"\r\n", - "---\r\n", - "> name: \"CaffeNet\"\r\n", - "4c3\r\n", - "< input_dim: 1\r\n", - "---\r\n", - "> input_dim: 10\r\n", - "6,7c5,6\r\n", - "< input_dim: 451\r\n", - "< input_dim: 451\r\n", - "---\r\n", - "> input_dim: 227\r\n", - "> input_dim: 227\r\n", - "152,153c151,152\r\n", - "< name: \"fc6-conv\"\r\n", - "< type: CONVOLUTION\r\n", - "---\r\n", - "> name: \"fc6\"\r\n", - "> type: INNER_PRODUCT\r\n", - "155,156c154,155\r\n", - "< top: \"fc6-conv\"\r\n", - "< convolution_param {\r\n", - "---\r\n", - "> top: \"fc6\"\r\n", - "> inner_product_param {\r\n", - "158d156\r\n", - "< kernel_size: 6\r\n", - "164,165c162,163\r\n", - "< bottom: \"fc6-conv\"\r\n", - "< top: \"fc6-conv\"\r\n", - "---\r\n", - "> bottom: \"fc6\"\r\n", - "> top: \"fc6\"\r\n", - "170,171c168,169\r\n", - "< bottom: \"fc6-conv\"\r\n", - "< top: \"fc6-conv\"\r\n", - "---\r\n", - "> bottom: \"fc6\"\r\n", - "> top: \"fc6\"\r\n", - "177,181c175,179\r\n", - "< name: \"fc7-conv\"\r\n", - "< type: CONVOLUTION\r\n", - "< bottom: \"fc6-conv\"\r\n", - "< top: \"fc7-conv\"\r\n", - "< convolution_param {\r\n", - "---\r\n", - "> name: \"fc7\"\r\n", - "> type: INNER_PRODUCT\r\n", - "> bottom: \"fc6\"\r\n", - "> top: \"fc7\"\r\n", - "> inner_product_param {\r\n", - "183d180\r\n", - "< kernel_size: 1\r\n", - "189,190c186,187\r\n", - "< bottom: \"fc7-conv\"\r\n", - "< top: \"fc7-conv\"\r\n", - "---\r\n", - "> bottom: \"fc7\"\r\n", - "> top: \"fc7\"\r\n", - "195,196c192,193\r\n", - "< bottom: \"fc7-conv\"\r\n", - "< top: \"fc7-conv\"\r\n", - "---\r\n", - "> bottom: \"fc7\"\r\n", - "> top: \"fc7\"\r\n", - "202,206c199,203\r\n", - "< name: \"fc8-conv\"\r\n", - "< type: CONVOLUTION\r\n", - "< bottom: \"fc7-conv\"\r\n", - "< top: \"fc8-conv\"\r\n", - "< convolution_param {\r\n", - "---\r\n", - "> name: \"fc8\"\r\n", - "> type: INNER_PRODUCT\r\n", - "> bottom: \"fc7\"\r\n", - "> top: \"fc8\"\r\n", - "> inner_product_param {\r\n", - "208d204\r\n", - "< kernel_size: 1\r\n", - "214c210\r\n", - "< bottom: \"fc8-conv\"\r\n", - "---\r\n", - "> bottom: \"fc8\"\r\n" + "diff: imagenet/bvlc_caffenet_full_conv.prototxt: No such file or directory\r\n" ] } ], - "prompt_number": 1 + "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The only differences needed in the architecture are to change the fully-connected classifier inner product layers into convolutional layers with the right filter size -- 6 x 6, since the reference model classifiers take the 36 elements of `pool5` as input -- and stride 1 for dense classification. Note that the layers are renamed so that Caffe does not try to blindly load the old parameters when it maps layer names to the pretrained model." + "The only differences needed in the architecture are to change the fully connected classifier inner product layers into convolutional layers with the right filter size -- 6 x 6, since the reference model classifiers take the 36 elements of `pool5` as input -- and stride 1 for dense classification. Note that the layers are renamed so that Caffe does not try to blindly load the old parameters when it maps layer names to the pretrained model." ] }, { @@ -145,7 +267,7 @@ "\n", "import caffe\n", "\n", - "# Load the original network and extract the fully-connected layers' parameters.\n", + "# Load the original network and extract the fully connected layers' parameters.\n", "net = caffe.Net('../models/bvlc_reference_caffenet/deploy.prototxt', \n", " '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', \n", " caffe.TEST)\n", @@ -163,27 +285,27 @@ "output_type": "stream", "stream": "stdout", "text": [ - "fc6 weights are (1, 1, 4096, 9216) dimensional and biases are (1, 1, 1, 4096) dimensional\n", - "fc7 weights are (1, 1, 4096, 4096) dimensional and biases are (1, 1, 1, 4096) dimensional\n", - "fc8 weights are (1, 1, 1000, 4096) dimensional and biases are (1, 1, 1, 1000) dimensional\n" + "fc6 weights are (4096, 9216) dimensional and biases are (4096,) dimensional\n", + "fc7 weights are (4096, 4096) dimensional and biases are (4096,) dimensional\n", + "fc8 weights are (1000, 4096) dimensional and biases are (1000,) dimensional\n" ] } ], - "prompt_number": 2 + "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Consider the shapes of the inner product parameters. For weights and biases the zeroth and first dimensions are both 1. The second and third weight dimensions are the output and input sizes while the last bias dimension is the output size." + "Consider the shapes of the inner product parameters. The weight dimensions are the output and input sizes while the bias dimension is the output size." ] }, { "cell_type": "code", "collapsed": false, "input": [ - "# Load the fully-convolutional network to transplant the parameters.\n", - "net_full_conv = caffe.Net('imagenet/bvlc_caffenet_full_conv.prototxt', \n", + "# Load the fully convolutional network to transplant the parameters.\n", + "net_full_conv = caffe.Net('net_surgery/bvlc_caffenet_full_conv.prototxt', \n", " '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel',\n", " caffe.TEST)\n", "params_full_conv = ['fc6-conv', 'fc7-conv', 'fc8-conv']\n", @@ -200,21 +322,23 @@ "output_type": "stream", "stream": "stdout", "text": [ - "fc6-conv weights are (4096, 256, 6, 6) dimensional and biases are (1, 1, 1, 4096) dimensional\n", - "fc7-conv weights are (4096, 4096, 1, 1) dimensional and biases are (1, 1, 1, 4096) dimensional\n", - "fc8-conv weights are (1000, 4096, 1, 1) dimensional and biases are (1, 1, 1, 1000) dimensional\n" + "fc6-conv weights are (4096, 256, 6, 6) dimensional and biases are (4096,) dimensional\n", + "fc7-conv weights are (4096, 4096, 1, 1) dimensional and biases are (4096,) dimensional\n", + "fc8-conv weights are (1000, 4096, 1, 1) dimensional and biases are (1000,) dimensional\n" ] } ], - "prompt_number": 3 + "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The convolution weights are arranged in output $\\times$ input $\\times$ height $\\times$ width dimensions. To map the inner product weights to convolution filters, we need to roll the flat inner product vectors into channel $\\times$ height $\\times$ width filter matrices.\n", + "The convolution weights are arranged in output $\\times$ input $\\times$ height $\\times$ width dimensions. To map the inner product weights to convolution filters, we could roll the flat inner product vectors into channel $\\times$ height $\\times$ width filter matrices, but actually these are identical in memory (as row major arrays) so we can assign them directly.\n", + "\n", + "The biases are identical to those of the inner product.\n", "\n", - "The biases are identical to those of the inner product -- let's transplant these first since no reshaping is needed." + "Let's transplant!" ] }, { @@ -222,33 +346,13 @@ "collapsed": false, "input": [ "for pr, pr_conv in zip(params, params_full_conv):\n", + " conv_params[pr_conv][0].flat = fc_params[pr][0].flat # flat unrolls the arrays\n", " conv_params[pr_conv][1][...] = fc_params[pr][1]" ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output channels have the leading dimension of both the inner product and convolution weights, so the parameters are translated by reshaping the flat input dimensional parameter vector from the inner product into the channel $\\times$ height $\\times$ width filter shape." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "for pr, pr_conv in zip(params, params_full_conv):\n", - " out, in_, h, w = conv_params[pr_conv][0].shape\n", - " W = fc_params[pr][0].reshape((out, in_, h, w))\n", - " conv_params[pr_conv][0][...] = W" - ], - "language": "python", - "metadata": {}, - "outputs": [], - "prompt_number": 5 + "prompt_number": 9 }, { "cell_type": "markdown", @@ -261,18 +365,18 @@ "cell_type": "code", "collapsed": false, "input": [ - "net_full_conv.save('imagenet/bvlc_caffenet_full_conv.caffemodel')" + "net_full_conv.save('net_surgery/bvlc_caffenet_full_conv.caffemodel')" ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 6 + "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ - "To conclude, let's make a classification map from the example cat image and visualize the confidence as a probability heatmap. This gives an 8-by-8 prediction on overlapping regions of the 451 $\\times$ 451 input." + "To conclude, let's make a classification map from the example cat image and visualize the confidence of \"tiger cat\" as a probability heatmap. This gives an 8-by-8 prediction on overlapping regions of the 451 $\\times$ 451 input." ] }, { @@ -297,7 +401,7 @@ "plt.subplot(1, 2, 1)\n", "plt.imshow(transformer.deprocess('data', net_full_conv.blobs['data'].data[0]))\n", "plt.subplot(1, 2, 2)\n", - "plt.imshow(out['prob'][0].max(axis=0))" + "plt.imshow(out['prob'][0,281])" ], "language": "python", "metadata": {}, @@ -307,33 +411,33 @@ "stream": "stdout", "text": [ "[[282 282 281 281 281 281 277 282]\n", - " [281 283 281 281 281 281 281 282]\n", - " [283 283 283 283 283 283 281 282]\n", + " [281 283 283 281 281 281 281 282]\n", + " [283 283 283 283 283 283 287 282]\n", " [283 283 283 281 283 283 283 259]\n", " [283 283 283 283 283 283 283 259]\n", " [283 283 283 283 283 283 259 259]\n", " [283 283 283 283 259 259 259 277]\n", - " [335 335 283 283 263 263 263 277]]\n" + " [335 335 283 259 263 263 263 277]]\n" ] }, { "metadata": {}, "output_type": "pyout", - "prompt_number": 7, + "prompt_number": 11, "text": [ - "" + "" ] }, { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAC5CAYAAADavt/0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVusLVt63/X7vjFGVc3Luu3bubbdbcdOupMYbIidODE+\nIjdbIJnEyImDxHsQL0gIJAhgQBYOT0ggRSjcZKSQvEQRoAQeiEniRJhEYAvbiS9Ju7vdp885e++1\n12VeqmpcPh5GzbXmWmefPrv7nM1OzPqkWjXqsmrWnLPmf/zH/7sMuLM7u7M7u7M7u7M7u7M7u7M7\nu7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7u7M7+8fefgj4B8CvAf/2K76X\nO7uzO7uzO/smzAG/DnwWCMDPA59/lTd0Z3d2Z3f2W930JVzze6lg/htABP4i8CMv4XXu7M7u7M7u\nbLKXAeZvAV/Z2/7Nad+d3dmd3dmdvSR7GWBuL+Gad3Znd3Znd/Z1zL+Ea34V+Mze9meo7PzKtA1W\nhvgSXvrO7gxmJ4Htsyiv4rUf/ODvsCd/4x+8ipe+s/9f2PcDf+e5z/bLeOA98CvAHwTeBf5P4MeB\nv793jr3xe78HRevYQEE80CkWQIKgohPFF0QTbck0IsTtmtxHvIBKxjRjGJghsQCGCTjnUFXMjJwj\n42BsN5mUV0A9tv5a5PDtGa4VlvM5i0VgOT9m3s4J3jOOA0+ePeODx08pxehmQpgprlNMEi541BuW\noe8TORlIRoBcCqUIpWQODjvmR4KNEJ85Ls4i23UhjYaoMjzreevzS3wXEFVSclhRSlHEwMwwyzgR\nSim4JiDOUK9YUygkJBTimEnFKAPkFbApIMLxG8c8+swx3/Fdb/PgrTc4fLDEB89qvebx+1/jS198\nlw++9oQv/sx7LD6zYPWkx9YeSkZFCBRUDR8KTefxDrzUexxjImWlPe7wJ4EHry1o5wV19f6HTeaD\n39wwPDO2zyLDusesoMEhviAevDpOvvUB3/adb/NrP/cP+d1/+LczDJHT957x/pcfV8ahQtHdZ6EY\nmbYT5i7jGk9ocn30TPjrf/5XX9az/SJmP2r//dc94Zd/4i/zHf/unyDFQIqBmPxVO6VAjNfbcdp3\n3fZ1vTv+F38S/yf+DC4kQog4P61DwoeIDwnvp/Vun987trf9j37yL/CF//CPE4h40o3l9r6P2/6r\nP/F/8SM/8bvJOAp6Y/lG9/2tn/jf+b5/748wppZxbKZ1y5gaxtgwxvaF1kNs6f/ST2H/4n8EW6Dn\nev1R7a93fPUTUH6CKkZ80uWngH/rBR6vB/ARz/bLYOYJ+NeB/5Ua2fJfcxPIAXCiYPVtqICJYWaI\nuvqDFTAMp4oATgUvsDyak9rIenWJA0oBFSWWVMHfwEwogKqhouAc3hfaWQ+xxZLhVBA1nPeIGjFG\nxgG2ssWbkL0nxjp6ODiYM8aBg4MZvoPsEklKvUdnlFLwXrGcIQtFFDMFG1ksHEePtpjzFGlYUdhs\nMmlQRAXvlUEAhJINNRDx5JIQHCL1TYko2Yxm0WE6PQCu1GsEwxqjnYPGQm4KqkoMimw8Tx+fEu45\nohfc3OEWDWKCcw4chANotobrjOPPdJgKl1/cVtD24KwQvBKcx0tBDZwTUi54L0hQUixIKVgslKKo\nClbq8ab1RDeirlB7J0BAvBC8Y9HOOFgc0nYzmtBweHjEZrNhO1uzPFyQS6aUjCOTChQrlFwYBqN0\nSpsU84pzjm7xEp7oV2KfZl8kX3fzzn5r2MsAc4C/Ni0faRocVgxk99veMVpDVDCrQJxSYu4dwRmt\nV0rpca7QzQNxGJECKSaEytoQgQIlG4mCOjAc7UI4OjwkZWFzOVCSsX6SCI3UvtGMfozkvEbVMfeK\ntsJRM+dYl6gKhcRoI31ZVQbsYgUlcUCB6LEcAcP5graB2aNEd1+RXriMMKQRy4YqiDNcAypCouBw\ngCGAqiebVHaMAnlixUICzKAUjys94hVcJLuEC4p5AVWkgSSFmQ8cHC/IJRGHkfWzNbEY62enrM5X\nxHhGOy+4zmjvF2Y5YmtHPC8EB86U4B1qI5YV8YIZeIwhQtFMmHk8Qm+RVjtyKhhCiYWgHudHVECl\nUETqZxAF13rcskEcuOBw3tEGT+lausWMdrkmbgtmSilAyqRcEFEMQXJ9n845mlYIIbykR/r/a/s0\nXU/2dTfv7LeGvSww/3gTKCqTB3Z6ukQwASmCqZDNoGRiyhVcKWSglEyKkZIT3jn8rKHf9hWUi1SW\nTyElpRElNIX5QcPBg47lgafvC6dPRtIg+M4REzgDK0YsiVQyiNC2LbN5g3MO5zwpjTzrnzKOBlkx\nEuomuSALzhVMFVNhcTynaYy3HyTciePZ+RnH4zGP87Pa8Qj4oDhnLO41iAiWAVGyA5EAMaGqUAoh\n6NTJRUQbSskIBaKQNwkakJki84wTUA+jA81CuwzIXBli4fxsxfmzFc9O12wuH2O6pfiEC4mHv3NG\nWBSaY7A3DHJGR4cUMDIi9TMSUWLMuOIxM0oG0ZbF8ZzFMuC9YDkTR+i3I+t1JMYRo468KIYI5JzJ\n/UgpM5rO44LwLb/rM2jbEMxogmM+79jkRClCTkJKCQxSSpQCIlpHNG7OfNHSNP/4g/nDdz7FtIvP\nv/OpXer+O7/zU7vWb3/ntU/tWp9553Of2rXk8z/46fVl+g6UT+tiv/8TX+GVgbmKwywjIiQExMgl\ngwV0khxc1TEoeaQXCF2GXEgpkVPGSgYnNE1DNzvi4mxFTAkQigmI0seRsGxol8bhgXJ8f46J0s62\nhBC4eNaTLgdEasdixer1c0+hQ7WrbNdGslYmXooxWE+SDYE5rXicN/AOnNHMAsu5sjz2/LPf+d08\nGz7gXnOff3D6DE0topnGKd5D8I7m2ChIZeMaqvxhICZYNASDSZbCBVQhjj02FGIGawztDC+GNuBn\nghRQlKKFbhkQTfT9ig+eZFZPNqw+OCXrQJiN0K3JM+P4OzxmmfmRYVFJ54qegxYjx4xJS7FSR0AJ\nhmhkc+QWtA10bcPhbIE0mXEciXkgtA5vA32hfsepUIpRhyaGFKNPCalvmTe+8yEpj2Qiow2IRMwi\nWIFcIGfiOBCHQomKZKHtGkJQ2tDg3csI0LphPwT8Z1QJ8b8C/uw3eoGH73ye+LH+/xfUQr7wDlXZ\n/Aau9RGXrmD+cdd6Matg/unA5re88zlS/lQuhX7+Bynjp3Mt9J1P6UIAf4BP+nm9OmZu4NSRS0YQ\nBCqwZyOrIWZgBbOMFWOIAy4JYglLkZwSYgVBES3M5y2z2Qmn52vW656SFCioKNvtyH13RDMLzA5a\nZgcL2sWS7fCYMUa6xRLLVkG6H+mHiO8ha6FpFQsBVSPmyDau2YxbMgOuKzifEGnAC9o6TDOuc8wW\nDd/7ue+glSX/xh/61/i5/+dnWP3G/8IH+pTUFoqA9w5RcN7IJSDe0bYtOKEkQ4uQKQiClYy6AMVI\nKcPoUau6fU6ZPBSkrw7RMGnmOs+ErkM7MMlcXvRs1hc8e3cF20RoBpaPHBIEVxJNOCDMFXEj42C0\nJ0bfJ2TlyaZoSTjnSMkoWUhFSWQODo/p2o6SCzFGgldUFSdCdp6wWND1jrGsqt5thk9C9oY2injo\n08B23OKGgveelCJ5+gWLamXxKWOAD56cI2qCWSKEBW3boqKIvFQwd8B/AfwhatTW3wX+R57jE/rk\ndiez3Nk3Zq8MzAvx6pkSVQzFcnVMWi5QqpNLxDCDjHJ5tkWtZ9yugMxs5mm7iHctokrTdrzWdpxf\nrtluei77kZIzFgubTUKc4jvhaHHC0aKlXwlOntGGlu0wsl4NgHK5PacfM+qF8+GcRWgwZ2y2Pet+\nyxAHtFWEFhGPOEEIWDG8Nngc86Zh2Bo/+nt/jOai8Ed/z7/CuL7H+Zf+O74oA6u4xmkFalwdjYTO\nMVt6ci5ElDRWuYdc/YY5G0WMkg1TMFFKyhAFS44YEs1cwTLeC2qGkvGNZ8hb+lXh9IM1q/d6vDoW\nB0bJGTHj3uJ1Ht17hJ87HvMu64un+M7jVEmSsKyYM+rNKKUUcjJiylyeb1iczMnFk8h0zjMWo6jH\nJNMEYdOBOIdTj1ehOOhmDd2iIbQTAJsRx5Gc68hrTAMmBfUKoyBSRxySwDsHKNlGfHAslnPmjXvZ\nj+1+djNcZze/BDC/szv7xuyVgblYoXoPHWJGRlGBnApIoaSMKwYuo1SmXijEVJ1hsU9YjLShgQNw\nzgOC08J80eKc0rSO7aZnGCOnT1fcO53x4KFHtaNp5rzxxpu4tiPnzHwckdNzNustKUXOhp4+r9CU\nmBfQ1pF6IwEaAiEUXKeoaNWIAZxDxZNL5v78AQfumHd/6Yu8/+V/iFnhe77/D/LGn/4z/Cd/7s/y\nxbN+irhRsqtO3+XhnHbWkMYEZvQ2hVyKkGMmFwBDvMOcVLmC+jmWVLAsWHEUM0BxaqhTVArZlH4Y\n6S+2aBKSJVLnGTaZg3tLHh6/xVuvfQvNvKXxcy7PM6fLc/K8wEqnyCBjdtDhloEUM/lrI2b1vcc0\nchACgpJzwahRPjHGGvViimsc4cCDgFOlWQZcK/hG0WAMcYP1nhACKWVSzqSUKSkBSvANJUdizNjk\nRJ0tlsxmMw4WB3TBkeOnIxN8hD0vu/n7Xs5L3UWz3Nk3Zq9OZkkRcw5VMLRKCjIxUTPUMh7wKqhW\nh5loIIkxSqKkTBlGLi82zBYtbRsJruqwVjJYAgo+NBhKzCNP3tvw9tuOsYfglZN7JyRnrNbnzKVj\ntd6gCmNJ5HHEdcayE8IsIy4j6pGhxVvBNR2hBXV1JFGESROOtE3HdnXB93/hR/jKL/wyLsw4Wh7w\ni3/zr/PP/fif5nv/qe/hg5//WQaLoKBJUC/M5oqGjBNHPybMpDJyq/KCK9VpXB1/gAkinmQjZXKY\n5jHjkpJLnmQcI+aROFbgzluHlYFSlNwr4xBprOHegzd4+OhN1AspJ+4fn5F7QVYrLrcbdOMJTpg/\naFjcOyAjzO4VTk+3SPQUjTUiKK0ZtjLF+bsaoSMFnOEaoRWHOI94oe080gjiQnVqp4INkZwLKUa8\nKqgQzTASOTtKcZWVJyNLoekCR4s5jQt0bUsKLzUZ7YUEil/8D/7KVfvBD36BB+984UPnZPPV34BS\nzNWRKVJjmaT6kFBD1BAtqMu4orXzLMIUuwsYzuUaK+5qnLnzCe8SXjNOM85Na82olGkxRKZXFJtC\nYG+aTHeklBvt/cVRQ0b327tY8901bsePK6W27XqfI19d8frcPMWbK2qlvmeY1ns3LFKj4kQwBbQG\nUJgTrExBEVPIMgZSCnipaQme57Y/tO2oUWJuajvATdsvYt9smk/5WbC/fb39dZ7AVwfmpbKtIoZQ\nKJpRU5IlnBrBG0EyPhScVwRBW8hJ8aPDmbLNyvY8cioXYMr8IOG9RwqQEhYTKVZNWXxmvdrw+P1z\nXnv0JmWEg8WCeFQY4xacxyQSLSFSuPdggZ+NHN4Dv/BkM+LgKVrjwH0bmHUtzjuwxKBxisTxOIu8\nNnud/v2n+KZl1gVSyRwe3+OX/qef5t/80/8xf+/f+WHeHwpRCmkozJqWphFElOQcMa5r+CGVtQs1\nusdEoViVPKoCM3WABYtQtp7YF0Kb67drhmQjp6E6Lr1gfXWojjkSeiH4JceH93n99Tfo45YxjiyX\nB/SHAwffcsTXto85/UdnzJdzZgcNYeY4PDzk4GFifs+xuRgwa0gy4KaQ0JhBrT7pViLmDN86pBGc\nF5wP+MZjFMTV3IKUEyXWSJU4DpQhIimBZkIjxDwiqqgTvNb3Npu33Lt3xMHBHOcUVz618ILn2cdm\nNwP8tn//x29sp+f8AFOpYF5sD7xEr3FqwnRVQ7VgO0DfDcYMxGoXoD7hfa4g7hPOVTC/WmvCuYxq\nqYuU2kFIuQJ0rrqS5y+3QXwH3ru1J31oDVDqHU7gLc+5Sl3MbgJ4mbqQ3f9HK4jVPq7616bO5noD\nVBCdYgVqlO/0We13AlRfUxLIgiWwLJDkCryv11Pb1bU4uQZ0LxOgP+cpkQ81nnMMrpFZPvJ0+IFp\nmWz7nz7vJOBVauYxgdMqEugUG66Gk0KjhbYxfFNoGiUoqE69ag70fUODoCr0l5H1KmKcs101NRa7\ndZRipGSksQK09wEj8d6TU9784Awnc0Qv0VbREFitzhnHLSKR114/wrnC8sTTLBODbWtGaKxJQrg6\n5FfnaNsOr54urInbEdFCk4XjRUd/eUnjW1TAiUGOyPyA3/z5v8qf+qN/ij/3Mz+NDIlcBtq5oprB\nHCll8jiBUg2Up5jRzlvefusNnp4+5dmzZxgOLCNapSopDoqiMWHZ1c4gFazUZCQTY3kciD6wPevJ\nvWEWaNsZ8+WSguFDAIGuaTlYHhGJ3H/zkHKesWFL8Yd0y47usMWFOdo2+MWGtInkAhJ6WudJuVSn\ncjC64wOavjDOCiXnClQIpdT4fAPGVcTEaOYeAVI/MA4DkuooTIXKVJuEoOCMtvHcv3/E8mBJ21XH\nMcNLlVn+HvAd1PLO7wJ/gprdfMNS+fjwyGzuarkCtCtmzgRKEytXwVyeoruovwPsmmVPzNz5jJtA\n3Lm8t86o7i97QD4h5G0cuQbyD7PyHYjvs/H9ZZ+Z2wTIxfZAHbm1Xd/7PlO//X/OSn3GuYWVu45P\n7SqbvKZr1FFtxcv6H2ZT6PMOzNMOsAULgqVp8TvQntj9DWA3bGLk4qjt/fu50bAPA/Rzh0DGRyD5\nN2SvkJkXzFJNHHKOIg7RjPoqsThnzDroWsG7+oA7CTXZxAWclzpUd57V5Ui/qT/ys7MeVGjbXRed\nMRVoR8wKm4tL/v4Xf42jwwO2sbA4XJDHnvVqTc5CaOHo3pwuFPw8U9yWHOsQTp3iFDKZTELoUPUg\nwrzrYFYzHA984NsffSvx17e0xy0lDbhmRhFh6HvKB2t++J0/zk//jZ9mCEIjnmXXVv08wjgkSjKs\ngFiNL3fe8fC1+5zcO+D1Ryd86atf5ctfeRewSbe2CnKjkbaK6xqcS+AL2IiIY37Y8vCN+5Rxxge/\n+ZR3v3aGWyr37t9HUMYUyTlydn4GNrBczNgWR/P6Q4bHhcv3tqRVxr0eaGct4j0PFi3NecPF+bqG\nSxaPiEBRRGHmF9WJ7TtOfAVcJ1VXvzi/5OJiO0liwtCPJKmgFfuIpvoDNiu1bEOofZtIxgscHhyy\nPG5oZp7QtSBG6l/qU/tC2c2xfPzPqhR3zcztGsBqrkWVWWSSWdRNEoNLE6hWiUml4CYwdxMzd1Nb\n97d1f9kB+W7ZSSw7lniTqe/B6h5X/vogvlt2Ektl3VN3sN9Grhj57lVunnvdhTirjvorZo6hcHX/\nItSyIFMnWAHd9mSJqTiI2BUzr4tiWShJMK/XoO6VEgSLE5A7rX4qL1V6cZMMk7mFw5NEtrd5k3nv\nsXHh1nmfzF6dAzRDkfpVGb4+QNPQ2YVMECEEI4SMOsFpPUed4J0Hb4ivGYpFBuaLExofGGLh8ftn\nrE7HaVjpkMZwTQsqpGFgvVmzSWuCeoZxxebynPVmhYoyWzbMF4Guy2gD26SIOXK0ynC9kMbCMES8\ni4ShpW0LzgvdrEVl5K2TexzFh1jzPpSqazfzJePqHOccz/oNh3//7/KHPv8D/KVf+Bk676uzUoQB\nY4gJDaCmlVmbo1k4HpwcMm8DB8sZsTzi/fce16gbSZVFYBQ8OtZIIKjDdBBmBA6PHvLGwzdYhCO+\n5fU3+PUvf5GwNE4ePkJdYdz0XFxe8v7X3ufZ5SkHi2PUCVGE45MDLp+esnq64vLRAf5wTnMIs6Zh\nduiJ2RPPyvTsCk0j+NwgBNS1BOfAwsQEBe8L9+8f07QNz85WpBwpyWq255gYtiOuZGYdLJczZvNm\nCmFMWI6EoNw/useDB/fp5i3ee4xMLi+VmcMLZDe/CDMvtgM2dyUl7KATmBCrSizVYQL7UoiKUqRQ\nJF+B+TWoT21XUE04V6pePgG5akbFbunm1y979fI3AP2j5JY8VVH5MKgLNjHrm+C8Y+HXAH4T3J+3\nv4J5vbMPM3MBrakIO2ZuttOz5eozNSZmjlGSYkmu10GxqBQ/AbkviFOK1ytWXnwldMXZpJtPr7F/\nQzsgvwHizwHwfTZ+BfKfDNFfbZw5kFOq6YoFcNXZV3L9MgTDJNd0eclgkEWwAK34Gv1iynz5kNls\nyXw+p3Ez7t17yq//2hfZnCcsC06NPCbEK9J4ZrOGbXpKe3hMXzaMOZKGEStKCIp2UxieKNuYiEUZ\nk8OZIMUTrDD2kXVa46UhuBZaR84jzaJl9eyCPFwiOHT6AjcXFzTdgmHcMpPM4/ff5cf/4L/K//x3\n/zfCoqtgZIo4qRpoywTOBsXY9iNt1zGbtzRdw8NHhzx644ivfuUDrHgUKFNihZWCxCozhcYjAm3j\nOHlwwFtvvcXxyT0uPrggHCqjRDofKCnx7INTPnj/a5w9fZ9nq8eksTAPc5LCoJlsSu6FD750zuxo\nSTtvQcG5htl8ZLv1DJtEzhmVjGjA2yQTqFZNe4p+yRmMwmIxI0vhybNnNXJlzPSbgdQXmuCYBY93\nc+6fPOTg4IihrMhpjTpl3nXM5h1+5hCvpO2GPm1f2SO9sxcC8zIBl10Dm12x8kkGVpuCAWrHvIPC\nMo3DTJQigrqJnbuM+lLXk0Z+JbFcAXqepJuJmVPZ+ZV+w77E8jwQvym3uKk72gfyfafobfepIVPt\npB1YT/tNboC5XbH2er6zcoV5Yrv7vMZM2WnmxjSKuf6sd0qLTaAv1KS4EpQyrS1N20koXhGvmDfE\nG8UpxYM4rSTS2Q1n6I0ekP2bug3ixs1ec297//+/SXuFYF6TR8SUYkPNgDRHHgrZKaVLtR2qtz6X\njOLYFdMK4mi6huQSzs85PrzH4cEh3rWEriWmwrtferdGqASPZSGPNcri+HjB1gaWsmEYB5giKcZx\nRL2rei+JnDYVWMRhWVFzlS1HITjHdkisLrc0GghNRsWz3RY+49+icYaft+RcEFXGYSThODlastkO\nACzjyO98+G18lTM0GM4pIxltM96MnD0ksKyUGHlycc6br5/QzB3jpvDg0RGDjcQxk3Mk9tXxmLIn\npkjA1QqFojXeG8+9z9zncLEgNA1RI/PG8brr2Jxu2PQb1qfPOHv6mMvhjM22597xG9ig9CVSxJGG\nSP9k5PzJlm7pyH5G0wKhxo4nMlhBaDAxstbqliod/ZBwsutgDDfpnPN5yz2OOT07YztEygAaIZgj\nnMy4d/SIWXuEdw3L5SFNC0O5xKsxO2hoQy1MNsaRPH5a6X3fvMUXAPMaWSHXgGY1qusKobRKCmgN\nPXVXAF5QqdEa5LpWLRXQfb4C9rrea++Y+Q2Zxa6AfJ+/wm1Av5ZXburmOzaePiSzBCI78W8HzDsg\nv17rre2P3p9KRq80c7si5DLpLqLTrdtNb/MNB+lOiqFQgqPkHYC7a2D3Sgl1JF68XUW2VKcnFCfI\nBOhXoH71QvZhIH/e/ucNg/bX36S9MjA3TVAqz6CAiKOkWv9jHGDohdAZ2hScqw7QaPWx3r3r4AXB\n0wbl8HDOw0cP8S7g25Z+NbJZr9BWa3gSuYbw5Y6D+QmHiw6VzHY7sN0kiIXNdkPTOtxWEV2TcmaI\nU+hY9gQa0iZiGVIxVGr336dIiC1taJi7Yx7c/074aiSOQtt1lBLpupblyX3GYUsILZvVmq/83/8H\nf/KH/jh//m/+RZKLFDPUJVyjkDNjX+qPXEDF8+X3vsLnPveQsMlky7SHjvuyRNST4kjKmc0qsd2M\nbMsuRG+KU8+Fpm0I85bFckYYYNkc8IXykNdlTi+F98Yn/A+nv0IcImnIDHlN2J6hKZAEokS2GWzI\nfPVX36M7fpsZBQ5nmEXazjP2Hkh4UWTiZuvNhpx7xrFAKrTzhuUs0DjHmCLOOeadIy+WbM4HbEik\nPqNOSRHEGsgNjkDQBrOIqic0npQKkUQphXGIjP2rB/NkL/CzMqmywOTUvOaaXLNzraBluyG4XB+j\nMAE6qCvIDrx3wH57346N78stN5ygXN3BTjPf181va+d6g5Hf1NB37Lx++9ddAs8FboF9oN87xt45\nbopmuZac9294+mz0+vgVpMv0TqR+XpavwTxPIJ5ToSSleEcODkm1NIfsg7mvoYniy3VI4n40y41h\nwh6Qy/V3d8XEn7vvBR6sj7FXB+aWK5ATEAqWS3X2SdW+8iikVEgj1WkTqlaWLdWiVNQEHRFPUaNb\ntiyPF7TdjKEY3cGMxcEBeaolUgRiGpg1B0iZE/QAykiKT9lcDKwv18TtAKp470gWa11xaRgHI/WR\nbYyQofEBGsBqXRjnA213RNPeYybHdPkBsVziNJNyJLiOTb8mnp6R8ohqYtm2bFPke978AvMusVFh\nHHuSjahkxpLJBrXYQWG2FNqu5ctPvsKj+/fwzjg4XiBd9Sc0YQaWGfrM2dkl55uWVXqG2bqOglSJ\nMbI+PWNWlM9/bUHzeMnZ2Vf5VRFKHvn8d30X3/r+Ie+XwFmpWv359hmlD/SXMGRl2Ga8CasnhfX5\niLZU3Va1RihNeq5ZZeAqjuVsydBnLlc9Y8k8Oz+lj54HDx8QnCcPNSa+dQ3z0HK5voRB2UqPvR84\nmq9oZEYXjOQFS4USjOxg6HtScKQUuXi2Yr35lIp4fAJ7EWYuU3jh1fZuQ66XWpmgXGPE3jHU6jWU\nCtpq07o8f9uV6kyd5JW6nnRz7Pr1AdhnwOVq/TydXD/C+blj5teAzF77JrCzNzp5/n7BTw7QGx/R\nzvmpcKM7nP7IrtObKqmy+7zEyMHhUgV0TWUCdkOSkf0kp3h3E8yn6BaZ5BduO0D3v58bLHwfsJ8D\n6P+kM3OozrmS09TJytUTXkyICcZtInglSy2Q66U6E6X+MyVOIYsiqBhWelSbWsCqdTjnCKHBewXv\n2PSeo+UxeRDSWiiDY3tu5NHYrvta6S8aWwrOe3IspFjZ4bipunvbNKzHEW+C62p8tHOKc57l7Ahx\nDYumwRCEBMymAAAgAElEQVSGPpFcQWZG17XgA0eLY9KwwYYNxeDivX/EF+59Bz93+iv0JRGTkbeF\ncZUZL+tPeT4LNbU+ZC6fneNVmS89Czfn+OSEVBJijrZdcHCkzBYLZpcNzy6UIQmp9Egp5GHALguf\neTdhH/wm6yw4P4OUkJz5lV/4Zb777e/ib7z3i2CBlEdccUhTs16TRFKu3n40szq/pD0+YFDDi1Jy\nwUqNSDBxtIsZh8sDnHpSMg76yJMnT9CxwXkFjSyP7jGsRsZNj3OG98Zs1rIde0yMcXPB4/fexSuM\n8YDFsmd26PCzhBcQMpvNwDhGNqsNm/XLDWd5EXsRzbxGZtiVBnzlhLTJKalWR6w6bU+FykQNKZME\nU+o1rhOL6lqugPz62NU5Mm2L3ZJa4JqNf1hmuXbR7hj5bXb+4WUKPJ6k0T0hZ49111HJteT0oe3p\n/Gz5mmJzi3nLbi01YWh3fBrV2kQQy5RwJWKk4CjJIdEjvqC+kLzBrmDeHhuv0SxSfW6TxMLkBL0S\nCj4O0G+D93PP/2T2SsHcEETrjDw18bMOy1QKZTTSWBh7UOfrMM8XnCreBYwK8MUS8zCvvS0jfb8h\npZ5UBgojwTmcD0ijtCnTzmaQPOMGYhm4fJq4PDsnDYmMYT0QDYJAFobeyGMhDTDGQowjIoWDrkNK\nrW0yxrq40LKcnbD94BzZDFPmWUZoKOLYrFaQjDFHWjUQz+rpJf/SD/4Yv/xXfoqL0RjWA9t1Zrs2\nUqyZplkLxTJFHEMqPD19guUFXmE5O8C5lu1QoAXxynzZEWYPCI3w5HTkfLNl7uc4nfGFd+EkRUbX\nEJoGJw2SI7F3rPo1JWZcycSSUGo0TdFCdjW5R7QOSxvnUKsdBI2ivqkTR6T6gwxtQzPr6BZzVIx5\n8BjK8mHD6bMzSs54q7Vb2oVHSuDy4gIs4zw4LzRtILTCdljzxS/+Ot3C8/C1+xzHOYtlw2LW4hsl\npchmPbBerUnbfzIcoDLFTVcdeM9FuGNvVCBXs3qu2FUHoFqu2mITKOuk434IwG8v1wAue6z8Sntm\n9/r7zs8PSywvEp64c9xeqdy2a3OFstftaz8CcAXsu07gCsyvPp7pZo0Klrr/GhOw78BcZfotyhXK\nq/dkX5BgdUKXiWnfYN1ewOXrWHNXKE4nvZxrQL8eKuyBtt0E6hsM/WMA/pu0VxeaOD209bsoU8sQ\n0av3mbMSU4beEbKQPbRTmVlz0DShJtpgFMtst2tSiJyvzjhfPWazXeHKbIpQUkLjWW8uWSwWrC8S\nxcHqYkOMVZ5QVUoysha8B8ORByNuM+OQyLnKPe3M1ZKwZsRuBFU2zYrzizOO/JIuNmDGMCZKW1ht\nzmnaOccnD8kl4QuMY+TxkyfMGsebaeBhOeZXV08Y19TaLKWAKFaEEgM5CsU1xJKIlz3LZkZZGOM6\nkgqs+h4pC2ZLEBfQLHgXePjgDfr3NxzNHvADdsLbesxFWtO5OaoB7xrMDL/oGNLIzB8g1OSjDEim\nJkdYuYoGsAztvMF1hjipWbcqpBRRcXgf8L4W4yoamR0sCJMcFuyQMAukPBC3CY3Q+Tmn40jRzMFJ\nU19DC93cEbwScyYOhWyRy/UF7UJBIkKmpSGnSBxGUkqszodX9Uhf2YvILEqp8c5W0ElKU8oUOld/\n+BXA63lCjWpRK1f/K1NbxKYY64nR78WoX5UE2Ekz+/v3kobgNlncB/LnAXr+EKBXrfwazN2kQdy4\n+hWg7kB7b9/esZv7qx9ip5lf36fdzMGZQpuR3XXrvl37ah9GajKaPBILGnzVySeZhQgWpBaw84L6\ngnmheEN9oexkmMkp+pHgfQXaPF9yed7yCeyVgbnTMg2fbh+53mEpk0YlW6IkhwbD/DSpQxOIcaRp\nlFQSl9tzaArab9hszun7S1LuKcXQvMDFWphqtb5gebCkjAUJifXQk7eJnGvWZI3Xhr6nVgaMkMaI\nFcNKnSUHanlXJJOGkWEY8Xge8y5+dHxP+21cppGx7xGFdn7CsLlEfMfi6ITXH32Wi2dP2Jy9TyyB\n9XuP+dEf+FH++n/5kyzaBfSGtP3k+KxD6tRnct8zDlssjrSN48HRfYbNQD8kfvO9U9r5Ew5Plhzf\nO6RtA86UUoS3j97i28MJ333vuxg2F8z9Ag0NTj3OKeoaFM+8ixzM7zEUIzhPJIJonaxD6wxD2axO\nOdd6XOdR73GlTs1nU1JH/WwKMQ8M0dPEhmYZ8M5hpdA1gZKFGDIkQWMt4DU/6uh9zyIUwnw+TcUH\ncYwM/YjkBrOaZet9Wye6QKAIaexJsUB+9ZNTpBdIGnIUjHylJ++yz41cv3d2YFUB3e2BqLNrMFUr\newBOBY1JF67gfXsf1wAu7DHya6fnh6WW50Wz3I5o2QF6vgnmto9Qe+09oL4J5LeP1fbOAXqbnMNu\nDDGdekN3ryeWSYcpV9KNodFIwZA9AL+SVgJXyUI6LeYVvWLmTMycW8ycPca91/564H67/Qns1U1O\nASBGcYaliY1L/QJ0AkoMYixTDLUhSciN0JgQSIg25AyQ2A4bynnCa9V6m9bTzj3jZSSmLUimiJHT\nyNOz97FQww/77YbUbxFzpCQwFgzHECMURy42yUAZpCBaa20EBfWJVAb6bSENp8SNcZAWNJ/97SQC\n6hLDZkPfbolWaC1xcXHBdtvTOENcw3pzyeMnkd/2z3wf3374iC+dP6FrmzrZhUvEWMh5ZNikWupX\nCqETNpstJSqDFVLKXJxecPmlU45PlizvLXj7rbdJkplReNDc48de+31sVxeIBtpuhrmGzgfECaQe\ni4XgApYKQRu6VnFlxUiqSVuN4GcJaaB4T3vkCV2o36EBpeClQbyvsz85T+sDcQ2n41MWizldM6dz\nRtKOYbtFSyJaZNxuKRYJMyEWaKYJRyxTJ722ydGVO9qZUcqI9wtECzkPpKIUAttNz3b10pOGPtaS\nvUBoIhlFJva6+73bla6M7BjxHojf0KN3USSp/vMVSLPrCa6BZH9bJ4K4zySnO9rZTSC/1spvJuCX\nvXu4GZ7objBzJr/AbfC+xrx9IJdb5+zS8pPVJKSbzHzvM9tdbLfaI4m7dtndi+xAvMosEg0CdYns\n1WWpIG6+UFyZJiC3qqs7u+kAfS4r32vrrr377D+CnX8Ce3XRLFRnp5venDHNPKSCSZ2JHZm+yDSx\nA6eUXGPC5+JZHhuLZQCFGCMlF5wbUbRmSY6Z87gmxcSQypWEMw5rxn7AtLJvwVOyIpk6IbPVWWzi\nmJFcMG+4UOoUbmSKJbLWDDzLA3mEvBXcsGZ+Xxm2PR4hIog6UhaOj98kAfdP7jOMI6XUmizDZsWD\nowP07Jw/9v1/mL/wt/8az+IGZ4Y6x+V6YOwTnW85ebAgdKsa6RIjfexhrJqxWCb1I6fvnXF2tsLl\nlrBQ3uge8mPf+U9zuT5DzNO0HUUDTjwqHssjIorzgeAdkjOH8xNKWbFJI8nKNG9nxoqiQQjHSrME\nVNBGKWqM25GZzkGM4AOHBwcUhX67QWLDxdOe+eyEEDyzpqb0b8qWNCTUeZyf5v+cCY1vak33bWXl\n/ZixJHShSjpd12GW6qhLHaUk4pApI3VKv1dsLxRnjuBE9n7/OxlD2GkHu/3KlLq/Y7+SrgFU8kcM\n8a8dg7eXj9zPDk927Hyfld/sWG4C+c2QRL/XhmuMei5Ht1vtHdAXboC+u4Kq6Q7lWqa5aiM32895\nJ/UcrkHccwvEmSQVmTJBtZaRnoB8F1/+Yc18D8D11vaNOPfbQH5r+xPYqyu0JeAq556cnzZlfQqm\nBZHrL22qfA7ZKERycXRLT9u1PLh/hJmx2W4oxQjOEZqA84XZQST3mfXlSCxGjMPUO2dMM0KtoS7e\nYSaknJFSZ/BxuabVS7FJigB1dYKLokKWiNMBESW0gbwWNpsVbCIxxim1uGrwxaoEfvLgIZeXl8Rx\ny70HDzh98ozFfMH55YpnTx/z+77n9/Ozv/B3mKeWbCMXvsdLgGHFW68/IDYXHB3P2SCsL9Zs4jPy\npqGYMcYeqHVrxtXI5mtPmR04/uU/8sO0gzGUCqAFx7xbkFOiWERL7UC9c7gQoHHo0Zz5aJQ+0W9H\nyFXbFXGIh6OjJd3SQyPVUWwF75UWx+FswaxbYsGqBj+bk1Oh34xsVlsO2iVSjG7eMQ4joQ2UaDgZ\nEQHvhWKOftySciH2I3mAMho5gPMeH/w0f2otqJZHmypDBlJZvczH9r8B/gXgA+B3f9RJLyKzUEf7\ne45IRVFMCuxG3FPEiVJrsDjZAXjC75aJmdsEGjerxMpetdjrtu2DPddBiVda/dWyz9BvSi3u1mjB\nP8cB6sgfAvIrBX2fnV+t7aoy4u1jVyz/Fpjv3s+1OFT3Fa731eMTmO9i+EPVyK+APHBdcGuXPOQV\n9Q6dol10x86dXWvm+zKL7rV3IL6Tua7OeQ6Q7//fJ7BXmAG6S1avYFBjzKcnfHJWlGLTl1WdgYhM\nvYAQupYmNKhTFvMO55XLyzWqjhACOSe6pmXoRnToKdtILJmYDYfhG0ENGjd5SJzUSZvVanXebGgW\nSkm1BK0qoat6musSzlEzGItRnGBqEIUHBye03Zxnj1dYGhGUdr7EtQ0pRZpZy3bY8Bu/9it085Zx\ne0mat/T9yNvHh/yOkwf0uXBvecDPffkf8tuOGn5p/ArbdMqb91o+8+abfHX9RSw7hn5L2uQ67JvC\nKUsyXPIcmeNP/q4fZAEMcQR1uGZGM5uTpkk9nBqWqoThg2K94WaBb3n0Nl+9fIp64WLYkPOIUCNZ\nmjk0C8HNBBcKxRlpKByGGSftnGU3x/uWIUeiCEMcq1SmPWnTkw/nmBSaxrNYHGCjMUqtYS5WZZU4\nDsRxZFw7hnVh3ERmszlNq2jYEQCllEyORr8ZWF0ObPtSi76/PPtvgf8c+Omvd9KLRLPsfrz7YGnT\nqNSmH/ouDrwm+GScZLxUZh4kToAeJ1YtN4FtCko3ucVYRa7OqfkaE6Awta9u77bMYreA/MOAfjui\nZQfmV0GJxlWxrKvXuAHa07Fy3d6BvDd/HWfPnigk+8Au18dvgH09v8hOa59klp20MgH6DsgrM98B\nep7Yubtm5lfhidTlCoxlj31zi6XzHPlLbp338Y/N17NXKLPAjguI1DosuQiqilEr5dVUf6sVC5Fa\n6EqVnMGpRyXAlPrbNR2DHwnqa5pzFrx6VF0tteugxIxJ1cDTWJBGCU2dpci8oqUmL42xzmakOCwU\ntBV8V6AD1xWaUL3ZJg5LCsmhCXxoOZgf47xDqCX2jg5PmB/cQ31gs63ToC3nS7YXZywXC778la8R\n/AlDGsibC37gs5/lbEjcbxryesvWw1thyalsmR03vP3obeRsQPt36e2QJ3LOZhw5aB3OOrabzKNu\nzh/73j/Ad7/9Odbn55gIXhosBFIpzJu2xu+nWOcgFaUfexrn8Ys5rd3nMEVyP9C6OUMZGcdIjpnQ\nBKSp5XUjhRQ3eHN03uMxcsp1xOKMGHvGcSDGkZRH/GmAzjM7bAgzz+HhIZqFtC5E3yPmSbGQooF5\nckzEPILr8DMlNELja/x0ja5xjGON5slJKQw0By916ri/BXz24056odDEqUaITsz7GjJ3J0ys/Spb\ns9ZVcZLwGvESCRIJGq/A+wp+99u3t6/a14AP1yz9+ujzWPl+RMuHpZZ9EL8Gc9vDrz22P4E33ATu\n67Zds/VSK5XCteNzt74elXAdUy5Q9jq1MnVguzXKtaNzF0se9gG8ViktXskTK5crZr4H5DXZ+RqI\n90H9lp/iQ+D+oX1XX8U3ba8wznwnn8ikn9f3uGtf6YZWlTyzCvrF6jQ7Z6crHj1a1PC3XCeH9upw\nEqCA4nF5qqlcMsUySTI4RYBcCi4Z5l2dVFiENPWWMkk/IuCCwzUFPy9oVzU1uoxz1MJYY0vcVnno\nzdcfcu/gHoYnl8I4Fs7PLwlN4P69h3Tzlvms48u/8WVQ5YPTJ9x/7TMcLmtNcU3Cw5PXmF9eUMaB\n3/Ntn2UUJQ+J0+0Wf9DwcPEaeXXJw8NHyJHjV/JX2G57HsyOeLzuee/0knc+93n++c9/FxeXp0jb\nYmOimS2ZzZdTh5UpJUPJ5BIpJmiAUjIaWo6Ojxg2G9YXG5wGyAK5SmEuKL6x/5e5d4u1LcvPu37j\nOm9rrb323udWVaeq2477krax3YE4MlGDLQLkARGQEC9EiggKSEgkQkIiSIhLAgGigJKIhxDkByRE\nFBIkFAukJJZoy0Gy46STttPtbqq6qrvrds4+Z599Wbc557jxMOZcl33OqTru6vLxkIbmmGPOvfbe\na831zf/8xvf//vQpEn1CRE9MHm8cQfUID0JHXPK0fkEXrmnblnXneXx9xobfwz1uISw0ZUNV1VRl\nx4JLhNSkKAnO0bcOtKaeloggsGW+kSBD5kmjxHc93gfW6zVt6wGP1J/wG/FDaO4FFkBFzECtUl6P\nGKFyvPByZuMoK0womY2yMpiP3WFEfwDW4+sc8sRybyxIYtzftXQDSW7cDp6pNX9ewtCOatkD8y2o\nDwva2/EI7ukZYJ6BPJeVzGUht08c46uKG10eAneS7MBc7ubSaG9rxHacHRIzoCsdCFoN3jZqy5nL\nkTMfF0H3I/NnbsVHHONpUP8E7aWCeSIXXWD4QPOjZb6oZALIqfgZvwU+paFIhWC56Hjw4VW+Sx4L\n6tJSFQUxJFyfbxPe50VLo0uECIjksj+JVIQQiKknBkEIAZEMosiyOu0kXRfyh1bGLbemjCRqjzQC\nlRSdS2gKlIIf+8wr3L/zBqVNKKHQ1iL7DZvrJe8trjh/8B6mbrh15x59DFwvFsjo+PwXfy9VWLBe\nXtJePEQpgZKCZddz//X7hJRQybD2HUaCEpo/dOvHeVQ+5u0Pz3jtjS+Q+o5mMufNB2d0dwL/2pe/\nQlgvM9+dQOuKJOTwJRKUxhB8SwiOSEQlCC7gQmRaVpRJY2x2Z7S2wHQKjxgStjQxh0qkXhCcx2vJ\nlWiRKWCUxS8v2IQly25FSjnhyneezcIh5PvMZjVNM2W92lBXJWVlgVzCbrjH4J1HSYGyBq0C1hq0\nAaHIXHmK+BDou6x6soXCJ0U9+9SLOn9sU3/xP92N/8BXUH/gn3vqHCN7bHQYekzqMdJh98dpGKce\nI4b9uHdsGBvRgzgE6l0C/j5w741Ha1mxg+pxbHAY3FPuh1uqZA/eR5JlhG6H2QK9IOEHMJfp5s2B\nfHMQO2CX2/GgXBqqKI2JTQGNFzudzPYZIA06GqG2+we3lqgJQhGkIsR8XoyKGOXQb+ynIYM5im2i\n0ViqL8VhwTUNdO+4SDta7+5vd4sEH31s3D4vBjn7Kjz66gtddy8C5s9a9DkB/jrwGXKl8n8TuByO\n/SfAHyeLdv4k8Hee98IpJUYxVozkLK7h0QqRH0UT5DdSDo9PQzgRY+LDDxagMy/np5ba2FxdyHuk\n1JlzjyCRGCmRVYW1lqaoiCmxWF/T+w4ZZS4wrA1eeHwA2UlccvkmYHKpsyjjcJfJNQwlJc4lZs2E\nN159g7vzW5SlQTrJrbu3eYynlwalJc20RhnFo4fnvPraK7j1Gmg5//D7vHZSU0+mXJ89pNKJom44\nf+e73H/9dVbLJT4K1strbp2c0BzV9N2GL772WU7NlIfX55gY0FXFxFT4VmCtY7HsECGvSkRPvnmF\nQFHUpJhvkr3rSAg2XUtVlxhT4FXACI2qJOXEcrSeAi2PVuc4kWudbpxD94IQe5KUNFhW/QYVHFIt\nidrj8IToiQGCz+b/wiWun1zz5PySaTPDSJUtb1cbpNC4PuBd7lpphJQokbBKY6xAm6wsgGyeZpTG\nSdAGZB0RpcbYT5Uzf6F2+h/8ycOJtHjqHBMzEBuGbXK5i3445jAyA7kR/ZZS2Y73jmdOWO6i0b1x\nRG6j1nG8BXGxd17Kx8zgqzJC5ihJHInRhNgSLA69B/Rpa2MbkXh0vhGktAf/I4Cze34Qw3zaG5Of\nSGQcfw48ik5YOgo6Ctph21HQpYIuWjpRHHYKOmHphaWPwxZLHyy9tzhv8c7gvMZ7Q/Ca4BR+8GyJ\n2y6HIhZyW8wiDcq3rTRxlAKNoL0/HgH8edTKR9Esxz+X+9i++V8+97p7ETB/1qLPnwb+LvDngf94\n2P/TwJfIpbS+RK5k/kvA54d/56kmhMh0R0xEYRAxgczWZylmmBcygoSQsvrFJ49SiiQEzkUuHq+Z\nFIaYLKKucqQYgCQJwSNSLmBRlBpIlEVBJUu00QQBcXnNuKDmZYAUqGpDcI4QNFGErN+NBlyOSGNQ\nRJONf7QIFLXi9q0JzdGELrVIjmhEzWYy4+F738ZtrrGFZXo85/5nfoTNasW9z7yGiT1WOTyJsw8f\noG1e+IwhUE+PObtcIFzHxeUFfcg3rSQCrXOUseLkeEbdlDx48D7HdcP19SV3X3kF1yVizHdCWeQs\nT6MN9IEQWlRV5PUJYVguFyA8facxheGaHudabCGo64LJpGTTGsqiItUOv8mOG6HPKh1lFcSED5GF\n92AjSjrQAW0lYZ3XQoJLBCeQoed7b3+fqmgIDqRYIkNis1mCiAiV6zgW1iJR+Ys9yEdDSPlzIuVr\nIEJMgYQnSUlZKpSyL3BJf7ptlq4/9hyDQ28BfODA49542/th32PoD46N432aIQpJkiPNsAfw+8A9\n7G+ph73IXBPy08JedD7G/aM6JCaJRyExB/M7Q1xDj0WlsAXnvRIVBwC+nRcfcR6JgBrAuaDD7kAc\nS0dJh6VNBf14fADzfrwBiIJ+2O99gXMmd2/wbugjqDtN2AL6YJG7D+Qe8AOQj2C+D9jj+CZQv8j+\nJ2gvAubPWvT5V4F/fhj/L8BXyWD+R4C/Rhb7fBd4C/gZ4Fef9cIpZUoCEYbFTQgx+wQCyJQrleTM\nr8yXjzJGISQpRtZXPauZQ0iPjIEUhqyzmGVsiJyEpEXmxQtjmFQNUkuCCHifCKHH9X22BhACoRJF\nBX0n2aRc4qxdpxwtqkBUWdEicFhtiKrFTBRmIghXicZWmInBO7D1e/Tdmhih3XQ8OHvIUdNwfDql\nf/SQ1fKa4vSEJAztZsET9wTvAkkIGh9QViGVyU8aSYDQNFXJBx+8T6ELJtMJGsn14pqT+ZTbJ8c8\nevwY5wNFMyEkgUgKiUZLja2nhG6F7x2r9Yq23WALgxACbQrea694dPGItl/jfIs2iaq2KK0Irid0\nCWTEC49GD9yuQjpJsh6VJEJICJ4QsncN3pBiVp8IFJtFx/vffw9CxGhN9JHV8oqQ3GC8JgjR5QxG\nJEYNtFgccwUEvesRSW3jQlMYhByM1z699teG6/4UeBf4z8jBzkGbxqcj8ZttBGg9gjl+C9CaZ80N\nY9xTcyNXHLfbPUCXe6A9AvresRiH/SFqV4QtkOsDmgVIDJG3IhDxe9F62lsSdRgMbhvVj9H7oZXu\nLhJ/3nEpB8BPkZDULhLfRuiWPuUovU8ZwPsB4HsK+gH0e5HH/TgfLM4ZvN8DdK+HrghB5Sg9DIAe\nZAb10WRuG5nzdNLQfmS+D/LPAvrfJQugd4GHw/jhsA/wKofA/R45Qn+6javnMW1T+kMcFjsZA/SA\n8IagQ66oMixgkBIqJnwMhF5w/WRNchK3ajGVRaGySiP4wRQ/5htFCFhrsVZhC0uyiY13XF30BJfw\nMWLqiBQgC5WLB7ca0WZppEMipUeUEYVGmoC1AWU6fOrouyV3wylet1yfX3F1scFtlngXqZo5pimY\nTQtunzQ8+M7/x2tf+Az92xdcPHnMUTXPj7rKslo8JgKN63nt+DYXj6+pSsv51SVR5KeWJ48e8JM/\n9dO8//77We2jNNYK2nZFCjn5pGs7rK2zUZmyJBQxQtHMIEW87+i7Da53yEZhreX9Dx/w8OxDTKHY\n+DU+OpRQTKopm8LjLjuS1uAkxoBOCtxwE1aCpBLBZ+oshYhwueyeiAKjBGL4G1arlvPzcwppkBK6\nfkXft0QB0uTkLp1y9D0CeZQC8BmcYkTECFGTi0InlPzUl4CeKt78rDZ9Bq2S2/g8DjqNOvEBOIXD\ncLg/WsmOevKbxzKw+xy7yAHAh6pOW9A+mB+OsUe7yIFDH7j2MatUDzH2aBkw8ggj1AbU8N+ILcB7\nFD6NLLo9APMDkN5un54TZGfHQ5CPRNQuImcH2F3aAXuXcvS9i9ztIYgPAO+8HSJyvYvMBzAP2+0Q\nlW+BfKhGNCjlDgD9Jjg/D7CfNX+zf4L2w7j6d4Ta848/3YTIShU5/Kc+DWm3eQEkRTEcCyivkCo/\nUuvB2CYr1LPy5OLRirDRFBNJ3aT8uK0VToCQOYJPQ0TfO0eaJKQRNKZkWZWsFh2bq462zyn/1kYC\nufaoTJG4AYhIoelSpIwSpESpSCRRFZJFd0mF5f7RPRZnjzh7/4zF9YrgHe16Td0UTJoJ09mUR4/f\nozKGx9/5DovNGtE5Tn70VWBDSvD48Rnz47uAZO06jLVUZYk1CltMubp8Qj2dsnEdi+WCGAPTozmE\nQLu4Yr1ckWSB1hYhVDaicg4pIiZqXJ8omwmbboVQgsIUkKCZz/n6//t3+O7195nMakLRoa2g8x0+\neoqipNWe1nuUTBihqKyCBC55epdziJTI2asxCYwqQYTsPaI0KUBZWGpb49cOT49SOaHLOZ8lYSn7\nm4sYiR5SJJeUG4yU0iBUjmG4aYz7Mddifdlt9lww3zWNQ6U9D/C9sdoH7hv9Wcf2wTrKofDwuK9u\ngLzKC3pRDtApxK50XRIDkO5MtLKx106umI8mQO+APan8fcFsI/nxJvC0DcCY0fqsUnQjgD89F4Xa\nAnefDsE6g7jd0i6Hx3fbftjuqBU9ROga7/QW1INTezTLjjPPkXmuGZoCmWrJtcg/vu/ryJ9KLuKl\ngvlD4B7wAHiFvDgK8D7w+t5594e5p9rlB1eAyEqE2mIqm3OChuhckhBBEmSmHESQoCQpBJTKypYY\nIv8k8DwAACAASURBVMRI3Hg2IeBTNmKKwVIU5ASSXK4bABGhW65J0yMkAiUUZaEprGEtBG4ZCcGR\nZpqkBk5YCGKfF2b75EloQiEgSrTQaKHwQtJ3lyT9Ov16zbSe8cRecv7gzeFLElgul7xh7/Phg/eo\nC8H55RMenW34/Be/wOrJFQ8ffpeT+ZzQbbKxWAJdWJbXa6Lr6LusfV1ulkilObp1j4DAu0DnNtT1\nhN4kri8fIawmRlCmZNX1KBIhRmKhUMIihWd5taYsSmKUNJMZnW+pqorvv/Mhb37wXcojQ33LUM8N\nulQ4Jyh1wcONIwiQGowM1DqB0Cy7ljYALpCSAqXQFJlRFZLMeGlcCkihkFHgg0erhHOJtvO51J3J\nfDhe42POCwjJk8gePiiF9xGlJDEJBIHLBy3X318dFCl4me35kfmubYE8+Z2vSdoD7LS/DQfnavzw\n8wGVfLZolSIDtRI5ilTDfpS7+VHFMkbYYqxBups/lCEeCBp3nPmARjGNQdVhFH2gd0mjjHEPvEVE\nphv7N0Bf3dgPqAGw7Y4+GYE73QDuYa4fI/NxnApcsvRDVB4GjnxHseS54HecedhG52Jv8VM8zZl/\nXI83xjznvE/QflAw/1vAHwP+u2H7f+7N/2/A/0CmVz4H/P1nvcD81SkIkVP0Y46ydr7mKUfUKZHC\nkPE3VCeXUmTXvkHSGHwAkRUTLCObFIneE3zCFCZTJjJz7M7HHAX6XFItiYQVBi0kUghc5xBB5IzU\n0uGdgRSIId90tJXY0lA0EWMtRieUyrKlTZ8oS8OtZs5ydcHR0ZTpfM6js8dopdHGsF6vCX5F6zQh\n5IIRb37nLe6e3KauJlxcXjGrimHBJbG+XhOTRyaPcz1Iw/n5FXdv30Zqw/n5EzbdmtksV1Ty3jE5\nnnN19ghVa4QIHM3nrK87los1J/qU6wcfoJSmKjTrLqJVgQue46NjZFnyW997j+V1pOs6QloTpGVe\nnlCVBcJX3Du5y9sP3ifKiLEVQnSUVuGTJoQ+fz4qLxRLEdCUKK3xydMFTyEtWmtC71FCEIKk9x19\nF1BCZBdG5FAfFnoXiGHwxRHZckEi8ueKJiXFnTdqbr1S0cxqtIJv/coHP+Bl/cNps/jxC6Aq7QBc\nDdSESuEApFUKWzA/3B/PDbvIfARvlZNeUhTEKHcgnoYofQvPNxZE05YZBwayc5QMs8OZDNMqfz75\neWt7bDyXUW54A9D3s0f3gVylQ1DfnZO2x0OShyAeR9DegfXBeDi+D+wj0Dtns2rFaYLTA7CrISrf\nB/Ucme8ol8yZ58j8GWAOHw3oL3L8E7QXAfNx0ecWu0Wf/xb434F/h500EeCbw/w3yQ8g/z7PCZWy\nxjxzcQkypRJHf3NB9EOVkr1HaAlILwkqgYh50TRCigkfHD7GfNNLiRQ8MYItsn4UAkIoXAfBJ3zw\nSARGGQqpqcqCsrSsN5Fuk61ZhXRoKZE2RzimltRTjbYKpRNFpdBlRBeC9SaySEu64w6REn3boqsS\nqQV9GyB52m6DCA6fVsyP5iyXTzi2BZOjGYUReJcLUSehWG2uef+DNZPZKZMCrp8sOJrPEYAuCvpu\nw/XFw8HPRlFOJkghuLq8YjKfEESBtiV9F6mbUybT2/huidQWkRy9kyyulsyPj1m3C159xXJN4sni\nMUVZoFV+n3rnuV4tmdeCQlUUtsCgaBeevg1UShCtQ2qPitkMjSTQUmCVxUhLxBCNQnSKvvdZ1w/4\nIPAu4kKLEqCrImftDrawQihKawgx4J1HGpWT52R2ABciuzZenF2ilaGZbFPOXmp7sch8B9AqBeQA\n1HLY34L1/lwMT/2cSrviCVGJnPQSx/EA6Dei731FS5SHx0ZIHiH6cDskGu2XgdtuxeDEsTtfpLSX\n+h+eCd4q7YP4QO+kp4E9Ig8i85H/3s4lSx8L+mTo4wDge4DeR4tLBS4OfLlXNyJw/dTcIZDv1Cwj\nX37AmcOLgffHzX2C9iJg/rxFnz/0nPk/N/SPbYksN4wyS+nEsLiX/zFxeBdIZD8OIiSRo2UvUEnT\nxQ6VJMkHYgutD9AUGJGIUmWb1yEm0UqTosC1DqUMMgoKW3J6JLm4WLK67nAORKEpm4CUCmFzAUFT\nSaRNSB0oKqjKAt0EhJG0mzWb2LNar3GrBWVliQTKqmQ6LYl+g0qBtmspTOL64jHz4xNiiFyePeH4\n1oz5/HUuz7/L8a3bGGk4O3vAnbs1m+U1znU8fvSEk9unXJyfUxclH77/AbfvvIouG9o+QN+iUmDd\necpGYaylnh9x9WTFZhEImw1S9ATXsVhtODm+w+Lykr5f47nHd978FnZWUAiJ1IkYNckn2n7NUidq\ndUpZCKwqWW86Fmee6r7Ahm5YDA2EFLFFSREVlbTg8/WO0EgZ0UoRXcJ3Pa5PdJseZKKeWmLKNxBl\nbabQJBRGo2Si144+xHxTFybXGQ0RrTWnt0/QOqBkgRAv3wJ3BPNRejyO2duXcQfGh+O4A+oYDoBc\nHgD67txMrYzgPWQyxjEi36dVdhH5doE07cD+cJlyP5s0y1ETQwLNTVIl3VziHP0f0w6gb4C62gJ5\n2IF3ymZi+9ml43gL5sLu6BMOwXofzPPY0keTx3EP1J3JvPjIjTtFdDtQD1tFy6BkOdCX7xZAtzrz\n8YN9HmDz2zj2CdrLywCV2egqZJxFAklJpMhceH70yxmhWZImCD4iNTmpaGDxfPTkstyKFBOui5go\n8Sabz8syYEWW9Skt0FoRgsN7i+sDxlq0UQgqjmZHLB6d4VJCFgJbWmKM2aRKKuRgoUuSCK2QtURb\nQZI9WhiOqFgul7TXV7g+UBYFvhRIOopJiRAOH9ZIJSl0jXMdt+68RhKB2eQWq/YCpWuqZgrGMOtX\ndD7Sx0BEsLi64PjOXc7e/z6nd17FaI22NfV0zmqzwMfsh6KU4frqgnW7Zk6J1oIuetarFSH1CNfT\n+5xs0qVAM59ibMXZk2vqkqzrluRMz5gXode+ZyOvIWhmhWW5MFyuHfXCoBVYrTEm12nVPvvp+CQR\nkZwF6iIhhvxZxYDrezoXs1xRJoTKi7AxZcDOstWA1gKtZX7vnaJ3ibHqgFa5IpI2BlsUQ7T+Uish\nAjB9AZ35FozjsMgYw3asYj6WQX48FrdgLrfjfCxpsVVZxDAAuX4GRz6OZQb9LBcdovi9pceAIqbR\neWWoOIUipnEBdA+Wk9rbV9sF0Qzm5L/zAJj3wFqELYDvTLv2AT9sAT8lmQGZZwD5XndxAPYwAvxh\nd9Hi3B6F4nLkHfwO0KOXW6CPN1Qt2wXQ7B5xuADKx4w/7vhL4sw/cYvkL6UQaoi2RzVLplm2Frgp\nm2uloUBBjAIE+OhJyJy9idg6sSk0yUHoPcEaYp+140nkC1SpbHfbtWHQPZfEkIHa2oJmpll2Lhdk\nyGbr+N4TZfZxCV4SRUT2CaU0thQgJrTLC76zepvX6jtYFNoE6kowq07wrmO5uiQGqKqKqpzQTKY0\n9YzLq3NOT2/hXK5vutgskWqCtg31ZELoV6QEXd8ii5qrJ5cILZjdOuXy4ohmOufhw3OaCjabJUbX\nbNoORaBsTvBuyWYZuL5a0fc9sc3KFFNXJBWo5lOKpsBMJlymd3nl7l0Wy3O8CyAkIgqCByd7NvqK\nqpwyO1FcrQQRjQuSPmlUr9CVIIqU10FCoPMd0msIEhf9VhseXEAkMEKx8husVUPWblbGeO9zKToS\nRSGQylMUAtqENgUpBYxR+C4hpcEYhZCR3gnM7wI1y4vozDMQZzCWzxirp47dPL4bZxAfAHpQpmx5\n8jFS3kbjA/c7APrNyHwrMSS//35UraQsItiXJvo0ChiHJdq0c2YZpYs7V8Wdj0umV8IW0HNy0Q7U\n920ExnFE4hiyOMUO0F0yh1TKHpC7aHagHvbA3GuiU0QnBypF7pKDRmAPkhjGY4OiJYw3TXZR+bNo\nFp6zfZFjn6C9ZKMtgUh5DV0MqodcqGKQnA3mWlsnxe0NQCKHZJ7cJChIDnyMICMqWlrnUV1Bl0Cb\nTLHopAhekKLPHi5xk3XrgEZQViV9DKQYcS4hokDE/AXwElzMafFJWDabSFGV+akhWS7jkrbdgBBM\ny4qqqOn7BSkYYoq0mw3z6YzVcklTV8jUMZ0dcXpyF1lPaC/PKHRFSoGjacN13wAB59ZcXl7yhS/8\nFG+9+U/4p3//H6S0mtdevc+mbzHS8+T8Els3rNorgosU9RGX19ccm4aiqtGFo5nNePDWO+i6JKWE\nD4FKC6Z1wwfB87UPv46oDRN9ymrZ4vs1SkWQOTV76ToaWzKpBbOZ5nwR6QL5SYZEhSbFQCAQO49M\njtCFLI2MgUREiUQK2egspcFQCoFLDklCKUsUgSAcRheUjaYoBFpbqo0i+Gx7nFJOKGqaGh8CkC16\npXz53iwvkgGao/Ghh4iIKYN1SDfmd+On5oe5pAXRDPz4ll4ZQH1vkXObTCRvcOlpF7UHNHIA8pGc\nTOP3kz1NedoXSRpcGlXywzaZgWbJ0K+3KUV7IM5AGe2D+Hb/EOwjEifMDsSHyNxhDiPyaLaA7sJA\ns4zjkAHeOUN0MvuW73e/15063PdjZC620sRncub722fNfdz2E7SX+kyaq6pknlQLATJAHLI7Q9ou\ndiU8UgzRBmN1IIDBYU0ltIEkE77NGnWlBUJE2o3PNrpRUVbZzVCGgJKaruvw/YqiKEm+x/sx8SQv\n5tAKnA94l1U0MQS8yFGnkJ7VpccWES0kOEttpyijaYoSKxTO9RhtaF2LkpLpZELfe+7duU8Mkfnx\nKdPphEdnD/mpH/08b12eZ6fGYsKkabh6HJGyRqkNVTOnrhtO7rzK0fEJwXVoZSkKxfnyQ2bH97i+\nPCemiNEV6/Wa+UlNiJHgVlS1xRqNtJariwuOTuZ0qxXN8YTju/f4tSff5YolZVmxSQFpNAoLqYMo\n0KKgjAJtHUWlmM4VV30u8tF1CWMNzkWMkgQXCFHgeo9bRdpNIKbst14UxUCjeHyIGCNBZMWRMhJb\nZz8WZQyzpqCoPZNGItC5cIXPpfNSTFhboERe3C5sQVEaQnAv8YrO7UUWQGVMO6COCTEAswhpD6yf\nP7+9AYSYo8WbvHc6TOnfRuWj5lyJwVhqBPP8s55cIB32EoKSQuzPpZ3BlsNkuR8DsA7RsiM7Rz7P\nWXHbxa6wxSGQH56T4gDmYgBy9oA8Wfo0/B0jmA+RuRt9WKLJ22DxTm+lhjuQzvLDnaZ8J0d8Fm+O\nfwZnvr991txHHbs5/gHay/MzT2mIrkBqgd+ueyaiFKihZIqQmX6IMX+gYnDf8gMrJ2RAaY0ygUJl\nbtYKgykiUgX6jdiuVbgYKJOFIDJYCUO3bgmdoO3WdJsVQkREBNcLQvLQ5d8XtcgyxShyav5FYjHx\naBUoCrCioqprmukpssuSQlMo/LrHO09VVdTVlN55qqZkOplyND+hqics255v/OZvUlWKZbdmPjki\nxEBSFUUhuL5wtN2G1WbFa699Bl2UrFdP6HtPGzec3r1Pt74mSk30JQ5HVVbEEOnaNSTByb17nL1z\nznJ9hdGZs/Y6sDw/Z/KHv8B77/w9ZMqValOQSCnQFoQyED2lMAgCRimUXCO1QOiIV4pWCGwK6B68\nEVntEMG3Cdd7iImQIkYqRBBoKcFYlILgPEklJpOaujFUpcAaibUWrSRahyHtuycGRe97lBCkmAuM\nMKyxCJmtZMP22/Xy2jR9fLUjGTMYizAAdUy5JmVIGaT9cNzfOB4T0g8/FxPCp+zFfQOUd9SK3CUQ\n+b2korjHm2/VLoIeO2D5Pu0Shyj9aaMtl8wgGRx13juVCbAD5HRYkUhtbwfPAfYb50SRwdyJvZvG\nHs3i0gjieeuCxQVDH8wwzvpyFyze62x/6yXR7RKBottF3mMUnkFcHCQNPZXOn9+uXfsk40/QXh6Y\nB0EiIqTcVlRJMRMuW9dEBNqInCASBGHI+08CclqRpygMpoo5TVBqunVEKT/YqgralcsfSJIEF1FK\noI0mpsB0OsFIxYcPzoltP5hqRXwX8MvhMZSIIlfmnk40qzayWSh8hNVZQsSOZma4NZ/xE7c+hw49\n63bBUVOjpcIlMEajtcWHXLNSlUdUs2NcSLz7rW9w53TOSim+/s1f5/bpPVRR4SKUdUV0gcura964\n/2MEn9U1PgRIJaoInNhjgrVcXTyBviWknqqcEZNntXiCKRzz01uEbs3F+UPaxYLJ8Zx+s4LJnNOT\nU2RzTPKK6/WSTbvBeYcPHiGhjZ4YPHUsscmiRfYvlzLLApUGgaPz5Ci7MwgM3gWCz74wkP1qtDSk\nFCFCVRhi8CRtUI2iqi1NbdEmZV96JMILYq/woqewJUYqVq3DC0WMASfWWKNJybHpEioafmjfjGe3\n18mGc3fI2PZXgb9886QX0Zlnr+7BRGwAZRH2ur+x/YhxvEmtjAueI5jvpfbHMGrQb/LlOwUKsOPF\nB+56G60PypXMkZttlNxR0qWCljK7GqYS2IG5HuqV6mcA+b7d7n4d0QMwlyKDNDtAd2kPzEcQjwa3\nBfDsu5IjcnOQxp+c2AL6bry3PeijwZbYbgkiL37ejB1uXn6/3f1P0F4amAvIQC5H7lSCyHdgISJB\nCIyGyWywpXQRpTqElMQILibQimoimcwU16uAELnCe/KSogQvIuJaZb47RgQObRxCWrQumE8q/LTi\nerXifLPEWEjOoaIgulzIQolM10xmiuYIpiczLj6MLC/XuOtArzUywq2TiujA6RYtBVJY2uWStu3Q\nuqCsKrwPiKRoF1e8/fiM777zPd7+3rvoJPi9P/F5MFO6WOGMwW06YgpURnF8PCUSOb11h8n8FKUk\nLlmulw957Y07lGXNpX6XTjmOJ3Ni0KzbVY6ijaVvHa6/onVr6iOFNhXNkaQ6OmJ+OoXQ8+DBIy7O\nL1heL3Bdh1GCVA6GV07hfE+pLTIJhLQYK6CQqABJC4IPWU8u8hMXnvx4LgVSDIubQqJVvlGXlUUm\nhSkNfQoQPWEjmBRHSJFfrwsglcJLhUmJbu25WgaWXYvre5RSKJ3NvpSCuimpyk/1knbAfwj8Y2AC\n/EOye+hv7Z/0IjSLiNlEipgQIe8TUi7uERL4EbDZG+f3dTfO5488+ehZHrccudim8Ec/qFaC3C2W\nxt1i6RiZ5xBrR6OotLO5ZbxJ7MHsGCWPQL6hok0lLSU5rWgEZv/RW5G3NysV5RuAz3LivcjcMW53\noO62oD5G53vA7s3Qc8LQFrhdBuURuBmUKgf7g1PiSK/s5Ik8DebbD/gF5z5q/rfZXiLNMsgREdlU\ni5iBYLhohAg0zZRmkkuCrZYbjFdEEkLmxVLX9zQnmqqJLNsOIROm0LgAQgWUDJlzH2hApSTIDoRm\nOp0zm02pqwKjBL8RF/RpgfCJMmWjLpckSQaUkRy9rpmfSMJa0y88wSsKo5iWx0gZSb3mev2YubxF\nrQuuri5w6xVFUeQ1AO+wWtF7wZOrjrPrjr//rTN8qnj/0UPeefQb/Ms//zM8ulrQLE4oK8FpM6fr\nr5AIpk2D0AZbVGAMy/YJHkk5nbI8f4RVcHL7NWISOB+pZSIE6NfXpNBilOXOq7dJ/W0ePnyCrI45\nOp2z9pD6S1rXsbpYsllsiNFjJsVwkUWSSLQBKjqkbhBeonRCa4kqBKIQyCTwwSFRe+LqQYmkJMoI\nwCOEIiWHVJFCC8oS8BHnQUo1uGaWdOtEu/F0G8982hPlmmUruXjSs2pzRqhVhuA7Hl9eEULP0bxk\nMm0+zcv2wdABlmQQf5UfBMxT9tonjkA+gPgWvPe3z5rbAXtMh4qVg4VONWR+Dlr0DORyLzoXu59P\nebF0jJEdfptWL2CbFDTKD7dgPnihtJRsUsWG3HdgflhObgviYh/QPVrswH1razCCuRjAfATxNCy6\nbimWvch8iM79XnQ+ArlzhuAVuFFeKEiOrc/Kdu7GdgR8wgjqu+0LgfEP65yPaC8VzGPMHPlYhUIg\nt2CtpKRsHPW0wgXJupfYlAYFixx8JTxFI1GVQ5Qg+4QpwXc5WrTGUM0U/dINlYQSqIAPGxKRZlIz\nm84o64qz1UM+OL/CSokgMjnJPiAhGoJIzO4KJqWgTWAnihLB6cldmqIk6YSzWQK58QHJhtXikuQ2\n+FDR9QuKwVe9md7h5N6X+aV/8Lf5zE/8M/yzX/kX+Ct/9RdYXD/iF3/pV/kj//q/xP37P8qTh29z\nFHtC75BJUpSWsqooJ1N6r9gEwd1XX+fiekPVHHFSzwluzWaxxF88QqIwlYTUYlSiqDS3ZxO+/eYH\nlJXl5HRKYRNNo0AVvPW9d1g8viZ5wa3bJ5hSsRHXCJHwUhKjI4iGJKAsgD4vMqNzIpCSAuGGBbXO\n4/rsfClSQmsBQuTFUR9wTrBpV9RzTSAghSaFgEgS3WuMtKSo6FjRrQKtaWmqAqlaFB7fJkCC7ihU\nxb2juyw2HZcXT1i369+pS/izwJeBX7t54EVolhHIx+hujLq33d0c7wH7jWMxjhHzwHPvlUmL46Ln\n6M+i5U6TnnaLoGNkngZFi8MNzoeHfuYRQRj8zB2aPpnsJU7BJlWsqXNPNQmBFv4A0LfALvbmxB7Y\nC39j/gaYi7F8Ru5+4MpHQPd7NIvfA/Jsd5sj9ODU7n10u/dxH9Sf6sPnlMbjNznzF22fIgv4EsFc\nIJBZjShEVpwMSUIpJYzVFHWknCaMg8WVQpEIIVMyUWS6RemsST6aNawvHCpFbBEpa4nRgnQKG6lI\nMVAWecFsvVpyJVe88RqUjcWUmrt377GO7xG6nvKOoW4EwlqW64SyFfVkSYweWStEs6IqFfVUc3o0\noxM9Ia6HN1TSdx0SQY9itV7hfc9m09FMSz73uZ/k7XPN8f1X+LVf/xp2dpdvvvUmKq15dX6M6DVC\naSSgdF74ffX+PermiHrSIJtb0Dk+/8Uv8PZvfYMP3/1NhIL7r3+Gu3deY3qkKa3l4vIx3nUYpTHG\nMD0+obYTvvRPzXj4/gOqSkEKNNMTHn3vbfrFiiN9RFSBiW04ns95fxNIcZXVLNFibEKlrDRROmKs\nQBUJREBFSIOdQiQNiVggh6cckTxWZ4vU5ATtpiceZ+gA2Kw6pBeoWjIpSirT4KPnsl/R9S1abwix\nBxKbVcTqI2bNjFJZ6mLKjxyXrGLLW2dv/U5cvhPgbwJ/ihyhH7T/+hd2ipqf+3LuT7X4ET1wAPQH\nY7+3HcYi5AU7ocXAw+dkoFx9BYYKx6QkcwSVJDFxo8gysJUg7lwSx7aftp/ELhN03/twvwfUnqSR\nbfk3QcoB3PhqYu93CZ46J8+n4YlhUJ4P3/+03YqndNxCpCxmEEN26VAUW+VK2tuei0ELkEPuody9\n1nZfjueKzApISOP8zbqd6anB4e5Nc5P0rMn99lXglz/i+K69NDA3Nmf7KSEIxJ2efEgOMqVAmYQ0\nPQiDGkyugnODtE0iqLE2YSw0U81qETEyQJNQQjCpNUhJwiF9Q2EMWkDbOx6+f8Zn3rjL8a0TAKqJ\nwRSKRjcIYWmOCspqSrnYZNN+2yI7uFRrZBkptKKoJKU2YB2qN3RiQ+c3iNWGEDxaKpb9NUTF0fEp\nX/jiT3B05w2+94//AbePjzl78pj/6a/8z8TY84u/+Lf4C//Vn+PBk3OsEpmW6A2FLfCup6hqRFlQ\nNlN82PCr/89XefPbD3l0tUC4DW+/ecbv+/1P+OKXfhLne6QQKCT19IQkPDIKOn+NLmte+8w9+j47\nM1bHUx49+IA37tznfPVdYgqU2lJXmioUzNyEleiQaU2igGSzVpyUeU5hAIUUkAiECEZZpApokasx\npagQIlFUiRQCnfeI5PFeomRWD/UrT7daU9kGWQqUDNSFIYiCPnWkaAbDpp7oA0ZalOiZHp1wVN0i\nhsREzVE68Q/51qd66QL/B/C/sjOYO2j/xR+7MfGs6O2jwDzd2D5rLj09zoWuxV7tSrnbslscjUO8\nnZIk7GnMRxDeqbzlFrBHL8UDJCTfEbY3BbHnkjgUqd430JLEPVCPTwH8Pqhv283xIJYYAVrJMPi0\nDwCr8tOgjLmohUxxq6TJy7mOkNQNTpyDhc20pVT2Fj2HRKGbfHmKW07xBmA/Y39v8xSIPxfUvzL0\nsf2ZZ5yT20sD8zuvNDx+vCZlroWcip2jcq0SZRUxRmFtIplIXStEkqi6xvtcjWa5ECjdYW2RZXNW\nEnpJVWuUCngpKCqFKRSFrNDaAj2xiyzOOs4ePeH0zjUgkQKaaoJ1FiUqZrXF1IKQEm3fY4QkKY0y\nkaJyiEpidAQTsZVgUpZE72ldPxghgQ8h84ZKoYuSajJjPp8jZWS18nSbkJU1UVLVNfPTu5jSoJPE\ndx2xnFJXE7QRNLMTbDPHK03oHf/kW+d8Z91z9/6PkmLLm98/Y/btSyazB8yaAlvWJGuynWyErr9m\nZk+RUtP3PYLAZD7HVBN++Wu/wgcP3uf27Bbn1w/RVlJYxaQsWQeDCp5CNsgYsUpSlzXHDh4tFyjv\nsjxQSELIGbhKS5oyoZWnax3RFTktH4dWCe8TRml88CgvSDGijSD6irbXpCTwRJRS1LrAcIw0l9BH\naqup6kRTCJTdsOkecmt+G+1KRGE5FbNP87IVwC+QjeT+4nPPehG3r48C84/rN4E8DnkRY/Fh2BYi\njux48UimVEKSBwA+gvt+Qv1hpL0fke+9E3tyYrlXgHkEdOAQyDmsKjQCeX65w+3Y9k2/xt819hxp\niyFKFqDEUJlokHemuPW20YQtGx+SJGlJMoMMMYihvucA3mZfijgcC6NkUUCQO848Dn/l+Jnsj8c3\nK+0De3oGkKft+7mbF88ZP7/dfEj4HWt379zhzp0ZWutcI5lESlnPOpkW3DptsNbkauwmUk0SRRUp\nmkg9tUwmEyYzQ1VN0SZzsspAEpp6ZjCFQQmN1YKj4wJdeXSRXQBdm1A6cvlow9nZIy6vHrFewL+w\nOwAAIABJREFUL6nthLIwFHaKFhO0KYAOKSRSGZQyFMLSNAVHVYOSElSP0ZBEYmYaCiWx5IzVdnWF\nxNBMKqZNAb4nug2f++wbiCh5/dVjCA6RPP/9f/NneevNb6NR6EIym8wQOuBjj9Il0ijU0QwRNd/6\nze/yzvWGP/pv/wm+/c4Vf/1v/t/c/ZFXeLer0PYeKalsQiVNXszUJVbXOO+wUmG1YFLXzI+Ouby8\n5r0Hb3Pv1h2a0jCfz2jdOa1fUhuBlYapLpCip2GKNYa6KXjl3gk//tnPMZ/eBhSESG0qGjtjNp0x\naSqmtaUqisyFp4CSkbIsuTOfMbFFjsr1mmxINqGpb+McXG88IUWEcWiTqKuKpsyl/nQVOZpAdSSp\nKlC2552H30DYSIgbjP1U45M/CPxR4OeBfzT0P/zUWZ8EqD8OuJ8XrQ+Red6OoD5G53KnWhmhNe0n\nyx9G5AcuKmIfgvfhdwyaDyPr/Uh8NM3adrEH6PtR+XM5iN1v2e0NS7AiImVEyix0UNKjpUNLj1YO\no3qs7ih0T6E7Ct1S6pZSb6hMS2k2FKalMB2Fyeda02OMw5isetPGo01AGY80AWki0iSEiQiT8jPa\nQU85PNZp19XYc2b6QReRQcrEIacWP2L8/PbSIvOjeU1TVaT0Pc4eLrKcDYGxinoSKZuAtZnzEtJR\nVZrNylGWmr53WGWYqoqy8mht6NoWgUFKR91YtNmgdUKpmsJKtBSk2NF3LTEmcgm1rENPAXq3QhiN\n1QpEgZYlJjgUDiMjjanpYo/AUxQNk2pKaDOPLHWHRCOjovWO1LXE3hOTZFJPUMawXrd88OHbeF3y\ne1495W//ygN+9md+H2X5De6/fp+mOeZrv/517tz6OfzGo5XOEsTFhuru68QIPhms0Pzyr32du6+8\nwh//d/8UXdtSGMPX/tFv8LM/+/N4fRvhL+hWV7SxYz4/BSkI3hH6Hu8btLIIGale/zH81RXTosLY\ngnLZY+OUx/0CIVaURmY6SVmkqCmkZFJaqolB2QlFM2V6NOHs/JhHDx9RKcm0OaKZGoRcQ1BEf0l3\nDSCJdFTFFB1rIhOk3GBMJMVAMzEIX3B8dMLGtSx9R2WhLBNagxl8X3xS3LpboITCGoGkIgg4u3qP\nk6M5IWw+zcv27/EiAdAPIzJPH7H/LIolil1kvvVo2UXnW5pl7Iw1O+UNUy1FEGovej8E8lxwYABY\nsc+7p63z4QjcaZA0fBTVwt6NQAyveRPUx8g8/7IhKpdxqEaWP5Fs1pajcYUazL4UIT/j5bFQRDHc\npA5qe459Z6qVi1LkfRFk1vNvFz5lrnIVEykNT0VxjMiHu2p8znjc34Xyu7vwJ2wvDcznkwm+gHuv\n3GLd9SwvIglHSj1FVVBVAmsVQYKQAVsHuk7gfEsia9LrylKVUFpN8hVP9IKoDbaQKFUgLRgEpalp\nU8cmLIm4rDONLffvvUKZDDE6ohdURfbOFnENaYJULXWpaB2kCEIYBFDpmqOyJsoKW4BUEh82LLtr\nSq+RmyVKGoIEKT0yges6WjwP07cJ5YQ/8W/8i/yN/+vv8uNf+jEWj6959903+Y/+vX8LHT3L60eU\nBoRWNEczhFDYokTZgg9/612++rWv89Nf/mn85pKYNH/5L/2P/KW/8OfpXc/1eoXxSz54+xuoomC1\nWvPqa59ltbzk6OgWq9UTbt95NWv8jSb0G96YnfDOxQPuHN+hW60oKZBKoJWgMImiKCmszokuytNM\nKqrJKdNYUK+PwTRMiprQbTBKMZlCpIBYsFpYOufp1j1z65nNSpyuOZm9RhvnePV9LsM1dTPHbwSz\naU0tLO89fpe4EdjjTGMVlSLJgKSg0jWCKSlpZGxQQiFjS0od6XeBBe4Lg/l+wPWigP4RoJ4iA7iI\nXXQ+2uAegPPOGXEH6oe+hQclIoTc8u5PQY7IAHXAfaex5LPcgvhNbny3P1Iru4XXjxJ8bF9DxFxV\nUrAD85SyDDNFlApP00VCZeEEcueaaAYzLa0IWhGNJASF9IoQYj4nqJ3aaFS0jDLSg89qD6xl2u2L\ncX6PYol7j1PiGdTLD9BeGphnwE3UjaaeaPAdi0VCqoQtE7boKUrBYu0otEWILtuq+gLnOoLznJzO\n0MYyaY6QSG7Nb3H2+AprQWuTZXNUGF0SUmDjPLYKmEIyPznlaD4lhYAXgVJn7w/nIiH2uLCmwOeM\n0eRJvUQKizWSwhhKXZBkTVk2RPGI3q1ZRUelC4qiZLPeYOsJMQgcPc45VqsrPjudcasueOut3+Bf\n+cqXMVLS+YRrr2k3nvXGsbh6TK8FalrRNBVOJGTnKc/POHtyiVI109mMqioJi5b//M/8WV6/c5Qz\nNSvNG3c/R3f5PmePHnC9XFE+eUxZViyXlzTTGSFGJmUFXY9cX9FMGpoWHnSPUFpyVNZ4taKZNJzI\n/IVTWqKJIFo8Fc1RCXqOvlzTB0MhGkKvESlSlIEQl/hNRMuICOB8wFiBVD13734WjST1FZPJbfp+\nRYgXVJOKkJaoQjKdSDZumSFBe6TsaCYKgUCpnhRbpJjnaEnl8n4IR2k/1QzQF2svAubPAvKb4L0P\n2M8C8WFuG9gNUeI+kO+SgvbpltHidqzfubfd0i4DkG+3exC8x++OYhCRdjSL2gPwmzTL4f4+Z/60\nam//39wKVQQ7IM++fLlO7wDiuSi6OPzbt4U4BgVMkngzeJYHPWx3XYb/n7o3ibUtS++8fqvb3Wlu\n99p40WWkM9OZttO98aCwXaY8KFMqBkggJAQCZgxgSNUMJggYMGXCBJUEooRUgFQITCFlUaaqMJCU\n0850pp2R0b8XL957tzndblbzMVj7NPe+F5mRkRUV5JKW1m7OOffce87972//v//3/ywxJFQ0xCDX\nZIkSFSqMbSyfA/PtHMF6C+jqALy3xzk4J4e/6acfnxuYaxXwKlKURdY6R42QS7z1WFSirUGbEm1A\nqUA9Kdgse4Yh0kVNPV0zPzW4qmKmG26fQkhQNwPabVBpjtMTUspWqU1T4/2G+Znw+ksPKMrcQXy9\nGWjqGZEOpXrazRJna4bQARGrhGgErS1lmVuuiRacdTRugjctaRVxqaT3EastSRdMjucYShwe9IZN\nv2GxeEYzm/PFsynKRox1fO1Xf5nv/skfkx69x8On73M6fx1tGqrC0K575lXPELJhmLOaX/u5n2G1\nWfPrv/R1/tdv/CHJL3jplV/EILz68n2a2YYHX3iDdb9GRLFeL3IysamwtmAYetTZKSn2+NWC+fyY\nW/1tdDVwFQeehAFpjpk3d5gdw5OrDxBxDKsFRRmy10c5ZT6bkui4hUOLo9u0DK1HiDgXkUFR2ILK\npXyHrJaIXpPMR8AD6nqKci1NU7FZ9VjXExC0F46nBXptgYGkCvRYdaqmnqEIpEEjKRBJBAkYVaPo\nifK5pYH24yehWW4C9486d40n57mIfMebHyQ793Mfgd/kzm8mQNMu+TnC7kix5CMj9UGmWbYg/iKa\nZU/6PD93L3htbH/eKFdUkpVTKo2MT5Ytap0Qc3jRGbeV2oH5djuhc2s4awk2EK0lurHTkLPZdmPr\nk3NDYy5bGehopfAcgN+cSkZO/ACwd8fHc+oQ1D/9+NzA3MeWrt+gVKRuIPQKiYaYAsYqtGGMgi1a\nRyQpikIzWJV5VmtI4nNvTHLXnzt3XmbanBL1O6AMWk+x+gRPy7prKVyibgyzVyxHsyYXobiCoW1p\nijnGaNrhKX26YggNy4XHlC1xMBhToY2gfHaw0BIpCo1zFVqd4MqCk9M7lCnhl2uaaUBE4eqKxeWC\n2K6ZHx9hixnPrp5RFxWl2jCZNLz9J/8X3eUz2m7BpFZcPP2Q+v5dnn64pplMURfP0MbSPzrH2Dv8\n63/9N/jv/ud/xOyrX+H2vWPOzu5itOaNcsLtr9zHv///Ero1x8enPL1a07U9s2OLtjVKG4w1mGKO\nPPsQm4Q7usHNzpDlE2IRGXTEzu5xNLuNsxXWljz+6E2MLlivLonREZOlDwNNXTO0G05PCi5jAWEJ\nacDoDq3WlFWinhri0qJMQhjw/inW1SR64vCMybSiKU7oWjB2IKUBVxQc1RV9bDGpoS6mlNUZEp+g\nyxavsme9LRUiCWsCJDd6wXzO458WZ/6jQP25uaVYbkTnL+LLJfPi15OfN2mWQ3ni9VQlMGLsTdpk\nr2YR1AvULC+QJe4oFrgWnY7h+HMM+hbfddzTSiiQcf9AfUNkx/Vv9egZzB0hWkywhBiJMaKDIxx4\n32z1/Fvpog4aiXpvp7CLzOWANpNMwWwB+kV82I5eGYH82rlPPz43MN+0V6z7BcoY6lqIg6O0EWdP\nKaoWbTvECEVlITUkQ+6HqB2usGgpKCxjm7msU6/KmombE03BcvgzmvIeUNENkc0wIGKo6khpGorp\nOX1vaDdPUaIodAVW5QIY7dB6dE0MQu97KlXibEFRKJwDTMIZmy0IVM/D4TssVle8ZO5igyf4SFEU\n9F1LiBqlHY8fP+P27cBUnbDpBq5WK67WG0K3gmToNj2XG4+Rlru37mDqCqUMw9AxbHourzbcvr2h\nqO/zr/3VX+LtD1Z8c7VArTrunk35vb/2m/DkHT5687ssVmuMq5jNHYX1XF2dM5lUaDNFG4ccnyAP\nn5FioLJC7Wrq5hirLpmqE1ZywdH0axhtmE3PuHr6GJynHWBolwxE7LBGYsSkK9pBYbWjKmas2g8y\nmFtN2VhOz0qiXBBCwvvIMjyjVZqqqrAO6qYimYizc1IUjDlj8E+oqmOkv8Ka/A9raCitpx08Rits\nNUFiQUwdKQSqckboPwmSfsbjk1QF/rhqlsP/9+cep3Z0y3NAvqVXDlQs++TmDzOnvZkAHYtz5Aao\nb0FZDmJ/tefMn3sl9Rxps+POD1Kd2xc/IGHGI7skqNrx5WzvGGT3NLZ3D7t5kCxNSuNDIESbK0Oj\ny43CQxpdLFO2SxgBe98uTpOSRkchbQFc2AtR9AjwW1oljmAdb3x4IlnNIuO++ikH877vSXQQE85a\nyspgqwKrC6oqURkwqccyJYhCbCDZJbYYiNHhtKFusn+ID2sG33J7/ktYSormFvHqPtY0aFXgk8K6\nSBharANtPKIHWv+Irl9j7Rxtb2NshS0idaNIukOLpRsUvhesFo7mJXoI1KWlD5cM4iBZlF2jlKYs\nStZ9S5EChIDvB4ahY7G6wBUlD+7dY7G4YrF4l/Vqw6uvv46xBc3JLfrNirj0GG04mp9QT+9CCgQx\nbK4uWS7OqadTuuUlpw/ucevLv4Tob/Ly/a9RzY64deeE1eW7/PEf/xGkSDOf0fuAcwY7NVwu1zRN\nAxI5ufcqlDVaFKXVDAmauuGOgpQSlxislPSx5XRym7Ka8stf/R2+9+Y/YGme0Q2P6JdfQB/NcKIJ\noUalDoeFdMRJY1lu3gTd4rRjMhNEjlmuB6IHLx6rNmht0EZDspRlQUgNMSm0iUzUyyjdYao7FC6S\nJDKENW2/JiahcBOIDqVKVFWyWXeI7rGm/ry+0vvxTyMy/2EJ0RdE5YeJz73e/IaqRa5TLbu2b/IC\nIFfbBOkNVbhS1zBnz2Vvteb7nwDcULAcAvmebtlGp3vIvhmLH+Bzls/sVpSg9MF7UdsLA2MEPz5+\n/BsqDQmFcXEs90+5yUdMYzQuN5KdmuT0aFC2fVzaPy4xXiQOgFwxAvgLrsKyvepu6ZWbV+iDIqTd\nb3XtKvWx4/Mr5x8/HasNaKFuDI4SZwyuLNASkFSjtBrNmRxWg7HgisS0tMxKl02g+mfU7oz18Jij\n+lVQgrMFvW8xZSCZFldkT+MkgURLYGA6O0NUj/dXOANJD8yaM5I8RlMyxCE3eFUepXSOtk1O0hWF\nJnJF3x9jU0vDlHl5hNUGmzzL5YeErmdxuWHwA1LDo3fezVRO13K12HB8esIXXn6Jo+MZH30UqOo5\nPZ7TO6/QHJ0R+wFbaKIMyOoSrR1adUycYfP+m5wdlfjOc37+Ft//4DsoSRTNhIuP3sE5TRSHa0qe\nfPQURDh//CGv/cxXUKen0C5JIoSuQ7ynLBxTDEd6Qh8UrQtcLt6jaWrO7Cn65B4P7v8CTxcDbXqP\nYXVOURaIKoipxq8vYKgQAWcq5sWrXHVvk8SjdcWkEUin9KHH+w2u0SQP0SaGocXoI0R1aDVh6AO3\nTqd0myH72ocNooRBhJQCEmuKagZGSEFhU4PSHcvVE+b1K5/XV3o/PgswvxmZvxDQeQ7Idw2YbyRA\no5hd/84bPYC4pmS5IU3cJ0APSvUPKBbFnmbZyRUPXm3rIHP9OXvN+g64dri1P3Pt5ynJCpbDn89+\nHzLIZ3uD7cz7gsaEiLcxa8bHaHzrUqlu8ONb6aKOZgf6e5pFduX+HFxg9jTL9sM5APKURorlANB3\noP7px+cG5qUrsczRJpJSIiqfKQyrUNqSKBAfiCKgHKbsQVcY3SOmxLlsYyt6hbBhiOB7TeUmmKAJ\nKTL0ayAR0kBZzFDk/pNBeqytKVTBydkdPnz65yS1ABqsqXCFIg4dgsEoS9IVWkW8jyircM6htB8b\nQ7fZkncI9DZ7coh42k1Pv16x2fQkbbBKszEWq0DXFlGGYnqLVMx5+/GKl1/+Emse8u1/9E+4fPwm\nj8qaV9/4eVxzRDU9pqhPqCvQTGhX50y+8LOcf/sdEpHYdjit+fDho1Gnf4wyBdK3OCbcOj1iCB6S\n0EznpH6DaZeQoK4rVkswEpg6R/AeUSUqKj6KHU/Pv8XZ5A5ON9TVhFN1m2ebNX7zlK6Y45Qn+EA0\nicXmPSb2Fko7RAJGJkRWWbU0neH7FZtuQKuGwtZolf3NV+tLtJ4icUJqNVoMw6bHOUtMhughhIGk\nI2I3aFXkxt7R4NOafmhR2qP1mmX/F5/XV3o/flIwfxFgvwjQn3vOdb58F4nLi5KfN/nybcH7QTn/\nqPw4BPQ81A5sD1UsN5Od1xKg1y4PslOyPA/E1+PPPc0yyhgPdOYqja+jxwvFrjI0ofTY0EPL2NFJ\ndmX+SSl0KDAx7qLyDNI8n+yMemx8rYkxoqLZWxMfRuZbyudFIH4zItfj/hbUr32In358ft4srqRQ\nBdr2+LBhSBFVDmiT6ydD9CgKjLaI2DEDXOCcQscplSswLnNPulD4PhHCgsXqEcadkFLPkHpCv8Zo\nqHSDLY4Qa2i7Fi0FqIC2imbqWPslBUJM2fdDFwbpDcFYtFJoLYhEwhDQCKlKxCioGGn7lj72RO1o\niiOivqCezEgSmOiSJIoQB7Rr2IQBY2p+8Wtf5eXXvsD0aMbrX76FaNgEw+z0A77197/Db/zCXX7w\np/8nt196lQ7N3Qc/Q1kLx0cNrjCUR3POvvx1Hn33W8xOjulWS+aTKUkUSmu8UtTzUzrfU5YTSGvK\n2lKVNco1yNPHRN/SdS2TyhFCxClNL4FjNM4es5aey/YD3vngz2iKuwQ/EKPG0dCtWkzRM6gVGsdq\ntSamZ1z2l8zNFGdGU6cI2lpMUdDMKwIKUqKuarxPII6YhL5rUUqI3uOouLxYMz+Z4+OSpDxKBcIg\nmLLGlBZFj7EzBr1BENAeV2mE7vP6Su/HTwLmP5Qb54VAv/NkucGXX1O1yPNJ0MNE5/W2yzchOMM1\n1wB9HKNO/Cao73Tm115lLAK8AeLXIvLxNWFPr+R1C+j7aH8L6rtCJdl7tmhJ+2SsTrk9n+R9UQod\nUm7LFwRl8xSndsnONHYZynLFmIF/fM5O6bJNgL4oEr9+u7QH8i2YX4vODz/gTz8+NzC32oCyKKVw\nNqFDT0wD4iKFPUIGj1IQhoBIjzWKwlQELXjtAJujMacw1uB7AXqCXND1NheQCFntYhp0VZCSYE2F\nIjB0A6qKWFUynx1xefEBidOcrTYGZ7PncwhC6QxK9wzDkuB7alXiVCIJWBIxJgJr1v4xE6UpK4c2\nlmp2wumdOXU95+T0Dl2Ao7Pb1LOGymrK2YSnlys+ePQ2tqx47Ytf4Vd/U/P+997i6eUF92/P+Qd/\n9Ba/+pu/RTWb8PLrd1leLZjcfQPKBxQPFPV7H/L++3+BVQLNnGG5gBQ4ufUK2jlq45AUMaaiKBSh\ntth2QRwGNus11mjYdnvSilpbQuxZDlcUOuKs4qL9LhfLJ6ihwZYaTYPElu7qEdoZJLmce8BQlBA5\np7AlroTBa8KgiGZAqZ5JY8cuRvl+NomiKCxdv8bogRBn9FEoK0vbPwHlcEWFUpHWf4QWC6MVsg9r\nYvREGVA4jLEY7T6vr/R+fFY0y8cB/Q471I3ofEutHHizcKgv3ypa9s0mwjVw19mVEL2nbm4oWp6j\nWEjXaJadZJE9+/4C4mZPj3ysPHEPkFv+3WyBXEbrgJQwsgXzuDtvJO4aaJtrYJ52bfmIsjPQkrE9\n3BbM0wjou+fEMcF5SHPrg7f63JVW9iX8cgDgOuYkKT/lYF64zMspawhRmNVT+rjBOUNdTXJ7tPSM\nFB0pJAxTrOkpnEMlhTEOLUJMAadKjIkMkhOOQ7HMbctSRKJmiJ5NWmHtBOUCxiTaNtCGc06LOxxP\nv0q/+T7rtqWwNWa8XXPW0OuItRZlE0MvrLuOqAoqAU0FpiepHpGOoNfYWc1ZdZ9Zc8rb3/sWHz16\nyPHdgWV7RdsGhre+A8rxi1//OpPiZY6P79I8mHFy9x5Pz5/x4I0v8mu/9Vv84A//J64uPL//L/8b\n9HLFF7/0GvVrr6Eu1gR3TNHcRTbPiPMZm3aBv/yQqj6hns8ZVKJbPKPvO5rZDGsMzjjKqia2kSQd\nCkNdTVkvnqBTACX4GFGiMEmYSuS202yweN2zDhfoEFG6RNsJffcUHRaj6ZkhDAMi2T5BlSuiWVNW\nE9reovxYTScdqBrrEhI8fuiwZYGWgihXBG+wdgIJ/CYwmIKi0hRFSZKBafMyUR4ShewAqc4IMVfw\nGrONpKrP8mtbkf1IS6AA/gfgbz73qE8L5j8qGn8hgPMcblxXsxzEyzcjc3meZkm79QY5Mtre5nEz\nSccOyA95ckFdP84hX77tXnQgSdyxNzcvF3LgICDXLgq730BlQDeynWlnspVdE9NuW5QCdyPRuTXb\nGqmVXPmpiTEQo8XEdKB2kd0FICc9uQ7icrCdthH59gIwgrqOB9F5PIjOP/34JGD+cX0PT4H/FngN\neBv4V4DL8Tl/E/i385+Jfw/4g5sv6lxJHzzOOLS22OSJaAo7QytHWRhit0KrQFFMKYs5Rd1hTEun\nc1Pg4AM+OgozwRnNoJcEP3C5OAfASyAGwfsAVrBlZBgS2iiyXaumMCdIamnKMxbL97ObWnQksx67\n3iRQgaKoWK83hDAgEUJIWF0wyCV1XXL/7Kuo4S7DAp6tH8OQcLO7HJ3Bm3/xFxir+Plf/ufxQeMl\ncnLnJb731lvU1TmFayjfe5d7dx/Qr1d85Vf+Od753reRKLhZyd3jW6QIP/iztzFFyZ0H91HKYGyF\n6T3LTU8xOWXZrlhddKgIm7KiKBwn5R0Krbm6esYbX/s10kmNXgwEG+jXLcMwUJsSozuSQFmWRCO0\nfUCLUMsJnVwiskAoiNGCKvPfNC3xfUfwiqQsTmkCwq2mwhYD2m44MXdZPqtQytHLmhCXROmJoWDT\nC40RXKGxriL0uaGFdQUJYRgCtihJ0QKJGC8ICaxJ9EMgmQUiU+riBBHofI+kz7RoqCObbG3I/zt/\nCPylcd2PTyNN/GGA/SLwvnY+K1ieU7PcmHvufJ/8TNd8TG7KEs31+Fkd0CzbXN+NCPvwEnATzA/V\nLDtVizqM95+PyrdUy3bkitPR71HlSHvripjBOhxsjx2Lts2kx/OiVO7SNFIrO2vboEluDArGMv4Q\nIyYGdLToEHeR+Y5m2YH5+N6v0SojeG9X8wJ6ZcfVbNdPPz4JmH9c38N/a1z/M+A/AP7GOL8G/Kvj\n+gD4e8CXb75TZ2swGm08TjVIinSxxyiHcyUxeVRISNBYXVO4GmOE2dQjsgHRrDdCiHYsoTcY3bIe\negZZ41NH4UoQzRA0Xd9RBoMrsrVu73Pv0fPLh9w6fQ0RYVaeEKPHh4RoD5K7q2iVsDTZlc0MRLWh\nVAUhrrl79jM4l7i4esrMNTTzY1TrGHTP6b0HvPfmX/CzP/91Pnr8jG/8wd/ht3//X+Tpkyu+8fe/\nwe/+7u9iVIEfhKou+cH330Sh2VytOH31K0gY2ETPqW64WC6whWUYYHW1pJhcoErL7S/+LF+Wge7i\nKSEGku959vgh6+UVejaj2yww0xn3X34FTMCtOoZnT+n7BW3fMTm+T4gt2hsc2bvd+ZapsazFMNEV\n56FE/JJNu+RocoSKmok7ow8DUVpSjPTBE7DQRapqQj2tcVaB10yaCX1fgCzo+iusy4mpECI+KGrA\nWQtRqIoGHR2DCEqVLBZPSWoY/e83+BApyimOkhRbtDY4WxMGhbGR5D9zb5ZtK6MCMMD5c4/4JP+T\nP64vyw87fxD8cZM3P4jId9tbWeLHJT4/Ljo/JEUOEPY5ID/wZnleV/68znwbnT8flTMeUePP4Tqd\nw9gjVEaSSLZdiuJue398f0y02vda3VErjDpylWmVYHNPgpj16CbGHJ2nA6plx5lv36js3vEezMcP\nJ26pFjlwTDwE9H82YP6ivocPgL8O/PZ4/L8it8T4G8C/BPw35IvA28D3gd8A/vHhixpbEEIAEbTR\nOGfRmw1+CFAlRAKSCiI92lhc4VC6QBeOYpboVwMxKfpNxVBAWeqxl2hJaTUyZC6VpOn7SAiRhCVI\npB3A9wqrK1arBUX5HpaK0s0ZhsC661G2x7iBhCLGguAznVCXU46OT/HyjPnkZZ5cvM1xXTOZ3CVF\nTxtXFO4Ot6Zn9F3LK1/4Ih+8812S7/nN3/49/u9/+H9Qz+/zl//KX2W92YBsiF5xcRnwg0cCpBh4\n83vf56VXX+HRh09o24qmiFhXcOf+EZPZnBQ7bF+gZ3Puv/5VPio+4Ol73yMMA6e3T7lzSW9sAAAg\nAElEQVRMEesMF0/PMSjuvfwaKEv0G4rbp/SP1vj1gs2wpCon2HJGtDVEj06J0IVcjq8ctRzxpL3i\navmQxj0AF5kU97C6Jsb3cfaC5foChaMqT1leJkrXcOuOzxa+usRRMy1ew/cQ5FG20q1qrHMovf0e\nRERtcEWNUVOUFDBErhYfUDYt2kaa6iQrjlyFUGfVjBEkJUwUkvF8xkMD3wS+CPwXZG/z6+Mn5cxf\nxIl/kmj9ZiTOXmN+COTXqkB3FMxNuuVjQPzGeJ773tMsHEbgL5zpGqA/D+Q3NNY7PfrhHcC2GXSe\nbuxMugXu3f7Btii1S3ambYPrbTRux5L+YLHRYmLYA3lI2QL3pprl2vve0ik35jYqv2aBe9P29p8t\nZ/46+76Hd4HH4/HH4z7kBreHwP0+GfyvjZB6SAoPVEXWkzfVXS43j3DdeZYdpkDwiV632K6gmRQo\nCkqXPRWsswwpuykWfgkktG1IUaiLCYPa5FsqPILk8v8g+CGwWnrqMmLVjOXiipPJMc45hk4zdJFU\n9ExsNtcafM6IK+WYVI7Sddw9/gW+//Z3kFgRi55hWFAVR6A2LNYfcTSd8vSDj2jsjLM7r9N3a95/\n6885Ob7NX/oX/hrf+e6fMp+eYQvNyfExMSY+fPSIzXrD5nKBc44PH37A/OSrxKCRWlPNbqFNxdNn\nH3GijqmKgNbZt3x6coRWX+Lqne/Rd0uO5scsl5dMK8XR6SmumCCFkCjprq7YrJZIGHLT55QgDWjr\niBJQzlCEkokkUkyUHqJXDEPBanXF0fwMVxakXqFCiVZgC0UIiRCXhNWE2aRicSX4YU1qNzRuTmlK\nanuLjVwhCE1TESJoE4hR0CaR0hXazpnOjyh0w8VFJLZrxA9oHUmpQ9sTjM3+98MQCNKz3vS063Ns\n+ZmngRLwS8AR8L8Av0MOZHbjPzzoP/Q7X4bf+crHvMoYEfKCKYf/5zeP3ZghQowQQ17TOGVsUJwi\npCA5+tw1LeaFDaNzV7Xr9MeOFrkWFV/3Lt8RMyqNMXlCjTTLdarlOpBfA3u5eWz/nG0fUbcFZrkO\n0NdAW64fOwR4hx8pJzO+q/HCpQxRG5LOazCWaMbVWoK1WGexKYO8TRYrdswn3ATmvApxr2BJCVIO\nOnKULruKVNE7zur5If8PmQz50ePH+eZPye2y/n3gZvvxFxNe189fG3/wd76JcxYfer729Vf5yi+8\nwdGkoh2u6MMlSs0Z/EDvO7S6wCRB2ymlSVm1YCV3vSlsplD8Aq0NlbMMlMTUo5XFy/a226OoMVrR\nxh4/DGgqhjpiPWz8Oc6VuNIwa2acd4ZERNtEDJF+6AlRKOtj5rNbXK3+DKePaMOadevpGTDxhLq4\nxYMHb/DRux9wfHSGXyeUVYjumJ894PZLr/GNb/w9Xn79VZIMPHu6pO9a2rbjw4ePefXl16mMxZmS\nhOKdt97m9u0TvJwituP0tqaoTFaEqIohJhbLC4bNFReX59z58q/y6Hv/mMunb1MUDkxDUU0ozl4i\nXXyA7jfQelaLS8QPmDKrPxIaoxRGG1h7XIzEbkk0isFvMKlHiWa52uSLWjxBUdG2Gm8V1gq5K66l\nLCZYdQbe4/vHDP0TDHNINVppJAlWG4q6pOsDSMLoipSWxDQQpcM5oVCOogQzJPoI0vWI9tRSEdOc\nEFuGruS9P3/Km3/6lOCHgyTdZz6ugL8L/Bo3wfz3bzzyBRy67BJvL1jDwflwsB9efD54CAaCE4IX\ngk1Ek2eyCTEjX2siSiu00WitMGOjZ6sY+13mdcuNi9qbVSWlsdttNEkFzGgnm1Qu209KE4mYnQrm\nRgJU0vX9F62yLy46XLf89x6UD2gVOQTxjzkm++cSFWHwRG8J3o7OiZaQLFHGyTAC/EDSJjfCdiY3\nwE57+2CFIDohI3WyW8dIW2S/ioyAbnJEL5Gxx6jOf/8XfXXVrwO/vt9P/+XHfiE/KZhv+x7+LfZ9\nDx8D98gUzH3go/H4B+Sk6Xa8PB67Nn7lL9+idCVrv+R4IjhToa3BMaMbnqDUavQTTgRZM4jB9gZX\napRJQEAbTV1p+ihEiRRGSCoQgs98vNYQLAqNpJ7k8xVRAdYWpJCrxJaLFSF2OEqm5W16pynjDIkX\n2CKiUvbyDjHSDkueLs6xxoIOKJ1Y9lc0nNK6p9yZvMTTx+9TVVMW51cocegoHB3fIgZhvVrzc1//\nOZ48fgqFomka2naDMZa7d04oS5hNTphPJsQYCbePeefddzi6excBNpsNR/M5zlpC9GjnKJzj8dOH\nqM2a7/+Ttzk6m3Pvy19luHjGK69/mdMHXyL1K8L0Lu35t1meP8MoQxybaIcQsGUaaSpNPW2wXnO3\nNLBZc+IMV8UJa2fwCdpuQQg9kizrzYJUXVHWCqUTKXaUVaIPa8pkEARlO9btQ6w9ow1LlFYkiYhO\nFEWDNhakx9ieGDTaKBbLjziZl4jpUQboDes2YumAt6iqiqQKZLjHq186494bhrbdEH3NP/y7Dz/h\n1/rHHrfIcewlUAO/B/xHzz3qkyRAdzwtO1Deze25GyAuNx83ngsGYshAHo0QbF6TEZLJACMHnW6U\njqisSMVsmxVrcvm7UQcOgwf2sSqM+5qkMnDbcU3KjD0/DYZIVGaXAD2UKj7n3Sg3yZybxw45+JQB\n+RCcJWBGYDeSgdvcOH/z8VYCkhRuCIQh4ELIjVuiJSab7YF3RVNjtG40yejsd57UCOb574KSEcAF\nUSm7OJLIXXK3IJ4jckkyzhysK6PGlne5ybSonywQ+SRgrnhx38P/Efg3gf90XP/7g+P/NfCfk+mV\nLwF/dPNFjVYIPbNmwrodeVJdjKqRRDB99tHGEL1mHVdgLLavsAR879HGUFZC3waGGCnRxBRypD5R\nGG0p9RRTQKOnJFpIfZbS+YTTJUZNKBvHprviXF8wmRxhKw9dJAaLKSqM03RdT+gts+IYwgfEBNYU\nWWKkBGMKogycX55zx73M5uoZt45eyc+ThMJwfDLh4cMPee+dh8znM9abK0IQjuZHbDYbGqsZ/Jo7\np3OMUcxdg3KGsnyNnpb57D7TyQQRwQ8DWEtdFwzDhvsPfobV47eY1rkoqiwnPPjV36KpStTZCSpa\nUtrQnDzg/L0foFJHVUyBUXqpFW2bbQ9SEhBLGAIzLGfO8L6aYIsNCmG9XKDrM9p2jSssgxaUStnn\nRXcEuaQ0Bd47hmFA6wKllmy8p48bFEOuMUCjZIZJEdFZ6WL1hM064NTAk/MfoG0gSZerbINC95rO\nBCQJ2ilUELq4QZQnpHVW2Xx24z45P7Tty/63gP/tuUd9QjDnBQCebgB2Cs8DeArXgT16IRqIFpLJ\nQB61EHUimUTSCTERtBrtMTJ+iMpReU4sgkbAjKCiRzDXB6Cu85p0jryTjtgR6I3WRBXRegR0DKi9\nN8uOhZd4/djh/g7IR9b+ANiNxGsAbsf9w22bbuxLuPa87b5ERfSB6HN0vlWuxGhGoB67EmlN1BnI\nk81VoDIqgrYNpJVOJC2IltGOdw/lIkIaAyaRbM4lY0SejEIMYDQSJUfoL9TYf/LxScB82/fwW+Se\nh5Clh/8J8LeBf4e9NBEy6P/tcQ3Av8sLaBZlNNZAigrFdLzS5yKiEHx2IxSTI9BB0/YDuAVqnWhS\nT/BDjrxtSZKe2EWScSQJxJiVKrU5padAJOAKITHQJ4uNFcZYrJpSmJrCOhQ13SawXFwxOSqpXcFm\niMQAxhpEOm6dvEa/uWA2uYXnHKU6rBaUq0nJc/fO12jPL+lTzaR6icXqCqKmnExwRUXfD9y//xKb\nzZoQAilFlFL0QzsqZwaQQEwDVkeOTo/p+57XvvAybjpjMpkxmUyZzo9yJay2qLDm9htf4eIH32H+\nyuusnzxkfvs1qukElSzVnTeQJERZoxZLbDHn6OQeV8/ew4cue7pbR1GUmKpBa82qXSMqYZxDotCG\ngRgNs8kduuRZXD2m7yeZftE9SAZzEIyBJEvWLWyWClf1WLXElif0V0u6VigbjTaBENcU+ojoI0OI\niB2IcYIES+87rNMUlaB0iQ8erWuM7lHREEQYVp5pHfAExGyI4ZOg6E80/gT4lR/5qE/wNiRen+kA\nqNMNIP/YcxGSh6RHELfbaDxH5DmiHG/9jdol3XJUft1VUOkRzO0WtHUGbZ33M4AHkta7nptGRopF\nm6yB0VkOGFUGdEHlgp1trCuHQH1Qbyr7lOtWRrhVxOyObaWGEjBpC9ARk8JOcmhTHJupxxHY4+7Y\n4WMlKYL3OG+yr3kYm1Qkf810LClN1Cb7pCeVAX1L/IyNpJVO2bRSMcbijAC+zX3KSJnnpKmknL/A\n5LuhpMdG9kp+4o7MnwTMf1jfw7/yMcf/43F+7IhRIboce+kpDA6R3PBBks5FU6oceThwtmEYNmzw\nqKiAAqwBq0kS6dqB0lpC3ICR0QKgpK5m4NcYFxFdIDEwJItzGoLCUnM6P2GxukTCiqH3TIJl2tQs\n2pbkZxgTaJoZz84fclzdprAlKQ0UNqGwOPUqVTHn2YfvUjhHS8vpdML64gOCKlHe0fWBtltQlhVF\nkRtEpATGaPq+p6knENf0nSeEAa0si+UVWsOd+cuc3LmPdo6qKinrCYmA1gpdnOC7NUf3XiMNPdZN\nKJWimJ2hUyJeXuDu3kMNA2Yz8NZ3/3cmVYkPIdsUuFzQE0LClJa279HakGLEKoOyGmscp+WEoFZE\nFE0z5fLynChZg0upiLYgmQFFjR8gDktC8MxEM5kpMEtiTAxeYXwFaLReovUSCZGh6wk24fQCGRSS\nCqybEOJATAZUrkdQFiRGkiSulp6Ylhgb0CoSvEXC51YHtx8/Js2SDubN/S2AX9u+CfBm3Pd7MBcj\nY0SuRppFZSBX+fZeq7gDcq1kdNEVCCp37RkBXEYwj0ZjdY7Gk475QiF5ewd/yux031FlX/md2FGy\nE4zdgfeNYh4Oj73gnERMOgDttD+2BW6TDsD94DE2hYPHByTpkV4ZaZYYSNFnH6CdAdmeZhE9RuaY\nkWbK3YzEKNDbvx0j0N8Qsmyl5VGhxs8Umz//ZFROOGtQWvOTpns+v05DOtG1+RY/SaJdrUEbjHE4\ne0Tv12iTMNpRqBLjLMpY+hAZNhVKR8xEZV45wmLd0kwrrIaUOvquRtUOnRzdEHGpQxcDyiSSBJwr\nAU1KBZaawvRYE9i0ayaD4ExJXRZoOUbkEmMGjCNHqxicPkaLpymPAMOt49dZCNSDwfV3+Ojd99Gi\nqCcl08mEzkeOju+TkpBSJIRAWdbEGHBOY4yhcBP6fsNytaAuK4qywlqFLgxKm1z9qjQigi1cvuVN\nDuMC4kpMXGFu3SKuzvG+o2jOMEe3iI/fJJkCv3zEvXsv8fjdH1AWuTBHK41SCu97tM53e8ZYjFI4\nq3FmYPBLniRBUsTHNfPpHfxmwcMnjzBugwk2GxvZhFaOoTMkCSgsm81AWVXABmuPaNcBJTXVRFEU\niba7xChHUoFST0jS5rsTX2GbAmscXegpXM9mUEgsUAgpRvwQaU1HVW/QydGvzYHW93McPw6Y36BP\ntjP+kP1r5/yYtDTjHNUReY7dd1TcmUHtKBa2Pic7dhdIKJujRTE5OSo6g3tKI8CbTD0Y0RhzAL4q\ng6dWESM5Mgd1rRRpV8zDCLhso+1R6X5Y/DPqwndAfgjQHzNtiuib25J9VbZRuk4jzRItKWWufOuK\nGJMZqZR91WvSI3BvtTUq0yskEAvKJKLKnZgSEMfirLxCTIqUFDFuAV1BUDkyNwo1AvroIvYTfe0+\nNzA/qe/QW0FFzzIMPL14mMu2UwCpKVwkJg8uUusCEZcbJ6cNEl0GgCQo7TDaoJVFa50bEHeKoU30\nved4UnI0P6Ft11jjiNIRw4ASSz90xBi5ulpQTWpgCUlzuVhx5/Q1jmZC6guSNWA8TV2BCsRY4Iop\nxERpTmmKKesnz5i4E4YQuHN2zDqs8Sk7LS4ur7B1RdclJpMp6/WKlFIuanIFSXIiVrmaSV1igLKp\nESXU8zN8gk3XobSCYUAphdIua99Ng1WSPSeqmuDPwU3oPnwHfb/GDgvS2RfQ734TPzvl6tt/iDaK\noR+wVYmPQuMcxihiynI/bR1K54TNMAQqVzIvSoarK5RRODvheGK5uFpyvlpTRsHaAh8HlBqwzmCd\nJQZBc0LsDTF05I5Amk3rEZ0dKbWOKFNhlaEuJ6w3nhA3VHVJ00xQSpBYEMIGUHStUGhLgnx7bxLa\nJMQ7JFZI/P9B27hPSLNsE5vpxowHgB1fdGy77fOKEcRLXnVeMWlMrqUc8ekx2abU3v97LBwFwYyg\nLjbTCWI0yRiSCXsFh4lECViTlV6RAyDfTsnHNdvIfF+hmcF5y2nvQd2yTVzGPc+9A/wbkfYWpGO6\nfuzGvomjV8u4vXteSkhS2dMnGVzypGQyxbJTqYyc+ZZqQu0j8vHilpOYCmWEqBQRRRSNGYFcJ0VM\nGhVVppKtItrcNzRz5Wq861GjouWnGMwdNWU5YbF+TGEt51ePcbVi6s6o3THazCjqyLJ7n6oeCK1D\nlMUaIUkEPUdJQI+ewPWkRiWfO9fUBe1K6HtPrANVowi+QNGRUiSmrGuWELi4fMakfJX1pqUqCnRZ\ns95YjKm4NTvl6UePEAxKQ1lZLA4Z81/OzrF2TlEdsV5fMPQDLkFaKZIkoheUgRADsRuo6gqlFMMI\nyHkoJk0NKlEWNdYayspSlg2z2ZzJ/Ih+iLi+Y9LUiAht15IAFT3JKCDiVI4C+mcbVCNMmgY7dEQD\navEu3aaFOLBKwr1bcz581KJjxDhN8D1JCqq6xDlL6QrabkOIiaIoeba+4qpbYYGrrsUZA0Q02frA\noBm6kqhz0toVEZUSjTsl9I7LzjObliQJFMYy+IgfFK0WyiJSV4qoPSkFvG8JKWCrKU3d0LV9vmgr\nxaSsOb/q8KJQWnC2oigGrJrRTF/NjaOHz7xo6EePTxKZHypU4vWoOx6AdwwQ/Q/Z9+zSscqM+mWT\ncrJTpREk2K0KYPQQ33YJyrq4XKmoHEjQiM1RuFiVgd3mqDUmnXsCyJb9HkF9C+Z6n8jc68O3ssKb\nVZp+X5n5QhVKPudGgN+Csd5VY15ftwCu4xbQR3OtGMdj+ZwkTZRAEr+XGY4+73LgXbOLzMdbGtFq\n51CZN0DFRFS5e1MUTRCFTno/oyZEBdsG0FHnvERQKENOSGuN2t4W78tJx/VG4dQPGZ8bmIcUqW1B\nWc3xq3Mm9TEX6/eYHdcUdk5MEU3AaAX6Kab0bNaOmDza5i9R7xOT0jCtJgzDhlJblOTnKAVtf0WS\no5xYdRqtNFZmlEXEiMUERfIbnB0QFVC2wJk5lTuhcDOaokH09+n9JUWxpqmPiV2Oovu+pbQzrJ0z\ntB06DSgfSUNBUBuMNsSwYRg8rp6gUmK5XFLXuROO1tkf2RhD23bMZlPKssIYQwyRVGoWqzUJRVmU\nOOu4urqiLAsYNK4oCT4RVucE4/AKhr4DowhPn2Jv3Uf7Ner0FnLhKZsJ5997k1u37/LsySPKskQA\nqzVIQity+bJ2ePFUZYUuHMurBSKKk6Mz3nz4Pn3bo3hG2y7RZcfpyfYrZFG6AX2JEo1TE5KvCH2J\n9wNR1hRFpmOKwmKtoSpA8KzaD7DWsV4KXd9RFYqqMqD6fCEMA9pZnDEUG89mIzhTIETCMDCb3EKp\ngqPpMX1/swTicxifgmY55MgPAT3c3A7Pb6PJvt1mu8ooQcwJOqUyaOyTnWMBkDJj9aUeC4I0RJUl\neFETRwVHsoYogZg0dgTx5yLyFEc72r1LehbHbOmUgyrNHWD7nV58rwf3B+cP9OQp7ErpdwA97t/0\nJTdpdDhM189tt1PSOHKy0+HzRUm264FYctTUi9lX1ArsaxlEQRTCDsgNOmlCzKuKetSN6iwFsQox\nghjQJtM1aQvkW/L8JxifY0PnRKGFEARrGpwr8OEWQwj4sKSpjgg+IjERdI+za4wrkeQItAzeoZUj\nRENZZE151yWSeHofEQNRWtpwSaOnKJ2o6xlqKDGmoF0HNhIpcchwCWWNHyz3H7xCU9Ws2iuMarDl\njHb1BFeAKgZINcvVBqMC1Atcv6DQFl2AH3qaVIAIxhoIPaEHMQW1LRhS4uLiAoDJZA/qq9Wasmww\nxmCdI3jQKLwPtG1HXdWsViuIGXQlwUJfUZc1m8tzju++QuzXOCMs28AUz+L8IWeFw617fNcyCBxN\nS7rBU9XF2FDDo3T+ChhrsMailWCdBa1wYqiaGjusWX/4CCWJoe358PIH2UuFDabwGDOn0AWD9CSp\n8kU1ThhaQ9d1xOhpQ2I2N5TO4oqsoLEmEmKi9+dsBkW7sjmirxpEbViunrBeObre0xwVJB2YTTRK\nWYaNRStNig5NTVUcEVAEfjoi88MioXQQnR/SKuEAxEN4wbbP20pncFA+e95ovff93urJ0eyaN2Rb\n2m2VpUaPYK5Fg1OZNx4bMqRkSCmMkec+Eo/qOphvrWZzAjTt/cQP+HIrcQTqDOJuWwC0BXC223nf\nyb5qM9Mke28Uk/bgrQ9av+2PxRccy6uMFySHz0lO/K74aVevOm6nrSzzkDPfgroCYsKIyUAeDSGZ\n0VnRoKLJhl5RwCuwabzTEbQZE6BmTGJo89ML5u3wEXV1hNEO5XJ4cjY543LzmN73DH6DLRNVPSXF\nnqg8ZVmixDMMATEX6HSK1Zl60Bj6rgdlGPrcRKFqhN5v0GLGK6FQVQ02aoibrKQJiqQ6sjArMWlq\nJtWMkAKIUMkt5qXH92+xThsMDcvlgLYdqpzgLz9kVk2pyorSRGbTO0gscmSihWkzIdlMRSilcuQd\nI9YWDMOAc5b5fEZZOqoq0zBlURBjpC4rjo6P0dpQuCJHWgJKKQrjUNEznx9nZ7fUcvX0CcaVbNo1\ny6dvo2+/zHF3gbn/Ck56LoPQLxdYZ1BKMCYnDEMUtPcgBqU0Nil0M0EJOO+plUFbSx+EXhlK3bDp\nLmgKwVhHXVqsrghDh1INwXtsKNEpN4vwoUNrg4RE1ZQEnSgLDQmULbi8yJ+BH6YUpQYVCH1LOyxY\nLrMe/eoqcXJSEfSa2VSz6AuSRKycoMSgJeSqPf3TAea7QqH44uTndvoDEPcjreJHII8BvN8WEcpz\nU/4/6t7lV7Y0PfP6fbd1jdu+nEuezMqsqqyyG7uNobtFSy2LNkKipRYtZiAmDPgDQEIgaCSEGDBh\nwpAxTBATpB4waLCQLVqy225s2qa66KpyZVZmnjzXvXdc1+27MfjWioh9MrMq7XI5O5f0aa1YEXHO\n2XFiP+tZz/u8zyumRrCT2sIRxBOgK05j3mRIUkDwkmBGSSXIU1RudMkFLlSSFkTSlrVMcdN+LDhO\nAswks0xJ6andfgTyI2hbsun4jfPnzyeZZZwu9CaIj5nk54+n8W6f97oYxNFHHkZtfOpyTd76SSdP\nK8lUI3hPpvzpwhhiKvhGhQwaGRTSJ1IiQhwHQ2ui8Wl6kY4EnbBbKnGSWYSE0QH0592+MjDf9y+p\nu8cYfcXd7hllXpHJnELl7NsDnW2Z6RIlCmK4QMQBZSwmCrKgCRFMEGihGIJCUOClpesCzg34IUMW\nJcFJeteASVfhwii0uCCqnmgalNTsekeue8oqZ9/ekZs5Shvu1k/RsUCHjK2bE7wn+AP71lIUgcGv\nyRH0nWGeF8yKArcdUGGgH/pRAlPkmcYLyXK+IBKSxBEDWWawdqAoSpbLJcNgKYqcLMs57PcURUFd\n10ghyYwm14Y8zyiKMkkkBDo3oKUiOEewHftnP+TBW99hdfEEuZzj9mviJz+kHzxaOmYPr7h5+Rpj\ndHI5QOoCtQMmL5GmSuxsGOi7Hm8982rGrz76Lr0zbPbf55XbUGaXaNGSSUcMnhCG5GTxW4xwWH8g\nBIP3KRdnGrTbDS1Sa0QmMKaisxkxFrhBIDDMSkVmwHnPbn9LP1QIkZPrGcJfUBclbXdDPRNsNj2C\nOX4Q9GJLEH0a9PtVb39Gn/m94qf/rJRizxi5PWPk0/kE3gIlQcmIGoE80fKQQFwCRISQSDEBeUCS\ninYKmZh5SLklCcRHm150I79OAH7Sx8d15hyRIzuX+ATmU7Fz3J+Y+AnEsziMYG7JwriPFhOH42t0\nSHUY6eNxPw2XSBODAtLF42PpwheeC0FipB199Pbopw9SJekjJnfK5CU/X4zNQnHKVgkRGTUy6JGR\n6zEnfcy9MRCtSNHaOnn/pToR8aSXC44nf47tKwPzvpe0eUeeebK84DDc4WNBns8phx58JPMaEQ1a\nCaz1WNcitWVWX9C2knZoMW6FUhlalewPB7Ry2D7iBknoDVV5ya57TQwDfejJVYWLgKjw3AKRKHKy\nGHB2z6fPPqDMHtC5Ha/ufkRVXjGEbRolJypCTIA7XygIHVoFSiHJhGZwAxpFbhTO51ilcWLABU9W\nFkQfqOYVznkgUpYl+73n8vKK2WzGfn9gNptRljUxBsq8oKoq8izncNhRVwVZloYmSyXxQ4vAMvQe\nt36JjAPGSD69ecU7D+e0rz9G9AP16gJiR1le0W4/4vFbb7Pd3KAzTTv0aAG5LpAChn4HMcdkOXlV\nEVxGs3tN4zpKCY9WlxyGAbSgymcoHbndvSBTA1FlxKixoU1SWGuRWhJkQOmBpvcEmZiL1AO6VGgp\nWObvcNPcUBioTEmRB5qmx3nJ4D1S9VzXb9G3lrm+xNnnKA1ZoXFWcNhbAo4oPeJfBGui+3KviWfs\n/Nxy+HkSixtZuHWn5eyJmWsRCaPnOYqAStOMQQgkpKaUNIkZgRgn9Eh0DEcwVzF5oX0YmXlUx8Ke\nF5P67Y6M3EuPlw6v1OjjDkcgP3V5TjLLKcXQYMc1kGHJpn2YgD2BeHa2V8EnVh5GFu7jaVCEG4Ha\nnh27zzm26TjEyakzdnce7YenIRzH/HY5dmrKyYWSNG+hxtpEDMho0r/PJzYuXH6BKxgAACAASURB\nVDwNvbCCaGRi5lYSdExLicTMJ5nl68zMZXbgMLymdAuUMvShRQSPtxkiFlSZhtDj9h5RSAgGGwXS\nQzU3GLlECUnbvWI1X1GVNbtdh7O3eK+QCJS4IMacIr/gbv8xOsBW3JHrjPbgGYaBLEu+6hgNMkqM\nBGsbrGvZtB+y6T9ASEFdPMLIVETN8gyjNVpHRN+jpSULRRqGESzdcEAbw2J5QWsjURXkuaYfHENv\nubq+Yrfb0vc9lxdX43DqjKqC+XxBluVstxvmizlZlrFYLKjqEhUidhzMLL2gzDLwA83+wP7VR7im\nZbZYUNaaw/7A0O9Rpma72zFfzNndvEQIQ9M2FGVNxOMHO0otA3KA+ewKmWu0KdJts4BFXiGM4cO7\n56wPW7qwp9JLVst3yLXh0YN/mRfPXrLpn1Llj9k0HVIoHILQC/oe8mvw0dP0AqVbtFOEQyDLluBW\nyDCA7Ilj1MLQRQQGIQJKKZp2x6p8iO0GFNcgbskyRdtD04APHXVtUObr0zTEefv+uQXx84D8zTUC\n++BSc2eQoOU4kUcCIiCESHUFAlIkjSAVOgUyirEDU6AQ6JjkNRHEsXHGMM0IdScwFwo3MXLvk9fc\ne5Q+83WP3ZsnmeXM0TIVNkdmfloDGQN5HEYQPwF5HgdUTGA+yRfTgAg5AvW9ZRMbPx1HpD09n4q6\npzb9qE/6eJgA/B4zB3TylaPicY9OmeWT7IOLoz4OuORYSUA+/n064HXSy4Vi9JiL0cnyNQZzIXqc\nO9D2a5RWCKnZdy1aaJQvyXSN9Aa33+IGTb2cM/Q9ShWEIFnOLnh08Zhts2XXPCMKS1XWvLrZIP2M\nuc7p9hvyQmMyjR1ypOzZtRtcITg0PS6AMR1ZPqPMZyjvyLJIcA2KjIAj+ENy1OgFWuRI7fE0mFii\nJQyhYVAde7tBO89y9oCKJeVyTntoCPsDRTXHC8Xg4yinpPmkjx8/Js+q1NrvJXVdo7VGa01VlQgp\nCSEF9eRZQa4VdnBs16/x9sBu6KHbI/ICEVqMERACi7Ki2azRViOvlrib19zd3lDnBfttS50ptNYg\nJCY3KZaTdDvuhUebOn25ggUCeV5wt224KJesypJP947gHb11vPXgu7z96Lu883DDR8+/z4vbHzKY\nh+zaV+RFjhskzmpc5ykqQ5ZVqCAI7YGDPGBdDcGSaU2eR5wX+AaczSAqtBIMQ8s+vkZGQwg9QkeU\nFChjyfKCtvekm7kt1xfv/qK/ugr4J6Ro57/3ua/488gsk2b+hqPF+c8C+vDGsRqDspKmO/YsTA1C\nYgTyMyusSKk4aUWBjmIsTibj+QTiZ32ZaJGKnl46tEqDG45DG9Sp23KcMHovf+Wom8dzdj7JLcMR\nsNO+v/84pL0OLg2NTp05Z9N+7gM5lhOI23j/2CbGnMKypq7O01TSY8fr5FwRI5CrtKImIaYBxiHQ\nMF5gphF0bmTjThxZeTAKpVPcglLgxwJoIuSTZj4i/BdaEn/2HedXCOaCIezYdq/I8yK1HktY71+x\nMt/g6vIxzW7Lq91rajVDhYKHF3OaYYvtPMw0dV2RmyUu7IlhgzUOozSFKcnxHG6e09YFyhRcL56w\nbj5CqsCueU2UObiCEBxaF0ipgYgPDYEWrWveffAb/Onz3wIv6Ps9SheYvMG7BsESESWdG1AcKOWS\nWlb0rcMYS9ztkVIwm9U4JFIILi8viDFgreXRw8fkWbIizmYzIFLXs5SZARRFiZSpM9RaS/AeQ47S\nitxkbPc3yZa4v8OrjNA26LzCS89+vYbomK0WuCGF8Sug61vqWZ00bjTtbs9gB6QQx47YGGBoW1Se\nqvLTxUQpw8XyMrV0+wHvW17dvOCX3vtXefToEd969z3a4QWvt548n+GCBW/JpAEfECJZTWtZUeYz\nrK1Zu9c4IhmSi9WCKPcMg6UPoMQCFSVGQ9cf8AZa9wrpKwQOYVLAWRAHtMkYOocSPbvmJ7/or+5/\nTModmn/hK/4sBdA3GofOi5+fx8wHm9b5sYYx5Iljl2ci6DExzZjEFRgL6AhEFMjACORgosCMISNh\nlFb0BOZCouUkrSi0crhpH9S91vlJalFjc/ux+HkE8rPCJvYMuHvykMA8jwN5GPfjYxVcGpU5Tvg5\n16UTiEeE5bgXNn7uMTbJLDGq4xi9o6SiRLLbw/hBxhOY68TEhYmQxTRD1HwBmLsTmIdBEYxPS2uC\njsixACqUQB495qOj5esI5gFN73s8r7ChRhuDNAFhBrJMcHnxgKpacNs/TxOD/JJcFwilaYcDHz/9\nkFyvyMwc70CoAal31EVFZXJEu0MKz+ubZ8wX3+Vy9ggtAxv7FKn3SUYQ0A+S3bZFzysyU4KwbHYf\n8uTRX2M5/2Ve3P5/bNqPIXbMLkiWyd0AQuCDI2rBbbdDxudI9YCVzIgCuq6jaTaUZYUqDYvVJV7o\nFOsbInlWYa3j4mKJ1or9YYvRGc55pJEYk5FlBhGha1uKoqBtW2IExcDu1TP84TWuP/DwyTdp+hVB\neHzfk+sKrQzW9aByDrsdhRFoY+icpTTZMdrUO0dnLVUtKco5JktJjTrPsG2Hi6lwmemanTvgjaHp\nB7r2lsVc88nzP+bb3/wu7z1+wnfe/5f40Ud/jI+vMVrhXUQrjZ5Lglc09gaTV8hOUag52jVEn1HM\nS7LCEWVBvwHbHChnc6q8QoocLSva8DEChSNd2GQQKCXp7MCYpo3UGq27X+TX9h3g7wL/LfCffOGr\n/gwyy7Fh6Gzv/X2p5TMSy8jIBwe9g5AsTqPtUKQCp4hIIcbOTsZ2TxKIM/YWxXSRVxOgByCK0ban\n8MKdOVbcOLRBpZA65XHeo73Hjc08KoRjEVRGn2Z0nneAnuWKfx6g56PMkseeIvYjkPcUoUfF5FsX\nIWWBH8e2eY4adRq0MbJzO+2BYTwe96eJS2fWQ5na7mM418w5Fj2P8oqJxAwwAZGlhsV0dwCMjDxY\nSbSSOAG59kle0QE5yiwTmAslTnr519WaGL1G0OFtS2BA6jkiKrR2KN0lJ8dsjnppiH7NEBYcdoJi\nWaCxDD7wzz78PR5cvI0ROW1/h9KRR48eEzvJYTgQZcT2TQqLA+b1ima7TsUMUhEyWEPnIjYPEEFm\ngV33nHezv06RV7y1+hvsmlu6rklRlV4h4gwhKhB7FvMKUcwphiWVWpLJkhggyzKuHn6X9XqLyTL6\nvgcN+/2Bi8tLlBZstju8v0BrxWKxZLNZUxQl1gb6vmc2q2kPB7TWDEOPj4Ki0Gy2G+YXK7bdHXkx\nZ39omF9c0ux3uG7H9uYZeWmoqwXBB5bzir5r8MFxMb9MXbAotDJIqShLSVEkXT8SEGQgFCYvMVme\ndEU7cBEky/ljrmYVr7e3BAb+9OPv8ejxNykKxTy7YLl6wIvt96lUCWWNb8BaS6ZyhKnZ7F4z0xes\niiXX6m1uRotons9oulus64hOYvcNcVagi5pH9SWNL9h1L3DRkueavNA0+5bgJdb1SB3QJqLMz5lW\n9NO3/x74z4DFT33VnyM1Mbo3JJbP8ZbfA3J72iewPskrSoAXoI4jEkZmPpI7wTjoJpJklsBxgbgH\n4GY6VhonPVr6xMi1PrbJqzMny5Q9fl9iOcksZmwamhj6qdA5svMRyIvYJTAPA0Xs0MFzTLHynAb7\nTGsE8SSzpD3DtJ/APJ0LcfKRn4WJjUOdJ0Sc7nKi4KSPGxIbNyDygMiTSws/BpTZUVrJJHGQhCyN\noPMmoExA6YjSEakiUgnkFEk86eZfV828lA9Qekfv7/BOsB8ceZHGoK2bl7TuwDK/ZjZfsjvccrt7\nStctuTYPUvKYFzTDS/qDoUGg45y33v4WuIy7l7dsjUaUgkUueb1+islmKO3ItYaY0dmkMXvvsFay\nb9ZcXF2lPBI/8HL9Kd998hClch5f/hV+8vIfM7QdnYiIYIgxgZ+pAnmcMdwqCmVo+w7tA/XyET/+\n4Ed84+1vY0dfatvtMcZwffmYu81L6rqmaRryPMfonP1uj9KSQzNQ1zWvX78i+sDq4iKxc6W42T6j\nNoa7Q0MgUOgC6x3b3Rqja0LcU9YzXN8SvCPaSOcHqrrmdrtmSSCSYvZcDAyDh9DirMcOfbr7yPP0\nS5PnxDjgDg3BO4xM8o8uFHETGGxHZgr+4A9/hyePv8Oj+opfeuvX+NHHf8h8sSRGwdbdpQRGHTGy\nogsHOhwIwapaoOOMWM4oJNhg6Zs7XKvoVcNtcFxkMwpdczn7FbSZ8+ruewiZgraGAYiBEAVKO6yz\n5Cb/RX1l/23SAJY/An7zp73wv/6j0/FvvgW/+dZnLzCjPM00oit8Zp8YdUg1tnv7KYkv+NP+6IyR\np/Fwkz86SebxZJHmFMiuGFk6Yz0PmYYkiwTcTpwAXEuFVwrtNNo5tFZ4p9Baob3DeIX3bsw8UUh8\nYuDBYsII4mEE8TDaEMfns+O5EdjHc3lIurnyfiwscnSKHI+nx/7s/JtgP61Aauo7ykI+hYaRQsKk\nUCksbLJeqtSlrZRHKo/UHmXS3bM0HiUSUEvjj8xb6IAYQVvo5HoRMl1skWfduHJi5ccnPvtl6n8b\nht/+aV+34/YVZrNcI6WmaQdsGAhe4KwnywV9v+F2/4q+H8hzzd2u49B2gGC7q1jOlvTdn5JlFxAN\nMXqePHqH99/+FbyXfPLp/0Vre8y8RviWKAPb9lX64KVHhRRMpbKcwe8o1AJjAsFvcDKjzC6JYmDb\n7zBGU5oF17Nf5Xb9ESLmSCHQWYGMl5RZGqvmZMQ5i9E5RTHn9cvnICI//uAHPH7rXVRZ03UDv/xL\n38ZkCoFgPp8zDAN1PUMI2O62XF1fHtv89/s983pG33XIGPAhAW7b7lIWvMrT4IzDAN5hrSevF/jD\nmuXyAhcHijLj9vWWqwdXzF1g6C3GpKKn9+nbbYwmxEieF2NXZUgDIQ4blNKYTLFdr+kOlnlR8fDq\nHV69XmOHjugFIfN8/0e/z/Kv/h0eP36PX//uv8Wr1x/y5O13uMme8cmz79F2d9RljUCzO+x5VF+T\nG4PUBuoKP/QpvtYZ+rZhcXlFYzs+evpjTL5iNX9Ivag5bF8yhB37w4Gub1EiR+kMpQAhCf4X9pX+\nW6Qh5n8XKEjs/H8C/oM3X/hf/a37DOvziHqQacWxeMk4B3LqS5FRjDEr8UgMjwCuSGxwfH82LiNS\nbc4kSXeSeafcrWlyXLrF92MBzo0AP6UqqrMCok4hZtKl9nilPMp5tHMYm4A9KEWwY46LEgQn0oVE\ngZT+CMZZGDBh9JOH1J4/rVM8bTg2Bk0rXcE4gbY9W9O582HXcMaox/PnX4mpEz8TxxVMsmImx4kc\nZ3+OS2qc1FhhsNJghWFITniGmNGLtB9iNhouNS4aXBwTaKYxdHG8XxmzX2KUo6TD/Sv6m5v5zbSm\n7fDffM6L0vbV+bh88lLHkNwqfkjBQM3WE1Xgg6f/D29ff4vGbxicZQge0a25qr+B7Qyz4hFRbokU\nzGclVbliMbuiax11OeNgZuA6gjFIEWn6LSEMlApMZhG6xmQZ1+WM9WGDksmzXFUVUgXaww1ddSDP\nM9ZbwdX8XYzI6PufMK80dtii6vcp8wU2fozSaV6pioq+6zjs17z97rfZbnZ4b7l98ZyrB+8c42ar\nqqZtW7JsbBI6HJBSIYSgKAq895gsgW70nv1uw3yWE53HS7DtAedd0kZjl6INhgYfGowsE7PzghgC\nVxdXHPYtZVUjpaRpDgjvid6jlabpB+rS4L3HDz2D2lFUS2RRgUmdmsvVA17sP6bfbMmKJavlit1d\nk9IVfeSf/vH/yVuX7/Pk4Tf41tvfoipnCOl5+8mctr/hbutobYsUBUYPvGpvyWSZmEufdFcfHEor\nLq8ec7X8K1S24YOX3+eTpx9yXV2idaA0V+OUmA5iYkc+pHtrZWJKuPzFbP/luAD+NvCf8jlADuDL\nn/1v8IqUPS5HMJ+anc5Y9EnbThJIUKRsD8+opSRANxIyTsuMS/NTAP0sDkRMfxmMgV3JRy1tRMqA\nUgnItfLps1cKryTGySQtjCCOFTDZ7mR67wTmR1D3NoF6sOhg7wH6MUgrhJNnewLqc9b9BiOPR8Y9\nrjdvPaZzUycngphDyMS4Rl+9UXg9LY1TaVk5LjGCuUjO+IE8AfnklI/TGv06UeOiGv36p6z0BOij\nNn9cfJka50/dvjIwPxx6Vlc1F+qCjz+5QwlD1+/xUSLo2LVrNt0zel4z2D3EnIgjqB7vHZleMoSB\n1eIdEJGmbbi7W7Ned4BnNa8YhgwvAzpT3KzT7b4TAestgojuDfk8p6oyolf4QVJSkGUlm+45frjD\nB5DCYtSMWfmETVijdIazM3wIxKGklG/R5zf4YGltw0JVvPX4G2w2O7TIefHsKfOrR1RVRQiRfujY\nbjasVqvxXBg7QXOapqEsS5yz5EXB5uaOx48eYrTC9Qek8Bz2W4wQOG/RSmGqFX3fpIamoKmuZkQl\nqIqSoekI3lJVFTEEAoKLyytePnvBenugKjOyMRcmryp0USOEBikRMRIGm+4IrE/xuEGQq5wnjx5x\nK7a4xtJIRxYVv/N7/yv/5m/8+1zOL3lw9YCb169wYqCaX3Donyf5svcgA02wfGrXXLgZijRe7jA0\nqCLjav5NVvMLimHGJ7cfkxm42X+A0oDRqFgz7J9TlDUSMf42W3y06C/TsPMXs33hr54vfnYhKxlH\n4kluEZOHIqYiZYzIEXwnWUX7OA5FGHXjEYj1OTvns0CuwwnI5bQmQJ9ci9PnpkgukXvMPKCcR9kk\nO2jn8PbUeJOaYZJYP80lFSplw2QjK8/CgPFnkotPQyb0WUTtFGUrj52e8aiR3wP0s+Lxffnk7AOe\nAF1NNYXTuSh4g5UL/MjMvU6zPhMz10dm7iZWPgE69wHdxlMrlEOPQJ7WcXpRPDHzNwGdrzOYN7st\n33j7ffK84bA6sF4HYtTkOSgjyDKdXAsmYrSiLCRlMeP55sesygGtM+qqRkZFVS/58NN/ygcf/4B5\n8RAvDgRjx/Q+jSCyqGta5Qn0ON8RvaOPFbIzZKZkZ2/R4ZJDfyArNUJEdodPCE4S+x5RVUQrqKtv\nUFYzRIi8fP0UF3rKeomSOb08UOUrVCzonWU+m/PRT35ECBYjJM6nARDe97y+ecbFxYqyrPA+jY+b\n/jOHYSCGQK4MOM9uv6E2hueffsTFrEDFSN/u0TIn+HSfmecFwij80CGCJ8/KNACjLtgfHE3fEDzM\n53P2mx15WVA2OU3XMMtzFqtLqsWDcVi2QWiDPezTnUTb0gKHIXA4rDmEHVU9Qz6C1y874n7LQIbf\n7vhH/+Qf8q//jb9HlgtMoXnx4in1fIaNbzO8+CFR9ojCEnykHwRd1GQ+4pqOQ7OlWNZU8xlFPef1\n5gMymTHLVzTtAHJHXc+J3kOoka5iUVfsw45+sLgoMOovJc/8d8b1uZsvfjYzD2Jk5WOOeNIG4mgb\njMggkOEE6HEEclQcw1iSc0WImOSVCcg/R2qZWPkxHdefybVndkYA1OjNnpi5Ckh7xs6tJyifcs6d\nJE6DFizjhSA5SU5gbsn8kFawR0BPGrtLk4HGeFp1DuQjmItzIA+nFc+OPwPmk8wiT4+PLN2Pz2eC\nmI17MzFzeWLmSp3klpGZHwGd7IydH/tXE6BHfdy7qMfS79kEo3OZZZRajqldX1cwJwT6bqBeXrNc\nrjkcGoKV1EVNVgZc32IWmkwu2Q0OJTUhOPIyI6gNOp9h7YCQFmcHtoctt5ufUBYf8ejyXaIvaPo7\niBqBR0nBvMqIoiJEQT8cyMwB6StCHNC+5NDuObSOLm7IC8V69wlSVBR6xu3mY/xQUcwqtMjIdEZZ\nDPzk0w+4Wr7FvCp5OLsGm9HuNxx2B5b1iovlAqmylOp42PP0wx8jMkNmMkJMGvZms+by8oL5YkGM\nqeOxHyxd35LnOYfDHplrZnnF5u4V0vVUuQSpiVEiREArkLKgqJdE32GtRSgJRvHg8RNefvoxDy+v\nWW+3zKua/WGHEILlYkGuFFIIYhgQZEQZkWVFpjNC3+F9oN+vmeU5GoHxCQFCHlD5QDxIXGfxDn7w\nw+8xr694/53vMNBhYsA2kSq/YLV8xC7e0Q07Wh/QJpBphWhbRPSUucLHAaU8xAGpoGm22IuMUifn\nsgsNzgVkXOHbiNMiTcrxOd1BEvSX8QX+Yjdf/uwLih/BPBBPHvGRnok4AnoEFUSa6H7ORFU8piHK\nFI99H9AZmTln7PwcyOUJ0EepPG3x3CU3WunsSStXVqJHEA82DWlIs0XTXybsyMjHC4AUEePHoqZP\nQJ6AfQJ0mwDd+2Pm+ImZh2NTED7ek1HieaX47PieVDH9YFNNIpJuh/TEzCEYkdbE0CdmrhROq5PM\nogxOTqw8w54BeR9P8soR1Cd2zsTM9ZnM8llWHoM4XZx+ju2rY+aHT3j16oKsWmLMisVC04selSmE\nSF7h3vXkOieEktubLZeXFbkWVIXCe4sNB15tnrKoIiJmDK2n0IqHF9/gvbf+Jr/1u/+A7f4VXd8w\nrzzffOd9irLEx5rGHsgI+OHAfusZYknnWiIdftewpKaqJE13h0XQtT273YbaXeH6htViySpfcSt2\nvHj5guyddwlURG3Z92u0rpBaUZYrpJA8e/GU1eoxq6vHdENPPZsRfGB/2KW7kOjQWqKUYbtdH9l6\nUVc0r3bs+o5FmWJxZ1qw3x+4vLpKVjbrCMqi8wrnPTJCWRR0+z3EiB/g8dvvs1vfsFgu2W032O7A\nfFGxXq9ZXV8jshykBq1RKiO6QCgK1MWKbL0mCwPPPn3KoW+JTtP1e1QuyauM8KqltZGhSemTf/Qn\nv0ug53q1oqhmxBjpO9BujrQdtg807Y68DFhnUVJgo0dlis42tMMdVXlNVcx5dH1F12+QRYnSirZv\nkTrHRE/TDygTMcbg+wO2ldjwc9Kbv4DtSzFz4ji0fGTmo3VlKvxNUog6B3EXj3ZkKQVSRtQosxwb\nE6f9GyB+XOKMmfuTzHIE9LEAKlWSWqRKmSZSeZSSBCvR2iW5x4kkzyhSQXJ678joxQTmI5Abb8nc\ndDwy8tGrrqaBE/6zQH5k53AC6zf29yJ5piLnZN9543VRCqI5rQTk4oyZS7zS9wugZ4XQ4Z7McgLw\nc0Y+FUE/C+RqBHL5Wb3868rMV4sl0W+w3Yq6eAyzDdJ07Owd9fw9Xtx9QNt1qEyitMYGz7Y9sCpy\nhq5GZpHDoWEdN2gxpy4uIJb0Xc/l4jt4a3n/0V/le8MfYHsH0WCHwGpV0Q9bqiIipUMXEPycw11D\nDAq0pW0Ds+ISZzuyLNJ3A9Z7ml3D0Djuqg7CI967+C4LmbHub9g3N+iH76NDhRUHijwDZXj+4iMW\n84dcrJ7QdDv86+fk5QyZmTTENXqEMHRdhzEmOU0ixBipqpJmd0BEhzHw+uaG6B3b/Ya8qHBD6tCs\n6lT2SvG5BucCu+2O1eqSED32sKfbOLJqRrtbs1xd8Kq3fPr8ObOi4G5zx1WWo4ocoTMQMt34r9fE\noUTgmBcV77/zhJfblrbviJSg1sznOcuLjhcvn+JaTfRw9WjJxy9+QF39GnleUFczumZLDFn6MlsD\noUp3W9riBmhcj84EWkba/o7bzU/IRMVqmdE4UFITsYQoETGglERnkRAHkIYYcqAjK35h1sQvvX2h\nZn7WyOdHME8WxDNAH/XyECLKR6KPaD+6TtQpXM/LiJJp7sER0N8A9c8DdCnGAqi4R15PYDJWXMWo\nlScgDygXiNanmaL2FEA1FUuTA2Z8rfIom3J1jE9Dk40fpZUzMDcunVPeJeY/AroY42vFBOTu9Lkd\nhx6fuT3fPBdhnNrzxrnpdRKiIY3IOwPyoBXBJFbuz5n5OYjLk8zSk9OTp77WaLAxw8U3Qf1MN4/n\nurk4snO+7pr5fFnjVMSzx/UzZuWcduiZVddoWZKbCzaHj1CF5WIxp+tLDs2O7ToiigGpB1CS3nZs\ndq+os5qyKNhuO37y8R/z9uNfxfkDVRkJUaeurD7QbFtQAygFwqIyw9tPvsXt7gcIu2foBUZF+m6P\nESArjcl7mn1OaTRlFtkF2Oy23LhPIAqC8MTQcbt5yturbzFbrRheHWh3z3hw/YSm7ZCho55VCJEx\n9APLqyvy3IwDduWYbW6IMZJlOev1gbIo8EODlgG7O1DmOW3bQJanDk87UJQ5EUOIAeeHBHbCMFvM\n2e/3aBWZry4Y7IDqDgzW4dYbLlcrrGvp2uSLt4PDh4AaBihnCJOBGwiHNZQ1+fwS9eol71+vGDYH\nPhkCuCUX13OiV7y8W3P7iWO5uuB6eYUqLC9ePuNi9pihGchVZBNbvIhkeU4dJXnmKVSNWvRIWdG6\nHUpluKFl3X1CUSwwBSz0Q1Se44aB7faGSI/WERUcJk9zQoW05HNDVQxf1Vf6uIUv4WYJhATkMa3J\nRD45OOTIxpUbG2T0CJrqJK8cm4POgHwCcXUO5OduFnHGyjlbI5jcsyaOkomygaB8cq1YQRyLnceu\ny/G16QIQUSOoSyL6COIuWRp92ut7+yTjnLLH4zF7nCmBEN74B/NGxvj545PHM8r774mCNPhaC8Jx\njRKLuV8A9WfM/LwIasUp83EYAdydFT/vySz39HJ1rwB6zs6/1pp50IbLy0vW2zWD33M5v6YXIWWQ\naGialsFKur5nuTB880nN+k7TbCNd35CjwQlmxQPyosJkkbIq6RrBH/3JH/L0xceozFIYycUiMPSB\nu+4wXuR78ipQVUvmy2+Qm4Jf/tZf4//+/u8gMGgNWe6RcokyAUEPoqcsCx4Uirm6xIaMzWFDGzy5\nSjasZ+sPqOpLSir6/jWPr9+i63psvyfPHvDpJ0+ZzZZcPnwHO/R478mKFGnroyMEjxCMw54LvPPk\nUrPreoQfGG5ukMWMbtdRz2ZEBM4l1l6WBdZ2JINvoG0ixhRI4dlut1S5UQ6qxQAAIABJREFUSXKM\n9wyuQ0aPVjmzOkeEHmJEmzK1L8cISkK1QpgS4XsiETW/ZHvzjCo3yAYWi3dZFSvMo8jt/hW12vPo\n6j3KcsEw9HT2BX/64R9wMbtCSI8QnqIwWNehTQB6HA1VUeEHT+8FyqSh3pkC166RpUGpGikLSnNJ\nqHdYtyEqB7KnCQFcYFHMEMpTVvuv6it93L6UmyUmrT/GMN77nyQW4UMC8zEPW4zukKBEyj+T6b9n\nirxVZ0szNgBN+xHEJ/ydHHufy8oj962JbzJzlwB9siDeK3aOEbNKnzR2QbwP3KNH/c1zaloTmJ/F\n1t5j5vL+im8+huMUjs8898Zx1AnQoxYEdQbo94qf+uhosedA/kbx0x0dLOYeGz/KLGMPbHiz+Hnm\nZDnWAX6O7SsD86IsQHpaN7Bbr5lXcywD1jp8hN4HgjN0hz1u1VBncy7qGTWSRjgG6+jajln1kEIq\nMiN4+/oBcx35+ONP+PjjVyyvJFeXhmWVUWUZTSPYtAMyOoYoyfOcl68+4fHVY2DHvFripEPlO4qS\nVOjxKg09UA4bPZGSZf2A3Fyx3zxl/fIjqloDASFatvtPyKv3Ka/nrPc7hAgcWksIOy4uVkgM+80d\ni9US2w8UeUWWGYa9TBkzaGZVjXAOa3uMEbhuT6FhP3RcVDXMlkgfUTpNJRr6njzL0KpASmi7FqUc\ny8WCzeaOMtc0hw5tclRRIgfJertJHmWVUVQ1OtNEoUAbhI8EUyBEiu0LzZ4QHLWSLC8f89HTp7go\n6V0Aryjzax7MZ2TfduD68W4j4MOAkiUvbp8To6Wuc/reMfQdQcQUQewadKcJQlNkj8jLgA89wvU4\nr7jZ3jGrK1aZJsYeZSDLHnDYPUfojNBE6rxCU+Cco3f9V/WVPm5fSjOPSWAJIUlqMUTwYcwdkQnQ\nJ5ufiUgnCDr5zJPfnKNHXU5gzn1AP2fjxz0niUXGxMjFsUBIAvM3mLm0HqVOud5o7rPxiYkrhbKp\nMU8rlyJwnT+CuLq3/+w55fyxQekYWTtFyjL9UG+sKZ4Wjvr4ka1P1sSz10/BWWl828jMx1zzpJVP\nBdCkmVuZCqAnMM8YONPMY34C7mMmZALxyWd+9Jpzzs6TzMJYAJ06U3+e7WeBeUGyYOWkfoR/APx9\n4BL4X4D3gA+BfxdYj+/5+8B/SCrZ/EfA//55f3CJZ5EtOeSSTvwYjUTbFPUahGRmNAcryILBNQUy\nW6Cw1CaNXOuySDeAkiXffOdv8uzlHzKba5azJavqAb//z36f/W5gXknUsiBEiZISYwKDVwxuzs1d\nj1QD3v8zgpUsMkWnDSbTGB2QpmBwLdY5TNly2AnWzvIwOEoTiLpABUUmC5RQoDP2+5csy29