From ed59fbe8b7d60fed0fdcc62a2aa94249ab0e9d21 Mon Sep 17 00:00:00 2001 From: Jonas Nick Date: Thu, 20 Dec 2018 20:48:19 +0000 Subject: [PATCH 1/5] Add trivial ecmult_multi algorithm. It is selected when no scratch space is given and just multiplies and adds the points. --- src/ecmult.h | 3 ++- src/ecmult_impl.h | 29 +++++++++++++++++++++++++++++ src/tests.c | 1 + 3 files changed, 32 insertions(+), 1 deletion(-) diff --git a/src/ecmult.h b/src/ecmult.h index ea1cd8a21..3d75a960f 100644 --- a/src/ecmult.h +++ b/src/ecmult.h @@ -37,7 +37,8 @@ typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge * Chooses the right algorithm for a given number of points and scratch space * size. Resets and overwrites the given scratch space. If the points do not * fit in the scratch space the algorithm is repeatedly run with batches of - * points. + * points. If no scratch space is given then a simple algorithm is used that + * simply multiplies the points with the corresponding scalars and adds them up. * Returns: 1 on success (including when inp_g_sc is NULL and n is 0) * 0 if there is not enough scratch space for a single point or * callback returns 0 diff --git a/src/ecmult_impl.h b/src/ecmult_impl.h index c00578bed..1f113b520 100644 --- a/src/ecmult_impl.h +++ b/src/ecmult_impl.h @@ -1083,6 +1083,32 @@ static size_t secp256k1_pippenger_max_points(secp256k1_scratch *scratch) { return res; } +/* Computes ecmult_multi by simply multiplying and adding each point. Does not + * require a scratch space */ +static int secp256k1_ecmult_multi_var_simple(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) { + size_t point_idx; + secp256k1_scalar szero; + secp256k1_gej tmpj; + + secp256k1_scalar_set_int(&szero, 0); + /* r = inp_g_sc*G */ + secp256k1_gej_set_infinity(r); + secp256k1_ecmult(ctx, r, &tmpj, &szero, inp_g_sc); + for (point_idx = 0; point_idx < n_points; point_idx++) { + secp256k1_ge point; + secp256k1_gej pointj; + secp256k1_scalar scalar; + if (!cb(&scalar, &point, point_idx, cbdata)) { + return 0; + } + /* r += scalar*point */ + secp256k1_gej_set_ge(&pointj, &point); + secp256k1_ecmult(ctx, &tmpj, &pointj, &scalar, NULL); + secp256k1_gej_add_var(r, r, &tmpj, NULL); + } + return 1; +} + typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { size_t i; @@ -1101,6 +1127,9 @@ static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp2 secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc); return 1; } + if (scratch == NULL) { + return secp256k1_ecmult_multi_var_simple(ctx, r, inp_g_sc, cb, cbdata, n); + } max_points = secp256k1_pippenger_max_points(scratch); if (max_points == 0) { diff --git a/src/tests.c b/src/tests.c index 5c8dc8b17..492c7ca3d 100644 --- a/src/tests.c +++ b/src/tests.c @@ -2968,6 +2968,7 @@ void run_ecmult_multi_tests(void) { test_ecmult_multi_pippenger_max_points(); scratch = secp256k1_scratch_create(&ctx->error_callback, 819200); test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); + test_ecmult_multi(NULL, secp256k1_ecmult_multi_var); test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single); test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single); secp256k1_scratch_destroy(scratch); From 826080049148998af26ed0d227f9ee4c845ccc87 Mon Sep 17 00:00:00 2001 From: Andrew Poelstra Date: Tue, 3 Apr 2018 22:06:07 +0000 Subject: [PATCH 2/5] add chacha20 function --- src/scalar.h | 3 ++ src/scalar_4x64_impl.h | 91 ++++++++++++++++++++++++++++++++++ src/scalar_8x32_impl.h | 100 +++++++++++++++++++++++++++++++++++++ src/scalar_low_impl.h | 5 ++ src/tests.c | 110 +++++++++++++++++++++++++++++++++++++++++ 5 files changed, 309 insertions(+) diff --git a/src/scalar.h b/src/scalar.h index 1fc3a73ff..57389da3a 100644 --- a/src/scalar.h +++ b/src/scalar.h @@ -106,4 +106,7 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar /** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); +/** Generate two scalars from a 32-byte seed and an integer using the chacha20 stream cipher */ +static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx); + #endif /* SECP256K1_SCALAR_H */ diff --git a/src/scalar_4x64_impl.h b/src/scalar_4x64_impl.h index 97401968b..38390c495 100644 --- a/src/scalar_4x64_impl.h +++ b/src/scalar_4x64_impl.h @@ -8,6 +8,7 @@ #define SECP256K1_SCALAR_REPR_IMPL_H #include "scalar.h" +#include /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) @@ -955,4 +956,94 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); } +#define ROTL32(x,n) ((x) << (n) | (x) >> (32-(n))) +#define QUARTERROUND(a,b,c,d) \ + a += b; d = ROTL32(d ^ a, 16); \ + c += d; b = ROTL32(b ^ c, 12); \ + a += b; d = ROTL32(d ^ a, 8); \ + c += d; b = ROTL32(b ^ c, 7); + +#ifdef WORDS_BIGENDIAN +#define LE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) +#define BE32(p) (p) +#else +#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) +#define LE32(p) (p) +#endif + +static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx) { + size_t n; + size_t over_count = 0; + uint32_t seed32[8]; + uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; + int over1, over2; + + memcpy((void *) seed32, (const void *) seed, 32); + do { + x0 = 0x61707865; + x1 = 0x3320646e; + x2 = 0x79622d32; + x3 = 0x6b206574; + x4 = LE32(seed32[0]); + x5 = LE32(seed32[1]); + x6 = LE32(seed32[2]); + x7 = LE32(seed32[3]); + x8 = LE32(seed32[4]); + x9 = LE32(seed32[5]); + x10 = LE32(seed32[6]); + x11 = LE32(seed32[7]); + x12 = idx; + x13 = idx >> 32; + x14 = 0; + x15 = over_count; + + n = 10; + while (n--) { + QUARTERROUND(x0, x4, x8,x12) + QUARTERROUND(x1, x5, x9,x13) + QUARTERROUND(x2, x6,x10,x14) + QUARTERROUND(x3, x7,x11,x15) + QUARTERROUND(x0, x5,x10,x15) + QUARTERROUND(x1, x6,x11,x12) + QUARTERROUND(x2, x7, x8,x13) + QUARTERROUND(x3, x4, x9,x14) + } + + x0 += 0x61707865; + x1 += 0x3320646e; + x2 += 0x79622d32; + x3 += 0x6b206574; + x4 += LE32(seed32[0]); + x5 += LE32(seed32[1]); + x6 += LE32(seed32[2]); + x7 += LE32(seed32[3]); + x8 += LE32(seed32[4]); + x9 += LE32(seed32[5]); + x10 += LE32(seed32[6]); + x11 += LE32(seed32[7]); + x12 += idx; + x13 += idx >> 32; + x14 += 0; + x15 += over_count; + + r1->d[3] = LE32((uint64_t) x0) << 32 | LE32(x1); + r1->d[2] = LE32((uint64_t) x2) << 32 | LE32(x3); + r1->d[1] = LE32((uint64_t) x4) << 32 | LE32(x5); + r1->d[0] = LE32((uint64_t) x6) << 32 | LE32(x7); + r2->d[3] = LE32((uint64_t) x8) << 32 | LE32(x9); + r2->d[2] = LE32((uint64_t) x10) << 32 | LE32(x11); + r2->d[1] = LE32((uint64_t) x12) << 32 | LE32(x13); + r2->d[0] = LE32((uint64_t) x14) << 32 | LE32(x15); + + over1 = secp256k1_scalar_check_overflow(r1); + over2 = secp256k1_scalar_check_overflow(r2); + over_count++; + } while (over1 | over2); +} + +#undef ROTL32 +#undef QUARTERROUND +#undef BE32 +#undef LE32 + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/scalar_8x32_impl.h b/src/scalar_8x32_impl.h index ad4d050df..11fac6c23 100644 --- a/src/scalar_8x32_impl.h +++ b/src/scalar_8x32_impl.h @@ -7,6 +7,8 @@ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H +#include + /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint32_t)0xD0364141UL) #define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL) @@ -729,4 +731,102 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); } +#define ROTL32(x,n) ((x) << (n) | (x) >> (32-(n))) +#define QUARTERROUND(a,b,c,d) \ + a += b; d = ROTL32(d ^ a, 16); \ + c += d; b = ROTL32(b ^ c, 12); \ + a += b; d = ROTL32(d ^ a, 8); \ + c += d; b = ROTL32(b ^ c, 7); + +#ifdef WORDS_BIGENDIAN +#define LE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) +#define BE32(p) (p) +#else +#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) +#define LE32(p) (p) +#endif + +static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx) { + size_t n; + size_t over_count = 0; + uint32_t seed32[8]; + uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; + int over1, over2; + + memcpy((void *) seed32, (const void *) seed, 32); + do { + x0 = 0x61707865; + x1 = 0x3320646e; + x2 = 0x79622d32; + x3 = 0x6b206574; + x4 = LE32(seed32[0]); + x5 = LE32(seed32[1]); + x6 = LE32(seed32[2]); + x7 = LE32(seed32[3]); + x8 = LE32(seed32[4]); + x9 = LE32(seed32[5]); + x10 = LE32(seed32[6]); + x11 = LE32(seed32[7]); + x12 = idx; + x13 = idx >> 32; + x14 = 0; + x15 = over_count; + + n = 10; + while (n--) { + QUARTERROUND(x0, x4, x8,x12) + QUARTERROUND(x1, x5, x9,x13) + QUARTERROUND(x2, x6,x10,x14) + QUARTERROUND(x3, x7,x11,x15) + QUARTERROUND(x0, x5,x10,x15) + QUARTERROUND(x1, x6,x11,x12) + QUARTERROUND(x2, x7, x8,x13) + QUARTERROUND(x3, x4, x9,x14) + } + + x0 += 0x61707865; + x1 += 0x3320646e; + x2 += 0x79622d32; + x3 += 0x6b206574; + x4 += LE32(seed32[0]); + x5 += LE32(seed32[1]); + x6 += LE32(seed32[2]); + x7 += LE32(seed32[3]); + x8 += LE32(seed32[4]); + x9 += LE32(seed32[5]); + x10 += LE32(seed32[6]); + x11 += LE32(seed32[7]); + x12 += idx; + x13 += idx >> 32; + x14 += 0; + x15 += over_count; + + r1->d[7] = LE32(x0); + r1->d[6] = LE32(x1); + r1->d[5] = LE32(x2); + r1->d[4] = LE32(x3); + r1->d[3] = LE32(x4); + r1->d[2] = LE32(x5); + r1->d[1] = LE32(x6); + r1->d[0] = LE32(x7); + r2->d[7] = LE32(x8); + r2->d[6] = LE32(x9); + r2->d[5] = LE32(x10); + r2->d[4] = LE32(x11); + r2->d[3] = LE32(x12); + r2->d[2] = LE32(x13); + r2->d[1] = LE32(x14); + r2->d[0] = LE32(x15); + + over1 = secp256k1_scalar_check_overflow(r1); + over2 = secp256k1_scalar_check_overflow(r2); + over_count++; + } while (over1 | over2); +} + +#undef ROTL32 +#undef QUARTERROUND +#undef BE32 +#undef LE32 + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/scalar_low_impl.h b/src/scalar_low_impl.h index 37af136e4..d6fdeadcc 100644 --- a/src/scalar_low_impl.h +++ b/src/scalar_low_impl.h @@ -112,4 +112,9 @@ SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const return *a == *b; } +SECP256K1_INLINE static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t n) { + *r1 = (seed[0] + n) % EXHAUSTIVE_TEST_ORDER; + *r2 = (seed[1] + n) % EXHAUSTIVE_TEST_ORDER; +} + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/tests.c b/src/tests.c index 492c7ca3d..55dd7dcdf 100644 --- a/src/tests.c +++ b/src/tests.c @@ -1007,12 +1007,122 @@ void scalar_test(void) { } +void scalar_chacha_tests(void) { + /* Test vectors 1 to 4 from https://tools.ietf.org/html/rfc8439#appendix-A + * Note that scalar_set_b32 and scalar_get_b32 represent integers + * underlying the scalar in big-endian format. */ + unsigned char expected1[64] = { + 0xad, 0xe0, 0xb8, 0x76, 0x90, 0x3d, 0xf1, 0xa0, + 0xe5, 0x6a, 0x5d, 0x40, 0x28, 0xbd, 0x86, 0x53, + 0xb8, 0x19, 0xd2, 0xbd, 0x1a, 0xed, 0x8d, 0xa0, + 0xcc, 0xef, 0x36, 0xa8, 0xc7, 0x0d, 0x77, 0x8b, + 0x7c, 0x59, 0x41, 0xda, 0x8d, 0x48, 0x57, 0x51, + 0x3f, 0xe0, 0x24, 0x77, 0x37, 0x4a, 0xd8, 0xb8, + 0xf4, 0xb8, 0x43, 0x6a, 0x1c, 0xa1, 0x18, 0x15, + 0x69, 0xb6, 0x87, 0xc3, 0x86, 0x65, 0xee, 0xb2 + }; + unsigned char expected2[64] = { + 0xbe, 0xe7, 0x07, 0x9f, 0x7a, 0x38, 0x51, 0x55, + 0x7c, 0x97, 0xba, 0x98, 0x0d, 0x08, 0x2d, 0x73, + 0xa0, 0x29, 0x0f, 0xcb, 0x69, 0x65, 0xe3, 0x48, + 0x3e, 0x53, 0xc6, 0x12, 0xed, 0x7a, 0xee, 0x32, + 0x76, 0x21, 0xb7, 0x29, 0x43, 0x4e, 0xe6, 0x9c, + 0xb0, 0x33, 0x71, 0xd5, 0xd5, 0x39, 0xd8, 0x74, + 0x28, 0x1f, 0xed, 0x31, 0x45, 0xfb, 0x0a, 0x51, + 0x1f, 0x0a, 0xe1, 0xac, 0x6f, 0x4d, 0x79, 0x4b + }; + unsigned char seed3[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 + }; + unsigned char expected3[64] = { + 0x24, 0x52, 0xeb, 0x3a, 0x92, 0x49, 0xf8, 0xec, + 0x8d, 0x82, 0x9d, 0x9b, 0xdd, 0xd4, 0xce, 0xb1, + 0xe8, 0x25, 0x20, 0x83, 0x60, 0x81, 0x8b, 0x01, + 0xf3, 0x84, 0x22, 0xb8, 0x5a, 0xaa, 0x49, 0xc9, + 0xbb, 0x00, 0xca, 0x8e, 0xda, 0x3b, 0xa7, 0xb4, + 0xc4, 0xb5, 0x92, 0xd1, 0xfd, 0xf2, 0x73, 0x2f, + 0x44, 0x36, 0x27, 0x4e, 0x25, 0x61, 0xb3, 0xc8, + 0xeb, 0xdd, 0x4a, 0xa6, 0xa0, 0x13, 0x6c, 0x00 + }; + unsigned char seed4[32] = { + 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + unsigned char expected4[64] = { + 0xfb, 0x4d, 0xd5, 0x72, 0x4b, 0xc4, 0x2e, 0xf1, + 0xdf, 0x92, 0x26, 0x36, 0x32, 0x7f, 0x13, 0x94, + 0xa7, 0x8d, 0xea, 0x8f, 0x5e, 0x26, 0x90, 0x39, + 0xa1, 0xbe, 0xbb, 0xc1, 0xca, 0xf0, 0x9a, 0xae, + 0xa2, 0x5a, 0xb2, 0x13, 0x48, 0xa6, 0xb4, 0x6c, + 0x1b, 0x9d, 0x9b, 0xcb, 0x09, 0x2c, 0x5b, 0xe6, + 0x54, 0x6c, 0xa6, 0x24, 0x1b, 0xec, 0x45, 0xd5, + 0x87, 0xf4, 0x74, 0x73, 0x96, 0xf0, 0x99, 0x2e + }; + unsigned char seed5[32] = { + 0x32, 0x56, 0x56, 0xf4, 0x29, 0x02, 0xc2, 0xf8, + 0xa3, 0x4b, 0x96, 0xf5, 0xa7, 0xf7, 0xe3, 0x6c, + 0x92, 0xad, 0xa5, 0x18, 0x1c, 0xe3, 0x41, 0xae, + 0xc3, 0xf3, 0x18, 0xd0, 0xfa, 0x5b, 0x72, 0x53 + }; + unsigned char expected5[64] = { + 0xe7, 0x56, 0xd3, 0x28, 0xe9, 0xc6, 0x19, 0x5c, + 0x6f, 0x17, 0x8e, 0x21, 0x8c, 0x1e, 0x72, 0x11, + 0xe7, 0xbd, 0x17, 0x0d, 0xac, 0x14, 0xad, 0xe9, + 0x3d, 0x9f, 0xb6, 0x92, 0xd6, 0x09, 0x20, 0xfb, + 0x43, 0x8e, 0x3b, 0x6d, 0xe3, 0x33, 0xdc, 0xc7, + 0x6c, 0x07, 0x6f, 0xbb, 0x1f, 0xb4, 0xc8, 0xb5, + 0xe3, 0x6c, 0xe5, 0x12, 0xd9, 0xd7, 0x64, 0x0c, + 0xf5, 0xa7, 0x0d, 0xab, 0x79, 0x03, 0xf1, 0x81 + }; + + secp256k1_scalar exp_r1, exp_r2; + secp256k1_scalar r1, r2; + unsigned char seed0[32] = { 0 }; + + secp256k1_scalar_chacha20(&r1, &r2, seed0, 0); + secp256k1_scalar_set_b32(&exp_r1, &expected1[0], NULL); + secp256k1_scalar_set_b32(&exp_r2, &expected1[32], NULL); + CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); + CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); + + secp256k1_scalar_chacha20(&r1, &r2, seed0, 