
Caffeine: Co-Array Fortran Framework of Efficient

Interfaces to Network Environments

Damian Rouson and Dan Bonachea

Computer Languages and Systems Software (CLaSS) Group

LLVM-HPC2022, 13 November 2022

1

1

https://go.lbl.gov/caffeine

doi:10.25344/S4459B

https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4459B
https://llvm-hpc-2022-workshop.github.io/

Caffeine: Co-Array Fortran Framework of Efficient

Interfaces to Network Environments

Damian Rouson and Dan Bonachea

Computer Languages and Systems Software (CLaSS) Group

LLVM-HPC2022, 13 November 2022

2

2

https://go.lbl.gov/caffeine doi:10.25344/S4459B

https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4459B
https://llvm-hpc-2022-workshop.github.io/

Introduction
— Why Fortran matters
— Motivation and objectives
— Contributions

Outline

Methodology

Discussion of Results

Future Work

Conclusions

3

Why Fortran Matters

Weather & Climate Nuclear Energy Aerospace
4

Intermediate Complexity Atmospheric Research (ICAR) Model
Courtesy of Ethan Gutmann, NCAR NRC File Photo FUN3D Mesh Adaptation for Mars Ascent Vehicle, Courtesy of

Eric Nielsen & Ashley Korzun, NASA Langley

Why Fortran Matters
&RPSLOHG�ODQJXDJHV�XVHG�DW�1(56&

Ɣ)RUWUDQ�UHPDLQV�D�FRPPRQ�ODQJXDJH�IRU�
VFLHQWLILF�FRPSXWDWLRQ�

Ɣ 1RWHZRUWK\�LQFUHDVHV�LQ
&���DQG�PXOWL�ODQJXDJH�

Ɣ /DQJXDJH�XVH�LQIHUUHG�IURP�UXQWLPH�
OLEUDULHV�UHFRUGHG�E\�$/7'�
�SUHYLRXV�DQDO\VLV�XVHG�VXUYH\�GDWD�
ż $/7'�EDVHG�UHVXOWV�DUH�PRVWO\�LQ�

OLQH�ZLWK�VXUYH\�GDWD�
ż 1R�FKDQJH�LQ�ODQJXDJH�UDQNLQJ
ż 6XUYH\�XQGHUUHSUHVHQWHG�)RUWUDQ�

XVH�

Ɣ 1HDUO\�ó�RI�MREV�XVH�3\WKRQ�

7RWDOV�H[FHHG������EHFDXVH�VRPH�XVHUV�UHO\�RQ�PXOWLSOH�ODQJXDJHV� 5

5

Parallelism is of paramount importance in HPC.

Fortran added parallel features in the 2008 standard, whereas Flang
currently compiles Fortran 95 and parses Fortran 2018.

Several competing compilers support Fortran’s parallel features:
— HPE Cray
— Intel
— GCC/OpenCoarrays
— NAG

Motivations

6

7

To accelerate LLVM Flang’s adoption of parallel features through
test-driven development:

* See our SC22 research poster: doi: 10.25344/S4CP4S:

• Employ agile software development
practices

• Test a comprehensive range of
standard-conforming and non-
conforming Fortran 2018 syntax

• Test-driven development: any
contributed tests that fail provide a
specification for new features to add
to Flang

Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming
Katherine Rasmussen1, Damian Rouson1, Najé George2, Dan Bonachea1, Hussain Kadhem1, Brian Friesen1

1Lawrence Berkeley National Laboratory, 2San Diego State University

Figure 5: Updated static semantics test excerpt for the
co_sum subroutine that passes after interface is added

• Exhaustively delineate all of the
parallel programming features in
Fortran 2018

• Develop semantics tests for LLVM
Flang covering statically checkable
program errors that the Fortran
standard obligates the compiler to
detect

• Expand frontend support,
including additional error
checking, when tests identify
missing capabilities

Approach
Problem

LLVM's Flang Fortran compiler is
currently Fortran 95 compliant, and
the frontend can parse Fortran 2018.
However, Flang does not have a
comprehensive 2018 test suite and
does not fully implement the static
semantics of the 2018 standard.

Solution
Agile software encourages early
delivery of working software subject to
continual improvement. We are
investigating whether agile techniques
centered around pair programming
and test-driven development (TDD)
can help Flang to rapidly progress to
Fortran 2018 compliance. Because of
the paramount importance of
parallelism in high-performance
computing, we are focusing on
Fortran’s parallel features, commonly
denoted “Coarray Fortran.” We are
developing what we believe are the
first comprehensive, open-source tests
for Fortran 2018 parallel features. We
push our compile-time behavior tests
to the main LLVM-Project repository.
We push our runtime tests for parallel
Fortran features to the repository of
the Caffeine parallel runtime library
that we are concurrently developing.