weXHB\n7fopCPCxoygv2GxuKYoLrh5cIaVktVqx3mzHZiFJVdUM1lLmhqKeoXqZbtqMYbt9yeLiAU3bs1zO\ncENHJjPyvEaInr7vyYxh3/VoJSnyilevXqK1phk887LE+p7DrmFoDkRn6ds9ZV0QKXn06FcQWuN7\ni1zNiHG8ny8LVJzR3Kx5vn3BcOhY1As+Xu/xvcd7T99FLq7eo7vd0cU7XLBYBsraQ2yQYsmr29e4\nCCE42tajswKhIm4AtGGwjoiiMEtUFml2W3Z9w751aNPQNM+RSpBnj9FiSSYLilmgcy8YBkVWKGL0\ndLvs5/qF+IvYvgwzn+oi0ZOA/Jg5EsEFpJNEFxCW0VsOUo0+c5nS/FLudkxgzhlYcyatxFPjkQpn\nZHUCcsb9xMqPmnli5tGJBOTOo86KnW/q5MmLrnDOj0PJ07BoZf0RvI9e9fFYnx1PQK7syMzHQRJM\n0baMoDxqSTHxp6M7BcSJnZ9LLON77r1XjUCuTkCe1omVp6VTIVSe2PkwNQ2Jc2Y+AvlRG3+z+1O/\noZe/KbPwl6KZd8C/ATTja/8R8Buktub/A/jvgP8c+C/G9SvAvzfu3wZ+C/glPucGYpYJilInW102\no206urZHectqcYVfXtCGAyE4ZCjwtsTFiB8sxsg0FzOPzMuSYAM2RITbslo+pjbXXD2/YrP7lL4V\n3Lz0rGYlBYJOHijIiTGj6yJW7Ng2P6BUJbkoyc0lgpLoI33Ypnb+4oIQl/jVlsPO8mz9Q2zwSeNU\ninl1iRSWXu0QZsbOvSIbrokZdOsdi8U16+0NRpe4YFEqgferl8+pF/PEzHtH3yXbXSYVmZJAoGsb\njCm4WF4SvCPPMvp+QGuJD47e9mRVYrxt31AUGc4KttsddZ2idZvDAREl3kdm8xmbfqD3HlUUDIOj\nrjRDdyB/8ja0DdFG5EWNb/eoTYdvW/LFgkcx8jpumLmMKn9O3zWsu+c414MOSFIU797fQZjhA1xe\nzPFKMrMGZz2h6ym9wMdAVBatJV2/Y73v0OKKB5eeGBx97+lCaqQymcEJi47XXM+/y+XsCf2w5+NP\n/znXJfTmDq0Mfe+5O3w9CqAxCghh7F6MKVPeyRQX7CW4gLBizNAWRxBKTDP5zCcGKsWJbR/BnLMO\n0jMQP57nDWZ+tqZY2cmZElVAOTGC+Pi8jWP+SJJgvAt4OwL52OIvSBeEBODhCOTSnjUhuZH5u6TN\nSzuOejsOk+DEzA33PeVHX/kI5GdgGM9+4KjSe+NYGY56lFomUJcJ1L0cGbo895iffOaf0cvJ6Mnw\nUROiGkFdncD7+HgC8nOpZbIl8pdaAG3GfZY+Gu5IYP63x/P/I/DbJDD/d4D/mfTxfwj8CPjXgN/7\n7B8babY3SV8zsG/2fPrsObO6Qhc5QUSMypEqo+l3GLOkyGasb27xLiNqxeAzPn39AbPqIc3hgNQN\n+35NaB3vPXrIM2Xpmg1t03KRX5LnCuN22NjhrWZWXyPlgkP/HBkHJA4f75DM6A4hNfssS7wPlGXJ\nkwcZa9XQ7RSbdmCwA7406DwjEwFnW2Iuef36E1aX1/iokg7tA4vZBa9vPuXb3/41mrajdA6l0/AJ\nEGRZRt8dqIoSES1uaMi0wEvIM01rA+2hpagyhJC0bQsmTSey1lIVJbYLqYO0mKNUTte1WGtZzOc8\ne/oT5vM529ue1XJO0x7QOkNlmiAFfXeg6IaUlKqBoQUbiFIgs4K267jZ31KZgv3QUGc9+/ApN+uI\n0A5l53TrOXd3A8PQEsKGuloyFJqstJjcMQwDuVI406OMJ6iIjo62gcHmvPPWr3CxXPD09R+xG16R\nVwV5JjHK4JynLBdc1G/xcPUOP/jgT+htg9ANIlikyqjqjNp/ccz4X9b2Zdr5iWFsehFjiycJwCcg\nNyL16ZswTnZnpN5xBN0E6MgzMBf3gXoaUzkBupiOJxAf/4hpXKgY63DTSDQ5ajNTQ5BQEX+UX2QC\nZSkJyo85LRLv5JjVkoaFq1F3VzaBeALyEbSPYH7/NWKSWcYccizpH+9IKHTuOT+TU+6dE3wWyE16\nfwLzNHgiqDSUwks57tUx6veolUuNO89mESeP+RDzcXz1Wds++ljwPBU/p3yWzwH0OF3cf77v3ZcB\ncwn8IfA+8D8A3wMeAS/G51+MjwGecB+4PyEx9M9sfci4ffEMWVSs5ku2W7jbBfbNGit75osSACE1\nh6Zn137Ku0++yeL6CXebO7zL2G0tmo5nr/45TrbsW4v3T2m2mkIXXF885E5GBt/goiV6j4xplNUQ\nHHleUWVLZsWM9fYH9LEnF5rgW4RQ7Pc9pY6sLpb09o6siNSzBfN8wXY3cPBbyAMHt6EfOnrjkOI5\nTtVs+htW5ZKqWhEj3L56waMH73FoOh4+eYc8z1AyY14vcPaA7V1K09QOURRkmeBwt0YLSbO7SZNR\nGJAYqqIkN5rgEkAKmybGOOsxusLagdl8hm8sXdvgneXB9Vvs9ju0gPXrGw6HPVpL6nqGUgVFuUAE\nSxQZQpWEdo+qF9BKmC2oixllu+fZ3TPa0KGyA4ftU9qNRbCiEILbu47bO5eiPZHYvqHMM0LcEMJr\n0DP6TiBFgRM9oXfsfUmQguvlu3znm7/Ot957h2+99et88PQf8/Ll7+JDRh9y5vVjDts1ebni4fIh\nN7Mr/vTDHbraI3WL8w6LIC/+RfCZ/2yZRYxALnw4RbpaEC6AkQhDyswePYdCxRFQk0AuRqQWkzvl\nDMgnfBuzu46gLsKZJTGO7wtnbxCjzOJSQTPFyobRP34qdgYXCU4i3ShPOIFy/hi4FUY/uiAegVra\n8+Mko3zRc9PzYsojn8D8vDnoqIuPdyvTc9MHPBU9J0BPYanpYjAx83FIcxiXlxIvErB7ObFyhRMT\nMz9j52de81TcnABdnh2PQH4WsHXeAXqvnf/NOII/x/ZlwDwA/wqwBP4hSXY5337WDcLnPrfH0amS\nXDjeWr6HwaH0/0uwsL7t08DeHGaUtCy42W5oLw5cLB6gVc2zzUdoWTOLERfWRHIEBTZKtu2GmCvm\n1SOGmUfaLYiMKBQ2aiQDRBi6jkIbjJqjs0vwO7S6AAkhNiiZo6Km30p6JF27pS5TaqLJA7WJWNfT\nWWj6W3Q2UBlPNA27/TOuZpdoNadtbtFG0bQtDx9fMrQtdZGTZYLB9tRVhXSOpusJUVIVK+5u9zS7\nWy4XD1KQlsrIzIzNZo11A2VRgRAE78nyHDuknyk1gSg2mw2zqk6Z6Pstg5XkWcbt7R4ZLcbkeN+j\njQEBQafPh7wAo5H5JX6zRuoIXZta6JVAmoznr76H1hnsKz55+pSL+QVmoUAOKB0wusIojQ+e5jDQ\nDluc8LjYEJVB6ZyrskIVc6yTtH1GZMuL1z/g+vIKo9Odh3SCzMCqfA+yOaKwvN7/hO88/iYPry6Y\nV4KejBgt+8Oeg3MI8wsPZ/kQ2JJu+C3pzvPe9mWYuQgiTaiZrIejlzzZ/ZLEIoxAGoHQZ2vs/ry3\nuA/qIp5AXUDK8xdnr4mnx8dsFn96gxirp0KFNPzmWOwUSBsJKoyac5pqH5UkqHHvRMpqUeNUoxGs\nxTCx7RPrlkM47u8/F5DD2ai3gfQDfVHLvv7i5+4x8wxiPjYLCUEQiZUHIcf9yMpFAnAvNU6cWRLl\nSS/v0ygNevJx2IU67Sfw5rxR6L7MEqIgBvmV+cw3wP8G/HUSG///uXuTGNu2NL/rt7rdni66G3Hv\nffc1mVmZWVWmqrKMoYxBWMiFhBgwMANmSDCzkBCMGCGBEIgJgqEFkpEoQCohYUqWYYDBZVSm7HI1\nWeVMsnn9e7eJG91pd7c6BnufiBPx4r53M1+lH8WSltbaa69z7om4J37nO9/6vu9/ArwAHtLXeQZ4\nCjzZecwbw9pn2u/+9rskaoSzLfzKJcleQlka2rVHiYiKOYlq0T7ycHpEnh4zX33EowfvcDA64cXm\nPZJUMM5nvdJ4EsnzhNXmghAFNkCUmkxmiMTRuBbT5YyyY5abT4g0rJuKxeaKB5MTcIYim6HFCOs9\nRTZiIT9g3SyZpRmVF7SbDa6zpNJiveDxg28QY+DFiw+RoaStGpSOZCXIrCHqwNXFh8hBJuDg4Ajn\nLEeHM85Pn3H81tcJqyXYhjwxGNVXLXzx/GOmZc5GB4SKKJ3SWUeaakIo+vTuEDBpilAS7y1S9vBc\nLtbMygItE5wPlKNxLxPXebQS7E8K1hvL/PI5ZZJQb5aUZYmUQ0UiAaQJgRxVtAgbiImmW17y7PwZ\nFR7rExKl0MxYV59wPB2jScl1xkLVSC1JEkMpJwThqDpNHSNCWQ7KCb/6+C0eHBScb1o+Ottwsb5k\nM3/Kcn2Jc5dE1fDDT/9vDnLFYWKw7oKynKCzlh/88H/n8fgxXbUgKknnWp6/W/Hxuxe9xSN/5un8\nkb6e+eWrNryOZS4Ha1xabkBuYw9x20NcDgCXulekkYMAsLzOAr0VUn1/3z3kFDv775n3L4xr5R7p\nINrB1eL61xZVQG5l0dxu2dtBmGHwQ0fbP+GN/uYW6sP1nVG+Yp2uf47d84ZbtVY011UTtz7zOPwc\ntyxzA9GIHuhm4OcA9H4cLPJBjMMPQL/pt2PMd+PMA4Olzdbq3oH2Z+7Je/3m/yRCEw/pPVVzIAd+\nHfiPgN8C/k3gPx/Gvzns/y3gfwD+C3r3ys8B//C+J/61X39Ero8RIeEXv/7P8Yfv/T6TfUubeJpK\n4WzEdQmkitloTJpnLNqWzeaK2f4jvnn8F/lR9zskymHyEW4oLB98SggdbbdCesj0BNs1uLYhSfsC\nTdPRm1yuzoi0VJuGNgssqhUn2SGj/IDLzUcYccI7j77Dxfw9lpxTN45N0yGiovJnEHPEXkGepXzz\n8YQfvv8POJ97Vp3AKA95xdKeMS6PoPPsTw6o6oo3nrzJcrlACMN6M6eQkOqE6DvaumJU7veFraoO\nHVPqpkYIyXQ6wTlLCJYYIsFZ1s2GPOstg8lkRlaOcCEyXyw42H/ApqmJAkxacrZ4zsH+HqurFttu\nmM326Jp1ry8aAtJ3QCDmY0JQKAkiyYltAzqQjsYc75/w8vwF0/KbTNKG6ahGqYSqWULsCNoyznJM\n0mt3plGTpjPybEyc/wljAj+XTzgZZajgaDYVl8sL1leX4CymENT+Oc2mReC5apbIRPNgClJVCCq0\nsPzxD34XlaaMJm8RVjmP30z52uN9bIjUquKP/t7Fl/ur+OImPu/m64QmxgGW2C00I9LKa6kz2cVr\noF/3bQao7FVqtn7y7YvZAnkLcuLOnCFiZQf+d+fADcy3hbNURA2JQlFxozpvtweyW4gP10M9862e\n5o2gMtBtIU0v4bYz7yXdIqLbubcF+dYyH17fDcjFjRDFnRK423rm1y6WLcgHV0sUW2m4HuSB3kL3\nQvbFscTQ2bpX+mSg2yVw+x6voS2IW2izC+zb8eXb9dsZoOJnbpk/pD/g3P4K/zvg79Crrfwm8G9z\nE5oIvdDtbw6jA/4ar3iJy/mcThvyZJ+3H/055o3l2Yv/k4nK2BhF2zmiHPeHb1VFPpnQxJK23VA3\nHbGFIp3hg0d4R+MDaSYpTM5GtoNYQYWRhthZMhmx9pSs6P3YuVF8dHWGSXJiTKkaS2MjM9mhpEOr\niFIFJyff5OXZ9xn5hroCXU7xcsPqasnHT9/n57/+y6TGMs1ynte9f2x2oEkySbARLTXB9jqeR4fH\nff3wuqLIJ0yKks3yis1yQessRaJxdYUWjmpZ96FowMVyzqE+xncdTV1DCBitKEZjog8kqUJoSWdr\njJKMD4+x1iGAelMRI+RZweWLM3QmadsaQSQd7zHem/VVIMtRfxAnFCrNYLEhiI44mSHmc7pqjc5K\nCpkTXYvKUtLUkKqE86tTlBKkuaHII8QEKTPWQZDne+RdzpP9b1L6p2zWHd9/70MaL3h/PmfeLhgZ\nxYN9Q3EQ6NoldWuJXUKQFZerlsO9iBEeIwJIw8fPf8zDh99iks7ALZFdRDlFK2rq8DNPnYj0UVoe\n+OvAf313w+sU2mLHtRJ3ZM+2IBdGIg1I3ecTSA1K9WGCUvVJQ1IK1BAjfvfTRez+1d13/xXXQvTh\nj9vQQ7bQtgxuC3ETsz3oXt6dX8dzR3qpti3I70i5iXaYtzv32gHgwz3RDfPt5+OWRLshiv5+n/l1\nNIsWvWWeAGk/RkQvOS16UWdPD/JbQndCX2dy3rLIbxXaSvsPhQHk947xVeM/2dosfwL86j3rl8Bf\necVj/tOhf24TYURVrSnkjOlkitEZMSpSlZHmGXJvRusdPioaAWF5RWMbsrLk7PIco0py+YBl9wGd\nEyAkra3J0xmPxxNO64/ZNFfgJ8hEDXWcDa07ZSy+xRtv/AoX9e+zbGuQksw84KOnn5AISVlkLFY/\nIM++TsGUNw/+PJ+e/x8cpTOmkydcdB9h/ZJPP3kPQ+TxoyOidCQyp7Ub3Hqf0DqEmjNvSzJSpsWI\nqmtx8yuatiXPIovFiv3pjKcfv8v+wRGIQNNumBQl0BfVUkpx/OBxH+kyHtFYR7AdKkvwMZKXJTEq\nnHPYuo8xr7uGRCcszs8waITWZEVG1IJqU6GTFKENWZYSupb08CEmK+hC6P8fbEDsHSKa3gUkHjzm\n6o8/5ntP3+P7n37E++cv+cW33mLTLjFZSxSWrgEaj3OCoggIClLTsuo+YWweQfB4qbioW16erxFJ\njkOgpEBryWgcEcazWWxYLgKtN4Rg0C7l2YsfYo4WSNfgaonrPBcXH1OlNev6JcdGoLqOCkciH3zR\nW+/Ltr8EPAeO6MNzfwD8X7sb/vp/cnY9/86/OOJX//JnI2yi6hNxGNLkGeZIMQj9+j4bVzGICu/c\nl/TuFtlnhN4LgnjPZXz19XW7T2ptKwShd+b2xrd+d34d/xi5o8V5z7wDOkHcuY6d6AG+3TvA/NrK\n1tvoFHFdhGzX1bL92fqYc3EdphgHH7pXQ1naXpkUdz3eneub9Pyob1L2g76pXe7NIAIzaIgOY9wZ\nCVtVIXFd8vY68TfEAebxFTD/u3xOteVb7avTAE1KVl2DE4KLxUsu5h9TVQGZCMblDGkCETBIREyp\nu47zy5dM5Zvsl5oskSh9zNX8E3LhsGlk1S2Y5GOOHn+Ni/dOuZh/jNGPKEcRlXmaCmJXc7H+lP3y\nTQ4nh7TrHxBCx2R8QN0942y+pHEW7xrOzv8Bb7/9z5OrPd54+1/ie9/9bY7LnELOaLvn0ETOz89w\n5hKhV4yPBHppECKjqQI+P2PEGG0e0TYdLjQkaU6ejUjLbFBiD9jOkxcFAk+a5bjoSTND10WKsqSR\nDiH6r2VZVhCzkhAsTggWG4vSFh0lWIsoC8ZpgYuOMslZzJ9RlnvEmJFkIxKTgBBY14GQlEUJIeDq\nBn1wDLF/c4noIRsjhILNJcff+EV+/4Mf8sEnP2YZrviTDy7oOocPHlNAWY6IrUZphdEG4RVW1SRx\nztJGRBDUomAeVtROYEzER49JBDqFpRSEdcP5C89i0aK1JCkLOtHQVA1X86fkakpiM6LvaOoFy/WC\nIpN4YbF5xLaWNP2ZH4A+H8Yz4H+mPwC9BfN/499759YDNsvPPonaBOQmoIYu64CqA6rtu+z6BBrl\nbup8q0EsWQm/owAUbkPgVfMvut7Otxbt3X1bn+5dyNudx4g7jwncA+7PWbsrCber58lg/W/B7W6+\nDWwFMaLtO90Ae0v/IWGGbxTDB4GLmjUjNpRsYklFSU1BHQtqcpqY0ZINwhPpDbiHLM8+9HBwrThB\nXENcAxXEKhJriDV9lk4biV3sP6A6rt1UDDrGN4efuw6x3fYXh75t//E9e/r2lcG863pfsHOWl5ef\nMr98jjEZVfT4eEUua+oGRLJHrkpE9LS+wvsFHkETWkTImU7eRtSfIrOGTXSsu3O+dvIXeHLy5/jB\nj3+nT0CpLGLsEWmLpQ9/fPf0HyPECqMNjVuQmYLJZMTV1YKq9qSJo3Pwgw/+Ad/59r9CqmfsPfkF\n2uAwMaOrFXYT2RtnaDullRUi69DCU2bHTFTB0n2fzrbUfkOuDEpqjDGkWYoxGav2iufPz5jNZiQm\nQUjoPGgpcU2Hj5HNpiGGDqkUIUZcjBR5f2AptKZuHa5pcEQ8CaFr8V2fRWol7B8+Qpu8D1aQAtt6\n6mpNlmXYtiWMRv3hp/cIG0AZpJnh5+9jpg9w6QiuLqgufszR/iOiVAivWXYVwc54dPAdsgzKIsFu\nCpI0oV1/wqpacjH3eNeQlc+ZFN+gqy2rzRmb2mO8ZTwtKHJBjDUQaduOzbrXMjWZIBIQJFzOl8RQ\nMhm11IDWAmfBOYuTgkpELH10RT5a/SzftgW93bkCSuBfpj9DutWqVfaFTySrgKriLZDLa5DHa5BL\nF66l1HqYRyQBJcM10F8L5q873w2D2b1/Vwximw16d//2Mbsw/zzr/D5Nz/uEmRlcKX4H6tdj7waK\nw/NEzQ3I9TCqwW+uwEbdQzwWVPRjD/OcJua0ZLQxvdH1vC6mtavlqXp3iRPEDQPItxCP0EBs4843\njOFDx9IDfVds40/BXw5fIczXizOE2cPHyPnFJcTAZHTMYnNBjAvm1RzZHhISiYsN0WScHJ5QhxVK\njbCxI4TIXvmIS1sj4zk6JtTtkpYl40mCzANY2FQerRJIA6nyiCTj4uoZkzwDKXurVzQ8PH6T4z34\n4Y//HwwpdWNJC8l7n/4ej/d+iVxGHh+9xenFOdEqbNdytVgy289wDkLqcMKi8kDrW7CeqANCeKrK\nY5IM7TrOzxqaeoNSgtA1pNMDlqsVaZoyGo3xrkOlJTI4TGogQNM4jNZMxns4BDorECiEq5EGrs5O\nKYqE0ASE8lgFSZINWeIBKTXOOS6vTgm1pVaeSTlCB0ehE4rxBFJDJEB9iRof4us5Ki/gwQkXzz7k\nvFpR+5aoUoiOLBljZI5SBo0hHU1wNrCfn1CtrvBtg809RrRYv6SqDetNzbpqKETKfqZJ8hRaT1XX\neCdItYDSoHOD8JJ2bVmvHND2OqdtgDjBhN6na5ctp6q3xMbHkmz0JUMCPr8d01vj0P/t/PfcU67i\ntWBexx7iVUDWsYd5E29g3g0g93EQbOhFyCUBJXoVHykjSofPulninfFV81dZ5p8H513Qqp29XwTz\nu1B/Vb+j73l9uAm3XSpba/x6FNfWOWYY9Q7Qd9L6XdRUsaSK+c1ID/ImZrRxC/MbSbi79cnjEKUS\nnYDNAPKKHup1JDY9yGPLjQvJbj+A4u2f7U/pLfuVwbxeVaiihLHg/OoTYoSD8SOsW+O4JPU5ra3B\nSnRR0IUVWk8ZSYl3LXle4qWC0HE+n5Pmjqg9gsDTi++Ryn2SFLxviDaj2nhEq0kSgykK8rRBSUFr\na0ReIZVGmZzcJLz11gnPPr3AItnL9khj5Ecf/y7H6SH7s7/EfF3hkhZlBJ1bM18IVBEIDtJyj8p+\nwqoRpFlCYVY4NSH6iOgEzVqQ5mNs11G7jrJM2TQ1eZ4RQhxk5BIgslouiFJjNEySAqShrhsylSCS\nhBgkSjsWiyWXyzWj8pjOtygp0UGilLgOO1sul0ilaKqGXOfkY42KhfllAAAgAElEQVSSCh8D3nuq\nasmk2Qdjib5CCIXIR7hmidxYvEx4cXlGkZQ8mz8nxo6WyFqm1M8ss3GCljnT0QSiQ4qWzIAIjuha\nWrGmsyUAvrV0RtB1ljyVtFVL5RzBRhK1R5IYatvgg2C16FivYTzNaBtPu+4l8aaZRKk1LxaCy2Vg\n77FknKb4pvlZvm0/oM+5+Ny2WeZf+ESyicgmoOp4PZd1RDUR2W4TaYYMSh93YB57EW8ZUSogVfx8\nOL9qfNW9z3OZbLvjJjyQO/t2ob/1mb8K2q8Ddb/zXLfgzQ28r61x8VmAq+HezuiC7q3xmFOHvB+H\n3sScJtwGuo0JNtwAPURFGGLEoxPX7pVrkNeDZT4AnTYOrzMOP1cEHwd1oeH/70sW2YKvEOYyV/ho\nuTi/xOiCxp1iZI5UgizJ8S4SbWBTdUhdoVWDFBJfGVrnQKzxHjZ2wbI+I+88SRbwUbDaXNCqDiEc\nytRIk2AliOChSUCsIWo6YWilYHX1jPEoY/7RikezE9548JDZ7AHf/dGf4F1gPD5iefEhlVyzrlfM\nV8/Z39eIg/5TuZgc07VX2I0lK2eMi5xnq4/YbDKEOEOokpE5xLYbqtWayQy0iUynM5IkoShHCNGL\nbdgAyD7NX5iE/os1tN6TpwnKBtAJSVJQ1xYfJKv1kjQ1nF9dkmeGNJP4GHvZON9HqAgh+eT9H7C3\n/4BEScajETrJMBKCkuikIFhLePEh6uQhoWqR2QlSdzi34YPnH9OGDRVzGntJtAVKtSgCbbPkRd2R\nFZpqbThIS7wO6CSy3nRoo9HRo6Um0wWZqRCyj/AxShG9oFpFmgr2S0lOwtp3hCDRWpGkKQRPXXua\nJiMxgTLvqNuOpgWpLTrTeN/R1l99oa3XsszbAeK7YxtRbR9zfZ0Z6eM1zGWMqDjAfAC61JFblvmX\nHXct821s911Ib4F/93hiu28XwHfB7b5g7S7Ed9wsuyLO91rnFtDi2s1yHe3S3VjmPcxV7x8PWQ/w\nkFPHjDrsWOdhAHkYLPNgeqs8DJmdoY8lx4ke5PXgL6/o50289pcz9DiUJ4gDzHs5vAhbtakv6Wv5\nymCeTkZon7E3OkFJzcv5KVkyIk9ybNeiU01UKy7mn1D5C/ZHe71F1wIxoFcdgYY8kwgV6byDLkEK\nwXrpmU4D0/GUZtWii4Q6BIRwvTi0kaxWNVompNqQmSfEdp95dcX76/d449G3+PnHDzi7eEH0kSQt\nKGd7+NhxcfUUFwJppsgyT7I/YZbOWF45onOwNlidM9Hf5tPLDzBZpCxaihhomwYpDN5XmKSAqPAO\nFstLtDLM9h7QejBC4VzAJCkoSVQJWguEytCpRKgMoRO0kXi/pKpaCK7/e3OOLFFsmjVSlMxGI9br\nFW3TIoDESNJiDIkmm8xIEsP06IS8mBClRhpBPH+KevsbxOYSmY4xLBDKUVUX7BcPqMoXzBeCJMlQ\naOo6p20tSoMcl1RR9oW0kITWYFeGRKXY0CFwpNqQTwS5UQhSZKLIUsl6vqLVkUQIREwIoSPN0t5V\n5ANNHbGdQBnHJrbM144qeiZ7KZmxtC209jXCAn/GbfMaMFddRAzwFt0QVz4AXW6vh7T6rbCzjLG3\nzBlAPlRSfG2Yv86eL3KzbIF+357d+3dhvhMF85n53T33AZ3+ueOOm+f2QSi9e2V7KHodJ39joW9D\nJn1Q1CGnDekA8Iwm3PQ2ZnQhpQsJXRj85UHjgsaHHcs8DD7z4bCzh/rgYmnCDtDDUGMmXFvlfbnj\nHuQ3WUN/RmFeZhOilxgDWifUc0t2BEqVLNYLEtvQdh0mFwTR0YgWosCLyHrlac4uEAh05oiqj4ow\n5Dg6LhctIW44nJYcHpVk5msUacmHL75HmSWExtJuGoIL5EWB6RRZ9iaT9IQPF1e4LsUYw8nhEefr\nBSo1JKUhxEiMniwU4KcItxwK3XdMUkmZnPDp2YKmrijKI/YnJ4SmRmayT96RkrbZMG8rjp98E4+i\nTErWm3Nm+0dkZYltWorxmBgDVV2j84SAQGlF6wM6LXrNSyfwIeBjBKXp2orMpHTdmm5jSJSgWVeE\nYoJ3LfiO45MnKCUos16ZqJ2fYaYTunpFahK8yEnzHOEFYTMn6hT77IdEmdCuKharDbk+Yn/6AGSD\ndxYtM/ZnJVeLJUYbpMlYVBWxbSjzFKNSvDXYShPYILBkqSMvFEpFsnREmWdkJmW9athUgVQbxgnM\nXUWW7DE2CXV7TmsXeO8JEuZtx/MLhxkXZJM+Br2qIHyFGuXbVi1fBfObNEY5xFDLjt4CHwAu7HC9\nHR0IvwtzBqucXnRZ8frgfp21V0Wz3AX5q+4NqkjXha/ug/RP2rcw3wH4rkW+e+h5De/toed1pUmu\nD2x9UDQhpQ0Zje/HNqQ9yEN6fa8NvWXehcHNEgbLPOzCXEI9gLthcLHsAL0NvVXehb5wnevFVKKP\nfdXMELhRc/4zCnPo9S/XbY1dbZjNDvsoDW1JE8N6syRJDMJ0xGhpuzmT4pCRzFB6Q7oa0TWeutvg\nsEQ/ImI5zmf8q3/lr7J/NON8/hSTWPYmh+hkwuZ3Lnn+7H2868hQdC6wqVoO9R5RbOjiirEZk6V7\niDAhFY5qs2acFRzuv4W1l1TtBVHnKFLiaoJPHRt1yYFOySZjriycPXtJkJfkedEfQvoUZRTCpDRV\nPYQGtiyW51xdveTBg4d4L3E2EPB0tiMSsM6zqjqKoiRLEmIA2wW0knRdS9dZvAfvBaenFzw42KNM\nJOt6jQkdwTmUClSLS4iS6WxCkqSDTBmYIiMIgxAKJzKy0QxbzzGjEtG2MH6boCr+1t/+X3m6/iHL\nzRUQsUKRjF8S2j20zBE6p+pGEBWuCzjn6AJIGdFZTmJSXGhooyWfKHKzjxrn+NhLyD1+/E0yfYht\n/h4vns5BCVrX0TUN48KgYkqDoakiyaCRut44kIFJ3jHWgq6NELbCaV9t27pZIp8NCrlOzhkyP6Xt\nk2Ru5jcwF65P+5c+9vVW4mA4DzXMpQKhue0K4Z75fWuvmt8XzbJrmQtu4MrOeqCH5e7h6Bbmu7Hq\nd69fNb/PMt+1yHet8l2g6535AO+4U+w9SghB0oSUzqe0Yeg+oQ0ZXUhoh/UupHR+C3KD94NlHhTB\nqz523Alo+rj42LDjK489yNst0HuYYz240FvmPgwVM7dfOb7cSehX9s5v6jXBS4pxSToKvZpPlFjb\nMipyrFWs3Tlap71rQAaMcTyYvoXgKUbXdE1O6ktWqwVNu8L5AqLhsDzgYLqHp+H09BPa5iUhrjk9\nvWS+7JBtINWKdXNBVDkr3yLd+9Qm0K3WLC7OmZRwOHnCjz75lHWz5tHRN6iarhdDiA3FWKNrg/Ud\ntoWXOnLs1hw9yBDigHZ9jpQSJSb4EEAphBQonYLwLE5POTh5TNt12CDwLnK1WJAXBZuqpihybOvQ\nuaHaNIzKKdY70izF+8hms7kuhbvaLIgEruZXUGjoVoOob8NCgU4Ns+mMGB11XeN9QpnlCJGiM4PS\nBW2zIQrIsxLhPRQl+CuKoyfoQvPjH/4R59UC6xOquuadnzuCkSc2GpUX5M2Iruuw0bNZV7gYEXiy\nQpNoxXpd4UJDOppQ7B0hpaJt5gitGI+fEB2cHD5mud7QWYtWBiUylosLpCzx0RO9QOUSbwP1OqC1\npsg0QgZSo0hUTt39f8DN8hoHoFtQC9dD/dZ4d93TVzzclrEVO7VZlPgsmD8P2l90b/cAdBfou5y5\nz+1yt5C64ra1fjdu/CdZ24W53wH4fRb6XVWhndfU64EKgpe0vre4O98Du4f4dm1YH+Z2C3S/Bboi\neEkIg8+8BVrRw7zdBfkwdr63ygeQR+fB+QHkOxlPtz4lf/L21fnMhaCzgq7t0CEgfMtydYGNgv2D\nMaNizPryChEiqdK4qqUtNoxHI9Ztyen8I2TMIE77qA1S8jzn+ekF/+Nv/SbTowllOcKGNfPVh6zO\nPat2w+HBAdkIfNvSdRHfrgm152t7OVYaLuSU50/fpRwZ3jiZsV/ssa4a1FCHqqk7gk3pXIvTCqEC\nOsuIHcytJU01KgetR3Rti4sXpHKf2jeY4Ai2wlqHSQPzy3MiCuscq8WSl2dnvPO1d7jYrBHs45wj\nhEAI0HUdIYRBVKO9zg5t25a6rnDBU6YJJk1oKst4kmFiiZCRshhzdXaGVKCNBpsivSNGy8HBqK/l\nrsZ9dUQDUeUgQl8/Yn3OxcWC+VXL1ZXDxo6jvcdM4iM6/SfY4gzaESbNCEJQVzWbbkP0kaauKcuc\nUEiq1YY6biiykqrZEOhw4Qy3avnej2seHn6LurugKBNCUIDDWsVq1aHQSBVJVIaIkvXG0jSBLHOY\nRBJMR5rmNHXFZmW/6K33M2/V+ot95sKBCGJwowywdqKvLe5v5tL190QQO4wVA8i5LqL1Sli/DtB3\nr+8LNdzd67kN/jCMuwejcufefRml92WYft79bSi9F/cDfQvxIUN1119+7WLZgbr3ErsDbusNnTf9\n2vV1P9phdMHgvMb7wSr3su9O9BmsQzx5P+74ygerPHZ+sMo9w9fpvhLpFubXXzd++vbV+cxzgUaw\nXL/g4fHXOL94Qds0LJoaITqyTCE6SeUtwglc3Vt3i8MzXLdCqjWeNW1dIeMErQJpOUIhePfjj7n4\nowu+851v8/jkmMYa0rL/cVMRiVqDKRmLpP/apcGmfdREZqFya+brK77OCSezx3z/0z9itfwAgkXb\nCcHDyf7b6HzCYvEJedS0uWC5OKe1l6RlQaoUraT397ua2rfoGIiuw9sWhaANgrSYsFnOEVIRnOP5\n02ckaYK3niRJqZsGrc1QECtyevqSJEnYbDYkScJ6vUYg6NqGfG+KBpI8pcgKRAjE6OjaDVpLzl6+\ny3h6iG9S2loi/JR2PSYpDlltVhSpwtcBiUDuTxEu8P6P3uX5/AW+TVDOUOQ5bx6foAaoJqklsiDL\nR0SgWq3BR2zlsY2HBpSLdE2DSCJVe4nKFwSx7isvxsDV5XNG5iF7BydcrVdM9voC2tFnVKs1Co0i\nJ0kNPtFUTYVODLNZIEhLjILVekPbGpBfvZvldQ5ApRfXkL6G9fba37ne7omir1EuhpBT2QP+C8H9\nqrX71u/CfNcKh9sRLndqod+a78L8Pqj/hGs9zOmBPsD/Mxb6F0A8DnHxQUusMwOs73TXW+Cd3xnd\njlXuda8L7NVQOVL0B663yhHEHuh2cLPYAeTWDda5B+8GkO8eBPwZdbMYJXBKkSpBrqcczN7hRx/8\nHoWSnL88J8sLmiYitKSOFhklvhWcnj4jTXOMDxgVaEOFFGOi7fBth85yjh4ck2YFF2fPeXywh3IG\naRTlpCNUDo/CiISiHKNloFKWdXAoa4l5ToJj1a5YVQuKLEWqGhvP2Ru93V9LSTmegtDYzQXK1zS+\nYV0tqdYr9sKax4dHfHTZYL3l5PgNVJDYEDGm1+J0zmKUQstIs5njPIxGE549e86TJ0+4urqiKAqO\njh9gkpT1pkIpRd00bKqKarOhKAqapsG5DpMYQvC0bUWWFTgUs/GYxcVLkrQlSTMm4z2C69BpjlKS\nLkiEKVDZBG2XBA8qSRFFTjQF4WrB8/MLLs8WBPrQw3fefoKUkXc/+hEhixwcSnR6RZ8/7QjWobuA\n0hqlAonUaKlwRiETgWNNYxV5FijSvK8Xj6AcpcRoOXlYsLFPSfWYJHfsHaZ0VX/wp5VkTYvwgSwH\nlWfY0NCsPUJqUlWQjL7cIdKfRqtex80ywPlWD0MN8FvX2z6AHdHDXIqhPvkr3CyvC/P7/Ov3RarA\n7SiWsLPn7gfAbljjLqS/zMgO8zS9e0NxOzJmF+A77qK4+wEDBC9xTmO9HkCth2uDcxrn9QB1fc8+\n1Vvnbscyt9wA/VodKfTlg3ddLNaDc+Ac0bveQg+Dn2ibzvol2lcGc7cJ2OBYLq443KvYLBdMs5zx\nKOKvPISEk/1HlPsl0iiW83M2qyuacA5+hLcajcc3Ehur4XDQopVGyoSjg0MIY7pGcjJ9m2eXn9I0\nkv3ZCVJcMp2uSaLirHtJUUq8ajBqhIg5q0XLqrnk/dNPSLOEx289QSeeKE+RqiBGwaY5Z1UH1osl\nZSYoxjWjmcTkCdMihaQjMRWrRYI+1ozGE4KySKmQGoIP+OiItBTJPhfzc1w6IstKbAysFwuUUmhl\naOoGYwwhBJqmoWka/OCC8d4hAygpsV1NUQ7iGSbBxsjs4AAhe7/y/sGbg+KShRg4fviEYnpEpN+v\nRECYAkwK1hI8/N0/+Ee8WL2HD57OW9LU8PJ8Tlg4Yj1hqSpG+xVGrgkxQ3lLZgzWeWIWKcuMQima\nNiCkRLkMu9aUPhKQZCPNeDxi03zI3uwEH1KqxvDp81NSkTFKoIsKi6IEEqFYJApjFG1n6fBkhSJL\nJCFUrBdfPcxfxzIXcQAz4mZ+Z21wqNxe38J8B+qfC+mfBurXL/LOfvE5e171uC2M75YD+EnX4NbB\nZw91ceMz34L9urojt8vlbottCYheXEPbux7Qzg1zvzN36hrofrvHa4LrYR6cvKm1ch1mOcSTuwHq\nbhfkg3Xu3WCZOwiWeOsrxk/fvjKYn6+WCKEIoeHdd/+Azm7IswQjChLjCcIwSyWjUYJJp0hn8I1k\ntZ4jpjWYBqEzuuColhtG+ZQ0k0xnMz599iHjyZi98T6N7/BVhWslWmfoZMzV6l1M2pInCbm2eH1G\nrhPSJNB2inxzzmVwfPDyJdPxG8z2RpgkkJqc508/RquWy8WCqoMZJxSqwGnP0dGIs1ON85I2GLJR\nwVh0nNbn5ONDyjRBOEtWltTrNalMSCW4ZolBUK0XmGxEtVzivO11PmNESomUkq7rALDWUtcViU5Y\nrVf9AasQFEWOwNG0G2ajkvXyikQKpuMxaZJispJRoodEqBGzo0cU4wfMVxuUjBSjKSiNGE+JXeC9\nH79LmmZs6sBqVfH1rz1CiMhqsWGaTalCzeXLQJJb0skGqRxkAVcJNm2ftJRISahaTHBoZTBiRCpG\n2Msldt3im5ZNGjE6JbgXzKZjHkwfkHUT5hdn5GlBenQIEdy64WrTkbuM9XqJLqEcBZQU+LqjnivC\nvPiq3tLX7dWhibtN7kC5Nx1798nOfNjzmb3iZq/gJ4T5XaiHnfl9Vvru/O4h6N353bXdQ9Ld/qr1\nz7sPt5KGdq3xW+V5XwFw4PpDJiqBd+oz3dl+DP5m7p3GO7kzH/Y41YtzOMG2hjuDqEc/BqIfIlj8\nAHI35KI4B972fQB67yP6MwrzNmpiW4Nsse0SKSSrtiasEtrGE7FURtMuWoqyResUYopbj1i6BpMW\nWO+RWpJNJLbdkJiCPM159PAxHz57n816wXg0onMdb73xdVKzx6OHb/PJsz/g6ccb3pqdkk0lXXaA\nEBFlJKswJ9eKInYs3Aa3OqWzLQ95yJPH3+GXfu1f47f/0W+wXm5w0WFSRx5TLl0fMnh0cMRitWJV\nBZTKeXAo6RpH1a7JzZQiy6mXDWmSYOuKKCJSdpRJQdSR6V7Bcr1mOjpgvlwyXywwSUJdVQgUVVMR\nY6RtWlpqvG0JviPVGoHAeU8mE6qqghhx9YZWg1EGPdIkWZ9lKwKkRU7TVaxWL9mbHiKkhDQnoHDr\nJS+XF/zo6ffQec5YjhkXhsuzc7wXdFkvQB2cptlE8nJJlk9YJhGhILaWNMnQDmQQZEYhEkNiMpIu\n0jZQNRYhCpbVmmY958k7h/iw5tHBAaOjnG89+WcYHZ2QZIHFcsEnH3+KXBjWp1eYqaHMYL1oWDfQ\nNQqxMhwlo5/1W3cG/DfAL9Jj59/ijmD5a1nmQvZWtZA9oOUAZ7mF9SvWBoDfWoPbMA58Psjv+sh/\nEgv+Veuv6uGe8adZg9uHn0Md8+swyF2o34rIEbf9+AKiFL3wtJN421vZ3qlew9SpQZR6Ow737uwJ\nTvaiHE4MB7PDt4RtZqeLN+GHfohgGQ4+cfbaMo+h47omwZ9VmEexT8wqvJ0TpSHJCmLdsG5anIOO\nyPvPFpSrhIPjgNYGFxzRC0KT09QOkVqKsj9Ob6oamc7RScdUH5DIj7g4v+Tq8oKI5O2Tf4qf/9Zf\nQKcaI0t8t+KP//EZ3357j/JwyoWt2D88IAqB9xXj4jFV9QFaejq7YTVvuCgu+Wd/+df5q4f/Pr/x\nN/8z3v3oI65cxWzfE6uCeag4nB7QZR2Ly4YyZuR6BjISYyBogWscidZ03vHg+IjV4gohPKNcE4Rm\nmkhi4khlzbQ0zK/OkDpFS8VoNOqzSKWkqjYgHCH2mZ9aSowEvKOqVsCY2ThHiD7MwHuLIaKEJEuy\n/m8terwN5OmItm2JxiBGJaFucBF+57t/n/nyDCklb765hxOeH33wCSFMEAeaDsgySbWEtIiUZUVi\nBEmI7E9KVAvSW2IIpFrjo0FagepqJrOMVEuuVjXNqWHhLeXqkqw2nJ53nJTvEISmsktkknB4eMJs\n9pB33/2ITajJJwdUi5rzp55qqdA+ZaQNaTb9Wb91/yvgbwP/Ov3fT3l3w+uk8wvZxxYKNYxSDjXL\n5c09KfvruHPN7gfA8Pi7AN0ePv6kwN29hs/CO9wz/6LxdedfdG8b3z7AO+5CfLffjai5Dknk2mfe\ny9rJAcySYMUwyn7dbe+Je9aG/VYOljn3HOD2QI9hC/QhamXXveK37s5t31Yg++nbVwZz28B4tE/s\nDELUpCYjM1Mq2WE7Rx46VlZx9nKF85G9gzFEjUgCdWMpTaBrJTHxBO0oJoaYrLlav0/inrA/fshq\nteHqbIOICS/PTxFR41qHSSOPH+/zw9MOV9XshwOeriEdaw72H3N19sfkSrKXv83eZMTF+pxN3fHd\n7/8eo3Kfb7z9Td568ktcLi6pFy0hNkzyEy4v32e9WdG0HoEEnTBfWYgCPe1YdWuC82QODmYHSDqy\nLCfLM7TSfe1wv6aUNetlRWNTnAs4nSHps8XqugIE1jX44AdFIYmQgRg22HZNUy053JuRZiWdawnB\nErylWl1hsoSMksl0hhCaqm6IEUaZRghD9B6lEz758EdkoiAnMp0KUmU4vbqiDQrlLGGIMJEGlDY0\ntUNJj4gWlERKQWoSdJBE2Yc5CqvwRpHNpuS5QXQN8QJMInhymLF/lCBCSleXbDhmtRZcvPuc6Szj\nna+VHB4e8HPvfJsHR29DKLC14dtHnmmek6U5RZJijOJv/MbvftHb76dtU+BfoJdKhB4ti7ubXivO\nXPWgRg9AVoN8kBqu9Rbkwzpbq1wOQebq5jngs/CTfLGVvr13N0Jl+3y7PvLPc4t8kcvky3R2xl0X\nyw684y68xZ35PWGWUQ5Sd7d6D+lba04QOnmjb3rfXhchiJ2fOQ493OkD0IMjbl0roev7blnFL9G+\nOjdLd0l3lWHrmrbdgAdlWrrGEtFEF5mYFJe3tLVjs6jJ0hlZmmHtCpnDfqpZX6peoKFoaIh0cYl0\nz0GNMVojSfE+8NHTD/jBB39MXuS4UDNORhwfzBAYnFsyDR4j93h88k0WL37A5fk5STlBTQpGyZiN\n9yAkf+fv/y/8w++mPHljn+OTx5zaj/ExYmTGyd7PocWCTFmsDqzqBqECsbNUwaN8QIgRaZr2LhHn\nCTEymUy5PD9lMioo0hSZH2Hqmvc/fU4iJY1d4/DUm/paXKJt++qA1jkSI5mOJ2Sqo16siD6yXl5S\n5iXZeIp0FussoqnZXF1R5iNE6CNOskyzWi0xegSmfzu05xf87nf/kB89/wP2jwwhOs6fXtBIGI2m\njJKS470Doo/sHR8gVMR6x8nhPqU+IP2VkmDh4uxTnHeMRiWrzYYkzZlM95mOSvKiwHtYLzY422Hy\nlOm+JgaNCIY8LSmyjBgjzluC9IyLMdOjMW1d01lPqkcUZoQuJCHEviSB/3LhXV/Q3qEXpfgbwC8D\nvw/8u0C1u+l1LHO0RGjVQ1tLuJ73owjD9VaVeAA4UfYf+tusIa0+3xq/z43yKojvwvNVGaD3hRve\nNw/3POdPM99es/Nv7EL9jn/882B+7TuX3NRv6baA3lm7jky5c6+7s2frHdlqeF5/K4lDlvUA8bgb\nT+5uIliC+/+HZZ6nkvlyyeXZajj5PSXI0PsRVUpsFBrBaJSi8xThW7RosV6xPz1kNM7IVWRmz1BX\nNeeXgtrUSNMS3SldXGGkZP9oQrNeMRoZfvzR93FxQ2SBNJEiSQjOsmwNozLw1uOv887xN/kgpgTf\nIhqJbTXFaIIIK+rWMS41p88/wNqnPDp+h7IwWLsgSUak4iFQMxaG1fyUw6OE+WVNrT12E/FBcnJ4\nhAmKSMC7jgdHD3n+/FPGmcFIRZGNycuC0cjROcnHp5dcLWpUlrJerlBaUpZjrLPDGz1yeHDI4axg\nfv6M8WSCTwWJimBb0mIPHwXONkTnqOZnVIXh4OgQ6zw20JcFTgswCqlLPnj3D5Ey4Wsnv0AUDusE\n+1mHIOK94mB6RJZmTKf7HB8cIIVEKUWRFZhUM5lMIQZenL4kxMBkNKWqK7RW5HmOsx6hJUbrvvxt\nvWEynjGajAgOnG0IMZAkhjTLsRHquuqTLLxkNnkAApI0xWhN09Sslmu8d2TZ6xw+/tRN08so/jvA\n7wH/JfAfAP/h7qZ6/d/uXP154J/+7DMZNfQByNt5UBCuc9BvIL67trsutyEa3IQMXoNwIOG1mk3k\nOsnnriW+u3ZfwtAuyF838ec+65rXXIvis/fu/nu75QPugzp8NmRyO94nmnG33vrr3HNh5/e7+/rj\nTg/cKve4DUW8lkbafdK77cOhf3H7ymA+GhUE6YndhGpRU7UO5yVaRbKRQKea3GhG+xlEj1072mpF\n6ypkWeAzQ+0lE2l5eOh48YHCiBJPS72JOF9DmlGMFOOy4M23v8Ev/8Kv8b/99t+i3hTURrI/nSGb\njrOLK6YPBVpbzs6vuHq5QuWB/aOSLEnxrmOcj9mbvcHT8/xNrgcAACAASURBVI+ZlhnNesWmfEmR\n58QQ2axPUcke072vUXUfkpqCg70xJmR8/HLJfjkhNCnBif5rnpCUxYzF/Jw8SynKjDwfkeZ9JmuS\nek6Ojlg3HWeXK+pFR5pmeBvJsrKvuhgCWkORpDx78QllllFXLUVa4l2Fjx0ET1GM0VISbceoLFBS\nkig5RLUKtNAIY0AlxKYmG+1zvL8hN4ZHj0+YlHssL6+onaWqa5QKbJYboohcnL7g4PCIMs2Ig2BF\nnuas10tOjo6o6pY0MaSJIcZIVfUC0+N8hBACPS4oy4IkzUjzFO8cQhhM0lvZnbP4EDBGodKEEPo0\nfmMM3ju6tkPQfyChJPFLxup+Qft06L83XP9P9DC/3eRf++JnkoO7hP4g85o6kRs4hAG+PnJdnEWE\nO3Aa6HGfVf4qN8fn7b3l9+W2xf257pT4WUt6d35tHt/zu4h3Pz3uedzuc0Z2fld3foZbLo+d17+T\nPXrtf/+in+/u7+ren+tn3d4e+rb99it3fmUwDx38v+y9WawlSXrf94uMyD3Pfs7d6tbS1dt0z0zP\nxsWkLZKWBFmUZenNy4MhyIZfbFgEBMukDBgQYHgRH0zYD/aDARu0bFOSZWhgQbAgUeIMRYKkOZzu\nIWfptaprv+tZc9/CD3nurXNv3Vq61hZdfyCRkZGZceLkifOPL7/vi+8TQuKaEhmYzNIE2xQ4roll\nNn9OJQ2iecosjDEijZYlUkkW4VXCRYfAcUklGHZMXmnIXQZWD01CVFfEaYkWmqCV8+rrX+DNi2/x\nbv9dPp4cUFkSy7GIkoTZtEBaNYeHN7ixv8OcGUHZJoxC0rqZ+jd6QzZ7Q3Ym1xit+xR5SVlNcL02\nKvBYTEPqaMJwuIVlDqmlQlcSXWaoGnqej2EHeGYLz7TRRUwaRSAk/V6HKoswTRvHsjGMo3yfJoHv\n0wo8dvYOMC2nIcJ2F9cP0GWFNAR1mVLmFaVVE7T7iDLGEDVVWbGYH2BZGziuh9Xu4rk+6+fOYbaH\nFLGmyiLavRaGVM1q2DhHKhPT0Iz6fUxM0jii0+twLgjQGizL4vDwgDCMmE4n5HlB4aYow8R1HZSS\nGIZoVtvVFWlWL0MR6CZIlCHIsgxlmgRBgKWsxvBcVw05G42knxZ5o0EQAtM0MZcrYdM0pizUck2B\ngbQa46eQjQvnM8QOcAN4A/iQJqn5D+65ypD3VN2DpWfKMaEj7r6unyAofXer6lM64OVFj0riq23e\n79w9hjzOILv73H/EcveQ32kiFyfPnyD608R+n+OjSe+YdFcnwFVCF3f7fLR69Cj8wOnvdXS8+iZy\n5vd8VnjQpPZwvLgcoElKTYYhbGpRYlmCWtQoS1BVKVleUtYG01spO+OYbtvFcQ0KXRMlMdEiJHLa\njfQ+chgMExYHFdLysDxFGo0RpSKJSqTSXNx8jcLQSBVT1Bll5aNsGzGQBCIAXXMwzcjLmwi/Iicl\nUIqsOiRMasJ5Qh5HOI6JMgNqb5mjsgoQwscz+8TzEjMxsewtLAZ4lYl0EoZbNp5tkmQlpiHJ8gTy\nhFpW2GYbwzBZZBlbXkBe5JimpMxydJXjOza+61IUBXHcLOE3pMI1LUqpEXVBNE/odfrUlKTRgmEv\nwJQOqizQaLIkJeg0Komg38b0ArSQ6DrDFJqySDHtHjpNyOKSKAxRyqLdbrOzswvUdDpt5vMZnudz\n8eJFoMdoNCBNNxmPx0BNWRZcvfoJnU4Hy2qSREgp0Fo3C6CUiW1bSKnQWjeJJ5YhCQxDIpVCCEFZ\nFGRZimGZKGVRFjllUZDHCRpQjoXWmiSOGkndMgFwLLsxCj5b/Mc06eIs4BPgL99zhXiEPpwg89PK\nXU4S55FkviqVH1/4AGJelZbvS/Cn7j8mtVNEfkTsJwx9q+3qewnvLEI/QeRH5dUvdVonckbdahLk\nYyLXK+S9JPQT0rdovsPRIquzVEWf1Xj7WDhrqezTwYtbzq9t8DRxkTLbX+B5DnGYkoc1wqiwnAJT\nCjzTxjGalZOVrqmrGlFAXTmMsxgpDEaFQ6dvkdopyrZpGz32d/eRssZUDroWUFV8cuUjDmdXMUTJ\nIk4QUrHVv0Amr6HTClSJrA2CbpfZbIrWFVK7tA0LzxniygFdy0GLEtMysaWDUSs8s0XiZRTdCFm6\nuNLEc5ookFvr5zGlySJekIcHGK5FIUqiOKHtOkipqABpOk1C5yzFtRRxNEOaNo4lsRT4nsdsPscw\nWmRpxkF+iO3YOKaJZUuKOsNAI+qcLAkJugMMZWGaCoyaqiqwnC5pVmE6HnWtmYULzKpCYqA7A5hn\nXL/2IQezmIqaJImodQVCEEUxpa6h1nzwwY8wpIHnuaAlSRKRZQVB4KO15vDwsIlo6HkEQYBpmvh+\nq8meJARKmWRZRpqmhGFInMTUVY0ftMiylBqYzqa4rsfW1jlM22F/f58kTen1upg1aCqKMscybQyt\nuX37Fmma4LrPfNHQ94Aff+AVjySZi7tEvkroq5L5ESmJI6n8yMpJc4E27iXRs4j1tPT8IFI/Tear\nx2cSub63DZbleyyPp8j7M9WvEPjRNaukfkTkJyZCcVcir5b71ZgxDyPys0j9sfAopP3kpP7CyNxr\nSXKng2sr9u4sqPMaTyqmYYwhJJ5j4VgW0jcZqi5pVhKXEaOWRyEt4jBDSYusyBlPCxASt2eiqBDK\npEw0tSkwqVhvj7h664/Y340YjxMczyRZhNzZO+Sicw6lXdygy2ZrDVmPUEpRtUBJDxMTpSWtdg/b\ndYnDOZ7tEscxcRrjByaWq3A6FnnhkGcZta6bBR3AdDpFCIEhJY5joZSi1haeP0AZFe1Wi6tX3+fc\n5iZVrVks5thL42AT7ljjuCZlkaGrGmVIXC+gFXhUVUmRJETzQwatNnUZIZeqhqJICPyAuq7xvQBl\nKGrDoOU5SMdFGx79vkVVpTj9HjU2eB0mqeCTT68yHI7IssZ1UkhJYAdgNe6GcRJiOy6GUAhDsL6+\nQVbk6Kqm1WqRJAmW1ei3oyhGCEjSFAQUWUGrFbC+sUW4CJFmCYZmZ2eHJItxfR+E4HBySKssCOYB\neZqwv7/f2BkCD8e2EELgeU7zW1UVfsslaHmU1ZMtvHgqeBQyNwTHCVpPkBV3yUnQkNHRJdVR5fIa\nrU+qMO5L5Ksk+5BrV4m60nfJ+5jwVupW7zndHpozyfi+lsmHWSxX31xOT3wr5dNqloqloXQpqR/N\nm49iD3iYVP7Y5H4aT0c6f3GuiaVBEZcErYq339rkD353j0HPZLgZIAqN0hrf9hHKYDGOiGYJltB4\nKKqgGcThLKOqDKRZkxbQNtv0W2ucH73GT775DpbpUOka13fw24o2GU7l0PJsFDaOqej3+nzFMHFM\no5Esq8btr8hSoiKjzCvQUFcFWZxj2QoUhFnc6IURy3FcM5tOEctl91mRM+j2yIuiEQjKgrysMKRE\nWS5VlpPlU65dv4oyHUxlkqUlRZFR1RopLbQGQYkyJI5lEcmMTreP5zoIoZDSYBbvU5UFeZ7jWCYt\n32niEFUa0zRJs4R4PqPTGyC0RgnQroP2N7D7PhoNlochBHk0ptUKeOXSq+R51vRV2Wg0uU4QicTx\nXVpmF0eZRFGEYRjYjokjmrylaZ7TGwwY9AcsFgvSNGE2nXL7zh2EEAyHA5TT6NYDv/GDPzg8oN3p\nUNcFUgkW4YIsjTAQ7InbgMa2FX6nhWlBtnz2SRxjmiatdgfbspt46vnngMwfSc1ymszhHslcL0l0\nFcceEmJJWmKlnlNkc5qszyL1M645IYmf3p9Rd9zGWaR+mshXiHj1O59J3GfU6dWNk8/heOMucRsr\nJF6yNCSL+4fdfZARlJX9Q/E4kviTkfqjkrkEvkNjyf83gD7wd4CLNH4z/yYwXV7712mWOFfAXwH+\n8VkN7t3Zw23V1KXL1nrAK68HhFGOtmp6noNvWhzOm/gjRprhV2C4JkkWYWHj+XaT7GGegFfiDzu8\ntfHjXL7wBr4bYLkW/W4fpRSGgCLP6VoJ51stiqpGSOi0OphKYihJlqZYlotlKcrSI44jzDQjT3Py\nsqQoc9I0IbBsirwAAwLfx5SKOI5xHIckTbl5+zZBK6Db7VKiEUriWA625RBoTV3XlHlOJjVlXVBW\nOYZuVvSlWYjr+pQ1+IHLZD4HaFRLosZxPaTtsr9/SIXAsS2qssCx3EYvbRjUZY2QJsLS5GWONBS2\nbWEqE9Mx8YIuwmtTRzmiO8AQ9nIM1dy+fpOD8YRwMafWJd1uH8duAnyVFRyMx9i2j+1I0qpGmSZp\nmtKSkslkwu7uLm7gs7a1QV2WCKDdaeO4Dq7vYRgGjmNj2xa3b93EsmyUKVHSYDjogdaUVUWZ5Wys\nrVNXGsexsSxFuFgwmYzZ2cnwXR/TMqGssGybqq6Zz+dorXGchy/YeeZ4JDULSyJf2R9LnNwlEWgI\nqLngpERusEJq+viSM1UeJ4j+AcR/TNL3IXN9xn6VxI87sfJF9SmCPkHyp889gMjvIfVTq1/vJ2Ef\nEzv36swfJpWfpWZZLX8mPH0CX8WjkvkvAD8EWsvjXwL+CfDLwC8uj38JeBv4t5b7c8Cv01j+61Pt\n4SuPjmtitRx0pXjzCxf54cfXqPOSrEo5t9GhqgS6zGGo6PQ8Ku3h+gGjTo9Rfw0tIU5TiiLDkHBu\n6xKWKylESp0XzBYaXde0gi6WZdHr90hik2TRkGRVZkihcJwAw/UwjCaAkZSCXr/PbDqlFbSZzmbc\nvnKbXq9LGEVIKREayroGXeLYNmVVYTsO2+fP4TgOWZazu7/H9vZFep0BdaUpykbyzuqcuoJFGGKJ\nmm6rh2FIXMeiKjKUKSmKHCkVNTmGISlLTeB1kMohLWom4wMMITm/EVBkGUqD1+6TxBFuOyBPYwol\nabXa1GWB1hpTKqzhgEJbqP4FSObgmqAbdclwY5tSa753sMPtWzf56JMrtNselrLpBi0s32f/8BaW\naeN5PsIQ1FVNHIVYpsnbb71FXhaUWc7O3j6mZeIHHnmaY5kmjuNQFjlpGJHmGRpNHGYkUYyhJHme\nYzkO0jA4v3WOvCip6+Yf1e+P0MogXCzAMOh0OrjKhOWEaS/7Yy6NoS8Uj6RmYYWzVv7Qq6oLBMes\ncUSYhribku30QqHV61bLn+XcsSFxZX+i7pQ0fk/dqnT+IKJ+jO2YwI/K+u7xCcncOEXk4tGSZjyq\nquWJcVqNdLr8eHgUMt8G/hzwXwJ/dVn3F4CfXZZ/FfgWDZn/ReDXaDzgPwU+Bn6CU4GIAJRZ4ak1\nbLNm7zBmNHLY6I64fuM2rrLQVYvLGxcR2NhegGE4mKaDZXsYAnzPpdcfUpQlhwcH7I93qOuCNFlG\nmBOCLI7RNH7YbuBimgZmy8exTYpimUJNG024Vg1pWlBWJb7fIlmEzBcLkiSh0+nR7w9wPAsTn/Fy\nMijLgqLWpHmG67o4nks5T8nzhMUiJghadNtDXNdjMZ9hCIjCiDCck4YxluXT8y1cyybPciQGSkBd\nQVrnUIMhKixT0+m1sZ0en1y7TpoUvHr5MuPxAfNZySiwMMgB0bjv1UBVUeQ5UKFMC8u1sSwLYQUY\n3hDSMfNbe5j+Ie7GJdAmrbUN/MEau/vXmUymOFTYtsV8Nm0STO/eBgGeG9DutKnqCs9x2d25hWna\n+L6PlM3CIMc2qfKM2zcOl/ptl3AxQxgwmUxwXRevKjA0VLqmKjTtbh/PO5LgHfI8b3zTowixjE2y\nMVzH83y8VgBo8jzHMExMy0PYakU6fIF4JDXLyraKVcm61mecOyL15b2GPnlutY1VCfxRy8dS9+ny\nCnmvkvsJ8l6V0I8mo7OI3Dij7uj4tHfP0bmj+hUCP2H4XF6zOhEdEfmRzv+I1AVPR2f+SDj9Az87\n6fxRyPxXgL8GtFfq1oHdZXl3eQywxUnivkkjod+DMJnTdbbJqoRkHnE7Kxh01+j5A86PXmW0dpGe\n20Eqjee2KKuCstaYliDLmpVSZRlTVyW+byHNdfI8J4oilFJkeY6oKuqqou+3CGwHMwhwPBdDmEiZ\no5RCCkkYxcRxTNDrHE8EeZ5hGAa9Xo/FYkFd5ZRJTZimlLpCa02RZiglEUISzhfUaJI0pCproImx\n4ftBkwgizzGMZtn50d42TeI0wcSg02pR5imGMijyFMdWIBWWMFCGxDBqTNMijlPCRcLOzg5lVVD4\nDkUlsB2boqyRyqAsCnrtLkpalJVo/PcdH7/dQg/Xqe7cwXDb/ODKB1ze2MLtbiA8q+EIQ/Laq+8Q\nTRbkeY5tGvRaHaaLBevrXWpdswhnuI5LHDdeLL7vM53OmE6nrK2t8cEHH7J/uEuv36XX6bG1eY4f\n/ugHWJai2+0d5y6NogXtoIPrNBEwkyRdujA2qivXdRtylxJpSKoipa5K4nBBGscIIXBdl1xkVEUG\niYHxKFLxs8Yjq1lOqSX0su7o9f7YeUWfcU6fbGOVmOFeKfy+dWeUVwn7iKTvIfMzrjluf1l+KImv\nevEcleu7507cq1eu03fPa5akbtAkRl7ua6Mh+SN3xKOPO03mNfeS+hFhP8ib5ZnIDE9G6g8j8z8P\n7AHvAj93n2seNledec6SHbTQpGFKHieEs5RR+xKvnP8y50YXMaWirHKUsKjqvIlkKQ0s08Z1vcaL\noa5AC3qDDrZpkeUZi3BBGIbkeY40myTKu/t7BK0AVdnoVFDVJUI0/s/TxZQsz5nOpiyiOUEQoMsC\nIQRhGOG4JUkaU1U1cd0QuTIaclSGgWkq6rrR9VqmTZK5WI7N4eGUdruNZd997bcsC9u2CMMZSpoU\nRYxn2Qy6XebzA9peG8e1CGf7tN1t5kmMUja27RPYDrMwatLBIUmzDFMJXNtEKontBcR5hG2UOMqg\n1jZlXeBio7WmKnOktKgLhVo7R7y7QziZUYzW0JTHsSRqQxN0R1RlSRjPSaXB9vYFOv0BcRRSVRXz\n2Yw0zWi1u7SDDqal2NjYpKoq6romCAJms03KomJjc528yEFIbt3ew/fbvHr5AhoYTyZMpnPoK7qd\nDoZhLBNON5OlYRhIJcmLCseW2G6bsiop8gzLsknTlMUixLItlBLkdQ36Ho3e88cjkblebsvy0d9I\nr6hW6uU5vXJtfeq+YzI/i9TvQ+gPuu5Y2l4h7NMkf/rcav3RdvwZq5L2EUE/Qt3xbLZC5kfP5lhX\nfkTmRvO718aKVK6bCe+oLMRyAhT3SuZnxZR5kN78vmz3ICn8fueen878p2lUKn8OcGik879FI41v\n0KyI26QhfIBbwPmV+7eXdffgg/cPuMIcTcFw3WPUG0GuGK2vY1uKNM1QUlJXNUVVUlUVpulgWkdL\nuSsEAtdzgZo4jSmKgn6vT57nuK6DAeRlQZQkfHL1Kt1OB6Vkk1VnKQHOwwW2oZZudM0ilL3dXdRy\nuXgchcDdRS91XYEhcE0FhqSqGuuKIQS2ZTLsnSOMQ7J2m831C9R1yXSpVqjqZiWkMi3yusZz2/Q7\nDkneBM2q6oosyzBEozOvqwplGpRlEzY3WkxZLObEaUaeZyg0r5/7Ar7XIksWWMIgTmL8fpc4ivAd\nlyRcMNrYQCkLGWwgTCjHh1RVSp6nTGYTtqq8EXqqCuoCv9ul2x8QJwvGkwlKKQadPsPhkA/f/wDK\niiov6AUtaiVI05R+v4fWirKssG2bIPBJkpitrW2yLMP329zu7XDl048I05hXLrzC9tYFpt6MPE9Z\nLBYEQYBS5nLSswGYzxf0BwPSNAOtGY/HmKaJlE1MFiEE/+zb/5zf/f33UGbzO75wPJKaRa+Q+ApW\n1UTHJL68Ttzn+DQxH+/OOHc/kj9Wt5wi5fo+9afJ/ZjEV8ur0rhx8viB9fWp/Yo0zt3u3nVHpCFy\nrVekcn2SxI/8zY/mhvsR+INULSuP957yA3E/wn6+OvP/bLlBoyP/T4B/l8bw+ZeAv7ncf3N5zf8N\n/B/Af0ujXnkd+H/Panj9NYNO7WHkOUHQRno9AtdD65wsSzAMA9drouZpQ2Aqm3YroKoKhGi8QizL\noSxLomiBspqFKHVZUOYZlmU2QZ3yAsOtyMtmBaXW+tgH2jRNZrM5lmURBAE1NVIKOp1OQy6+j207\ngMZ1XbSuUEpRFCVHD7+udeNHnWSkWcbB+JA0TbCDNmmWotHMplN83yfLcg4Px3iew6XLl1kfdWm7\nHsqSjG/+kHC8j65LpPKI8hxTKrIiw3YtMCRZESOkQJkCkPQCB8uxKfMMkcVY7YCyAGV7lEWGsNsE\nLZe81AStASLwEAwwWym7N2/yxS9+hRs3PmJ6sMcgWEMYBtn+PvbaBYRSRFFCrzdASsGd/R2MscTz\nHUyzcUfMy4yiLMiXRmgpDba3LxKGIWmaopTiRz/6EZubm/T6fTrdDmujHkWR0261kbJZASqExrZt\nTNPEsk3KqkRJgyKvcF0X0BhokqRxhTw8PMQ0TcqyxDAMfuonvsGX336D8XifPC/57/7HX32sP8NT\nwyOpejSIU+KfXjl3xIVHBClWRESxcs+R5L563ypZn0Xk8IB7lsS3SsqfdTvxlnFav7EavuCsMIfL\n8vFkcPS9jTP6dJY3y5F0vrKtkvgqmT+KAfSZe7M8qP6z4bP6mR99hf8G+LvAv89d10RoPF7+7nJf\nAv8h9/naVSUQniSva6KiYmT5SGWSFzWmqVFKUFVV4zkiBJ12gOd55HmGZVlNSjU41ptWdfNqnmQp\nWmtsx8FzPfYWeyitcW0HbYjl/6OJW1KVjW/5EbkHVuP7rIXG99dptVrkeUGeZ/R6PbSumgUxSjGZ\nLUizlDxr/LGjuMBzLWohUJZJXVXM5zNc12MyHpMmKVmeUtYJtukx7HcRwiSuNZfXthkMh0z2d9j5\n9AqLcI8iSbFNC2k2ahphOZiWy8bAxpCCNA3p+DaBbYOusFyPrDARVhe7dY6W52PLmixPWW8PKBAY\ndkCtJcXigG5/wP7uLkWeES7mDKhAGEQHM+xhTRD0WVsfEUUxQdDlyiffRSrJcLiGY1tL+0SItCxc\nN6DT7lIUJVEUYhiC4XDE/v4O7XZjavmj9/6Aoip4/dVX2d7a4tNrnzIeH6DkctIta6BsJok0o5Tq\n+BnmiYdlW+R5M5Hbjsnu7g5SSnzf586d29S1Jmj1ONftfsYh/QzwSGR+9AaxSlZL5jhWJ5xmjxVC\nP71/GFGfdXwmoZ8hYZ8pedePcO1pMj8K6Xuq7rQErh8gkZ9+HMePRZxB4vrk28wRZ94vNstTM34+\njJyfDal/FjL/NndDdo1pggydhf9quT0QgeyRJ5pagGE5KNUEV3JtD9Ns/uBH0fGOJLckibFtG6UU\nQRBQVY1eVeuKrMhJshRq8H2/Ua9EIZbRrKZsd9oErRZlVRHNp5idDoEXYDpNrJM0z6iylCzLlkNQ\nE4ZzpJTYts10OqMsM4RhEEcR48NDhGFQ1BU7d3Zw3ICpkrTbbaRq4pKE0RRDKKqqZuf2VdKyxHE8\nhDIIw5D1rU3WhptkpSZLQsoy5e13vkKY5Fz54I+gzprkEqVBVYtG6vYllqFwgjUCUxEWOb5lY7QG\nnL/0Jlpr3nj9DfxWm2QR4gc+ZplhVBnakBiipk5LxtMpeR6zP57xSpGhkWSLMX7bBAFtT3Jx+zz7\n4wMc2+TrX/kav/fd72BZFo7rQV2iq4osLWi32sRxQrvdpaoz+r0+k8mMw/E+W5sXEMIgaLcoy4L3\nP/yQn93cxJQW0+kU23FQpkTKitu375BmCRsbmwyHI9IkYzKZkGZJo36xrUZtXFVUVUVeNLaNwXAN\n23Gw3WfuY/4m8LdXji8D/znw35+46lHULEfQK0R+LMmekqyPCa4+VT6yETyIvFcnBB6N6I/aPIvA\n70f4nCL341eLIwn8YdvyOehVEj+1rerjVx5NQyL1vaQujkj9qCvLe1fdFp+7a+LT05GfxgtbAfqF\nr32ZDz/4kMnBIW3PBMNokjD3+nh+oy81DLAsm7qujklVSklRFLiuS1Ek+C2fLMlo2RZhFGKIxpsj\nCyM21kZo32+i+y3G2JYiTptQsutra1i2gzQVjuNxeHgArkNZFNR1Ta31sb44yzKqqmKxmDEPF8wW\nc0whl7r8GkGNKZv8m0mSLF3xPBaLOYZQHI4P+fSTq7S6LdY3bbq9HmvDPptbF/BcD3RNns6I5gvG\nxYzO8BW2Lr+OQBAv5ly7+jFJVhKlMRZQWxa2YeF12nQ6Af3hBq+//jp1LSiyBNv18fwmxGynN4BO\nD7IURAwYlFpTJBk379xmsoyjQrFgsnsbXRVsAaNhn8P9G7TbLZRSDIcD3im+ykcf/5BuZ0i37SMN\ng+l0glIG3V6Pvf0bhGHIwcEOk8mMujKIOzFJktDrdZlMxriuyze/+U0uX36NOIkpqpyyyrBtG9sJ\naHdGuK0WO7uHDAc9Rmsj0jRjNBogpdnYMLRibeMcldZYlo2lFLquKamxlhPpM8IHwNeWZYPGHvT3\n77nqUSTz1VWP+siDQ5zxKn+aPGua2NhLIterjHN0PQ+oWzl3Tx2cIOzjff2Yx6cl8AdsxyQum/uP\nnenPYNITEjlL90MaIhf1XS8WcUTkK4QO9+rMH2QAfapqllWcNoA+e535M4Nt+pzbPkehCyzps742\nYm19k06nhWM55Hm6NHoq+v016rqmWBKtYTRGwVrXjX3DNAijkDwvsE0Tgcb3HSxTEScJW1sblEXJ\nIo7Y3bvFue1LVLpifXODyWRMHM+pioSy1riex3QyI8tSHMchjo+8K+rmzcFx8YOAuqoJ4whL2ty6\nfR3Ltmg7LrNFiBCC+XzOeDxlMY+4dutTrl67RmfWZ/v8ZXrdPkI1CZE7rYB2p4uSFXYdM7n5Qw5v\nfoLV6oA7xO0oLK9FWdyiLAt01hgCbctESBNp+7iuR1VpsjTH9VzCJKEChqMRwm8jDAucFmCgRYXj\n9Tg8/AFXPrpGVdbcurODZX/I9RvXcRyTIg1JkxDXBPIQ5wAAF8pJREFUaZGWGUmSYEh49bVLjSGS\nCt/3m2BarTbj2ZSvv3KJGzc/JctS9vb2mEzmDPoDvvvu7/P2W+/Q6/VI01sYhiAIAq5cvULbDzBi\nQeUFeOsdBv0Otu1g2zbDTh8hYL5Y0OkOieIQ1zEZdtfJqZDLxAyO7RLGC7Iso+V6p1/InyX+NE3U\nxBv3nHkkMuck6Z4OLqXhhCfJsWpjdatOke+Jhk/uH3Ren65bIecT5RXp/JHKq2R+RoLOEwS+ypir\n6pXVc6vdXHFL1Mu3mrpeEnvdGD5XiRy95Et999yDDKD6jP3q59+DxyHjp+vR8sLIvCxqBq0Nqk2b\nrgi4fPF1Oi0PanBsG6UMsrTxO87znKqqcBznWFLOsox2u0We5yRxSJHmWFJRFwVFlnFxe5s0Tdg6\nd469vT2+/MV3sGybazevc3PnDn4rIE0TxpO9Rh0jHfYO9xgOB5RlRVk2HjSu65KmCVobZFmGFII8\nSrADj0F/yOHBIb1eH9/3KcsKy7KoqqrxrOn3MaRk+9w2QjchA9IsJIwWCNFid3cX3/dJswRbmbQH\na/zovd/mlddeoT0coW1JmgQYqkVdFwgkQsD+/j6j4Rq+32Z78zxSKrK0QAO24yzjlbRRpg3KBGwQ\nFaAR2qBQDr/x7X/KLFzgWYr33v0ON29f5fz2RVqtHkkW83vf/T2+8ZWv4/tNaIL3vvcHaF1x6dJ5\nxuNDwvmctbU1zl+4xM3d2/zgB+/jujaO0wIdk2UZOzt3sB136bdfYJk+RZkxGo24fKFNdzgkK4tl\nRqkWnucSJ8nSzzzk5s3rmJbFm+vvoEyH69euMLNsBoMBlc4xlAJpNT7oZXnsEfOc8G/TGPvvxSOp\nWU4TqT5JUMfcqE+5BK4SedUcnyk6Lvf3JfEHlPVZTLZK0qcNt/pU/aru/yy9+Gli16fOPUQUPhG/\nRtyVyI8WCK3qyauVe8+SzB9G6Pfb7ov7SdyPQtjPT2f+VPHJ9U9o+T6e59P3+3R8n7IoQGvyNMG2\nbUpDUpYlZVEgaBIUKCmbSICBh640WZxQZgVpHEOt8VyX4bltqDXSLEnjhLW1NWzXYjqdUGQp22vr\nzCYz6qIgizNMw6KuK1zXYz4P0Vofe2OYlqQsCzwvaF7z4whDKvKsoMhLer0udV0QJyl5VaOEgec7\nREnaREC0bUaDPt12i7Js0pplSYFr10hRo9FYsgmaZXs9zl36El5/C7vVxrZd4nQPw7bIsoowCpGp\nQkmDOF5gWzZCSLTWhFFIr9dBaE0cRwx6feKDAzzLAdsGLZchQARe0OFP/9m/yPfe+11MU6CUYmN9\nm9FojTRNCVo+3/j6T6BMk6JM+ejj9/HcFr7vIaXBcDAEXbO2tsnHVz5qPFNaPvP5vGlrY30ZgqBg\nNFpjfX0dx3EZDke4rtuonwwDrTUqV7RaAaYyuXHzBmkaMxgMiBYhk/GUr37jxxAVWMrADwL2d/dI\ns4wg8DFNkzxvJnYhBLfu3CSKFs9j+Fo0MYp+8cyzs//ibtn5OXB/7t5rjuyfYlVXLk4SVc1dMj8i\n8aMEwcflkkcm6Ucq34fI7yuu3m9/WjI/InN5qnyazM+SyOW9XTyWyle2WjfPU4iTPvhi5eajbt3P\n8Ln6Nc4i9aeCz0LaV4Crj3TlCyPz69c+pi40a4MuG2+O2D/YwXN9BoMBQatJFiGEwFDq+GctiwLK\nnCovmU0nFHkGNY3u25BsbK4TBI3Xy+2dOwTdDq7lIASMDw+ZLxZ0uz2iKFr6lJfH+vCqqih1kw3H\n8zwMIYnikMlkgmlaTCYTyrJoVo1KRVkmlHVFVdcURcZ4MqXfHyDQYEDQ8rBsxWw6J45jDKMJTZtl\nGWEY4vs+htn8gQ8OD9ncXEcIi/VX3kQbFloqsqWEnxU1u/tzwjCirits22F39w6O6yz93yWLcEG1\njMq4tbXF9HDM1sULaMtFaE2dz8EOltK9QVWXbKytk5cFF86fJwhaS/tETTSfY0lFnqYcTA4QwsBU\nNvv7+wz6feqiwFAWH1/7CM+xSbMItKTT6dBkExIMBmso06TX7QAgpcK2beI4OlaXeZ6HMhubQlEU\nSCnJ8oz3P/g+ptGsNZhPp4TTCXWh8QIfqoqrVz/h+vVrrK2tMRqN8P0Wtm3jum1Gw/MPGnZPCz9P\nk8x5/8yzvb/xPPrwEv+/wOXldoTfuO+VL05nLg2SNMeoTeJ8wY2dW7z1+psoy0BoTbZc/m4azSt6\nmqYkSUxVNZJImmb4vo/X9pmMp03YBUNQlgV37tyhrirqoqQQjX95lqbkecZsPqEsGv17lIQopRrp\n2HWQJcxmc3zPxHEs0iyj3Q5QymJn5zb9/pDbd26TpCllXmDbNlVRUtU1gR9wuL9PVlaYpkm73SbP\n86X0mB+rilzXJc2bmOdxlBIu5rTbHeIoxnEshDKxbZubN2/T6/Uo8pzxbEZeZBiGwDBUs6jGMTFN\nk8lsvDQa+wghuXr1Kptb55iECzapGsm9KhCmQCwlgjhekOULTKXwA58kSdjePk+eZyRJhmmaHEwO\n8b2ATqdLlmaUZUWn06EoS7SGr3/16/z27/8OulYcjKe0Wi22traZTCbEcURZ6sZYu1RVlmWJEBz7\nlsdxzGw2I45jpBTYjkO4CFGGRScYkJUlo/URiyhlMTvAd7tUBjiuQ6/XY/vcBaSSaF03WYqkRJk2\n0nwuWvN/hyYG0Uu8xOcGL4zMt1/bII1rhHZIkoQ8ralerYnjmCxNME2bsiw5OIio6hqBoK4rDKNx\nPex0eiipcDwXaUiSJCbLUrIsZ2trizzPKLKcGzdvYttm82KnFIbR2KeUVli2PNaP7+/vIaXF1uYm\nWZ6TJClVWXHn5l5D9MJujGytFt1en/l0QlFWbKyvYygDgSCMFtzZ3W+W9js2QcsnihqV0WK+wLZt\niqJg984Ovu8hiow4ThgMhhzu7GLZClOZhMtl85PxhIPDw0b9kKS4rodpqsYovFzpWlQ57XYXx7Ea\ntQtgSoXvOgjTB1JAoKvmjcEQjU3iygcfcO78BfqDAUpKZsvMPlIauI7L4LW3ODzYI0lqEIqyKsgW\nIVVVc/HSK7z33Xc5d+4cnuXzxhtvUlca07QQKNKkxPNdHN9bkrhYEnqx9EYqKcsmhMBsNieKIoqy\npNftIqXCsh2KZMHa1ggpJDXQCUZsrg2J0wlRGJGlJYtoiu8H+L7XGE4dnzRNn/XQ9WmMn//Bs/6g\nl/gseGo6kOeAZ9PXF5hpaIAwSrzCbIyejiIOQ2zTxLIU4/EhUZRiWk0uSgGYpkLKpe5cGRha8Mn1\nKwSWR6vlYxhNHJEP3v+AIo+xfQdhaPK8QNlWoxbJ8kbF4dho3azkbLfbBEFAlhTs7x8wmc8Y9fso\nU+K2fCgqdqZjJJqLFy9QlgVBO8C2mljbQeChpMI2Faa0ODw8pNtqoWuNrZrQA912izAKAUFR1/zo\nR9+nriqCbpciT9nb30erRqpMkozaEHzw/Q94/+P3+f733qOoSmzXwpEmRVVRa0mWp3Q6HSazCW0d\n4Dg2tdYkaUR3MKCqElSSo5WFjnNE26NGossFg+EIdM34YBfPayPQKClptQIODvcoq5Jut7fM5SlY\nG40wLZMojJgcThmuryEQFHnKzZtjbMc9tmeM1vpIaSBlk9MzjmO0bsIllGUTrbIsSzzPY21tDc/z\nsKxmIVKapvR6PabTOY5ykKbBzRsLbu/c5uOPBePxmFdfe41oNmc42uDwYMLhYaOm2T/c48KFi896\n6EbA8Fl/yEt8Vjw7/+2nj2fT1xdG5sXhAlFIihKMbqOKiJeZYwzRuBQ6tofnO9iWTbnMpjMY9Miy\njIODMZsba+Rpid/1cRwH23a4evUqpmOTVinhfEGr3SWOEhQCQ5ksspQ0TYmimKrUtFoeSZw2+tko\nYTgcceHSgN2dHS5dusRsOqXOEl7Z3iZOE2azGZZtYhgGwTKcbhhGBEGLoNXGcX183+f6zRu0Wj62\nbdLtDppwsTMbx7LJ64JB1+eDjz7hn//Ot9la2yZeRBwczBoVEDlKWXz68Yfc3rlDu9vCMU3sdoCh\nNZbtYFBx/cY1WpMOrW6HMJxjK5PD8SE7O7sM+j1uXm3CCJiWxcdXPqXf63LpSz9JHh7y41//MZI8\np6obVcxwsE5Z5ORlxqULr2KYZuOxMlxHCEEUR5TzBdPFnLWNDfI4xrIsut0RUknm8zHpkqSLsqTf\n71NrmE2n2LbNeHxIkiRIKWm1WriuRxD4FEVJXddMp1M8z1+mvCtoBT4HB2PQFa4lGa1dwnNsirJk\nMQ8xTZOiaFRXs/mEt956i/5gxHh8+KKG9Eu8xAvFCyPzax/dwfAVnvLoul0KQ1AvrdKub2O7JnVV\n0263qcoaXdcIYRBFEdPpnKqqGE/mnFtfb/TKadIkS6gr6hqi6QJt1BTlAUIIWu0hs9kMpRRJEqNr\nuL23z5f6b6BUY+KO04x+r8t4NqPd7RBGEe1eCyW7eI7L3sGERThFKYFnOXie2/i9WybXbt5gMYt4\n443LnL+4heUobty4jmlKtIZW4LN7e4+tc+vUVYE2+rz9xhuMp1N+63e+w4WLFxiPD7CUotAVs9kO\ng/U1Wv0uZVUgDYP14YgwjAiTkDzTjKcH3Lx+q4lhY0g+eP8j1ocb/MD5Eb1Oh/39XVzPRxoKjeDq\nlQ8ZDHtEsxAEtFwLLQyyoqIoE77z7h/y0z/5Y8TxgnQxJ8tyFrMZRqUpdMVobQPf9Ti4s8Pm1ibT\n6RTHdZGFxrFtrn36KeXSPvC9996l3+8RtNqURcHu7i6vvvoqnueilMWtW7e4evVT3n77LaIoalbt\nZgXf+e4f8ebrl1DKwvYcwmhBELQQVc1k74C9g12iKOFgf8rmuQ3efvtttrfPc+P6dYSCbudzsJz/\nYUi+BfafeEqNvQt89Sm19YfAl59SWx8AX3hKbX2Xh+XQfmTVxfxb0PmTT9ifJYpvgfyZx7jxjL7q\nT4ALT9SdF0bme2FGq85RgYVtWWxdOE+306Hb6aFFRZ436pCiKKiqEqkkVFBVNRsba9y5s0uaJo0O\n2XVwpcP4YJ+6biIctjoetu1S182qzN3dXVqtFr7vU1Ulnuvw/d/4Hd55+y3qumIwGJAVJVmW4nse\n3W6Puq6pdI6tmtRpna7P+kafnZ0dwkWI47o4jsssXLC2NsRUkuFwxHQ6pdNt0e2+w+3btyjLkvls\nTp5lOI6NlB5ZlnF75xaDwYCd/Sn/+r/2M+R5ibJM0rRkMY+I45hWt818Pmc+mXHp0nmiKKEWNMZj\n8QazeUgUxbRaAZPJnLLKORgfMJvP0AKCTpet9Q02traxPUWZZLi+2wTxSmKEIRn1+lDX/LNv/xbf\n+OpbZHlOXWu01tS1pqhKzl+8wCdXPmkSXZgm80VIGIfc/sNb5HnJK5dfAaDQgqDTw3Jctra2KIqC\nyeSQjY0NJpMJURSxWCy4cP4yVWlw5/Yug36H3d0dsjzjn/7mb/Haq+fJo5jZdMz3v/8D1je3cDwb\n07SwAh+v3WXr/CVGgz7j8ZgoilhbW8dQjaH1c4/0Wy/J/DPhUcj8YVi6fs6//Tkg87NwhX9hyVwa\nOXEm6Lo169tbbI22cD0LqSDPK1zXaaLrtduEYUEcxYwGQ8IkQmvBaDQiTVOqqqSKIsZRiG3b6Dqn\nKkss26UoUqbTkG6viyFNlFRUeYZtO8RxRp5lFFnEPE6PM+R4noeQCk2BpsTzfYosxVQmnvKZz6eN\nS51SLMKIPCtR2sA0FIEfcHCwz2hthBA1VXn0XVzm85BWt0NZ1ziui2EYvPH660RJE++lLBv1SV4k\nFHmBpG5UTGbTZ8uSjRtlmSOVwjYFdV3zxisXcb0AqSRxOMEwbOIkwXd9zp3bptvtcnB4SJUXvPf9\n93jr7S+xdeFVqvkYJRXG0leb5dL4Mi+Pjatog8V8gu35fPTxRxjCZbh2jsVsTJyWmLaDHQjWu12q\nqmT7/DZ39nY5f+EiOzdvs7O3gzIEo9GQJEn5zne+w/b2NufPX2C+OGRjc8B4POHdd99jMOwRRiF1\nVXP10xt87atfQ9cVphtg2x6b6xsUecqNG1cp0hQv8MmKFNsx0cLFdBTT+Zyqqh8++F7ijyEepod+\nqo7iT4g/Zjpzv2uRxhVffO1LXD53CW1UTKdNTmglJcRNMocwDFHKJMmmXLl+DddpvFyUqRFGY3Cb\nz+cMBgPCMKQ2JIIm1kVRlIxGG2R5htZQ1JpSSKQwCHwbkGyfv8AsaZJPBGbzedK0msQIUmKaJUo1\n4VbrumY0WmM6a1zxqCFLM6qyJM8Tzm9vEycJlmlS1SWGVeG6NoaUVHXOG2++jlKSoi7RQpOk6TK+\nuslwtEaRl8hM4jpw/dPrDDc3uHPzFmmacvny5cZdU0oMw2Ct32djY53dvTvE8ZyyqvFsn0uvXMZ1\nXWzLwrIsoihiNBiyu7/Dm1/4IoP1LeLxAabtUBQpRqGxLauJKCkNOsMei+mCMFwwn8/QZY4MPTY3\nt7hx4waGWZJUOf1WAFoShjGG0ORa8Mn1m2yMNpHS5cLFixwe7tMfrHHr2nUGwzV+7mf/FFmWYkiB\n4zi8//4HfPmdd/gH/88/5Ke6P81orZmYOq0unfaA+WLO1nqbWTjD8x32oymm6TOdx0S7h5y/cIFO\nt8PIa/TvprOPIf5FMoS9xNPD54WoHwXPpq8vauS/B3zlBX32S/zxx7e5f2asZ41vcTc/7ku8xNPG\nixzbL/ESL/ESL/ESL/ESL/ESL/ESL/ESL/ESL/Fs8GeB94GPuF/UuaeD/5km8fQfrdT1gX8CfAj8\nY2DVKfmvL/v0PvBnnmI/ztNEx/kB8H3gr7ygvjjA79HYK34I/NcvqB/QhMF7F/gHL7APLwpPa/yf\nNb4fF/cbo4+D+42zJ8Hp8fK4+JTG//Jd7pOb+DOgC/w94Ec03/Nfesx23lz252ib8WTP/7lBAh8D\nlwCT5gd/6xl91p+gyQqzOth/GfhPl+VfpMllCvD2si/msm8fc0/iwcfGBncdgQMaB9y3XlBfvOVe\nAb8L/CsvqB9/FfjfaRKA84L68CLwNMf/WeP7cXG/Mfq4OGucPQlOj5fHxVUaweFp4FeBf29ZVkDn\nKbRpAHdoJtfPPX4K+Ecrx7+03J4VLnFysL8PrC/LG8tjaKS/VSnpH/H4M+3D8E2aQE0vsi8e8PvA\nF19AP7aBXwf+Ve5KWp+H3+V54GmP/0s8HTI/jW8Cf+optHM0zt5+gjbOGi+Pi6vA4AnbgIa4rzyF\ndk7jzwC/9bg3P28p5xwn02zdXNY9L6zTvJqy3B8RyNayL8+6X5dopKnfe0F9MWikwV3uvlY/7378\nCvDXuJuegRfQhxeFFz3+HwWXuDtGHxenx9kPn6Cts8bL40LTTAzf4cmiXr5CE8v+f6FZnvo/cfdt\n5Elw/+xVj4DnTeafJ8/+hy0Je9p9DYD/C/gF4HQ6nOfVl5rmdXob+Bkaaed59uPPA3s0usH7rXF4\n3r/L88Tnve8BjR74F4DwCdo5Pc5+7jHbeZTx8lnwL9NMVD8P/Ec0qqrHgQK+DvwPy33Ek2sYjrJX\n/Z+P28DzJvNbnNQHneek5PWssUvzGg+wSTNQzurX9rLuacGkIfK/RfMK+yL7Ao2R5R8C33jO/fhp\n4C/QvO7+GvAnaZ7Ji3wWzxMvevw/CEdj9H/j7hh9UhyNsx97zPvPGi//6xP0585yvw/8feAnHrOd\nm8vt95fHf4+G1J8ED85e9TmEoslofolmJnqWBlC4V6f4y9zVwf4S9xraLJpXqE94eqtjBc0A/JVT\n9c+7L0Pueom4wG/S6EVfxDOBZpXkkQ70RfXheeNpj/9LPB2d+f3G6OPgfuPsSbE6Xh4HHtBaln3g\nt3ky76jfBN5Ylv8G8DefoC2Avw38pSds47nj52ms5R/TGLieFX4NuA3kNHrKv0xjyf51/r927d4G\nQSiMAujtncIBjAvY60I2DuUs2DmEC9BZfBAspOGRvOackuqGXH5z/0/gHlOmd5Lrjjkuqc/OIcv8\n6NYhyyn1f29IzbPu0/Ee5ySpi3NeJ/TK0MNe/Z/7PWbp91ZrHd1irWetfvuyxTGVaUjNL1vvPefU\nm/kryTNta5ZDkk+Whw0AAAAAAAAAAAAAAABA8gUCSawI/1yNXAAAAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAC5CAYAAADavt/0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWnMbWl23/Vbz7T3PtM73aHGrqrurrbdbbttuulYVhqT\ngcgycQwIGVlYFiCQhSCRAUu2IyHExxAhWSIKcsRoRSJBfLAi5AgMIU4CiWxIYqc73XZPRVXXcOu+\n953OtPczLT48b7dN1O6qxHVz7e7z+/See/Z99nnPfe561l7Df4mqcuDAgQMHfn9jnvQHOHDgwIED\nv3sOxvzAgQMHvgE4GPMDBw4c+AbgYMwPHDhw4BuAgzE/cODAgW8ADsb8wIEDB74BeCzGXES+X0Q+\nKyKfE5Gfehz3OHDgwIEDv4W813XmImKB3wD+KPA68KvAj6jqZ97TGx04cODAga/yODzzTwCfV9VX\nVDUBfwn4ocdwnwMHDhw4cMvjMObPAq/9ttdfvv2zAwcOHDjwmHgcxvygD3DgwIED/5Rxj2HN14Hn\nf9vr52ne+VcRkYPBP/BYUVV5Evc97O0Dj5vfaW8/DmP+fwMvi8iLwBvAvwb8yD960dPf889gMO3Z\nwCjGG7QX1IM4gxGhqiJiEFMINdMZIe935H3ECRgpqCkoiqpiUgUUjGCtRUSotVJrJidlt1NSugEs\nxhi2byaWzw7YXlgOM+YLz2J2zKyb4Z1jHEfOLy94eH4BCMMM7GBx3qA2Y5zFONCijGOmZAUpCFBq\npVah1szqeGC2MtRJmR5Zbq4i41bJSTHGMF2NPPOtc3zvEWvJ2aLVUKtBFFQV1YK9/X1s8IgD64Qa\nKkpGfaWkSiqFGoWyVXStCLC6f8S954/50Hc/z73nnmV5Z4Hzls1mw9tvvcErX3yDh2894pW//oDh\n2TnbhxNmctSaMQiOijWK85XQO5wFJ+0zxpTJxdAd9/izwN17c/ysYK0jJxi3mcu3R3YXyngZmTax\nrest4iriwBnLyQt3+MC3PM9v/p3P8x3/wrcwTYnz1895+PoFXgQ1ghqotQKGUguhh5mtuOAIXQUs\nIPy1v/Cbj2Fbv3t++Id/+Ou+/6lPfYpv//Zvf8d17t69+47X/Mqv/Aqf+MQn3vG6H/qhd05b/fzP\n/zw/9mM/9o7XffCDH3zHa372Z3+Wn/iJn3jH6y4vL9/xmp/7uZ/jx3/8x9/xOoBf+IVf+Lrv//Iv\n/zLf933f967W+qVf+qWv+/5rr73G888//3Wv+Qpf+tKXvu77m82GxWLxjus8ePDgd3zvPTfmqppF\n5N8H/hfa/67/+mtVsli5jfCIIKIoFVUB45rxEgGpGGPbBzWCFWGxGtA+cLO+xqpSKxgxxJpbfEcV\nLQKqON+MOlSMqfTDiNoeTQVnLGIi3nswlZgifoI9O5wK2VpSSogIq6M5OSeWqx58QZwSKVQBtUqt\nGRcsWjIUoYpB1YKOrFaeo/tbqnSIeqaq7DaVkgzWGayR26/BtN8FEHGUmhEsIgDtUCsoYdGjoiCK\nmgLGYL1CqLi5IkmpYyEboVgLO8fFo0v8mSNZwQwGO/dIFYyxqAW/Uvyo2F45fb6naGH3+oQ3gnMG\nq5ngPc4YnBSMCtYKuRScM4g35FQwpVBToVbBSDtgfTB0vSW6hHUVqF/dA2IF7yzzbmC1OKLrB4IP\nHB0ds9tu2Q0di9WcqoVaK6qZUoVCRXMmRcu2E7pswLcDepi/1zv6wIHfHzwOzxxV/avAX/161xhv\n0aqogGIRCoJQVBERVBUrjpQzM2dxttI7Q60RkcIw88QxIhVyyph2XxADBapCpmCMQcXRzZSjowDG\nsL0ZyVHZPkq4AM1/hf2UyGWHsY7ZfMD2hpNhgbVHiBiyTkSNxLpDCqhJZAtiLMQC1qElgSjOVUzX\n0d2PDKce3SnXo7BPE0LFOoOxig2CiJC0YtVg0fawYhxFBWpBMAiF0DmcETKgCrV4XNnBzFLMhErF\nDoI6wRmD6SCZyiCeo9MFpWbiOLE53xBLZXP5iPXVmpyu6GYV1yvhbmERlY7A9jziLVh1WGswGtFi\nECeots0zJaWaQph5LIZJMr3pySkDQh4rVjzGZ5SKmAzVoFWRJJjOYhfhq09n1js67yhDR7+cEbY7\n8tgO+lIMIhWyImLbvimCCWCtoeulHc4HDnwT8liM+btCoBq5zcDehhlFUASp7bE6N4tFTIXBCkJB\ngVoLaYrUknDWEmYdu92eqgpqUKNUMpotnRe6vtLNPMuzGasjTy7Ko4eRMgmut8SoWBVUKzllilZE\nDH0fmM07jDFYa5ninov9I0wVSAYlItZhXKVWgzUV7S0qMD+Z03fK++4McASP5JLVdsXDPAGCCPhg\nsFaZn4XmgVdBjKVYEOMgtsOIWvHBIEZQzYhx1KqIFDRZyiYjnUE8MGS8GIorlB3Y5OkXHgZhSpWr\nyw16fsPF+Zr99hz8SLEJFzJ3PtIR5tDdUbwVclbMFqQCVERamEPEkWLBqqfWQqmC2J7l2YzF3GOs\nIghxqoxjZLPJpCkiGIxxVNHbEFih7JWyKoTeYZ3wvo88hwSPLwXvDLNZz75mam0HbvPQlZQStRR8\naJ9TzMBsPsf7J7el3y337t17z9Z69tn3rlDsox/96Hu21vd8z/e8Z2t97GMfe8/WeuGFF96ztVar\n1Xu2Vgjhd73GE9v5VhyqGWMMSRWVSikZqR1GDDVXrAqCRWtkjyEMilQl50wpFS0VrMEFx+n8lKuL\nG1KKgFDVgShjivQnM/yicrSA49MeGxxh2OGs5fpiIt/sMcYg6qilkFLz0AsDIh3GCVUnqikYa6gx\nMdWJSW4IdU5vA84pyVvUKt3Ms5jB0dnAP/ttH+F8+xZ3ujt86vwKTR3iMkEc1uptvFdQgWocWVyL\n96sgXtCoCAqYduY5jxGYxh0yQSqKDmC6FmZxwaALcNViUYoU+sUMYxLjuOHBw8T64Y7t248oLtLP\nCgwb8gxOP9SRdc+wEqKFcGmQWDFVKFOkytDCYbVCgTFWijp0Jkjn6JxnOczBF/b7PdhE11kmImNp\nYZWcKrXqba6k7YV9zhgrIMLT33KXlCcymbHuESKqGbRAVsiZFEdyrNTJQhb6IeC9IziPd/ax7lsR\n+X7gZ2khxP9KVf/MP+4aB2P+j8fHP/7x92ytF1988T1b6+jo6D1b6/e1MVdVrLGU2sIrBsGIJedC\nNi3UQKmoFKRC2k5siyA1oTmSU8JQ29+UwtB3DM+c8uh6y2azQycBqxh1bDd7Fkcr7GDpF5750ZL5\n6oT9/g3GGJmvjsmpUEplGiP7fcLulSxK6IQQAiKVsYys95fs40RmxPeCtS1ujRpMZ6imYoJhNu/5\nnhe/lSN/n3/3j/8kf/vv/R+sv/Q/8WgO67qjWnDOIaI4X8g1YJylH3rEQsnajCgVQdBSMM5DqaRc\nsDmAVNQKOSayGjCKhoLrCmIVMxN832F6pdrKzc3I9uaKR6+vsVHp+ogLFqrBaWXoF5g+sWZL0Up3\nBuMuY64CBYuUiHeOXKTZ1ipkKRytThhCTymFKUaCNRhjWvzfecLSMZsiV+sbKpWqisuGTMXOPNYL\nu7RnO22RfcZ7Ty4JzbcJcBFyqeRcQAw+BFQTtQpKwrkZw9BjTUuAPi5uu5v/HL+tu1lE/sqhu/nA\n7wWemDGvNA8aFDGGioGiWNviqaRMAUQrVSoinu31FsqeNG6ASt8ZhsHhXQ9iCH3HU13P9dAxjiNX\nm4laM2lSri5HnnrfDNcJR7NTzHJgfN5g5SHee6YpsdmM1EfCuLlknBzGCo92kYX1FAO7ccc+ZvZp\nfxvr7rHWY51BxFGL0puAx7GczdnulT/+iR/k+guv873f8oeQ7tvYvvqn+Zz1rKcrTAsqgfUYFXxv\nmS0ctbZvJ08FRKAAtwa+ilIqqFEwhhozUgyahWwyMhdAcN5iqYgWnAuMaQe7yvlbG/YPY4uBG6WU\nDFV5+vh93Dk9wc48b9RXGMcrfDAkDFEyWg1ilUrCucA0ZWoRUipcXWyYnwzU6igUjPGoEYrpqBpx\nRtFQMcHhbQCrFAOzIdAvAqG3LRGuEKfYnrxyJpYJlYL1jhQzIhXNFckgYvFBSDninGWxmDPvbfP6\nHx9f7W4GEJGvdDcfjPmBJ84TM+ZSFRVt//G1NrMmUGMBUUouOBXEpmaUbg1YTQI44n6iTpk+FOZz\nxTlLk5nJdL1HELwTdrvEOI5sb/acvzVy5+4xetoRwqw97npHjLHFYM8rm+sNKSW2+4ldvsbkxEIE\ncY4coRiwPuCD4vr2TGFsRZTbckhPqpljf8SJnvDrf+tvc3P+AHHCR77z4/zMT/7n/Cd/9mf43AWI\nte3pxLYY8mI1ox8CKWa0Vvaqt0ldoaZMLrQKH+dQa6i1VQGBoeSC5hZeqVVRlRbr9xYjmYphTJG4\nGTHFUHImRc+0zZzcPeXe0XM8+/Tz2M4iainxdd68fpNynJG1QWzFiLA8mmOXjgG4fG3PtANjDSlN\nLIMHDCllKhWt5TYkBhaDteCXLfzVGUNYuHYoBsF6ZUwbyujw3lOrUmrLYeQYAUvXOSKZnEdUlJKF\n2bBkPp8xny+YBUeO+XFu26/V3fwHHucNDxx4tzy5bFFJqLW0gjvBqFC0Ai0RaSg4cVhjMOa2TDE7\nsq9EIi5ZJCZ2u5FlmjXj7xwI7XDQRNWKdY7QdaSUub6cGHeGFJUuwHy5YJ4n2BZC77m63IC0KpiS\nJorCMBN8V2+NmSPngNaKOI/3ihiBWlvBnSglR0LXk/Ke7376O3n0a/8Q38+ZdwOf/X9+lR/86T9H\nSn+SMBvAteIbKaAWul7AZQLCGAUwGK1ULRQFi6BiKa2UvoV2xJPqRDUeam6lgcW0Wm7rEIFcEik7\n0l7R6Kk6UqtBkyEnxVXD7OiI+WKF8cJyfsrRfMPN8ZZ6ueZmscPtPFaEcGSZny1IVTFhRn17i6On\nkFEVxrwjiuCdx1iLxbVSSpcwTvChPYmIE1xooSkR15KhGTCFWpVaC8E5sJmorX+gZEOtFmPAZ08m\nYbww6wJWDcEHRB5rr9C7cvs/9alPffXne/fuvacx8gPfXMQYiTG+q2ufnDGvGcRSpMW9KxFTDUkz\nzkJwCjoSPFgPBovthJwNLhrGKoxF2F5FLswNUi39ImOtxVRFSqHGQsotPCEus9vtePRwzbPPVGqs\nLBdHpGMl5RHjA+Jyq2HWyt17K6Tbc3wi2LlSipDUNi/TWWzvGfoOY1vZ4LTPVBTjPFITi7JCrze4\nrmPoO0BZnt7jH/7FP8Nf+rm/xvf/5B+iGKGKEqeKN4YuCMYaCo6cb24972a5BUvRSlVBChTbnmZU\nAGORotSk6OjJU6F0CefbwSYVSorN221dSIgYUs7ECfpwxJ2zezz33HNsxjX78YybmxuWyy1H7zvi\njf3bXHxhTT/v6JceNxhWqyNWdyKLM8fmagTjSbrHpEoGYpxweJRCqe1gNcHgnGAcOO9wwbdyRdeS\nP1VbYrVVK02UMaGlYD04K+ziCDjsVyp7KvSD5+zsmNVqhnO21dw/Pt6xuxl4Vw1BBw68G0II/7/k\n6Ha7/R2vfXIx85RBLRXbaocVqihOlOAqnVeMhy4IzjZPVFSheqaxIyAYI0zrxPpmonLFfBNah2Jn\nyLmSs1JiJmvGWoeYwlsPL3nmrUvs0wus3eI6h+06ttsbprhDidy/v8LayvJsRlgWJt3jgydmENdq\n2YMPGGvpuo7gAr3fMu0mjKm4rBzNe24entP5GUYqRiymZG7qwPWX/y6f/MC38n+dfwESJN3R9wHj\nKgZHLIUSa+tsNRZRqKqE3vPMM0/x1oMH7HZbEItoRqQlP41aarG4CSgeVaXeVv20sFZlfuTJ1jHe\nRNKYGWqHdZ75YoUag/vq7zVwtFhRpHLn2US9UnS/RzvHsOjpVoG5n2GGgJt35F2iACZknLXkDLUU\n6BRvelwQfMiUVMHS6v+rRcSgKNMmoqKEmUOAuB/JcUJSpuTW/Wo9FNOcADGVzlnOzo5YrVYMQw/W\ntPUfH++qu/nAgSfBk6tmqRVyppaKWIsaizEF68BowQUIoTIbHM4ZQLHib2PT7tbDM0QXWd8kNtcT\nNSvx0R7rhdC12rdaMniLDQklsr2GT3/uM5ycnPAwXbE4XqApsltvKRl8B8enCzqv+Hkmm20LWyCI\nMRipVIFMoqPHuYCIYdZ3zIZmgJfO8cE7z5FfiQzHAzWNmOBQEeI0svn0b/Azf/K/5F/+T/8wMXhc\nMayGHmOEmoUYEzlWqCDavFBjhHtP3eXO3WOeun/GF175Eg/evrh97hf0tktUkpJGMLsO6xJqCyIR\nwdLPA3fvnRL3HW9/+Zy3395gZnB2dgcqpNIe6a5vLsh5x2oxZ6uR+0/fI75duX5zT14X7P3AbD6A\ns9xddFxd7lhfbyklotVhRNBSsUDv5y1x6QLHqwDO4kQopXJ9ecN6MyKikJRxP5Gl4BDiLmOKorWg\nWimSwRuMozVdUZkNMxbHgTBz+L4DI5S4f3x79l12Nx848CR4YsbclKZfYu1XGoUUNYAWnC94I/gA\n3hWsLxjjMCimGuzCs3WAqzgbqEwM8xOCc+zGxMO3r4lrwFSMEexQEPFY40ET2/2eXVrjcOzHDbv1\nFZvdGiOW2SIwzD3DUDBB2UZBEGpsIQ/jhJoqacpElwhTjwkZ2xmGWYcw8ezpKXfK81T/BqKCsZ5h\neUTcXGEqbEXJn/s1nrfHfCFu6X2rU7dGSEUZp4zxYKppnrVahlXgzumKWedZLgbG+BTnDy8p6jCS\n2ncnSlWPTBUtLQlqb8uu++BYLu/w1J2nWPhjNk8/w+de/QKzU8/Z/adACtNuz8XFFW+9+YCb3Tmr\n+QnOCRPK6Z0j1o8u2F5s2G6OCGPCL2HoAovjQNHIzdUepFXZ9J0juIDSId4RjG+JAeG2+UkJ907p\nhh1XVxtKzZRcyfuIxsK0jzjN9J2wWPR0/RysMKbUmsW8cPfoDvefuks/C1jXEqulPtYE6Lvqbj5w\n4Enw5GLmClag5Nza4GtFrFC0oMpt7bmCqcitfgt6G/P10ElL7hU1zBZ3GYYFs9kMb3pOTx/yud/8\nInlXUTFgKsWBmQxVhPmsZz2+zZ3lHaa6Z8qRNE5oNfjOYAdzW/pnGXOhqCVmi6ug2u4bY2GT13jp\n8LYDMZSS6OcdN48uKekGEY9oa/nZ3WywoWec9sxqYfvoDX7qR/40f+rP/yRuPuCsAwzGtQoe1zVv\nu0aFquzHiWE2Y5gFQh94+pkTXntjzvmDK1CPaV8PSivnlNw6I0PXPm/nLad3Vzz37HOcnJxx/eCa\ncGzJLuONJcXIozf3vPXm69xcPuR6d0GeCst+RTKVyWQyhjoaHrxyRb+a0816MGBdYJh59ntH3GVS\nrhjJGBMwtWBtQKV10dr2r0qtlVIqi8VANZWHFxeUXKmxMO4m0r7SB0vvLN4tuH/nHvPFjKnsidM1\nYg1DF+iHHj/zGG/J45YxPz7P/MCB38s8QWNeqUURNdQ6UkWwxpEnpXihdIlqleybYFapE025BFDw\nYglDILuMdXOOV6esliusCbjOk3LhzVffYooRcRatQk2GMLccHc8ZmchmR0wT1ELOlRgjxllKVSCz\n3+8Yd4liLLUaHJ5SKjWCE89uiqxvdnjx+FCxYtnvM8/YpwkV/Lwj54oYYbfboGPg6adO2U8Tj87f\n5qOf+D4++f5P8A+2X8B4xTlDHismFBxKqQ4yaDGUmLjYrHnq3nOEmWXcVJ5+7g7VavNoS6JGSBVy\nghRbW79qxYhBpeDVcud9d1nOZ7gQiDaxmgWeCTOuLrdsdxt2l1dcnp+zK2vWmw359FlInl2ZULGk\nKbE/j1yf7+kXjuJ6fAC8UC2kW2EcY7rWH+CESsGZgSlljAjeW0CxpnWCzmaBUz3m4uqKNCXqBDaD\nN47QzTk7vk8XFlgJHM1XzO4+w1jXWCksjga64FAtxBQp7zLzf+DANxpPLmb+FcEl6q0nbimxIAbi\npEyjwTrFdJXswRghaWsW4VbO1ztBcHReODqac+fuXazxWB/YryO73YbdbgQFpVI0kZJhOTvheNkS\nk/v9yH5XIFd2+x2hs+x3GbHbZuCzRdVRi0XwxF1EFYrRVnanypgjPnYEP7Cwx9y/8zK8HolR6Pqe\nWpX5fM7q7B67zQ29D1xfXvDF//2v8B/9O/8h/8Ff+GmSm1rFeJ5wvQHNpH37blTAiONLr7/Ciy+e\ntQNGCt3ScsesMMaS4khVZbct7LeRXblpf/dWuKyUStd3+HnHYjkjRGHVH/Hhco9n4oydFP7f6S3+\nuwe/RoqJEjPRRG52F/g6UERIktgXRafCl3/jTfpjxyCV+aqn1fc70uQg5qZKiZBrZZx2bPJESorm\nQugDi1mgc5YpRay1zAdHSUt21xM6ZfKYmZKlFkE0INrhTEfvPEpL+voQyLliyagqcUrE8WDMD3xz\n8gTb+cttw4vHUFsiVE0ro1OhDJmcwEYlmYoNIDiK5qaqiMWIQ8ShBoZFz/JkQQg9+5QZlgOL5RIx\nTQCkCsQ0MQxzpMzw5gjRTE6P2F5PbG+2pP0ExuCcJcdIzg4VzzRB2kVEM3Uq9F0HHlRbq791nq4/\nInSn9HpEX+6R6hprCqVmnBnY7jfkiytyGrnRkTurI/YpEt7e0psN2nWkPJJ0RKRJvpavaklWhoXQ\ndYFXH77G2ckx3sHR2QI7twTnCf6p25K+wtXlhqttzzpdAptWd38r6bu9uGKohg+/scC9Hbm6fJXP\nWIvUxLd910d55tWBq+rYlALGcb2/gTQy3Sj7apj2rZlre17ZXkdMB5WmsVNzi1dbY1GthG7AiGBn\nc3KEm/WOqWQuby7YJcu9u3fxvaOMBecsvQvMfMdms4Fo2ZuR8zd3HM12eAkMDpIprXzRgTphuxnJ\n3lJK4uZyw3b7eGPmBw78XuWJSswZo9SSbzW75VaeTykqxKSYMWG9xxulSquCEGmlaxhDTc1jx0ir\nmNARYwPOg+scznlC6NpjvbOsd4aT1Sk1CXnblA/31y0uvd+OaCmkpOypWOfJsVKyJcVK3NIagpxn\ns53wnSC9aRozt1oky+EI63oWXYeyYRoz2UaGobbSOWcY5ieQR9I0Erzh9S/9Xf7Ih/8o//MX/yZj\nSa2ccl+Jm8J4AxVhNnhc77C+cPXoEiMwW3gWbsbJ6Qm5ZAyW3g/YI8swX9DfePobyz5BqiNSK2Wa\n0HXlfa9nysNXicXgwpycEpoyn/u1z/Kddz/Mr169QlVHKqklnL0g3lJMJlfQJKgUNtdruuMlk1Gc\nGEquaLVNz9w6+sXAarG81dypLE9mnD+6wOwzxkGVieXpXcbNRNyOTXjMwTB07NNIRZm217z95pcx\nFGJcEDphftzh+ogTxUhlt5vaQbXZsd2OT3JLA/DJT37yPVnnC1/4wnuyDsDV1dV7ttbp6el7ttZL\nL730nq0FcH5+/p6t9fnPf/49W+vdNv68E/9Uh1P846AIYpp8bEvdtUYYK4U6VZKBFEpr0lFuq1cM\nznr01mutmpn5OSJKrhPjuCWXiawTSsZbh/MerDDvZ3R9jxRP3CrjLnFznllfXZGnTEHREUgKXqA0\nTzRHJU+QciXFiJiKDwOmKlorU2wyvcYFFrMT9g+ukN1ErULQgkigimNzc8Pp8phdjMyCBevxYc6/\n9L1/jL/xpf+Tqwj7zch+W9lvlZIqNvQU07pAq1imXDi/OOcsz/FWWHQrrHXspoxzinGGfnDc6+8S\nOsPDR5Gr7Z7OzrBm4NvfEI5zItkeCZ5geiiRuN9wtdtQUsGXQtKCLRZNlegjxRowrkn05kqYWYy2\nA4JgMC6QKmhuE6I63xFmPf1sBhR6ZxDjWNzruLi8IseEw1NJdDOHFM/65gY0Y13Lk4TO4zrDZnfD\n5z9/w7AKHB+vOEsL5suOOHX4rnW77raR7XpL3h8SoAe+OXly2iy3E3QUEClN8U8VY2yrXKlCqUJO\nhXE0hKJkJ+AsWEUdhOAxpiCqVC3s91uSj1yvL7i6ecB+v8aZBWib5OO84/rmguViyWadMN6xudmS\nUmEay22oQClScf52wMWopLGQpkzVinOG0Jk2vmwspD6iIuxD4PLqkiO3pE89qBKnDH1ls73Cd3PO\n7jxNzCN+CGzHDfEiUqaRk8//fV7uPsBn3vpV4tZQYkRLAflK4tZTklBtRyqJdLNn1c+pkzJuI1PK\nbGNElzNk2aY1GRQjlvt3n2Ffthz3Z/zznPGMOeImb+ntDGsD1jhqyfSzjpBG7vcrKg5RS9aKKRYJ\n0kbT0UYhaYFuFrC9Ilaa+qMRco4YCTjvsbaNuCsmMswHOuPIonhZ4DpHLhNpn5AEg5vzKEWqKazO\nujb8winDzOKcIeVCmipKYbO7Ydg5xGaETC8dpSTimMil9RscOPDNyJPTMze302P+ke5r1TYEAVEk\nV1JyZDI1O4xX1CneWyyeJJEQDFkTN/sr1C9gB/v9DTFuSbWVG1o3x0hrF5/yyG7a3Hq9le00UvaZ\nXDK2WLBtis5+bI1NOSk55ta4UgpGWtGk1Saxm2NkihMOx0PewEzCxxbfyk2aSFOb/rM6OWPcrVmb\nwNHZPY5PT7i5eJtxfc6wOCVvEz/6J/4N/vJ//LdYzRZsRpB+B7G1A4lCHgt5vyNNe2qKzBc9Z8tT\npu3Idp/4wmtv0s8sJ2dLju8cs1rMsGpIJfH86lleckd81+l3sN9eM3NzbOiwxmGswbm+jbQbE8/e\nfz+7X29PNLHGplVTmvSsOJqSThVs57C9w3qPrQasRbUpH1oxIJUp75mSxUyGsPIEH4il0AffFBe9\nhyxIqsyWA7OjnnE3MnOFMGvt+VpaYnPaT1AtIqU9Gflwqz1jMDhKuiGnCuV3rwt94MDvR55c0xC0\nJhenaDK/FTen1Zhzq9mSUmkj4UqGDCUEiiqehNiOUkA1M047ylXCGU+piWEW6OaWvImkbDDVotag\nOfHw4k0kKCqFcb8lj2PzRLPAVFBxjFMEdZTaDh2RipiKSGnDmo3BuExR2G0Labwgb5V5GuiOPUUC\nxhbyuGOVply1AAAgAElEQVS9vqEAc2d48OABcZrwpuK6gQcP3mIcL/iu+8/y7afP8xuPXicEh3U9\nmERMlZInxm3Gux5jlG5u2Kw3aLKMWtGqXL19wRS3bE6PePvNt3jppZeoBjotnIVjfvSpP8jN+gpj\nO/phTjWewXvEAnmkjBlnHPMwYxEWFANjviFKoro23i0sCvtQKc7RHVtC72+rhG6nIZmAOIezFuc8\nvQ3ETWWzPmc265nPFswGSzQDcdxjaiJqZNqO5DrhByFVpTcWOkvNLbzlS8XMeozO8KFQa8QYxVgl\npZFaLIXAfjexPyRAD3yT8gT1zNsUewu3nYvNm5PbSexVviIwJeTSNEaktvhozoWZOFansFh61NBa\n4FPF2YgxjtVyzjQW1mlHzolCATVtRGiaiGmkilJVm2pfNkgBiqFqRZMlpYqUgjrFhtqGH0imUCjW\nolKhNjGoaW9ZT1u6E9jvtjiEJC0RaNzA2ck9osILz99lt9+z3W+Qkig5M4Qz4sUF/94P/9v82f/x\nz/PWuCbRBL2u1iNxLMy7gdO7S1x/TayVPCX2aU/d0xKgUiFXLh5ew5VjZpa4heUD/ogf/Y6Pc755\nhNWmIFmNbx21Yql5QtQQuo4+TUzjjsWwIuuIStd0bWhPPyVZjPf4U0NYCNUIEtpAjrhLLOwCNUrw\nnuVyRZHCfrvHmMDVw5HF3OG6wLIb2BmDlh1pyjgfqL7gvKOfGdRbSi5MO5jGxH4smGro+5bwns1a\njqSURAiekjN5LNRJmabHqs1y4MDvWZ5caaK06UJNgISW/9Q23LhSEdMqRbjtGCyqTRmQTCmWYSmE\nLnB2eowIrDcbgNY09JVJ7ctAHTO7bSZVJaepraMVNS2xqgC21a6nUpDqMFqxpTKlBKXivcfYirG5\niTlZQ9GCcc0Q+t5TimEct9T1RC4VrYJiqKrEGCkF5ssVDx68zTSueekDH+ThW68yLBc8urrkbH3E\nyx/7A7w4W9E7T5HCjd/R24EH0yXPP3uH0V5wcrpgo2t2NxO7eEnaBIpmck2I0MZBj4V0tSbfRP7N\nH/pB/DZRaNrpVS2LoVWwlJKQmls5pjGIs0QnLO6ckKaRsq/sNyOaU5MyMIJxyvFywbB0mK4Zc2ol\nBEeH42g2Z9YfkV1iTBPDbCCnSpoS66sNp/0puWT6oSOOE6Hz1FQRbZvAWEGrZbsfyUlJ+4mahBIr\nvoc+dDjf1Beda7NQ06RNhrh0VN09tj0rIv8N8C8Cb6vqdzy2Gx048E/AE+wAbYMVWvu5Ymit9vW2\nJ11ra5YRade12nIDVdsw5L4nhA4xhvmsw1jL9fUNIq32O+fMEAamPkGc0KmQNREzGCq+s1Aqwd0e\nGlZw3hNLpaR2f8nSkn42I0bwg6UGcCHjvLk9ZhQjhiIViuXZe0/T9zMu315T04Q1luXxGWE+xwfP\n6f07PHgj8ulf+/soGWeVxczz6PqGu3HLR+7e530pc391wt/44mf40FHHpybDVXzEC0/Nee6Z5/jS\nzWehGHbbPXmXMaFiDISuY7ed6HTGEOFf/94/gouJbRwRcYT5jH6+JE0T3a06oqb23brOotuKdIan\nTp/mYrdGnLIeR7bpEoMFDG5Q3EwwvUFsIZsmNXzs55x2A7N+hnOtbFSppDhRSm3H9jRRpja4ousC\ni8UKTbeKibf/7nlS4rQnx0TceqZtJe4y89Wcvhe8N2htyeFaKzXDtB9Z30zs9hV1jzXM8t8C/wXw\n84/zJgcO/JPw5Dxz4Ldc8qbDUm6n4yja9K9v29Fb9NygtbaKkzYxFME1I6/mdpivp7MdNUPNipE2\nJFiMQV2hxISKoVZIU8YHwXnB945aDLkUrIFYaxv8gEU7xYUm1sUg2FDb0OCQqVgY25AHSRC6wKo/\nwTiDoBQMq6Mj+vkRPnRcXV2RcmS5WLG+Ouel97+fz3zmHxD6BVUr4+U5n/zgyzy43nDsLOPd55i8\n5fn+iHPd0R05Xrj3ItXu6cY3GesxD9aP2I4TT89nJCwPs/JMWPCvfvx7+ehzL7G5ugYRrLGI75hi\nZN71eGcoKSICwXt2+zWd73CrJbN4hiLE3Y5gBrxsyVOk5IL3Htu3XEISQeIOj6VzrVSxVbSAcYW8\nn4hxpNTMbr9BUYo1LM4G3MyyWh3h1FF2kNcRSyCnG0oGEd/Et8jYbqCbO5wXrCsYZ4BKViHHQi5Q\ns6HoSJibx7dnVf/mrfztgQO/53iCHaBCkWbGkeahG2kmsCVAv3JhS4i26WlC1owgPHp4zb27M1Ly\nBN/i2Z117VgoisNjS25ecynkkkm3E+G9WFJO2CxUZ5FesKJMouBashNpioPVCSYoYQnGQ7WK9K1Z\nRUQoMVCjRbXwwnNPcbI8olRHzi28cnn+iGm/4cWXXiYMHc/de47f/PRnMc7x6pff4N5z72fpEq7v\nCBjmyzPuZ4jjjo+9+AJZhJqU6xTx88CdxV3yzZYXTp+i3O/4crdg3I3MuxnGDfydz32eT9x5jj/8\nke/ien2Bn80Y1zuG4yXDMGs5gJSompGi5JrZx4xxQswJMBwv5xAz/dUaa8OtTjrtew0W60urKU9A\nTiiF6DKp20MS1BamHLmZLoj5mjxW9mPk0eacXR15n3sW41vdv/eWzndtdqcYqIY8RfZjRFxgtupx\nKjifcN424TUytdo2yDop+3FLjC05bb19Ulv6wIEnyhNsGmrW+ithleajl1uFRGmva21zP2tLfOWq\nGNOmtU9j4fJyRzdzBO+wnSd4j1Ylp+bLN4ldQ+c7YlGoCe8szt5qbmtCq1BKgeox4XaEnTMw1jbw\nISi4NtjBWI/6iliwOGLKOOnIBp5/5g7P3L2HMxVvHNY7TBTG7Z79+pppv2V5csZ+v+N6uyaNW9DC\nh7/zO8lXb5J2G/bba6xp5ZkpV+7fPSPXgpPASUkYKg7lu4+e59IPfO7BQ77t5CnsMkEYuN5HPvrc\nff6Vj/8x6rhjv5+oueB9U3XUWkGVoesoeaLU29r52++61NrCQeqxzuKCx7n2XVkxiCj2dphEG3zR\nGpvUwtZFgilkK+T9xCau2cYdWjMlCzVX9nHk3D3i/v071FiZ9olh6OmHpgmfU6bWdnBrbUJc1nms\nLfjgMU4x5nawhdYmX5BaPM55A0no5/7JbelbfvEXf/GrP7/88su8/PLLT/DTHPj9zHq9Zr1ev6tr\n39GYf62kj4icAn8ZeAF4BfhhVb26fe9ngH+LNlP+T6nq//q1120iUKqKoUmiqmlGvNbaHtURklS0\ntjn2apRSBaltcOZrr15TTaaqcrQIDNaTcxsibIwFVWoBsHhjW3ghBOb9gGplO67bMOdscNbQ+0CU\nTMrAREtymtvhFs5SXMYYRcggDqk9McPgPR944f08e3KPo9WAicLTzz/LG69liusInWd5NGe73fDZ\nT3+GP/jPfZLPfvrXoez4/Kf+Ht/1bS8x9D3T1Rpbt3TzGV/60is8/cwzxJjY18r65oJ7p6fMjzru\n18SLd7+FYwZeu3yL02GJdp7dSeBZt2S1KFy9fYHmdghaaTNQVZWhm0PJ1FoYpw3iPON+YjZvQmHJ\nRkJncZ2lm3uOFwsqRzzcRrwIVWDMCRsL+WZCRZiHjvW0xVeH2jVFCpFCLZmSWyVSKRWNwuZqy/n5\nFcvlMfubLVKVaRyxJjT5g1RbD4Cx7bO7Shc8zoH3BmtNm06kELwjThljPP1QICzx3ZMX2vqBH/iB\nJ/0RDnyDsFwuWS6XX3391ltv/Y7XvhvP/GslfX4a+CVV/c9E5KduX/+0iHyYNkrrw7RJ5v+biHxI\nVb9mvZhIG+LcRpoF5LZ+W1QpVVFuJVwNZCquGrJmjG3VMDEWHj3csOh886xnM+IUqdU2ZcNSsFrp\nHFQxGO/ou8DMdnQhUEUo5abVkIshm4JxhfncUVKmFIeIYkwF7ZCYKLYgxVN9RUWwtdANc56+c8Ti\nZEVyCc2KEVgsl3zxy79BHNccn54yLOZ86EMv85lPf5rTu3dZBDiee8acePD515ktPcuuxztHP1/x\naLOj7HdcXl2Sa221+VbZTRP9ouel9z3P2ekxr375FZ45u8ubF2v6O3fQ4nBujh33iHdt5Jz36JSI\ncUO/mFOqwZqezc0GMZk4OVzX8+buglIStoP5vGOxmrMbO2bDEuYTeW8pgKYmk2aDQ6uScuEygYaM\nCwlsxXolRaEUocQ2o9SUxKtffJXlbIVm4eZyhymV/X7TSlMtiBX6rsdgEWrLlUhoM1FvK55aDkVA\nK2IyxQp9b7B29i629IED33i8ozH/HZI+fwL4vtuf/3vgr9MM+g8B/4Pq/8fem/7alt53Xp9nXtMe\nznDHGm6Vy44dD22bzJ3QoiGgRrSEFAGiBShITV40gqCWQLxA4g2oheg3/AMRYpAQYQpE3YLutJIm\nUcc2bsdxbJeryi5XuaruPXc40x7W8Iy8WKcqgcTB7VT1DfH5Svecfc7ZWmvfc579W7/1e75DCcAb\nQohvAj8OfO67HBslFFy5BM4jhjS/YfM8ly5FIoogZzH7Y4t5NCOFhJLpLz3bpaeIiCyF5P08Yomz\nShA5b/6pPHd1lTF0dYs2mgOuNs/SRPABKRMg5mLSFIJXjMWTsmDYZYzVIBRBClQ1Qgk4bchqQC8k\ndinx20DnGqp1hRSW+4sHeN8z9QMpZU6ePGZhHT/0mY9y8eornG4vqfcFbRsuLy+IdpwVn3k2kFJW\nopQhiEzKUIpivTzkO995g8bU1G3LUbfi8vIMKzTPfuhFHj16RAgR17aEUlDFotBoFLZZEoc9KUR2\n+x3j2GPcvJGsjeM7FydcpHP2456UJ4wtNJ3l4kJSroqykJkoI/IqqENKhYyKZDy6KJAK0iyoKiVR\nooIiyTkggHHneevbb1JCwjpLDondbkMucY75A3IOV/NxiVGKECNFZKyes0198MiiiGU2IzPOIq5G\nMB8UhBD/3dW6PxJCvAX8x6WU//IDO+E1rvGPgO93Zn6rlPKufddD4NbV47v8Pwv328wd+h/GleJT\n5PKepH8OhZg7dinnxBySJpOuPL1n+qIoBZULMSfiJNid9xAkqR9QzqKFolCIeaCU2TNdKcHkA845\nnDM4ZyiuZcyBizNPCoVUEqbJCJFRToMZEd5BP2+IhkEjlUeYgCgSbQvWZkyViER82HIwLaEKnJ5u\n2G08U7+hZEm9PGbvt6yXjtZZXvvC51neWFIPYWa9LBpi2iJMxfbyjJAi9XLFc0c3uTzdUleOxxdn\n+OQRRXBy/zv8xE/+ed566ztUVYXEUjvNNO4QpczjJj9QVR1SGrSpZmEWAtsuyDnhrCP4kTAF6OYx\n0+uvv84TcYbSkiH2hOSRKBbNkt5GvJ9IWlNQGF0wWYEX5BzRUoKGGGa+UQ4RJoHMEpJg3puUlATb\n3cDp+RlOzOOUadox+YEsQFkFZDRz159SIqUMRiLSVXZszsiSEcVQciKLjJHmXZrUB4JSynV48zX+\n1OJPvAFaSilCiD/uLfRH/+yqKBcpoEhI5SqkYuYn5wRFFkRJiKAwenZINBrmSN/CVTonpw/3hF4z\ndJK6yVSVRmlFFABpns0LgRSCcZpYdBlhJK2s2FU1Wk8MlxNjyFSiYGwmkZBaIMdCHt7lk8NYEq6S\nCKnQKhBK5sBZtuMZrTa8sH6W7ZMnPHr7EbvdQImRYb9nHC557oW7xOjZ+ku0hKU54rXtJTZlbty4\nRxs35AyPHz9ktboBRTKkgLGWpq6onKGu15ydPeb41i36aeTy8pLdfsdifYCTkml7yeb8AmNaZDEI\nocg54v0c6pytJhZFu1wxTHsQZbbnRbC4ccT/9etfQnaKuqlJbkI7yRRHYvbUdYM3mT4ElCxYYaiu\n2CMxR3IEIwTSFYScBVlON/gU0RSKkuQExhpa1xJ2E4GCUhDjSIgRpRS5JIxWiJzIcV5BIUZEkRSV\nSSW9F7ghESDnBiDnjNIfXGd+jWv8acb3W8wfCiFul1JOhBB3gEdX338HeO4PPO/Zq+/9IVzcvwQE\nFLCNw9QzCyFfRetoCSJpkogUIRBJgpSUlFBKEMu8sUbO5CEwpEjMjlICOYFzBVSmMBfeUmaVod/3\n5NUaiUAJRV1pnLP0QhC2mZQCzVJT1EyflBSKnzfcpuxBaIIq2CSQosIiCVIQ/AUh3GHq9yzqJafm\ngsfvvHo1909sNxu0vMu23yHCHi3hc5/7LT716U/Tn2/46tc+x4v3XiKHAWSiCIFtHNvLPTlM+Elg\nrGHTb9DG0hysyWLutMdpovaBoC2XTx6jnGGKA9ZV7EaPoqBzJluJVhWCic3ZjrZpOL84o23XjKHH\nVjXvvPaYndxjGkV3w1EtJbYzhCljZUPfjyQhkAqMTLSmgDBsp4EpztRSgwYlMaUiEmeVgM6YYphK\nQAmFKpLoZ9FUjIVhjIQYMKaglEJETchpDmm+8rzPSaKkIqWrIPAiyEQuTkYu39wjr0Ktr3GNH0R8\nv23M/wb8/NXjnwd+5Q98/18VQlghxIvAR4Av/FEHWN9dsH5mwfpOR7UwvCcjEgCzOAhRKFlCyoiU\nETmjEIgiUDNzkBLT7OwXBGGX6DeJ/Tax30f8qEiToHggCMKYSQlCeFf6XjBCY4RECkGYAn4r6C8z\n434ihgIkcsxXFD9Ju9B0rcLZCqtmlktJgr3PmElze3GMVJH1esHy4AAfPEoqtDHsdjvG7TlKGHbb\nCyiZ3/nyl7jYbzk4us3p2flMuxxmp8D95cBmvyflSLiS3z98+BCpJEVoHpycsO+3tG1DLpkYI916\nxbjZIUshxJH1wRIpLdvNgEgVl/ffZvfoCTpH+n2Psy2jH7l98zaqa3j7ySXbx3OB3Dy8ZLOZ4+eq\nyuJMzZ2jO0xjZAoeY0GIidoWKmswolyFhcwxfCpnKlFhdY0zDikztXVz3JuPiChIQTGOCT8mZBLI\nolEoUinIAt5HYsxwdUEOKc0boRkEBorm5r0jXvrJYz75s8/zmX/u3ve5pK9xjf9/43uhJr676XP8\n7qYP8J8BvyyE+KtcURMBSilfF0L8MvB1IAL/dpkNVv4QCrMl7cyJEAgpKHFmiIAkhXkzslx1Wu/R\nFaMkqTILjXJB5pmTHFMg5ky+OnhJkGuwlfx9LruQRC9Jscz0RS2wyuKkpq4cVWXph8zUJwgCIQNa\nSaQVlKJwnaRZGKSWaFWwtcPWGVVJ+rGwLz3TzRGRC34c0XWFULPXTE6eYRzQJbPdnXLz+Dbn5/c5\nbhas1musBp8tIRZQmmHa89bbr7Jc36BzsDnbsj44QElF1bZMY8/l6YOZIonCth1KSk4fP2F5sGCI\niqpp8WOkaY/oFpo4bZHaQolMXrC93HFweMBmd0Fda07DiJAJZy3aitnAKhQudzuWbYtVULkKKzXD\nlQFYrQTZeqSKqJwQelbnGglO1ShpyGiy0UgfmaZIjHHOek2C4DMhjSgBunZoqZFFXPncS2pniGmm\nmxqnr9bBfA4pDELC5eNLKIK2m1fTNa7xg4jvhc3y3TZ9fva7PP9vAH/jezl5ARSKrGZGgpDlXXX/\nux+ujjl37EJIMrNIJCcBUaCKZsoTqkhKTKQBhpgRncUIyFIj1FWwMQnl5sCHMAVk0Egk1jiOVmvO\nz3fsNxMhgKg0VTPz1YXLQMbUEmkKSmeMTTS1w7QZYWenxCF7tvs9cb+lqmcDrKquWK5qku8xorDb\n7ehqxaOTt3nm7rOM2y3FR7CKrr3D5cWbHN24hVGWB/ff5vadhmG3IYSJRw+fcHzrBg9PHrBuF5w8\nuM+tOy+CqRhGD2HCykLvM1XbzZz6gwMuTneMu0zse6TwpDCx3Q8cHd5ic3pGTCMhZ37rt/4+9cJh\nxWwvW4qiRME4DQgdWeqbOCuxqmLfj2wfRepnBTZNGAu+JHLJWFvhsqYSmpwKgjmwW4iMUgqZIfae\nGApj70EWmoUlF0ixoKydXTKlwFlFLQo+RKY4Z40qaWc2U8pIpTg4OkCpgJIOIZ6+Be4fFA39SfC9\nikW+F1xeXr5vx/rqV7/6vh3rwYMH79uxAL5L7/h94f18be/n7/+74Sm7JkISQC5IBEXNRlo5ZdJ7\nz7xyVkSQYkZq5uqOuGKsxHkDFTXznaeMKQo/gbMFVQo6z/PVuaNWpBSJsZBTwlUGbRWCmtVyxfbx\nI0IpSCdwtZtZFHJ2HBRzagYlC4SyyFqhHKAiVlgOaNnvdoybS/wUqauKVAmk8FSHDVJGCh6fJc40\n7Pc7lssDtv2eo+M79OM5xi6onES4itW4ZQwJnyMZwebynOM7dzl9+3XknReoq4aq6ajbA/rpglQg\nhjmQYz88wrgLDqnQRjDtAv1uRyIggsfHCFIwklgerFC24u3tlrqarYYhk0RBFIEQiTFJ9lwikmFV\nWbYbw0UfaLYGrcBqjbVi5t7HecM5CIlM891XDPPdUCnzPkkIHu/nODxBQSgHZb5byzlfpU5FtOa9\njFW4unOhUMocISjQKKVxlZ03xMVTTUK8xjWeGp5iMS9XDoiaLBPEmc1SeFeuPV9h5zf1/LUQkPPs\n2xJzpCDnwGHmhBtKQaPJvpBtJASDniI4QUETk0ApBcx2AClFpKjJUSGFxFpHu9TspoBUAqkEOUMO\niSwLJUpSgpwEky9IEa6YLR3TbsOrm9e4197BCY11iTZLVs0RMXi2u3NSkjRtg9UVi+WK1eKQNO1Y\ndQd4HzHasrl8AtQYXbNarYlhD2XujlXV8ej+CbZtWR4fcn62plus6fsBowTb3ZbKtuz8iCqBdnmD\n4LeMfWG76ZliIA8TMUds25BEoD06wFYas1ziG8ntW7fZbp8QQ8Yz56CmWMgq0HNOW61ZHiq6nSAV\nTUgKj0Z5ha6vWEZ5LtyUERE1oghCzkzTNDNq/Py3N0Ix+h7X6j+g2oUY4xxFBzgnkCohKkGRYLMj\n54hzljAmhFBYqxCyMHkwWnz3RXeNa/wZxlP1ZskIREmzmo9ZhSmuAiNkEVcFXF45IxaKuJL/C4ks\ncu6aAZCg5tR4nxJCFUxSTFNAazlHx6mEdVeba1HgS8RPCVKPEHNIhkZQ1RU+J0hzN0mcuc0pCeIo\nmcIsU2+ipe8zdVchlSAVy4aefugRSrGoairb4P0WazUxRfw0cbi6xfZyw2qxQOIJpdA1a5qjG0yX\nD+mqjpBGbh8s2TKho2K/Gbi4uOCHf/izvPrK7/Ezf+FnoWRu377Ldrshjj0hekxdsx3OiT4gmwNO\nLy44vtHiqgZpPMfr27zzyjcxbU3O8+9Zi0xXN/zek0e8fPYKqlZ06nDumvc7tI5EaVAls/UTnfW0\njWK10jy+zEypEHJGIqnRlJKIJNIUScUTxkBOc/h2ygmjBKRy1X3PF26BIJSApKC0nT3rZcBqR73Q\nOJtRyuGsgOyQai7YZQFd113F2imEkFcX62tc4wcPT5WUKxG/zxcWAqETvDtguRIQSSlARKTK75lw\n5fxuEZ/zMaUq2KqgXJkDh7NA29n9cBgCk0/4KSPkHGYw+2vPkXSbzY5pyuz3PSFklNTMIxwog8Dv\nM1MPaYRpFxg3iXGT2Z4H9heR3TYx7DJ5MHRuha0cdV1jlCbngFGGlNKcvtN1DH3kzu3niKHQtSs+\n/vFP8eTshLt37xCLxocJU6/oug5KRsoOKQvt4oC2bbn7/Ieo2262GRAGbRwYg65W+HH+fzmzYL/b\nYYwgxMg4bGk6hzECYQ1nTx5TSqLfXGKcY337Fq+cvYXXAeMa0IoiBcrZWYGbwShHi8LoiKsC3Vph\nqkKRkXGMc6ZnyPPehZ+To6YxMewGNpc7dhcbxt1E9DMjpZQ0K0zNfKelVEFZiaslbatoF5b1UYWr\nA+1CUNWSZiGpF4a2M7hKsFrVWCNQVaZZGA5u1DSr6878Gj+YeIoWuOVqUxKUnh0RBSBkIReBLAJK\nQcjy3px77tTnW/HEzBsXMqKMRpmMk5HoM04bjJvVJv02Y6Qia5hSpMoWskAKjRKGcexJk2CaBqZx\nP2/CpitPkRwRk0AISBoUmZIEOQp8KGyfJLROVHWhVh2VrGi7Q+Swo5SErQyxj8QQqauaplkyek/T\nNRwcHrNarUEann/pY3zx81/kxq0V/aMRy+FsAFYstZ3VnMM4sNlteeaZe5iq4uLsnXlerCP16hid\nRt7Z71BCIaXHOYdEEvxIKYKj2wc8euOMzfacupL4aaKylu2jE7p/9l/g7d/7W4isZnfFNPvKK52R\nxuKTx6ERImGUQsV+7o5VISrJJMGRMb4QzEwdLUkSpjw7WJZCTAmnLSKBkYpiJabMNrZFZbquoesM\nzgmsmQNGtJJoLRFkwJOCIqSJLOdgCqkL6Nm7HpGJJZJK+uMX3jWu8WcUT60zL2kenSCYrWZV+f2o\nilJAFIQUaAPGKKw1V9FizOpRId9TL7YLiTHgGo2SBu0SVS1wTkEupJBm462Yrtz3NClFlssF6/WK\ni+0F+8stIYQ54m3MpK2g7AQxFHKQaAHrlcE5NY94JkH/uHD+zsT2NBIn+PSNjyLDQD9uKCKj5TwK\nss4ilcGHgBQgqiW2XXC53fHqN77C2aMTnnnuBX7tN36dJB26bohZUDWOnA1n5+fce+6HyHnmko/j\nSCkNWcJ6cYPDG7e4uLikkokY92g1R6vttqfst2e4WpH9wMXZI6bdFpTDDzuQkmefvYdeHCGiYjvs\n6YceHzzDNCKAPvmrsZPAFoMWiVTilUAnozQIImPwM5tllOAN3gtSkEihAEXjOhrTzN70uVBbQ20y\nba1YrWua2tBUDmcNRjlkkRQPaZJEn9BYnJ59XKYpMQxhfr1jTwgj/bBl3++ZfPjA1qwQ4jkhxK8L\nIb4mhPiqEOIXP7CTXeMa/4h4ap25YKYaCpmvnPDkrNgsCkS+UhkWFitDjorgM1rPAqGSr5SiQlF1\nsFg5zi8DSkVMLUEIrIUwe8BSCoScqEpE6oCQEWNa1l1FWdVs+55HDx6iXCFPfvbqiwmUREmJFJn1\nDUx/IjEAACAASURBVEO1iNSLBbtTwfZih99E6soSleT20YIcJcFPWG3Q0nF5ekoIsx9MVdd471HC\nMm4u+NK3v807b53wnXdOiD5x6+Zv89P/1M/y8PEFK6XZb3eM48Sqrjg8XKGM4M7t27SrI6QRhGI4\nvzjhY596kTRN5BjRKnO8PCJFxeVuQ+ssGMO0n4hTZIw7Fsc1Qhpu3V3SHqzRFUDkzTff5uzynP3l\nlhQ8VgtEbcllB0nT+5HaVYiS0cphrUBUEl3EbE8cExlDZv4sUiKjUUIgmSmFRRSUnC/IdWuRWWMr\nw1QiOQXiIOiqg9m6OCZ8mC+8gYAKnl0vudwmzvc7gvdoZRBKIaREykzbVjT1B+pnHoC/Xkr5shCi\nA/6hEOLvllJe/iBPeo1rfC94imMW5u4OgZBAmcMRZgikTNR1R7cQ5GTYbnfYpIk5gypYofCTpzt0\n1F3mcueRahYJJS8QOmJEmSPjckEWiTEWZSYymkV3wHK1oGtramsZ04YxnqMryCiUEQTkHPzsBKtn\nBetVy+5UkoZC9AqtLKvqiCwD/S7y+OItDo6eQ0vH2fkTQr+nbVtyKWTfUxvLlCUPnox8+2Tg62+c\n07bHfOvh63ztrXOE+QKrO7dZbT3LznD74CaTv8QohTOWUEAbS1KKMSZM3WLqms2TR9y+fcyYC1ZX\n7PuBQzWbku03l5RqwJmKo5tHqGy4f/8xybQsDhYEDDlcMEw9+7Md425EmZliWMjMHxM+Q4gjUneI\nNMvztVZIK1CVnlOLUpij9kqAcrUnIgVSSYydPWKEsOQ8kUukriTWZsiFKQikVMQY0KJm2sPQB/wY\nWC8DsfT03rDdeDabhLpSwQoKj8/OmKae5YGj69oPcM2WE+Dk6vFOCPEys7ncdTG/xlPH0xuzFK5S\nZWbDLBBz5idXc3KjaLqBeqFp1gphFaYGYwXWKqrKoI3ANhLpIqqefVRMJZCygNW42rI8NkiTkGSE\nzQhd8HGLTxNNW7FYrXjmuTs88/xNbFeoDwT1KnPzw4I7H5HcfNFx9JxjeVNiXcLUBbfUVIeCG8/d\n4PD2khs3jqGDumkZQmIIeza7S3q/53Jzzsmj13nw5re4/+bLlHHLzXuf4rTP3L73Mf76f/SfcPve\nj9Pdfo5f/fUv0rUrXvrQR9mkQiqBNHlyhLqtaJoWt1igzIptSNx65gUePtmiukO6Wx/m4MZzuGaN\nvOLhay1pGk1lFU1bce+5Y4a0o6oNt28foESgbiVEwcmjx+xPd4gouLm6zc31XfSVyCeL2SelFEOh\nUFVzrqpUAqFn62JjJULKmbXi0+ycqCNCBJTKQMFaTSkTMQr6foeQI4lxvttKIIpEBYUOmrpUKCnw\nfWLyA0VItNpjZCD0e/w+ESePypo7Bze5d/vD7Dbw5GL8x7J+r2yhPwt8/h/LCa9xjf8PPFVqokAi\nZHmPepjzTE8suWCMxtiAqebuUCuF0LNLohCSLMXMzpAzP7lpKnyMSFVQpuCqubjXqwJhzug0misB\nS2C/mQAwTqOsZH1wyPngSN6j15p2UcjK0o8JbWpMNZB8wDQdevLoArqG5bomqUKYdsSYUEaSUsAo\nzRA80zQRfWSzH1kdLnj2pU/xe2/3VOsFv/mbv8NfevCQ3335y+B33Di8RRozw+QRORNjxgfPrVvH\ndE1HVTuKWZJT4BOf+AQP33yDy7MzXKtZr45xpsG0EVlusdme46eBAmilqLsFRle89JEPcf/Nd1Bq\n9hpfLI44+84blNHTqArrLE4ZFlXDflqwLwOlgBEOLQuyFJQxs6DHaLQps5d8nv9uhVnipfWsDZBa\nzX47JWCUReVCibOMH5XnvZGi8FPA4BmyQtkaZxtsHJl8IgSPkhMpRXLhalzlOOw6rFC01YpaV3Su\n4c3zNz/4lTuPWP5H4N8rpez+3z9/7bXX3nt8eHjI0dHRB/6arvFnE8MwMAzD9/TcpzczlwXkPEN9\nd7yilJo7dQWmEigrkMbPGZRWYFxFCuGKmjirNp0DY+fZ+uP9Hi38nFWJZLmQIDUpjchc4axGC5hC\nZH/6kHvP3+Ho5hFSypm6V0kaUyM6S7t0uGrJdjdQRMFWI2TLZAeyKzircI2gsZbJjmhqkvLENJL3\nI+M04oxh22+RxbE4avnYJ3+U+uhZfvf/+NscH3c8PH3Ev/VX/xrKSv7mf/43+V//+/+Btx4+4p90\nFu80phhk44l+RNuK7Cz1Yk1Ie377N/4eb72x4fHZEyoyTRv5+J97iU9+8rPk0sD2DJEK6+UxiYBV\nljFusFXL8y89wzQFchFUqwVvvvk6n7r3MT73yjeoXUulDV1jaahJacl53qHyQMFBsbP2VoCWCSUN\noObov5JIRWC0QaqEzHP82xxMUagbGHeJEAOJkRAFlZ2pj8NlYBCJZ247pBVokVnUjogm5YGSHaJE\npIiUFJAYrIwcrI5Z1YfkAqvlIXVt+F1e++OW3p9s3QphgP8J+G9LKb/yRz3nOvPzGu8X6rqmruv3\nvj4/P/+uz31qxfzmnYazs2FmtMgrKiIzZdHognURYzSuBiESbTu7E+q2wXuPlIrtpqC0x1qHJGOc\nJHmJNRIhPNlUVG1GW02lW7S0KBmJvnD+YOLRozNu3tlDkWgtaOoOFyxK1KwXFaqai9boRwyWojMq\nFZSdMJXCmoJwYCporzY493FCJY9VmnGaCDGhhESaBbZZsugafBg4eRgIQcwOgjny5/6Jz/LFz30R\nGZ9giqTf7UnrI6qqRtYVi/Ux1eoIDygheO31ntf7yHMf+Qz7y0te/drLNO6SxfId1ouaqu7mqDgE\nhsK+P2PZHSG1xo8TSmba5QpVN/yD3/ttvv3Wm9w9vMOTzQnGLbBO0RXD1BtU1FSqhZSwUlK7hoVN\nKLnDpJn/n8WcBqWFQSlJUye0TIyDR1ChBagyYFRi8hFtLSEktMzkNLNicnL46ABBYh7xLGyDLy1C\n9ahSqJSirgO1AKH37Mf73Dq6hZwcojbcEOsPbM2K2c/hl4Cvl1L+iw/sRNe4xveBpzYzv3XrJkdH\n7Wy8VOBdvw1BYbGsuHFjQWUdUhaUKtRdwVYZ12TapWOx6FisLFW1QBsBQiB1IaPp1hbjLLJI6lqy\nPnTYOqIriLFQpowymfOHPScnJ1xcPpqtZN2C2lmcW6JlgzKGwogU6mojz6BRNK1m2TUYbSjSY/Q8\n6z+oOiolcUhyyYRhS1N1rA8WHB0uaaxCpolPfuyjPHv3eQ5aSQqeGCb+w1/8a3zrtW9AKkgjWC8X\nZBUIKWCqFm0NarVAS8eXP/cNXrnY8wv/zi/ya7/1Ff6Xv/V3+PjP/Bjf2GlyXlMwswpUaiBhbYPV\nDTFGnFA4K+mahvXqgPMnZ7xx/1VuH92iqizdomb0Txj9ntrOkvulckgm6txhjKZpHXfvHPPx5z9C\n69azJW3M1LqiUi3domHR1CxqTW1riKBFQcmAtRU3Dw5YOIcUiSL3ZCJV3dDWx+z3ge04h4MoEzE6\ns+hWtHWLkAXlMstO0q4VdS2wVeJbD76CdJmcB6z7QNksPw3868BfFEL8ztW/v/RBnvAa1/he8dQ6\n84ODlraqeb28wZPHe+awIomrLE0XqVuFM7M/SikDTbNgFwNVbfE+YlVmIRuqOqCNZRz6WRGpE21r\nQQ5oA0p1WFdISgKBfjfMxQdNTIVxFyBFJr9DGD139bJGC4vOBsUJqMLCLRmypzBhbcWqPiCNFm0K\nWk9IZiHSOASKH8k+EjNUtkYZy+VmxyuvfImXdM1PfeJ5/tNf+mX+mb/407z88jdZHSz5zGc+y3/z\nX//P/OU//y9DAKMN1gj82ROqm88QU0ZEjVOO3/jCV7hz6xb/0l/5BYb9jt3mlNe+9TovfviTiO55\nLPcZ/Ejoe1arAzKZAvjQE0KLUgYpE+29j3H68AGNMjS3V5xf7NHNim1+CLKnMhlnDUJHEBVOKBZV\nRdUaOtfhuiXLgwUPn5zx6OFjFtbQNWvapaaULSJJor8kjbPLYSoB5yQq16TSIOQeazNTibSdRcSG\n9eqIfurZRU/jwNYCZQq2lrM2WCuObuhZ6eoKmoqkCg8u3uR4fUjK/Qe2Zkspv8VTVk1f4xrfDU+t\nmK+7jugEQzhm8JFhIyhMFEZcbWma2TQpCD17ZauEGgQhDnAVAt3UlqYGZxTJO870lhw1tpKU7JAW\nrBA0rmVkYgg7Yu4Jk6Xkkefv3sVlS0mJFKB2hpQTMvdQWpQaaCvJ6CFHkNIgSqZSFeuqJasKY0Aq\nSchb9sOGKmnksEcrS9Jqnh2XQJ4mii5882tfoD6+w7//b/wc/9Wv/Cqf+sxHGS96fv1//z/5d//N\nn6O1mu3mMbURKGvoDtYoaXBVja4b7n/1Tf7OF77IT/74j7C7eDgHQZ8/4qd+5Ee5fedDvP7OW7RH\nO95+9XfQtePi4oIXP/RRLraPWS2P6Ydzbty4OxP9nUGWyIdv3uWN0xNuHt1i2hum6QwpQQqN1QGn\nKiqnERmECiyWNVV7TJcs7XAIpmNRdaSpp7KOdpFIpaWkicsLR4iZaTdyeKuwWtVMynK8foExHRHV\nG1zEDU1zQBxgvezohOPNh2+AtNh1oqo1rlbEHNCqxlIjxYqcJZpu9upJI6VMFK4VoNf4wcRTK+au\nUmhVaDtD22mII/v9TEusW4F1nqoS9JeeuqooaqKIQko13o9EFTk8XKCNZdGtEUi2yx2ncY8xcwqN\ntBlNhVIOa6EPp+gqoUzi8HjB+mBJSZkkRiqtMVoSQiamCR/3ODFH1GmTISiEsDiTsVpRm4osa5xd\nkuVjfBJs44RTFmsdQz9g644cC75MTOPIZnvGxz9+g0ZmvvP2N/jX/vmfmROBkiD+01vGfWIYMxdn\nD5iMQq0aVnWFFwXhE+LJCSdPzlCq5vDoGGsUOXh+7l/5Kzz/4rOk4lm4hhd/+Bn6J69z/8Hb+NJz\ncvKAtm3Zbs9plwtSyXRVA+NE3j6hqRx1lXkUnqCMoC0dRe9o2jXrKy947QS6gJQDPlccryqKXmMu\nBnwyVHJB9hZBxlWRlHp8XzAqIbMkhow2hcyeu3c+hUZRpprl4hYh9KR8TtPVZHYoA8uFYkobsgCh\nPUp52qXEDxIpJ8gDUqxnewUpUEiK8NTNtTfLNX4w8dSKuRSRIDOucrSdRBQ9Gy4JiSgjyEyREm2a\nOShBBZrO0G8nvI+MKVK3kuWhwlQVK9Fy6yiR8n3qNlFEjyxH1HpBSCMFxWKxIIYti8PCvZvPY51F\nicK+97TNksSIEBNDv8HompB6IGKkJMmMVYbKgTWSLDLaKGrTUuxE3gdMcYyTRwtJRHNwsEThsCIi\nlGLzZMfDh29xQyheOlgSxOzF/vHPfIr733mLh2+8yjuP3+LG4Q8hSqGuDP1+ZFVPhJSIMVE3lh9+\n4S4Rz2c+8XE+98Uv8/jkm/zYj/4Fmrbjo/fuUh8sef6lD7MdtiipGIctWkvatkZri59G5PEhOQyk\nYaRbrDj2NzE5cx5GRLBEt2LR3ODgqOLh+XfIGKbtFmMjRQpKtWC5WJAZuYFFlsDU7/FjAenRMlKU\npTKOysKoa0qZZm65vI8WL9A0HdJMNE3Ffjui3ewiqRIcLisutiOIRBEOsLRtwuiEsZnsJTkFsk8o\nE1CiRjIRy/UU5Bo/mHhqxTykgXHqESJSN4I4FdrWkMuEMRKlZq5yZRVCFUoWWKfwg8SYRNGKnAMh\neEBQV45bt55n0R6R9RuUolCyQ8oWXyTjtEUZT91K6grW3RKpBrRr8MNAY5coJRn8E8Z0QZ1aNpsJ\n1EAOFdY2IBJSFIwqyJKwTqKNQ6oDhBMcHd3B5UzY7GkXgVIEpq64ODshTz0Hh0fU7QH7aUsXaiqx\n5+j4Ng9e/Qq77SUxDtSu8PD+m9y5c5NHb++puwXy/BSpDb4/w1R3+Q9+4S/zS7/89/ipn/4xXnjp\nFs8982E22wvW+5FnP/sc0/YNchg4PDjidLNnHD3tyiB1g5AapRXSLCmP38EAd82CannM65sTQiOJ\nMiKaIw6WN7Gmw1UNb73zMlY7dttTUjKkpJmip20awjBwdGg5ixbSOSVOGD0QZY+rC3UrGQaL0gUh\nEyGeYu2KVDzeP6btKhp7wDjM7KScPMZYVk1NCBfovKRxHdYcQThHuj2eQg4RISW5RLSKkA2iXFvg\nXuMHE0+tmPfDJfvpEqE0TQM5OGoTMe4Q7UaUHRBa4mpNChasIDMhpcJYjSwWa+b8T8QcH1a5ioVb\n44VhH75B626TkfTTSMieKQqqRqOpcN1jvNdsLs8hZ6ysQM92u0papBLEFJGAjxNKWaxpcZWgspoi\nIkbPdxOowAP/Dba7S55Rd9AxEEPCWss0DmQMRSgenDxGKmi7Q4QynF5ecrHbk/2AwLDf7Nj5wsX2\nlJtHNyhtjRQK70f8xSVn5zvuPjNi3B1+/l/8LG/eH/jK+Rq76fns7UN+/Cc+TT1e8tZrX+Xi4hKh\nLYuVxWjP5eUZXVcjVYdUhrI+oGwfkaOnNYreVFTtAUZc0MojdmLLsruJUZqD9W3OH53Qp1NClvhh\niyeh/Z6SEipfMHiFVY5iWrb9OVZNKG1oOiDVTNMZMUpCiOzSOePwNs5VaFNom4qsEkYvyamg5BE+\nPqatD+n9JUoJpFBo0WBUJqWAUgktWko2mDSQgqeuFsTx6aeAvl+xaovF4n05DvC++rzfu/f+hWb/\ncbzp7wef//z7J8g9OTl534612/0hbdn7jqdWzKdpJDNCKlhjcJXE1g1GW5yJWAwiBipaQlGgIOsJ\n4wIxaoyU1E0FAkLa44dvc2P1I1gcXX2TdH6BkjVGKQafUDoi0ohUEik86MTYP2Cc9kjRIXVE6Qpt\nE00ryGJEFMPoBWlMGAWrZYUYJ+rKMYUzfJk3Wg09UgqcrdhPAzZHiHMYRZhGLnfnuKrm+eef48nj\nJ5ydnnJ+esYLH3qJySeOD28y7C9IRChwcHiTdnkXciAWRX95wXZzRt119OenrG7d4N6P/gziH/x9\nXnrhkywOj1gfdGzOT/mHf/fXSP1Ad7AkxoQWgsWy5fRiR9M0UBIHd+6BnS1ynZLEXFg0HbeZndy3\nYmQhF2zHM+4e3aPuOj790Z/hm298nvPdY0b/DtP2Q8j1ElMkIdaI7NFoKAfYzrDtXwMZMcrQLBLH\nYcVuSJSUGUNAiz0gUVpBVjhnibkhZYHUiVY+h5Q9wt3AGojJMwWPDwMxBYzuEMkgRIWsA33uKWJE\nq+ZpLelrXOOp4inGxgFItARkoW01hgqjJaZyUMIcMQYIYygloqVEqoy2ic41LJyhiMI4PqE2R/TT\nQ3T9LEaC1oYx7FBKgInY4q6KhSfR4/PEYnkHRGCcLjEKsvQsmmNyeYiiYkwjMRqymhPhU8wY2ZHi\nnqrSpHJJCTsQE3VpWVVrtFToEtluHxCGkc1FT4iBEuCtb72OVIp+v2PXB1586UPce+4OzimeZE/T\nRoYycXjzGZrlISkEtJEkAmV3gZQaKT2rpmb/xivcPuqYpsDDb3+Zt78xYbWiajqenD9A95CpsG3N\no0ePoRTOTk6495GPIg4PYL8hl0KYBnLwVM6xkJqhtIxJMurCfveI/aLjWByij+7SD5/A1hO7+E38\n7hTrHEVacmnwuzOEvzH7uKuGTj/L5fQWuXhKtrSdQrJiCAHvN5hWzZF0ITFNPUquKGJEihY/RW4c\ntvT7fnZljJcgFVPOxBTIscK6A6RJJF9ANCB6NttHrJrnn9aSvsY1niqeHpvFVBgkQkVyziThca5G\na4GQhpQsOZer8GaNcgKtK5QYMarGGIvWFUVuKezxCcKkZl53gJgz07RFKYgx4eyCXKCEQsgj1rRo\nIVgf3eTB42+QxSXQopTDWEHyPQWNFookKpRKTGPAmRqEAenJKRHjAEiCz0wmgBCU7On3I9N+zzBM\nFG2onGNPprYGkSW6XaHrQ/ZJc/K45/atFwjuki/92ud48s7L3P+a4/kXP4lt1rQHN3HNEW2d0WrJ\nfvOY6vmP8PhLLyOtpnhPUzlO3nkH6wTt8piqrtntdmhabhyt8DFSYqLplqRhjx52kKFtWvbbCxyZ\nThtyCEhZYaeJLGqenH6Zo8VtKnFIVTWsOSD3Nwn9Ewa7wgpPCJGkMpv+DTpzE6EUOSW0aAiMsyLU\ndSTfs91PKNlhdY0UhlIKu/0pUnaQO1IvUUXiB4+1ljwZkoc+epKYQHugINQaUQy59Axjf0Vf7dlM\nrzytJX2NazxVPLVibmyFwKK0x8c9U8ngPFJpyIWSAwKHFHr2OC+FgsVYgUgdlbEok0FmpH031WbL\ndn+C0GsoE1OaEOM8AhFR0Jo1wlj2+y2qWAoRZQztQrPzG5wtc06ltCinKaMkaovKc2pRyp7oIyoV\nhErEVCAn9vs9Y+6JSXNoVySVaBer2X9GOVIR9P2Wul1wvu+xpuPjn/40BzduoZ3m2Rc/RtVUxHce\n8OwLH+I3f/Xr/MSnbvLmK7/Dzbsv8ODBt7j97A9ha8HBukFbSXV8zDOf/kne+fqXWa4XxGlg3bWE\nDALJPkS6w5tM00RVLSn7LbazsyLTtpQnJ6QwMI4Di3pOvV9rwzhOLIqmq44I5ZSTOPLm219jUT1D\n8IkYJbrUDLsdyk54uUNh2W335HLKxXTBWi9QFsomQp55+MpZmmUilBU5RtqmYZriXJCBaRwQosxe\n6qLm7PRtlgcLfLwgy4hMs++LSA7jFIKANjUxjnPEHx5TSRAfXDjFNa7xpxlPrZhroUA6hACjIyp6\nYh5x1vB/s/dmMbel+XnX7x3XtMdvPGOdquqq6m7b7cR2xwkRgcTECkJOyBVESDgi3KBcwBUi5o6b\nCHGDhJBAkBvCRUQgggARIQkOKDZOHMvtod3uqbq6qs45dYZv2NOa3pGLddzpeOiuNn36ROnvJy3p\n095rr7Wl793vfvf/ff7PU5g1/TggpcCPHhjJIWNNSRBTlmfOCiE90giUVrghgRjw6YphUMDkihhi\nQIaGsrCkGChMg5SOruupqoDImdXijIvLRySOyEkhlUJLQTKCEDKlVSAc47CnS46qrCjGTIgJIzI5\nQ0gte/chjZCU5bThOT++xe3X1pTVjKZesR899157E10oVk2BNYphGHn0fEc3POfu65/gR/9wxVc/\n/2UuNh9x+2TOL3zuIX/oj/4Ey9Ml9x+csd8dmN1/B/QdzK0z9Be/yuX1BUpkQjUjHHZ0uy1nD94i\nKs1sdkSKgUoVVJXBzSx22BOcZ+j7yRdcKXwIJJGZaUvwA5u+wyhHaSyb4Uvs2itwDcaClDU5dfTb\nR0itydkyuAMGS1EKIpcUpsCWEt8KggdyR8oDdW3wftpoRgRillirGcYDSo6EtGCMmbKyDO4CKWcY\nu0DIwK57is4KAaQ0fQF470k4hLBoaZHypmnohu9PXtlkPmm1BVJpfMws6xl92GNtQWVmCBlJYkNO\nEH3EyBVGT5O9zAKtLTJDTAEjSpQKuHFgHA2FPeDHSM6J6CUhjbTRUxQrfDwgVWDsJH14xok9Z12/\nxVAp9oc91lQIkREiYbRhkB6lzbQST5mu3eFDTyMEkmIKuxAD5JGkPXbVcFbdp7JP+Mqv/xJPP3zE\n/bc/wdXmORcX1/za53+J+XzFj/7Yj3Hn5ITF/JSybnj79h3arsMWlp/8s3+WX/yf/grbq5Gf/NM/\nzZAuePDgLuUnPoHe9iS1QjXn+Kv3ORjN9eUjaC+p56fY2QKODWk8sN/vCfMFhbUUtsBYTe4DY+zJ\nWWKLhsPmCToHEJObocgSGWApJKmQHLLCFbBvd8goUdEiRcPQP0X5Eec9QgiCj+ScUaohFz1RHSiK\nBYdeIoLB6IJ+vCZnhbYJYsCNLaYsEKkgiQ0xOIyeQ1K4w4iRFaYSVLYgREdt75Dlc0LydO6C2t4m\nJkuKEaUTwUPCvrQxK4Qogf8HmITv8Ddzzj/z0m54ww3fAd92MhdC3Af+KnDGFNH53+Sc/wshxBHw\nPwAPgK8D/0bOefPiNT8D/AUgAv9+zvnv/PbrWltOqgZtUMoSwogXCq3mCBSFbRidAzFQ2obSLrCV\nRWtDLzNKgHcO5zVWzrBa4NWO4D2X189AQsiZ6DPeRZLShHg5BSkYCURyVhi1IKUDVbFks9uTUaRo\nQB6IcTL+knIyq9qxJyUPWRJiREvD6LdUleWTb/4oh6uK4TpxefiI5BLLW29hxMiv/8qvcue1u/zw\nZ/8YX/3yuxzfvs3y+Jwvfu2rzOdbiArz7ld47f6bDIcD61v3mX/iRxiurymPSm7P7xB85gv/+PPo\nouL2/RXzlLDVnHVd8bUgMM0JV0OPdD0iJPqyIRM5u3MPKwTbzSVv/MBnCYsCuekIpsENI94HrJrk\ni0SQZUkpE30YISVquaILiZSvyFkT4hItK0JI+LTHjx3BKZLUWCGJLZw0DbbaIfXIub1FtzV4p5Fi\nwRCuyDhiMHQuUylBYwXG1FOotwRtDFloRudRtiJFQ06JkJ4TfUTZRPCZgStSWlIWS8gQ8jCV5F4S\nOedBCPEncs6dEEIDPyeE+BdfeLbccMMr5eOszH/X3EPg3wH+bs75PxNC/EfAXwL+khDiB4B/E/gB\n4C7w94QQ7+Sc/ykBsNE1WfYoHZCiptAVQz+ihcZai4tTCSQ5gZQzlLYoJZgXjsyenASHgySEgmjt\nFLQsDhwGz0g3lWxMSc6C0Qu6MWGDnNLfEbiQSVHw/PIRt8/eJsbMqjjDhRaXA1mG35LcIHJC5gIt\nR2yRSHKPkhbouXPrExy2l1xuHlLK1zArhdsLApFyvuLyo8f8sZ/4U/z9n/27fOU3/wr/1r/3F/k/\n/vb/ydc/eMgf+fHPcrQ+Yb8bWCzmfPj+B3gfCYcPmJ/dw9Qrnm9a5rMlF7sN83nNGMGNI6nbkIzg\n7O3P8Cml8NtrfPLIGHj88AOunz/h+PiYdncB9YJbr91HCI/dedxuj3d7unZHMT8nFxJx2E6ek7zd\nvQAAIABJREFU5TLTaIlCsY+SBsOzXKFGza694nhxgvCZZXGLznkQHp8Dw9DhMYg+UZY1s8UcoTK4\nTFlUSGp8nxjdBdaC0ooYPCFMKVNaSdCZupgjo6XvAloUXF0/JlC/sAIYSTli5YxKL3HhCqUkRtdE\np9Amkbz7bn02fldyzr/l5GUBBVy91BvecMPH5NtO5r9H7uFd4M8A//KL0/474P9mmtD/deCv5Zw9\n8HUhxFeBHwf+4TdfVyg9deslkFqirYbdZtqws5GUPCIWxNwjpcDayfcj6wIzOzDuHTFlhs4y2kxR\nCJQUSFnRKEXvRrKMpMA0QYYwrbpFYvAZN2YUFVLC1e6rlHKB1gtSXLDvR6Tp0XYkIYnREoJHCk1T\nzmlmx2R1xXL2Cb7y3q9wa7WmLE9JOeByz6I+Z6WPMcqQgufDhx/wyU99ioTi7/3vfxNtTvjxP/Qj\nFHWFCyO9a9k93E6hGwHGYeRLv/yr3H3wGtfbLV9jpFAe5I5bd17n3JbE0KOSQSzX3HrwKZ49fkj3\n0XsMuy3HpytkcCAz1xdbxDHce/0tRNkQ+x3F6Zr2/SuG/YZs95SuQpsSYabSlROCIA6IMCK9YJZW\nXIw79ocPWJQRjKQ0pwgsMT7Emkv2bUsUidLO2G08hW44OQuE4JBIZDJU6pyZibj8HsZoZnWF1Bql\n4otQkkBIG2pdMG9WkC1ZRvb7D7F1h9JQ2hlalwgpKNQRkBDSIZREOE9WL3cDVAghgV8GPgH8Vznn\nL7zUG95ww8fkOzKy+G25h+c556cvnnoKnL/4+w7w8Jte9pBp8v9tF4uQBSGBQCOlxdo1resZxj05\nZ2LypAAuOsZxQAqDRL/Qm0eUFvgUCWFyU8xkkBayxuoCrQRSTvFoOWcgkHJmGDyH/cgwDgQHfddB\nrtBak5PGj5ExOCBATnifiBGktpTaorXj/OjTfPDwS2hZklPA+xalLZEdu/4JIY+89967yGxAzVDF\njM3zh1TljH/7p/8CX/rSl/jw/Uf86q9+nsNhh7WG4D2PP3rEe1/9ClppLp8+pS5LYhCUzYx6vkap\nkovLZwTnCb4nuBEJNCfHLI5us5wtkEmzWCwJIVHYTFkVU85qIcjVnHa7wQ09ViuS84SxI7o9pIAP\nPdJqpFAU0lKLgjLXpChw3nI47CFP4csxRkQyCNLkKS8zIbQMXaTvPH0/acj7bkRIhdElhZ6hVUPK\nibK0iBeB3inlKbuVDmOgrmbMZ3MKOaOQK2QyyJwJsUcpi1KgtCclT06Brj/QtdekOH4nQ/o7Juec\ncs5/ELgH/EtCiD/+28/ZbrffOIbhe5NJesM/n3jv6bruG8e34mNvgL4osfwNptzD/RS6MpFzzmIy\nJP+9+B3P/e2/8Y/RWhOi44f+wAPe+qEHHM3O+Wizx+VrVJoRosOFESk3k2OfnlPqhJEGp93UJGMk\n/TBi/RaEpLKa0Wmk0JOcMY/kDELGqVsQQQwjQz+QgqEqAtZrBr/B6hJTCGZVw8ZJYk5oAzEkBjcy\n+kQzW1JYy777MnVxzKE/sO87BjGwSmvq4pST0/tcPnrCanWEP0QWR8e0+2vWZ69xdOtN/tv/+r/k\nzU9/kqHfU1iFIHFx+YRf+9zneeetTzObNVTHZwwu8oXPf4HXX7/LmAqOTwrKeUE9L2n7jkU949CN\nHK4vif2eduy4/enP8vXP/X0unz2hLA0xGVar21T33sY/fRcdIuP2wGG3JfueujAIIZG6RAoQUuMO\nW2wKpPFAlJneO2RskSgO+xYhNPPZKVLUdK0gGoXSieQCCINWJ8yK27huzzg+wQ9PmRcrpLAooYgh\noa3EVgW596TcoZQlpUnRNPgdi/Ub6FTRl9DtHdFP/0stAylfgTgmxsw4JD744nO+9htXeD/A98ho\nK+e8FUL8LeCzTL9Kv8FyufyevIcb/vnHGIMx/yRw5VstDj7WZP5NuYf//TflHj4VQtzKOT8RQtwG\nnr14/BFw/5tefu/FY/8UP/LHTyhtwW645uxIoVWJKWtkqhnHPVqBD4kYIj4dGA3oUWIKhbKT2kTJ\nRF1ZxjgSc6DUkiwzIQaE1ggRyEmSsybFgegTxihgKtskn0FkNts9IQ0YUVDpYwprsGkGaYc2AaJC\nkklhJGSHSxklMyiHlHBwGypW9OaSpV6xufqI+WLN5vkeIypySCzXpwQX2e+2/Kmf+ld5/Ojp1FFq\nDNfXVyilefONexQ2cXz/NqWeGmrGYc0HH77P2z/0Q8SYaduW9WpFURQILSnLil5KHn30NXSCz//8\nFzm6dcKDz/wBDo8/4M7rn2R97x3i/orU3Gb30Zfo2y1aakKevmO990jrKbUlC6gXDd4bblcWediy\np+DarNhpGBMM454YHTlpDu0W6i2mEAiZII1UtWTXXrPUkpQzQnfs+w+p7F2G0CKkIOcEMlKWNVIp\ncnIo6wheYK1ms33E0eIeKI9UAu8Eh25AhzQ1iZXPiAjwd3njU2fcecvS9x3Rl/y/f+vxxxnW3zFC\niBMg5Jw3QogK+EngP3kpN7vhhu+Qb7uM+Ra5h/8r8Odf/P3ngf/lmx7/c0IIK4R4A3gb+MXfcWOR\nSXlkXs/ZtdeUxQJbNlhT4X0gREdKAYMhB0Hbt/Rji3Oe4ANudCidKMoMMuBSAikJYcT5EYRESkWl\nT1iVpyyLezR6jnDT495lBBYtZ8zqOW07cLW/QFqPKkZyTqSoUaLCWk2IPaEV9NuA77e4cUSryV4g\n5ohSls49x42ZUpa0mwvu37pPYdQUjSc0RydHhJj4+X/wCwz9gPM9T589QWtN3/domYlppCklSmdW\ns5Lz20veeft1RrdhtZpTVxXDMBBDoNvvMU1JSgMnJ69ztFxy79YxYuyI3vH2v/AnObn3AHl2glo/\nYNQK25zRXT0l9heUtpgyV41Ba0Xf98SU8D4CGtcPNFlxbCpKsUBZQ1ll+mFLjJG222ELMzVfSSiN\nQqiWEK9QNpGZJIsgMXqkHR8x5gtC7IkxAwKR5qh0hJKzyTRLLdjvRoah42LzPiHvyThAEqMi9BI3\nQnvwxCCJIdJ1B2II+HBgdPvf72fh43Ab+FkhxK8wlRr/t5zz//Uyb3jDDR+Xj7My/63cw18TQnzu\nxWM/A/ynwF8XQvy7vJAmAuScvyCE+OvAF4AA/MWc8+8osyit0CqRsiTFGVkKRNYoKfCDJxOIWaG1\nwDvFOIwIu0UcMnUaCM4hpUQYS+oGfB+I0pCJU61YSCp9wjBoNJGiGEk4xqRQuZic+NIMLSyFUlBU\n9F1kv99SzgvK1uIjpJCRClLy3L/zGZx7ipVrfLpE5B4lA9YYUg6889of5vqjxwxSUKpznj57jMyW\nYtZQ1w3ee954/RPcuXOH3W7HxeVHCCHphwM5C1IeSNEhRKAwmqOzBePYs17fxczmzJolTdMwX66w\nViK1QY4Hjt94i+7h18EesX38LovidcqmRCRN9dqnyD4RUo9NmaI5Zn1yj93VQ3wYsEWBVBpjLGVR\nAoJ2mBqhlLGoJBiGkXFMLGbnDCmw2z5lHGeM7oAuHQKmPRAySieyPND2gr4FoQ9IpnKVG7a0+0zZ\nSBCRGDusytOvr5hJckSlGTkYnHeMzmELEKJkGB1CVpP9cQikBLtuZF5lQh5Ad6QUgJeXAZpz/nXg\nR1/aDW644f8HH0fN8q1yD//k7/Gavwz85W91XR8FRtWkmJFJoKUlpTi170dJ1BmtSmJMhCwwtmEc\nWwQjIgnAMpmeSzKJofcUyuBCi1BAVohU