(|accelerates.

ran Framework of Efficient
rk Enwronments

https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4459B
https://llvm-hpc-2022-workshop.github.io/

A58, U.S. DEPARTMENT OF
@ ENERGY

Office of Science

Caffeine: Co-Array Fortran Framework of Efficient
Interfaces to Network Environments

Damian Rouson and Dan Bonachea
Computer Languages and Systems Software (CLaSS) Group

LLVM-HPC2022, 13 November 2022
https://go.lbl.gov/caffeine doi:10.25344/S4459B

https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4459B
https://llvm-hpc-2022-workshop.github.io/

g2 Tl

2 it R i
/)((//.d:‘-, P ° -
Y o VG A
R

Outline

I©

Introduction

— Why Fortran matters
— Motivation and objectives
— Contributions

Methodology
Discussion of Results

Future Work

© © & ©

Conclusions

Why Fortran Matters

- . - .
- ~
¢ Intermediate Complexity Atmospheric Research (ICAR) Model NRC File Photo FUN3D Mesh Adaptation for Mars Ascent Vehicle, Courtesy of
Courtesy of Ethan Gutmann, NCAR R 1 Eric Nielsen & Ashley Korzun, NASA Langley

- -) BT L\
k Weather & Climate Nuclear Energy Aerospace
- : |

. . / | 4

: N A . " -

Why Fortran Matters

Compiled languages used at NERSC

Bl Forrad W.Cr+ WO e Fortran remains a common language for
| scientific computation.
SUIVey2015 e Noteworthy increases in
C++ and multi-language
Edison 2014 = e Language use inferred from runtime
libraries recorded by ALTD.
= (previous analysis used survey data)
_ Edison 2018 o ALTD-based results are mostly in
line with survey data.
o No change in language ranking
Cori 2018 o Survey underrepresented Fortran

» | use.

0 25 50 75 e Nearly V4 of jobs use Python.

Fraction of Users (%) =
- Totals exceed 100% because some users rely on multiple languages. 5 mmmli

. “anan B . - - e

2 Parallelism is of paramount importance in HPC.

D Fortran added parallel features in the 2008 standard, whereas Flang
currently compiles Fortran 95 and parses Fortran 2018.

LD Several competing compilers support Fortran’s parallel features:
— HPE Cray

— Intel

— GCC/OpenCoarrays
— NAG

I

Objectives

To accelerate LLVM Flang’s adoption of parallel features through
test-driven development:

W

W2

Runtime unit tests that drive the development of Caffeine

and

Compile-time semantics tests that drive our contributions to

the LLVM Flang frontend”. =

* See our SC22 research poster: doi: 10.25344/S4CP4S:

https://dx.doi.org/10.25344/S4CP4S

Fortran Standard Terms

Term Definition

assumed unlimited polymorphic data object declared with

-type type (*), described informally here as “type-agnostic”

assumed data-object dummy argument that assumes the rank of

-rank its effective argument, described here as “rank-agnostic”

coarray data structure partitioned across a team’s images and
accessible by each image in the corresponding team

effective entity that is argument-associated with a dummy

argument argument in a procedure call

image instance of a Fortran program

intrinsic entity or operation defined in the Fortran standard and
accessible without further definition or specification

rank number of array dimensions of a data entity (zero for a
scalar entity)

team ordered image set created by executing a form team
statement, or the initial ordered set of all images

unlimited able to have any dynamic type during program

polymorphic | execution

-
a »
’ >

»
o’ - .u

“- -

— . -
ty -
s

LD A subset of the Fortran 2018 non-parallel features suffice for writing a runtime
library, mostly in Fortran, to support the Fortran 2018 parallel features

\2 Using Fortran 2018 type-agnostic procedure arguments facilitates porting
across compilers:

— no explicit reference to compiler-specific data descriptors

Bonus:
A2 Using Fortran 2018 type- and rank-agnostic arguments greatly |Writing in the language
simplifies the parallel runtime library: of the users improves 3
sustainability by lowering |-
a barrier to community
maintenance.

— almost no branching on type or rank

; ‘ : l ; .. . ,. -.'.'._"\‘";_." 9
V I T

Outline

L2 Methodology

— Software stack
— GASNet-EX
— Caffeinating LLVM Flang

W

g €

10

Software
Stack

Application

System Runtime & Memory Technologies

11

Scientific Applications

Fortran ‘
Chapel Legion UPC++
coarrays

'
One-S|ded Get/Put RMA

s ey OASNet-EX

Memory Technologies
(Host memory, GPUs, ...)

Network Hardware
(InfiniBand, Cray Aries, HPE Slingshot, Ethernet, Intel Omni-Path

)

12

https://gasnet.lbl.gov
https://upcxx.lbl.gov
https://upc.lbl.gov
https://legion.stanford.edu/
https://chapel-lang.org/

GASNet-EX Performance

10
9 S\ Sy S22 S < SR < i . 1o b s il el 2
8
7
£
m
G ©
S s
=
'8 4
(3]
m 3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
: , —<— GASNet-EX Put
2 KA et MPI RMA Put s
/ —->%-- GASNet-EX Get
T e —-&-- MPI RMA Get i
¥ I I I I I I I . + - IMPI ISlend/IRelcv
0
256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB
Microbenchmark performance comparison of GASNet-EX RMA
on NERSC Cori, versus Cray MPI’s RMA and message-passing.

D. Bonachea and P. H. Hargrove, “GASNet-EX: A High- Performance, Portable Communication Library for Exascale,” in Proceedings of
Languages and Compilers for Parallel Computing (LCPC’18), ser. LNCS, vol. 11882. Springer, October 2018, doi:10.25344/S4QP4W.