• Because Flang cannot yet produce
executable files from Fortran 2018
source code, we are developing runtime
tests in a separate repository: Caffeine.

• Caffeine is a runtime library that
supports parallel Fortran 2018 features.

• Caffeine runs atop the GASNet-EX
exascale networking middleware.

go.lbl.gov/caffeine

• For more on Caffeine, see: Rouson &
Bonachea (2022) “Caffeine: CoArray
Fortran Framework of Efficient Interfaces to
Network Environments" SC22 Workshop
on the LLVM Infrastructure in HPC
doi:10.25344/S4459B

Test-Driven Development Example

Compile-Time Test Coverage

Figure 1: Exhaustive list of Fortran 2018 parallel programming features to test
https://go.lbl.gov/flang-testing

Figure 6: Interface to compiler for co_sum allows the test to pass when
combined with a static semantic check for coindexed objects (not shown).

Agile Development
• Test-driven development

• Pair programming sessions

• Valuable team member interactions

• Get feedback early and frequently

• Leverage existing git and Github
tools

• Leverage existing agile practices of
the LLVM developer community:

• Use LLVM’s continuous
integration (CI) test infrastructure
to quickly fix CI failures.

• Code reviews on Phabricator for
feedback, edits, and approvals

This research was supported in part by the Sustainable Research Pathways for High Performance Computing (SRP-HPC) a project of the Sustainable Horizons Institute.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Find
specification

for a language
feature in the
Fortran 2018

Standard

Write new test
based on

specification

Develop
additional
support for
language
feature

Can We Fix It?

Test passes

Create
issue on

LLVM Project
Repository and

contribute
test

Test Passes?

YesNo

No

Yes

Push to
LLVM Project

main branch after
review and
approval

Start

GitHub Project Board

Tests for intrinsic Fortran procedures include

Valid intrinsic function invocations or subroutine calls Invalid intrinsic function invocations or subroutine calls

Incompatible arguments

Pass too many argumentsPass not enough
arguments

With minimum required
arguments With optional arguments

With a comprehensive set
of compatible arguments With keyword arguments

With out-of-order
keyword arguments

Invalid keyword
arguments

Repeated keyword
arguments

Statically-checkable
semantic violations

Positive Tests Negative Tests

Objectives

Introduction

Outcomes

Runtime Tests

Video Walkthrough

go.lbl.gov/sc22-flang-testing

In Progress

Done

To Do

Figure 2: Diagram outlining the components of the static semantic tests for intrinsic
functions and intrinsic subroutines

 

GASNet-EX

 

Caffeine
Application C O

M
P
I
L

E
R

System Runtime & Memory Technologies

Figure 4: Static semantics test excerpt for the
co_sum subroutine, this test expectedly fails.

Figure 3: Signature for the intrinsic collective subroutine, co_sum, as defined by the Fortran
2018 standard. ‘a’ is the only required argument and the rest of the arguments are optional.

• The Berkeley Lab fork of the LLVM-
Project GitHub repository includes a
project board capturing an exhaustive
list of 41 parallel features to test.

• We have pushed static semantics tests
for 32 such features upstream to
LLVM-Project: intrinsic functions
supporting parallelism, collective
subroutines, atomic subroutines,
synchronization statements, and more.

• We have contributed additional static
semantic analysis and error checking
for 11 missing parallel features exposed
by our tests. More contributions are
under development or in code review.

• We contributed error checks for 2
non-parallel features.

• We have developed 44 runtime tests
that we exercise by developing Caffeine.

ERROR directives now produced for invalid code
that match the error the compiler produces.

XFAIL directive removed. The test passes now that the compiler knows that co_sum is an
intrinsic subroutine and knows its interface.

XFAIL directive to inform LLVM lit testing framework that test should expectedly fail. The
tests fails since compiler doesn’t know the interface to the intrinsic subroutine co_sum.

No errors produced for invalid code.

Objectives

Runtime unit tests that drive the development of Caffeine
and
Compile-time semantics tests that drive our contributions to
the LLVM Flang frontend*.

https://dx.doi.org/10.25344/S4CP4S

Fortran Standard Terms

8

Contributions

9

9

A subset of the Fortran 2018 non-parallel features suffice for writing a runtime
library, mostly in Fortran, to support the Fortran 2018 parallel features

Using Fortran 2018 type-agnostic procedure arguments facilitates porting
across compilers:
— no explicit reference to compiler-specific data descriptors

Using Fortran 2018 type- and rank-agnostic arguments greatly
simplifies the parallel runtime library:
— almost no branching on type or rank

Key Insights & Innovations:

Bonus:

Writing in the language
of the users improves
sustainability by lowering
a barrier to community
maintenance.