0DQzunhAG0HEIgA/JKwVhAGMqDlaHLFvN+zDgXEYqSrJ\nvKl5cjlS6QVKeRaLFc8uPmBZLzCqAhGQKVJlQZPfQuSKh1//ImVR0uUDJ0efYnj/Q7rkyFpyOAy0\n3TVam2mjNSeEkBhjGEdHVTbILAk+EFNgcJHt7hoh4OTsLuvzO+jCUhaWopwTskMqCcUcFSJls0QI\nkHc/jY6BZn0LkRLh+TPM3fvIrUfuWt794j9iVlrG0SGlQFlNTJkYE0pp+mEAIckhYLWh8x6k4qie\nE1VHDImqathuL0gkQufJhSRZTRIj5IZhDMRhQ0wj67VB6QR6T0wZHzPKl6QskHKHVDsIkbEfCTpi\n5JY8CsgWpStCmhRFQhqULEB6cpRkYLPtiXGPUhGpPMErkn9lfXA33PBKeWUjX8lE30WUUuQM3a4l\n5kmjrNoZznV4HFYarKhRWiO1YQyB4VAgVaRsJDFGfMhsDx11UyBlJsaBoYdlWUDQHNqRohjQZURo\nPzkwaoPQipQsVjZY5TA60nYtzRysLCgLi0grcr4mxB60ROsKhMSqY8a4Y2HvgoDbpz/A5bMvUY0C\nPZzz5GsfoBDMmob5cokLidt3jhFC4pzj8vISRCanhLISKacvtz7uud5cYZSmrCqkzOjCIKXCaoOU\nGiEFRhVkkUlRI2OPPX2APrTohSW1W0bXUTSnqNUZ8cmXSboits+4fes2Tz74GmVZkMgIIRBC4Jyb\n4uGUREpJlBIdBad1QYh7LtOeGDw+HljOz/D9no+ef4QyHTpopMxIHRFY3KBI2SGEZr93LEQF4oDW\nK/o2kGNFNVMIIn1/jRaGJAJWNuQ8kJMneMOsLhAoYnRY62jHjIoGqQpyigTv6YeBsupQUTG0Nbx6\nO/MbbnglvLLJfF2dMaiETJHdMHC5efxC7uYRuaGwEKMDDbW05GRRRhNSC9EgxOSqKKRBK41AobTC\nqojpIA6JcQwsmorlcsU4XGK1Ycg9wY+IrAhxJKXEZrOlampgD1Gw3e45PXqdxTwhXElQk1qjLmvQ\nkeAFpalQSDRLFtWazaPHzOwRLgXOTtd0Tzt8ijjnuXp+QTmfsd8HmmbGbrcDwOjJmyalhNISoS2L\nukDlTFNVxBxoFie4lOnHESEF4zgihMCUhjA60A1KJnSM0MzI4zNkveDw/ldAlVi3J519EvneP6Kf\nrdj+xs8hRMI5hy4LfICZMQgFmclvxiqDVImcJV0/+bMsy5q4eQgiYeya9cyw2e65OrQUMaOUxccR\nIcYpPEQpUgKRZkSnyXkkxoTVmr4PZJlRUiNFRKgSLRR10dB2F8TUUdfltDkqMzkOxNyTc2YYph6F\nLJi+2ERAyEAaC3IoyPEmNu6G709e2cg3VCzLM1IWFMbw9OJ9Nt1DQkiUZsWqvMfZ8nWshnLmsFag\npEHJRJYJIRtELlFCgEjUsxqix5hIXRX4EBhdACL1TFLYAiGmlXxInpgg+8Dl1XNikBy6jtJamvkx\n47BA65Kz4zcABzljjMKWBmMkQllyBmuOqMoTiuqYpDNu7DFxhFaR8tRyLjKEGOm7gRAmvXtKCaUU\nQghyhqqqMMZQlhVVuaRZHVMuT1ge32W2OmN08YWroCDnTNd3DJ0jDgPD0JNGBykRxp7+omd78ZjZ\nfE6VA5mEvPoqYz/CsGcXIkenayLTrwIkU5KRiyhtKZvZpJSRGh8CxhS4FNj2e2RODENPzhpyRCLJ\n0aCocGNNiIaYFAiPzJ5aL4ljxeWzRGxL4pAolCClSPCJvsuEEDFGIk0gpQHve0LaYapIU88gKVKa\nzLWasiZ4zaHPdEPG6oqyNCjRsFq8QVWeYMxNOMUN35+8ssk8pIiSlqJcIJKgqY/YH64RoqMplgQ/\nOSMqIcniElVcMboDKQfQnkRk9AkpFLNyhpaKUhlEFtPmphQ4v32hYQZVSqQQGLmgtDWFVRSFJocB\nox1aOIy2lHbN8fIB1hxTmxOivCbEHT612EqSUQglp6SklJB6xtj1yOwQfiCOGe9alFSkMND3B2Ca\nwK+urhiG4Ru18pTSJJFMmcJWlGWFtVOTUMyS7aFlu93SdR3jOLLZbBiGnvZwIAMuQh4O9LsDXTuw\nv7okSYlqe8TiHN91sGhI0mKrms3D9zk9u8XF80uKogAh0FIiyCgpCCGSfCaGgDGG+foIIRUxw3p1\nRIoZPzoOhwt2/SWyGDhaawor0Ri0rJEyIZPCyhnJWdxQk/yC611mGBVJRAqrUUpSFACBffchPl1z\nvb+iHQekiRSFBDESYph+rWlFWUiq0hOiJ0dL9Bo/ZqrilKwMy9kZ8+ZG433D9yevMNA5YSXEkFGi\npC5KhmGJj5FDd01dNoQph4AQHda0KBswo8XTE7xGCUuIisJOdd6+T5gYGF0CBS62dH5DZRoQgbKa\nkYaRM2NpD442RSyGPF5DWeOd5s6916iKkn13jRINpmzYXF1ibUIXkWE/MjqHEoFcW/r+mtLUKCvw\nbqTKFnKe4tDCSBghScO8qBik5Orqapoo57OpaSoENpsN8/lyKp9YCw6kkDjnUWqkruopQzAm5Kwm\nJdhuN9P7fPYRq7O7RNdhNDgMhYRn736e88UctetxfUuSitW8pB8dZWVJCYIPSKlJOVMYjdEKJTPa\nGJIAkTNl02DjyOHxR+QccJ3j8dW7WGOADmU9Si2x0jBmBbmikJbsSlwvGcf+hV7esVppCmvRxiKV\nQctIyokhXNN76A8GkRJN9U+Sg9qDYnSBWVUQRKQuJVJa2p3CSE30AyJXVHZFAAIv15vl4/Ddyo68\nvLz8rlwHmCIDv0tUVfVdu9Z3Ky/1t3j27Nm3P+ljcnX13bPd8f7l++y/ssm8d8+oytUUnlwmcg6c\nr25xfXhK7wLO75AWmrokp4IQHGVZ4bJjHCNZbVDpCC2rydcjS4bekVG4YSQEgy0io+9QWaKUIBIo\nyxqEJ4VEjBnhBVEMCBSZxKyuqYoGFxwCQRFPWViBH97jEPeQNIfWI8UAtsB1T1iUK8qypFCO+eyc\nHC2KCDIzq2dkW0DMSClRSpFSImeB95Hlcon3nqIwVFU9+dCYqWGoLiuWq9W0+WnsFLKBQAootEGk\nwHy+YPADxvccNldk7wlaMjx5l8fjGefDJebeG/jYs/OZcb9DGzkpX6Sc3AjDNNhihLIsMVkhqwKQ\n2LihEBJrS8YAgxRUakY7XFHbjNaGqtAoWeJdh5AVfkzoUCKyIOWOEBxKKFKIFHVJlJGisJA0WRVc\n7yRJ9Hg3ZcEiAn5oGYYdh93UF7DZRNbrmihH6jqRhgofHIYjZNbI7InCk+RNOMUN35+8sjLLYXzG\nOOzRsmG3vyCFgJGKUlpiHGiHDSEMSCzkFZIlQjmUDS9WkRKjBVooclIIKqIQ9H0meEdyCZUbok+0\n7YFu3NENLSkFRFqDtiTtUAXsx4RLI7aS7LpLQgBlDNebZ6hUoZLh4Bb0PXTDQNt1jC7g0xYpB4a+\nw2JYlifEMEL0jH2HmvrjsVYjlGa1WFKW9sUE7qiqAudGZrM56/UapRTWWubzBdYWlGVJ0zTUdUVV\nF9RVRVkWrFZLpABNmgI3hIQYsELQP/sS3gea0/vUp8cENzJ+7TdwlxcUJnF8dkyKAiE0+UUNXghB\nCB5lLdLUZKOIo2PY7RjGQFPWfOrsDT5z+oOs5BrnI5U9xsgGKzUpRVLwSCwhOqQY8akj5oEYw+SZ\nIxI5Z3rXEn1Pzh2FVZAMUBKGGikMs6rCao2LnkN7jQsdPjpUnqPyOU31AJEMzSy/UL5IgpOM447E\nFiHCqxrSN9zwSnllk/k4Kno3TE03RcXBP2fXXWLLBbWdUYiSIhlkNhjd4J1g6AJJHJjNFIWp6HxL\n58ULP5CK3gl8zoxjnjTHTjPT53RuoO1Htt2OlAMxJlKqSAR8bolqai8Pfs+jx+/RjR3DuOfJ5W/S\n5z2BPYUq0OqUnAuqas5idTJtAspIbSWFMIwxgBBYI9HCIIUE5fDBo01BcJGmaV6EOEx182EYODo6\npmkajLEsFguWyxVVVVLXNU3TsFqtSSlR1yVVWU1yRiUJfiSnkfawYf/8Qw6bJ1SzI1qXWaws/cMv\ncbh4DBL8cI01K9yw4/btuxijKasaLyGQMbokJ8847nDDgMiZommo50sgc/A9lcicL1fMixmFKWjq\nM+ryDm03MroRckFOCp9HhtjTdR1aSyKJbAZ6d8AnR+96nN8R04CSsLT3EWFFJStqs6As5wxDIsSA\ni5Ex9tRVRX8AFVeEkMliT1Fpcta0B08/DlMqVbpZmd/w/ckrm8xVsad1zxlDj1GWMQ54RgbvULmh\neWHMFNpIHAUql/ggGHuB0Zp5vWa9vEM/PEVLS9PMUGJO8BCTQaaIlmekJCjNMX0/pQ5tdlf4MDJ0\nU0BzlOGFkgJk1hRa4n2P8z3b/j2e7n6ZNj2bYtB0whaR5dpitGZWNQgGlBix2SKSIoSRvmvRlWS1\nPqYsaqqyoa4MKU97BKenpy/KLZnTk3O0NpRFTVlWzOfLb9Q3F8vFi/r6nPPzWxhb4GPADQO+7ygK\ni1aSHHo2F4/oN89xQ0cWOy6fXyK1RC5WbLdbZvMVfXdFTop9e6CsGqqqokAiU8LHEWKitnN0WaFM\nTc4SKTIzW/HayTGiUGy7A4dwjdSS9foep+u3+OF3fopV/YPkqKjNbYYw9QREIRl6wXDIGK1JMnHo\nPe3YMfiWbfsEFx05VKg0J0tDQuHGxNinySVTJJQSDGNHqZe4PkI4meIGbUYg6Hs4bEeyAyVeXgfo\nDTf8s8wrq5lnRkJoaccrpJrc+vbdASUENs/RcobMEXe4IAwF8/UMkRy2qPFOcLw84nx9i97d52r3\nLhlHXdZcXO9Qac6isIzdNaZYYJSG1BDdji73RPGYQzfifUKbnqqYMatWCD9iTCDHHiMrUk6I3EMS\nJDWnEGuETrh0TcUSIzJd6PB2wd7v0C5wtLpNERua9ZJu3yL0gC0X9D5QlCXHx6fs9xuEUJyfn2N0\nMXnRBKjrCq0nL5emaUCISUoZJsuA0hqCj+zGHjcc2F/uifsrTFNTmcyYEjkllmXF5uIZsh9Yv30L\nu0k8fPgh50crDruIUXpS02SPKaYUH2KcJIOEacMYIERyCpRVxdX1BQs7Z1lVqEMmBkfXD9y5/w4P\n7n6aW0fP+fDZEU+vv8zobtP555R1QRg0KVn6Q089t1RVjaXA9zt6OWnPiQ5rNGUx6d5DFORcQ9Yo\nlXGuY8tTvEsIPMiI1gKpAqaIBDI+wHa/4fTo9Zc6boUQCvgl4GHO+U+/1JvdcMN3wCtbmUspGeKO\nXf+cIbRkCVFkrg9PEVlydnSfVXPOzgMUiFBx+/gtrD4mh4YQE01dsqxOqMolhTKUBVhtmBU1RsL2\n4n367oBQkvOjO4hsEUrRDVcIlVGyIqcarStyBpQmpoGYO7QSvHn+rxBCJkbNOB6IyZHZItgi2ZHT\ngIuO1reMwWNkxW57YPQju+sNUkJVlSQSVVVxdLSmbVv6vufBa69T2MlD/ezsDCkzy+W02SmEoGlm\nCCG/0fo/jiPBeYQAlTPdboPbPsMdrtg9fUS/n3TgspC0uz3zWc2tB/cZdwd6N7CY1XRdO72fHEgC\n2sOBoe8JIaCUQSoLCIauxfmBnNJkpxAipa04PjrBKkN0jhh7nl9+hFaak9NjfvwP/hgnxyuEcNiy\nQss5xhiqQjKvS2o9ZXWWuWaml6zMOTkavEsoqTlaLybjLy/oekhpgUgFRhXEOJLoyHJDCIHRO1JO\nZKboOm0SznuUiuy7r77sofsfMPkOfSvL5xtu+J7zCnXmCp8cXXjKvn9CSiO6iEjrqErN2eltzm+/\nRlPPGGKLyBUiW+bNKdrWfPjofS62Fy9kiglkj9QH5tWc+bxCK4cQkcvr50gKZmbN3aN3kHGJUTV1\nXVAXlugs2+sW7xJQkUXmcvtl6rLi3q03acwD3BgZxhGpYNmcU4gFOb8IZ7CSy27H9fgR+9hO8WdC\nkFLi+fOP2G0vUVpRlPZFt+ckE8tZ4tzUEWqtJeWIkhol7YsgDUFV1YgM+90U1tH3Pe2hRYpAe/mM\nw9UTri+fUBWGan6KqRt812NFRMXM5vo5dVHQ7w+MXUs/uBe5q5oQM9Mic1KyuOBRymJsQ1E12KpB\nKEsQGo9EyZKtcwxa0HvPZnNJzh3vfvgP2e4umDUNb7/5gygaYtpTlwadNVYbqsrQlAu0kFhqGBQ2\nzyjDAuEsZVmhSzBFQYqG0AUqPWNZ3mJdvc7p8g209qTUkeWWKA7EKMhoQkx470hEhFFYG1/amBVC\n3AP+NeCvAOLbnH7DDd9TXt3KPBVIMgSP8y0xDUBCG48yEWs1R+sjbNNQNoE+bthteiQFOiuSMHzh\nvZ/j0bNfRxAZ3BZjBbdunzOrTvAIhJLEsaWQhpQis3pJqWsK2ZCBnAM5KMYh411i9IkUM/vhCdpK\nKltze/1Zcqjou5HoMwRLyhVSzEEI5vOau6enrOx95nLNfL5CSoOxllt3H9AsTol5UtQAOOe4fese\nMXqGoSfGSEqJ+WzJ84tnDEOPcw7vPdZO1rjTRN4xDCPGZLa7LfP1GmMNq6NbdKOnWi0RerLHvXr+\nhN3+CbOyZL+5Yr1c4NxkKVyXc4SySD2FUsQQURKqwk5NVDmSsoAsUVpTVQvK1THVcsbx8hbnJ29y\ntpiTGMgy8OjZe3zhvV/kqx/+Ko2cM1sek8JApQxVXaFziUwag6Exc642T+h9h46GW8V9TC7xIVGX\nS1IUeN+Tg6bb7PBuwKiKs6O3OFt8CmUUQQS0hnpWMgyB4GEcPcpmlEoI81KH9H8O/IfcOMDc8M8g\nr2wyt2JBoWqkfuEB0gZi8IgXpZbej8SUaeolUsOuvWR/uMYNnhQhB/BxRxi3HPpniNhwfvo282aF\n1gKsRZeCwiouth/h04gLPUZrNAoCGKMxKiJyouv3CD19Rl10XGyeopSFLDlZPSDmERlhdAdkhhw1\nRi8orGRW1+ScsErT9h1d1yKN5b33v0ZZ1hRlgbGGrt9jjcaamrbbU1UVbdsSQkBKRYqJmDxt22KM\nYbPZ0HUdUkq8c+TkuXj2mPKFCsb5ESkU0Xu6riUliZCK2XJJDtB1HSpB13fMFgs6NyC0JCTIMeBj\nImVB8CP7/Z7t9SXRj0iREClBUZCtJPQdYezQEpRUoDKZjPcOhOALv/k5ujFCCtw/fgMmjwlCAAAg\nAElEQVQfBM18gS4MQQ7E7BAqIynRlWbMgSwypSk5qtfMyjVGlBhq/JBJXhHdyL67JsjJXXI5f5PK\nHqPEFFEXQyAGOUXO5Txp08MUmPEyEEL8FPAs5/w5vs2qPMb4jSOlm3n/ht8/KSVCCN84vhWvbDIv\nOKNWJ/ihwLtEcILdxpG84tn+Me144PHFh1S1IeWBftgypAPX2w1aLhiHKwxryNOm4P3br/Pm3c9w\n5/wBBz/ikkcvC5p1pPVb9uMFl/sniBwxKWNSRCpB1j3WTi6MOW0IeaQ0xyQ5MMaEFJJVfU6t7vH0\n4hH73QV99xxyhDinLs5IemAQB3LyxOgp64qL5x+hlODLX/48w34PUnJoO9548w3KqkApxXK5JMaI\ntZayLNhsNpTl9Jx80S2qlJrCqGPEDyN9u8fvr7BWU9gGqSWg2D7/CNduqNcn+P2W1eoIVKZqLO04\n0MznrFfHpBgxRpNzRiqJEBkpBCm+sBbICbIgEXHbDbnr0RK67RXD1RWLouD89C5alTjfMw4j7fCU\nrz/+In1IvPPgR/jkG3+C0tzmnTf/CMdHdymakjZcYEtJlrAZ9qCgsIb1fMV6vkC8kJLmYOj2HiVr\nDl3P+4/eZUyaWXmbu+sfZWHuIbLm0Pb0w4YYHdqAVAIhFDnalzVk/yjwZ4QQ7wF/DfgJIcRf/d1O\nVEp945Dyxvjrht8/Uk77Zr91fMtzv0fv6Xcg8oKU5qRYEcaSsZO4Fq6fJ/re8+HTX2fTfkjXbXHR\nM6bI9vAMGQ1hsDTFLSpdEpJmuTilqdYcr844Xt5GSIWWDTJbslkgdeIwXLFpL2nbPZ6A0DVlOePs\n+Daq9BgrCB6kKClNxdht2R0uqGcNOWvurD+DMceT85/UjONzNEfUxetkVaN1phdTLmmKmbFrOT+/\nzdHREUJknj95zOn6lJyh7w809ZzNZoMQAmtL2nZ44XVuqKqpq1VrTYoRP47sN9dT4k7MjDkx7K5B\nCEJyiHSgmS3xoedw/ZQoLd4HYsjknDg5OqE9DJRljU+w71qCd4RxAATtGDBGE7wnuoG+3xN9RGsL\npQapWR/dxY8d7fU1plyzWCwRXpBTIPrIP/j5/5nnmyeENPLpN36Yo9WbNPUxb73+Y5yf3GYxP6IN\nHdrMaMqCp/0VwxjwOJI/4NNIZjIgWx8dc7L+AY7nn2Z/2PPkySNc1yJINMUxMpZEp8hJInUg4xDC\nI03mJS3MyTn/xznn+znnN4A/B/xszvmnX87dbrjhO+eVTeZ9H6jKGcvZEa4zyGRxo2bop9b+Rxfv\ncnn4kI37Iv24JYZEJiLNVI4pzRpBxdHqwbRSdyN953j67BKjJcfLOcezY1b1kpP1Gq0zMTo8PV3o\n6XNHGjNGNTQzizYFMUhmsmFVntEeLgjjNSLvQUSsaThdf5IQSpANQp5OP+99Q6PvUpQ1STl2fosQ\nnrOzW1xf7TBqxocffB1b2Bf68UzXdTx/foG1lqIoKcuSEDxVXXE4HF4oWDJVU7PZbtEvfFP80KJk\nZOhbYkr0Y0tOClOv6MeBLAKlEizPTqCyLFZr3BAZhumLIqeEVpr18Qn9GLne9+hy+lLLGWxdImyF\nEAqpFFIr0uiJYSTGQGUthbBUpuTurXOOV0csdQVKYIj87C/8j2z2GxbVkgf3HuDbiCoM9fwUW2qs\nVfg0lVj+P/berMeWLD3Pe9YQc+whd04nzzlV1dVd1d2kSYomRdm0RIm0LAK+sOwbD/CNLnznP2D5\nD8iA/4Bh+IoQDAGCIdoCfGGRht2WmzIpm02y1VPNdaY8Oe0p5jX6Yh8SbbPJ7ha7dEh0PkAiA7Ej\nYgGZa3+x4ovve98xOJ75Lb0bGdxIP3b0pkfmCWen77I4WnF68phEL7B2y7r7mG1/hVeQZUdYZ0my\nHCWzP1r9BgzR/Sub0vfVLPf8ueK1BfNmu2FRHHG8qFnU6SFdEqCsSiQpeZETfECIQKIUZaFZLo55\nevcd9vYGGydmVY0Mkln9gCeXT/nN3/p1Pn7yB4TY4BOHSgSJTtBCUZcZVTlHqBwTPMZ2DM4zToZM\nVBjXIEJKP/UgAlJFxvGavrsk9Fu0DAQjWS6+SFF8gfniEVd3z7m6eULfOZAFg5goypooEjyCo6MV\nL68+wLsGHQUhHnLMiMB68xKlFMfHJwA4ZwivcqzTNGGNIREK4QNt16ATzeXVC8zYI7zH2wktC+Bw\nc6vnC/Jiho+CYA11XjBNE3mZE5RgMB37tsM4R79vKaqSqihYbw/CX6vTc+rlQ4oqoSgrRJIyDSMx\ngG17unFi01t2zQ3Nbk9dzTm7WKLKGViBo+Du5RW/9bX/jX3T4yaHLiRXm0uKWcby9A2klCRxROcD\nMh3pxw19GDDOYLqBfbsjyTXVckFRzdn3a+q0Zlas2LV79v01LvTEYHBGo/yco/IhuZzjncQNKWH6\n7Kd0jPErMca//ZkPdM89PwSvrWlIRHGoFS9OWR3vGKeRFEmVZaR5RhgNOp2RqTmNNWilcM5S1hVW\n3DHLF1g7IZXHO8vd7pZd+4KiUDw4epu+nUB6YtCHR3AhqHMN6mBZNowtWboHmxPjhHY5/djSj46J\nPTqL3G4+QMkZaVKy3n1CsDWZyiiygkLVLGrPpy8+YDm/YFbknM6OwWbYqWe92XNUH7NaLhAyBQH7\n7Ybt7R1BK/IsJ4RA1/as12tWqyVpluK9PbT5W0dnerIso2l2yDyh0AX77R3CTZSZRMoEaw+iVVpG\nlExJT1YE29L3PUIryDQn84dcPf+Ui7MH3G02LOoZu2YHwPHxMUk83NWd61Ayw8mArkoylRKmgegD\nU7PlqK5IhCJxEZDEPKAyQ+wlbrR4H/l/fv+rLGcnPFid0fsOaQzjDqpsxdHynIYNk9kz+IBKAplW\niGlARUeZKYJwKOkBQ4iW7f6W+VFCnip8dPg4YK1DxCVhkBgdQUB0GWMniPqzK028554/z7w+oa3m\nUy5fbPBeoXTN0XJBXZRk2QwhDlZhxhlCzICK29sBYxwET51qrBuZYsfN7gVtt4OQMHYGXOT8+A3+\nxi/8p1zfTdysd3z64pbru0uyNOF4seRoccZ8CfMqkBc90zBhfMpgJ3rbcbNf0w8TIRE05pbWtHRN\nw93mBfv9jvXtHW2/Zp7UpPqI6+srjA/EWBKUpxnuyNICIaGcrajqOev1M+zQsVguyZWmns0I4bDq\nVkqgtCBJDp2f2+2aptvjnKOY1fjJsds1ZLnE+YAWka7rSbMEKROm0eC9R+clxlmi0CRFztiNTP1A\ns2u5ePwuzTCxWC5p+gbcxGxeMnQdR0dHBKUOphtKo5MCbMRlCfLRQ9TqhHRW8/T2im7siCZhnCaU\nFGRlgrOOwUXadkSh+T9++3/ho8v3sOOeenlMXq4QISf1RyiT46YZfR8YjMd4S5ACEwMqVRjTMdoN\nXkbm5YrT1RHjtGNwLT4qhmkCJSlUwjhZumFCB42fAlMvaLf32Y97fjx5bcF8OZ8jYosdJYv6TY6q\nYx6dnFLIyKp6RHAZkxmx1iCUwobAvm+xYcCMB02Otu242nxEPzbU5QnEAjM5ThZfwkwjP/H458jz\nGdFJoq+ZjKd41R1al4KssszmnrKscdYc1BeVpe9HgsvxzpFmMDqDC45m13D38pLnN+9zc/chOY6F\nTOiHgX17Q5KXJNkSKzPQEnTGy6sn7JuW46PHtO2Wq5fPXpUbHQSh0lSTpinDMBBC+CNPTji093dt\ne6jA0XB9c8M09uw2a2JUmMljraWsC6TMAUGR5wQi+13H6vSMtKhxpmfYXpPVM4a+Y7FcYaPixcuX\naKG4Xd8gpEblKaosIJFEJRH7hrjdo7DUWc67bz1kVZ6S5Ss0pyg1YzZbsDjK2O1u6DvDsBuo0pSP\nnn+D0U0EZ6nzHEIgBkUkw1tNDOWhQUpbRjfRu5EgPFpG+nHNvn+OkAPHq5w8tyRKAZYQxEFoTEpk\n4okYopQQC4iWNFOva0rfc89r5bUF8/myRhYWT8c4OOpqgQQWs3MyPQeRs2tb2vGORa05PSkJwbDf\nDuxaw3bXgZCMdmC3vyHBkec5u13k8urbNP0W53rKDOpFBlIiDDS7Dm9HcIoYPTLRPHr0eZROEHLC\njAdl83FscYODqEjTCRcldaKZZyAj7NuOm6tPCK4n4CFabtefIqSmPlpiR8ftzXNOTx7ivCFGQ1kV\nVNWhq3NWzymrHOct1jqG4WALF0IgSTLGccQ7jzc9Wnpc21JkOYnQJGWNkgprJ4oyw3mJcQYfHZMZ\nETJlvlxyd3fHNHbMV8e4NMWPDcY6dtsdq+UR9WLJECLeetxk8SEQzQSyIEqNzBJie4e3jnR+jJgC\n75wseTCboUWOcnPOTt/m4uKCxWmFUIqTk3OO6hPmecnLqytkSJkGhw4eFwa8CKRZTpVUlJkmkxWz\nuaaelcToDl6ipuPm7mM6d4MuBIvlA+bLJVW+QCEJwaC1RWtHmhdIIUAY0pmmWLx+c4p77nkdvLac\nedAJJ8fHbHZrJqeQ81NGEUiDJwP6bsILxTgZlsuRNy9KtoWk38EwdeQk4AR1fnpozEkjRVEwtpKv\n/s5XODk9Ic0DuYbjxcFrcjf2iFbj3EheOYryiNn8DfI058uf/3n+72/+7wgSkgSS1CPkHJ1EYhhB\nGOqy4qhSLDhiDBnNtGN0gUwFlPS83H1KNTuljBXTdMvF6UP6fiC4ESHmXD5/gk7uOLt4m8Ia1us1\nx6sTpJQYHwjhUCIYfCDPS5x1ZDKhGbdgR2i3xCTHdD3l6SkhRIwxZLmmyA5130pqlFa0TU9RzhB4\nttstVZHhjSN4j3EjKnqkSJjVOfiR6AM6nRFxxOgRWkMxA5WjgiVYS7o8ZXf7gjJPEX1kMX+LZb5E\nn0fW7Q0b3fPw/HNkWYUxI/10ySfPfp8qnyGFQ0pPXiQY16OTQGTE0VHlFd54Ji9QSYYPllzD1K0R\nZUKqZkghKbMVRIvxHVFZZtLShR2jCcyyCqSnrH507jz33PMXidcWzMuyJApHMw1MnWVRLbAY3OTp\nGYgiJbrI1DmsbcnzOUdlTRUVPY7JWcZ+pC7PyKQkTQWPT89ZZoKPPvqQp09uWZ1Jjo9T5lVK9ClG\nS+6aFi0EBkWWZ1xdP+PR2SNibJiVC5x0qKwhLwTBHRzmbQgIBU6MCErm1YqT5Iypu+Hj5x9Qleog\ngKUmds0T8uqLFCczNs0e8OybAeg5OzshSyom05Nnj5nP5kgpKYoCszN4J5B5Ql2VCH9YZacJuLEl\n15Ht0LEqSkQ1R7iA1uJQi+48MRUkukQpQdM05EVKkS/YbjcUuaZvenSao/ICaSSb3RaUIEZNVc+R\nWhCFAJUjgiBIDTGCMvhmT4yeAsHRyUOePn+ODYLJBfCKMj/ltK7I3okIPyJiBVgQnslMdH2HcwN1\nnWOMZxpHgoBgHKnrSMaEIDR5ek5eBpyfwI5EobnZr5n5llX2JsYPqNRRxhMMd4zGE6ykTAs0Oc55\nJvf6V+be/2hewn6/jr8fht/93d/9kV3ra1/72o/sWj9q/jBF+aPgoJH0F4c/Nc0ihMiFEL8thPg9\nIcQ3hRD/1av9KyHEbwgh3hNC/BMhxPK7zvkvhRDvCyG+LYT41T/p2jmWRbpkkZ+TqYgWEm0CVZaT\nak2dJCREtBeYJkPFJYKEUsMs08wqDQqULHn7jX+LYBXzRc0bjx7xM1/+BdApfSuxRqFVitYpgoSi\n1AQtMK7m5m5kvd/z5PLrrDfPmKeKsi6Y1Uck+qArbk1gGix53dGFls14h/WGKgsUKkEFRaZyJBKp\ncrr2hilOzFYrjO2w3iC1R0hD2+y5ur6hKmd47xBC8OzZM/q+J8ZIlhWM03RoHKpnByu6PCdJEvbN\nlsXqjGGwzGc1xluUTCiLGQDjOEKMtN1AmmdkacXV1cGLsp8ceVURMHRty3a7xRpLu75jGvZ03ZrZ\n8QVCa/w4wbIikiJ0CkWOms+YvORyf8XYtCyqORGFnw4t62MfWZ2+TZYKvFzjxXO8vKaoAlnZkRcZ\n/eTZtZZ2GhkGh3cJUOCMABKM9QcvUr1gPjtF6Tn9CF0fMK6n6y4Zp5dIkZPqc2R4g5PFuyRJwTQp\npFTEKBibz6wD9J57/lzzp67MY4yjEOJXYoy9EEID/6cQ4q8Bfxv4jRjjfy2E+C+Avwv8XSHETwL/\nMfCTwCPgN4UQX4wx/jGBijqVFIVGiYBQOV3bM/aGqAbqcs58ucRKA2FAiwJrcqIQdFNDVitEVKRZ\nZF7mrx7RPcq2LBYXFMmKo5cz+u4O0xbc+sis1GQhoRM7MpkTY4qZBM527PsPKFRBLgqy5BgRC6IP\njHZHkiSU5emh/nu+oe894/rbGB+QUYFSzKpjlHCMcodMZ+ztNekEZJJp11LVx7T9HiUyiqoAIt55\nrm9eUlYliIiSMA4N1gUytSDTiiDiwZIuLciWxwTnyPOMvh9IEoUPHust+axiGAzt0FHkGmsCu3F/\n0EQH+rZFRIn3UM9qtuOEEa+qX4xlVmeYsUU/fAgx4AeHPDkh2B758o5oRnRRcBHPuY0bapdT5S8Y\nx47NYPHeEJVHxhTXdUzBQKzwk+Xs+BhnBXOTY6yFwVAFiQsBLw1JkjKODZtmIJEnnK48IVjG0TFF\nQ1lm6DTBMpHJh5T6Td48/yLjquPZ5QecloEp3aBUgjGBTXcfzO/58eT7vgCNMfavNlNAARsOwfzX\nXu3/NeA/eLX97wP/IMZoY4yfAB8Af+V7XjcEmt0NUvlXQlp7nry84ur6jt61IC2pztBFTj/uGMcJ\npUo6M3G9tew7MD7j6dUHbJtLurbD+Y522tJ0az7/4ILTozOmaWLoe4TNyHRCCrgwYIynLo85rj5P\noY/QgIwOH9cEJtpmpGsNSuY4K8jTisenJywWc9LsmHby3PQ9vkhQWUImFMoNxNhxe/sMT8RHhUoK\nRIzM6iXDuOX05BTrD23rf/g4XpU1RVng7EQqIwSDGRuyRJJISLTEBU/X9/hwWNG3bc8wjoQQGMeR\nqsjJ05ymaVFKveoqdWw2G2azGS9fPMGMDS+evyArUqy1SJ2SFBlBCcahRQ4GLUDpSNzdEXY9ZAnI\nBJTm5e6aXEmib6nSCZt8yN3uG+yGb9OuG/rbGZvbhLtrz83VjmiXTINAKk9WGnzoSKVCaU+SjCQq\noINj6EecL3l0+pc4Pf5ZrJc09payFhwtJEWSEEbBsjpnUZzy+Oxd7BBpui0yHQhMCOkpq5S6mv9L\nfRHuuecvOt83Zy6EkMDvAl8A/psY4zeEEOcxxqtXh1wB56+2HwL/13ed/ozDCv2PMcaUu6tLdFFx\nNF+x2XrWTaQb13htqKoMhEIqGAbBuvmEL7z1JZanb7De3OBjxn67JpUjlzffIShD0zuMeUK/V5RJ\nwenROXfS46PFhAkVC2SAVEW6yZKmOXWeU+c1m923maIhkynB90ilaXaOOvEsVkt6e02RK+aLU2RV\n0OwtfWwQRaB1G8ZxwqQeySU+KdmZW46KI+bzE6x1vHz+hEcP3+H2bsPnv/RlpBCslqfMF3M2myu8\nDaQqIa0O/5I0FbS3axKpuGtuiVHjw0SiMsqypMhSnDE45w6ljq9MLfLskMIpq4y2bfHOcX19xYPz\nx2x3WzKt2G+29F2LmSR1PUeKjKJcQrREWQAp+BF9dIp40RIXCxLjWa3Oubn5lM53qLSj3TynHywi\nrsil5G4zsNl6lBJIJLc3WxI1J7F7rLuBtMBMEUGOk4YwOZpQEaXgeP6YL3zup3nn7bd4fPIlPl3+\nc26uv4r1OaPNOT1+gxeXT/jcX/5FqiTnwdEF33yvJdAgdY91FhsFaX7fNHTPjyc/yMo8xBh/FngM\n/HUhxK/8/z6P/Ok6Fd/zsxaHSSqCdDxYvs3p4jFSOaJXbO76g8Sra0icJlcnmKGgabYURcHDs3cI\nqidN58zUnMAeokCKFC80+2HPaCNFekpVn5AWc6QusEHgRQ4cNEzHYcA6i5IFSXaMTkq0PCLVR0gZ\nkUKTkDJsBdNWsl13ODEhdECmltlMkmYGY3uuh1u6YYsPlijvaJqXr6zZcsZxIC8ymrbj9PSU3d0d\neEeSwDB2zOo5hZaMQ0PEMKsy2v2WrlmjhEDGESUMaTrj9u6Ou/X1IWUhJfaV2cQ4jK90XQ5qfbtt\nQ5ZkzGYVWgS6fkeWJOy6icEY0qwAIEmTQ0lkkkGUkBeQp8hiSdi0+EwQxwHcRDe1SJ1wefcBSufI\nbs7TT3v6vTpIz8qJJDlU4pTlDJ0kdO3EZtvQdgHrDU71uNJyMa946/SCVVWQMSPENU9e/B5X1zco\nLdg3W4SNFDLyePkupaqoy5yvf/gVggocH81YzTMUCVoUDF3Hvtkz2e0PNPH/ZRFCfCKE+AMhxNeE\nEL/zmQ52zz0/BD9wNUuMcSeE+J+BnweuhBAPYowvhRAXwPWrw54Db3zXaY9f7ftj/PZX3idP5php\nQvzcHcw8i0WKaUELgQw5WeqR1vLg+JS6fIPN+D5FMaNUFzzfv0eaWGblCRJP1P5QZ97cEuIr9wCZ\nkZIgk4rBjGQqp8ofsG+f4OkZzMTm+Q0XR4+JQVPmR2g5Y3KOurxgt/uAbX/HMj+nsxLb7/HG4pKR\nyQrOT96mLAs++eQbZHJO144oFSlqQVJNOGHo7j4i0wUIwWKxZLtd8+47b/P82VPKxRLfN2zHnrpM\nqQrN2DV80m45P14xJhGhInkxYxgnyjJBMgcChIDOMqQ61MtHAbPFgk+fPeHB8RExKpyPlNXs0B0a\nQArBos6ZppTb62dUqaZrt9SzGUIKQhQIAlRzEHMkLxFjTkg1od9xtbtj6wekWiBjIFFLBvMpVbJA\no6nSgk57hBbkaUYljnBiYHI13bSHxHFaPODfeOttHpxVXO17Pr5uudze0N7dsW3uiGywoeE7z36L\ni/mMk0wz2mvK/CFZ2fHs8kM+fPpXCGMDWmGd4cX7Lc8+2OKjJIofXQXIn0AEfjnGuP6sB7rnnh+G\n71fNcvKHlSpCiAL4W8DXgH8M/J1Xh/0d4H98tf2Pgf9ECJEKId4G3gW+5+rlF//WY/7Nv/kFfvnf\n/df5t3/lb6ISwdFpYH7sAEfwAtNIlCwp05TT5ZLz5RtcXz9BxsiXL/4aVSnQcjxUfOgCKVKiP6ww\n+2mLCI5cLRFBIIMkmg68ZLV4kzSpQAxYE3FecrvbIMmp8xWRhlTUvPvWL5CXJbt4wzB07HeGrnXc\n3t6wvr0Gd/Am/Zkv/CKzVBMmz+464EZPVD17d0OxWKGznOXynIjnc5/7HJeXTzk+eczN9TPssKPM\nJG4aaZsdZZEhvKfvtiQU9H2HsZblckGWJehEIqUkOMN+e8vY7djt9ugkZ7SBs7MLbm5uSZKEbuwZ\npgmd5Fze3WJlYDSert1wcnKKzjO8DwTvkd4gMMTZMX6I+H6H0AUxSkQcUHnBO4/eAVmS6zc5W7zF\noj5Gq5zN/pb1bsPgLLM8ZV4IssSTSMGquuBk9pPM1BkPZMW7eck8AdN17LZ7rtZXdJs7Uhuodc7g\nXrJv70hUznpcczvtUaVEyZbgJk7mS/7gW1/lvauPKOrHLOt3uHh8wi//jS/x13/p8/z8X/+eWb0f\nNfeWcff8ueP7rcwvgF97lTeXwN+PMf6vQoivAf9QCPGfAZ8A/xFAjPGbQoh/yMHw1gH/efwTijXX\nt3fkqWBZPuTN8y/z1sU1m83vUAWNSTN6Y5Fpgczm7NuWxWqFQCNlwmgMZpzI9QIXLXjHZAJJGqnS\nilHtDsYTsUfJcKjGIBDZovQxeV7xbvk237j8lCTLCTHBOkkzWhbVQJYIEBNSzDl/8A4vn3+LNDQE\nk5HrE7we6doN337/D/jpn/h5vJqoU40fU0yIRJsd2sqdBAvWWGQiqOdHh5eTRUXT3PH4rTe5ub4k\n2W/ph4HlrMANPVUmGdsWhEfJhE3ToJKSYEemcTwYiSaa2XwFMaJFJIgAeIa24eHjN+m6w3vrbt8g\nlWJWz9he3SGSgLUT1mqScs7i+ORgHl3NEUISEMiqRHYW129QyxNoGsbNJVfNlixqiBB8JEkFqVJs\nmitud56izJnVEF0ORU6DpCpXpFPGw+N3Kc0HNI3l9977mNFHnjYdbdgzLxIezBXFyjGanmlyCFfg\n/cimmXh44kiTQIqlC7C7e87R6jHFbIkdJdpLGB1WGEad/wi+Fn8qkUOVlgf+2xjjf/dZD3jPPT8I\n36808evAz32P/Wvg3/kTzvl7wN/7fgNLKozpkUWkqmqk0AiRkEiN1inL1SPa7mCF5pRk6vfYyZIW\nOevdBkVOKhb0/hlh0kQELljybM5RlrENl0y2x7sUEonCIULG5O6oxZLj4zeo11v2ZkRIiZYLrm6v\nWGQFeZGx3X/CYlahUTw8+gle3H2F4/KYqjyn8ze4cE2/XvPkybdI3/wCCIGSCcINmK4k2ADsae2C\nVAryMqefRqarK4Zhx9HinKfPn3NxdsLL50/IspwYM0bTk1U11jpCPFSunByf4Z2hmtVM1mHGgSxJ\nsMFTFYfyQmcswXu0VDTdIV++3x7yzirTpHmGlxE3TAipQEryPMObEXV8jkoSXAQlNVhBKOdIYcE6\nxPKU9sn7XK1v+ejqBe9d3fFTb7/JZAfSzBOiw40BZx1tHyhyULoi1Ybe3lFlp7jeEoWgdY6rbYNT\nKV5qFBIhICsiUgXGYWLoIt5rXJBECm5uPyJdnSEJeBPx1tA0t2hK2mHDXEISAqPwJHH5/aben5W/\nGmO8FEKcAr8hhPh2jPGffvcB320V991aO/fc88MSY/yBm5demzZLlc/xNsULxba54Xb3IU1jCUlC\nPT9HyJFymaA0SFHRj5a72yuaQRGRZIliWb+J7RVydDg30po78kzyuTc/hzeOl3cfsBu36DSSZJ4p\nSvqp5aZ5RphyHh6/RSo6QvAcLc7x3nO9bdi2O7wf+PjJV4gIyuyUB4/+Kt2+Y08GwLgAACAASURB\nVD6fU89OcF7gRsvtzR3vvfxd1lwyO4a60khyhm6k9dd4NmR5ydAb9u2OfduQZjXlvGQxW+CdYL/f\ncXZ+jlSaNM2IMlLVBVmWMZvPqWdH5EWFj5osL6nmK6JOMCGyaSaskPT9oSM2Ks28WiJ1QqlSxv4l\n0XRIIcmKGXW9ZL46IRz+sBSpRkaPHSZkPkeIFD/uQVhEWUFaEqcNpz/1l9l2e9778Ftcb/4Fv/f+\nP+PFzXOsG9CFZX5UkeucQs9RaoYfJZ4G55+wMx/RuJ6trtlEReMlXipcsKQa0lLQKcmmH7m53HPz\n4pZ+PeKninEU7Pd37JqnuCmQG42zA8ZseXb9TfrxhihaTDXilEGkn23XXozx8tXvG+DX+R6lt1LK\nP/q5D+T3/FkQQvx/5tOfxmsL5tZOKCUxZuR685z17SVKZ+z9xF7dEvIt7fSSIAxCeYie3jQ4uyXK\nHVY0RDyz+k0UjrJyWD/S2VsWy1MeHL8LQYD3jP2E9QFZjpikZxgaPrn9Dt34jDxN6c0tMfYs5iU3\nm5dcXu3Y7HtGY/n2x7+DU5GsekR5+nl8IkhJGbtIN0RwGdqc4myGLAPJkaeoL5iJt7G+wbhD52cI\nBiUiZVlytDqirudMbiTEkfl8jhSCKBSTjQyTp2l7usnSND3GdiitCTEyOUte1NTVMbPlGSqf0XYG\ni8KQ0E8T682WYAxGRo5OHzJfniCkRGmF856xH5EonPGgcqTQxNEgvSAIgZq/gdjfICmI6Qwax/Th\nN/j8xZfpgiV6uO7uWHdwfvzTvHn+s7z71pf53MOf5q2HP8VJUpGGwH4baJqGfnqGLhOsqNl2HX1v\n2TcGJSuKvCZKQQSGfmS/G5gmRxAOISB4yWY/crW27NxEGw15polOYaYJfGBynt4LjBAUdfOZzVkh\nRCmEmL3aroBfBb7+mQ14zz0/BK9Nm6Xb34Je4oLn8uqaRAiq8phdt8a5Pa25IQ0PcDHiwgiq5MHZ\nQzq/R8qa0R8c5o/rx+yixcdbEnLaYU3QE2dnp7xYf5NoI007sQgZoSrQWNKs4NnVhyyKHIRCSEWU\nhovztzhdRD78+D10NqMfNqQ0fPDsn/Nw8TPM8oTz1UPWdzv8lBCMYb1tOD5Z4EIk5hYnJrJa4UKE\nyeGkQyaRpuvIyxrnDE8+fcrzZ08oypy9t5yfXjCMIwCLRY2zIzKryPDoVEOIjKMjTRIW82O8kKis\nRAiF8iO1THCmZ7IG4SQ2GkwSSZMUyHAcKlmcc2y214TBIpUnzObo4KjTlOrhW8QsQYSDJjyzC3x7\nhZzNEQ8uuHz2MXfjHo9HJhUIR1GckicleaopkuSgFmksy6Xi08vvYPqRKTOkcSLGlmmsDgG7H8gL\nzypPyKscMYVXDVCCVEMsJWmVESxEC7e7HTF2HHmJt54YKqSLpC5idh3XvcRJT3WmKOafaZ35OfDr\nr1bbGvjvY4z/5LMc8J57flBeXzDfNaiyQK00m90LkqTgLH/MMN6B2pH5Gd1uR6GWZIs547hHhznz\nVODdSFHUOK+RMXCz3pFXHi89sjJcrr8JPiNNI84YwjijjR7tIUmX6LKmzHu0kljTIvMBKRVpXlBl\nmkePTnnx/A4TFcfVCWHa853nX+VULVlUF3iTMKkRmSis7Vmvn5EvxKEVv1zRTh/T2ZQkS6jKHi8m\nnLVMg0IjmS1WEEbGYUBpuNtuOFbH5HlBURS4JEEIaPY7hM7QQpJlCmTCMAxkOifqhBhAKsdmu6dr\ntpweLdjv7yi1QJqUXMdDA48U7Pd7lNaM/UhCQlHnxBgwbsJaR9OsWVRLYi3x+0tUqRH1Ejvu0VNA\nFSXP3r+lSGruts8Bg0HQq5zhpWe1yEhUzbysEa5Hy4lEeRTxIBrmdoxG4iO4wWCVwDpL9JJxmOid\nJTrI9ZIsTZjchHeC7WakaSPLVc44eMxgSFTOMo0sVc9tC9d3nsUDxTzXxGn6zOZsjPFj4Gc/swHu\nuefPwGsL5jJX+Gi5fHFF8ILR3ZCqkixPUFlOkBKxiEyTZNe0SDGQaInpU4y3SNXhPQxmz6Z7SW0h\nyTweyXr/AkVFxKCzAWdnOCkI3hC6FOIeERVWJExC0myfMqtz2mcdF/MHvHVxwWy+4l98+E2IkmV1\nzt1H38SeV4ymYz9sODlOYCUJXaBaPsC5PXY/kBVz5nXF85efILsKIS45lSVlesQ07dmv18z7iTSN\nr/w/A6uTE4QQbLc7Ts4fEmQgEpFphkcio8J6T1FVKOsRSUqaFnTdhLGR9eaWTMGTp09ZLmeoPDm8\n1M0SovMgFEppnn70bWbzFUV6UGZM0gIlPEFCkhY4M+A//BbpW2/jmg26qtHaErodHz79FCN6erFl\nNGuwBUJ1qGgYxh1958hLzW6dcJyXeBlIUkWzH5mJDBlGlJSUuqZPW6KI9F1HqhOCF/RNZOzhqJIU\nIqW1EzEcGqCyLIPgGYYR02fE3DE7Elg7MtxGgrCoIiEEQzskr2tK33PPa+W1BfNsUaFsxvHyIVIn\nfHp3SZ2uyLM51gV0luBsz8v1R+zGipPlkt44zHhoOE3agx9kWUhUIjDeEE2KlIK+ddR14PjoiG5r\nUXnChCYKg1CRIlW0zQAiI00Ux/oxcVyy6TZ8uH+fx4++xF96tOL67iWZSkjSkvnxKU5Zrm4+oekH\nklSQF55kVbAqj2m3kjAZZF/g9hWL5Cd5evcROpNUxUgJmHEgSQuII1pXWONJkgTnLG3bsjo6x3iQ\nUeOdI0kzohAInaITgVQ5OpMImYFOSVOJcxv6fmTAM00TWV6gZMAwQqxYzWc0TcM4jATnKfKErJgh\nM025PCZJNLOTBxTVgqg1Ion46yckjz9HHG4Q+QnS70gzxWbzlGV+Qls9Y7OFKi2QUTEMBePUIBXM\nZjUDAouBKPGjZkSRLmucCMRXkgn5IlKkmhg0UuekiWA/NhgNqZBEn+CDpSgLQgw4GzEe3ASzWWQU\nhnbwtN4yP8opUnuQ17X3Lxzv+fHktQXzKp8TtSJPJciUaeeYnQuUmnO7u2NWBLqhJykkIU5M8pBA\ndQLavWe4ukEKSVJ4gnSkmSChxDHy8rbhNAiWVc7ZaU2avkOZ5jy9+RZVrsBEprbHu8NqV0+QF59j\nkT3ik91XsVNKmmoenp7TOYPSmrzO0IlARIEYBal6CO4SkQhQE3USKY4e8Oxmz9h3FNUZJ4sL/NCj\ncoHHk0rFOOzxdqSoj5mcZ3V8xtXVC07OLqgXC6ZhZFHXhBDph55ZmeF9RGnF6AM6Kw83AAsueIRS\nqCTDjj1VuWQaGzJKkjRhbHvi7IgYLXjLxaO3kBKqIiHEwLC+Qh8tMWNDnuVMw0R1dAz9lrBfE6oF\n/tnvo+ojpnZk1zQU+ozj5QWIHu8tWuasRM1m15AmKSLNWbctQhjKPCGRBcEJ3JiBaonRkCYjZZUi\nZSDPZgeRsCSjbSb6PpKqhHmSsZ9G8mTFbHnMMF3j7IidFFHCzky8uLaQ5eRzSFVg6MC/vil9zz2v\nldc48xURz25omcYNq6NzsrQAOZIlKW23J0lShDZEPOO4YV6cUFc5SvdkyQwzeoapxWGJviYKy0V9\nwr/3q/8hZZ2zbl+g9cSj88+hkop/+tsTH3z4dQiODI3z0HYdp+kxQgyY2DBL5uTZChFmFNJy3TZU\nRxlnJ1/AuGt6uyEmCRKN6JZ45WiTW1Yqo1ys2FjB9fNrvLyjKEqyrCC4HJVoRJIx9AMxBHwwyKD5\n8OP3OTo6YZo83kW8dEzWgAg4H9h3E2VZkacpMYA1gUQrpqnHGMs0OVyQPH32jHfe/gLWWEY14sYd\n3hiUCvS7O4iK5dHiUPoYI0RIyxxPgpQKR0a1OsJ3O+R8jjAD6ugtxMLzP/2jf8Rl9xH7bkNEYKUm\nnV8TpiO0LBC6pDcVUmTYyePs4aYrBSRFQaITfLQMdiKfSVZHJ6hZgReQJhmPHr5LkZ5ihq9wfbkH\nBdZbpmFgXmVoUtpO0HeRRKbEGGg7h8dzVDrmicCOEYLmIOx5zz0/fry2YD4OLcFL6kVNUhsYHCIK\nQrDMqoKt39G6G5TKyFJNKj1ajZwefQklX9LpDjMWZL5i32wZpw7nc7TMOZudki8SHD3XN8+55IoQ\nM54/v2W3NzAGTpOUbX+LX+bspxHlPmRIAqZp2d3dMq8CZ8u3+eDFP6M3AxcnX2S93zCGK2woyMqI\npj6o9U2CKwUP7J6z8xwhjpnaW6RUSGa4GBBKE0VE6xyRRG6fP+Ps4Vu0Tc/iWCOFZrPbkeY5xEhd\n15jRUpYlfTdS1wusd2R5hnOBvu+RUjFNhs32hqIseHH5glkaGLc31HlONDs2MpKWGaujFSFahmHA\n+5QqLxAyR+cKpWcM3R60JNf6IGxTzohmg5qfcHS24je/8g/YTDsm+5KuG3j7i6dQe+KYoIqCYpjh\nnMMER9f1eCEhSqpZQpqkdMPEMPUs6opidYZSKWbaIrVkvniT6AQXp49p+/eZjCXRKUrk7Pe3CAp8\njEQvkamCCH3r0CqlLCRSCVIpSVXOYO6D+T0/nry+nLkQGCMZxxGtHbiRTbslyoTjkxllVjE1LfhA\nqhV+mBjTjnldM7k5l+uPkDGHuEQpgSClLEs+efKCX/sf/j71yYzFbEE3XtMOVwzbwE2z4ez4hLLW\nBDMxTRE/tYTB84VViZUJd3LBi6fvUc/+NR6cHjFPa6beIlUgxMDYTwgKjB1xWoHy6LxAGMHWWXKV\noArQusZMIy4acgWDH1HB402HGTxFOWOzvkZKjfee9d2afhz44pe+yNX1FUodFBG994QAZjKEEIgx\nZZoM1jqE8IzjwGRH7GSYFSVFpRk3e8rZDDHNURrqcsH6+gqpBDrRYDOkP2jgHB8/RvoBnVbQNoSj\nGQRJdI5Ypahxy4sXVzRbw93aYqNhtThnHt7EpH+ALa9hqkmynCgNU9fTTi0yKqZB4k2FzSRD19K5\nhizLGcaBIPa4cIN1PV9/r+PR6U8ymDvKKiUUCqJlMop2P6DlIWBnSUkiFV3n6ftAkjjSNMdrQ54X\njENP13zmQlvflx+V3diP0rbsL5oF2p8HfpQNX/8qmsdeWzCvS8GIYLe/5M1HX+Tl9TOsteyGPUoZ\nlIpgJIMxSD8RRo0NA5vTK8y0P1Sz0DINPSos0CqSVTNknPGdjz9h/bsbfumXfpbFbEFvJGkpObI5\npRQEKaGqmMeUqMCnYDNFmqXkFnrXsGnWfP7sjAfLR3xw/R369inSQR5WOOd4cPQWWb3ibvOEIghs\nqdhtb7kxd+RVTaYUk4QgDKMdGFNDGR3BDgQXCEJhjadeLJn65qA5M/Y8f/oMnWiuhETrlGEc0DrF\nGEuMkcvLlxRFQd/3JEnCbrcjenB2YnF+Riot1CW5zvERYvRMU0OSaK5fvke9OMHrnGmQyLBkamdk\n1RlN21AXCbqJiHqOWh4RXeTl+x/zye1ToisQtmdeFLx18RCFpGktWW6J7CjKithD8HtEEEy9xw4W\nMUV8ZfHOgIRxWtO5lihbUqVIY2C7uWKePub49CHb7jssVgrweFcwNB1KWNT/y96bxdq2pfddv9HN\nfq52d2effbpbdetW7zhuExuch7wQkfCCAi/IIrwhIBICxUSCNyLIAxCekECKIkTAAQnEQ4QAS7YV\nB6fsclW5XL63bn/6vc/uVjP7ORoe1vZVxS7KVaaury3v38tZa+251tj7aKxvjPmN//f9SYijBBdr\nmn6N1Jr5zIOxeATbqqbvDcjbnPktfzb5xGa+lrsy1TzSGFGymD7kyfNvkkk4e/mKOM3pWo+KNF3n\nkMHjreH09AVFMUGPnijy9L5Fygl+6HH9gIoTjo7uECcZr148Y/GZEgZFiCLiaYWvR0ahiFxElpdo\nZamlZetG5DDg05RYONbtmm2zIc8SkGu8vGJvfh/nI6SSxElMFJUMzRWh3zCEhqbbUG02SF9xcnDI\nB5ct1jmO70yQTmKDJE5KXHdN13dkxa7l7eAsUsVkacbjx0947bXXuLy8IssyDosjjImomwYpJV3f\n07QtXduSpinee7y3xGmC946quWBSTmitZzlZcH3+kjgZieOY6XRvd2iZZGit6J1ExgUynSDbS7yX\nyChCZCnepMhR8M6Tx1TXHf1YkeaaR4/uo5XgnQ/fwieBvX2Jjq8gaAIjfrCY3qONZhgFkTIYpZEi\ngBKMotlVscaBNDIYEdMGR1HGeN9z5zhn2z8m1nPi1LLYjxnbgAgQa8U29OAscQqmzLGu2xlkaE2i\nMqLydgd6y59NPrFgbmvP6CyXlxfMJp9ie33NLEtI04inlx4dYo4XE7JFRpSmrNcXbFcX9OECaQe8\n0yjrsK1kCDUhCMbBIsWASmIO9vfRwWIbyb3l67y4fMFmK7hzcB/COeVsRRokr4ZX5Dk43WNUiQwZ\n61XLph157/QJKpbcf/SQKHZY/wR0gfeSqh3oKsX66pLMSPJFQ9ELVBIxSxOIRuKoZXtu0MJQTEq8\nGnbqk0jincX5kTiJyIs5V+tLQlIymczxUnDx6pLDQ4WSO+OJKIoIITAMA03TYMfxJpA79K4F1a43\neZwggkArRTMMu26Tcmd+vVje3x0W2wGC5+69R6TTA0ZriZMEhUckBSGKEaPDVyPfeP9D3j37GgHY\nti2R0ZxfXRM2Dtopa1VTLmuMrAg+xriROIoYrSXKoCwycq24ajrQkthH9JuIPPV4FLKAg4MF2/YD\nFrM7OB9TtxlPHr8kVxmFgSEonDTEdiQ1hotYoXRE3w708UBaahIj8aFhe/0H7GZvueXPBJ9YMD/f\nrBEoQhh45+3fYHA1ZZ6jQoxRKVEUUajAJFfEWYGwirGGzeYSqQeIOlAxY7DU65pJPifJJPP5kg8+\nfIfZYs6yXFDZDlNDcAqjInRUsFq9jTAVeZKRKo83ZyQ6Io6gHzSZueDCWd59ecZsep/5coKUjjKf\n8d673yTLFBfX19S9Yy4OmZgpvfQcHEw4fWmwTtA6TVrmzPXAy/qUJJ+TxzHYgThJaOuaWEcYAb7f\noAOsry+I05LttSRgqesaQvioyU7f94ibsvy6rhmHkc1mg3WegKcoJsRipG7XLCZ32W6usMIzKyfE\nMsZkKUU0wVrPdDrZ6cuzBRerFbFRZJMZQkeIfIIdPZcvHmPtiPMxl9eXfPq1Y7QSbFY1s3RG5Rqu\nXjniLBBPK6Sx+MTRd9D0u+rTOAiGqkF5iyoEkSiJ9BR7vWa97bGzgSZao5TBDS9YzqfcmR+SDAWr\niwsmkwVxOUcEGNY1V3VFZiNWmy06DxSTgCJgm45upQnX2Sc1pW+55RPlEwvmPREMDUIN2LHBaMW6\nbRiDoh8cYazpgqK96sjHDi0zBJrQlmzOO6K0YAwjyiiyuWZot0QqJdYpJycnfPjsfertFUmS4rzj\n/smnKItHfPrR5zj7ypt86xvnbKbPmCxi+nSfQnikkaz9NbnU5GJgZVuuqnNG13N8cMLB8if40b/8\n1/nNt/4xz1/8En3vIHakpDSjR+jA0f4hV+sVm8qhdcL+QtF3gWaoSbUiS3KaTYdWCmEHxOgQzlHE\nGV5KZsuCdVWxnOyC7OXVFVEcU223GB2zrTcIIej7jr5v8bZDYCmzFO9GrHDEImK73SIFjM2WIdJo\nbdBKE8UpSS4IdqeM6YaGavuK8vABQimCiQlBo4eWD86f8a0n34DIUM4Kyizi4uwVzgq61NA7Dy6i\nq3vSvCJNYBOBkQHf7n4nOQRkUESRxEcabVKi0TEO0PU9UhWs64p267j3yGP9hpO9fe4dlnzptc+R\n7e8RxZar6zXvv/8By3xGf14RpS2TzLBZrdk0I2OvEBvFUZp/rPP2xqzlvwO+wK63+d8IIfz6937X\nLbd8/Hxyp0ViiUgzgt0pWKIsxdcdVTOCU2wZuXxRka8MyzuBLOsZnN1VFQ4JXe8IkSDNPEIKetOh\nshUmHpmqPRTvc3F+TeASrRLuH6Z84bN/kUkxQQZDbFK++a1rPv9wyvxwwYXdsrd/gpQCN1ZM8wc0\n7bsY5RiGns11x+XsFX/hx36Oo8Ofp21qvvLbv8ZlX7F/0CC6CZfDisP5kjSOWdc9UR8T6RgXHALw\nkaTfdMgAcZpSJBOq7ZoQLJPcMDrFxEiILLFqWZQRm9UFQkUYbShLydD3SClpmhqlBd5bhFAEtzOE\n1q5jvXqF9zMODpaEsDs4Dd5igkcKQRZnuCjgvcWHiCyd0rYNyXyBKEtsvSFSMf/st3+L9foCgefB\n/SWjdLz1wVPcWHJwoBgRJBk0a0WcefK8IzJgHBwtJ6jBE+yACIE4kXgMclSIrmEyj4n1jMtNy3gW\nsw0V225FMcScXZxzkD6gHh3t5hVFHrNYHDGd3OXyckUnvsZR+jp91bA6FTRXklikpEaRlXPgzY9z\n5v494B+HEP5VIYQGPt7V45Zbvk8+OZ15PTKbTBkGgZEtkckwxRQte5zzFHZkS8z1ao31DXuHChki\nMIG+t+TaMjqFwzMqT1EaBllxsX4LM5xwZ+8BVfUm1+cOKTrefOd3+OyjHyGOYlAjD04WbF90uK5n\nL2ie1JqklBzuP+D85W9QyJL97BHz6YRX2zOquufXf+tXMTrjU/de42D/AfeO3+X0+RUuDEzzY17V\nG+p2S9M6pBSgDZebFolCxTWrBibeU5qESVEw9BvSLEcpSRxp1OgRviHXLZvrDXUfYW1g0DEyOLx1\n1E0NgHUdwxjoRosioLVHigrnR4auYn5yF6MTetNCcNhxYLu5QCeGyOXM50uUTri8WpMmKVmkQCq8\nd0Qy5v233iKWEbkWFKUhFoqXlxVWGJS0CBmjXEBqgTaWph2Rgp31nDZICUbHRE7hGfFBQW/wsSLf\nP6BMY5pxZHN9RTbTHO4tKA80OsSEvsSbh5xf9Kzfu6ZcOh6+5jk8OOBYFZTZIZICN8R8+e7ILM3J\nspw0itBa8d/+/V/5WOasEGIK/AshhJ8HCCFYYP2xDHbLLT8gn1gwH901Zxc1tmkZx5bFvkcoRd9Y\nUDFhcJRE+CJhGAeqVUuexqRJiXcVOlfMEsPmvKUbBvq0J9jAQI1y53iVE5t4p5oRnqbZ8o33vsKd\nzT26cU2u5xztLRBOUg3X7AXIo30e3P08q+ff5NXpKdl8n9kkpogKtr3FaM3/8av/M/iBz75+l8Xy\niGrbYN2IEXBv/0tIzinMyNg7rtsGoTxhbGmtRasAskQJtfPdlJKqqjg5ucfLF0/Zn0/JE4Uu75Cm\nHW8/eYKvFd0AVgSqTU0cxyil6Lpd/jyEgIkVy9mURFouN69I4pz19QVGatJyinKWoW+Rg2Jzcckk\nn6BEwAdPlme0TcMkWyCiCDlarp6+5Otvvs1X3/k1pguwoef0wwaXxszKJWVccLx/B+Ele8cHIGCw\nI3cPDsijJXlc0DUj5+dPQAryLOd6dY0xMZPpnPlkSpxEhCCpNzXj0BGlGbOlwY0KERRxnFAkOSEE\nxjDigiOLc/JZip0PdH1Pmkwo4xKRCMZhJDIR3n+sapZHwLkQ4u8DPwJ8FfibIYTm4xz0llu+Hz65\noiEtuK4rVpcbNAItL/FSIKTAiQhawRgkKpG7Ev4wYrRldCNFNqEoDYXRJMUrxkvBeuUZ+oEodozd\nOaPo0FpRzlKGZkuWG56ePuZyfYr3DbUzGCkI3tLZiCjuOdy7y/HyhDeDJkci2kBbO9Iyw40tbW1Z\nTnJOX17y/OV7nNx5gyw1hKFFRQOSOVKsSLzEjReUU9isKryUdDWEsOXOcon0Chc8bVMxnc45PX2J\nCG4nvzMZWZmhVcz+4pCXlxu22w6VJHRtR6UkZTHBOcvOmhX2lksmWUpdXZIVGcQBjQU3oqXGO4cg\n4MeRwa1ot1fIgyP60TFaTxRplIkQWoFQfPD+Bww+8PDgdbqwZRwh3u8wcYydG5blHpN8wmQyZ3+5\nRAqFlIFJPiXKNLNyhnOWD58WGCNJopSu65FaMp9NcYMHLTBKM84GmqamLOYUkxQ3SpzvcM6SJDFp\nWtB76NoaNw7Y0ZEkBUlaEMUxSRwxDgNd1zCOI0nysXqAanY2iv9OCOE3hBD/FfALwH/ynRf9/gKd\nW7ehW/6o/CC2cZ9YMC8nBUEHGGc0m4aqtowOIh0whUYJSVAwX+YoExi3nrHZ0rmWPH+ADBO6MTBR\nnvv7kt9+GuMHTWUbxlYy+i1FkjFbGMQcismcn/nJf4lf/covUW1iosgzyaeYwXJ+vWF6pMgzyfq6\nobpqIfYs5lOmxZyRa2aFoSgSnp9/wKwoqFdXVPkpeRIxdoHN9hkqKskmJ4z+BVEUcbgouRIFT16t\nmaYFyuYIbxB6Zzgxn+6hlKDyjv3lkiwpiFJz09MlxgtJO1heXW4Jg0UbAwSGOEHpBILDGEWsY86v\nTtFK0/cjRZrvrN+waO8x+ZQOCONAHCfgBmSwpFHGiIGhR2U5XhqE9aTTJYvBw8mXWOxN2V8ec3V2\nTh8c221FHAnaukUZRb/dsNjbI0sKEIHM5MQmoR23PLp7l36wxFGEdRYpFV3X4qylzAqkUhitiZOY\nJM1I0hTvLH3ryPKc4D29HRjGEaUEWid474mimDiO8N4x9CMhOJQSoMDzsVaAPgOehRB+4+b5/8Iu\nmP9z3AbvW35Y/H4P2e/0l/39fGLBXDiJkoY80Wiv2fQdRkGaRUQxJJMUKQRD31Ove9za4hlRWlNV\nH9A2SzITYbUg6A11K8hCwiJfcmU7Rueo/QDKURYj9x494M995kd5/OQxX391ho8MeZ7R25r19YiM\nLJdXT3l6fsplf8VUzmjqDdYFAi33D+8xPzjk7Opd9g5Sxr6g70/JsteI51OabUPfr9nbO8EPNVoK\nlDB42yOD5WBaIIaCWKfkWc7YbqmrLc717O3tI/yA1hFZkiOlJBBIkphJWVIWW07PL5iYBd57JuUc\nk6YI71FS4IaOtukxsSMv5kgG0DHDMLLZXrIXG7K8JDYxaZqyd3hENDugNLqqXgAAIABJREFUbsB2\nNYv5dOe4JAJh8BhtyCKNnM+Yl0sUgcOjA8pygrUWrTWXlxdsNhuur6/ZrLdIGYiimNlsijGGrtvl\n9kPwdH1304ogYO2IlIJhGJBKkec56STFAzY4xn7XpTKKIrZNjRACYwxRFCGlxDlH37eMY78z/zYG\nGSeUN56mf5hP4v8fQginQoinQojPhBDeZmdq/q2PbcBbbvkB+OSkiU2LDz0iRKADkZBIBVGqsENN\nLyASiusXLU/O1izKgjSR2MSx3WzZrteU6YwsUmR7CcuDlvY6oOMJOgHVb3GjZLvq0Uby2r3PkZYl\n1q1x9Aw+RUUGO/PEY4LzcH5V040XqIlnYCBIyXZ4Tj0E/AB1fcmkzNBKYNMYhMZ7hSdG+Ix2NWKO\nNWV0jA4LosGwiJbMDzOKJGLQYISiqSuU79GpIY9nxEawWm85vjPF2hGlA2PvwI9kSUyWxIzjQF1X\nxHFClCRMspzReYTvuT67ZH86RceKsamYz0pErlHDgJDQNQ3FdIbSknw+JZ8tCAiC7dE4PBavHaFt\nqFYdfd/jXGBvecDl5RXjODCbTWjbljTNePDgAXFsuHv3mKbpuLq6QsrAOI689947lGWJMTuTCO8t\nSu2aXymlKYoCpRQhBLTWH7UmCAi01gghGIeBYewRWiOUpu9avLW40YIQ6DhCCBiHjrapUPEu0GdJ\nuqs0/Xj5d4H/QQgRAe8B/+bHPeAtt3w/fHLl/C4mZI6h7aiua5I0YbPu6CsPwhElFY0KJCIn8RGE\ngEXhRosYwdmEy65iJRSHY8pkHtPpmihJKG3OZrVGKtAyR0jPJCl4+vQxZ6u3UNKzrTqkiTjZf8ho\nHhO6EadGlBNk8ynr1TULjpDE5D5BhCnG7XE3SxnDiDGaJEqQ1hCrkiF1DPM1qkvIKOmTHonm5O6n\nMFKzqTecnp4j8hgrBzbrLYvpguAFKs6wHqQSDENPbCRNvUFHMWm06/meZzmbzRopoWkauqYlTmKK\nJGYymyBkYOx7cANVdcn+7ACpY4zRu3a6dmBSThgGi4pTvId1XRH7gLA9YXlEOLvm+fMP2VZ2Zyk3\n9Fg3ghRUVY31jknf81ZbIaQgyxIImqapGUdLnme0bXvTPE1TliVZliGEYDabfHRgG0UxbdvuPEmv\nr6mbmuADeVHu0jAhsNluyLKc4zvHRFm2W1TsSJqmmGAQQDt0aGVQIXD6/Bl1XZOm6cc6b0MI3wB+\n4mMd5JZb/gh8cuYUE0UfT0nihhdPV8TakAjJer1FKcW0zBACdKI4OlnQD47KbtkrU6yGetuhdUQ/\n9FxeDXghySe7isokiqhWHSLSlJFnkd7hg+ffQvmSzaonySXrq2sev3jJp+MHBKeI0wX72QE6naOV\nwmaQmCkaRVRqZosDpNY01YbSRPjRs73eUBQp6TSiTDXDmNB3HYGAkBJCYL1a7W79hSDPU4wxeB+R\nFXsE70mimA8+eJ+9xYzBWqrNNVrMMEpircf7QJJq3NjjrUNLSZZNSBNDCJ6m2rJdnXJnb5+h2yKD\nRxDR91umkxnee4pyikQQlCbLM1ScEkTCcq6xtiWez/EhIRRHPL/8Oh9+8DYHBwc0TUuSpjtFSlRC\nBFmcUDcViYkRGKSSHB0d0Q093nkmkwlVVX20M6/rXbql6zp0ZGibljzLODi8Q7WtkDqQpDFnZ2c0\nXU2S5SAEry7Omc8dZVnQVBWnp6coE7G3t0ee7XLraZpgjN4tEIkhTmZ4/7EaOt9yy59YPjlpoteM\nnWVSBr7wxWO++ZvXLBeG6MQgBgitZbpYomJBc9VSVS3SejJv8EWAkFCtepxXjMbRdYG95YRJNucL\n91/jL7zxIxgdMQbHdJaTFYpVHfiR+3+JMjdEIiXRmuViyZce/DSpUZRlgbcwDD1j37EdOrDgvWMc\nWqQVZHmMiWPOXp3jhdhJ4YQgBM/qJnCP40g39CymM7q+x0uBDND1A0JKTJTj+xHvKy6uLohis9tR\nBsMwdPgAUkUoBKJ3aKmJtEFqxWy+JEtjlNoFscv6GUIE6rqmyDPKNCaMA8Eroiii7Rqq1RWzxR4E\njxKBkCWE4ph4mRHhIS6QQjCOF+zvL5B8mkAgBFAqQimFkz3aGuTUMInmJNpQ1zVSQZ6kaG3w3tP2\nPQdHR8ymM9arFW3X0jYNp69e4b1nuVygIkVR5sxmM4ax5+LynEk7wboBqQKb7Zq22WCU4oV3hODJ\nspjJfEaSaLquRmtF17YIIZjOFuRZyjCMNM34SU3pW275RPm+grkQQgG/ye4k/68KIRbALwIPgA+B\nvx5CWN1c+x8BfwNwwL8XQvg/v9tnnj4/JSkduJyjoynn97YEJDayHGYZSmuurjckaYrsepLeIdOI\nbqwxIiLNot0OeNshMku6N+WLd36Kh/deJ89ykjRmudhDCokgYN3IPGm4V2SMzoMKTIspxmiUVvRd\nRxSlRJFmtI662mL6nZWa9W4XoLuGOI4Z2p0DfJ5nRNrQNA1JktD3PY+fPaUoCmazGU6A0IokTolM\nTD7ZyYzGvscJy9jXuL7GOY8Umm11RZ4XWA/TIuN6swHAO49SgSTNkFHC+fkFgwuUeYq1I5O4wDmL\nsyNDL8ijhKA9bd+ilcEkKUoqotiQ5zNENsFve8RiD0kEAsDxwTvvcb2uqKoNAcd8vkeRpzjnGK3k\n5dUlJyohzfTOws4Yuq6jLEvOzs85OztjsphxePcOIgSMMaR5iptNidOEEAJpmpJmMS+fP8eYCG0U\nSgr29hYIYLSWse85PrqDd4E03aWK1qsVl5fnDMNAmqSYKCKMFhNFAKw3G5zzH7c08ZZb/sTy/e7M\n/ybwu0B58/wXgP8rhPB3hRB/6+b5LwghPg/8a8DngbvA/31z8v8H9DS5yphmESYzSBfx5T/3ab75\n7feJrWLQA/eXE6Q0uLaBhaCYFFifkuQF+5M5B3uHoKBuO0bbY7Ti+PgBUaaw9DS9RW12u+qymCOF\nYL5Y0LUR9XqFQODdgBeOLCmRaYaUOxmQVoLl3h7r1TWTyZTLyyuePnvGwcE+683mow6GAXZ53CTF\neY+JIk5O7pKmKX0/cPrqjHv3HjCbLHHWY51jGDp63+MdrDdrYhnIsgJjIpIIvB3QRjGOA1prQj8g\npWIcPUU2R+mEdvC8OnvJJi24e5gSXI2Rjmk+Z311wfwoo2rWWKPIpwV22C0+WhuivSVjMOjlQ2jX\nkEYQJEIKDu/eJyjJi+cfcH15yTvvvs98PiEyMdO8IC4Krtan6MqQ58WuJsA62qYhS1O+9MUvMjpL\n33Y8Oz0jyzKyPGXoB7RW5FmOHUf6qqHtO5x3hHqkrRukVvR9T5QkaKm4d3yX0Tq88yACy71DUJK6\nrhidYzKbk98EcmkUOkkQUmAi80f+Mtxyy59m/tBgLoQ4Af4K8J8C//7Ny38N+Lmbx/8A+GV2Af1f\nAf7HEMIIfCiEeBf4SeAPNCLSkSM3C4wZeXXZsr835Xh+yNOnL5AyRcklD/dTgotJ8gKpUoxJiOMc\nKSBLExbLfUZruTg/53J1hvcjXXOjyxSCvqkRUjJJMtI8J4kURmUksWEYRrquwwXJYB0hQNeNWGfJ\n85J2W7FabxiGgclkxny+ICtyiixjW1d457B2ZPSBbhh2O848w9qOYWjZbhuKYsJssk+apmzWK5QU\nVNuKartmbAfSbMo8T4mUpm073OiJpMTZQB9GggsI4YhMYDqfkmYL3n7/A4be8elPvcb11SWr65r9\nYmet5+xInuV0o0OJgBtHvB9R2hClMVFkEHGJzA6gu2Tz7Ixock1y+ACCZnHygNnRMY+ffZtxcGhT\nk6QZq+srvHc0Zy8QUhBHKbP5HOctWZJydvqcKErIsgylFHleEBvJ2Lc8OT9FCEFRFDTVFqUkl1eX\nu/8vm6KFxHoHg2cyW5BlGVLKmwWx36VumgYhFVJJ7uwfEicp5XQCAvq+R0pDFGWIxMCto84tf0b5\nfnbm/yXwHwKT73jtMIRwdvP4DDi8eXzMPx+4n7Hbof8BqnbLrJa0Q0+9rgg2MM3nzLKeNx58mcXy\nmMLkaBPI0gLnHYP1RLFgGEYEAmsbvLMURYyODhmGgaqqiKKIpm2RwROs42i6wEhFLBVJkaFkhJQ9\nWmuUUFR1Q13XlIvZRyL9YehRSjGfz7m6ukbJQLfZUHct4UbDP3YDWkukUNTbCk+g7Sqc9YBEaklR\nlECg67qbQ0GBVBJrHWWeUbc1RAn7ywlNtUFqjx17MhXhlSQSEi0VUu7SGnXd0tQ9r16d0/ctyzKj\n7TqyuMA6MErSdy2zyQSjY6wTxEaSpgV5URD2DnEvniOzKb/97pt85t5DksVdRGQI7HL1r9/7HMbv\ncuJZYpjlE642aw4P74KA1fqKNElompq+H8nznNVqzfX1isPDA373d9/k4uoVh4f7LOZLDvYPePud\nt/Desre3B+za+VbVhmk5JU1yRudo2w6lFEop6rreadDTFGUMWu4WB7yjbxuGrkMIQZZl9KLHjz10\nCik+Pp3598sPS+v+w7R6+2EWMv1JtqD7Yf6dvyep/WHwvYp9flif8z2DuRDiXwZehRC+JoT4S9/t\nmhBCEOJ7inu/689iPSUIT191jG3LZTWw98ZD3vjUfU72HwCewe4KSJwfgYDSisjEpGmGMQbrLATB\nYm9GbCK6vmVbVVRVRdu2JElC0zScXrziUAlUbKDTWDd+JJNbbVcM48j1+optvaEsS4LddRqsqhrr\nLH3f4pxnCBbLrn/2pChQQhBFGu/BOkccJbR9RpTEXFysmE53OXkfPEIIoigiigybjcWYmL7fkErD\nwWLJdnNNHhdkuWazOmea3mfd1hgdE8c5ZZKw3taUeYmShrZtUSpQZDFFGpEWBU21QsWCSO8mtA8W\nSbgp1hnQOsaPCn14QnN2yvbqGndyD8JICAl4h1eC6cFdhm9/k65v6HrHvXsPme3t0dTVTk54BV3X\nM5nOmRRTtFEcH9/FWov3ji996UtsNteIINk72MO6EaVjnn74gjQt+OxnPgNSsF6vubpaM19o5rPZ\nTTfIBufcR8VCUkmG0aPSlCTftQno2oY0TRmGge22IoojlBLYMPJdMnq33PJngj9sZ/4Xgb8mhPgr\nQAJMhBD/PXAmhDi6qYi7A7y6uf45cO873n9y89of4K03zzFhTRAje4cZh4tDxGg4PDxA6UDT9Bht\ndoHIO+xo0VGMiTTGmN0XHkGapeAtVTMwjiPL+YK+78myBKM01juuVyvatmU+n6O1IopipJREUcRq\nsyaWO2VI0zSEEDg7PUUbQ2DXP0VKuXuf1MTBgYDUaIQyNzt4g8ChleTk8JiqqSgmJUcH93DecnV5\nQVEU9MOAtRYTJfRdQ55NWOQxbd/grcUav6uwlJp+6AnOIyO5e4/WbDdXrNdr2n6g71tSLfnSawvi\n2NA3G1w/sh1G9mYl69WK+XROW23ZPzpCCo2e3AUjsFdX2LGhbRs22zVHbkAI8M4ihWDv5B6Hxyf0\nT97j4mLNs2dP2JstOTw85Fu/8y1UgLHrmR3dwclA27bk+e7MwTlJluXkeYJzjuPjE/q+Z1LOmS2W\nfPvtN6n7lk89/BTHR/fIsyl931JVFXmef1TpGUUR3ns2my3L/X3qbU0Sx6zXG7x3GBPTtjsrvV/6\nlV/l//nK14kis8ux33LLn0G+ZzAPIfxt4G8DCCF+DvgPQgj/hhDi7wI/D/znN//+bzdv+d+BfyiE\n+C/YpVdeB77y3T774NOCqU9Rg6QsZ+h8RplkDLZD9AJjFElyU8JNwNyUtjs3ArvS8DhOsdZSVRtM\nHO1y4OOAHQfiOKYsS6LKoPLAMI40TY21ljzPGceRKIpYr3cHmmVZ4vG7cedzttstZbE7mJRS3BSj\n+F2pfQj0/YjWu0VFKUldt4zjwPtPPqRtGtLpjKZtcN7dHKTO6LuWy8tLZtMJx5/6NCd3lmRJSpLG\nvPzwd6hfvSA4h1QprbVExtD2PUkWI6RiGBu00URYlEw4mOeYKKJvamy9Zrm/oN62yChDS0XQGXmZ\nMdjAfHlESA2SfUxZc/r0CT/+4z/N8+fvcv3qJcsHS6RWdOfPSA4eUs73WH/ztyjLKVkWc359wenV\nOWkWk8S7BXWwu6KirmkZXvRoLXnw4DVWqxV932FMxDe+8Q329/eZLxe89vAhi1lJ2zYs5nOk3O2+\nQ3AkSYLWmjiJGMZh12vFyhvJpkdLqKoNUsLV1Zo4jhnHESklP/vTP8mPfunznJ29ZBwtf++/+Qc/\nhK/GLbf86eIH1Zn/XsrkPwP+kRDi3+JGmggQQvhdIcQ/Yqd8scC/Hf4/EmzeKlRuGHxHPXoOohyh\n5U0Xv51Vmve74CmFYDopyPN8VyEZxx/toqWUZFm2U0aEQD8OEAJxkhBpw3ldk0cxeZrupIKw20Ha\nAXxgMimJ4xjnPGWckqcpnkBZ3qEsJzvHHimYz+eMY0/f9ygh6PuR69UVfdviBfQ9JIkiSEmcpwTv\n2Gw2pGnK1eUV42Cpmi1CeyIjOVjO6UcYfMf92T6f+/M/x+rijGfvvk19/ZyhrklMhI4MwQswMVGc\ncxhHCAl9X7M3yzFCoGRMMpvTjxE626OcP0SlCbEC27e7Hbp1lMkE7wXj9orl/gEvnz+n7zrGvgM8\nCEH94pL44AF5Pufw8ICqasiykg/e/xDrR47v3CMy6saLtEYaQ5oWLOZLhsGy3W4wRrFcnvDkyfvs\n7+8OgN9+802qZsOnHj7ijdc/w7vvvcu5e4XREWmaMo4O7wNRrLH9iJUO7xxVtWVSTNCR2Uk4pSBJ\nNRcX54QQKMuSx48/wLqdlHI2m/0Rvga33PKnn+87mIcQfgX4lZvHV+yaDH236/4O8Hf+sM+bRkv6\n2uEAFadoJdDakKU5xmjyPP/odjsEdxPAa4wxCCEoyxJrHVIqIKEbetqhBx92QX8c2VYbFpMpzo6k\necZiucR7z9XFKybFPrPJDJNESKVp+w7b7UrRFQJnR1ary5vbfsX5+cWuWCUyNFXNarXaybOV5MWL\nF2TZhNUmMJ/PEUIhgG11hZL7OOd5/vQdeu8xUcqdgwNW6zX3Hz2kLGbEScLV9RnXFy/4whe+iDc/\nxre+/lVcv2G0Oxmj84Khd+TzGC0U5WxCpiS1dUyLknxxwMHRPbTSPHjwgOlsTr3ZkhU5GQ7bbAlK\nI6Vn3DY8u7hkbLe8OD3ns1+wBCTV2WPmJzMEAq1GPv3oU1xcX6CV4qd+/Mf55X/ya4AnzSaI4HDj\nSNtb7t69Q1VVlOUUHwbmiz2ePXvO9eqag4NjlNKkWUpWJHzrrTe5c3KXOEq4eHVOkgV0pPDB8vTZ\nc6pqy/2Hj9ibL+m6Yafy8Q6ld3cDhN87A3BY70hGy/0HjzDaEN8sxB8XQog3gP/pO156DfiPQwj/\n9cc26C23fJ98YhWgn/2xL/PWm29y8eqcxSQCJZnNZ8wmC9IswVqLUgJjdk2VtNZovft1x3GnoGi7\njtm8oGs6ijxns92gI03fddi2ZX9vgQ/Qti2r7RVaBiwCpQ13Dg9JspwgoCinXJyfESJDnuc473He\nc319zTiOhGBxbrfTbvqOqqmJpaYd+p1+fOjxUY80MVVVfXS3sK22SKE5v3jF4/c/ZLaccfd+wWK5\n5Gh/ycHRCVEUoYBuLFFBcvrsW8wPHnF4chchH9FWWz547y2azlJ3DeNV2Jldi5x8f4/ZfMFy74DP\nfvZz9P1AtVmhjMHEMXE+Mp0vCPMluh8gbABF0Boxej58+oTV9TUheMS44eLsBc1kwuHCsjef8Pid\nbxJFu51zmsT8zM/8LF/72lcYBsukSImMYbNZEUWa/YN9zi+es16vefHiKRcXl6TJhNPTF4QQmM2n\nrFZX7O0t+cVf/EU+97nPUzcNg+0Zx5Y0y5mUe9w5ekQ2KTi/uGB/b07wAR8Ce3tLhJC7Xj7dwP2D\nuwitUEpjlMK5XXDPbrTnHwchhG8DPwogds3knwP/68c24C23/AB8YsHciIT7Jw8YnCWJCu6dnLB/\ncIciT0jilL5vCSEghGBvbw/nHN77jwwIhmG4yV/vjJg3mw3jMCIMREoh0l2Ofb3dcnx8BwKM3vH2\n229xeOcuNjgOjg6oqi2Xl6fYocOGQBwnrC6vGYaeKIro+xHnRoZhIEkShJLMZjO89WyaijzJef48\nUJQTjImomhaA7XbL9fWaatvw/pP3efzhYxbbAz73+S+TJCnWw2Z1wWKxx3J/D+8HkgcPOX33q1w8\n+4B0NkdEBclkQpxNcPYJzllC2MkcizwjSnIcAqUUTdPS1B15UbKta6wP3Dm5C8UEGRSYKYQFQXii\nZMrZ6Vd58t5zQPDhh08ZrefZ0ydMZiXj+hWbas1kMmfbbLHWsq0H7hwfUNdfpG0rlvNdOmN5cMjT\nly949PAR773f0zQN5+cXNE1HZFK+9vWv8tqj13n06FNcXp4Tgufk5GR3N5PmDG2HHQJluWQyKdHa\nkJiIh/cf3LS7dUxn0xupqWMxWVLO2QV5AXmaU7c7BdM0L1B/fNLEvwy8F0J4+sc14C23fC8+sWA+\n9JZ5sc/DezH7asLDk9fIEoUfPaYwBL8rygnwkVytKIqbsvmBEHrKsmAcBpqm2h16mgg3DvRdx2df\nf51Xr15x994Jp6dnfOFzXyBNYg4Pj3j/6ZNd06e25dnzJwxDR6QSnp8+486dOyD4qMdKmiaMo8SY\nXdm+8IFuUyGjiOVswcuXp+R5SZblWLuT1HnnGUfLbDbDxBFf/tKX2V8cMPQ9680FVbXFaM1ZXe36\ncd9IY/PZknXdc3j8iOXxXZyy9K1EqIIQHAJFuLljODm+R5rkfOb1N+i6gb4bQQiSJMVozdGdI7TQ\nBASCGEQA4RFBErIpv/xrv8xgBwzw9d/+TZ6+eJc3PvNFZtMpV5sNv/rr/4Sf+6mfZT5fsFwu+Wdf\n+adY+yH3773GaqW5OD/n3r37HN45Js4zvva1bzCZlMyme3St5+zsbcaxJ00zlNKcn58jiIgiRZaV\nPLz3iP3DO4zBgXUYs7sDGMaeJElYr654/ORD9vYPWB68wfj8JderC9brNQd7B3jn0LFBxQGjDZGJ\nqKqaovxes+6Hyr8O/MM/ttFuueUP4RML5i8uXjJJU3SSUCQT8jhitCPeOfpm53XprWX0DmstIgSU\nUmitsdbuJIkBxmHEjY6x6/HjTgGyf7zEB0GaZ1SbDYvFHBNr1tWG7XrF/mRKU7d06Rbbj2hpEAKK\nYkLTdDjnPiryURrqeiCKIiaTKVfWYaKYvh9o6pr5fI6UgaZtGQPIsJNLbuqGut5SypIiS3n48IS2\nbZlOSuwYsDbgrEVpjQi7tgNRnjGZ3yEuFwgdU6Rz6vYKEWms9dRNzTCOxHFE19dE0e4g2HvP6EZM\npLF2pGsbgoNqdU4WxQjtAI24yScnScZP/tS/yNOn7xLC7m+7c3SfPM8Yx5FyUvDnv/zjqDjG+YH3\n3n+bSTmnLAuc80zKCRLPwcEd3nzrTQ4PDpjPp1RVhdaag4M9NpsNIXju33/A4eEhxkTM5wvm8xlX\nV1e7gi0l6Zue6XSCkprHTz5EysDh4RH1tmGzqfjMG18gjJ4sT7hcQd20mPX1rpgoaJq+pm07vPOc\nnT3nnXevP/a5e9PL/K8Cf+u7/fw7Czt+v1PMLbf8IPyeqcv3wycWzN/+9jfBC+7dOeTktUPW22uk\nUBwcHpCk8UfXlXEMN6oW5xwaj/SedrNh6DvGwZKkGU0IHB8fs1gsSJKED588Js0zlosl4zjStu2N\niYLeBeu25eLykmEYEEJ8lMbp+548zxFil7rZbDZkac44Oq6uzkiShDRN6Loe6yyR2vUUaeqGOM0p\nJxlSG/bzhLLLuLy4wrmd0iZJEtp2p6ku8pw4NozDQB12Pp5KGu698WUcBhnHeLFbuJwXvDxd07Yd\nm82WNE05OzslyzKMiYDAaEeUhDgyPHjwgGa9ZrG/T4hTBAHXrpBpgUAihOT47glDv0EIwfHxMWma\nUZYTNpsNruk4WOxhreXs4gznHJHJePnyJcvlEuk922bg2++/xXSWE8SuU2GapkRRxDAM/MRP/OSN\n5LMAwP2/7Z3Zj2T3Vcc/v7tW3dqrq7urt9k9nvEksRN7Ria2WSIICUJxhJBYJAiLeEICCSlA8g+A\neIEnXoAgCCgPBIjCIhRHSUQestnj8T6x25merbuqu6tru/v24+HWOBNrxp7p7ukyk/uRSn37Vtf5\nfavu6VO/+1vOSVJmZmYYj8dvXVtNU6nVqgxHQ5BQLlf4waU3uHptjWatjqpm1Y/eeO1FKqUaVaPI\nwN1ird9jdXWVSqXM0tJSVii6WsU0ixyuz3MAfBx4Tkq5dasn72W1o5wfL97uS3F8+7KIUxwzB88P\nCd2EkT/g8rrggaMnUDUFTc0KHgBYho7j+QS+j23bk8nIFM/zME2TUqXMcDBCUxRM08DzXDqdTtY7\nktmbX19fR1UUkjgmSiN0zcQPfLzAzcbFw2xduhIq+J5LpWxQr2XZ91qtJkEQ0els0GrN0el22BkM\nGQ2G1Go1fM8nmJRA6212iaVAVRWazSaOk62+yXZGplnKgEqFRE6WAY7HjC2L2WPH6ff7zLdnUY0i\nBbPA2uUrtGZmiMKQ3nBAEPqkabamXVVVFDXLStjr92g2GhiaQZpAd3ObRrPF0HFozNZBMZBpgmJO\nkiMCnmczHG9SNAuoujZ5ny1c18V1fUAyGF6jXq9nm52CkCROKBaL+L4PEp564km+9dy38dyISz+4\nysLCIsvLy3S7XaRM8XyfIImpNxpEYdb7H49Hk9wtJYbDIY7jYDsOxaKJqqoMB0Pac4u49piR41Aq\nN1ldvUTgj9jRbWqNKqVKGdsb8/DDH8Qwsk1lqqoRxwlJKigUD2Sr+a8BXziIhnJy7pSpBfOlY3P4\nToqmlnBdhzBIOXnsBJ7r4LnZEIIEOusbuFEAKZP6kWBZFuXyHIaIn/ryAAAQTUlEQVSuU65U0DWd\n8XiE49j4fsCZM+9nbI+JPJ9Ll9YoFEyEqpJEEbquE4URqqKSpNFkvbRLr9ejUCyxsrKM7/v4foTr\n+Kz21qg1G5QLNaIoQjcMqrUGpaKF7TrMzc1hlUvEcYzr2lzvbJJKiRTQmmvhuh5RFDEaDLEsC9/3\nuXr5KvVqBW80oF6vI1DZ2e5hlbI85cNxnygMGQ6HDIYDNrodwiDCskpomoppGszPzeH5HiN7QKFQ\nQDcMSlaJjY1rFM0iw3gHoVVIhY8iVNIYUEARUCgUePPiRY4cPU5rdhaEpLvZpV6ro2lZAYuZ1jy+\nZ7O1vUWaSsIoJApC0hSWVlY4/+xzNGdmqJebPProWfo7A8rlCorQuXZtHV3XsWoV7PH4ra33QmS3\njWEYvnX76Hs+l9cuE8Uxs60WjuNjmCZRLJip12lU62z3NpiprFCrFVD1mPZCm9HAwfFHFMwixWKB\nUqlMoVjGtu176rdCiBLZ5Ofv3dOGcnLukqkF80pjHtWIsCIdmUKxoGGPxygCTNNgY+Mavp/lSGk0\nmyiKwLJKQLZb0DB0FKnx/R+8TqVQpl6vIaXk5MlTvPzSy5CGGKUiiBTP9yhYRWIhEanEKhWQEnTd\nIgxjZmdn8TyXwIvpbW3TG/RpNRsULRPDNImDgEsb67TqdQ4fXpnUyAxoV+aoVMqoqqBYK2PrGkIq\n9Ho95mdmiKMEvZQNDzWrVcaOjUAhSGLOv3A+u5uolFHVV+h0NihUSoDEsX0Mq8irL13kjUurPP/d\n7+GHPsVSgYKqE0QRcaIQRgGL7WV6wz6WVcAPFSTgBQ7zK8skSoDqxUjNAD8CvYSUkIYjCkWLMPTY\n3lzHKlZQBMQli1qtzE6vR63epFKpTm7zBK1mE7NYxB6NcG0PpZXt3kzigAsXzlOtNfCDrBTc4tIc\npmkgZTZm7DjO5M4ky+1yo2RcqZQVqMiGSvS3vlhnZmYYDseUrTpxGmPbPp3NZxFxyvr6Omfe9wHc\n0YjWbJvR0GZrawtVVVnvXOfw4SP31G+llA7QuqeN5OTsAjGNDGhCCPnrv3WOOFAwU4tapY4hVI4c\nOUKtVidNJGHkoSoG1Vo5mwxNU6IopNmsE4Yho5HNwvwsb169zqHFRUql4mQseQuhqoydIWkQYJUq\nBH6QFaFQNQajHQwj2/ofBgnVWok0kdl4tOMxM9OiWquyfv06J06coN/rkQYuaAVG9gjT1FEUBd8P\naLWaWEUTz/MxTRPTsIiiGMdxuHR5jUYjS7RVq2WFmp2xS9Es4EYeg8GQi6+/ThBFPHD0JL7jc2hl\nhSQRhNLHMAq88eqrXLl+BUjRFIVCvYIqwSwUUUVKpdygUW9hWAWKps7h5RUura1x9rGzLLTnGY6z\nsflCscjqm5eYaTZYOn2WqL9Gb2MTNwhIZIKhF2m3l3DtEY5nUy5ZmJbFdrdLo9ZAKApB6ANwfX2d\n2XYbkSRZeb96C103GI16uI6DlJI0TWk0GkjIvqAVhY2NDRzHfmvuoFyuUKtVcV3vrQRbpVKJIPCp\nVLJ6od3ONjKN8UOfcq2GORmyGjsuIo7RdJPxeEynu87Zs2fZ6Q/Z2enxsV/+XaSUU5l1FELI/cq2\nl2dNvHvu96yJcRzf1renFsyf+PAySlmnpJY4MnMEqQgeOnmaWrVKYTKGmuVfMTANC9e1ieIQyyqw\nszMgjmMajSalkkUSRkRpjKpmvWBF0ehtbRGmAZVyGU3TaDab9HZ2svqecYTvRVzd6PK+UycRQuC6\nLv3hiAceOMlmr4euawgE1VoJXdMomgU2utvs9Dcpl0tUihalcpkkjvGikG63y3BnxPHjR1hcXKTT\n6XL58hqVSiXTaZm8/NJFHjv7CK5jkwpBzaowdl2e+cY3WVhYYLjTx9R00BWGg/FkJ2uY5Q23ijQq\ndWzbxvbGRJHCznaH2E9RNEGpVkcVKnPNeY6dPEx7rsX1a1ewSmVURScII0bjHk9/8pewhzaKIjBV\nhUSCF0SYpskLL1/ksUfeTxC6jEYjFEXFdWxKeoEwjpiZbzMej5Fpwvxim+2tbdoLi+hatkN17dIl\nPNvBdmy2elscOnSEGxkgVlff5PTpU5P0CUU2NjbY2Njg0Ucfpd/vZ/lywoTvnn+eB08cQdN0zFIx\ne860SOIE1x4TBB6u5/HG62u05mY4d+4cxaLF6xe/j2oqVCs1zn7kk+/pYH5j/8S7cSf/m3dq607b\nO2hdd8Ld2Hq3v7sbW+92HW+kG7kT3i2Y36mtdwrmUxtm6Yx8KkmAXjEpFgosrqxQq9ao12okMpsw\nNAwDVdVw3DGappKkWR7whYV5rl/fwHWzWpB6sUBZs+j3tomiBEVRaM5WUYQOStY7XFtbo9lsUq1W\ns4k4xeDl197kkfedIUli5ubmiJIU13WoVirU6w3SNCGIPApGdmfQmq2zuDRLr9djq9OlaFkYZoGR\n69Cen0dTFBYWFhkOhzSaNZrND9LpdEiSBNt2SCe92UZzBtu22e5vUSqV6G4OePrjH8H3fQqWheeF\njIZOVtezXsUej+lv73DixFFc1yNMYjwvRIgH6A9GjMdjqtUqg+EYL7K5fOUS29tbWeKwYonZ2SZL\ny4ewqgViL6A4ySgZeC6abrAwM4OMY5752jf40MMPEsdxVj/U89FUHS8MWFxZ5vKVKyDANExs28EL\nPF568QLD4ZiHzpzGtm38MKHWbFGp1mkvLOB6DvZ4xJkzD7G1leVT2dxc5djRk/hewuW1q7Rm6nQ6\nHYLQ55mv/y8njq5gj12UQZ9XXn2NuYUFDFNH07J0woZV4tyHH6fVbNDv91ldXWV5eQWhSpLkvV/Q\neVqBLre1v7buJpi/G/vRqZ5aMFeVENcXzFgpC4eWWWgtULQMUCRKIhCqQhgGFIsF0jRhMBiyON9m\nZ9gnTWFubi7LkpjEpK5Lb5xlP1RFQprGCFEiCD2iKKVolTHMYpYbfVJ0IvBDojAk9G0GdpZKtVAo\nZDlhNB1JSCpjqrUqoZ+tnCloBltbXUzTZLY9T384pGgWUVMFTQiqlSqbm13m5udQFEkSZ9WLymUN\nxwmYW2ijmwYCQalUojXTwHF9VF0nihKsUgXbGRL4KSoppXKRoqHT9z0KBR3f9wgDD1XTKBRUoiDk\nA6dOopsFVE3FHu9g6EVs16WgFzh06DCNRoPu5iZJGHH+Wy9w6vQZlg6fIRluo2s6iq7juR6qIjB0\ngziIaLVmJ2lrJVHgougmq2++iSJMlg4fpt/bZGfgoBsmiply4vQh4jjh2PFjrHc7HDp8mI3L6wxG\nfaLAp92eYzzOvpw0TePkyQfZ2dlmcWmWzc0tLjx/geZMnbE9RqYpa1ev8cgHHkamKYmiU6nUmGvN\nE4cenc51Qt+FJMAPPYqWSV3WKFgGWzs7iPdAcYqcnGkwtWBeqht4TsLDDz7MkYUVUpEwGAwAMDQN\nFEEcx9mSQUUllZLVtUsUzCz3hqZLhKJmOa8HfVqtVvZ6TUchJU2zhEzlSo0gCJBSEoYhCTqqVCmV\nKkipsLJyiLLrkKYSzTBxHAdVNybFETRMM0HTtEl5MoV2u43vB1QqFUghDLJVHp4/5tDKCmPbpmCa\nWUEGM8WyClne9GGfU6dOQypJNUGqSBzXBQG6pjE33ybwszXv1YrgytoVZtrzrF+9RhAEHD9+nCDM\ninVomkarXmdpaZFr16/gOEMSoFQos7K08lZecMuyGI1GLC0s0tnc4MFTZ5hdWMbtbaGbBaIoQAlT\nLKuIYugohk51ps5oOMLzXLa3t4l9h3KjxcJCm972Dooe4acRzXoVRSTYtouqgBemdNcuc3j5KDLV\nWD60TLezwcrKUa5fvcLs3Dw/8XgTz/NIZczy8iGee/Y5Hjt3jv/8n//micefZH7hGEXrOaqlGrVq\ni/F4xJFDx9jobtBolOl0xmi6he0FjIYOplWlVqtRa7Wp1aoI3UDbx3HOnJz/T0xtzPzAG835sWKa\nY+bTaDfnx4f31ARoTk5OTs7+kg8w5uTk5NwH5ME8Jycn5z7gwIO5EOJjQoiLQog3hBC3zDq3T+18\nTgjRFUK8dNO5phDiGSHE60KIrwgh6jc995mJpotCiI/uo44VIcTXhRCvCCFeFkL8wTS0CCEKQojv\nCCEuCCFeFUL82TR0TOyqQojnhRD/MS0N02K//P9W/r0HW7f00V3auqWf7VHfj/jLHuysCSFenNi6\nZW3iu7BVF0J8UQjx2uR9Pr5LOw9O9Nx4DHf9+ctJGa6DeAAqsAocgSyVNnD6HrX1FFlVmJduOvcX\nwB9Pjv8E+PPJ8UMTLfpE2yqg7JOONvDI5LgMfB84PSUt1uSnBnwbeHJKOv4I+Gfgy9O6LtN47Kf/\n38q/99tH99PP9tNf9mDnEtDcp2v5D8Dv3PQ+a/tgUwE2gJXdvP6ge+bngFUp5ZqUMiKrp/j0vWhI\nSvlN4O3JrT9BdhGY/Pzk5Php4AtSykhKuUb2D3dun3R0pJQXJsc28BqwNCUt7uTQIAss/YPWIYRY\nBn4B+Ft+mMjxwD+LKbFv/n8b/94Vt/HRxT3Ye7uf7ezW1m38ZS/s2YYQogY8JaX8HICUMpZSDves\nbI/Vqw46mC8BNwu9Njl3UMxLKbuT4y5wI/n14kTLPdUlhDhC1pv6zjS0CCEUIcSFSXtfl1K+MgUd\nfwl8Grh5f/NUr8sBMm3/f1fe5qO7tfF2P3t1D5Ju5S+7RQJfFUI8K4TYS9bLo8CWEOLvhRDnhRB/\nI4Sw9kHfnqpXHXQwf8+sg5TZfc076dlXrUKIMvCvwB9KKcc3P3dQWqSUqZTyEWAZ+EkhxM8cpA4h\nxC8Cm1LK57lND+mgr8sB857WPvHRL5L56K5zCd/Cz356l3re1V/ukieklB8kKy7y+0KIp3ZpRwM+\nBPy1lPJDgAP86V6EiR9Wr/qX3do46GB+HVi56fcVfrTnda/pCiHaAEKIBWDzNrqWJ+f2BSGEThbI\nPy+l/NI0tQBMbgn/C3j0gHV8GPiEEOISWXGHjwghPn/AGqbJtP3/ttzko/90k4/uiZv87LFdmriV\nv/zjHvRsTH5uAf/O7ofsrgHXpJTfm/z+RbLgvhfesXrVnXDQwfxZ4AEhxJHJN9GvAF8+wPa/DHxq\ncvwp4Es3nf9VIYQhhDgKPADsabb7BkIIAfwd8KqU8q+mpUUI0bqxSkQIUQR+Dnj+IHVIKT8rpVyR\nUh4lu6X8mpTyNw5Sw5SZtv/fknfw0d3Yup2f3TW38Zff3KUuSwhRmRyXgI8Cu1oJJKXsAFeFECcn\np34WeGU3tm5i79Wr9mNm9y5nbD9ONlu+CnzmHrbzBWAdCMnGKX8baAJfBV4HvgLUb/r7z040XQR+\nfh91PEk23neBzKmfBz520FqA9wPnJzpeBD49OX/gn8nE9k/xw9UsU9Ewjcd++f9N/h3c8O/99tH9\n9LP99Jddvv7oRNMF4OW9xh7gYeB7wAvAv7GH1SxACdgGKnvRlG/nz8nJybkPyHeA5uTk5NwH5ME8\nJycn5z4gD+Y5OTk59wF5MM/Jycm5D8iDeU5OTs59QB7Mc3Jycu4D8mCek5OTcx+QB/OcnJyc+4D/\nA43ph1xlbAoPAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 7 + "prompt_number": 11 }, { "cell_type": "markdown", @@ -341,7 +445,7 @@ "source": [ "The classifications include various cats -- 282 = tiger cat, 281 = tabby, 283 = persian -- and foxes and other mammals.\n", "\n", - "In this way the fully-connected layers can be extracted as dense features across an image (see `net_full_conv.blobs['fc6'].data` for instance), which is perhaps more useful than the classification map itself.\n", + "In this way the fully connected layers can be extracted as dense features across an image (see `net_full_conv.blobs['fc6'].data` for instance), which is perhaps more useful than the classification map itself.\n", "\n", "Note that this model isn't totally appropriate for sliding-window detection since it was trained for whole-image classification. Nevertheless it can work just fine. Sliding-window training and finetuning can be done by defining a sliding-window ground truth and loss such that a loss map is made for every location and solving as usual. (This is an exercise for the reader.)" ] diff --git a/examples/imagenet/bvlc_caffenet_full_conv.prototxt b/examples/net_surgery/bvlc_caffenet_full_conv.prototxt similarity index 98% rename from examples/imagenet/bvlc_caffenet_full_conv.prototxt rename to examples/net_surgery/bvlc_caffenet_full_conv.prototxt index 7b22bfa1404..3c951970fc1 100644 --- a/examples/imagenet/bvlc_caffenet_full_conv.prototxt +++ b/examples/net_surgery/bvlc_caffenet_full_conv.prototxt @@ -1,4 +1,4 @@ -# This file is for the net_surgery.ipynb example notebook. +# Fully convolutional network version of CaffeNet. name: "CaffeNetConv" input: "data" input_dim: 1 diff --git a/examples/net_surgery/conv.prototxt b/examples/net_surgery/conv.prototxt new file mode 100644 index 00000000000..9444c63ab74 --- /dev/null +++ b/examples/net_surgery/conv.prototxt @@ -0,0 +1,26 @@ +# Simple single-layer network to showcase editing model parameters. +name: "convolution" +input: "data" +input_dim: 1 +input_dim: 1 +input_dim: 100 +input_dim: 100 +layer { + name: "conv" + type: "Convolution" + bottom: "data" + top: "conv" + convolution_param { + num_output: 3 + kernel_size: 5 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + value: 0 + } + } +} diff --git a/examples/python_nets/caffenet.py b/examples/python_nets/caffenet.py new file mode 100644 index 00000000000..92c3e17c983 --- /dev/null +++ b/examples/python_nets/caffenet.py @@ -0,0 +1,54 @@ +from caffe import layers as L, params as P, to_proto +from caffe.proto import caffe_pb2 + +# helper function for common structures + +def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1): + conv = L.Convolution(bottom, kernel_size=ks, stride=stride, + num_output=nout, pad=pad, group=group) + return conv, L.ReLU(conv, in_place=True) + +def fc_relu(bottom, nout): + fc = L.InnerProduct(bottom, num_output=nout) + return fc, L.ReLU(fc, in_place=True) + +def max_pool(bottom, ks, stride=1): + return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride) + +def alexnet(lmdb, batch_size=256, include_acc=False): + data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2, + transform_param=dict(crop_size=227, mean_value=[104, 117, 123], mirror=True)) + + # the net itself + conv1, relu1 = conv_relu(data, 11, 96, stride=4) + pool1 = max_pool(relu1, 3, stride=2) + norm1 = L.LRN(pool1, local_size=5, alpha=1e-4, beta=0.75) + conv2, relu2 = conv_relu(norm1, 5, 256, pad=2, group=2) + pool2 = max_pool(relu2, 3, stride=2) + norm2 = L.LRN(pool2, local_size=5, alpha=1e-4, beta=0.75) + conv3, relu3 = conv_relu(norm2, 3, 384, pad=1) + conv4, relu4 = conv_relu(relu3, 3, 384, pad=1, group=2) + conv5, relu5 = conv_relu(relu4, 3, 256, pad=1, group=2) + pool5 = max_pool(relu5, 3, stride=2) + fc6, relu6 = fc_relu(pool5, 4096) + drop6 = L.Dropout(relu6, in_place=True) + fc7, relu7 = fc_relu(drop6, 4096) + drop7 = L.Dropout(relu7, in_place=True) + fc8 = L.InnerProduct(drop7, num_output=1000) + loss = L.SoftmaxWithLoss(fc8, label) + + if include_acc: + acc = L.Accuracy(fc8, label) + return to_proto((loss, acc), {v: k for k, v in locals().iteritems()}) + else: + return to_proto(loss, {v: k for k, v in locals().iteritems()}) + +def make_net(): + with open('train.prototxt', 'w') as f: + print >>f, alexnet('/path/to/caffe-train-lmdb') + + with open('test.prototxt', 'w') as f: + print >>f, alexnet('/path/to/caffe-val-lmdb', batch_size=50, include_acc=True) + +if __name__ == '__main__': + make_net() diff --git a/examples/siamese/mnist_siamese.ipynb b/examples/siamese/mnist_siamese.ipynb index 5abd0469ba6..8e076663ca6 100644 --- a/examples/siamese/mnist_siamese.ipynb +++ b/examples/siamese/mnist_siamese.ipynb @@ -3,7 +3,8 @@ "description": "Extracting features and plotting the Siamese network embedding.", "example_name": "Siamese network embedding", "include_in_docs": true, - "priority": 6 + "priority": 6, + "signature": "sha256:845bb18929f96543ba2611eb5eca744fd98939cbef876df6bc319c29f616fc64" }, "nbformat": 3, "nbformat_minor": 0, @@ -55,10 +56,8 @@ "MODEL_FILE = 'mnist_siamese.prototxt'\n", "# decrease if you want to preview during training\n", "PRETRAINED_FILE = 'mnist_siamese_iter_50000.caffemodel' \n", - "net = caffe.Net(MODEL_FILE, PRETRAINED_FILE)\n", - "net.set_phase_test()\n", - "net.set_mode_cpu()\n", - "net.set_input_scale('data', 0.00390625)" + "caffe.set_mode_cpu()\n", + "net = caffe.Net(MODEL_FILE, PRETRAINED_FILE, caffe.TEST)" ], "language": "python", "metadata": {}, @@ -105,10 +104,7 @@ "collapsed": false, "input": [ "# reshape and preprocess\n", - "caffe_in = raw_data.reshape(n, 28, 28).transpose((1,2,0))\n", - "caffe_in = net.preprocess('data', caffe_in) \n", - "caffe_in = caffe_in.reshape((n,1,28,28))\n", - "# pass data through network\n", + "caffe_in = raw_data.reshape(n, 1, 28, 28) * 0.00390625 # manually scale data instead of using `caffe.io.Transformer`\n", "out = net.forward_all(data=caffe_in)" ], "language": "python", @@ -143,9 +139,9 @@ { "metadata": {}, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAIXCAYAAABpSojLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt0W9Wd9/3V3RdZlm05OI5jxSkkGAjYwQlpkxTTkNKa\ngEWLO4PplDClelbpdOiaNcmzuqZM553CmllP2unM2y7omzKTUAYBThhCQhNCnMRO4oDzALmVpJgm\nxMU4iuO7ndiybOv9Y2ufi3R0l+Uj+fdZy8uSztn77HN+un31uwEEQRAEQRAEQRAEQRAEQRAEQRAE\nQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRBE\nkskC0A7gFIBzAP5ldpdDEARBEARBEARBzBVy/P/1AN4DsGYW10IQBEEQBEEQBEGkAdokzHHd/98I\nQAegPwlzEgRBEARBEARBEBlMMsSoFixM9wqAw2DhugRBEARBEARBEASREvLBwnRrZ3kdBEEQBEEQ\nBEEQhMrRJ3GuIQC/B1ADoIU/WFpa6uvu7k7iYQiCIAiCIAiCIAgVcQHAjbEO0iR4UBuASQCDALIB\n7Afw/wA4KNnH5/P5EjwMkQw2btyI7du3z/YyCJAt1AbZQz2QLdQD2UI9kC3UA9lCXZA91INGowHi\n0JaJekbnA3gRLG9UC+AlyIUoQRAEQRAEQRAEQQSRqBg9C2B5MhZCzDyLFi2a7SUQfsgW6oLsoR7I\nFuqBbKEeyBbqgWyhLsge6U8yqukSaUJtbe1sL4HwQ7ZQF2QP9UC2UA9kC/VAtlAPZAt1QfZIf0iM\nEgRBEARBEARBECknmdV0CYIgCIIgCIIgiAAKCwsxMDAw28tImIKCAvT39ydtvkSr6UYDVdMlCIIg\nCIIgCGLOotFokAmaKNR5xFtNl8J0CYIgCIIgCIIgiJRDYnQO0dLSMttLIPyQLdQF2UM9kC3UA9lC\nPZAt1APZQl2QPdIfEqMEQRAEQRAEQRBEyqGcUYIgCIIgCIIgiBmEckaVIc8oQRAEQRAEQRDEHKa/\nvx8PPfQQzGYzFi1ahFdeeSUlxyUxOoeguHr1QLZQF2QP9UC2UA9kC/VAtlAPZAt1QfZIHj/4wQ+Q\nlZWFnp4evPzyy/j+97+Pc+fOzfhxSYwSBEEQBEEQBEHMUa5du4b/+Z//wc9+9jPk5ORg9erVqK+v\nx0svvTTjx6acUYIgCIIgCIIgiBkkYs6o0wl0dAA5OYDLBVitsR0ggfEnT57EmjVrcO3aNeGxf/u3\nf0NLSwt2794d1XlQzihBEARBEARBEEQ60tEBtLYC+/YxYZnC8aOjo7BYLLLH8vLyMDIyEvs6YoTE\n6ByC4urVA9lCXZA91APZQj2QLdQD2UI9kC3URUbZIyeH/a+pAbZuTel4s9mM4eFh2WNDQ0PIy8uL\nfR0xQmKUIAiCIAiCIAhiNnG5gIYG4MCB2EN0Exy/ZMkSTE5O4k9/+pPw2OnTp3HbbbfFvo4YoZxR\ngiAIgiAIgiCIGUTtfUYfeeQRaDQavPDCC/jwww+xYcMGvPvuu6isrJTtRzmjBEEQBEEQBEEQRNJ4\n7rnnMDY2hnnz5uHb3/42fvOb3wQJ0ZmAxOgcIqPi6tMcsoW6IHuoB7KFeiBbqAeyhXogW6gLskfy\nKCgowBtvvIHR0VFcunQJf/mXf5mS45IYJQiCIAiCIAiCIFIO5YwSBEEQBEEQBEHMIGrPGY0Wyhkl\nCIIgCIIgCIIg0h4So3MIiqtXD2QLdUH2UA9kC/VAtlAPZAv1QLZQF2SP9IfEKEEQBEEQBEEQBJFy\nKGeUIAiCIAiCIAhiBqGcUWXIM0oQBEEQBEEQBEGkHBKjcwiKq1cPZAt1QfZQD2QL9UC2UA9kC/VA\ntlAXZI/0h8QoQRAEQRAEQRAEkXIoZ5QgCIIgCIIgCGIGUXPO6K9//Wts374df/jDH/DII49g27Zt\nIfdNds6oPtYBBEEQBEEQBEEQRGawYMECPP3009i/fz/GxsZSemwK051DUFy9eiBbqAuyh3ogW6gH\nsoV6IFuoB7KFuiB7JIeHHnoI9fX1KCoqSvmxSYwSBEEQBEEQBEHMKk4AtQDqAAzOwnjMShgx5YwS\nBEEQBEEQBEHMIJFzRmsBtPpvNwBoivEIiY4Hnn76aXR1daU0Z5Q8owRBEARBEARBELNKjv9/DYCt\nszB+djyjJEbnEBRXrx7IFuqC7KEeyBbqgWyhHsgW6oFsoS4yyx4uMI/mAQDWWRgveDdTClXTJQiC\nIAiCIAiCmFWsiCe0Nhnjp6am4PV6MTk5iampKXg8Huj1euh0ugTWEx2UM0oQBEEQBEEQBDGDqLnP\n6D/90z/hn//5n4Me+8d//MegfZOdM0pilCAIgiAIgiAIYgZRsxiNBSpgRMRNZsXVpzdkC3VB9lAP\nZAv1QLZQD2QL9UC2UBdkj/SHxChBEARBEARBEASRcihMlyAIgiAIgiAIYgahMF1lyDNKEARBEARB\nEARBpBwSo3MIiqtXD2QLdUH2UA9kC/VAtlAPaWMLpxOorQXq6oDBwdlezYyQNraYI5A90h8SowRB\nEARBEETidHQAra3Avn1MmBIEQUSAckYJgiAIgiCIxKmrY0K0pgY4cACwWmd7RQShGihnNMR8SVhT\nJEiMEgRBEARBZDqDg8wjunUrCVGCCIDEqDIUpjuHoLh69UC2UBdkD/VAtlAPZAv1kDa2sFqBpqaM\nFqJpY4s5Atkj/SExShAEQRAEMZuksvDPHCgyRBBEbExMTOC73/0uFi1aBIvFgurqarz99tspOTaF\n6RIEQRAEQcwmtbWs8A8AFBcDJhNgtwMWC+ByJdfTKD1WRQVQXg7k5CR+HKeTFTBKxlwEkYGoOUz3\n+vXr2LJlCx5//HGUl5fj97//PR555BGcPXsWdrtdtm+yw3T18S6aIAiCIAiCSAI5Oey/2Qxcvcpu\nd3Wx/5WVwPnzyRN3/Fg1NUz0cmHqdLIQ23jhlXSTMRcJW4JIKTk5OfjpT38q3L///vtRUVGBDz/8\nMEiMJhsK051DUFy9eiBbqAuyh3ogW6gHsgVSF9LqcgENDcCqVey+xSJuc7vR4nAk/1gHDojHqalh\nRYcSQSpyE51LxS1i6HWhLjLJHk44UYta1KEOg4j9/SbR8VKuXLmCjo4O3HrrrQnNEw0kRgmCIAiC\nIJRIpihyOoH584HCQmD9erm45YV/duxgQvHMGaCkhG2rqQH+/u/l84QSyNGIZ2mRIakwTdT7mMy5\nkils44Vya4kU04EOtKIV+7APTsT+fpPoeI7X68Wjjz6KjRs3YsmSJXHPEy2UM0oQBEEQBKEE75tp\nswFLlyaWwynN1QSYcGtqCh2SGqpNinQePkc021Id+prI8dTQIibctSSIOIiUM1qHOuzDPtSgBgdw\nAFbE9txPdDwATE9Po7GxEaOjo3jzzTeh0+miPg9q7UIQBEEQBJFMuLdv6VKgrS0xDyn39gFAdbXo\n8QvlfZV6MKVeOoOBbVfyGobzKKY69DWR46mhRYwavLPEnMIFFxrQELeQTHS8z+fDd7/7XVy9ehWv\nv/66ohCdCUiMziEyKa4+3SFbqAuyh3ogW6gHsgVEUZSM3EqXC6ivBxwO4NAhUWhFIXpaTpwQhZ3Z\nHDoctriYeXGVRNyFC+x/fj6wZUt85xAL6S7mQoQd0+tCXWSSPaywoglNcQnJZIz//ve/jz/+8Y/Y\nvXs3TCZTXHPEA4lRgiAIgiCIcCQjH9JqBXbtAt54Qz5HNHPzL4Y1NcC2baG9hp2dQG8v0Nwc7I3k\nFTGHhoAVK+S5kDORH5nMHNLZQA3eWYJIEZ2dndi6dStOnz6NkpIS5OXlIS8vD6+88sqMH5tyRgmC\nIAiCIJLBTOVlRptDyXNca2qCRSDfZjYDo6PssYYGUXQNDbHHiovZ+FDrp7YrBBEXau4zGguUM0oQ\nBEEQBKFGpHmSlZWxeRnDeSetVvbncISvouv1slBgLkSlcz7/vLx9DA+f7egQhahez/qchsvzVHHb\nFYIg0g8So3OITIqrT3fIFuqC7KEeyBbqgWwRI04na8nCcbtDizUl4blnjyjyNm6U7d7S0iIXgcuX\ny8fzbc3NgNEoeiulY+65B+jpYY9LBSvP7SwoAFavZrfD5Xmmey5ogtDrQl2QPdIfEqMEQRAEQRCJ\n5k12dAADA+L9cGJNybvo8YjbNQqRblIRWFoqHx8oEPm5fPRR8JhAwcpzOy9eZDmtkfI8lXJBQ/VQ\npV6dBEFEgHJGCYIgCIKYG4TLd0y0ryTPyayuBsrLge3b5WJNetzGxuDczvXrmVCsrpZX2+VI80YD\nxwPMW1payir/Dg+zVjQAUFYGnD2rfMxkEaqHKvXqJAgByhlVRp+ENREEQRAEka7MpYI03CMJsPOW\niqNEw09drtBFhgKPq7RvaSlry1JUpDw/LzTkdDKxWVIC3HgjyyPNyWHjuQDV+gPfdDrg979nY8Ot\nLxrCPU+kPVSrqsTrN8dDegmCiAyF6c4hKK5ePZAt1AXZQz2QLWaBEAVpZtIWR5xO7K6txd66OnhS\nGb4ZThzF24qEh6IuWwZ0dzMPZGCYqjRclovBwIJEYdqyyGzR0cFEp9sNHDwo2o73ETWbgelpdntq\nCvj619ntwFYlfG0LFwJr1kQOpQ2Xs+pysXOprwcOHw4OAU7X9i4K0HuUuiB7pD/kGSUIgiCIucws\neK8GOzrg9nsKjzqduDdV4ZvhvINcrMWK1OvZ1cX+c6+rdFtZGRNlmzezx8+cEXNMQ+V9ck/kk0+K\nx5Pu193NbufnA/v3A/fey6rhSqmqin7dlZXA+fPKwlF6XJMp2MP8xhvBY+K9pgRBzBkoZ5QgCIKY\nVY44nRjs6IA+JwfrXC6YMsSDkjZE28Myieytq0PXvn2w1dTg/gMH0tvmPFc0P5+1SKmpAW65hXk6\nP/qIeTuleZqB+ZVVVcybCITO+5TmWw4OivudOMHauQDMM+nxsLVw8vOBS5eU7crXrdMxDyonVG5n\nuJzVdLYfQaQIyhkNMV8S1hQJEqMEQRBESHbX1gpessUNDanzkhGzhmdwEEedTqzdujW9hSggirQt\nW4BNm5hYczjkHtGzZ0WPKBeonKws4M47gwVodjYwNgYYDEx8FhaKuZqBghZguaYmE2vfMjnJ9jt1\nCrDblfM9BwdZ3qm0iq/NBixdytYSLn94Fn7AIIh0h8SoMpQzOoeguHr1QLZQF2SP2UXvD/+z1dRg\n+jvfmeXVRM+s5T2miJl8XZisVtzb1JT+QhQQQ1HtdjEPVJojevYse5yHxfb2MtHIGR9nAnTfPuD4\ncfZYVRXL/QQArxct7e3ynF4eMpuXx/7n5gJ9fSxsd3KSPabTAd//vrwP6b59wE03Ma8oAEi/UJaU\nMCHK1xKqR6r0nDPBfjFCnxfqguyRPL797W9j/vz5sFgsWLx4MZ599tmUHJfEKEEQBDGrrHO5sLih\nAfcfOAAj/wKeBvC8x659+3A03Bd3IjOIpmemVHDyHNFVq5ho40Kzpgb4+GMm/gDm+eRwcbhokSgq\nOdKcXpcLqKhg4cAlJWwbwMJyAVZNt6+PicrKSvEYZjNbGxeb2dni/KtWMY9o4LHiuQ4EQaQdP/7x\nj/Hpp59ieHgY+/btw69+9Su8/fbbM35cCtMlCIIgVEM65Y9mVN7jXCOedjbz57MKtgCrGrtrV/A+\nPA9TmktptbJcUgDQaIBPPwWefRY4dw744ANArwdGR8U5eA5pQwOrrFtQwMYtXw7s2CGuVbqeujrm\nHd2yhR1bGgbM12s0soJJzc3i+vgxeG9Tfm2Uwm/5NZMWXqLeoQQRNekUpvvxxx9j3bp12L17N5Yv\nXy7bRn1GCYIgiIxl1qqsxsE6lytz8h7nGtJKsjfdBKxYgSPFxRjs7Az9Q4g0t1Kj8H1L2v9z505R\nzAV6Pu+5B+jvFwWqdE6rleVtAkx4Op1snT09TDQWFjLvZ00NyyflGI1s7GOPiY/p9cy7ajYD//f/\nMk9qdjYLI962je1fWgoUF4u9TaXVbwMFu/SaAWwdW7aEv84EQUSNE0AHgBwALgCxfqokOh4Annzy\nSbz44ovweDz49a9/HSREZwIK051DUFy9eiBbqAuyR/wkO2/ynP8Ltq2mBmtT1GYkXjIq71GBjH5d\n8JxLSdjq4N694cOu77yT/a+uZmIuEGn/z02bxHDWW28Vc0RrapgADBSiABOt3HP5+OOiMPR60cL3\n8flYaGxzM3DtGnvs9ttZeG1TkxgirNUCd9zB5hwdZbmkbW1snM8nCuXOTtYKRqG3aVD/WX7NcnPZ\n/6Ehdp5zjIx+XaQhmWSPDgCtAPaBCctUjweA5557DqOjo2hubsZPfvITnDhxIs6ZoofEKEEQBBE3\nyc6bXP7000L+aKaKPEIFuFwsxHTVKna/pgZ6fz/OkD+E7NjBxhw6FLkP59atophrbQW+9jXmmfzz\nn4H29uCxer28vcrx42LF2unp4P3NZjGntKODhQxLBe70NAsB5m1fpHCvrtPJQm4BFhoceM6B58Pz\nVLmnV2lMJJxOFl5cWAisX085pwQhwf+KQw2AeH6KTXQ8R6PRoLa2Fg0NDXjllVcSmCnK4834EShn\nlCAIImOZC3mT6ZTHSsSIpEWJBwgdds1DVi9cYFVzeesT3q7lwgVgwQLmaXzvPbZPYP6otN0LwMRY\nayswMaG8toYGFp4b2MKltJQVLmpuDn1ePES3qop5RXt62OO3387m27wZ2L5dFKvFxew8pOet1L5F\n2lLG4QDeeCPMxVUgsCUN5ZwSc4hIOaODYB7NrYgvxDbR8YE88cQTKCkpwTPPPCN7nPqMEgRBEFET\nj5CKZUxG9YsMQTr0QT3idGJwzx7oPR6su/NOmKSFboj4USraw2loAN56S567CYgiLVDMcXEKsDDa\ntWuZl7G5md2XekAtFnbMNWuAri5RXHJhCwDz5il7PgHghhvYfHfcAbzwAvDUU6zn6NgYG8PDfaVU\nVADl5cFFnaS5o16vvABSrM8x6TXgRZPoeUrMEdRcwOjq1as4ePAgHnjgAWRlZaG5uRnf+ta30Nzc\njBUrVsj2JTFKxE1LSwtqa2tnexkEyBZqg9tjpoXbbCAVUnkVFcgtL4+41tkUX2p8baSD91dmMwD3\nJsHjpEZbJJWbb2b5nQYD8P77zJsZSKAnLz+fhcOazSzE9/BheXgtwATXggWigCsuZh5Tg4GFzkpF\nrdnM+oxOTTGBKBWlxcVM/A0OogVAbVkZ61nKvbHvvsu8qmYzq7j72WfK52mzAVlZrLjS8LDyPtXV\nbK1tbeKYFSvYGt58UwwBdjjYeShV242GwUFg40YWKsyLKKUZGf+6SDPSyR5qFqO9vb14+OGHcfr0\nafh8PixZsgQ/+clP8OCDDwbtS9V0CYIgZoh4Krmqvfqr3p/3Zaupgc5kimqt0jFqLyKUCtKhaq5g\nMwBr48nlm4u43aLIWrqU3Zfa1+lkgg9ggu/LXwaee05sndLczIRZoBhtb2eCkotOqcDUS752VVUB\nFy/K+4lKvaNXr4q3s7LYtptvZseWHnN0VN4vVIpWG9zmBWBFiHgBpNJS5qFsbBTPlfciNRhE72tB\nQeIC0mpVbolDEMSsYrPZZq0YVKKe0YUAfgdgHgAfWJjy/xuwD3lGCYJIC+LxgKXSaxaPF1YaRnuw\nsTGqtc6F0NtMwzM4iKOPP461Ph9M27enpccp5RQXy4VaYA5kqPzGhQtZ6KxOx4TpiRPMq6nEsmXA\nH/4QvL20FPjoI9ZWRroGqfiLFpuNiWo+TqMRj1dcLBe1AGs9c9ttTEzbbEyIWyzM68ur7fb1ycfk\n5wOnTyt7j4H4+rYSxBxDzZ7RWFBbmG6J/+8UADOADwA4AJyX7ENilCCItCAeERavcItHWCYaPksi\nk5jzSEXTv/4r807y7yj19XKvnTS/MS+Phcja7SyPk4ezAnLxp9PJvZalpax4kNT7yUN8L10CrlwB\nRkbY41p/g4PA6rkWCwuv5f+jRacDWlqAb3xDFKRWK/Dgg6zgEi/GxKv72myiMDaZ5H1VIxUrkgp3\nKkpEEIqQGFUm0dYubjAhCgCjYCK0NME5iRkik3oxpTtkC3XB7RFP38hYxkh7cvafOxdzS5REw2ej\nXWuye4fGAr021ENG2kLaO/O++1joLcBE6fbt8n1dLqCoiN0eGRF7alos8v34l7KqKiZUOVotE528\nL+fNN7OWJqOjzAN56ZIoRAEmQqVCdO9eJuzOnEHL3Xezgkbl5dGf69QUsG6duL6CAlbEqLNT7Ifa\n2cm21dSw9fPbH3/MPKj8/rZtYt/Uurrg4keBbWAymIx8XaQxZI/0J5l9RhcBqAag0ECLIAhC/Rxx\nOvHS/PnYXliI369fH5cQCyfkpD05hy9cABCbsFzncqWkB2eye4cShGrwv+4AMDH2hz+wfEuTiYXU\nrlkjii2rVczFzM8Htmxht10u5imcN4/dLyxkorWnhxUj4nmh09PA7t3yvNS77mK3a2pET2gofv1r\ntobHHmNVcPPzQ7eBCcXEBPN2lpWx/FS7XbwGFguwfz8TvAcOiH1UDxxg+50/L963WoE9e0Qh//jj\n8uPwvq3xVNglCGJOk6wCRmYAOwE8BeYhlbFx40YsWrQIAGC1WlFVVSVUvuK/aND9mb9fW1urqvXQ\nfbo/2/f/Y8MGjHZ1obq0FJ6qKhw9cQL9bjeWAvi8uRm/djhw5z/9U0zzt504geLTpwEgaPy5sTFc\nBbC6pgbrd+7E1scew6K//3tBWEaa/91Tp6B/8km0b96MwY4OnBsbw/Knn8ZXN2xI6vXhHtiLFgt6\nzp/HRF0d1rlcePfUqaTMH+k+Z7afH3P9Pn9MLeuJ+77LBXR0oGVsDMjLAz+7Fq0W6Otj99vb0QIA\nXV3svtOJliefBEZH2f2hIbQ8+ijwzDNs/uJitExMADodaqem2HYA6O6Wzz85ye5rNGhpbgZuvBG1\ndjtgMrHxgLi//79wf+9e4X4tgJZFi8T5lPYPdd9iAY4dQ8upU8DPf45af6hvy/Aw8Ld/i1r/dWpp\naQGefBK1/P3o1Cn5/dFRcX6fT369N29GS0cHcN99qN2/H7Ba1WN/uk/3VXQ/U2hpacGpU6cw6P/R\n/dKlS3HPlYzWLgYAbwHYB+DfFbZTzihBEKokMAdzYnQUXf4csaLqamw4dChmD2S4gkbhcjZjySGd\n6dYrfJ3XurtxxZ8bp9b+mgQRkdpaMZ+xpIR5RI1Gsd1JXh4Ll+U5mdIemoWFYlVcad6kdE4Ob/si\nrVQLBOeRJkJWFvO+xsr69cA77wSv++67WZ5sqPcbaY7t9etsbFUVcPvtLMSXFyxyOChnlCAiQDmj\nymgTXQ+A/wRwDspClFARmfarTDpDtlAH3APoXrIEa7duxTqXC/b6etgdjriEKCAPpW3fvFkWshsu\nZzOW0Nh4c0ejzQXl6zT4c+NS2eKFXhvqIR1tofgc5/mMNhsThQaDKEQBYO1aoKICqKxkYnXnTtbL\ns7ZWDKWtrmZ5kxw+J8Aq0zocrNpsQwPwxS+yx4uK2F8SwlZbADGcOBq0AV/vjh5l/6XrBpiADAy5\nBcT80J07xdDcggJ2focPMyHKH3c6KWeUmDXIHulPomG6qwF8G8AZACf9j/0YwNsJzksQBDHj8P6R\ni77zHUEg3pdADzypd/P4U0/h0ptvwuvPF4vUgzQWgRlv38tYe6KmQ3/NOclstNFIk9Ydis9xl4ut\nv7tbrILL26DU1AAvvyz37G3axPI/+f2yMpZP6nCI5+9yMRH34YfMI+rxsP9NTSzf1OlkOZbReDG5\nZzYSY2PsLxoKCpiXdnKSVfutq2Pi8pNPgvdV8tTs2cM8yBxexIjbXUl8Op3stkqfGwRBqJNkhOlG\ngsJ0CYJIOxJtvWIqLobH307BWFCARy5eDDtHKtquqL0nKhEl0lDLVIVEJuuYMyxqwz7Hpa1ali0D\nFi9mFXStVnEbD9FtbJTfl4rVkhJW3MdqDX1dnE7gt7+VL46HugYibQ0Ty7ZIFBWxcOH2duBv/zY4\nrJivyWplnmGLRbSJNDzZaGRVh3fsEO3FBTeJT4KIGgrTVSZZBYwIgiAyikAPi9FqjSiupN5No9WK\n7uZmGAsK8M2TJyOKMR4aGw1c6I1cuIBcux1GiyUqwZdKT2esXlgiBmYjJDJZx+StVQAmZqTPi0hC\nNQohK3uOb94s3597M30+UYRyuPeUi6viYhbWG+gJBJjHcPly5qXkfTm1WuDQIeCRR4DLl4F335Uv\nbNky1lNUSYyG+3IazRfXrCzgK19hwlMqOPv6mEC+/XZx/Tyv1WhkIcvXr7O/7m62feNGlkN6552s\n/QzPf21ultvLaqW8UILIUD755BMsW7YMDQ0NeOmll2b8eInmjBJpBMXVqweyxcyilDcWLl9SyR6B\nYbPR5HRK80XX79iBxQ0NeOTiReTZ7Uk9P76Wa11d6Glri7oFS7ic1WT2Fj3idKL/zBkArBBUtPmm\nR5xOPFtVNSv9TdOKFLXRkL0uknXMcKJW2gNU6fkcaruk/6UJEJ/jgftbrawAkVLBHi6u+OOdnUxo\nNjcDS5awsN6sLHH/Tz9lonRykt2fnmbir6mJHTOwBUt3d3yFh/y0hNs4OclE64svspYsvLVMbi4L\nS16zhq3fbGbrNBqZOFYqqnTqFLuWAFBfL+a/1tSwnFX/dQ7qMzqHoM9vdUH2SD4/+MEPsHLlSu7p\nnHFIjBIEkXEoCcdYe2cGFiLi4qqwqiqkuJKKvXDC77Wbb8Y2qxUvFhdjhDedR3R9TqVCz5CXByD6\nAkPR9kBNtLfoYEcHJvwhfuby8oheWL6uizt3ov/0aepvGonNm1lOY2Nj6kRBoFiLl3CiNpL3NdT2\nUCI1EW8uH2s2A1evil7CSITyZPb1iQWTwuF/TcfE5CQ793vuYaKXC+Rr18Q82eZmJoZHRphQ/sMf\n2D4FBcDq1ex2dTXLj21tZfsbjfLeo4FFiwiCyDheffVVFBQUYN26dSkLKSYxOofgvY6I2YdsMbMo\nFQMKVyBvj4r2AAAgAElEQVRIyR5SMSkVVxMDA9jvcCTkvbvudsM7NARPby92r1kjPD7Y0YExtxsT\nAwP4vLlZUZBJ11Kydq0gmEMJPqkAHTh3LqTgjLdCrxLSuWq3b4+4PxfCEwMDWJqkNWQ0kTyISWJG\n3qfCidrA0NhAQgnZUKIzGm/uzTeLYbmSH4aEtfDqtbwSbziWLBG9kvESopBRbeADvFouF69mM9DV\nJRZmUoJ7OXJygBMn2LW5eBF46y12+9AhljcKiNfSamV/Dgfw0UfybXMU+vxWF5lkD0mQR1y/MyY6\nfnh4GD/96U/xy1/+MqW5rZQzShBExqGUG5lIvqRUXOlMpoRyIY84nZj09yDU5eTgwWPHgo4DhA5v\nla7lKy+/LJxLqDxSae5mdkmJMDZw7mTmk8Y6Fz+noupqmMvLUbt9OxU8CkemttGQhsYG5pMCofMU\nA/M9I+0vxe1mOZQAC2f97DP5WgAm4iYmQns2NRomQj/9NLwYTAbf+AZw5Ahw663s/LKzWfuV0dHI\nY2trWeGlY8dYOK/02jQ1sWs4PCy2t+HXUprnW1YWWtynScVlglAr4VLqUzH+6aefxhNPPIHS0tKU\nhegCJEbnFC0tLRn1C1I6Q7YIT6KVWJWKAYUrENTS0gKtX7gpFQWSiquDjY0AYvPeSc/HOzwMnz+M\nrrS2VpZPus7lQsvGjYBGg9pt22TnzefQGQyw19cHCTap6LzW1QWAiWWpeF2/cyfaN21SFImxFFCK\nRKi5QtlVen3fPXWKhGgkQomvJJPy96l4RXYixXQMBvHYkh+GZAWLfD5lIarXsxzM6WllEWowJE2c\ntgCozc9nPT4HBtg3zooKoL9fDMsNh07HqvuGy1/v6BBb39xzD1Bezq4Dv0a8sjB/zgWKz0S/CacJ\n9PmtLjLJHon+zpjI+FOnTuHgwYM4eZJ16iTPKEEQc5rZqMQaSszxUF2+Bi6cdNnZ2O9wRCWYQ3kn\ns2w27K6tlc0Rqs+pdI7FDQ1Bxxu+cEF2X5rbKvVShruWR5xOdO7ZgymPB8V33ol7d+xIqjAMZddk\nCuE50VImUyuZpkhky3j/feYR5d5C6VoqK8Vem0ptWSKJwCSKUQCiBxdg3zZNJuaNjYapKdY/lRd2\nyskRQ5MvXGDn/vHH8rm5sKyvZ8LXZGJ5ytzrGSg+M9VjTxApItG3wETGt7a24tKlSygvLwcAjI6O\nYmpqCufPn8f7778f+2JigPqMEgShOlLZDzPwmIb8fHiHhiIeW9pTdHFDQ1gxJT0fqXdyv8MR1xxK\n63pzzRpc4V4NAHaHA/e98QaAYIHWvnmzomCTnlM0a4qV/164ENe7umCwWPDwmTNJrzIMxGYXIkOJ\nJlw0mn0GB8VWMLy9SSzodPI806IiVsgoUYqKWLGhc+dYgSKNhrVvOX069Jhly1h4r7RfanExK84k\npawMOHtW7LNqswFLl7Jj8b6jvJ9qYG9WgHqPEkQY1NxndGxsDCP+nHWfz4ef//znuHTpEn7zm9+g\nqKhIti/1GSUIIuNJZT/MbVYrvKOj0Gi1WLB+Pb7829+GDGWVEk3BHy4CtQYD7A6HEHrLBVIsRYPW\nuVz4n+XLoTOZcLCxMcjrZ+CFRwDo8/LwpX//d+F+oEfyek+PcP+1ykos/OpXMdLZiQFeoASxtWSJ\nljy7Hde7uuAdHkb7pk0zIhSTWYiJSFOiCReNtE+gWH3qKRaWG01ILIcL0awsJky5mEuE/HwmaKXC\n2OcLL0RLSpgQtVrl3kurlc3DPbj5+cxDbLWKLhZejZcj9XoquWHoxx+CSEuys7ORnZ0t3DebzcjO\nzg4SojMBVdOdQ1AvJvVAtghPuLYoSiTSI9M7OoqPp6bg83rhPnoUeXZ7VMeWtn4JtS8Xgd3NzdAZ\nDEH7ZRcXw2SzyYoQBbZ24ed2sLER2aWluOLvK/rqkiWy813nckHrr/w5OTKC4089JczZ8+67AFgr\nmLu2bJEVShp3u/HnvXvhbm2Fp7cXuuxsmIqKYJqBDyAumMMJxURfG9HYhYiOtH2fiiZcNNI+gRWL\nOztjE6JSdDrmWZ2ejm88gBb8HYDDwJALQL58o7SvqMnERKXRyB6rqWFFizZvZgWMTp9mnlWrFXjh\nBeblXL6c7Ts0xEJ5ATEUnP/IVVXFvKrSnNFktftJM9L2dZGhkD1mhp/+9Kf43e9+l5JjkRglCCLt\nSaRHpoa3SNBo4Ghvj3pcNIKZ53EaLBbctWVL0PaRzk54enuFNi6BrV1eX74cF5qahHPj82n0eniu\nXkXXvn2s4JF/PVKRyds4DHZ0YHpiAgDgHRlB+6ZNWOdyIUuSu6rzf3E1WCwovP12ePr60B2itYyU\nWH8ESIVQjPWHDCJNCNWzQOnxSC1dlKrGOp3A/PlAYSGwYIHoaayqYmJV+triGI1MaHKU2rosWybf\nBwA2bIjlzP0sBGvwUgfg/xMfzs8HHnyQHfvaNcDjYaJyYkJe+XbPHiauu7tFz+qmTUxMFhayucxm\n5r2VXl9+LQ8fBt54Y84JT4IgZh4So3OITKk2lgmQLZJLIqGZ5Q88gKUaDW740pdg9ifuBxKv55Xn\nRPKw1EjrDmztklNaCq+/aImxoAAPvfceFjc0iP0CAfR++KGwtqLbbxfG1m7bJjsGwIoa9Z46Bdei\nRfB5vVhYV4f7DxxAXkWFsM4Rf6/FwGupdA1i/RGgffNmXO/pwcHGxpDXMR1fG4l45tXMjNkinmZ4\noXqrKj0u7Y2pdAxeNdbtFj2B//3f7P7AABNsfMxnn7H8yeefZ6Ls7rvFeSYm5DmhgZ7TggImArmX\nEmDey7ffju6cOXo9ag23+e+cAPC/xG21tUxc8mPz9wZpyC3ARKqUwHDb4mLWHoa31eEk4v1MtOmh\nSknH96hMhuyR/pAYJQgi7UnE4+bp6wN8PlxpawspqMKJrnBChIelmmw2XOvuDtoncN3rXC7klpcL\nYbIGf/6GsaAA3zx5UgghNuTmCnNcv3JFWFv/Rx/B7nBgw6FDsrYpdocD9vp6PHD4MMZ6euAdGoKn\nrw/9Z87AZLXKwmcfeu89mCsqoPXnpvJQYamHll+DWH8ESMSDrWYy9bxmjFDCMhROJ3DmDLvNPZWc\nUOG24Y6hNMYfPSDDbGZCb98+YNUqtm+IateKDAywirx2O8AjMK5diz3cd3IS8D4MYAeArwKQVNVt\naQHeey94jDTk1ukUQ4QrK8VwWx6629gI3HEH2x4qbDmZPyAQBEFIoAJGc4hM6sWU7swFW6SyxUYi\nrUH0OTn4GMDqMIJKSXTxNihjV68K3pHXly+HubxcOGdeiOlad7dQ6TZcSxOT1Yq8igohzzRr3jyh\npyivgDt84QKm+RdLgwE+yZdoT2+vMI90Tl5VFwC0/p6BGp0O2QsWYG9dHdY+/7ysaJO5vFwocPQ/\ny5djvL9f5qFdu3Urjjid8A4PI7ukhFUIllTozS4uxkhnZ1D1Xl4gKVLOaLq9NoTnh60Ga7u3skhK\nF4A0j2hsaWlBLe8fGa7qbKzE2gKko0Ms/rNokXwNoXoZ8GPYbMzTWVcnrl9pjNUqr3RrMgF33ikW\nOXK7xUJHJlOwpxEA8vIAfzVKgbEx4IMPIp+jFK02KL+0BUOoxbeC95W2ewFYMSNOTw/w2GPAK6+I\nLWYqKli4LSAv4uRwMM9vqEq40n2XLGHXwG5nOaWhnhcZ2uolHd+jMhmyR/pDYpQgiBkh2b1CZ0rc\nrnO5cN7hwP27doWcU6m6L8/v5GiNRoz39WHU3/ePn/O9TU3YW1cHQBRh4VqtcLEIAOM9PdAZjTBZ\nrbLrKaDQw7Bzzx68WFyMb7z/vmLrlG+8/z52r1mDyfFx9PpzZI//6EcywSoV3zqTCSP+c9IaDPjm\nyZMwWa1MiPvP//iPfgTPwICwPlNxMTz+lhGB1Xtzy8oyrriQ8Pzo3gpTm/+8nAAyobBoNJVpYyXW\nZnhSUeMPPxcI1XOVH6O1VawG+/jjYt5j4JgPPmAtTLjI9HhYD1Ip+/cD69cDt90mCkyTiYXjvvce\n8MQTsbd/AXAEwCDYF7J1N98MU34+EEP+uqIIBti5B1YAlry/BF3XcLbg+5rNYjsYfz/mkM+L2egb\nSxBE2kF9RgmCmBGS3St0tvpHhhLB/PwAwGi1wrJ0qSDuACC7pASWL3wBo52dyF6wAKOdnXjovfeQ\nZ7fLziWrpAT5X/iC4Dk1FRXBOzKC6YkJ2bUT+qBaLPAOD8NWU4PekyflOWsajeAZyS0rw8Kvfx2d\ne/ZgyuOB7c47sX7HDmH92wsLMeH3Ntnr63Hfrl3CuQ5/8gkmx8dRvHw5fAC6m5tlocJK46cmJgR7\nG61WdDc3C+s/2NgY8bkgvc6BnlWT1ZpST3vc1AHYB6AGwAGkvWcUQHAvydm47oOD8YuawkLRq1pe\nzjyDoby8g4MsjNXtZufb0cEKHQVSUsL2MZnY629qihUpys0FxseZ+JO+LpWQ9CDdDYD/rLW4rg73\n+nzsmnNMJuDECeC++9hxufjMzwdWrwaeew740Y+YQL58WRSfZjPLA+XwXqP8vJWua6j+q3zfgQEm\nuC0Wdm1m83lBEGmGmvuMxkKy+4xSzihBEDNCsiunzlb/yFD5gOtcLtjr62F3OPDIp58ii1ek9DPm\nduNKWxuudXWht70d4243dq1ahcOPPYZ+nv8G1lqFC1FdTg48fX2YnpgI8iDy6/nwmTPCdZ2/Zg0A\noODWW2Gvr4fJvwZdTg4ePHZMVp2321+dd3dtLV5euBDT/i/C2pwcTF67Bs/goHCu17u7MdHfj8+b\nm6EzGrG4oQGPXLwo87Ta7rwTACuKVLt9u8ze63fskOWdrn3++ajb4HTt24c/79sXdM1D2UFVxYNc\nABqQOUIUiFyZNhXEUkQnMLfR/zxFVRWwcKGYw7h8eXAOpNXK2qDw81UKxTWbmQfV4WAicXKS/QA0\nOclCZj0eUYgaDMxrGojBwNbj91LyEDUbgLUGA7vmUnw+4Be/YP8NBiA7mx0bAE6dAh59lB23vFwU\noqWlLM+Vn1ddnVyIhrquofI8N29mYb8AUF/Pcnj5deK5pxlWqIggiNRAntE5BMXVqweyRex4Bgdl\nobLJ9JSFs0e0Hl7P4CCaKitlobuKSDwiAGT5YVqTCdMeD0w2G/KXLsVoZyemJyYw7fXKPJs8X3Vy\nfBw6oxGlX/kKLre0YHJsDJNjY7Bv2IDxvj4MfPSRkEdaWFUFfW4ueqQN7CXkVVTAMzjIvJ2SNZmK\nilC8cqUQTsw9rYW33w5TQQFqt21TvCaxerL5dXYvWYLl5eUyz6rUMxxoh9nymM8Fkv4+Fcrrlsz5\nm5rEPEqeA8m9f42NopfXZBLDdxsalMNMV60Sw2VLSlhYPM8r5e1O/K8vAWm+Z0GB6JXlmExMiPJ5\ny8rgmZzEUbcbay0WmOrqmHezrU0WXttisaBWyUsrZd48JhjNZrZ2mw04eJAVJ9qxI7rrHcoTXlsr\nhmsHXq/585nHFmAiXRLyn4nQ57e6SCd7kGdUGfKMEgSRFgT2j4y1gmm8HjTu8ZsYGoJr0SK86A8h\nVVrft86fR9a8eeEn9AtRo9XKvJl+z4kuJwcPnTiBxQ0NyF+6FD1tbbje1YXxnh7Bs9lUWYnDjz2G\nC01NGHO74R0cxHhPDz59/XV2f2gIvokJXD5yBO7WViZEtVoYCwow3tMjFBAKWntREcb7+oSwW6EI\nilYLT18fuvbtw6s33YSLO3cKnlZ3ayt0BkNIcR6rJ5tf51W/+AXW79gR5EkN5WmfLY85EQczXV21\no0MUogUFYvgpb/Pi9TKv3oEDLMwUCF9c5/PP2f/8fJYTunKlfExgTqnBAHzxi+y2ViuGyErzND0e\ngL9/2GyA3Q7T2BjuBWAaHmbisbVVnuep08kLGuXlibe1kq9xPh9QVCS2aDl4kOV3BrZrCUcoT3i4\nYkRSD3IGfNEmCCK1kGeUIIi0JNac1Fg8aELu5IULyLPbYbBY4G5rw6TfM5FbVoZHP/tMti/30AJA\ny8aN6P3wQ3ivX4d3eBg+XmjI7zXh+Zcnn30WfWfOoO/UKTx04oTQJ/S/Fy7EdV4cJABTURFrRxMC\nQ14ebMuX43JgsaNAFCp2hkJvNmNSmnsG5ml94PDhsJ7iwKJPM0GqjqNW0iKXlhNL/mk8XlQ+f0EB\ncPIkq/YKKHv1eA5kdjYThzk5rNcmv+1yARs2iN7TkhImSDdtkudYGo3yQmL19cDvfy+KSS4k+fcg\ni4WFuG7axKr8SiMVqqqYZ7O7m+13003ySrylpUwQ//u/sxxRn4+dh/S1npXF8lYNBnYeQ0Ns3sOH\nE/NEP/YYu7ZKXtb165ngTcZxCCKDUbtntLa2Fu3t7dDrWfJAWVkZzp8/H7Rfsj2jJEYJgkgqqfpy\nHKsIiVa88p6a3sCWCX502dn41vnzyLPbg/Y1V1QIrV0mhocVQ2Jzy8rw8Nmz2LVqFYY+/lh43O5w\n4L433sARpxN/eu01QfgGojEY4PN6YcjPD7lGY2EhvKOj8E1MCAWP+H9O1rx5GOc5YCHQ6PUo37AB\nk6Oj+Ly5GUXV1ciZPx8DH32E3LIyGCyWIBtHKkQ055jh0FTVhClHc56xFCIKFxYailDzhxPB0uPY\nbGLYbUkJq5orrY5bUcHyMqXnaLWK3tj8fODSJSYie3vZfjk58lDekhIWhut0Ajt3ysN4HQ7myeTv\nG9nZrDUMIC8+JL3Wzz/PQnJ50SWdLrgSbzJCZ8PZI5ECUwQxh1C7GL3nnnvwV3/1V/jrv/7rsPtR\nmC4RNy0tLbO9BMJPJttCGj7LC+bMRHGZwLBdIHwobriCSlJ7DHZ0hBR5AOCbmsKhRx/F3ro69J87\nJ+u/OXntmnDuw598wgZIw+g0GmQvWICDjY0YvngxYGKfIG5DCVEA8Hm90BgMmLdiRch9Jvr74ZuY\nQHZJCR4+cwZ5FRXQGo3C9qLqajx04gSyS0pCzgEApsJCjF+9Ch+YWC5ctgy9H36I0c5OXGlrQ9e+\nfWjZuFE2JlIhokhk3GujowNHWluxe98+7K2sTPrrYCbDlGOyRTQhuLEUIoqnR2Wo+V0uJiRNJpY3\nKrWB9DhVVeLjbjfLveSvkZoa5pnk53jTTUzk8jH5+cDXv86En17PPKYrVsjDbTUa5l0F5L1TATbP\ntm3y8GF/pATAckaFQkEvviiu46mnWNiuXg98+inzjALyeQLb4cRDOHvEYtcMIOPeo9IcskdymQ2x\nTGKUIIikIv1ynFNaGrMYSYRweaRK4lUJvn5jQQFuWL2aPSgRlNMTE4IQu3riBADmrbQsWYJx3n8P\nQNEdd8Bks8lDYX0+9La3o2vfPjF0F4A+Lw+127ejc88eRSGs0euh0YttoX1eLz6Pop+hRqtFnt2O\n3PJyoZARAOTMn488ux1lX/0qE6kajVw0+xnv6cGVtjZ0+4/V9c47QQWa3MeOYW9dHV696SZss1px\n5fhxAMz+RXfcIdyORigdcTrR9qMfpbQy7oxX483JwSBY644utzvpr4NkV62Om3jEYziireIrrZ77\n2GPKVV2tVuZhbGtjAm7jRnGcNI90xw65+Ny2TV5dlws8s5l5O3lIcEUF86Lu389EotsNTEyw25If\ngVBYCFRXs7BWaR4pwI6zeDFw/ToTtAcOAGfPituHhoA332RzTkyIj2s0LLR3cpIVV/rkE7ZeabXb\nZDwv1FBVmSAyHSeAWrA2YfF8HCU6HsCPf/xjFBcXY82aNWiNlO6TJChMlyCIpCINn42mv2QySUZv\nU+n6AeCo04mxnh4hB9OQlwfvyIg8jzKwsTyYQDXk5WGivz/oGLaaGuhMJlxpa4MhPx8Pnz6Nk88+\niz/+9rfBC9JoYH/oIXQfOgRvjGLphtWr8bW33sLLCxZg8vp12ZwanQ763NywXuDAdYQrTqLR6+Hz\nXwNdVha+ffkyAMRUAXk2Qk5n/JiDg9hbWYkutztlr4NZIdmhmtGGN4cLsz1/Xhwn7TfqcLDbgWGn\nTidw7hxw4QLzYEpaGcm2LV3KxtbUALfcwkSi0utIo2EC1mRiglUaPltfD7zzjhiGK4WvJz9f3ufU\nYJDnp1ZXA4cOycOCz50Dnn12ZqsWEwQRFxHDdGsBcP3XACDWj6MEx584cQK33norjEYjXnnlFfzN\n3/wNTp06hcWLF8v2ozBdgiBUjdQDmWqvTTKOJ10/v/3VXbtgdzhgr6/Hw2fPYnFDA+bxHn5abZAQ\nBZj3cqK/H7llZTD6K+ZqsrKwsK4O9x84AMsXvgCtv1dg6xNP4NKbbyovyOeD++jRsEI0q7hYvKPT\nCTevtLWhqbJS9hif0zc5GVGIGrgnyD8mFBq9HnqzmR0+Jwff+uMf0b55M/Y7HJiQFD6KVAE5npDT\nRD2boY6ZNI+p1Yp1588n/XWgqv6qQPJDNSOF/XLPJq8QrRRmKx3H+41WVzOPp5Int6ODeU/dblZg\nKHA9fFtBgeglfOcdZSGq07HXzNAQ81z6oygAMC/q9u3yqrjScVu2sNtSr+rttwNf+pI43uFgQtRq\nZVV9y8qYELXbZ75qMUEQM4P/bQk1AOIJMElw/MqVK5GbmwuDwYDvfOc7WL16Nfbu3RvHQmKDxOgc\nguLq1cNcsUW0obGpOl6oL/Ch7MH3P9jYiNpt23Dfrl3Is9txb1MT6/kZEIary82VjS9YtgwPnz2L\nb548idyyMlQ4HPBeu4aDjY0YunAB0x4PvEND6G5uhkeSP6bLyxNaxOjNZkwofNnV+b/ImoqKkLd4\nMbRZWTAWFgbtN+Z2Y3JkRPH8NNnZyFmwgHl2FfAODyuG7/J1cXyTkzDm5UFrNGLeihUw5ucrCk8u\n/PRmM8YHBgQb8Ovs83oxuHp1TKIt1hY/gYT6ASPReaXMxOsgmesLRUrfp6ThtoODcrGYnR0cfssF\nV28vE2JKYbbSHzR27GACkgs4pbDTcKHG0m3btonCW9rWRIpG4hwwm+U/5tx4Ixsr9XJypqZEIfz+\n+yxPta4OLc8+C+zaxdZ89CgrSMTXbbcDn30menKTHTIdiUDbZThz5fM7Xcgoe7jAPJoHAMTzcZHo\n+FmCxChBEHOGaL/AH3E68dL8+fjjf/1X2BzU4oAiQr6AL5eWxYthslqRZ7fj0c8+w/XLl4X5rko8\nJYVVVSjhXg+dDvOWL8dDJ07AVFyMSX9V3CAmJ6E1meAZHMTV9nZMj4+zkGB/H1PuDZWKxkB8Y2MY\nu3JF0bMLAPrc3JDj53/5y0IBJFtNDczl5ZiemMDl1lYcdToVPY7rXC5oTSZMjo6iu7kZr954o1AI\nyt3ais+bm6HT62MSbYkW8AklFNXev1Tt64sZqTdv+XIWnlpSwirOdnYGe/qkguvsWbGyrTTHU2rT\nQM+tkic3XF5kqG3Z2crnw19T69ezarcc7pl1OkWBys8FYN7Q7m4m7PLzgfvvB65dA372M7ZduuZQ\nIjCa/M5kCkjyxBJEcrCChdbGKyQTGD80NIT9+/djfHwck5OTePnll3H06FF87Wtfi3Mx0UM5owRB\nzBkCc0rbN29WzGGU5hECrJjRIxcvBgkWz+AgXqusxLg/H/Du//xPvLFyJaY9HthqalBwyy2y1iY8\nh1aab5pTWooGf6jhqzfdJBQayiopQeFtt6G7uTmoLQs0Gujz8sJW3c0qLsb09DQ0QNi+pNGiN5uh\nz87G+NWrwvV7Y+VKjHz6KYz5+Si87TZcbm0VtgFQbL2zvbAQE9IqohDb1Uh7l0bbImim+oyqvX+p\n2tcXM9L2KyaT2N6koQEYHQ1uzZKqdiKRclfXrBHXqpRXXVbGxPLGjWz7tm1sDmmu67x5LJS3oIBF\nKfBCaPX18j6igXmw8bS/4SQyNpBY+scSxBxGza1dent7UVdXhz/+8Y/Q6XSorKzEz372M6xbty5o\nX8oZJQiCiJPAkMxQnlK9xFNhtFrxzZMnFb/wm6xW/IUkH7Do9tvxV263cH+ks1M2Pz8+zzfVm83w\nAXh7wwYcbGyUFRkad7vRf+YM7A4HHj5zRsgvBQD4fGGFKACMX72Kib6+6ISoVhsUYqwJCN2dHB2F\nT6OB3eEQhPzwn/4E3+QkPH19uHz8OMx2O7QmE3YsW4a3N2yQ5YvyUFx+jhqJ55Z7lPMWLUL75s3Y\nXVuLizt3RuXFnqlQcJPVCqPViv0Oh3ryMiWkOgR+xpF686RtSbZuVfb0paqdSCSvn3Stn37KhBkP\n0dXpgAULWDuZ7dvlobVSz+6JE+z8Ll4MbgUj9ZoG5sEmEo6bzFBeqrRLEGmPzWbDiRMnMDw8jIGB\nARw/flxRiM4E5BmdQ7S0tKC2tna2l0GAbKEWuKfUvWQJ/nd7u/DF3jM4iJaNG9F36hRyyspgtFhk\n3rlovXb/vXAhrnd1wWCxsH6f/pwuz+AgXiopwXSofDMJerMZUx5PUAjwjKLT4YZVqzD4ySfw9PTI\nNvGKs4HeYwAwFRfDI2lvA7Cc1uKVK+EdHsYV7kHyk1tWhvybb0Z3c7PgUf15bS2KT58W9gm8dvES\nrc2kzEZ1XzWR8vcp7oU0GFieJfciziaRvH7cQ5udzYoZeTyswu6HHzIvJ8/XllbsDXeO69cDzc1A\nbi7wxS8CL7wArFqFFrcbtYFrkHqHN2+OrYJuqjzLGQh9fquLdLKHmj2jsUCeUZUzx/L4CSKt4Z7K\nVb/4hUycmKxW3LdrF8yLFqHH31NU6p2TelSbKivhGRxULI7EBZR3eBh77rkHL82fj+2FhWhuaICO\nN6cPg95igUarTa0QBYCpKVxpa8O8mhqYioqEh7VGI0a7u7G3rg66gD6JxsJCTPN1Sooeefr60LVv\nH4YvXAAAGPLzAbBcx9KvfAX9Z86wNjh+z6zO7wHmuare4WG0B1Y29aN0zXm+7/bCQvx+/Xrh8XgK\n/mRcXmYipOLDjXshm5uZWItGJM30uiJ5/biHtrOTeS4HBljYrtksCtGCAnnF3nDnuGMHC1O+do3t\n831Wm+AAACAASURBVKMfsdDcu+8OnwcbTd6m9FoBqfEsEwRBRIA8o0kmmWkYBBFItK33iMTgXrSB\njz6Cp7c3qD8k96hyjEVFwPS0kAvJvWgvL1yIa11dMOTnw3rzzbgq6TOYNW8exnt6xPxRrVZWmRcA\nsktKMD05KeSRAmChf7xIUbzo9TDE0mPUj/WOOzDo91ra6+sBANNeL7QGA8Z7ewXPp8lmk63ZWFCA\nb548ifZNm3DXli1o37QJa7duxX6HQ+ZdXdzQgLVbt+Ko04nxgQGZx1Qpj1Q6PpTHlj8eTw/ajMvL\nTIRUfLgpeSEjvemp5UN34UKgq4vdvv12lgfa3MyE6MmTYqXbaPIrpT1RCwuBu+6K/IYfzbxquVYE\nMUchz6gyyvX8ibhJdUV1Ym7Bf/wG2Hc0+i6RGKFCN7kXDWChpFLxcsTpZMWEJMVKJqR5mTodxnp6\n4BkcRK7djmtdXfAODaH35ElhF73ZDI1WC1NREQpvuw3GggJMDAzgcmsrNDodfFNT0OXkYH5tLT5v\nbhbH5eZi8to15ZPR6aDNysJ0qO0StHo9NNx7qSCCQzF0/jwA5ims3b5dJtBeXrhQWEf+0qUY1mox\n3tMjCFHeEgdgebhNlZUYlwjWwqoqQfTd29SkKASldglVsVea72sqKhI8uWuff14QwdEKS74WAqn5\ncHO5gkNHI73pRbOucII23m2B2O2iGK2oYDmiPHz3sceACxfYPtnZrDDR9u2h57vzTjFUt7+ficyb\nbgJWrAi9RoMh8rz0BYUgCBVCYboBJBrxo+Y8/ozqxZTmxGsL+i6RXLi4ORiigJGtpgYPnz0b1H/y\nSlubWDWTizpetGRqSmhvYuTFTQD4JiaQU1oqtDYZc7tZ4Z/WVvSdPo2pyUlos7NRcNtt0JpMcLz7\nLq5fvizzMOoC2kjo8/Kg4eGyU1NRCVFoNNDn5IgVbUMJUU3wj5vGvDzY6+uDxPnu2lpM8JDEqSn0\ntLXB098PbVYWLEuW4Oj3vy8rADTY0YExtxs+f7GWnNJSoYouf20oFegJFJ88zLrglluEQkNrn38e\n5vJymIqKMD05KYRZt2/aJMwXqt8sIUf2PjWTH278g7exMTiHMfBNL/BDOnBdSh/i4UJYlbY5ncD8\n+cB//Vf0LUukhYy4IOThu62tTKi2tTGRaTSGv4a8J+oXv8jua7Vo6e0V295Iz08a9htpXjV/QUkj\n6LuUuiB7pD8kRgNItF1Wqgr8EXOTTPouMdOCINz8fNuAv6WKwWIRPGiewcGgqrtSuCAqqq4WwnMB\nyFo6FFVXC2JJ6xeQBosF9cePyzx3fN+c0lL0tLVhemwM/adPY9rjwclnngnad97KlaL4BDB/7Vpk\n33BDbBfG52P9SCXosrJgu+uuoP0C8fT14Yok1BgQBX1gyK9vchLT4+PobW8PW624sKoKDR99FJW3\ncp3LhbyKCuhMJhxsbAQA3NvUJKta3L5pE8wVFfD09QlrCsz5jCd/dM4zkx9u4T54A9/0AvuROhys\n9Uu4ucL9iqe0raOD5X/ycHhpzmcoQr058/n9udKoqWHe0XC/evNrvWMHYLOJ7zEFBUBpqfz8YvmF\nkr6gEAShQkiMBpDJnqd0qTY2F4jXFvF+l1CjJ2imBUG4+fk2T28vtCYT7qqsFDxory9fjv0Oh9CW\nJPDacaG64dAhzFu5EgATmgALP11YV4cNhw7BZLXCZLWiePlyAKwQz1v33BOUZ2EuLxc8qHwevdkM\nt9+7yD2Uhrw8rHnuOZTefbewz9TEBHIXLJDNZ7RaURwoLMOh1cLR3o7rn38ue1ifm4sbVq9GdkkJ\nsoqLhcfH3e6QwjIUBosFd23ZItxf53LB7nDAXl8veEQ54V4bJqsVueXluBJQVIqvQW82Y3xgAMOf\nfMKOm5eH3IULofWLV/7cp8JE0ZGyz4xwH7yBb3r+QliwWFheZjTCM9yveErbpM9pnY7lgEZi82bW\nK7SxUS4w+fynT4vH4d7SSL96W62Av9BZrV4PtLRE1/aGmFHou5S6IHukP1TAKACqdk5kImpsURFP\nQZlkzR9YgCi7pARjbjdsNTXQmkzo8RfiWdzQgOs9PSGvHc9rlBblCTwP6Tp0JpOsvQlfG8ByIKHT\n4dOdO4Xw1UCMhYXQZ2VhrKdH2EdrNGJ6YkLYZ2FdHb7y8sv43bx5UVfhNdvtuPb554rH5UWFXqus\nxLj/Gkmvp2dwEL8rLpaNNRUVwdPXB11ODqb8fUWT9bwLtGv75s0YOHcOPSdOCOfLjw/I283wNURb\nmCiedjBEHAwOMi9naSkTW+HyM9esYeGuAMuT9HqB6mrg0CE2hn+InzwJXL3K9nn/fbGAULTr2bgR\nOHYM4PngkQr+SIsDVVQA5eWh81B37mQFiqqqgMOHw3/ZkJ5vQ4MYqkxfUggi7aACRsqQZzSATI5i\nobh69ZBqW6jRExQuFHam51/nciGrpAQAuyZFv/ylsC/3UvJrFe7a8bxGXpxH6Tyk6+Cez6LqapjL\ny4PCTS+3tIQUogAw0d+P693dsn2kQtRgtWJiaAg7ly2L+joBgHd0VPm4Wi3+vH8/XiopQe6CBcgu\nKYGnvx+/mzcPW7VabDUY8EpFhWzsA0eP4i//9CcsbmhAyZe+BED52oXy1re0tIT15AfalefwciFq\nq6mBrbpauF10xx1Ba1DKR1UiGu/9azffjG1WK14sLsZIZ2fY+RIhVBubmYx4SNn7lNXKxFtbW2Rv\nIfcMms1MiAJsLLcl/xC/ehUYGgJ6e5mgi3U9u3YB/siHqEKlpB7ZwFBaKR0dYqXcRYsif9nwn2/L\nkiUsvDcwLDkaEi2GQT3rZNB3KXVB9kh/SIwSxBxgpoVfPEQrCJI5P//yfrCxEQ+9955wTXJKSoR9\nA69VtNculDAwWa0wWq3Y73Bg2uuF3eHAhkOHYK6oCAo3nfJ4Qs6v0fuLn+t0svu8HycAaHU6XGlr\nw7Wurqi9ogaLRejtKXs8P59V7x0exrTHg74PPsCY242RixfZ3D4fMDmJiYAvpwcaGnD8qadwvacH\nPjCvq9Zkwo5ly/DmmjXC9encs0cQei2PPy6bI5wIDLSrNIeXF1e6d8cOwWbrJbdjfa5F8yPOdbcb\n3qEheHp7sTtW0RMDStcko3Jfo82R4WGpq1aJ+2/fHrwfz63OyWEeznCEEluxhMBK9w0MpZXCw4zz\n81kIbiSRx+f9xS+iD+8NJNFiGImOJwgibXj11VdRWVkJs9mMG2+8EccivX8mAQrTJQhizjCT4crh\n5lbaphRG/Nb69eiWtHLhaPR6bDh8GO889JBQXXdhXR0uHznCepQC0OXlwZibizG3W2gPAwAag4GF\n04TwuOaUlmJidBSTw8Oyx+0OB9zHjrHjxdD+BZCHxkpb4HAWNzSgq7lZqOhrLCrCvJUrhVBYfm30\nZjPmrVqF9Tt2hBSSoUJupSG22X6vZWC4baQw3GjCeV8sLoantxe6nBx869w55MUSDhoDSs+XmQ51\nTymx5shE2r+zk3lEjx2LHKKb7P6b4dYmDbu12ZjnNtrjRtNLNJnjkjWeIAgA6g/TPXDgAL73ve+h\nqakJK1euxOXLl+Hz+VBaWirbL9lhuiRGCYKYM8Ty5T2UUOGPj1y4gFy7HUaLBetcLhxsbIyYo6o3\nm3HDqlW4d8cOAAgSOp7BQbx6441CvqOUxQ0NmBgdlR3DtWiRrIqtsbBQqJSbU1qK4hUrMN7bK8tT\nDUJBLAIAdDroc3IwPTGB+5ub8c43viEKzDDYampgtFoVRTXAPK4Pnz6N1ieeQHdzM3S5uZjyt6SR\n5nS+umRJUK4nJ5pcTukPACabTRDxeRUVyC0vhz4nB97hYeHa8GPEmic60tmJ3WvW4MFjx2ZMiALK\nwjja3FciAgsXstYrFgtw5kxs+aWxIhV2VitryRKtyIu3qEWixTComAZBJAW1i9EvfelL+N73vofH\nA6KVAqGcUSJuKK5ePajdFpmaIhQq5FbJHqFCIPnj17q6hAq8R51OZBcXw2SzhcwbNdlsmBwdxefN\nzXitshIAhPBdHrravnkzfBIPpDTHlLeKMVdUCNVhtTx0FyxcV2c0snH5+ag/fhz37dolzKGE3mxW\nFqIAMDWFyZERTHs82PvVr4q5qTodNP7j8JBhANDodDAWFMBktSLLZhNa0Bj8YcS63FwAgHdoCLtW\nrcLdL7yAxQ0NuMHfS1FvNsMzMIB33noLJqtVCB0OrMQrtUG48FRpiK2tqkq4nVNaKowd9odMSsNw\nYw19zbPb8ehnn82oEAXE8OT2zZuFcHAAMxrqrvb3KYFIb1iRtnPbDQ8DmzbN5Erl4by8n2gUQrSl\npSX+ohaJFsPI5GIacaCK14UTQC2AOgAZ9BkdD6qwR5JItA5AIuOnpqbwwQcfoKenBzfddBMWLlyI\nH/7whxgfH495HbFCYpQgMph4RWW6pghF6i0qbdkSiVD5gvxxg79vIN8+0tkJT28vPm9uRlNlZVDe\naPGKFcJ93h4lUPgMdnQIoaumoiJ4/aGzI3/+M3YsW4bXli7Ftc8+E0TwvLvugtYvDCdHRzHtzxP1\nDg2hfdMmHHE64R0ehtbfHkLKwro6zON5dwAKbr1VaCMTyNTYmOCBtT/wgHguU1PQZWcDGg18ACYG\nBvB5czOrCOxfS8mXvywTnQAw5najfdMm3NvUhPU7dkBrMglC/dS//isACOLOOzyM9gCBILWNLjtb\n0ebSHx54DmnBLbdg4Nw5AKy/qUOSNxyYg6qmYl9SMipPNFlEesOKtD1cjmco4n1zlQo7EnlEvHQA\naAWwD0yYEhlBou/viYy/cuUKvF4vXn/9dRw7dgynTp3CyZMn8cwzz8S8jlghMTqHoF5M6iFVtohX\nVKZrv91oeosqbVOyRygvKn/84dOnZdul/TbHAnpx8nHSCr5KlXql94v8FWH1ZjMm+vpwvasL45KW\nLgCw8l/+BaXr1gWN4SLt4+3bcaWtDdMKv2wacnORW1oKY2EhsubNQ8GyZbJiSFxkAszrCbBw17Gr\nVzH08cfCcWzLlzPvKs9R1euFNWr0eqx57jlBdGYHnD+AoGt3h83G1hdQ1RgQf2zweb1CsaKRzk7B\nrq9JfgSQFjrit0c6OwWxn7dokWIVZDUW+5KSSrGcNp8Zkd6wIm2Pp1dnsn+xiyBu08YWc4CYbTET\nXkz+llkDII0+o2eCTHptJPr+nsj47OxsAMAPf/hD3HDDDSgqKsLf/d3fYe/evTGvI1ZIjKqYTA2V\nJFJHvKIyXfuoh3ojPuJ0ov/MGQDMIxbNm3Soar+h2rmsc7kUxZZ03F+cPx+2Uq/0fm5pKUzFxZjy\nh8dqJCGxnDdWrsTa559XrBw70tkZsqKu1Js70d+P8Z4efPr665gcGQEAGAsKWIsbfwivb2qK9Qyd\nmEBPWxs8vb3ILSuTeRoB5i2+YfVq4b5vclLw0DZVVmK8rw8agwHXurrw9oYNgjdT7/8Q1Fss+NJ/\n/IdwPQNFIf9B4fPmZuiMxiAhO+5249WbbgrZ/kTnDx221dSgdtu2mOweiplurxKIKsSy2j6cIr1h\nRdoej4cy2b/YpWs4ChGZmfBiugA0ADgAII0+o4nwJPr+nsj4goIClJWVxXzMZEBiVMUk+7Mpk+Lq\n051U2SJeUZmu0WOh3oil4a95ixYFvUknwx4mqxXfChCbSvtIhU5gHuDBxkahGM1IZyc8V6/C5xej\nvqkpISSXM+3x4K177sH1nh5Zv9JAkQaw4kb2b3wDpuJiGP3HH+FtJgBBuBoLClB2330Y41U+wTyc\nBcuWCRV3tUYjpiYm8MnLLwvXNae0FIvq6+GbnBTWyUVv5549GHO74fN64fN6MeZ2C21tXqusRM7C\nhQCAyeFh/J9Vq4KuBUfpxwapx1lvNsPT2xuy/Yk+NzfpQi7VYbMz0hIphLgM+bpQm3CK9IYl3Z4s\nIZ3sX+wiiFv6/FYPIW0RygM6E15MK4AmkBBFZr02En1/T3T8448/jl/96le4evUqBgYG8Mtf/hIP\nPPBAXHPFgj7yLsRska6hkoR64N/B5gr8jTgQqYgJ5RGLFaWqq6GOHwkuaABWYffepiYxN9VigXd4\nWF6l1l8B11ZTA53JFDQWYCLtRZtNCJ+d6O/Hn/fsgc/rRXdzM446nci123GtqwsAawFjtFhQVF2N\na599JowDmIdz9OJFAEys5i9Zgqvt7cJ2Y0EBGj76CPsdDqE6bW5ZmSD6AvunGvLy4PV7YcfdbuFx\nW00NesbHZedjtFqF67z2+efRvmmTTKRyj/NRpxMef84qF6tSj3hRdTVqt29PujdR7TmmUcHFJcDE\nWqTncDp/OMV6rqFI9pury0UVa9Md7gEFmDDlTw+X//5WkHgkVM3TTz+N3t5eLFmyBFlZWfiLv/gL\n/MM//MOMH5dau6gYqqZOEMkhkRYYoVp9JLNnqVLLGb7mu7ZsEQTY8aeewp/37UPBLbfAVFCA2m3b\nFFvK8DVfOX5cMVTXZLMhf+lSDH38MTy9vTAWFMCyZAl6/QIzu6QEYxKRCADQ65Fls8GQk4MRvzAF\nmNcUOh18k5PQaLXweb3Qm80wWizIq6iAwWLB1PXruNzaCkN+PkpWr8aa555D0803Y2p8HAaLBQ8e\nPYqTzzyDtVu3Bp3Pfocj6uscaGepjez19bhv1664bRTtMdOSWPtIpvOHUyzn6nQy8ZqTw8Riup0r\nkVrqwEJxaxA6fNYJJlpzwEQqPaXmFGpv7RIt1GeUIAgihXBB89K3geHbbFiwbAVc61w4/lDovqKx\nEknQcHHZf+aMEBYr7ckZOFYqwnRZWZiSFDDKLilB3he+gB6JB7P0K19B5549mBgYQFF1NfKXLsWl\nN97AdIBHEwCg1wOSIkoao1EIJWYPBPcttTsc0BkMsjW+uWaNrMcn94DqDAYMdXQgd+FCGCwWTPs9\nufFc52T0lY0XPt/whQvIs9th8PejVaVgTWdxGSuxnOv/z97bR8dR3mfDl6SV1pLW0q60MooqLGzC\nZ21HwgsmMXQ3D3KIBanUNMoHpQL6VHtOeHLaPjmx3z7tyfvmNP0mz5O273lL7Saxoa3S2lDbOCCo\nFUuyITGEFAwFEiUQOxgjjM0KIdv6sP17/7j33rnn3ntmZ3ZndmeluXzmeDVzz/05uzPXXL+PREJT\nUfv7l5aZiQ/7mEJuBTQBTT3th6ae+lgS8MmoGr7P6BLCYrKrtwuvxdtYymvhRZitBzfDfO/KEF6K\nnMbwiWEkDycdDSSTy8/j+P79mBwfzxBRORqtfK5oOnr322+jWji2YsMGFpwoffwzL7+sizKbeu01\nvPnEE3oiKuYTldO/CHlRAZaSRkRNWsGV+/jB8eMAtDyi3FT54MgIFs6fz/iUVodChvNsFDxIFXU3\n1xo57fvJ6zt34kRmLJ5NxWLgc7kof6fsOMR7yBx5Ua5FmcJwLaz4cfpRcB2H/90of/hk1MeSgNfi\nbSxWeI30OwFOOkPLGIG7KtWI/3fdA+4EkjGA6HNZVVuLqmAQ37/rLsPorbzPkeuvx1N9fahMk8ma\npibMnj6dRdLe/dGPMudemp3N5DcFmH/nZel8pMHmZjStW5dJ+dLc1YVWIXpudTiMhiuvzAQw4sGQ\nnurryxDGQ8kkvl1Xh3NpX9WF6WnsvfnmTKTbxquvRvNHPgJA8/EV51kkoKlXX1USSFXU3Vxw2vdT\n9Pl1st4lj2L+yDgdpMhq350YoxvpRHwUDj8Krg8fWfDNdH0sCdh1ifKRHxazVdvQplvwf1Y9g7v/\nGVhzZ2E+okYmoUb7v7dpE06OjKCpsxPV9fU681beD9W5orluZTCI5s7OTOAh8dwdjY0aAU2b2VZU\nVYHSQYxCHR1YOHsWdOEC5tMPx/Xt7fjMyy8DAMbuuw8gwjs//CFmT50CwKLr8qBGos/nuVOnMn+L\n6OjtRVVNTYawcdPjZ7du1Y1LrI/7tspmuCrz3FxmuE77fqp8fotpouu02bFnUOofmUL8SK323Ykx\nJuCbg/rw4TH4Zrpq+MqojyWBcs2bWW7wkFWb4whXNyD5j8DKXy1c4TIyCTXaz/OHfmp0VKm0HUom\n8fquXVnnTgupWy7NzWEmbRobjEYxc/JkRq0UU8aE161D1bJlCNTXA2DqZ117O+ZOn84QUW7eyyMI\n375nD27fuzdzHAAWzp/H9++6C5VpxROVlXjr4EHlXaq6sREf+9u/zaS5eaqvD/MzMwA0E+UTw8MY\nu+8+nYLZd+SI0oS3tqUFwWg0K72PmRmuVaXbal5Ro3y0xUKxU84UDU7+yOSjQBZiZmO1706M0TcH\n9eHDR5nAJ6NLCEvZrt5reTMX61qUI+k/lEzizzo7c5ILJ31EjUxCjfaLREnVj6mJCSy8/z4AZhrL\nz13e0ZGpoyYSyZC3xmuuwSnBj/HTzz+P+vZ2RDdswNTRo7gomOqGVq7M+Jg2d3UZ+mAeSiZxSQhs\ntJBKZXw+KwIB4NIlzJ05g1M/+hFqIhFUBoMIp81xF95/H89u2QIAOPzcczoSpUsLQ6QbvxHR++D4\nccydPo230ilszObWLsqF5JmO1yIJ8+TvlJM/MvkQy0KIotW+K8rZXgsjc9DF6EtRZHjye7GE4a9H\n+WPJk1H/d9k6/LnykQteI/1WMDUxgfeOHs1JLpz0ETUitlYIr1nAoppIBL/5wguZY1xF5fs5eauR\n1NXlHR34rTffxLKmJt15gVAIC2fP4tYHH8Tq/n7cefAgbt+7V9m3qYmJTDCjikAgU39ixw7UpMtX\n1dWhae1azKdSuDQ3h9l33mFjikZxNq3Ucv/WikAAJw4cyJgCNXV2IrFzJ57duhXnTp3S+czKaiWf\nj0AohNlUCnNTUwW/TOBtpF55RTd3XoXpeMvZid7gR8aqYq1DPsTSDhmWb5py341uqk78kBoF0ynn\ntffhw8eixJL3GS21+0k5wZ8rH4sRdtJ/lAr5+jta3c/rr6quxvs/+xkWzp3D3LvvZsovX7UKF86f\nx8W5OUTXr0d9Wxs+OH5c1x8+jzWRCD41NpbJGxoMh/HB8eN47JZb8OtPP43DX/wiTgwPIxAKoWX9\netSEw5g9fTrjB9vR14fJp5/G3OnTmfa5f6rsB8v9XuV9t27fjn+9+urMGArNAwvo0+WI/bG7Vk6h\noHYWoRN9Xnl/3U5pk+umWYqb6iJce8/Dzy3qIw3fZ1SNJa+MLmYfN6fhz5WPxQgnzW/dgplp6KFk\nUudjKcJIzZX3i9FnF86e1RHRmkgEdW1tOD85iflUCidHRvCzhx/W/DjvvReANo9feOMNNK9bl6n/\nUDKJ0XvuQWTtWtQ0NjLi1NKCCzMzeHt8HFU1NTo/2MSOHWi58cZM+02dnTripzI/lfcFw2G0xGJZ\n5QqB2IYRERXnMi8zXhvmJwW1U4729DmQlxm226YcuW6a3Ke7oQF44AF3+iBjEa695zEBFkxqGIyY\n+vDhQ4clT0YL/V0uJ9PVQu3q/XuYc/B9HLyDYDiMwP33e5aIAuYP2kakxI7ZIq8/GI3q/D5RWYnm\ndesQqK01Pjmd5sWI+MoBiFREUXwh8MMXX8RtQ0Po6OtDR28vPjU6mtOU2eq+QmC1voJ8U22YUBbU\njkUSVk6/U558qZTrpsl9uqengRtvNH2QcGwtytGXwi5cTmtjey1KFUxqiaT3KaffKS8jFAph+fLl\nmS0QCOD3fu/3itJ2oCiteBj8dzlf8GcHgD07LGbT1ULnyocPH/nhtqEhw7QjRqSEk1SApUkxM1vk\n9c+cPIlTaXPZiupq0MIC3h4fR01zc+ZvEc1dXahpaMBjiQSmX38dyzs6UN3QgNuGhjIpWWYFc1uk\nzXpU4xH7xyP0qsBJbz77CoHV+szWKidsmJ8U1M4ihNPrDUCfxqWlBTh+3F5Kl1w3zbRFAEIh4N13\ntZcQ/o22MHAlEmCErNTTOZTux3YU10TXa/Pgw9OYEayrzp49i9bWVnz2s58tSttL3me0UDjtflFI\nCjMfPnwsbqj8BI38QrkPZzAaRUVlJS4tLCC6fj027d5tSF5E/9lgOIy3RkYQCIVwQWECXLVsGe5+\n+21d3k8OVT7Rps7OLJXTaExLFoX6MDp4A0keSmJiagJ1gToM3TaEcHAJrovo09nSwggj4Jx/J1/v\nVAoYGfGGH2cx/RvdeuDpATOJjSE7mrDb8JJ/qJV5yKe/XhpjmaFcfEYfeughfP3rX8fPf/5z5XHf\nZ9RjcNp01Q9058PH4oHTZvwqk1wj81hutth4zTWYPXUq4+9p5l8omjp2796N0KpVqEhHt23u6kKw\nuRkAi4r72Z/8hJk4p9U8Of8p38/TwXAiKpsPl0uqlKKgUBNKB28gE1MTGJ8cx/CJYSQPL9F1EZXq\ndBoiR4Mm8PXevds7PjBm/o1O/6C59cBjlNamGPCSf6iVecinv14a4yLDoUNJPPZYAk880YO5Ofvf\nsULP53jooYcwMDCQ9/l24ZPRAuG0+4WbQYK4Xb1X/Vy92i834Ps4eAturYfTz1q5/ARFogdAl8YF\nYOqkmX+hSGyD4TBCK1dm8peGVq7Ep3/8Y9S3t+Ozr76ayWHKCexnXnpJ57PH98vpYGTyKY/JaC3y\nSt2x1ODgDaQuUAf8FIhFY9h+6xKNWCe+bXaTMFp4kCjaPcPMv9HpHzS3HniM0to4BNO1KJV/qApW\n5iGf/nppjFhcz1NTUxOYnBzHiRPDOJzHS8BCzweA48eP49ChQ7jnnnvyOt+rIB/WkUoR9fez/53G\n6OgoERHF40TMeYu15RV4tV9ugK+FD2/ArfXYvJldz7GYM9/p2VSKDvT306xBZQ+3ttI2gLYB9GRf\nX+acJ/v66MneXsPzVBgfHKQdkQhtA2h3Z6etc43q2xeP085olLYB9GgsRrOplG5M44OD9Kcf+Qg9\nvnlzVnv74vHM2A4s9h+IfOHgDSQ1m6L4N+KUmnXhZlRuGCSiOBFtJqISTUfmN2pwkN0sN29234Yt\nRAAAIABJREFU50EhRUT9pB6n0z9obj7wOAGDdTe9X5jNnxeRT389NsZyep7KxYkef3wzbdsGevTR\nGM3m8dtb6PlERF//+tcpkUiYljEaB4C8bJB9n1EBySSwfz8wNwesX89ehJbaYsYNcD/XUAi4+Wb1\nOEvhu+qnP/Ox2OB2GkMZO5uaMJ9KAQA6entx+969edcl5m3s6OszDCiUT32qPJ2Hkkm8vmtXRomV\nc0WWQz5YL8D3wXUBCWiBYPpR2kAwpUz4XewfNDMUw28xAeN1L6R93+dyySKXz+jc3BQOH07i1lu3\nI5iHn36h5wPA1VdfjT/6oz/Cvem0bSr4PqMC3HBfmJzUYgksVveloSEWi2Fmho3zqquy57AUvqt+\n6hgfiw3FzqJQlU7BEli+HB/727+1dI6R+atoPpvYsaPgvuXK0zk1MZEhopU1NZg5eVLXJ0+m7jBB\nqcyKfR9cF1Bss0SzlBylTPjtxg9avulHiuG3aGqyXED7vs+lDwMEg2F0d+/Km0gWev4PfvADnDx5\nEv39/Xmdny/Kmoy65b4AAJ2dxf+ddxvcrj4cZvcxgKmjp09nz6GV+53TLwOWQvozjsXk47AYsGjW\n4+JFAMCFDz7AD37/93MW52qkirwUO08nJ6tvhEJo7urCqWeesRSoyasoFSksKP+ohEXzvSgUxQ6I\noyArmbVw4q2tlwI05EvMivGCwGDdx8bGCmvfib7nS+IXYe5R/3fKOTz88MP4zd/8TdTX1xe13bLO\nM+r0C8KhIeC++5jX4s6di5sUDQ2x+9EzzzCFtKEBeOCB7ONm1jhLKceqDx/lgIvz89ofFbktZUQ1\nsiYS0ZGXYuTpFE1Kb33wQTy7ZQuuGBjAhb//ewD2CJXXzFNVpLAY6VJ0+Ue3bgUmJnDo9dcx1dGB\nQDoHbKnnpuzAA8EUC2ZkxYmE3166eedLzIqRu9Ns3Y3at2KC60Tf880h6uce9WGCf/iHfyhJu2Xt\nM+ol94VygugP+t57wLPPsv123U98H08fPtxDPuTq8U2b8NbICJq7unDnwYOm5xxKJvHGI49gPpVC\ndWMjPnP0aCZCbrEg+pEGo1G03HgjbhsaAgBl7lSrdcn+pqWAKv9r4rEExidZH/tX92NXt8t9TPsX\nPgZgMr0rn7lJIokJTKAOdRjCEMK+k5u7mIK7RMtLN2+3x1psJFAc/2Ixh+j1AI7Dmg9qKXOw+iib\nPKO54PuMClhKZp1OQjRvPn6c7ctHXfZ9PH34cA/5mHl2796dSaeSi8RNTUxkgh21ffzjRSeigKYe\nBkIhzJ0+nRlrPia5TpqnWoWZX6hqDHUB1seipUvh8yvlgLWLCUxgHOMYxjCSvpOb+1Cl5HDSvDLf\nm7cbJp4up2EpOtwyH5bnXjQhPg7rps6lzMFqhEVoOuzDHsqajHodbrhlFFInt6sXzZuPHMmfUPKX\nAVu3esf9pFzg+zh4C15cj3zIlR0S53SAonzA/Ugvu/nmTF8u5ZlouxQBjuy+MBi6bQj9q/tx4I4D\nrpjoykj+z/+JxF/+Jf52xw6s+MIXbM9N5p6RfsKOIYbtxUwsmAQOfSiJx5oSeGLT0s4vO/bcmHNB\nb/J9k2/Fv7PciIXV/grlxr43ZlzOLbInz71I4u0QYDPyX6q1KzCgkxfv3z7swSejLsKNiLSF1plM\nAtPTQGsr8MgjQEdH4eqy2Kerr/ZJqQ8fMvKJrOo2ufJCdFpOnrmie8eBA6gJhQqqq5hj4YQ+GI3i\nrBT9V4VwMIxd3buKQkQBYOL8eYxHIviP06cx9Du/k/fcDGEI/ejHARworonuBDA1OYHJ1DhOjCzx\n6MDB9P/FiuirghXS49VIsUZES+zvdTAmYWK5b5i0w8neVoP28oXZ3JsRYDsEs1RrV+xo1T48h7L2\nGfU63HDLKLRON1KUiXlLZ2acrdstlCKPqo+lC6/5M/pwBtwv9OzJk3jnmWcAFLi+Dv8w9TzxBIZP\nnEAsGsWBO+5AOBjMfZKX0AM8MdyDExhGtCuGOw4W/8WJK0Gn8llnL/hWWumDV30SE1D7cvL+QnFM\nhF0fTaP28kW+62+nH6VaOy9c20WC7zOqhq+Mugg3fCoLrZOb6IZCLJ+qFZEml2kw71Pa0q4k6c/s\nohR5VMsBpcqNuNhRCn/GpYJSXrNcja0u0CczA4d/mIZuuw39q1d7m4ia3WCGgNt6h7C6r986EXXY\n1HBiagLjk+MYPjGM5OESmTglAfQBmHGm+bxhxb/Tiz6JgLH6NgSgVThWC/X1Y9dH02m1L1/fWrEf\nRmPjKNXaLTa/YR+eBPmwj8FBonicaPNmolTKmTpHR0cplSJqaSFiCWyI+vtznxePWyufSrHjTvXX\nTWzezMYTi5Wmv6Ojo8Vv1AL2xeO0DaBtAB2wcnEsEri9HrOpFB3o76dZFy628cFB2heP0+ObN7tS\nf7Fhdy28cM06tr6l/mGSUJTfKas3GMv1ERHSmwPVbX58M2EbKPZojFKzDq2J3XWOE41i1LExlRyD\nxNZpMxEV6zIfIKIWIupWtJkiNq8psnT9jN40yo7HFHWp6ix0vIWcb3NsBbdXAnj1eUqFxcKJjMYB\nIC/Zd9Epo17K5VwI3PLDDIeZcglYVzCt5nMtp+jGfiRgNXwFzx246c+YT9RdJ1FqNd0L16zZ+tqa\nn6X4w+REwnBRDa1O73NCkUomMfTNafS/1YoDtzzinK+v3XUud586Wa0uhW/icQDvAhhRtKkKBhQF\ncBJqFfGryK0ginUWOt5Czs8n0FGh/bVrnVBuQa98eBLfAfAOgJcNjheVrTv9krVU4C9OQyHnxyMq\nmLICq1Jk3VA8nVB+3VCPlzrcVPB85EY+KufjmzfTNoAejcWKum68rzsikZIqk16/Zr2g3HoaTtxg\n4qQpPr2kKUFGsHrz8MoDhahulSPipFfkNlNuZdFp5GqTq4HdxK6hjeScwl7oeJ2aL6vXUaHtxcne\n3InlV1FZqbJ2UWxO5BaMxoE8lVEncCuALniEjDpp5VRKssPvz93d2ngGBpzvj3yvzffea3eurLST\nq043nhNKseY+qfbBkQ9xKRUZE/taCjJcLijVy4IlBbsPz1ZvHh4zm7YNr5hbyutjh1w7NQajNnn9\nESqMMJv1s9CXCcV+GVFoe3bnTizv5EsAD6LYnMgu3nzzTbrzzjupqamJWltb6Utf+hJduHAhq5zR\nOFBCMgoAV8AjZNRJFU+8X61aVRrCII6nUPKlsquX77X53nvt9s1KO7nqdOM5oVgvwsW18MrL96UM\nr/iclBNx4X19pKuLnuztday/XlkLp+B15ZaIDB+k7/ibOyi+L06bH9/snL+kG7D78Gz15uGhQAh5\nfS/iVNwHeyNCVgi5iZO7YxDrt0iYlWvhdj9FWCXopXoZYddfViyfhypbTveMYnMiu/iN3/gNuvfe\ne2lubo4mJydp7dq19Hd/93dZ5YzGAd9nlCGX36Idn1LRlaWtrTTRV8XxOOFaI4O7rlx/PdDXByws\nsP/tuizZ7ZsVl5lcdQ4NAatWAcEgcNddzvjUujHHxW5zsfhNL0V4IfenVfC+3nnwIG7fu9fz/S0V\n8vUXlr/HyUNJJB5LoOeJHkzNOfzFNvAROzFzwvlIsm7AbjROqz6bbgZCKMYPdbF9TY18DQuJlurk\nGFS+ibz+TrCIxdwP1KjP1wK4E0ALmB9qof1U9SmXD6VVn05VuWL4Z9r1lxXLezUa8xLBK6+8gs99\n7nOoqanBZZddhk9+8pN45ZVXXG834HoLAO69915cccUVAIBwOIzOzk4kEgkAwNjYGAAU7e/nnhvD\n0aMAkEAyCdx//xi+8Q1gZiaBujr2dyjEyg8NAX19Y/jKV4C//3t2/tVXj2FgQDv/uefGEAwCTz2V\nQDjsbv/F/oTD+ZyfwB/8gb6/d989hhMngF/+MoFUCgDGEI+z+pNJ4JFHxrCwANx8cwK7d2vl29pY\nf158kdU/NMTKDwyM4cUXrfVn167CxhsOAw0NY2Dp/bT1LGS+779/DOfOAXv3JrB1qzPra3R98eP3\n3w+EQgls367NZyHXy3PPAUePsr/7+sbwta8V7/vl/13Y3z988UUE7r8/Q1yK0f7Rb3wDq2ZmEKir\nQ+D++1ETCuU8v3JoCFMTE3j1/HlcevppfOLOOx3rzzeOfgNfm/4a6gJ1uD9wP0I1ufvj5b+/cfQb\nmFk1Y3s8LIgd+zuZTODU3RMYT+eqTdYksat7l3P9rUv/ffUYMAAkwP4OVgWBnwKxjTFsv3W7J+bT\nsb93Gc/fUOUQJqYmcP7V8/jqDV/FnZ9QXN/JJMaeew4IBpF46ikgHLbX/sQExtLrmUgmTfuTSCSQ\nSCTsj/f+MeAckNibAFx+PgGAsfPpv2MJYHue9X0DSMwkgLp0/+8HEqF0ffL98c4x4ASQaEsAQ4rj\ncv3PjQFH09f3dcDYPyrqN3t+uXMM+BmQuJQAzgJjsTFgd/r4EDDWNwZ8BUjw55WVY8BJIFGRADYC\nY18ZA6T7P54DEun79dh1Y8AckJhKAASMYQy4E0g8LfXH4PtquB6hBJACxr4ntdc3BnzN5e/b+XT/\nYsDYwBgwZuH8XS72xwN/m6HQvMaFnn/77bdjaGgI8Xgc7733HoaHh/Gnf/qnyrJjY2N48cUXMZV+\nmXbs2DFbbbmBK+ARM91cUFnnWDGTVFnriOe1tLhnwmvVp9COj2U0yspt3Kjtk+eltVV/rBCf0lzj\na20likSYj6ydOXTTpcepsRZSTz7+pOXu5uSjuMjHT9XNoDzxfXHCNhC2gfoPlL/dujielp0tlk1e\ns1wo3EgxwmFgkpiaTVH/gX5vm+i6AEvXYKE3iMX0Qy0G/+mjwkxH42Td3FVV1qz+zUL5fMxpxfaq\niOhYjvKNFtoz8pfkWwdlj8eq2XOKWDqbUgaPKvfgWw4jFycq9P5X6Plnzpyhrq4uCgQCVFFRQffd\nd5+ynNE44PuMWoOKVFq5J6hIgd2It6o6rJAN1T1PdZ7Kx7W9nRHOzZuJbrhhNKu/1dXs/3XriHp7\n9X2IRLRyjY3sWHs7+7uhgeiY4oc4H/Ik9tvufd1Nlx6nnhVU9Vj1ccjnecdDbk5lg3LyOXEa+fip\nuunbetNf3OQe6SoBOIkMfTtk6yFB/h6Xghgu1e+FJeJf6A3C5g+1p9ciToURSBF2yJKqrFn9KSJq\ntVG/QXujVaNERy2Ujwp9WWPQnspfkm+VpCe0Vgi3jDrSyPNRMiaHdv1LvRIcizz+3ZCQixMV+tKx\nkPMvXbpEsViM/vzP/5zm5+fpzJkz1NvbS1u3bs0qazQOlJCMfhcsG9McgDcB3Ccdtz2ZxYaVe4KK\nFKgi3lqtg5NFkfC1tqrPt6rmiuVkxRMg2rhxVNdfkZT29mYTSV6uuppowwa2f8MGc3JkRJ7MSCrv\nN0DU1ZU/iXI6Km2+pE7uh6oeqz+ebr485/38X+2D9OhGe+lEFhusrsdijHycT4AdN4Py7H9qv+Ok\nK5+UOU6Bk8ju/d1lR7LL6SHPSVgi/kV+6+eJtTAiIIUSSBF2lLQUsVQgG4U+mdU/mC7bSrlVTaP2\n+olG949mH1PNzTEiaiOiHqkvg+k+RIipyTzQz0YiWkFEYcpWSMXxtAr7VyjGKaJBKNtuUi4ulLOb\njqXEBiye+G5YRC5OVOhLx0LOP3XqFFVUVND09HRm3549e2jNmjVZZY3GgRIro2awPSFehBkpsHpP\nykUWjQieVTVXLMePNzYal5NJtEwkeTmxrzU15uTIaJ7MFL5UipHhvj51nWYEQDwm9rOUUWmdNGV2\n83mH9/PL8PMgWoUf+bg84YVcn0vV5NUu7L44GKRBilOcNtNmSrkl0XhIBZJR1BctcVITEE4KV5Ce\nYKmQj9mm2fzLfTKrXyzrdD5LuR9Wy/Ly4j6RbNYRm1eRPEcU5xshSJrKaqbmFpKOxWPfCS/Dy5zo\n0qVL1NbWRn/1V39FFy5coFQqRX19ffRbv/VbWWWNxgGfjLoLJ0iBiix2dREtW2Zu+ppPf/jxY8eM\ny8l1GBFJUbkEmKlurnaN1E9etx2FyYwAiMe4j2upXXDKxRWI9/OPG8onnUipUS5r60MPbla8Mxql\nPRs3LmkrAK9j01da6aovg371S6A9X+jNWT5OcUL6X79bEk2cPKMCySjqixYzAiISKLvzJJLNAcom\niXGTeq2QIl5/VCgr+me2mpxrFXI/ZPVzQPi7WWi7K12+Pf13AzHS2CuVE8fdLexfTuYq7waDOkQM\nEiO81cTmyYoJbz4vFczqWyLwOic6cuQI3XLLLRQOhykajdLnPvc5OnXqVFY5o3HAJ6OlQb5meyJp\nu+wyjVA1N7tnAmhkysDH0N2tVidTKY3oRaOaD6qVPop19/YSDQxkmyfnun8aEYDBQa2eri5z4l1M\nWHlx4QWzEt7Pd46VQR5El2F1Pf5jYJD+Mhqnfd0+mXELbnw3uFnxno0bS66QlhNK8Tu15s8iGd/a\nTz/el7P8ZtpMIFCMYu4pox5QgYzWoqi5ic0IiKjWNRqUMUJcOFf0s+RfUaP5t2p2K9bfTmr/TBs/\nB6Ojo9mESp4bsU0QUUD6O0h6893LFOX5nMrjTlE2UeX9aSeiZenzm4R+xEhN9FV9lecibnKMKPfL\nBBlG9eVJUr3wPGUVi4UTGY0DPhl1F0akM5fZnhWyKhIzvvWZ3IPzjT5r9IVVRdk1MkUWTWGDQWa2\nGw4b90P2k+Vmw3yzogYPDLBoxXIbYrTfnh5rc+AVuPXjuRh9GosBq+vhBXPPxQ43HyyK+uC+CFCK\nh7xP7GO+tet3dVkyaU5Rivqp3z0iyhopeURQo7WYHUjRgZZ+mu1OlVZl4mpdI2UTw1wkQySb3cLn\nXCpcnKyRSV5/gJj6F06fu0LRlgq8//VE1EA02jCqVxxbFGMTyW698FkmfbxumayKpFX1jCTO2QBl\nR+4VVV8+d6J63UHamohKa6diLnK9jIkL56teJsjrb1RfXHGuBfhktPgwGgd8MpoNJx/MjUhnLrM9\nkTAZEUzuu1lZqZXtNbFOkqPP1taq1Uqr41dFBc4VTEksa0bGxflZsSL7HLN54f03UlHF/WbkvRDw\nPohRifOZ42LB92l0F5zM/J9ojLo3pjyz7j7MMTg+SPF9cfrEvm7a84XekhJR3herKV48CRfN7Hzf\nWpuIU14P8I5DRRj5dSKqpiqTWPFc/tmKwsZJTSUxpdDoxXaK9CSJb72KPssYJEZgVSSRty3uixAL\nWtRCjGC2kLZGjaSlWokSI8NGJFTcRP9WPi9t6fbCpA94JNfXJIwvIu0X56Ev/b9q3nO9jMn1MoGP\nn1+jA+l5kH2LPWCB4DZKyYmchNE44JPRbDj5YK4inYODjKC0thqreyJhMiKYqRRTDRsaWLlIRCM+\n3KxVlVJGtYlmvlaIMG9fDGgkz5lIuLgprFyWp34xqjuVUivAZqbJMumWCT/vQz4ReK2SSLkP8rXk\nNfLn+zS6C27u2b0x5al192EOL+Uudbsvg+OD1PpwK0V2RKh7f7c7pC5O3iBAPuw9wBfbVy9OanKV\n2xXYminnMdKTr3ZFGT5O2Sy3i6zNl5Hi+ATpc3hWGZQDMaInk21VTlFxLDWkratYtsWknRoiWq/Y\nz+ePE8VOUpNGovy+26qXCWYk06iNQi0QysAXtZScyEkYjQM+Gc1GoQ/mKhJm1USXn9vczI53dhr3\nYXBQb77Kz+Fms3IbAwNETU1aZNuqKjVhkomwaMqgUvyOHVP7hqqi1KZSmtLZ2JhNxlVkTyawAFF9\nvfEc8pymy5czM9x8oxirIK+dETnl1xB/USC/jOBznGt9xboHB4k+8pFRV1S1ImcbWDSwa+bjk357\nsBPx0w2Tq0Jzt5VTX0SyWyjhNVwLJxQMr5mVeByGa2HnAT5OxX2JwK+TTtITrQ6yrnrK15hoatpH\nmuJZR5oyGqfscQ4QU0+jlJ1qRYZK0RW2UYwy4sv7WEN60iqqpVWkji4sk2Nxi6THwlVETkyXC2MT\nU7asTc+FiuCKZrcD6fF3C/XbNcm1C5Vfr8NtZL4bcSru9Z0HSsmJnITROOCT0WwU+mCeS/UyeyAV\nzzWLPiuX5X6gvN62NvZZzPUpksP2do1AcjPfWIwRVk5w16xh7Y+Ojmbu/5zIygRWVmm5ya5qnAMD\njLS2tWWbsIqq7IoVlMm3GQho+9vazHO0iuPkeVmdem6R185orc2iEovnmCnPct3s79Elp6p5+dnz\njjtGbfXNJ/32YOZrKxNVN8iol0w/3e4LJ7vYBurc3alrx66JsCMEyAheMyvxMgaJRj8yakzerCpC\nuXJwWqnDDsTrhCtxXaQnTUYBcTYSC8TTQvp0MTXCuT3ECE4dMR9O3ncembaKtOiw8RxtipAjAzcQ\n0eVEVEEaGT0qjE8cTy1pxFRUS2W/0hQxArlCaEMkohxiv/mY+9NluHmtrP52pcv1kn4txbpUfq5E\nesIqHhMDJIl5XXNdN+JcckXcid8PAZnfqTIw8y0lJ3ISRuOAT0adRy71w+yBVDxXNLU1M7utqWGE\nU4w8K5JCvlVX69U4mZzK5EokSiqzU3mMMjk2ilKrqosHQAqHs4kukUY+ed85+VWZJYtEVRxjNGrs\nw2kV8tpxFdZOeh2r6phcziuqWrHJoZefPZ3qm5cJdylhFjjIDwrlENIXX+rXu6lvfw/1PtmbRTi9\nZK7smR/CckCczIlUruMcZiTAah1GyEVKxLbtBMQRtxbSE7xeRXmVCWx/jjblvsuKaA1lm+GKvq+8\n7ijpFUuuBofIeG75vBwT5kfsjxhcSByzCrwuMY1MG2nksY2ySbKcb1WeSw5xv3jcqDyHOJcuxfbI\nQL6+PWi2W86cSITROOCTUedRiPohnitHqxUVx1SK6KqrmGIoqoaagsY2fkwMHMRJpuqenitnKCe5\n4TAzC25rYwpmJKKppoEA0VEhSbL8oM3r4gqs2DcxWJFowsrnhZPO9nY94Q4Gtc+XX87mq7tbI6ZW\nAyfZhdhfq8GQrF4fcjk3VbVC87e6Saa8/OzpVN+8TLhLCe5rqzLRXSwRbksemMjCxeeEibBj4zT5\nISz5XHoNucibE4qQ1TqMFLI4WSezuZQxrmyKpr0ioQMx81NOuni5rvQ+kQAFiCmVcdKriCLEvq8i\nfUAgs41Hw+U5OnMFI+Ims7lIktifZtICKDWRfs5FiHWqzHV5XeLfsj+qGWnn+xul47muG1ERt3pt\nOkUi42T9miwSypkTiTAaB3wyWnrk8juMxdRBgrjSybdQSE/AamqI1q9n5JU/b4gPzap7uqg4chXx\npptGMyon/19UHFVbb686qi1PtdLXlx3UKBBgBDUaVft6EqlV1UjE2He2o4PVx8kq95N1itiIY3Mz\n1yuHW6HI7ZAhFQFzk0x52bR1//5RR/pWCKnVBZ75nkuBZzwImaiWU5h+EaVQHXWk7ddNfB7SsGsi\nrFqLYozTVhseVD8cR4poND5qPD4nzB6t1hEnNSlz0kRSJEjVxMgeN/dcTsxkdiNlK5i9Uv9qKLuf\nKoh9l4nc8uzxjmJUHYwn18ZfdIvnVBNTLFek+1shHKsTPgdJn05GjrDbKBwT6+BblDSSvY40E155\n3YyuA5WCSybl+feym4xfAhhBnB8LPzGu+rY7jMXCiYzGAZ+MFg92c46KD+FilFv+zFBRoZ0nqqN9\nfdmEkZMyVV5PuV/ZhG8047/Jwc1TxU1MMdPXp/f/lNVJUVG77LLsumTFjRNjrhBz8snNgcUIuaIa\nKpv9cpJuJc+qFbWPt2UWUMkqVAGL5PbdeuC2Q4ZU5NDL6qWbcGo9Cgqq5WDgmXJGuZLRUgRJ0pG2\nx/vyvviMlEjVWhRjnLbaiJOtB9dyhWe+F/wBn5uj5iIxhbQhBgISVT1VqhWuGvKARmKaEfF4u/Q/\nj8ormxDXEyOIR4kRN0H1HK0ezTbRVW2iUioqg+0m54ibTKb530bmwCB1VN9lpCfZoqlvihix5XNh\nJaWOFcSF9ux+L22SyNE7RtV9dvKadAiLhRMZjQM+GS0ejEin1Qd5+YFVNFNdtkwjadx3kdcbjerL\nymRJDhpUV5dN4OTzRPPUQIApmXx8PGWKHOyIn2OkqPGtqkobg+p4W1u2P+rAgKa6HjumN2sWFVFx\nUwU3EgmgKhqw0ZqYBVSyCnXAosIIrlUUqj56Wb1c7BADz3Q90rVklNHFglIESXKKGNpRIosxTltt\neFD9WNQwUsicbkPMC1pF2SamIGb2ejkxoima1gbT/UuRlj9zheJ8sTwPknRMars6vV8khpeRRmij\nxMhglDTCV0eMADaTlmv0mDA+IzNaedtE2cGUasjcjLhB+ruSmKIqknR5zeJC+RbhcyHPK4V8L+2S\nyDgZ99ljlhNe50SvvvoqffzjH6fGxkb68Ic/THv27FGWMxoHfDJaPHByyM1p8/UF5ISpqYnV19nJ\nAhjJxIXXK5KqSCS7HTmPp6iy8o1H1uXti2V6etj+D3+Y7W9qIvr857PrOHxYGycfg+jrqSK+fM5k\n1VWcBxVx5Od1dTGTYVml5TlZ+d8tLdn1GEUDVsEJMiZfH04Q3HJGLmXaD/rDkJpNUe+TvdT3ZN+i\nI6Ki8jZwcMBVf8Cl5G/ISVuhc+q22unqmnhQ/TCExx6MPQ1OZkSlL0gaCeWmn3HhuLhFSa9+NkrH\nqxX1czKjUjubDNoRN9G/U944YV1Fxr6llVL5DcSIMCfSst+s2baCmPnvBql+HnVYVEC5ghwV5qme\njCPqWrl+i/m9NCO+cXKGXDsEL3OihYUFuuqqq+ib3/wmXbp0iQ4ePEj19fU0MTGRVdZoHPDJKIPR\ng62TD7ypFCM9hapdomJWV8cIFCd1qqiunORwk1YZoj9qfb3mi6oRwFGqrtYItEjsGhq0oEIiQVWl\ngGlvJ7rmGqbeqgivijBzksfbXL5cG4PYD26yzI/L0XbFea+uZmVE8if3OxYzjgZsFXZU/aC6AAAg\nAElEQVSvnYEBvel1T092+1ZMrhYLSculDHsh6E8pTeDk1CaLkUyJylt0ZzTzOfEXq7Lyjxa6Fm75\nNBa6Lm6ua6FjNlIinfpeFNQ/rxK4fPoVp7wfjD1jplsscDLDiVKI9EGI+Pxzxa+TzEkbP7YmXccG\nRZnKdJ3HSE8qeYqY9N+jtaOkVCFVZBek9uG0s/F0LjwabqVBOTF6LyeSRmbEYv96SR2FGKT3Tc2V\nkqdEGN0/akx8VUS1hL8pxeZEdvDyyy9TKBTS7fvEJz5BX/3qV7PKGo0DeZLRgKO00wOYmADGx9nn\nZBLYtct8v4xkkpWtqwOGhoBwOLtMOAzEYsDwMPt/+3bzPhnVWVfH/o/FgGAQeOYZ7ZzpaWDLFn0/\nh4ZYXdu36/vF6//Zz4BIBJiZAc6eZccqK4GPflSre2EBGBlh58zNaXXccgtw/Lg2RwBQVQXMz+vH\nUlsLPP008JGPAO+/bz7udevY/9deC0xOAtXVjHIAwAcfADfdBPz0p/p+iMevugqIx4G2Nv3ccGza\nBPzZn7G5am0FrrlG6//8PDvvwAE2V0brLUO1VlavHY7jx7VxAEBNjfX2Rdht101Y+V4YQbzOVd+V\nXMcXO6YmJjCZXujDySQm7j6F8Un2d/JwEru6S7jwJkgeSmJiagJ1gToM3TaEcND4oqgLsEX+8JkQ\nQhcJp1cAsWgMg7uDurF3O3CR87Zi0Ri23+rcBTUxNZFZlxv+/QasrF9pOnZ5fsTznV7XQsccDoax\nq3tXVp890b8JAPy+lATgla9DPv1K/9YhBiDfSzOZbrsOwBAAG7/FRa2zUITB5nQKwNUA3gWb79b0\ncXH+2wGMpj8nAaQAjACoAnARQBeAPQC2gM17GEBPunwIwPl0uUvpOrcAiKfrQPrYfwFYAbZ2vw3g\n39P1PwLggtDvRgAfB/A2gGelMVWm2+CogLVH9yfS/y9P/8/rUNUHADPpvl8H4Ej6//PQ5gMAFtL/\nxwDsBLAV2niXA/ggfSwIbZ5bhXPsXL9uX18hGH//htLt83UHrH93S/C9SB46hImpKdQFAhi67TaE\ng8Gini/j0qVL+K//+q+C6vAKXGHwRsiV0iSXqaRVlcaOOadYJ0/nItchp1yxYtKpinKr2mT1srOT\nqXc8KNC6dawtHswoFGL9FE2G+bZpE2tb9uUUN9GvUxUtWNw6OrR+qPxBRTNbUfkMh5k5sXhOX5++\nrd5es9nLxjXXZPedyH5QH16ez/2GDfmpm14KJlSIepnru7LU/VTl1CalCISTD+z6GW78oxb6Zi3o\nm7WgX/uTdkrNppRpXawoiGZlCvFpNDMnFtdl496NOccuz4+b66oacz7zmGtN81V3C/Iz9apPqNwv\nK2qLYLqYt1IeJ+fVKbFOMX9mvjCbC/GY1WA5srrXT1oQoAbS+2NSui7R91H1LCCX4VuEmIoaJk09\nFJVWI6UQxExceV/kPi+jbP9PebOjoIaIBVfqI7U/Ld+ipFZplxNTXPm8x6U5aCWiz5MWsbiL8vcT\nFuv2gqJq9TclTo73Oxcniu/bR9i2jbBtG/UfOGC7/kLOn5+fp9WrV9Nf//Vf0/z8PD311FNUU1ND\nn/zkJ7PKGo0Dvpkug9GDrdkDr2gO6YZ/n0hOOGky6ncuk1Ij/0qRzK1bp5nmqgheOKyPTsvTt4jB\nkVpbs9PQACz3ZzzOtra2bKJZXa31i/tMmhFl2axX3tfZmZ06pqqKtS/2t6KCtcv9b+vrWf+WLdP8\nX7lZsJH5q5hWpro6f1/gVEqflsYtEucWVPPjJWK82CCnNilFIJx8YJdcqYinKv+oFZLrlimuWG9g\ne0DXxsDBAWrZ2ULd+7up+3vdOccuz08x1lUkOBv3OE+YTefdLdM3r/qEyv2Kk60H17yvYTfIuUyc\nLObaNkScjOdCPBY1KSciRRqR4+MWiaBIEPmcyPN0DTGyGCVjwgjK9udsI81UWE79woMahUlP7AbT\n5WqE8wYo25+U/92QPl/2a8218Si5QWk/J5wqc17R91Wcc07uRR9a2ZQ3X/C6q0nzWS3l99nqb4oL\n37VcnGjz448Ttm2j2KOPUmp21nb9hZ7/0ksvUTwep+bmZvrkJz9Jd999N/3u7/5uVjmjccAno/lD\nVH16e50nAKmUnrQ1NeXvByirrAAL7iPn5BQDBWnbaNY+HjFXFe125UqN3IlEViRXKvW0ulo/XlGZ\nFfslE2VZbRVVZD6PYhnuF1pVxfKwisRURXbb2rLnUEw9w/tZWUl09Gj23Nvx4eTkjRNcmcSV0v8n\n1zhU87PY1Usn12Ox+Prmgl1ypSKeKtz0FzfZJnpOgdcb+nYoQxQiOyJZqmHvk705x54P+ZT9h1Uw\nU9TEPrY+1FowYZa/F6bz3voTgczMWR7zooHNB1e713BmLdwg5ylyjngQmc+FeKzbpJz8ckMeN68n\nSHrSFaXsdC1EeqLXnt6XIqJaYb9q65Xa3pzOMyqWaSa9OhuX2kpJ+1RbE2WTSk4sK8g6UZWDFoG0\nXKldijnn82wWobdQMqbyRXVQIXXtecqF71ouTpSanaX+AwfyIpJOnC/jox/9KG3fvj1rv9E44JPR\n/FEM1ccsj2U+JEcOzCPulxVTTrDWrMkmo9yUVVZv6+vVpI6ndYlG9flCRSInE1OuYDY0aEQnEskm\nwC0teuKqMrPlpsRVVYwI8/Qwcv9VG48WLM4VD9okqrK8nAyZpJmtWy6lu5RkNJfJ7VJUQZ1cDy8E\nZCpn7H9qvytETwWZ2PF6u/d3Z4josWn2lMnJQ+W2Smre2UyfP/B5UzPLfMwwN32lla76MuhXvwTa\n8wU1IzBT1ESCc2z6WMHzKH8vTMtHfph+0HyWqPces2EuTth8cLV7Dbt+z+AkpZPMx2BFAR8gZgIr\nR2Ml0uZpgBhJaaVsM1siPXlTKZ+8HqPItOJXQyRyFem6OBFTBSHidfLcpFK7o5FRylIe64Q+ikGX\njAIJGQUhMtpUJr7Lpbo60/PKTWt5sKZjpF2b8nVqZjrcRRoZLwTy2CMO1CmgnIJ7eZ0TvfTSS3T+\n/Hk6e/YsPfDAA7R69Wqan5/PKmc0DvhkNH9YUX0KVTvM8ljaeXi1YoYsE7OqKi1vp0iGxTQvcoTg\nXJuscIZCjLxypVT07+RbX5++n6mUPs8pJ6+A5tcqz7lcnqunAwPauXV1rJxsdtvQwMjz0aNaH+RU\nMXK6HhEySTMjp6q+O418U6bkIpuLXQV1G0uRzLsFtyMLy8SOt9e9v1uXYmdwfFDnJ4ptoJp/rDE1\nsxTrbtnZYmkMa/4skjnn049rtpKiYvqJfWoTYd7H1odbMwS6qOj+DBH+lagz4V/4boKTQTFtiRPT\nbZVMi+RlhUH5uFDGKO9jxKQMkV5BNYviKpLRZuEcsV9y+hZeT1yxH8SIdK/ULvel5Sa4rcIY6kjv\nf9oj/b0qfQ5Xnyul8efaYsQIZS/p/UN7SG/q3CeNqZrURF+Eqh9OkVCOFGnXTcRCnxYxvM6JtmzZ\nQpFIhEKhEPX09NDrr7+uLGc0Dvhk1F04pXaoHvSdfnhVkSzeb5GgVVToiZccRMnKFovpy1dXs7b5\nfBkFZOJEqbs7m2C2tTEyJ/aVk06VX2l/v9rMuKmJpcrZtEnfx/Z2rR9ifaJpsUr5lNdOzid62WXa\n+aLC65Y6ZhQYS3Vc7INPNu3B7ouokvn6Fpp6JMc4OSG6/X+1062PbnQ99czg+Dg1fudPCNu+RNhW\nmyF8ThJU2VTSSHUU92MbqO5bdZl9RmaWKpPfXL6BnGiu39Wlq3NfPE7bANoGppiu+pdVtHGPfg3c\n8qO1jEIvfK+mcLGKYvU/TmpiVSzI5CUXkZTnIi6db2QCKpnGEogRrxXpPnQTUwG56smVSZFE8TWR\nAwNFiZFDTuQilG1Kqso3KhPYFmJmsZ8nPSnuJX2AJTnXp0gWjfKS8m2ZNB4xoFCKsv0xo9L5lemx\nGb286CZ9Wz3kzvXrgslrOWKxcCKjccAno+7CacIoPvh9/vNMsTNS5MTy9fWawqfKNcohK52BANF3\nvzuayWMqbqtWacSwt5fVW1trTkKXLWPmrKmU2j+1vZ21H48zRXRggBGmSIS1I5oS9/ZmR8FVkcvq\nao08crLH10Mm0mKfWlr0qumxY9p8cl/b+nrtMzffFcmwilDKPqyqqMHRPxinjY/uo/a/epw2ds9m\nHvRFs5J8VXdZAZf76Ct01mFm5lMuZreFkpFc4+SE6Kovw1XSw9dCjAoY2bHVFdIlm0oa+fHx/Wv+\nbQ21/VMbHZs+ltPMUjb5zeUbqFI2OfGOfjNIq78C6vrjBpp855hyDtzwo3Xa/M30RUKcSkOunEKc\n7Pffxo9/Zi04QeLmpcWOMiySFyOTXpl4iERdNAfuI2sRdXl9MmFURZEV515UcSuI6FPEyFpY2h8n\notXCvnrSfC95ECJuctst+YzWkF55rSBGDMV9YiAj0WRYPi5vVek+cCIpvgjoSPc7F5lVbeIcpYgR\nUE6q46StRT6Rj0sA30y3+DAaB3wymj+s3A+cVjvEBz+R0Bg97KrIWTBo3h/uX8m3qqpRWr5cv6+r\nS69M9vVlR9blROvwYUYoW1v1RFiuE9AHVOrvz1Zqxb8DAY3INTSwuuW+i1tNjUZy+fivuorVE4lk\nB10St/Xr1ZGIRRItm+ByM+dcprviOWvWsP5tfFR7oMbggcx8iD+e+ZKdVEp7acDnTT7uK6DWYHYz\nKxdSXygZyTVOHg23648bXE09w9eCRwWM7PhrOjb9jtbPHOMcHB+n+L59tPnxx20HcUjNpijxF6vo\nX7o36oIIycRzcHyQWh9upciOCHV/r5tSsynDtDBWfDeJ1CRbVmTNot66Ea3X6Yc80xcJJUzhUrDa\nLipWuXwuRdj48c8KYHSM3FeaVGpvihiJtGPGGSeNCPWS5jMap9zmuiJU6VJAmirJo9byPotErYfM\n/SONfE9lsrhSEcDIylZDjMzGFftF0ltHzFe1lbJVTr7JpsvilssXVZ4jcQ3FvqlUYNU6ecCiwSej\nxYfROOCT0fxRCuVDfPCzkk7GKECPqr+cXIuRb+WtsZEpmwMD+kBFPT3ZxLe6mvmCtrczU9SaGrY1\nNrK+c/LH1ciuruwxyea1ZrlRW1uN/VdFn9fqatbOwIC+DFd/jfKW8nMBvW9rJJJtgivWoTKFlX1g\n+/qYspupJ/1AjT98lFA7q2tDdS3YJTsiqfayalfOKBdSXygZyTVOHg138p1scuWGb6dRVMBc4yw0\nT5toEnvA4Eslk8T+A/1ZPqIqX1Sz+VERzPZ/bidsA1Vtryp6mhg3YPoioYRmfAWr7XHSHtTtpEUp\n1ZsuqwRCJG+FpHtRvWiIC3WDNNPZXAqpSDBF9VEVtVYs20TGhLOestVJUXk2Su0iblWUbcLMiaGY\npzQgfV4v/C2aE/cp+iTmBm2XjlUTU4p5/bWkj84bFM4V50i83OV1shL52KguH0qUAyeyAqNxwCej\n+YPfD3iE2GKkZJBJTK6HXV5GJB+dnWz/4KCxCSxXHvnndev0ZEkmnn19+rQkPT3GKqJIYNvbiT79\nac3cmEeR5YF8VHk3xU0mjqLJ66ZNGslT5S2V6960SR8symzjqnAkolcWUylmviya6lohfFl+prOz\n1Pp/H8gQUbEN0W9WVHntoFxUOx+LGyX3VxRQaJ41VT7U7DY2Z8bb9Qjz7xSJlmiaO3BwgBq/05hz\nflQEU8wV2v7P7fn5Alsgwqoy7rxgyB6j20GqrKBgE+d8VV1L0RPJeeUpTtYIhEiumiz0waiv/EWD\nqMhxcsOD5ZgFKRLRJpTjmzjvfC1CQv/rpfKdlE1MxbG2kzoCrRipVhUUiZNC/vlyYiSbmxOrVEvR\nDFj2O1WlW+Fzs0LaL0YFXpbuvzinEdLMbWUVn69bN+kVb/EF0UB6LHKEZCcsGjygrhYL5cCJrMBo\nHPDJaP5QET2vqEyqIDqy+qZSMgGitWs1H9DeXqJly0az/E1FxXXdOspEpuWkcmBAUzFVvqFVVSzg\n0MaNerUzGGR/i2Suvd2YlG7cqNXP07bwegIBtsXjrN+yya9oZtzYqL1QUJWtqtLWmafHWbVKO0eM\ngiuTcKMgTOLLC3EtZF9cOc+oE4q8VdVuqeS+NEKu8ZeTmY8X4aS/YqFrkSvPWi7yYyUfamo2Rb1P\n9uoi7opES/wsEvWqbVUZs95cGBwfpMgOFl23c3dn3vNq5UWBoYnwl91/wVDIiwyniGzBSrMbqq4U\ndXYUo84pT1YJBCeMIpkz60M8RznxODfXlUmk3KdB0iLXdlN2Ds02qXyK9Oat7aQR2EpiCqGcz7OB\njJU/Rf9HMZpNBjnh4/VESU8Q28mYlMoBljhJ5HXxFC5iqhijaLyiwiymmBGP889c7Y4L+4zW16iM\nE9e+lfZNUE7373LgRFZgNA74ZLRweFFlMiIs/OG6vV1P+ESz0xUrNOU0HieqrBzVEcPBQUa4VqzQ\nghHJbYr+rOJnlZqp6gPfKipYeVWQH5WCW1vLTHVlAtzczMgd70tXFwsA1dzMxiGa965YoZHN9esZ\nsT16NJvAiYRVJMvLlrH/ly/Xz49qbaJRdv1wNTYa1fvdymTzjjtGM+SdK9yFwoxwlUsQHreQa/zl\ndDPzIpw0G3V7LXKRHyeVOpFQVm2ryrS7amiVYRu8fTF1TM8TBsmPLcDKiwJVmc2PbyZ82T3fYDv9\nM4KXFHnHEScdyRi9ejT3A79VhckqgeDlRIJlZkqbi+TKx8U0NRuImZZukOqPk55siabD64RyqiBJ\nvB0j01q+HZXmRCTAbZRF7kavHmXKo9iXMLF9vB6RrDam9x9Lj/Uo6RVUURGtEdrsJi1PqJwqRg5c\nVJluUyTrfaRfPyNzWysvJ9xUQFV121BLy+n+XU6cyAxG44BPRgtHwZHpLapPdlQqI4KsCmjU1pZt\nmtramq3w1dUxAidHi+X94kQvGNQI57p1jNjJZI8TTZHMiX1bu9Y8oFC+W1+ftlZie2JfeLlcRERU\ndDkBbWxkBNbovMFB7TzRj5X3S5xzlZ+o2Ke+QnxxDOq0GlnXzrVYzuqqF180lRu8YE7pBHKRH5Hg\ntD7UamrayoMYtT3cRhv3Zqe7Eeuq2FZB2AZa/p3ltOHfNxiSKFXQoo5/6ch77q28KFCVsXKeE9dE\nIS8y3Igg7BnwB3QeddbK8OKkEREnuTknWLlMaXORXPl4XKhP3lpITyz5XBwjpqrKcyLWVZHeNpLe\n9xGkVytFcieqr0bklZM7bm7cTcwPU7U+onLJ3yWJBIv3t1P4LCqY4jyLAbLqSW2+yzdOkEViJ5rY\nHqPsNbLycsJNBVRVt1HZXPC4yW8kEuGEray3SCSiHB98Mlp6WFWf7KhURgRZ9OsUH7JVOUb532vX\nMsJ67Ji+DzU1ajNbMUpuXZ2eqEajzJS2tTVbCe3tJero0FRMkSCrTH35JvtnypuczoVITwo7O7OV\nV25ubEZE+PGuLs08WJw31Xni/HFSLvoc8zplP1EOHi24sdE8RY8dmBEuo+vIzrVYzupquQQh8jLc\nUqGKTXIHDg5Qy84W6t6vNpcV/UGtmrYalVflGsU20LJvLSNsAzV+pzGTxkU+Z/l3lmd8UkXfUTfy\nrdoFb5urvvK4jSILO91PTwRycuvhN5+Hf7cjEhspm1bHLqcK4QSLm6FyoiiSspXEzFtXECNSRulG\nOGmVTWD5HPal6+K5OMV0KzL5FBXP5ZQ9p3GprNgP/pmb5HYZnLeCNBKbIkaIGw3aNIsC3CjUGyON\nbIp9suqPaxd219/O9ZnvtRwnd8bqwxLgk9HSw6r6wsuFQua5Rc3AH65ln0eZkHK/yP5+ov37R7P6\nEInoCZi41dSw/6uq9MS0vV2v/IlqZCiU7avZ08O2tjZmJsvrlTfR95NvXImtqGB9rahg5q983uR2\nVIS2t9eciPC5FP1ju7q0eVOdx8lkdTVTUFtb9fOYq801a0YdJ3b5EC7xmhX9ZXOlsclV1k24odCW\nk5lPqZCPCmUlMI5Mco3WQjzv2+s+TN9pbKT4fw/Sxl0bsoiOGVHTKZ8PZyufqdkUtT7UajjWTO7P\nndFMPcu/vVxZXs41yrfAtoBhH/g5YkoYkdRyEt36cGumjpX/stIVwme0FjIRl8ctHg9sDygJ66JB\nnIry8GvpN6pQ9SoXuRggplhyv8U46ceeKy+lWF40O+0hfboao+i1croR0VSVkzsx92iI9AS2RtHm\ngLR/bfocnr6G90kwHx0NjeoJoeiHKY6rXZiHdspWNLn6K88l7xtvU+UfWkNadNxcyqJKLTWDVZIp\ntmHl2rdzfdooq/tulDBFlA+fjHoCVslAKmUttyiRtQdvle+iikjdccdoJuqumKeTkwwx52g0qvlZ\niuaq3ORUTjUjEtKWFr3/Z0eHNoaBAbWvaUMDMx0WzxMJsWqTTXIDgex0Nl1dxsRJnNuBAT2R7e3V\nRymuqyNd8CdVhGEzJVVe01CIkdGmpuJFcFZBvGZzKZ9GZXmgpmKNwQ2F1iejuZGPCpUrd6aYMzP0\n7RB1f6+b9j+1P2ddsfsDtA2gq76sViSNVFzRh9NM0eve360LTmTUj9pv1VLzjmaK74tnyqtykKZm\nU7TioRVKJdUKSUvNprLSxYjjUBE+K+okL9P+T+20ce9Gav/ndtq4RzM3Nvpe8DXr3N2pnCeVIhzZ\nESkvU1o5cI5R1wt9+LX44J9ZCzfNEOOkJzBy/eLxfsoeu3g8KpUlqbwYXEeeX5GIGKUbUW39RPR5\nxb64oix3j5FVR9ltRr4ONkp5RmU/TB4sqSrdrpHJr6j+quZSBK9fjgAcSM/zMcoGT/3SQMxH1c5L\nirjUNyPwPpv5EhfBbFb3O+WEObGPvAGfjJYXrKqoVh68RaVVVZaTLjm3J/dV5GlMNm7U0oxw30lO\nTEXSyFO3iCaxvLxMNLu69MRNFcBo+fJsH9ZcRNRsq6hgJsKXX55tfizOi6iqim01NmYTLrlffE54\nkKJQiJWXo+aKUK2DGDCp2KROhh2/SrFssaNQ+/6f5QPDwDjb9DkzRZXRiJiJ5/1/7U20DaA1v1+p\nVObEsiIRE81dcyl6qvygcoTbjXs3ZpUX07iI+y976DIdMaveXp0xw7VC0uR56/6eXm0VlVM5nYxI\nZLkfrKqv4hbdGc1WWtMPlqlfT1H/48YvJjKKcLqPkR2RLHNkzyNO2aRGhUIffsV2rPx+2i1vhwzI\nRE+uXyZM8thz5aUUy6dIryJanV/RbLWTtEBBKkIcIT2B5eavoumsqDqGKXuOxPpALMgSiJkDcyIo\n9lEmn9VCeRALutRL2WT8GGVfR3LKFTmSMN/aFPNWiGmu1Rcs3BdVVHzltuIW++FxX08f1oA8yWil\nw8TTh0UMDQH9/cCBA0A4bFyuro79H4sB27ezz8kkkEgAPT3A1JRW1803Z5cFgIkJYHwcSKX0dVP6\nkgmHgZUrgWeeAUZGgOpqYGFBKxcIAC0t7PP0NCsTjwP19WzfmjXARz7CPl+8yP4PhYAVK4A9e4CG\nBq0uXm9Vlbbv/HngySeB999nf1dUsD7xuuyCCDhzBnj7bTYmPu5QiH2emmJ/z81p58zPa583bmTt\n87kXUVnJyp4+DbS3Ay+9xOZmZobNcU2N8XrK6xCLAV1d7HM0yvo8Pg4MD7M1Lhb49XT0KNDcnN1/\n+XoD2DW3ahUQDAI//SnbJ193bsHqd8cOVGP0UTiGbhtC/+p+HLjjAMLBsHJfOBjGjS03AgBi0Ri2\n36q+iMTzfvvp/0R9ezue+NILWfXzsqtCqxCsDGL/8f0YnxzH8IlhPPfucwCANeE16Ah1IFgZxNrd\na3HLvlvQ80QPqquqAQChQAip2RT2HduXOfe+sfswMTWB1Dz7Al+x/Ao0VLMft2gwipMzJ/HQxEN4\nf+H9TD8qUYlT507hsWOP4Z3ZdzL7P5j/AAvEfgxXhlbq+m6EltoWRIPRTNnd3bvRuqwVANDZ1Inm\nYDNmLsxg5OQIvvvz7+r6cYEuZD5Pzk7i8n+5HP/4k3/UlQGA5dXLM+M/PXcawyeGkTws/BhNABgH\ntjZsxeHXD2P1d1dj0/c2YWpO/6UJB8PY1b0Lu7t3o391P974whvoWN6Rc4yegvj73wXA6LctDGBX\n+v9C2omZtFFI+fSaYRhArvvKEIBWk/qHAPQDOAA2Xnns4vHdUllI5cPpNnKNZSuAUwDuAjCVPu+1\ndN2jAH4qtcPnpwbA1enzHkyXeTn9/8F02SS0R+cGAC+m20sA6AFwD4CXhL7UA6hOf74E4DSALdK4\nGqTyC0J5AFgFYG96fqIAZgCMAPi4NE5AW7uR9HiaDOaoMz0W3u8poR/y3MrlVJDX2QjHweaA16Na\nR9X1quqDnevUx6JDRRHaSJNlH/lgaoo9KG/frj14f+hDwOQk+9zbC+zda1wWYA/Yw8PAsmVjmJ1N\nAGCE84YbgKYm9nB/112sTCzGHvI//GFGjurqgFdfBb74RXaco6kJeO899rmjg5HUVIqVn58HLqSf\nffr7WX+uu471ORRiZa67jhEvGZEIcPXVwLPPGs9JTQ07/yc/AX7t14Dnn88m2vX1wNmz7HNVFSO4\nYp927QI2bWLEOhRiZBJg8/aLX7D/p6aAa64BTp1i7b3/PnDVVazffJ7CYW1+xX0q8HKdnUB9/Riu\nvDKB118H/vM/GeH/4ANtDt54wxmilUwyElxXx9ZZVWcikb0WfI7k40b729uBl192jhwWG52dYzh6\nNAFAP0Yf7iN5KIlX33sVr0+/jiO/cQS/+PEvkEgkCq438VgC45PahR0KhDBzgX3R+zr6kJpL6Y4D\nQG9HL55880nMXWJvqqorqjOksbejF/MX5zF8YhihQAg3X3YzvvVr38LH938cZ2bPYPrCdF793NCy\nAU3BJgzdNmRKSsXxrAqtwsrQSvxs+mc4M3sGl+gSCKQjnTIqUAECobOpE2988P58GxwAACAASURB\nVAamF7L7u6xyGeoCdaioqMCZuTO4evJqPPt/Pav1qwfAMJD4fxIYb9Pmrn91P3Z1e/dLkzyUxMTU\nBOoCdTnnOYMpAPeCPSXtgOlDeV71i+0kwR7UTU4bGxtj34tc5ZNgD/Z1YKTiLrAH/Bhykwsb/XEE\nVtpKgJEUAGgBEATQAUa2hhTn8TpPAngmva8fjCya1d0HYI+0LwCAf6WqkSGWYxhDAglGAkelPojX\nDSeajQDeB1uD68FIXF26vpH0/qDU3zCARwCkoLXD50D8mq8FcCjd/3Hh/O1Qz604vlYwYp/vOqd/\nD9AFYCWAnYq6VGss9oGvDa/L6nUqIPPd8FFyVFRUAHlwS18Z9TjCYfZgLD7ki4peRYV5WYCRkJYW\nYHZW27ewwAgfV+FktenHP2YEZu1aRkQffJApnQAjUzfcwD5Ho4wIcjJ47pxG+rhSFg4Dr72mKYin\nTrF9ra1af+rqWP0vvMCILsBImYy6OmDZMqbizc0Bhw4Bly4xgsrVWUBTbSsqmMIq9+naa4GxMbaP\nz0sgwMhVOMzmpK8PWLeOEf4bb2REtLqake9gkBF4UZnmc2eksvFy69axedi/nym3589rRBRg/cqH\n1Kna5WqsmdrKFeDGRv0cycfN9rtBRIupVgaD7P9iqbs+NExMTeCZU89gcnYSW57doiyTPJRE4rEE\nep7oyVLhZFz7b9civCOMH7zzAwBMNezr6MPNK5jpSCgQwszCDKormcTB1c1YNIadiZ2oC2iSWGMN\n+1LUVNRg3/F9GD7B3sjNXJjByFsj2PLsFqwMrcwQ0UBFQNkno/0A8Oy7z2L4xDCu+7frMDU3ZThW\n3q9QIIT35t7D+OQ4Tp47iblLc1igBVMiWh+oB6UloNR8CucunNOOVdVnPs9emsV78+/hzNwZtNe3\n43/f/L/1xCqtmNTdoM1RZ1OnoZrtFUxMTWQUbp3Sa4YwmIK1BzkfjPOqX2zHjrKaq7ysMFlVufLt\nD4dK7cqlwllpi19qIQDvAjgBRtpUCloSjJTNAKgVzksZtC+qdjsU7YlfqZvS/3cC2ACgF3oiysd6\nFxgp2wNNHT4KbQ2OQ1ufemk/wEjvL6ERUQC4ApqazNurBZvXQ9ArwlyBNJpbUfGfhHUVUrWW/No6\nCPZdUa2jqh8qtdTudepjUcFXRssQXNHr6gIOHrRGArgq19DAVMzGRqb0hULMvHf37ux6ROWrpYWR\nvVAI2JH+0b7hBqaeTqdfsAcCjPR1dTHVtL2dtccVOVlBBIB77wWefprVAwC1tYysHT/OSJ+okFZX\nAzfdxAicCq2tmvq6fj1rc3xcIzJtbUB3N6v76afVZsDBIDPzvXhRO97SwsbFCbdoxsxVNFGBnJ7W\n+qhS2WQlkq8JR77KnKxghsPAI4+wfnd2AqOj6muFK+oPPABs2ZKtrIuK+9at2jgffFBd3ikYKbJu\nwMiqwIf7uPyfL8eJcyfQUN2Alz7zktKcU1QFW5e14rXPvWaoPoV3hDPmp8uqluHtu99GOBjG1NwU\nrv7Xq/Hu3LsAmDpaXVWNBzY8gC3PbsH2W7cjHAxj0+ObMPLWCLqau7DnE3vw8f0fxy9mfpHVTlNN\nBNeFr8dP3/8pTs+dRk1lDdaG1+I/3/vPDPEDmLpaW1WL6QvTqKusw7lL57Lq4ujr6MORU0cweZ6Z\nvgQQwIraFbhAFzB/cR4zCzO4IDwhN85X4f0a7YcsUhPBB/Mf6MpUV1SjoaYBZ+bOIBqMYv7ivE7F\nXd+8Hi+nXsb8pXk0Vjfi/YX3EYvGskyfRUzNTeG+sftAIOxM7MwqV5BS6AJ6nujB8InhnOPyav32\nOoO8FaaCkEC22qXaZwRZ0eX95spaCkxFbAAwDfX4xPZWgJHJ90zaV6l2cnsctWDksROMZG6V+isr\nk0ZjvRyMUDeAmQDzn7tboCmjIuRxHk+XfVo4l/f7BgBtMFaNebnrwIionWskAetrmQvFVN99FBW+\nMrqEsHs3ezi3SkQBTZV76SX2/+bNjDzOzDBiK6pmXJF65RX2dygEvPuu5k8aDmt+ppxEVVczNZX3\n64orGCETFTlZQQyHmYnxTTdpbZ8/zwjo5CQjjRyVlcwcV/Q/FdHQABw5wpRa0X8zlvZJ6epi4zl+\nnB1TEdGqKqa2zs9rxwMBNnbRDJgT0ViMkedEAnjoIU2B/NnPtOMqlY0ril1dTHV96SVNJTY6x4pK\nKCuYExNav6+4wvha4Yp6R4daWRcVd1Fp3bJFXd4pGCmybsDIqsCH++Dkc3phOqOMyuqgqFZOzk4i\neThpqCByxbMSldjQsiGzPxwMI9bCfhBi0Rh2JHYgXBPGPaP3YGZ+JtPu+Qvn0Vrbimsar8E9o/dg\nal79hVuYmcEzp57JENHaqlr8+L0f64goAKxrWpchf/M0r6oqgwMnDmSIKABcwAWcPH8Sp2ZPYWph\nKkMym2YDaP4A6HzjInrebUV9oB6BigA+WNAT0VAghAVayCidlRWVWebEPz7zY8xfmkd7fTuOfuao\n0gdXRjgYxp7b92Dv7Xux9dmtWetQkFLoAkR/Y1V/C0ISGPrmEPrf6seBW0pMRAF3FCYrfoYqtcuO\nf6uRzyBX1rjK+BKMxyeqfqfA/CzN2pdVO1FZ/Rb0j9RBMP/IEWjEWeyv1bFyAjkN5m/KwZ9thHga\nqEH2GDsAvAk9EeVjWQm9aqxatzA0n1s714hdX2Uz5Ku++1i08MloGSKfB+ebbwaeeGIMsRhTwN5+\nWzNdjUTUAY94kB6jwEicLEQijICtW6f1ix8TgwaZmRFzMiaaih45wshXXR0zk/3DP2RqnGjey3HL\nLYxM3Xijvq8ycef9WrOG1cMDM0UirA4RFRVa+bVrNTNlTiIPHNDIrRgAKRYzD7AzNATE42M4eJCR\n8Y4OZsZsdo5sbmsUVEisQyRzXM0uFMUkiG4EKjLCGLfZ9lF0iGay22/djrGxsSwyM3TbUCZYDy9n\nRHie//TzqKmswSVcwvjkuO6YHDxJrmNiagLPvPMMJs9PYuStEYxPjmcCFgHIBDu58lQdbmz/GABG\n+OYvzWfU2ErptvrWubcAMJ9NbkobrAxmzcOVoStRVVGVtb9KeDoNBULoubwH150N4cxyYPxa4Ee/\nsoDZC7O4QBcy9cumybFoDC9/5uUsYt1Y3ag73rG8A7u6d2UIldn3InkoiQ/904fwrZ98SxfkCdBM\nis0CUhUTPKCSas0LxgQQHglj15/sQvhL7v1QGa6FTDjceNC3ElxGRYLNiLHc71xkh4+rA8bjkwMw\nHTFpXwVxnFsA/Fp6/xoA/B5fBYzdPpbd31wvAfh4fyqdx9ECFtCIk9L6dJsjYEpmrvcmSWjBljrT\ndeci+HauEQ+b0fr37/KHT0aXCCYnWUCf06cZ6RKJ5Asv6H0duSIaiwH/7b8xtbK1lZl8iqSAk4U3\n3mCESsTQkKZSjoywAEBTU8xXs7KSEb2mJuALX2C+mWvWsP+PHtUISEcH8Cu/wlRX7t+6ZQsjbn19\nrH6A+Ye++CIb18KC3qcT0BNg3ufDhxkhn5jQxsCJIY/0S6Qpv1deyaLGcmK7d6+e8C1nQSjR3MzM\nn3lAJBXCYeBrX9PPJSfqW7eyAFVNTcwcmxNNmdy/+mq2L6hM9q2SuWuvZcdbWvRqtArFJIhLUa10\n2k/Wjq9lqaCKuMvJTDQYxcmzJ3HX9+/Ckd84oitnRHg6lnfgtrbblMdEUpI8lMQPT/0QADNl/eX0\nL/FK6pXMeZ3RTgBAV3MXei7vQUeoA801Tai6WIEPXd+FFaEPAUAmKBLHpUzYTFbPkb4jWBVapVNM\neYAkEb88+0ucv3g+a/9FXER1RXWmrfrqery4Qnv79e78GVwEM+Woq6pDz+U9WNe8Dqk5RqL7Ovpw\nfeR6XLfrOsxf0s4LVgZx6NcPWVJCVZiYmsDk+UnduF448wISjyWwQAvo7eg1rDff6/JQMonHEgk8\n0dODOTtfEIH41MFhoiz6GBr5JrqJYkQhzUUURUVRhBHpSab3F+LbqoKs+onElV8Dl4OZuapUXnmc\ne9N1HQYLZgQAFwH8oaK/ZgRPHO9pAO2KcfLItKn08Y8KxyaRm5BOQPMxTYGtxyvSeFT9SsBc8ebw\n1UwfLsL3GV0iaGlhRJRHx21szPaRU0VH5VFwAUYA9+yx3ib3EeXo7wf+4z+0FC4AM6XlqmIu/0o5\nyuzUFIu8++67+nOiUTZWozrNoIosaxYlV/a3PHnS3F/UCNzn9KWX9CbBvI6pKRZAiY+L+62a+YJa\nRTisrUl7O/Dmm/nX5aMwOO0nK/paej3iqYipuSkkDydx8uxJPPMO+0L1r+5HuCac8UV88NYHdb6e\nqvNVxzjkaLsc7fXtePkzLwOArg6j8ipEaiKoRCW6ol3YvWk3+p7qs3wuj3qrwrqmdRj/1DhaHmrR\nmeNe33g9js0cw9qmtWgKNuHHp3+MU7OnADDSeZEuKgMcideE6OfZUtuC4x8cN/X55H6SHGvCa9AY\nbMysV2ttK177rNq31851Kfbr7m9OY2aE1b+6vx/d/AuSK2x4Ahl/t6kvTCH5O+bXhi1MgaUQ4feh\nQv3p7KIYPqJTMPfxS8CeP6FYPgLgDYN6AWNfUrsQ2+SQo8lOwdjvsgWMLNYBeBXZZrJm/RTbNhqv\nvI6A5tvJoZrbJID96b5dAFNF66H5nwbB1FhVZiWxX8W+bn0sSuTrM2oc4s9H2cHsfvz880w5fPpp\nTcWUH3RFE0xOvsTIveI7BSspQ1pa9KRp+3ZGqDiWLQM2bNBSpchmn8kkI2cAq/+FF/QBdIaG2HnD\nw1pApliMlR0Zya7z2msZsa6uZvPB54GP5fXXsxXN9nY9EVWNmwcwOnXKfs5N3qezZzWzaY6uLq2O\ncJiZIA8P61PRmPmCWkV1Om9aXR27PnyUDk6bQXvNXNIquILZ80QPAK3/IqmL/XsMN7bciN//we9n\nESd+PqCRmR+d/hECCKCmqgbPf/p5nR9qQ6AB0xemEQqEcIku4c7hO9FQ06AjYmL5XJien8ZFXMTI\nyRFEHsoOC14fqMfZC2eV51ahSkc0Rbz63qu46/t3ZZRQjnfn3kVXtCtDBLmSCqhVWICZ6FahConH\nEqgL1GF6fhrPnNLO5yltkoeTSrI4dNsQ7hu7D/OX5lFdWY2diZ246/t3ZY5Pnp80PNfOdcnNagHg\ng4+14rdHgGgshltVviUA+zHOurml/48B4b8PY1fYwafuMKs3QySK/TUbgpooOkXiAE0VM4Jdf0Je\nPgLgBZj3myu//JjdpeP1cZWQp1kBtGiyYaHNNmhETmyvG8C/A7gxXYcMs36ajZdDtY6vQR9sqBaM\nQIprOgE9YW0DdO+y5sBMjlXzVqgfqJPXmI8lDd9MtwxhZMpnlsajowP4p38ayzKnFaEywVy/nv3P\n83aapQyR+3X8uBbsh5Om559nJr+trSxP6N69WpvcRDUYZCrorl2aShiPszHI7fI+i+a93E9UVjMn\nJxlh5abK8rydOKGfT1XKkv37tfbvuy+7Du5nm8uMlfs48D5xIrpmDZu/vr7sAFV8rNyHNxplqrBV\nk06j6+b551mfX30129y63JCvmatXfE6cNoNWmcB6CSpzTXEteP+vj1yPvqf6Mma0oUAIp+dOY/jE\nMJ745ROmPoCczJy7cA7TF6Zxeu40PrbvYxi6bQh9HX3oCHXgush1qEAFZi7M4OS5k3jm1DMYPjGM\nFQ+vwPEPjmf6smLZCkvjkskiR2ttK1aFVunIooi6yjodEZX9Ty/gAoZPDGcpp+/OvovXp18HwEyb\nxTQwRnh/4f2MX+zwieHM+QAyRHTZz5chNZtSmtLyIEaPb34ce2/fi3AwjJbalszYupq7DImmnetS\nJK6P/I8jWN3fjzsOHEBQ/ILkeovjtr+bE/XnMJk0/I0yMp8shvkuh5Xxi+N7MF3+DWQrdvkGBhLb\n+RCAJgCbwFRM0Tz2KPR+pbJv5evSMY63wXw4x4GxjrHsdTLrJ5+fTwG4B+o1Vq2jbHYspoW5AWw+\nX4EeNcj2nTWat0KvW7euMTvmw/DO/dtH/vCV0TKE0UtgK6qKmaLJVT4Ru3drprDc9/O119Rtyf16\nPf2j3tgI/M3fsM8dHcxXUwRvc/9+zSRYDgi0c6d6jFu3MkXyi1/Uj0dl3sgVwKoq5ova08PO4XVW\nVWlRdNva1IRApRSLCq6Z2aw49/ffr+8Tx4c/bGwKzdeHmwaLJsEqMUCG0XXT0bF4THNzCSReh+o7\nWFB9gkLoJJxK3SGqXrKKJrZxcv5kRrVrr2/HteFrMfLWCGLRGMLBcOazSH74+UdOHclq9/yF87jr\n+3ehpbYFU3NTOD6jdpZeoAVc+a9XohKVIBA2tGzImL+aoRKViAQjODN3Rrd/am4Kk5cm9YUJqLwI\nLF/WiEBVAOfmtNQvov+pGbqau3BN4zXYc2wPUnOpDBmOBCOYvTirNNGN1ETQGe3MzN0jmx7BzXtv\nxuT5SXQ2deLNs2/izMUzGDk5Yro24vof/+B4hsiuDK00Tr9j47ocum0IycNJ3PNoLZ79u3sQ4D/Y\nukJD5rmZcil7hcKJ+gtVAGUUqnrZgZXxi+O7EaxfQLa6puq3mYmwqh3+FRuBRspCAK4FUzVfk+oU\n23wETEmU2xN9g6ehETA+bisK9UnoVVdRkTVSFsW55US5ASx1DZ/PSgCXACwH8DfQSGyueRPrNlM5\njY65dY05/V0oInyxOD8sWp9RK2ak5Qo5X6foQ5krV6IqF2WueVL5fm7fnt2W3K8777TnP9nUpPeX\nXLsWWL2akdnjx9W5LcXxtLYyoiyPgV8LAIv6e/nlWv5ScSynTrG6zAglz/EqlhH7YORXy4kR983k\n83H8OHDNNYzkRqPss5ib1QxG14FT5csRS2GMXoBTvqhm+Rnl3KKTs5OZcoDmz8k/11bV6sx1rfhp\nNgebswijiApUoBKVhkqnVxBAAJfS/zgiNRHUVNbgndl3lOV//oWfo7GmUecXK/rarn1kLU6cPYHG\n6kYc/cxRXf5Xo/W3km8z3xcZjyUSmEz/0Or8RRcLnPb9zOXnWWzw8YWgBTrqB0vBIvotbof1fque\n/Hk7ANAFYA8Y+TXz6TWbK95GtdD3EVhfp4Qwvlbo83v2AbZ8NsVcpGJdVQB4TnZej11WJPZT7ovR\nMbeuMae/C0VEAkvbDdfPM/r/s/f20VHcZ77nR+o31HprSS2MZaANmRgbx47A8svYJnQChCDbQYmt\nZEOycXLPuO8NO5k7c+fCnpnZ7OTcvdnZe5yzd7LnnsnCzF7jOFHMi21MYhgGYYRkjOWxxxhf40EJ\n2NhCFiBQSwhJrZZU+0f1r1RdXdVd1V3dakF9z+Gg7q76/Z7fS1fXt57v8zwapJOsznUYSfnMZB8V\nD5WDQdmztmdP5nlSl14RtTVbWuD4cZlwCkmk1i5RE1T0lUk6KSTBHo8s073pJtkjKsqn6NW2VD8k\n7+/Xr5cqxnj0KExPz2S+Fd5VMW9CMpzOs/nee7J91aqYET0PsBY9PTNEVF1KJxSS7V6yRPYGi9qs\nK1emyk21ElSrkk4rx9ud1TWXdq2cox3jXMgmOxdhVyxqOrmmkI1Weao4+MjBpOOEZ21r91ZaDrYw\nMjHCmaEzSXLdM1fl80W5lEp3ZUr/4rMSg99OCck0EXXhosabGh9aCEwymeJFjU5EdYkowJcXfZlQ\nZSgpuzAkZxsOlcvkcyg+pNR/FTBafzPy22xLqwiPaEq86PWCbCST6eSMRvLd2YIYXyLMRPGmab1r\nVuzWk4m2ARuRid6ryDJg4YU18uBtRSbFm0idR9FHOzIhFfVOza6TenzaUjNWPYui7Iu2rVqddqxK\naNPZYvRZvvaY3d+FAqKQgoTrCdetZ9TxkKSio6ODxsZwisQT9OdJ7V1WeyRbWlIzzup5PvXkpEuW\nwOLFcpuilIjwyoo+tcdHo7LHdMWK1DjKaHQm4696DFpPpBobN8pZfMvKkvtPl6QIUjPtijE//HBm\nD7DYj6KUzocfdhAOh5XPtVmDly9PbdPuTKvpkK++rLZr5FE23Z9JD15HR/J6XG+IdHbSE43id7tp\nW7OGgC+1zmX685O9WUDGbLXZ2Rnhza43aVjRwJXYFbovyY/7jdYunff00QOPJkl7X/vqa9z74r1c\niskukoA3wInHT7Clewv/9Mk/KXVCQZbZBucFuTh+UTe7bQklVHuqicaT73qaFzXTfr49qYRKscGF\ni0pvJX63nyUVS5ISNanXOT4dp/1IO00PJXs5b995O2eHzxKX4jx000P89iu/tbQHzHhP9RCLRumK\nRFi1fXtyvKhJ2CUtzxsyeLJ0r1Fh5p4bRutNy8W7ZtaDlqmPm5mR9rYge1PT9GHp9yJd31bHbnS8\n3vvp5kZvr9lpZ4HR0dFB+MfhovguFPlU5R1ONl0NMoWQ3KgQXsDmZvl1Y6OcXOiZZ1LnSR1/JzyS\nMOONVGew1cuEKwhdWZn8XlOTnJxItKkuwSJIh9o2cfyHH8qvFy9OtTEQkKW5Yq1Ftt2TJ2cITHW1\n3M7Fi3Im2mvXZI+rmlSr4wszxeRCcqZb4QFOF6tbXy//+/znk72qAtq6rz/4QWqbag/s00/r92MX\n7M7qmm27Rh5lLYweIMzVbLJ2oyca5WgiIDvS1cWutWtNnxvp7GTXmUUMxX3A/6fED+YjFrUn2sO7\nV97l3d53WTBPlmOkW7uk5Dbr9rClewtlrjJaDrZweui08tmhRw6xtXurEjtZ7anmxOMnZO+gNyB+\nQBVMM82UJHtEBRF14VK8pBKSbjbcC2MXqPJUMRAbyDhW0Z67xM2kNEkJJdw3/z66L3ZnPDcXTDFF\ndCJKdCJK32gfAAueW0BTfROnBk8xODFTn3R1w2r2PrI3ibj1j/YrcaHHLhwzzJirh0hnhOH4MAvK\nFrBn3Z4UApyOJPoCgZykuenik4sC2cTJpXPD5Dt4Ldv2hTfN6LUVGMVpZupTiyuqv7XPkeqBYIb2\n00Gvb7vmLt376eZGb6+lm6Nc1qhQKBKX5FyYqmLEdSvTNSNZvdGgfpIn5IxHjsgxjnrzZEQc9DLY\nGhFZUYpEHKcmbo2N6dvXHi+SGGmhXmvRr4g9DQRkO0+flsnvyIgc8xmJ6I9PnYxITTiFXRs3pma6\nTZGGRuSswLW1coypyCwskkDJWYDDivT0ySdheFiWQr/zjizd1ZPUiky3Q0PywwGBdDLWbOW2dmd1\nzbZdLUlP8tx3dhLet4/m/fs59WFMV25uNmvn9ewVBfC75eeOTcEg21et0j3GSNLcE40yFL8JuIsa\n7w/zSur9bj8skwnkG197I+Paqdc3VBli19pdnLt6jqP9RxmIDeB3+/G5fGw6vCmJaH2x4YtKDGRP\ntIfohDxed4k8T3W+OianZeJ6V81dbAxt5My3zrCgTCbIFe6KFAIL8PbA26aIKMADNz3AxtBG7gnK\n8QkSEgvKFhD0BU2d787iWbKeVBnk8i/HLhxT5qfCXcFIfIS9f7w3Ze7Hp8aVv++sudPSfuiJ9nDs\nwjH6x/oV6W+2sl2rKPoHUxlupnWvUenkjPnKdFqo9s3ALplomepvr+azc8iZeNuBzwLNEG4M59Zf\nprkzIzlVH/OkzvHp5ka910S5mFmWt+aCcDic/4zZDvKK61am6yB3mEmIZAQzSZYgc/tWbdAmW9q4\nUY4FBTlxUW+v7Fl89135f23bahlpeTm43XKM6Nq1chZgMwmx9OS8IyPJ86H2ytbXy0RVHGv08N9o\nTtNJX83IYos52Ve69Q/v26d4+xacX0r/f1rryPINEI3FiHR1sX3VKkOJrnFSmv0c6O2lxjvEO48/\nSajSXHmT7OyMZiX/TZGX9skZYn0un1J7c0HZAvrHZBnv8prlSrKjo58eZXRqNKm9Om8dlyfkxEae\nEg/1ZfUsqVhCmbuMrv4uw9qdVlHhrmBscowppvhc4HN0bezi37/+7/nV735lKlZVXQ/UDGpjbtxV\nNUwjJZHmSnclVyevUu4qZ2J6QmlTTx79wEsPKPLpjaGN7F2/13T/QqIb9AVZVr2MKm+Vsl4V7goe\nmP8Au9fttkVCWyhpuW2wW9+X7yQwdrYfAX6DXBPzHuS4zEIu0TpksrkCOc5U3bcYpzbxUi7ur0Sb\nHzTB/34I/j6gGW6YzJJT9TFBZMJs1jb1Xmsx0ZcDBybhJDBykBFWazEZeZfNeNuELFVPVivaNOO9\n1h6TqW9tsiW1N1XtWbz3Xti0KZXkqL2lLtdMXdIXXzSfEEst521slPsQHsHly2Ui+vrrHYBMiJcv\nn+lTT4YqxhyPy+eKNsQcpJPvZpLFChmyGFtDgxwDa3fiomyRbo+ovX1v/C+rkuZ3rtYZzRcCPh+7\n1q5NGytqnJRmDa1Ll3L2W3+SVyIq2xlgs3uzZbKg9q5VeCoUb2mVR5ZWNAWbeKNlxtMqvKcHeg8Q\nm0omlivqVrAiuEJ5HZfiSu3R9r5224goyF5GQTp7hnvYdHgT//jJP6YlosJ768JFtVdH828A1xRc\n8U1yMXYJCYn5vvmsu2UdG0Mbea/1PYK+INemrilEtCnYxLHOYwSeCVD/bL1Sb7XWV6t8viO8w9J4\nhSfbVeJSarl6XV7qffWMTI4oZWTsgNbjqk3WVHTI4OWzfI3Kt6fIzvZFOZZBZFJYaE+rSEqkJaKg\nm3ip47sd2fUjvJlx6NoIf3gI9gR0hmtGcqo+ptHE8Wqo95peX4VOBpRjf9f77/eNAIeMOgCsyTnN\nZCpWy1IXLEiWrGbbr5m+t26Fz3xG7nPPnmQSIyS/FRWybQcOyMmP1P2qZaTehFzH74c//EP5bzOx\njm1tMiHauHEmM68gVSIzcDzhzBgago8+kiXERqRcjLm9XfbSqrMLRyIzNVmHhuSMxOq5zCSLVcdk\nAoyNzWT0tTsLda4ZetWy3GgsppCkQ488Qmi+L2l+r8cs2vmGkaTZDJGdSCvNSgAAIABJREFUbaiJ\n9DPhZxTSoSfjDfgCScdrycnN/pvZvW63Isk1g3mueay+ebUlmxtrG5VsvgAT0xMc6D3ApfFLac5C\niXudYiqjJNhTMlPIuCSRbLfCVcHl2GUuxi5y9NOj/OzBnxGqDHFv/b2ATMY3hjayvGY5/df6GYoP\nMRAb4Ladt9G8v5mfr/p50j6JdEa4+bmbqd1Ryy2/vIWHX37YMHu1IITqBE/eUi9N9XK605wktJob\nWjOyXCNpeoQIYcI000x0rmoX7ZKwFqJ91QNcVmAt5s8O4iTGsjW5rQgQDkDzLhhSZ9GtyLIfVWZe\nyQtDAQP+aIboq4+xmuE3U1+FlmAXg+TbwazCkek6AOQYx4TiMUnaqod0mYqF5PONN+TamS4XTKke\n8mcjIzXbt7a9JUtkchWLyUmUFi2aqeupltHq1ScVsaMnTsCbb8rJk7KRLGslsJs2yfZXVclxoiJJ\nU7psvNoxizbE66VLk+uzGrWjB9G22w2Tk8lJqeyWu+aaoVcty21dulQ3CY+TRfvGgJEEU1tr1MgL\nppYDD00MseTXS5RERS2hFl5a/xLRWJTvd3yf3577LZNMGtpS5a6ieXEzn1z7hH++9M+mMukuLF/I\nlxq+xEtnX+Lq1FXlfbVs1wpEEiQ1Kj2V3F1zt5JRGOQswFWeqqTMwd5SL2sa1nB66DQfj3xMtbea\ndbes48AnB5KOExDzI6CWd6shJL56CYrWvbKO9vPtrKhbwauPvgrYIKENkyQ3jD6XWfJtJE0PE+Zo\norFWWtnlaBfziyjwPeQ70mewRqjC2Ccz1bQV3mWx6UyJiVTS5qFD8FSgSLOu5kPinW5u8i0pd1Aw\nODJdBzkhplKe6eTlSEI6b5vw4on21ERUSFbVMCMjNVtbU5t8qKFBJtiDg3K5mO5u+XVNzYyUF+T3\n/uAPkj12PT3y8bEY/Of/rC8XNePp03pyhf0nT+onadKbA+2Y6+uTPamiPqu2fqoZiLZ///vMSamM\noPVYGkGsdUWFvCYpXvIM7ZhJwpOvxEvFDrNrkOs5xQIjCaZafnvHzjt0vXORzggtB1s43n+cR//x\nUX7Q9QO+cPMXANkr+Ez4GeWY2FSMap8shS01+Lkcnhxm59mdHLtwjInpCcOapWpcGrvEL373C4WI\nllJKCSWMTI5YIqLeUi8uXFR4KlISGl2NX6W+rD7pPQkpiWCWUKJ4ZD8e+ZhJaZLLscu8+NGLynEl\nlFDpqkxqA2a8iu8Pvq98VumRj6twVzA4Pkg0FtVNULR77W5al7by6qOvJtWNzUlCq5EbmmnTyHvq\nTzTWRBPbb4RqgTbLMi03FwD2IpdUsboF7MyiqmnLctNqD98dpA5e5YWsDqRxLGsnsNCy2XxIvNN5\nP53kQzc8HDJ6AyGdrl4QmhUr5DIv6ZA2ji9x9RblS1askMmaWrKqhhkZqZrMpeu7p2fGQ7h48QzJ\ngxmiFgzKEt3PfU72Bgpcvpws7dSSZD3iaUaurG1H2P/hhx3KODLNgXbM//RPchxrezt873uwe7d8\n/nvvWSdiou1QKPl/K0ROlA050NtLpKvL8Li2ttSMxlbaUctyjSSj2WbRNhNzkqvMOJ8wuwa5nlMI\nmFkLPRIR6Yxw/OJx5Zj+8X5WvrgyRYYpyFHvaC/HLshxizXeGoUcbe3eyq4zuxQCdTl2GW+pl+ZF\nzdT56nTtUdchlZCSCKm31JtynjbudJrplFqmWohYUYEFZQuYVzpPKdUyzXTScUKyrO67wi3rC++u\nvZsGf4NCwpuCTUp8rd/l5w/ny3EJFWcr+PBbH3L/TfcDUOutZWB8gOb9zZy6ckrJWtzgb5BjT594\nLyX+U2+t8hK/mcUNrZE0vY02WmnlEIcIFMndsa1xcVpyY7NM0rbmzJAwO4mMpi2jpg3XQi037id1\n8GalzdoJ/I3q9fczjiJ35EPinY7Z59ifEzM69+GQ0RsU2htrQWjUJUuygbbsy6uvwiuvyLJfM0RL\nCyt1KdXH7tiRHLv5yCOyRzEelyWx7e1yHCvoeya1BFGPeJqxzYynziqB0nqxtYSy0B5BMx5LkO26\nVw5L052zTO3MduyimYcPswWza5DrOcUCPRLRE+1JksjWeGto8DekeOUEOVInN1LHmfZEe1LkqRPT\nExy/cJzLscsZbavz1Slti3MrPBVK/GaVu8ro1LSYkqZwIceYLq9ezgff+ACvSw5s97v8rKiTky5N\nSpMsLF+ozM3bX3+bBn8DzYua+R+t/4MlFUuodFfy+drP82z4WWUe/+Xxf2Fh+UJOfeMUe9fvpXVp\nK7/+0q8JVYbYvU72ZHpcHoXA/27od8r8vd/6PnvX7yVUGUqJ/zQifEbxmlkjixtaI1IcIMAudhUN\nEc0WhlxOS3bs9C7a2ZwZVmsncdK0Zdj0T4GbgVrkTLxictsAobrKJSGQdgLVz660z6wK7TXNFo73\n00EaODGjNyhyjd8rFLSlPdKVIUlbBiScHCfa1CQnONqyRc5Au2VL+nhQbVmYUMh62ZlIZyc90Sh+\nt5u2NWuyJlXr1slkesWK3B8e2AEzZUOUY9PMmZV2ZgOFjke1UnJHPXdbu3+YEqNndM7KF16gwe+n\nyuvNaU9mHItO3KDdEGVDAALeACceP8EPun7Agd4DNAWbFDIk4kWfvv9ptnRvSYkpVLejhiijUuGu\nYGRyRDdO01fqo7GuUSl9ArIEt8JTwXB8GID6efU01jVy6PyhrMcq4jY/8+vPcPbqWWq8NdxddzdH\nPz2qWyJFPf/DE8NKHKle6ZZ0qN1Rq9Qi9ZZ6kSSJB296kL3r97K1eys90R48Lg/l7nJ2hHekr+1r\nEK/pIA0yxSRqEMYg5lEboyfatimAUShLc26uWGMJw8xMLCRPrt7g1cdbLb0SYKb0TCNwhOR5sNq2\nAwd5RLYxow4ZvUExVxO9WCHRt98ux4N6PHDnnfJ5K1bIEt4dO5LHrD72rbdmysAIPPywfpIhK4TB\nTAIeM8il/utsoJjrmFpBoec92wdGVm7y7dqTdtqULaKxKN/r+B4llPBM+Jkk4mklMU40FuW252/j\nUiw1q+3C8oW89tXX2NK9hafvf5rNr23m8PnDSbJbb4mXCSl9EqPWpa0c6z9G32if7ueC+LpL3JRQ\nQlyKU0op00wnEevAM4Gk2E4XLiXZUlJCHtX8L5i3gP7x/hTSauaBgUg8JAi5ejwXRy8qfQR9Qe6t\nvzftg4ekmqOBZVR5qkw9qFDs/Fc/bYfaCHgCpojZdYEwloiHIZczyRYtcl/7YRurtRliYkG/NqnR\n8ZlItdGEp5uHYiXsDm5IOAmMHGSEWlc/VxO9pKupqUV//0yd0N/9bkY2rCcZVh/78MOpbRklGTIr\n3YxE4OTbsixyRU2Q705PZxipcTstLXLc5VxBMctbBczEnGQbj5otrEjUk84zUdJi5tjCSHWt2GQ2\n/kcr8wz4Auxdv5eX1r+kEJpsYhO3dm9VPJ4BT0CJwWysbeS9J95TSsSEKkO8suEV+v/nfhbMm8mI\nNiFN4CtN9jD7XX68pbKkNugL0jfSx7X4tZS+Xbion1evJAKalCaJS3FKKOG3X/mtInfd2r2V8L4w\no5OjyrkSkkJESynl4thFRf6qnv83vvaGbl1PvURD6rWIdEYYi4+xYN4C7gneo7zfWNvI9lXblT7c\nJW4GYgMc6D3A9zuMA9yEfHdZYJki/TVTY1SxM3CAyJLIDVMOoqOjw7L+1VAZaVLaOqsVNyJAC1AM\nv3UaKWzH5g7YiGxfJiIK5iWqRhOebr0c+asTM3odwCGjNyjsuLGOROSSMEY1RK20YzYxjPBYDg3J\n0tp08CRK7Pn98Prr6cerPva111I/NyLvgjAEg3LGXqMx9PTA4NNr4K2lLH7pESpEEVOLmAvETots\nSdWNjmwfGBnF6OkfmzkplB2wYpNZ6JEnu9oVUlRXqUshprdW3qpre8AX4INvfpCUtOgLN3+BCneF\nEuM5OjXKxPQEC8sXsqx6GccuHkuKSy2lFG+JlymmuDR+SZH0CkhItPxTC8cvHOfm527m7//17zna\nf5S4FNcdwzTTHP30KEt/vTSpNujymuU8sPcBZXyCSELmBwY90R6OXTxG/3g/H418RJ2vjvnz5rN3\n/d6kmq4VnpkijOmSMokHBerYXTM1RhU7B5vY/svttsU5zglYJB65hlPaHEpqDcVUe1Jty0rgfwMm\nMF+GRm8h9GI9s5nwbBdZ9L8IeJjijzl1cF3Dkek6yBraOMzW1plkP1YkmVbkiFbkxefOyV7O115L\nld1mOtastFRIN/v6UmW86jbicTnOM1dZ9FyUV881WbGDuQEh81TLVu3Aol8uone0FxcuqrxVDE4M\npu1DyEaPXTimENeNoY109HUkEU7RxqbDm9LGpILsPR2IDdgyHpCTKt1Xf19SvKjAgrIFfKbyM3w4\n8jCXx12UuV00Bd9l97pnk+S77w++z0BsgKZgE75Sn2Hc6brfrqO9r53G2kaOPHYk47pYlVIrx9+9\nncAfB4pPwnkdYVZVssUkP1Xb4gPEVyiXGM0wqZLrQk64un8BJ+bUQY5wYkYdFByCGMFMMp2WFutx\nblYIVqGIjZYgZyLZ6jEsXy6T25MnZ0rNbNwIXm/udjvEzoEDGXokJptESdpzHv3HRzl2YYawLSxf\nyHtPvGfYljoeE1BI2Gef/ywDsQFKKCHoC/LPX/9nfvLOTzg1eIrXL7ye5DWs9lQzzz2PC2MX8JR4\nuLv2bj659gnjU+NJXtJqT7VCcF24eGD+Axy7eIwabw0dj3Vwz4v3pCRVUkPEi+rjPwDLEn+/RdD3\nEvfW38twfFiZD5G19/TQaYWYakm60br85txviE3FuCd4T1JyJQcOdJGOmBU6mFVtyybsIcmzTbZF\n/9XA0Cza4eC6gkNGHWRER0cH4XDYtvaiUbnOZUmJXJs0EMjOc5cPgpVr0hztODKRbPUY1MeC/lzY\nvRYOcoOzHsWDXNYim0RJNz93M/1jMkHbGNrIxNSE4rk08u7dvvN2+kf78ZR6uLPmTo72H6WxtpFb\nK2+lylvFuavnoARe739d8XZqk/zMc83jzsCdvH35bUD2Xs6UjvkOMB9vaQkT039HY+0ybq28lb99\n8G/Z/NpmTlw+wesbX6faW51E/ESCIXeJm3vq7qF7oJtKTyVX41dpCjaxZ90e7nvpPi6OX1TGIhIj\nVXr+iqvxxcCHlLv+gWtTA3AaPLfLHtsVdSvwu/yKR9Tv9rOidgVV3vSJhyKdEXad2ZXkJc41iVUh\nsjPPBtKNy7lGqRBm9jLIRqGjpYPw3nBuxG22kzOJ/p8GtsyiHTbA+W4UD7Ilo+7MhzhwoI9AQE4G\npEZb2wwp27rVHCEU8at2QsRWAtxxB3zwgcW4u7Zkgpwp7lE9BnFsYyPceusMUXeQDLtK3djd1lzE\n9XpzbhVWEiUJxKZmMuGWUELbmja+3/F9JCSlPIl2fvtH+xVy9bvh39G6tFUhhHqZa4U9mw5vAmQZ\n7rLqZZweOq3YG/AFaD/fnrBkPrCMiWnwlf4Re9f/OaFKOX7glZ5r4P88PFoNibhLYZ+n1EOoIsRC\n/0LKPGVsDG3kZw/+LKmEzelvnubbr36bfxn4FyamJrgycQWAVQv+FW/pg0h0cG2ykfbz7cxzzWNc\nGgdgccViJqYmFHt9Lp/iMY10RQzJpbZuqzpONVuIeOFMfZvCbKaM1fRt67iuZ8xmMGsA+DG57xMR\n6zlbUPevZ8esp1J2cCPB8Yw6yBtms5apWkJsR//RKKxcCQ0NcmZdM3GksymlnQvlVOwsK1KoEiXF\nCqdmo4wnjzzJ/o/30xhsZPfazFLQSGeE3Wd3E52Icnft3Rx97KjuOdr5PXL+CAOxAfwuP6e+cUom\nigmoY1n3rNuTRASFhLVvpE/xMAoZMMAdO++gf7yfEv4EiTuBD4Gf4Sudxu/2c89H0zR8NMS5OvDX\nLaDtzz9IIcDqeNNMe8Eo7lbYOTg+SHtfu/I5oHhiRexrpphd0UfAG+DBmx7kV1/6Vc4PS2yNFw4z\ne142Td/N30uM61oTh/YfurHK1ljBbHsVC4XZJIRhnPqlDizDKe3ioOgwm1lU29pgwQL7+g8E5Pqk\nx45lzmRb6BIgetmI50LWXTvLihSqREmx4sywXPOoylPF0/dnqHl0HePc1XMMxAZoP99uukxIdEL+\n0iypXGJIaoTHNegL0netjztr76TB36AQUVFmZtEvF3EldoUF8xawZ90epQyMKMVy15676BvpS/KI\ninjUgC/Alxd9maAvSKVnF/AW8DNcTBCbjjE4MUh7wxAHPgdHl8GBYL8yRrVH2OuSM3Wb2QtGWY5F\nptvd63Ynfa4ulWM2Q7I47sNvfcgrG16xxWtva3Zmu7xsetlRLfatjGv/IQLtgeLIJFuMyDVNsBlk\ns552tzGbGYVnNZWygxsNDhm9gVDoWkyzWcs0EJCluXb2b7aMixnYuRZ6xFPYWlEhJ1F68knz5XMK\nBTvLiuTa1lyvUyY8c8PxYbZ0Z6h5VOTIZS30ZLqRzk7C+/bRvH8/0VgsqT6pp9SjHL8jvMOwXW1N\nzKOfHuWhBQ8p8y7klb2jvXRf6qZ/vJ8t3VuUvvac3SN/fq2XYxePMRAboMHfkEKmBJkejvcDf0+N\ndx4P3zxT+Lix+i4+H5+fNMZIZ4Th+DBlrjJcJS6l9qiZvaAml9q6rQAnjp8wrNNqtoar3nERIoQJ\n00wz0Szu0rOpH2sIu+o09kBkUYTwHWGa/25mDs32HTkZoeVgCyMTI7pEYK5fo2YN2RLCNERQWYtM\nbedKJmfzQckcql/qfDfmPpyYUQd5Qz5iQfPdfzp5q4gjVZdxiURmd4yg74Fua4PbboNLl+SSMsEg\nDCQqRRSDzQABn88WOa06XtTo/es9jtRqrcZigzomc7N7c9bttK1pS8nk2hONKhLuSFcXF0dn4vJa\nQi1J8Z5aW0T8rSA/zfubgdR5FiS4ylPFcHxY+bzlYEtSpl0XLqaYAuC++vvY2r11Jsts/T0KOS53\nlVPuKefNr71Jtbc6KYZVHsfMGEVZGYDuS91KX1obM8UVFzJesYcejiY0gBEi7CqEBtBI8mhX7J4f\neub3cHSZhTlU9Z00//82wi7frjkvQy2KsENBCIVBZtfaDBFM13YEOJn4uzFNG+nQhj1y5GzmwMz3\noigW2MH1AMczegPByTaWGenkrYLcVsn3/TnJf+1cCz0PdCAg2wfy/42NM3/nIlnWkwTPNgTZONDb\nS6SrK+P7epjr3w3huVte83/ScrBT8QLOFYgb8QO9B/hF6S+ybkfPY6aVcKu9p8+En0k5Xm2LVupr\nJA8V75984iRLKpfgc/nYdHiTQi5X1K1gY2ij4uVcUbeCZ8LP0BPtoX+sX5bgnm+nwlNBva+ea1PX\nuDh+kS3dWwj4Ary0/iX2rt+bIpWVxzdDhEFOENQSakmxMd241O2oSWy+vhf+xJ1+E01st1EDqOfd\nVZBvyWMb+OusJ9ASSJr/NdtTZKhz8Ro1mypTBdl6F9N4BpW1SNd2D5Ao7catqW0YIcmJaZccOV+S\n26JY4Ln53XCQDIeMOnCggpk419mUH+vBKEZVbefu3fbYnG0saj5JrFG86I0URyoIyrmrY6YJeDEh\nmyy4WhgREbWEe2t3N8PxP2JB2U/Ys04/flFri7pdIIkIis82Hd7E9lXbCVWGWFy+mGMXjnGg9wAV\nngpal7by6qOvsnf9XvZ+ea/yemv3Vk5eOan0KwhqU32T4VzojVEQ4eZFzfhKfXx49UNG4iNpx1Xm\nKjNsx5Y4zAxoo41WWjnEIQI2ulPSEu7EtT3ypxHC/5MBYc0FAWj78yzmMME+2ra10bqwMPNfKBQk\n7DCTBDVbuakZIpiubfXgnzHfbV74Xb4kt05cqYM5BMlBceDIkSOzbULRY3BQklpb5f/zibm6Fhs2\nSBJIUlOTtTlavVo+D+T51eKpp+RjNmywPveD4+NS66FD0uD4uKn39TBX10OLDa+8IrFtm9T0wgum\nxm0WTx19Slr98mppwysbpMFx+78cg+ODUuuhVmlwfDCrtXjq6FGp+r//J4ltfyyxrUxqPaSzySRJ\nWv3yyxLbtkls2ya1HjqU0Rb5nNUS25DYRkq76s8W/GKBNDg+KG14ZYPENqSmF5qS5krM4cJfLpQe\neukhqeaZGuVcz3aPtPY3a6XB8cGU/o36S2cL25CCO4JJ66VuN107aphdi3zvD7MwmntJkiRpUJKk\nVkla/YK5sRcMqyVJIvEvjTlz8RqVmHIprztitWRq/uyEqbXIcvAbJHkoQUmSHkq8nr1vVAYUZIEz\nYy5+N65XAFmVT3E8ow4cqKD1MmqTnxjB7HFzAem8mNl6hTN5nHPJ/itiT7UxoQGfj4DXS8vBg7O6\nLrkma7ECO5NCqZFJ4pkOZsafa0KanmiUofhNwF3UeH9o6F0V3vKg7xp9I/9F1ztmJIPV81SKzwD6\nx+TstkYeRiXJUSKJ0eCE0PB9h7j0Q9r7bufzL/zhTBIbXfv1bYl0dnLyypeBPwbKKHeVMxAbSFov\n9bjs8ESrkWl/pJXP2oi03t2Ep8s/z96x54zr2LtUiKS3RTt/WQ5eODGXAceYdQVsehRkgR3cCHDq\njDpwkAZm61darXNZzHVA81EfNlPtVVEXtqnJXvlzMdQfDRNWkrW00lqYZC02I5e6joUYf/P+/Rzo\n7aXGO8Q7jz9JqHK+7nHRWIxIVxd9I/+FYxfbZZsy1OKMxqKsfHElDf4GqjxVScl/orEod+y6g/6x\nftP1Nqs91QzFh2isbeSTa59wOfYk8q0n1Pk+4nLsbwztEvU/1QmXIHmfN/j7WF5zjPbz7YY2GbWj\nRaakR9qxGfU3m3VwtWOA5ARQZseYN0S5MWpm5gvX6fw1IxPRJuZEQlsHDgCnzqgDB3mB2bhDq/GJ\nxVwHNB/1YTPVXs1XHK6VdTHybufq9c5XspZCIpd4wkKMX3iEz37rTwyJKMx40au8MyVdtHGhep5S\ndRyo2vMX8AX44BsfWKq3+e4T79K6tJUjjx3hvvr7gAkAyl2XkKTnkuxKtV/fg6ze5++3/gW71ybX\nB9WOL5MnWniz90T3KB7PO3bdYejVzLQ/7PbEWoHWa5tczqaTXWcWcbT/Lg70dlj2+tuCOeRdKqTK\nwzTm0PxZwRyqrOLAQc5wyOgNBKcWk3UYyR61Ular8sixsQ7AXsJnF2YjQVMmspotzK5LR0eHLVl5\ndW3IU7KWdLBbFrm1+yQXR7/DpsOvWybkVsefzXXKSKptaJOGPGWTaXamb2v1NkOVIeX4+rI/w1sS\nAIa5NvV/c2Wil4XlCy2TfrHPl9ccouXgeiWh0kx5m9TxpSMWovTK4KlB5T0hQ9bD1u6tXBy9yKbD\nm3T3WyGTI2mRbu3MyruLAcXw+y32xQEOECle8WjeUYi1uE45dl5QDN8NB7nBDjL6FeBfgd8B/6sN\n7TlwUBCY8XgZ3eRqPZtWb4Z/9CN7CF8+stRmGzdbjLCyLvnKyhsgwC52FYyIQm4xnvrtZSbkRgR4\nNsafyTYrcaGQPzJ17uoYE9IioAp4HK/XS+iJEJt8myx5nsQ+P3f1A9111xtfOmJxpvMM7IMyqYz6\nefUp52qRab/lGhOcDnrXJ/V6/3zVzw3XTny3ZXn3n183WWwtIVM2WhWuB5WHAwcOig+5xoy6gNPA\nWuA88M/At4APVMc4MaMOihK5xBPaFeOYa+yoEt/5nU58oSh+l5t7Tqxh97O+6yruMtLZSU80it/t\npm3NGluT8wiIeMLtq1YltW/0vlUUYgwCucR46rcnx2Q2BYOGXmYzcYGzFZ+nZ1uECD304MfPz2M/\nZ0vXlowxlEbIdlxiXuFDqj3PcvsTi+mu7JbtzCK+Vl73Oircn+GBm1aye+16Aj5fUozo1u6t9ER7\neN/9PgNrBmjyNaV4rR/e9zDH+o8BsDG0Ea/LmzbGMt1+iyCXq/AjSw/tXnG965PZGFW7vttzGmFI\nhHTLutA0Wy5KlAgRtrN9Vh8u2YJ8b0wHDm5AzFbM6H3A74GPgDjwPLAxxzYdOCgIsvF4CU9kPA4t\nLbNXt1NAxHdWfCZKbHE/g7f00n5Tl61xqHbEXeYKtWfutuefz4uXNl1WXitebyPkKve1Ars9eWbk\nzmbiAtN50PKZcTWTZ3CLb0uO2Xyz80S3rVlDS2ghG0Pn+GjTKWora2U7s/Q8ta1pI+j7HCOTDbSf\n71f2mdozKWwd6B1gYddCXfl0lbtKtiPYxI7wjqS50Rtruv2Wl7qJKuhdn8zGqNr13Z7TsJCNdrZV\nDhacuJmPz/fGdODAgWnkSkZvAT5Rve5NvOegCOHo6pORTRkMQR7b28HjyZ6IirXINVmQiO98YKV8\nQ8aHQRrfX6XbVrZE0TBuVqe9fBEuccNZClyKxWxvvxDfjVzlvlZgtyzSzE27GQKcPn4vQXIO209U\n9WyzU3J4ZvhB4D9Q5fkrnr7/v5k+L+Dz8dL6Zvaulz2M2cYXi/nZdHgTjcE7AON9pl6D91a9l9SP\n+E7HpX/HxtC3+OuKv072cnZGOHnlJAAr6lZQ5nqK8L59bDr8OttXPaefvCjxf7aVNzKtvd71aTZj\nVLOBmcRAuV6jDOdxDmXKEfyxJQLSzUAtsA5DZpqWb+awMefqvZRVMj9XMFfXw8EMciWjjv7WgW3I\nR/xjOmTzVNyOTLORCPzpn8rj/PnPc4sdFfGdu9evoWXhUjaee4Qjr+hLdLMlioZxszrt2UW4tES3\nbc0a6n0+phOf13i9thO6fMfG5qsGaLHADAFORxIESbqt+jZjopplDKyebXYmlgpVNgHLGI4vZkv3\nyazbydbzpJ6fcvfzafdZWi9m4jvdfr4fr+vfUOGtSCIxp66cUuqjLq5YzLmrYxmvKblynczxqKnX\np3zGqOYDdiUG0pJaNfk4ZTSPhcqUYwMTEvzxnh6o6QcGgXYMPZusTotNAAAgAElEQVRp+eYcIuF2\nwXEGOyhWuHM8/zywSPV6EbJ3NAnf+973uPXWWwEIBAI0NjYSDoeBmScazuv8vw6Hw0Vlj/a17HWU\nX0ciYXbt0j/+pz+FkZEwfj9s3txBRUXh7N28uYPRUdi7N0wgkF17b74J774b5t134cknO/jxj2Hr\nVnn8Y2Md/OhH8Oij1u17qXktHf4OTpzQ/9zvdsPp09xWXc32J5/MeT702tvsdjN69Sp7n3ySgM+X\ndfs9w8NyHNjp07R88AEdf/7nNNXXc+DwYSo8Ht75q79S2tfbD22lpfREo4ydOsWPVq7k0S9/OWP/\nP963j6OJAqsRr5dda9faun8CPh+b3W5OHD9eFN+32Xh94vgJNrs3KyRB/XnbmjZa/lsL//GB/6jE\nNY6dGuNHK380Q1T7b+O7t34XgZzWgwCbOzZzghPJ15d3f8rIkhH8bj+b3Zup8FZkbK/KMw+Aeb//\nZ85cfpboqiYCvkDB5lc9P3906yYeTcR1Gx0vYii1n4+dOgWXLtH00ENsX7WKE8eP82bXm7xb/y4A\nNR/WwAQ0PSTLd9f/1/836XjD/nIY39ipMaiVPbnfnf4uHR0dRbOfbVu/cGL9Om7ju3xXJm2a49tK\nS/nTn/wEn8vFwT/7M93r65sdb/Iu70JYJqY9HZt5Vz6ABW4/nE487Hlye+HH2wMdid/3cCQMBr/v\n6V5v7uhgFLjbn/icDvgMhLenP35vOExA+3kAOjZ3gMHv5fX4eizxuikcZnsR2OO8nvuvT5w4QTTh\nPfroo4+YLbiBM8CtgBc4AdyhOUZy4MAMNmyQJJCkpiZJGhw0Pm71avk4kKTW1oKZZxv0xlmIMQ2O\nj0uthw5Jg+PjkiRJ0lNPyf1u2JB+vtVQn/PRheT2ssVTR49Kq19+WdrwyitKWxteeUVi2zap6YUX\nlPcGx8elJW1t0kN79yYdq8zdd45Kwf9Lbuehl16S2LZNYts2qfXQIVN26PU528hmjSRJf07nEla/\nvFpiGxLbkFoPtUqD44PK/4Xu2wwGx8el+h1/KbGtzNJ5dsGu+dFeIyRJkja8skFiG1LTC03SR8Mf\nJfWjd7zdsDK2p44+Ja1+ebW04ZUNGY+3cqxZPCVJ0mpJkjZIkmSlxUFpUGqVWqXBNGetfvnljNe0\nDdIGCQmpSWqSBqVBaf9TknRktSS9tkGSPrpQuO+QgXGShCRJTZK1ydHDoCRJLZIkbcy9rWzXbC5i\nUJKkVun6H6eD2QOzqJjdgJxR9/fAX+h8Pttz4yCBI0eOzLYJaTE4KBOxTDfdZklrIWHl5n9wUJJW\nrz6SZPtsjCkbApwtaU43P3o3WUY3uXrHirmr+OuZzxY8+6wlYnnkyJGMN9azQfCyne9MN67FTFaP\nHDmSRIDM3jzbRS6s9v2U9JS0WlotBV8JWra52CF/L2aZxFiAlQcJ2Tx0yNi/JPMtJPmm307c9zd/\nk/GapiW18XwaZBVFyoRWSzNTtEQyR0yL/V7qRoOzHsUDsiSjucp0QZafH7ChHQc3OET8Yya0tclx\nl9u355bJ1k6IWCuASFeXbvkTdWmP//iX7iTb8zUmbTmRrd3dymtP9RrAZyn+NduYWfX83LFzJx98\n85tKjJdenKmIA0vpX+dYMXeDK92098uf7Vm3ji3d3ZZKNhj1qTcGozW2G34/8J1OKj4TZXClm2jM\nXEmYTLG7hRpLtiVP2ta0KaVIzJ4jYgsBIl0Rw3Iedvct4v1Yg5yddtXcSJpjFiL+ci7AbBZdq8ea\n7j/xf7bJmtLhRytX8ovS0rTXNBFzLODOp0FWIWJTZxERUqu5qKfIx0yVmwizbq4DBzcMcq0zagYJ\nsuzAwfULc3UYC1+vU9vnxdFR5XXLwqV4dqy1RICj0exI80w9RRRbxPijsRgrX3iBBr+fKq83pQan\nmlD/fNUqQ5JptmZgtvU+zaxxLn3onRONwme37WOgxtq+yTQXVsaSC8zWe8wFYt7eH3yXgdjf0BS8\nM29ZVHVrbNLMAQ7QRGq9zmLBbNV3LbQ9Sj3VF7YT+CCQtoakuvaqbf0jk5jt+l0WHkVn0OwiTGpJ\nVfUUbUL2rDRxQ+U1cuDANmRbZ9Qhow4ckD1BETBDhApFANL1uenw4YLbAPL83LFzJ/3j47p9pyPq\nVkl8prXM9qGAdo3T9ZNNH0bn5GPfmCXuuaJ5fzMHeg/QFGyyjSBqiUzLwU5l3haWX+C9J36YN7Kl\nR67lrKURtrPdNBFVj6G+rJ5zV8/llSgW4qFAUdkTJpV1FBDqa0N92W84d/UDy+ub629SwaHndiwy\nNJOebDrcPRlzYEkdFBmyJaOl9pvioFghMmE5SEWu9THN1WGcKe1x4vhxoPDlROwqL2LV7oDPxwff\n/KZh3+lkpVbLxWRaS732zHw3tGucrp9sStwYnWPHmmlrDGZT1igbZFPvMdNaaEt9qOftvSe25tXr\npyftzKYci3oM+z/en1PZmmztBjKW28jXb0Y+JLLJHST+TyNPzee1V31tOPBxbVbrq72+FP3vd4Hq\nhmTYsmnRRvpqLmar3Dza0ZG1DbMFo3lLN59GS5rLGuQDRf/dcJARdsSMOnAw52FXfcx00ItJzHfs\nnrbPdHGRVp7EZ2N3ur7b1qwx9NSl+0wPmdYyU3tm5yFdP6KPMpeLloMHTc2pkV2ZYlnN2G1XPKVV\n5CPeMJXIlOXk5bUiGa0v+zOCvtUEfHcAZVmOIHkMAV+A9vPt+SNmpImDFXebkPcgudt3/oT+0Wk8\npXD40f+HCu9fWpbIml6rNjK6uPJ57VVfGwLeV2jvs068tdcX8QCzaFGg+NRctmymsFWznsBekEvm\nZGGDGeTikTQ612je0s2n0ZIW8LLh4AaBI9N14IDCyRa1mA3pLugTFyvSUqt2F1Jylutamp0HM/3k\nM05YO6ctBw8a9pUPuexswe5YPyuSUbvWUz0GwPbYRdPIpFtMA6txn4Fn/g+G4jcBspz6k2//yLK5\nucp71TbHpX9H+/l+e669Ggbw5DtHOPDxx3y+ro5/WH0fW7r/2PL6ztZvUtYokMY1hy2bEWHMqbvz\nZkNiH73hh6+0wVDAuso8jP4YjGxONxajJc3nGjiY28hWput4Rh04wLz3yS4IIuFxudgYCrEjHLbt\nhsMM8dPzCljxDut58dJ75rL3Qoh2zwwPE6qspMrjSUtoc11Ls/Ngpp98ety1c5reUzvjGdvafXJu\nxaJpYLe31VoGVnvWUzuGgDdAy8GWwicYMuFBNIJVb7snERTkd13kta/+W8umQu7yXrXNG0MBWpf+\nG3vInsZVdO47V7kUi9He18eW7pNZ7ddC/ybljAJly81hy2aEWedu3mxI7KMHgG0R+Oku605mozGo\nbd7KzLOTnwNb0B+L0ZLmcw0c3JhwYkZvIBS7rj4SgXAYmpvlrK3XM97s6uJofz/t58/jdblSssfm\nEstkJv5Vt0SKhdjErd3ddH36KUt//WvW/fa3RGMxUzGUQZ+PvpERS2MT7faOjnLswoWs43rTQf3d\nEPOwvKaGloMHc4opsytGVw/aNUzXlyA/AV8g5/jofKPQ1ykzca3iOxmXJDaGQraspzqO99SVUznF\njUaIECZMM81ErURxZQiSS7cWZomhGOedtcdp8Pdx6hsRQpXzzduoQjYxyEY27wj/nX1x0xoGkI+H\nUMX++20r0gQlmo3rzNSOHjLFlAqc6Ogwb4MVJPbRZBMc2J6d19FoDOp5U8eCbsHCfOq0VQy4ob4b\n1ykcz6iDokFPDxxNPF2ORMzVHJ2r8LlcgP7NipEXMdtYRr3z9DybVuJJe6JR+sfGAGjv60vyzAV9\nPo729VG7Ywf3BIPsXrdO6a9vZIRjFy+mjC0dRLtVHg/D8Xhe43phZh7UksxsY8ry6d3QW0Mr85nv\necw37CoPYsbTqv5Oti5daguBUXvpFsxbAOTg8RO1TpGJ6S6zLqocgtPM1GONdEbYdWYXQ/EhAFqX\nVmRNRCF3r3ham3MJ1NO4iqzGuWeLCBF66MGPnzbairKsUFZIE5SYaZnUn+/rAbeF4EatJ9DsltA7\nLqvtlNhH7u2wQ3WCmbas9Kd+dlKGzNfPACGgyoq9DhzYBCdm1EHRoLkZDhyApiY4dMhaHcu5hnTx\nQEbxmNnGMtoR56ZtY2RiQqkbWunx8N4TT1Dt9cqE89o1jl24oJzbEgrx0vr1acemhpb4gkwGn77/\nfsMao7lCj7ALW4PXgizb/whVHh9tbcW5L63E5M65WDQDFLJcST5iu9VxvHvW7WFL95asE/q8736f\ngTUDNPks1joNk9cSKOo1qvHWcPZbZ2c1XjntA4wws1oOJhuECSsPIVppNf8QotiRJigxTPplUn/+\ndjOszCG4MVNf6Y4ze65ddljpTx0L2qI6T8CMvU7ZFwd6cEq7OJjzaGuD1tbrn4iCLHO9ODrKpsOH\nUySgRnJLq7GM4tx055mVBOtJQusS7V+Nx9nS3a30e25kJOncielppa/heJwFZWXsWbfO8IZeLSO9\nY+dOQPb4/eSddwznTItIZyc3P/cctTt2sO6VVzIeryddFeuwbP8jHGv3ceCA7LG3ikxzbEeJCSvS\n20KVdck38l4eRIV8yK3VktNQZUiRUVuB8K4O9A6wsGuhNSIKec+AKtaoxlvDO4+/M+uJs7RlgZKQ\n57nIRzkMf8LoJprYns8UtoVGGr1sumWKACcTf68APmNWd6tpI4y8Th6dvvTWUc+mXLdTJju0sNKf\nWmYrzquycD4UrJKPgxsEDhm9gVDsuvpAQJbmXu9EFGZiRvXIQ8DnI+D1psQram+IzZKYdDfSeiRG\nr11tGwGfj/vq64FUkhsqL0/qw1NaqvR17MIF+sfG2NLdrXyu7U8QX4D+8XHFLiuES8iIBycmaD9/\nns8+/3xaMvj2668DsKKuThmLIG1VHnnOmppgexZ3FWq7V77wQsrc2hHDeb1Ib8H8dSqb+EFtvVWz\nyAeBV8fxZgs1IX9v1XvWZZoZbtZz/c0Qa3T2W2cJVYZyassOpH2AkQVxsYJcb9711qKNNlpptf4Q\notiRJigx3TL1AIOJvxcD1VkEN6rXqUKnrx7gaEdH0joKm5YjexqbkRMDmdlORg8pMtmhRbbbV5x3\n0uL5BarkYwrFfm/rIDMcMurAwSxAxIwaJfRRE5T6X/yC+mefZWhigl1r17K1u5vwvn3sOXvWFIlJ\ndyOtJjFlLpdhu3ptGJHcKq9X+ftzgQA7wuGUvtSESUvG2tasYcG8eSnHWiFcakJb7nYzEIsZzlNP\nNMpIPA7A4oqK1DqnOh57K8m21HY3+P0pc2sHkcxnoiQrsMPLaxbZkLkZz1gdn31+W0HszCdyTeiT\n70wkuRLurBMzGaBtTRtLli7B94iPTb5NyW3meS7ycfMeIMAudl1fRDQD0i2Teo53ZNm+uo1ndPrS\nW0dh0zmsJwZSk87PMkNK1f1UAReBTRh71bPdvuK8kMXz8/zsJi3yoTJwMLtwYkYdzAoKWXeyGCHi\n9tQJfdTxnCJGrRSYTpyzsLycT7797aT4TSCnODZhR5nLxcsffcRQgpSBTJSXVVdT5fVaWqNoLMb3\nOzp45/JlxiYniU9Pc08wyD+sXs0Xf/MbGvz+pDb14vH04hqtxDpGYzG+19FBCTAyOUn7+fOG85RN\nPGA4PJNsq7UVAn88s5/ry8o4d/VqSszr9lWr2HT4sKmxzlXks66qFnrxf5mSGok4zQr3XzMy2VAQ\nOx2kwmzyqXzERM5WnGWBynDe0LBjjjO1ke7zbOpvinMqABHg0ppoXy+uc46EM+cVYZz5KFZkGzPq\nkFEHs4JC3rQWM4yIkCAoh3t7uTIxgd/l4tQ3vkGoslI5Z0VdHYsrKkzVKM1E/tXrUe3x8MWGBi6N\njekSZbPQkuZarxcJGJyYSGpTS8bselCh1HItLaXC4+EZg3nKhgxqk221dM6Mtd7n41LC26adt+uJ\neOohH4l+jKCXwChTUqNoLEqkK8Jg7Du0n+8viJ3FgGJ7+Gc2+VQzzRzgAE1YTMyUBvlos1C4UZPG\nzJVxq4mqupZnOpvFOYNAO/pENhuSm2/YvSZW2ivG+XAgw0lg5CAjiklXfz3FuGUDsRZG8kohi/2X\nxx9nYXm5QkTV57z66KPsXb9eOc9IIhnp7GTH6dOKPHTZzp0p0kSxHjVeL+8+8QQvrV+vyG21a2Q1\n6ZHAlYkJhYiq29Qmc0qKsfyvXablsMKuRb/8JQ+//LIiN27v6+O1/n7DxEcBn4/NbnfaOFzt+1rp\nrno/f76uTnfeRF/XQ/IgI9ghFzZ7ndKL/8uU1EjIRnevXV8UsuZskE3ca7ZxyUZrkat81mzyqXzE\nRM7VOMuOjo4bNmlMtuPOl5zT6HthVMsznc3inN2kyl6F/XFgI8VFvOzei1ba00qEi+ne1kF2cMio\ng1lBrjethYxNyycykZNQZSWffPvbChFNd47RDWdPNEpcpU64qEoKJNC2Zg1LKitZXlPDD7q6ePLI\nEYYnJlgwb56S+VbMudlY1bY1a5ifiP2s9Mj5AMtdLuaVluIqKdEnny++yMkrVwA5mVDD4VUcPUrG\nTLaRzk52nTnD0f5+ekdHOXbhgkJ83SUlSszo99L8aKnb0JtDJcPvrl1QFktKtqXez7vXrZuzRCcd\nzJCgQpJtvXhJszGUxfxQINO1LW1GWAPY/fBP1DU9wAEiWdyKml6nPMREzuU4y2JKGlNIZDtuq4TJ\nTvJq1Wa9mE9hfzvgZaZ+qdZGM3bfnji/Hjm2NVfYvRezzQbs4PqAI9N1MCdxo8h8b9+5k/7RUTyl\npbz19a8nkVItjCSS4n2BcrebP7zpJnYnkiEJ+d5wPK7UB/WVlhJLlGTZGAqxd/36rGJVhSz16fvv\n594XX1TkqwLqmqVNwSA+l0uxYWMoxMTP1hvWnlVLD98eGODi+DggX9Qk5CdttT4f8elpJRZWXfNU\n287JK1cUAlvj9XL2W99Sxrbol7+kd3Q0yW7tnis2KaTdKGRdTy0KObf56MtsjCRkvrap65OaTVxk\ntzzcrNQ1QoQeevDjp422WSeAc0XuaYQbNe7UaNyZ1tOsnFO0c5KZbLyZYhGN+hbve4By5ERK2a6V\n1v6tCZuGNDaGSY6hFJ5ZtW0B1XkLgU+ytEnA7r14o+7t6w2OTNfBDYVilPmm82hk68ntHx1lKB5n\nIBbj4X370h5r5G1uW7OGjaEQzYsWUefzcS2R0CfS1ZXk8TszPAzIczqteoDU+emnNO/fjyeRAXhF\nXR0bQ6GMRDTS2UnLwYOMTExQ7fXSlCgFU5Xwkqprli6prMTncnE6ocVtCgbZEQ7T1gZLftSJ7y/2\nsel144zDg6r3RfvTwEAsxnCCiJYCg7FYyvyLdtSe1I7HHksam/ohQI3Xq1uv1cirer2gkHU9tbCj\n/M1s9mXFm5np2pZNBl27PcFmpa65elDthh3SwtnM5HmjeoSMxp1pPc1mfBXtCCJqxjtn1LeeN1MN\nK/tHa38PM4SyhpkkR8cT71UCTxvYJmqV+oHXsrRHDbv34o26tx3IcGc+xMH1go6ODsKJMhvFjEgE\nenrA75fLaujVHW1bs6bgiWAyeUzETSzI2VMDXq+u1zHS1cVmt9vUWoganX6Xi9e++tW0x4obTr33\n9ya8gWrvqcjuCvKN755169jS3c32VatY8utfE02Qs8GE53JxeTn1Ph91Pp9h0iT1HA1PTCgJkO7Y\nuZM3vvY1tnR38/T99yv9iDYWl5crc7ewvHyG6PpgcdPMvDb88pdUeb0Mjo8rWYbLXS48paVE43Ea\na2sJzptHe1+fYpOg1dPA0f5+Fv7qV7hLSvCUlrL2lltkWfDp07BsGQCTksRfv/VWkgdVEFyAq9em\nufVvDnHvO+vY/ayPQEBee+F9rfF6lTI515OXtG1NG5GuCNtXbc+pNmYm6F2nCvXwKdIZ4eSVm4Fb\nWFFXo/vQIRuvqRUin+naJuJe7YTwYJ7hDCFCVFFFG22c6Dihe50SUtdM8CfEd000sb0IhKV2SAvF\njT7IN/KF0gfMxu93sXuSM62nIDhm22kEbkUu6ZJurB0dHfgTaxEE+oBFyOVRTmts0s6hlf2jtV/Y\nWQOsR86yexKYSLx/FbmkjN68vAU8jExE1RV/rdiTzX7I5EG2Y2/NlXtbB8ZwyKiDokNPz0zZjEgE\ndulcHY2IV17t0pBNbf/aG+aWgweV4xeUlSV9duL4cczgra9/nYf37eO1r341yTtndFOc7mY50tnJ\ncDzOgrIyJQ5Ue+MrxtRUX0/7+fNKaZkVdXX4XS6OXbxIe18fka4uTl6+nCIhVs+RqBUK0D8+zpbu\nbqV9o7nzlZYyHIux4LnnqPJ6mZyeprRkRvExNjXF2NhY0rnXpqZgaoqF5eUceewxAOqefVYhq1rE\npqa4lvD8vvjRR0xMpx6pfk/Mm6ekhLgkMemZZKihj3b/Tr63+ZvsbfMlJYB65/HHefLIkbR7JVfM\nhiTYLhKUje2FevjUE+1hcOKXwHdYXDFCwNeq+Tz9NcAIVoj8rFzbEh5MgF5kSX+ECJvZnFO7bbQR\nIcJ2tudVomtWDtxG7lLAGyluU0tU9OSfswk71jPbduoT/+LAscR7IhhmIcneTPUc5rJ/1Haqy70I\nrFC1qR1PCH1prhV71GO5A/iAzPNlRHZn66GOg+KEQ0ZvIMyVJ0f+xNWxqQm2F9GvfWb5XPINs/p4\ntdcx4POZXguRwEh7A290U2z0vpCRCu+dIIZGN767167ltuefV2I8379yRSF3jbW1bF+1ilvb2pT2\nlu3cyaKKCj66ehWAu2trWR4I8MKHHxKXJOUcYUtPNMqZ4WEmpqeJT0/jc7nwJuJURazqpUQMqBm4\nS0q4vboakG/mK9xuhicnAZjnclHp8XBpfJwVdXV8PDLC5ViMEuT42YmJCao+9zlFzqtFTzSqeLWT\nEBin5DtdwNq0a68dt1kSlk4hkC0pKgZksl3XE1cggiZ7MMdoCr7DjvAhnc+z89Dmw5tpJ4QHs5pq\nhhhSPJmBcG50I6MH1Sb3iJpMR4gY9mnWUyba0SO4dhEgq5iN328tUVEToHx40axCxEK25NiPlX0B\n8lr8GLikeq8aWUKrjU/VI3tG+yfTnKntVHtzG5Alwe8je3Y9yJ5QM3NhZT/7VX/3Y45EGpFdOx/q\nzJV7WwfGcBIYOSg6RKPyjfj27foS3dmC1SQgdiYN0SY1USf9OfTII2z9oY+eHnh/zX4GbkpNYqQ+\nX5ucR02S6svKOHf1Kn63m/j0NO19fVS43YwkiB1A/bx5bFi0iLbf/55J1XfbXVKivG7w+/lsVZXS\n5/x58/jKokWcu3o1KVFQLvCWlDAhSbiAqcR7vtJS/G43I/E4cUlS6rNWe73KWgxNTHDbzp2K93Nh\neTkP33QTz589q7Qdqqjg1ooKeR4kifbz51lRV8fNfj+He3uJSRKVbg/vtT6hm1RKb+2tJt0Kh2cU\nAq2tyQoBq/U8iymRTLa1SDs7I0SjPbjdftasacOXB6mwqENq5MG8XuvERokSIcLTPM0WtuTdk6kg\njC3V6/NROzRMWCG4rbSakiVrUUzfu2ygTSpjpb5jmMxLawdhTdePtn2ztT/NQMyFkPb+LbJEVsyV\nXiKjTP3fjEzyQC7lsjdN/1FgJTIRrUq0dyv2JinS6/OOhI1ma3waJSZyEhZdn8g2gZFDRm8gOLr6\n2YcgfmOnTnH7/fcrxC+Tp0zcwAd9PpZVV1PmdlPh8fBMInZTIS5lMRb+RRfvbU2+WRbn13i9BHw+\nroyPMz41RWNdHT1DQwo5rPf5FG9oqKKCa/E4EnBZk/Sn1uvliopQ1vl8RGMxpoCy0lI++OY3+UFX\nV1IWXzVZ1UJNKEuAu2tq+HR0lMuJNrVoCgb5g6oqDp8/z5QkcWViIoU0u5DlxrUJObLefAhCFP7p\nT3k3kWDJDdxTX0/3Jfm598ZQCK/LRZnLxbmrV3n3yhUlntZsJudIZyd7zp5lcGKCFXV1vProoxnJ\nzKK/7KQ3FqWqzM3JP1lDaP7M8VZJUS431lYywZqB2vat3T9MadvoOrVvX5j+RDbfpUtbWTtLnsa5\nnjXZiv15/82wqXq9INN2kmg7CK4dhFagGH6/rRAIM0sbZoZI1ieOtUoSFyHLY6uQ4yfV8ZBachfF\nlmcfdHR00BgOp52LsE5feu+pUctMEqU64D7Sz4e2vSPAAInfvkR74ny7PNV6e2C2Y4vV343ZtuVG\nR7Zk1JHpOnBQQCgSxUuX+PDjjxXil0lqKWSgfSMjSlKg1qVLlRtJIW0O/ttuQneOctfu3YQqK6ny\neGhbsyZJRqqW1wrCBVDt8bC8tpajn35KhdtN37VrSn1SUS5FYEQjaZ2WJIU0fvGWWwhVVlJfVqbE\nWZa73VxLEMWA18vqm2/mSF+fIo390i234He7KQEujY0pY9Re0cpdLsamppAkiYO9vQqJXlhezu2B\nAO3nzwNQ5XZzR02NMr6VL77I4vJyxfsraqj+QVUVLQcP8uHVq5Ago5PAu5cvK3PyswcfJFRZmVLa\nJujz0TcyQvP+/Rlv6nuiUcXWxRUVhsdGOjv5zblzxKammP6sBPE4w8CWk8n7w0i2auQ9zCWRjMgE\nCxDpiuQsN1XbbqVtdyIJUDDYxKoCZ/NVQy0z/uzzz3Nvff2cIqW5SLyz8/SluT20SfNqNqGSFdgR\n71rIBE6F8MJakbOaWVoh1axAlryK7K9WVjKETEaHkT2Tu5jZcQOq40qwTxr6U2CEZNmqFnp9pes/\nwsxvbClwmczzoW1vCDlJ0S1Ad+IzEdspYjS3ReB8DwQysDWjb63YA+rP3wYuJj7/PvCSgb1m+7CK\nnwI/TrQzzEwMrxOLOnfgeEYdOMgBVr0kao9cwOulva/PUK6oJib3BIPsXreOTYcPJ8tzE3VCPbgp\nf34NA08c5NhAf1I7rpISyl0uvC4Xb3396zS9+CIDKk+nSGVsYNwAACAASURBVFIEUOf1MpyQuKqh\n9oSWAu88/jhNL76oHDd/3jwujo8rntsqrzcpm674XGSx9ZSWMjY5SVySkjyFag+igJYIa1HhdlPl\n9bLI7+fty5cV7+uCsjL6x8bwlZYSn55Wxqj20AZ9PmUu1P3UeL2KDcL7KdausbaWWysrk0hz0Ofj\n3vr6JJmz2A9WvKI3P/cc/ZoETVbkrEbew1w8R9nUtcxH27FYlK6uCKtWbeeHvq2zJn8U+0DtiV9S\nUcHihKy72IlptjJpyNbTF8aKP2quS1vVyIfH1gh2emHNIlcyIbxsg8ilULJxkOt5YMMkJ/dZAbyq\nsjnbZx+Z6pGq5+PnwBdJltEa9S9I0xDJqAHOprHVyFMt5kSgFZk8HwDeCsM9Jr6OYdJ/a9Wfe5AT\nOUFmebGVPrQw2m/qdhZgTUbswF44dUYdOJgFWK1JqK4FunvdOt26oDCTcKh/bIzBiQklg622lqjo\nv72/l5OPvcip4SspfU5JEsOTk0qt0re+/nUWlpdzTzAIzBDRCrebyxMTCsGsTJQzqXDPCCg8JSW8\n8/jj3F1Xx+qGBkDOtPvm175G69KlLKuu5tjFixzo7eXNhFeysbaWN7/2Nep9PiYlibGpKYXw+kpL\nk8iZ2oMo4Epk0xX/i4tWnc+HCxiZnKRvdJTugQGFZDYFg7zR0kLr0qX4XK6kzLrimBqvl8bEHDQF\ng3zh5puV8dyjel8kqhFzf+Sxx3hp/XqqvF5lfgZiMQ709nLg449T9oN6TD3RKLe2tVH/7LOcSyR7\nUiM2NSNKrvZ4TNVzVcPIeyg8R9ncEGdT1zIfbft8Adau3YXPF5jV+pViHzxw002AvEca/P6014EI\nEcKEaaaZaMGrUybDqB6xGWTn6bPmjyq22qS5IJfvnVXY4YW1WnPSat1WbfvCy7Yb43qgRjaJ9+PI\nCYz0kgZVAPORPXUi2VEutSwz1SNVz8cWYDGyl07Mj1H/6vqhJar/lwKb0F+LCPK4RzTvhZHnZL7G\nxjbkOb7b5Ncxkxf3ZOLvRuBB1d87MF6z25ETLXkSn4uCaeoyOHrnCRjtN7Wtb2CutqyD4oJDRm8g\ndHR0zLYJRYNIZyfhffto3r+fqCYe0gqsZtcUEsUTx4+nLUSvrlsJMxlsteeo+2/w+xXSo6e/d5WU\nEJucZMULL3B7dTU1iTYq3G7m+3zck5CpNtbW0hIK8ciiRbhLShiZnOTKxAQLy8u5+N3vcnddHSBn\n3G1dupRXH32UUGUlu9au5dyI/NNYCgqpvbWyklBlJT6XK8WmGp8vafx+d7LlLmbI45caGlhYXk5L\nKISvtDQpntSdIKor6urYGAqxvKaGJ48cYWRiQqnVKtoTWF5Twz984Qu0Ll1K7blzfDA4iKekhCqv\nl39YvTrlhl0793qk5POJuVFLeEX/TcEgrtJShuJx5cGAGpHOTsUzW+Xx8O4TT7B3/XpLhGHNmjaW\nLm3lkUcO2ZbgR2SCzUdt0YAvQGBtgBZfi0LUzFynZrN+pdgHYv8feuQR5cGE0XWgmAhWuuuOFtq1\naKONVlotxlCK2+DU20M9km732hbTg4BckOl7oV6brQQskUoBq+TSquzVqP10JNHoHPF+OzKpUZ/b\nhhyDOoIsH91iwjYzOJP4v6yjg2ZSd7R2PrSvjciWOK4GOc4TZJXO28jj/raOLdp5Ed5VMScPAksA\nHzKhJfG5x/jrmIR0h/UwQ8hvRfaEipjVgI5tAv3IRHky8blX00em/We03zZ3dCjthMjtgYOD2YET\nM+rghoRdpTFyrX9oJPMVpCzg9fLgTTfxqy99STf77c9XrVJKxmw6fBiQb4jPDg9zZWICF/Cbr3yF\nSFcXt/j9Sgxle18ftV4vngTZHJmcZOrKFRaUlXF7IMCno6OcvHIlyYtY5nIx/xe/QAKC8+bxmaoq\n3rl8mdCvfkVseprGujouJsqxqCWxR/r6WPfKK0leP4B5JSW80dKSMp7PPv+8QmRrvF4GJiZoCgaV\nG+jwvn1K+ReBLzY08PvhYfxuNxNTU5wZGlIktDVeL6WAv7SUEdV5xy5cUErcNHZ3c7G8HICjn36a\nVBM13VrtWrs2KSEPkBLb2xIK0bp0KdsTYwPwu1y89tWvJrXfE40qiZG+1NCgm6U33Z6BGe/hXIK2\nLIeZ2paFql+ZDurY10zXgdkkz3YgN+mscaShXkkWu9fWbNmXuQ513Gy2NRytkkurIb/ZxGxmUxok\nkHj/gM7nVqTF2mNFfOoYcobcrcBvgBhwD/APJGfUFfNThhy7OYBMxETbYl3U83iTjh0dyMmYRD+7\nmSHGVcDTwJPMeFdrgGdILsWzEtlT6w9A267MmX3TxQer5/6ZxDxcRCa9bRivjYdkiIcILYlztJ5S\nLbT7TazPGHBQZwwO5g6cmFEHNyRyiZuyE0blPtJlSzVzztDEBA/v28drX/2qQmrEmEFOBHRNRQ7V\nr32Jep8C3tJSVtTV8dalS7qZbY3gLS1VyqcASjIjgYfmz+e3GzbQcvBg0ngGx8dp7+ujsbaWvevX\nK2R7a3c3vzl3joHx8aSsvC6g0utFkiTFm6wkTtKMU406n4/bE/GtoowNyN7Vu2pr+afe3qR4Xa2d\n6R5gGO2vc1evpqxLpnO0sFoiptiRj7IchUam2PFCxQ7mK94yX/GIhVj762F/WUW2SYrzXW4jm/bV\nJUzOIRPCKuSYTDXxM9tXGPNxiupjFwCfIzm2VU32wDgjcFhznBv4PbAe2Vso6oKGkL2F6vSAfuAu\nZhISCbuPMpM0SJ33QZ1VWOyDCmQiK9ptQZaz9qtem006BKlzqx5fKzNeYO3cnwNuAyaQJb1HSJ7D\njcjjN7s/tP0K76qWYDsZdgsHp7SLAwcWkEu9QDtLO2hLtpwbGUnKgqtuWyQ0EmSssbaWI489ptu/\nXu1QT2kpXpeL/3HlCsMTE0RVMmCRYKjC7WZsclIhnd7SUiQgrvFEGiUVqvR4uBqPs6KujjqfTyF4\nFW43ntLSlHhQvZqpIHsXy1wuhRCWud1cHB1lUnXugrIyLo6NkWxZMua5XIxPTSn2uktKeHjBAgJe\nb1ICopZQiHcuX2YkHmdFMMhYPK58BrC4vJyr8bhuEiLtftja3c2+jz7iSizGgwsWsPfLXzZdl3bl\niy/S4Pfrrr9AsTxIsQu5EjW7S89kg2J5QJCv2pj5InR2kfR0N5uFTCJULMg3qbQbmchCmGQyB9mX\ngklH1LV23IXsCRVoQSaO2rqrkEwItSRXm1AIZAntx8yUNBN1QWuYkfD6gNPAD1TnCxJXp+pPjQbg\nfOLvKDL5u6Q5phk4zozUVi/pkBUCZ/bhRwQ4hezVfYNkwtwELEcmrKLPTN5bbb9qYqteg7DB+w7s\nh5PAyEFGODGjM7ASN6WF1aRFevGpYi1E3KFI/NM7OsqxCxd02+6JRukfG1O8gg3l5Yb2q238xe9+\nJyc56uuj3ONhSWVlEhFtCgaVBEMjKiJaCkxMTycR0RLkeMgHb0oWE1W43bSEQrz3xBO0Ll3KXbW1\njE1NMX/ePGq8XkYmJ1OIaLnLxdP33099WZkcYzk6yqP/+I9sOnyY7atWsfvsWSWBU5+GiAa8Xr68\ncGFaIgrgS8SSCuI8KUnUl5VRX1bGqaj8k99YW8voqVNEYzEux2K0nz+vJF8S+OTaNcX+4Lx5yrzf\nvnMn//1f/zVpP/REo1wYHycuSRz99FNTewTkPbm4vNxw/QWySUBjV4x0PqBN8mJ0nYp0RgjvC9O8\nv5lobCbiSpSHOdB7gEjX7MRjWo0dN4NsYh3tkAOr41tbOlqAbGNFM8OuBD/pYs30+7Caqmf2YeX3\nO9dEPYWG2VjB6sT/2lIwkLqiRitsFAsZQU6+I+z4Psk1S2uQvY4XgfUdHUQTbXkTn4vfoiDQp7Fj\nGDmhUL3K/ivMEFEX8Fri76bE/43InstQ4ry6RBt7MV7XMuB11WshV9Yijiz3Ff1UkzpXZuKHI8jy\n4dcTtu0hdU5Fu08i78ljiXGJON565DkLIJNUdZ/pbBDzOg+41tHBJoxlvmbl4XPvqnD9wIkZdeDA\nIqzeeGrjUwNeL28eO0bD6Cj1ZWVcHB3l9JAc7VHl8TAcj+u2fWZ4OOm1OjGPkY1qiDZFbKkoUVLl\n9fLA3r0pZFFbCkU8+R2IxRi6eJH/n713j46ruvM9P1K9pNKrJJWMLGwLOwlgAo5lBCExvi6QHdom\niQVBHUJ6AT3rUneS6Tvpnhu7+951+/asNcnMrKHvTPesmcvF6Y7NdKOADTGY2L60BdYDE0xwsE3H\nNEpwUCIbWZatkvxSSbL3/LHPPrXPqVNPlV72+Wp5uerUOXvvs/epx/d8f7/fN1BURFwIvEVFfGXR\nIs6OjfEdo+Jv6+uvc/D0aUCqq6r/j2Ixzht2GBevXGHzoUP0fPqpaa9y6tIlAGqeey6tnctrDzxA\nW0eHZZsHksKIRyYnLc+bw2FKPR62f/SRGTLcUFbGz8+cYcTIGfVAkrWN/uxXw8Pm44FLl8w+fcXF\nlvkFKPN6GY7HicXjab1FlbLqM4o8qXFGdu9OUuBTeYymQ6FypGcTqTxJg0YF4eZwM1tnwH/USTls\nb2lhVc//RWDNTh4L/F1BQmTzyXUstDfm9/k+kJ2P52xasuSei5hvVqWL6UCm9VO5gk8jSYxuBaP2\nt6/oIM4rrKrqqjxFpbj1Yg2P7Sah1lQD7yMJlT0HUz+mHvkdqXwu/9gYq3q+CUnc9FudPuBrRttB\nEnmnKs9UkVb1PaO8VKuRXqSlwBeN8f8rrR11Xmrudmp9vonMefUDz5EIFwZ4EkksVbXcJpyr6dot\nbjD6X6r1r69JHYmcVo9xXAyphA4h17PeeF2t62O25zp6Sczrh8a/TSTChO0FrbKJFHA/FWYPbpiu\nCxc5ItcQX3tYpZ57WBcIcMYgYovKynjr6183cyTtbd/76qsmwavy+fjkscdMH0t72HAsHqf6uefM\nYyMLF7LLCBe1j18PMXSC7iGWCrpfZ6C4mCtCWPI6g14vFT4fpzUPzaDHw5dvuIE3Tp1KSzyzgR4i\n5YRKn4/7GhrYHomwfMcOi5dnXUkJE1evmsWD1JqoNksNX9TRyUlKi4v58Jvf5Ifvv09vLMbbp08z\nIQQe4JeG5U0sHufJzk7eGhjgrDEn6UI39fnf1NiI3+Nh65o1OeWoZsJ0hfbOJAFJ5Ukai8eI9kTZ\numZryhDdQo4zVShsofMqF7OYfvqpooqjHKXRotNMH/INa50Nn0twDv3LjHyzKl1MB3INK3ba376i\nj5F6hReSIF8LkKGwan+QZOqS9rgc+R14CZl7WYUkcvbw101IEqsImheppp5Dqn+3GH0NIX98+4Bf\nYCWDjcgKtT9H5lbqKAIqjL6/hCza8yWkWroFq1ep1zhnlYua6sf+IiRxV30tJlH1FuS87rEdEyE5\nbFr1qW7/6t6mYaO9Eaw3jZci13IYSXp3Yc0D1tfZHrKr1qvKaLccuAdJuvN9NxfyU+F6zVN1w3Rd\nuJgh5Briaw+r1JVVZQXSHA7zwSOPmBYpTr6jxw1FLuT3c/SRRyzenPaw4VAgQM/XvkYx0PO1r1ly\nS+3jtyuuOprDYYI+ew08K7xFRSaRA4hfvWohouFAAC9YiCjApStX6CgAEYVkIloEfNGwqvEXF7M8\nFGLcKGRkr+p7ZmzMVJmbamv5xcMPs7SigqZwmEBxMe889BDH2tpYVFbGh9/8Jo0VFfyjEfqsFNR7\nFy5kSXk5IOf3lQce4G6j/0wKun49bI9EzLUpZOjnVLwl02EmLUtSeZJmYz1TyHGmCoUtdMVcRT5H\nGGFzFuYUhbIwyTd0NpfzV2PdF93HZGRySnFxSiHRQ/8yI0t/i2sMczUMMdewYqf97StaZ/xzalNP\nVBhEzouqlusnQcyajH+DSMKkjhshef5UuKvF0xpJRAPI76SDSCIKMtpGFfLRbwWPIImenYiqY0aN\nNn5m7NOFVGB1r1LV9xBwr/FczUMJUlUFSZTeIqFMgyTc+s1n9e2vrp0yEiHFVVgr5E5q259Gzn8A\nOQdqbLXG/83I/FZF3P/Z+F9fV32d7SG7ar2PIsnuBaS6OpVP90J+KuRqk3S9wyWj1xHcnNHZgZM/\n5drz59n/4IPsXL8+K5LQG4uZYbRrFy60VGJVpKVcCwkFSZCuRKPcu3AhkJw3qJ7bSSLA+htvZGl5\nOYHiYjxFqW9y+Y0Q3kmH6IdKn4/G8nLGr1xh1BYumw1Ki4tzur3mKyoy8w4EcPjMGfxFRdwRCnHo\nzBn29fdz8wsvUOxwPvHjx2ltbDQ9U5eUlXF4aIj41av84P33aayo4Pff/rY57+M2QuuUG5otAXTa\nL9rdzejEBPWlpby0fv2UCWSuN1BS5WfaUXBPyO5uVv7wh465rVPxOy3kOFPlTxY6r7KSSiD7MedK\nuLMhr7l8Z+Ry/mqspb2leLu8sA+i/2d215wd+diFzL+syuzWIhPZvJZ/IOvhtxuRSvkZnAnKndpj\nFYYaQiqS4yRI1RIw3oUS6lv35s5Ovmw8LiORy9mHlRAqxElN/u3fnOrbWPWV6jtQ2B6r94Hdzfui\nMa4jSBX0X5BKrFJm/zXwBWPflcj5UPAhiyXVIUNyu5BkVX37jWAlrmXa9nuQaxAnQdD9SDW0Hvgs\nMqJBYYIEcXaCOr9yEgR2B/IGwjLjvZHbZ0AyCvmpkN/n0vULl4y6cDHDCAUC/M933kkoEMiaJNjV\nMx3tLS2EjeJDHSdPpix8oyuoq15+mR0ff2xR9xQ8wAfnznF2bIyDg4OcGx8n4JCfGiguZjxNCH6g\nuJiTFy8miKht10xE8/LVq0lf1KUp8mTLvF4mhLAUOZoExoXg8LlzgDyvM0aRonqjaJLC6MQEApJ8\nXu0EH2TRIntuqqeoiP/Y1GTZlu3aOu3XG4tx8PRpBi5fZvOhQ2mOnh5kWxSo0ASsNxbj6LlzWRcH\nyxaFHGcq5dC+fapKZa5jVoS7nHKGGc7YZ7bkVT+PJ3gi5TnloqiqsfqChq7SDL0r8ytEdX1qnM7I\nthDQtfoDWT9/5cPpdK47kSG1rciKuYrA6ipfBfC3JBTTWmSeaCvwn5Hksw5J9gaNft7Rjl2PJKlq\nDEoRzITbjT4+QBK38iyOeQepPtaTTOiGkeHBVchqvY3Ap8iv4xEkWQ8Zff0Lknz6jPHrSuyRNP1X\nIefzS9q2AeDXtn2akBY1A8hiR3q+qVJpFew3VtpJrYAqJTyf93+20QK5RhW4n0u5wc0ZdeFiGqBs\nWOJXrnBnXR0786zcq2DP87z1xRcZuHQJX3Ex7z38MN/p6WFffz/lXi/3LFjATkNN0/NJlZdmudeL\np6jI9ORUSGXX4i0q4vDDD7N+zx4Gx8a4o7qaz1RW8ubJk46KZ5HxL10Op2fSwxVvLq6lzlh/4438\nZmSE/osXk0i1HaoQE0iP0abaWjo//dTc1trYyK4HHgDkfH/uhRfMPFg9Z9P/ox859rWorIzff/vb\nlm352gDNtn1LqvzM6e/32rGtmWoOZXd3lFisF683SEtLO4EMaxAjxs3czBkjky1Tn7pdy23cRh99\njjm1C1nIgBFIWEMN5ziX9znpY40S5UexH1EVrYKtsPHt2bnmriVkynnLNTczG8yl3Dj9/F8ivQ+p\ngp4/uhFJls4az8PAXUhCporlLEWql3GkmnMWSRgv2Nq1+21+VWtDh1PhvaVIVdZeICgbLDDaO2vb\nrud+6lYzK0n2+wRruDJIcvo+iTBjfdyq7RhQQ+J3hBe4D3ltbCdhlaP/1qhEzt/bJPK9b0Xm1iqo\nPNpfGf3br+8I+Vu32I9VIcH263kqfVxPcHNGXbiYQ1A2LMPj42nVymwQ7e5m+Y4ddPT307Z/P7F4\nnIFLlxiZmGAoHufe3bupKy3FW1Qk1dFTp8z+dDW03Ocz7VvsRBSsRLRcq8Y7KQQ/eP99PvrmN2lb\ntozur3+dXQ88gN9jDQgKejyUFBUlEdEiZMguAL+rxjdaRnnp1D96PMAHZ89yNh63kMNUn4Ihv988\nt7PxOB2nTlFjkJ2m2lq2GYpztLub1tdfN49TOZsqrFnvy2uE/BYBn6msTAotzdUGSCFV6G6+9izZ\nht0m+nfOz5xuTFdu62xgqqHBsVgvAwNd9PfvoycLpTBEiGbDyCGbPnXltY++lCppXMuw8xqB8FMN\ndw4Zf5tCm9i4YyOxUGzWrrlrCZnUmOkITi5E6G+hcln18/8hUrF8LEOb+iepH7jbeFyOJD77SNil\neJAkbwBJElU1W/VtqUJrlRqrhw7r5EqHnYj6jHa7SBDRKqAHmX/phDLt8SAYt4us6MCqMrYi1cwD\nxhiDtv3tOaujJGxsqpBhuKrvcaPdLVhJxSSSQL5i9KHIpv5b416kL6peeOyEre+TyPkYMsZgv37V\n2J1sdSKkv67s0QKprudrPapgtuGS0esIbs7ozEG3VmmqrU0qQJPLWliI7alT/HFnp1lwJ+jx8NbX\nv07f+fOmwlft95u2IMqGpDkcZlskQrNRVKfcZv3iteVRfumGG6gvKTGPLfV4aH39dfb87nc0Pv88\ndc89x66vfMW0bQFZkGhMiCRFVCDDYAECN1xm1dJyRzKcLRQFvgIMjI2ZbYO0V3HSR6t8Pt57+GHa\nli3jngULzPN696GHWFpezm/fe49lP/kJ63/2M44PD9M1MMBQPM6isjKTGOn2KAAramo4/PDD+I0+\nuz79lOUvvmghinp4tVqTbMhkqtBdO7HNlqDm6sWZS35mIT1MQ4EA3/V6p5WIFqrQTyZMNTTYa1jW\nhMPNrNEsa9KNP5c+9bDaVMS5s7OTO40MuyaaeJd3WcpSAgR4jMfM/vOZU3uYsH7NFXqNokRZyEJq\nqGE966d13fU+C3kO2XxnzEYm7FR/pCsLjWwJbTqCka7gTarjVf5oE7CNBKG9RztGfadcQZIytLVQ\nRAxgDdabAfq5DZGZTBYh59NeUjAO/AUy1NfJj7HE+Gcfr0KRMc59yKJBXzXa3K6NM3UZQ4lDSKIH\nMrxXFSe6iCS6dcj5s5Prlcb/quo1JEKPm4DnSV4T+/gntePGjf5WGccsBg52duIzXjtonOdyo79M\n15X9Bk6q69kNu51euGTUhYtpQHtLC5saG82iOFP5cW33DBXAew8/zKKyMo7/4R/SWFFh7lPt9/P+\nN75B3/nzjoSqrrSUukDAQiKLgRIbGQ16vXxoKKH7H3zQbO/S5CSjk5MMxeM8sG8fuSIeGOO3F2WJ\nh5U1NZZxZINSjydt9V2n1qqN6sOqUrFeNKqxooIl5eXExsdNsv/u4CAgbyJ8oFUtVnO8sqaG1sZG\nur72NVbU1tLS0GD2NTA2ZlFAdaVPzWG2Kqmd5DlV181WeZ1OL8581d9c1dpCYaYqAOdblVahpaWd\nZcvaePDB/ZYQ3XTjz7fPdCR2Jztpo403eZNGGlnCEg5ykH3sYznLiRHLa07TKcev8ZrZ3pM8mdO5\nOKGXXgYYYJhhOugwxz2dmMlK04VCPgrlVH+k61Vgq5FKY7oxZKvEpiIV9uN3GuN/k4SSucPYrnwv\n9Rgg+3eMIl/VSGK1A6kQRpChwurc/EhiZo/caUD6jHpJ5HGClXSOIUnWKcCpFOBZkpVNHfp35mUS\nhO2zyHl+FecQ4lSoQobX6rceJx3GpmxXFiOJqlJ6v0TCj/Qxkknjals75cY41Q0CVYm3Cxn2O4os\ngKQT6gHS5w0r2G/gpLqe51/Js/kFN2fUhYs5gHS5hbF4nFtefJHBsTFW1tRYbFoUnjhwgH2/+x1f\nqK2loayM1/r6GB4ft+wf7e5mx8cfm6pk0OOh1OslFo9b7mY69VH24x9zyZYfWuH1ct62rRjwFhcz\nfjV1xmjI7+f8+DhBj4fzV7LPG202rFYOGmRRQeWfVPp8IISZx1oEbFi8mHBJCX3nzyfNrZrzdwYH\niTuMd1NjI68YOaSQ2l82Fo+z/MUXGRgbozkc5rbq6qT+ot3dvHTiRNKapIPuP9q2bJkMFbb1n22O\nZTZenAq55rnmm+cZ2R2ha8DIqVzWxo51M5OFo+dKFqrw0kxitsev+ldoo40LXMhpTFGiHOc4H/Mx\n7/COxUM1SpQf82OuGJ9KrbSyi11TGrPybNUx3V6os7lO+eZxRpj5vDiVv1iNzEl8IsMYsvWCTJUf\nm+l4fe6eQeY8nkUSnWIkwbLncaqxN5JQQ0dsr9+MVBd1hIDfIlU8FXNTDPwB8F+Q5GsASfxGcc4v\nVQiTyOcsFMqQ1XPtv+A3IhVRu9doCTJFR4X42vNOFTYh10cdr7zMm5A3BUDeCNDJbimwAlkZOAL8\n1Ghbzz9djlwrVVAq27xhF4WDmzPqwsU8Rjp1KRQImPmaqUhM3/nznDHyIPf+7nemDcxNFRUWP1JF\nRKv9fprCYc5qRLQIqCsp4ZUHHrD0Ee3uZsyhUJGdiILxRZSGiALExse5AimJaMjvZ61hRwNwR3U1\nmxobua26muMxea+8yufj4cZGwoGAmY86OjFBiaEe+oqKOPKNb7BnwwaLIrnqpz811UYVjutERL1F\nRfztl79s2ZaqOm4oEHBUkfW11K159DVJB7sS6tR/tjmWmcJudRX2+LlzOSmd+eZ5Tqdamw65hLIW\nMgS5UFDjv43baKU1YxhoocNF22mn3tCMlKqZa0hyL70c5CADDCR5qPbSaxLRECG2sW3KY260ZKQV\nzoooHQpdaToX5JvHWci8uGxVVqVEnUCSOacx6G09Q7Jy5dRXKiUrk5Krz91mZCEhpbhdRRJR9SnX\nhCRWaux2IupHFvS5k0Q+qarY6zX6CWHN8bxqHNcIfGiM9ZjRZ7pbt3eTuWKvP8PrkCAFHuQa/BZr\nCHAx8L/hrMSGsOavOv0SuB1J6I8Zz8tJ2MOcQxLKG7ASUZCKrqrE+wYJkqsT5VuQublqfRtx1cz5\nApeMXkdwc0bnDuxr4RSCqSOTTYg63ltURMwgPXpRouIxMwAAIABJREFUHn0fFcqrSFy1UdhHAGfG\nxrhn1y7zh7dSU52+VD4fCrFx8eKU51ju86V8Ld1ts/sXLmTyyhUWlJSwcfFiur/+dV554AH6zp83\nCd19DQ28PTjIUDxuEuxwIMDS8nLqS0r49aOPsqK2lltffJG3DHXxjupqGoJBk2h9PCp/YlT6fPDR\nR1Rp450Ugtt/so3m5/4XTp8fJBP09XFaS32bvibpkA3Jy9U/NBX0myFqXlJdi4UaQ6qCNdP9OZVL\nKGu+IcjTCTX+dEWHIEFCX+KlvMNFndYiRIgP+dBCtHIND04Xoqteq6aaIxwpCJFTnq1NNLGJTTNC\nEKcapm1HLu+LfEllIfPisiXE2YRJ2gminWDkQr4zhVva5049r9S2b+/sNEN7VXEeNQ5FRH1IsnoO\nmeN4DFk0aJXx+iTwA1ufCj1IYo1x3OdIJmf6j/fbkSHCYynOSUFXKYuxWtno271I4tuFnG/da/Uq\n8rzesx3nQVrMlBrPK4EvauPbiCTuPUh1U6nL+nwvQpJNJzVVn/8vaNsrADo7aUaGAutFo6ZaEAsK\nV1zLRXq4ZNSFizmAOsP3Ml9SobxGJ4UwCxktKS93VNFOfOtbNFZU0N7SwtLycq7YlEE97/G1vr6k\nYkMlHg8bFy/mrU2b2LNhg4XEgSS3tYEA5V6vI+lsCAap8ae+R/vTvj4ODg4yODbGe2fO8L2333Ys\nxhTXlNWGYJBbqqo4NDTEwNiY6c05cOmSeTf5bDxuEvDmcJjIwoWEAwGawmFW33ADRx95xDLeC5Rw\nOH4Df7j72ZRjdYITidS3bTl0KCu1rVBEMxvoZPmdhx6akYq2uRRJmi1kukk03UinaqYjdFGi7GAH\nXXQxbPzsy6QG5qKg5kK0nNpNpxqq105wwlQ0C+XZ+iZv8gqvzLvQ7FyRL6nUiZr9R3iuP8rTEeJs\nixBl05b99Uw5p5mg5u42JKGZQJKoYyTmtN5hjPo4qpEemzXaa4NI8nfSeF4JPG07TuEskljXIJU+\n/RvYgySL6lu7AUnwtiDVQx36t2wRCXUW4/gJ41z0T3k997MWmad6xtbuVdu2IuCXyArGyuJmFKlk\nLgB+BtyIXI/HSJDgZuBdZP5ogOSKwx5k/qg+/zHjGD/SbuYDYC2pb17UGf/6bG1nez0Xolq0i8xw\nc0ZdXFfI1/dxuqHnBy49t4zLZ/3Eq2PcebuXnQ9kN87yH/+Yi0bo7PLKSt5+6KGUx6l5OHbunKk2\nKui5fzXbt1teV69tOXSI3liMj0dHOT8xwcjEBJVeL1WBACPxuKP/qMLGxYvp6O9nPMvPhdpAgLMG\naVtUVmYWFVr/s5/RceoUZR4PX6qvByHoOHXKMv66555jKB4n6PFw/A//kCq/38y7bH39dUtO5o51\n6wht22Yh30HivP+Nh7i5dlFWY80G9lzQHevWTem6LMQ1nSof9nrHbM9LOq9S5dW5la1J5Eo/rooq\n7uM+trEtLQlL11eUKL30OvqQpoI65hjHTEKcb57mVD1brzXMhLdnBGvu5iC55ZOmytl0ansqbdlf\nb82xbSfYw22V72em+baP8wngJ0jStxJpo6L7jarx3UtuBYQUwkjCNo6MbNJJldcY70US4b0lSPW0\nGEkow8jQ1lKgk+QCRF6HbU5YjSSc+tzrKEUSUBXuXESCaL5iO85vvH5F61uf/4NaO4uA3xuP9ffE\nBFKNVuep+vwtCQuZCNldJ9nmKLuQyDdn1KlKtAsX1yx0e45oTw871q0raPv5EgNdgQnsXMPBFa9D\neICOgeRxpupDr/g3MjlpEkansdhtSnzFxayorubkpUu8tH69uW+p18vw+DjeoiIqfD5L/ql+PMgv\nj1MXL6bNa1F9BX0+xsedgnGSoYjo7aEQPZs2mWPYuX49n3vhBYbicTpOniRQXEwRcPTsWW5qb+eu\nBQt446tf5cH/9t946+tfp7FC3hdWc+mket1VV0fHqVMEi4u4dFVwiQD/8f1/Yce6wpFRe7/2wlK5\nXpeFuKaVCuvCitmel4+NepBVVPG0qaNIKHUy3XFevHTTzQpWZOwrndKqKsMCfI7PcRd3ZSSl+jGp\n2s2EW7mVAQa4xKW827gWodQaSBCnQkNVIlUK3neM59mG/iqF04k45xpGrNoiRXt6XyoXcWWWbSvo\n7Y5irWq7gPTznermQB8JVXMYmQ+pigzp49PDYFOhBvkdq8bVgCRpTiRWFQTSq8s2I38jHEIStADw\nGe34BcgbDjoUGdRJndPzg0j1MdV3/2Wsqq0w2u5Czp26HspJKKsK1SQq50JC7Q0Cb2n7vUaiCNRG\nEhWSz2p93kuCvGZ7DbaT/kaIi8LADdO9juDmjE5/2F22OWb2tdDDOCt9ARiX42yqTh5nqj78HklH\ngx4Pb2/aZNlPL9yj24QolHu9HD57loHLl80Q12h3NxcMwjgphLQ+OXmSVS+/zLFzsuRChRb2Gp+c\nzEhEPx8KsT0SoTkcthyfDc6Nj5shrmU//jGNzz/PiDG+cq+X+NWrCGBCCEYmJug4eZK/eu89fv/t\nb5tEVC9I88yaNeac/9