Cori-l;
Haswell
Aries

Cray MPI

13

https://dx.doi.org/10.25344/S4QP4W

Integration Timeline

Support 2003 C Interoperability L

Support 2018 Further Interoperability with C .=

Support 2008 Submodules N, -

\ Integrate Caffeine into Compiler e

Support 2008 Parallel Features

Support 2018 Additional Parallel Features -

Implement compiler feature prerequisites for building Caffeine

. _ Integrate Caffeine into compiler

Parallel feature availability

Outline

AW
AW

L2 Discussion of Results

— Status of parallel feature support
— Compiler-facing interface
— Unit tests

W2
AW

15

Status

TABLE 2
STATUS OF CAFFEINE’S SUPPORT FOR THE PARALLEL FEATURES OF FORTRAN 2008 AND 2018.

Standard | Feature Status
2008 Program launch yes
2008 Normal termination: stop and end program statements yes
2008 Error termination: error stop statement yes
2008 Image enumeration: this_image and num_images intrinsic functions partial
2008 Synchronization: sync {all, images,memory, team} statements partial
2008 Coarrays: declaration, access, (de)allocation, inquiry functions WIP
2008 Critical construct: critical and end critical WIP
2008 Atomics: atomic_{int, logical}_kind kind parameters and atomic_{define, ref, ...} subroutines WIP
2008 Locks: 1lock and unlock constructs WIP
2018 Collective subroutines: co__ {broadcast, sum, min, max, reduce} yes
2018 Events: event_type intrinsic type, event_query subroutine and event {post,wait} statements WIP
2018 Teams: team_type intrinsic type and { form, change, end} team statements WIP
2018 Failed/stopped images: fail image statement, {failed, stopped}_image intrinsic functions, related constants | WIP

- ~. .- ..._.-. .‘ .. rol) "v;“\;.-

module subroutine caf_co_sum(a, result_image, stat, errmsg)
implicit none
type(x), intent(inout), contiguous, target :: a(..) type-/rank-agnostic
integer, intent(in), target, optional :: result_image argument
integer, intent(out), target, optional :: stat

character(len=x), intent(inout), target, optional :: errmsg caf co sum calls a

end subroutine bind (C) function that
receives a 2018-standard
C struct CFI cdesc t

module caf_co_sum_test
use caffeine_m, only : caf_co_sum, caf_num_images, caf_this_image
use vegetables, only: result_t, test_item_t, assert_equals, describe, it, assert_that, assert_equals, succeed

implicit none
private
public :: test_caf_co_sum

contains
function test_caf_co_sum() result(tests)
type(test_item_t) tests

tests = describe(&
"The caf_co_sum subroutine", &
[it("sums default integer scalars with no optional arguments present", sum_default_integer_scalars) &
,it("sums default integer scalars with all arguments present", sum_integers_all_arguments) &
,it("sums integer(c_int64_t) scalars with stat argument present", sum_c_int64_scalars) &
,it("sums default integer 1D arrays with no optional arguments present", sum_default_integer_1D_array) &
,it("sums default integer 15D arrays with stat argument present", sum_default_integer_15D_array) &
,it("sums default real scalars with result_image argument present", sum_default_real_scalars) &
,it("sums double precision 2D arrays with no optional arguments present", sum_double_precision_2D_array) &
,it("sums default complex scalars with stat argument present", sum_default_complex_scalars) &
,it("sums double precision 1D complex arrays with no optional arguments present", sum_dble_complex_1D_arrays) &
1)

end function

function sum_default_integer_scalars() result(result_)
type(result_t) result_
integer i

i=1

call caf_co_sum(i)

result_ = assert_equals(caf_num_images(), i)
end function

Outline

S22 Future Work

~ i

o)
(/

/vﬂ‘v(?;f:gf/: ‘

» . ",ZA ’ /

nglig;
!,(é',‘{/

B B N

2 Coarray allocation and access:

real, allocatable :: coarray(:,:)[:,:,:]
allocate(coarray (10,10) [2,1,*])
1f (this 1mage()==2) coarray = coarray(:,:)I[1,1,1]
— Follow OpenUH Coarray Fortran compiler design, which used GASNet-1
— Use GASNet-EX RMA to for coarray access as a lightweight pass-through

L2 Teams of images: team type, form team,change team,end team
&2 Atomics: atomic {int, logical} kindand atomic * subroutines

&2 Events: event type, event post andevent wait statements, and
event query Subroutine

L2 Critical blocks: critical andend critical

L2 Synchronization subsets: sync images and sync team
A ——

20

COﬂCl USionS https://go.lbl.gov/caffeine

L2 Three key insights inspired Caffeine:

1. A subset of non-parallel Fortran 2018 features provide a compelling capability
for writing a mostly-Fortran runtime library to upport the parallel features.

2. Using Fortran 2018 assumed-type dummy arguments obviates the need for
passing compiler-specific data descriptors to the communication substrate.

3. Using Fortran 2018 assumed-type, assumed-rank dummy arguments reduces
line counts for some modules an order of magnitude relative to using the
Fortran 2003 C-interoperability features.

L2 Writing a library in the language of the users improves
sustainability by lowering barriers to community maintenance.

L2 We propose a workflow that leapfrogs standards to support
parallel 2018 features before completing 2003 support.

4.2 GASNet-EX offers a fully capable, high-performance w 3‘
communication substrate that supports a broad ecosystem of P

libraries and languages and the applications that use them.
21

https://go.lbl.gov/caffeine