Introduction

Outline

Methodology
— Software stack
— GASNet-EX
— Caffeinating LLVM Flang

Discussion of Results

Future Work

Conclusions

10

Slide / 01

 
GASNet-EX

System Runtime & Memory Technologies

Application
C O

M
P
I
L
E

R

 
Caffeine

11

11

Software
Stack

12

12

��*$61HW�(;

������

6+0(0

1HWZRUN�+DUGZDUH�
�,QILQL%DQG��&UD\�$ULHV��+3(�6OLQJVKRW��(WKHUQHW��,QWHO�2PQL�3DWK������

$FWLYH�0HVVDJHV

2QH�VLGHG�*HW�3XW�50$

&ROOHFWLYHV$WRPLFV

1RQ�FRQWLJXRXV�50$

0HPRU\�7HFKQRORJLHV�
�+RVW�PHPRU\��*38V������

)RUWUDQ�
FRDUUD\V�83&&KDSHO ���

1:&KHP([�([D*UDSK�)/H&6,)OH[)ORZ� ([D%LRPH

/HJLRQ 83&��

$05H;�$UNRXGD�

6FLHQWLILF�$SSOLFDWLRQV

https://gasnet.lbl.gov
https://upcxx.lbl.gov
https://upc.lbl.gov
https://legion.stanford.edu/
https://chapel-lang.org/

13

GASNet-EX Performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-I:
Haswell

Aries
Cray MPI

B
a

n
d

w
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

D. Bonachea and P. H. Hargrove, “GASNet-EX: A High- Performance, Portable Communication Library for Exascale,” in Proceedings of
Languages and Compilers for Parallel Computing (LCPC’18), ser. LNCS, vol. 11882. Springer, October 2018, doi:10.25344/S4QP4W.

Microbenchmark performance comparison of GASNet-EX RMA
on NERSC Cori, versus Cray MPI’s RMA and message-passing.

13

https://dx.doi.org/10.25344/S4QP4W

Integration Timeline

14

14

Support 2003 C Interoperability

Support 2018 Further Interoperability with C

Support 2008 Submodules

Integrate Caffeine into Compiler

Support 2008 Parallel Features

Support 2018 Additional Parallel Features

Implement compiler feature prerequisites for building Caffeine

Integrate Caffeine into compiler

Parallel feature availability

Introduction

Outline

Methodology

Future Work

Conclusions

15

Discussion of Results
— Status of parallel feature support
— Compiler-facing interface
— Unit tests

Status

16

yes
yes
yes
partial
partial
WIP
WIP
WIP
WIP
yes
WIP
WIP
WIP

type-/rank-agnostic
argument

caf_co_sum calls a
bind(C) function that
receives a 2018-standard
C struct CFI_cdesc_t

17

17

18

Introduction

Outline

Methodology

Future Work

Conclusions

19

Discussion of Results

Future Work
 Coarray allocation and access:

 real, allocatable :: coarray(:,:)[:,:,:]

 allocate(coarray(10,10)[2,1,*])

 if (this_image()==2) coarray = coarray(:,:)[1,1,1]

— Follow OpenUH Coarray Fortran compiler design, which used GASNet-1
— Use GASNet-EX RMA to for coarray access as a lightweight pass-through

Teams of images: team_type, form team, change team, end team

Atomics: atomic_{int, logical}_kind and atomic_* subroutines
Events: event_type, event post and event wait statements, and
event_query subroutine
Critical blocks: critical and end critical

Synchronization subsets: sync images and sync team 20

Three key insights inspired Caffeine:

Conclusions

GASNet-EX offers a fully capable, high-performance
communication substrate that supports a broad ecosystem of
libraries and languages and the applications that use them.

1. A subset of non-parallel Fortran 2018 features provide a compelling capability
for writing a mostly-Fortran runtime library to upport the parallel features.

2. Using Fortran 2018 assumed-type dummy arguments obviates the need for
passing compiler-specific data descriptors to the communication substrate.

3. Using Fortran 2018 assumed-type, assumed-rank dummy arguments reduces
line counts for some modules an order of magnitude relative to using the
Fortran 2003 C-interoperability features.

21

Writing a library in the language of the users improves
sustainability by lowering barriers to community maintenance.
We propose a workflow that leapfrogs standards to support
parallel 2018 features before completing 2003 support.

https://go.lbl.gov/caffeine

https://go.lbl.gov/caffeine