F//a9Edu+GoiI2NTby5YUN5nkV+jqxh/HaC0vl2t9sh5JOFfYiQe7nVAIq\nTHWEEe7jvpShqvYwVnXcJJP8wMxMSw+n0Fm1FoqollPOEEOW/FOnENooUY4ZtGAFK/LO0xxggBFG\nmGCCYop5iZcKEmI7U16zhYT+vkj9Qzq3YNp0eysFaRSZN5hv6K9TmONUclP19pTXpBp/L4lcxJum\nMM6Pte2TJEI81Xzra2H3SV1OYi5VO1XIcNgBEgTvOLAMGWr6DFIdXKD1e5txjCJf50iEt9YiiZ+9\nOm8qNCDn+qS2LQ4cNR5XGq8vxapQfd4Yl/pWUdedUw2JSazFhDxIgpoOIeR82r1d9SJPnSTIehi4\nA0mkf07iGu3s7LTk1PqRa7Je21YM7DEeK1/VemTF3XTXiWvpMjNwlVEX1xXaW1qmNewuX2KgKzDt\n7fDkd1soWtTDtpbkcep9lHo8RHbvJuj1JqmAFrXV4zHVs/p/+Aeu2kJkfYbfp97msXPnksJtq/1+\nLk5OmqG7xUB9SQmfrazkvaFEYfnVN9zA+2fPsryqin8eHmby6lVqSkq4o6aG1tdfx+fxsKmxkb/9\n8pf57ltvsff3v8cOf1GRGcqrCPYTBw4kKbIlHg+Vfj8XHEKDez79lMX/+I80VlRQ6fMxOjHBwdOn\nAdh86JA55/0XLnBUC53dHomkvE7synQ6BdoJdrXNXlgq90JA03tNTzfsyu53vdf215JTyGuqMFhV\neKeZZgIETKVR5YQq6CpklKjluGyVxHRKazvtRImaPp16u3rfy1nOh3zIa7xmhuYuYhGv8Era808F\nn1Zi5SpX2czmgoTo2udrvoX9plZrctNM0+2tF4xR/eQzS07EOd+29PbKkcTzt8ZzXWFTxWzsSBfe\nrB/7EglblUwWIXrRIoxjViHDSs8b20aQ1i86xo1/HcBmDrCLp4nxE56kiiISxXhqSBT0uRtZrfYU\nVkXUrlTqOablwNtGW41gGhxVIwnjGJKY3W+0oX+L9iIJXBVy7g4irV6KjeOHcSamGP39Ajl/6pdB\nJZJInjFeP0IiP1nl1LYCnyKJtirypK53/bwfQFYbVutxJ3Ium0is/afaeK4abe0wzku1owpiuZhd\nuDmjLlwUEIXIMcsU6qv34ZT3qO+36qc/pSEY5KNYjKF4nHKvN4m0Vfl8HH3kETYfOpTUph1rFy7k\nyNBQUlGjukCAM0Y4baXXS9+3v83yHTsYuGwtqVDj93POILJLy8u5fOUK8StXkvJWARaXlXFhfJxL\nV67w7kMPsaK21vS09BYVMSmEmQt6965dDI7JWoIqz6XM4+GizT6mvrSUgcuXLXmlugdoU20tb371\nq2kJ6Oj4uOl12rZsGYOXLiXyfSsqWFJWllOYdi7XzFzNeZ4K8vUpnU+IdkfpjfUS9AYZbRnlYED+\nFFL5j6lyIp/gCfaxjy8Y9SMVEbSrjHZPSyBlPulU4JSn6uQ72kGHSUbtPqG55H/20ccylnGVq1RS\nyTGOJdm05INsPUDzyZWdKqbWZ24Zbun2zpSnmS0K1Y7e3uewemqq8WPry04+9dzEehJkJopUKj9G\nVoRtzGHcag7V904YSR5HHfYNIBXJChJEtYle7uBt+riJIJW0s8rs71bgN0gV9DYkgdqCJMfD5vFS\nCUynkrYZ5/CcMTYvcBipKts9U+1oIKGo2nNbU/mI6v3+nAQBVjYuQSR5bECqzse0cejHVCHVW/WO\nV3OtsAnM21xO66XvrzxMQ7h5oNMJ12fUhYs5gGwroKbzL8wU6pvJRkTfb0lZGQdPn2YoHmdRWRn3\n3HBDUnufrari3t27OXXhAo+98QY+I9y3qbaWBbZ81K5PP+WyQfBUiG2518sV44ZTtd/PsbY2thw6\nxJnL9tp+4NEU2IZgkIHLlx2JaK1RCGl4YoL41av84H15X7m9pYWlFRV8obaWQHExP29tpbGiwjKH\n9914I23LlvEl41z1CrrvtLYmVYrVPUDtFYgV0lmf6GugW8fY1y7VmudSNXcuWo1MFfn6lM4n9MZ6\n6RroYl//Pj7ukcF7urqYKl+zjz7OcIYOOiinPGMFWierFRWSupjF3Mu9UwpNdaqiq/uOevGaZBik\nlco2tlnCYpXa2UwzpZSmHVsjjXyJLwEwyih3cVdWYcqZkK0HqFJQ87HFyRdT6zO3ANh0excqPDGb\ndnIJLg4BdxmPlc+nGr+9L3uIsF61doBE2LBSygbAdL3N9vzVHP7G+P8WEkQ0RCL0NowkoT5jHNXG\na7v4IX3cRBcR9rHKHFMUWV1W3U79NTJE9UUSxK0BSbBU1V4/iXBH9eNeKdK9JIjjJPBXJGxYFG7H\nWgEYZG6rGs9xbXutcT5FJMJq9Wq9ADtJEFGQ+aBxY/wdyHXp0s6nzHh8o/F8hMR6qNBaHUXG9oXI\nkOeDyAJR6jpqRyrUtVg9WAtpYeSiMHDJ6HUENxdr7uDdnp6UpCKXUN9MP+T1tj545BF2rlvHpsZG\ni7XK4aEh+i9e5ODgIPv6++kdGaEuEKA2EODdhx+mbdky7rvxRnP/8atXzaq2geJiLkxOcm58nIZg\nkK81NvLEgQO8dOKEY/7oXXV1idxYbQz6bTQPMDI+bgkRHrx8mVg8bhLsw0NDFpIa1HJPe0dGGLx0\nycz/PPbII2afjRUVhPx+Wl9/ncX/+I/c++qr0jLmo48IFBdz4ORJ6p57jr7z59GRzvrEmu+bIOjD\n8biFdOpE8uYXXsho7eKE+Z4f6gQ7Gb8WP6eCXoNshpt5Z807SUTIiRzpeZeK1KWyU0lntaLITT/9\nHORgTiQnm7VQvqNhwkwySYwYwwyziEW8yZuECFkIVhll5rn+E/+UcWwq5Liccs5wxnEfO4HLRE6z\ntaZJV9RpupCqz+zeF7lRyLmSD5erfYYiE3afTx16MaMmErmJ9cY23QbmV9q2rdrxEZIJchRY2dlp\nbt+CDDH9jnGsCm+uRoahfkSCpA4hlcHTSNI1CGzmRwTNa1xuV/mvOiaQxE4RMi/wr5Bq71Ek2QqS\nCLNtwUq47PYxPyO5YNESEt6gIHNGnycRwq1IY7Hx+CwyT3QCWdn2A6ONbFBNss/pRSRJtefogjW0\nFhLhuK8BA52dDJMI41XXUQiZB3vWaFddW3PluneRgEtGXbiYBQQM9dGJVOSiFKkf8qm8K+1thQIB\nXnngAb64QN6v9cmQCrzG/83hMIvLyjgTj9Nx6pSZV7lz3TrqS0rMfT545BF++P77TGoepXfX1fFP\n/f10DQw4qp0ra2p4/v77TeLR3tJCY3k5NX4/X77hBhqCQSq8XlnS3Rba3/XppyZpdyJkqiBSjd/P\nyYsX6RoYoOPkSYqAxooKC9lRpLD/0iVTNQ6XlBAoLmZ0cpKheJx7d+9OuSb29nQyVVdaireoiAuT\nk3ScPMnnNNKpxl3u9XImHs9L3bweVMRrEe0t7bQta2P/g/tpDDQmEaEtbGGQQR7jMZM89dJrhrou\nYUla4pSNH2kVVUB6YpWNwuiktH6P73FFu/3URBMf8IE5Zp1gbWe7ef5xrDdjnMamiPo9RnkTp33s\nBK5Qiqbq+63oW4QiofzNK/PoM5+CT/MVufqEZkMm9GJGS4x9tyAryKrCNX1IEjyEDKFVxWzsRYl0\ntXIHkvypYkXHsRZUUoVx3keGl6qx6hVzlYIoyZafdlZRh1QOO5BhyL8iPSaBN4y+TyEJl5qvcuP4\nLuAGJPF7H2uRGN1PVGEvksyFkfP/ljF+e17sVay5oncgiWgj6cN2FTzACmCxtk2NrRkZKq17vW4k\nQVxXGttUyG3coQ2d1OdSuTlXL10XhYObM+rCxSygkP6F0e5utn/0ERPG+2xBSQkfffObaT1Gjw8P\n8/HoKDcaKiMkPDwfe+MNxxw++5h1v8yQ389vv/Utlv3kJ45EtCEY5FdtbZYx2S1NllZU8PsLF5gU\ngpLiYsp9PoYMYq3ncsbicVa9/DINwSCVfj/tLS2yvZ4eTl28aBYoAtjU2MiC0lJLnqU6P4Vqv58T\n3/qWaRNTBPyrhQt55StfyXlt9DnR0bZsmbRx6elheGwsyQ81G1yL+aLXK+x5ga20JuVRZpvXCNn5\nkT7N02xmsyXf0z6O5SxnwDBI2MQmS+Ehp74U6qjjDGcAaKCBX/Ery3hTeaKuZz0ddLCCFSxlKdvZ\nzha2OOZMxoixilVc4hLjjHMnd7KTnYQI8QRP8CIvUkIJdxlBnKnya/NChJzNK2cj33S+Qs/30/M6\n8/UJBee8wIit7QtYcxBVf/p+fmRYcCWSaNqtVFSV3GYkoVWv271JAZ5E/uj+G5ILIi1GKp8eEqG5\nDUjCOEiy52c1iaI9CpXGfucc5iNXFBltlSFVq3O2selYD/yT8biGxE2AWuScqQoTVUabym5F5ZxW\nI6vmtiLPuRI5Z8ux2rWUIedsC5Igf4zMvR0x2u5GKsIqn7jN2H8VUnWdQM7ZThLzbrf0sXvAusgN\nbs6oCxfzCLnkCWZCbyxmElGAwbGxtIrba319HDx9moHLlzl2Vn4tKLXTHnaqj88+Zr0K7JFvfIMt\nhw6hbjyFfD6qjJDVFTU1SURUjVu3NGkIBk1F9P4bb+TXjz7KpsZGWhsbLUWFQoEAS8rLzbDiaE+P\nObZKLVz3dsNGxp5n2d7SQn1pqdmvqmD73sMP4y8uRmBVYlPBKQfUbpmj5lYR+JDfz+XJSepLSkw/\n12h3lMjuCBv3biQWT30/di7li6bLeXaRGaZy113L53Y/y6/2tkC81KL65aKQpQsn3cIWeuihiSaG\nGeZ7fM9UP49z3KIg6krlHvZQRx19ZtCctS+9Yq8qsFROObdxm7mvUlHv4A5OcYpFLMJn/EWI8Hf8\nHW200UUXr/BKUkivrmqGCLGEJZzmtFnVdxWriBDhNV4jTpwRRuigwxIKXBASqMkr39v6vYzqMcxO\nvmm2mGvWNrrSmasHqR1K3ZrAmk+KQ9v2sN2ttv2qkeGgKvRTWbXYVbylSCL6nrG9koQ36T7j8eeR\nJCmOJE66sqvnQyqyFzbaXYEktdXaOVYhq8kew4oAkniB1Xc8FUpJTQJU+G0MSUQXAfel2LcLeAI5\n76q9lcg8WlVSsRrYQKJwE0gi6kcSxP9s9KPm2l6kStm1KKW2C0nelWIbQc6VyicOIxXjx5AEd5BE\nrqr+bnSy9Mn32nORP1wyeh3hWszFmq8o5FrYCVBTbW1S6K9OHi5ruZgTQrCorMxCPLMlyoq0nvjW\nt2isqKA3FiNmkEtPcbFF8UyXz6oIoV5o6Pn77zdDinc98IB5vDqPXw0Pm/vq59re0kJrYyObGhvp\n2bTJschTKBDgK4sWEQ4EuLOujiq/n87OThorKmhpyOwvqsbw0okTSeSwvaXFDGduqq1lU2NjUrGk\ng4ODDIyNmX6uenGbaE/qH62FzhedCqGcTmI83z+nsvmhb/p2xj7D0EA1Q/03sKjn31vIU7Z5jZCe\nuPbSywADJoHbxz6TJP2SXwIyhPdpnuZO7gSgmGImmWSoc4h7udexr41spI46QoT4O/6OYoq5wAVT\n6YwQ4SVeoovH6OcfOMh/4CJeJo2/LrpMqxZ9zOmIdVDLfCummHOco4suM5wZZIiwHgpcEGgVT46G\njmZFMgudb1rI98VcJspTLS6jyEUHkqypME9V0EZvO4SsqKu2bSFBZFuBEyQK+ujho//Q2WmGkT5h\ntH2QRMjoKBjvLIkJkvMZ7WPWix5tQuaYHjTO41Mw4g4k7ja22XM+zxjnrHxIU2EFkqB9SILkFiOJ\nuZOx1kpkGO5OEgWBdIyTKEZ0Fkkcw8Zr7UhSfRvwOslhvMreZg8JYulBElH1S2UFVqse9SmgQp9v\n7uxku9afytG130RQ56K/G/UbFGp93cJGM49r29DNhYvrAO0tLfxxZyfjV6/iLy5mWyTiqEKq8NEF\nJSVgEMWVNTUc+NrXclZo9ZDR7739Nn3nz1sIYigQoOPkSZrDYbZHIinHrYf9pvLLVH19fP48o/G4\nWdjITqIBM2+zNxbjsTfeoL2lxbHdvvPnGYrH6Th50uJtmY1npz6X6nwVOQwFAnz4zW+mbMOJUOrF\nbbauSf2jtdB+onZ/T90WKBOuxUJKhUI2HpZ13XWEY2HEcBEXkPO4f80ThMh9XfVwUKfXjmn6iSKZ\nIEmSBw+HOMQII2xmMzvZySpW8VvDvbGIIvaYVvESiiQvJMgZLtNBB9/juxRpkVmnOc3vUd7BNyN/\n4gM8CzwKwApWmCRNP4dneCYpnNicN+rw4OEKV7jKVUaMn69NNLGQhfjxs41tluPs4bKpwoDTQkl3\nZE8ylTdroe11CoGZLsyUzt/TDm2q84JOLgIk+6ja29b7031Xw0hV7RmsIbU7kCGl9nBekIrlCDJn\n8UKK8TmpbroSq3JNN2qvT9j2fwsoSdG+8utU7cWQKifGeOuM/u8BvgBcNvb/MpL82ZNMGoADJNZs\nKdZzBhmTqchyEOlFqhTIHUgCaz8mhMw7VSRc/V+NJJ/6/ouwWvX4kIT9b5Fr87g2PrVGav6UT+yf\nGvOwHev1Z/fsdUNzZwduzqgLF9cBlJdjOBDgM5WV/Pb8eZrr6kwFMhVS5SnquZHhQMDM7VR5p997\n+232/u53+D0elpaXm7md2ZAoe59Ovqcqz3PLoUNJ49PHZvdetc+HPW8z1fnq2yeuXqXj1CnKPB7K\nfD7efeghGivsRe2d4ZQrHIvHiPZE2bpmK6HAzP1onYq/ZyFznjNhvuXeZZPrGdkdoWugCyhlUdm/\n54NHtuQ9j/Z8URXqGiTIKKMcTMpyg0UEuJ+HeIGfMs44FVTwAR/wQ37IDnaYJE+16USoa/AybOgv\nrTTQQ5yznKWUUu7mbrroYiUr+RVPM8E64F2K+AMEw9RSy2EOm56h6c5Brbki9vrYbud2Pstn0xJQ\nfQ7aaGOQwax9Tp2QKv91PmGmzyFCYfJAs4Gef/oYqf0knQiyyjPVyWS68ar9y4x/+4EfkAgHLSZR\n6KfK+LeYRE6kGo8acymyqFIQSYLvQZLDJqQyOWnsU4Y1hFVHGTI/EuQPfP3XdyuYjr8hrEWJMNq+\nTCI3NIxUGPXxOs2RExSh3ELC37TcmIMhJJlWVXkVVEVekKHNioSrcUewXkfHkPPjQ4ZI6w7E+nUw\nP9+l8xNuzqgLF/MY052Dp0JqbwmFOHTmDINjY5T5fEkKpH0MqcIxlddmpc/H52tkIJOed6qUx1OX\nLllyO7OBvU+lwqkcVD3P02l82ah2qfJiU52vvr3c56MuEODilSsMauG2OnLxFA0FQuxYt2NGiShM\nrTJvIXOeM2EuhxQ6IZtcz4Qa/nk+eOTf5j2PdvsXeyXZj40AtUqtlqf8YRvnn9jFuBE0d57z3Md9\nSWRP+YbeyI0WH9AoUYTxe2MFJWzjbdazHj9+7uZunuM5yinnBP9MOY9Swkt42Igwfnqe5SybDQdB\n/RzKKGOYYUsu683cbOa3qrEVUUSIEPXUJxFRwHEOlAo4VVUwl/DpuYqZPoep5oHmAj3/NF3Ir5Od\njNr/nizH245UGi8iFckfGP0otVGvONuNVBWdQnWVPcxr2pg2A18x2q8FDiPJ2odYQ3Dt9ihqrsux\nEtFKrKGu6jjdj7TMeKza13M4U81RFc74NZJEvkQiNPcCibzZESQRVZ98zUgiqsKn1xrblYWLfm5q\nXQaMdobAlkyQmNPHSK6Mm6lqbrrX3Yq70wOXjF5HmO+5WNcS7Gsx3cVpthw6xOClS3wUkx+fTkTN\nPoZodzfHzsm6fPY8VKUEjk5MEPL7k0iNnUBmCufUyZvPZnujSNNRwy9U5ajq/ejtZ0OyUnlbpiKy\n+vZtkQjNdXXm81KPJ2sSP5cwk4QyF9jfG7Ph9TgVZPNDX7d6mcpNCN3+pZdebuIm3uZtQM5XhAh1\n1NFEExvZSCsLDEuEZuKa5X2IEA00mGTPi5dqqpnslL6hpzhl+oAuZznHOU7MCPcdoILv8Z/Yxz7G\nGTdzQT14GGWSYc4Sp40rZg1NWejoaZ42xv2aeQ4XuUgHHfyaX5v7KW/Rd3kXkPmtd3M3MWJ00JF0\ng8JO0N/B6uuaj3VKvgV/ClkoaD5/f081DzRfpLOAcSLIav+dpB+vWouQcbzejvLDtIfW/iBFn5Ag\nxkolbEKqlK8iw187jON/j1T/7jT2W4lUBHUZ6i6sZFHhXhKhrhFkQaUGZFiwOld7nqki0+nm6CiS\nmAVJFE0qJaGM6srnSuM1hSoSPqz2uVbtv0lyLq/aVxHqQGcnb9nGns67NpOv7VSOdZEfXDLqwsUc\nwHTn4ClyNBSPO+Za6mMIBwKcunCBl06cMG1alpSXW/bXiw1tj0SSSI2dQGZS33TyVub10rZsGbdV\nV9P6+us89sYbbF2zJsnfU+/HqQBTKu/VdEhVVv/iAAAgAElEQVRFZO3b9ed958/npc5OF7q7o+ze\nHWHv3o3E01TnnS+Yi76L+ZAM/RgCFEQN14m6Bw8jjDDBhKkcvsmbnOEMXXThw8cuPiJk/PS70/gZ\nXUUVRzhiqqfVVPMbfmP6egJUkAhDH2DAVBsBBjlDO+0mkfXj5xSnGDWzwKwKDcAFLpjKaNAo+6JX\n/2ym2eItWk45E8bP+/u4jxqjrIzTDQq7P2sjVl/XfFTBfNX5+abqTxfSkcLZgiLIupeleifnMl47\n0VaEcyUy1BSs1XudiJc923sJMlxXxShUYyWvO5EqaxnwF0gvUZD+pf+FBFlU/a8EnjceKzLVhSSb\nyoO1lWRCUIKcF1XcaSGyoNN64/UdSHK8B0mCFZktJVE0qAypfvqAT5D5pAoB4NtIxfR7RvsB43yV\nLYtePbfDaEfN3XtItXg71hBdSCb+uqLps71mRzolX51XFRi301zMFwgXLlykx/DYmGjbv18Mj41N\nS/sb9uwRPPusaH755ZR9qDGs3rVL8Oyz5r/KH/9YfDI6Kp7q6hJrX31VbNizR3wyOpo0Xv31XM/D\naXxrX33VHEP9c8/l3KZ+fNv+/Tkdmwucxj7d65kOr766Vjz7LOLZZxH797fNeP/XA9aKtQLjr01k\nN8eZjnlKPCXWirVig9gghsVwVm0Oi2HRJtrEsBgWYREWCESxKDb78Qmf+bhVtJr91It6ERIhsUAs\nEJ+IT4QQQjwuHhd1ok6sE+vEsPG3SWwSraJVfCI+EfWiXiAQzaJZfCI+EUWiyGxb/VULj/iiqEra\nHhJVYoFYYD6vETVitVgtNogN4hOxVrQJxFpRLhCIJtFknr86v3VinUAg/qgL8eevesQLe1aLW8eW\nmG3o87VBbBAIRLkoN89lqlBtNovmnNrL97jpxFNCiLVCiA1CzJERpcZMjHWtEALjXyE+LYeNdoZt\njzMdU2+Modl4vsF47hdCfFFY5+ApIUSVNu7aFOdg7/8pIUS1tq/af6323C+ECAghfMb2x43/nY5T\nuEUI4TW2F2v7FNmOSfevzmFb2Djvdba5yQb2c9fPcZNIvy7p1u0GWzsurCD53mNWcAsYuXBxHSCX\ngjOqsE2Z18tFo3Jt27JlDF66lLYwUDaFg3IZ3+Lnn6f/4kVzn1zb1Is23RIKUenzmUWJUhUqygcz\nWcwnG+zdu5H+/n2Ew808+OB+AjOci3o9IJsiRbkeYy/ik2thnT76uJd7+QyfoYsu/rQ7TE1sgkHv\nCLtaqrkpcBuVVPJLfslpTpvHqb70/uuoo5lm02dUVbm9j/tooIFKKjnIQVP99OChAQ9LGOc9wB6H\nsJa1PMdz/Cl/ikAwxJBWVKiVHfh4Ag//Hy+Yx1RTzUUuUmr8DTDA/7QbbjFqmR1eBlvXWc8hSpTj\nHOdd3jWVVKdzybUQlr3gT7rqsE6VgUspzbvvQiPCzBUTmioiFGas6dZLFeRxKnI0U4gCx5Gq2ztI\nle8JY1zjJBRSNQcREvNSjQzb7cC54JAO/TiQeaUq/sFecEmhDqutDMAdyBxYvYKtvRiSH6mUprOY\nUVDhzh3aNr0QUytSzZxKMSKndc6lyrNCDYnQY70gVDbIp7/5hnwLGM0EZpuouzBw4MCB2R6CCwNz\neS2UqrfuZz+zKH6Z1NVs1NdcoCu0nq1bxbrXXsupXVPpfeWVJIXUrprO5fXIFWNjw2L//jYxNjbX\ndQ9nzIe10BXJQh1TKBVN9fPyq6tNhfy7+72mKqkrmlWiyuxLVxTV65UHKs3HYREWfuE3n9eJOov6\nmayTWv9qRa14XDwu1oq1poqrn6uuHKf6+5M98nz+4mVE6RhJSqq9Df1cVJ9qe5WoEmERNpXhXLBW\npFbTnBTwfJR0Owr1vlCKWy4q03QjlQJaqLGuFanXK1v1Uh/ja1NYi1uEVDUDIqF4rhZWNXCREKJS\nWFVCNQe6uhkSQnyinYPeTptIntdFxmsVwqp0NoqEson2uFkkVMky7fVW27zYVdFq49zU/pUiWVnV\n/200xrfJeLxJ5KaGZvPecFrntSL5usikxqtxNWUxLjuc+rvWQJ7KqJsz6sKFCwtUzuXOdetS5kk6\nKYBTqc7qhEq/33x8RQg6Tp3icy+8kHUOqDqPSociSteyT2YgEGLduh3ToogWsiBLUttGEas/f+ed\naakonbLfPM4pn7zDTMf8WXcd//vuMH+5N0RpitN3Gqt9m+qnxCtzQH8bhm1rZIRDJZWW/M/VrDbH\no3Jz9TxNhXLKGWLIrL4LcBd3WbxF7b9Aimw3x89ylj3soYsuhhgiSJAAAR7jMWLELHmoqfD3LfDe\nMvjbB+Gy8RGzhCXmOagc2pWspJVW81yaaWYlK83HxRQzwghDDHFvUh1OK5zmPFVOmVN1Y31czTRT\nSum0vYeywWwVE0qHVEVhCjXWdDmA2eaH6mP86xz6tldfVRVg48Aho71fG/uWIyvD9pPw3azCWrTn\nNRLK3JeRKqo6B1UzWy+mpM+ryqs8j7WK7SIwypFJBfIwiXlXhYS+pO2vV+Xt1Y5tMfY9AUZWt8wF\nbyJRdAlkDuta7fHzxjm8gsw/fYXMRaRyhdM6O10XmQoU6YWVch3XTFaVdpGM2SbqLly4mIcYHhsT\n4e3bE+qolseaSw6oU/7m42++KcLbt4t1P/vZrOR1The6up4Sr766VuzZs2FalNFCKDwp256hHN+k\nfqfxnFLBKb9az/X9T/vrTbXvFnGLqeJ9UXwxrepWLxLH/fdjj4v/Yb9PlI4hPMKTpGiWiTJLTqXK\nJdXzTFXeaUAEBCLRTq2oFavF6oxKZjqV1CsSam2raLXklKp+60SdRdG0/60UKy0qsl191p/rObG1\nolYgEEERzKiMqlxZBGKTkSWWSk3T12KTllGmj2M2rre5jafEBvFzQwWbmBa1Nlv1MxV0NTJXRWyt\nsKphYeGsDLaJhOrmMf6vElL51NW6kHbcAttY7OdpV5b1558IIZYKqaaqMVUb252Qag5TqdfDtnPd\nJKSiuknklk87nXAagzqfciHXo5DjmwvnPN3AVUZduHAxF5Gvh2ooEOAuw0Kl2u/n3oULAWc1M10f\nThYmyge14+TJOWu9kg9isV4GBrro799HT0/hq3dOp83KbKnVs2Edk2SjRJTDXqmo/TYMT68ZMKuv\nDjBgqnhHOGIZq67EqX2Xs5wYMT4M9PH/rpvgcgCuaJlbQwzhwWPaqKh+eullgAEz11JhggniRhbo\nFa7gw8cVrpg5n/lghBEmTT0FBMKx3zOcQSCSVFaAeupZwQqWs5waalhv1PhMVTm3jz7OcIYOOggS\nxI+fu7iLKs0p0UkFjWsZsGocSmXZYttfv5a2s908Th/HfLMqmn700s4f0MaL7OdfT4taq7wr7VVz\ns0UvCTVSVZ/NFnY1TFWAXW1sb0Iqg6oCbphEnuV9SDVTV+sS8ULSR1P/lLerf3XGP/VcryD8BHIe\nDiLV2EVIRdNelVZhC9ADLENW01VzqKvXyoJlo/HaXdq5b0fmV75CYj2ms8JyNn6gTmNQ3rEXkDms\nTt+i+XqNzsWq0tcTZpuouzAwH3KxrhfMhbWYSvXbXJCv4vVUV5dYvWuXqH/uOfHJ6GiSwqmP3ykv\nNB3s+a1zYT0KgT17Nohnn0W8/HLztCij+eRKZt22sb6vvf56wdtO2+80nlMq2K+/elEvSscQT+2X\nuZB6LqVSBoMiKI6Ko5axpsqzXCKWiGpRbSqgqZRFr/CayuAisSh5jwP5ap/Z/1WJKlEiSnI6JiRC\nYrVYbZ5jNkqjnpOrq7r6MU6qparkq+empto/m2sp3+vtWvmMSsbMZLGuFfnn69lHmGktdCXzE+Gs\nhuWiNOpq3VohFdFsZmytcD5nfXu2M28/xmkO7f0VUglMl8t54MCBpNftY3Fq53Hh3GamKzJV2y5c\nZdSFCxc5wq7OTBfyVbx6YzEODg4yMDbG5kOHkhROffwfj47m1Eeh81vnClpa2lm2rG3aqujmkyuZ\nddvG+pb7/Zl3LmS/2jlNZ06sDvv1FyfO5QD8aB1UBxos1Xbf4z0WsYjjHGcFKyxjVaroClbgxWu2\nf4pTptdmGWUpxzHJJJvZzK3cyilOOe5TTTXF0/hT4QIXGGMs7T6VZjachAcPBzloniNIL9Snbc5/\n+no+wzOmX61qz65OOqmWO9lJG228yZtJ1719/y1sYZBBMw/WCdP5HpqfmJks1qnk66UboZNKpiuZ\nm3FWw+wqmWpnAthk66sdmeN5wWi3Oc14dKgs7Eqsnpi6F6qej5oOuhdqE9n5cxZSCcyUy2l/PdV6\n6/vtTdFmpivSzf2cn5htou7ChQsH5FL9dioqar6em7lU73XyPZ1LmCkV2sXUMFv5fEp9U7mY2XiN\n2vMTG0SDQFh9RqtFtXhUPJqUB6r+lAKb6nWf8ImgCFpyTmf6r1gUi6PiqJm7WS7KzZxP+1+dqLPM\nnZ7vuUAssOSSLhXlYrWoFBtEWAwb6rBSLVXV30ViUdr1sKuchbl+5pMT6PzBdOXrrRXJKlk+Wq9T\nOzr0arStIrurxF5dVyGfuVDVbhuNdp36nc6cyExzan89G+U5H/9SkaZtF/krozOB2Z4bFy5cOCAX\nkjgbxWUyjS9fkjsbmK3iPC5yQ6HsVXKFIjWpwkedYB+rvaCQR3jEWrHWUhhI2boUi2KLrUmRgzGL\nTmpn+2+pWJpU4EgVVaoU0n5Gt3EpFaVitVhtKZJkn9O1osrcXi8ClvV2Cn/OhlwW5vpZK9wgwPkD\nJ5KUD1nJVDjHbimyVqS/Sm4RCcuVFTmORYjUZDdTv9OFTHOa7Zzr+7mksvDADdN1kQmdnZ2zPQQX\nBubCWjgV9kmF2Sguk2l8+uv5FklSmO71uJatZAqNQq1FPteEsjfRw2RnAip0M1X4qBPsY1XHrmQl\ntdRyhSt00WUJZRXG74SrXGWIIT7H51jPeovdi8JVrkJn5rHfwA1ZnmV+aKKJBhoYZNDcVkQRt3M7\n9dSzjnUECHCZy+brl7nMQQ5aiiTVUMMpTmnFhnzmawPEzUJOkAi/VcWNwoQtx6ZCYa4f5yDAufCd\n4UJCXwunkM5cwlOjwELg54CX1IVzdEuRLWCWLVuJc6joAAnLlaEsx6IjVVjsbIWo6nNqD43u7OzM\nes71/dyCQnMHLhl14cJFRsz1HMuZyn/NF3N9/q5F5HNN5JrPV+gc0zrjL5v+7WNVROgAB7ibuwFJ\namupTdnGBBN00GHxD80F5ZRbqs3mgjrqLM99GjnU8Tt+x0d8ZNkmEBzmMAMMsJvdxIlbKgarHNfb\nuZ2NbGQTm1jOcg5ykH3sI0qUdt6j3nBbtJN/NZdHOUobbdzCLZZjU6Ew+aBz0Ql05pFvxdKZxlQJ\nTS+SOMZIkMdMfqh6dd+bUvSt3k1B4O08xpWKdDpdnTO9Vk5Eeb5cLy6ckVwvvfAwlFsXLlzkgmh3\nN72xGEGvl/aWlnlBYmZrzBv37mVffz/N4bBL+FwAM3NNRIjQRRcAbbSxgx2z1l6UKL30EiTIMzzD\nfdzHJS4xxJBJ1IoowoPHohjezu2UUcYhDiW16cOXZLlSKBRRZCq1AF68lnHZ0UADk0wyyCBVVDHC\nSMZjWmllF7sA2MhG9rGPZppN5TJGjChRtrLVJJD6PLbTToiQ47EuphcRMN4JkvxM7Z01d7ERSaoA\n7kBap2wnPblVxzST+pZFH3Av8Bap7VrSIYYkeKoQkROiSGJ4jAQ5nom1cjr/CNfH9TLXUVRUBHlw\nS5eMunAxRxHZvZuugQEA2pYtY8e6dbM8osyYrTHH4nGiPT1sXbNmxolovgS8uztKLNaL1xukpaV9\nWqrfXs+YiWtCkZQwYW7hFiqpNAnMVNqzkx4ngmSHTmSXspRznGOEEfP1IoooptiiIIIkbHHi7DN/\nEmeGB4+lHeW/KfJLF6KYYhkWnAaP8ihv8ibDDHM3d1NHHXvYk5IsV1PNCU6Yc6WIZyml9NGXci71\neaynng/5ECCJtM51ZHPNzGVkQ7iuBcSAP0Ym2m0nu/PMhijOBCIkCCDM3Fo5nf/1cr3MdeRLRt0w\n3esIbs7J3EE2azEf8wxna8xTzR+dynsj3xDhWKyXgYEu+vv30dOTOvTvekOhPqecco6j3VEiuyNs\n3LuRWDy7YK50obgqnDPbMM5MSJVz2EsvXXSxj30sZ7ljSLBuM9JAg4WIgiSKdiLaTDPb2MZBDprb\nLDYqnc7jtLczVazB+llR5PBb5mVeZpBBJpjgIAc5ytGURNSPn5u52WKxokJo++gz59JprYKaicUA\nA0SJzgk7llzfF/o1M5VrcrYwl4OVC/lbKgTsAl4h+/PMJzR4OsJY1TuliWQ7mumE/fw7Ozvn9PXi\nIjOmQkbbgF8BV4BVhRmOCxcuFOZjnuFcGPNM54/mS8C9XvlVHg43s2aN61amSN+f8+fT5vHZG+ul\na6CLff37iGZ5AyDdj/p8Cg+lQ8j4a6XVQn7tBGkVq4gQYTGLuYEbCBDgIAdZwAJe4iVzPKnIUyWV\nbGKTSXovctF8bZRR87EfP6tZnXHcquRsNtD9UEGGAr/CKyxggfm6U1s68byDO2igIWmflayklVbu\n4i4OcchxzT7mz4EDVPIWT/OjpDbaaaeeemDq65kKM5Hf5uSZOp/gFpcpLDL5dOYDRQDfJDcyPR1w\nr5frF7cCNwMHSE9GZ7fOsAsXLq4r5OKfWgjkazEzNjYs9u9vE2NjbmF5IWbG43PDng2CZxHNLzeL\n4SznPRu7DrvfpBBCPCWeEmvF2qw8Q3U4zcOwGDY9M5tFc5KNi/7XKlrF4+JxUSfqxDqxTlSLaoGw\nWrV4hVc8LB42x5fKZ7RIFAmf8KXtL9c/ZcWi91ElqsRasVY0ikaLp2mxKDbtWfTtNaJGhEXY0o5P\n+MRRcVQ8JZ4yz3mlWJk096vFhGlNsVT8wnGNnNazkFgrpt8eY7rP4drDtePv6nQm+XifunCRK5hF\nn1GXjLpw4WLOYD75j+aCp8RT4vtd9eKHr1aLV/esu+ZI7Ex4fA6PDYu2/W2ORDQVecz3R32+5DrV\nPOjjKBNlKcneRrHR0vdGsVEERVDcKe5MeUxERNISyIAIWMigIop7xV7hF/6Uxy0Xy3MiqnWiLuVr\nTl6oDaLBMq6ACFiIc62oNdfzFnGLqBJVwif2mz/KV4sH81qj/JCgCBvEeE7EIN8bGy5ywVpxrfi7\nrhXJZzKfPDWvndsC1x9wfUZdZIKbMzp34K7F9CEX/1SF+bAevfRyNTZAeGCYgf6Oay7PVOVL/lXn\nX01bbl4oEGLHuh2EHIpFpQrHzTdfUA+TLKU0awuYVHmjegjvGGPm9hJKLKGvC7vf4J7dB/mTvfDl\n+Eqe53nu4i4Oc9jcp4gii7focY7zMA+buZpmWHCn/C9MOCmP8ypX+RbfMttxyvP8mI/TnquOGmpS\nzo0PH8L2GydMmCvGn0KcOL/gF4C0nTnLWXM9T3CCEUaY4BGKeYmXGKHSKJpUiFDWzDY/iUDJdp7K\nKb+tl166Oudv/uf8QPYOmnP9+8LpTOZTGGuuIcVzfT1cZIY3w+v7wUiesOI/AK9l28mTTz7JTTfd\nBEAoFGLlypVEIhEgcRG5z93n19Nzhbkynuv9ucJcGY/T8yBBThwHzsA9q5tYs2brnBrfVJ+HCPHd\nzu9y5MgRmVA3w/0HCUIn3MzNbI1sTXq9uztKT8+7eDwB/uzPXicQCKVtr512Wjtb+T7f568jfy0r\ntHbK6rWdkc6049kR2ZH0epQo7Z3tMr/TmJ9AZ4BtbOPvI39PBx2UdJYwenCMuw0Lzxv/nzKO3HmE\nYET+PF3SuYRP+ZT3Iu+xgQ2c7zwPwGBkkN3sRnRKwncpcgl4Fo4co5ibGI3839JCRQ7H7H+kc8R8\nLhBJr493jkt7mIiR72l7XX8+yiiTnZOOrzsdP844o52jSfuPM86iyCKucpULnRcIEuTpyNPS4qUT\nYISrkTbuYyllnWVUU81LkZcIkX49Mz1XhBEgGomygx22/YPIpzcTifwNO9K01x5pp5deLnde5i/5\nS3P9bu68mcd5POX746udnfQDDZEI7cCROfT+nvvP2+nsbAW+TyQSSru/wtwav379RIgCj3d2cmQO\njCfX50Hj+c2dnTwud0i7v8JcGf/19PzIkSPEYvLm2yeffEK+KIS1ywHg3wG/TPG6ody6cHF9wrXw\nSI356KU6W4gR47vxJ/mjniJa1mxzr6MCw8lzUsfu3REGBiTZWLasjXXrrE526d7nhfCpjJCwHKmi\nijLKeJu3aaTRHPsww9y6t4M7+qE63MTXH3yTQCDZT/NWbuXX/Nq0U7FbtchtPVzhXuPZi8CjOY/Z\ng4dOOrmf+/PyK1WWL3ZPUieofcKEKaaYs5w1z2kpSznLWbM4UxNNBAmaVYQL4RGbeY2TDSlS2a/o\na91GG1vZmpW1TATXa3G+IopUBIPIwkDX86f7XLGucZE7ZtNn9ADwfdBigKxwyaiL6xqZfsRez5iP\nXqourk/s3buR/v59hMPNPPjg/qSbAene55mIbjZQZKeaat7nfRodrOxT3bCIEuU1XuMc5yillAtc\nSGvPEiLEFzhJF0HgXeArYLOKyRZBgvjxT1uFZIX1rCdEiFOc0qxqngVuwcs4k7QBIwQJUkEFZznL\nJJOsZCUHODDl0PBc1liR0GMcY5hhwEqI87154Xotzl9EcG8kuJj/mA2f0YeA3wP3AHsgB8dsF7MC\ne0iDi5mBk4WHuxYSc8VL9XpYj+7uKLt3R9i7dyPxLD02ZwNzaS30PMDmlmdYtqzNkYhCaqueKFFa\naeUCF6Y0FpVLeoITjkQUJIksDyzg/1g3zGcDd3Av97KRjRznOAMMMM44I4xk9An14MHHE4Q6/wb4\nCn4uW/xHiygiRIh66imnPG1bl7lsElG7rctU4MVr2s4ECSIQbGUrffRpe90MrGWS9cCzVFLJHdzB\naU7LsGOggYaC5Cjnklus8pMVEbXnrDrlDWfzvmjH9VqcCUzHZ1T2Gasu7Ojs7JwRuyQX04epfDPs\nMv65cOEiDVpa2unpibJmzdZ5HVo5HSG17S0tRHt62LpmjRuiO82IxXpN5a6nJ+oq9FlAkQaAPwls\nZkeaOUv1PtfbiBLNOxxUkZ1cxtxPP4Dp4alwG7fxG37DOONJxxdRxFnO0sFLrOZTGviKTW2U+aEx\nYjTQQAklaYm2Hl6rCKAHDxvYwM/5OWc563hcGWXEiZvH6PDg4TCHWcIS6qnnEpfooIMneZJGGs3z\nhkvG/+8C/4ZRRnmf9y1t+fClHLtCdzRKrLcXbzDIa+11fBjqSwqtzQWqQNRKVnITN7GNbUnFqvK5\nTlSRGhfZY66Ex7bjhqZOBaroEch5dN8H8wuFCNPNBDdM14WLawBuSO38RqYwUxfJyBQumU0+eCHy\nRVPBqX/Vn471rKeXXkYZxYePd3mX7/Ad9rGPSiopoYQv8AUOc5hznAOk8vgbfkMjjWab5ZRbiOd6\n1vMjfsQ93MM5zjmSW5X3aYcXryPR1FFCiaVycIAA1VTzDu+Y6nANNabC2EorceLsYx9VVBmBxc8C\n/wY9zDhAgDhxM0R3C1scczcVdkciDHTJn7p9bXX8rzvOAPnnmhYibNtFYRDBDY+9FuCGqM8NzEaY\nrgsXLq4jzJWQWhf5oaWlPW2Y6XzEdIcep7JZUVBqc3//vpRWO5nayBdRonTFdiT1r/rTw2rLKOMm\nbmKYYQYZZDObzf366OM0p7mJm5JUzM1sBqCOOoopTlJAP+IjnuAJmmiil15aaSVMGJDqXi21VFHl\nOH5FRJtocgw7rqXWolp68LCSlTTRZGnzTu4029nGNvO8jnKUekqBR1nJUlMdbqaZj/iINtrMXFEn\nWx89RJugHEe4uZl/3voFs5187WDytQtykR75hGrOx/BYNyQ1GW6I+vyGq4xeR+js7DRLMruYXczH\ntYjF49dsSO18XI+5gHwqRWc6Jpe1cCoaNJPVq2dCbbZXXFUq3jGO8e29w9zRDyPhav7HB09Y+l/P\nejrooIkm3uRN7uAO+umnkkqOccwkgE7FdED6eNZ31rM4sphRRi1hugC3cztVVJnb66nnQz4027SH\n9tpRSSX3cz/b2EYrrWZoMUjVtIgiswKvDx+llJrVcHVFMkaMVayigQYqqbQom7oCqcZVSil9WMNs\nndRrvaLtt2Kb+O+iftZs3crlUOp2Cgk9NLilvZ2fHznifkZlQITcVc58KrfO9vdFhOtbzbWHVh9x\nv7/nDPJVRgtXTcCFCxfXNEKBgBuaez0jGoXeXggGob0dQqGMeahOxLCQuatORYNmMjc213zwVEQ5\nlcUHJOecDjJoPv/7Fvi3PdX8uzXvJ/W/k51EifJUd+n/z97bB8dV3vmen37Xu1pvtmyMhZUAcSaA\nDWLwEnxpkIwvhsQKoCTDbA1ka6arbnZ2Zrd2TN2X2qm5W8mtqUvuztzaqUmNZ7J4QtCAbYLDm6+D\nHMtyDCgD4WUCjEVsMEhyW5attmVbarWk3j+ePqdPd59+71afln4finL3Oc95znOep0+rv+f3xo+C\nG3nEeY6/64ZLnkvcwz2sZz011CQJzTrqqKGGDWxgmGF+w29oNyk3/kW+yFu8pb8PEOBxHucAB9jL\nXmVRTEArv+LFy7u8Swcd+PHzPu/HtUt0362jThfKDhxMMUWQIF68PMETXOACn/AJABvZSD31TDCB\nCxdv8ZY+n3vZGycytRjefvqT3Ga1uM4uuvhb7x68e9V2T4p+NAtrscRpcGREdw0+5vfj/O53C+pv\nJZCPlbMS42wr0ZpbTBLjQ+XOqHzETXcFIU+OrIOshbXw+XwVk222bIyMwNGjcPCgEqakziCrYebG\nmumYXO4NM9fjTP3ngtFV06w0icfjpadnb9YW0VRuvWZuohpGUbSb3fr7zWzmPs9O/kPPKVZ5kt1c\nvdH/3gz+jPpAgI2jC/zPx6CJJtayVrcF5ukAACAASURBVD/fSU4CKplOCy1c5jITTPBrfg0+dZ43\neZMd7MCNWx9LAw26pVLjl/ySa7mW1azmDd5ISpyksvS6uIVb+HP+HB8+9rM/ziKrUUutPi7NFVer\nhzrAABvZSJAgI4xw0RAPGiDAJ3zCRS4yySR36bVSzedTm6tEt9lM7tWJ/aRbw3xw1kQ/x11dbN29\nW/5mZMFSuWqWey1Wuktqohgv93oIhSNiVBAEgezi/7JlWQrb6I9jurpgt/oRnykO1UwYFjN21UwM\nFrP/oguMFELZTCBptNFGK626IOqnnw1soIYa04RBGprVb8KphNonrfDy1kbe4R09nrSLLnz4aKWV\nCSb0ki+11OousutZTwcdXMM13M7ttNPOfvZzmtNxYtSOnfOcZ5RRJpggSJAJJmihRb/GeeYJE+Yo\nR3mFV+LKm2xiU1zpl3rq9bjOfeyjjz5Ws1rfHyCAH78+d9qxXXTpMaU11PBLfhk3L4kiM9UDh0xx\nnYn9pFvDfHipv43TfW3842teZlai4sgDzcq53KdrpVxnKla6GF+OiBhdQVipft9KR9bCWgwODhbV\nolZMYVtMChLJ/f3Q1wevvQbeqMtiGsvg0JCfublLVFW1s23bfr1NJmtiofdGrtbKdOQiMDJZUSG1\nUE5nhTvNaSaZZIAB3R10Pes5zvGUCXeMFsMfdcOvO208/UATv+O5nUYa4853hjNMMsk44/q4Navk\nDYM3sIc9gBLmxzlOgABb2KInF7JFw4O0jLkOHPrY7dj5Cl9hJzu5kzvjrkvL2ltPPTvYoScT0vro\noENPmKRZeRMTKJ3iFGHC7GQnv+W3+jW9zdusYx1f5+s8xmNxa5IoMo0PHDRrazYk9lPsRFUfeU/z\nX/ae40WvWnf5m2EdZC3KS6IYl/WofESMCoIgUFyLWjGFbTEpSCR7vbB3ry5EsznXxMRxZmcDDA/v\nymO05ScXgZGNFTWVUDazwmni8gM+AOIFsZlITjy/1qbK08S7Pb/LmGeKAQa4nut5lEf1+EitndFa\nWked3mcnnXqiHo0AAeqoo4++uOtw4WILW4BYSZejHGWYYf6Bf4izfGqZe6eZVi7BwFu8xTrW0UUX\nwwzHzaVWmsbI27zNAAMMM0wjjfocdtDB53zOGc6YrolRuBsz9mrW1swk5zMtdobcYltarYXkgxUE\nIYaI0RWE+NVbB1kLa+Hz+YpqUbNqGZWlFMnauTyeVq5cGc/aGmuleyMXgVFs8aCJy0kmWcc6vsyX\n6aWXHeygkcY4112z82tC+hSnaKYZUK6sk0xykIN8h+8AMcH9Pu+zgQ148HCa06pTH0wxxZ3cST/9\neiKjLrp4iqfw4o0rBxMmTCON9NHHvdyrbw8QYBe78OEzvdYAATaykUYauZ/7GWEEUBZaLVmRUQyb\nHW8mIlOtiVG411EXd13ZrZ2WQuUgFMF924zEByFWui8Kp/TzV0qW11pUPrIelY+UdhEEoaJYytId\ny41QKJhT9tdinOvKlXHOnlXZWrXyK9YlsWiAmqNsPnPGMiLFsI4llhsxlj9po41znANiZU7SnV/b\n9xqv6W6oO9nJAQ7EtTNmiE0cyyu8EneOJ3iCPezRY0s1tH6DBNnIRgIE9GsAuJEbmWCCm7mZAAEm\nmNCP7aOPYxwjQCCuzw1sYC1rOclJ9rGPHnoIEcKJk3nmqaOOLWxhLWt1K24bbfwP/ocupg9wQJ+X\nxLkFcly7HSgh1YVEruWDzJ8gLEfyLe0iltEVhPjVWwdZi/wpdjzm0JCf739/07JKNpQqNrSY1t9M\naOdyuZT7Z7bW2PLeG+YWm2w+c8V200yXIOcWbtFfp8sImzi2LroAlSxIiwU1op3jJm5S7quDqp7o\nMzyTdI4RRpKEqLHfLWzhKldx42Y96+mll0d5lF/xK/ro4yhHOcEJ3SqplW+ZZTauzy66WMtaPV61\njz5OcII++niER3Di5DKXGWCAgxzULZ7P8RwTTOgJk4yW08S5zX3tlj6FyvL6m1HZKWiW11pUPrIe\nlY/UGRUEoaIotqvp90438uGFG/COruZ7g9+ld3t/Tsdb0VK7lLU2zTDWzdzT/UPcx3YtiTW2cMwr\n+JXCvdk4R//HUBszwdNxnyFNIGkYa2Fqx6ey5KWqW6rVHjU7zo+fS1yinXZe4iUaaaSX3jiLohGt\nJAxAI404cdJKq74tQECP8XyZl/XMv/dwDzPM0Eknt3Ebb/Imt3M75zjHAAN6OZibuIkv8AWe4ike\n5dG4fu/hHgIEmGFG3+7Fyy3cwgADdNHFb/ktIUL6+Izut4lzmzuVWJ3SSsj8CYIQQ9x0BUGoKIrt\nanrTnv/Cb+bUj+iHOtbx/PYdOR3/4os+Xfh1dvbhdnvLLk5ffXUHo6MHaW3tKkvcqtHdU3MjTSSV\nYCovQZRFdDdGi00p3JuNc/SXL7bSFJgEiuPKvIY1uqtrL728wAv6vlTznuuaXeACwwwD0EIL5zkP\ngAcPNdRwmcuECVNDDbdzO0c5ShddePBwnON6n3308QZvMMooDhxsYQujjLKOdTTQQD/q4ZDR5Tex\nD1Cut8/wjC62++hjgAEaaeQ93qOD5Fqsyw9zN3NBEISlQNx0BUFYERTb1XRt21cAuK2liR/5unM+\nPtFqZoWyLuVOoJRNMp9i1/AsDuYV/Erh3myco43OTUBhlldjhlijxdCYYAhSz7s2nlZaGWfctESN\n8VgtyVEXXWxmM6BcbUOEmGKKMGGqqOJDPuQAB3S3WC1rL8BmNrOb3bpQXGCB4xznKlfjStd48fIR\nH5n2AfA7/A6ttNJLr17+RatN+imf5iREsynRY13KmxhoyO/nRZ+PV3fsIBSstLkTBGE5ExGswZEj\nR8o9BCGKrIV1mJqdjdz9gx9EpmZn8zp+dnYq8tprfZHZ2anI0aN/FHnqqabI3/0dkR/9qC7y0ks9\nkdnZqSKPODVHj/5R5Gc/uzvyyiv3L+l5E5mKTEX6In2RqUjqMdwfuT9ChEhXpCuuXSH3RrbXb4V5\nMs6R8TOUL3dH7o4Q/W9VZFWECJFNkU1Ja5Bq3rXxfDXyVb2fu4/cHfmjyB9F7o7cHbk/cn+kJ9Kj\nH/tp5FN9/Nqx2n4iROoidZGeSE/S+aciU5GdkZ2R3khv5A8ifxC5O3J3pDXSqh/nirgiDZGGCBEi\ntZHalH3siOyItEfaIzsiOyJTkam46++L9BVlHgvpp9hkd1/cH4lEiEQiXZFImnuvVPzs7rsjfweR\nv4PIa33WmbtiI3+/rYWsh3UA8nKFlZhRQRDKglViLb0eD39x2214PZ68jtesZqBiNefmpgCYn7/M\n+PgAg4OPs337gXRdFI3EWNFyuQxniskbGvLzh8FL3OVs5w+79+Mt0riyjZUtd0wtJMyRh4LHYLS0\n7mc/u9hlGhtqjD017tPGs4Mdej9/xp/xA36gu+/uZCd99OnHGtdYy+j7OI/zS37Jec4zwAB+/Oxl\nr6l7sNE12IWLsOE/gCtcievDONZXeCXl9RdSWqey63v2Y+ZmvlQ4a6LW9a4utu6utLkTBKFcSMyo\nIAhLiiZCL1x4Xxdu1i/5kR1arKaKgFgEoKOjl+3bYzF7Q0N+Tp9+iYWFEG1tt9HTs69oIjExVvTQ\nod64eFarzHFinG2xxpVtrGw27Sot+i7b0jJf4ksECODCxVu8leTCGiTI/zN0K5uCa/mts4G/7v6P\nnPFcYhNPcoQXsortTSydkig8tZhUYzsvXj3G8yIXaaCBS1yK66MY15+JQvuxZix0thT2qQ8Fgxzz\n+9m6ezcebyVdtyAIxSDfmFERo4KwjLCKtTEdRiEClC3JTinQEt3MzExw5sxRWlo28+CDv4i7tsTr\nL6YYS0y0U+5ERqko1biyTTRk1i7x3tnu8eoVN/tIzv2Z7b3mHxpiJBikxumkv7s7bwt8sfDi5SIX\nAVjHOj7n86Q2xs/oW519/H3PXnqZ4wXcSW3NxJeZoDMTqMZ2Wl9P8iS72KX/W6y6rUtFNomgrIsP\n0n7qBUEQUiMJjISMSC0m61CqtVjK5DmpallmQkv409y8iY6OXkuIpGKth+aye999B+js7EsSohC7\nfoCWls1FKxViPL92zkyJjPJdw0JJN65C1iLbRENm7RLvHfMiL6Rsn4qRYJCjgQAHR0fxHzuW+0UV\nGRcuQLmj/pJfmrbRPqNvBW7gJ1t30wU8lUKI7mVvUkIks7qdibU9E9tprzvoiPu3koQolM7Nd2n+\nfmf61Asgv6WshqxH5SNiVBCWEaWoh5iKfIWvJkS+9rUjbN/+QtmFaClIJ4q6u/vp6NhJR0evqVhd\nqnHA0j68yGVc5SDx3ulH2YZew9xZMdt7rcapUjN0tbaye+vW4g46R/z4+QJfwIOHN3jDNMusHz9/\n1X2Jsc527t7yn3nQ4005ByOM6FbWJprSii8zgbocMRPdxeEHKMvlDihZlt9Mn3pBEITiI266grCM\nKEU9xFRY1QVUyJ5c17AS3MDzJdd7J9v2wVAI/7Fj7N66tewuukYX0g1sYD3r86o3qqG53jbRxDu8\ns0JqeZYLH+JCW3wqLTZcEKyMxIwKgrCkLKXwNSMXYVRqEVXM/os9VrP+nnvuS1y9GsBmc+By1VJb\nux63uyHj+UqVeKjYLGfRXAjGuE0PHo5zHIgXnWaxnanIJ9nP8v3xX+or24GqH9qFWC6Lhw+R+IJQ\nLCRmVMiI+NVbh+WwFuV2tczFxTSxbWKspHE98omjNPa/d+/GpONy6bPYrrNm/V29GiAcvsjc3AVm\nZs4yMXGc0dGDPPdc8tiNLIUbeKFrAeVzP84WP358+NjBDoI5ulzmcmxiW6MLaQMNQHJso7HNu4Pv\npu0/H9fbEdSP/4OA9VamEEp7ZYOD30VcaItPPlGyy+Hv93JC1qPyETEqCEJFkoswSmybTqyY7Usl\nirTtU1Mf6NtmZgJZ9VmM68oGs/7sdpXExmZzYLdX6W1nZ5PHbrz2rVt/mDYhUqrj8k2OlGreMgmy\npYydzocRRpKS/pTi2MS2RvGYKrax1LGd5UyRU8hDgMyU+srqUHY7EaLFRKJkBaH8iBhdQfh8vnIP\nQYgia1E4mTLFpmubKFaM62EmZFKJIm17KDSJ3e6JHl/H7OxUnADLRRzlcl3ZYNbfQw+9RW3tOlpa\nupifv6S3NRtfvNX3S1y+PM7hw4+WzMKbaS0gsyAr9hwWW8QUknE1l2PTtc1GdJbie6qcP/4LeQiQ\nmWJcmZ9USYpSr0XqY4TMeMld4svfb2sh61H5SMyoIAgrjnTxrmb7UiX6MW7ftm0/P/3p7YRC54D4\nmMpyx9emQht/c/Mm6uuvw+d7Kml8WptEzGJGjbGai4thxscHCkpwlWreEuMan+CJpFqXxcSY1Ked\ndj7io4LOkU+sZT7HFnKe5chSf25yx0fuEYz5HCMIglB8JGbUYpSrfl86xK/eOshalJfEeFfjepjF\nwqaytBm319d30NbWBcRb8oaG/Bw61Mvc3OWsxlbq7w4zt9t0ZXa6u/upqmoHwOVqBFJbeI3WUJer\nLi/rZKa1gOTyGaW1eMUsjAABAgWfI19XWD9+eunlMtl9lgp1uS3291S5/y4u9ecmd1K7+qZeC6kN\nutTI329rIetR+TjLPYDlivajDODYMb8lsk6+994PuHTpLyTD5AqikrKKWnmsmijKtL27uz/Jkpfr\nd0GpvzuM/f/0p7frAjoVHo+Xb33rI44d83PHHU8yPLwrpYXX6FZrZmUtFprI0rhz6CS3BaHa2cCf\ndD8J0QoqxfpM9dPPRjYSIJCXa22x0MQTKGGaruxKOvz4kyyC/qEhRoJBapxO+ru7S1KGJtfPttk4\nCyHxc1OIu3Rp6Ee53e4me8fRfI4RBEGwDmIZLRFWTKCxYcNlS2eYXEksVYyD1bOKGkk31lJbVIq1\nHmaWPO27wCyW1IzE745Crt3sWON4QqFzWX02tOuqr+9Im0G5GLGa+axFV7CDGwOwfvQS7x/bpW8v\n1uffi5eP+Mg04c9SYiaetDX+r69ey7bQXWniWmOxhSN8mGQRHAkGORoIcHB0FP+xY0Dxv6dy/btY\nastlqiRO5SN1BGPqtcgn6lEoBIlRtBayHpWPiNESUewEGsXAigJZKC2VtObpxmoUFc8/f6vlXODT\noSxybczPX2Z8fCCjKEr87ihEUJkdq/W/atUWILfPhpm4NW4DylLup8qpypQkXksxP//5urwW80GK\nmXjS1tg7OsqGY8fTCLdY6ZEaTgLxorbGqRylulpb2b11a0HjTEWufxdLbbksdeZgYSmRRE6CUKlI\nAqMVxM9//jJ2+48tl0RlJTI4OLgkT/OsmjjHjHRj1ZLoeDytLCzM6RlgzZLo5EM265HO5dNsn3Fb\nJBJmbCy/ZD6pkidlckEdGvJz6tR+5uamaG7eREvLzUxPn9bbAzl/Nl580ae7WWpzb7atEPK5N4yf\nneHhJ/R52br1h2ndipeCbOcnH5dU4xoHmxv4i69d4nc8XbpYje8zjJcBoIsg+/GzKy6xUTAUwn/s\nGLu3btVddJfqeyoVkoApRrnXwvr4WKpETrIW1kLWwzpIAiMhI253XVmsFkL5SJUAZqnJxjqUbqya\nRaWx8UZdiLrdTUtq7c21Nqlxm9NZm7enRHV1Gx5Pa9JxmSymweAIc3NTANTXX8f09Om49vl8Nsws\njdo2j6eVy5fHy2KxNl6LcV6Gh3eV/fOfrXU2H5dU4xp/uf4uHvTEW03j+6xDKz3ipSPJIuj1eNjb\n01OSWNF8EculkD2SyEkQKhURoysIeXJkHVbaWhQau6eJDbdbuWO63U08/PA7RRMZ2axHOlGRTqSp\nZD576OnZy/DwEzm7bI6O/pxQaJKxsQEGB7+T1XgS97vdDVy48D4Azc2b8hbxZm6WxgcFExPHC47P\nLPTeSDUv5crk2t3dz4XODfzwAQ/f8Dyask5pPi6pxmvd5nsmSbjF9/kUucYWrrTvKStT/LVYbm6t\nS1fBVu4LayHrUfmIm64gCCUnlatprpTK7TibrKu51iZNdB09ffolZmbOAQuActl0u70Zz7tnT7Nu\n/ero2Mn27Qeymgvj/kOHenVX0Y6OXqqr24qeubhYa1wIfvx8EvqQO4+d5H/d+iarPB36vmK7E2vn\ny8a11lintI8+0yy4rw09xq+Dr7LRuYnt3fuymr9MnwFxcxVS40PqkwqCUEzETVfIiNRisg4rbS2K\nldCrVG7Hx479KmOCpHTnNtuX6Do6MxNAE6I2m5M77ngyK4txa+ttgLJo+nx7shpP4v5EK+nJk3uL\nnmW5WGtcyL0xwggDnuP83z0B/tizK25fKZJ5Zetam43VcyZ4mqbAJIHRzEmuNDJ9BqxWZzQ/lpsF\nLz/UWhRzLsStNV+scV8IGrIelY/UGRUEoeSkqtNpFRwOFSfX2tqF3e6Jq4WYznqZbR1LTQhpRCLz\nDA/vykogbdu2L876lU/tTGP900OHegmHLwL5xd2mOr8V1jid6DOrAVvK8xnppz+jhbKSMl8vLVoW\nYFBizLrfI6Wn0LnwR/uoAX4I7ELqkwqCUG7ETVcQhGVFPmLN6O54+PCjce6mRhfXRPfOp59eE7V4\nKvfX7dtfSNn/4ODjnD37BrOzE3rfgGkW2FTZcc1cfbXxZHPdQ0N+Rkb+kcXFOWw2Jw899DYtLTdn\nnB8jpXB3LRbFdEvNxgW3mOerpMzXS8sO4CDKglf6eMBcMf+cGEVfP8Ubc6Fz4UNccwVBKBX5uumK\nZVQQhGWF5voK8PTTa2lruxWXq8G05Iq2bXj4Ca5eneDw4UeTyoGks1gtLIQM71I/dPN4vFRXrwLA\nZnPhctXq2zUxZxy3mUVWCdGA3meiVTPxeDORGAyOsLg4p0Ybmeedd76Xs5i0sgVPc0stBpoLLijB\nYdavFy9/PORlKNhbcPytFSzL1qQfJe6sacEz/5yUyppb6FyIa64gCNZDYkZXEOJXbx1kLUqH0SV2\ncXGGs2ePpyy5om0zxowmlgNJFwvpdFYD4HLVc+ed/z3tuILBEWZnJ4hEwpw5czQuLnBoyK9nu/V4\nWrh8eZxTp/bHjdMofG02Z1I24UuXTkbH0sAddzyZcW5aWjbnJSaLFRuaCqvcG9m64J4+/ZK+ToOD\njy/R6JYGa6yFl1yzAJvhx48PHzvYkTKjcT6Yf06KL/rUWhQ6F0uXcXY5Y437QtCQ9ah8xDIqCMKy\noru7n+ee28jsbACXq4Fw+FLKkivaNmPMaGI5EM06aUZ9/QauXh0nHJ7WRazxmOrqNkZHfx4VkjHP\nlcTyKsZ6kZEITEwc1/e1tnbhcFSjWV5drkYeeeQ96us74sYYDl8GIBy+pI/FbG6UYLLh8z2Vl5hc\nKRa8bOI8IdE6vhSRL0KuaBbLi1yMe18MzD8n2VgwS+XKmw5NzAqCIFgHiRkVBGFJySemM1e0+Ls7\n7niSl1++h5qatbqrLpC2DItxPMb4yOrqdr75zY/i9mvlTJzOOlat2sK2bfviYkw9nlZCoUnDyJxU\nVTWzdu29XL16Rp+D/ftv4sqVUVyuRpzOamZmArhc9bS3b+Xee59JKM0SK++SOEYgbiwSe1h6Xnll\nG2NjA7S0bObBB38hc25BjKV1mmjiFKcsUOrGh8RvCoKwnMg3ZlTEqCAIS8pSJ8DJ53yaYJ6a+iBO\nTNbVbaCubr0uIgGeffYGQqFzev9zc5cZHT0I2LHZHEQi4aT+PZ62uGPGx4eYnT0LqFhQzUqqjTdd\nDU9tX3PzJq5c+ZxQ6DygrLa1tetLIvqX4oFCpSCJh6zPDnZwkIM00cQ7vEMHHZkPKhmaRfQDYJKl\nS8xUDkusIAgrCakzKmRE/Oqtw0pei6VOgJPN+QYHBxka8uv1RaemPiQQOEooNIndHnPhralZq8cH\nPvvs9Rw+/CgtLbfE9V9d3RbtdTEqRNXXrMtVHx1PHbCovw4EjjM7GxO8drsrabxmcZpDQ35+9KMa\nRkd/js3mor6+k0hE9dvcvClurLnUEjXOw5Ejj5nWXM2mPmq+VNq9Uarat1bAumuRW73Nfvrpo49T\nnCqzEIVYcqNJYB3ZCtHC10I770FIUxNXyIx174uViaxH5SMxo4IgLCmlqPdoRCuBEgpdwOGopqVl\nEx0dvRljJI3ZaKur2wElCLdt269n1z18+FFAichQaJLR0YN0dPTS2dmHw1HNoUO9eiIihY3W1s1c\nuTLGjh2HePnlbkKhSebnLwN25ucvR18r3G4va9fey9jYAB6Pl9df/1Omp08zPX2S2toODh9+VLdE\nBoMjLCzMABCJLPD55y/rmXLr669jcvItQMWY3nHHk1lbM43zYLTg/vjHq1iz5m62bdtn6Yy6S4XV\nrMP+oSFGgkFqnE76u7vxejxlHU9pyS1bbTGzLBeOMblRqSyiZlZQyaQrCII1ETddQRBKzlL+cE+M\noYTs3HONrrANDV9kbOwwLS23xMVeai6ZodAUY2MDenxmbe1afvvbf4pzybXbXTQ338zk5Nv6GDQX\n3tbWLi5e/Jhw+KLe3mZzsn791xkfP6xvt9lcSW6+dXUd1NVdF+dCbLM5cDrrCIcv4nY34/VuZGrq\nN3o/Dkc1NpuL+flLgBLb69bdFyd03W4VU6vVWXU667Db3czNXUiay61bd5fsgYL2WflX50le6+7A\n5WlIWeeznFit3qrvxRc5GlClf/o6O9nb01PW8WSisO8Ea9ceTU+Q0peq8ZEcj7oU5xUEYSUjMaOC\nIFiWpfzhrolKDZerkUcf/TTux65mPV1YCNHaehvbtu0DVGIjh6OaTz/9mS7k6us3MD8/k9TWGCtq\nt3tYXIxlVa2pWcs11/Rw+vRLzM1N6clttHNs3bqbgYE+xsYGUG68yr3WaImMx9imRY8LBaiqWkV9\n/QbOnRs2HUsqkpMrxYRmqmtrbt7E1752JEk4FPNhg/Gz8lYn/H0P9NGX1rJVDitlujjecrDj1Vc5\nODpKV2srrz3wgOUto4V9J1hJWBUai5nr8dm0r2SxLghCpSIxo0JGxK/eOqy0tVhKt87u7n6qqlYB\nyu31kUfeSxIKweAIMzMB5uamGB8f4G/+pleP/ZuePq0LUbe7iZqatXFtBwcfx+Px0tbWpV+T5h6r\nrrWOvr4PmJ4+rScimp7+THfx1eILa2rWYrM50USm292kx58mfpd7PM2Aqg3a2ro5bt/cXFCvMarK\nwFQZ9pr/TVDt3HHbtHIzidf2rW+doKOjl46OnaZCVJtPYwypMe7UGGuaDR9+qFyPp1ob+cnWzHU+\nzc6/FJS63mqu9Hd309fZWVQhWsrvqcK+E4pTe7Q4FBqLmd3xsbXIpr3UEy0lK+3vt9WR9ah8RIwK\nglBylvKHu8fj5VvfOkFnZx+/93uf6PU4jRjrhjY3b+Kmm/5MF1BTUx8AYLe7sdmcTEwMxx179uwb\nhEJBqqvb8HjacLu9GL9K5+dnOXz4URwOlYjIZnMyN3ee0dGD0RqfilOn9hGJzGsj4uGH36G2di0e\nT2tUpKIf/+CDh+ns7OPBB39BT88+bLaYkFxcnCMUmsTprMFu92C3a8fa0WqTGrHbPWzbtp+6ug1x\n2+vrr9PXxrhe9fUdbN/+Atu3H0i5donCIhdxmChcb731/6Kzs4/vPPAeD3r6eI3XMrroliOG1WqJ\ni7weD3t7eixvEdWwmpjPn0JjMXM9XmvfCoxjnsTJSmJdEAQhPeKmKwjCiiMUCjI4+B0ggs+3B4/H\nG+c2WFu7jrq6Ds6ePW56fGdnH1evTujtY7GdNjQB6HY3Mz8/E7WaLgDQ0dFLdXVbXJIg7fhrrulh\nbu4SExPJ57TZnLjdXh566C3q6zuYnj7Nc8/doFtk3e4mHA43MzNnE8ZjTnwJmtTut9mSWN4kFxfW\nYrhwF1pexY+fEUaoocaS8alCIlYqU1Koy3Cux2vtxwHtu0LqlAqCUH4kZlQQBKEANAGlJSWy2YjG\ndCo0gacJLGOin5aWW5ie/oRItHoX6QAAIABJREFUZJGZmYBp/263l9/7vU84dKg3KcGSRlXVKmZn\nJ3A6G/RkQ0Zqa9fx+7//edx4bTYHVVVtzMycQxO92ljdbi+rV9/F6OghACKRMB5PK42NN+J0VuNw\nuLHbXbogLxa5iEMrxF768HE0mvAlU3yqYAV8aAl6/GxghPUr8EFCrnGhZgLeSqJeEIRKR2JGhYyI\nX711kLUojHxiElMdMzTk5/vf3xQVby3Mz19mfHwAp7M2zl02EglTW7uOpqYvc+hQL5FIGJvNzfz8\nZc6ePY7d7oqrFxqPg+ZmFQ9qdBFWxL637XYXHk8bbW2bcbma4lvZHMzPh9izp5lXXtnG1q0/xONp\nIxJZiArgBf1cmlV0zZq7CYeniUTC+vgbG29kYuI44+MDuFy1ad1v88XowppprRLdNctxb9REXR+z\niU9dSVjje8qspmjMtXWEtRzlKAc5iN+S9TNzq4maiuS1yDUu1CzWtFi1R4tzjZWCNe4LQUPWo/IR\nMSoIRaSQxC1C9mQTk2hci2efvYF//df/z/SYYHCECxfeY2xsALtdxXm2tnbh8+2JxoMqnM5aGhu/\nxMWLJwkEjkatpjGvj8uXPzPEgCayQCBwlH37bmJu7hLxDw5jfVy9epZQ6Bxnzhxlfv5KXA+RyAKh\n0Dnm5lRZmRde2GJIeKSw2VysWXNX3DUY4ykfeeRfcLsbotdTx+zsVNzn1I8fHz52sINgkX5UZlqr\nbGIvS31f9dNPH9nFpwpLjZlgigmxGtTn2boPEool+BLJNS7ULDbVbFsuwlJru5/SXKMgCCsBcdMV\nhCJitdqDy5VUrp3GEh+p4i/ByWOPndOtdqdO7dfLr9x33wu8/PI91NSsxeVq4I47/pIDB7awsBAG\nlNDUXGBbWjZz9eqZlG65xcBmcxOJzKXZ78Lj8TI7ew63u4mHH36Ht976cz777KBeIxWIc5kNhYJx\npVu0z+nQkJ+jwb1MOC/yo2540JPaXTWXGMtiuOHKfbWSSe+OGiSIHz+72W3RBwlWKbOSGJv6JeAM\nMAv8M3BztJ2P5BqlqTC2hfJfoyAI5SRfN11n5iaCIGRLObJ6rkS6u/tNYxKNiYGqqtpNj73mmnv0\nY4LBEb38Sl3deurrO6itXa/34XbX0db2u3ExnpoLrLKELlAcYnVEjaxb18Pk5K8NgteGzebUx6Bc\nhR16fdDh4Sf0Gqnj4wM8++z1LCzMMD8f4pNPXmD16q+yffsB2tq6dIGofU6DwRFWBy6yGvjfjjXx\nH3pSf35HGNFjLP3408ZYplqrXJD7aiXTT7oEP168Fo/x7QduBTzAo5QvNlOzpGqcArQkZ/cDY9HX\nuWT31dpuAq4DnkKEqCAIuSJuuisI8asvPdmWK5C1iJGPC2Yq106jaPnGN96kuloJUperDoDm5pvj\nrGpa+1OnGjh79g327GlmYuJNQFkdp6c/00u9JBIKnWdurnCX0erqNbrrbCJnzvwSr/dGamuvBRxA\nJClLbnPzTbjdXg4d6mVk5B/1GqlqjJNRd995IpF5AoGj/PSntzI5+TY2mwuXq1Zvq83FxdYm/s+t\n78RZmRLXKJcYy1xLoJjdG8unDEhlYY3vqUovU+IF1qMy3+bvxpp6LfKN1zR6rG0yvM4lFlVrewR4\nIYv22WLtGFRr3BeChqxH5SNiVBCKiNVqD1YCudSkzERifcxvfvMjOjv7eOSR39DZ2cfXvnY0bm1U\nrdBWIpEFZmcnmJubYnExBCir47lzw4RCk5Tyq3JxcT6lqJ2fvxSNH71KLEFRPE5nrT6HWqmXVDid\nDdTUrGV2doJIJMyZM0f1Odfm7k8eOMUqT3xt1sQ1WuoYS7mvhMqm0Fqk6TDGpG4ke/H21ei/XwGe\nMWzPRfyX6kFBqeJsBUGwIhIzKghCWSlVaQ9j/Gh3d79pv8ZYxHS4XF7C4fgfecpdVktYZKeqqoVQ\n6GLaGE9znMB8Qn/xVFW1MTt7Lmm7x9MSTap0Iiqa01Nd3c78/IxuPdXqiw4PP5F2rqxQfkUQKpdc\naonmWm5Fi0nVyLbmaKH1UTNRSNkYq8TZCoKQC1JnVBCEiiSXmpTZCEyNxKQ3brc36VhNZKWK2QR0\nd1bNeulw1LN27VYWFuYYHx9AfY1m/o5LJSijZ8HlaohzsTXicjXG7WtouJ6mpt9hZuacnqTJbncn\nWEad2Gy2JLfe2HW52bDhIa5ePcOFC+/rsbNmCYJyWSNBEArBR/YJhECJyo1AAGuJNx+5XYeRUgtl\nQRBKgdQZFTIifvXWodLXIt9SG2bH5eKCaXQX/elPb005hqEhPxcuvB/tv4UrV8Y5dWp/kjuwctNt\n48QJ8/PZbC4cjqo4N9qFhWnOnn2Ds2dfR4vjzIbUQhQgorsHK+wYv88TRer09KecO/cWwaCKZ21p\n2UxVVatx5Dz88Nt8+9sfU1u7jjVr7la9RkvXAEQic3zyyfMEAkd1IZoqQdBSuslW+r2RK1YuB7XS\n1sIamLv0pl4LL/ARsTjPJ8gt3jLX+Mxs22vXUQdMZdm3hrXjhOW+sBayHpWPZNMVBCFnjFlrjx3z\nZ11qw3jcs89eT1vb7RktnEaMCYquXPlc7+snP1mH3e7Ebnfx0ENvcfr0S7rAikQWOXs2VuLFKLim\np0/rJU4cjioWFkIkisv5+emkcWh9FwunsxabzcHCwmx0i7mVVmEnEglz9eqovmV6+nTcMddeez8f\nfPA3BIMjNDXdxNatP2R4eBeXLn3G5OSw3k6zmra0bKaubj0+356MLru5kos1uxjHVRr53kvCciV9\n9mBzjJlytXhLov3sNbw2c5tN1T4V2bbvB64HJoEBVEbh9SbnFwRhpSNuuoIg5Ey+MYTaccb4yI6O\nXrZvfyGr4zV3UYejmo8/foZYUh8Vdwlgt3twOKp0a2JV1SpmZydMBdfExJssLoZwuRq59tr7OXVq\nL0ZRt3r1V+OEbPFx4nbX5yVuHY46FhYu43TWMT9/Wd+urcmhQ726yKmr20Bd3Xqmpj4gFJrU57+5\neRP19dfh8z2lr2Gxa3rm299KqS0q8bj5UkhMYiWQ7/Wlirf0Ye42m2t8pta+DtgC7EtzjLGtk5h1\nNFe3XUEQKgFx0xUEYclIVWojk8uhdpzTWWfYmv3DKs1dVFkClRB1u71xpVEWF0M4HG5AWfy+8Y1f\nUVe3AYejhoWFOV5//U85eXJvNPusco0Nhy8yNjZAokVyauqjrMcGYLdX59Qe5rHb83NQWVwMUVXV\nTlvbbYBKRtTR0auvidGKXFOzlkDgKKHQJLW16/j2t38bzS58hO3bX4hbw3xreqZa+3z7Wym1RaVs\nTb4s94yr+V5fG6qm6cco0afFX74f3b8ZqEaJ02uBC0A7sB9zUZnoltsfPcdllMUz1dj8wCXAFW2r\nfSeYZRS2dikXQRBKi4jRFYT41VuHSl+LVDGEmcq0aMe1tXUBSkD5fHvi2mQTQ6cJFbe7iYcffpeH\nH/513P7FxQU6Onp58MFfUF/fQV3deiYmjjM6epDPPjuYFIMZCNxAa+smEpmbu5B+IhKIj/vMjlDo\nIjZbOkHqwOmsT9imXHVnZwNMTX1ER8fOJGFpFDmaWG9t7eKRR/6F+vqOlDGg+YqjVGufS39DQ36+\n//1NvPrqDrZu/eGKEGlWLltj7e+pUpZLyZVSiKn46zNfC7PzngZCwEViYnEEFbep7X8JJXRHgWFi\nyY92AI8Z+nwMZcHURPGtQC+xB4ja3H8JJWTbov0TPedxQEugtil6rJn1tbIeLFj7vlh5yHpUPhIz\nKghCXpjF9GVrzdq2bV/K7KyJMXRmWXC7u/uTjjdmnJ2bu4DD4dLdcaemVKIfj6c1qRan3e6hq+s/\n0939b3n66dXR/Q6qqlqZnT2b46zELKs2mwu3u4FQ6HzaI1KVgnE663C7G9i583V+9rM7mZ+fxums\nY3FxHrvdzfz8JQBmZydwONxJ86iJnKEhP+HwJaqr29m2bT8ejzdu7aqr25iePh03v/m4xKZa+1z6\nCwZHuHDhPUZH32N4eFfWx62U+FLBSD6xlaUi17jLbEi8vh8Af0G8267ZeWsMfWyOHv9o9H0dyhKq\n0YCyXtahYjsPoiyZmoBsQ4lagCZgreF8HmLW1ICh3V3A54ZxbAKuA54i9TpZ6cGCIAhLjcSMCoKQ\nM0NDfk6e3KuLv+rqdr75TeXSWmgJkMQYOmPsY6oSLQCvvLIt6mobq59pPFaJJacu4ozU1XWwsBBi\ndvY8kcg8VVWrCIevsrCQnLwoG6qrV+t9JZNdKZhrrtnGAw/8HIADB+7SS7h4PG160iUgY6yhMfbS\n42nD6fQQCl3S58HYn8fTGpdUKheRd+TIY3z22UFaWm5h27Z9ea1/vvGTKyW+VLAqS1EX00dyzKfZ\neYPA46jvmacM2/wo6+gAMYH418Auw3YjLag4/IvRPt4F/h3xNU2bgTuAX6CssRjaNpL9wwIp5SII\nywGJGRUEYckIBkfiXF1nZgIcO+bP2uVwaMjP00+vYc+eZl55ZVucO26iW2eixS2VO2hPzz46Onp1\nl1WPx8ulSycBcLka8Hpv0gWYy9UY5xp75coYMzOBaHbZCLOzZ7MSojabi5qaa5K2z8ycNRWidnsN\nbW2/m7FfiFkaAd3NVsXaKutrYoxopn6czjpCoXNcuTKqz4Pb7aWl5RbD/sm4ec3kdq25VD/zzLV8\n8skBQqFzjI8PmLbNhnxdhFdKfKlgVfqJlVYplZgysx6andcLHABeSNi2F5VsaAMwjhK2fxjtax8q\nbtRIkJi184rhfMbfmRdQ4rQm4bg7SV2excy1WGuba1kaQRCWAyJGVxDiV28dKn0ttB//mqDLVQQE\ngyPMzASYm5tibCxevHg8XtxuL4cO9ZrGDqZzB92+/QW2bz+gC5n6+g4AwuFLnD+v4krdbi+PPPIe\na9f6otdSx7/+q5kFUyP1Q75IJBwtB5Mdi4tXOXduOGm7zebm2mt30N6u6oEaY2mHhvzMzV3CZnMx\nP3+ZUOg8tbXrTJMPmaEJvFWrtkS3OPR9q1ffybZt++js7GP1arXfOK+ZRJ4mVuMFblPeglCt73dz\ntqpKEqDSUOnfU0uHmfAqbhzp4OB3UULSg3K7DaY4rxlaTOf1wCpggpg11E+sVqnxu27B8DqMsqQ2\nkezV0QXclrAtOf5eobkSa/Gh1xM/P5UROyr3hbWQ9ah8JGZUEMpIpca6aTGbd9zxJMPDu5LccjNd\nl9Hq19KyOUm8GONGX3hhC9/61kdxiXnMXIET4yBHR3/O7Oxk9Hyx8idudwNHjjzGxYsf4/G0oIUR\nuFyN2O1OkxjP+B9fDQ3XMzd3kdnZiailsvAwhPXr72f79gNxpWt+8pO10bqj8f23tnbR1PRlDh3q\n1ec3XW1QzVqt9T0zM8GZM0dpadnMvfc+k7TfOK+p5lpDW0ctXlcllHpnyT/H+ca5CkLpMMZzFqPG\nZl20j1xqiGoYYzqNHh/GzLo1QD0qhjQbGoB7gD3R9y3EYuaPAdtQMaY/R1lQI9H9RpGrxakmxrtK\n7KggrCQkZlQQyshyjXXLdF2hUJDBwccBW1yNSw0tdlDDrI9EwWuMD02Mq7TZPEQioai77sYk66QW\n8/r663/Kxx//OOP1qTqdEeJ/WKVrq1leHUnH2GxOVq26A5erQReWxnhcDZerkbVr78HneyopjvbM\nmWPMzAQA87qtxrnauvWHpg8Q8kETsKkeSgjCysUYz+lBZZaFwmpsJsaIPoESoe8Ty5Zr1n8bSvjV\nAG8Af476+dcA/BOxhEVaveZqYCbDWJqBk8SEbyPJQtZDLJY0FYnxrhI7KgiVSr4xo2IZFYQyslxj\n3TJd1/DwE4RCwTgLqZHu7n6ee24js7OBaCzjFKFQME7oJGbdNcZGJgu5GubmQoTDl7hw4b2k883N\nXYpaIjP9AFOYJyZK11YlLXK56giHL6MJUperAbvdzdmz6ofqs89+kbm5adMMuzabjTvv/Os4V2Wn\ns47Z2Snm52eNZ0w61jhXuWSpzYTRIrlcHqQIQoxMFsd0GLPhatlsC7X4JWbYNVpfU/XvB76Asoi+\nAdyMiikFWENMiIISogDmGb7juUDMxXeEZCF6M/AZqcVoS/Rf45xqbseCIKwkJGZ0BSF+9dZBW4vl\nGuuW6bqyqUeqXHNbmZ+/zNjYAM8+e31c7dFEwavcU9uYn78cV77FZnOhCbTm5k1R11ojdsbHO0yF\nqNvdTHEcSNT5w+GLOBxubDYXVVVtPPLI+0QiMUtpKHQ+ZamXubkgzz13I6FQMO5ax8cHdDHqdNZz\n553/PenYSnroId9T1kHWopAYRmM8Z74JjmJxp4ODL5McI2osn5KuhucwShR+L2GfmVB0k43Hh/pe\n3Af8PfGCWMMY7lBPTHx+BehAieDzqLjVjVRSwiK5L6yFrEflI2JUEMqIlQveF0Km68okjoaG/Ozd\nuzEuflPL9Do4+B0gWfB6PF7a2roAZXFU2IlEFpibUz90pqZ+Qyg0FXcup7OOK1fGTMZYx9ycFuuU\njDEbb/bYcThqiETCzM6e44UXfpfm5ptNWzY3b2Lt2p64bYuLIY4d8zM8/IRunW1u3kRrq8qIOz8/\nzfDwrqS+cnnooWXINQp/QViZFCuGMdtEQ4kYxfAPTPZrIvcI8dlzjWjX0IrKonstqhboDpT1MpFF\nk21mZAq/GiMmMKuBt6NjPYZKhmS0pAaALyJZdAVhZSIxo4IglBSzZEZmyXKMGGNOE+no2Mn27QdM\n9yXGMH722SHTuqKZsNs9rF69hTNnjGPIrj6ohtPZYHpum80VLSGjuPbaHbhctXz++SHCYdXe4ajB\n7a5nYSGEzeYgFFKi2OVq5JFH3uPIkcf0+eno6GVhIZRXfU4zlmscsyDkTrljGFPFiJ5EWRcbyOw+\nrF3DUVQWXSMuVKKhI2SOES2UVqAKNe63SO2+q8W8fgklUl3R9h0lHp8gCIUidUYFQbAkZi652VpO\nY++Va62x5IkZWr/19R309OzF4XBnNcZE193FxRCTk+8R/xWZvRD1er/C6tXJ9UQ9ntaka7Pb3fT0\n7NXrjzoctTgcbmZmzjI3FyQUOo/drq4jHL7I66//73H1U++886+prm7D42nD7Y6fT62e6z/8g4en\nnmpKqulqRiW59ApCacnXopkL6UrAJLr3apbSUVRCJM19OF0f2jWESSaMSn6UbQx8pp+MtSm2O1EJ\nlLRxpxKiXpTw9wO/RWUAngRuQKymgrB8ETG6ghC/euuw3NfC6OrpcLiA3MRNd3c/HR29XHvtDjo6\neunr+w2dnX187WtH0lr9El1MH3roLWpr1/Hww+9RV9dBfM42B2vW+Ojo6OXs2RuS+gqHg2TvshZP\nY+MXqalZm7R9bu5iXHKllpbNuN0NvPiiD5tNxaguLFzR3Yq1Ng5Hlf7+/Pl3dAtqOHyJ4eFdTE+f\nJhQ6x/h4fM1WrZ7r4uIc4XCQsbEBnn9+U1o33HLHMS/3e6OSkLVYCtLFpcbEsFoL7UFWY/RfzX04\nm9jWxFqgRPv7Jdk/aPOSPu/llRTbsxW7QZS77vvEx63OkVvcbnFrvCYi94W1kPWofAoRo0+iqiS/\nB/yU2LejIAgrnNOnX9KtoXa7O6W4SRWf6PF4qa5uIxy+wsJCCLe7MavYWqMV9umn23n++c00Nn6J\n99//b9H+jT+KFjh79nUWFkLccssuOjv7WLPmbgBcrvpoG0fSOWw2ta25+WaqqlaZjMLOmTNDTE2d\nSNpjdM+trm4nHL7Mxx8/QyBwlLGxAd0CqlFTs5YHH/wFbW23R8+5idradboYdbub2Lp1d0prplm2\n4rm5yxmTR7ndXg4d6i163KjEo+bPypm70goJ63Ey+m8D6mdVOjRL6XvEW0zTxbZq8wnxP9OqgK8D\nj6ESDGXDBbIXlvlyHng3+toFfDX6Ope43UISTwmCsNQUEjO6DTiMMh38ZXTbvzdpJzGjgrDC2LOn\nmbk5lSjIrO6lxtNPr0lZH9MYu6jVATUTs1o8anV1G6dPv8Tc3BQORy0LC7Gn9Ha7h8XF1PXubDYn\nbreXBx88zM9/3ktV1SomJ3+ti0e73c3i4hx2u4vm5pu5cmWM3t43qa/v4JVXtjE2NpBhRuwkWlk7\nOnYyPj6oW0ptNhff/vbHHDiwhZmZQFz8pzHG9vDhRxkdPYjb3cTDD79DfX1HUgyuNi8Ohwu73c3E\nxK8IhSZpbt5EVVUr4+MDaeNLSxU3KvGo+bNy5s5HLDtrITU5K4W7yK4GaboyM2axrVp7Yw1SF8o1\ndxMqTnQjKi4TVBbdefL1BikutwBnUZ+Fz1GC3QecIXOZHT+wH3XNm4FfpGkrCEIxKUed0dcMr4eB\nhwvoSxCEZURb222MjQ3Q0rIZn++plO0WFowCMf6hldGqNzMT4Ngxv/4DfGjIz+nTLzEzcw7Nncso\nOF2uGl2MNjdvYnr60zRi1E4kMk8oNMnPfvY/YbO5mJ7+xDCOOtrabsPtbmJ29pxeE/Sll+6hrm49\nDocLj2cVoVBichANG4k/8Lzer+B2NzI/HxPMzc03c+zYv6O3902Gh3fFJXcy1vPs7u5PSv5k3A/x\ndUU7O/v49rc/1o8B0iaPUtdcmrhRiUfNn5Uzd8XKYFspaJm/M12vsaaon3jR6o3+vxbl0upFubsO\nG9o4iMWNXodKhnTOsD9dbVEnqiTLu2naFBOtFvTzxMZ8mNh4E6/fyAgx8X0eVfImUcAWUj9WEIRi\nU6yY0f8FeLVIfQklQvzqrcNyX4uenn10dvbx4IO/iBM8ia6Gra0qjsmYmEhrE4mEdTfYxB/gWiyk\nJkTd7iaczmp9/8KCOra2dh0uVy02m/lXncfTisvVwIkTKoNtU9NNuqXS7fZis7mZn7/MmTNHCQSO\nEQye0MdTU7NWd69tb7+Tzs4+Vq/+alz/bneT7tYLYLdX4fG0UFvbzqVLJ/XyLG53E+fPv83o6EGG\nh3eldUk2S/6UOK+JwsV4TDblhEoVN5pNv8v93siXcsTylmct8q3JaQXycTHO5nr9DA6+HX29GXPR\nOoLKiLtAvKurlpxNi8HsQgngvWRXTxTgHmBNlm2LiSZEu1DWUoiVqNHmOHHOtYcZdajyMWbuuoW5\n8cp3lLWQ9ah8MllGXwPaTbb/R+Cl6Ov/hHqk1p+qk8cff5zrrrsOAK/Xy6ZNm/D5fEDsQyTv5f1K\neq9hlfGU4n1Pz96k/ceO/YoLF97jxhuVdc7t/lOmp8M89tgBPB6VpOP48V/R1qaejAeDX8Xh2Bi3\nH2JWohMnwOWq5T/9p3c4evQPOXJkAJvNzg03BAmHYWTESSQyyo03Atg5cUJZKNV7eP/9SVatugOH\n412am29iePgjwmG46aYm1q3bzsGDe/X2odB5TkTDQF2uj7HbnZw4AY2NN/DYY09x4MAWfvWrj/X2\nbreXVav+lnff/UtaW9+jqekmTpyIMDX1G268cYDq6nb9+NtuW8/Y2ACBwA1cd90foJHtfF+6pCyh\nJ07ARx/18sd/fIBjx/wsLv4Bb7zxbtHWr9D3b7zxLk7nd3UxZdb+3XfzG+9yf+/xeHE6v5v3eubz\n/t133y3T9e5d4vMV+r4fGEEJxsuo3X4GB79bpOsdAS6j3tbg85ndPzVof158vhrgDQYH/wSYxuf7\nNbCZwcEa4N/j8/0AuGhoT7S/VO9fA5w5tC/kvR2fzw7MMzi4AViLz/dydP9G4BI+3/Ho+14giM/3\nnuH9n+Hz/TMwaehfWZ3VfP0An+/9aPsvAn9gOP9gtL0v7XsN63z+VvZ7DauMZyW9f/fddwkG1YO3\nTz/9lHwptM7o48AfAd3AbIo2EjMqCBbFrAZoKft49dUdpvUwjX1EImHGxtLHNIZCQQYHHwds+HxP\nxcVVjo6+pmejtdmcuvVRuanFWwJaWjYTDk9z6dIn+r7a2nU88si/cOhQb8papxpaW4/Hy1NPeeMy\n5Wr1UI3xnPv23cTVq6O4XA18/evHeOed72XtOpuOVPMqCMJS4CPmQguxuqDFug8T642a9RsEfh9l\nEf03wCCqhMrNwKfAOmJ1SR+N9qeRWw3lpaMNZcXUrtdHbJ6bgFPErsU4N9p8bQbWA3tS9LETMK9Z\nLQhC7pSjzui/BXah7uZUQlQQBAtjVgO0lH2kcjU09uF01mZ0R/R4vGzffoDt219Iiptsa+sClNBs\nb9fcZu3EhKgNcODxtHHffS8kxJ26dHEZi1lNzqir9a+11Y7VcLubmZ2d5NVXd0Tfq+y08/OXAVWS\n5Z13vpeT62w6yl2ORRBWNtp3xWbUT6Jiuxj3k9mV1wu8AoyhEv0EULGTR1ElV4x1SfuJd3qLoLLr\n3oK1OIcSnWtQ38OaiHSgxPYTKFfcdlTSIm1utPn6BUpsGufMGJO8p2QjFwQhewoRo/8vyin/NeAd\n4G+LMiKhZCS6NAjlwyprUYykKLn0kUp0Gfvw+fbkLcyGhvyEwzNUVbVz330vcN99B/B42ohPIBQB\nFgiFzjE8vAu73aW737a1/a7eqrq6DY+nDbvdGM0Qe51YNuWaa3qw2VzRREphzp49zujoQZ599npO\nndpPIHBUt9hqc1Wsch2FilkrYZV7o9RUQqmWlbIWhZNO/BQDL8rlN9t+jd9Nm6L/QyxJkhdVma/d\nsP0MKgGSFQkQ/x2+APSgBOjx6P5dhv2x+qzJZCPs0yP3hbWQ9ah8ChGj1wMdqEeBm4HvFmVEgiAs\nGcWwqBWrj/r6DTgcHg4ffjTvH+fB4AgTE8eZnQ0wPLwLj8erW0rd7iba2+/W2zoctYRCUzz44GFd\ncJ49e1y37k5PnyYUOpeQhTdWY8/YFuDq1TNEImEWF0PMz09rZyEUmtTL3LS0bKajY6c+V0aL8N69\nGy0rSoTiUwyvBMEqpBM/S4Ef5X6qJfHpR2WR7QBqgQ+BloTxaYLUKMz6KazIwlJRg7Kaallzc8m8\nXO61EgQhkUJjRrNBYkbzISLlAAAWz0lEQVQFQciIsY6ix9NKW9vtcTGo2cSmarGTHk8rXu+NuFwN\nbN36Q71UCsDzz2/i8uVRNNfczs4+5uYuJ8Vcan2ZxZoC2GyOaNmX29m2bZ9e/9PYvqqqjdnZc4AD\nm83G6tVfZfv2A/rYY+dAH0ti/chixPUK1kPifIXi4cO8Nqtxu0YbSrz1Yy7ItgHGuslNxERfOalD\n5cpsAyZQmXbrUPGxz1AacelHSsAIQvaUI2ZUEAQhJ1K5Jg4N+blwQWU4VBbLySSLUTaWJM1K6/Xe\nqLvJGkuleDxe6uquw1gSZuvW3UnW3aEhP3Nzl7DZXJgLUReRyALh8EXGxwc4dsyv99Hefle0jZOF\nhTm9j0hknkDgaNzYu7v7qa5WrnKp3JzFgrY8kThfoXikqs2aGPdeh7IompU0+RJKbP3CsK0elRLE\nCtbSWZTwvI5YyZfLwG9QVuBcyulkS2ElYARByA4RoysI8au3Dit1LVIJq2BwRHdlXVxUxddbWjbH\nibNsYlO12EmXqyFlW60ft1uVbzl0qJe/+qvtcZlsNXffSET96Glu3qTXPHU663C7G/T+mps3xdXy\nrK/v0LP4hsMX9T6MbY3j/eY3P0orSooR11tJrJR7oxLifFfKWlQC6dciVRxkP8qSqD1QM2YWPwbc\nRUzEBYCLxMdmTqNql85TfuZRFtt/Tth+hZhgvJV4d+VCMRf5cl9YC1mPyscKj7sEQVghpBJW2nan\ns07POFtXtz7uh3p3d3/W5U/M2mrurg6Hi46Onfh8e/TyLefOwY9/vIo1a+5m27Z9+niamzdRX38d\nPt9TADz77PWEQpPMz1+mpmYtbW234/PtYXj4Cd2VNhy+ZCgnA83NN1Nbuw673YXPtydp7JooMWJ0\nzTW6GVtZuAiCUC60OEiz7V3ESp84gGGUOA1E/wdl9XOZHG9F5gB39F87SkCDuj4PMbdkP+Zzkgv9\n0X60pE+CIJQCiRkVBGHJMNbcNAorbfvs7BTj4+lrjObD0JCfkyf36nVAtdjMxJhNbd/WrbtNx5kq\nzs8Y71pd3c7MTACXq5H29q9y773PpL0Os5hQY39mcaRC7kjsrbAyCRITVDcBo9HtdSg3V60+50WU\npfSfgLtRFlInqoz8oRR9l6s+qQs1Ps3iW4XKBqzVHK0DtgD7iBeREgMqCKUk35hRsYwKglASzH78\na1ZAs309PXtTitV0fWZDMDiiC1EtThSUBXXv3o3MzCgLgZZhFzC1VobDl6iubmfbtv1x5zZafLdt\n25+TJVNzXQY4dsxPT8/eFeeauxSYzbMgLH+MVtMOYmL036Ay7WpWPy/weXRfKypJ0DzxMaSJlMvQ\nEDa8rkFlC9ayAV8PTKJcehOto1oMKCb7BEEoFxIzuoIQv3rrsBLWIl3iHeO+n/70Vj2pEZA2ji6x\nz2xrNRrjRB9++B29fy1m87PPVgNOFhauMDY2oI93aMjP00+vYc+eZk6e3MvZs8eZmVFlY7T9L77o\nY3ExTEdHLw888Br19R05xQKaCc9iJLephDqWZpTq3hCBnzsr4XuqUsh/LYxlX6qj27pQGWhTlTgJ\np3htJVqAdcDXgcdQ1wdwe/RfJ/BzVHZg7fsvVaKn3JD7wlrIelQ+IkYFQSgJxh//Dkd1nDAy7qup\nWZu1wEwUFNlmmq2ubouWi7kNt7sxbp/H441mtFVxnkbLaTA4wsxMgLm5Kd2y6vG0cvnyOK++uoML\nFz4kEDjK+PgADocrL+FoVmO1GMltJAtvPJK9VliZGDPC1mGe6CiR2wyvbwZ2Yr2fizcB9wPPE7u+\nFpQABfV9fhFlIf0iSqz+EHX9F1FZeduA00s5aEEQTJCYUUEQSoLR5VZLFATJMZlafU4tDjOxrdGd\nMhQK8vzzt1JTsxa3u4FIJMzYWOYY00wxmMaaomvW3MV99x1IqDUKTU030dDQyczMJBMTxwGoqmpn\ndjaQd4yr5nZ84cL7ejbhYsWISh1LQRCUCNMSGBlFqB/4CSoRkBd4G+XG60e5vX5MzILqRSUNspqV\nNNeYVa0Gq5dY4qN1xNyTBUEoBKkzKgiCpTBa9xItmsZ9iRardO6Uqk7oeiYmVA1Rp7M2K2tXJhdN\nFX/aCixw5kysFmh3dz91dR243S1UV6/G59ujl3Vpbe3iG994syBr2+nTLxEIHNWFaDFdSMUSKAjF\npTJd31OVfRlBlW1ZAM6jkhdp24+jYkZro8f4URZSq5FOiLoT3jcRc83VMgfXAL/M4jxGV+dKWXdB\nqBxEjK4gxK/eOqy0tUgnjBJdUjOJKKOw9Pn2ZOXOmqnPN954l7a22/V+NUGoxO91zM2dZ3xcxZIa\n+8o1PjSRhYWQ/rqmZm1RhWMl1LE0Y6XdG1ZG1iKecrq+578WWgKjxO+BmoTXd6EE1wfRbca4yhGU\n5VTjJpbGsS5fGoDNxAvSBZQoDwJvoSyiH6KswWYYBeiHxFyB/XJfWAxZj8pHxKggCEBpn/qnEkZm\n5xwefoKrVyf0+MlE8rH4ZSPMVFxpG253fJt0Vt1CaW1VsVnNzZvo6/sgZZ+VaZERhOXF8kqC1Y8S\nWmtRYusMSnBNooSa0ZKqCdfNqPjRIWCNoa96YFXph5ySRGF8CVVPVatJqm3TMux2oFxzUwlRiI+1\nPRndVljiI0EQzJGYUUEQgMxxlUt1znLV2Ex13kzlZgoh276l7qgglJ9SfheUn1SxpRCrVVqNSvhT\ng7IunlviMeZDEzAVfb0JOEJ29UWN87Ef2EWsDI4gCGZIzKggCAVRjqf+Zucsl/Uh1XlL6e6abd/L\nyyIjCJVJpbq+m+NHWTebUeVPtEyzmhA1uqmCcvU9TcxaWAoPjWx/kq6Kjqsq+r6e5BhRjSnAE22f\nrRCF+FjbDlKXwREEoVBEjK4gxK/eOlhxLcpR29LsnKVMvJNqfIODg2VL+JPNnKUa23J037XivbFS\nkbWwDmotCkmkk3jsCBBAibUBlOVvL/BEtN1+jHGSCmOdzjujrxtQNT3N+LLJtibgloRt9UA7sRqh\nmdiIyvKrlaCZJj6ZUaJhJgT8Oot+zQR48t8CuS+shaxH5SNiVBAEoDhP/XNN8GF2zlJaH9KNr1xW\nj2zmLNXYpJaoIKwkjHGMud7viccaExhtIj5Z0VFirq3GOEmjtfBA9PVplIBLZFX0WCPtwClUnCrE\nYlA/Q8WsNpv0Y+bxdxS4AThh2GYsOxNBZcx1GbYFUCI2nYgvZH4FQciXVI+zhGWIz+cr9xCEKMt1\nLfJ1J9XqbTqdNdEyK6URhKnGV871KMQFdzm67y7Xe6MSkbWwDmotjJbJXO93s2O/gxJue4hZALVk\nPS6gjnjLoJaZF5RYmwAeBf4B2IISfBoLwEuG967ouVaj3GurgFHgU5So3YcSuzcQH4tqlnOk1tBG\nqzV6c/T8E9FxX47u96Aso0T3+w3XkEim+fUDI/h8NSgBL267VkC+pyofSWAkCELRyDfBx1Il6AmF\ngjz//K3U1KzF7W4oqfDNZUz5JkVZ3glVBEGIR0sklE8inWyPvQtVZ9RIH8kCzoeyImr7d6NiUGdR\nTneLhrZOlGuusTxMIk5iFtYBYiLT2Fc7cAdwJdrGKDp3okS1n5jrcRfwReB5lOV0E0q0akmY+jFP\n1JRqjhKvWRLJCYIRSWAkZET86q3Dcl2LfF1dl8rCNzz8BKHQBSYmjse5tpZzPQpxD15eCVUUy/Xe\nqERkLayDWotUNUOzIdtjG6L/ugzvnzRpl2hF9BKL4dTEY23033lgLMN554kJzA3Rf419dQEfodyD\n96HE4BbDvj3ErlHb/xrK/Vdz4b2O+CRMia64meZIXfPg4A1IiRfrIN9TlY+IUUEQys5SJQ86ffol\nwuGLALjd3mXj2ioIglActLjQW6PvL6GSG6VqZywDczr6rx1oJRYz2gW8ibJeahlw64CWhD6dwF8D\n61FJiYj2vTPhPEbRuQEVc9qJygocJF5UGkXzUxTm6qxd839DXHQFoXiIm64gCCuGPXuamZtTiTmu\nvXYH99//SplHJAiCYEXS1R1NRaKLby/Kwmp0ezW26QVeR8V5auwE5qLnbgLeQZVWUfGaye61PmKu\nsxDvPusHPkTFwb4Z7acQV2dBENKRr5uuJDASBGHZkpgYqa3tNsbGBmhp2cy99z5T7uEJgrDiSCWq\nrEY/uYu2BsPrWlQ8576E47U2mqUSVOZdzZXWluLcWqZbovu80W1vGvr+CvHWzhFiwlcrXWNMwiQI\nghUQN90VhPjVWwdZi6UhsfRJT88+Ojv7ePDBX8S5A8t6WAdZC+sga1EK8isfsvRrkWt8qh/l0rsK\nZdHUkgwlXmOie+8TxGJLb0IJVLNzJ7rXvoSax5ChzRczHFMc5L6wFrIelY+IUUEQli2JiZGWY8If\nQRAqidIIpPKjWSEnUEIUzK8xUWiOEKv9+QVSi99EEXshYb+WWTeY5hhBEKyIxIwKglB2SlVnVEqf\nCIJgLZZrzKIWY6qxDvgXMl9jqtjUTO7MTcSEp4uYm6+UXBGEcpFvzKiIUUEQys5S1RkVBEEQciWb\nONcgsBEIkH3SI7MEQ9r2vcDF6PsNqAy7xvNvQ7kBb0Jl7tXqiooVVBDKhdQZFTIifvXWQdYinqWq\nM5qKpVyPoSE/L77o49VXdxAKBTMfsMKQe8M6yFpYh/KuRTZxrl5UHdBc3GI1194A8eVjRogJ0SZg\nrcn5tVqiR4ivK1osIepHZerdQbzrb7nXQkhE1qPyETEqCELZWao6o1YgMamSIAiCtck2zjXXpEep\n+tW2a6VdGkzaGc+V63mzIb9EU4Ig5I646QqCICwhr766g9HRg7S2dq0I8S0IQqVTqjjXVP0mbk93\n/lKVysmnzqogrGwkZlQQBKECkKRKgiAIuZBOcPqI1R8tZvKi5ZpoShBKh8SMChkRv3rrIGthLZZy\nPaS8THrk3rAOshbWYWWvRTqX2VKVyknt+ruy18J6yHpUPiJGBUEQBEEQBIuSTnBKLVFBqHTETVcQ\nBEEQBEGwKOIyKwiVgMSMCoIgCIIgCIIgCEuOxIwKGRG/eusga2EtZD2sg6yFdZC1sA6VvRapa3ZW\n4rkqey2WH7IelY+IUUEQBEEQBKFELGXNTqkPKgiVhrjpCoIgCIIgCCViKWt2Sn1QQSgXEjMqCIIg\nCIIgWIylTEBUzHOlq28qCEIiEjMqZET86q2DrIW1kPWwDrIW1kHWwjpU9lqkrtlp7XOZu/xW9los\nP2Q9Kh9nuQcgCIKw3Bga8hMMjuB01tDd3Y/HI0/UBUEQKot09U0FQSgW4qYrCIJQZF580UcgcBSA\nzs4+enr2lnlEgiBUBuIaah2kvqkg5EK+brpiGRUEQSgyTqd6ot7a2sXWrfJEXRCEbNFcQ0EJIXmQ\nVT40l19BEEqJxIyuIMSv3jrIWliLYq9Hd3c/nZ19PPDAa+KimyNyb1iH/7+9ewuR5CrjAP4XEwO6\nYgjqasyGxRsqglEhBi+wYCKJ4O0hj4II4oOgb0ZdwQcRZH0IiORRjEgU8RIUE3CVPIjiiphZL7gx\nBkeiJlHRlUgERdeHU2GGZrq7+lLVX9O/HwxT01Uzc5h/fdN9us45JYtNOHpoqCzqkEUt8th+OqMA\na3bFFVfmxhu/qiMKLOiuJLfGbUmAXWHOKAAAAEtzaxcAAAC2hs7oDjGuvg5Z1CKPOmRRhyzqkEUd\nsqhFHttPZxQAAIDRmTMKAADA0swZBQAAYGvojO4Q4+rrkEUt8qhDFnXIog5Z1CGLWuSx/XRGAQAA\nGJ05owAAACzNnFEAAAC2hs7oDjGuvg5Z1CKPOmRRhyzqkEUdsqhFHttPZxQAAIDRmTMKAADA0swZ\nBQAAYGvojO4Q4+rrkEUt8qhDFnXIog5Z1CGLWuSx/XRGAQAAGJ05owAAACzNnFEAAAC2hs7oDjGu\nvg5Z1CKPOmRRhyzqkEUdsqhFHttPZxQAAIDRmTMKAADA0swZBQAAYGvojO4Q4+rrkEUt8qhDFnXI\nog5Z1CGLWuSx/XRGAQAAGJ05owAAACzNnFEAAAC2hs7oDjGuvg5Z1CKPOmRRhyzqkEUdsqhFHttP\nZxQAAIDRmTMKAADA0swZBQAAYGus0hn9ZJLzSfaSfD/JibW0iMEYV1+HLGqRRx2yqEMWdciiDlnU\nIo/tt0pn9EySVyW5LsndST6xlhYxmL29vU03gY4sapFHHbKoQxZ1yKIOWdQij+23Smf08UPbx5L8\ndcW2MLCLFy9uugl0ZFGLPOqQRR2yqEMWdciiFnlsv8tW/P5PJXl3kieS3LB6cwAAANgF866Mnk3y\niyM+3tbtP53k2iRfSHL7ME1kXfb39zfdBDqyqEUedciiDlnUIYs6ZFGLPLbfum7tcm2Se5K88oh9\nv03yojX9HgAAAGp5KMmLF/2mVYbpviTJg932O5LcP+W4hRsFAAAA03wtbcjuXpKvJ3nuZpsDAAAA\nAAAAMKLPJPl1kvNJvpHkWVOO20/y87ThvT8ZpWW7p28WNye5kDbs+rZxmrZzbk3yqyT/TfKaGcft\nR10MrW8W6mIcV6UtlvebJN9NcuWU4/ajNobS51z/bLf/fJJXj9SuXTQvi1NJ/pFWB/cn+fhoLdst\nn0/yWNoIwGnUxHjm5XEq6mIsJ5Lcl/Y66pdJPjjluI3Wx005WKX3093HUX6X9iKE4fTJ4qlpi0yd\nTHJ52rDrl4/RuB3zsiQvTSvgWR0gdTG8Plmoi/GcSfLhbvu2eM4YW59z/a1pixQmyeuS/Hisxu2Y\nPlmcSvKtUVu1m96U9gJ6WudHTYxrXh6noi7G8rwk13Xbx5I8kBWfM+bd2mUZZ5P8r9s+l+SaGceu\nazVfjtYni+vTnvz2k/wnyVfSFqRivS6kXfnpQ10Mq08W6mI8b09yZ7d9Z5J3zjhWbaxfn3P9cEbn\n0q5eHx+pfbuk7/8ddTC8HyT5+4z9amJc8/JI1MVYHk17oyxJ/pk2AvPqiWMWqo8hOqOHvTcHPeNJ\nl5J8L8lPk7xv4HYwPYsXJHn40Nd/6B5jM9RFDepiPMfThl+l+zztCUttDKPPuX7UMbPeaGY5fbK4\nlOT1aUPf7knyinGaxgQ1UYu62IyTaVesz008vlB9LHtrl7Npl2knfSzJt7vt00n+neSuKT/jDUke\nSfKc7uddSHvng8WsmsWlgdq1i/pkMY+6WI9Vs1AX6zUtj9MTX1/K9L+92hhG33N98qqDGlm/Pn/T\nn6XN2XoiyS1J7k6bdsD41EQd6mJ8x9LurPKhtCukk3rXx7Kd0Zvm7H9P2njhN8845pHu81+SfDNt\neIoXFotbNYs/phXwk06kvYPB4uZl0Ye6WI9Vs1AX6zUrj8fSOqqPJnl+kj9POU5tDKPPuT55zDXd\nY6xXnyweP7R9b5I70uZS/23YpjFBTdSiLsZ1edptPb+U1vGftPH6uDlthaVnzzjm6Ume2W0/I8kP\nk7xl4Hbtoj5ZXJbkobRL7U+LhVqGdl+S107Zpy7GNSsLdTGeMzlYNfQjOXoBI7UxnD7n+uHFKG6I\nxVqG0ieL4zm44nB92vxShnEy/RYwUhPjOJnpeaiL8TwlyReT3D7jmI3Xx4NJfp+D5ZXv6B6/Osl3\nuu0Xpv2T3UtbFvijI7dxV/TJImlDGh5IWzhBFsN4V9r4+X+lXQG6t3tcXYyvTxaJuhjLVWlzQSdv\n7aI2xnPUuf7+7uNJn+v2n8/sFcFZzbwsPpBWA3tJfpT2Qo/1+3KSP6VNcXo4bd0NNbE58/JQF+N5\nY9riqHs56F/cEvUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAi/g9WwoSRDa/NUgAA\nAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAIXCAYAAAD0R4FDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXtwXOWZr/usvurWUktqGdmxaawEHEMuthGXITiIyMaJ\nwbEMFmCTDMkkoyqSyTnZMwdqpmYyzEyS2ruKue2ZqSTHO/vYGQbhCxdjwI637ViWMEEEMJhgB4MB\ngSRLsizJkiypuyX1+WP1Wlp971YvSd3y+1S5rF69Lt/6+lOrf/2+v/dVgsEggiAIgiAIgiAIgjBT\nWOZ6AIIgCIIgCIIgCML8RoSnIAiCIAiCIAiCMKOI8BQEQRAEQRAEQRBmFBGegiAIgiAIgiAIwowi\nwlMQBEEQBEEQBEGYUUR4CoIgCIIgCIIgCDNKRsJTUZQ8RVFaFUV5U1GUU4qi/HezBiYIgiAIgiAI\ngiDMD5RM+3gqilIQDAZHFEWxAS8B/08wGHzJlNEJgiAIgiAIgiAIOU/GqbbBYHAk9KMDsAJ9mZ5T\nEARBEARBEARBmD9kLDwVRbEoivIm0A0cDQaDpzIfliAIgiAIgiAIgjBfMCPiORkMBlcAi4EvK4pS\nk/GoBEEQBEEQBEEQhHmDzawTBYPBi4qivAhUA03adkVRMjORCoIgCIIgCIIgCFlNMBhUEj2fkfBU\nFMUDjAeDwQFFUfKBtcDfxxhEJpcRhDC+9a1vsWPHjrkehjCPkDUlmImsJ8FsZE0JZiNrSjAbRUmo\nOYHMI54LgV8pimJBTdt9PBgMHsnwnIIgCIIgCIIgCMI8IiPhGQwG3wZWmTQWQUiJq666aq6HIMwz\nZE0JZiLrSTAbWVOC2ciaEuaCjIsLCcJsU1NTM9dDEOYZsqYEM5H1JJiNrCnBbGRNCXOBCE9BEARB\nEARBEARhRjGtqq0gCIIgCIIgCIIQTSrFd3KF6RaOVWa64qyiKEGpaisIgiAIgiAIwuWKoijzotNH\nvPsIbU+oriXVVhAEQRAEQRAEQZhRRHgKOUdTU9NcD0GYZ8iaEsxE1pNgNrKmBLORNSXMBSI8BUEQ\nBEEQBEEQhBlFPJ6CIAiCIAiCIAgziHg8JeIpCIIgCIIgCIJwWdPX18emTZsoKiriqquu4sknnzT9\nGiI8hZxDfAmC2ciaEsxE1pNgNrKmBLORNSVE8v3vf5+8vDx6enp44okneOihhzh16pSp1xDhKQiC\nIAiCIAiCcJly6dIlnnnmGX784x9TUFDAl770JTZu3Mjjjz9u6nXE4ykIgiAIgiAIgjCDJPV4NjTA\nmTNQUACNjeB2p3eBDI4/ceIEt956K5cuXdK3/fM//zNNTU3s27cvpfsQj6cgCIIgCIIgCEK2c+YM\nHDsGBw6oInIWjx8eHqa4uDhsm8vlYmhoKP1xJECEp5BziC9BMBtZU4KZyHoSzEbWlGA2sqaykIIC\n9f/qati2bVaPLyoqYnBwMGzbxYsXcblc6Y8jASI8BUEQBEEQBEEQ5pLGRqivh0OH0k+zzfD4a665\nhvHxcd5//31921tvvcXnPve59MeRAPF4CoIgCIIgCIIgzCDZ3sdzy5YtKIrCL3/5S9544w3uuusu\nfvvb37J8+fKw/cTjKQiCIAiCIAiCIEyLn/3sZ4yOjrJgwQK+8Y1v8Itf/CJKdGaKCE8h5xBfgmA2\nsqYEM5H1JJiNrCnBbGRNCZGUlpby7LPPMjw8zEcffcT9999v+jVEeAqCIAiCIAiCIAgzing8BUEQ\nBEEQBEEQZpBs93iming8BUEQBEEQBEEQhKxFhKeQc4gvQTAbWVOCmch6EsxG1pRgNrKmhLlAhKcg\nCIIgCIIgCIIwo4jHUxAEQRAEQRAEYQYRj6dEPAVBEARBEARBEIQZRoSnkHOIL0EwG1lTgpnIehLM\nRtaUYDaypoS5QISnIAiCIAiCIAiCMKOIx1MQBEEQBEEQBGEGyWaP53/8x3+wY8cOfv/737Nlyxa2\nb98ed99MPJ62zIcqCIIgCIIgCIIg5CKf+tSn+NGPfsTBgwcZHR2dsetIqq2Qc4gvQTAbWVOCmch6\nEsxG1pRgNrKmBCObNm1i48aNlJeXz+h1RHgKgiAIgiAIgiDMKQ1ADbAeGJiD45nxVGDxeAqCIAiC\nIAiCIMwgyT2eNcCx0M/1wO40r5Dp8fCjH/2I9vZ28XgKgiAIgiBoNDc3MDBwBputgNraRpxO91wP\nSRAEIQMKQv9XA9vm4PiZj3hKqq2Qc4gvQTAbWVOCmch6mh0GBs7Q1XWM9vYDtLQ0zPVwZhRZU4LZ\nyJrKRhpRI5WHgOl8kZbp8WrUciaRiKcgCIIgCDmHzaZ+u+/xVLN69fS+3RcEQcge3EwnPdaM4ycm\nJggEAoyPjzMxMYHP58Nms2G1WjMYTzTi8RQEQRAEIefw+QZoaWlg9eptkmYrCELWk819PP/u7/6O\nf/iHf4ja9rd/+7dR+2bi8RThKQiCIAiCIAiCMINks/BMh0yEp3g8hZxDfAmC2ciaEswkcj01Nzew\nb18N+/evx+ebXon7TMmGMQjTR96jBLORNSXMBSI8BUEQBGEGyYYiONkwBkEQBOHyRlJtBUEQBGEG\n2b9/Pe3tB/B4qrnzzkNz4kfMhjEIgiBczkiqrQhPQRAEQZhRsqEITjaMQRAE4XJGhKek2go5iPgS\nBLORNSWYSeR6cjrdrFmze04FnxljEJ/o3CHvUYLZyJoS5gLp4ykIgiAIOUZzcwMDA2ew2QqorW2c\nFVGr+UQBWloaWLMmk35zU8zFvQiCIAizj6TaCoIgCEKOsW9fjS4Cq6rqTROBiUjHJ5qOmJyLexEE\nQZhtJNVWUm0FQRAEIeew2QoA8HiqWb16W9hzM5USW1vbSFVVfUrFidKpopvoXgRBEIT5gwhPIecQ\nX4JgNrKmBDOZjfWUSATOVOuUdHyi6YjJdATt5Yq8RwlmI2tKmAtEeAqCIAhCDmCMZAJxRWA2RBDz\n8ytwOj0pCclsKL4kCIJwOeP3+/nOd77DVVddRXFxMStXruTXv/616dcRj6cgCIJw2ZMLBW5S9UJm\nQ+sU8W0KgiCEk80ez5GRER577DG+/e1vc+WVV/Liiy+yZcsW3n77bbxeb9i+mXg8paqtIAiCcNkz\nUxVbzSTVSKYWQYyFWQI72XmyIeqqkQtfKgiCIMwlBQUFPProo/rjO++8k6VLl/LGG29ECc9MkFRb\nIecQX4JgNrKmBDOF0kytJzO8kGb5P5OdJ5t8mzPleZ1N5D1KMBtZU9lHAw3UUMN61jNA+oXhMj3e\nSHd3N2fOnOG6667L6DyRSMRTEARBuOyprW2c8/TUZLS2PsLISA9HjmxNO3KnRf36+98BUhPYiSKF\nyYR6oqhrJuza9VlGRrqwWOzcffdruFzJv4nPpuirIAhCPM5whmOomTcNNLCb9N5DMz1eIxAI8MAD\nD/Ctb32La665ZlrniId4PAVBEAQhy4gl+tLxTUYef/BgnX5sYeFiNm9+O6lwTXS9ufKRbt/uJhC4\nCKj38cADnyQ9Jhs8r4IgCMk8nutZzwEOUE01hziEm/TerzI9HmBycpKtW7cyPDzMc889h9VqTfk+\nxOMpCIIgCFlMvKhiLM9prMhdqscbj001/TVRpHCmIprJsFjsAFitBXz96y/F3U+bl6GhsxQWenE4\nimdriIIgCNOikUYaaGAb26YlGjM9PhgM8p3vfIfz58+zf//+mKIzU8TjKeQc4ksQzEbWlADh7Up8\nvun7Y9JZT/H8h4ODZ0M/WRkd7cHnG4jpm4x3fKRonI7nMpt8mhp33/0ahYWLuffeUwnTbLV5uXSp\nnZ6e4znt7wR5jxLMR9ZU9uHGzW52T0s0mnH8Qw89xB/+8Af27duH0+mc1jmSIcJTEARBuGxIJC7n\nogiNJjDt9mJuuukxffvkpD/00wTnzh2jpaUhZr/LeFHJSNE4nV6Z2dhf0+Xy8sADnyT1dmrzYreX\nAOLvFARBSERbWxvbtm3jrbfeorKyEpfLhcvl4sknnzT1OuLxFARBEC4bEvkW9+9fT3v7gbTSUdNF\nSwEdHDxLMBhgdLQXmIgaz44dZfj9/YAqnrZu/SjmeDL1L2baaiRbW5Vo83LTTY/R2vqw+DsFQZhz\nsrmPZzpk4vEU4SkIgiBcNiQSl7NRhMYofI1YLA48nhtwOIqprW3k0KF6OjsPY7eXsGTJ1xgZOYfN\nVsDg4HuMjp5PqaprKqIwlhBvbm6gre15JiZ8eDzXs3btnrjzkU7BI0EQhMsZEZ6SaivkIOJLEMxG\n1tTlQyLfolmppYnW01QK6FSxG4fDTVnZyjAv4tq1e6iqqmfr1o84d65JTwEeHPyIQOAiPl8vu3Zd\nE9eP2tzcwNmzu5OmDsdK1R0YOMPoaBd+fz+dnYdpaWngf/0vB9u2KWzbZuHcuZcSHp8uZnlr5zPy\nHiWYjawpYS4Q4SkIgiBcNqQjLmdCEGnCd/Pmk3i9G/F669iy5UPy8soAVcBZrfns3r2c9vbDHDpU\nz8TEmOEM4/pPk5P+uKJyYOCM3nYELHz88UF+9asKhobawu7twoW3cDrLcTiifaMAZWUrWL16G8Fg\nILQlyPPP36afIxAYJD+/krVrn5q2YJ8Lb60gCIIw+0iqrSAIgpDVzJWPcDbTSI8efZCPP96Px7OC\nCxdOMjbWoz+nKHaD8FOxWBxMTvqx20vYvPktPeVWm6uenleYnPShKDYsljwmJoaBqd6XsVJ+tXv0\n+QZoavo2EKSmZgdOp5tt2yyA+rd8w4YWFi681bT5mQ1vrSAIwlwjqbbSx1MQBEHIcmL1tJwNUk0j\nzUQYa8f29Z3E7++no+MwimIP20cVnQqa8AO1yTdAIHCRZ56ppqLiBmprG8PmSj12XK+Qa7UWYLE4\n2L7dzfj4SNg1HI5SrNZ89u2riXkfGzY08/zzt7FhwzEWLrw1rflJRm1t44x7awVBEIS5RyKeQs7R\n1NRETU3NXA9DmEfImspuzI6IpSoUUy02ZIz8uVxL+eCDYlauXER+vprammpxH1BFnN1eyLlz0QWI\nNCyWPK644ibOnTuGzVbE+LgazayqqsfvH6a9/YC+r93uprj40/T3/55Nm15l374vG1JwVRTFxt13\nv87x4/+XPpaioqUUFV2ZcOyx5idbq9zmOvIeJZiNrKnZRyKe4vEUBEEQspxEBYESEc+jmaqnMFU/\nqDHyV1CwiL6+t2hvP8DHHx9IubhPWdkKvN46Skuvpb//dNR+ZWVf4FOfWktBwSKuuqqOyclx8vMr\nqai4PnSeIsbG+lm9+udhxwUCA1y48DqTkz5eeGGNIdJpwWp1AWpU9MUX12G1qpFWRbExPNyWdOxO\npxuHw83Bg3X6HItfUxAEQYiHRDwFQRCEeYkxmpifX8m9957G6XSbHkE1Rv6OHNmqn9vhcNPZeRib\nrYgrrriZNWvUtiS7dn2WkZEuLBY7d911hBMnfqJHDR9/fCGjo11h53c4SrHZ8pmcHGdyMkAgMGzw\nfNqwWCx6Oq3XW0db296oMRojo/HwejfS1fUyPt/5sGtv2fJBVERzaOgsExMBxsbC+5BqEdd05lai\npIIgXA5IxFOEpyAIgjBP0QSmhrF4jlmeQqNoys+v4OLFs1y48DplZV/Ebndx4cIJfL4LAOTlVeJw\nuBgcfE8/vrBwMUuWfE0/R0/Pb/H7p19B1+vdSFvb88Ckvq2gYBFu97V0dh4O29fpLMfvv0gwOE5Z\n2Qo2bDiqC2dQ27zcc8+bnDjxU318vb2vhxU+0tAEKpD23EovUEEQLgdEeIrwFHIQ8SUIZiNran7i\n8w2we/dyRke7oiJwZkXZjKLJ6fTg8/Xy7ruwbJn6fH5+ZVgEU1FsBINTLVEWLryNiYlxenqOT/Mu\nw1Er4E6iRSGt1gIqK2/hy1/+Jbt3f5aJiTHsdheVlas5f/41XUTabIWhCrg2PJ5V2GyF9Pf/ntHR\n84yPXzKMObzIkXbNpUvvYWTk3LTmczaq2uZ6VFXeowSzkTU1+2S78PzGN77BkSNHuHTpEh6Ph+98\n5zv89V//ddR+4vEUBEEQhAicTjf33ns6pj/ULC+i0d/p8awIe87hKGXhwhq9Sm1Z2QocjpKwfc6d\nO0ZPz8sJrpDen2k1BVcVnYpiZ2JihI6Ow7S2Poz2OSEQGAJgcnKqRcv4+BiBwEV8vgt0dBzmllv+\nldHR8wQCF8OEcqTotNuLuf/+9xgZOTft+dQ8vKWl14b5Rc1EvKeCIAiJ+au/+is+/PBDBgcHOXDg\nAP/+7//Or3/9a1OvIcJTyDnkGzrBbGRNzV/iFQjKtBWIVrgoGAxQVOTFanUCasXZZcvUyOaGDU2M\njJzT/ZiXLn1CWdnnKChYRH5+ZehMViLF3BQKxpRZu70ktC05ijLVLc1ud3HTTY8xOTmmb+vtfQOP\nRy1MVFa2ImJ+guzbdysWiyqYrdYCnE4PAOXlK1myZD1LlqynqMhLWdnnaWl5SN83cj7jFXgyor1G\nQ0PJCxpNF7Nav8wV8h4lmI2sKSGS6667jry8PP2xzWZjwYIFpl5DhKcgCIJw2THdSrkaWgSto+Mw\ngcAluruP09FxGLu9EFArxf6f/1NHX99J/Rif7wLnzh2jouIGios/Hdo6keAqU4JUUewsWfI1Uv2z\nHQyO64I3EBjihRduD3ve41nF2rV7qKqqZ8OGo9x99+toolZRrIyP+5icDKAoDurqfsv9979HUdFS\nrNYC+vpO4vNdxO8fpLv7OO3tB7DbizKOLM+kOMz09RYEQZhpGoAaYD0wnZyPTI8H+N73vkdhYSHX\nXXcdf/M3f8OqVaumeabYiMdTyDnElyCYjawpIV2MvkSn001Hx2G9ku3Ro4f50peqsVqddHdHezeX\nLFnPhQsnGRlpT+laDoebxYu/yocfPm2oZps6dnsJZWWf08eiKHYqKm7k/PlXCAaDKIqVu+9+DYej\nhH37bqWg4FOcP9+qH+90VlBRUY3fPxjTi5rIm5mOfzPdok/NzQ20tT3PxIQPj+d61q7dM29FpbxH\nCWYja2r2SebxrAG0Ds71QLpl1jI9XiMYDHLs2DE2b97M/v37ufHGG8Oez8TjaUv0pCAIgiBc7kRW\nrh0aasNqteP1bqSmZgcwVckV4N1367jzzr0cObI15vk6OtQWK6mgKDbKy79IZ+dvpiU6QSEYnKSn\n51VA9Z0WF18TJiCDwUmefnolDz54gQce+IT9+9eHHe/znae9/QB5eZVEUlCwKGHRptraRp55ZhVW\nq5MjR7YmLOyjpdymysDAGb1wU2fnYVpaGnA43DldREgQhMuXgtD/1cB0cj4yPV5DURRqamqor6/n\nySefjBKemSART0EQBEEwoImnwcGzuFxe+vtP4ff3A1rVWFUAxmr9YRReq1f/nGefvZmxsa6oa4Rj\nBSawWBx6P04zyMtbwPj4GOPjg/p1Fiy4md7e15ic9EWPwppPefkqbLZ8rFYH3d2t+P1qKxiHo5R7\n7jnBM8/coPf5dDjcbNnyYZi4i9UaxbitqGgpRUVXRgnDVKrORu5jbP2itYM5eLBOWrMIgpCVJIt4\nDqCmy24DpvOVWabHR/Ld736XyspKfvKTn4Rtl6q2giAIgmASmi9xZKSd7u7juugEdNEZz4do9DS2\ntj7Mffed1gvzxGPDhiZcrqVYrXkJ90uXsbEeg+i0UF6+gp6e4zFFJ8DExCg9Pcfp7DxMd/crKIr6\n+cFicVBScg0tLQ9RXv5FQBOib6ZUtMm4raBgUUzPZype0Mh9amsb8Xrr8Ho3smHDUZxOd84XERLm\nK2a474T5jhs1PXa6ojGT48+fP8/OnTu5dOkSExMTHDx4kD179rBx48ZpjiY2IjyFnKOpqWmuhyDM\nM2RNXd5EVl7VxIvdXhy1b1nZCrzeurh+RZutgHffnRI+TqebioobEl7/nXf+jcLCKwkEBhPulxmT\n9PefSnlvv78Pn68Xi8VJeflKzp9v1YsIuVxLKS29lpaWh6Iq1cYq4mPc5nCocxopDCMFo/aaPPHE\nEvbuvZX9+9dHVc51Ot2sW/cs69btjXmt+ZRmK+9Ruc4ZVPfdAVQROvfImhKMKIrCL37xCxYvXkx5\neTk/+tGPePzxx7nhhsR/v9JFPJ6CIAhCzpFKamaqaJE0QI+ktbQ0cNNNj7F793ImJkax211UVq7m\nK195Iupakem1p08/SGmpl4MH6/Rte/fezOhoFzZbEePjw/qximJncPBjhobOTnv8qRLej1NDTfMF\nsNkKGR+/hN3uMvT69DE01AaA0+lhdPQ8Pt8AQ0MfAvDMM6soLAxPnXU43Pq9a55YTVhqcxtZQChy\nu/E1uXRJLcLk9dZRVLQUiyW+XzRdn6ggzA5mue8EYWbweDyz8mVERh5PRVGWAP8JLECt+74tGAz+\nW8Q+4vEUBEEQTCWWl3C6JKq8unfvrXohHqfTQ0XFDdTWNtLa+oguNgOBQb1irOZh7Os7qafoVlXV\nY7Xm8/HHBwgEBuOmuloszrjPzSRWax6LF3+VW275V1pbH+ammx4LE8oVFdczOPghPt+AIXUXbLYi\nJiZ8evqx11vHunXPhr02TmeF7gnNy6vkvvtOh81dvC8NtNfEbi8hELiovzbi4RRyE7Pdd0Iukszj\nmSvMZVXbAPDfgsHgm4qiFAGvK4pyKBgMns7wvIIgCIIQFzO9fPn5FTidnpgCSEsNtdmK8Pl6dX/h\nyEiPLoDy8yv1sVgsTn07qGJ1eLiTgYFTYV7RWMy86JyKbhqpqLiJmprtYdHCe+89zeOPVzI+Psy5\nc8dwOsvDRCcQFrkF9MJIxtfG4XDT2XkYgLGxrqi5i1eJ1hh1bm19GKs1n927lzM21guoKc/i4RRy\nB819l000AM8DPuB6YA8iioWZJiOPZzAY7AoGg2+Gfh4GTgOLzBiYIMRDfAmC2ciayj3M9PINDbXh\n8/XS0XE4qrCNdp0rrrgZmBK6mrjS2qIoioOLF9/j4sU/8O67YLUWkpe3AL9/iJ6e44aquOr3vQ6H\nO2nRIQ2bzWV4pKAKyPQxFt8x0tV1TL9vzVt55MhWrNb8qasqqV/T+NqsXbtHb8MSOXfaY2PRoJ07\nr9HbuaxZsxuXy8uaNbsZGmpjdLRLTxd2ua6aVx7OZMh7lGA2TU2vAl1AP3CYbPGeCvMb0zyeiqJc\nBawEWhPvKQiCIAiZYaaXL1H0VLuOzzcQ5kHMz69AUWyMjw/rkb9AQI34KYqViYlLTExcirpWMDiO\nzVaA232d7pNMRFnZ9fT1nTCegVhRy1Tw+S7E3K4oNnp732T7dneowJGaQuVweEJjWMG6dXtpbX2Y\njo7f4PNdwGrNZ9Gi22lvP6Sn2p4//zt8voGo1+a++06HzV2kn9Mo4rWeoTt3XkNFRbUeATV6YMvK\nvkBNzfZpzYEgCBpOw88rEe+pMBuY0sczlGbbBPwkGAzujXgu+OCDD3LVVVcB4Ha7WbFiBTU1NcDU\nt3jyWB7LY3ksj+XxXDz+oz9aQUtLA5OTf4zDURT1vMXSyMDAGVpb3yE/v5JVq5YQCAzS3Kz6Opct\nA4B331X//+IXFzA21kNX1zWMjHRSVTWsP2+x5HH11T4gqO8febz2+IMPigkEBuM+b9bjlSsXMTLS\nzbvvToQ9399/EzZbHn/2Z2rV2KamJkZGuujvf5ivf/0lXn/9Q158cS1XXz2un2/Rotv4i79omtb8\n/+53Z+ntfYNlyyzAZNj59u69lZYWdb7vuGMj69btzZr1I4/ny+O7gHZqahYBjTQ1vZll44v1+B+p\nqRkGCmhq+h4Q/f4V//ELwP+gpqYC2J4j95vbj2+//fZ54/E8evQob775JgMDamXzjz76iF/96ldJ\nPZ4ZC09FUezAC8CBYDD4rzGel+JCgiAIQk7S3NzA2bO7CQQuhm3Pz69kdLQLh6OU0tJr9eJCpaWf\nZ3z8UiiaacHjqaav74Tuf0wVq1Ut6mP0i84csb2fDkcpixevY2TkXNxCQGqU9GJofzdbtnw47RRY\nn2+AnTuv0YsRORylbNnyAU6nO2EBqHQwsxqyMF9oQG13chI17RSgnuzzZMaiBrVNC+TOmC9fpLhQ\nhh5PRe0u/b+BU7FEpyDMBNq3SIJgFrKmhHgMDJzRhZXmz/R4qqmre4Wqqnq2bPmAr371BbzeOgoL\nr2R0tIfXXvsALSW2t7cVu10VN1N9QRP+XQZgYmKYrq7mNEdr0ceYHrFTd/3+fj74YLfuv2xq+nbU\nPgsWqD3eHA4399zzZlwhF9krNRZq2q2W/qdQXFzFkSNb8fkGTPP0Gv2kkX7ebEbeo2YSrcemJjpz\nqeXJ9Nu0TG9NNaCK3fWolXoFIT0yEp7Al4BvALcrinIi9O+rJoxLEARBEOYEo0gaHHwPUEXnXXcd\n1cWPVvTG6XTjdLpZt+5ZJif9jI11R51vwYJqqqrq2bz5JFVV9TgcpWHPxxeL6XwzbmHLlg/Iz1+Q\nxjGxiBTFxsfh42lubiAQGAWsTE5O8Mwz1XrPz0hSFXyFhV79Wr29r+v7a77RTCOUZlZDFuYLmnhb\nAdQBh8id6q6NqJHO2RqzJtIPIMWIhOlgiscz4QUk1VYQBEGYYcxMoQzvQ1luKMqjsHDhl7njjr0x\nz//LXzqjUmq1VNzh4TYKC704HMV0d78clbprJP1+nqrodLm8YX1H06WsbAWjo12MjnZFPWe3u9i8\n+W1OnPgpbW3P4/P1MTk5QWS0tLBwMQ888EnU8ammyk7171T9rZmm1kYSWSRKEOa+x6aW6luAKiTN\nHoOZ51+PKjqryS2Bnh1Iqm3mEU9BEARBmBOMkcm+vlOmpVAao2Iez0rDM0HOnTsW9/zGViWKYiMv\nbwElJdfQ3X2cS5fa6ek5Tnv7AaxWZ8zjVSw4naWk2jJFUWxcdVUdR48+yP7967HZ8pMfFPGn32Yr\nZMmS9ZSXf0Hvk2l8DiAQGKK19WEGBs4wOtoVEtjhotNqLeDrX38p5hXVXqkVOByJP6hqKbVadDhS\ndKaSspsIsyKnwnxC67E5V2vCGEW8mvTTWJOlv5oZpZztCKswF7z33nvk5eXxzW9+0/Rzi/AUcg7x\nughmI2u1e9m8AAAgAElEQVQqNzGmbw4Oqu02pptCaRQ0q1f/XBc9a9bsQVEc+n6lpZ9n9eptMQVQ\nRUU1AO+/n0cwOM7YWA+9vW8AasQQ1JYhbvdyLJZ44nMyFHFM1jJFFbb33/8+Y2MX9Hm4cOFE2Hhj\noSjhf/rHxy/R0XGE999v1Ptkqvs59HtSW530Y7Xaw46120vYsKGFwsLF3HvvKVwuL7FQe6Wep7Mz\nvFdq5DxqwtCYymwkVz2amZJb71HiA0wP7QurIqCX9AWiUViuInruY/tAp7em5lqkC7PB97//fW68\n8UbUUj7mYlofT0EQBEGYTYyRybVrn6K19eGUUygjU3M1QQPQ2vpwWB/KpUvv5sMPn8HhKOarX30e\np9Mdtn9LSwMOh5tAYJS8vEqCwT79WK3HpcXixOFw4PerIlEtCK+hkJ6fE0AVti+//H9H9MGM3avT\niCoup65ptRYwMTESYz8/Docbp9ODz9dLR8dhFMXOpz61FovFjsVip6ZmB06nmwce+CRhunM8b2Xk\nPCbrzTpdj6ZUs51NNCEEqoCajUqrM52uaiaRY20MbesHDqMKxHxUAXkW8ALFxL8vTVh6gAuA1h94\nOXDacP65SiUWcomdO3dSWlrKtddey/vvv2/6+SXiKeQcWk8kQTCLy3VNZZq2ONcYK52eOPFTRkZ6\n9Cqoye4tMnKWSNCMjJwjGPTj8/XS2vowEC2ABgbO0NNznLGxLq65ZjLqej5fLxbLlNjUBGnoERZL\n4ihlOMY/3Qr5+RVYLE7Gx0dTOtpmK+aee97EYsnH4SiLm57rcJRSU7ODioobwsbd3/8OX/vai+Tn\nL+DgwTp9jo1zunPnNWFzH68qbbpCcrrVbXM9Uppb71HTr7Q6fXKp6M3zTI3128AjQE/oOa24UVto\nn3bgOInvS0t/tQCDhu1doWNiRymj15REqueahgaoqYH162FgGi9BpscPDg7y6KOP8i//8i8z5kUV\n4SkIwmVBQ3MzNfv2sX7/fgZ86RRumb9k84fxVNtvaOmYkfeiPf7v7eXcuPP/jXrdjYLHas3H7x/E\nas1DUay6eI21ryaOIgWQcR+HowQARbGiJRaVl69k06ZXyM+vDJ3VmMJkxWo1ir/o9Can04PDUUpe\n3gKuuOKPQtvK6e5+mfffbwwVI0qWnhu6mtVJUdGVLFhwI35/X8woqcNRyj33nMDpdFNb2xj2XHn5\nCiC+eFcjr+fD1lWkt1J7fScnA3i9dSkLyel6NKWa7WwyFz7AuRC706EBVRBq+JkSzYcBO+qcafej\nfVlVAjwWca7PAg6gAlW49kc8n+5c5JJ4n5+cOQPHjsGBA6qInO3jf/SjH/Hd736XRYsWzUiaLYjw\nFHKQ3PK6CNnCmYEBjnV1caC9nYaWlrDnLtc1lc0fxtMVxUbRMzY25UXss32ak75S/XXXBE8wGMDr\n3ciddx5iaKiNnp7jTEyMcf58a9Q1a2sbcbmWYrU6dVEaKYCMQrSi4j8oLFxMeXk1oHomh4ba2Lfv\n1lC7kMjU2gm9yq0qQKMLC/l8vfj9/YyN9dDd/dvQtgHGxnrCfJnxcDrLDec6T1PTt8KKIRlRFDsV\nFdfrAtrpdLNw4W2A6nHNy/Owb18N/f3vAFPrR5uDBQtu1rdbrfkxv0DQXt/OzsNYrfYZT301qw/o\nXJFb71Fz4QPMlaI3ZyIe24ktmrX7WRV6fBG4nfCIZBcQQH2POUb4e8oiEs9FA01NK0jFCyrMHgWh\nl6C6GrZN4yXI5Pg333yTI0eO8MMf/hBAIp6CIAiZUGBTI0/VHg/bVq+e49FkB9n8YTxSFCeLgKq+\nvQrGx4fp7DyMzVZIVVU9i69QP7hpr7smeDo6DmO1OsKilXZ7cdg1NZxON+Pjo3R3q1Vpn3zy01Hj\nMArRgoJKHnjgE/LyykL3UoTf38elS+309rYS6ee0Wl36ddUiRPGFpM1WBGipvKlFODdsaGFiIhCx\nVdFf/8g+osFggI6O8CJAd9yxl6qqejyelXz00XN0dR3D5+ulsHCxvn60OVi7do++roaG2vQvEHbv\nXq7P2Wx/6SHVbLMZM1I8s7nojfH+jN7uzwE7mBKZF4Ey1C+mqlAjnGWhfatRxaQxImk81xeAL4V+\nXgGsQU3bjTWnDaHrvhU617LQPrki3ucvjY1QXw+HDoF7Gi9BJscfO3aMjz76iCuvvJKFCxfyT//0\nTzz99NNUV1enP5AESB9PQRBynobmZs4MDFBgs9FYW4vbGV0xdMDno6GlhW2rV8d8XsguIvstGntr\nVlXVxyxCE6tXZOTrHmsf7Vo33fRYVIEirShNd/fxqMhiVVU9Doc7btEa7bw+X79emEf1dlpRRaON\ngoIrmJjw4/cPUFl5C11dL0f4P9V9S0quxe2+hkBAFdbxsNmKGB8fDtvmci1laOjDsG2LFq1h7do9\nUXOrEa9/ZuS+DkcZ99zzBi6XV5+roaGzFBZ6GR5uY3x8GL9/6oOv9tql0k9TCgLlItMp8lPDVDGi\nemanGNFsUsPU/S1AFZG/B5agFg2qQPV0vkT4l0mLgHdQo56LgNcAX+iYk6F9bkEVmk+EHmtFhOoM\n16xELTKkvRbG8WjMx3nPPrK5j+fo6ChDQ0OAGu38x3/8Rz766CN+8YtfUF5eHrZvJn08RXgKgpDz\n1Ozbx7Eu1TdTX1XF7jVr5nhEgtnEEoyRpCJmUtnHSKTQsttdBAJD+jgOHqxLKIibmxvo6zvF4OBZ\nCgs/xYULrwNgsThYuPDLnDt3nMnJ5EWBvN6NrFu3F59vgJ07r8bn68VudxMIDGH8sLpkyXo++WR/\nxNFWYkVHi4qupKhoKRaLnXPnjhEMBrBa81m06Ha+8pUnosS3zVbA5GQgSvhaLE6++c2usLmIRaLX\nLhapfNkQOb54AtW4T35+BUNDbSJoZ4Qa0heR61Ejb9XkVrQtmcjWnn8FVTBqeFCLAPlDj50Rz2tY\nUFusjBCdBVEJ3IEqWGNdX5tTDeNrEfncCuBojPELZpPNwjOSv//7v+fs2bP853/+Z9RzmQhPSbUV\nco7c8roIs0GmabSyprKfVNKCW1sfCatsG4t0Uy61lNCyshV4vXVs3vx23KJCWsqocT0Zq90ODJwK\nbbUyOemno+NwSqLTYrHT3/8O27e72bnzaiorvxxKK76EUVDa7S5uvfVnRBcnMorOqeeGhz/WfZYO\nRwlWawF2exHd3b/l8OF6fQ6Nflu7vYiqqvowz+jkpI9du5brVXvt9pLQ/2rqcnn5St1Pm2zejSnV\n2vmSpeOm4gc27vPxxweytqhWPHLnPWo6PsFcTfE0FuOpRE2LXctUaqtWvdYoKq2ovTr9hm2xfz/V\nlPpBYqfedwFPEr8YUGNoTBD9WjQCG2lqugnYiIhOIRaPPvpoTNGZKSI8BUHIeRpra6mvquLQnXdK\nGu08JRXBmG5Boli+0chtmuAtL/8CPl8/LS0PhUVLkwliTZg6nR6Dl3IixjYj4cWFNm16jdHR8wQC\nF/H5emlrexaf73xESi4EAkO0tj4c8oFGoyhqlDUWPl8vExOjjI2dx+/vD/N4GsV1Tc121qzZzd13\nv47FMvW7NjbWpYvSzZvfCv1/kqqqeu666zesW7c3JbEfKXIjizrFIhW/qHGf8vIvJt1fmC7TEZHZ\n7M+MJJZf04YqLrU+nNp7T6woZnSrpaltVuBOwr2bidB+/2NVvHUDrtDYPkT1jxqf2wv8D9TU30Re\n0Jo4zwnC9JBUW0EQBGFekEo6LkylXfb1ncTvV1sQaKmc8dI7jdudzgoqKqqTpmka02xdLi/nz7cC\n4HCoVWLHxnrp7j6u719evpKioisZH79ER8dhLBY7mza9Rnn5F/jVryrw+XrDzq+l/Uam/2qpuEYs\nlnzuu+80DkcJO3deg893Puz5SG+oxeLA47kBh6OY1at/zvPP305BwSIcjmL9vn2+AXbtWs7YWJd+\n7dbWRzLyZUa+hslSmSH9FGsgrXRr4XLls6iRxTHUdNQy4HWmem6WoqbJjjDVP9OKWn12D6oAj+/H\nVlkGdAJDMZ6zMyUujdiIjoIuCe3rA64PXf8qpgTnYuCTGOeqIX5qdKLnhOmQS6m2iRCPpyAIOUMq\nhYCE7CJXiryk6t+M9G0aRdMHHzyF399PeflKyso+r3sBNW+jUaAl8h1GXic/v5LR0S69P6bL5dVF\nliY4a2p2hBU7Mt7H0FAbu3YtY3LSp+9/yy3/kxdeuJ28vAUMDbWxadMruFxehobaeO65W1AUK4HA\nCH5/H1dccQvFxZ9maKiN/v538Pl6sVjs3Hnnb3jnnX9jbKxf927a7SWUlHw2VIFXjcwGgxNRIj3W\nnCfzZSZbS5HnS/XLhFjkyroVspEG4P8jtcrRsTzUTtRIZjD0L955FFRBG91LN1pg5qOmMmuCNNYx\nGvWoKbS9ofFVAx2AF7U4keYJTeSvzVXvbfYiwlNSbYUcJHe8LkIsEvXTnCuycU01NDdTs28f6/fv\nZ8AXK2Vr9kg3hXWuSNW/Genb1CvgDpzRxVVR0ZVhrUD6+k7i9W7Ue1Rq/UJjpX9q68mY3llX9wpV\nVfVs2fIBLpcXmErTjUxFjXUfJ078FIejBEWx43AU43CUcPTog/h8A5w/38rYWBetrQ8D4HJ5+cY3\nOnC5qvD7LwBBuruP09b2ot4GxWJxct9977Fw4a16CxSvdyNebx1bt36kt4IBi95DVLuXyFYzxrEm\nS3uNtZaM6c1A3P6o6QrHXFm3qZCN71HzD2Nq6SkSi04tHd5D7PRZH1M9NhOdJxjneIiOavpRxWYX\niUXnClRP52uokc5qoBVoB46jeULVNZUoNTpXvbdCNiPCUxCEWUX6aaZGNgn02e65ONNoYmbDhqOs\nW/dsTNFUU7NDfwwwNtaD1eoItSCZ6heaSNDU1jbici3l0qVPePrplfh8/WHPp1PoaGDgDGNjPQSD\nAc6dO8b77z9JV9exuIJQTfM9GXYOi2XKOzo56dOFqjaWdev2sm7ds7S2PkIgMIii2NE+FCuKjSVL\n1idNYfb7B8nLq2Tt2qcSel6N400kEDPpvznf1q0w0xiLBZ1Nsm9F6N9FIvvypk9/jG2xgkbJoq/F\nqKL5C6i+zYeAt5nqBVoS+t9YbCiRvzaXvLdCriCptoIgzCrSTzM11u/fz4H2dqo9njkvmpRuC5Jc\nITIVE6a8f62tj9DXd4re3t8xOekPS/VMJ/0zMq03WXpuvPRQ7ZqRlJWtwO/vZ3x8lMnJABUV11NQ\nsIiPPnqOQGCqoEh5+UruuONZdu1azuTkKIpix+NZhdNZFtVeJF5bFK2lS7wxx/LMRhJrLaXrzU01\ndXa+rlshVRK1O9GeO8tU+mkA1ZPpCe0T7pMOJ57/ci7ZiFo0qIZwb+Y21Pt9DHg49Fh+H+YCSbUV\n4SkIgpCViECfeeL5EZubGzh7drcu3AoLF7N589u6eElH0BgFY3n5Su666zcpC9W8vEruu++07vts\navo23d0vMzbWE+YLjRSKTqdHLy5kt5ewaNHt1NRsp7X1Ec6e3UUgMBh2TaezQi825HRWAMGo4kQA\nXm8d69Y9m3DMkH6/zul4c5MJeCPi9cxmkvXCzIQawgWY23CtQdS0UyN1qIKyM8ZzELuoT7bgQo1u\n/hR4CjWKWgTcjFpoSNZ8NiDCU1JthRxEvC5CLDLxRJq5pszyZrqdTnavWSOic4YwpqKWla0IS8Uc\nGDiji06HozRMdELy9E9tPWmpp07nApYsWZ9UdAIR6b1d7Nz5Gd37uG7ds9x337u4XEux2QqYmPBH\nHVNevhKPZ4Vh7G/p6cTqfamiU2vjYrMVhQlRn++87gEFtXKudt6amu0Jx2zs19na+khUq5p4pOvN\nTTd1dj54Pefv3z1jeqtZr43m1Xwn9FhLLTVe69XQcy7DPsWoFWtfi3FOK9kpOrXWK0Oo0cwzTKXu\nDhPe3iWc+bumhGxGhKcgCPOCbPFEZss4hMQYCwmNjHSGPacJHK0C7XQjZAMDZ+jpOY7P14PdXpjS\neWprG0PeShWf7wLt7QfYufMaXYAWFl5Jd/dxfXswGGDJkvV4vXXcdddvWLNmj17IaP/+dWzf7uZX\nv6pACX0P7XCUcvfdr+N0ehgfH2ZyMvwLEoejlPvuezfUi/NtvQBSvPFrntmyss/j8w1w5MhW+vtP\nZdxTNd510i00NJ+8nqnMU26hfWli9B1miiYwe1GL62jFcbRrFTGVJrsaNRp6LfBc6LhYXximUt12\nJlmAGnE14gZuC/2szZ92j8UR2wUhO5BUW0EQ5gXZ4onMlnEIiYn0TBYVLaWo6EpstgJWr/45ra0P\nZ+wNnG4rkBdfXEtHx2G9P2dkCxe/f5j29gMptXbZvt2tR28VxU5eXjl1da+EtXMxoig27r//fb3y\nbjoYU2Gt1nwmJkax24vZvPlk0vNNN402FeaT13Mm52luGECNyJnpO4zXBkS7Vj9qJND4fA1TabnZ\nSDmq8OwOPbYCbwBXEj5/2j2KnzMbyfZU25qaGlpbW7GFikAuXryY06dPR+0nHk9BEC57ssUTmS3j\nEBLj8w2wa9dyxsa68HiqsVic9PSovi6zPtD7fAM888wqCgoWYbcXR/kLY3kPm5sb6O8/RW/vG5SU\nXMvISAelpcs4d+6YLmBBLYKk9d50Oj1YLFYmJvxUVFzPmjV7aG19hIGBM3R3v0wwGECtkhkMuz/j\nHIDqB928+a24IjFyvNo1tMdHjmzVhbaiWDl/vjXl+cykX+flhMyTRiJvaDIxG/l8A1O+yGxm6ndY\nZSmq8JwJf6wwE2S78Lz99tv55je/yZ/8yZ8k3E88nsJlhfgShFhk4onMZE1FejrFm5kbOJ1u7rvv\ntJ666XCoqWlmpGNq68npdIelxUamnMbyHqpi8TgTE6P09b3O2FgXfX2/Jz+/kuLiz3DwYB1Hjmxl\n9eptrF2rptS63csYHe3G7++no0Nt8aKdOxgMYLXmsXDhl6PuT5sDr3cjRUVeyso+R0vLQ3FTOCPH\nG/k4PBW2LK35zKRfpxGzUlGzqY8uTK0ps+YpOzH20Uz22kV6Q43HQuI2IMY2IQ2hn7NddFoJF502\n1F6eifyxiedTPksJsZhpYRyZMC4IgnDZ8Y9vvcXfDQ5SYLPRWFsbJRobmps5MzAQ8/nn29roGh0F\n4NtNTTy7bt2sjj1byYVKolpRG1A/0E8nHVO7z8HBs7hcXuz2Ymy27+nPJ/IXDg6qvQLt9mJuuumx\niN6bFmASq7UQn09tFt/RcUSvPtvS0oDD4ebcuRbGxqYq0JaXr2T16m0cObJVv64xShp5f1r/TmMK\nZ0tLQ8wIZeS97Nnz+bDxZzKfxmMj5zadNaSJ4UT3kQqaVxugoaWF3WvWTOs8ZhNrnsxhJqvLpoom\nJrXxJLrPSG9oXZJjY7VPaQSeR+3Fma0UovbfXAK0GrYXMSUmS4nt40xnPoWsINNfQxN+jf/qr/6K\nv/zLv2TZsmX89Kc/5bbbbkt+UBpIqq0gCFlJPLGXSATGe17bdnZwEK/LRbHdHnZszb59+ofM+qoq\ndq9ZE3aewUCA492qt6YyP5/T996rH1u2Ywf9frW66JVFRfgnJvBNTHC9x8OetWsv28inUcg4nRVU\nVFRnrQBNF6Mg+tfea/loLIgDP9/lf1PAaFhqqeYvtFrzw3plOp1unnvuVrq7p9J7R0Z6ovpn5uUt\nYGysB4+nGofDTWfnYTyeakpLr43q1VlQsIj6+nf09iuJhF+kqDOmyRqjacb9Ir2vkeM3QxAZr+f3\nD6ad/qylojqdHkpKluFwRKc4p8L892pHfkI1Crd65kakxPNmQvR4tW1aumyyY3cQ3XfTgxo1zObP\nqG7gj4C3UNu8aCxArcBbCpxAFdORaHPiAZYxJbZz/z04V0maaltDZr+GGR7/6quvct111+FwOHjy\nySf5sz/7M958802qqqrC9pNUW0EQ5h3xqsMat6965pmodLhYx2nb2kdGON7dHXXOgpCRvtrjYdvq\n1VHnOTs41W6ia3Q07NjrPWqz8UKrlUG/n67RUfr9fg53dl7WVW216JjNVoTPd35GWllkklaZybHG\nFNOPfXbeYxnv8Hn+i29ERTa1CNXQUFtUWq3dHp7eq82Z3V6ib9+06VU9tVJLrb3zzkMMDbWFic7y\n8pW66DReN57oPHt2d4I02aljjPfa2vpw2Dkjx28GxutpEeF0zq/dR0nJMnp6Yqc4p0JjbS31VVXz\nVHRCdKpq8uqyxt+Zo0cfnIHquo2on5YjhWOs8WrpsjeHfn4VVWjFEp27iRadCmrV27kUnZH3GOvz\n+gDqPY8ZtpWg3m898AGxRSdMzacVtS/pAeBb0x+uMPNkWuQ5w+NvvPFGCgsLsdvt/PEf/zFf+tKX\n2L9//zQGEh8RnkLOIb6E+UmkpyqWGIRwkbiooCBKZGrPF9ls9Pt8YefSKHU4ws75PZst6kOm8Tqv\n1NVRmZ8fczx71q7F43RyaWKCgVDkE2BFWVnYfmbMyVwxnXFoAmDBgpuBmWllkUl/xkyONaacXll5\nAwCryor5G+8wd955iN/+9s2Ex2jzECn2tMebN79FX1U9P7/zEPe5vFSHxJ5RTE61fHGn3CPUeO/G\nPqVaBDOWUE2UKjwTfkPj9TZteiXt82v3kalnd7a92sm+CDH/717kJ9REok8l7AuXj/fPQG/UR1Cj\neFuZSiON15NTows1VfYCcDLG2OOl0mZDlDPydS6JeKwJ0ULDz6XA14AHUft0JkIT537DtilxK5+l\nspDkv4Yze/wsIMJTEISsIDJSGS/iYNxebFf7HRrFYGNtLR6nk+HxcQ53dOjnyrdaAbApCk0bNoSd\ns8jhiPqQabyO1+Xi9L33xhyP2+nkhooKAFaWl7OksJBypxNPSKiaNSfLd+9OKPpmUqROpzepJgCM\nUTqz02wz6c+YybFGwbX7jjupr6riyIZN1K2Ln9IZS6RFij3tscvl5ddrdnPY6Y5bNkQ735YtH/K1\nr704rb6Wxj6l8YSPcdw/aD0Ztsa08ba2PmJa9Cs/vwKnswKHw43DURI3apuMXCvCk8kXIdMj8hOq\nseBObIy/Mx7PCv1n875QioxqGrdF9uTU0HreFgAvhY5bCJQBawmPFEZ+5E2YETgHXIp4HDRsv4B6\n/xtQ5ydRUaFIrg/9vxLYnvkwhZkj+a/hjB1/8eJFDh48yNjYGOPj4zzxxBO0tLTw1a9+dZqDiY14\nPAVByAqm46mK17ok1rlu3buX4z09wJSPM1WS+UoHfD5WPf00iwoKODUwoHs+66uqcDsc+rEV+fm0\nDQ3FPU+8OdGIHHeYD9Xvj7q/ZONOlWz1u2XSn9Hs3o6ZFlOKPH5TSHTGcqxlSqx7T6U/ZCwvdKrH\npsr861OZGpm1SZmdwkDGdQOxi1VlRiyfZiLvJkAbcCuq6Pwp6qduY4RT80LagMnQv2zAguq97Elx\n/xLgI8K9uA7gBuJ7N7V1YUctRrQ9xj7CbJLN7VR6e3tZv349f/jDH7BarSxfvpwf//jH1NbWRu2b\nicdTqtoKgjCrxBNDjbW1afW/NJ4nkljnKnY4gOhU2VTGF6/CpXHfRQUFuvAzXqfu4EH9WKfFgm9S\n/eCTSgXcxtpalu/eTdfoaMxxG8dVmZcXdX9mVeZM97WZLTKp8JnKsemIyUyrqUYe/98cbm4bOMNy\nWwH5tY2Q5MN9OmONde+pRIDjpb9nEj2OxMxz5RLTraqsMjvVSyPXjXlfChgFUh3hAqmR+D05teM+\njyrMzhAuOhXgfOjncZPGahZfBl5JY/8bUe9fS5EuBa5B9W5C7NfduC48qCnMUlxIiI3H4+HVV1+d\n8etIqq2Qc4gvIbeJl7aZyFMVK4001nm0/bYeORIlkhIVCzGuqcjzNjQ3c7KvD4Ayh4NjnZ2U7djB\n2hde4FR/f1QBohVlZdR5vfp1jB/W8w0iOZXvPB9pbeXTxcVU5ufzVIwKuWE+1E2b4vpUPU4nncPD\n007DNb422eI7nQ1STX80tkEpL1/J5OQfJ9w3VlpqpOAaHThDadcxulJMvcw0VTOV1NR4v0NmprXm\nWoqsWSQqBgXJ/u5lWpFkrtEE0mFU8Wmcg8jcQWNvylPELpCkESQ7vJyxOA7Ee/+0od5fsWGbdm9a\nivQHqOnEMPW6R/bt1I4pQk1VDk/Nlc9SwlwgEU9BEGaMWNHDWFGTRC1QItuZLN+1i9P33ZewEi3A\noscfZ1VFhd465ZHWVnpGRth65EjCtNMwsXbpEofb2/XUWUVR6BlTPUOHOzv1gkMepxOvywWKwt51\n69SfQxijhfWHDnG4s5MVZWXsqKlJOn/GHqE/fPnlqAhpZCQyMhJrt1rZ6PXSOzqqR2Mz7Uk4nSiq\nWSm/s02q0beBgTP4/WoD+qKiK3E4ihLuGysyGhnxSjfyl2mkMJUIsHGNpXusmeMQIkkUFcwFEgln\nYxpxBfAcU1HNyhjHLUctOFQNvBbjWjayI/oZWWW3HNXHaWyPshZVjK9AbQcDU0Icol/3yMi39nx/\n6Dy5+sWEMJ8Qj6cgCDNGLE9YLF9mrP2M2yrz83UBBqrQW+HxUGizsaOmRj9PpCdSo76qip6RkZj+\ntEi08XVeuqSLXVAFrtvh4HCn2kttRVkZe9et4/bnn+fC2BiD4+Nxz20UgpFjbmhu5vm2NrX3Z0UF\newxRX2OP0I1eL3sTpOYm8nsO+/2meTSn4/eM5w1Mh0w9lNMhVR9oOv68VPdN14Nqhmc1kzmei9fH\nbF/t5RRhnXuMgvLnwMPEFs41TImpCqZSZzWBZjzus8A51IJCdwH7yA6RCWqCoZUpwWlFFYKtwBdQ\nxxo5BwOk94WC5octQm0zsyd0XLrnEWaKbPZ4poP08RQEISuJFZWMlVIba7+odiYhD2ORzUavz8fh\njg4cVmtUOq22n1bxVotcvtPfrx+vtVmJhTY+7fhyp5NyhwO3w8Evb7uNOq+XjV4vRzds4KcnTtDn\n8ySAV+QAACAASURBVOmiM7JNi4YWJTSOWUtZfeqDD6Z6f3Z0cPXOnXoaq9YjNJUIaay+o9p8mtmT\ncDrniucNTIfZr/qZPP1RI5300FT3TfXaxv0dDjcHD9ZNu7rsXLWnmS7Ga+7ceU3a9z0XY85+ItM1\nZwpjBduHiV+K0xgN/WLoZ2NU0HhcFzCI2j7kWbJHdK5FjWYaP48XAi6migVF3gukX6K0EdXLOYwa\n4dTWdKalUgXBPCTVVsg5mpqaqEkhTVGYe2IVpdEic2eHhvAWFlLscFDicFDhdOIOFQAyHptvtfLg\n0aN8rqyMm+12vU1KpIjRzvu58nJustn4n7fcwsOtrWGRSwvox3/xqadY6nJRYLPxPZuNu+64I+bY\nO4eHOd7Tw+HOTh5ubQ1Ldz0zMMDFwFTK1BNf+UpMMZYsLVijMCSqNX/pnrVrUy7qY7zGU2vX8nBr\nK9tWr+aR1ta4RZimQ7x0y0SYUZwom4vORKaHJnqPmslU0kwLHM1Vexoj6UQhtWvabEX4fOd1AZnq\nfWfzmorErL97yed3dgoVpe5LNaaTamPKR43o+VBbhWiRPWNrlQDR6azTwYIqwl+I87xWNTeSItQ2\nKM2oVXcJjVvrqTmIKg4row+dNm7UKrdaFeDEa1o+SwlzgaTaCjmHvFnmNsa0Sw2P00lvKAIZmYoZ\nmaa5bfXqmCImXjqnMTX0/YsXGQgJxXKnkwuha942NETTX/wFn921i66REcYmJii22xkPBrEoChd8\nPpwWC5PBIEHgS5WV7L3jDrYeORKW2msFbq2sjPIyxkov1sa1oqyMRYWFOCyWMFGdbnQyXmsZM9Jc\ns4FEqaTZljI5V+9RqabxxpuveHOcyvymkuqbynnSaaeiXXNsrJ/OzsNptyIxu6XOTGLWmko+v8na\nl5hFvPTPVFrD1DAljkEttrObqdYqt4Yem9U6xYNanCcSK3AWeDBiPEa0scGUZ9MFDMXZJ5J0W+Wk\nnlYrn6VmH0m1FeEpCMIsowmuErudi4GA6p10OuMKLm3/IpuNm6+4gkUFBTF7YUbut2fNGh5pbeVU\nXx9nBwd5ZdMmvtvczOGODlaWl9M9MkLn6CjFdjsnN2/G63Lh3r49LIKpoQBWRWHc8F5W5/VS7HDw\nn++9p2+zMPVRR+vhqfs3PR72rF3LzXv30jUygs1i4aYFC8KipPHEoxnznaqYzcVCQJdr78dIjELq\nB0533I+r6c5XuvvHE5jJztPc3MAHHzyF399PeflK7rrrN7Pmb71cSP7lhFl+wOn2Fq1hSsTFE2Sa\nOAa1sutypnpZPkJ0L89MsKPeQ+T5lNC1J1E9mu8DHRH7lKJWn53ybDawijMsoIATNOLHnVTg15B8\nPoRcQYSneDwFQZhlNI/gW5s3617BPWvWxPUNNtbW4nE69Wjgk++/H7MdS0V+PjZF0fdraGnhzMAA\nx3t66Bob4+HWVv06v7nrLpYWq6XqBwMBlu3aRdmOHYyMx/YEBSFMdAI0nzvHzrNnw7ZpolNLqT0z\nMDDl3+zspKGlha6RES4GAlwI+VS3Hjmi+01j+V8zbV+SriczXrubbCaXUiZnEqMv1Oigi3Qvpjtf\nQ0PqOrfbS7jppseS7h/PO5nsupHVgdPxt6bjh72cSe4xTtS+JB3PZ6IVqBHr3Mkq3NagptCuBzai\nOsaOh67zbcJ7edpRo4vTQUvbDRAtOhcBt6D6NvtR7zNWRHQQ+AxqJBbAzRmu5BitHMBPA4tJHlU2\no1XObPl2BSE5IjyFnEN6T+U2mrjyuly6yErUw9PtdHJDRYX+OBASgJq404TZ821tujjUivyE9dC0\nWqk7eJDhUJXYtiE11ckK+E6fpt/vJxAM4rRYuL68POl99Pn9+CfDU7lcdjvrlyzh2tJS6g4e1Asa\ngVogaNvq1dgt6tuuBfBPTnKgvZ2rd+5kyX/9F7c+91yUwMxUCCaa21iYUQhotsm23o+pvEfN9EfB\nRB9X052vwkIvAIHARVpbH066fzyBmey6xuNqanYkvc7lhFl/96JFerKVmIqAjEUqginWubU+lbEE\nmbHf5+9Q/ZLGL+N+DbwV+tkOrCLc95kMLVCzErgt9LM1Yp+VwDuE99gsI7yQkXbNCVRxugxtbgtC\n46jGwza8wFYSvwMkmg8jiV7H2K+hfJYS5gIRnoIgZDUNzc0MBgI4QoJtZXk5VxYW4rRY2HrkCPva\n2jjW1aW3HSl1ODhxzz24nU4q8vPxhITt2YsXdQG36umnGQztPxFxva8tWcKCUH/OVLEp6geWodA4\n24aGONbVRa/Px6KCAr0Krtvp5LW772ZxYSGrFy7Uj+31+WgfGeF4d/eUEH3iCW7du1cXr5p4ziT6\nmQpmVsCdLcyKeM1mXGC6H+dTJdHH1XTny+FQP2SnGiGNJzCTXTfbvkC4PEi2EqcbcYu3Ao2/ZZpA\nM547UQVWbSxFqG1VDgDG96gxpn5zi1FblfQBi1EjlLEwCkstq+VK1KimhymB+TnUCrS/CY2tMfR4\nI2qqr/aXpIQp0arhQ5vbRhqpp55DLMOtR2qvJv67TqoVaRO9jmZETYXLhZ07d7J8+XKKior4zGc+\nw0svvWTq+cXjKQhCVhHpMVy+e7few3NRQQHv1NdTd/CgXjDHrih6FNSCWjRoPBjkeo+H0YkJvaJt\nZV4eXWNjVHs8OC0Wvc+l2+HQxd/K8nJ+c9ddACzftYuusTF9XEU2G8MxUnEVpj6uACxwOvmCx8Ph\njg48TifLSkoodjioyM8P86YCNLS0cKi9nQG/Xz++0Grl0kS4HF5cWMjbmzeH3XesQkHZVmQn16hh\n9txUs1XCxQw0D6XVms/QUFvY+pI1l+skW4lm94CsYeq3rA5VfCY7dwPwPDCKKjSXh85RDTyFWuG2\nK3SuAKqYLEZNg60GrkUtAvQuagQyiCrGalArzx4L7T/I1DxobU5AFa5vJxijNodam5cS4AHgCKro\njDW3xp6bw6FtmbzrJHodpY9ntpDtHs9Dhw7xp3/6p+zevZsbb7yRc+fOEQwGWbRoUdh+4vEUBGHe\nEJla6jOIsPFQaqvWp7LYbufGBQv05yeB8z6f7qk09rOsWbRI7ek5MsKr59Um5FbgKwsXsqykhDyr\nFYfFwuefeoq7Dhzgc+XlrF+yhCWh6Gq8N8vIt94en49jnZ2sX7IEi6JwvKeHA+3tvBCKzGr3paXA\nVhvSiAHyQqmuJaE+otUeD29v3ozb6UyaBit9CTNjNuMCqSbQZQNapHJoqC1qfcmay3WSrcRMekAm\n83BuT/HcZ1CF5UXU1iWnUYXhIdT+l6dD97AqtP8EqujUPJRtqD7QXuBroe2ngBeBvaFjTxI+D8Zx\nJhKdMDWHH4TG4w6du4v4c6sdc7PhOpm86yR6HaWPp5Aajz76KI8++ig33ngjAAsXLowSnZkiwlPI\nOcSXML+JFFfXG4RZz9gYDS0teF1qwYjBQID3Ll5kQV4eoApRjRVlZbxSV6enjZ4bGaHX56NzZESP\nkE4A+z7+mOMtLYxNTNB6/jztly6pfTs7Oii026lyufBNTjIYp/BQLALBIEc6OsI8oFq01ON00jk8\nrKfL7omIWg4FAtR5vWHFl7SUV2Ma7COtrVFpt5pHbo/zh/zDpftZv38/Dx49OuPpufMFs8RgKu9R\nufhRMJZ383Iq7NTc3MC+fTXs378eny+zZOx0zzVzf/fMWomxRKYx/XMVU4WBNpLeb1mkP7MHNbr5\nCLAQqEIVlu8a9lnJlGDUisAVAz8DPkEViDB1/17C5yGdd4N4c5hobrXn9qRxnemMIT7yWSr7aG5o\nYF9NDfvXr8c3kP57TCbHT0xM8Prrr9PT08PVV1/NkiVL+MEPfsCYIfPLDER4CoKQVUR6DPesWUNl\nyHOpidG24WF9/56xMW654grqq6o4uXkzdV6v7qnUChjdvHcvL4VSVItCwhbUiGdktVoNh8XCsc5O\nPVU35j5K/IwS3+QkYwax6p+cxGGxMD45qUdBtchnucFL6Z+cxG618tMTJ+gZGYlb9dYYGb5m507W\n79/P9at3UFVVj8+9mpbuXg60t3Pg449zrkrtXHGyuYFv7KvhZROERTLMFDGxMd+xGsuDORu+zJmf\nq9QwRnd37rw6o/HMv0hxLI+hMWqopbQeRjUopLNWGlHFqpbdokUH/ws1qtgPdDK1ziuZ8mLClMgc\nBD6L2ucz2e/FbH01lItfQQkzxcCZM3QdO0b7gQO0NKT/vpDJ8d3d3QQCAZ5++mleeukl3nzzTU6c\nOMFPfvKTtMeRCBGeQs4hDY/nB/HahERWYXU7nZy+994wMeotLNT3L3U42F5Tg9vh4Oa9ezl27hyX\nDL04G5qbef/iRb30Q5HdrotTlxYhXbYsanzjk5P0jI3pwjRSYlqBP6qsxB5HfHqcTr2Crba/f3KS\ngdDYtCq3AK/ffTfO0L42ReHQJ5+w++xZXTBeHRKWxnnSIsNFNhvnfT4OtLfzg9aTrFmzmyK7GgGu\n9nj4YqhC70xUqc201Uu2YZYYSOU9amDgDI91LeGH7ctZvftnMzB/5pcvilUcaDZamWSLSNOiuzZb\nET5fb0bjSTdSnP1/92IlqmtRw2tRi/xopOtxc6OmxL5LeHQwuueyyirChZyxAu0YpFTUZ/6T/Wvq\n8sNWEHpfqK5m9bb0M0gyOT4/9AX/D37wA6644grKy8v58z//c/bv35/2OBIhwlMQhDkhnTYhRjHa\n0NzMqVAKiRX4QkhYRfbM/OLTT1Ozbx9PffCBLjqtwCt1dTy7bh17162jwJCaG8lkxOMg6OLQqihM\nAMfOnWPt4sUsLiykZcMGFhcWcrfXi8fp5ILPx1Ao4mlTFL0qr8ZVLpcurr0uF13f/CaeUGGkgUCA\niwbx3BsSlvcePqxvq8jPp8Lp1M9rFJbGqPGetWtnrEptLvb8TMRspo3abAV0s4D3WMbvRj0zMH/Z\nVckyk6il8XWxWvPnLPqpRXevuOJmfTzTXSfzr4JvrNRULZrXxlS7kRJgxzSvERkd1ASlhfB+nY4Y\nY6s0XB/Uoj69qAJ0OdHiM52MAemTKZhDbWMjVfX13HnoEE53+u8LmRxfWlrK4sWL075mukhVWyHn\naGpqkm/q5gHr9+/nQHs71R5PWqKoZt8+vbKrxtL/n723D2/ivNNGb1lf/rZsy8QhBgU3hKYfCU7c\n0ha81tZOKSbUboKSJu1F0rO1djdtt/tuN+w53bNnu233fa/T9Lq63Z7Tbjh9NyRN/YKTNIEU3BQT\n/FGSOk1DIF+NuyTQGjDGIGHjD9mY3/lj5hk9Gs1IM9JIlsxzc+nCmo9nnueZkTT33L/f/SstRXhu\nTimpAsS7zTptNmxZuRI9IyOYW1iAx+3G9SUl+N2FC8A772iqnjxYmZaHhoYQmp1F7+nTcX0PDgyg\n+/jxGNIIALVFRTg/O6vkljptNtx7ww0xLrcetxsrfvYzjExNAZBupdTk111QgNkvfSluHpjrrVli\nuXv3+zE9PYqCAifuvPMVlJX5lHVqd+FjQ1+Ncy9N9RzmKph7a1PTjrTIgJHvqEgkjKbuH+G3M15l\n/rTmOHXklpPl3r1+jI5KLqH19QG0thp37+TPy/PPd6TcjlWw6joxg/z+3VO7vvoSb24YJyGFzf4a\nwJcghfE2IDbMFpA+B29ByvV8HsB3IIXn9nLbqB1l/TDucW1m29xBfl9T+Ylcd7X953/+Z/T09GDf\nvn1wOBz4zGc+g09+8pP4l3/5l5jt0nG1dSRaKSAgIGA1GKFx2u1o9/mw0+83RViKOdfXi/Pzkro4\nOxtn/sN/JfJlWGZkl9zzkQguGAxvdNhs6ONyRsORCIKDg9jR1KSosMPhMI5duBBHOovtdvymowM3\n7NqlLFtWVIQ9J04o2960ezfevuce+EpKFOKpJp0A8PJnPxs3D+mQvunpUczPXwQA7N27AZ///J+U\ndUzNBKSyL1+YHlZu+AcHg2ht7UZXS0vMPKihJq+5TkxZ2Gi2jvWru78eM38spBSIznHqkNShXDkH\n6ajJ/HnJBTMjq66TIIIYxjCKUYwudMGTAw8IMoMuZOYhiA+SURAgmfSojxGEFHJ+DBLRBCTS2Q3p\nwcxNkHJEtaICzEQM5FZ0gYBAqvinf/onjI+P48Ybb0RhYSHuuece/OM//qOlxxCKp4CAQFbBK3Va\ntSjVUN84f+3FF9Hzxz/iA5WVqHS7cW52VjEAsgMokOt68ornNYWFIADnZmeVZWpFlEeVy4Wpy5cR\n4Vxp230+PLtxY1x/tg8NYec77yhqJoPDZsNlIqnkS02NUlP05qoqjE5PY0zlFBeor8dLZ88qxPOD\nHg9WV1Tg6zffjNv378dQR4cSVgwgjvxqzZWaZKjX79lVh0hkHHZ7Me6++60YxVOtZr548LMYGemB\n19toODzQ7LnOZaRD4NjtbzGkW3C9mdu/v830HCdDrpwDq1TCxVAbMwU//OiXlbIAAujOE6Usf+BH\nVIkE4mtcakUFsE+rE0AJpLDgZNdZutEFRr8hjG4nkKvIdcXTKITiKSAgkJPQullPVotSDbXyNjY9\njXORCPpHRxGor1dKqNhtNiwQYYEIdSUluMjlWJ7VsAP3ut04F4koyimP8NxcnOI4cOYM2vbvx8Tc\nHA6PjSn9+cXJk3GkE4i65U7Mz6P39GksKyyEr7QUZQ4H3lIprWwu7ujpUYjnDRUVeGbjRgDAzF/8\nRcz2/Lzy749duKCEGwcHB+NIhnou/+edr2Dv3g04cM0j+Omhoyh2vKmcJ7Wa2dLSZfqG3+y5zmWo\n584MgWM2P4B066hHL1KZ42TIlXNglUqYTVU60yiWlbJGNGLHoiplmSY0VrQf28bAwHYDYelMiVwL\n4HpIdUP57VjOKA/+0xow2FetdszA6DeE0e0EBHIXwlxIIO8gak/lD7TMZ9TlUpJBfeN8fGICgFSz\n8+F165T2/vzaa5XtXt+6NaaGpvqLrqG6Gr+9804E6utxdOtWOP7wB2WdQ8elNjQ3h56REYV0Mlfa\nuYUFze3VGJudxclLl3B4bEwhpaUOB9pWrFDmotzlUsZQ4XLpOsby83pTdzfeunAB/aOjCumskOdG\nDfXclZX58PnP/wknpi/HnSe1u3Aq7qVmz3UuwwyBU39HGQ3Ey4RD7FI6B0sNXehCAAEcwIGkYbaZ\n/d1L7ICcfjkbKxyWY9sw5nTMDI8OAXgGxkjkYoTNGj2mke2MGx2JeymBxYAgngICAhmD1s26mtAk\nA3Nv9cikzFcmuRdOzM/joaEhpb0nb78dq0pL4S4owH0HD+JDVVVKG7x6aYNEwD6xZw/6T5/Gjbt3\n4zJHUi8TaeZXqnHswgXUPP44ktHOKpfaYVEKCQaAS5cvo/fUKVyUCWNXSwtWlZXBbbfjuZMnFTJ4\n689/HkNCi7lapKMzMwqhLLFLLV+U50YN9dwx6JEqM+VStLY1e65zGekQODOl6K1GqueAkY3v7m/D\n7ZFw3vh15krNTyPwwINudOdAbmdiQpN+ORsryFxsG8ZyfVOpkbkYn1ajxzSynfVllAQErITI8RQQ\nEMgYtPIQjUIrfDRQX49LsvKoZarD57PVFhVhdGYG5U4nJubnUepw4JLKgCgTYLmdDO0+H4bOnsWo\nHO5rB1DucsU48BYVFOCjy5bh+MQEJubnMcGF/jZUV6PY4VDyWGvcbtzi9eLY+fMYm51Fo9eLp26/\nXXLbjUTQe+oUGr1eXJybw9jMDJwFBXjlzjvhKyvTdaHVO09m8gNzJZdQwBrwLrSv1Afw/7V254Vf\nZzruuVcvEucopp97bIXDcmwbkcj9GBzsQVPTLXC7n0yj3aUG5iCszmcVyAWIHE+heAoICGQQ6She\nLJyUEbRGrxdFdjsm5uZQW1iIp26/Pa5dXrn7TUcHAvX1OLZ1KwL19fjYsmUx25Y6MpPi/ufLl6NI\nVh6dNhtGp6bwoepqtK1YAXdBARaAGNIJQKoJOjqKkenpGNIJSPMwJIf3ljgcOCeTy49fc42i8G7Y\nswcDZ87gt2NjWFZYiBvKy/HuxAQuzs9jPBLBhr17AeirdnrnyUx4KdvW63bj9NSUIZVUIHfBFKWQ\ntxFPNO3IG7/OXHC9XSykrvYmVgbN1xxVh3smat9oaGhsG273SbS2noPb3Quh7PFYzPgKAYHkEIqn\nQN5B1J66OsDUuYbqalyIRFBXUoK3QiGFtBXZ7bjV60W506kY4oQjEdz6859jeXExyp1O1BQVKbUy\nf9zUhBt37cKc/H10+3XXoffUKcnZ1kAdTyP4QEUFGpctw7PvvRdX3qXa7cbFubkYNRSQyKmWOREg\nhelqGR1Vu914v8cTMx88vG43xmXSZwdw/N57lTBbI1BK3hQUoNTpxKMGSt4w1fT01JSizl6tyudS\n+I5i7rE3N+3AV9weU1rVwEDQwnqk5pCK620+lDUxck3ljtrrR+ZrYAplL10she+pfINQPIWrrYCA\nQI6Cd1XteP55JYyTgZUnAYA1u3fjnXvuwfahIVyYncV7k5MApLDUczIB+8jPfx5D4EocDlQ4nQir\nFMZUUVtUhMMdHVj+xBNKrVAe5zn1rwBS3qmroADuggLM64QAT12+rJtvysYOQAknBqTQ3OrCQvSe\nOgWnzaaE2ZoB7+AaqK/H9qGhpKVEmGratn8/gFiV1EgpksUkKwLx4N1jzdIXa+uRmkMqrrfDGFbK\nmgQRzNuyJrmj9maqBibvbPtjAA/B+tqgySBKmggIpAMRaiuQdxBP6K4O8OGfLIyz2u1WnpbZuW3H\nZmcRHBzEcydPKqVRKpxO3CLXvSyVQ1SZ2thQXY1ylytKOtNUO20A3r77bmwfGtIknWowMrlw5YpS\n8oX1k2FtVRWucE8UPXLZGK/bjQV5+YcrK9Hu8+HY1q1o9/nQ4fPhhTvuwJOtrQjU12Ns27aY2p9G\noQ6x1XIn1oNWOK+R/dM3MEkPVprSsO+ofDK6sRKJCJBxz03rEEQQfvjRhjaENY6aO2VN9GHkd898\nSGymYCbc08y2vHHOhwD8CsBqACfT6axJLB3zHnEvJbAYEMRTQEAg58HIjMNmA6NpFTIRA4AyhwMP\nr1uHCEf67HJZlA6fT8nvLLHbsaywEM986lM4KauiPHgyW66TA1pss6FtxYqYZZUuF+7o6cFT775r\neEwFQIwj7u3XXYc3AgF0+Hxo9/lwaMsWlHB9KHO54HW7cZkIYTm8tnj6GIILP8C3XvkNwpGIMv7t\nQ0MYm57GfQcPKnmWZhxq1eTRTK6nVr6okf0XW62xjPgGg4DfD7S1ITz+VrTNbwWzy7YWEYkI0GLc\ntjNFswc9CGoc1UxZk1xGJsrxpAYzbrJmtuXV0QIAFwGMA9iA7D3SyGa5lcV4TCMgkFmIHE+BvIPI\nS8gv8GGWfM6lXshlonb+8/e/V8ia02ZDicOhqJZetxsEKaSVd7AN1NdjR1MTan/6U0TksikdPh9e\nOXcOI9PTUmOqHM+bystxXWkpek+fjutHAYCm2lq8eu4cJg3W8DSClSUlmLtyBZGFBdxWU4PlxcXY\ne/IkwnNzuLmqCmUOh1JDFAAKMYfr8Qd4cBG/wcch6a5A24oVmJqfj3OY5V1na9xuNNbUxJyDROGw\n6bgTG90/ldw8K5G+c6cMvx99/f3wA9j/r7UY8Y7Ce74Rm799AO4Zj7k0tiWIxcjMa0MbetCDRjTm\nLbm8un739MJZeWfb1QDGMTBgRzjcCIdjGC0tIUhfL5n8kFnh0GsUfqSW/2oMV9c1lRvI5RzP0tJS\n2Lg65jMzM3jwwQfx7//+73HbihxPAQGBnMVzJ09idGYGAFDtcuG8rNYFBwcV4xkjOYDD4XCMQjhP\nhGmZXJY6HIqZTl1JCd5fUYHe06cVh9X7Dh7EHFers+/MmYR9/v3EBMpdLk3jnytAXL6pHZJ6yXI3\nU8HU5ctKHmjvqVOocbsVZfOtCxdQLtcDXVtVhT9NTeF8BPg9PogyzICRTgB47fx53CLXMOUVRqY6\nsrBjFvbKzgGf18kvB6IqZqowsn8quXlWoqWlyxriWywrIo2NaPnSUxg89hCa9u2QSGe+WMNaAD3q\n0IXs3bazPjixB+3oxE78W16SzqsPTBcHpLPIvhc83N+vANiAcPg6jI5KNYkHB4HW1kx/yPg+ZBrZ\nVFcFrnZcunRJ+Xtqagq1tbW4++67LT+OUDwFBAQsg5pAbh8ailEplxUWKrUn+RxAIzUgmcstj2q3\nGxtqa/Hbc+dwenoa5U4njm3digqXC7c+/TTOz87GucuqcXNVFd4OhXSdZY2gyuXCBQ13WQZXQUEM\n8dXcxmZTHHdtALR6U1dSgte3bsV9Bw+iZ2QEN7ou4rrq1Th0RlJCCwsK8Pt77kGFy6UojMwYyGm3\no8ThwNT8PHpPn445B+/fvRv/dfEiFgB8yOPBYHt7QmXTyIOCqxbhsBRuu2MH4JFJTjZFEg0shnGT\nH/FaTbZtWbT6IKCP3DH4Mq6LRyMVGrB580q43TsTbp8vGAgGER5+C47i42jp+g3cHt9id0nAAuSy\n4snjsccew7e//W3813/9l+Z6oXgKCAjkBNSq2dj0tEI6PS4XXv7sZ/HQ0FBcyKVWDqCa3DCXW75c\nx/lIBIdHRxXToIn5edy4ezeG77kHK0tL8Z78BM9hs8WVMWGoKynBssJCzbBaI3DYbLipshKHz55F\nid2OKY3wW5fNBp6Waimpc9x7rZ6udk3hmyVP4sWDP0OV629Q43ZjZfVN+ElzMx789a/x2vnzeLG9\nXXGw1VIyA/X12On3x4W9jnLn6cLcXFIiqT7PHpdLEFEGjwfoVlGcbIokGlgMl1ktrUZPx7IKauJU\nLBMnoRcZw2/Dz6FM/lwfHPwi2lqfWaSeGNfFLYtUyDGEh4cx2n8YADAYfAit6u8UgSWJdB/+WPXw\n6LHHHsO2bdtS2jcZhLmQQN6hr69vsbsgoAM1gWTvK10uvHbXXfCVlcUZzwCxZjbbh4bg37sXMEr3\nVgAAIABJREFUT737ruKEeuOuXbjv4EHsaGrCLz79aRTZJRsgO4DxSEQJSQWAuStXsGHv3phjr7/m\nGmV9md0ec2xXQQEK/vCHpGMrQNRZlsdlIrw6Pg4boEk6AeCSarndFv9AkPWKN00qtNlwXXExql0u\nFNFFjI0dxv8YqcYz7x3HuUgEvadP46GhIezbtAmnvvCFmLIpzEzozVAIQPScaJn/zMr9KwDQs2lT\n0rlIx/X2akCufUcthnGTlldppgMH1QZR6j4EB4Lw7/WjbX8bwnnmMpyNa2rCIYX6v+cFnmhaTFXG\nuOHQ4hoqZc78xyGH7HsbG9G0IzOf2Vz7nhJI3+TOCpO8kydPYmBgAPfff39K+yeDIJ4CAgKWQe2G\nyt6/e++9CWtJ8mSIkZiQTCbVOYketxu3yiVCGJ1rqK6GUyZzxXY7fv2ZzyjHri4sxJHxcYk4ulyw\nq4hnKBLBb8+di+vT8uJiLCssVN5fAXRrfi5cuaKpUlbJeZnqZc6C+K/eBUjq69GtW9G2YgWK7Hbc\n4vVi+vJlnJ+bw7H55XgCX8AFx/swTRI5rXS5dF1i2TyORyKoKymJIfVqZ9u1ck7oFQDfOXJEsz0g\nSmbnr1xBh8+XkuutQPZRVFQDt9ub1ZtzLepgpnBGKlATbHUfhsPD6B/tR89ID4KLULJnMZCslAyP\n11puwyv1wMDmtfiRe2fGerR0nFqfQ9Sj+QFLW27p6kJ9IIDNBw7A7Vk6Sq5AYqT7kNCKh4w//elP\n0dTUBJ8vM+HdIsdTQEBgUcBCaY9PTsJXUoKTly7BV1aGd8JhjEciWFtVhevLynBJzklkxPHVu+7C\nXw8OomdkBCV2O0qcTrz82c8CADbs3YsN11yDM9PTStjn9V1dSm1PPahDcddWVeHQli0AgJt278bo\n7KyyzobYUigFAApU+zttNthtNly+cgV8hul1xcWYnJuLyTtlDrylDgc+ds01eFIm4HzeKwDcVl2J\n/7P0GXzl3Cacmp6Bw2bD7+68U7dOJ8uJ5XM59XJptbbVgt7+6breZgq5k7O2uNi716+E2tbXBxbV\nxCmTSOaM3La/DT0jPWj0NuLA5gPwXAXXgx9+9MsBzgEE0J0gwDmMMIIIYgd2ZNCEyY/sZ95mKru4\nCkBI/rsDwGKFJgvkC5LleKbr7m6FO/yNN96Ib3zjG3jggQd0t0knx1MQTwEBgZQQDALDw5KJZ1dX\n1Ecl6X4y4Tx24YKiaqrBTHQ8bjfCkQhqHn9cIXZs3epduxQnW54EqcnRk6ramg3V1Tg1NYUxjkzW\nFBbiHPfeV1qK60tLcXxyEtcVFWFofFxZV2a3JyyjoudsawdQ6nQqJNhhs+FTdXX40YYNuGX347h4\nRVIx7/TV4emNbQoZbKiuxsrSUuz0++Fxu7Fhzx4lx1XPiAnQJoN6BJPflpkRaeVrGiWouQKjhGup\nE1TLSsXkOcKRMIKDQexo2nFVkE4gF0vJpFtQJxUS6UdmyO7tAHoBNAB4wWBfBK5m5Lq50IsvvohP\nfepTOHv2LEpKSnS3E+ZCAlcVRO2p3MDwMNAv/5YHg/F+Knrgy6sAUk7jxfl5lDudmJifR6nDgfd7\nPPjaiy/iVyMjiCwsKMVCWBitx+3GR2pqFBLEh3eysE+v243TnD04Q3VhIZ751Kfw0WeewdjsLNZW\nVeHs0aPAihUAJHLI18EcmZqK2Z+RTlZChY2hwGZDaG5Ot5zKAqCQzgqnE0e3blXCj9/nGMOrc9fB\nh/cwef4U/Hsv4w8XL6La7Ua1262QTgAol3NA2bjVynG5y6UQRjUpZQZNjIxqudMmKqui3j/XYTTs\nyGrzHfYdlcj9NxnZtZIMLyUDlnS0K4/bg+48VXuN/e7Fz04XurKgYppBugV1UrGoylR28ZNYVLvq\nNCHupQTUePzxx3HXXXclJJ3pQuR4CggIpASuXCHMeB9EOLXQXVCAgc98BoH6ehzbuhVetxuXLl9G\n76lT6PnjHzE6M4PQ3BzmiVBot+Otu+/Gvx45ouQZ+kpL4S4owH0HDyo5i10tLVhVWoq5hQUcHhuL\nO37vqVN4aGgI79xzDwL19Ti0ZQvGOCJ8aX4eFxOURgGAQrsdf37ddQAkc6L3V1QoNUWdNptiFGTX\n2f/Ply+PyXn9B+9ruA2v4NtVAzi2UI/+0VGcnpnBedlAqObxx1H4k5/gY888g3kitHP5lYwojkxN\n4fDYWEKDH4/bDY/LhY7nn0fb/v1468KFOFOgRPmaamMilvOpzhnNFbS0dKG+PpBU5cuU+U4i06Vk\nJhBWmEQwLK4Bi7VgtKMH0i1/MqgzCpdShmE84mfHAw+60Z0C6czUTBk3DtJGKiQyU9nF6Y5FQCC3\n8B//8R947LHHMnoMoXgK5B3EE7rcQFdXfLlCPfDKz83V1eg/cwYAELlyBd85ckRR1XgV0+NyKSVO\nGqqr8cIdd8Qpcl63WyGXK372M9htNjgLCvC+8vJoKRVIamOFy4Xw3BwavV4U2e3oeP55hWTZ1qwB\n5LARp82GIocD8/PzUt1LjTqgQx0dWFlaiuDgIPpPn44JxeXLpGgF5DZ6vXhUdQ0/X/IVzLtfxRNF\ndyBy6ULcPpeJcJkIQ7IJUm1RkbKOjYEpx8kMfvj5q5XNk7xuNwZOn0bVzp24uboa7T5fjMpqpC2m\njuZSjU9GuJLBakWQfUclIvHJyO5iONFaiUxl1ZmlHWp9bAyZLemSKah/97QVcSuVvUwXv0n1CklF\nMV3kekY5CnEvJbAYEIqngMASwGIoT6xcoZHcTl758bhcCnFS35DzrrhP3n472n0+dPh8CukEYm/m\nXbJDrdNmw/Tly7g4P4/xSASvnT8PQFIjFyDVxQzPzaG2qAgHNm/GycnJGCXKKxMwO4Cbq6owkcSM\naMsvf4mburvROzKCC6r5ZuVQtNTO5cXFmrmRxydncCxSiV+dGoVLdry9uaoK7T4fHBqlV0ZnZhQF\njc3Z0a1bYxyF9a6J4xMTAKSQ3ec3b0agvh5rKipwdnYWobk59J85A5fdbogwahGrfCytkilFUO3y\nzCOZGmtUreWRS+VCzCqTRmFWu1JTsePy+woAD1vYr+xBUiLD4ac0FHErlb3MFb+RnHZ3og39CJt2\nhBUqo4BAPkMQT4G8g6g9FY9cv9nnCcpOvx9v33235g05H8rpcbvx7MaNeGbjxpht+Jv5VXK46jyR\nkltpB/DyZz+LQH09PlJTE1PmpMBmiyn/wfJAJ994A4CkUL4qk1YboKl2AsDpqSklDJiZHhXb7VhW\nWKiEDm+49lrpmNx+H6mp0SxpwvpT6nCg4Gwlqv/kw7KfbsHOdRtjapDyGJueRjgSwfahIYxNT+Ov\nVbmXz508qVwTD/T1KUT0kkyqJ+bn0fqLX+DS3ByKHNHgl4bqasMlUbSIlSitEv2O0qqZypCM7KZC\nhnOpXEimaItZ2qGmYj4AXxgI4i/2+vGz/W2I5Ek9z+jvnkTpHQ7JTTVWEbeSlGWu+M0whtGPee6h\nREIvEoEMQdxLCSwGBPEUEEiAYBDw+4G2NiCcw/cnuX6zryYoiW7Ik4HflxntMNgAvHrXXfh/3nwT\nY9PTeIc7aYUFBXixvT2mP2sqKnB4bCyGYJLqfy3wdJQplNMLCxibncV3jhzBsfPnldqh7Eu21OHA\nDz7xCc2HBF0tLUp+62jFGZw/a0fvXjeCQeDZjRtjQmsZ+kdHERwc1H3owCuxg2fO4Kl330X/6KhS\ni5Svj1rqdGqqy8mgdR4TqXwCEjIVoVAsh+c2ehuxY5HDczNds9Mo1FSsHMCy8DDWjPbDa0H+rFUY\nGAhi714/9uuQ4e/he3I9zjcRBtDSshb19R0ZdCnOnLJYLD+WkB5KfBjAo5YfwzyWdvavgECuQJRT\nERBIAL8/6twaCBh3bs02crWOYqYRjkRwU3c3RmdmUOly4chdd8FXVhZTUqW2qAgFNhtebG+PMfQB\nouVB1lZV4Y1QKKYWp91mw4LGdxdzs61wOrG+tha/PnNGqcvptNlw7w034Gd/+INmfqdDru8ZuXIF\ndgAbamvx7MaN2D40hKfefRehuTmUhasx+c074P3LIaxpCqO80IF3Ll7Eu5OTMW1VOJ04cd99uO/g\nQc0SJ5WPPqqQTB7q+qj5UhplKUGvHmq6SKVciFamXabyM5P3JYhhDKMYxehCV0ZcWMMAfrS/Dd4c\nKy+TrPRPbD3OOnTjdeRruKlUL/SL2AGCBzuRG+PwI/v1RQWuNuR6ORWjEHU8BQQyhLY2oKdHcm49\ncMB4rUqB5EhmQmPUpMZMvcpE+wZ6e9F76hQKIJHOPRs34rO/+hUiV2ILpNx+3XXwuN3K8Woeewzj\nkQhsAG71evHuxIRufVItOGSCy74l3QUFKL1Qg4WaEMLzc8o2PCkuANB07bV49lOfkuZK46HD7b/4\nBXpPn0a5w4GJy5fj6oHqPawIDgzg5ZO/hX1hAh77AubLb0Wps9BSo6BUa8DmMsyYKuVSPVQ/4m+3\ntZZlpy88uQqgO0NHNlNkPVskPFmt1dyrx7nUkG590Vhk4yGKQP5BEE9BPAXyENmsPRUOG3duFTCH\nZKrPtT/9qVLvs8PnwzMbNxpum5GqIrsdJycnY8gATxBqiopwcnISM2+9he4vfxk37NqlEDxXQQH+\n7Npr4SoowMFTpxC5cgVlTide5+pvAsDJyUls2LsX1xUXK66zDOu83hjHW0AijXq1PrXQ6PXivclJ\nnJdDMvn6oYnUMjYHD69bh4eGhgyr4fx5KcUELqE86bHMIt1IArWj51eHji26ky4/b82Tk+j7+td1\nt82lCAWt221rb8GNIYggnsJTCCGEBjTgBbyQlZv1ZMTSj+yQ8GRk+Bd9v8Dj/sdzqB7nUgMrtmNN\nTc5sPURJB6KOZ/YhiKfI8RQQSAgzzq0C2tDLZ0uWl8rX+zT7Nc1yD9XutUCsEVPPH/+I/tFRvHzu\nHB4aGoKdc5Cdu3IFvadOocTpRGNNDQBgcn4eDw0NxRxr4/79mJybw6sywWyorka1ywUAGBofh1Nu\n0wbA43Jpkk69L2Lmgvu7O+9Esd2OMrtdIZ0Omw0Pr1uXdA58ZWWm8mkVoyNM4gqkcVS5XDg9NZVW\nTiJ/HTgrpDbM1oBlUNe4zAVzLf56/vsPfzjhtunkOFsNrVxMftn2LDlmD2MYIUiGOSuxMmvkKpn7\nrtUmSXqZhMnMpEpRmmI9TgFjsDanNZrH2ogdFrsCCwjkM9Imnjab7T9tNttZm832uhUdEhBIBvGE\nLreQzChFjxQkM6G5zesFIOUkVrhcMccwas6iRW75ZbdUV0t/r1+PHU1NWCu/Z/C4XNjR1KSYGGmR\n5NHpaVycn8c8EWwAqt1uNMh997rduLm6Gu6CArx21134+LJlAKIlVz7k8WB5cTE6fL64osoN1dV4\nMxCAx+2Gr6wMH6mpwSRHxi8TxZFgK9DV0oI7fXXwuRYwDanMzNTlyzh89ix6RkbwRZNOiOxcMXOj\nnpERlP7lIAKB1MPX1TUu2Tm9wXEeW2d/uChOpfz1fIccAp0LSGaZonW7zS/LFqnnb9R3YmfGjhN/\nXMjHjRJLfs5+DGtNklItM5Pq755UusSPNrQhLExzsoYudCGAQE6HRYt7KYHFgBWK56MAPm1BOwIC\nAnmIZDemespmMtXnydtvR6C+Hoe2bIlRLmsefxyPvvOO8n71rl26BFSL3Kprha4qLYW7oAAffuop\n/F5lXfyJa66R8jiLilDjdsMjK5k8nLKrbQEkZbb39GmUOp0I1NejwGbD78bHEblyBf/8yitKO2u9\nXrT7fBhsb8epL3wB5yMRxSm3wunUdJdl88jqelrlYKwm8R63G09vbMPKZR9SjsOXW0mmPqvbY9cH\ny3ttqK7Goy1NSiRBKg6v6hqXXS0tWO8+iS9f/jbCp/cuilNpLqmYPNKtp5kJx2yteqOJbtQz6Teq\nVnyDkEg3m7NGAJcsOA4bw5vye+urY2pDKl3Sjx70IGhpRVUjiD1zi0WCkzkGZwIeeIRCLZB3GBkZ\nwZYtW1BdXY1rr70WX/3qV7GwoGWVmDrSJp5ENAjI8TECAlmAqD2VW0h2Y5pqeQ3+Rp4dowCS0sfy\nMO0AxuWSIFpKnBYZUNcKXVlaisODgxiZmsJFzgV2bVUVfvbJTwKQ8jjPRSLoPX06jly/cuedqCsp\nwTK55Em504lCux1j09MxJU2Ia6f/zBm47Pa42peVLhc2rViBUCSC+w4ejCFibB7/63Ofs7RcCV/v\nc83u3cox+fPWyKnPO5M8JecfRGzZ/d/htseuX1laGtNvvQcXiQipOizR43bjGzVHUIwZVV3DxUEu\nfUelGyqayuc3GVHUqjea6EY9XfKcCEzd3S73+SkAF+V1dgDjFh2XjWEcQB3iFdRkc5bqNbW4IZ+x\nZy4bJFiL3KpD8wUk5NL3lEBu4G/+5m/g9Xpx5swZvPbaa+jv78ePfvQjS48hcjwFBATSQrIbUyuU\nIHaMSlUbBVxOJq/E6ZEWreWM9LHw17VVVejw+XBoy5Y4YqhFrn1lZfjT5z+P95VLJjwT8/PoPXUK\n/aOjCkEusdsxdfmyoo6q22Hje/fee3FmelohYjdxRNBszqZ6rHpzwufSjs3OKuSPHW/70BBmLl9G\nbWEhnt24Melx2Vz58B7umn0Yf+3YhdrCQmXcjLiy/rwZCmnOidkQT7UKKiAh3XqaqXx+k+ZNquqN\napEutmwFgKPysrXInErI+syeolcCqJH/rgDwcJrt8w8AtAqhZIpcL27IZ+xjj2yQYC1yqw7NF+Ah\n6pcKRPHmm2/innvugcvlwjXXXINPf/rTePPNN5PvaALqtKKM4IEHHsD1118PAPB4PFi7dq0SW86e\nuIj34r2Z9wy50p9cfX/HD36AkUuXsLyhAV0tLXjtpZcycjzmdmpm/+DAAF4eHITbbsfz/+2/weN2\nJ9ze43Jh2cmTOH/xIrBmDRq9Xhz/7W+l2pcf/CB+8IlPKNsPT0xIDqPvvIOOt99WHEZfHhzE0QsX\ngDVrEBwcxIMOBxbeeQc1N98Me0EB6J13UHD+PB79u7+L6U9XSwuCg4O4+Prr8H/ve3Hz2VVQgLdC\nIeCdd/C+8nKsamxE76lTKHv3XUxdvoypG29E76lTWB8Oo9lux7P33x833u7WVvT19WHmrbeAqioA\nwOjRo+g4d07pv5n5HQ6H0S9bxwZdLoxNT8e8Z8dbdeYMQnJu6w1nzmCb/F3N2nv58GEclc2V7t+x\nA9+87TZ0FRRgOBzGzFtv4Z9uvVXJaezr68ODDgcmC0/hrtkfYGJ0BYqvvw9v33M7goOD2HblCl57\n6aW4/tXdeisObN4cc30WOxzAO+/gxooK7Lj//qTjdbs9cDgexEsvvZYznz+t998DcMnvRzGAB/v6\nUJqF43dnuP0uvx/DAGb6+vBPAIrl9Tf29WGbtEPs9i1dCA4Gse3KNrz20msY9vsl/8++PnQA6JPb\n62ff9/L+JX19+IKB+VP35w4D4ymWj38DgA/6/dgJoKmvD6MALvr9eEg+Xqrz1QWgo68Pfw/Ak+D4\nNwLYobHe7/encf67TffXmvcPApiG3/8sAA8e7HsQ05jGs/5n4YEnI8efwQzgl8jttr5t6EMfWlq6\nMDgYxJUr23L++yGb76VlL8PvPyr/3QHgmznTv6X6PhGCA0EMh4dR7ChGV0uX4XrMVu2/ceNGdHV1\nobm5GRcuXEBPTw++853vaG7b19eH1157DWE5RenEiROGjmFJORWbzXY9gOeIKM7KT5RTERBYPGSq\nUL0VMNs3fvu6khK8vnUr7vjlL3H47Nm4NvTqJGot59tl0OsPv+2q0lKsLC1FscOBifl5pR9Omw2f\nuOYaVLrdODczg8NjYwCkMNp37703qXIUjkRw0+7dGJ2djet/OrUi7zt4UHNOwpEIHujrgw3Ao35/\nXJusHa97Cmsq9qPc5cTE/Jdw+Oy47lwZqZOYrJalVsmR4MAAnjt5EpGFBdxWU4MnczCnMhn8yE55\njiCsqz/Jt1UD4KSqXT+iY6oF8BsADwEoUm27XadPiUq6MNgB/DmAGQCH5WXq+WP9PIaocml0jrWK\naWSzrIy1xTz0YOVVkZsIy7mkouyMUSxG8aSrF8nKqfj3+tE/KpfhqQ+gu9XcL0S6+1+4cAGtra14\n/fXXsbCwgAceeAD/+Z//GbedKKcicFXByFMjAQks7NE75cXp/7sJbW1SbdJcgFnTEn7717duhcft\n1nWbVYf/srDO+StX0OHzxRAdpqwlcq5lOD45CUAKy11WVKSEgh6fmFC2mSdC/+gonHY7jly4oCzf\nu3Ejtg8NJTXS8bjdePueezTDl82En6rnQC8k2uN249mNG/GMThgt229NxX4cHutFz0gPjk/8Xneu\n3r97N67pegb3ntqM0Tl7XHt6/dOaB3WI53A4jNGZGYTm5tB76tSilU5JhkTfUVaX59CDlaGbfFv/\nS6PdYm7bUUiksxsS6eS3fQJh5f1qXFEC+7qgXdKllmt3AUAvgOPyey+A04gNEFSHy5bDeIislruv\nVr9SgRFTnWTFPKz53ctktmxuQJj6GId0TVl1lQtYAXUaQjb3JyJs3LgRgUAA09PTGB8fx4ULF/AP\n//APpvuRCGkTT5vN9r8AvAjgRpvN9iebzfbF9LslICBgBRTSsH8zDve60dMDBDN0vxEMShFxK74x\ngA0/T+5S2tXSojjKqo109LZP5FDLq2I3dXejd2QEgQMHEI5EFAOd3tOnQUAMmelqaUHz8uVoW7Ei\nzrlWnRfpKykBAFycn8fL584BkBTO64qL4SqIfp2W2O0IRSKwc08E733hhRgjnwcS3Ejq5dWZIese\neSw3dXejaudOBA4cUNRDM06yrC/lLkbMG/Gbji/pkkZWXmY8EsGGvXtNjzERijl33YbqastcVrOJ\nbN3mpUtwg5CUzDYATm45s98qhUTwwogliV5I1KYKUi4j34c57pZjHAW4Sd5fi3RtB/A+1bFdkAio\nTT72YWgTYHaUCfnYibLX+HGqt7GqsuPiOsvyyNxjD2scaxOdDYHMwNr6pQLpoaulC4H6AA5sPmA6\nTDbd/cfHx/G73/0OX/nKV+B0OlFVVYUHHngA+/fvN92PRLAk1DbhAUSorYDAoqOtDejpARobU6+d\nmAx+P9DfD+Dv9gJrjIXQZiIUWB06G6ivR+/IiFLOo8PnwzMbNxrqi3rZpbk5qQ6lw4FLly/HtbG8\nuBiRhQWcl8mcDZLpUbHdjrfuvhsNTz+dtB+AfkitVvip2bnwuFzoPn5ccfA1Ou/hSBjBwSB2NO1I\n+INW89hjGI9ElDH7ysqStm0UycKC9TAwEEQ4PAyHoxgtLV15bT5kNFgy1dBNrXDVlQDOQCKdHkjl\nRdjVz0JZ2fFOIxoKC0gOrsxMx4tXcR63xhyvBhINqgHwKwARALchNqQWkEinG8Ckqr+VAKoBnIMU\njgsALM7ADomo8v1Uw4/Mhz63oQ096EEjGhe5rmPmAnr98KNfnskAAuhOaSb9yE4guoDA4iBZqO1i\ngohQV1eHr33ta/j617+OyclJfPGLX0RJSQmeeOKJmG1FqK2AgEBCdHUBgUB6pDOZSnb8EwPA3+2F\nfaW2S6kWMlEjkFfF1lZVYUdTE26TzXEaqqvxKGeskKwv6mVMYf3YNdco+5VxIbpvBgL4aE2Nso4g\nfcm+1NEBX1mZoX4A+iG1TMXseP75mPOgd2605mI4HFZIZ6XLZXjePW4Pulu7kz5FZeVlrCadUh8S\nhwXrYSmVUzAaLJmqjqEOV22E5CzLlE47oqSzElHdjB3vJNfWhxDr4Po7vA/FGIND9qAuhUQYewDs\nhxSmG0JsSG0DgHa5DTXp9AA4IrdxERLhnOL6toEbA+snr6ndD4lgA8Ycc1PV46xwlrWmFmXm1C1r\nHGuzFYguICCghs1mw89//nM899xz8Hq9WL16NdxuN77//e9behxBPAXyDiLH0zw8HqC7Oz2lM1l+\noa8xDKwZxUJRBHUlJYbq/tUUFcWFt6aLrpYWdPh8aOdKojzZ2opAfT1euOMOzT7d8YMfYGJ+HrVF\nRXjq9tt1Q3m3f9WNse+0Ajta0bbchw6fD5tXrIBXrgnK9mHlQwDgCoDvHDkCAEn7wZCIkGudB71z\nozUXfM3QI3fdZbk5DysvYzXpTAfZLqeQye+oTN+aHx8YAPbuRdn+/VgRicAN4B3umA3y35WQSJ+6\nFuUE9/4GROtjtgGoQAXKsQyXIT0QvyRv9yFIxI+hDMAnIKmg1QB2Ikp8AWAZAB8kFbQBwLS8vBjA\ny5C0sncBPItoWDNfp5PPV2UE+3qNsfghke4Ncv/fQmoZklbkHQ4Ovqz78MSaMNf0YE3ZFpFvmE2I\neykBNdatW4fBwUGEQiGcO3cOu3btQg33MN0KZKWcioCAQP4jmTpZXhhdb7TY/MnJSZyLRNB7+jSC\ng4OWhNp63O64EFaWT8iDD2f90+Qk3pBdaR8aGlK2Ve83PCyHE8ONVbcUYWVjGMcuXIgxu+lubcXb\n99wT40zL5otXLFkY7fahIQyHwzg+MQFfWRnKnU78uKkJDw0NaYbUJlJmSx0OhCIRhCMR6Vgac8FK\nw+iF65pxzs0XsHIKiVx28wVdsDZYUh266wuHMTI6ikkAhYODOCxf/3UAPgBJiWTOtT5VO92IEs9K\nAI8C6EA0ePJWSOqkGhcADEIiquchKZuD8ra98n6MpJZCIpf3c+0yPA/gZkQDNIMAxgDcB+B38t88\nGJllobor5DGVy+Ngob4j8v8sjzUR6TcSCp2Kt6zdLn0OtR6esBxSqe1gimGuZnoZv46R6/TAFFkB\nAYGlCpHjKSAgYAjJ8gvN5h8CyUtqWA1Gqo5PTmIiEsGEnKdZW1SE0ZmZpP3gc2Xd/8deHB6P5k/y\n+wYHBvBWKITjExP4jRxmy6DOGx2bnjZczgXQnudwJILVu3ZhXA6zTSdfVi/vNhiUiHfnNT18AAAg\nAElEQVRxsRS6nYk8YYHsw4/YrLpL3GfSs3kzet1updDCTZDCYQGJUD4D7ZxQJ4A/QCJxrFhDKaLk\nkUcxJCXxXwE8BmBOXs7yM9cCKEFsvqcbUiQBr4Kytj4CiRz75HZZn1i+NSAppXcPBLEsPIw5RzEe\na+nCpOqBRK081gpIYbyNkNTSh5CY9PuRPEvRyDZqJCpRlJkc0kS9TLRucRBEEMMYRjGK0YUu4Wor\nkJPI5RxPMxA5ngICArow42Cqub/sVnvfZ93Y0ajvQpqKS6le2ZNU+5oMLCR1ZGpKIZ2VLhd+09GR\nsLSHUo7lr/aj/d4IDhyIKrxrq6riSrQMh8M4fPYsRmdm8NDQUExbasWSvTdSzgXQnmeP242PyOEw\n6ebL6inbTO3NpDPyUkC++XKqQ3f5z+STbjcCkJROnnQCURKnzgmtBHAXJEWyDcCPIRFFLdIJSGZC\nHwOwG1HSCURNgV5HfGhWBPGks0DuYz8khfIw16dSxN7stAKoCw9jzWg/PjzSg8/JoavMnKgBkqIb\nAHAU0eBPH5JnSBoJhU4lXNrt9qC1tRtDQ9vjcj2tCXM108vcy8XMHedgAQGBRBDEUyDvIPISzMFM\n7UfN/TNIONQkKt2+JgMjVRUyybMDcNvtuOMHP8CluTnd/Vi/ekdH4PrfBuHxRG/QD23ZgmdUNTr/\nINf1rHA68fC6dTFtsf0+UFmJjuefxzwRfKWluMnjicsxNQOj5WkSkfvgwIBmrisgKZ2ApPbuyI17\nzZzEMID+vr6crJSoJsUsJ7MWkprnAbDd7cZYayvuk889MwziSacTwDhiS600QHK//QCkkFeWC7kG\nElHUw4Lc9kSC9YMAEj5Ch6SAHtFYboNEehmRXQvgZwA+Luf9vudtxM+bdsDBbbMSUZJphGzyMJKl\nmEomI/vd0zLKykztykS9zJ1cTJbf+ibeBKBtbpQLObC5CHEvJbAYEMRTQGCJI13n2GwSjuOTkm+l\nFmEzAz1yxUjf0a1b4XW7pZvemRm8EQolJLtac5iINEcWpFvYi/PzcYon2+/k5KREZk+dwtT8PIbO\nndNUSOPGJivQbW1AmLuH8rjdWFlaisNjYwnHwvdz9a5dMXOkp9QGg8DEBFBbCzz1lAiz5aG+1qys\nn2n1LbLaEXcYkjI4CimEVGsbIKpvARLN8CBaQ9MFYBWAU4iWUuHDW62IW7iCqMKqhwpVP/n+AlF3\n3EOQjIZ+2NKFN+oD+H83H8B5t0dx6m2U2/IjtXNgxDc2HW/Z7BllJepl7tR+ZErnOMZRhzpN1Tdf\n1VBBmAWWIgTxFMg7+BOUoRCIhzqc1fT+cimWD/z3AXQMZC4MFgB8JSUAtAmbGTz32yi5+uLB2HIk\n3a2t8JWVKaGpFU4nsGZNQmJuZA55ctpQXa38rdcmv/1arzfp9gyJFGi+zaKnmzQJKm9ENB6JxJDU\nRGG2hw8Do6PAQw9BgINape8CEPD7U9aCjJZLSQVqUqx+H0S0vEgVgAH5/2lI5kLV8rbjsvMt9u/H\n85EILkAy7lFXtk01k6k0hX0uIlpKhUcIQCEkYjwA4IOQwnp73R78sLVbye30QCKmByApvJk6B6mC\n/e61tHShvj6AzZsP5L1RFo9USRZfxuV1vK6p+lpT6iX9vppFpgmzuJcSWAwIcyEBgTxHtkxf9Exn\nrIQRsyEjrqtV/7wfoetGgPe8aD+5Gc926ZshPbxuna6DrBnwpj8Akhotmd2egTc4Utdl5dvs2OiW\nHXilBwfd3bHbhCIR9J46FTPXauMiNtdvHnVg/HgRSq+fxMdudeDJjUvD7dYKWG2Qxcx4mKGPlR9n\nFl7LzHHY+yJIZIs3CHIglkjy5jzYu1d6CgEA9fWAxd8FyxDvQJsMMf0zCVYahrn0ZvIcLDYGBoII\nh4fhcBSjpaUrZ8irH37FmTeAgGGH3DDCCCKIHdihG2psZJts9NUsMmMaJbCYEOZCgngK5CH6+vrE\nkzoOfj80CYbVyIYDrRFnXCME+Pb2CHqvGcTaN5twaJ87KRnPp2sqHJYeNuzYkfghQyKCCsTPtRah\n5+caBCXRrsPniyvTcrVC65pN53pSk0OjYKGzxyGZ9MwDuA3AckikMlHpDj/iS5PwKIAU7qpg/35g\nZATweoHNmwELvwtskGp4HtZZH9eXNFEHycCInxc1ITdT9sQKaBUyseo7au9eP0ZHpbNdXx9Aa+vi\nO9IC2SFZVjnfZosQahFmK9178+l3b6lAEE8RaisgkPfIVg5muiG7RmDEGddIzuqTj7kRCLcaIp35\nBo9HeriQbFwsRFqLdALGjJ3YXAOIcXex+mcz027GmUQqbs4J20Nq2XMsRHcEkloYglQDczeiYaMP\naOzHh9d+GJIDrRpxRK+lRVI6LSadgHRt6ZFOzb4YAH+jUw5JUQWksU4AWA2JYDKwc7BYIbeZDLfO\nXo6oOWTGmTcWRkJXjYTRZqOvgLZplJnwW5EjKpCLEIqngECew6gClktIJzw4lXqhAsmhpWiHIxHc\n1N2N0ZkZlDmdmJyfx9qqKhzassXSuc9GGPdSBVPH3oTkNFuOqENsFaTcR+bWympv8vAjqnZ2ILY0\nihFUAbhgttMyqgGcT3HfVOCEVOrlT5CU4SkAk/K6Onk5j8UKuc3kcRPVAzUKI6pbLtbVNKJUZiuM\nNlWYUVtzfSxXI3Jd8Xz77bfx5S9/Ga+++ipqamrw8MMPo6OjI247EWorICCQV8hUeLCR/M+rCWbm\nQ4/QW50Lq4VMhnFrhS0m3SdPrqMgJGXuovy+DsCvAfwtJOVwHFH10APgPcSPX01yApCUUjuihFUP\ntZAUSLP5mJmGOj+VwQ7JuIjNlwtSWHIxgLcQzfFk14wTQAmAnchunmeq4dbZghFCs5ikR4/0Gsn1\nzPW8SjP5qrk+lqsRuUw8L1++jA984AN48MEH8bWvfQ19fX3YsmULjhw5gtWrV8dsK4inwFWFxcxL\nyJcb0lSQ7tjM7J8s/zBVpKKcBYPAyy/3YflyvyXmTGbmIdG26ZyP4MAAnjt5EudmZhTykMtKohbp\nteqz5kdU0QsAhm5/01Vgs/Ud5Ud0bJUA3kUsUWGkUm2ew4PPZ/wVogpkCRKXErHJLyvzLdOBHUAZ\nJDJ5AMBnEBs+q0YFgF8AuBcSWefnxg/9a4aRmuP4B/hwO8rhQBekEi1mH3CYQS7l4xkhNItJetIh\nvVYbES0G2DXqhBMlKMFO7NQcSy5dU1cLcpl4vvHGG/j4xz+OyclJZdnGjRuxbt06fOtb34rZVuR4\nCghkCVp5cEsF/Nhu/f6gZikOo/snm5tk+YepIpWapcPDwNGj2uVJUsFzJ08q83DL008nzF1MNGda\n64zmQg6HwxjlSGely5VSDddsQStP0qrPWip1NdOtfZstsLExYqn+KHVBIk7vAvhXaNem5PMZRyGZ\nEs0jef1KQmZIZ8I7FhXs3N8FkPo8BuD/AnB9kvYvAvh3AJsAfAxSyPB1ADYA+I28TTmAh1X7sxy7\nERThMBwxNVHVeZmsJusKud1M1GZdDBjJccxkHuTAQBB79/qxf38bIpH4GU2nfIpWXmW+gV2jveiF\nCy7dsXwP3xM5oDmGdP0OrPZLuHLlCt5444202+HhSL6JgEBuIZNP6JLlHubLDalR8ON1/lV0bO4n\nm5RQ2GDQWCismblhBjnpgil7kYUF3Ob14ifNzYbCQXk1zVnRAsBvmTlTZCEaoDg1P68oZ8HBwTjl\nLNGcaa1jZEyvPfW+AOBxuXDkrrvyTp3XmxuzSmgXzIctdrW0pJVHbPV3lDpcmKlrTki1J3dCe2yM\nVAJRYgQAtwJYKbdXA4l0vmlpj1PH5weCWBYexpyjGP+zpQszCfIQ+VBgngTbECXlgERK/wySey1T\ndB2QSOXHIBFuQMptPc3tNyGvfxvR+WWkphxOTCD6QOM+eT3/gIOf8xH5fxYebRaZ+N1LJQwdiJKz\ndLdJFeHwsOLMOzgYjHPm7UJXTqmWeqG/mcqDNUq8L/kvKcpwEEGRA5oDMPobn4n916xZg2XLluHh\nhx/G3/7t3+LQoUMYGBjAJz/5SVN9SAaheAoIcBgelnIP9dQvI86uwSBMqYVmt7cS/HhLdkXHVu6U\nxmaUjAWDwMT3W1B7qh5Pbcic660aTNkLzc2h9/RpPDQ0ZMhhlFfTSv9y0FL19baaGgBAQ3U1Gqqr\nAeiT8a6WFqwqK4Pbbsd9Bw/GPKFUX2vBIHDsdxIZa6hMTO67WlrQ7vOhw+fDe/feC19ZWfoDyzL0\nPmtmldBUXGKtdqpNB0FIxJJ3pmWEphdSaKne2Jji1gbgD/Iy5urK2ntc/nscUrhtJcypjkk7zzpg\n8LttWXgYa0b78eGRHnxhsNPwodgcVAM4B0m1vQ4SOW+CZKr0UW77ywAeAsBrAuxxTTm3bBSxzrJM\nyTuGDyGAqPkPU5d5MyBGfp1cu2oFdTFh1j03V1xSkznz5ppqqedEa8ah1gyMqs3pKMMCmUG64kY6\n+zudTjz77LPYt28frr32Wnz/+9/H3Xffjbq6OtP9SAgiyuhLOoSAgHU4dOhQxtretIkIIGpsJAqF\nUmujuVlqAyAKBKzf3gqsWUNUUUHkdMaOt7NT6k9rK1FHh/E5WIwxEBFt2reP8MgjhEceobVPPkmh\n2VlT+zU+/TSFZmctvaZCs7MUOHCAQrOzMX/roXnPHmUMgQMH9LdrJkLRLKHzALXfa2yci4nO/n5q\n3rOHNu3bZ/i8GIH63OUirLyemin2R7WDiDbJfzcSEfuIdsrbbuKW8fs6ub9dlPzHu8DANklfzdHv\nBQSM7fOVfZvokUdA//vTjVQ0GzJ8LJc8xnKd9W3yvNSq5q6Vm5/b5PVHNbZLBSEiChDROq4fqX49\nGr2mtK4DPWhdR4nQTM0E+V8g5ZGkhk7qpFqqpUqqpE2zzbTvQAfNzsb3upM6qZmaaRNtolDKZ858\n3xIdcxNtIhCokRpj1ustzxaeO/QcBSiwKMe+WpGMExm5Z8jk/mp8/OMfpx07dsQt1xuHvDwxL0y2\nQbovQTwFzIARn02b9ElPJolnKCQRp1RJJ5F58mp2eyNzlAwVFdEbwsLCaDupEkgrCHsqCM3OUscv\nf0ntv/xl0i9angidmJiI+XLe/G//lhGSpHX8uieeoPXPPKMcyyiRWqw5ThXJCHWqxNTqH9ZMwMrv\nKEYOQEQfJokgMELDXwbN3HYBjX3NEMsGIjpBREXcstVEVJVgH82XfM2ikQghY/sUzYao80DAFOks\n0VhWqnrvlOfjBDd3nUS0jOIJK1uvnmMz6O/vpD17mmnfvk30GXks6ZBYo9dUMxknuUbG2N/ZSXua\nm2nfpk30mVBr1oiSmszxpDcR8V0McpzsmCEKaRI8veXZQibvpQS0keuc6NixYzQzM0NTU1P08MMP\nU319Pc3NzcVtlw7xFK62AjmFTJXZyCbM1tU0u70Vc1RTA4yPS7mdb70F+GRLx1TdZtOtJZpOXU+j\nSORUmo06kvwxGAL19djR1GQonzDf6rUmK5EiancaQxjAFyGZ+eyEflitVu3HMICbIIWLNgA4Bcl8\npxGSMc+QTltVANZBqs/JtukA8AqiuYqGO5+huiCrAcwCmIY0N6yWaDGkkik3IZpfyWMVovmtE4iW\nm2EwUzszUY7k3r1+JQ+xrj6Ana3dWSmPYnUN0L1+P0blH5y6QAd2djtjciczlaeodqa9hEvoQQ8A\noAENeAEv5IybrihbImAUuexqCwDbt2/HT37yE8zPz+PP/uzP8MMf/hD19fVx26XjaivMhQRyCsVy\nUoxVRi9WwwhBSmaco9WGGfJoxRy98gqwYQPw619HSScg9UeL3AwEgwgPD8NRXIyWri645ZV682GW\nSLJcU7ZvJh44mDXyydTxK5xOXJyfV47F8gmTwSpDJjNIp6RJMoOepWbUlQqMmLt4IOUnJgMzUSqC\nRBKZcdD75PXPQCohwnggb4YzD+Ao19YFSOSlVn7vALBvIIgr4WHAUQy0dAEq058KROtjxnQ+Q9fs\nJIA1iCeX0/LrEwC8kHJXSwFcgjRWN7dPLbffhwHUQyL3Rkuj6Bk2dSE2D7GlaQfazA8xJfOfVMy0\nEsEh/+B4GxvRsuNRtKlaZXmKUn9TM6jRIq9a+YcP4AHYYMOjeDSG3PH7/xg/xkN4KGvGQgMDQXwp\nPIENjlp8qeUpeFSfi1SJeaL9MkX2BQS++93v4rvf/W5mD5JMEk33hRyXlQVyC0ZCXQ3nuqQZkqre\nv7MzNkQ11VxGo+Gsev1PNkdWhOKqsae5mR4B6BGADnCd5seyalX0uOvXm5unbISRbnvhBfLu3Emt\nv/hFXJjmc88/n/HwTRYiqg7zzWUYzT9NBfkQMpsqMhEWaRR8m16N9jtJCqG1ycvXUzTPkX9VkhSW\nWsOW7WkmPALpdSCQ2RsHAy87Nwb1y8uNq4Niw2v5vMYT8vp2Sh62rEanPEcgKTR5vWqf2dkQHTgQ\n0MxD5NtoJv18TL4fzYsUFjkbCtGBQIBmdb6YrchT1ApVNROGyu9fS7VZDV3ds6eZHnkE9MgjoP9x\nYFVcrmeyMFy9/NBE+1kVTixCbbOPpcKJ9MYBA6G2QvEUyClYqeqkq6Kp9x8bAy7Kj/QrK1NXG5Mp\nlkwtPHYMCIXi+59sjsyM26iixT/1buI6zY/F7Y4et7Y28RjV0FNarcTJyUmMRyLoPXUqzma81OVC\nd4YLafPKZr6ElWZSlTSq9OYjvnf0KL45MZH0c5WsxqhRxYvfjjmoNsrb96rafwLADLfvYQBc0IOC\nmyGpmI2Q1E/ICh68jYCGk2i2saCxzAWgFZLyykJonQBehhRiex+AH0Nys2WKoJaabKT26zCk8iuA\npHTOqfZxuz1xZT602mCKabTMSvRsFmMPACcaAfx9wpYyB7fHg9YEPyJWlC7RUjfNlGMpVs4YMIpR\n3IpbsRIrs6II8sr2k03uOPVXzzmWqZYv4SXMyVfPA3gAz+LZmDFpOc7mixutUGYFNJGMmab7whJh\n9wL5h3RVNPX+7H1lJdGJE6n3S0ux5FVKXi1Mpf9mxm1U0dJ76s2PhT/uiRPpmzRZjXxwQ801LGVV\nMpMw+rlKZu7STMYUUX67Dq5NdfudFP8jXUX6TrBs33YiqpwNSUqnCdMfvZfX5PZOInJTcqfdFfJc\nuIkI/Z2SSrtvU0yfjehDRkx31I6wqZgR8W1sI6Z+vkQhqiAiUIjuT8vgKF9gVN3UUgc7qZPW03py\nkUtRXtfTeksUQSPglW0t9VdvbGqzJBCogzqU9Wy/bbQtbsyLbUpkFEaU2cVwIV5MLBVOpDcOCFdb\ngaWIRKGk/Lp0yY+aIOqFuFoR2sqHrNbWSv83NBC1t5tv04wzr5VkzApH4EziaiNRmQi5FjAGs58r\nPYdfo+Uu1NutIaIKkgge/4ysmWJ/oGsonnR6KEoO11M0DJQd40OUfqmVExRbYiTRS8uxFiSF2fLr\nKik23JUPDXbIocGJ5tFMGRKi9F1v1W00c30P0C6d3prtZXaRaRKhRWT4ZXVURyHSJoCZ6iPf3gk6\noUsI1cdlfSyjMgKBGqhBcz9+fF7y5hVBMxKGfbWR06XCiQTxFFhSSHbDfMsth3TzB9X5k9m4+bai\nhuViqYWMjG37q1nNedKbv6VGapZirsti1Va1ApmqAZotJMoZ1qy3qaOQbiOJALZSYpqhJkGSXia9\n3BRV09RKo149z+UUS+K88rIquS/JSKNe7iXkNowS1zqK5p8yglxBUk1Ovn9OksgsI8d2IknpfARU\n8XQjHZ0NJSWJzVx7i/FxiT48mKcQ3U/q3krfUc20uL1MjEyVMmHEw0veOCJjRmXMRB+NtqfejvUx\nEVnlx1dKpaYJWjLCls7vnhEyaESZtYqc5guWCicSxFNgSSHZDfNHP3pIN5RUHWaq15aVxKmuTmq/\noiL1ENxU1EIrSaHePJldnq/IBvHMNplKJ9Q8o301INpk0tQoG0h0PTVTPHXQU0i1ttWCekrVBJN/\nz0hhMRHVkvYPdztFiZC6HiYS7Gflq5QkMrmN/oZq6AVqpm3UQRHlkmH9YyZIJI9dMUOaDdHyAwEK\nceY+iS49I+pyJvXGZAqqdE0Z1cAlZFspStVoKFk/tVRNBrNhp6yPXvLSelqf9twYHXOqc8PG10rJ\na6iqCRr/3k1uqqRKaqVWZX/+e8rstVJLtUrbfIiwWVhFTvMFS4UTCeIpsGTQ2SnlULJQU60b5lBI\nclBdvz654yu7+fZ6Y7dXh7amQz7NOrjyY02H/FpJCvVIitnlVoLNT12d9rnOZWidW6vJVDJyyH8W\nzBLJjBK/ZkrKpqwKAefHrafqZxta1EEvDNwozeCJYDtJRMxNRI90Er3STHRwE1FFSFILB0lSEk+Q\nKjRVfn2AYnMW1Y635RR1ia3Q2N/Kl5eIKuklAlUoN9OM/LUSkY+IlpFEPpkqzBNmtVLczLXNu/yy\n9tqTzLPW/gzZCYI1F+CbbaUo1dxDvX4mUjrT7WO6eaCsb63USh3Uodsvre06qZNqqTaOCKr30cvr\n1COJalLN5o1XS/XGq3UOEpHRSqpUtm+ndtPzZwb5ktNqBJDKDi+Jl974SBBPgXwCT5raE3yXGSVX\n7OZbTQ4ZcbJCtUuVhKWrGlpJCvUUV7PL04GarPHzk+ghQS6G/WqdW6vNjcyQQ7NEku/rthdesEb9\nZHfmTH5LwKasysflx13zjQM5odKboQ5Gt2VlPUCkaA8hInqjObpiVyCeMG2i+B/t5Rp94NcvI+lU\nGlU97RQlgmZuHopj3u9SSAc3pDhll82VVhkZfrz8pdess60WEj0I4NtZRbmRiWm1UpQpBVWvn4mU\nTjN91iJ56c5NqiG26mVa+ydrW289I2jLaJmyfjktV9RSEGgtrY0ZbyJyn6gfrM0SKtEkzwJXJwTx\nFMg7GCFNhw4dMk2u1NuHQlETn3RVu1RJGOtTaSlRa6t1JkK5bvKjBzVZY/NTXp74IYEVYb9Wh9pq\nXZ9Wmht19vdT5aOPEh55hNY++WTSNs2SXr6vlqmfzRT9ZaijrNyR8+Nu/cxsxlV6hmznDC8naVqd\nJOVfKoRHZkpHGiXFk6mVRBJ5XE8SkXRSlOydoHj1jpFHkJRf2UzxP/YOjWXLKaqOnlCts9EsNdM2\naqMILdPYl4XMNtA8tdP9tI1m455b8GosPzY9gqhF5M0Er4ZIIpW86ZJWO+qanlYglWvKaqUoEwoq\nc6WtpVo6EWOFZX2NUL7f6c5Nsr5pETrmUMuW8USQJ/VaYbXJ1vNQq5HbaBtVUzUto2Uxc3zo0KGE\n5D7RGEMUihnHKoqvYZoqlpKZ0NUGQTwF8g4x4YE6StahQ4dMkyut7a3Mq0wFoZAUAsyTJr79bdsy\nq+Rl+lhac5Vo/rQeDgQCUt5soocEVoT9Wk0UMkn+OzuJKr4VJYMdv/xl8v6kQXotU2rNpafpwkzY\nMD/ubD6QySTx1Arp1AqZDRApTGtjKJ4INXPbekgKzT2qsS7AvS8hiey1EsWUKymYDSnmP4ykrqX4\n0xxLTs8RaB+10/0UIkmpdXLr2yiWJPJ9Ys8tQnK/2XIWJJOuqpzoxpfvRy23H9+O3qXe2d9JzXua\nadO+TTG5p0aQCwZomVBQK+Qwai0yawVxZn0G6TvHpoJkfdMidPyy5bSc2qldU11cSSuphmpilER+\nfTu1Jzw2I6aM1Oo9MDh06FBScmnE+MjqEjZLyUzoaoMgngJ5DSuULKthdZ/UxkR8+2pSajX4Yzkc\n1h9La64SzV8iYpDquqWI5mYifEUig5XfzXxNUsuUWjNsIAHy3XgoHXRSbF6lYk4kv2fr1IRHTYQ6\nKRqey5ckYURKnSd5gmKdaJ1EMeVKquRyJSBJqewg7dMcDc+9rGzfQRFlPVMwtUirHpnTCjNOF4lu\nfNXhyTz5ZNC71Gu5Oes4kCM/aiaQSQW1kipTbncNraEKqiA3uWkdrYvLjWyn9pg8zGwoalqETs/Y\nqJM6FZWygRpiSFwN1VAd1ZGHPIbIs5aCbIRcbqNtVERFZCc7VVN1nPqsFbLMXw9WPpRYSmZCVxsE\n8RTIa2TDwMYsrO6TXu5pY6MUfssfy+pcRj7Ul/WhslK77TVrJHLs9Rp37tWaq1w8p/mGTZuIUDRL\nldsP0Imz+VdqJF1YnSubVZhwoNEsu0LRH9dKbjkLAV1HEhFSf0TVRIjPz1TnSbL9a7hlAYoNtwWR\nUq6k8ulGWj4bilmnNu5hY1Arsw00HzMNfD/V++qRueX0JoGICmiKmmnO8G2qun3+fSttTXCjHp/f\napRCVspzhqcbqd2k4rkUwQhGJVXS5+hzKZNBXjXlCZtWW2qVdRWtSmj0YwTJzIDYNowQrqN1MQ82\n1GqmVgkVfr3WMdl7PszWTFixOiS5juoSrs+EOp2JtgSyC0E8BfIaekqWkZAjK0iaVhtWq2t64aXq\nv4ni1dB0CShzB/Z4KEZ15cHmgFdE6+o0m9Ns34rwZiuRKHx7sZAwdFSDfSz2HC42rMyVzRQObT6k\nTTCbyTBb0dpUq4SI2aY7KT5nU4tIsWN5SSKMcbU5Z0PkPBCgdbMh8nDLeUKs7lOd/HeZfNxEl7DR\n8Syj/QSKxGxrhN+r2+ffd1Ak4Y0vTz55FTnZMVtnQ4QDAVo7a/6WOhdCba0AT5j4GpbphFeyXMMC\nKogjbImMeyqpMkZdNHJsLZKpV1qE35Y/Dtte7T7LHnSoS6gwoszWa4Uoq4lhIzXSalpNFVRBXvIq\nCibfp+cOPaf0lQ9JLqIi3XxbPoTX7DwZhcjxzF8I4imwqMiE22hnJ9EttxxK2GZnp0Si1CGd6v4k\n6x/LKwSIOkzGcBkdu1ESwZeZKSmJH1uq4Mms1hj59QBRcXHqtUpzAXqhvmkV0k6z5mXC0NFmMi+r\n5BhSmZ9s1zxNB1p9PXTLIe3zZiLPVbPsCulHKxttupmiXfNQVE1UEyl2LK380ZGHiMoAACAASURB\nVOUk5VOq19nl9tnx1X0yYrpjwvyYiIgq6Sg3ngUKkf7HJlbVjG3fbAqy+lzoHTPRPmawqA/HEhAB\nsyRBTTD1XFXNtHuCTlAd1dFROhpD2LQUa15lPUEnEuaA8n1gxkBaiqLazIft5yKXsryQChUSyfrJ\nk1E3uWPIHq+Qsu218j0d5IgZRwM1KLmjPDllCmYM8T4UDW8OUYjaqI2W0/I40snWd1AHraSVhuqf\npvMgQeR45i8E8RRYVGQiR9NIm+rcRUaU1PtqtcUTRp68Jirtkmo/9aBZA5Jrb9kySilcVasupjqc\nVw2myN58M9Hy5eZIZy6WOclEqG+6OYcJQ0ctMuRZTKQyP2b3yU4NRW1o9tWMraoOkm1qNBRVDS3V\nlDncaoXpMpWSKZ5a7rFriaiaoj/8Xnk/deivVq4pPwaiWALnovhanGq00pxCOvWOw8Aru2rzonRI\nYaJj5iPU5yURETBLEtT5e1omPKm0yyNRqCaf09hMUn3NNmrTrMXJ96GGapS/Wf9ZG1VURUwJ3Ebb\nNEN/WY4mPx6e9IKiYb8ucpGNbMpyJzljyGAxFcfsx8ZaSqVUTuVKrquTnAQCFVOxEsrMO9GCQD7y\npfXggEj74YNenqaRBwp8qLEo1ZJfEMRTwDDSJQla+6dyk5+sH0ba1KvRqS5fokW6tAje2rXax0rk\nCsv306xjrBZp5dv73OeIamrMl2BRq5eMUCdSXNMJ68zEg4d0kYkw1XRzDhOGjqZ7N5wDSGV+zO7T\nTNEfHe1LLQE1TZO1avY1C+etmZKNWRtaXUvUlpbi2UHxZJU3JFJvz9pMpBJqGRsZGZ/WeEJEVEpn\nqZyOkZdephMUJqJYIyKTzxKTIh8/qnqXfjPFzn0isxezRjBqUqi3v5F2UwnJTJQLqQbfB94p1kc+\nWk/rY9oopuK4ZexfBVVoqrAhCilht2pnWPU/plh2UqcSUsz+HZX9qBnR5P8xJZUnjDypraZq5W+9\nkijJSrlokVE98q+neKvzY3mCLFTP/IEgngKGkS5J0NrfTBgpI2Zqsx01QiGi5uZDScNXtcpvhEJE\nbne0/ba2+NItzEm2sVFS99T95/vKiClAVF0d22+WP7l+fTRE1ujcataA5OaSn+tVq4yTWtYuU3L1\nyLtVSmU+GQmlE8aWDzmHhpEB6TCV+TG7T3K1qZl0aUyCVUawbXaWag4coNbZWeXY/PVk1ZSq27FS\nYePb2qY6DlM8+Vc7xU8bI16tqm35nE+94yZqJ9XxVdARpd06OkxEiV1zGbKlnps9jjWhtrFHbSbt\nS199bRlREFNVpfT2N2uIo2cmxKBFOJMRW74PvFKqVjS1SCMjdw5y0FE6SttoG3nJG6fgrabV5CAH\nVVN1TK6o+l8zNccpxOyfi1xxKij710ZtRBRLolkb7zv0vhgiqVcShe9XG7XFnRczDx8SKd78MYWz\nbX5CEE8Bw0iXJKSzP0+kEtVrZND7AeYJkxZpJIolgcuWRUknH1ZbV6d/bC3VUC/8Vb0tv05PLd22\nTSKrtbXaYa18rmdDQzxRT0Qa+bqYeg8E9PJj9eY5lfzVXAzBXSrGHWmjmdIiYYuF5GpTApqWJoNr\npvgp468nrfWpQN1OojEnIzVsfR1JqmUrSWQypHEcXvF8pJPot81Ec5uItoa0yeoJig1p1TJCYghR\nfG4pwzaSnHWThdrqwUsvE4iomN5QFE8jqmQzZecjYPY41nxHxR7VgojwjCKZoqnl/qqnjqkJG58L\naaYP6vzKNmqjEIWojuoIBCqjMmqjthjn2lW0Ks4MiLVrJ7uynFcs+fxQfj92HPZPrX6q/7Gc0/W0\nngqpkNbROmqlVmqndnru0HMxhFhLzeykTnKQI649fk7MPHwwqngLZ9v8hCCeAoaRbghiOvvzpJWR\nIrPhqUTGVFsWXquX66lXTkTdV74EidNJtG5dPFlk27rdRHa7pIqy9bxxEa+WJqvdyfe1vT2e8GvN\ngVZupxFizeZCTRQzoY4L5AgskNE6+zupeU8zbdq3iUI5UzIiwa10mnfZyaYs1SlNR+FspsSkhl+v\n3k59HPa+gYhe53aMBKLTpj5eiIgc3LI6jfEw6E1/sjEkwwkKUx0dVkinUWjNs7UqqNTaJpkYZzcn\nNHZ0uUIw9ZAsz1Pt/qquj8mDN99hobJGQnTVfVDnZTrIQV7y0m10WwyBZCGsaiXRTnZqpVbNsFpG\nQhuoQXH8VZNBfj8b2RQFlyew7F8Jlegei82nlprJclfVbrwVVJFQpUwFIQrRKlpF62k91VGd4fMi\nkJsQxFPAFLKlRKmJUGur5Kj6/7P39tFtnfed55cEQIgvIgG+GaYp03QiK87YLhmxcRLGBVpT9ZB2\nQ9QTbhRvDtOzO+DO+GS3ezqxN+2cnHZ3JzOd05w5090507VmWuXNTCNbtWVFVhwqAWlVSezaieg0\nTc02Cd3IDi1LASVLFqm33/7x4Ln3dx889w24AEHpfnFwSAD3Pm/3Eryf+3vjffqBE9VNtrvbHrCm\npwUoSoshj8eMREQ7dq61vMRJX5/YJxol2rlTP1a5bXu7+bksRcItrxxg5batraIPdR5yrHKOY2MC\nQCWoc1dhO8ur05rK9pNJfVKmwUFz7F5iX8uN0w21QarkSrR4dZ7+XFrUKnwMNDV37d9ZcFsyr0u6\ng4g6SCTmWSZ/Fk5VXmG4XbOd2o/ltabhHJmxk8PFt3NkgmezzXwqnYNfGMxRjlL0DCVpkcYc6n3q\n1pmPfZD+xndcoVWitQJ10BQdq/Hldb2jplVO7pa6six2rqJEVgsaB6cttMUWdnKUM8Cui7polEap\nj/oMCyCPlYxTvATu+qiPClSgVmot+ayXeg04VD/roi4jk67MbCuTC6ngK/tZpMWShETy92ZqJgnJ\ncj0lXPJ9pFsuXx8JprzWqpxrO7VrM+C6ycmKHBTQhtoYheAZypdqZYnSgZBal9IJTqTLkQQcDnES\nZnXzUN1IJyfFe6OjJoyqlkL+Pi83wvuQ2wwNEW3fLl5HoybEShjkpUhUy6vbU42b5fGl2ax1TVVX\nYTXZkpNVV2e55seCz7urSw+XbueRrg+nRE1uCuKGSehqWyrfJU3SRASi8U+NEx4DjewfKbF4Vlom\npT6tqaUq53zqIPMfZz85g5cbdLnhxTQJwE2TSBTk2bKnaTjNxj2peW+i+F6l5UqsylGaxXB6+Xcl\nLm7zYp+FHHX7OI94wqMOepFQdJss7+K4PBt4kN9R1aiTWI02ndwtdfGdTmVUuHTwJsFMxmCqtTJ5\nEh75kG6ujdRIR+loSYxmL/XSNE1r3WFvpBstLqx8DLo+4xSnJmqidmov2UeCqlyTIRqiPuoz4JBb\nY2Xm4DSlCXlrO5PFv2AO/Ha1Vvm4kpT0lH3WLrGT7E/OLcxmu3kVgmcoX1KtadWyfKpJbrjbqkyW\no7OCSt1/f74EODmkcndYbjXk0NTQIPrnYOlmKZQxoXwO0aj5+cSEFWwleO3eTdTUZLWmTk+XwmUk\nYl0Xaf3UwTefu87lVo13la693JLpVRwUda7GKlw6jcWLi29PjzO4Ou1b7g2TEDxL5VbSpAQii9fT\nhQ8VaOrQlPaCvtLSM+kD6U1hTS3nfOomAUQNB9KUPjROy2sFW/BKk/lPtpv8u4Dy/acc3ucgqiYd\nktJhlO69YG1taRqnQ8U+/sGjFXicUNyn9cCvOZ5HulI1PcQvbv6ygqQn/lciRzn6lfyvBAZ1Xlwl\n/VqUy3W/LBdYdfGdWcqWuIryWEVuIdVlgOXj5/ORYMXhaIRGLEAnrZLSkikfavkS+eD9N1ADdVAH\nbaEtFkiVbekAVffopE5KUYp2027LPvL3IRoy1qOf+i3geQfdYXymAr9aa5UDorpuXs8RuYbcqrtI\ni2E2202uEDxDeZIEA+m26ZZZtlKpSW54WRPed0+PsN7dcIMAJlk+RAXCoSErpHIrI39K+JKApz77\n+pwthdzKJ8eeSJifxWJWILzrLrJk2AWIBgZKrbT8GY8TLS7qkwBxF2UJpXfcYXUB1kFzLCZeT06W\ntuX35oLsx67+p7Qg83hXL2DIYdWttqjTvqHrbnByK2lSApEerqcrLT0zfsjemrrZtUxETQyse+am\ntBf93LW1lfQA6SY7m5v6fpq1H7PpS3fYvaCVDmy8w8540VX1m1TwGMNZoAJN0icpS+s05nIepal0\nrmas6yWapE/W1BrjDRQFHHiJk/OSMTRNzueWCozlZiH1A6y8z920m3qox6ih6VbeQ3Ufla9VeBqm\nYct8JHgu0iIN0iDdTXcbkKmrwzlKo0ZioBEasWSb3UpbCSRcX50y2Eq42027tS68bg872OU1O3ny\nI7kOHdRB3dRNy7RsWWvuwtxCLcYa8DWV6+YkHmcrEzvZxdCGVs/NqRA8Q3mSCga1uJC3y0Db3+8M\nh3x8w8MmTKkgpSsdooIuf27daoISB/GJiVKrKAcoO5fZjg4TlDlk8kRCdk/pdjw9LQBOQjd3r5XP\naNRaz1ONd9WNWXfM/Wp6WvTR12e9MaC7aeHlfOLg7DdRVTVqc4Yimv72v6KeL/wBjR38iPbivByI\nrLT0TGGtQFNzemvqtSAJ1m37RwhrBeIX/RLKeC3KXtIDpJq11mtCH/m+tG52s77k064vvwCZZm3K\nOaYWcoQDacKhcZp0PMaV2U/dzqPqW2z9yRsomhfwbiBX6sJaesRM9+K/ozH6qOF+qoMR2ZbqFuvF\nmsnnprNU2s2Rw5WsoamDYNmmCmO91EtZytIyLVOWsrSNtlEXddEYjRlWOL59IzVa3FwlfPI6nFto\ni+Xz7bS95Jg0UAMdpaOONTtBoAQlSkq/RClqicm0e/BtZNKhDuqwwCa3uLZRm8XS2kiNlmRFco7d\n1G1Zg17qpQmaoCxlPQGi7hxRz+0CFaiHelzPYT83Wpz2DxMZBasQPEN5kgoGlV7I+3Wt5ODDwYW7\nmwIi4c7YGNFXv5ovGZ/anlPpkELB6iKrjkNtSyYS4k/pNlsoEDU22kMkB92hIevvW7aY20nQ5i6s\n3OVUQqZTP+rYec1SmUjJ7pjbaccOAdHd3VYXXdXqLJ929VPrHQyr4mpbq4KAVZKbW+umqF/q9RgE\nfKzKPZ8kEI0VoZODT5pKAXCZ3DPCqnDnRXz/ePHnMJklV/hy8XIrU5r97frVwV2SnXPZDXSl3kjI\n1Gmapqkj3+FoAaosTi5N6hET7sXfJh7PqloNdTDsBKc62SX90W3PIcWp/iQvEaJmgVVBTq4Rt0Dq\n4jl1D2nhbKZmCyzJ9VHrfcpHH/UZc0lSsiRuUyYDUh8TNKGN8XR6SIuwtt186fbqGsmkQj3Uo3VP\n5sfJDuacIM8LjOrPWO83Wtz2D116g1MInqE8iYNBEIla/LpW6oCoq0s802lhdeSWwnQ6b2yfywnY\nkVCmZlq1m48EwK1bS8fB4xjHxkSpFCfLJM9qC5ggOjJC9O53C3huahIutHKtp6etUN3dLdyFJeTy\nDLfqUwXdri4zjlXOq61NzHvbNvH52Jg1aY9TLU8utb6pepz4c3jYe7v1pqqAZ5rKu+rfQPG/l7ED\nG+fWWmkSIkNp8nYMvG7nUZWeTzrwkaA2RNaEQDrJbTuoFO68iEOhDm7TZC6Xrg6nl/Q5qnV1nIjS\nRYvv8DXoSl2J0pQ2IMEN4JZpuYw4Of0RUwHALulMyVjJhC83gLCOwhk4OKTw39X9dGNQXWr5Y4AG\ntO9voS22FsYRGimJ53QCOG5BnKAJCxyrbrcS8Pg+7dRO0zTtyeIpH13UZbS1lbZaYlJBKAHPOMUt\na5egBO2m3bYArbrX2sGcX3dqNZOvDlzlMZdj8+viXa5reChnheB5naoSeKzUBZPI2ZrG3Vh1yYMk\nmHHL5+CgADcJXdLaqI4XEJDqZT6yn927hWWRu6uqMaLSisctjq2t5u+qW/CuXWLMo6PWz+Jxsw8e\n98nHp1p8nZ6plFhDvk82ax27zuXW6diq544uIy+RtSxNY6NYQ79Ji+pVgUFPADUx7RTYGBXxv5fJ\nj2+cW2ulSYgMeT0GVTxWfuRkePVjhZPb6qDRi9z6cgPTAhENkrCG2rn7SqXJvGCYvMZdqcuV34tk\n/xfV+iOuWqOcsszq+raDU/tRuLevQkgHdVAjNRourHZjkBZS3cMteY+M2ZSPPurTutHaPSZowoCv\nO+nOEjjWWVjjFLdAZoYyWiufXZIk1TUYhBLA1Y1TxEJP0gANUC/1auuDykeEIkZMqLruXiyYO2iH\nJa6UyD0+d4qmLHC6SIu+zjE/51oo/wrB8zpVJfDoN75TB7mFggleKvx6HZtdCQ91X9XyFo1a3ULt\n5qMrxdLTY45XxprGYsKimUoJi2U2K+JKeQIcaTWV26sJhXTjdsvIq85Hvnay0Kpt8EQ9/Kkrp6Jb\nD+mq3N9fCpU6V9tqluCpVY1ZogChp4r+euWO0WuN1f3dRJecaKHKqjQJkSGHY2CB9zfX6sK3Mk3m\nP896NpJ7ObXTVHpBoJtTnTB/XcvvRfJGXlTbZUStVkZeDkZbaIt2DPI9p0y2TnCluuumKKUtkWIH\ngKq1NUYxo80RGjFKnzg9uHuu20Pn+ttIjTRKozRBE7SNtlGCEhSnuJHwCCQAWMZMqvGlTo9+6rdd\nd50FU4pbUmUbOkhV3+MAnaUshaofheB5naqS5EB+4/HsQFJ9X016Yzc2nUVUhbFbbskbbqNjY9ZY\nRvlsahJWOZ5hlccrqu6zlpIun12g9v/zAOFThwjNayVgytu99VZzv8ZGAae5nD45UiRC9OCDYtzS\ngtvWJqy0HNp57Ke0Yk5Oip/Ly6VQrx4zNVEPh+CODr1lUgVJt5I68pg4lXwJUkFY4p3EXSMDg54q\nynGMDmYzt3WUSaOOJ8gXAQVtga1F/GhgNxg08utqKw9ZNxE9liN6KU10kR+/HST8ZruJyqjXbtuf\n032FSsNeJVC2kzNYVvH+zDUlr+dUPSRN8Rvnqe7j1aJaoILFKigtnnaSVs8EJShWfIBEmREeCykB\nUwU3O/AqcWH18YhQRBu32U3dBlRL2L2b7naF50ZqpJ2009aKa4nVzcOSEMnro4EajLE1U7MFKFUr\nppObrXQJb6EWow27mwb8PQ7Fk0b1YH/nUajqKATP61S1TOYiLYPt7VagUeGXX/D299uPTXdhXChY\nYzwTibzFCiohTn3ybLRqoh4VVmXG2JERotH95gUpZuZKwJRbILn7bSoloFOXBddprKmUdT343HTW\nSb5GsZjVTVin6Wmxfr299u6w8ngNDYmSLzy+VNZWVa3adsmbpIK0UlY70zK/qNsMSXMcx5gmW2h0\nW0d5bh2S+3s0Q1UT4qqlat5g8AueaTIP2Xf4ix4SBNfO3uvXNlF2f3Yo4GUbJ1Xq7hvKKq/nlO5C\nv9YX417jPMsBVBVCOPQN0mDJPHn2U1kGhGd3lRlxJQQ5xYKqjxjFaJEWPVsivTyaqIkiFHF0//UT\n58kfUYoSj4m9LX9bSVkVdXu1LzU77gRZ45tUK6bOgimPSZrS1Ed9JZZQN8kbCLwuqe7c8xLfHIJq\nsArBM1SJOAzwZDPlXsyrsZh2yWu8goPcTrW4qVZPCXdDQ86gJy2R6ns33mju19oqxj0wIPqMf1pc\nkOIP9hsWTwmYXV1m7c7hYaLOTvG7jIHUuaByi6f8XE0cxK1Pcq5NTcIyK9fAa6kU9XjzBEHcasuP\nPb9ZwefQ1GQdqx9rY5BWys2QGddOtXQTJiJH30XtOjLT1keLrtmZIaJ1tww2vMtNYCVWFeQNhkou\nXnhdziEqWjpBRG1k/idtKv5sIcPiWYlF0ot767M5onya6K/HiVY34d/d9SrdhX6tM3h6jfO0SwIk\nS5o4/U3JvzkJjLrstmofur4SlLB8Zgd1W2mr4b56F91l1KEkElmHvbjx3k63G5ZT7iLcRm10E92k\nrdnpFGPpNOZO6ix5f5EWiciE92ma1pZsAYFaqVW7bk41W3OUM/aXllCdBdPufPT6PerkSu43vrnW\nfxvXukLwvMYUdMZZDjBBJBLS1XCU4+Yur06ySy40OmpNMCQ/y2ZNEFSf0WhpLCWHQPW9hobi781r\nhNycxc1WPrnltbdXuNbyGEhdtlf5HB01gXx5WV96ZMcOMwsuz5Y7NWU9dk6lUqRLcTxutcjyOXML\nsHrs5RySSatLMre+ejkXg7JS1hzcAlY5AF7RnP36LqbJ+MZezxLNDfqP79wMVuJqyrx4eYy66W99\nwWCazH+YWSLz+I2RSYeLJCydy/r9/H59ezlFLlXSQagNU7nlKao9Bp34uHbTbouVz62WIweGOMVp\nmZapn/oNWEtT2gJJEgxjFKOdtNN3vOdO2kljNEZt1Ebt1G6bEMfp0U/9xto8SA9aPnMaj5OFM0KR\nkqyzcYqXWDKTlDSATgKeXRxnX/Eh2weZGWydYjb5OqiWULvjbgekTtZrJzD1G98cZrcNViF4XmMK\nwoKkSzwjy4b4gQopbkFRy5DoMs+qQGpnfbUDWgGfeQMsl5f1CXTk0y7Jj/rkrrR2z85OPeRGIgJI\nl5fF2FU3XgNoYU1gpFqfcjnrfrIdCW7crXlx0Yz7VI8Rt3Cq41ePPYdCp/jaZNK+jqfduejXSml3\n3lU7vpOoSuVUiioHwGsxZ0Oq+StNIXD4lLx4aaOXxNLl856Xztb66EKH1UrKIy2pL1Y7608AtVOD\nLpWbW8hR+kCaxg+NVy2zbrnW8Uq+o+o1g6ddDc8kJS11Op0sWxxOucVTwouEJLs4TJ1lz+sjTnEL\n3PJEPeqjkRrpFrrFiH90cnH1+miiJtt27GC1mZrNmNK8eE+1qk7SpGUtpTtyP/Vb4lHVGwJeIY5b\nXPnfAt/fzXodlHWyXv82NqtC8LzGFIQFSU08wy1fEorsLJde2tZZ0uzGzS+u1f14vUtptRwelsCU\nN7aVgCQBk1tDYzEzGQ+3/KnPeNw6ltZWe0up01PWueT7NjSYbXO4jcfFdmNjRNu3C1jkgAoQ3XST\nsEr39YljwqGXx4WqwKZLtgSIJEb82KtQaBdfq8tQXI2YSzvYqnZ8J1F1wbMcN+FazNmQCjjXcppR\nN1Ipk2TkxcsYXSQQ0W35vOfdp0nkDBrz16Utl1YKY2kSh7+jQHSsmsGZsqMKbnAE0IS1vQNpwmMg\nPAaamqvOXZdyL56r+R1ViYKKkZPQIWFqjMYoS9mSNmV/YzRm1NFU64xKoORutNK9VloH26iNeqlX\na62MUMSSTMjJ4ihrcd5MN9PddHdJ6RW7h86t1u8jRjHP/ekerfnWklIuHdRhWctGatTGmyYpabFE\npihFHdRBvdTrOWZT/Vtwqs3Kz5GNtE7KucqbIyGwWhWC5zWmasS5cSul1apoXvT6sYCqF8xObrY6\n66uM7ezvFz85xE1OijZ5TOfNN5tWuslJqyvs6GhpzCJA1NxcCqLqvioE8ufWraVxlg0NZkZbbnHs\n7RXuqlu2mLGSvAao3bOx0d6FmMOZ2t/UlNU9VkKo6o7r5dhJ2QFpENZML/1v5vjOcrWhc/brqltN\nFSlq4fdzdGB/mg4dGqe1MixREsYW0+RMKm6fu6icpauwS9/tuYFpze47BNCR1ya8wvj4oXHCY6CR\n/SNVs3jWw8VzkAoqmYuEDrckQ7y/ARowwG+apmmURqmXektAkceaLtOyxY13kiZLMtruol1G7GiE\nInSUjlIzNTtCHG/TS6mVXbSrpOSJ7M8NNu0+S1DCyFIr20lS0tbau4t2WWC9gzos2WVV4JTQnqSk\nBS5VeFePm90xd/pb8JLddiPkNtfrXSF4hnKVvMBV3VV55lmvbn86yFT3zeXE5zJpjcy0qovt5E8O\nI3KsQ0PW7WWtTZ45trvbhMTOTgGt6bR1XFu3ijHoINzumc2WWhYnJ52TC3mBWgmd/LVdPOrOnVYw\nlzGYHOCcss7anQvqtkFY33TngQqi1yNghnJRmohAdOD30vTYY6DHHgPNlWGJKjZDh9xIxQPJ6CCm\n2ol+gmwvTc5gWrP7DkpH5bi5eh1rmrzBfWGtQFNzU1WDTqL6uHgmKt9SqR4nGVfZTu2eLF1uoCph\nJE7xklhK/rnqjilBUX1Id1g+bxnbKOMWVbfdSZo0YkaXaZlylNOWPOHxjzImsp3ataDHYbid2mmU\nRn0nE2qmZlqkRUsdS/mIUpSWaZluoBuM9/qoT5tAiEPsIi1SlrJGsiR+XkhraDM10wRNWBJF8WzB\nPMZ0iIZKXGjtjjn/W9gs2WX5uSLPn1CmQvAM5VncXXVkxBpzqVoj7axWOriQYDQ0pLc+qjAr4xgl\nnG3daq1zSUR08GC+JK6Uw58OIKUFlYMjt3BKd9JUyjpGaaWMxcz95fqoVtOJCefkQl6fst22Nqul\n1OnJYzCle+wNN5juvF7Knehg0E9iKCc5ldepegxjUU61Ju+/P1+7BEZBB6ZdyypS1KF/O06PPQba\nv3+kLIunhLFMgWjdiVQ8kEyaSiFGfc+PW2TQoOfWXr16UlfTzbVe5+xHQbvaluvyqx4nr2VQpCSo\ncusaV4EKNEiDFqthP/VbXGylCy6HUB4Tyl1sG6mRuqhLmwhI1oAsUMFw2+2kThqlUQsAuSUPmqRJ\nC/DJtviji7pogiboZrpZC7FOjwZqoDjFLVlpB2jAso1M5sMhM0tZ57HnRdvSZTRHOQtETtCEAd9S\nTomJ+qhPC5perPzViN+shgpUoEma1LqBhwrBM5RP2ZXU6OwU4MFdOHWw4AQX2ayAGLWOZTQqXEol\nHOksnmpf/B/w9LR1295eot27rRldOzsFhMnX0u1UQm4kYoW7m282614++KAA7rEx03o4Pa1P4HPz\nzdbsu8mktV272Evd0642qe7Z11cKS2pSJd3xUuFPB4O8nWw2mHNLPVeCKOvjRbpakxK229rytQPh\nNJWSy/WqHFHu0wuU/twBGj9QekNAUtTamwWam5sqCzpZM74uE+wscDqIHj3k7QAAIABJREFUUd+r\n13g8ovrypOby4+bq995Nvc7Zj4I+p8p1+VWPk992dKCqWrs4hEQoQsu0bHlPlvUoUIHaqM2oNxml\nKKUpTYu0WBL72ERNNE7jtkmLnFx9dXU6pWVStsNBbIImaJImSwC0h3psrY8gZzdaPm8islg9pbWT\niCwW06N0VDt2Dp58rmqCJ102WTWBkwRVuQ47aIcxhjvoDuM4qVZ+bjHldVT9nI+bxUp6PSkEz1Bl\nS2c11JX/4HKCC25RtXtyWJTupmqGXFU6CypPVARYLZuAsIoS6SFXzaLL40mlFVdXN7S93bqfdFWW\n1uLhYQGuXuAzEjH3c4sLvfNO/dpwF9xEQr+Nenx0LrUcgCfss6P7lt1NjmpCn67WpHr+1CSZz7Vg\nfglKaaL075XeEKgHqZYdCaJjh8Zpcq1Aa4x+VgtWsAmN2v7lx801TaX3bsKLUH+yc3N0q5+pHiev\n7pK6ups6i+IgDRpwFqUoLdKixT1WhUK1lIgENOn6CrK6uU7SpKOrswS1buo2Mrn2UE8JFMYoRgM0\nYFhH5RyGadhYwz7qc6yLyduyi/lUH73UWwK6EmrHabwkvvVBerAkVvNd9C7L6wQlLC65shyNnAfv\nSwJvK7VSL/XSIi1a1pMfjz7qsz3/dJZYWW7GqzaLlfR6UgieoRzllPBFjf30Gy8o2+AZUe3KfKiA\nq3uqQCLHLuM3pWtuR4cVJoaHhUVQvr7rLnP80uKpWg7V9zmQ2MVwdnaaUBmJiO102WNVS2ZLS2lb\nN91kurcuLpbG4N5xh4BAmWxJJ7l9ImG6yMr4Wul+qx5PXYwlT3DELZ5uyYL8fK4r7eKkcmtc6mpN\nStgeGtKXpqmKrgXzi07l0NY40finijcE9u33Vwe0ynSnWnZKXEHTVEo/RTl8VKvhbwqpoOI5CRCV\n3rtxvwgNV9xOfO14rKTfi3m7Y6C6cKqAYRe3mRWVbUsghceT2sV28mytchsJk17qQKqWPd2Dx2hO\n0IS2NIx8SCBspEZby6Yue+xtdFvJ9iKD9pjxuo3aXMfKH1nKGvsnKFFiUZYPtV+ZpImveYpSlpsV\nMlFTC7U4xvzKY65aTP3oWkvUdS0oBM9QjvJiaao04Qvvo7dXD209Pc5JeWS9Tql8Pm/ZXiYq4hbN\nyUmigQERI8nb2rLFBGHuOsz7UPeRGWbHxqwQK2HXzhoZi5mlUCQkqZlqJyas69LWZh3X4CAZWXud\nYFOFMbdyKV6ti9xia9eWHCMHQbdzS3XD9nOOBWkhlet08GC+soY2mcqFd0elyZ22VBWICh9fo6lD\nc/6gs9z+fEi17JS4gjpYrt+fz9NjOaKX0kQXbTinysPfFFJBJU3e1kR378b9ItRr6/Upe1fbyoHa\nLlYyKBDgbqEJSpS067WMBgcsCbbLtEx91Ee7aJelvAqfx27aTXGKW9xQdVDNb4RIiynfp5VaDRhT\nY0kbqIESlKCx4oNDle7RT/1a0OSPCEVojMYsfycyoQ2PNZT9eQHQERoxMgAn82Z2WhUE+WOYhi3J\nh1RrKwfRbbSNGqiBOqjDsdyIPOYyYZGbpd2pjRA660cheIZyVC1qBaoZVgcG9Flao1EBoNJNVk3c\nE4uZLrf33583XEnV7Vpbze2cYFYHwm1tzlZZoNRtV93faV9dW6OjYrzcNZaXs+HuuzrAk+JuzNKV\nWEq1DutA0k5eMt3yMcpasBLQ29v1SYn8nnuVWEid2pL7u8VPVQXUypRTkiSvqop7cz+Jb/12Io9l\n3CpTNV2WlWv53EKORp8apdQXU7R8tjg5B8v1wXye/jZNjpxT9vADNNw5NVUL11UVMio5pO4XoZvb\nx93+OypNlQB1jnI0SqOUohQt03JFF/N2+3JQSVLSk8VRF3/pBsV8X/67as2TtSpV8e04FHLLX5ay\nRrvc6sgf0vq5TMvaDLQRilCi+ODv30V3GRDHXXNl1lme0Ib/fUqwlmP+Z/TPjBjXrbSVQKA76U4D\nHo155k0An6Zp6qEeSlHKaOcOuoPaqM2SXVhdyxEaMSC9gzrobrrb8rkb4OvcrYN2mw3d8GunEDxD\nOapa5Sv4RbrqzukGg5OTArDuvlufYEdNgmP3bG52r4M5MWGN19QBMf/8rrtM6NHFecZiRNu2lcKw\n7iktofK1Gv8qY0TtAC+Vsh43vladnfbWx74+/y6lbqVP5Bj5vDlI68BGdcN2Go9aq3RyMjgrvFfo\n0u1TVRh1IAJdkiS/qspNp1Fyvv5V51QpQFXgsszhfXptrXQYaSICUe4TOUr/cZqSe5P+M666cE7Z\nwy+OrUzO8NxU0BeCumRNKmRU1wv9WvVxrwyoaxEnJwGNw5TXWo9c8nxRrWNu+6oJdiZoQruPLhFP\nkpKOCYl0YCmz5eYoZ8l2207tJdbCFmqhJCWpl3ot4M8trmlKl8xL5xrLQVW1KHJglWNoozbDKqlr\nL0tZC3T3UZ+xRsM0TDfTzTRKoxYrKV+PIRpyBXw1gZO0yAYJimEsaO0UgmcoV1Vy8Wy3r5P1TS03\nwoFJJhLigMVrXnZ0WEHHCRL5Mx4XsZLc4ifb0sVY2j1lzVEny6bdGPizrc1aN3RkRGTilfvyhEo6\nwNNBkw6ypQVX164fOYEaL7fC4VBak2UJHlnOxo87rq5/Wau0EpUDXbp9qmI1lEqTLRHokiT5VVVu\nOvktIKm+rqE4vPfMzZUOoziX9B+mDeD0mnHV0DQR9RDRGAXLOgEa7pyaCjp+qprlUjazKrfGVAbU\ntYiTU2FKV0rFCQ6cst6q2VgHabBkPXm5FAlDuv4KVLBYOhuowYDBQRrUxocWqGCJJ+XWVBXmeqnX\nYiUdpmHbcjRqjKm6JnbZanlyI905pQNMXvJElnqR5wNfD2n1tLMkt1EbpSltZPX1k2DKzkIdBCgG\ndY6HllN3heAZylWVXDzb7cutXTIhjYTUsTErnMm4Re7CKsGVgyJAdPSoaOs3fzNvAGlbG9GuXaIN\nHhspP+eJfiQ8yJqXuZyZPdfrs6fHCsPlPmVdTHnxr8v4K7Pocuux3E6FSDUL7siINe6Vj1l3nNXE\nQxxInECNnwMSNmUG36kp5/I4XgFQPW6VSgddbq62un2q6qruQAS6JEl1IbfrX+mK20HCFXcDPR/H\n/2MR3v94P33kzbXSYRTnMn5AxHUOPzlMk9+Y9Ayd+Xy+emAdoOHOqamg46f8lEvxKruSN26f1ZO8\nXmRXq0RPLePknGp+6uBAVzNSVxfSLjkR70Odp6wnyhMVEZnJiiIUMepmEjkfJ9l/kpKWtnRw2Eu9\nNEET2lqk3HrL4yZlXCfXNE1b2o1SlCZowhXcLLGcebNfuT67aTf1UI+tJbSbug3wkm0N0ZAFvu3O\nY96WUwbboG+GBHWOh5ZTd4XgGcpVlVw82+2rS0ijA5TOTtMKpsueq0JLf79oK5nMW96XcMsBZedO\n676yFidPzuPkshuJlJY+0Vk6t261utfq3HXtnhzK1f10WXQl+HAglxAnwYjDrNyupcVshx8rDrXq\nWnM4dbKOqTG8dnDGgdgui66dBb1aLuFc5VzUyXGtTVNgMXdm47T5vAJzRJQioiQR9ZFwvR0nyn2z\n6Nb62UNUaF4zQczrHKuQjLQwtkZTuTkqNK/RlRTRJws28LVWoMHHB2n0qVFfAJPP5zd7SGHg8lMu\nxaucrKibxcLq9SK7nmvDepXdXNU4UyldPKEav0lkBQuv62kHqMu0TP3Ub4zDzkrHrV+qO6uUTACk\n1vPk/cnYSgl63FU1RSlLXCcXX5sYxSzrxqF6N+22WOm4C246X+rCy/uXVkv5Hk9eJMcst/Gy7l6P\nTb0mDQqz6LorBM9Qrqrkot5uX/n+9LQ+IYwOLHt7S2MPuWtpczPRrbfau7K2t4u+BgZEuxzOeNZZ\nHhtp57KrezY2Wi2IgJkJ160+KX9yy6N0Q+Zw2d5uhWM5RlnjNBo1LcpuNwuWlwWsLy/rjxXvl89h\naKi03XKhUAfEdqqq62o1lSbzG28zjTsoSTBMkva/QPrfspjU3Jx/EEuT4/qWZdmSUGjXLoPd9P4y\nAaZGNw9yCzlKfSlFyb1JGjs4VtfWvaDlZEWthoWVKyi3u6AusjeDG6DdXDnsyBIqRMxiuADCAVD7\noXYaW9NnSpXz5zDkJAlnOrdfLg54TdSktQS6Wb84vKnQorbDrbsyVlQnbmXdTbspRSkjHpUn+OG1\nQb1Y6Xj/smaodDWWyZB02YW9nMf1CpRetdnHXwuF4HkdqxqJT3Rt2vWjJoTRlcxQwU9CIXfL3bVL\nJMRZXnbPOCthUP4uE+nwGpgc+NRapX7cbrkLL3ct5gApLbtyTCMjJlwNDQkwT6XMz3nNTSk5RhV6\nm5rKi9fkUq2V2awJvepx1UGhn/PB73g2OnOsL13vlq00lX7zbyVjTcY/W3Rr/cx+KrxrrXSN3Cya\n6voq25dl2SqQsM7aHTc2p/HPVRdgvMgJrvn8a2LdCzKrboXusE5WVDcLayV95xZy1HGgg3AIhLX6\ncLvbrG6AOcpZ4gg5bBkxhgfM8xtz+vnp5u8E405uv1x2pVzsXGT7qd82FlRN8qOzpMo42K20tcRa\nyeWUtZdDrt/yOGqmXrk2vA9etiaEsFBcIXhex+Kg4FSGo9w2JXzYWan4+3YJYXSxjWrWWt6macXM\na2GQu8LyupyFgtVS2tVlXYvpafdMtPLz4WFrQqQtW0wglv0nkyJZkEy6s7hoQje3BqsgzRMxqQDH\n3X6bm/Xr41fcWukGml6T61RitayFS62dKnJj24xusQ4yMr7+x0NUGFtzBwwJhkNEtI2IukiAyaTY\nr/CRolvrhzTQSaS3aHK4WSaiQTJcd9XsuY6WLe7+y5P85IrtpEhf+kXOqY2oMF6gqUP+XEQt51MA\noOYE13L+eAw09MRQ9eE4TaXHq9ymNtAdtpK++b7JuWRNLr5131EcrCqpv1lLOSUK0pU56aZuAfiP\ngbAfNLSmz5Sqy4qqxobabe/FSqeurwqSdkl7dHNWt+fxjhyI3ayVunjQLuqiu+luT+Vx8vl8ydjs\nrLN8vexci0OFCsHzOpZdGQ5dVlIvUJrLmZY9HrtpZ6Xi8Za7d9v3weFzZEQAmewnEhFWQGnZW14W\nVsydO/M0OSmArq9PWEWzWSuQybnK+cnkRRxOJZDrLJa6pyxxYrd9U5MA3HTaWiNUTbCki6lU3VtV\ngJP1TQETouWaB2HddgNNr8l1amG1rIY1//7787Wt01lSJ7Ly2pxBjSe9X3GNdQOMaSLqJgF2HApT\nJECrQFZwVNdXZzFOs3bUDLiKpdLRssX34/NQ21dVIJGRVreNB5C0QIJbXzopfTjBdWGtQNlvZH0l\nP6pIQWbVrUbCIY8up5X0LfdN7k/S8tpyTRIZ6cCTw8skTXqGgY10y1Utk3aJeaSWaZn61vpo19wu\nmlyzd6F1sgB2U3eJFVIHZE7r4uZmaUna4wGA5fZ8bNM0bWw7TMMW2JVtcYsqh9Q+6qMsZT1bconE\nOaUeDx5vyy2uEjaDLnUS6tpSCJ7XsXidRGkpdMtK6rWkBbfM2dVjtLPs2dV0lFDD+1EhkqgUOvjr\nrVutcKa2199vjTXVZVyVTw56gABgOUfdGNXEQ9yCqovllJAcjQpwVt2UJdxKIFVhV0Kwn2PoJC+g\n6XTcnN7zIj8wGcR8a9Gmc4dkgZEganP6FV/zSwwYxz9nZnwtNK+5A0ba3NeAQj+gp7MYq3DDXy9r\nti+ZXLHPbtZvJ5nwO6a0r5MdYDnNxU87TlL68J2YpwoJmQwFaOGvSsIhjy6n5SaOkvvycfuxngYF\nfQu5HH0unaRPjYM+VNBbAe3k1y21XDnVyrSzHPppy06yj67iQ8YmSpfZDuowSoNwleOuLMfVR33U\nRV2UprSREEgFYF35EA6KquWSx6vqLKrywbPe+k2Ao27P++HjaaZmGqVRRytyqFAheF7n4hfTjY2i\n3Ih6Ye+3pIUfeFXjPLnLLb/o1SUh4jGN3Bqo9sVfSxfYSERYQ/m4ZfkRnuSmv9+Ev2TSatFdXrbC\nI3evVcu/qJ8DJuzzsfM15GCbNXMplMxxYMBqsQUEYPNYULdj6AXq/ABjNSyOfsCvGlbVmseXKjBi\nV5uzGmstxdf8ZQmMbUSF8TWaOjRHhTfXvAGGCoW62Ek3+FJBSYUbJ9jRQVYzmf+FeologIja2XsD\nZFpp7eZn16dfkCy2Y2T39WLVrtSqmCbPcFxNRt0I+bnwDsrV14/1tBy40elAOk2PAfQYQIemsu47\n8PFq1iiocXHp2iw3QYuf8emgTs5X1qmULq5cXhMO2Y2LAxt3fx6mYduER9zyKQG5kRpL5qrW2eQP\nNS7Wz/qq2/NzQ433tINoVZsh0VWo6igEz+tcdllbufVwdFRY33RQyuW1pIadu2gsZoUl/hmHsMlJ\n0c/u3QK2GhoEaHV3i/cEHOaNUizcmru4aGZx5ePm7XOo0Vk8uSVRth2JmCDc2ioAVk1Y1Nlp/t7R\noc/iyteQWzClRVRCBp8THyOPU/Va7kRda/XGQDlQE3R7RP7ArxqxoAcP5stus6x5K1BjV5uzmpZY\nvuary2R1LZVusl7E56LGTkqqGSOirEObHBQnfE6EW1nl9VeEvddHVhBLUkmcqC95sPhp3SL9WLUr\ntSr6ANc0lb8U9Si7JC66i+CgXH2dLLcq2JdbkkE9pw6Nj9NjAO0fGaE1n19cOjipRqmIctq0O17l\ntCX34eAnrXgt1FIClxxUB2nQm8u24mLLkxDp3J91MZU6SAYJ92PVQrqbdlOMYsY2uhqfXqX7nuLn\nBo/3lMDrBNFSXm4ShHB6baom4AngnwP4ewD/AOD/0Hxek8mGKhWPn5SWR7vkMJVc3NqBgLywjUbJ\nyACrfjYyYnV/dRqbaVXMWyyAHBZ1cotD5TUmZabZZFJAX1+fgHJ1LBMT1qy1sg6nhE439fUR4RML\n1PjoAUrvP0TT/2rNYh2Wc3JbJy/ycmPAz3EPuj2i6sCkH1WSXKhWcOhpbXyYr0rW3K3EiBellf3V\n13aKsu36HLbTzY+XcZGGn67i6xYSACznllReczDjbVdYm1V3PtlZtasiH+B6rSdldroIroarb2n/\n1j+Bci1+6jm1VijQ3NSUb+hUxcuQ2NWM5NtxUHCDh3Lmane8ymlLdxPibrqb4hSnRVos2Z7DrddY\nSdmHjIF0S/LES8d0UqexdqpF0y7mla9PH/VVBG1e/u+p8yvHfVenaljY60HXO1BXHTwBRAD8I4Bb\nAMQAHAdwu7JNjaYbSienOoryolYHparKseo4WRv5Ra9T4hqd+6pfCLODGt3aqMDLE+2o4KnOT+c2\na6fRUSL8nmkB6fmDOQtgy3jS5WUzhnZsrLTWqU7qsXK7MeAXZCttb8cOcc51d3uD9JqpTJ/Darrp\n+gbyNOlBz8vcCmRaD9vI2Q3VTk6xmbwtOZ5+EtZHCZ7NpM8yK/fpoNL5yXjN4WIfO0iUc2kgoqNs\nblNkAuUYGVl3DaVZ29z6202B+KHaWbX9qBoXNZUaV+tdG130vd7B3isA6LarBjx4OV7l/h24jZeD\narnnjRsg8xhJPhavgFeOO3Ct5eUmwUb/XVZL1ypQe1UtwPODAL7BXn8GwGeUbWoy2VD+5QSlqoK2\njnkdm3Q1veMO6ziDiEnUvc8hU8ZSTk9by5lw91jd9p7X5VPCAtL1+f3UceOacROAW1jVONaentK4\n2HITRvEEUEHEEXo9Jqplt26UJj20uWijrbUWVZoQp0DeXW51MMspxqlkCR+PfG5h2+na5vskbfok\nssKpen7xNtR14GsnYbbNYXsnVSlwkl/UDC4MBp5JNcjsrG5tldNXOcBRroUxCOUWcjR6IE2pQ+O0\nvEE1YN1kV4/Si6trNeDBy/Eq9+Lez3irdd5Ii+hW2lrW2vnJWstVb5a4jfy7rKauVaD2qlqA50cB\n/Df2+hMA/l9lm5pMNlT1ZFdKxYt0F+V+QFC3v3QP8dqOHYjp3i8UrPGa3d2lGWUjEWuNUO72K8HQ\nixV28uNrlD00R723rFksqSqs8wRJvB87uNTBvpPF2glUq5HcRlquW1ocQL3GGU/y+Xz9mya8yM58\n5WZ55Ovs1eU2zbbpodJjxT8fJGs9TQl2EhKdQHmw+FpmqG0iors1/UnJ7aSbrZd1ILKunfxdzX7r\n8bzM/0q+PGB1kcUV8MCokRhn8PFgIDTIuppubZXT12axJsiL/OSBZGDrWVGtYQepAODH1XWj4KFa\n1shaqBzXVa5y5647rtU6p65n1cM5tpGqBXj+ixA8rz05gRsvpVKu/ICgTvLL0ms7bjGeaj1MCUZq\niRTVBVeulQRTvr1d+Red1ERDKmzL19y9WP4us/W6lTThayLrl8oxlZOxuBItLwtLp1N913Ktj+WC\ncj6fv7Z9DnmtTTvAky6lu4koVnyvtXQfucYvSsCzswr2F99rJwGK/L9HlES22UVyB2WeCKi/uJ98\nLV3bORAuFrfT3dTwe4zV7dM2c1WUf3++KjcxLK6ALDHO6FOjtoDjx7IYZF1Nt7bK6WuzWBOMi/xD\nCGw97//P91e9VijR5ljjal3clxPHWkvxGpt+3Wx1xzUEz1BBywt4RlGZXgewjb3eBuCEutHv/M7v\n4JZbbgEAJBIJDA0NIZPJAADm5+cBIHxdR69ffBFYXBSvs9l5XLgAABmMjAD/8l/OY37euv3nPw+c\nO5dBSwvw8MPzaGsTn8/MAC++OI94HHjuuQwSCbE9b296WrQ3O5vBK68AwDze9S5gzx7n8c7MwNj+\n3e+2bq+2DwBtbRns2QMcP262Nzsr5vfpTwOJRAZLS8DCgvi8vz+D97wHOHJEtL+6msGpU6X9vfji\nPAoF0d/amv7zxUXx+cyMWB91PoODQKGQwdCQWN/jx4F9+6zz3bcvg9VVc7wf/nAG27cDp07N48gR\n4PbbM/jxj835qfu3tIjXt902j6YmYGHBPL6f/rR+fQDgwgXxemQkg+ZmYGio9Hjqjo/b65//PINM\nxlzvmZkM9u1j2xfHO3/bPDANZOCtfS/r7fj64Xng+Mb8/dn9vQBAZjYDLAHzP5oHUkBmWwaYBeaP\nzwOfBzLnMkBLcfz/n/K6Dci8lgFOAfNH5oEskJkv9l88vpm24ueH54EOIHOp+Pn5eeAIkLktA4wA\n81fmcf+3gP9wJYMLAA5F59HaUDw+I8D89DwwX5zfADB/Yh44C2S+X2wPxf4uZ4CTwPz/Ng/8EZB5\nVJlfKgNkgfn/eR74v1n7fzgPfJydD9+ZB4aAzD9lgEKx/XeAzM9t1vv4PPAwkEl4PD7q9nK9RjLA\nHof9n8sAM8X1CPB8Oj5/HA/jYSQyCczeO4vsf8ni07d8Gv/18n8FANy2chumb5mG1Pz8PF489iIW\nexYBANn/ksUf7fwj2/Yfjj6Md95+B09/8mkk4omKxsvHl4gnfH+uHd/8w3gH7+DpzNNIIIEH/vQB\nnDh3An3DfZi9dxbHv3u8ovUN6nVLpgUA8K7ou5B6O4Wvf/LrFa/nucFzWFhYAADMNM1g39i+qoz/\nYTyMv8/8PeKI4775+/BZfBYPZB6oyno9MP8ATuAE+jJ9mMUsjs97P377YD//2cwslrCEC/MXfI3/\nxfkXsYhFIAPMYAYPzz+MF/EiFjPFv5/5LP4I9n8/1X7Nx/cIHsHD8w973n8Ws8jOZ/FpfBqJjPh7\nk9tsxPHbLK8/j8/jXOYcWtCCh+cfRhva6mp8G/36+PHjWF1dBQAsLy/Dk9zI1OkJIArgJxDJhZoQ\nJheqa3m1BqkWsELBTHDjx1XT7n03i5xM0OPVPVS1wpYbc8fnPT0t5ptKCQtdoSD6UZP76NxgeXkU\nLy7K09PCdVa1XHodr594TjcLp9N+QVs/ZR3V9naNy22Z1sea1+MMUI7rm6bSb+ApzWd2mWSl9bGD\nrJZAnUup6gbbyNrrptJxgIjiZO/Wyi2iTez3rWwfp/mp54Ic3xBZraHlWBj9unRXySpeqWe5U3bW\nIK2YGyl1jXILOer4i47AXFmDVDUscrU8jrVyafbaj1+rY5AxoPVkAa6nsRBtHtf3SnQ9zDFIodqu\ntqIPjAN4FSK77e9rPq/JZEO5y2/SGa+lMry6sjpJt61dn/l83ti+u1sAYn8/0Q03CNDzC3C6eftd\nK7eSME4uyuUCHS+X4we01ONb7g2JSsVrlNrN26/rbLk3HerB5chxfSXE6WIinTLJyiyucj8OdFwc\nqKRbboqs9TBBlrInV9X/BmoiomkSQNpAJmguklnqhO/jND+nscr9hsi5Tqid0uS8LnZyIcWS88ll\ne2MYCwvUfeAAjR86FFjJlWqUDAkyCZFXpUm5v8JiRKN7orR8Vr3zUXtVc10OPnew6qVfpGoFOF77\n8XvxH2QM6DRNUzd10xiNbQjsceguNy7UTpX+36s3EK6Groc5BqmagKdrByF41o0qAQenfe0son4g\nwKmkitpnPp8vyXprF4NZrvyulZ/xV9qXW79+VckNiUrkZd7ViDHVqR7A03F9JWwtU6nFTbXC8ddp\nsn4jDyv75sia9Ee3j58nLz2ia2eSSpMXDZKZ/dYu5tNOfK7lmA3LTSiVJkdgLTmfXLY3jMMHzBJL\nU3NzPgZUW7klBqoGgJXcXylaAIO2eFYy9iCTM6kK4jvKq+WwVglSvPbj9+I/yPFvtMWrmv1Xek5d\nD4l0roc5BqkQPENZVAk4uO0rLW/cVdar7KxaXsar1iJ1c2v1YkHL5axutuXK63pvdDmOoC2ZXq2U\nfo6vtGwHmV3XrxznVY30v5UqRwIo+TdykpivIlktoSBhjZTutPIz1erZSPpv+1b2+6Cmb5CwSr6b\nvW4hyv1POUr/XprGPzVOhY9r1q7Ex5L0gJlm7Xq9PlOh3av8AqvL9nIYY4dEiaWR/fsDs3hWQxL6\n2v68jca+PlYCaNUAsJL7K2sFSn0pZet+Wi5AljN22Vf3F7rr2q2gjvvyAAAgAElEQVR5oyHKTm5A\nvJEX/xtt8apV/0ElUaqnZEyhaq8QPEP5VrnXz2pmVrUdv+U8/MLL7t2irElvrwmLuja8WND8lBfR\n9VGPDGKnHTtEjGVTE9HiYjBtBmml1Fm21ay8VRWDnPudXIMtaYPnaloKRjdWV8ulGguqPmVWWB7/\nKZ8xm33k+2omWv7cWfpe+vfYhf4fTJWuGR+nXQwrkb+SMZXKL7B63L6wtkZTc3PeoXODvmwKawUD\nsvAYqPsL3RbAq1U8opMbMQfI1FzK80Wwl7GrF9e8r/6v9FdtzpVakmsNUV7HW69ATLTxFq9a9R/U\nMajnYxmq+grBM5RvlQsNMsZxaEgfI+k3RtRpe517iG573Xt2JVT4dZuf8iJe+3XSRoIqtxT393vb\nx6l+aipFFI1az4UgxI+Jl9hQv7J1OUqT8W224BRPaxngJT0YBakdJCyS3STKn6TJamGcIhPEtpIV\nDGMkypvE2fYgUfYEJJIB9RHRDcU202zbDjKhspUsMZ8EEvGcaSqFVYfn+P9avND/zAgVmgti7BwW\n1VqadoBpB3dpqv7xUFQz1+1a+aJrxK2eqoXQa1ypDkyCctM1XHH3g7Dm7SI4t5Cj0adHKfWllGPM\nqHpxXQvQzufzWmus03qpgFxriPJqPd5oq6IfXUsWPf49FdQx2EzHMlTwCsEzlG+V63apuk2q7bjF\niPqJj9Rd1Om2172n9qW7bnNyAfUyLz9rmMtZ4a/G145GzdKWFu9uxXZu1Xwty3G5dpJbVt5K4d0W\nFMaJcp9YoPQfHqCx/Ydo8uNrNjGYfICkB6NKxWFTwqSEPf6tK/uVILZc/KnW0lSfSSJKlL6f+0SO\n0v+m6ArbXCiFTd1ThVqQ6aIrf24RPwvNBZrKTYm2ZQxqmu2XJfsYVjdxd2M1vrWKqhl4bmAaZwmX\nY18fc3S7dZIOTPSwkqPcQorSB5I0fshbH4W1AqXmUoQ194tgCW/JvcmyQKkaCZxU5fN5LeA6wZ0K\nyLVOCuUVyDfaquhH1bLobQTQ8u+poI7BZjqWoYJXCJ6hfCuoeEO1Hb/tBrG9nxjCcpMIeenXq5tx\nMul9vkFZSZeXhaXTTywrd6vu7S0Fbrc420qlW/OqGX4KROk/9pnwxa8bpk7c4icz03Lgk7DZQtY4\nzRgJC+E02397cRs7F9lGTbvsaXGFzU25f+tr2qBeInpQmUNv8WcrCVDtJDPBUVDwnmb93czW5Fq5\nJtroAHEqdbv1E9OpAxM9rKQpfcBfIqHcQo5GD4xS6lCKltecv+A4vEnX4dGnRm0BTXdxXQuo0wGu\nE9ypgFzN5Edex7vZVS2LXuiiGupaUAieoTa1JFz191cvsUwtrtvsoIjX+ezo8Ad/G+hhZ7hV6yzF\nulqntZCvGwg+Y/7Giwlf2v79fhr7iI3FM2ilyfwWVWtnthDRUTLjMKUraqvDPk5POyAtPsc/pbjC\nSlj1Yvm0eyaLY9eNc5Lc4d3rMeS1RLk1N7yuC1TluprqwEQPK+M0fgjFPoY99SETD+ExUPYbzu4X\ncvxDTwxR9htZGn1q1Deg1RrqpJzgTgXka6Wm60aqWha90EU11LWgEDxDbapEN6pU100JOUG6sflZ\nn3LX0g6K+PyyWX/tO4FWtY95oVBe/VA3VTJuXzcQ0lQCIE7nVGFtjXr+YI7QvFZ90JdAJYFshEyw\nvItE7KV6g0JC2phmnwDA0+IKK9/XWTXVZ5fN+xI6mRvsFfb5+i4P65Rm7dkdjxyJOFW1/6BdoDVy\n+47aiDqY1ZQKP8HPr0CFtUmamst6bo+7zU5+Y1I7rtxCjlJfSlHHX3RQ7xd7jbhOP4DmlNE2yHUo\n9/+epQ7k2vI1Z4GsZ/lxn90IF9V6KCMW6tpSCJ6hNtQy5iY30JBw1d5uhZxKvyx5v06JatTxlbuW\ndlCkwqOf9p1AqxbHvFJLsVvG4VSqijdKNG6cJeeUYlHzHUrnN5Oq3J4nCOov7jtNRD0koHPUoU1u\nJSyQqItZ9W94h2cXETVr3lsujjdtvn+RbfNCn4f18uKKy9o3ni3kvIYBye07aqOsYxWDkMe7Q3x+\nasbbcsfhd5+xg2OGFdMuHlJ1sfWbHEltU81oG+RxLvf/XujCuXGq97UPwTNU0ArBM9RG5p5wlRsg\nSbhZXg7WHVYFHC8ZbFMp08U0qLV0S8hUrur5mEs5ZRyu+o0SLzGYaTK/xabKAG1lf1cQ5durQKV+\n5tRmjgTsRYioSbOf16edRdOre61drU+QAGIex9lGtFps9++aiVYlmNrNL03Copu1WUsp2b583knW\nMi/VOL883nDYKJdHJxCyAzvL+2PmnbrcZwdtQdAp463bOMoZu3UiRJQmKnykQFOH9PGQ3V/opt4v\n9lJ0T9Roc/hJby68qhxjLFl/o0/bx4zaTiUAi+lmceGsZXKdEst3FfrOUY6SlCQQaJiG63rtQ4UK\nSiF4hqqH3BO26u8nw6LpJ76xUnEwc4JaFYSy2equZbUSO9Wj7DIOB+XCW7G7caXJbdT90+QMPHL7\nISoFKhWgkpo2e0hYSNupgm9r0ma1tTy3FPuy+zzio68kWeB4rYFoldeS1a2Z2zpyFUjEi06QGTda\nrYzDUh7Ht1FJV5wgyQ7sLLGSf9hr/IGm99vHQaoZb9X+dONwgyxP9TUXcpT+v1gGZuUYFNYKNPj4\nILX/ebvF0tn35b6yj4VjjKWmPz+WzyAsppsly2gtrYMllu8q9M3bnKTJQNoMFareFYLnJtBmjsGs\nVOXWY6zUPcQrmFUrlnHTKsCT1e4YBAXNft2NS84pL1ZRJ+uWun8ReH7aTXS/LlGWU38FMl1Wo0S0\nWOy7Eoum3dMtdjPoPtX++LHSQaJXcLQ7Nl6OayUqji9/Wz64Pvy6bTtIgpAuY6sd2FliJQ9OGH+g\nfPvpb09rodEOynTvu0GWE+DpyqGk/lOKCm+WQi1PHITHQJ17Ox2tkeVaHXVjSu5N+or/5Gt88LmD\nnvv2q3qoTVlLy6x6rlej71pbmss5hqGrbaigFYLnJlA9x2BWW+W6hNbyy3IzWA+rpRLO3ICTNeiE\nTka7yj/pss6pNOmBSaci8By+gSgPokMgyjuV98iRcElNkojt5HU7p5S+y4VI3fZbfe7j9PRi/eSu\nu3eQOyR6BUe+Pj1UuxIqxfHlD+aDazNN3s8zL83ZAJ4d2OliJdXty3HhVVWO+7EO7nQxm3x8qS8K\nC27HX3TQxLMTNPq0CaKpL6U8W4LtxiLnqcaPJvcmjeRFXtvla1zN/3v1EItYS8useq5Xo+9aW5rL\nOYYheIYKWl7As0FsVz01NDRQtfvYzJqYAA4fBkZGgLk5IJHY6BHVTqurwMwMsGePOe+ZGWBpCWhp\nAWZn62M96nFMQclpbpkMsLAgfp+aAvadq/3JWjKGfd72051blnaRwQJEw1OYwj54bJhrAsBhACMA\n5gB4WI5XOoG7CuL3q11A4+niB1PF/ZcAtAA4C+CYTSMdAKIATtt8Xom6fLTbDOCC5v1WAE0ACprP\nOgH80qa9LIA8gHMAGgH8VnEsLQBm4Wl9Dclj01ZsDxBrXMZh3nCVcZ7pNPP8DJZWl/Cjwo9wav0U\nRrpHMHf/HBJx5wZX11cxc3QGe+7ZY9lWttcSbcEluoQjrx+xtDmDGSxhCa888woKK+JkmLp1Comm\nhLHf7L2zRpt2/fD+Dr52EL9c/yVaIi24ePUi1q6s4SquGtsMdw3j9fOv4+TaSWMsj77wKJ786ZMo\nXCxgqHMIT9/3NB554RGjn4lnJ3D4xGGjjalbp7BvzDxR5Odu65V5JoOFFfGd0hPvAYFwav0U2qJt\naIm24MXffhEDWwd8t+tX/Ljw9XXSBCZwGIcxghHMYQ6Jck+yUBum8BiGqgc1NDSAiBoctwnBc2Pl\ndoF8valc0Kim6nFMQclpbiU3RVD7kzWQGzMzMIGuCDCB/JNeLba9B95gYAa4+gTQuApcvhOI3gDg\nCARQvBfAAQBnitumAKwo+0cBXGavGwA4fbW2A0gC6AbwsofxyT6uuLQLCDD8VQAv2HweA3CpuN1V\nm224hgF8G2KsV4rv8flxaHwPxNqsARiCgFkVTOWxKcBc4wqgbUPl9zyzEQej/tZ+/PCjP6wIdnh7\nkwOTaIo0Yc89e/DoC49iaXUJr0RfQeHeAvAtACeAtmgbPnDDB3Dh0gUcOynuqkjI8wJLN375Rqxc\nUP8ohKINUdzUehP6W/rRHG1GW6wNezN78egLj2LfT/bhzCXxh5UdyOKp+56y7Lu6vorb992OlQsr\nWgjkQPzoC4/i4GsHsX5lHTt7duKJsSeMbbc9vg0nzp9ABBFcKZ7ETY1NuHj1omWuunaDgk7AelzU\nPu20ilXMYAZ7sCcElk2q8BiGqgd5Ac9orQYTSq9E4toCmUrV0iJ+jowIvtFpfn4emUymrsa0WeU0\nt9lZlTNrf7KWjsGjOGxy6+EMgH3ALGYt/6TLOqcS8GdBWxLQCQDRdwHYC+B9AOIADsKEziSA7wF4\nP4CTEBBHsEKnnbWR63xxv9d8jPGy+yYABEy+aPNZFAI6ATEXaUHdCuBtzfYpCOhMQIDqFQjo7IGY\nfweACIAMxPH8BcQxBUzwLR5XQ/LY6KBNcyMiaAX6HeXzPLODuJao+GMPysLG2/tC5gtGe0urSwb4\n4CjQ2dyJsw1nce7yORx5/QhSW1LGfnvu2VOyz7bHtyHSEEGsMYaXHnzJsBKuX1m39M8BrzXailRz\nygK0ibiwrEroTDYlsTezt2QeiXgCP/4ffoyZozNojjQj+1wWLdEW9DT34LW3X7Os49LqkgG/R14/\ngtSXU2iJtmBn907c1HwTTpw/YYxppHsEiaYEjrxxxDJXqUdfeBQn3zmJh771kCfLpO6c0h1rflzU\nPu2UQKI8r49QdaNyjmGtr6VChQLEv/lQoepGs7PC8lZPbsf1OKag5DQ3eVNkQ+Y8MwNkMkg8NIF9\ne1b9j2EJwAKEi+JPiu+NQAAIzH/SNbkzPAMBTT9i49gL4FEIt9NjMN1SkwB+AGAAwKsQlr5mlAKh\nA3Q+jxk8gwyevTKB9bdXncfW5XkWpeJWUf6fhI/1fRAutJMAfojSW52tAO5gr18CsAXAcQDbi++d\ngbCayeO5pvTJjqtFM8W+zynv83NjRrOf2szzM8g8k8HEsxNYXXdZzzqQhLjDJw5j5qg5wdl7ZzF1\n61Rgbp127UnwaY22one9F9vPbsdlEidFsimJ7/3290r247DUiEacuXQGp9ZPYcfXdhhrvrN7JwCg\nPdaOba3bMNQ1ZPR55tIZHD993GhDAtdP3hZ//A1owK1tt+Khbz2kPYaJeAL7xvbhmye+aazdV//x\nq8bvt++7Havrq8Y4AWHBXb+6jsLFAo68cQSvnRN3eIY6h5AdyGLu/jk8sesJ2zW3O06A93NO10bQ\nxzlUqFChglToahuqItVr/ONGjKte12JTqlL/Zh4X9ySAR1Cxq6Krpczu8wxQDCcF+iEALKG83wRh\nERwG8ITSdg+AU96H+QwyWCk2fCumMOZ0F1x139VJ59LLXWgjxedFzb6TAJ4u/i6tkmcg5neO9Z0C\n8GNY582PYQKmy+zNAJ6CWK8tEJbXAZQqA3N9uauuz5jJclwXN1J+YwdlLGYLWjCL2YpvxqyuryL1\n5RTWrwoLZe+WXpxcO4lkUxL39d+HX7zzC8f4zu1/uR2n1s0TXq453yb7XNa0qgJoibTgu9nv4t/9\n4N/h+KnjOHnhJNaurCHWGMO5y9Y7D3ZxpjPPz2Dvq3sNSFY1desUmiPNOPTaIUQaI7g9eTsWfiHG\noIsddZN6nKSLcku0BWcvncWxN63uyDpJ996OWAcWP7poiSENFSpUqFordLUNVXUtLZl8MDNTP27D\nGzGuel2LcrThEO3Vv9luoLOwulgGcSykpQwode10+lwaSVTQke8nAdwG4TZ6RNP2SwA+DOAd2Cfm\nkeoComdbgEtAN0Zwj9YUyOTFtTai2Y7HbV4BZj4+g6XeJbRcbMHsn88icSEhrJl/yrbj7sRnlTZW\nYM5bAnwMwmIpvSPl8cxCgPDZ4vN3YcItl1zfNgiL8irE2qvnhovKcV3cSM3eO+srdnAJS0airRnM\n+HbXs3P3XL8owPPq1avIDmSxN7PXAowzR2e0APjSgy9hx9d2YP3qumXNpVUSsFoyCYR4JI6Opg7s\nG9uHxN6E4V4r4TfaEMVluoxGNOKZ5WfQ1NCEt68Iv+/eL/Ui3ZfGhcsXLNB5V+ddWHlnBSfXTqIt\n2obCWgFvXHkDpy8K3/Erp6+gd0svRnpG8PhvPI5HX3gUR39xFLd+9daS+M+SNcMMzt57FqmjKTx5\nz5OGG69cm+ZIMwCgI9aBP7n7T2zXfqB1ACfOn8CZS2fwyAuP1P1NkVChQoUKXW1DVaSNiH+cn593\n3WYjxnUtxYJKiD58WLBdzeXVv9luoBI2PQKzl3PKApC641v8/MdtwFRBJA4DIEBnClbonIGAphSE\na21n8X0OSVL3QcRGcuiM2YzxNHBvxyxu7ZzC/ZhDPAhXYg9wunTDEhZ2LODwnYcx84nicTgPYWmW\n4uNXEw51AXgDwhr5dxAAfwRinglYj2eLsq/dvdVZiGRF52ACPeD73CjHddHT+RSAnp+ZwTOZDJ6d\nmMB68YSTgOZlrDPPz+CVZ14BngWG1oewx+1GhUY6d0/pFgsApy6eQiwS08Yf6vb93A8+h46mDsQa\nYmiNtRrtvOdr70FibwI9X+zBDVtuAABQ0RRfuFjAh5/5MAAg1mj944g1xvDygy8j2hDFVVzF+tV1\nAzoBGBl5v3/q+wBE7Oium3Zh4bcW8OrHXkVPvEfEp75xBD85K4C3LdqG0xdP4+TaSbTGWi3xn4WL\nBRx5/Qhmjs7YuswuYQnH4sew0rSCkedGMPHsBGKRmLE2dyXvAgADKAH9OdXe1G7s0xxp3lQu4aE2\nXrX6ngoViisEz1AVqZ7iH4thgZiYAP7sz2o/rmqsBZ/Tag2vJTYcohMJzCT2IZNNOM+9lgPVAaTy\neb4H+OA54MkjjIN1oLMEEdu5AgFnKiTdBgFhq8VtzsCqXcWx3Fd8zeArfiqBsXP7vEGnCm3N7ruU\nKAa0bCkCxekR7PlK8Ti0ohSipSKa947BNibXolkAvcXfh2FaRFUlIDLvOrVlJxmXOwEkLngHuVpr\ndWkJKwsLOHH4MI6WcYdoaXVJlDo5Adxy9Jay3GxVmJx5fgYXrlxAU0OT5X1AQPzg1kHEI3E89K2H\nDEhUEw2dXDuJS3QJC79YMIB05Z0VI/bzbwt/CwCINIgTqSXSgr/+yF8DAF568CXEG+MARFbZ93W+\nD5954TPoaOqwnUNXvAvRBuEAdgVX8N03v4tbZm9B6sspIyvtUOcQvpcV8akS+BrRiJMXTmJ1fdWw\nwgJAW6wNf3L3n1jAevtfbjegsKV496RttQ2nVk7h8InDaI22Gjc4Ord0lqyLTvymyGtvv2YbMxoq\nVKhQ9aIwxjPUNaNrsezJRs2pHsr8eJp7PQyUqaT8y6PQx32qcYYfgACuyxDAdr64XQrCUsjjJ+8A\ncBSlcaKq+iGAVZdJlisGkTm2ubitHeQPF+dxDNa4zwZgdcsqZj4xgz3P7UHijoRwG5bZbFMAfhPA\n4zBLpXQW57gOsQZvFJ/txbn9Ozi7wrqVGOHuum0QcOrn9MhAHx9aZ3p2YgInDh9G98gI7p+bQ9zn\n30AQtSTVsiBOZVtmnp8pKW8Si8QsbsG8ruZQ5xDyv5XHoy88asRfNjc2Y3zbOI6uHMVtidvws7d/\nhu9MfscS3yjH9Ma5N4xMtxPbJnDk9SMGSBprsG0CL731Ek6unQQg3FuJCGcvn7Vs1xXvwvt73o/Z\ne2fxwDceMGIwARGHyfuS73135bs48c4JNKLRqDea2pLC9z72PTwSfwTHnj2GN068gY7uDizev4iB\n+IB2Tb1IdyzLqekZKlSoUOXKS4xnaPEMdc1ow610VdBGzWlDM9oW5WnuNRqoV8tzidVbzaAqLWmX\nIBLixAE8BJHBVrq08uviFQhw4vp7CBhahel2OgTTXRcQcaM/hD7hj6pLEMmLfg576ERxLj+E+K/B\n/3NQ0Sr43/Yh8U/F2M73K3P4GkzoBARM//PiPN4LM/PsWQjodHOFdXOXlevO3XX9yM2tuk507+ws\nbp2aKgs6Z56fwdmLZ5HaksKTu54sG0pU115uAVVrherKm6jW5J7mHnTFu9C7pRdP3/e04cYq4y9/\n/aZfx+n103hr/S0ce/MYzl48i1958lfQ80VR/gQwS5W8euZVAMI19uLVi/i1G3/NMvYHtj2A85fO\n45frph/4aGoUTZGmknmeXj+NwycO47a/vA2vrr5qvD/cNYw99+wxrKD8PQnDV5lv+craCn59/6/j\n5DMncf7qeWAAOHP/GTwSFy61M8/PIPtcFucuqumYnaVzCXfKnBsqVKhQG6EQPENtOtnFJdST229Q\nuhbn5FW1nLtbrIvXmNcSDlYB5iBMIHodpnspF0FkuZX7vU/5/HJx/9sB/BkEvOVhlhkBgGcgYKsd\nztK5vOqULG4rkwJdcdhuD4R1N1V8bwQi+yxXG4TFcw9EnVFpXIoCsMulwtxfHQEZqBwc3dyqXVSr\n2Kl4IoGxfft8QycgoOTYyWNYWVvBB576gOe4QKdSHyrMPvrCo5ZtJZQmm5L4wb/4QQnsvudr78Hj\n//A4Tq+L+EkZ3yj3645348z6GfyoIGoTjXSPYO3ymuGC+6EDHwIAfOUfvoKFlQWcWj+FKKJGDdFX\nTr2CRJPZ5wsnX8DCyoIBta2RVly8ehHfeuBb2rk3ohFvrb+FU+un0NTQhIltE/j2A99GIp7A7L2z\nmByYRHYga7zXHms32o01xIw2fn7+51hYWcCZN84AJ4Gt2Io/KZ74drDodk7pYnvLSYy12coHhSpf\nYYxnqI1QCJ6hrhnVg5UuaF2Lc/Kqepp72ZbnWQCDMC2bvP6mtHB2wATEhuL7FyHgKV58fwJmXKPU\nCoB3AXgOouYl/zZPQ2TCLcBZV2CfnEeqCSLm1KF2qDH2H8BMBvRjmPAmYy3vhEgkJGNZ+wAssjYu\nw5qQCDCB80l4r79ZITj6TUBUkfwAdYDiNSlX1lYMyJHgse0r2/DhAx8uTYyjAaOZ52dw45dvxF/8\n/V8YMPvIC49Ytn3fX70PZy+dRXOkGdGGKIb3D2PX13dZ2l55ZwVXinc1Yo0xS2zo1K1T2NGxA8dO\nHsOp9VPob+3H3P1zlvM30hDBjV++EReumCfrFXaX5OS6KLMCCJfa9ybfC0CAIQCcv3IeR14/gt9/\n8feNGFUubrm8SBfx49UfI/tcFhPPTgAAnr7vaTx131MG/M3eO4vueDfOXzmPS3TJaMNSsuUC8PbX\n3sbvrv+u5bi4waIXQCwnMVZoJQ0VKlQ1FYJnqE2nTCaz0UMI5UMblSDJj9zOKd/WVwkTD0HAlbRs\nxjXbnoGAxH4A0hNwBCKm8hgEoLVCuON2KvtegbAWnoIZFwoIq+QxuGekbURpjU6md1reAW0hEbN5\nyaWt4zDrac5AWGSPQABgd/F5A8S8pC7AClvDELGmGZggJt1mJUR7sWJK+M2i5kAH+PyOUt2xayBp\nmWxqLE0AJMHjxDsncOzNYyUAwsGoOdJsAOfKBRMak01J7Llnj2XbvpY+HHvzGC5cuYC31t8S2V/f\nOILbv3a7AU4y2VAEEbz02y8ZcYrS9bQ5JrJfNaIRFy5fwL8++q/REhF9vLfjvbh49SJWLqxY5krK\nCX71qoDHM5fO4Kdv/xTRhijOXzlv2eb7p76P4e5hy3vSeik11DmEvpY+R0hLxBP41Z5fLXm/OdKM\nni095htrQMNRQdCz985isG0Q8UaRgEmujTynJHA++dMnXQHRT4Zjqc1WPihU+QqvpUJthELwDBUq\nVFW14aVZApCr9VW1WnGY4Flaf0Oz7wgElL0LZu3KOZhWUAlaCQB3F98zKjAXL6ob1oBDZ0yw9epC\nKw04sr1GGBaky42XEb0YRcPZhtI22TUzUBzrv4EJeEsQFtkCBHwegYDjIxButnblYG6GcL3lICYN\nc8MAJuHdirkBQFeWNiCeVLrZXrx60bAcqjGajcXLg6HOIQuA8My0B187aAFOAEg0JQw3Wm5xk+Cm\nAtzK2gre/dV3Y+LZCXzrgW+hv7UfP/n4T3BX111GMiIJWPNvzAMQVsPT66fxV8t/ZSQB2p7YjsK6\ns4k/2hDFFTLH+sb5N6zWx6Le1/0+dMbFXZ7hrmFMDkzilY++gp64eeL/ePXHeOHkC8Y2KqRJQLx0\n9RJ6twh3hc6mTsQaYnh/7/vxN7/9N8b7w93D2HuPSM+ciCdwc9vNOHayFPoB88ZA4aKYa9CAWI6V\nNFSoUKG8KgTPUJtOYVzC5tJmSPpU8TnFIWc7gB8V3x8B8D2Ybp+/YPu0wwQpCVs8GY7OXbQHAlJH\nUYTFIhTSL4G9OQFugD4GU01SJNUB4OViX6cB/BK4HL2M6NUomi4X3Q2TMGEzBtFPb/F9QFhdea1M\nXmtzqPiU67EXwhUYEBl6e9lnX0ApiMl1+DaAp+Hd/XUDEwT5Op8qdQv2INUtk1u1fqPvNwx30dX1\nVcM9VLqV3rL1FguAJOIJ3Nx6M469ecyAH0AA5cS2Cfzs4z8zkupIi9ujLzyKl0+9jFhDDHcm78S2\n1m2W8Z2+KBL33HfoPvzwoz/EwNaBkgy4ACyQ2BJpMeCwPdaOP/3QnxrWTztdpssGJDei0QLMHTFR\nbiWCCL6z8h384NQPEG+M42dnf4bzl8+jo6kD8YjpsrB+dd0Yz9LqEm6ZvQVb/vsWfOCpD2Db49vw\ntX/8GhZWFnDkjSP44A0fxNStU7g9ebtRJmb7X27H7cnbRUzo/d92jc2U55T8TAJxJYCoc9ctx0oa\nanMqvJYKtREKwTNUqFBV1XWRIEle77ZBWPZOQbjOzkG4n15tJGsAACAASURBVMp4QbldEsI6+gKA\nWyGyxQJWSNLFGX6z2PYCGFyeA+4olpQ5aTO+LRAlWwABmlH2WSuAu4p9PQogC0QuC/MmgYQl96cQ\nFllAuNy+DNEXNzANsbHPinYwUGwfMC25CQBPQMDWUQgXYg5eKoiVG29ZA6ALRDWIJ1Xj9pzqP3L3\n0JHuEezNlBZK5fAzsW0C2YEsXnvoNRwaP2QBFu4WKmtzHjt5DG9eeFM7zpW1Fdy+T7je8gy4XM2R\nZqSaU/jIwEcMt9qzl84i93zOErfqpq54l+W17OsKrmD10ipW1lawfnUdq5dWceT1I+j5Uk+JGy8g\ngDXSEMGZS2ewfnUdL7z1Ak6cP2FYYiOI4Pyl89hzzx68du41Yz8JoAAMl2IJgX92z59Z6p3yGE55\n7L79wLeNrL/lKoznDBUqVK0V1vEMFSpUIJqZEW61LS0CNq8pyJR1IdV6nFKyrqR0LZX1OdXttgNY\nhrB2bocAT6l+CAB1WrdOWGEvfhW491PA4/9eLHgPBJhyNUMk+umAWftye3G7SHGsncV53Q7hIsvV\nCGFl/SVEzOhWiHqfjTBddbdAWHPVsWdgrYcpS8z8BAJKXyv+bId+XUMFIqd6nbrP3OpIrq6v4n37\n34e+lj60N7Xb1ojkNT25Yg0xI9mOTk0NTfhg6oMGmAFAAxoQa4zhgW0P4PT6abzyy1csFtcGNKCj\nqQOrF70F9EYQwVVcLYkB9aNIQwTff/D7uPfr9+LUuvmHF22I4jJdNn4C+lqfANC7pRevfuxVZJ/L\nGms1desUTr5z0ngdb4yjJdqCnd078cSuJyx1USup0xlEHddQoUKFkvJSxzMEz1ChQgWiTEbEcgLC\nwrlv34YOJ1hlYAUou7lJAJUxmaoSEMmEABGPuV78fQiiJIrbdd8uCLCVygJ4qvj7DIBXIJL8HAHw\nH4q/fwfA5wB8BSKZTxTC4roKAdJyPFPF/dwy4U5AWDG/DeGaG4EA18sAdkJYMxNs28MwQTwLcx1V\nOa1rHer5mRmsLi0h2tKCe2dnyyppUitpQbJ4p2i1I4aZ/6UNe+7d6ws8bvzyjYYFMDuQxVP3PVWy\njQSboc4hvP7O63hr7S0Mdw2jPdaOhZUFNKDBFvzijXG0xdpwev205X0Oc3aKNkSRfyCPe79+Ly6S\nl2K25Wvq1im8/NbL+OnbPy2ZT7IpicLFAhrRiGQ8iVhjTGs1HWwbxOrFVRQuFtAWbcMHej8ANABH\nXj+Ctmgbzl0+Z+lv35j4Q+Fgz9/3KrcbDKH0msEMlrCEFrRgFrNIhHfMQoUC4A08Q1fbUJtOYVxC\nfWozxHLayfWc8hov6OY2KZPqtAB4EQLEbv4B0PoA8JBN2l+euOi/w6yJuRXAf2bbLUFYUNcB/D8A\nDkHUCh0ofiYrTFwG8BaEy6yETjmvncXXt8NMVMRzwQxBWD9PQsRn9kFA51swrb3cY091d5Xr2K78\n9BKHuUFlR+y0urSElYUFnDh8GEeVrFn19h2ljdsrZv1KPHME+74Q04KHU8mO9Svrxu928CjdQvO/\nlcfSx5YsLqLd8W7LfhElI9b61XX8cv2Xlvca0egKnYCI5dz17C7c2XknGlzrBZWvtmgbCmsF/NO5\nfwJQug7SIiuTIZ1eMyFajqs10orCesHY9tzlczjyhqg5mh3I4gM3FH3kXxWJnpojzcYxiUXEF0q5\nCYbCeM7ytIQlLGABh3EYM3WducxZ9fY9Fer6UAieoUKFCkTXdCxnUPGCL0G41P4dRFzlUwAungCO\nfRo4/Cngd/730n144qJHYMLh28XXEsh4QiP1GtQu9K0NAuTU2MvvAPgYTPiMQ9TzXAbwTHE8CxCu\nttxjskPpWwVxuY6vABh8Cbj9Y0DqeeDJM+7rapeldoOANFq809I9MoJ7NtudFsDTnSK1DieH0J3d\n4kRsjbTi/OXzFjCVwPrQtx4yrGmJeAKJpgSyz2Xx0LcewlC3yDiVaEpgYtsEIg1W8GyLtpWAXKOP\nS5a1K2t4+fTLIBCaI83oineVwK1Ue6wdu2/d7bntCCKINkQNSOSZcrk6Yh1GPdBGNOL9ve8HYJ3b\n+SvnsXpp1RiH1Mn1k4hFYnhi7AlkB7IYvWEU+d/K45snvmkck6bGJl8ZaL3U/gzlrpbiF+oIRrCn\n1pnLQoXa5ApdbUOFClXfulaDR2Xc6LGzwOXiBWf2ItDTZI2DfBUiHlO6q94J4ASEtfAVAJ+E6b7a\nBFELlLu7AgLI/kcA34ewiHJ3WuniqsaxOrnFcm0BsAbhcvt9CKB2mq/Rfsafb7bqtivnl4E3N+iA\ntb66iqMzM7hnz566crP1HPe3uir+tvbssfxN8f0v0SUcef0IRrpHEI/EcexNEZ+Yak7he9nvYeSv\nRozYxsG2QVy4cgHr/z97bx8U13nne377HZoGGmhkhJBakkvWSyIZJBzJsRS1IyleEyd0XshcM3cs\nu2rdU8luJffurrh3tu7O3Jqb3Joqp27NTO2uK9pkxEzingQpkWLZZhRhCSThGFu2XhxJMQ6KiRBC\nvIgWIKBpoPePp5/T55w+p885/QIN+n1UlOjz8pznvAD97d/Ldy6MKKJCraVaami9tx5XR64KdaKd\ndzsxFmENeRxmB3Y9sktS4+k0OzE5P8nWmxwIR+MRVy2SpeceWHUALftbJDWWRpBfG47NZMN2z3a8\nN/SeIDJXOVcJ12ckPIIiWxHGImMoc5QhGo1ia9lW3Bi9gcHpQaHusqmrSXI/1//reiE66vf6UZ5f\nLlkv3158/9NNzSUYIYQQQACHcZjSbAlCBNV4EgSx9FmuxaM+SIVdzSxwxqos+KrAPEB7AVxBPLLX\nAGACTJC5Yt/z5fLLxIXfNcQbENWA1Wq6AaxEvLGQH0ygtsZe84ZCcmrBBCdvkpRM+InPtwHARB3Q\n6gdcO4Bd24CjtuRRT7X6WTVB+pCSrriQi0O7xY7Dew6j8e1GtPa1Cts1rG/AxMwEWvtaYYYZZlNi\nGqxcPF0bvYbh8DBcVheK7EWYmJkQur+uyFuBwel4W+byvHJE5iJCNJCLx+rSajgsDnQNdUGJUnsp\n7s3cU1wnF6Al9hLcfP4m3A43Vr+2Gn0P+gxdKwB43P04yp3luDBwAdPz03BZXfjCyi/g/sz9BDFq\nN9sxM89qTqsKqnDhqxdwqOuQpOmQ+Jq7HW7J/eDpySPhEaEWdGp2SthX3pTI4/DgifInBAFKzYQI\ngsgmVONJLEuoLkGFQICJtDqVWsGlygIUjy7YMyVOC+X1ntVgQu+MlYmmnthy/qu7CMAFxL0++a2V\n+1zuki2Xw1NVh8FqM/2Ii04g3ugIAKKIRz3rwbrt1iPuucnnfBqsxlN8XLXU1wR/ziDgeQqY2AG0\n2aBZKqVWP7tQtikGUnoX/HeUaG5CGqBK3Z9WuqXYQ7LZ1yzUAAb3BVGRXyEZO7gvCKvJinnMSwTd\nttJtEo9JnrI7HB6G3WzHxOwE+if7BdFZbCvGFyu/KJnH0PQQ8iysoNlldQnj90/249bELdVLoSQ6\nnWYnVuStSPD5HJ0ZxSP/8gieb3seY+Ex1TGTcSV0BW39bZienwbAajQvDl1EvjU/YdsnVzwJgF0/\n7lfasr8FRfYiYbn4mgPx+5H3hzwMh4cxEh4RrmFbfxt6xnqEfQ/vOSxs77K6MBwelliliG10SHQS\n9F6KWAxIeBLEciHWLAStrUyELheUikeXqsgW1ym6AKwD6xDLRV8AAH//yxNFxsBqOfl75howESj3\nueT1mWoCTCz8roHVl4q347Wj1QCaY+uOAzgBlvJ7AnHPzbOi/eXCT3yOm8FSgX1gtaCSebuBJz4T\nn5PaZwpagq8JrNlRo8p6AyQVZWo1ppkYO11Ecwv+PLm40PJuVBMnbocbN751Q7KO120CgNPixIFV\nB+D3+tHxlQ6Jx6RYzH5h5RcSjllkL0LrrVbJspqyGvgqfXCYHZianRKWD04PYnpuWtdlMcMME0yY\nnJ/E4PSgYofbmegMfnHzF4IIlrPKuUry2mlOLJiWNzAanB5Ed6g7YS4wAWsK1sBhZv6cB88ehPMn\nTvym7zewmWz4yd6foKmrSfKc8PuxpWQLgNg1rPiC8P27X3tXck/49rwpkfgDCLVmQlT7SRDEQkGp\ntgSxXKirY6KztnaZdvgRsVTTb3laqAssQjkFgGfjNYAJKJ6OagXrQMtTSL8X2/dxJNZwqiGuq3wV\nTMCqWb1oWcHohZ8jx4N4aq88FVfPMX1IXsOptd4ASdNU00zpzWp9nYG58XRLj8ODje6NKLIp+3Dq\nrRXtHe/F7td348JXL8Bb6FUcw2axocBagGJ7MXrGevDe4HuCj6fVZMUOzw5J6mx5Xjne/9r72HVi\nl6L9iBVWzEK7u61RtKxaHGYHyvLK0D/Zn3ScbaXbUGgtTPDs5GOE59knTfLzqHRWYkPRBsXnRGx9\nAkDTBsWIVQrVfhIEkQn0pNpaF2oyBEFkmWBQsVnIsmSpercEATwGZj/SBqAitpxH/Bpjr0sAtAP4\nPuKirFe0XwDKDYHkt51HwgAmOpO9n3RrrBeT7LhBsEjnQOy83LE5K0U19RxTy8pGr9WNDsSRuYQ0\n1SDSEuZJx04XA3ML7gsicD6A/gf9Qg1i4HxAEBvcn/S3X7qK33lGE9bL8RZ6cevP46mvYsE6FhkT\njtGwvgG9470JdY+z0Vl8OPwhAMBismAuOoeh6SEc6joksWyR7JNh0WmGOSFdWIlCWyEGJhOFsJx1\nheswM5cYXXVZXZLorfw8qsuqcXXkKgDW4faVna8I65q6mjA4OYjGtxvRebcTDyIPcOKPJ3Dx6xex\nrSyxoxePbuohlWdTdxMrgiAIEZRqSyw5qC5BBbebRf6Wu+gEMu7dsmDPlBtMICH2/7uQpqnytNWb\nYN1hxTWNSgJLK/1TTZSla0GS7LhuADcQPy+tFGAttGo4y2NfGXjsk9bAqdWYKqD0PKVaXxc4dw6+\n119H3VtvIRRW6eRqYG5ckHDrDrnY4P6k0Tujiuu1ONl7Ukjl/eT+J5IxuMApc5RJ9olEI6gqqMLT\nK5+WbM8tW7LNPOZ1bTccHtbc1mayodnXjOC+IErtpZJ1E7MTmEPceoVbrQBAHvIwMz+DVQUstXcs\nMoZDXYeE9e+df0+4rmORMcxhDpFoBDtP7ExIlRW/Pnj2oGYabSrPplbKNpFZAgjABx/qUIdQhnyj\n6L0UsRhQxJMgiKUHF9nZJADgJFj95Q7oT2/VQh6dEp9GsgigUlSLC0sPgH4wISmOQKpFwsSRUB49\n1WITmCCeRbzxUQ2Uo4zy80jnVmlFRZUiwRyDVjy6okRaUeZ0xlagOxRCxwCLsgXOn0fL/v2Gx1CC\nRz7lqZjcn/Q/fViNE8+uxU/2HTEklMVRytryWhTYCnB4z2E0dTVhLDKGivwKeF1ejAyNCNtZYMFE\nZAKRaAT13no0+5rhdrhRWVAJj8ODueicYCHisrowMTuRcFwxWimz2cICCy5+/aLQxddsSvxs3wIL\niu3FsJqsmJqbwswsi4xOYxptt9sSGjhxHBaHsPzKyBVEohGYYEKXvwvf7fyukCq74ecbJNer3FGO\nofAQAPXIdSrPZlYj+EQC3ehGR+yXdgABtCyUbxRBZBiKeBJLDp/Pt9hTIBaTdKN1Cig+U91g6aKj\niIuaTGAgOqW5H48GbgSrFZVHINWOlUp66gBYg6AoIAR9/gRpUx899ybT9y/ZuWSj4ZaOJkOZ/B3l\ntLLPh2s9Hhzes8fw/mqNY9QazewLBrG+oQHfevMsfll33HAK5Y5yFqWsKavBa198DS37W9DU1YSW\nnhZ03u3EwNQArt5j6aRWkxXFtmLMYQ6hmZDg28mP2Tvei+HwMEZnRuEwO7C6YDXyLdJusfJmP2ZI\nbV1K7aUosZdItrEqfOZugSWhSVDCNiYLDqw6gJ3lOxPWmWBCz/M92Fa2TdLFVz7mPOZxb+YeBsPx\nJknm2FuxWk8t3vW/KzQT8p/yC/dt085N8Dg8cDvcOPPcGeRZ8nD5G5exrWxbQidbLjprPbV4vOxx\n4ftMCkS9UVJqXJQZhG7VqMXhdGsKYtB7KWIxoOZCBEEsLXzIWDOZpIib5Ij9LnMRo41vUmkkVI54\nkyBA2TfUB+17o2cbI8jORVJ79qMI3K+3Zbbh1gL7hobCYQTOn8fhPXvgdjgM778QjWPE1/zVPa/i\nUNch5Fvy0Tvey2o9Z8aERjsl9hI8VvQYuoZZM6GK/ApJA6EyRxk+V/45BPcFE7xDxdE7Tt3qOpzu\nOy00K+LbiCOjJpgQRfx9yFv/01v4Hx/9D7TdbjN8rmL/Uo4JJkEEBs4FcOzmMYzOjMICiyS11hz7\nx2s7rbDCbDLj7efexj9e+0dJ9HnlT1cK16XeW49QOKR6H3kjodHwKNput6G6tBprC9fiiO8Iuz86\nmwxlA2pclBlCCCGAAA7jMNw5+4eIeNghH09iWUJ1CQ85GWwmw1F8poJg9h9+5LboBIx7WaYSdb0I\n5v95AOyaKPmGiu9NPvT5eRpBKVoqOxdJ7dlfujJaCwxA17XO5O8ot8OBlv37UxKdANAzznwei23F\nkmY1mSJwLoCWnhbhmh/qOoSW/S3oHe8VlnGvyRJ7CS594xJK81jtI4/wrchjBrEuqwsj4RG09rVi\n+6+2Y2xmDHazXdiWR+84BZYCXB65LLx22Vxoe65NYicCQCI6ASbEju4/mlBrqoXL6sJoeBSv7nkV\nDesbsKN0hzD+9y99HwB7/njEUZ5qO495mEzx92SzmMVMdAY/vPrDhOizOGX5VN8pXOy8CIBFkuWR\nSx69Prr/KBrWN+DsV87i+DPHBcsbpcj2QkEpuZnBDTda0JJR0UnvpYjFgGo8CYJYWqTZXVQ3bjDv\nyoXEaP1gKvWGKdYowgvgtui1UtRUfG/8UK4jTef+6ahNlbzR3XcEqMvwQ5Ks5pRf2ykAp5CR55N3\nmbU6ndgXDMJhUEB7C7zoe9CH+5H7gijUQq1jqdLy7lA37kfuA2DpqqPTowiFQ4LYLLIV4dSXT+H7\nl74vRN3k9aUf/9nH2P7L7bgXvgcAqC6tRoGtQOiAazfbcX30OiwmC2wmG56qeApXR67i3sw9PJh8\nIMx7IjKBr576KsJzYdybvqd6fo8WPYrvvfM9zEf1NRUqsBQgYolgYmYCbbfbsPZf16Iiv0LoUFtT\nVoPLw5fhPuLG5OwkAPb89T3ow8DUgBBxLbIVYWvp1oTOvkopvjvKdwgR2em5afAGuLcf3E7YlpNq\nHXE2UaslJgji4YRSbQmCIFIlVRGnhg/G0lCNbp/qPqmQjZRUHWMa8S/MOD6kdW2VhN3rPh8GYp61\n6xsasN9gUy3u21nrqcWWki1C+msyCwy19Eil5Xx8cUOfhvUNEruWdYXrsKZgTdLjisf2e/0Iz4XR\n2teq2EyoqqAKW0u2orWvFcW2YkH4AqxT7Ew00cpEjlLabqrUe+vR3t8umcfeir2YnpuW+JMC7Nyi\niOKdu+9gaHoIDrMDDosD4bkwqsuqUeooRXBfEACw+RebMTA9AJvJJqQSA5SyShBEbkKptgRBENlE\nR6MZQxhNQ00lbTULqcoJBACMgfmUHkPmItM60lwXNbUwzWurZFHBu8x6amuxJwXPWnETGHH6azIL\nDLX0SKXlfHzfSp9kndiupdJZqXlc8dhHfEeEcXetYCmzVhNL0HJanNj9yG6hQ+6+yn1Cs6CtJVuF\ncZJRYi9JSNtNlc+6P4tmXzNsZptkecdAh+BPajOxdTazDXce3MHM3Aze/9r7aFjfAIfFgbHIGMLz\nYXQNdQnXyO1w48af3UDD+gZs92yXzJ1SVgmCWKqQ8CSWHFSXQGSalJ+pTIs4o7WaRrfX2idTHWe7\nwbrsDgA4pLGtEZRqU7PQ5ThlYte2/W/aUxLbSsKOd5n98unThtNsAakQ11tvp9axNLgvCJfVhe5Q\nNzb8fAN6x3vj9YUHjkr2EY+h5Bkq9yWUH1M+7gdf/wBVBVW4/q3ruDN5R+iQe37gvNCsZ33RetSu\nYEa5ltg/JbaVbcOP9/5YELNizAbfFl0PXcf6f12Pje6NcJildbjcn3R7GROOkfkIuoa7JLWwvIZV\n3NmWXyN+DW4/uA18zMR3+1fa0/5QhTrNEgC9lyIWB0q1JZYc7e3t1Aac0I8OL8eUn6lUusPmMj4k\npIp+5Qeb8Mf5AeTBhjf/8iIeWeHVHmchO7/6sDCpwwZI9XnKdppwJsZ3H3ELKaVVBVW49ee3Ujqu\nDz50nOsAQkCFtQI39t2QzClZbas4fdhtd6Otvw21nlqc/vJpAMBjP39MkkZbZCvCWGQMFpMFc1HW\nZdbj8OD+zH1JCmuRtQhOm1PSZVeMFVZB5Crh9/rxzt13MDg9CIDVqj6YfYCbYzcl3W1L7CW4+fxN\nNHU14cQfT2A4PIzPrfgc7jy4g9UFq1FkL5KkJO/+9W50nusENmYmzZY6zRIAvZciMo+eVFsSngRB\nLG98PublCLAOpwZr5B4qFATjZ/+bG9ceYULjC3er0PF/aQuNjAvyZLW0C2xv8rBT/s/lGA4Pw2lx\n4vq3rsNb6FVtRpSM1edWo6+nj3nDIlEA8drWn/57YOyzHqza+oQwtljIAol2IVyY1pTVYI1rDfIt\n+Wi52YL5mAGt0+LE5BxrAmSCCSX2EhTYCrDGtQbXRq8hNJMYBXRanHhixRPouNORYM8CANtKt6Hj\nK+z3zOrXVmNqdgpuhxszczMYnx0XtjPBhO2l27HCuQJjkTFJoyFx3an4eoiFtpZvph4yPR5BEARA\nwpMgCAKoqwNaWzPr5bhcURCMtf+tHB88MoxHB53oDFzXF/HMND6oRzWXWNQ53S61mSQVwdg73ovd\nr+/Gha9egLeQPQvyCJrb7lYdlx/zyr0rgsDjEUDxdm/V1aGvtRX/8DcuXK+cEMbWE52TR1jF8xMj\nblwkbo6khAUWFNmL8OQjT6JrsAsj4RGYYRbEbL23HivyV6A71I3Ou53CWEoilSP2MK0pq0GZo0wS\nvXU73AicC+D6vevoGevBu197V7jm6bCoDbgIgli2UHMhYllCdQnLiIWozwsGNb0cl/UzZeQaK9RQ\nvvmXF/GFu1UZFZ2Ga8yS1dKm4kmaZZI9T6Hubgx0dKCvtRXnA5noSJU6Ss2MtPAWenHrz29JBJC8\ndjTZuCd7T6JjoEMiOi9941KCAOK1rVXbWXMh7qEpfl7UniN5gymlhkNOixMWE6sBLbAWCEKx2FYM\nv9ePYluxZPs5zGF0ZhRX710V6k0dlnhN5/DUMF7vfR0dAx3CWE6LE+e+ck6o4xRTXVqNd/3vot5b\nD7/XjzPPnUmokwXYPeoc7MTAlQEc6ooXTBv5GZJvu9jenkRusKz/7hE5C/l4EgSxeIh9GbdfBNb8\nH0lrMVPC7V6c9FodtaULgg7vy2SprI+s8OpLrzUypZgwAViapGYUa6G8WxeAdLvUZhK9zYa0kHs1\nJhs3PBcWvq90VuJawzVFAeRwu9Hyv7rxYLQfNpMNE7PMQ1P8vIifo+2/2o6p2SmE58LY4dmByoJK\nwTrm1T2v4onjT2BomqWxVpdWo8BagM5BluZaYC3Ag9kHggj2Fnpx4M0Dgo+mmP4H/dj4i42oLqvG\nnQd3hOWdg50SP06H2SGkIu+r3IfWvlbJOKMzozh49mBCVLhlf4skEm2zsI64RbYi9E/0o+6tOgT3\nBQ39DOnZNpXoN0EQhFEo1ZYgiMVDXJ/neA7ofJMtXw61mLlSW6qnBtKHBW3Q8zDXmIVDIZwPBLDn\n8GHNNFuxGPhfTpZj7kYvrE4nfvkfy9Ezpe3HqTXmq3texaGuQxlPueSpnPmW/ATfUC7oaspqcOa5\nM0mPK0+RlT8v4ufIYXFI6iXlvqKH9xzGS+0vIYoomn3N2Hp0K/om+1BkK8L5r57H9y99XzLfV/e8\nisd+/pguT1CA2arcenBLaLzk9/px/JnjwvXgnpwAS6t1WpyC8F3nWoc1rrjPqf+UXzjvem897BY7\n+if6he0b1jdgYmZC8WdISUDq+XmjhkMEQaQL1XgSBJHbiOvzGpdZLebq1UBfH1BUBFy9CnhFaarJ\nmuVkGn6N8wH0qhwz0w16NM7vYasxSzWaJBYDT/WW44X/ziJ2/8/feXC1ZBiAMZEQOBdAS0+LII6y\nLTCUxIyRey9vEtTsa5bsIx6r8e1GIapYYCnAg7kHAJTrR4FYp9i7cSHXsr8lYb6v7HwFW45uQWQu\nIul+y9lctBmjkVFYTVZ4XV78/v7vMRIeURTVoXAIL7a/CBNMOOI7Isy31lMLh9mhKSpX/2y1IJSv\nfvMqiu3FitfRyDUXP5eRaARtt9seyg+DCILIDFTjSSxLqC5hGSGuz9NRi5ktsvJMcaE5NgYckplZ\n8vTXVjCRlk34Ne5NcsxU/ECToXF+y73GTP48adVSqtXriVNWv/u7xwGwFN2KzdXCciMpst2hbkF0\nlthLDO2bivejUsptsnsvPwb39txauhWhcAiNbzeq1nIG9wXh9/pR761HsZ3VZybzveTeouLaUfl8\nvYVePOF5QlF0AsDGko248xd38GjRo+gc7MRIeARVBVWKkVy3w40Tz5zA8WeOY9eJXegc6ITdbMdP\n9v4ERXapz6mSj6r7U/b/WGQMh7oOqV5HI9dc/FwWWAsUvVuJ5Qu9lyIWAxKeBEHkBrwWc6lHOjlF\n7M0kamsBeS1fsmY52WIhG/QsxvnlMFq1lGrCVCxA6v/5KNY3NODLp0/jF88kNqExMg+1hj7JSKUR\nkZKAMnIMLph6x3s1j+12uHH8meM48cwJrCtaBwCYjc7i+5e+rzo3j8MjqR1Vmq9SYyKA1Yke8R2R\nbFPrqcVH3/xI81wHJgcwNjuGmfkZfPnfvpxwXCWhqLce18g1F4/Z7GvW/DAolQ8fCIIgxFCqLUEs\ndXKliQ0hJRRi9+bw4cR7YtQCJBP3eCFtR5aYxUm2EOlmbQAAIABJREFU0UovTaXmNZX03XRSnNOp\nyw0ggG50wwknggjCrfJQqB3D6LH1bq9nu1A4hJfaX8KD2Qf46N5H2Fq6FU6rU5L2K76uTV1NmlYy\n79x9B5FoROKFqoXeYxjB6PNAdaAEQSSDajwJ4mEgV5rY5DpLWaDTPRbIJR/MTJGKIFxoEaCnTlBN\nBPngQ0ese1UDGtCi0r1K7RjJmhUZGUc+32w0V0p2X8Tr8ix5+P23fp+SL+diCcCHuSkYQRDaUI0n\nsSyhugQZMXsGxZROIk53NxNvra1MhIrI+WdqOd9jg16uRn0wzwUCeN3nw1t1dQiHFiY90OjzlErN\na6asUPSip05QLQ3WGcu9rkUtDifJvVY7hpGU22TjyOd7qOtQwnbidNKDZw9mpK5Vad2df3/HkOgU\nP1MLfe85RlOnidwm5//uEcsS8vEkiKVOMKie0vmwI45y2pgfnm7xZrTzbDYjqnrvsWwOgSZ37gd5\n9fiMijDqg8mFKgCcDwSwfwGjxdn0RpR7Zy4kSj6TyURQEEEEEMBhHFZNs00WyebHuzZ6TfNYWuit\ntwWAckc5hsKsk7Auv1kkvy+ZumeLde+5oCcIgkgVSrUlCCKz5FJKqzhF1e9n4lOvQPfBmLdlLqTD\nyubgG2xZ9ClpYtDKxYgPJgC8VVeHvtZWeGpr8eXTpxc0NTeXa+LSEcXi8+I+k+mKoNd9PuEDgvUN\nDZIPCMTHqyqo0tXARw0j9bZuuxtt/Zm3GMnmBxIEQRCLhZ5UW4p4EgSRWXhKK8BE6GKqHXGK6pEj\nxkSw0c6suZAOK5uDs1FlSgEAJwGEAewAcBRAExbOW1RMEIYaETncbkNRy33BoCGhyslELelipUTq\nQRzZ0xvN48i7oaoJJyMCK1kkW3w8w42NzgVwsvckwnNh7PDswNEDR5OeqziaCCArkcV0rj1BEMRS\nhiKexJKjvb0dPp9vsadBqFFXx+ooa2sXxZNTQrLOsiIUnymjnVl1HiuryOagOiUf4tFcgEV0B2Es\nwrvMSRaB04I/T+l0kVUjU9GydBrF6D0vIxHfZJHsdK6jeA565pEJ+D3qGe+Bt8CLInsRyveVo9fR\nCyeciLwVQVtfGzwODza6N6LIVqR5L+nvHpFp6JkiMg1FPAmCWHhyqeaUe4OmtC+Mia90jpUpZHNQ\nnZLYmrAaTFzHoqPkvckwWkuqRDZq4lKNlsktTdKpE9R7XkoRX7VIcrJIdjrXUezDWV1avSCRZ/E9\n6nvQBwAoP1+Oof2sXrR+Xz0azjeg/0E/Ou92AqDIJ0EQDwcU8SQIgnjYCAF4CUAUQDOYyF6i3pvZ\nslcxWkuaCfScS6qRSr2WJplEKVKZTiQ51Tm81P4SoogmTQtOF3EkOhKNoO12G2xmGyLzERTbilH9\nzWp0FHagFrU4jdNww032JARBLCvIx5MgiMyRS02DlhpGO+QSulloIZNN9JxLqmmndahDK1olwidb\nJEsHXsxmT3pINZVZqeHSn8b+hK7hLgCAf70ftv02SWffbKRiEwRBLBbk40ksS8h7apFI4oO5JAkE\nWBfYujq0v/FGWvtDyx+SW4a0gonQ5YxBX850yURKbDLEvo56vRyN/o7ix/jbfdcwmZ/8XJJ5VCbz\nLA0iiAY0ZF10Asm9PfcFg1jf0JCTohPQ50uqhLzhUsv+FpTmlQrLjuw5gha0SK69Ef9W+rtHZBp6\npojFgIQnQRD6yIWurZlELKR/+MP09tcS4kY75C4gRvSzLhZYZGdbyKQqRFI5xgePDOP4X1WlfC7c\ns7SvtRXnZc+kG+4E4ZMtknXz5bWciyk6AwjABx/qUIeQ7NORVDsRB/cF0bC+QZIyq7SMIAjiYYaE\nJ7HkoC5si0QwyMwgF7tTbaYQCWnfiRNp7a8pxINgnWJ1+FQuNBkPZC+wyM62kElFiBj9HSU+xq+b\nPkr5XLId/dVLrguubnSjAx1oRSsCsk9HUp17U1cTBicH0fh2oxAZNxLR1IL+7hGZhp4pYjGgGk+C\nIB5O0rU/yaB9SiYa5KRagptx9xuNJkXZagaUjHSOuRB1eJk6hpGGSJmyZVmKZKPe1Yh1DEEQxHKE\najyJZQnVJRC6SZZH6nazL78f7Tt3Gs8z5V4lGRBOqimSBvJgU41cZjyQzW1oVMZKlg6aLdI5ZipR\nK6O/ozIVGTMS/V2IFOJcJRv1rqmm6OqF/u4RmYaeKWIxIOFJEMTyYNM5wH0ZKH8f6L3PlmmpMb7+\nvfcWtWGSaoqkATWZagluBvWzLvSmg6bS1CfdYz5MZFso5TJ6612NPIO5nl5MEASRC1CqLUEQywP3\nZeB+Nfu+6h3g1ue180i11i+QhYxqiqSBPNgMZv5mFb3poJlMXVwMT85ch6w8tKH0WYIgCP2QjydB\nEA8P5e8Dw08AzmvA9SrAW6ytxrTW+3ws4giwfFS3e2G9TJeKmswCdW/VobWvFbWeWooiEYsCPYME\nQRD6oRpPYllCdQmEIhcfY5HOr/7fwMF6Fi0EkueRxvJM2y9fVl7P81c9HqC/Hzh2bGG9TBc6DzaH\nWMqpi/Q7anmQS88gPVNEpqFnilgMUhaeJpOpwWQyXTOZTHMmk2l7JidFEMRDRKaMJL3FLL32zg1t\ncaj3mLzzzsaNQGcnMDrKli8XL9McJp2GO+cCAbzu8+GtujqEM2JOSjyMZNIOhSAIgkgj1dZkMm0C\nMA/gRwD+92g0+qHKdpRqSxBEHHndpN8fT2etqABu3EgvwqenLlKeQtuiUbvFx6ypAdasAZqbtee4\nQPWhRBxum3Lv6lXMxD4kWN/QgP1a93eRWAxrmUUnAKAbzO81iJzztSUIgiBSQ0+qrTXVwaPR6O/5\nQQiCWMIstEDinVr5sXk6KwAMDLBl6QiFYFC7LtJoC1i1MZNdO/l55qj4WYqoCTZum8LJ9S624vme\nDwQUBfKy89vsBsBvUQDMeocgCIJ4KKAaT2LJQXUJKqSaspqqAWSy4x88qD4XuegLBlmkU7wsHfTU\nRQaDwLp1gMMBNDai/Y03Uhsz2bVL1d+E0ETNl5PbppRWV8Pr9+PLp08vShRR7+8oPTYvy85vk3/O\nVAuAfix0Q3/3iExDzxSxGCSNeJpMptMAKhRW/Z/RaPSk3oO8+OKLWLt2LQDA7XajuroaPp8PQPzB\np9f0Wu/ry5cv59R8cuZ1dzfaY9ETXyzCpmv/qSn4AKC2Fu0vvAC0t6d2/JMn0T4wwF6XlQEjI2gH\nAL8fvth27e3twHe+A5/LBRw+LDT18X3pS0BrK9rn54ELF+B77rnsX681a4TrhclJ4LnnjI83NcVe\nx8Rle3s78MMfwjcxAdhsaH/kEWB6Gr7GRiAYjJ9vLjwvS/g1F2wDjz2GtS+8AI71O9/B+OQkDp44\nAYfbveDz+4fnnsNEXx8sDgeimzbhnStXYHE48B9PnVKcj575Tl2fAkqZ3+YL8y+gPdWfz1x5/R3A\n5/IBh4H2yzkwH3pNrx/S15fp7xG9TvP15cuXEYoFFz799FPoIW07FZPJdBZU40kQi48Bz0cJmbLs\nKC2NN99ZsQIYHIzPpakpeTqvz2es5jITpHq9xChdO/G5eDzA8DD7fqHO6yEgV305X/f5hNRZR3k5\nwkNDANKrMyW/TYIgCGIpsJB2KlToSRCLDe/AalREpWrZEQgAK1cywXngALBtG1teXQ289550Llrp\nvIuRlprq9RLDr11TU/xa/O53bF1tLbsW/HtKt9WNVldah9uN/S0tOSU6AWnqbNnjjwvfp1NnSp1V\nCYIgiOVCOl1tvwbgHwF4ANwHcCkajT6rsB1FPImM0i5KNSMWGHEznbExZjHC8fsBm005cqoVXcxU\n1DVF0nqmeOOg+/fjy6qqgI8+iq9fpPNaqogjh7nclVYOj8TOv/AC9u7enZNRWWJpQn/3iExDzxSR\nabLd1fY4gOOp7k8QxBJg0ybg5k0gGgWeegqYnY2LzQpR+XdNDXDkiLq40uo0yyOHegkEgJMngXAY\n2LEDOHpUeVx511mtlF+dh5YM0d0tFZ01NcCZM/Gxl4hoyiUSmu4EkLYFx0JYl/BIbHt7u/D9YqN1\n3g+lpQtBEASxKKRd46l5AIp4EsTSxe2WiiqbDYhEWArppk3Ab34DWK0stdbrTdxfrNLKy4He3tRF\nX7Joq1r9pLx2dHBQu5ZUw14moRx1IhbNdbuBz38eeO21hYtuZkCQsXGk53yuqWlRxUhCDacPcQuO\nBqRkwZHrUdRkAvBcIIDekycxFw7Ds2MHDhw9qvueaJ13rl8XgiAIYmmQ1YgnQRDLlE2bmJ+mzQaY\nRWXgBQXAgwfs+7VrgTt3gHv32Otdu4AbN9TtRuRs3qy8vRrydFZ5tFVWQye8ib92DfsAOHiNZWMj\n20Ct5lJ+HAX/zcRyVI1objbJlCeizHM0NDio6S+pRTqRNIfbDbvbjVN+P9vfFoQD7rQsOPRYlywm\nSp6e/Breu3oVM7HGXf1tbYbuidZ5q61fdv6hBEEQxKKTqeZCBLFg8JbORJYYGGDCa3iY+VxWVgKr\nV7PIJhBPq+UKjO+TrGmQ0jGMeIaK01lLSoB33wXq61ldqTitNYbg8zg8jPMOB3DsGNtGpaGQ8EzJ\nj6PwRj1hiFSbM2WCTHkiytR0JkSamtdmSvu7AizSeRopR3X3BYNY39CwIN6een5HyRsoKV1zfg24\n6ASYR6mRe6J13mrrl51/6BKH/u4RmYaeKWIxoIgnQTwsJEshFa/jAtPpZALP65Xml65ZExdxmzcz\nEcnDf/JjBIPAI48AMzNsX7MZmJ833uWVC6OSEvb1+OMsInvxoqLgE97EA9gTDgOHDsXFoVKk6Ic/\nBP7rfwWuXYsf59IlxbGNlqNK0EjjNUwQLNJ5GMqCTG8qrqwGd18wmHZjnHTFq2T/I4dTTyOOsRg1\nl8mivvIIp9I159egrKYGzpUrYbbZ4GtuNhw9TnbeauudVnbsWk8tDu/JvQgxQRAEsQSJRqNZ/WKH\nIIglzssvR6N790ajzz4bjY6OLvz+mWDv3miUtQmKRhsapOsqKuLrDhyIRquqotFPP42vf/ZZtq62\nVjr/0VE21ugoO8fi4sRjfPppNFpZGY3W1bHv+fZKbNzIxvB4pMfnx3nhhWjUYokfo6pKcZjp0dHo\n6YqK6LTSnJWOI742VVXZu0fJ7kFWjheN/zZegMOJmR4djZ5uaIhOp3gt090/F/j13r3RHwHRHwHR\n07L7/eazz0Z/BER/WVureo4LfQ06Xn45+uu9e6NvPvtsdODup9GG0w3R0emle/0JgiCIhSOm+ZLq\nQmouRBB6SOgoYzByku7+mSCZpUlpKcDT+errgRMnpPvqsTsRn2NJCeuGqxWZkUcA166Np7pWVQG3\nbqkfw2IBenpYRFYpksjnnP9ToNchjfqJmyZVVQFbt8avzZYt6k2Q9EQsk22jZSuTaeoAtIKl4hpN\nU00zOqsW7XuYuqi+VVeHvtZWeGprE1JZExoo5QDUaIggCIJIFT3NhajGk1hyLEpdQmJHmYXd3wiB\nABNodXVMfHFU6hsBMEsSgHWrLS5O3F9cx6g2fk9P/PstW/TN6+RJJiRbW4GXXmLpswC7XhcuJO4j\nPkZBQfx73hyntTVeO8rn3OtgDXhawVJPgYTjtH/nO/Fr09ubOFay48hJtk2ye5ANgki9NlLPuSZB\nrcYz3drPdJDXVWYL/jtKrX7yXCCAU34/ZiYmMjrPdM9PnN5syc9fkGtF6IPq8YhMQ88UsRhQjSdB\n6EHLhzLb+2uhZjUi7sra1MTsRBobEyNYR4/GooP5wK9/HY8GirvP8mNcvRqPjm7YADzxBBvP6wX6\n+tjyzk7gsceY0ObHOnmS1YMCwIsvsqhqOByfwzvvAG+/DXz5y8Du3axT7vAw8w7l5yI+xtgY2+7W\nreTCXqkBz8WLwO7dOLd7N0IHD+L61BSePHWKiYOkY+n4ACHZNmkViKaAG6l3uk3zwxK1Gs/F7C6r\n1Dk2E8ijuBy1+kmteYjX/3zDBpQ/8QTyy8sx3tsriRTLj5vu+YnrTE/5/Vm5VgRBEMTDC6XaEsRy\nQJyCWlERb/gjjqzJ033d7sRUSvE2HL6t2GZETkMD8NvfxkWh1RoXjGVlTNDydQBw4ABLq5WP6fEw\nISv36eSpu1u3xsfJywN+/3smRg8eZJG5xx9nIlosqkNgkc5LTwBDn8SbEnm9yqmFydKKldbJU1L5\nssWwV8kketKrk6CWSprNFFOtNN5kqa/pYDRFVWsefL3V5cJsLCrq8HgQHh6WHEN+3JmJiYydX7au\nFUEQBLE8oVRbglguqKW3csTRqXffVU7nFG+Tn89EnzyVkm/DO9vyaNfJk3GBaLFIj81tR7ze+DIu\nOgFgZEQqOgHWPVZsXQKwjrfDw2w+4pRaiwVob2fnIj7GF78Yf93bCwwNAW1tiWmhPOo39EncJmb3\nbnaaPPrmcmHP6Ci7tsnsUZTWyVNSNexVFirdMxm65pCmTQyP9skFi9ryTKCVxptfXg6zw4GRK1cQ\nXLcObxw4IJx/OvdFLYrLx3xt9Wqc2L1bGFuvxckju3YJ43qqqxOOwY/r8Hgw0d+P+UgEXr8/I0JR\nj/1MLjzLBEEQxNKBhCex5Hgo6xK06u3EtYNer7JgEG/T2yv1q8zPB1auZFHLFSuADz4A1q1jPp6N\njUw8cubm4t8XF8dtR3p79Z1Lfj5Lq+Uit6aGRUXn59lru52dAxe/c3PA/v1MdOfns2W1tcBrr8XH\nFAvm06dZRFX+Rnh6Ov691wtwAVBeDtfEBBxKolUPBlNSF7PGMZfmkA200njHe3sxHw4jGokgEgqh\nv61NOP+k1yQAwAfWrElBX8lFGv8dxcd80NeHwc5OYWwuvruamhSFG1+//+hRYVzx91wI8uMWb9yI\nwc5O9Le1wWKzZUTU6/mAYLk+R7nIQ/l3j8gq9EwRiwEJT4JYCmiJGz3RKfE2fDy7HZicBP7lX1h6\nbijE6kD/6q+YX2dnJxO78nR5sxlwudjy2lomOsXRSCXsdpYGvHIlS4k9c4bNpayMiU++jcMBdHXF\no6ZmM4tmtrYykVtRARw7Jj3XYJCl6c7OsnNQEpGxiBEAdl5cANTWwp7s2mphsGHQYtY4pjqHpRLZ\n0orS8fPm2AoLsfOVVyTrFK9JNxIbVIlQE2l8TFtxseLYWsJNPK7SMRxuN+xuN0LXrwNgfp/yuWfz\n3uXCs0wQBEEsHajGkyAyRZr2E0nHtNlYF9fmZmlt4cmTrEHPjh3x2kaleciXfe97wC9+wYSaOILJ\nsdlYNHN4mAm6SESaFnvlCvCFL0iXlZTEmw6p0dDAmgpFItLlK1YATz7Jjieu7RRjscTnqmRJw61K\nACYyz55VtjKRr1erZczG/URu2GgYncNSsNlIVt/J11lsNpjtdtz97W8xE3tW8yoq8Gc3bgCA+jVJ\n0ZaGX+edr7yCrkOHEsbORB2l+N546+vxjMgK6VwggJ6WFkRiP6da986o1U0uPMsEQRBEbqCnxpOE\nJ0Fkimx4dSYbU94IaN06FqUUd53l+8jHOX8+3mE2GZWVbFwuBk0m4PJlYNs21txH3JVWiVWrWAQ1\nEmFRzTNngPJyaQ0op6EBmJhg4pA3JyoqYo2GLBb2/eiougdmKMQsWaJRJtB37WLnyJsJFRdL12u9\nUc4F79UcIZcbzXCxdO/qVUFMygWWWhMejqaY5g2qDsO4LU0SMiHckt0b8XnDYkHl00/jwNGjqsda\nCh8wEARBELkJNRciliU5W5eQDa9OPdYeABN1lZVMKHHR6fEA/f0s0sd9K/k4WoKR87nPMcHHx/v8\n54H//J+ZyBOnrirhcrHj8OjmypVM7D31FHv9mc+wSKd4XsEgE7o7drCU2vPnmVCdm2PnVVWlntLq\ndgPHj7OIqtvNRKe4mZB8PSA0bWrfuTOxJnQhvVdzHD2NZhYLnq7KRadS2qfcnzIyNgaT3a66fQK8\nQZXo1M8FAvjpypVoLi3Fm6ImRYD+31GZaLSU7N5IUovn5iQ1rUrkYursUknzzjY5+3ePWLLQM0Us\nBiQ8CSJTGKz1S3vMYBCorwf8fhZJ5AKxpoYt37gxXqPpcknH2bFD/ZguV3wcHnHMz2ciko+3eTNQ\nWJh87hMT0qZEnBMn2FwuXAA+/pgJzT/9CVi/nonRkRFW4zkwwIRvzEICRUVsH73Xlottp5PtpwRv\n2vTee4k1odm4n6mi1dU4y8d0AFnrRJsuXCyVVlerdnQVi7Px3l7c7exEdGYGBVVVKYvpUHc3pgYG\nMDM6itttbfjl9u2CQJqJWaAsBGLxKhdp+4JBOMrLhW3tJSVJBWUufsBADYwIgiCWD5RqSxALQZbq\nBYVxe3pYWuuVK6xxT2kpizS2tbGI3ZYtrAGQ08kiiP/2b6xhj/xnc/VqlhobDrOmPkC826wSNhtb\nz2svS0uBe/fY99XVzHtzbIy9NplYumttLYvO8vnIPTs54ppOjpGU195eFum8cIE1PlK6B7zuUy19\nN1dYjLTfJZJqLE9XPRcIoPfkScyFw/Ds2JGQWpqptGE+DsCa+licTgzGnuNkaao8NXispweFXi9s\nRUXYFwyiq6nJUH2lEkqpsnye9pISfOPSJRRqNQHLMXI5zZsgCIKIQzWeBJErZPpNPBdR4npOJXh9\n43e/Gz++xxOPIsrhtZVGsNuBmRkm2jZuZOI3P599TUzEhaeY8nImfAGWUiuvNzWZWPMicQ1raSmL\ntBYVGRPvSteK3wO1xkK5xmII5KUiymVI6hqRKAL11lUqNdoRL9vz6qt453vfA0wm+I4cwduNjboE\nknx+fI6Tg4OK9ZVGGv6IRVrJli0Y7+2FxWaDtaAAvubmJSnatO6X0YZIBEEQRHYg4UksS9rb2+Hz\n+RZ7GsaimJl+Ey9vLKQUHeRUVbH/+/qYaKupie9rVGh+5jMsPVa8j9vN0m7v31cWmXK2bWPCt7+f\nRUDPnQP+5m+AN99kUVqLBfjwQ9Yo6cUX2TKbTdrx1oh4l18rhXvQ/txz8E1MZD4inSkWQyAvsihP\nVVCII5Gl1dX4ytmzhsRIsmZFyZrvcIFkyc/HO1euoKayUlGwRiMR3G5rg62oCJGxMUGoqglXpWOq\nXRuxSDvl9z8UjYIeloZIOfN3j1g20DNFZBo9wtO6UJMhiGUHrw8E2Bv0ZG94gkFjb+LVRC1ffu0a\ne22N/Qi7XEwoOJ1MqPGGPvn5LNV00yb2emyMRSi9XuDWLePRzU8+SdwnFFKuOzSZElN5AVbTWVjI\nhOf9+8AzzwA3brDvt2wBtm5lDYzKy+Pn1NwMNDay/fU0+xFfP17rWV0NrF0LHDmSeA/6+liklu+b\n7TevRlOvuQfrQqJxzGxHmnhtH8BsTvQKin3BINpj3YvVonzJ5i4+LgDYioo0vT7F6b2IRnEvFELf\nlSv45fbtcK1ZIxGx3vp6rG9okFisdDU1ITI2hvyKChw4dkwiVkdjP+viY6pdG17vmWyuelhKUcRc\nbIhEEARBqBCNRrP6xQ5BEMuQZ5+NRoFotLY2Gh0dTVz/8svR6N69bDul9cnYu5eNDUSjDQ3xsUpK\n4svlX3Z7/PuKimi0sjIa/fRTNp7JFF9nNkejFov6OJn4qqqKRgsLE5d7PNHoU09Fow6HdHlDQ+J5\nl5dL14+Oxv/Xus7icerrlfczci8zjfz+LkF+vXdv9EdA9EdA9HQWzuHNZ5+N/giI/rK2Njpt8J50\nvPxy9F8qKqJHSkqiJ/fvT9g/2dz5cX9kNidsMz06Gj3d0JB0PP71E5cr+k/FxZJlaueiNB/xsp9V\nVUn203Nt1Oaqh2zf20ySznkSBEEQmSOm+ZLqQop4EkSqaEUx5RFRt1t/lKunh/1vsbBmP/39yg14\nOG43iwTyZkI8lXTTJlY/KY48JmsWlAm4X+eGDcD4OFu2cyezU/ntbxPPw2pl5+nzxSO5tbVs/vx8\n+DUWR72Uajd5tFJshaLHs9NoRDpdloFVS7YjTfuCwZRrMXnHWQCChYg4Ypps7vuCQfx8wwaEY3XQ\nJosF06OjCIdCQkRRfswx/vPKMZsxK+psW1ZTA9eaNaoRWKX5iJd9+fRpSfOhPa++KkRL1a6NOPpp\nlGSR3VQjofJ9M9FMCUjvPAmCIIgFRkuZpvsFingSGebs2bOLOwG9kUweReNRPnG0ct06NkZVFVsn\nH+upp5SjmTU1iVFEkyka3bEjGt2/n0X3xOPYbOlFLs1m9XVWq/Jyj4fN4dNPpVHYhgb1iK04ullV\nxfZXi3ByxFFDebRydJRdY6Vrq0DCM5VOtFoPWue2BMiFSFPHyy9Looo8OidELYHo0erqhDlqzV3Y\n32JRjPyJI4L/XFER/dXOncLr/89uj/5vJpPw+qeVlZrXSGk+8mXZikJ2vPxy9Nd790bffPZZ4Vh6\nIrtKc1AaS23fpRRVzQUW/e8eseygZ4rINNAR8SQfT4IwCo9ktrYmej+K4T6Q3E+TR+W4nUhHB6st\n5N6Y4rG4JydnZoY1CTpzJl7XyYlGgQ8+YNHBq1eZr+fq1cxKhNd6pkqy6KhafejwMIt2fvvbrDMt\nEI/sKfmHFhay2k6+3Ucfsagj//L7lf0redSwupptI24Y1NTEbF2Urq0WPGqq5x6nCo/eLnLtnNz3\n0Qhi/8jFItTdjcj9+wCkHpX7gkF4/X546+sTmgudCwRwyu9P6rXJ/SxXPf00gMTI37gowjk9MICJ\n3l5hDmU1NZIMg+INGzTPw+F2w+5245TfL9wL+fXNVoRZySdT7d5qzSGZ56Z8X6rNJAiCeAjRUqbp\nfoEinsRyQ289II+aiaOGxcUsMrl/P3vNay1raqLRF16IR9k+/ZRFL/Py4tvt3cu2KS6W7iv+2rEj\nvQhnJr7E8yovj0b9/vh1euGFaLSsLDFa6vcrRwArKuLb1NdL1yWLGoqjoSUlxiKL6ey7hFCLFi4l\neGTySElJdIzXM2sgjrQ1ezyK0TmOOPInjuZCKrKxAAAgAElEQVSJI5z82Hw7cbRVHBXVinpqRQCz\nFWE2UkurN1KsNJZ831yImBMEQRCZAzoinmSnQhBG0WszIbfxEOP3s26z3E+zvp6NK/f6fOQRVuPJ\nsdniUUwlKxTuqcntVZLZrKSLy8W65g4Nsbns3s3sUTo6pNFJsfWJ0jXZto1FLXt7E+tfS0vjkWK/\nHzh+XN/cuH1NSQlw6RLr4quXdPZdQohtKOwlJXj+5s2Uo5eZ6IJqdIxzgQBGr1/HWE8P/O++i0KN\n+yTuEhseHobV5RLqMPMrKvCtGzeSHlN8vfIrKjA1MAB7SQmqnnkGk3fuwOp0Ir+8HPd7ejD0/vuI\nzsxI9tey+hB7cCbzAc0Ecj9SrXrRhRqLIAiCWLrosVOhVFtiydHe3r64E9CbJslTQS0W6fKaGmbp\n8cQT7DVvgCNuOJOfz0TavXvSfbnoNJmUU13n59k6LjazJTpNJpY2+/77TFgODbH02lAIMIt+rRQU\nMOHIhai8CQvA7FV6e5VTW/Pz2f+FhcDf/33ivoEAu07yVFye5nzzpi7hKDxTgQCznKmoWNaiE4in\nPtpLSvCNS5fSEgrJUiy14Om+N48dSxgjWSpwqLsbdzs7MTUwgK5Dh3TPMTw8jIKqKjyya5ewbmpg\nQHPe/HpZXS64N26Et74ez9+8ick7d4R5/+Ff/xWDnZ34/cwMnJWVMDscAKSWLGrw9F7eSCjVFGgl\n5NdRfL9+vmEDpvmHOykgHqvr0KFFT79eriz63z1i2UHPFLEYkPAkiGzBxc+HH7JIJGfNGiZa+Xpe\nmyh+zYWYWh2lWhbB7Kz6OjW4f6URolE2v8ceA155Jd6xt6ODiWWnkwnuBw9Y7WkgEBd1YqxW4B/+\nQb3LKxfO4+PA976XOA+1etvYhwPnjL6B7+5mdaEDA4AOMbOU4ULn+Zs3NaOFWqRTr8eFC/e5FI/R\ne/KkIGraX3oprWOKt//mRx9h/9GjyK+oUBxDSfDuCwbh8HgwOzGBOx0dGHjnHbzd2Agz94kFEI19\nMFT82GNouHYN5bW1AIDI2JimOBbXVeoR8mqiXGm5fDx+LficeeffVKBaTYIgCEIvJDyJJYfP51vs\nKeiDR0a3bQP27WPLeHRTvJ5HB8Sv+RvDmhqWbqqF1crScI1gsQD/7t8BzzxjbD8xMzMsxTYQYFYp\nAItObt0aF40lJSxy2dKSKDxnZ5nAk4tw8fgck0L2hoYtid5InPBMLQObE72k2hxITZTxaJ3R8bhw\nKa2uhtfvl4wxFw7HN5R9oKJ1TPk85ds73G5868YNxTHUGu5Y8/KEbcJDQ+hrbYXN5YJJ9LPnrKzE\nf+rqgsPtxnis6ZCtqAiwWJJ+CMLn+7PVqzES+zCotLpaVcypPdtKy+XicF8wKIhureMoXUsx6dx7\nQj9L5u8esWSgZ4pYDEh4EsRCoCasxIjTRouLgfJyoKwM2L6drd+4Mb5tYaF03y99KS6a9GC1srTX\nO3dYdM8oXAQ6nUzw/tM/xUXi+DiL2ALxOsneXiDWfVQ4PpDo0Sm/NrwLLk9PlqNxXQ1HY/Tcp4cc\nI11QAe3OuVy4fOXsWTxz/LhkDE/s/pdWV8NeXCwZR0s4y+fZ1dSEycFBvN3YKMzDSPfWc4EAwvIP\nTiwWRCYmUPH5zwNgfp0N164J4/FIcmRsDLfb2pJ+CMLnO9nXh0hsfoVr10rm9otNm3DE7cY/l5eD\nfwwjf7aV5q4mutU6/2pdSzG50N2YIAiCWBpQcyFiydHe3r60P6kLBFhKp7yRzsqVcRFYVgaMjLDv\n6+uZTUplJYscfvIJS2HljYkA1njnvfeA/n59c9i5k0VSOzqAyUlj83e7gS9+EXjjDeDJJ5mwFL8h\nt1qZcB4bAz7/eeDECaCxkaXDihsiVVXFrVPU0NvISYVwKITzgYBms5OMPFNq93UByUSTHy2MNsER\nN+XRarAjR3z/Tvn9muOIz38+lkLK56lnf6Xj8vMTn4ccl9eLyIMHsNjtcK1bh99HIti5aRN6T57E\nzOgoSqurke/x4LZoPvLrxq+rragIkbExxe2OuN2CfYyzshIVTz2FPYcPo6upKasNfhay8RGhzJL/\nu0fkHPRMEZlGT3Mha7KVBEGkiZIY4XWJAItmrlnD1k9Px/fjzT6sVuBv/xb47nfj+4g72wIsZfbU\nKUCclqhFV1d8fD3w7rglJezr+PF4nac8xXd2Ni6aOzqAF19k5x4IsPNqa2ORTj1RRR4JTREejVkQ\nxPeVe4EuMDwyBQDnA4G0z11JyO4LBnWJeY44AmfJz8frPp9uYSy+f3qi1+Lz9/r9WN/QIMxTvr/8\n3MTibV8wmHDtrCoZBVaXCzP372MmFqWc7O/HEIBP3ntP2KZw7Vr4jhwRrpv8WOLruvOVVwTh2NXU\nhN6TJzEXDqN8xw6YYo3KLE4n6t95R4iois/7V088IdSWZgqj95wgCIIglKCIJ0Gkgt7oltg+pKGB\nbXfsGBNgSnYoAEujjUYBbnBvtwNFRdIIZyawWlkHWpntAwAgL48dl0cyy8pYLWdzM7B2rTRt9sAB\ndo5K4wCsM+zatSy1d9Uqlnb77rvGO8bmQEQxKdyGRa+ozgKZjkylE63kGI1aJhvnl9u3w1lZCXtR\nkaJwVTp/LjDvf/IJ5sNhWBwOFK5bh9Hr14WGRo7yckRnZ4XXJquV+Y2Zzfj6xYso27YN4VAIv9i8\nGdOxrAT3Zz+LqTt3EOYfsqhhsaDy6adRUFmJ8d5eWJ1ODH/wAaZjNkkurxeutWsFOxa+zb5gUHK9\nAGB1XR3uXb2Kr164IGkIxc9bbBGT6v0iCIIgiFTQE/Ek4UkQRuHRLC6+xD6VcrgY8XhY1HB4WJ/F\nicnExCf/P1uYzcyCRUxBAUuhjUSknpvl5Uz4bdgQF8EWC/PztFji1i9btjB7laGh+DqxUAWSXzM1\n5CI+195Up5kWrIaR9NlwKIRfxcSZTUWcGUGPkFWbn9Jy8XglW7ZIRJaeeWoJYaUU2Z84nZibmlId\nUyzWABYRHf7wQ+HnwpKXhw1/8RcIdXfDbLPBYrfDbLPB19yMtxsb0dfaitLqajy4dStBhJosFkRj\nP++O8nKEh4bYcptN6IDrKCsT9hNv4ygvR2RsDPOxTIbSbdvwlY4OxevEz3t6dFSSXkzRSYIgCGKh\nIB9PYlmyKN5TgQCrwSwtlYpOi0XqUynfh3tCPvoocPductHpcsW/56JzxYr4cZKxebOx8+FjykWn\n2Ry3QCkokK4bGmLndPEiqze129n53L/PRGdFBas17exkArW8nEVt+bUqLmb/p9oxNosdZzPyTOn1\ndzWIWmMXpaY9DrcbBWvW4G5np2YnX62mP4C+jqVGuquKxxvv7ZWs1zMftXRbvu/bjY0J6aBzski8\nragIAJjHpsWC2ViKO++qW7Jli+TnwrNjB+5dv46Bjg70t7XBVlCAZ06cENJjC9etg62gQNJ1+Q9O\nJ1bX1WHl008L8y17/HHh+0dizYhKq6vhqalJ2MbqciE8NCSITgAoXLdOiOAq3ff9LS0oiHmH3v/D\nH3C6oUFYr+fayklln6XCUjw38lwkMg09U8RiQMKTIPTQ3c0a/4yOSkXn3Fzcp1JpH+4JKar3SsBu\nZ+mqzz0nXR6NxlNxuWC125VF6I0bxs7HYmHpu0C8ztPlkgrRU6ek+xQVMcHn9QK3bycK0127WO2n\n282+HA62vLCQRX6vXEmvY+xD2nFWTWypCT69nXz1WM3o6Viqdryxnh4ATOjtfOWVhPHk++mZj5oQ\n1uq6CgDmvDysrqvDN69exfqGBiY85+aA2VlY8vKErrrcAoVzt7MTY598IpkrFy7Htm7F1MgI7nZ2\nIjw8DJPdjrwVK+D7yU9QsGoVZqemkFdRgQPHjuHA0aMoXLcOD27dwr0rV5C3YgXcmzYhIttmfUMD\nVuzaJZmDvaQEvuZmnAsE8HFzs6q36XhvL+bDYURCIfS3taFl82aEQyHdtkJiUtlnqbCcz40gCCKX\nIeFJLDkWpQubuLHI1q2s02wsmpEQgeO2KNeuxZclS5edmWEi7s4d6fKaGvYlJhLRl6qrhLgJ0Nxc\nvIGRy8UaBonSDYVtOEVFTDz6/ez/UChudQIwr1K53QmvQRsfZ+fn9TLBuHkzixwfOBBPT+U2Msmi\nD1mKKAK57WemJrbUBJ9eX0XDVjMa8yvZsgUtmzejubQUbxw4gIJVqwAwK5GuQ4c0z0vPfMTCVRy1\nssSebaV9v/7BByioqsKf/f73ePbNN1Ho9WJ/SwssdjsAlg5b+vjjgs2KUhOhsscfl8yVC5cHfX2Y\nFXV0js7MYHpwEJaf/xyh7m4MdnZiemAAXYcOCdHoqbt3MRMKYXpwELfffluyDbd8MQFwxLIdzHY7\nih97DG83NmL0+nUhRZcdUPp7RT73qYEBnA8EUrrXmXo+cpGleG65/DuKWJrQM0UsBlTjSRB6CIWA\nl15ib/Sam5n4UavpE9cickwmZi3yySdArKmIhKoqZoUijjiaTCwyqdSAKBWS1Ys6HKwrrrzhkdnM\nROLFiyyiye1e/H4mNF98kY175EiiIFRqtiO/NuXl7HhcBOdi7WaOotcqJp39jdSXyu1G8isqMDUw\noLvekM/Hkp+vWvspns/M2BgGOzsBAN76eljs9qT7yml7/nl8+qtfwZKfL1iU8C645wMB/OnUKUFU\neuvrkb9iBULd3Rjv6cHM+LiwjxJevx/DFy/iQV8fYLFg5e7d+NKJE0JNKMDSaedmZhCdmYGtuBjf\nvHIFZw8elHTlvd3WJqk/zVuxQmhK5P7sZ1F//rzkHMOhENpfegl333kH04ODcHg8KN64Edb8fNhc\nLviOHNH9rKT7fOUyy/ncCIIgFgtqLkQsS3Lee4oLLpcrMYro97N1cusTLvz0UlwMrF4N/O536c/X\nbGbNhPr6WK3m+HjiNuvWAX/8Y/y11cpE5NGj6hFIJWHOrw3AoqAPHsS3V+sGuwDdbHP+mVokjHS1\n5Y2DAFa7+MyJEyn5SSY7pnhdXkUFpmXCVu98zwUC6GlpkYhHuUB+48AB9Le1wVJQAEdxMaYGBxHV\n8SFQ6bZtKPrBDzD5d38nCGM+nz2HD6P9xRcxcOFCQiOi9Q0NmJmYkDRzCq5dK5nj6ro6mO12IBqF\nr7k5QZT3njyJ8L17sOTnwxzr3jscs06iLrdLG/odRWQaeqaITEM+ngRhlEyIHLlnJaekhKWsyhv6\nFBayqKER4enzAR98YHxuQLyTLY+Azs+zWtSyMmXRWVLCmgmJhefsLDu3DRuAJ55QvlZKHpzBYDxy\nzJsYVVczuxWlqCmQE/6YDytGUhL3BYOs5lAkivQKHXEk05wkbVY8nwPHjqHr0CFY8vNxyu9nkcjY\nBz1WlwufvvEGjhQXw2y34+sXL+LSD34giZZyQWcrLkbl008L0UA+F4vNBntpKWbu3cOk+AOSGLai\nIkTGxmCy2WArKGAdb/PyMDkwgIvPP49NsVReACirqREE+DMnTkhEOgDAYkF4dBRf+PGPcfLpp2F2\nOPB2YyPMIp9dW3Exwvfvw15UhPzycpzy+yWR3d6TJzEVy0iYjzVUMpnNqteSIAiCIBYaingShBgt\nyw49wpRvY7MBV6+y1NqSEuDSJVbfqGTtoGRrokZNDXDmDGtGJIqoaKJlzbJiBZurON3W7QYuXwa+\n/e14pJIjjlimkiKr134kB/wxH1YynY6rtq0kkrliBR558smEiB4AnD14EH9qbUXZ44/jwNGjCVFO\nNQqqqjA9MiLYqpgdDsyHwzBZrfj6Bx+gbNs2YdufrlwpCDie2spFJsAEoMlqRelnPwtHSQmmh4Zw\nN/ZzaLJaJVFRS34+rE4nympqhPny69qyeTOmBgYklivrGxowOTgonI/JaoXJbMbKvXsRmZwUIqgO\njwfhmKURj2Q2l5YKPqQAizq7N23C7bY2eKqrsV90fIIgCILINGSnQhBG0bLs4NG31lblTrYAcPIk\n26atjY2zbh3ztvz2t1kjoXT53e9YZ13elZajZbnCRSfvNiumpoZ13m1oAP7wB9Y8ye9nUU6vl4ls\nbu1iszEhnZfHXqdqb6K3WZBWN1u9zYkIw+jpamukQ6hWJ14ArDmP3a54zL7f/AbhoSH0t7Wh/cUX\nAQDjse65ptjzb5P/XAB40Ncn8fLkNiXR2Vlc/Ou/lmwb5n60iDcVWl1XB0dZGfJWrEDxpk2YGRnB\nQEcHbre14e4777CNzWaJ6LQVFqJ02zaER0bQ39YmOV+H241v3biB9Q0NEsuVPYcPS65FdHYW8zMz\ncLjdsMfOy1NbC091tWQfACiPNfsy2Wywud3I93iYt+jwMG7Ljp8NlqJFCUEQBLGwkPAklhwZ8Z5S\nEyvl5eyLv+mVb6fHS1KcMtvWBty6xSKTra0sssnhvp1ud/JIpJxIBHjsMfZ/XR378npZ859kIq6m\nhglKufCsq2Odeg8eZDWpxcXAiRNxaxQ+x48/ZgLwc59jacQjI6wpUrajkFoCVc+HARqQn1nqGEnH\nTdaJ15KfD4BFFGGx4KcrV6K5tBQ/W7UKJ3bvxlt1dYLnJgDBN7Mg1j05OjeHgqoqwS7FKvbFTcLA\nhQv42erV+PXu3Xht9WohTRUAzDYb9re0YPLOHYRHRjA9OIiJmN2Kp7YWc+Fw/GdXlLHwMYDI+Dju\nXbkiLLv1m9/gzQMHEA6F8ItNm/AvK1bgj8ePY25qCt76eqG+dF8wiLyKivg1KyhAeHQUe159Veis\nuz9muyKuSXVWVsJRXg6r04lIKITbbW2CpY3V5UJ4dFRTEKYjHsmiJLvQ7ygi09AzRSwGJDyJhxM1\nsdLbCwwNxb055dvp8ZLkNiMFBSzCyaMgJSWsO2xVFbBzZ7zx0NSUMeFpNrNx29rYMVatYqK4s5P9\nz43sucjlgvPMGSYoRbVnOH8eePNNdt5a4o0LQB5Rqq0FPvoo+6mvWhFNPR8GEFlDr31Lsm0dbjfK\ntm8HAETu38fttjZMDQxgZnQUk/39GOzsRF9rq2CBUlZTA3tREV73+TD4298K40zevYtjjz+O6dFR\nWJQi+3LMZoRHRjDZ14e7nZ2sC62IW7/5DX62apUkqln86KOCUNT6uXV/5jPC9/y82l98EZMDA4hG\nIojOzuJuZ6ckwutwu7H6S1+CKXausw8e4HZbG7oOHYLd7cYpvx9vNzYK6c9cLPaePInw0JBQu2p1\nueDeuBGOsjLMTkzoinqmIx6XokUJQRAEsbBQjSfxcKJWNyhf3thovL6Q1y52djKLFIClwX74IfO7\nlB/nD38wliJaUsIijnxOmzfHbU4A4K232PHffBP4/vcTayh7e4Hdu4ELF4Af/ICJ62vXgOFhfZ1l\nX30VOHRIuzbTKGr1s1p1t3prRYkFwUjNpxjecMdTWwuH243b4sZcgGA5wjvl8hpJNRxlZZidnITZ\nbsfc1JQkkmkpLMScqJGWvDZTC0teHsp27EDo+nVWV2mxKPrrmmw2qe8mgILVqzF5545wPJPVCmtB\nAeYjEZisVljsdhQ9+iiGYt1oAcBeUoLnb97EKb8/oWuvvMbV5nLBZLMJ9Z6Ttgo4IwMoqanFV88k\n/3BAfA/0fJAghixKCIIgHm7IToUg1FASK4EAcP060NMDvPsuE2Xi17GUPmFbuUjiy3p62La8FpPj\n9bLurVy8Pf00a85z7x6Liqq8eVWkspKJRbebpc6Ka0erqlh6rx7Eoq6qSj2CqSX+MoHaMai5kCp6\nRF6qQjDVfY1YsIgRCxcAaH/pJfS+8YaQMbC6rg7PvvmmsL28mY4SjrKyuG2JqGkW9xi1FBRgTqFj\nrRgtUWp1OmEpKEB4aEjzHIF4Y6PkB403AjPZbPBs3w5HaSnmIxH0t7UJwrCrqQk3jx1LuA7cambE\nVYsfThzDN3AIE/WHETyhz0uVxCNBEARhFGouRCxLMlKXoFQ32N3NopQDAyyiJ38tRilVly/r62P7\nyQ3mx8fj+xw6BKxZw7rI8je1zzyj3PhHic99Lj73WG2cgOjNuSbiNNVkabPZSmcVp9HGbDQSjqEn\nvTlNlmqti57UyHTSJ1PZVy3lUqt+UNzIyOF245njx7Eq5jFXVlODL772mmR7TyylvWjzZpjz82Er\nKYGJP0MxTOKGW7GfM09tLfzvvov1DQ2oePJJzfOp2L0bXr9f+VwLC1GydWuC6PwYTLACLOXVHEub\nNVmtmJdFQBWJRuGsrIS1oADRSARDXV1CqvH6hgaUbNmCU36/ougsq6nB12Ln9+6u07gHLy7VtuD/\nbU7ebfh1nw9vNzYK9jTUJCi3WKq/o4jchZ4pYjEgH09i+WLUk1Murhobpa/FY167xl57PCyddvXq\neM2mEtXVbFve6VY8Pl//2mvA+vXafp5mM0u1fewxJlwnJ6Xr//qvWS2nEvJrwj1HtdJU9W5nBO7J\nyQV6fT0TmPJjKPmBLkNSiS7qqatLp/YulX33BYOKUTMuYgHgfCCgGAnl12CspweFXi+s+fnw1tcr\nWqscOHoUv9q+HfmlpZjo6UGEC7BYtNBRVobCdesQDoUQnZlBWU0NXGvWwNfcjK6mJtw5fx6zU1OK\n6bBiBi5cQP6KFYp2RLPj47h39ariftHZWZjtdsyKfi8ki5yu9Plw97e/xXw4LEQ0g2vXSra529UF\na34+ImNjgr0LwDrorti1C9aCAsGP1O5242C/HzsrnPifjwXhFnmUyp8x8b0RW7Wo3SeCIAiCSAWK\neBJLDl8sCqIJtzVpbQVi1gtJkUfWlCJtPKo5PMxSUzduZNHNvj7lOk2Xi0Xztm1jTYQqKoBjx+Lj\n+/1McJ09y5bxxkQAi2TyRkDV1ay2E2DdMzs6WG3o/fusu60YU5IsB3mkVq+lid7tdHIuEMDrLS14\n6/59hAF2bs3NGT2GEczB4KJbQaQSXdTT2MdI8x+1fXmETc/14aJHvr0eEcuvAW/2c7utTdVaxeF2\no2DNGtzt7JTUbyIaRUFVFdybNmGoqwvRmRlYnU5YnU7MxbYLdXdjamAAkfv3EY1EYLLZhAilnOjs\nLCb7+1UbCc2Ju+Da7XCUl2MjWKSTd9a1FRezDVQsjyxOJ8xWK/7s44+Fe9XV1CQRl6b8fMzEGiEJ\ny2PjRcbHhSixWEwOd3bAM9CKq4cCkuurZmejZtVCLD66/+4RhE7omSIWAxKexPJFHDlMJsY4bjf7\n8vuZWOTL+Gu5ncpHH8U7vPL/a2rYtqWl7PXEBOs829ubmLbrdjPLkhUr4sf48Y/Z93Y7E6ozM6ye\n8+xZZpciPh/xG+Gysvjxi4rUu8DmSAfYUHc3Bu7fRx+A8zYbcOnSotZu5oIVRCrRRT0+m3q20dp3\nvLfX0PVRup77gkEUrlsHi8OBtxsbFQUsvwbci9Ph8aC/owPNpaV4I2ZFwjkXCMQ72ooEXWl1Nb75\n0UfCGJ7aWpTV1OBurDPuzyorMXL5srC9yWoVOsymhKgue35mBiaTSegkO3PvHqxOJ9ybNiG/ogJ5\n/OdUPsTkJG63teGd//AfsL+lBV1NTehpaZH8jDsKCyXXxl5SgpW7d7Pr5nJhWmaXovQ8cXsVW1ER\ndr7yirCt+MMJJasWgiAIgsgEJDyJJYfuugRe+1hYCPz93+vbRx4R1LJT4a+vXmX/nznDaiy5wCsu\nBl55Jf7a5WJpsuI33eJjHDrExGhBQXw9r+cMBuMNjsSi0+Vix+XHF1ujbN8uFaELUC+pB+FNcUkJ\n9nzyibRxUwYw6kd4fWqKzWcRozzpRCazjVFRrLS9OEKpJmD5NeBenCazGdODg5gZHUW/zA4k1N0d\nj3TOzcFst2N1XR2+cvas4IfpWrcOZocDoY8/Fvabm5oSLEdgMglzNYJadBQApgcHcZU3NAIwGw5j\nqKsLUwMDmB4cTD5G7Oc61N0dnyOYsCzZvBkurxfuzZuRX1GBb1y6hC+dOAFHeTlmJyYSro/S81QY\n+zmLjI2hS1S3Lq+vTfWDCiJ7UD0ekWnomSIWAxKexPJl3Tr2//h4YnMgNd5/n/1vtQL/5b9II4T/\nf3v3HhzVeeZ5/PdKfdENqYUkLMsYGceY4AQb2fgaKGvWJo4xDp148SSe3eCdyqomrtp1qiZ4s5PL\nTtXEtalJpWaSmirXpioLGSfEBmKIMSYuZK7GNg4bcBJDjA22bAxCCCSEuLRuZ/84fY5Ot7p1aZ1W\nq8X3U0WZVp8+5+3Tr4Ueve/zPMXF9mqkN5fzqafsPMtFi+xcz8ceswM8J5A6d86+9tq1Uk2N/drm\nZmnOnNSrqM4P9c6W24YGafVq+++RiF0VN1l3t902xdmm6g1yz57NbGttlrk/FB87prDPQac09hXM\nW7/3vZwHfZP5B/7kIGakwD5dED1SAOvcg2n19bp/3bqEQjzBioqE1yQHjAM9PTr9hz8knKts1iy1\n7d3r5iwOYVmD21a9uyIKhv+ncUyro2kqVYeSPufK+fPVuGaNJM/Kb0WFVFCgvu5undy1S93Hj7tB\n7Kb4DoiahQsl2avDF06ccD+T5Pm0u6lJHYcOSbILELGNFgAw0WingsllrAWBhpNJG46KCsn5QdRp\nL+IU1YlGB9t91NZKhw8nfs2xYoUdDCZf2xlPWdlg8BoMSvfcYz+/Zs3gGJPbvXiLGrW326+74w57\n+27y++vstAsPeSttLlwo3XSTvRrqx72d5MbTjxAj86Nlymg+k5eWLNGJ5mbJGLdCbe3nPqfPx4tn\nPTd3rmKeVUTJbj9SXFOjstmz1b5//8itS5IU19YqMneuTib/f+2nggLNuPtuheO5nwWhkFsUSJJ2\nrFypo88/r8LiYvUOs2I/bfZsldTVqevoUQ309bkBdn00qgc2bkw49tmrr3b7nia3pgEAYLxop4L8\nk6pNSaa820qfeip93qOXU8ynpER67bXEFULvCktrq11YyGnf4OR4OquWqba0Ol/z5mr29trvNxRK\nXcnVCTrXrUssatTWJr30Uupts5GIPffB4sIAACAASURBVA7JXjFdvtw+xrsFN/neetuaTIEWCpls\nWx3r9tx8Nt736qzIhaur1e1ZZRvJWFd1S+vqFK6pkQoKZPX1yerr08ldu7SnqUnhSERfefddlc2a\nlbBt1ert1cUTJ9S2d2/KoNMEg27Rn1Rm3HmnHdiOJi98rJyV1IEBte3dq/Y//EHn3ntPJ3bs0HNz\n5uh8S4sk6XxLiwZisZRBp/NeqxcuVO+FCzq1d68utbaqx3PsqddfV6yzM+Fz7otvJ5fktncZyZX0\n/wQAIPtY8cTkMopVyp07d469Gltj4+DK5IoV6dtztLTY22Zfe21o3mFnp10IyFtFNhCwCwlt22Zv\nd03VbiR5FVeS5s2zg1fJDg63b098nfc1XV32yqZkV389diz9sc5KZvKKqTT8vR3t/Zmidu7cqa5/\n/MeMVvHy0XArlqNp6+KsXHbHA7zk84ylNUy6Y3c3NenounUJuY6SvSW1uqFB51taFCgpUW9Xl045\n/384Cgrs6s/Ofx2FhTIFBWnbpwQjEVV+5jPqbmnRxZMn026TTSdQXq6+ri69K2muJBMKSZalUHm5\nZtx5p/p7euwVXA8TCLhbdwMlJaq+/XZ1vPPO0O3BhYUyxmjGnXeqqLpajWvW6NfXX+/28fS2QZHs\n1dDLZ8+6969oxgxdbmtTVUODlm3fPqrgP9OVbfgvo3/3gGEwp+A3VjyRf7JV/Ga01Vzr66WPPx4a\ndDY12dtq45UlXX199uqjN8cyWaoWJocP2yuR0ejQoDP5NfFKlKqsTF39NdUqcXIuZ1OTHcB627lk\ncn+msPH0u8w3w73X0eTHOiuXIU/lWO95xpJjm+5Yb4GdYHm5CouLFaqsVMlVV+nc0aPua5xKrdMX\nLNC1S5cqVFXlBptOFdnpN99sf72/P2XQaYJBFc2YoYJgUG179+ri8eNu0BmKRNxKsl4F4fCQr/Wd\nP5/w2OrpkdXbq9iZMwqWlmrJ+vUKJ1W2teLXKSwpUaC0VK27dtkBZHzFtaCkxF7l7O+X1denU3v3\nui1mquO54NMXLNCX9+9XcW2tJPvzKKmrc+9fqLJSX3rrLV2/YsWog04p9TxhFRQAkCkCT0wuoyh+\nk9Fv6JyA9qabEtujjJYT3J09a2+vdbbYSnaPzeEClVRBXSRir552dAwWJHI0NdlVciV7NbW+3g4Y\nDxxIXf11NEHjkSND27l4TZJqt7nS2Ng4qavK+m249zqWADzTIkKjud75eEBpAgF9cc8e1dxxh3o6\nOvRJc7O7yjp9wQJF33xT169YoYd37NCDW7YoGK9mHayo0EPNzfZzu3YpEP+6kyvqLSBk9fbqclub\nYt686Pi1p99yi6obGoaMO5hqu258d8/cFO+z4bvfVTgSUc0ddwx5TWFRkR49dEgD3qJF8XMNXLyY\nUMzIWxhoSbz1ycM7dmhafb0ePXzY/Ty649t2TSCgh3fudAs2jWVup/p8J0ProSsRK1PwG3MKuUDg\niSuDE9AOl+c4HG+l2N5e+09dnb1quWPH8MFauqAuXT7rkSN2QCrZqx779qUNGHc3NenFri69XFur\nWKqVzOTxpwtOJ0m121yazFVl/Zbuve5ualJvV5eKa2u1ZMOGEe9FuvOk69mZarUsXfBaGv8li9XX\npwM/+EHKticXT5xQqKJCoUhEr0SjennpUhVfc40kqffcOR34wQ/c8V08ccI+X3+/CouKFHT6YsYD\nSG/epyksVKiyUlZfn1p37VIoEhmywhnztEwZjd899JB7fwuKitxczekLFug/nTypA08/LSctxRlL\nMF58SIWFUiCggnBYJhRy72ny/Q9HIgpFIlo3b54uOO83fv9SGWn1MtXneyXtDAAA+Ct9MzJgkso4\nL8G7ktjQMLYtpWvX2q/v6LDboYylUq4T1HnH4VSolYYGg94gMRIZvF6K8XYeOaLW+OrPnlWr0udg\nOeNPlYMKcl3iOo8ccfMl9w03n1JIztUsnTXLzQ/c09Sk+9etc1fLvF9zgptkqbbxPj9vni47udGy\ne2b+e02NpMEWJ0We7aaLf/Yzd1zeXM/+y5fVf/myJNnVZSMRxeKrqZIdnDqBZvXChWpcs0a/W7Zs\naC5pGk6Op1fJNdeo49ChIeeYdt11Ckci9tbiePAXKC7WNffdp3t+8hO9sHChm7s50Nen9n37Eu6f\n974X19Tow9/+NiEvNlRZOSRAdF5z9o9/dHNEnfOl4r3G4mee0b5Vq9zKxGPJ50Xm+B4FvzGnkAsE\nnrhyeFcSZ80aWwDmBI+pivZIY2sD46x0SnaF2uQA1hskOudOEzAG4tsRqysqtPhHPxp5/JOFn21z\n4JvxrGYlB5WpzjXS+Xc3Nall82b1x2Kquvlm1Uejaly9WvueekqdR46o6rOfVcGtt+r0/v263Nbm\nVrt1FRaq4lOf0lV33qlQRYVeiUbV9sYbGujpGfY9hyIRdZ84oYJQSAM9PQpXV2tafb2MpPIbbtAr\n0ag633039QmSCxilcXrfPhV6tvta/f12UBvv0+td0b18+rQ+2rJFH//udxrwFDgKlJWpr7tbgbIy\nxTo6FOvsTLjv4ZqahKAzWFGhRw4cGBIMel8jjfx5e49P/oVEql8mAACQClVtceXIpK/naHmrwobD\ndkB1223S+vVDr+PjOGKLFmnP3r1aLCk8nmq0Ex0IXuFVdCcrb59NJ9gb7UpWcu9USQk9O3c3Nanj\n0CF1HT2q6JtvalpSvnKqKrZOJdXk6qrtBw+q6/333TzI5ODv+hUrdLGtLSG4SiUYiWggFlO/p9VI\n6cyZKquvd1cmvVVnTTA4WJyooEChigrJGPWcPatQZaWqbr45ff/PggIFy8rUG+8TXDpzpv7jn/7k\n3tdYZ6fWzZvn9tpMJVRZqd7ubncM4epq9Z4/b7eNKSxUqLxcPR0dCkUiuuqee/QffvWrlJ+b81lV\nNTSobNYsNa5ZM+znm/zZeufGQG+vTjQ30zMXAK5wVLXFlWe4fpRr10qzZ9uBYXJBn/FyVisCASkW\nG9ySmyqP1MdCPuHyct0vKTzaarTp7o+f/VNHgyq6WTHeiqPenL6xFpFJztVMzg90tvFeam3VvhT5\nyt4qtlJiEZ3kvqFdx44NBp2SwtOnu3+fvmCBCouLddbZVl+Q+p+5wqIiTf/MZxKCTkn64muvuf00\nvSuqocpK1d177+CBAwPq6ehQz9mzCpSUKHLTTTLBYPoemQMDbtAZLC/XF197LSFIC0cievTwYYWr\nq1O+vKCkRD0dHW7QGSgrU6y9fbBXaX+/ejo6VFJXp69+8IEe3LLFDfjT5dUu275dD2zaNGKwmPzZ\neudGsKzsiinKBQAYHwJP5J2dO3emf3K4ACoSsbfY7t3rT4DlDeKeecYOJr2VLisqsl/IZ6xBbLr7\nM9GB4CSrojvsnMojflYcHeu225GKM410Puf5YEWFrl26NKHtR9f778sEAurp7LQr2nq2n1bcdJO+\nvH+/yurrFaqqUlF1tbqOHh3sb+kJSh2FJSV69C9/Sdkm5fUnnxxcjY2vooYqK/XIgQO6f/16t2WJ\niVe2DpaXq3L+fLXt3asTzc0a6O1Vmk25dpEgSb1dXUOC791NTVo3b5560vzCIOQUQSotlQoK1BcP\nmANJ1XVrbr894TNINSfGUkhrd1OTXolG1dPd7X7N+1k2rl59xRTlyqWp8j0KkwdzCrlA4ImpJVUA\n5Q0QnTYofgRYmzcPBnFPPmkHkwsX2s8VFtptVrJtrEFsugBzogNBquhmhZ8VR/1uLzPS+ZznH/vw\nQ3e1znGprU1WX5+7+ljozYc8dUp7vvENlcycqZ4zZ3SiuVltb70labC/pVNwqHL+fJXU1enRQ4c0\nrb7eLoI0c2biQIxxA9LC0lIVzZihRw4c0LT6endV8voVK1R9662S7CDSWSFNDgK9XwtFIiqOF0IK\nVlRIhYXuSuSOlSt1dN06XWptdd9jcW2tTHy11gQCWvKb3yhcXa2+CxfsgDgefAfLyhSeMcN9v41r\n1iRef5xzIlXgeiW1HgIA+IccT0wNTo5iMCiVlkpr1gwGNd58wuXLpVDIn+qu06cPFiuKRqWNG+3t\nq3PmSPEqlJMufzFdcSRMCd4czYkOCLJZ3fQXNTWKtbersKREdY2NGujp0SfNzW6xHUl26yHLSsj3\nrI9G9cDGjdqxcqU+2rpVVbfcoiXr1yeMzZs/agIBfeX997X/+9/Xe88+627nrV++XA9s2pTwPjve\neUex9nZ7a6wxQ3qASlLRjBn60ltvuVVgty5b5vYg9eaOhmtqEl5f1dCgZdu361f19erz5IRWzp+v\n41u3uq8tLClR/Re/qAsff5wyd3Z3U5POxvNqvxR/bqyfU3J+J4EmACAVcjxx5XC2kDY324Gl94cj\n7yrfmjX+rbTddpv934YGKV6ZUpGIdPvtg9cb6wrDcDmqfmClcUrLZS9Sv7b5pspJ/PL+/SqdOVOP\nHjqkB7ds0f3r16ts9myZ+NbVwtLSwZzPeNBZvXChQuXlerGxUe/98peKnT6tE83N+vWcOQn5r95q\nslZfn15/8kl7BdPzC9OBeF6lUwCpddcuxdrbVRAKyerrSxl0StJVd9+tA08/rYttbXr1scd05sCB\nhGtJ9kpo1S23SBq6zbgwni9aWFKiqxYtUk9Xl4pqa7Vsxw73flw8edLNnX3h9tsT7lvnkSNq27tX\nlz15tePN3QUAIFMEnsg7KfMShstRzNY20vXr7fNu3z60HUqm15voIj+QRK7LcEZbsCiTLZ3ec+9Y\nuVIvNjbq2IYNQwKjafX1+puPP3ZX7F6JRtXT2ekWIwqWlrrnrJw/X/XRqB7atk3nW1rs1UxPxdue\n9nY9W1en3y5apJeXLtXiZ56xV0vjBnp7E4JRSTr7xz+6Y3MLIBUWaqCnJyEnM1hRoaIZM/SupOC0\nabrnJz9JCPRStXW56p57VFpXZ/cNNUb9nmO8AffFkyfdIPKdn/7UvR/OWANlZYqdPq3jW7dq3bx5\ninV2ZtTSJlkuf5mBQXyPgt+YU8gF+nhiavD2vkz+ASlbPSzTnXc816PaKyaZ0fZpvG/t2jFv803o\nQVldrZizRV3pA6NUPSiXbNig1598UjJGjatXu9d3giynb6Zj4NIlt13KvlWrFKqocAPIglBIjatX\n6xc1NVJ8VfLC8eO6cPy4+3pv65SqhgZdbm9X78WLqm5oUO/581Jbm3rPn9e+VasSAr3zH3yg2Jkz\ng9uCJX28dav794FYTCeam/X83Ln663ffdQNuSeqK9+wNlpfrTk/PXue+X+7o0InmZknSpdZW7Wlq\nSvmZZPI5AQDgB3I8gVxK7p/pfM3vHMyJ7tOJKSObOX7ec4cjEX3S3Dykt2RyTuKG+fN14fhxBadN\nU+3ixWl7VUqDOa8N3/2utj74oPp6etTjCW5DlZX66rFjal6xwr32su3bte+pp3Rs/fohFWZDkYiu\nvvdet4CPE8C9Eo26wXBxba0utbYqXF0tU1CggZ4eFYRC+lK84NGLixbpC1u26KX77ksItJM5PUwd\nv120yA2Wk59z3qvTB9Tbb7Nl82b1x2Kqvu22IfmtAAD4ZTQ5ngSeQC55Cx9lsxDRRF0HEy6bRX2k\n7BYs8p5bUsrreIv/XL9ihbpPnHAL9JTNnq2yWbNG/d5jnZ16ft48XW5ttStPO/82FRTomr/6K3dL\nqfeajlAkokcOHkwo3iPZ9//Yhg3q6eiQCQQUKClRYVGRps2erdP79rnHeYNF72tchYVupVonAPa+\nn9H8AiD5s0p+H6kCVgAA/EBxIUxJ485LyHYBn7EYaWutX2NlC++w8jnXxc/enamMJ8dvpPxQ77nT\nXSc5JzEUb3VSvXChSurqRvXedzc16dmrr9avr79elXPnKlxVZQd5AwP2n74+ffLqq0OuWdXQoGuX\nLlV9NKqvfvCBDjz99JD303nkiBtAWn196u3q0tttbeqOt1iR7DYn3m3D3tdI0jVLluirR4+qfvly\n1UejQ4JOyd4iO232bBWGw3r1sccU6+wccn+T76E3V7WwtFSxjo5h83QxeeXz9yhMTswp5AKBJ648\nk6mAz0iFiPwa60T36byCjLb4Trb42bvTT94KsOMJipOrqnofe4PQ4d5755EjutTaqp6ODp3ctUsF\nTj9fr4GBIX0ql23frge3bNEDGzcqHIkkBPnP3XijXl661D2X0/tTkspvuEHRN99UWX29QlVVKqqu\ndu/Ji42Nat2zJ+HS4UhE0+rr9cCmTe61vMe/vHSpJKl01iyd2rvXvZ8j/dLhvrVrVR+NKlxVpf4L\nF/RJc3NWfjkBAMBosNUWV56lS+1AbuHCkQOxXOdGjmWsyInkraATvZUxl707h+O9L04uZfL4xrtN\neLTv3dmmKtmrmJ/fuFH7Vq3S+Y8+GtwOW1CgqxcvVll9vY6tX6/+S5dkAgFd9bnP6YFNmxSORNzz\nePuHmkBA4enT9dC2bdr//e8nFDjy3oPi2lpZlqXLp04ljM0Eg/paW1vK8SfPrZ7ubvf6M+66S5J0\norl5xPxbenECALKNHE8glc7O0RfwyXVu5FjGipzgh/rUnPsSqqzUIwcODMmNlMYftI82cI11dmrn\n448PqXob6+zUr2+4QT1nzrjHhquq7MqzHsW1tXr08GFJGlJB1nvMzM9/XudbWhQoKVFxTY1aNm9O\n2FJrgkFZ8Z6gjof37NHVixalHHfy3JKk52680e0bWh+NqjAYHDHwnqy/nAAATB3keGJKGndegtPu\nZDQ/gOU6N3IsY0XGxjOnkreCwlZcU6NwTY2qb7tNoYqKlMckbxMe67bl0ea3hiMRFc+YobY339Sz\nV12l1ZGIXlqyRJI04447Eo41hYVDXn+ptVXPz5snSbp/3TotWb9exbW1Q475aOtWte7apVe3btVH\nW7cmBJ3B8nIVTZ8ev8jgv8vv/PSnacedPLfCkYhqFi6UZN+zxtWrR5V/Sy/O/Ec+HvzGnEIuZBx4\nGmN+ZIw5bIx52xjzgjEm9U8WQD4jNxIj4If61M63tCh2+rRODJNXmBxYjbVQ0ljyW508z4GeHvWe\nO+eO6761a1VQVGSfb9o0PbRtm0qvvVYmGJQCg62uL8d7Y0r2Z/7o4cOqX75cRTNmuGOouuUWSVLF\njTeq0MkjLbD/me3t6tKltjb7a/FdQN5xpwq6U80tftEBAMhXGW+1NcYskfSqZVkDxpgfSpJlWd9O\ncRxbbQHgCpPJFuSxvmbHypX66OWXVb1ggUrq6txtrqm23XrzPCUpNH26KufNU7C8XKd//3u3p2Z9\nNKpYR4e7BbggHNZALJZ2TOlawmxdtsxt+5JKSV2dVrzzjnu+Z6++WpdaWyXZ231r7rgjK+1xAADI\nhtFstQ0M9+RwLMva5nm4T9IjmZ4LADC13Ld27ajyCr15moufeUb7Vq1yXzNSDuf5lhbF2tv1SXOz\nwjU1bu7jnqYm3b9u3ZBzv/7Nb2qgp0cFwaAut7frlBMYera+DvT0JKyklt9wg33+NO/BWZV0OH93\nKu4Wlpaq/8KFhNdMX7BAVTffrFeiUfe99cdi7vOxM2fcVV/6bgIApgq/cjz/VtLLPp0LGNao8hIm\nU69OTHrkuvhvtFuQvdtr961alfCakbbenj96VJIUrKjQ9JtukpS4fbVl82b39a9/85t6YONGuz3K\npk1u+5NwdXVC4FkQDCZsZ7148qQb3I62FcnOnTvdc9TefXfCc6UzZ+rhHTt0vqUl4b1V33abJCkw\nTIuYXLfuSWeyjmsq4XsU/MacQi4Mu+JpjNkmqTbFU/9gWdbm+DHfkdRjWdbadOd5/PHHdd1110mS\nIpGIFixYoMbGRkmDE5/HPB7t44MHD458fLz/5U5JikbVGP/6ZBg/jyffY8dkGc+V9PjQpUuaLjvQ\nGvja17Rz5073+UOXLum0pM/Fg7Dk138Qiajj+HHNPXdOoUhE5++9V9d961tu4PpOd7d6Jc2VdHL3\nbv3wzjt16/e+p88vW6b71q7Vv0WjajtzRjPi22yPlpbquq9/3Q2aveMLlJXp90ePauCll1T04ovq\nPHJEhy5dcs/nfX+SHXgHnnhCA93dKvrzn3W5tVWtN96ou378Y/u5khK9KzsfdGU8wPy3aFTz/u7v\nFHrhBS3+2c/0xsGDCe93z1tv6ezbb2uu7FXdwBNP5Pzzk6Su+C8I3pV0OBrV3/P9lsc8nvSPDyZ9\nf8n1eHicf48PHjyozvgvGz/88EONxrjaqRhjHpf0XyXdZ1nW5TTHkOOJiUf/y7HJdb9SXLGGa/Ux\nUhuQkXJCX1qyRCeamxO2u16/YoVC8UJGgZISDfT26kRzs0KVlZr5wAO6ePJkwtbeWGennpszx80B\nLZs9WxeOH3fbotQvX64HNm3S85/+tC62tqogGNSX9+9PaB+T6n1k0uJksrbumazjAgBMnKz28TTG\nfEHSjyXda1lW+zDHEXhi4tH/cmwaG3PbrxTwGEt/zuGCN+f5WEeHPmluVqCsTDPuukv9ly65+Z3e\nXpivRKMp+4p6A6uCcDihaFB9NKoHNm7U6khEvefOSbK30/7Nxx/7ek9G835zZbKOCwAwcbIdeL4n\nKSTpbPxLb1iW9USK4wg84audnq148MkVvkLMnJpcXmxsTBkAjiRdwBrr7NRzN97oFh8qrq3VpdbW\nISt06VbuvIHVq4895lbHnX7zzXp41y6FIxH9oqZGsfZ2FZaU6Oqf/1xLv/KVMY9zrMeM5/zIL3yP\ngt+YU/DbaALPgkxPblnWHMuy6i3Laoj/GRJ0AsgT9CvFJDKW/pxe6YoRhSMR1Sxc6J4z+uabKXth\npuuR6S2UdN/atapfvlz10agbdO5uatK0T31KBeGwom+8oZLaVKURRh7nWI8Zz/kBAJho48rxHNUF\nWPEEAIxBpls3h8s1zOZ20LGu0CaPc99TTw1ZoRxP3iQ5lwCAiZbVFU8AALJhtK1YkqVbsRzPOVNJ\nbh8y1hXa5HGmWqEc7r2MpLimRuHqagJOAMCkQuCJvOOUdAb8wpyaGvwMLoeTHCgmB4kjzafkcaYK\nXMfzXs63tIy59ygmN75HwW/MKeQCgScAAGOQHCiON+Adz+rmaMYHAMBkQI4nAABjMNnbh0z28QEA\npp6stlMZwyAIPAEAAABgiqK4EKYk8hLgN+YU/MR8gt+YU/Abcwq5QOAJAAAAAMgqttoCAAAAADLG\nVlsAAAAAQM4ReCLvkJcAvzGn4CfmE/zGnILfmFPIBQJPAAAAAEBWkeMJAAAAAMgYOZ4AAAAAgJwj\n8ETeIS8BfmNOwU/MJ/iNOQW/MaeQCwSeAAAAAICsIscTAAAAAJAxcjwBAAAAADlH4Im8Q14C/Mac\ngp+YT/Abcwp+Y04hFwg8AQAAAABZRY4nAAAAACBj5HgCAAAAAHKOwBN5h7wE+I05BT8xn+A35hT8\nxpxCLhB4AgAAAACyihxPAAAAAEDGyPEEAAAAAOQcgSfyDnkJ8BtzCn5iPsFvzCn4jTmFXCDwBAAA\nAABkFTmeAAAAAICMkeMJAAAAAMg5Ak/kHfIS4DfmFPzEfILfmFPwG3MKuUDgCQAAAADIKnI8AQAA\nAAAZI8cTAAAAAJBzBJ7IO+QlwG/MKfiJ+QS/MafgN+YUcoHAEwAAAACQVeR4AgAAAAAyRo4nAAAA\nACDnCDyRd8hLgN+YU/AT8wl+Y07Bb8wp5AKBJwAAAAAgq8jxBAAAAABkjBxPAAAAAEDOEXgi75CX\nAL8xp+An5hP8xpyC35hTyAUCTwAAAABAVpHjCQAAAADIGDmeAAAAAICcI/BE3iEvAX5jTsFPzCf4\njTkFvzGnkAsEngAAAACArCLHEwAAAACQMXI8AQAAAAA5R+CJvENeAvzGnIKfmE/wG3MKfmNOIRcI\nPAEAAAAAWUWOJwAAAAAgY+R4AgAAAAByjsATeYe8BPiNOQU/MZ/gN+YU/MacQi4QeAIAAAAAsooc\nTwAAAABAxsjxBAAAAADkHIEn8g55CfAbcwp+Yj7Bb8wp+I05hVwg8AQAAAAAZBU5ngAAAACAjJHj\nCQAAAADIOQJP5B3yEuA35hT8xHyC35hT8BtzCrlA4AkAAAAAyCpyPAEAAAAAGSPHEwAAAACQcwSe\nyDvkJcBvzCn4ifkEvzGn4DfmFHKBwBMAAAAAkFXkeAIAAAAAMkaOJwAAAAAg5wg8kXfIS4DfmFPw\nE/MJfmNOwW/MKeQCgScAAAAAIKvI8QQAAAAAZIwcTwAAAABAzmUceBpj/skY87Yx5qAx5lVjzLV+\nDgxIh7wE+I05BT8xn+A35hT8xpxCLoxnxfOfLcu6xbKsBZI2SfpfPo0JGNbBgwdzPQRMMcwp+In5\nBL8xp+A35hRyIePA07Ks856HZZLaxz8cYGSdnZ25HgKmGOYU/MR8gt+YU/Abcwq5EBjPi40xT0v6\nz5IuSrrLlxEBAAAAAKaUYVc8jTHbjDF/SvHnYUmyLOs7lmXNkrRG0r9MwHgBffjhh7keAqYY5hT8\nxHyC35hT8BtzCrngSzsVY8wsSS9blvXZFM/RSwUAAAAAprCR2qlkvNXWGDPHsqz34g+XSzqQyQAA\nAAAAAFNbxiuexpgNkuZK6pd0VNI3LMtq83FsAAAAAIApwJettgAAAAAApDOePp6jZoz5J2PM28aY\ng8aYV40x107EdTE1GWN+ZIw5HJ9TLxhjKnI9JuQ3Y8wKY8w7xph+Y8ytuR4P8pcx5gvGmL8YY94z\nxvyPXI8H+c0Y83+NMaeMMX/K9VgwNRhjrjXG7Ij/m/dnY8x/z/WYkL+MMUXGmH3xGO+QMeZ/D3v8\nRKx4GmOmOX0/jTH/TdItlmV9PesXxpRkjFki6VXLsgaMMT+UJMuyvp3jYSGPGWM+LWlA0v+R9PeW\nZf0hx0NCHjLGFEp6V9L9kj6R9HtJX7Us63BOB4a8ZYxZLKlb0r9bljU/1+NB/jPG1EqqtSzroDGm\nTNL/kxTl+xQyZYwpsSzrojEm47bo4wAAAphJREFUIOk1Sd+yLOu1VMdOyIqnE3TGlUlqn4jrYmqy\nLGubZVkD8Yf7JM3M5XiQ/yzL+otlWUdyPQ7kvTskvW9Z1oeWZfVKek528T0gI5Zl7ZHUketxYOqw\nLKvVsqyD8b93SzosqS63o0I+syzrYvyvIUmFks6mO3ZCAk9JMsY8bYz5SNJKST+cqOtiyvtbSS/n\nehAAIOkaSR97Hh+Pfw0AJh1jzHWSGmT/Eh/IiDGmwBhzUNIpSTssyzqU7tiM26mkuOg2SbUpnvoH\ny7I2W5b1HUnfMcZ8W9K/SPovfl0bU89I8yl+zHck9ViWtXZCB4e8NJo5BYwT1foA5IX4NtsNkp6M\nr3wCGYnvQlwQr7nyijGm0bKsnamO9S3wtCxrySgPXStWqDCCkeaTMeZxSUsl3TchA0LeG8P3KCBT\nn0jyFs+7VvaqJwBMGsaYoKTfSPqlZVmbcj0eTA2WZZ0zxmyRtFDSzlTHTFRV2zmeh8slHZiI62Jq\nMsZ8QdIqScsty7qc6/FgyjG5HgDy1n5Jc4wx1xljQpL+WtKLOR4TALiMMUbSzyUdsizrX3M9HuQ3\nY0y1MSYS/3uxpCUaJs6bqKq2GyTNldQv6aikb1iW1Zb1C2NKMsa8JzuB2UlefsOyrCdyOCTkOWPM\nlyT9VFK1pHOSDliW9WBuR4V8ZIx5UNK/yi6w8HPLsoYtLQ8Mxxjza0n3SqqS1Cbp+5Zlrc7tqJDP\njDGLJO2W9EcNpgf8T8uyfpe7USFfGWPmS/qF7MXMAknPWpb1o7THT0TgCQAAAAC4ck1YVVsAAAAA\nwJWJwBMAAAAAkFUEngAAAACArCLwBAAAAABkFYEnAAAAACCrCDwBAAAAAFlF4AkAAAAAyCoCTwAA\nAABAVv1/lzHCzGUnjVoAAAAASUVORK5CYII=\n", "text": [ - "" + "" ] } ], @@ -155,4 +151,4 @@ "metadata": {} } ] -} +} \ No newline at end of file diff --git a/examples/web_demo/app.py b/examples/web_demo/app.py index e456526fa55..bbeff5eb362 100644 --- a/examples/web_demo/app.py +++ b/examples/web_demo/app.py @@ -10,12 +10,13 @@ import tornado.httpserver import numpy as np import pandas as pd -from PIL import Image as PILImage +import Image import cStringIO as StringIO import urllib -import caffe import exifutil +import caffe + REPO_DIRNAME = os.path.abspath(os.path.dirname(__file__) + '/../..') UPLOAD_FOLDER = '/tmp/caffe_demos_uploads' ALLOWED_IMAGE_EXTENSIONS = set(['png', 'bmp', 'jpg', 'jpe', 'jpeg', 'gif']) @@ -80,7 +81,7 @@ def classify_upload(): def embed_image_html(image): """Creates an image embedded in HTML base64 format.""" - image_pil = PILImage.fromarray((255 * image).astype('uint8')) + image_pil = Image.fromarray((255 * image).astype('uint8')) image_pil = image_pil.resize((256, 256)) string_buf = StringIO.StringIO() image_pil.save(string_buf, format='png') @@ -114,15 +115,18 @@ class ImagenetClassifier(object): "File for {} is missing. Should be at: {}".format(key, val)) default_args['image_dim'] = 256 default_args['raw_scale'] = 255. - default_args['gpu_mode'] = False def __init__(self, model_def_file, pretrained_model_file, mean_file, raw_scale, class_labels_file, bet_file, image_dim, gpu_mode): logging.info('Loading net and associated files...') + if gpu_mode: + caffe.set_mode_gpu() + else: + caffe.set_mode_cpu() self.net = caffe.Classifier( model_def_file, pretrained_model_file, image_dims=(image_dim, image_dim), raw_scale=raw_scale, - mean=np.load(mean_file), channel_swap=(2, 1, 0), gpu=gpu_mode + mean=np.load(mean_file).mean(1).mean(1), channel_swap=(2, 1, 0) ) with open(class_labels_file) as f: @@ -206,8 +210,9 @@ def start_from_terminal(app): opts, args = parser.parse_args() ImagenetClassifier.default_args.update({'gpu_mode': opts.gpu}) - # Initialize classifier + # Initialize classifier + warm start by forward for allocation app.clf = ImagenetClassifier(**ImagenetClassifier.default_args) + app.clf.net.forward() if opts.debug: app.run(debug=True, host='0.0.0.0', port=opts.port) diff --git a/include/caffe/blob.hpp b/include/caffe/blob.hpp index 42e4420408c..472cc1841f7 100644 --- a/include/caffe/blob.hpp +++ b/include/caffe/blob.hpp @@ -1,11 +1,17 @@ #ifndef CAFFE_BLOB_HPP_ #define CAFFE_BLOB_HPP_ +#include +#include +#include + #include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/syncedmem.hpp" #include "caffe/util/math_functions.hpp" +const int kMaxBlobAxes = INT_MAX; + namespace caffe { /** @@ -19,10 +25,16 @@ template class Blob { public: Blob() - : data_(), diff_(), num_(0), channels_(0), height_(0), width_(0), - count_(0), capacity_(0) {} + : data_(), diff_(), count_(0), capacity_(0) {} + + /// @brief Deprecated; use Blob(const vector& shape). explicit Blob(const int num, const int channels, const int height, - const int width); + const int width); + explicit Blob(const vector& shape); + + /// @brief Deprecated; use Reshape(const vector& shape). + void Reshape(const int num, const int channels, const int height, + const int width); /** * @brief Change the dimensions of the blob, allocating new memory if * necessary. @@ -37,25 +49,133 @@ class Blob { * an error; either Net::Forward or Net::Reshape need to be called to * propagate the new input shape to higher layers. */ - void Reshape(const int num, const int channels, const int height, - const int width); + void Reshape(const vector& shape); + void Reshape(const BlobShape& shape); void ReshapeLike(const Blob& other); - inline int num() const { return num_; } - inline int channels() const { return channels_; } - inline int height() const { return height_; } - inline int width() const { return width_; } + inline string shape_string() const { + ostringstream stream; + for (int i = 0; i < shape_.size(); ++i) { + stream << shape_[i] << " "; + } + stream << "(" << count_ << ")"; + return stream.str(); + } + inline const vector& shape() const { return shape_; } + /** + * @brief Returns the dimension of the index-th axis (or the negative index-th + * axis from the end, if index is negative). + * + * @param index the axis index, which may be negative as it will be + * "canonicalized" using CanonicalAxisIndex. + * Dies on out of range index. + */ + inline int shape(int index) const { + return shape_[CanonicalAxisIndex(index)]; + } + inline int num_axes() const { return shape_.size(); } inline int count() const { return count_; } + + /** + * @brief Compute the volume of a slice; i.e., the product of dimensions + * among a range of axes. + * + * @param start_axis The first axis to include in the slice. + * + * @param end_axis The first axis to exclude from the slice. + */ + inline int count(int start_axis, int end_axis) const { + CHECK_LE(start_axis, end_axis); + CHECK_GE(start_axis, 0); + CHECK_GE(end_axis, 0); + CHECK_LE(start_axis, num_axes()); + CHECK_LE(end_axis, num_axes()); + int count = 1; + for (int i = start_axis; i < end_axis; ++i) { + count *= shape(i); + } + return count; + } + /** + * @brief Compute the volume of a slice spanning from a particular first + * axis to the final axis. + * + * @param start_axis The first axis to include in the slice. + */ + inline int count(int start_axis) const { + return count(start_axis, num_axes()); + } + + /** + * @brief Returns the 'canonical' version of a (usually) user-specified axis, + * allowing for negative indexing (e.g., -1 for the last axis). + * + * @param index the axis index. + * If 0 <= index < num_axes(), return index. + * If -num_axes <= index <= -1, return (num_axes() - (-index)), + * e.g., the last axis index (num_axes() - 1) if index == -1, + * the second to last if index == -2, etc. + * Dies on out of range index. + */ + inline int CanonicalAxisIndex(int axis_index) const { + CHECK_GE(axis_index, -num_axes()) + << "axis " << axis_index << " out of range for " << num_axes() + << "-D Blob with shape " << shape_string(); + CHECK_LT(axis_index, num_axes()) + << "axis " << axis_index << " out of range for " << num_axes() + << "-D Blob with shape " << shape_string(); + if (axis_index < 0) { + return axis_index + num_axes(); + } + return axis_index; + } + + /// @brief Deprecated legacy shape accessor num: use shape(0) instead. + inline int num() const { return LegacyShape(0); } + /// @brief Deprecated legacy shape accessor channels: use shape(1) instead. + inline int channels() const { return LegacyShape(1); } + /// @brief Deprecated legacy shape accessor height: use shape(2) instead. + inline int height() const { return LegacyShape(2); } + /// @brief Deprecated legacy shape accessor width: use shape(3) instead. + inline int width() const { return LegacyShape(3); } + inline int LegacyShape(int index) const { + CHECK_LE(num_axes(), 4) + << "Cannot use legacy accessors on Blobs with > 4 axes."; + CHECK_LT(index, 4); + CHECK_GE(index, -4); + if (index >= num_axes() || index < -num_axes()) { + // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse + // indexing) -- this special case simulates the one-padding used to fill + // extraneous axes of legacy blobs. + return 1; + } + return shape(index); + } + inline int offset(const int n, const int c = 0, const int h = 0, const int w = 0) const { CHECK_GE(n, 0); - CHECK_LE(n, num_); - CHECK_GE(channels_, 0); - CHECK_LE(c, channels_); - CHECK_GE(height_, 0); - CHECK_LE(h, height_); - CHECK_GE(width_, 0); - CHECK_LE(w, width_); - return ((n * channels_ + c) * height_ + h) * width_ + w; + CHECK_LE(n, num()); + CHECK_GE(channels(), 0); + CHECK_LE(c, channels()); + CHECK_GE(height(), 0); + CHECK_LE(h, height()); + CHECK_GE(width(), 0); + CHECK_LE(w, width()); + return ((n * channels() + c) * height() + h) * width() + w; + } + + inline int offset(const vector& indices) const { + CHECK_LE(indices.size(), num_axes()); + int offset = 0; + for (int i = 0; i < num_axes(); ++i) { + offset *= shape(i); + if (indices.size() > i) { + CHECK_GE(indices[i], 0); + CHECK_LT(indices[i], shape(i)); + offset += indices[i]; + } + } + return offset; } /** * @brief Copy from a source Blob. @@ -71,12 +191,20 @@ class Blob { inline Dtype data_at(const int n, const int c, const int h, const int w) const { - return *(cpu_data() + offset(n, c, h, w)); + return cpu_data()[offset(n, c, h, w)]; } inline Dtype diff_at(const int n, const int c, const int h, const int w) const { - return *(cpu_diff() + offset(n, c, h, w)); + return cpu_diff()[offset(n, c, h, w)]; + } + + inline Dtype data_at(const vector& index) const { + return cpu_data()[offset(index)]; + } + + inline Dtype diff_at(const vector& index) const { + return cpu_diff()[offset(index)]; } inline const shared_ptr& data() const { @@ -99,7 +227,7 @@ class Blob { Dtype* mutable_cpu_diff(); Dtype* mutable_gpu_diff(); void Update(); - void FromProto(const BlobProto& proto); + void FromProto(const BlobProto& proto, bool reshape = true); void ToProto(BlobProto* proto, bool write_diff = false) const; /// @brief Compute the sum of absolute values (L1 norm) of the data. @@ -118,7 +246,7 @@ class Blob { /** * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the - * data_ of Blob other -- useful in Layer&s which simply perform a copy + * data_ of Blob other -- useful in Layer%s which simply perform a copy * in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's data_, as @@ -127,7 +255,7 @@ class Blob { void ShareData(const Blob& other); /** * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the - * diff_ of Blob other -- useful in Layer&s which simply perform a copy + * diff_ of Blob other -- useful in Layer%s which simply perform a copy * in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's diff_, as @@ -135,13 +263,12 @@ class Blob { */ void ShareDiff(const Blob& other); + bool ShapeEquals(const BlobProto& other); + protected: shared_ptr data_; shared_ptr diff_; - int num_; - int channels_; - int height_; - int width_; + vector shape_; int count_; int capacity_; diff --git a/include/caffe/common.hpp b/include/caffe/common.hpp index 890673cd7e6..6cf80a37bc1 100644 --- a/include/caffe/common.hpp +++ b/include/caffe/common.hpp @@ -5,6 +5,7 @@ #include #include +#include #include #include // NOLINT(readability/streams) #include // NOLINT(readability/streams) @@ -65,7 +66,7 @@ private:\ #define NOT_IMPLEMENTED LOG(FATAL) << "Not Implemented Yet" // See PR #1236 -namespace cv {class Mat;} +namespace cv { class Mat; } namespace caffe { diff --git a/include/caffe/common_layers.hpp b/include/caffe/common_layers.hpp index c67822c3738..b1ac3a93eff 100644 --- a/include/caffe/common_layers.hpp +++ b/include/caffe/common_layers.hpp @@ -99,8 +99,8 @@ class ConcatLayer : public Layer { * - K @f$ (N \times C \times H \times W) @f$ * the inputs @f$ x_K @f$ * @param top output Blob vector (length 1) - * -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or - * @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1: + * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or + * @f$ (N \times KC \times H \times W) @f$ if axis == 1: * the concatenated output @f$ * y = [\begin{array}{cccc} x_1 & x_2 & ... & x_K \end{array}] * @f$ @@ -115,8 +115,8 @@ class ConcatLayer : public Layer { * * @param top output Blob vector (length 1), providing the error gradient with * respect to the outputs - * -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or - * @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1: + * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or + * @f$ (N \times KC \times H \times W) @f$ if axis == 1: * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ * with respect to concatenated outputs @f$ y @f$ * @param propagate_down see Layer::Backward. @@ -137,13 +137,10 @@ class ConcatLayer : public Layer { virtual void Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); - Blob col_bob_; int count_; - int num_; - int channels_; - int height_; - int width_; - int concat_dim_; + int num_concats_; + int concat_input_size_; + int concat_axis_; }; /** @@ -216,8 +213,6 @@ class FlattenLayer : public Layer { */ virtual void Forward_cpu(const vector*>& bottom, const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); /** * @brief Computes the error gradient w.r.t. the concatenate inputs. @@ -230,10 +225,6 @@ class FlattenLayer : public Layer { */ virtual void Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int count_; }; /** @@ -362,6 +353,9 @@ class SoftmaxLayer : public Layer { virtual void Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); + int outer_num_; + int inner_num_; + int softmax_axis_; /// sum_multiplier is used to carry out sum using BLAS Blob sum_multiplier_; /// scale is an intermediate Blob to hold temporary results. @@ -458,13 +452,10 @@ class SliceLayer : public Layer { virtual void Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom); - Blob col_bob_; int count_; - int num_; - int channels_; - int height_; - int width_; - int slice_dim_; + int num_slices_; + int slice_size_; + int slice_axis_; vector slice_point_; }; diff --git a/include/caffe/filler.hpp b/include/caffe/filler.hpp index eebf565b1d5..bb18e8e1e28 100644 --- a/include/caffe/filler.hpp +++ b/include/caffe/filler.hpp @@ -79,9 +79,8 @@ class GaussianFiller : public Filler { // These have num == channels == 1; width is number of inputs; height is // number of outputs. The 'sparse' variable specifies the mean number // of non-zero input weights for a given output. - CHECK_EQ(blob->num(), 1); - CHECK_EQ(blob->channels(), 1); - int num_outputs = blob->height(); + CHECK_GE(blob->num_axes(), 1); + const int num_outputs = blob->shape(0); Dtype non_zero_probability = Dtype(sparse) / Dtype(num_outputs); rand_vec_.reset(new SyncedMemory(blob->count() * sizeof(int))); int* mask = reinterpret_cast(rand_vec_->mutable_cpu_data()); diff --git a/include/caffe/layer.hpp b/include/caffe/layer.hpp index 34e00d72c05..2d13ef97c05 100644 --- a/include/caffe/layer.hpp +++ b/include/caffe/layer.hpp @@ -17,11 +17,11 @@ namespace caffe { * @brief An interface for the units of computation which can be composed into a * Net. * - * Layer&s must implement a Forward function, in which they take their input - * (bottom) Blob&s (if any) and compute their output Blob&s (if any). + * Layer%s must implement a Forward function, in which they take their input + * (bottom) Blob%s (if any) and compute their output Blob%s (if any). * They may also implement a Backward function, in which they compute the error - * gradients with respect to their input Blob&s, given the error gradients with - * their output Blob&s. + * gradients with respect to their input Blob%s, given the error gradients with + * their output Blob%s. */ template class Layer { diff --git a/include/caffe/loss_layers.hpp b/include/caffe/loss_layers.hpp index 36413ccd176..d3eecd2e510 100644 --- a/include/caffe/loss_layers.hpp +++ b/include/caffe/loss_layers.hpp @@ -78,7 +78,14 @@ class AccuracyLayer : public Layer { } } + int label_axis_, outer_num_, inner_num_; + int top_k_; + + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; }; /** @@ -754,6 +761,8 @@ class SoftmaxWithLossLayer : public LossLayer { /// Whether to normalize the loss by the total number of values present /// (otherwise just by the batch size). bool normalize_; + + int softmax_axis_, outer_num_, inner_num_; }; } // namespace caffe diff --git a/include/caffe/solver.hpp b/include/caffe/solver.hpp index 2510de748de..4dcdc3dc20b 100644 --- a/include/caffe/solver.hpp +++ b/include/caffe/solver.hpp @@ -27,6 +27,10 @@ class Solver { virtual void Solve(const char* resume_file = NULL); inline void Solve(const string resume_file) { Solve(resume_file.c_str()); } void Step(int iters); + // The Restore function implements how one should restore the solver to a + // previously snapshotted state. You should implement the RestoreSolverState() + // function that restores the state from a SolverState protocol buffer. + void Restore(const char* resume_file); virtual ~Solver() {} inline shared_ptr > net() { return net_; } inline const vector > >& test_nets() { @@ -46,10 +50,6 @@ class Solver { void TestAll(); void Test(const int test_net_id = 0); virtual void SnapshotSolverState(SolverState* state) = 0; - // The Restore function implements how one should restore the solver to a - // previously snapshotted state. You should implement the RestoreSolverState() - // function that restores the state from a SolverState protocol buffer. - void Restore(const char* resume_file); virtual void RestoreSolverState(const SolverState& state) = 0; void DisplayOutputBlobs(const int net_id); diff --git a/matlab/caffe/matcaffe.cpp b/matlab/caffe/matcaffe.cpp index 996d3d2149c..da37d920b20 100644 --- a/matlab/caffe/matcaffe.cpp +++ b/matlab/caffe/matcaffe.cpp @@ -272,7 +272,7 @@ static void get_init_key(MEX_ARGS) { static void init(MEX_ARGS) { if (nrhs != 3) { ostringstream error_msg; - error_msg << "Expected 2 arguments, got " << nrhs; + error_msg << "Expected 3 arguments, got " << nrhs; mex_error(error_msg.str()); } diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 6afed4fa183..df0401daa1c 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -22,9 +22,13 @@ if(UNIX OR APPLE) endif() # ---[ Install -file(GLOB files *.py requirements.txt) -install(FILES ${files} DESTINATION python) -install(DIRECTORY caffe DESTINATION python) -install(TARGETS pycaffe DESTINATION python/caffe) +file(GLOB files1 *.py requirements.txt) +install(FILES ${files1} DESTINATION python) + +file(GLOB files2 caffe/*.py) +install(FILES ${files2} DESTINATION python/caffe) +install(TARGETS pycaffe DESTINATION python/caffe) +install(DIRECTORY caffe/imagenet caffe/proto caffe/test DESTINATION python/caffe) + diff --git a/python/caffe/__init__.py b/python/caffe/__init__.py index 37e8956da4f..b456ea9b287 100644 --- a/python/caffe/__init__.py +++ b/python/caffe/__init__.py @@ -3,4 +3,5 @@ from .proto.caffe_pb2 import TRAIN, TEST from .classifier import Classifier from .detector import Detector +from .layers import layers, params, to_proto import io diff --git a/python/caffe/_caffe.cpp b/python/caffe/_caffe.cpp index a5d0e64605e..dff7f627016 100644 --- a/python/caffe/_caffe.cpp +++ b/python/caffe/_caffe.cpp @@ -5,6 +5,7 @@ #include #include +#include #include #include @@ -163,9 +164,10 @@ struct NdarrayCallPolicies : public bp::default_call_policies { // the shape information from the blob. void* data = PyArray_DATA(reinterpret_cast(result)); Py_DECREF(result); - npy_intp dims[] = {blob->num(), blob->channels(), - blob->height(), blob->width()}; - PyObject* arr_obj = PyArray_SimpleNewFromData(4, dims, NPY_FLOAT32, data); + const int num_axes = blob->num_axes(); + vector dims(blob->shape().begin(), blob->shape().end()); + PyObject *arr_obj = PyArray_SimpleNewFromData(num_axes, dims.data(), + NPY_FLOAT32, data); // SetBaseObject steals a ref, so we need to INCREF. Py_INCREF(pyblob.ptr()); PyArray_SetBaseObject(reinterpret_cast(arr_obj), @@ -174,6 +176,20 @@ struct NdarrayCallPolicies : public bp::default_call_policies { } }; +bp::object Blob_Reshape(bp::tuple args, bp::dict kwargs) { + if (bp::len(kwargs) > 0) { + throw std::runtime_error("Blob.reshape takes no kwargs"); + } + Blob* self = bp::extract*>(args[0]); + vector shape(bp::len(args) - 1); + for (int i = 1; i < bp::len(args); ++i) { + shape[i - 1] = bp::extract(args[i]); + } + self->Reshape(shape); + // We need to explicitly return None to use bp::raw_function. + return bp::object(); +} + BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1); BOOST_PYTHON_MODULE(_caffe) { @@ -218,8 +234,9 @@ BOOST_PYTHON_MODULE(_caffe) { .add_property("channels", &Blob::channels) .add_property("height", &Blob::height) .add_property("width", &Blob::width) - .add_property("count", &Blob::count) - .def("reshape", &Blob::Reshape) + .add_property("count", static_cast::*)() const>( + &Blob::count)) + .def("reshape", bp::raw_function(&Blob_Reshape)) .add_property("data", bp::make_function(&Blob::mutable_cpu_data, NdarrayCallPolicies())) .add_property("diff", bp::make_function(&Blob::mutable_cpu_diff, @@ -244,7 +261,8 @@ BOOST_PYTHON_MODULE(_caffe) { .add_property("iter", &Solver::iter) .def("solve", static_cast::*)(const char*)>( &Solver::Solve), SolveOverloads()) - .def("step", &Solver::Step); + .def("step", &Solver::Step) + .def("restore", &Solver::Restore); bp::class_, bp::bases >, shared_ptr >, boost::noncopyable>( @@ -275,7 +293,9 @@ BOOST_PYTHON_MODULE(_caffe) { bp::class_ >("BoolVec") .def(bp::vector_indexing_suite >()); - import_array(); + // boost python expects a void (missing) return value, while import_array + // returns NULL for python3. import_array1() forces a void return value. + import_array1(); } } // namespace caffe diff --git a/python/caffe/classifier.py b/python/caffe/classifier.py index 94dd063a2c7..49f8003ce9d 100644 --- a/python/caffe/classifier.py +++ b/python/caffe/classifier.py @@ -28,7 +28,7 @@ def __init__(self, model_file, pretrained_file, image_dims=None, # configure pre-processing in_ = self.inputs[0] self.transformer = caffe.io.Transformer( - {in_: self.blobs[in_].data.shape for in_ in self.inputs}) + {in_: self.blobs[in_].data.shape}) self.transformer.set_transpose(in_, (2,0,1)) if mean is not None: self.transformer.set_mean(in_, mean) @@ -83,7 +83,7 @@ def predict(self, inputs, oversample=True): for ix, in_ in enumerate(input_): caffe_in[ix] = self.transformer.preprocess(self.inputs[0], in_) out = self.forward_all(**{self.inputs[0]: caffe_in}) - predictions = out[self.outputs[0]].squeeze(axis=(2,3)) + predictions = out[self.outputs[0]] # For oversampling, average predictions across crops. if oversample: diff --git a/python/caffe/detector.py b/python/caffe/detector.py index 4ea07fb7b36..a67b818b93f 100644 --- a/python/caffe/detector.py +++ b/python/caffe/detector.py @@ -24,7 +24,7 @@ class Detector(caffe.Net): Detector extends Net for windowed detection by a list of crops or selective search proposals. """ - def __init__(self, model_file, pretrained_file, gpu=False, mean=None, + def __init__(self, model_file, pretrained_file, mean=None, input_scale=None, raw_scale=None, channel_swap=None, context_pad=None): """ @@ -40,7 +40,7 @@ def __init__(self, model_file, pretrained_file, gpu=False, mean=None, # configure pre-processing in_ = self.inputs[0] self.transformer = caffe.io.Transformer( - {in_: self.blobs[in_].data.shape for in_ in self.inputs}) + {in_: self.blobs[in_].data.shape}) self.transformer.set_transpose(in_, (2,0,1)) if mean is not None: self.transformer.set_mean(in_, mean) diff --git a/python/caffe/io.py b/python/caffe/io.py index 0ce9ecfeeed..6ae2cf13cc0 100644 --- a/python/caffe/io.py +++ b/python/caffe/io.py @@ -3,7 +3,15 @@ from scipy.ndimage import zoom from skimage.transform import resize -from caffe.proto import caffe_pb2 +try: + # Python3 will most likely not be able to load protobuf + from caffe.proto import caffe_pb2 +except: + import sys + if sys.version_info >= (3,0): + print("Failed to include caffe_pb2, things might go wrong!") + else: + raise ## proto / datum / ndarray conversion @@ -230,12 +238,20 @@ def set_mean(self, in_, mean): mean: mean ndarray (input dimensional or broadcastable) """ self.__check_input(in_) + ms = mean.shape if mean.ndim == 1: + # broadcast channels + if ms[0] != self.inputs[in_][1]: + raise ValueError('Mean channels incompatible with input.') mean = mean[:, np.newaxis, np.newaxis] - mk, mh, mw = mean.shape - in_k, in_h, in_w = self.inputs[in_][1:] - #if mk != in_k or (mh, mw) != (in_h, in_w) and (mh, mw) != (1, 1): - # raise Exception('Mean shape incompatible with input shape.') + else: + # elementwise mean + if len(ms) == 2: + ms = (1,) + ms + if len(ms) != 3: + raise ValueError('Mean shape invalid') + if ms != self.inputs[in_][1:]: + raise ValueError('Mean shape incompatible with input shape.') self.mean[in_] = mean diff --git a/python/caffe/layers.py b/python/caffe/layers.py new file mode 100644 index 00000000000..5c44936251f --- /dev/null +++ b/python/caffe/layers.py @@ -0,0 +1,95 @@ +from collections import OrderedDict +import re + +from .proto import caffe_pb2 +from google import protobuf + +def uncamel(s): + """Convert CamelCase to underscore_case.""" + + return re.sub('(?!^)([A-Z])(?=[^A-Z])', r'_\1', s).lower() + +def assign_proto(proto, name, val): + if isinstance(val, list): + getattr(proto, name).extend(val) + elif isinstance(val, dict): + for k, v in val.iteritems(): + assign_proto(getattr(proto, name), k, v) + else: + setattr(proto, name, val) + +def to_proto(tops, names): + if not isinstance(tops, tuple): + tops = (tops,) + layers = OrderedDict() + for top in tops: + top.fn._to_proto(layers, names) + + net = caffe_pb2.NetParameter() + net.layer.extend(layers.values()) + return net + +class Top: + def __init__(self, fn, n): + self.fn = fn + self.n = n + +class Function: + def __init__(self, type_name, inputs, params): + self.type_name = type_name + self.inputs = inputs + self.params = params + self.ntop = self.params.get('ntop', 1) + if 'ntop' in self.params: + del self.params['ntop'] + self.in_place = self.params.get('in_place', False) + if 'in_place' in self.params: + del self.params['in_place'] + self.tops = tuple(Top(self, n) for n in range(self.ntop)) + + def _to_proto(self, layers, names): + bottom_names = [] + for inp in self.inputs: + if inp.fn not in layers: + inp.fn._to_proto(layers, names) + bottom_names.append(layers[inp.fn].top[inp.n]) + layer = caffe_pb2.LayerParameter() + layer.type = self.type_name + layer.bottom.extend(bottom_names) + + if self.in_place: + layer.top.extend(layer.bottom) + layer.name = names[self.tops[0]] + else: + for top in self.tops: + layer.top.append(names[top]) + layer.name = layer.top[0] + + for k, v in self.params.iteritems(): + # special case to handle generic *params + if k.endswith('param'): + assign_proto(layer, k, v) + else: + assign_proto(getattr(layer, uncamel(self.type_name) + '_param'), k, v) + + layers[self] = layer + +class Layers: + def __getattr__(self, name): + def layer_fn(*args, **kwargs): + fn = Function(name, args, kwargs) + if fn.ntop == 1: + return fn.tops[0] + else: + return fn.tops + return layer_fn + +class Parameters: + def __getattr__(self, name): + class Param: + def __getattr__(self, param_name): + return getattr(getattr(caffe_pb2, name + 'Parameter'), param_name) + return Param() + +layers = Layers() +params = Parameters() diff --git a/python/caffe/pycaffe.py b/python/caffe/pycaffe.py index 31c145d77a5..3c19261f690 100644 --- a/python/caffe/pycaffe.py +++ b/python/caffe/pycaffe.py @@ -4,7 +4,10 @@ """ from collections import OrderedDict -from itertools import izip_longest +try: + from itertools import izip_longest +except: + from itertools import zip_longest as izip_longest import numpy as np from ._caffe import Net, SGDSolver @@ -38,12 +41,12 @@ def _Net_params(self): @property def _Net_inputs(self): - return [self.blobs.keys()[i] for i in self._inputs] + return [list(self.blobs.keys())[i] for i in self._inputs] @property def _Net_outputs(self): - return [self.blobs.keys()[i] for i in self._outputs] + return [list(self.blobs.keys())[i] for i in self._outputs] def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): @@ -82,8 +85,6 @@ def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): # Set input according to defined shapes and make arrays single and # C-contiguous as Caffe expects. for in_, blob in kwargs.iteritems(): - if blob.ndim != 4: - raise Exception('{} blob is not 4-d'.format(in_)) if blob.shape[0] != self.blobs[in_].num: raise Exception('Input is not batch sized') self.blobs[in_].data[...] = blob diff --git a/python/caffe/test/test_python_layer.py b/python/caffe/test/test_python_layer.py index 383c283959d..dd99f6f15b9 100644 --- a/python/caffe/test/test_python_layer.py +++ b/python/caffe/test/test_python_layer.py @@ -11,8 +11,7 @@ def setup(self, bottom, top): pass def reshape(self, bottom, top): - top[0].reshape(bottom[0].num, bottom[0].channels, bottom[0].height, - bottom[0].width) + top[0].reshape(*bottom[0].data.shape) def forward(self, bottom, top): top[0].data[...] = 10 * bottom[0].data @@ -21,17 +20,16 @@ def backward(self, top, propagate_down, bottom): bottom[0].diff[...] = 10 * top[0].diff def python_net_file(): - f = tempfile.NamedTemporaryFile(delete=False) - f.write("""name: 'pythonnet' force_backward: true - input: 'data' input_dim: 10 input_dim: 9 input_dim: 8 input_dim: 7 - layer { type: 'Python' name: 'one' bottom: 'data' top: 'one' - python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } - layer { type: 'Python' name: 'two' bottom: 'one' top: 'two' - python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } - layer { type: 'Python' name: 'three' bottom: 'two' top: 'three' - python_param { module: 'test_python_layer' layer: 'SimpleLayer' } }""") - f.close() - return f.name + with tempfile.NamedTemporaryFile(delete=False) as f: + f.write("""name: 'pythonnet' force_backward: true + input: 'data' input_shape { dim: 10 dim: 9 dim: 8 } + layer { type: 'Python' name: 'one' bottom: 'data' top: 'one' + python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } + layer { type: 'Python' name: 'two' bottom: 'one' top: 'two' + python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } + layer { type: 'Python' name: 'three' bottom: 'two' top: 'three' + python_param { module: 'test_python_layer' layer: 'SimpleLayer' } }""") + return f.name class TestPythonLayer(unittest.TestCase): def setUp(self): diff --git a/python/classify.py b/python/classify.py index d435a572266..1e26ff48a23 100755 --- a/python/classify.py +++ b/python/classify.py @@ -96,33 +96,41 @@ def main(argv): if args.channel_swap: channel_swap = [int(s) for s in args.channel_swap.split(',')] + if args.gpu: + caffe.set_mode_gpu() + print("GPU mode") + else: + caffe.set_mode_cpu() + print("CPU mode") + # Make classifier. classifier = caffe.Classifier(args.model_def, args.pretrained_model, - image_dims=image_dims, gpu=args.gpu, mean=mean, + image_dims=image_dims, mean=mean, input_scale=args.input_scale, raw_scale=args.raw_scale, channel_swap=channel_swap) - if args.gpu: - print 'GPU mode' - # Load numpy array (.npy), directory glob (*.jpg), or image file. args.input_file = os.path.expanduser(args.input_file) if args.input_file.endswith('npy'): + print("Loading file: %s" %s args.input_file inputs = np.load(args.input_file) elif os.path.isdir(args.input_file): + print("Loading folder: %s" % args.input_file) inputs =[caffe.io.load_image(im_f) for im_f in glob.glob(args.input_file + '/*.' + args.ext)] else: + print("Loading file: %s" % args.input_file) inputs = [caffe.io.load_image(args.input_file)] - print "Classifying %d inputs." % len(inputs) + print("Classifying %d inputs." % len(inputs)) # Classify. start = time.time() predictions = classifier.predict(inputs, not args.center_only) - print "Done in %.2f s." % (time.time() - start) + print("Done in %.2f s." % (time.time() - start)) # Save + print("Saving results into %s" % args.output_file) np.save(args.output_file, predictions) diff --git a/python/detect.py b/python/detect.py index cb0c2645761..691098f5c53 100755 --- a/python/detect.py +++ b/python/detect.py @@ -107,19 +107,22 @@ def main(argv): if args.channel_swap: channel_swap = [int(s) for s in args.channel_swap.split(',')] + if args.gpu: + caffe.set_mode_gpu() + print("GPU mode") + else: + caffe.set_mode_cpu() + print("CPU mode") + # Make detector. - detector = caffe.Detector(args.model_def, args.pretrained_model, - gpu=args.gpu, mean=mean, + detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean, input_scale=args.input_scale, raw_scale=args.raw_scale, channel_swap=channel_swap, context_pad=args.context_pad) - if args.gpu: - print 'GPU mode' - # Load input. t = time.time() - print('Loading input...') + print("Loading input...") if args.input_file.lower().endswith('txt'): with open(args.input_file) as f: inputs = [_.strip() for _ in f.readlines()] diff --git a/python/draw_net.py b/python/draw_net.py index 4457b793e86..6320f775ef7 100755 --- a/python/draw_net.py +++ b/python/draw_net.py @@ -36,7 +36,7 @@ def main(): args = parse_args() net = caffe_pb2.NetParameter() text_format.Merge(open(args.input_net_proto_file).read(), net) - print 'Drawing net to %s' % args.output_image_file + print('Drawing net to %s' % args.output_image_file) caffe.draw.draw_net_to_file(net, args.output_image_file, args.rankdir) diff --git a/python/requirements.txt b/python/requirements.txt index 908373bf452..6a90fd6f5b4 100644 --- a/python/requirements.txt +++ b/python/requirements.txt @@ -14,3 +14,4 @@ python-dateutil>=1.4,<2 protobuf>=2.5.0 python-gflags>=2.0 pyyaml>=3.10 +Pillow>=2.7.0 diff --git a/scripts/cpp_lint.py b/scripts/cpp_lint.py index 1b7c6c0536c..f750489f4f9 100755 --- a/scripts/cpp_lint.py +++ b/scripts/cpp_lint.py @@ -1,4 +1,4 @@ -#!/usr/bin/python +#!/usr/bin/python2 # # Copyright (c) 2009 Google Inc. All rights reserved. # diff --git a/src/caffe/blob.cpp b/src/caffe/blob.cpp index fbc1361a19d..6d2b3f502d9 100644 --- a/src/caffe/blob.cpp +++ b/src/caffe/blob.cpp @@ -1,3 +1,6 @@ +#include +#include + #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/syncedmem.hpp" @@ -8,15 +11,24 @@ namespace caffe { template void Blob::Reshape(const int num, const int channels, const int height, const int width) { - CHECK_GE(num, 0); - CHECK_GE(channels, 0); - CHECK_GE(height, 0); - CHECK_GE(width, 0); - num_ = num; - channels_ = channels; - height_ = height; - width_ = width; - count_ = num_ * channels_ * height_ * width_; + vector shape(4); + shape[0] = num; + shape[1] = channels; + shape[2] = height; + shape[3] = width; + Reshape(shape); +} + +template +void Blob::Reshape(const vector& shape) { + CHECK_LE(shape.size(), kMaxBlobAxes); + count_ = 1; + shape_.resize(shape.size()); + for (int i = 0; i < shape.size(); ++i) { + CHECK_GE(shape[i], 0); + count_ *= shape[i]; + shape_[i] = shape[i]; + } if (count_ > capacity_) { capacity_ = count_; data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); @@ -24,9 +36,19 @@ void Blob::Reshape(const int num, const int channels, const int height, } } +template +void Blob::Reshape(const BlobShape& shape) { + CHECK_LE(shape.dim_size(), kMaxBlobAxes); + vector shape_vec(shape.dim_size()); + for (int i = 0; i < shape.dim_size(); ++i) { + shape_vec[i] = shape.dim(i); + } + Reshape(shape_vec); +} + template void Blob::ReshapeLike(const Blob& other) { - Reshape(other.num(), other.channels(), other.height(), other.width()); + Reshape(other.shape()); } template @@ -37,6 +59,13 @@ Blob::Blob(const int num, const int channels, const int height, Reshape(num, channels, height, width); } +template +Blob::Blob(const vector& shape) + // capacity_ must be initialized before calling Reshape + : capacity_(0) { + Reshape(shape); +} + template const Dtype* Blob::cpu_data() const { CHECK(data_); @@ -345,12 +374,34 @@ void Blob::scale_diff(Dtype scale_factor) { } } +template +bool Blob::ShapeEquals(const BlobProto& other) { + if (other.has_num() || other.has_channels() || + other.has_height() || other.has_width()) { + // Using deprecated 4D Blob dimensions -- + // shape is (num, channels, height, width). + // Note: we do not use the normal Blob::num(), Blob::channels(), etc. + // methods as these index from the beginning of the blob shape, where legacy + // parameter blobs were indexed from the end of the blob shape (e.g., bias + // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)). + return shape_.size() <= 4 && + LegacyShape(-4) == other.num() && + LegacyShape(-3) == other.channels() && + LegacyShape(-2) == other.height() && + LegacyShape(-1) == other.width(); + } + vector other_shape(other.shape().dim_size()); + for (int i = 0; i < other.shape().dim_size(); ++i) { + other_shape[i] = other.shape().dim(i); + } + return shape_ == other_shape; +} + template void Blob::CopyFrom(const Blob& source, bool copy_diff, bool reshape) { - if (num_ != source.num() || channels_ != source.channels() || - height_ != source.height() || width_ != source.width()) { + if (source.count() != count_ || source.shape() != shape_) { if (reshape) { - Reshape(source.num(), source.channels(), source.height(), source.width()); + ReshapeLike(source); } else { LOG(FATAL) << "Trying to copy blobs of different sizes."; } @@ -380,8 +431,28 @@ void Blob::CopyFrom(const Blob& source, bool copy_diff, bool reshape) { } template -void Blob::FromProto(const BlobProto& proto) { - Reshape(proto.num(), proto.channels(), proto.height(), proto.width()); +void Blob::FromProto(const BlobProto& proto, bool reshape) { + if (reshape) { + vector shape; + if (proto.has_num() || proto.has_channels() || + proto.has_height() || proto.has_width()) { + // Using deprecated 4D Blob dimensions -- + // shape is (num, channels, height, width). + shape.resize(4); + shape[0] = proto.num(); + shape[1] = proto.channels(); + shape[2] = proto.height(); + shape[3] = proto.width(); + } else { + shape.resize(proto.shape().dim_size()); + for (int i = 0; i < proto.shape().dim_size(); ++i) { + shape[i] = proto.shape().dim(i); + } + } + Reshape(shape); + } else { + CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)"; + } // copy data Dtype* data_vec = mutable_cpu_data(); for (int i = 0; i < count_; ++i) { @@ -397,10 +468,10 @@ void Blob::FromProto(const BlobProto& proto) { template void Blob::ToProto(BlobProto* proto, bool write_diff) const { - proto->set_num(num_); - proto->set_channels(channels_); - proto->set_height(height_); - proto->set_width(width_); + proto->clear_shape(); + for (int i = 0; i < shape_.size(); ++i) { + proto->mutable_shape()->add_dim(shape_[i]); + } proto->clear_data(); proto->clear_diff(); const Dtype* data_vec = cpu_data(); diff --git a/src/caffe/layers/accuracy_layer.cpp b/src/caffe/layers/accuracy_layer.cpp index 3e8df34c0d6..90aad675ed3 100644 --- a/src/caffe/layers/accuracy_layer.cpp +++ b/src/caffe/layers/accuracy_layer.cpp @@ -14,19 +14,30 @@ template void AccuracyLayer::LayerSetUp( const vector*>& bottom, const vector*>& top) { top_k_ = this->layer_param_.accuracy_param().top_k(); + + has_ignore_label_ = + this->layer_param_.accuracy_param().has_ignore_label(); + if (has_ignore_label_) { + ignore_label_ = this->layer_param_.accuracy_param().ignore_label(); + } } template void AccuracyLayer::Reshape( const vector*>& bottom, const vector*>& top) { - CHECK_EQ(bottom[0]->num(), bottom[1]->num()) - << "The data and label should have the same number."; - CHECK_LE(top_k_, bottom[0]->count() / bottom[0]->num()) + CHECK_LE(top_k_, bottom[0]->count() / bottom[1]->count()) << "top_k must be less than or equal to the number of classes."; - CHECK_EQ(bottom[1]->channels(), 1); - CHECK_EQ(bottom[1]->height(), 1); - CHECK_EQ(bottom[1]->width(), 1); - top[0]->Reshape(1, 1, 1, 1); + label_axis_ = + bottom[0]->CanonicalAxisIndex(this->layer_param_.accuracy_param().axis()); + outer_num_ = bottom[0]->count(0, label_axis_); + inner_num_ = bottom[0]->count(label_axis_ + 1); + CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count()) + << "Number of labels must match number of predictions; " + << "e.g., if label axis == 1 and prediction shape is (N, C, H, W), " + << "label count (number of labels) must be N*H*W, " + << "with integer values in {0, 1, ..., C-1}."; + vector top_shape(0); // Accuracy is a scalar; 0 axes. + top[0]->Reshape(top_shape); } template @@ -35,31 +46,42 @@ void AccuracyLayer::Forward_cpu(const vector*>& bottom, Dtype accuracy = 0; const Dtype* bottom_data = bottom[0]->cpu_data(); const Dtype* bottom_label = bottom[1]->cpu_data(); - int num = bottom[0]->num(); - int dim = bottom[0]->count() / bottom[0]->num(); + const int dim = bottom[0]->count() / outer_num_; + const int num_labels = bottom[0]->shape(label_axis_); vector maxval(top_k_+1); vector max_id(top_k_+1); - for (int i = 0; i < num; ++i) { - // Top-k accuracy - std::vector > bottom_data_vector; - for (int j = 0; j < dim; ++j) { - bottom_data_vector.push_back( - std::make_pair(bottom_data[i * dim + j], j)); - } - std::partial_sort( - bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, - bottom_data_vector.end(), std::greater >()); - // check if true label is in top k predictions - for (int k = 0; k < top_k_; k++) { - if (bottom_data_vector[k].second == static_cast(bottom_label[i])) { - ++accuracy; - break; + int count = 0; + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; ++j) { + const int label_value = + static_cast(bottom_label[i * inner_num_ + j]); + if (has_ignore_label_ && label_value == ignore_label_) { + continue; + } + DCHECK_GE(label_value, 0); + DCHECK_LT(label_value, num_labels); + // Top-k accuracy + std::vector > bottom_data_vector; + for (int k = 0; k < num_labels; ++k) { + bottom_data_vector.push_back(std::make_pair( + bottom_data[i * dim + k * inner_num_ + j], k)); + } + std::partial_sort( + bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, + bottom_data_vector.end(), std::greater >()); + // check if true label is in top k predictions + for (int k = 0; k < top_k_; k++) { + if (bottom_data_vector[k].second == label_value) { + ++accuracy; + break; + } } + ++count; } } // LOG(INFO) << "Accuracy: " << accuracy; - top[0]->mutable_cpu_data()[0] = accuracy / num; + top[0]->mutable_cpu_data()[0] = accuracy / count; // Accuracy layer should not be used as a loss function. } diff --git a/src/caffe/layers/base_conv_layer.cpp b/src/caffe/layers/base_conv_layer.cpp index dccd5170c11..ccb3adc7e89 100644 --- a/src/caffe/layers/base_conv_layer.cpp +++ b/src/caffe/layers/base_conv_layer.cpp @@ -11,6 +11,8 @@ namespace caffe { template void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { + CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " + << "corresponding to (num, channels, height, width)"; // Configure the kernel size, padding, stride, and inputs. ConvolutionParameter conv_param = this->layer_param_.convolution_param(); CHECK(!conv_param.has_kernel_size() != @@ -85,10 +87,10 @@ void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, shared_ptr > weight_filler(GetFiller( this->layer_param_.convolution_param().weight_filler())); weight_filler->Fill(this->blobs_[0].get()); - // If necessary, initialize and fill the biases: - // 1 x 1 x 1 x output channels + // If necessary, initialize and fill the biases. if (bias_term_) { - this->blobs_[1].reset(new Blob(1, 1, 1, num_output_)); + vector bias_shape(1, num_output_); + this->blobs_[1].reset(new Blob(bias_shape)); shared_ptr > bias_filler(GetFiller( this->layer_param_.convolution_param().bias_filler())); bias_filler->Fill(this->blobs_[1].get()); @@ -101,6 +103,8 @@ void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, template void BaseConvolutionLayer::Reshape(const vector*>& bottom, const vector*>& top) { + CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " + << "corresponding to (num, channels, height, width)"; num_ = bottom[0]->num(); height_ = bottom[0]->height(); width_ = bottom[0]->width(); @@ -144,7 +148,8 @@ void BaseConvolutionLayer::Reshape(const vector*>& bottom, } // Set up the all ones "bias multiplier" for adding biases by BLAS if (bias_term_) { - bias_multiplier_.Reshape(1, 1, 1, height_out_ * width_out_); + vector bias_multiplier_shape(1, height_out_ * width_out_); + bias_multiplier_.Reshape(bias_multiplier_shape); caffe_set(bias_multiplier_.count(), Dtype(1), bias_multiplier_.mutable_cpu_data()); } diff --git a/src/caffe/layers/concat_layer.cpp b/src/caffe/layers/concat_layer.cpp index fc88433c42b..1cac8fc3387 100644 --- a/src/caffe/layers/concat_layer.cpp +++ b/src/caffe/layers/concat_layer.cpp @@ -9,62 +9,63 @@ namespace caffe { template void ConcatLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { - concat_dim_ = this->layer_param_.concat_param().concat_dim(); - CHECK_GE(concat_dim_, 0) << - "concat_dim should be >= 0"; - CHECK_LE(concat_dim_, 1) << - "For now concat_dim <=1, it can only concat num and channels"; + const ConcatParameter& concat_param = this->layer_param_.concat_param(); + CHECK(!