1); + secp256k1_scalar_set_b32(&exp_r1, &expected2[0], NULL); + secp256k1_scalar_set_b32(&exp_r2, &expected2[32], NULL); + CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); + CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); + + secp256k1_scalar_chacha20(&r1, &r2, seed3, 1); + secp256k1_scalar_set_b32(&exp_r1, &expected3[0], NULL); + secp256k1_scalar_set_b32(&exp_r2, &expected3[32], NULL); + CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); + CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); + + secp256k1_scalar_chacha20(&r1, &r2, seed4, 2); + secp256k1_scalar_set_b32(&exp_r1, &expected4[0], NULL); + secp256k1_scalar_set_b32(&exp_r2, &expected4[32], NULL); + CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); + CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); + + secp256k1_scalar_chacha20(&r1, &r2, seed5, 0x6ff8602a7a78e2f2ULL); + secp256k1_scalar_set_b32(&exp_r1, &expected5[0], NULL); + secp256k1_scalar_set_b32(&exp_r2, &expected5[32], NULL); + CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); + CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); +} + void run_scalar_tests(void) { int i; for (i = 0; i < 128 * count; i++) { scalar_test(); } + scalar_chacha_tests(); + { /* (-1)+1 should be zero. */ secp256k1_scalar s, o; From f0e4bb9283156b657097f32be33ef9416b6e4350 Mon Sep 17 00:00:00 2001 From: Andrew Poelstra Date: Wed, 9 May 2018 15:37:35 +0000 Subject: [PATCH 3/5] Add schnorrsig module which implements BIP-schnorr [0] compatible signing, verification and batch verification. [0] https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki --- .gitignore | 2 +- Makefile.am | 4 + configure.ac | 14 + include/secp256k1_schnorrsig.h | 118 ++++ src/bench_schnorrsig.c | 128 ++++ src/modules/schnorrsig/Makefile.am.include | 8 + src/modules/schnorrsig/main_impl.h | 338 ++++++++++ src/modules/schnorrsig/tests_impl.h | 726 +++++++++++++++++++++ src/secp256k1.c | 25 + src/tests.c | 9 + 10 files changed, 1371 insertions(+), 1 deletion(-) create mode 100644 include/secp256k1_schnorrsig.h create mode 100644 src/bench_schnorrsig.c create mode 100644 src/modules/schnorrsig/Makefile.am.include create mode 100644 src/modules/schnorrsig/main_impl.h create mode 100644 src/modules/schnorrsig/tests_impl.h diff --git a/.gitignore b/.gitignore index 55d325aee..905be9873 100644 --- a/.gitignore +++ b/.gitignore @@ -1,9 +1,9 @@ bench_inv bench_ecdh bench_ecmult +bench_schnorrsig bench_sign bench_verify -bench_schnorr_verify bench_recover bench_internal tests diff --git a/Makefile.am b/Makefile.am index ec3c64ccf..caf30e25e 100644 --- a/Makefile.am +++ b/Makefile.am @@ -178,6 +178,10 @@ if ENABLE_MODULE_ECDH include src/modules/ecdh/Makefile.am.include endif +if ENABLE_MODULE_SCHNORRSIG +include src/modules/schnorrsig/Makefile.am.include +endif + if ENABLE_MODULE_RECOVERY include src/modules/recovery/Makefile.am.include endif diff --git a/configure.ac b/configure.ac index c4442eb25..44da65707 100644 --- a/configure.ac +++ b/configure.ac @@ -129,6 +129,11 @@ AC_ARG_ENABLE(module_ecdh, [enable_module_ecdh=$enableval], [enable_module_ecdh=no]) +AC_ARG_ENABLE(module_schnorrsig, + AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module (experimental)]), + [enable_module_schnorrsig=$enableval], + [enable_module_schnorrsig=no]) + AC_ARG_ENABLE(module_recovery, AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]), [enable_module_recovery=$enableval], @@ -463,6 +468,10 @@ if test x"$enable_module_ecdh" = x"yes"; then AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module]) fi +if test x"$enable_module_schnorrsig" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module]) +fi + if test x"$enable_module_recovery" = x"yes"; then AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module]) fi @@ -510,6 +519,7 @@ if test x"$enable_experimental" = x"yes"; then AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof]) AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist]) AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof]) + AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig]) AC_MSG_NOTICE([******]) if test x"$enable_module_generator" != x"yes"; then @@ -530,6 +540,9 @@ else if test x"$enable_module_ecdh" = x"yes"; then AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.]) fi + if test x"$enable_module_schnorrsig" = x"yes"; then + AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.]) + fi if test x"$set_asm" = x"arm"; then AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.]) fi @@ -560,6 +573,7 @@ AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"]) AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"]) diff --git a/include/secp256k1_schnorrsig.h b/include/secp256k1_schnorrsig.h new file mode 100644 index 000000000..e507c63f4 --- /dev/null +++ b/include/secp256k1_schnorrsig.h @@ -0,0 +1,118 @@ +#ifndef SECP256K1_SCHNORRSIG_H +#define SECP256K1_SCHNORRSIG_H + +/** This module implements a variant of Schnorr signatures compliant with + * BIP-schnorr + * (https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki). + */ + +/** Opaque data structure that holds a parsed Schnorr signature. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 64 bytes in size, and can be safely copied/moved. + * If you need to convert to a format suitable for storage, transmission, or + * comparison, use the `secp256k1_schnorrsig_serialize` and + * `secp256k1_schnorrsig_parse` functions. + */ +typedef struct { + unsigned char data[64]; +} secp256k1_schnorrsig; + +/** Serialize a Schnorr signature. + * + * Returns: 1 + * Args: ctx: a secp256k1 context object + * Out: out64: pointer to a 64-byte array to store the serialized signature + * In: sig: pointer to the signature + * + * See secp256k1_schnorrsig_parse for details about the encoding. + */ +SECP256K1_API int secp256k1_schnorrsig_serialize( + const secp256k1_context* ctx, + unsigned char *out64, + const secp256k1_schnorrsig* sig +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Parse a Schnorr signature. + * + * Returns: 1 when the signature could be parsed, 0 otherwise. + * Args: ctx: a secp256k1 context object + * Out: sig: pointer to a signature object + * In: in64: pointer to the 64-byte signature to be parsed + * + * The signature is serialized in the form R||s, where R is a 32-byte public + * key (x-coordinate only; the y-coordinate is considered to be the unique + * y-coordinate satisfying the curve equation that is a quadratic residue) + * and s is a 32-byte big-endian scalar. + * + * After the call, sig will always be initialized. If parsing failed or the + * encoded numbers are out of range, signature validation with it is + * guaranteed to fail for every message and public key. + */ +SECP256K1_API int secp256k1_schnorrsig_parse( + const secp256k1_context* ctx, + secp256k1_schnorrsig* sig, + const unsigned char *in64 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Create a Schnorr signature. + * + * Returns 1 on success, 0 on failure. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig: pointer to the returned signature (cannot be NULL) + * nonce_is_negated: a pointer to an integer indicates if signing algorithm negated the + * nonce (can be NULL) + * In: msg32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp: pointer to a nonce generation function. If NULL, secp256k1_nonce_function_bipschnorr is used + * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) + */ +SECP256K1_API int secp256k1_schnorrsig_sign( + const secp256k1_context* ctx, + secp256k1_schnorrsig *sig, + int *nonce_is_negated, + const unsigned char *msg32, + const unsigned char *seckey, + secp256k1_nonce_function noncefp, + void *ndata +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); + +/** Verify a Schnorr signature. + * + * Returns: 1: correct signature + * 0: incorrect or unparseable signature + * Args: ctx: a secp256k1 context object, initialized for verification. + * In: sig: the signature being verified (cannot be NULL) + * msg32: the 32-byte message hash being verified (cannot be NULL) + * pubkey: pointer to a public key to verify with (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify( + const secp256k1_context* ctx, + const secp256k1_schnorrsig *sig, + const unsigned char *msg32, + const secp256k1_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Verifies a set of Schnorr signatures. + * + * Returns 1 if all succeeded, 0 otherwise. In particular, returns 1 if n_sigs is 0. + * + * Args: ctx: a secp256k1 context object, initialized for verification. + * scratch: scratch space used for the multiexponentiation + * In: sig: array of signatures, or NULL if there are no signatures + * msg32: array of messages, or NULL if there are no signatures + * pk: array of public keys, or NULL if there are no signatures + * n_sigs: number of signatures in above arrays. Must be smaller than + * 2^31 and smaller than half the maximum size_t value. Must be 0 + * if above arrays are NULL. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify_batch( + const secp256k1_context* ctx, + secp256k1_scratch_space *scratch, + const secp256k1_schnorrsig *const *sig, + const unsigned char *const *msg32, + const secp256k1_pubkey *const *pk, + size_t n_sigs +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); +#endif diff --git a/src/bench_schnorrsig.c b/src/bench_schnorrsig.c new file mode 100644 index 000000000..d24510921 --- /dev/null +++ b/src/bench_schnorrsig.c @@ -0,0 +1,128 @@ +/********************************************************************** + * Copyright (c) 2018 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#include +#include + +#include "include/secp256k1.h" +#include "include/secp256k1_schnorrsig.h" +#include "util.h" +#include "bench.h" + +#define MAX_SIGS (32768) + +typedef struct { + secp256k1_context *ctx; + secp256k1_scratch_space *scratch; + size_t n; + const unsigned char **pk; + const secp256k1_schnorrsig **sigs; + const unsigned char **msgs; +} bench_schnorrsig_data; + +void bench_schnorrsig_sign(void* arg) { + bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg; + size_t i; + unsigned char sk[32] = "benchmarkexample secrettemplate"; + unsigned char msg[32] = "benchmarkexamplemessagetemplate"; + secp256k1_schnorrsig sig; + + for (i = 0; i < 1000; i++) { + msg[0] = i; + msg[1] = i >> 8; + sk[0] = i; + sk[1] = i >> 8; + CHECK(secp256k1_schnorrsig_sign(data->ctx, &sig, NULL, msg, sk, NULL, NULL)); + } +} + +void bench_schnorrsig_verify(void* arg) { + bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg; + size_t i; + + for (i = 0; i < 1000; i++) { + secp256k1_pubkey pk; + CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pk, data->pk[i], 33) == 1); + CHECK(secp256k1_schnorrsig_verify(data->ctx, data->sigs[i], data->msgs[i], &pk)); + } +} + +void bench_schnorrsig_verify_n(void* arg) { + bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg; + size_t i, j; + const secp256k1_pubkey **pk = (const secp256k1_pubkey **)malloc(data->n * sizeof(*pk)); + + CHECK(pk != NULL); + for (j = 0; j < MAX_SIGS/data->n; j++) { + for (i = 0; i < data->n; i++) { + secp256k1_pubkey *pk_nonconst = (secp256k1_pubkey *)malloc(sizeof(*pk_nonconst)); + CHECK(secp256k1_ec_pubkey_parse(data->ctx, pk_nonconst, data->pk[i], 33) == 1); + pk[i] = pk_nonconst; + } + CHECK(secp256k1_schnorrsig_verify_batch(data->ctx, data->scratch, data->sigs, data->msgs, pk, data->n)); + for (i = 0; i < data->n; i++) { + free((void *)pk[i]); + } + } + free(pk); +} + +int main(void) { + size_t i; + bench_schnorrsig_data data; + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN); + data.scratch = secp256k1_scratch_space_create(data.ctx, 1024 * 1024 * 1024); + data.pk = (const unsigned char **)malloc(MAX_SIGS * sizeof(unsigned char *)); + data.msgs = (const unsigned char **)malloc(MAX_SIGS * sizeof(unsigned char *)); + data.sigs = (const secp256k1_schnorrsig **)malloc(MAX_SIGS * sizeof(secp256k1_schnorrsig *)); + + for (i = 0; i < MAX_SIGS; i++) { + unsigned char sk[32]; + unsigned char *msg = (unsigned char *)malloc(32); + secp256k1_schnorrsig *sig = (secp256k1_schnorrsig *)malloc(sizeof(*sig)); + unsigned char *pk_char = (unsigned char *)malloc(33); + secp256k1_pubkey pk; + size_t pk_len = 33; + msg[0] = sk[0] = i; + msg[1] = sk[1] = i >> 8; + msg[2] = sk[2] = i >> 16; + msg[3] = sk[3] = i >> 24; + memset(&msg[4], 'm', 28); + memset(&sk[4], 's', 28); + + data.pk[i] = pk_char; + data.msgs[i] = msg; + data.sigs[i] = sig; + + CHECK(secp256k1_ec_pubkey_create(data.ctx, &pk, sk)); + CHECK(secp256k1_ec_pubkey_serialize(data.ctx, pk_char, &pk_len, &pk, SECP256K1_EC_COMPRESSED) == 1); + CHECK(secp256k1_schnorrsig_sign(data.ctx, sig, NULL, msg, sk, NULL, NULL)); + } + + run_benchmark("schnorrsig_sign", bench_schnorrsig_sign, NULL, NULL, (void *) &data, 10, 1000); + run_benchmark("schnorrsig_verify", bench_schnorrsig_verify, NULL, NULL, (void *) &data, 10, 1000); + for (i = 1; i <= MAX_SIGS; i *= 2) { + char name[64]; + sprintf(name, "schnorrsig_batch_verify_%d", (int) i); + + data.n = i; + run_benchmark(name, bench_schnorrsig_verify_n, NULL, NULL, (void *) &data, 3, MAX_SIGS); + } + + for (i = 0; i < MAX_SIGS; i++) { + free((void *)data.pk[i]); + free((void *)data.msgs[i]); + free((void *)data.sigs[i]); + } + free(data.pk); + free(data.msgs); + free(data.sigs); + + secp256k1_scratch_space_destroy(data.scratch); + secp256k1_context_destroy(data.ctx); + return 0; +} diff --git a/src/modules/schnorrsig/Makefile.am.include b/src/modules/schnorrsig/Makefile.am.include new file mode 100644 index 000000000..a82bafe43 --- /dev/null +++ b/src/modules/schnorrsig/Makefile.am.include @@ -0,0 +1,8 @@ +include_HEADERS += include/secp256k1_schnorrsig.h +noinst_HEADERS += src/modules/schnorrsig/main_impl.h +noinst_HEADERS += src/modules/schnorrsig/tests_impl.h +if USE_BENCHMARK +noinst_PROGRAMS += bench_schnorrsig +bench_schnorrsig_SOURCES = src/bench_schnorrsig.c +bench_schnorrsig_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB) +endif diff --git a/src/modules/schnorrsig/main_impl.h b/src/modules/schnorrsig/main_impl.h new file mode 100644 index 000000000..bebb49fe9 --- /dev/null +++ b/src/modules/schnorrsig/main_impl.h @@ -0,0 +1,338 @@ +/********************************************************************** + * Copyright (c) 2018 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_SCHNORRSIG_MAIN_ +#define _SECP256K1_MODULE_SCHNORRSIG_MAIN_ + +#include "include/secp256k1.h" +#include "include/secp256k1_schnorrsig.h" +#include "hash.h" + +int secp256k1_schnorrsig_serialize(const secp256k1_context* ctx, unsigned char *out64, const secp256k1_schnorrsig* sig) { + (void) ctx; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(out64 != NULL); + ARG_CHECK(sig != NULL); + memcpy(out64, sig->data, 64); + return 1; +} + +int secp256k1_schnorrsig_parse(const secp256k1_context* ctx, secp256k1_schnorrsig* sig, const unsigned char *in64) { + (void) ctx; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(sig != NULL); + ARG_CHECK(in64 != NULL); + memcpy(sig->data, in64, 64); + return 1; +} + +int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, secp256k1_schnorrsig *sig, int *nonce_is_negated, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, void *ndata) { + secp256k1_scalar x; + secp256k1_scalar e; + secp256k1_scalar k; + secp256k1_gej pkj; + secp256k1_gej rj; + secp256k1_ge pk; + secp256k1_ge r; + secp256k1_sha256 sha; + int overflow; + unsigned char buf[33]; + size_t buflen = sizeof(buf); + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(sig != NULL); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(seckey != NULL); + + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_bipschnorr; + } + secp256k1_scalar_set_b32(&x, seckey, &overflow); + /* Fail if the secret key is invalid. */ + if (overflow || secp256k1_scalar_is_zero(&x)) { + memset(sig, 0, sizeof(*sig)); + return 0; + } + + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pkj, &x); + secp256k1_ge_set_gej(&pk, &pkj); + + if (!noncefp(buf, msg32, seckey, NULL, (void*)ndata, 0)) { + return 0; + } + secp256k1_scalar_set_b32(&k, buf, NULL); + if (secp256k1_scalar_is_zero(&k)) { + return 0; + } + + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k); + secp256k1_ge_set_gej(&r, &rj); + + if (nonce_is_negated != NULL) { + *nonce_is_negated = 0; + } + if (!secp256k1_fe_is_quad_var(&r.y)) { + secp256k1_scalar_negate(&k, &k); + if (nonce_is_negated != NULL) { + *nonce_is_negated = 1; + } + } + secp256k1_fe_normalize(&r.x); + secp256k1_fe_get_b32(&sig->data[0], &r.x); + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, &sig->data[0], 32); + secp256k1_eckey_pubkey_serialize(&pk, buf, &buflen, 1); + secp256k1_sha256_write(&sha, buf, buflen); + secp256k1_sha256_write(&sha, msg32, 32); + secp256k1_sha256_finalize(&sha, buf); + + secp256k1_scalar_set_b32(&e, buf, NULL); + secp256k1_scalar_mul(&e, &e, &x); + secp256k1_scalar_add(&e, &e, &k); + + secp256k1_scalar_get_b32(&sig->data[32], &e); + secp256k1_scalar_clear(&k); + secp256k1_scalar_clear(&x); + + return 1; +} + +/* Helper function for verification and batch verification. + * Computes R = sG - eP. */ +static int secp256k1_schnorrsig_real_verify(const secp256k1_context* ctx, secp256k1_gej *rj, const secp256k1_scalar *s, const secp256k1_scalar *e, const secp256k1_pubkey *pk) { + secp256k1_scalar nege; + secp256k1_ge pkp; + secp256k1_gej pkj; + + secp256k1_scalar_negate(&nege, e); + + if (!secp256k1_pubkey_load(ctx, &pkp, pk)) { + return 0; + } + secp256k1_gej_set_ge(&pkj, &pkp); + + /* rj = s*G + (-e)*pkj */ + secp256k1_ecmult(&ctx->ecmult_ctx, rj, &pkj, &nege, s); + return 1; +} + +int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const secp256k1_schnorrsig *sig, const unsigned char *msg32, const secp256k1_pubkey *pk) { + secp256k1_scalar s; + secp256k1_scalar e; + secp256k1_gej rj; + secp256k1_fe rx; + secp256k1_sha256 sha; + unsigned char buf[33]; + size_t buflen = sizeof(buf); + int overflow; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(sig != NULL); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(pk != NULL); + + if (!secp256k1_fe_set_b32(&rx, &sig->data[0])) { + return 0; + } + + secp256k1_scalar_set_b32(&s, &sig->data[32], &overflow); + if (overflow) { + return 0; + } + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, &sig->data[0], 32); + secp256k1_ec_pubkey_serialize(ctx, buf, &buflen, pk, SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(&sha, buf, buflen); + secp256k1_sha256_write(&sha, msg32, 32); + secp256k1_sha256_finalize(&sha, buf); + secp256k1_scalar_set_b32(&e, buf, NULL); + + if (!secp256k1_schnorrsig_real_verify(ctx, &rj, &s, &e, pk) + || !secp256k1_gej_has_quad_y_var(&rj) /* fails if rj is infinity */ + || !secp256k1_gej_eq_x_var(&rx, &rj)) { + return 0; + } + + return 1; +} + +/* Data that is used by the batch verification ecmult callback */ +typedef struct { + const secp256k1_context *ctx; + /* Seed for the random number generator */ + unsigned char chacha_seed[32]; + /* Caches randomizers generated by the PRNG which returns two randomizers per call. Caching + * avoids having to call the PRNG twice as often. The very first randomizer will be set to 1 and + * the PRNG is called at every odd indexed schnorrsig to fill the cache. */ + secp256k1_scalar randomizer_cache[2]; + /* Signature, message, public key tuples to verify */ + const secp256k1_schnorrsig *const *sig; + const unsigned char *const *msg32; + const secp256k1_pubkey *const *pk; + size_t n_sigs; +} secp256k1_schnorrsig_verify_ecmult_context; + +/* Callback function which is called by ecmult_multi in order to convert the ecmult_context + * consisting of signature, message and public key tuples into scalars and points. */ +static int secp256k1_schnorrsig_verify_batch_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { + secp256k1_schnorrsig_verify_ecmult_context *ecmult_context = (secp256k1_schnorrsig_verify_ecmult_context *) data; + + if (idx % 4 == 2) { + /* Every idx corresponds to a (scalar,point)-tuple. So this callback is called with 4 + * consecutive tuples before we need to call the RNG for new randomizers: + * (-randomizer_cache[0], R1) + * (-randomizer_cache[0]*e1, P1) + * (-randomizer_cache[1], R2) + * (-randomizer_cache[1]*e2, P2) */ + secp256k1_scalar_chacha20(&ecmult_context->randomizer_cache[0], &ecmult_context->randomizer_cache[1], ecmult_context->chacha_seed, idx / 4); + } + + /* R */ + if (idx % 2 == 0) { + secp256k1_fe rx; + *sc = ecmult_context->randomizer_cache[(idx / 2) % 2]; + if (!secp256k1_fe_set_b32(&rx, &ecmult_context->sig[idx / 2]->data[0])) { + return 0; + } + if (!secp256k1_ge_set_xquad(pt, &rx)) { + return 0; + } + /* eP */ + } else { + unsigned char buf[33]; + size_t buflen = sizeof(buf); + secp256k1_sha256 sha; + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, &ecmult_context->sig[idx / 2]->data[0], 32); + secp256k1_ec_pubkey_serialize(ecmult_context->ctx, buf, &buflen, ecmult_context->pk[idx / 2], SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(&sha, buf, buflen); + secp256k1_sha256_write(&sha, ecmult_context->msg32[idx / 2], 32); + secp256k1_sha256_finalize(&sha, buf); + + secp256k1_scalar_set_b32(sc, buf, NULL); + secp256k1_scalar_mul(sc, sc, &ecmult_context->randomizer_cache[(idx / 2) % 2]); + + if (!secp256k1_pubkey_load(ecmult_context->ctx, pt, ecmult_context->pk[idx / 2])) { + return 0; + } + } + return 1; +} + +/** Helper function for batch verification. Hashes signature verification data into the + * randomization seed and initializes ecmult_context. + * + * Returns 1 if the randomizer was successfully initialized. + * + * Args: ctx: a secp256k1 context object + * Out: ecmult_context: context for batch_ecmult_callback + * In/Out sha: an initialized sha256 object which hashes the schnorrsig input in order to get a + * seed for the randomizer PRNG + * In: sig: array of signatures, or NULL if there are no signatures + * msg32: array of messages, or NULL if there are no signatures + * pk: array of public keys, or NULL if there are no signatures + * n_sigs: number of signatures in above arrays (must be 0 if they are NULL) + */ +int secp256k1_schnorrsig_verify_batch_init_randomizer(const secp256k1_context *ctx, secp256k1_schnorrsig_verify_ecmult_context *ecmult_context, secp256k1_sha256 *sha, const secp256k1_schnorrsig *const *sig, const unsigned char *const *msg32, const secp256k1_pubkey *const *pk, size_t n_sigs) { + size_t i; + + if (n_sigs > 0) { + ARG_CHECK(sig != NULL); + ARG_CHECK(msg32 != NULL); + ARG_CHECK(pk != NULL); + } + + for (i = 0; i < n_sigs; i++) { + unsigned char buf[33]; + size_t buflen = sizeof(buf); + secp256k1_sha256_write(sha, sig[i]->data, 64); + secp256k1_sha256_write(sha, msg32[i], 32); + secp256k1_ec_pubkey_serialize(ctx, buf, &buflen, pk[i], SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(sha, buf, 32); + } + ecmult_context->ctx = ctx; + ecmult_context->sig = sig; + ecmult_context->msg32 = msg32; + ecmult_context->pk = pk; + ecmult_context->n_sigs = n_sigs; + + return 1; +} + +/** Helper function for batch verification. Sums the s part of all signatures multiplied by their + * randomizer. + * + * Returns 1 if s is successfully summed. + * + * In/Out: s: the s part of the input sigs is added to this s argument + * In: chacha_seed: PRNG seed for computing randomizers + * sig: array of signatures, or NULL if there are no signatures + * n_sigs: number of signatures in above array (must be 0 if they are NULL) + */ +int secp256k1_schnorrsig_verify_batch_sum_s(secp256k1_scalar *s, unsigned char *chacha_seed, const secp256k1_schnorrsig *const *sig, size_t n_sigs) { + secp256k1_scalar randomizer_cache[2]; + size_t i; + + secp256k1_scalar_set_int(&randomizer_cache[0], 1); + for (i = 0; i < n_sigs; i++) { + int overflow; + secp256k1_scalar term; + if (i % 2 == 1) { + secp256k1_scalar_chacha20(&randomizer_cache[0], &randomizer_cache[1], chacha_seed, i / 2); + } + + secp256k1_scalar_set_b32(&term, &sig[i]->data[32], &overflow); + if (overflow) { + return 0; + } + secp256k1_scalar_mul(&term, &term, &randomizer_cache[i % 2]); + secp256k1_scalar_add(s, s, &term); + } + return 1; +} + +/* schnorrsig batch verification. + * Seeds a random number generator with the inputs and derives a random number ai for every + * signature i. Fails if y-coordinate of any R is not a quadratic residue or if + * 0 != -(s1 + a2*s2 + ... + au*su)G + R1 + a2*R2 + ... + au*Ru + e1*P1 + (a2*e2)P2 + ... + (au*eu)Pu. */ +int secp256k1_schnorrsig_verify_batch(const secp256k1_context *ctx, secp256k1_scratch *scratch, const secp256k1_schnorrsig *const *sig, const unsigned char *const *msg32, const secp256k1_pubkey *const *pk, size_t n_sigs) { + secp256k1_schnorrsig_verify_ecmult_context ecmult_context; + secp256k1_sha256 sha; + secp256k1_scalar s; + secp256k1_gej rj; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(scratch != NULL); + /* Check that n_sigs is less than half of the maximum size_t value. This is necessary because + * the number of points given to ecmult_multi is 2*n_sigs. */ + ARG_CHECK(n_sigs <= SIZE_MAX / 2); + /* Check that n_sigs is less than 2^31 to ensure the same behavior of this function on 32-bit + * and 64-bit platforms. */ + ARG_CHECK(n_sigs < (size_t)(1 << 31)); + + secp256k1_sha256_initialize(&sha); + if (!secp256k1_schnorrsig_verify_batch_init_randomizer(ctx, &ecmult_context, &sha, sig, msg32, pk, n_sigs)) { + return 0; + } + secp256k1_sha256_finalize(&sha, ecmult_context.chacha_seed); + secp256k1_scalar_set_int(&ecmult_context.randomizer_cache[0], 1); + + secp256k1_scalar_clear(&s); + if (!secp256k1_schnorrsig_verify_batch_sum_s(&s, ecmult_context.chacha_seed, sig, n_sigs)) { + return 0; + } + secp256k1_scalar_negate(&s, &s); + + return secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &rj, &s, secp256k1_schnorrsig_verify_batch_ecmult_callback, (void *) &ecmult_context, 2 * n_sigs) + && secp256k1_gej_is_infinity(&rj); +} + +#endif diff --git a/src/modules/schnorrsig/tests_impl.h b/src/modules/schnorrsig/tests_impl.h new file mode 100644 index 000000000..e067058aa --- /dev/null +++ b/src/modules/schnorrsig/tests_impl.h @@ -0,0 +1,726 @@ +/********************************************************************** + * Copyright (c) 2018 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_ +#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_ + +#include "secp256k1_schnorrsig.h" + +void test_schnorrsig_serialize(void) { + secp256k1_schnorrsig sig; + unsigned char