(concat_param.has_axis() && concat_param.has_concat_dim())) + << "Either axis or concat_dim should be specified; not both."; } template void ConcatLayer::Reshape(const vector*>& bottom, const vector*>& top) { + const int num_axes = bottom[0]->num_axes(); + const ConcatParameter& concat_param = this->layer_param_.concat_param(); + if (concat_param.has_concat_dim()) { + concat_axis_ = static_cast(concat_param.concat_dim()); + // Don't allow negative indexing for concat_dim, a uint32 -- almost + // certainly unintended. + CHECK_GE(concat_axis_, 0) << "casting concat_dim from uint32 to int32 " + << "produced negative result; concat_dim must satisfy " + << "0 <= concat_dim < " << kMaxBlobAxes; + CHECK_LT(concat_axis_, num_axes) << "concat_dim out of range."; + } else { + concat_axis_ = bottom[0]->CanonicalAxisIndex(concat_param.axis()); + } // Initialize with the first blob. - count_ = bottom[0]->count(); - num_ = bottom[0]->num(); - channels_ = bottom[0]->channels(); - height_ = bottom[0]->height(); - width_ = bottom[0]->width(); + vector top_shape = bottom[0]->shape(); + num_concats_ = bottom[0]->count(0, concat_axis_); + concat_input_size_ = bottom[0]->count(concat_axis_ + 1); + int bottom_count_sum = bottom[0]->count(); for (int i = 1; i < bottom.size(); ++i) { - count_ += bottom[i]->count(); - if (concat_dim_== 0) { - num_ += bottom[i]->num(); - } else if (concat_dim_ == 1) { - channels_ += bottom[i]->channels(); - } else if (concat_dim_ == 2) { - height_ += bottom[i]->height(); - } else if (concat_dim_ == 3) { - width_ += bottom[i]->width(); + CHECK_EQ(num_axes, bottom[i]->num_axes()) + << "All inputs must have the same #axes."; + for (int j = 0; j < num_axes; ++j) { + if (j == concat_axis_) { continue; } + CHECK_EQ(top_shape[j], bottom[i]->shape(j)) + << "All inputs must have the same shape, except at concat_axis."; } + bottom_count_sum += bottom[i]->count(); + top_shape[concat_axis_] += bottom[i]->shape(concat_axis_); } - top[0]->Reshape(num_, channels_, height_, width_); - CHECK_EQ(count_, top[0]->count()); + top[0]->Reshape(top_shape); + CHECK_EQ(bottom_count_sum, top[0]->count()); } template void ConcatLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { Dtype* top_data = top[0]->mutable_cpu_data(); - if (concat_dim_== 0) { - int offset_num = 0; - for (int i = 0; i < bottom.size(); ++i) { - const Dtype* bottom_data = bottom[i]->cpu_data(); - int num_elem = bottom[i]->count(); - caffe_copy(num_elem, bottom_data, top_data+top[0]->offset(offset_num)); - offset_num += bottom[i]->num(); + int offset_concat_axis = 0; + const int top_concat_axis = top[0]->shape(concat_axis_); + for (int i = 0; i < bottom.size(); ++i) { + const Dtype* bottom_data = bottom[i]->cpu_data(); + const int bottom_concat_axis = bottom[i]->shape(concat_axis_); + for (int n = 0; n < num_concats_; ++n) { + caffe_copy(bottom_concat_axis * concat_input_size_, + bottom_data + n * bottom_concat_axis * concat_input_size_, + top_data + (n * top_concat_axis + offset_concat_axis) + * concat_input_size_); } - } else if (concat_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < bottom.size(); ++i) { - const Dtype* bottom_data = bottom[i]->cpu_data(); - int num_elem = - bottom[i]->channels()*bottom[i]->height()*bottom[i]->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, bottom_data+bottom[i]->offset(n), - top_data+top[0]->offset(n, offset_channel)); - } - offset_channel += bottom[i]->channels(); - } // concat_dim_ is guaranteed to be 0 or 1 by LayerSetUp. + offset_concat_axis += bottom_concat_axis; } } @@ -72,32 +73,19 @@ template void ConcatLayer::Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { const Dtype* top_diff = top[0]->cpu_diff(); - if (concat_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < bottom.size(); ++i) { - Blob* blob = bottom[i]; - if (propagate_down[i]) { - Dtype* bottom_diff = blob->mutable_cpu_diff(); - caffe_copy(blob->count(), top_diff + top[0]->offset(offset_num), - bottom_diff); - } - offset_num += blob->num(); - } - } else if (concat_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < bottom.size(); ++i) { - Blob* blob = bottom[i]; - if (propagate_down[i]) { - Dtype* bottom_diff = blob->mutable_cpu_diff(); - int num_elem = blob->channels()*blob->height()*blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, top_diff + top[0]->offset(n, offset_channel), - bottom_diff + blob->offset(n)); - } - } - offset_channel += blob->channels(); + int offset_concat_axis = 0; + const int top_concat_axis = top[0]->shape(concat_axis_); + for (int i = 0; i < bottom.size(); ++i) { + if (!propagate_down[i]) { continue; } + Dtype* bottom_diff = bottom[i]->mutable_cpu_diff(); + const int bottom_concat_axis = bottom[i]->shape(concat_axis_); + for (int n = 0; n < num_concats_; ++n) { + caffe_copy(bottom_concat_axis * concat_input_size_, top_diff + + (n * top_concat_axis + offset_concat_axis) * concat_input_size_, + bottom_diff + n * bottom_concat_axis * concat_input_size_); } - } // concat_dim_ is guaranteed to be 0 or 1 by LayerSetUp. + offset_concat_axis += bottom_concat_axis; + } } #ifdef CPU_ONLY diff --git a/src/caffe/layers/concat_layer.cu b/src/caffe/layers/concat_layer.cu index 88fc090025f..dbadb5aeb30 100644 --- a/src/caffe/layers/concat_layer.cu +++ b/src/caffe/layers/concat_layer.cu @@ -10,29 +10,18 @@ template void ConcatLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { Dtype* top_data = top[0]->mutable_gpu_data(); - if (concat_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < bottom.size(); ++i) { - const Dtype* bottom_data = bottom[i]->gpu_data(); - caffe_copy(bottom[i]->count(), bottom_data, - top_data + top[0]->offset(offset_num)); - offset_num += bottom[i]->num(); + int offset_concat_axis = 0; + const int top_concat_axis = top[0]->shape(concat_axis_); + for (int i = 0; i < bottom.size(); ++i) { + const Dtype* bottom_data = bottom[i]->gpu_data(); + const int bottom_concat_axis = bottom[i]->shape(concat_axis_); + for (int n = 0; n < num_concats_; ++n) { + caffe_copy(bottom_concat_axis * concat_input_size_, + bottom_data + n * bottom_concat_axis * concat_input_size_, + top_data + (n * top_concat_axis + offset_concat_axis) + * concat_input_size_); } - } else if (concat_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < bottom.size(); ++i) { - const Dtype* bottom_data = bottom[i]->gpu_data(); - int num_elem = - bottom[i]->channels() * bottom[i]->height() * bottom[i]->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, bottom_data+bottom[i]->offset(n), - top_data + top[0]->offset(n, offset_channel)); - } - offset_channel += bottom[i]->channels(); - } - } else { - LOG(FATAL) << "concat_dim along dim" << concat_dim_ << - " not implemented yet"; + offset_concat_axis += bottom_concat_axis; } } @@ -40,34 +29,18 @@ template void ConcatLayer::Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { const Dtype* top_diff = top[0]->gpu_diff(); - if (concat_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < bottom.size(); ++i) { - Blob* blob = bottom[i]; - if (propagate_down[i]) { - Dtype* bottom_diff = blob->mutable_gpu_diff(); - caffe_copy(blob->count(), top_diff + top[0]->offset(offset_num), - bottom_diff); - } - offset_num += blob->num(); - } - } else if (concat_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < bottom.size(); ++i) { - Blob* blob = bottom[i]; - if (propagate_down[i]) { - Dtype* bottom_diff = blob->mutable_gpu_diff(); - int num_elem = blob->channels()*blob->height()*blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, top_diff + top[0]->offset(n, offset_channel), - bottom_diff + blob->offset(n)); - } - } - offset_channel += blob->channels(); + int offset_concat_axis = 0; + const int top_concat_axis = top[0]->shape(concat_axis_); + for (int i = 0; i < bottom.size(); ++i) { + if (!propagate_down[i]) { continue; } + Dtype* bottom_diff = bottom[i]->mutable_gpu_diff(); + const int bottom_concat_axis = bottom[i]->shape(concat_axis_); + for (int n = 0; n < num_concats_; ++n) { + caffe_copy(bottom_concat_axis * concat_input_size_, top_diff + + (n * top_concat_axis + offset_concat_axis) * concat_input_size_, + bottom_diff + n * bottom_concat_axis * concat_input_size_); } - } else { - LOG(FATAL) << "concat_dim along dim" << concat_dim_ << - " not implemented yet"; + offset_concat_axis += bottom_concat_axis; } } diff --git a/src/caffe/layers/cudnn_softmax_layer.cpp b/src/caffe/layers/cudnn_softmax_layer.cpp index 83a5b69a626..211701cad49 100644 --- a/src/caffe/layers/cudnn_softmax_layer.cpp +++ b/src/caffe/layers/cudnn_softmax_layer.cpp @@ -26,10 +26,10 @@ template void CuDNNSoftmaxLayer::Reshape(const vector*>& bottom, const vector*>& top) { SoftmaxLayer::Reshape(bottom, top); - int N = bottom[0]->num(); - int K = bottom[0]->channels(); - int H = bottom[0]->height(); - int W = bottom[0]->width(); + int N = this->outer_num_; + int K = bottom[0]->shape(this->softmax_axis_); + int H = this->inner_num_; + int W = 1; cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); } diff --git a/src/caffe/layers/data_layer.cpp b/src/caffe/layers/data_layer.cpp index 8877caf89c8..0f2d66776a9 100644 --- a/src/caffe/layers/data_layer.cpp +++ b/src/caffe/layers/data_layer.cpp @@ -69,9 +69,9 @@ void DataLayer::DataLayerSetUp(const vector*>& bottom, << top[0]->width(); // label if (this->output_labels_) { - top[1]->Reshape(this->layer_param_.data_param().batch_size(), 1, 1, 1); - this->prefetch_label_.Reshape(this->layer_param_.data_param().batch_size(), - 1, 1, 1); + vector label_shape(1, this->layer_param_.data_param().batch_size()); + top[1]->Reshape(label_shape); + this->prefetch_label_.Reshape(label_shape); } } @@ -89,9 +89,17 @@ void DataLayer::InternalThreadEntry() { // Reshape on single input batches for inputs of varying dimension. const int batch_size = this->layer_param_.data_param().batch_size(); const int crop_size = this->layer_param_.transform_param().crop_size(); + bool force_color = this->layer_param_.data_param().force_encoded_color(); if (batch_size == 1 && crop_size == 0) { Datum datum; datum.ParseFromString(cursor_->value()); + if (datum.encoded()) { + if (force_color) { + DecodeDatum(&datum, true); + } else { + DecodeDatumNative(&datum); + } + } this->prefetch_data_.Reshape(1, datum.channels(), datum.height(), datum.width()); this->transformed_data_.Reshape(1, datum.channels(), @@ -104,7 +112,6 @@ void DataLayer::InternalThreadEntry() { if (this->output_labels_) { top_label = this->prefetch_label_.mutable_cpu_data(); } - bool force_color = this->layer_param_.data_param().force_encoded_color(); for (int item_id = 0; item_id < batch_size; ++item_id) { timer.Start(); // get a blob diff --git a/src/caffe/layers/dummy_data_layer.cpp b/src/caffe/layers/dummy_data_layer.cpp index d254eb1f961..6b0d617464c 100644 --- a/src/caffe/layers/dummy_data_layer.cpp +++ b/src/caffe/layers/dummy_data_layer.cpp @@ -16,18 +16,30 @@ void DummyDataLayer::LayerSetUp(const vector*>& bottom, num_data_filler == num_top) << "Number of data fillers must be 0, 1 or equal to the number of tops: " << num_top << "; you specified " << num_data_filler << " data fillers."; - CHECK(param.num_size() == 1 || param.num_size() == num_top) - << "Must specify either a single (1) 'num' or one for each top blob " - << "(" << num_top << "); you specified " << param.num_size() << "."; - CHECK(param.channels_size() == 1 || param.channels_size() == num_top) - << "Must specify either a single (1) 'channels' or one for each top blob " - << "(" << num_top << "); you specified " << param.channels_size() << "."; - CHECK(param.height_size() == 1 || param.height_size() == num_top) - << "Must specify either a single (1) 'height' or one for each top blob " - << "(" << num_top << "); you specified " << param.height_size() << "."; - CHECK(param.width_size() == 1 || param.width_size() == num_top) - << "Must specify either a single (1) 'width' or one for each top blob " - << "(" << num_top << "); you specified " << param.width_size() << "."; + + const bool legacy_dims = param.num_size() || param.channels_size() || + param.height_size() || param.width_size(); + if (legacy_dims) { + CHECK_EQ(0, param.shape_size()) + << "Both shape and legacy fields were specified"; + // Using deprecated 4D output dim specifiers. + CHECK(param.num_size() == 1 || param.num_size() == num_top) + << "Must specify 'num' once, or once per top blob " + << "(" << num_top << "); specified " << param.num_size() << "."; + CHECK(param.channels_size() == 1 || param.channels_size() == num_top) + << "Must specify 'channels' once, or once per top blob " + << "(" << num_top << "); specified " << param.channels_size() << "."; + CHECK(param.height_size() == 1 || param.height_size() == num_top) + << "Must specify 'height' once, or once per top blob " + << "(" << num_top << "); specified " << param.height_size() << "."; + CHECK(param.width_size() == 1 || param.width_size() == num_top) + << "Must specify 'width' once, or once per top blob " + << "(" << num_top << "); specified " << param.width_size() << "."; + } else { + CHECK(param.shape_size() == 1 || param.shape_size() == num_top) + << "Must specify 'shape' once, or once per top blob " + << "(" << num_top << "); specified " << param.shape_size() << "."; + } // refill_[i] tells Forward i whether or not to actually refill top Blob i. // If refill_[i] is false, Forward does nothing for Blob i. We use this to // avoid wastefully refilling "constant" Blobs in every forward pass. @@ -63,14 +75,19 @@ void DummyDataLayer::LayerSetUp(const vector*>& bottom, } } for (int i = 0; i < num_top; ++i) { - const int num = (param.num_size() == 1) ? param.num(0) : param.num(i); - const int channels = - (param.channels_size() == 1) ? param.channels(0) : param.channels(i); - const int height = - (param.height_size() == 1) ? param.height(0) : param.height(i); - const int width = - (param.width_size() == 1) ? param.width(0) : param.width(i); - top[i]->Reshape(num, channels, height, width); + if (legacy_dims) { + const int num = (param.num_size() == 1) ? param.num(0) : param.num(i); + const int channels = + (param.channels_size() == 1) ? param.channels(0) : param.channels(i); + const int height = + (param.height_size() == 1) ? param.height(0) : param.height(i); + const int width = + (param.width_size() == 1) ? param.width(0) : param.width(i); + top[i]->Reshape(num, channels, height, width); + } else { + const int shape_index = (param.shape_size() == 1) ? 0 : i; + top[i]->Reshape(param.shape(shape_index)); + } } // Run Forward once, with refill_ inverted, to fill the constant Blobs. this->Forward(bottom, top); diff --git a/src/caffe/layers/eltwise_layer.cpp b/src/caffe/layers/eltwise_layer.cpp index bbc34449588..a80700736bd 100644 --- a/src/caffe/layers/eltwise_layer.cpp +++ b/src/caffe/layers/eltwise_layer.cpp @@ -31,21 +31,14 @@ void EltwiseLayer::LayerSetUp(const vector*>& bottom, template void EltwiseLayer::Reshape(const vector*>& bottom, const vector*>& top) { - const int num = bottom[0]->num(); - const int channels = bottom[0]->channels(); - const int height = bottom[0]->height(); - const int width = bottom[0]->width(); for (int i = 1; i < bottom.size(); ++i) { - CHECK_EQ(num, bottom[i]->num()); - CHECK_EQ(channels, bottom[i]->channels()); - CHECK_EQ(height, bottom[i]->height()); - CHECK_EQ(width, bottom[i]->width()); + CHECK(bottom[i]->shape() == bottom[0]->shape()); } - top[0]->Reshape(num, channels, height, width); + top[0]->ReshapeLike(*bottom[0]); // If max operation, we will initialize the vector index part. if (this->layer_param_.eltwise_param().operation() == EltwiseParameter_EltwiseOp_MAX && top.size() == 1) { - max_idx_.Reshape(bottom[0]->num(), channels, height, width); + max_idx_.Reshape(bottom[0]->shape()); } } diff --git a/src/caffe/layers/euclidean_loss_layer.cpp b/src/caffe/layers/euclidean_loss_layer.cpp index b539d3487f5..80efa31b22c 100644 --- a/src/caffe/layers/euclidean_loss_layer.cpp +++ b/src/caffe/layers/euclidean_loss_layer.cpp @@ -11,11 +11,9 @@ template void EuclideanLossLayer::Reshape( const vector*>& bottom, const vector*>& top) { LossLayer::Reshape(bottom, top); - CHECK_EQ(bottom[0]->channels(), bottom[1]->channels()); - CHECK_EQ(bottom[0]->height(), bottom[1]->height()); - CHECK_EQ(bottom[0]->width(), bottom[1]->width()); - diff_.Reshape(bottom[0]->num(), bottom[0]->channels(), - bottom[0]->height(), bottom[0]->width()); + CHECK_EQ(bottom[0]->count(1), bottom[1]->count(1)) + << "Inputs must have the same dimension."; + diff_.ReshapeLike(*bottom[0]); } template diff --git a/src/caffe/layers/flatten_layer.cpp b/src/caffe/layers/flatten_layer.cpp index eb7b42bc10b..745f271ea45 100644 --- a/src/caffe/layers/flatten_layer.cpp +++ b/src/caffe/layers/flatten_layer.cpp @@ -9,12 +9,11 @@ namespace caffe { template void FlattenLayer::Reshape(const vector*>& bottom, const vector*>& top) { - int channels_out = bottom[0]->channels() * bottom[0]->height() - * bottom[0]->width(); - top[0]->Reshape(bottom[0]->num(), channels_out, 1, 1); - count_ = bottom[0]->num() * channels_out; - CHECK_EQ(count_, bottom[0]->count()); - CHECK_EQ(count_, top[0]->count()); + vector top_shape(2); + top_shape[0] = bottom[0]->num(); + top_shape[1] = bottom[0]->count() / bottom[0]->num(); + top[0]->Reshape(top_shape); + CHECK_EQ(top[0]->count(), bottom[0]->count()); } template @@ -29,10 +28,6 @@ void FlattenLayer::Backward_cpu(const vector*>& top, bottom[0]->ShareDiff(*top[0]); } -#ifdef CPU_ONLY -STUB_GPU(FlattenLayer); -#endif - INSTANTIATE_CLASS(FlattenLayer); REGISTER_LAYER_CLASS(Flatten); diff --git a/src/caffe/layers/flatten_layer.cu b/src/caffe/layers/flatten_layer.cu deleted file mode 100644 index 42abdad4499..00000000000 --- a/src/caffe/layers/flatten_layer.cu +++ /dev/null @@ -1,23 +0,0 @@ -#include - -#include "caffe/layer.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" - -namespace caffe { - -template -void FlattenLayer::Forward_gpu(const vector*>& bottom, - const vector*>& top) { - top[0]->ShareData(*bottom[0]); -} - -template -void FlattenLayer::Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) { - bottom[0]->ShareDiff(*top[0]); -} - -INSTANTIATE_LAYER_GPU_FUNCS(FlattenLayer); - -} // namespace caffe diff --git a/src/caffe/layers/hdf5_data_layer.cpp b/src/caffe/layers/hdf5_data_layer.cpp index 3d856ec3001..1ceb6c24431 100644 --- a/src/caffe/layers/hdf5_data_layer.cpp +++ b/src/caffe/layers/hdf5_data_layer.cpp @@ -36,7 +36,7 @@ void HDF5DataLayer::LoadHDF5FileData(const char* filename) { hdf_blobs_.resize(top_size); const int MIN_DATA_DIM = 1; - const int MAX_DATA_DIM = 4; + const int MAX_DATA_DIM = INT_MAX; for (int i = 0; i < top_size; ++i) { hdf_blobs_[i] = shared_ptr >(new Blob()); @@ -88,9 +88,14 @@ void HDF5DataLayer::LayerSetUp(const vector*>& bottom, // Reshape blobs. const int batch_size = this->layer_param_.hdf5_data_param().batch_size(); const int top_size = this->layer_param_.top_size(); + vector top_shape; for (int i = 0; i < top_size; ++i) { - top[i]->Reshape(batch_size, hdf_blobs_[i]->channels(), - hdf_blobs_[i]->height(), hdf_blobs_[i]->width()); + top_shape.resize(hdf_blobs_[i]->num_axes()); + top_shape[0] = batch_size; + for (int j = 1; j < top_shape.size(); ++j) { + top_shape[j] = hdf_blobs_[i]->shape(j); + } + top[i]->Reshape(top_shape); } } diff --git a/src/caffe/layers/im2col_layer.cpp b/src/caffe/layers/im2col_layer.cpp index 112226116c8..1c802714e33 100644 --- a/src/caffe/layers/im2col_layer.cpp +++ b/src/caffe/layers/im2col_layer.cpp @@ -50,6 +50,8 @@ void Im2colLayer::LayerSetUp(const vector*>& bottom, template void Im2colLayer::Reshape(const vector*>& bottom, const vector*>& top) { + CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " + << "corresponding to (num, channels, height, width)"; channels_ = bottom[0]->channels(); height_ = bottom[0]->height(); width_ = bottom[0]->width(); diff --git a/src/caffe/layers/image_data_layer.cpp b/src/caffe/layers/image_data_layer.cpp index f9046e1b3a1..38ebbd5ec14 100644 --- a/src/caffe/layers/image_data_layer.cpp +++ b/src/caffe/layers/image_data_layer.cpp @@ -81,8 +81,9 @@ void ImageDataLayer::DataLayerSetUp(const vector*>& bottom, << top[0]->channels() << "," << top[0]->height() << "," << top[0]->width(); // label - top[1]->Reshape(batch_size, 1, 1, 1); - this->prefetch_label_.Reshape(batch_size, 1, 1, 1); + vector label_shape(1, batch_size); + top[1]->Reshape(label_shape); + this->prefetch_label_.Reshape(label_shape); } template diff --git a/src/caffe/layers/inner_product_layer.cpp b/src/caffe/layers/inner_product_layer.cpp index b1ec6cb25c0..89e0c8fbad7 100644 --- a/src/caffe/layers/inner_product_layer.cpp +++ b/src/caffe/layers/inner_product_layer.cpp @@ -15,7 +15,12 @@ void InnerProductLayer::LayerSetUp(const vector*>& bottom, const int num_output = this->layer_param_.inner_product_param().num_output(); bias_term_ = this->layer_param_.inner_product_param().bias_term(); N_ = num_output; - K_ = bottom[0]->count() / bottom[0]->num(); + const int axis = bottom[0]->CanonicalAxisIndex( + this->layer_param_.inner_product_param().axis()); + // Dimensions starting from "axis" are "flattened" into a single + // length K_ vector. For example, if bottom[0]'s shape is (N, C, H, W), + // and axis == 1, N inner products with dimension CHW are performed. + K_ = bottom[0]->count(axis); // Check if we need to set up the weights if (this->blobs_.size() > 0) { LOG(INFO) << "Skipping parameter initialization"; @@ -26,14 +31,18 @@ void InnerProductLayer::LayerSetUp(const vector*>& bottom, this->blobs_.resize(1); } // Intialize the weight - this->blobs_[0].reset(new Blob(1, 1, N_, K_)); + vector weight_shape(2); + weight_shape[0] = N_; + weight_shape[1] = K_; + this->blobs_[0].reset(new Blob(weight_shape)); // fill the weights shared_ptr > weight_filler(GetFiller( this->layer_param_.inner_product_param().weight_filler())); weight_filler->Fill(this->blobs_[0].get()); // If necessary, intiialize and fill the bias term if (bias_term_) { - this->blobs_[1].reset(new Blob(1, 1, 1, N_)); + vector bias_shape(1, N_); + this->blobs_[1].reset(new Blob(bias_shape)); shared_ptr > bias_filler(GetFiller( this->layer_param_.inner_product_param().bias_filler())); bias_filler->Fill(this->blobs_[1].get()); @@ -46,13 +55,24 @@ template void InnerProductLayer::Reshape(const vector*>& bottom, const vector*>& top) { // Figure out the dimensions - M_ = bottom[0]->num(); - CHECK_EQ(bottom[0]->count() / bottom[0]->num(), K_) << "Input size " - "incompatible with inner product parameters."; - top[0]->Reshape(bottom[0]->num(), N_, 1, 1); + const int axis = bottom[0]->CanonicalAxisIndex( + this->layer_param_.inner_product_param().axis()); + const int new_K = bottom[0]->count(axis); + CHECK_EQ(K_, new_K) + << "Input size incompatible with inner product parameters."; + // The first "axis" dimensions are independent inner products; the total + // number of these is M_, the product over these dimensions. + M_ = bottom[0]->count(0, axis); + // The top shape will be the bottom shape with the flattened axes dropped, + // and replaced by a single axis with dimension num_output (N_). + vector top_shape = bottom[0]->shape(); + top_shape.resize(axis + 1); + top_shape[axis] = N_; + top[0]->Reshape(top_shape); // Set up the bias multiplier if (bias_term_) { - bias_multiplier_.Reshape(1, 1, 1, M_); + vector bias_shape(1, M_); + bias_multiplier_.Reshape(bias_shape); caffe_set(M_, Dtype(1), bias_multiplier_.mutable_cpu_data()); } } diff --git a/src/caffe/layers/loss_layer.cpp b/src/caffe/layers/loss_layer.cpp index a5b6d11b065..3496a5c2a8a 100644 --- a/src/caffe/layers/loss_layer.cpp +++ b/src/caffe/layers/loss_layer.cpp @@ -24,7 +24,8 @@ void LossLayer::Reshape( const vector*>& bottom, const vector*>& top) { CHECK_EQ(bottom[0]->num(), bottom[1]->num()) << "The data and label should have the same number."; - top[0]->Reshape(1, 1, 1, 1); + vector loss_shape(0); // Loss layers output a scalar; 0 axes. + top[0]->Reshape(loss_shape); } INSTANTIATE_CLASS(LossLayer); diff --git a/src/caffe/layers/lrn_layer.cpp b/src/caffe/layers/lrn_layer.cpp index 5e3e7c429ef..36c1ace4c99 100644 --- a/src/caffe/layers/lrn_layer.cpp +++ b/src/caffe/layers/lrn_layer.cpp @@ -69,6 +69,8 @@ void LRNLayer::LayerSetUp(const vector*>& bottom, template void LRNLayer::Reshape(const vector*>& bottom, const vector*>& top) { + CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " + << "corresponding to (num, channels, height, width)"; num_ = bottom[0]->num(); channels_ = bottom[0]->channels(); height_ = bottom[0]->height(); diff --git a/src/caffe/layers/memory_data_layer.cpp b/src/caffe/layers/memory_data_layer.cpp index effdad90aff..42de4198bc4 100644 --- a/src/caffe/layers/memory_data_layer.cpp +++ b/src/caffe/layers/memory_data_layer.cpp @@ -19,10 +19,11 @@ void MemoryDataLayer::DataLayerSetUp(const vector*>& bottom, CHECK_GT(batch_size_ * size_, 0) << "batch_size, channels, height, and width must be specified and" " positive in memory_data_param"; + vector label_shape(1, batch_size_); top[0]->Reshape(batch_size_, channels_, height_, width_); - top[1]->Reshape(batch_size_, 1, 1, 1); + top[1]->Reshape(label_shape); added_data_.Reshape(batch_size_, channels_, height_, width_); - added_label_.Reshape(batch_size_, 1, 1, 1); + added_label_.Reshape(label_shape); data_ = NULL; labels_ = NULL; added_data_.cpu_data(); diff --git a/src/caffe/layers/pooling_layer.cpp b/src/caffe/layers/pooling_layer.cpp index 6f4c69c861e..c8d41499455 100644 --- a/src/caffe/layers/pooling_layer.cpp +++ b/src/caffe/layers/pooling_layer.cpp @@ -81,6 +81,8 @@ void PoolingLayer::LayerSetUp(const vector*>& bottom, template void PoolingLayer::Reshape(const vector*>& bottom, const vector*>& top) { + CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " + << "corresponding to (num, channels, height, width)"; channels_ = bottom[0]->channels(); height_ = bottom[0]->height(); width_ = bottom[0]->width(); diff --git a/src/caffe/layers/slice_layer.cpp b/src/caffe/layers/slice_layer.cpp index 46c3acd6513..e4418c9cf9c 100644 --- a/src/caffe/layers/slice_layer.cpp +++ b/src/caffe/layers/slice_layer.cpp @@ -11,9 +11,8 @@ template void SliceLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { const SliceParameter& slice_param = this->layer_param_.slice_param(); - slice_dim_ = slice_param.slice_dim(); - CHECK_GE(slice_dim_, 0); - CHECK_LE(slice_dim_, 1) << "Can only slice num and channels"; + CHECK(!(slice_param.has_axis() && slice_param.has_slice_dim())) + << "Either axis or slice_dim should be specified; not both."; slice_point_.clear(); std::copy(slice_param.slice_point().begin(), slice_param.slice_point().end(), @@ -23,18 +22,27 @@ void SliceLayer::LayerSetUp(const vector*>& bottom, template void SliceLayer::Reshape(const vector*>& bottom, const vector*>& top) { - count_ = 0; - num_ = bottom[0]->num(); - channels_ = bottom[0]->channels(); - height_ = bottom[0]->height(); - width_ = bottom[0]->width(); + const int num_axes = bottom[0]->num_axes(); + const SliceParameter& slice_param = this->layer_param_.slice_param(); + if (slice_param.has_slice_dim()) { + slice_axis_ = static_cast(slice_param.slice_dim()); + // Don't allow negative indexing for slice_dim, a uint32 -- almost + // certainly unintended. + CHECK_GE(slice_axis_, 0) << "casting slice_dim from uint32 to int32 " + << "produced negative result; slice_dim must satisfy " + << "0 <= slice_dim < " << kMaxBlobAxes; + CHECK_LT(slice_axis_, num_axes) << "slice_dim out of range."; + } else { + slice_axis_ = bottom[0]->CanonicalAxisIndex(slice_param.axis()); + } + vector top_shape = bottom[0]->shape(); + const int bottom_slice_axis = bottom[0]->shape(slice_axis_); + num_slices_ = bottom[0]->count(0, slice_axis_); + slice_size_ = bottom[0]->count(slice_axis_ + 1); + int count = 0; if (slice_point_.size() != 0) { CHECK_EQ(slice_point_.size(), top.size() - 1); - if (slice_dim_ == 0) { - CHECK_LE(top.size(), num_); - } else { - CHECK_LE(top.size(), channels_); - } + CHECK_LE(top.size(), bottom_slice_axis); int prev = 0; vector slices; for (int i = 0; i < slice_point_.size(); ++i) { @@ -42,94 +50,64 @@ void SliceLayer::Reshape(const vector*>& bottom, slices.push_back(slice_point_[i] - prev); prev = slice_point_[i]; } - if (slice_dim_ == 0) { - slices.push_back(num_ - prev); - for (int i = 0; i < top.size(); ++i) { - top[i]->Reshape(slices[i], channels_, height_, width_); - count_ += top[i]->count(); - } - } else { - slices.push_back(channels_ - prev); - for (int i = 0; i < top.size(); ++i) { - top[i]->Reshape(num_, slices[i], height_, width_); - count_ += top[i]->count(); - } + slices.push_back(bottom_slice_axis - prev); + for (int i = 0; i < top.size(); ++i) { + top_shape[slice_axis_] = slices[i]; + top[i]->Reshape(top_shape); + count += top[i]->count(); } } else { - if (slice_dim_ == 0) { - CHECK_EQ(num_ % top.size(), 0) - << "Number of top blobs (" << top.size() << ") " - << "should evenly divide input num ( " << num_ << ")"; - num_ = num_ / top.size(); - } else { - CHECK_EQ(channels_ % top.size(), 0) - << "Number of top blobs (" << top.size() << ") " - << "should evenly divide input channels ( " << channels_ << ")"; - channels_ = channels_ / top.size(); - } + CHECK_EQ(bottom_slice_axis % top.size(), 0) + << "Number of top blobs (" << top.size() << ") should evenly " + << "divide input slice axis (" << bottom_slice_axis << ")"; + top_shape[slice_axis_] = bottom_slice_axis / top.size(); for (int i = 0; i < top.size(); ++i) { - top[i]->Reshape(num_, channels_, height_, width_); - count_ += top[i]->count(); + top[i]->Reshape(top_shape); + count += top[i]->count(); } } - CHECK_EQ(count_, bottom[0]->count()); + CHECK_EQ(count, bottom[0]->count()); } template void SliceLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { - const Dtype* bottom_data = bottom[0]->mutable_cpu_data(); - if (slice_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - Dtype* top_data = blob->mutable_cpu_data(); - caffe_copy(blob->count(), bottom_data + bottom[0]->offset(offset_num), - top_data); - offset_num += blob->num(); + int offset_slice_axis = 0; + const Dtype* bottom_data = bottom[0]->cpu_data(); + const int bottom_slice_axis = bottom[0]->shape(slice_axis_); + for (int i = 0; i < top.size(); ++i) { + Dtype* top_data = top[i]->mutable_cpu_data(); + const int top_slice_axis = top[i]->shape(slice_axis_); + for (int n = 0; n < num_slices_; ++n) { + const int top_offset = n * top_slice_axis * slice_size_; + const int bottom_offset = + (n * bottom_slice_axis + offset_slice_axis) * slice_size_; + caffe_copy(top_slice_axis * slice_size_, + bottom_data + bottom_offset, top_data + top_offset); } - } else if (slice_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - Dtype* top_data = blob->mutable_cpu_data(); - const int num_elem = blob->channels() * blob->height() * blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, bottom_data + bottom[0]->offset(n, offset_channel), - top_data + blob->offset(n)); - } - offset_channel += blob->channels(); - } - } // slice_dim_ is guaranteed to be 0 or 1 by SetUp. + offset_slice_axis += top_slice_axis; + } } template void SliceLayer::Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { if (!propagate_down[0]) { return; } + int offset_slice_axis = 0; Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); - if (slice_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - const Dtype* top_diff = blob->cpu_diff(); - caffe_copy(blob->count(), top_diff, - bottom_diff + bottom[0]->offset(offset_num)); - offset_num += blob->num(); + const int bottom_slice_axis = bottom[0]->shape(slice_axis_); + for (int i = 0; i < top.size(); ++i) { + const Dtype* top_diff = top[i]->cpu_diff(); + const int top_slice_axis = top[i]->shape(slice_axis_); + for (int n = 0; n < num_slices_; ++n) { + const int top_offset = n * top_slice_axis * slice_size_; + const int bottom_offset = + (n * bottom_slice_axis + offset_slice_axis) * slice_size_; + caffe_copy(top_slice_axis * slice_size_, + top_diff + top_offset, bottom_diff + bottom_offset); } - } else if (slice_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - const Dtype* top_diff = blob->cpu_diff(); - const int num_elem = blob->channels() * blob->height() * blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, top_diff + blob->offset(n), - bottom_diff + bottom[0]->offset(n, offset_channel)); - } - offset_channel += blob->channels(); - } - } // slice_dim_ is guaranteed to be 0 or 1 by SetUp. + offset_slice_axis += top_slice_axis; + } } #ifdef CPU_ONLY diff --git a/src/caffe/layers/slice_layer.cu b/src/caffe/layers/slice_layer.cu index b5c5e61533f..e6e65677bd8 100644 --- a/src/caffe/layers/slice_layer.cu +++ b/src/caffe/layers/slice_layer.cu @@ -9,58 +9,42 @@ namespace caffe { template void SliceLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { - const Dtype* bottom_data = bottom[0]->mutable_gpu_data(); - if (slice_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - Dtype* top_data = blob->mutable_gpu_data(); - caffe_copy(blob->count(), bottom_data + bottom[0]->offset(offset_num), - top_data); - offset_num += blob->num(); + int offset_slice_axis = 0; + const Dtype* bottom_data = bottom[0]->gpu_data(); + const int bottom_slice_axis = bottom[0]->shape(slice_axis_); + for (int i = 0; i < top.size(); ++i) { + Dtype* top_data = top[i]->mutable_gpu_data(); + const int top_slice_axis = top[i]->shape(slice_axis_); + for (int n = 0; n < num_slices_; ++n) { + const int top_offset = n * top_slice_axis * slice_size_; + const int bottom_offset = + (n * bottom_slice_axis + offset_slice_axis) * slice_size_; + caffe_copy(top_slice_axis * slice_size_, + bottom_data + bottom_offset, top_data + top_offset); } - } else if (slice_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - Dtype* top_data = blob->mutable_gpu_data(); - const int num_elem = blob->channels() * blob->height() * blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, bottom_data + bottom[0]->offset(n, offset_channel), - top_data + blob->offset(n)); - } - offset_channel += blob->channels(); - } - } // slice_dim_ is guaranteed to be 0 or 1 by SetUp. + offset_slice_axis += top_slice_axis; + } } template void SliceLayer::Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { if (!propagate_down[0]) { return; } + int offset_slice_axis = 0; Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); - if (slice_dim_ == 0) { - int offset_num = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - const Dtype* top_diff = blob->gpu_diff(); - caffe_copy(blob->count(), top_diff, - bottom_diff + bottom[0]->offset(offset_num)); - offset_num += blob->num(); - } - } else if (slice_dim_ == 1) { - int offset_channel = 0; - for (int i = 0; i < top.size(); ++i) { - Blob* blob = top[i]; - const Dtype* top_diff = blob->gpu_diff(); - const int num_elem = blob->channels() * blob->height() * blob->width(); - for (int n = 0; n < num_; ++n) { - caffe_copy(num_elem, top_diff + blob->offset(n), - bottom_diff + bottom[0]->offset(n, offset_channel)); - } - offset_channel += blob->channels(); + const int bottom_slice_axis = bottom[0]->shape(slice_axis_); + for (int i = 0; i < top.size(); ++i) { + const Dtype* top_diff = top[i]->gpu_diff(); + const int top_slice_axis = top[i]->shape(slice_axis_); + for (int n = 0; n < num_slices_; ++n) { + const int top_offset = n * top_slice_axis * slice_size_; + const int bottom_offset = + (n * bottom_slice_axis + offset_slice_axis) * slice_size_; + caffe_copy(top_slice_axis * slice_size_, + top_diff + top_offset, bottom_diff + bottom_offset); } - } // slice_dim_ is guaranteed to be 0 or 1 by SetUp. + offset_slice_axis += top_slice_axis; + } } INSTANTIATE_LAYER_GPU_FUNCS(SliceLayer); diff --git a/src/caffe/layers/softmax_layer.cpp b/src/caffe/layers/softmax_layer.cpp index 25142fdec53..04712c9e653 100644 --- a/src/caffe/layers/softmax_layer.cpp +++ b/src/caffe/layers/softmax_layer.cpp @@ -10,14 +10,18 @@ namespace caffe { template void SoftmaxLayer::Reshape(const vector*>& bottom, const vector*>& top) { - top[0]->Reshape(bottom[0]->num(), bottom[0]->channels(), - bottom[0]->height(), bottom[0]->width()); - sum_multiplier_.Reshape(1, bottom[0]->channels(), 1, 1); + softmax_axis_ = + bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis()); + top[0]->ReshapeLike(*bottom[0]); + vector mult_dims(1, bottom[0]->shape(softmax_axis_)); + sum_multiplier_.Reshape(mult_dims); Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data(); - for (int i = 0; i < sum_multiplier_.count(); ++i) { - multiplier_data[i] = 1.; - } - scale_.Reshape(bottom[0]->num(), 1, bottom[0]->height(), bottom[0]->width()); + caffe_set(sum_multiplier_.count(), Dtype(1), multiplier_data); + outer_num_ = bottom[0]->count(0, softmax_axis_); + inner_num_ = bottom[0]->count(softmax_axis_ + 1); + vector scale_dims = bottom[0]->shape(); + scale_dims[softmax_axis_] = 1; + scale_.Reshape(scale_dims); } template @@ -26,34 +30,32 @@ void SoftmaxLayer::Forward_cpu(const vector*>& bottom, const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); Dtype* scale_data = scale_.mutable_cpu_data(); - int num = bottom[0]->num(); - int channels = bottom[0]->channels(); - int dim = bottom[0]->count() / bottom[0]->num(); - int spatial_dim = bottom[0]->height() * bottom[0]->width(); + int channels = bottom[0]->shape(softmax_axis_); + int dim = bottom[0]->count() / outer_num_; caffe_copy(bottom[0]->count(), bottom_data, top_data); // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize. - for (int i = 0; i < num; ++i) { + for (int i = 0; i < outer_num_; ++i) { // initialize scale_data to the first plane - caffe_copy(spatial_dim, bottom_data + i * dim, scale_data); + caffe_copy(inner_num_, bottom_data + i * dim, scale_data); for (int j = 0; j < channels; j++) { - for (int k = 0; k < spatial_dim; k++) { + for (int k = 0; k < inner_num_; k++) { scale_data[k] = std::max(scale_data[k], - bottom_data[i * dim + j * spatial_dim + k]); + bottom_data[i * dim + j * inner_num_ + k]); } } // subtraction - caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels, spatial_dim, - 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data + i * dim); + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels, inner_num_, + 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data); // exponentiation - caffe_exp(dim, top_data + i * dim, top_data + i * dim); + caffe_exp(dim, top_data, top_data); // sum after exp - caffe_cpu_gemv(CblasTrans, channels, spatial_dim, 1., - top_data + i * dim, sum_multiplier_.cpu_data(), 0., scale_data); + caffe_cpu_gemv(CblasTrans, channels, inner_num_, 1., + top_data, sum_multiplier_.cpu_data(), 0., scale_data); // division for (int j = 0; j < channels; j++) { - caffe_div(spatial_dim, top_data + top[0]->offset(i, j), scale_data, - top_data + top[0]->offset(i, j)); + caffe_div(inner_num_, top_data, scale_data, top_data); + top_data += inner_num_; } } } @@ -66,20 +68,18 @@ void SoftmaxLayer::Backward_cpu(const vector*>& top, const Dtype* top_data = top[0]->cpu_data(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); Dtype* scale_data = scale_.mutable_cpu_data(); - int num = top[0]->num(); - int channels = top[0]->channels(); - int dim = top[0]->count() / top[0]->num(); - int spatial_dim = top[0]->height() * top[0]->width(); + int channels = top[0]->shape(softmax_axis_); + int dim = top[0]->count() / outer_num_; caffe_copy(top[0]->count(), top_diff, bottom_diff); - for (int i = 0; i < num; ++i) { + for (int i = 0; i < outer_num_; ++i) { // compute dot(top_diff, top_data) and subtract them from the bottom diff - for (int k = 0; k < spatial_dim; ++k) { + for (int k = 0; k < inner_num_; ++k) { scale_data[k] = caffe_cpu_strided_dot(channels, - bottom_diff + i * dim + k, spatial_dim, - top_data + i * dim + k, spatial_dim); + bottom_diff + i * dim + k, inner_num_, + top_data + i * dim + k, inner_num_); } // subtraction - caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels, spatial_dim, 1, + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim); } // elementwise multiplication diff --git a/src/caffe/layers/softmax_layer.cu b/src/caffe/layers/softmax_layer.cu index 6b8871a0b20..1f9c3a41203 100644 --- a/src/caffe/layers/softmax_layer.cu +++ b/src/caffe/layers/softmax_layer.cu @@ -90,36 +90,33 @@ void SoftmaxLayer::Forward_gpu(const vector*>& bottom, Dtype* top_data = top[0]->mutable_gpu_data(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = bottom[0]->count(); - int num = bottom[0]->num(); - int channels = bottom[0]->channels(); - int spatial_dim = bottom[0]->height() * bottom[0]->width(); + int channels = top[0]->shape(softmax_axis_); caffe_copy(count, bottom_data, top_data); // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize. // compute max // NOLINT_NEXT_LINE(whitespace/operators) - kernel_channel_max<<>>(num, channels, spatial_dim, top_data, + kernel_channel_max<<>>(outer_num_, channels, inner_num_, top_data, scale_data); // subtract // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_subtract<<>>(count, num, channels, spatial_dim, + CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, top_data); // exponentiate // NOLINT_NEXT_LINE(whitespace/operators) - kernel_exp<<>>(num * channels * spatial_dim, top_data, - top_data); + kernel_exp<<>>( + count, top_data, top_data); // sum after exp // NOLINT_NEXT_LINE(whitespace/operators) - kernel_channel_sum<<>>(num, channels, spatial_dim, top_data, + kernel_channel_sum<<>>(outer_num_, channels, inner_num_, top_data, scale_data); // divide // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_div<<>>(count, num, channels, spatial_dim, + CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, top_data); } @@ -131,18 +128,16 @@ void SoftmaxLayer::Backward_gpu(const vector*>& top, Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); Dtype* scale_data = scale_.mutable_gpu_data(); int count = top[0]->count(); - int num = top[0]->num(); - int channels = top[0]->channels(); - int spatial_dim = top[0]->height() * top[0]->width(); - caffe_copy(top[0]->count(), top_diff, bottom_diff); + int channels = top[0]->shape(softmax_axis_); + caffe_copy(count, top_diff, bottom_diff); // Compute inner1d(top_diff, top_data) and subtract them from the bottom diff. // NOLINT_NEXT_LINE(whitespace/operators) - kernel_channel_dot<<>>(num, channels, spatial_dim, top_diff, top_data, - scale_data); + kernel_channel_dot<<>>(outer_num_, channels, inner_num_, + top_diff, top_data, scale_data); // NOLINT_NEXT_LINE(whitespace/operators) kernel_channel_subtract<<>>(count, num, channels, spatial_dim, + CAFFE_CUDA_NUM_THREADS>>>(count, outer_num_, channels, inner_num_, scale_data, bottom_diff); // elementwise multiplication caffe_gpu_mul(top[0]->count(), bottom_diff, top_data, bottom_diff); diff --git a/src/caffe/layers/softmax_loss_layer.cpp b/src/caffe/layers/softmax_loss_layer.cpp index 0c9ba2c6626..ba312f67fbc 100644 --- a/src/caffe/layers/softmax_loss_layer.cpp +++ b/src/caffe/layers/softmax_loss_layer.cpp @@ -35,6 +35,15 @@ void SoftmaxWithLossLayer::Reshape( const vector*>& bottom, const vector*>& top) { LossLayer::Reshape(bottom, top); softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_); + softmax_axis_ = + bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis()); + outer_num_ = bottom[0]->count(0, softmax_axis_); + inner_num_ = bottom[0]->count(softmax_axis_ + 1); + CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count()) + << "Number of labels must match number of predictions; " + << "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), " + << "label count (number of labels) must be N*H*W, " + << "with integer values in {0, 1, ..., C-1}."; if (top.size() >= 2) { // softmax output top[1]->ReshapeLike(*bottom[0]); @@ -48,20 +57,18 @@ void SoftmaxWithLossLayer::Forward_cpu( softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_); const Dtype* prob_data = prob_.cpu_data(); const Dtype* label = bottom[1]->cpu_data(); - int num = prob_.num(); - int dim = prob_.count() / num; - int spatial_dim = prob_.height() * prob_.width(); + int dim = prob_.count() / outer_num_; int count = 0; Dtype loss = 0; - for (int i = 0; i < num; ++i) { - for (int j = 0; j < spatial_dim; j++) { - const int label_value = static_cast(label[i * spatial_dim + j]); + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; j++) { + const int label_value = static_cast(label[i * inner_num_ + j]); if (has_ignore_label_ && label_value == ignore_label_) { continue; } DCHECK_GE(label_value, 0); - DCHECK_LT(label_value, prob_.channels()); - loss -= log(std::max(prob_data[i * dim + label_value * spatial_dim + j], + DCHECK_LT(label_value, prob_.shape(softmax_axis_)); + loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j], Dtype(FLT_MIN))); ++count; } @@ -69,7 +76,7 @@ void SoftmaxWithLossLayer::Forward_cpu( if (normalize_) { top[0]->mutable_cpu_data()[0] = loss / count; } else { - top[0]->mutable_cpu_data()[0] = loss / num; + top[0]->mutable_cpu_data()[0] = loss / outer_num_; } if (top.size() == 2) { top[1]->ShareData(prob_); @@ -88,19 +95,17 @@ void SoftmaxWithLossLayer::Backward_cpu(const vector*>& top, const Dtype* prob_data = prob_.cpu_data(); caffe_copy(prob_.count(), prob_data, bottom_diff); const Dtype* label = bottom[1]->cpu_data(); - int num = prob_.num(); - int dim = prob_.count() / num; - int spatial_dim = prob_.height() * prob_.width(); + int dim = prob_.count() / outer_num_; int count = 0; - for (int i = 0; i < num; ++i) { - for (int j = 0; j < spatial_dim; ++j) { - const int label_value = static_cast(label[i * spatial_dim + j]); + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; ++j) { + const int label_value = static_cast(label[i * inner_num_ + j]); if (has_ignore_label_ && label_value == ignore_label_) { - for (int c = 0; c < bottom[0]->channels(); ++c) { - bottom_diff[i * dim + c * spatial_dim + j] = 0; + for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) { + bottom_diff[i * dim + c * inner_num_ + j] = 0; } } else { - bottom_diff[i * dim + label_value * spatial_dim + j] -= 1; + bottom_diff[i * dim + label_value * inner_num_ + j] -= 1; ++count; } } @@ -110,7 +115,7 @@ void SoftmaxWithLossLayer::Backward_cpu(const vector*>& top, if (normalize_) { caffe_scal(prob_.count(), loss_weight / count, bottom_diff); } else { - caffe_scal(prob_.count(), loss_weight / num, bottom_diff); + caffe_scal(prob_.count(), loss_weight / outer_num_, bottom_diff); } } } diff --git a/src/caffe/layers/softmax_loss_layer.cu b/src/caffe/layers/softmax_loss_layer.cu index 215d589ffee..7e0f3da4552 100644 --- a/src/caffe/layers/softmax_loss_layer.cu +++ b/src/caffe/layers/softmax_loss_layer.cu @@ -35,10 +35,8 @@ void SoftmaxWithLossLayer::Forward_gpu( softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_); const Dtype* prob_data = prob_.gpu_data(); const Dtype* label = bottom[1]->gpu_data(); - const int num = prob_.num(); - const int dim = prob_.count() / num; - const int spatial_dim = prob_.height() * prob_.width(); - const int nthreads = num * spatial_dim; + const int dim = prob_.count() / outer_num_; + const int nthreads = outer_num_ * inner_num_; // Since this memory is not used for anything until it is overwritten // on the backward pass, we use it here to avoid having to allocate new GPU // memory to accumulate intermediate results in the kernel. @@ -49,7 +47,7 @@ void SoftmaxWithLossLayer::Forward_gpu( // NOLINT_NEXT_LINE(whitespace/operators) SoftmaxLossForwardGPU<<>>(nthreads, prob_data, label, loss_data, - num, dim, spatial_dim, has_ignore_label_, ignore_label_, counts); + outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts); Dtype loss; caffe_gpu_asum(nthreads, loss_data, &loss); if (normalize_) { @@ -57,7 +55,7 @@ void SoftmaxWithLossLayer::Forward_gpu( caffe_gpu_asum(nthreads, counts, &count); loss /= count; } else { - loss /= num; + loss /= outer_num_; } top[0]->mutable_cpu_data()[0] = loss; if (top.size() == 2) { @@ -102,24 +100,22 @@ void SoftmaxWithLossLayer::Backward_gpu(const vector*>& top, const Dtype* top_data = top[0]->gpu_data(); caffe_gpu_memcpy(prob_.count() * sizeof(Dtype), prob_data, bottom_diff); const Dtype* label = bottom[1]->gpu_data(); - const int num = prob_.num(); - const int dim = prob_.count() / num; - const int spatial_dim = prob_.height() * prob_.width(); - const int nthreads = num * spatial_dim; + const int dim = prob_.count() / outer_num_; + const int nthreads = outer_num_ * inner_num_; // Since this memory is never used for anything else, // we use to to avoid allocating new GPU memory. Dtype* counts = prob_.mutable_gpu_diff(); // NOLINT_NEXT_LINE(whitespace/operators) SoftmaxLossBackwardGPU<<>>(nthreads, top_data, label, bottom_diff, - num, dim, spatial_dim, has_ignore_label_, ignore_label_, counts); + outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts); const Dtype loss_weight = top[0]->cpu_diff()[0]; if (normalize_) { Dtype count; caffe_gpu_asum(nthreads, counts, &count); caffe_gpu_scal(prob_.count(), loss_weight / count, bottom_diff); } else { - caffe_gpu_scal(prob_.count(), loss_weight / num, bottom_diff); + caffe_gpu_scal(prob_.count(), loss_weight / outer_num_, bottom_diff); } } } diff --git a/src/caffe/layers/split_layer.cpp b/src/caffe/layers/split_layer.cpp index d6929b99683..272cb59cd37 100644 --- a/src/caffe/layers/split_layer.cpp +++ b/src/caffe/layers/split_layer.cpp @@ -18,8 +18,7 @@ void SplitLayer::Reshape(const vector*>& bottom, // some strange effects in practice...) CHECK_NE(top[i], bottom[0]) << this->type() << " Layer does not " "allow in-place computation."; - top[i]->Reshape(bottom[0]->num(), bottom[0]->channels(), - bottom[0]->height(), bottom[0]->width()); + top[i]->ReshapeLike(*bottom[0]); CHECK_EQ(count_, top[i]->count()); } } diff --git a/src/caffe/layers/window_data_layer.cpp b/src/caffe/layers/window_data_layer.cpp index 36e41560327..c127d56bc46 100644 --- a/src/caffe/layers/window_data_layer.cpp +++ b/src/caffe/layers/window_data_layer.cpp @@ -177,8 +177,9 @@ void WindowDataLayer::DataLayerSetUp(const vector*>& bottom, << top[0]->channels() << "," << top[0]->height() << "," << top[0]->width(); // label - top[1]->Reshape(batch_size, 1, 1, 1); - this->prefetch_label_.Reshape(batch_size, 1, 1, 1); + vector label_shape(1, batch_size); + top[1]->Reshape(label_shape); + this->prefetch_label_.Reshape(label_shape); // data mean has_mean_file_ = this->transform_param_.has_mean_file(); diff --git a/src/caffe/net.cpp b/src/caffe/net.cpp index c359be9b575..fd00b122630 100644 --- a/src/caffe/net.cpp +++ b/src/caffe/net.cpp @@ -44,12 +44,20 @@ void Net::Init(const NetParameter& in_param) { // Create a copy of filtered_param with splits added where necessary. NetParameter param; InsertSplits(filtered_param, ¶m); - // Basically, build all the layers and set up its connections. + // Basically, build all the layers and set up their connections. name_ = param.name(); map blob_name_to_idx; set available_blobs; - CHECK_EQ(param.input_size() * 4, param.input_dim_size()) - << "Incorrect input blob dimension specifications."; + CHECK(param.input_dim_size() == 0 || param.input_shape_size() == 0) + << "Must specify either input_shape OR deprecated input_dim, not both."; + if (param.input_dim_size() > 0) { + // Deprecated 4D dimensions. + CHECK_EQ(param.input_size() * 4, param.input_dim_size()) + << "Incorrect input blob dimension specifications."; + } else { + CHECK_EQ(param.input_size(), param.input_shape_size()) + << "Exactly one input_shape must be specified per input."; + } memory_used_ = 0; // set the input blobs for (int input_id = 0; input_id < param.input_size(); ++input_id) { @@ -57,7 +65,7 @@ void Net::Init(const NetParameter& in_param) { AppendTop(param, layer_id, input_id, &available_blobs, &blob_name_to_idx); } DLOG(INFO) << "Memory required for data: " << memory_used_ * sizeof(Dtype); - // For each layer, set up their input and output + // For each layer, set up its input and output bottom_vecs_.resize(param.layer_size()); top_vecs_.resize(param.layer_size()); bottom_id_vecs_.resize(param.layer_size()); @@ -109,11 +117,7 @@ void Net::Init(const NetParameter& in_param) { blob_loss_weights_.resize(top_id_vecs_[layer_id][top_id] + 1, Dtype(0)); } blob_loss_weights_[top_id_vecs_[layer_id][top_id]] = layer->loss(top_id); - LOG(INFO) << "Top shape: " << top_vecs_[layer_id][top_id]->num() << " " - << top_vecs_[layer_id][top_id]->channels() << " " - << top_vecs_[layer_id][top_id]->height() << " " - << top_vecs_[layer_id][top_id]->width() << " (" - << top_vecs_[layer_id][top_id]->count() << ")"; + LOG(INFO) << "Top shape: " << top_vecs_[layer_id][top_id]->shape_string(); if (layer->loss(top_id)) { LOG(INFO) << " with loss weight " << layer->loss(top_id); } @@ -343,10 +347,14 @@ void Net::AppendTop(const NetParameter& param, const int layer_id, if (blob_name_to_idx) { (*blob_name_to_idx)[blob_name] = blob_id; } if (layer_id == -1) { // Set the (explicitly specified) dimensions of the input blob. - blob_pointer->Reshape(param.input_dim(top_id * 4), - param.input_dim(top_id * 4 + 1), - param.input_dim(top_id * 4 + 2), - param.input_dim(top_id * 4 + 3)); + if (param.input_dim_size() > 0) { + blob_pointer->Reshape(param.input_dim(top_id * 4), + param.input_dim(top_id * 4 + 1), + param.input_dim(top_id * 4 + 2), + param.input_dim(top_id * 4 + 3)); + } else { + blob_pointer->Reshape(param.input_shape(top_id)); + } net_input_blob_indices_.push_back(blob_id); net_input_blobs_.push_back(blob_pointer.get()); } else { @@ -427,14 +435,7 @@ void Net::AppendParam(const NetParameter& param, const int layer_id, << "Shared parameter blobs must have the same count."; } else { // Strict dimension checking -- all dims must be the same. - CHECK_EQ(this_blob->num(), owner_blob->num()) - << "Shared parameter blobs must have the same num."; - CHECK_EQ(this_blob->channels(), owner_blob->channels()) - << "Shared parameter blobs must have the same channels."; - CHECK_EQ(this_blob->height(), owner_blob->height()) - << "Shared parameter blobs must have the same height."; - CHECK_EQ(this_blob->width(), owner_blob->width()) - << "Shared parameter blobs must have the same width."; + CHECK(this_blob->shape() == owner_blob->shape()); } layers_[layer_id]->blobs()[param_id]->ShareData( *layers_[owner_layer_id]->blobs()[owner_param_id]); @@ -640,10 +641,7 @@ void Net::ShareTrainedLayersWith(const Net* other) { << "Incompatible number of blobs for layer " << source_layer_name; for (int j = 0; j < target_blobs.size(); ++j) { Blob* source_blob = source_layer->blobs()[j].get(); - CHECK_EQ(target_blobs[j]->num(), source_blob->num()); - CHECK_EQ(target_blobs[j]->channels(), source_blob->channels()); - CHECK_EQ(target_blobs[j]->height(), source_blob->height()); - CHECK_EQ(target_blobs[j]->width(), source_blob->width()); + CHECK(target_blobs[j]->shape() == source_blob->shape()); target_blobs[j]->ShareData(*source_blob); } } @@ -707,11 +705,8 @@ void Net::CopyTrainedLayersFrom(const NetParameter& param) { CHECK_EQ(target_blobs.size(), source_layer.blobs_size()) << "Incompatible number of blobs for layer " << source_layer_name; for (int j = 0; j < target_blobs.size(); ++j) { - CHECK_EQ(target_blobs[j]->num(), source_layer.blobs(j).num()); - CHECK_EQ(target_blobs[j]->channels(), source_layer.blobs(j).channels()); - CHECK_EQ(target_blobs[j]->height(), source_layer.blobs(j).height()); - CHECK_EQ(target_blobs[j]->width(), source_layer.blobs(j).width()); - target_blobs[j]->FromProto(source_layer.blobs(j)); + const bool kReshape = false; + target_blobs[j]->FromProto(source_layer.blobs(j), kReshape); } } } diff --git a/src/caffe/proto/caffe.proto b/src/caffe/proto/caffe.proto index 84b475ce3cd..e523efa50f1 100644 --- a/src/caffe/proto/caffe.proto +++ b/src/caffe/proto/caffe.proto @@ -2,13 +2,21 @@ syntax = "proto2"; package caffe; +// Specifies the shape (dimensions) of a Blob. +message BlobShape { + repeated int64 dim = 1 [packed = true]; +} + message BlobProto { + optional BlobShape shape = 7; + repeated float data = 5 [packed = true]; + repeated float diff = 6 [packed = true]; + + // 4D dimensions -- deprecated. Use "shape" instead. optional int32 num = 1 [default = 0]; optional int32 channels = 2 [default = 0]; optional int32 height = 3 [default = 0]; optional int32 width = 4 [default = 0]; - repeated float data = 5 [packed = true]; - repeated float diff = 6 [packed = true]; } // The BlobProtoVector is simply a way to pass multiple blobproto instances @@ -47,10 +55,15 @@ message NetParameter { optional string name = 1; // consider giving the network a name // The input blobs to the network. repeated string input = 3; - // The dim of the input blobs. For each input blob there should be four + // The shape of the input blobs. + repeated BlobShape input_shape = 8; + + // 4D input dimensions -- deprecated. Use "shape" instead. + // If specified, for each input blob there should be four // values specifying the num, channels, height and width of the input blob. // Thus, there should be a total of (4 * #input) numbers. repeated int32 input_dim = 4; + // Whether the network will force every layer to carry out backward operation. // If set False, then whether to carry out backward is determined // automatically according to the net structure and learning rates. @@ -354,6 +367,16 @@ message AccuracyParameter { // the top k scoring classes. By default, only compare to the top scoring // class (i.e. argmax). optional uint32 top_k = 1 [default = 1]; + + // The "label" axis of the prediction blob, whose argmax corresponds to the + // predicted label -- may be negative to index from the end (e.g., -1 for the + // last axis). For example, if axis == 1 and the predictions are + // (N x C x H x W), the label blob is expected to contain N*H*W ground truth + // labels with integer values in {0, 1, ..., C-1}. + optional int32 axis = 2 [default = 1]; + + // If specified, ignore instances with the given label. + optional int32 ignore_label = 3; } // Message that stores parameters used by ArgMaxLayer @@ -365,9 +388,13 @@ message ArgMaxParameter { // Message that stores parameters used by ConcatLayer message ConcatParameter { - // Concat Layer needs to specify the dimension along the concat will happen, - // the other dimensions must be the same for all the bottom blobs - // By default it will concatenate blobs along channels dimension + // The axis along which to concatenate -- may be negative to index from the + // end (e.g., -1 for the last axis). Other axes must have the + // same dimension for all the bottom blobs. + // By default, ConcatLayer concatenates blobs along the "channels" axis (1). + optional int32 axis = 2 [default = 1]; + + // DEPRECATED: alias for "axis" -- does not support negative indexing. optional uint32 concat_dim = 1 [default = 1]; } @@ -444,13 +471,15 @@ message DropoutParameter { // (or constant) data generated by "Fillers" (see "message FillerParameter"). message DummyDataParameter { // This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N - // num, N channels, N height, and N width fields, and must specify 0, 1 or N - // data_fillers. + // shape fields, and 0, 1 or N data_fillers. // // If 0 data_fillers are specified, ConstantFiller with a value of 0 is used. // If 1 data_filler is specified, it is applied to all top blobs. If N are // specified, the ith is applied to the ith top blob. repeated FillerParameter data_filler = 1; + repeated BlobShape shape = 6; + + // 4D dimensions -- deprecated. Use "shape" instead. repeated uint32 num = 2; repeated uint32 channels = 3; repeated uint32 height = 4; @@ -548,6 +577,11 @@ message InnerProductParameter { optional bool bias_term = 2 [default = true]; // whether to have bias terms optional FillerParameter weight_filler = 3; // The filler for the weight optional FillerParameter bias_filler = 4; // The filler for the bias + + // The first axis to be lumped into a single inner product computation; + // all preceding axes are retained in the output. + // May be negative to index from the end (e.g., -1 for the last axis). + optional int32 axis = 5 [default = 1]; } // Message that stores parameters used by LRNLayer @@ -652,12 +686,14 @@ message SigmoidParameter { // Message that stores parameters used by SliceLayer message SliceParameter { - // SliceLayer needs to know which dimension to slice across. - // Currently, SliceLayer only supports slicing across num (dim 0) - // and channels (dim 1). - // By default, SliceLayer slices across channels. - optional uint32 slice_dim = 1 [default = 1]; + // The axis along which to slice -- may be negative to index from the end + // (e.g., -1 for the last axis). + // By default, SliceLayer concatenates blobs along the "channels" axis (1). + optional int32 axis = 3 [default = 1]; repeated uint32 slice_point = 2; + + // DEPRECATED: alias for "axis" -- does not support negative indexing. + optional uint32 slice_dim = 1 [default = 1]; } // Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer @@ -668,6 +704,11 @@ message SoftmaxParameter { CUDNN = 2; } optional Engine engine = 1 [default = DEFAULT]; + + // The axis along which to perform the softmax -- may be negative to index + // from the end (e.g., -1 for the last axis). + // Any other axes will be evaluated as independent softmaxes. + optional int32 axis = 2 [default = 1]; } // Message that stores parameters used by TanHLayer diff --git a/src/caffe/solver.cpp b/src/caffe/solver.cpp index 8ed8aec2fc8..034390e6824 100644 --- a/src/caffe/solver.cpp +++ b/src/caffe/solver.cpp @@ -420,16 +420,10 @@ void SGDSolver::PreSolve() { update_.clear(); temp_.clear(); for (int i = 0; i < net_params.size(); ++i) { - const Blob* net_param = net_params[i].get(); - history_.push_back(shared_ptr >(new Blob( - net_param->num(), net_param->channels(), net_param->height(), - net_param->width()))); - update_.push_back(shared_ptr >(new Blob( - net_param->num(), net_param->channels(), net_param->height(), - net_param->width()))); - temp_.push_back(shared_ptr >(new Blob( - net_param->num(), net_param->channels(), net_param->height(), - net_param->width()))); + const vector& shape = net_params[i]->shape(); + history_.push_back(shared_ptr >(new Blob(shape))); + update_.push_back(shared_ptr >(new Blob(shape))); + temp_.push_back(shared_ptr >(new Blob(shape))); } } diff --git a/src/caffe/test/test_accuracy_layer.cpp b/src/caffe/test/test_accuracy_layer.cpp index fa59fab1e8a..6cbf51df45e 100644 --- a/src/caffe/test/test_accuracy_layer.cpp +++ b/src/caffe/test/test_accuracy_layer.cpp @@ -19,10 +19,24 @@ template class AccuracyLayerTest : public ::testing::Test { protected: AccuracyLayerTest() - : blob_bottom_data_(new Blob(100, 10, 1, 1)), - blob_bottom_label_(new Blob(100, 1, 1, 1)), + : blob_bottom_data_(new Blob()), + blob_bottom_label_(new Blob()), blob_top_(new Blob()), top_k_(3) { + vector shape(2); + shape[0] = 100; + shape[1] = 10; + blob_bottom_data_->Reshape(shape); + shape.resize(1); + blob_bottom_label_->Reshape(shape); + FillBottoms(); + + blob_bottom_vec_.push_back(blob_bottom_data_); + blob_bottom_vec_.push_back(blob_bottom_label_); + blob_top_vec_.push_back(blob_top_); + } + + virtual void FillBottoms() { // fill the probability values FillerParameter filler_param; GaussianFiller filler(filler_param); @@ -33,14 +47,11 @@ class AccuracyLayerTest : public ::testing::Test { caffe::rng_t* prefetch_rng = static_cast(rng->generator()); Dtype* label_data = blob_bottom_label_->mutable_cpu_data(); - for (int i = 0; i < 100; ++i) { + for (int i = 0; i < blob_bottom_label_->count(); ++i) { label_data[i] = (*prefetch_rng)() % 10; } - - blob_bottom_vec_.push_back(blob_bottom_data_); - blob_bottom_vec_.push_back(blob_bottom_label_); - blob_top_vec_.push_back(blob_top_); } + virtual ~AccuracyLayerTest() { delete blob_bottom_data_; delete blob_bottom_label_; @@ -106,6 +117,89 @@ TYPED_TEST(AccuracyLayerTest, TestForwardCPU) { num_correct_labels / 100.0, 1e-4); } +TYPED_TEST(AccuracyLayerTest, TestForwardWithSpatialAxes) { + Caffe::set_mode(Caffe::CPU); + this->blob_bottom_data_->Reshape(2, 10, 4, 5); + vector label_shape(3); + label_shape[0] = 2; label_shape[1] = 4; label_shape[2] = 5; + this->blob_bottom_label_->Reshape(label_shape); + this->FillBottoms(); + LayerParameter layer_param; + layer_param.mutable_accuracy_param()->set_axis(1); + AccuracyLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + TypeParam max_value; + const int num_labels = this->blob_bottom_label_->count(); + int max_id; + int num_correct_labels = 0; + vector label_offset(3); + for (int n = 0; n < this->blob_bottom_data_->num(); ++n) { + for (int h = 0; h < this->blob_bottom_data_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_data_->width(); ++w) { + max_value = -FLT_MAX; + max_id = 0; + for (int c = 0; c < this->blob_bottom_data_->channels(); ++c) { + const TypeParam pred_value = + this->blob_bottom_data_->data_at(n, c, h, w); + if (pred_value > max_value) { + max_value = pred_value; + max_id = c; + } + } + label_offset[0] = n; label_offset[1] = h; label_offset[2] = w; + const int correct_label = + static_cast(this->blob_bottom_label_->data_at(label_offset)); + if (max_id == correct_label) { + ++num_correct_labels; + } + } + } + } + EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0), + num_correct_labels / TypeParam(num_labels), 1e-4); +} + +TYPED_TEST(AccuracyLayerTest, TestForwardIgnoreLabel) { + Caffe::set_mode(Caffe::CPU); + LayerParameter layer_param; + const TypeParam kIgnoreLabelValue = -1; + layer_param.mutable_accuracy_param()->set_ignore_label(kIgnoreLabelValue); + AccuracyLayer layer(layer_param); + // Manually set some labels to the ignore label value (-1). + this->blob_bottom_label_->mutable_cpu_data()[2] = kIgnoreLabelValue; + this->blob_bottom_label_->mutable_cpu_data()[5] = kIgnoreLabelValue; + this->blob_bottom_label_->mutable_cpu_data()[32] = kIgnoreLabelValue; + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + TypeParam max_value; + int max_id; + int num_correct_labels = 0; + int count = 0; + for (int i = 0; i < 100; ++i) { + if (kIgnoreLabelValue == this->blob_bottom_label_->data_at(i, 0, 0, 0)) { + continue; + } + ++count; + max_value = -FLT_MAX; + max_id = 0; + for (int j = 0; j < 10; ++j) { + if (this->blob_bottom_data_->data_at(i, j, 0, 0) > max_value) { + max_value = this->blob_bottom_data_->data_at(i, j, 0, 0); + max_id = j; + } + } + if (max_id == this->blob_bottom_label_->data_at(i, 0, 0, 0)) { + ++num_correct_labels; + } + } + EXPECT_EQ(count, 97); // We set 3 out of 100 labels to kIgnoreLabelValue. + EXPECT_NEAR(this->blob_top_->data_at(0, 0, 0, 0), + num_correct_labels / TypeParam(count), 1e-4); +} + TYPED_TEST(AccuracyLayerTest, TestForwardCPUTopK) { LayerParameter layer_param; AccuracyParameter* accuracy_param = layer_param.mutable_accuracy_param(); diff --git a/src/caffe/test/test_blob.cpp b/src/caffe/test/test_blob.cpp index e0678061173..7da6423b67c 100644 --- a/src/caffe/test/test_blob.cpp +++ b/src/caffe/test/test_blob.cpp @@ -1,4 +1,5 @@ #include +#include #include "gtest/gtest.h" @@ -31,10 +32,7 @@ TYPED_TEST(BlobSimpleTest, TestInitialization) { EXPECT_EQ(this->blob_preshaped_->height(), 4); EXPECT_EQ(this->blob_preshaped_->width(), 5); EXPECT_EQ(this->blob_preshaped_->count(), 120); - EXPECT_EQ(this->blob_->num(), 0); - EXPECT_EQ(this->blob_->channels(), 0); - EXPECT_EQ(this->blob_->height(), 0); - EXPECT_EQ(this->blob_->width(), 0); + EXPECT_EQ(this->blob_->num_axes(), 0); EXPECT_EQ(this->blob_->count(), 0); } @@ -54,6 +52,59 @@ TYPED_TEST(BlobSimpleTest, TestReshape) { EXPECT_EQ(this->blob_->count(), 120); } +TYPED_TEST(BlobSimpleTest, TestLegacyBlobProtoShapeEquals) { + BlobProto blob_proto; + + // Reshape to (3 x 2). + vector shape(2); + shape[0] = 3; + shape[1] = 2; + this->blob_->Reshape(shape); + + // (3 x 2) blob == (1 x 1 x 3 x 2) legacy blob + blob_proto.set_num(1); + blob_proto.set_channels(1); + blob_proto.set_height(3); + blob_proto.set_width(2); + EXPECT_TRUE(this->blob_->ShapeEquals(blob_proto)); + + // (3 x 2) blob != (0 x 1 x 3 x 2) legacy blob + blob_proto.set_num(0); + blob_proto.set_channels(1); + blob_proto.set_height(3); + blob_proto.set_width(2); + EXPECT_FALSE(this->blob_->ShapeEquals(blob_proto)); + + // (3 x 2) blob != (3 x 1 x 3 x 2) legacy blob + blob_proto.set_num(3); + blob_proto.set_channels(1); + blob_proto.set_height(3); + blob_proto.set_width(2); + EXPECT_FALSE(this->blob_->ShapeEquals(blob_proto)); + + // Reshape to (1 x 3 x 2). + shape.insert(shape.begin(), 1); + this->blob_->Reshape(shape); + + // (1 x 3 x 2) blob == (1 x 1 x 3 x 2) legacy blob + blob_proto.set_num(1); + blob_proto.set_channels(1); + blob_proto.set_height(3); + blob_proto.set_width(2); + EXPECT_TRUE(this->blob_->ShapeEquals(blob_proto)); + + // Reshape to (2 x 3 x 2). + shape[0] = 2; + this->blob_->Reshape(shape); + + // (2 x 3 x 2) blob != (1 x 1 x 3 x 2) legacy blob + blob_proto.set_num(1); + blob_proto.set_channels(1); + blob_proto.set_height(3); + blob_proto.set_width(2); + EXPECT_FALSE(this->blob_->ShapeEquals(blob_proto)); +} + template class BlobMathTest : public MultiDeviceTest { typedef typename TypeParam::Dtype Dtype; diff --git a/src/caffe/test/test_concat_layer.cpp b/src/caffe/test/test_concat_layer.cpp index f14f1d2fa4f..662a50fa23b 100644 --- a/src/caffe/test/test_concat_layer.cpp +++ b/src/caffe/test/test_concat_layer.cpp @@ -19,9 +19,9 @@ class ConcatLayerTest : public MultiDeviceTest { protected: ConcatLayerTest() - : blob_bottom_0(new Blob(2, 3, 6, 5)), - blob_bottom_1(new Blob(2, 5, 6, 5)), - blob_bottom_2(new Blob(5, 3, 6, 5)), + : blob_bottom_0_(new Blob(2, 3, 6, 5)), + blob_bottom_1_(new Blob(2, 5, 6, 5)), + blob_bottom_2_(new Blob(5, 3, 6, 5)), blob_top_(new Blob()) {} virtual void SetUp() { // fill the values @@ -29,30 +29,30 @@ class ConcatLayerTest : public MultiDeviceTest { FillerParameter filler_param; filler_param.set_value(1.); filler.reset(new ConstantFiller(filler_param)); - filler->Fill(this->blob_bottom_0); + filler->Fill(this->blob_bottom_0_); filler_param.set_value(2.); filler.reset(new ConstantFiller(filler_param)); - filler->Fill(this->blob_bottom_1); + filler->Fill(this->blob_bottom_1_); filler_param.set_value(3.); filler.reset(new ConstantFiller(filler_param)); - filler->Fill(this->blob_bottom_2); - blob_bottom_vec_0.push_back(blob_bottom_0); - blob_bottom_vec_0.push_back(blob_bottom_1); - blob_bottom_vec_1.push_back(blob_bottom_0); - blob_bottom_vec_1.push_back(blob_bottom_2); + filler->Fill(this->blob_bottom_2_); + blob_bottom_vec_0_.push_back(blob_bottom_0_); + blob_bottom_vec_0_.push_back(blob_bottom_1_); + blob_bottom_vec_1_.push_back(blob_bottom_0_); + blob_bottom_vec_1_.push_back(blob_bottom_2_); blob_top_vec_.push_back(blob_top_); } virtual ~ConcatLayerTest() { - delete blob_bottom_0; delete blob_bottom_1; - delete blob_bottom_2; delete blob_top_; + delete blob_bottom_0_; delete blob_bottom_1_; + delete blob_bottom_2_; delete blob_top_; } - Blob* const blob_bottom_0; - Blob* const blob_bottom_1; - Blob* const blob_bottom_2; + Blob* const blob_bottom_0_; + Blob* const blob_bottom_1_; + Blob* const blob_bottom_2_; Blob* const blob_top_; - vector*> blob_bottom_vec_0, blob_bottom_vec_1; + vector*> blob_bottom_vec_0_, blob_bottom_vec_1_; vector*> blob_top_vec_; }; @@ -61,61 +61,115 @@ TYPED_TEST_CASE(ConcatLayerTest, TestDtypesAndDevices); TYPED_TEST(ConcatLayerTest, TestSetupNum) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; - layer_param.mutable_concat_param()->set_concat_dim(0); + layer_param.mutable_concat_param()->set_axis(0); ConcatLayer layer(layer_param); - layer.SetUp(this->blob_bottom_vec_1, this->blob_top_vec_); + layer.SetUp(this->blob_bottom_vec_1_, this->blob_top_vec_); EXPECT_EQ(this->blob_top_->num(), - this->blob_bottom_0->num() + this->blob_bottom_2->num()); - EXPECT_EQ(this->blob_top_->channels(), this->blob_bottom_0->channels()); - EXPECT_EQ(this->blob_top_->height(), this->blob_bottom_0->height()); - EXPECT_EQ(this->blob_top_->width(), this->blob_bottom_0->width()); + this->blob_bottom_0_->num() + this->blob_bottom_2_->num()); + EXPECT_EQ(this->blob_top_->channels(), this->blob_bottom_0_->channels()); + EXPECT_EQ(this->blob_top_->height(), this->blob_bottom_0_->height()); + EXPECT_EQ(this->blob_top_->width(), this->blob_bottom_0_->width()); } TYPED_TEST(ConcatLayerTest, TestSetupChannels) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; ConcatLayer layer(layer_param); - layer.SetUp(this->blob_bottom_vec_0, this->blob_top_vec_); - EXPECT_EQ(this->blob_top_->num(), this->blob_bottom_0->num()); + layer.SetUp(this->blob_bottom_vec_0_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_->num(), this->blob_bottom_0_->num()); EXPECT_EQ(this->blob_top_->channels(), - this->blob_bottom_0->channels()+this->blob_bottom_1->channels()); - EXPECT_EQ(this->blob_top_->height(), this->blob_bottom_0->height()); - EXPECT_EQ(this->blob_top_->width(), this->blob_bottom_0->width()); + this->blob_bottom_0_->channels() + this->blob_bottom_1_->channels()); + EXPECT_EQ(this->blob_top_->height(), this->blob_bottom_0_->height()); + EXPECT_EQ(this->blob_top_->width(), this->blob_bottom_0_->width()); } +TYPED_TEST(ConcatLayerTest, TestSetupChannelsNegativeIndexing) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConcatLayer layer(layer_param); + // "channels" index is the third one from the end -- test negative indexing + // by setting axis to -3 and checking that we get the same results as above in + // TestSetupChannels. + layer_param.mutable_concat_param()->set_axis(-3); + layer.SetUp(this->blob_bottom_vec_0_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_->num(), this->blob_bottom_0_->num()); + EXPECT_EQ(this->blob_top_->channels(), + this->blob_bottom_0_->channels() + this->blob_bottom_1_->channels()); + EXPECT_EQ(this->blob_top_->height(), this->blob_bottom_0_->height()); + EXPECT_EQ(this->blob_top_->width(), this->blob_bottom_0_->width()); +} + +TYPED_TEST(ConcatLayerTest, TestForwardNum) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_concat_param()->set_axis(0); + ConcatLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_1_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_1_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_vec_1_[0]->num(); ++n) { + for (int c = 0; c < this->blob_top_->channels(); ++c) { + for (int h = 0; h < this->blob_top_->height(); ++h) { + for (int w = 0; w < this->blob_top_->width(); ++w) { + EXPECT_EQ(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_vec_1_[0]->data_at(n, c, h, w)); + } + } + } + } + for (int n = 0; n < this->blob_bottom_vec_1_[1]->num(); ++n) { + for (int c = 0; c < this->blob_top_->channels(); ++c) { + for (int h = 0; h < this->blob_top_->height(); ++h) { + for (int w = 0; w < this->blob_top_->width(); ++w) { + EXPECT_EQ(this->blob_top_->data_at(n + 2, c, h, w), + this->blob_bottom_vec_1_[1]->data_at(n, c, h, w)); + } + } + } + } +} -TYPED_TEST(ConcatLayerTest, TestNum) { +TYPED_TEST(ConcatLayerTest, TestForwardChannels) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; ConcatLayer layer(layer_param); - layer.SetUp(this->blob_bottom_vec_0, this->blob_top_vec_); - layer.Forward(this->blob_bottom_vec_0, this->blob_top_vec_); + layer.SetUp(this->blob_bottom_vec_0_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_0_, this->blob_top_vec_); for (int n = 0; n < this->blob_top_->num(); ++n) { - for (int c = 0; c < this->blob_bottom_0->channels(); ++c) { + for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) { for (int h = 0; h < this->blob_top_->height(); ++h) { for (int w = 0; w < this->blob_top_->width(); ++w) { EXPECT_EQ(this->blob_top_->data_at(n, c, h, w), - this->blob_bottom_vec_0[0]->data_at(n, c, h, w)); + this->blob_bottom_vec_0_[0]->data_at(n, c, h, w)); } } } - for (int c = 0; c < this->blob_bottom_1->channels(); ++c) { + for (int c = 0; c < this->blob_bottom_1_->channels(); ++c) { for (int h = 0; h < this->blob_top_->height(); ++h) { for (int w = 0; w < this->blob_top_->width(); ++w) { - EXPECT_EQ(this->blob_top_->data_at(n, c+3, h, w), - this->blob_bottom_vec_0[1]->data_at(n, c, h, w)); + EXPECT_EQ(this->blob_top_->data_at(n, c + 3, h, w), + this->blob_bottom_vec_0_[1]->data_at(n, c, h, w)); } } } } } -TYPED_TEST(ConcatLayerTest, TestGradient) { +TYPED_TEST(ConcatLayerTest, TestGradientNum) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_concat_param()->set_axis(0); + ConcatLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + checker.CheckGradient(&layer, this->blob_bottom_vec_1_, + this->blob_top_vec_); +} + +TYPED_TEST(ConcatLayerTest, TestGradientChannels) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; ConcatLayer layer(layer_param); GradientChecker checker(1e-2, 1e-2); - checker.CheckGradient(&layer, this->blob_bottom_vec_0, + checker.CheckGradient(&layer, this->blob_bottom_vec_0_, this->blob_top_vec_); } diff --git a/src/caffe/test/test_hdf5data_layer.cpp b/src/caffe/test/test_hdf5data_layer.cpp index 8d3b3d1e987..c9b027f88cf 100644 --- a/src/caffe/test/test_hdf5data_layer.cpp +++ b/src/caffe/test/test_hdf5data_layer.cpp @@ -77,15 +77,13 @@ TYPED_TEST(HDF5DataLayerTest, TestRead) { EXPECT_EQ(this->blob_top_data_->height(), height); EXPECT_EQ(this->blob_top_data_->width(), width); - EXPECT_EQ(this->blob_top_label_->num(), batch_size); - EXPECT_EQ(this->blob_top_label_->channels(), 1); - EXPECT_EQ(this->blob_top_label_->height(), 1); - EXPECT_EQ(this->blob_top_label_->width(), 1); - - EXPECT_EQ(this->blob_top_label2_->num(), batch_size); - EXPECT_EQ(this->blob_top_label2_->channels(), 1); - EXPECT_EQ(this->blob_top_label2_->height(), 1); - EXPECT_EQ(this->blob_top_label2_->width(), 1); + EXPECT_EQ(this->blob_top_label_->num_axes(), 2); + EXPECT_EQ(this->blob_top_label_->shape(0), batch_size); + EXPECT_EQ(this->blob_top_label_->shape(1), 1); + + EXPECT_EQ(this->blob_top_label2_->num_axes(), 2); + EXPECT_EQ(this->blob_top_label2_->shape(0), batch_size); + EXPECT_EQ(this->blob_top_label2_->shape(1), 1); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); diff --git a/src/caffe/test/test_net.cpp b/src/caffe/test/test_net.cpp index 1680a3f28d5..08106e79274 100644 --- a/src/caffe/test/test_net.cpp +++ b/src/caffe/test/test_net.cpp @@ -63,18 +63,19 @@ class NetTest : public MultiDeviceTest { " name: 'data' " " type: 'DummyData' " " dummy_data_param { " - " num: 5 " - " channels: 2 " - " height: 3 " - " width: 4 " - " num: 5 " - " channels: 1 " - " height: 1 " - " width: 1 " + " shape { " + " dim: 5 " + " dim: 2 " + " dim: 3 " + " dim: 4 " + " } " " data_filler { " " type: 'gaussian' " " std: 0.01 " " } " + " shape { " + " dim: 5 " + " } " " data_filler { " " type: 'constant' " " value: 0 " diff --git a/src/caffe/test/test_slice_layer.cpp b/src/caffe/test/test_slice_layer.cpp index 395be280089..ccd03646d19 100644 --- a/src/caffe/test/test_slice_layer.cpp +++ b/src/caffe/test/test_slice_layer.cpp @@ -62,7 +62,7 @@ TYPED_TEST_CASE(SliceLayerTest, TestDtypesAndDevices); TYPED_TEST(SliceLayerTest, TestSetupNum) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; - layer_param.mutable_slice_param()->set_slice_dim(0); + layer_param.mutable_slice_param()->set_axis(0); SliceLayer layer(layer_param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_1_); EXPECT_EQ(this->blob_bottom_->num(), 3 * this->blob_top_0_->num()); @@ -91,7 +91,7 @@ TYPED_TEST(SliceLayerTest, TestSetupChannels) { TYPED_TEST(SliceLayerTest, TestSliceAcrossNum) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; - layer_param.mutable_slice_param()->set_slice_dim(0); + layer_param.mutable_slice_param()->set_axis(0); SliceLayer layer(layer_param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_0_); const int top_num = this->blob_bottom_->num() / 2; @@ -166,7 +166,7 @@ TYPED_TEST(SliceLayerTest, TestGradientAcrossNum) { // Gradient checks are slow; reduce blob size. this->ReduceBottomBlobSize(); LayerParameter layer_param; - layer_param.mutable_slice_param()->set_slice_dim(0); + layer_param.mutable_slice_param()->set_axis(0); SliceLayer layer(layer_param); GradientChecker checker(1e-2, 1e-3); checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, diff --git a/src/caffe/test/test_solver.cpp b/src/caffe/test/test_solver.cpp index 1c2c9bbb740..ceabc9cdd2c 100644 --- a/src/caffe/test/test_solver.cpp +++ b/src/caffe/test/test_solver.cpp @@ -55,14 +55,15 @@ TYPED_TEST(SolverTest, TestInitTrainTestNets) { " name: 'data' " " type: 'DummyData' " " dummy_data_param { " - " num: 5 " - " channels: 3 " - " height: 10 " - " width: 10 " - " num: 5 " - " channels: 1 " - " height: 1 " - " width: 1 " + " shape { " + " dim: 5 " + " dim: 2 " + " dim: 3 " + " dim: 4 " + " } " + " shape { " + " dim: 5 " + " } " " } " " top: 'data' " " top: 'label' " diff --git a/src/caffe/util/io.cpp b/src/caffe/util/io.cpp index b243a9804ec..77ef7f257f4 100644 --- a/src/caffe/util/io.cpp +++ b/src/caffe/util/io.cpp @@ -252,11 +252,11 @@ void hdf5_load_nd_dataset_helper( CHECK_GE(status, 0) << "Failed to get dataset info for " << dataset_name_; CHECK_EQ(class_, H5T_FLOAT) << "Expected float or double data"; - blob->Reshape( - dims[0], - (dims.size() > 1) ? dims[1] : 1, - (dims.size() > 2) ? dims[2] : 1, - (dims.size() > 3) ? dims[3] : 1); + vector blob_dims(dims.size()); + for (int i = 0; i < dims.size(); ++i) { + blob_dims[i] = dims[i]; + } + blob->Reshape(blob_dims); } template <> diff --git a/tools/caffe.cpp b/tools/caffe.cpp index f04e28a3674..eb9e97f5e27 100644 --- a/tools/caffe.cpp +++ b/tools/caffe.cpp @@ -5,6 +5,7 @@ #include #include +#include "boost/algorithm/string.hpp" #include "caffe/caffe.hpp" using caffe::Blob; @@ -76,6 +77,19 @@ int device_query() { } RegisterBrewFunction(device_query); +// Load the weights from the specified caffemodel(s) into the train and +// test nets. +void CopyLayers(caffe::Solver* solver, const std::string& model_list) { + std::vector model_names; + boost::split(model_names, model_list, boost::is_any_of(",") ); + for (int i = 0; i < model_names.size(); ++i) { + LOG(INFO) << "Finetuning from " << model_names[i]; + solver->net()->CopyTrainedLayersFrom(model_names[i]); + for (int j = 0; j < solver->test_nets().size(); ++j) { + solver->test_nets()[j]->CopyTrainedLayersFrom(model_names[i]); + } + } +} // Train / Finetune a model. int train() { @@ -112,8 +126,7 @@ int train() { LOG(INFO) << "Resuming from " << FLAGS_snapshot; solver->Solve(FLAGS_snapshot); } else if (FLAGS_weights.size()) { - LOG(INFO) << "Finetuning from " << FLAGS_weights; - solver->net()->CopyTrainedLayersFrom(FLAGS_weights); + CopyLayers(&*solver, FLAGS_weights); solver->Solve(); } else { solver->Solve(); diff --git a/tools/extract_features.cpp b/tools/extract_features.cpp index f86ff96ca82..364c436dfd8 100644 --- a/tools/extract_features.cpp +++ b/tools/extract_features.cpp @@ -147,9 +147,9 @@ int feature_extraction_pipeline(int argc, char** argv) { int dim_features = feature_blob->count() / batch_size; const Dtype* feature_blob_data; for (int n = 0; n < batch_size; ++n) { - datum.set_height(dim_features); - datum.set_width(1); - datum.set_channels(1); + datum.set_height(feature_blob->height()); + datum.set_width(feature_blob->width()); + datum.set_channels(feature_blob->channels()); datum.clear_data(); datum.clear_float_data(); feature_blob_data = feature_blob->cpu_data() +