in[64]; + unsigned char out[64]; + + memset(in, 0x12, 64); + CHECK(secp256k1_schnorrsig_parse(ctx, &sig, in)); + CHECK(secp256k1_schnorrsig_serialize(ctx, out, &sig)); + CHECK(memcmp(in, out, 64) == 0); +} + +void test_schnorrsig_api(secp256k1_scratch_space *scratch) { + unsigned char sk1[32]; + unsigned char sk2[32]; + unsigned char sk3[32]; + unsigned char msg[32]; + unsigned char sig64[64]; + secp256k1_pubkey pk[3]; + secp256k1_schnorrsig sig; + const secp256k1_schnorrsig *sigptr = &sig; + const unsigned char *msgptr = msg; + const secp256k1_pubkey *pkptr = &pk[0]; + int nonce_is_negated; + + /** setup **/ + secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); + secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + int ecount; + + secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); + + secp256k1_rand256(sk1); + secp256k1_rand256(sk2); + secp256k1_rand256(sk3); + secp256k1_rand256(msg); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk1) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk2) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[2], sk3) == 1); + + /** main test body **/ + ecount = 0; + CHECK(secp256k1_schnorrsig_sign(none, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_sign(vrfy, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign(sign, NULL, &nonce_is_negated, msg, sk1, NULL, NULL) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_sign(sign, &sig, NULL, msg, sk1, NULL, NULL) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, NULL, sk1, NULL, NULL) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, msg, NULL, NULL, NULL) == 0); + CHECK(ecount == 5); + + ecount = 0; + CHECK(secp256k1_schnorrsig_serialize(none, sig64, &sig) == 1); + CHECK(ecount == 0); + CHECK(secp256k1_schnorrsig_serialize(none, NULL, &sig) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_serialize(none, sig64, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_parse(none, &sig, sig64) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_parse(none, NULL, sig64) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_parse(none, &sig, NULL) == 0); + CHECK(ecount == 4); + + ecount = 0; + CHECK(secp256k1_schnorrsig_verify(none, &sig, msg, &pk[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_verify(sign, &sig, msg, &pk[0]) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, msg, &pk[0]) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify(vrfy, NULL, msg, &pk[0]) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, NULL, &pk[0]) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, msg, NULL) == 0); + CHECK(ecount == 5); + + ecount = 0; + CHECK(secp256k1_schnorrsig_verify_batch(none, scratch, &sigptr, &msgptr, &pkptr, 1) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_verify_batch(sign, scratch, &sigptr, &msgptr, &pkptr, 1) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, 1) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, NULL, NULL, NULL, 0) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, NULL, &msgptr, &pkptr, 1) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, NULL, &pkptr, 1) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, NULL, 1) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, (size_t)1 << (sizeof(size_t)*8-1)) == 0); + CHECK(ecount == 6); + CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, 1 << 31) == 0); + CHECK(ecount == 7); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(vrfy); + secp256k1_context_destroy(both); +} + +/* Helper function for schnorrsig_bip_vectors + * Signs the message and checks that it's the same as expected_sig. */ +void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, const unsigned char *msg, const unsigned char *expected_sig, const int expected_nonce_is_negated) { + secp256k1_schnorrsig sig; + unsigned char serialized_sig[64]; + secp256k1_pubkey pk; + int nonce_is_negated; + + CHECK(secp256k1_schnorrsig_sign(ctx, &sig, &nonce_is_negated, msg, sk, NULL, NULL)); + CHECK(nonce_is_negated == expected_nonce_is_negated); + CHECK(secp256k1_schnorrsig_serialize(ctx, serialized_sig, &sig)); + CHECK(memcmp(serialized_sig, expected_sig, 64) == 0); + + CHECK(secp256k1_ec_pubkey_parse(ctx, &pk, pk_serialized, 33)); + CHECK(secp256k1_schnorrsig_verify(ctx, &sig, msg, &pk)); +} + +/* Helper function for schnorrsig_bip_vectors + * Checks that both verify and verify_batch return the same value as expected. */ +void test_schnorrsig_bip_vectors_check_verify(secp256k1_scratch_space *scratch, const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig_serialized, int expected) { + const unsigned char *msg_arr[1]; + const secp256k1_schnorrsig *sig_arr[1]; + const secp256k1_pubkey *pk_arr[1]; + secp256k1_pubkey pk; + secp256k1_schnorrsig sig; + + CHECK(secp256k1_ec_pubkey_parse(ctx, &pk, pk_serialized, 33)); + CHECK(secp256k1_schnorrsig_parse(ctx, &sig, sig_serialized)); + + sig_arr[0] = &sig; + msg_arr[0] = msg32; + pk_arr[0] = &pk; + + CHECK(expected == secp256k1_schnorrsig_verify(ctx, &sig, msg32, &pk)); + CHECK(expected == secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 1)); +} + +/* Test vectors according to BIP-schnorr + * (https://github.com/sipa/bips/blob/7f6a73e53c8bbcf2d008ea0546f76433e22094a8/bip-schnorr/test-vectors.csv). + */ +void test_schnorrsig_bip_vectors(secp256k1_scratch_space *scratch) { + { + /* Test vector 1 */ + const unsigned char sk1[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 + }; + const unsigned char pk1[33] = { + 0x02, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, + 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, + 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, + 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, + 0x98 + }; + const unsigned char msg1[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + const unsigned char sig1[64] = { + 0x78, 0x7A, 0x84, 0x8E, 0x71, 0x04, 0x3D, 0x28, + 0x0C, 0x50, 0x47, 0x0E, 0x8E, 0x15, 0x32, 0xB2, + 0xDD, 0x5D, 0x20, 0xEE, 0x91, 0x2A, 0x45, 0xDB, + 0xDD, 0x2B, 0xD1, 0xDF, 0xBF, 0x18, 0x7E, 0xF6, + 0x70, 0x31, 0xA9, 0x88, 0x31, 0x85, 0x9D, 0xC3, + 0x4D, 0xFF, 0xEE, 0xDD, 0xA8, 0x68, 0x31, 0x84, + 0x2C, 0xCD, 0x00, 0x79, 0xE1, 0xF9, 0x2A, 0xF1, + 0x77, 0xF7, 0xF2, 0x2C, 0xC1, 0xDC, 0xED, 0x05 + }; + test_schnorrsig_bip_vectors_check_signing(sk1, pk1, msg1, sig1, 1); + test_schnorrsig_bip_vectors_check_verify(scratch, pk1, msg1, sig1, 1); + } + { + /* Test vector 2 */ + const unsigned char sk2[32] = { + 0xB7, 0xE1, 0x51, 0x62, 0x8A, 0xED, 0x2A, 0x6A, + 0xBF, 0x71, 0x58, 0x80, 0x9C, 0xF4, 0xF3, 0xC7, + 0x62, 0xE7, 0x16, 0x0F, 0x38, 0xB4, 0xDA, 0x56, + 0xA7, 0x84, 0xD9, 0x04, 0x51, 0x90, 0xCF, 0xEF + }; + const unsigned char pk2[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg2[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig2[64] = { + 0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99, + 0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36, + 0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34, + 0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD + }; + test_schnorrsig_bip_vectors_check_signing(sk2, pk2, msg2, sig2, 0); + test_schnorrsig_bip_vectors_check_verify(scratch, pk2, msg2, sig2, 1); + } + { + /* Test vector 3 */ + const unsigned char sk3[32] = { + 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, + 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, + 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, + 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x14, 0xE5, 0xC7 + }; + const unsigned char pk3[33] = { + 0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09, + 0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F, + 0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D, + 0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8, + 0x4B + }; + const unsigned char msg3[32] = { + 0x5E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A, + 0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D, + 0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33, + 0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C + }; + const unsigned char sig3[64] = { + 0x00, 0xDA, 0x9B, 0x08, 0x17, 0x2A, 0x9B, 0x6F, + 0x04, 0x66, 0xA2, 0xDE, 0xFD, 0x81, 0x7F, 0x2D, + 0x7A, 0xB4, 0x37, 0xE0, 0xD2, 0x53, 0xCB, 0x53, + 0x95, 0xA9, 0x63, 0x86, 0x6B, 0x35, 0x74, 0xBE, + 0x00, 0x88, 0x03, 0x71, 0xD0, 0x17, 0x66, 0x93, + 0x5B, 0x92, 0xD2, 0xAB, 0x4C, 0xD5, 0xC8, 0xA2, + 0xA5, 0x83, 0x7E, 0xC5, 0x7F, 0xED, 0x76, 0x60, + 0x77, 0x3A, 0x05, 0xF0, 0xDE, 0x14, 0x23, 0x80 + }; + test_schnorrsig_bip_vectors_check_signing(sk3, pk3, msg3, sig3, 0); + test_schnorrsig_bip_vectors_check_verify(scratch, pk3, msg3, sig3, 1); + } + { + /* Test vector 4 */ + const unsigned char pk4[33] = { + 0x03, 0xDE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77, + 0x50, 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF, + 0x21, 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76, + 0x87, 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A, + 0x34 + }; + const unsigned char msg4[32] = { + 0x4D, 0xF3, 0xC3, 0xF6, 0x8F, 0xCC, 0x83, 0xB2, + 0x7E, 0x9D, 0x42, 0xC9, 0x04, 0x31, 0xA7, 0x24, + 0x99, 0xF1, 0x78, 0x75, 0xC8, 0x1A, 0x59, 0x9B, + 0x56, 0x6C, 0x98, 0x89, 0xB9, 0x69, 0x67, 0x03 + }; + const unsigned char sig4[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x3B, 0x78, 0xCE, 0x56, 0x3F, + 0x89, 0xA0, 0xED, 0x94, 0x14, 0xF5, 0xAA, 0x28, + 0xAD, 0x0D, 0x96, 0xD6, 0x79, 0x5F, 0x9C, 0x63, + 0x02, 0xA8, 0xDC, 0x32, 0xE6, 0x4E, 0x86, 0xA3, + 0x33, 0xF2, 0x0E, 0xF5, 0x6E, 0xAC, 0x9B, 0xA3, + 0x0B, 0x72, 0x46, 0xD6, 0xD2, 0x5E, 0x22, 0xAD, + 0xB8, 0xC6, 0xBE, 0x1A, 0xEB, 0x08, 0xD4, 0x9D + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk4, msg4, sig4, 1); + } + { + /* Test vector 5 */ + const unsigned char pk5[33] = { + 0x03, 0x1B, 0x84, 0xC5, 0x56, 0x7B, 0x12, 0x64, + 0x40, 0x99, 0x5D, 0x3E, 0xD5, 0xAA, 0xBA, 0x05, + 0x65, 0xD7, 0x1E, 0x18, 0x34, 0x60, 0x48, 0x19, + 0xFF, 0x9C, 0x17, 0xF5, 0xE9, 0xD5, 0xDD, 0x07, + 0x8F + }; + const unsigned char msg5[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + const unsigned char sig5[64] = { + 0x52, 0x81, 0x85, 0x79, 0xAC, 0xA5, 0x97, 0x67, + 0xE3, 0x29, 0x1D, 0x91, 0xB7, 0x6B, 0x63, 0x7B, + 0xEF, 0x06, 0x20, 0x83, 0x28, 0x49, 0x92, 0xF2, + 0xD9, 0x5F, 0x56, 0x4C, 0xA6, 0xCB, 0x4E, 0x35, + 0x30, 0xB1, 0xDA, 0x84, 0x9C, 0x8E, 0x83, 0x04, + 0xAD, 0xC0, 0xCF, 0xE8, 0x70, 0x66, 0x03, 0x34, + 0xB3, 0xCF, 0xC1, 0x8E, 0x82, 0x5E, 0xF1, 0xDB, + 0x34, 0xCF, 0xAE, 0x3D, 0xFC, 0x5D, 0x81, 0x87 + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk5, msg5, sig5, 1); + } + { + /* Test vector 6 */ + const unsigned char pk6[33] = { + 0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09, + 0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F, + 0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D, + 0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8, + 0x4B + }; + const unsigned char msg6[32] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF + }; + const unsigned char sig6[64] = { + 0x57, 0x0D, 0xD4, 0xCA, 0x83, 0xD4, 0xE6, 0x31, + 0x7B, 0x8E, 0xE6, 0xBA, 0xE8, 0x34, 0x67, 0xA1, + 0xBF, 0x41, 0x9D, 0x07, 0x67, 0x12, 0x2D, 0xE4, + 0x09, 0x39, 0x44, 0x14, 0xB0, 0x50, 0x80, 0xDC, + 0xE9, 0xEE, 0x5F, 0x23, 0x7C, 0xBD, 0x10, 0x8E, + 0xAB, 0xAE, 0x1E, 0x37, 0x75, 0x9A, 0xE4, 0x7F, + 0x8E, 0x42, 0x03, 0xDA, 0x35, 0x32, 0xEB, 0x28, + 0xDB, 0x86, 0x0F, 0x33, 0xD6, 0x2D, 0x49, 0xBD + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk6, msg6, sig6, 1); + } + { + /* Test vector 7 */ + const unsigned char pk7[33] = { + 0x03, 0xEE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77, + 0x50, 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF, + 0x21, 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76, + 0x87, 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A, + 0x34 + }; + secp256k1_pubkey pk7_parsed; + /* No need to check the signature of the test vector as parsing the pubkey already fails */ + CHECK(!secp256k1_ec_pubkey_parse(ctx, &pk7_parsed, pk7, 33)); + } + { + /* Test vector 8 */ + const unsigned char pk8[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg8[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig8[64] = { + 0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0xFA, 0x16, 0xAE, 0xE0, 0x66, 0x09, 0x28, 0x0A, + 0x19, 0xB6, 0x7A, 0x24, 0xE1, 0x97, 0x7E, 0x46, + 0x97, 0x71, 0x2B, 0x5F, 0xD2, 0x94, 0x39, 0x14, + 0xEC, 0xD5, 0xF7, 0x30, 0x90, 0x1B, 0x4A, 0xB7 + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk8, msg8, sig8, 0); + } + { + /* Test vector 9 */ + const unsigned char pk9[33] = { + 0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09, + 0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F, + 0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D, + 0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8, + 0x4B + }; + const unsigned char msg9[32] = { + 0x5E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A, + 0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D, + 0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33, + 0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C + }; + const unsigned char sig9[64] = { + 0x00, 0xDA, 0x9B, 0x08, 0x17, 0x2A, 0x9B, 0x6F, + 0x04, 0x66, 0xA2, 0xDE, 0xFD, 0x81, 0x7F, 0x2D, + 0x7A, 0xB4, 0x37, 0xE0, 0xD2, 0x53, 0xCB, 0x53, + 0x95, 0xA9, 0x63, 0x86, 0x6B, 0x35, 0x74, 0xBE, + 0xD0, 0x92, 0xF9, 0xD8, 0x60, 0xF1, 0x77, 0x6A, + 0x1F, 0x74, 0x12, 0xAD, 0x8A, 0x1E, 0xB5, 0x0D, + 0xAC, 0xCC, 0x22, 0x2B, 0xC8, 0xC0, 0xE2, 0x6B, + 0x20, 0x56, 0xDF, 0x2F, 0x27, 0x3E, 0xFD, 0xEC + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk9, msg9, sig9, 0); + } + { + /* Test vector 10 */ + const unsigned char pk10[33] = { + 0x02, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, + 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, + 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, + 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, + 0x98 + }; + const unsigned char msg10[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + const unsigned char sig10[64] = { + 0x78, 0x7A, 0x84, 0x8E, 0x71, 0x04, 0x3D, 0x28, + 0x0C, 0x50, 0x47, 0x0E, 0x8E, 0x15, 0x32, 0xB2, + 0xDD, 0x5D, 0x20, 0xEE, 0x91, 0x2A, 0x45, 0xDB, + 0xDD, 0x2B, 0xD1, 0xDF, 0xBF, 0x18, 0x7E, 0xF6, + 0x8F, 0xCE, 0x56, 0x77, 0xCE, 0x7A, 0x62, 0x3C, + 0xB2, 0x00, 0x11, 0x22, 0x57, 0x97, 0xCE, 0x7A, + 0x8D, 0xE1, 0xDC, 0x6C, 0xCD, 0x4F, 0x75, 0x4A, + 0x47, 0xDA, 0x6C, 0x60, 0x0E, 0x59, 0x54, 0x3C + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk10, msg10, sig10, 0); + } + { + /* Test vector 11 */ + const unsigned char pk11[33] = { + 0x03, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg11[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig11[64] = { + 0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99, + 0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36, + 0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34, + 0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk11, msg11, sig11, 0); + } + { + /* Test vector 12 */ + const unsigned char pk12[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg12[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig12[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x9E, 0x9D, 0x01, 0xAF, 0x98, 0x8B, 0x5C, 0xED, + 0xCE, 0x47, 0x22, 0x1B, 0xFA, 0x9B, 0x22, 0x27, + 0x21, 0xF3, 0xFA, 0x40, 0x89, 0x15, 0x44, 0x4A, + 0x4B, 0x48, 0x90, 0x21, 0xDB, 0x55, 0x77, 0x5F + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk12, msg12, sig12, 0); + } + { + /* Test vector 13 */ + const unsigned char pk13[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg13[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig13[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + 0xD3, 0x7D, 0xDF, 0x02, 0x54, 0x35, 0x18, 0x36, + 0xD8, 0x4B, 0x1B, 0xD6, 0xA7, 0x95, 0xFD, 0x5D, + 0x52, 0x30, 0x48, 0xF2, 0x98, 0xC4, 0x21, 0x4D, + 0x18, 0x7F, 0xE4, 0x89, 0x29, 0x47, 0xF7, 0x28 + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk13, msg13, sig13, 0); + } + { + /* Test vector 14 */ + const unsigned char pk14[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg14[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x14, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig14[64] = { + 0x4A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99, + 0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36, + 0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34, + 0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk14, msg14, sig14, 0); + } + { + /* Test vector 15 */ + const unsigned char pk15[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg15[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig15[64] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0x2F, + 0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99, + 0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36, + 0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34, + 0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk15, msg15, sig15, 0); + } + { + /* Test vector 16 */ + const unsigned char pk16[33] = { + 0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, + 0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, + 0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, + 0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, + 0x59 + }; + const unsigned char msg16[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig16[64] = { + 0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, + 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, + 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41 + }; + test_schnorrsig_bip_vectors_check_verify(scratch, pk16, msg16, sig16, 0); + } +} + +/* Nonce function that returns constant 0 */ +static int nonce_function_failing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { + (void) msg32; + (void) key32; + (void) algo16; + (void) data; + (void) counter; + (void) nonce32; + return 0; +} + +/* Nonce function that sets nonce to 0 */ +static int nonce_function_0(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { + (void) msg32; + (void) key32; + (void) algo16; + (void) data; + (void) counter; + + memset(nonce32, 0, 32); + return 1; +} + +void test_schnorrsig_sign(void) { + unsigned char sk[32]; + const unsigned char msg[32] = "this is a msg for a schnorrsig.."; + secp256k1_schnorrsig sig; + + memset(sk, 23, sizeof(sk)); + CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, NULL, NULL) == 1); + + /* Overflowing secret key */ + memset(sk, 0xFF, sizeof(sk)); + CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, NULL, NULL) == 0); + memset(sk, 23, sizeof(sk)); + + CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, nonce_function_failing, NULL) == 0); + CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, nonce_function_0, NULL) == 0); +} + +#define N_SIGS 200 +/* Creates N_SIGS valid signatures and verifies them with verify and verify_batch. Then flips some + * bits and checks that verification now fails. */ +void test_schnorrsig_sign_verify(secp256k1_scratch_space *scratch) { + const unsigned char sk[32] = "shhhhhhhh! this key is a secret."; + unsigned char msg[N_SIGS][32]; + secp256k1_schnorrsig sig[N_SIGS]; + size_t i; + const secp256k1_schnorrsig *sig_arr[N_SIGS]; + const unsigned char *msg_arr[N_SIGS]; + const secp256k1_pubkey *pk_arr[N_SIGS]; + secp256k1_pubkey pk; + + CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk)); + + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, NULL, NULL, NULL, 0)); + + for (i = 0; i < N_SIGS; i++) { + secp256k1_rand256(msg[i]); + CHECK(secp256k1_schnorrsig_sign(ctx, &sig[i], NULL, msg[i], sk, NULL, NULL)); + CHECK(secp256k1_schnorrsig_verify(ctx, &sig[i], msg[i], &pk)); + sig_arr[i] = &sig[i]; + msg_arr[i] = msg[i]; + pk_arr[i] = &pk; + } + + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 1)); + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 2)); + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4)); + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, N_SIGS)); + + { + /* Flip a few bits in the signature and in the message and check that + * verify and verify_batch fail */ + size_t sig_idx = secp256k1_rand_int(4); + size_t byte_idx = secp256k1_rand_int(32); + unsigned char xorbyte = secp256k1_rand_int(254)+1; + sig[sig_idx].data[byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk)); + CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4)); + sig[sig_idx].data[byte_idx] ^= xorbyte; + + byte_idx = secp256k1_rand_int(32); + sig[sig_idx].data[32+byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk)); + CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4)); + sig[sig_idx].data[32+byte_idx] ^= xorbyte; + + byte_idx = secp256k1_rand_int(32); + msg[sig_idx][byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk)); + CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4)); + msg[sig_idx][byte_idx] ^= xorbyte; + + /* Check that above bitflips have been reversed correctly */ + CHECK(secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk)); + CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4)); + } +} +#undef N_SIGS + +void run_schnorrsig_tests(void) { + secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024); + + test_schnorrsig_serialize(); + test_schnorrsig_api(scratch); + test_schnorrsig_bip_vectors(scratch); + test_schnorrsig_sign(); + test_schnorrsig_sign_verify(scratch); + + secp256k1_scratch_space_destroy(scratch); +} + +#endif diff --git a/src/secp256k1.c b/src/secp256k1.c index 9aedec5b2..95ad5a86f 100644 --- a/src/secp256k1.c +++ b/src/secp256k1.c @@ -343,6 +343,27 @@ static SECP256K1_INLINE void buffer_append(unsigned char *buf, unsigned int *off *offset += len; } +/* This nonce function is described in BIP-schnorr + * (https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki) */ +static int secp256k1_nonce_function_bipschnorr(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { + secp256k1_sha256 sha; + (void) data; + (void) counter; + VERIFY_CHECK(counter == 0); + + /* Hash x||msg as per the spec */ + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, key32, 32); + secp256k1_sha256_write(&sha, msg32, 32); + /* Hash in algorithm, which is not in the spec, but may be critical to + * users depending on it to avoid nonce reuse across algorithms. */ + if (algo16 != NULL) { + secp256k1_sha256_write(&sha, algo16, 16); + } + secp256k1_sha256_finalize(&sha, nonce32); + return 1; +} + static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { unsigned char keydata[112]; unsigned int offset = 0; @@ -614,6 +635,10 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey * # include "modules/ecdh/main_impl.h" #endif +#ifdef ENABLE_MODULE_SCHNORRSIG +# include "modules/schnorrsig/main_impl.h" +#endif + #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/main_impl.h" #endif diff --git a/src/tests.c b/src/tests.c index 55dd7dcdf..60c451967 100644 --- a/src/tests.c +++ b/src/tests.c @@ -5119,6 +5119,10 @@ void run_ecdsa_openssl(void) { # include "modules/ecdh/tests_impl.h" #endif +#ifdef ENABLE_MODULE_SCHNORRSIG +# include "modules/schnorrsig/tests_impl.h" +#endif + #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/tests_impl.h" #endif @@ -5247,6 +5251,11 @@ int main(int argc, char **argv) { run_ecdh_tests(); #endif +#ifdef ENABLE_MODULE_SCHNORRSIG + /* Schnorrsig tests */ + run_schnorrsig_tests(); +#endif + /* ecdsa tests */ run_random_pubkeys(); run_ecdsa_der_parse(); From 77d5b4ac7dc2eaea96fdd75636bd2dc621e4104b Mon Sep 17 00:00:00 2001 From: Jonas Nick Date: Sat, 22 Dec 2018 22:12:35 +0000 Subject: [PATCH 4/5] Add MuSig module which allows creating n-of-n multisignatures and adaptor signatures. --- Makefile.am | 4 + configure.ac | 21 + include/secp256k1_musig.h | 429 +++++++++++++++ src/modules/musig/Makefile.am.include | 3 + src/modules/musig/main_impl.h | 629 +++++++++++++++++++++ src/modules/musig/tests_impl.h | 757 ++++++++++++++++++++++++++ src/secp256k1.c | 4 + src/tests.c | 8 + 8 files changed, 1855 insertions(+) create mode 100644 include/secp256k1_musig.h create mode 100644 src/modules/musig/Makefile.am.include create mode 100644 src/modules/musig/main_impl.h create mode 100644 src/modules/musig/tests_impl.h diff --git a/Makefile.am b/Makefile.am index caf30e25e..86729cfc1 100644 --- a/Makefile.am +++ b/Makefile.am @@ -182,6 +182,10 @@ if ENABLE_MODULE_SCHNORRSIG include src/modules/schnorrsig/Makefile.am.include endif +if ENABLE_MODULE_MUSIG +include src/modules/musig/Makefile.am.include +endif + if ENABLE_MODULE_RECOVERY include src/modules/recovery/Makefile.am.include endif diff --git a/configure.ac b/configure.ac index 44da65707..204d11d1b 100644 --- a/configure.ac +++ b/configure.ac @@ -134,6 +134,11 @@ AC_ARG_ENABLE(module_schnorrsig, [enable_module_schnorrsig=$enableval], [enable_module_schnorrsig=no]) +AC_ARG_ENABLE(module_musig, + AS_HELP_STRING([--enable-module-musig],[enable MuSig module (experimental)]), + [enable_module_musig=$enableval], + [enable_module_musig=no]) + AC_ARG_ENABLE(module_recovery, AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]), [enable_module_recovery=$enableval], @@ -472,6 +477,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module]) fi +if test x"$enable_module_musig" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_MUSIG, 1, [Define this symbol to enable the MuSig module]) +fi + if test x"$enable_module_recovery" = x"yes"; then AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module]) fi @@ -520,8 +529,16 @@ if test x"$enable_experimental" = x"yes"; then AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist]) AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof]) AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig]) + AC_MSG_NOTICE([Building MuSig module: $enable_module_musig]) AC_MSG_NOTICE([******]) + + if test x"$enable_module_schnorrsig" != x"yes"; then + if test x"$enable_module_musig" = x"yes"; then + AC_MSG_ERROR([MuSig module requires the schnorrsig module. Use --enable-module-schnorrsig to allow.]) + fi + fi + if test x"$enable_module_generator" != x"yes"; then if test x"$enable_module_rangeproof" = x"yes"; then AC_MSG_ERROR([Rangeproof module requires the generator module. Use --enable-module-generator to allow.]) @@ -543,6 +560,9 @@ else if test x"$enable_module_schnorrsig" = x"yes"; then AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.]) fi + if test x"$enable_module_musig" = x"yes"; then + AC_MSG_ERROR([MuSig module is experimental. Use --enable-experimental to allow.]) + fi if test x"$set_asm" = x"arm"; then AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.]) fi @@ -574,6 +594,7 @@ AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_MUSIG], [test x"$enable_module_musig" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"]) diff --git a/include/secp256k1_musig.h b/include/secp256k1_musig.h new file mode 100644 index 000000000..035adfe0e --- /dev/null +++ b/include/secp256k1_musig.h @@ -0,0 +1,429 @@ +#ifndef SECP256K1_MUSIG_H +#define SECP256K1_MUSIG_H + +#include + +/** This module implements a Schnorr-based multi-signature scheme called MuSig + * (https://eprint.iacr.org/2018/068.pdf). + */ + +/** Data structure containing data related to a signing session resulting in a single + * signature. + * + * This structure is not opaque, but it MUST NOT be copied or read or written to it + * directly. A signer who is online throughout the whole process and can keep this + * structure in memory can use the provided API functions for a safe standard + * workflow. + * + * A signer who goes offline and needs to import/export or save/load this structure + * **must** take measures prevent replay attacks wherein an old state is loaded and + * the signing protocol forked from that point. One straightforward way to accomplish + * this is to attach the output of a monotonic non-resettable counter (hardware + * support is needed for this). Increment the counter before each output and + * encrypt+sign the entire package. If a package is deserialized with an old counter + * state or bad signature it should be rejected. + * + * Observe that an independent counter is needed for each concurrent signing session + * such a device is involved in. To avoid fragility, it is therefore recommended that + * any offline signer be usable for only a single session at once. + * + * Given access to such a counter, its output should be used as (or mixed into) the + * session ID to ensure uniqueness. + * + * Fields: + * combined_pk: MuSig-computed combined public key + * n_signers: Number of signers + * pk_hash: The 32-byte hash of the original public keys + * combined_nonce: Summed combined public nonce (undefined if `nonce_is_set` is false) + * nonce_is_set: Whether the above nonce has been set + * nonce_is_negated: If `nonce_is_set`, whether the above nonce was negated after + * summing the participants' nonces. Needed to ensure the nonce's y + * coordinate has a quadratic-residue y coordinate + * msg: The 32-byte message (hash) to be signed + * msg_is_set: Whether the above message has been set + * has_secret_data: Whether this session object has a signers' secret data; if this + * is `false`, it may still be used for verification purposes. + * seckey: If `has_secret_data`, the signer's secret key + * secnonce: If `has_secret_data`, the signer's secret nonce + * nonce: If `has_secret_data`, the signer's public nonce + * nonce_commitments_hash: If `has_secret_data` and `nonce_commitments_hash_is_set`, + * the hash of all signers' commitments + * nonce_commitments_hash_is_set: If `has_secret_data`, whether the + * nonce_commitments_hash has been set + */ +typedef struct { + secp256k1_pubkey combined_pk; + uint32_t n_signers; + unsigned char pk_hash[32]; + secp256k1_pubkey combined_nonce; + int nonce_is_set; + int nonce_is_negated; + unsigned char msg[32]; + int msg_is_set; + int has_secret_data; + unsigned char seckey[32]; + unsigned char secnonce[32]; + secp256k1_pubkey nonce; + unsigned char nonce_commitments_hash[32]; + int nonce_commitments_hash_is_set; +} secp256k1_musig_session; + +/** Data structure containing data on all signers in a single session. + * + * The workflow for this structure is as follows: + * + * 1. This structure is initialized with `musig_session_initialize` or + * `musig_session_initialize_verifier`, which set the `index` field, and zero out + * all other fields. The public session is initialized with the signers' + * nonce_commitments. + * + * 2. In a non-public session the nonce_commitments are set with the function + * `musig_get_public_nonce`, which also returns the signer's public nonce. This + * ensures that the public nonce is not exposed until all commitments have been + * received. + * + * 3. Each individual data struct should be updated with `musig_set_nonce` once a + * nonce is available. This function takes a single signer data struct rather than + * an array because it may fail in the case that the provided nonce does not match + * the commitment. In this case, it is desirable to identify the exact party whose + * nonce was inconsistent. + * + * Fields: + * present: indicates whether the signer's nonce is set + * index: index of the signer in the MuSig key aggregation + * nonce: public nonce, must be a valid curvepoint if the signer is `present` + * nonce_commitment: commitment to the nonce, or all-bits zero if a commitment + * has not yet been set + */ +typedef struct { + int present; + uint32_t index; + secp256k1_pubkey nonce; + unsigned char nonce_commitment[32]; +} secp256k1_musig_session_signer_data; + +/** Opaque data structure that holds a MuSig partial signature. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is however + * guaranteed to be 32 bytes in size, and can be safely copied/moved. If you need + * to convert to a format suitable for storage, transmission, or comparison, use the + * `musig_partial_signature_serialize` and `musig_partial_signature_parse` + * functions. + */ +typedef struct { + unsigned char data[32]; +} secp256k1_musig_partial_signature; + +/** Computes a combined public key and the hash of the given public keys + * + * Returns: 1 if the public keys were successfully combined, 0 otherwise + * Args: ctx: pointer to a context object initialized for verification + * (cannot be NULL) + * scratch: scratch space used to compute the combined pubkey by + * multiexponentiation. If NULL, an inefficient algorithm is used. + * Out: combined_pk: the MuSig-combined public key (cannot be NULL) + * pk_hash32: if non-NULL, filled with the 32-byte hash of all input public + * keys in order to be used in `musig_session_initialize`. + * In: pubkeys: input array of public keys to combine. The order is important; + * a different order will result in a different combined public + * key (cannot be NULL) + * n_pubkeys: length of pubkeys array + */ +SECP256K1_API int secp256k1_musig_pubkey_combine( + const secp256k1_context* ctx, + secp256k1_scratch_space *scratch, + secp256k1_pubkey *combined_pk, + unsigned char *pk_hash32, + const secp256k1_pubkey *pubkeys, + size_t n_pubkeys +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5); + +/** Initializes a signing session for a signer + * + * Returns: 1: session is successfully initialized + * 0: session could not be initialized: secret key or secret nonce overflow + * Args: ctx: pointer to a context object, initialized for signing (cannot + * be NULL) + * Out: session: the session structure to initialize (cannot be NULL) + * signers: an array of signers' data to be initialized. Array length must + * equal to `n_signers` (cannot be NULL) + * nonce_commitment32: filled with a 32-byte commitment to the generated nonce + * (cannot be NULL) + * In: session_id32: a *unique* 32-byte ID to assign to this session (cannot be + * NULL). If a non-unique session_id32 was given then a partial + * signature will LEAK THE SECRET KEY. + * msg32: the 32-byte message to be signed. Shouldn't be NULL unless you + * require sharing public nonces before the message is known + * because it reduces nonce misuse resistance. If NULL, must be + * set with `musig_session_set_msg` before signing and verifying. + * combined_pk: the combined public key of all signers (cannot be NULL) + * pk_hash32: the 32-byte hash of the signers' individual keys (cannot be + * NULL) + * n_signers: length of signers array. Number of signers participating in + * the MuSig. Must be greater than 0 and at most 2^32 - 1. + * my_index: index of this signer in the signers array + * seckey: the signer's 32-byte secret key (cannot be NULL) + */ +SECP256K1_API int secp256k1_musig_session_initialize( + const secp256k1_context* ctx, + secp256k1_musig_session *session, + secp256k1_musig_session_signer_data *signers, + unsigned char *nonce_commitment32, + const unsigned char *session_id32, + const unsigned char *msg32, + const secp256k1_pubkey *combined_pk, + const unsigned char *pk_hash32, + size_t n_signers, + size_t my_index, + const unsigned char *seckey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(11); + +/** Gets the signer's public nonce given a list of all signers' data with commitments + * + * Returns: 1: public nonce is written in nonce + * 0: signer data is missing commitments or session isn't initialized + * for signing + * Args: ctx: pointer to a context object (cannot be NULL) + * session: the signing session to get the nonce from (cannot be NULL) + * signers: an array of signers' data initialized with + * `musig_session_initialize`. Array length must equal to + * `n_commitments` (cannot be NULL) + * Out: nonce: the nonce (cannot be NULL) + * In: commitments: array of 32-byte nonce commitments (cannot be NULL) + * n_commitments: the length of commitments and signers array. Must be the total + * number of signers participating in the MuSig. + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_session_get_public_nonce( + const secp256k1_context* ctx, + secp256k1_musig_session *session, + secp256k1_musig_session_signer_data *signers, + secp256k1_pubkey *nonce, + const unsigned char *const *commitments, + size_t n_commitments +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); + +/** Initializes a verifier session that can be used for verifying nonce commitments + * and partial signatures. It does not have secret key material and therefore can not + * be used to create signatures. + * + * Returns: 1 when session is successfully initialized, 0 otherwise + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: session: the session structure to initialize (cannot be NULL) + * signers: an array of signers' data to be initialized. Array length must + * equal to `n_signers`(cannot be NULL) + * In: msg32: the 32-byte message to be signed If NULL, must be set with + * `musig_session_set_msg` before using the session for verifying + * partial signatures. + * combined_pk: the combined public key of all signers (cannot be NULL) + * pk_hash32: the 32-byte hash of the signers' individual keys (cannot be NULL) + * commitments: array of 32-byte nonce commitments. Array length must equal to + * `n_signers` (cannot be NULL) + * n_signers: length of signers and commitments array. Number of signers + * participating in the MuSig. Must be greater than 0 and at most + * 2^32 - 1. + */ +SECP256K1_API int secp256k1_musig_session_initialize_verifier( + const secp256k1_context* ctx, + secp256k1_musig_session *session, + secp256k1_musig_session_signer_data *signers, + const unsigned char *msg32, + const secp256k1_pubkey *combined_pk, + const unsigned char *pk_hash32, + const unsigned char *const *commitments, + size_t n_signers +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7); + +/** Checks a signer's public nonce against a commitment to said nonce, and update + * data structure if they match + * + * Returns: 1: commitment was valid, data structure updated + * 0: commitment was invalid, nothing happened + * Args: ctx: pointer to a context object (cannot be NULL) + * signer: pointer to the signer data to update (cannot be NULL). Must have + * been used with `musig_session_get_public_nonce` or initialized + * with `musig_session_initialize_verifier`. + * In: nonce: signer's alleged public nonce (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_set_nonce( + const secp256k1_context* ctx, + secp256k1_musig_session_signer_data *signer, + const secp256k1_pubkey *nonce +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Updates a session with the combined public nonce of all signers. The combined + * public nonce is the sum of every signer's public nonce. + * + * Returns: 1: nonces are successfully combined + * 0: a signer's nonce is missing + * Args: ctx: pointer to a context object (cannot be NULL) + * session: session to update with the combined public nonce (cannot be + * NULL) + * signers: an array of signers' data, which must have had public nonces + * set with `musig_set_nonce`. Array length must equal to `n_signers` + * (cannot be NULL) + * n_signers: the length of the signers array. Must be the total number of + * signers participating in the MuSig. + * Out: nonce_is_negated: a pointer to an integer that indicates if the combined + * public nonce had to be negated. + * adaptor: point to add to the combined public nonce. If NULL, nothing is + * added to the combined nonce. + */ +SECP256K1_API int secp256k1_musig_session_combine_nonces( + const secp256k1_context* ctx, + secp256k1_musig_session *session, + const secp256k1_musig_session_signer_data *signers, + size_t n_signers, + int *nonce_is_negated, + const secp256k1_pubkey *adaptor +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); + +/** Sets the message of a session if previously unset + * + * Returns 1 if the message was not set yet and is now successfully set + * 0 otherwise + * Args: ctx: pointer to a context object (cannot be NULL) + * session: the session structure to update with the message (cannot be NULL) + * In: msg32: the 32-byte message to be signed (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_session_set_msg( + const secp256k1_context* ctx, + secp256k1_musig_session *session, + const unsigned char *msg32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Serialize a MuSig partial signature or adaptor signature + * + * Returns: 1 when the signature could be serialized, 0 otherwise + * Args: ctx: a secp256k1 context object + * Out: out32: pointer to a 32-byte array to store the serialized signature + * In: sig: pointer to the signature + */ +SECP256K1_API int secp256k1_musig_partial_signature_serialize( + const secp256k1_context* ctx, + unsigned char *out32, + const secp256k1_musig_partial_signature* sig +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Parse and verify a MuSig partial signature. + * + * Returns: 1 when the signature could be parsed, 0 otherwise. + * Args: ctx: a secp256k1 context object + * Out: sig: pointer to a signature object + * In: in32: pointer to the 32-byte signature to be parsed + * + * After the call, sig will always be initialized. If parsing failed or the + * encoded numbers are out of range, signature verification with it is + * guaranteed to fail for every message and public key. + */ +SECP256K1_API int secp256k1_musig_partial_signature_parse( + const secp256k1_context* ctx, + secp256k1_musig_partial_signature* sig, + const unsigned char *in32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Produces a partial signature + * + * Returns: 1: partial signature constructed + * 0: session in incorrect or inconsistent state + * Args: ctx: pointer to a context object (cannot be NULL) + * session: active signing session for which the combined nonce has been + * computed (cannot be NULL) + * Out: partial_sig: partial signature (cannot be NULL) + */ +SECP256K1_API int secp256k1_musig_partial_sign( + const secp256k1_context* ctx, + const secp256k1_musig_session *session, + secp256k1_musig_partial_signature *partial_sig +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Checks that an individual partial signature verifies + * + * This function is essential when using protocols with adaptor signatures. + * However, it is not essential for regular MuSig's, in the sense that if any + * partial signatures does not verify, the full signature will also not verify, so the + * problem will be caught. But this function allows determining the specific party + * who produced an invalid signature, so that signing can be restarted without them. + * + * Returns: 1: partial signature verifies + * 0: invalid signature or bad data + * Args: ctx: pointer to a context object (cannot be NULL) + * session: active session for which the combined nonce has been computed + * (cannot be NULL) + * signer: data for the signer who produced this signature (cannot be NULL) + * In: partial_sig: signature to verify (cannot be NULL) + * pubkey: public key of the signer who produced the signature (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_partial_sig_verify( + const secp256k1_context* ctx, + const secp256k1_musig_session *session, + const secp256k1_musig_session_signer_data *signer, + const secp256k1_musig_partial_signature *partial_sig, + const secp256k1_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); + +/** Combines partial signatures + * + * Returns: 1: all partial signatures have values in range. Does NOT mean the + * resulting signature verifies. + * 0: some partial signature had s/r out of range + * Args: ctx: pointer to a context object (cannot be NULL) + * session: initialized session for which the combined nonce has been + * computed (cannot be NULL) + * Out: sig: complete signature (cannot be NULL) + * In: partial_sigs: array of partial signatures to combine (cannot be NULL) + * n_sigs: number of signatures in the partial_sigs array + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_partial_sig_combine( + const secp256k1_context* ctx, + const secp256k1_musig_session *session, + secp256k1_schnorrsig *sig, + const secp256k1_musig_partial_signature *partial_sigs, + size_t n_sigs +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Converts a partial signature to an adaptor signature by adding a given secret + * adaptor. + * + * Returns: 1: signature and secret adaptor contained valid values + * 0: otherwise + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: adaptor_sig: adaptor signature to produce (cannot be NULL) + * In: partial_sig: partial signature to tweak with secret adaptor (cannot be NULL) + * sec_adaptor32: 32-byte secret adaptor to add to the partial signature (cannot + * be NULL) + * nonce_is_negated: the `nonce_is_negated` output of `musig_session_combine_nonces` + */ +SECP256K1_API int secp256k1_musig_partial_sig_adapt( + const secp256k1_context* ctx, + secp256k1_musig_partial_signature *adaptor_sig, + const secp256k1_musig_partial_signature *partial_sig, + const unsigned char *sec_adaptor32, + int nonce_is_negated +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Extracts a secret adaptor from a MuSig, given all parties' partial + * signatures. This function will not fail unless given grossly invalid data; if it + * is merely given signatures that do not verify, the returned value will be + * nonsense. It is therefore important that all data be verified at earlier steps of + * any protocol that uses this function. + * + * Returns: 1: signatures contained valid data such that an adaptor could be extracted + * 0: otherwise + * Args: ctx: pointer to a context object (cannot be NULL) + * Out:sec_adaptor32: 32-byte secret adaptor (cannot be NULL) + * In: sig: complete 2-of-2 signature (cannot be NULL) + * partial_sigs: array of partial signatures (cannot be NULL) + * n_partial_sigs: number of elements in partial_sigs array + * nonce_is_negated: the `nonce_is_negated` output of `musig_session_combine_nonces` + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_extract_secret_adaptor( + const secp256k1_context* ctx, + unsigned char *sec_adaptor32, + const secp256k1_schnorrsig *sig, + const secp256k1_musig_partial_signature *partial_sigs, + size_t n_partial_sigs, + int nonce_is_negated +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +#endif diff --git a/src/modules/musig/Makefile.am.include b/src/modules/musig/Makefile.am.include new file mode 100644 index 000000000..6099ab727 --- /dev/null +++ b/src/modules/musig/Makefile.am.include @@ -0,0 +1,3 @@ +include_HEADERS += include/secp256k1_musig.h +noinst_HEADERS += src/modules/musig/main_impl.h +noinst_HEADERS += src/modules/musig/tests_impl.h diff --git a/src/modules/musig/main_impl.h b/src/modules/musig/main_impl.h new file mode 100644 index 000000000..d6d9e17d1 --- /dev/null +++ b/src/modules/musig/main_impl.h @@ -0,0 +1,629 @@ +/********************************************************************** + * Copyright (c) 2018 Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_MUSIG_MAIN_ +#define _SECP256K1_MODULE_MUSIG_MAIN_ + +#include "include/secp256k1.h" +#include "include/secp256k1_musig.h" +#include "hash.h" + +/* Computes ell = SHA256(pk[0], ..., pk[np-1]) */ +static int secp256k1_musig_compute_ell(const secp256k1_context *ctx, unsigned char *ell, const secp256k1_pubkey *pk, size_t np) { + secp256k1_sha256 sha; + size_t i; + + secp256k1_sha256_initialize(&sha); + for (i = 0; i < np; i++) { + unsigned char ser[33]; + size_t serlen = sizeof(ser); + if (!secp256k1_ec_pubkey_serialize(ctx, ser, &serlen, &pk[i], SECP256K1_EC_COMPRESSED)) { + return 0; + } + secp256k1_sha256_write(&sha, ser, serlen); + } + secp256k1_sha256_finalize(&sha, ell); + return 1; +} + +/* Initializes SHA256 with fixed midstate. This midstate was computed by applying + * SHA256 to SHA256("MuSig coefficient")||SHA256("MuSig coefficient"). */ +static void secp256k1_musig_sha256_init_tagged(secp256k1_sha256 *sha) { + secp256k1_sha256_initialize(sha); + + sha->s[0] = 0x0fd0690cul; + sha->s[1] = 0xfefeae97ul; + sha->s[2] = 0x996eac7ful; + sha->s[3] = 0x5c30d864ul; + sha->s[4] = 0x8c4a0573ul; + sha->s[5] = 0xaca1a22ful; + sha->s[6] = 0x6f43b801ul; + sha->s[7] = 0x85ce27cdul; + sha->bytes = 64; +} + +/* Compute r = SHA256(ell, idx). The four bytes of idx are serialized least significant byte first. */ +static void secp256k1_musig_coefficient(secp256k1_scalar *r, const unsigned char *ell, uint32_t idx) { + secp256k1_sha256 sha; + unsigned char buf[32]; + size_t i; + + secp256k1_musig_sha256_init_tagged(&sha); + secp256k1_sha256_write(&sha, ell, 32); + /* We're hashing the index of the signer instead of its public key as specified + * in the MuSig paper. This reduces the total amount of data that needs to be + * hashed. + * Additionally, it prevents creating identical musig_coefficients for identical + * public keys. A participant Bob could choose his public key to be the same as + * Alice's, then replay Alice's messages (nonce and partial signature) to create + * a valid partial signature. This is not a problem for MuSig per se, but could + * result in subtle issues with protocols building on threshold signatures. + * With the assumption that public keys are unique, hashing the index is + * equivalent to hashing the public key. Because the public key can be + * identified by the index given the ordered list of public keys (included in + * ell), the index is just a different encoding of the public key.*/ + for (i = 0; i < sizeof(uint32_t); i++) { + unsigned char c = idx; + secp256k1_sha256_write(&sha, &c, 1); + idx >>= 8; + } + secp256k1_sha256_finalize(&sha, buf); + secp256k1_scalar_set_b32(r, buf, NULL); +} + +typedef struct { + const secp256k1_context *ctx; + unsigned char ell[32]; + const secp256k1_pubkey *pks; +} secp256k1_musig_pubkey_combine_ecmult_data; + +/* Callback for batch EC multiplication to compute ell_0*P0 + ell_1*P1 + ... */ +static int secp256k1_musig_pubkey_combine_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { + secp256k1_musig_pubkey_combine_ecmult_data *ctx = (secp256k1_musig_pubkey_combine_ecmult_data *) data; + secp256k1_musig_coefficient(sc, ctx->ell, idx); + return secp256k1_pubkey_load(ctx->ctx, pt, &ctx->pks[idx]); +} + + +static void secp256k1_musig_signers_init(secp256k1_musig_session_signer_data *signers, uint32_t n_signers) { + uint32_t i; + for (i = 0; i < n_signers; i++) { + memset(&signers[i], 0, sizeof(signers[i])); + signers[i].index = i; + signers[i].present = 0; + } +} + +int secp256k1_musig_pubkey_combine(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, secp256k1_pubkey *combined_pk, unsigned char *pk_hash32, const secp256k1_pubkey *pubkeys, size_t n_pubkeys) { + secp256k1_musig_pubkey_combine_ecmult_data ecmult_data; + secp256k1_gej pkj; + secp256k1_ge pkp; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(combined_pk != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(pubkeys != NULL); + ARG_CHECK(n_pubkeys > 0); + + ecmult_data.ctx = ctx; + ecmult_data.pks = pubkeys; + if (!secp256k1_musig_compute_ell(ctx, ecmult_data.ell, pubkeys, n_pubkeys)) { + return 0; + } + if (!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &pkj, NULL, secp256k1_musig_pubkey_combine_callback, (void *) &ecmult_data, n_pubkeys)) { + return 0; + } + secp256k1_ge_set_gej(&pkp, &pkj); + secp256k1_pubkey_save(combined_pk, &pkp); + + if (pk_hash32 != NULL) { + memcpy(pk_hash32, ecmult_data.ell, 32); + } + return 1; +} + +int secp256k1_musig_session_initialize(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, unsigned char *nonce_commitment32, const unsigned char *session_id32, const unsigned char *msg32, const secp256k1_pubkey *combined_pk, const unsigned char *pk_hash32, size_t n_signers, size_t my_index, const unsigned char *seckey) { + unsigned char combined_ser[33]; + size_t combined_ser_size = sizeof(combined_ser); + int overflow; + secp256k1_scalar secret; + secp256k1_scalar mu; + secp256k1_sha256 sha; + secp256k1_gej rj; + secp256k1_ge rp; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(session != NULL); + ARG_CHECK(signers != NULL); + ARG_CHECK(nonce_commitment32 != NULL); + ARG_CHECK(session_id32 != NULL); + ARG_CHECK(combined_pk != NULL); + ARG_CHECK(pk_hash32 != NULL); + ARG_CHECK(seckey != NULL); + + memset(session, 0, sizeof(*session)); + + if (msg32 != NULL) { + memcpy(session->msg, msg32, 32); + session->msg_is_set = 1; + } else { + session->msg_is_set = 0; + } + memcpy(&session->combined_pk, combined_pk, sizeof(*combined_pk)); + memcpy(session->pk_hash, pk_hash32, 32); + session->nonce_is_set = 0; + session->has_secret_data = 1; + if (n_signers == 0 || my_index >= n_signers) { + return 0; + } + if (n_signers > UINT32_MAX) { + return 0; + } + session->n_signers = (uint32_t) n_signers; + secp256k1_musig_signers_init(signers, session->n_signers); + session->nonce_commitments_hash_is_set = 0; + + /* Compute secret key */ + secp256k1_scalar_set_b32(&secret, seckey, &overflow); + if (overflow) { + secp256k1_scalar_clear(&secret); + return 0; + } + secp256k1_musig_coefficient(&mu, pk_hash32, (uint32_t) my_index); + secp256k1_scalar_mul(&secret, &secret, &mu); + secp256k1_scalar_get_b32(session->seckey, &secret); + + /* Compute secret nonce */ + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, session_id32, 32); + if (session->msg_is_set) { + secp256k1_sha256_write(&sha, msg32, 32); + } + secp256k1_ec_pubkey_serialize(ctx, combined_ser, &combined_ser_size, combined_pk, SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(&sha, combined_ser, combined_ser_size); + secp256k1_sha256_write(&sha, seckey, 32); + secp256k1_sha256_finalize(&sha, session->secnonce); + secp256k1_scalar_set_b32(&secret, session->secnonce, &overflow); + if (overflow) { + secp256k1_scalar_clear(&secret); + return 0; + } + + /* Compute public nonce and commitment */ + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &secret); + secp256k1_ge_set_gej(&rp, &rj); + secp256k1_pubkey_save(&session->nonce, &rp); + + if (nonce_commitment32 != NULL) { + unsigned char commit[33]; + size_t commit_size = sizeof(commit); + secp256k1_sha256_initialize(&sha); + secp256k1_ec_pubkey_serialize(ctx, commit, &commit_size, &session->nonce, SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(&sha, commit, commit_size); + secp256k1_sha256_finalize(&sha, nonce_commitment32); + } + + secp256k1_scalar_clear(&secret); + return 1; +} + +int secp256k1_musig_session_get_public_nonce(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, secp256k1_pubkey *nonce, const unsigned char *const *commitments, size_t n_commitments) { + secp256k1_sha256 sha; + unsigned char nonce_commitments_hash[32]; + size_t i; + (void) ctx; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(session != NULL); + ARG_CHECK(signers != NULL); + ARG_CHECK(nonce != NULL); + ARG_CHECK(commitments != NULL); + + if (!session->has_secret_data || n_commitments != session->n_signers) { + return 0; + } + for (i = 0; i < n_commitments; i++) { + ARG_CHECK(commitments[i] != NULL); + } + + secp256k1_sha256_initialize(&sha); + for (i = 0; i < n_commitments; i++) { + memcpy(signers[i].nonce_commitment, commitments[i], 32); + secp256k1_sha256_write(&sha, commitments[i], 32); + } + secp256k1_sha256_finalize(&sha, nonce_commitments_hash); + if (session->nonce_commitments_hash_is_set + && memcmp(session->nonce_commitments_hash, nonce_commitments_hash, 32) != 0) { + /* Abort if get_public_nonce has been called before with a different array of + * commitments. */ + return 0; + } + memcpy(session->nonce_commitments_hash, nonce_commitments_hash, 32); + session->nonce_commitments_hash_is_set = 1; + memcpy(nonce, &session->nonce, sizeof(*nonce)); + return 1; +} + +int secp256k1_musig_session_initialize_verifier(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, const unsigned char *msg32, const secp256k1_pubkey *combined_pk, const unsigned char *pk_hash32, const unsigned char *const *commitments, size_t n_signers) { + size_t i; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(session != NULL); + ARG_CHECK(signers != NULL); + ARG_CHECK(combined_pk != NULL); + ARG_CHECK(pk_hash32 != NULL); + ARG_CHECK(commitments != NULL); + /* Check n_signers before checking commitments to allow testing the case where + * n_signers is big without allocating the space. */ + if (n_signers > UINT32_MAX) { + return 0; + } + for (i = 0; i < n_signers; i++) { + ARG_CHECK(commitments[i] != NULL); + } + (void) ctx; + + memset(session, 0, sizeof(*session)); + + memcpy(&session->combined_pk, combined_pk, sizeof(*combined_pk)); + if (n_signers == 0) { + return 0; + } + session->n_signers = (uint32_t) n_signers; + secp256k1_musig_signers_init(signers, session->n_signers); + + memcpy(session->pk_hash, pk_hash32, 32); + session->nonce_is_set = 0; + session->msg_is_set = 0; + if (msg32 != NULL) { + memcpy(session->msg, msg32, 32); + session->msg_is_set = 1; + } + session->has_secret_data = 0; + session->nonce_commitments_hash_is_set = 0; + + for (i = 0; i < n_signers; i++) { + memcpy(signers[i].nonce_commitment, commitments[i], 32); + } + return 1; +} + +int secp256k1_musig_set_nonce(const secp256k1_context* ctx, secp256k1_musig_session_signer_data *signer, const secp256k1_pubkey *nonce) { + unsigned char commit[33]; + size_t commit_size = sizeof(commit); + secp256k1_sha256 sha; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(signer != NULL); + ARG_CHECK(nonce != NULL); + + secp256k1_sha256_initialize(&sha); + secp256k1_ec_pubkey_serialize(ctx, commit, &commit_size, nonce, SECP256K1_EC_COMPRESSED); + secp256k1_sha256_write(&sha, commit, commit_size); + secp256k1_sha256_finalize(&sha, commit); + + if (memcmp(commit, signer->nonce_commitment, 32) != 0) { + return 0; + } + memcpy(&signer->nonce, nonce, sizeof(*nonce)); + signer->present = 1; + return 1; +} + +int secp256k1_musig_session_combine_nonces(const secp256k1_context* ctx, secp256k1_musig_session *session, const secp256k1_musig_session_signer_data *signers, size_t n_signers, int *nonce_is_negated, const secp256k1_pubkey *adaptor) { + secp256k1_gej combined_noncej; + secp256k1_ge combined_noncep; + secp256k1_ge noncep; + secp256k1_sha256 sha; + unsigned char nonce_commitments_hash[32]; + size_t i; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(session != NULL); + ARG_CHECK(signers != NULL); + + if (n_signers != session->n_signers) { + return 0; + } + secp256k1_sha256_initialize(&sha); + secp256k1_gej_set_infinity(&combined_noncej); + for (i = 0; i < n_signers; i++) { + if (!signers[i].present) { + return 0; + } + secp256k1_sha256_write(&sha, signers[i].nonce_commitment, 32); + secp256k1_pubkey_load(ctx, &noncep, &signers[i].nonce); + secp256k1_gej_add_ge_var(&combined_noncej, &combined_noncej, &noncep, NULL); + } + secp256k1_sha256_finalize(&sha, nonce_commitments_hash); + /* Either the session is a verifier session or or the nonce_commitments_hash has + * been set in `musig_session_get_public_nonce`. */ + VERIFY_CHECK(!session->has_secret_data || session->nonce_commitments_hash_is_set); + if (session->has_secret_data + && memcmp(session->nonce_commitments_hash, nonce_commitments_hash, 32) != 0) { + /* If the signers' commitments changed between get_public_nonce and now we + * have to abort because in that case they may have seen our nonce before + * creating their commitment. That can happen if the signer_data given to + * this function is different to the signer_data given to get_public_nonce. + * */ + return 0; + } + + /* Add public adaptor to nonce */ + if (adaptor != NULL) { + secp256k1_pubkey_load(ctx, &noncep, adaptor); + secp256k1_gej_add_ge_var(&combined_noncej, &combined_noncej, &noncep, NULL); + } + secp256k1_ge_set_gej(&combined_noncep, &combined_noncej); + if (secp256k1_fe_is_quad_var(&combined_noncep.y)) { + session->nonce_is_negated = 0; + } else { + session->nonce_is_negated = 1; + secp256k1_ge_neg(&combined_noncep, &combined_noncep); + } + if (nonce_is_negated != NULL) { + *nonce_is_negated = session->nonce_is_negated; + } + secp256k1_pubkey_save(&session->combined_nonce, &combined_noncep); + session->nonce_is_set = 1; + return 1; +} + +int secp256k1_musig_session_set_msg(const secp256k1_context* ctx, secp256k1_musig_session *session, const unsigned char *msg32) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(session != NULL); + ARG_CHECK(msg32 != NULL); + + if (session->msg_is_set) { + return 0; + } + memcpy(session->msg, msg32, 32); + session->msg_is_set = 1; + return 1; +} + +int secp256k1_musig_partial_signature_serialize(const secp256k1_context* ctx, unsigned char *out32, const secp256k1_musig_partial_signature* sig) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(out32 != NULL); + ARG_CHECK(sig != NULL); + memcpy(out32, sig->data, 32); + return 1; +} + +int secp256k1_musig_partial_signature_parse(const secp256k1_context* ctx, secp256k1_musig_partial_signature* sig, const unsigned char *in32) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(sig != NULL); + ARG_CHECK(in32 != NULL); + memcpy(sig->data, in32, 32); + return 1; +} + +/* Compute msghash = SHA256(combined_nonce, combined_pk, msg) */ +static int secp256k1_musig_compute_messagehash(const secp256k1_context *ctx, unsigned char *msghash, const secp256k1_musig_session *session) { + unsigned char buf[33]; + size_t bufsize = 33; + secp256k1_ge rp; + secp256k1_sha256 sha; + + secp256k1_sha256_initialize(&sha); + if (!session->nonce_is_set) { + return 0; + } + secp256k1_pubkey_load(ctx, &rp, &session->combined_nonce); + secp256k1_fe_get_b32(buf, &rp.x); + secp256k1_sha256_write(&sha, buf, 32); + secp256k1_ec_pubkey_serialize(ctx, buf, &bufsize, &session->combined_pk, SECP256K1_EC_COMPRESSED); + VERIFY_CHECK(bufsize == 33); + secp256k1_sha256_write(&sha, buf, bufsize); + if (!session->msg_is_set) { + return 0; + } + secp256k1_sha256_write(&sha, session->msg, 32); + secp256k1_sha256_finalize(&sha, msghash); + return 1; +} + +int secp256k1_musig_partial_sign(const secp256k1_context* ctx, const secp256k1_musig_session *session, secp256k1_musig_partial_signature *partial_sig) { + unsigned char msghash[32]; + int overflow; + secp256k1_scalar sk; + secp256k1_scalar e, k; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(partial_sig != NULL); + ARG_CHECK(session != NULL); + + if (!session->nonce_is_set || !session->has_secret_data) { + return 0; + } + + /* build message hash */ + if (!secp256k1_musig_compute_messagehash(ctx, msghash, session)) { + return 0; + } + secp256k1_scalar_set_b32(&e, msghash, NULL); + + secp256k1_scalar_set_b32(&sk, session->seckey, &overflow); + if (overflow) { + secp256k1_scalar_clear(&sk); + return 0; + } + + secp256k1_scalar_set_b32(&k, session->secnonce, &overflow); + if (overflow || secp256k1_scalar_is_zero(&k)) { + secp256k1_scalar_clear(&sk); + secp256k1_scalar_clear(&k); + return 0; + } + if (session->nonce_is_negated) { + secp256k1_scalar_negate(&k, &k); + } + + /* Sign */ + secp256k1_scalar_mul(&e, &e, &sk); + secp256k1_scalar_add(&e, &e, &k); + secp256k1_scalar_get_b32(&partial_sig->data[0], &e); + secp256k1_scalar_clear(&sk); + secp256k1_scalar_clear(&k); + + return 1; +} + +int secp256k1_musig_partial_sig_combine(const secp256k1_context* ctx, const secp256k1_musig_session *session, secp256k1_schnorrsig *sig, const secp256k1_musig_partial_signature *partial_sigs, size_t n_sigs) { + size_t i; + secp256k1_scalar s; + secp256k1_ge noncep; + (void) ctx; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(sig != NULL); + ARG_CHECK(partial_sigs != NULL); + ARG_CHECK(session != NULL); + + if (!session->nonce_is_set) { + return 0; + } + if (n_sigs != session->n_signers) { + return 0; + } + secp256k1_scalar_clear(&s); + for (i = 0; i < n_sigs; i++) { + int overflow; + secp256k1_scalar term; + + secp256k1_scalar_set_b32(&term, partial_sigs[i].data, &overflow); + if (overflow) { + return 0; + } + secp256k1_scalar_add(&s, &s, &term); + } + + secp256k1_pubkey_load(ctx, &noncep, &session->combined_nonce); + VERIFY_CHECK(secp256k1_fe_is_quad_var(&noncep.y)); + secp256k1_fe_normalize(&noncep.x); + secp256k1_fe_get_b32(&sig->data[0], &noncep.x); + secp256k1_scalar_get_b32(&sig->data[32], &s); + + return 1; +} + +int secp256k1_musig_partial_sig_verify(const secp256k1_context* ctx, const secp256k1_musig_session *session, const secp256k1_musig_session_signer_data *signer, const secp256k1_musig_partial_signature *partial_sig, const secp256k1_pubkey *pubkey) { + unsigned char msghash[32]; + secp256k1_scalar s; + secp256k1_scalar e; + secp256k1_scalar mu; + secp256k1_gej rj; + secp256k1_ge rp; + int overflow; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(session != NULL); + ARG_CHECK(signer != NULL); + ARG_CHECK(partial_sig != NULL); + ARG_CHECK(pubkey != NULL); + + if (!session->nonce_is_set || !signer->present) { + return 0; + } + secp256k1_scalar_set_b32(&s, partial_sig->data, &overflow); + if (overflow) { + return 0; + } + if (!secp256k1_musig_compute_messagehash(ctx, msghash, session)) { + return 0; + } + secp256k1_scalar_set_b32(&e, msghash, NULL); + + /* Multiplying the messagehash by the musig coefficient is equivalent + * to multiplying the signer's public key by the coefficient, except + * much easier to do. */ + secp256k1_musig_coefficient(&mu, session->pk_hash, signer->index); + secp256k1_scalar_mul(&e, &e, &mu); + + if (!secp256k1_pubkey_load(ctx, &rp, &signer->nonce)) { + return 0; + } + + if (!secp256k1_schnorrsig_real_verify(ctx, &rj, &s, &e, pubkey)) { + return 0; + } + if (!session->nonce_is_negated) { + secp256k1_ge_neg(&rp, &rp); + } + secp256k1_gej_add_ge_var(&rj, &rj, &rp, NULL); + + return secp256k1_gej_is_infinity(&rj); +} + +int secp256k1_musig_partial_sig_adapt(const secp256k1_context* ctx, secp256k1_musig_partial_signature *adaptor_sig, const secp256k1_musig_partial_signature *partial_sig, const unsigned char *sec_adaptor32, int nonce_is_negated) { + secp256k1_scalar s; + secp256k1_scalar t; + int overflow; + + (void) ctx; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(adaptor_sig != NULL); + ARG_CHECK(partial_sig != NULL); + ARG_CHECK(sec_adaptor32 != NULL); + + secp256k1_scalar_set_b32(&s, partial_sig->data, &overflow); + if (overflow) { + return 0; + } + secp256k1_scalar_set_b32(&t, sec_adaptor32, &overflow); + if (overflow) { + secp256k1_scalar_clear(&t); + return 0; + } + + if (nonce_is_negated) { + secp256k1_scalar_negate(&t, &t); + } + + secp256k1_scalar_add(&s, &s, &t); + secp256k1_scalar_get_b32(adaptor_sig->data, &s); + secp256k1_scalar_clear(&t); + return 1; +} + +int secp256k1_musig_extract_secret_adaptor(const secp256k1_context* ctx, unsigned char *sec_adaptor32, const secp256k1_schnorrsig *sig, const secp256k1_musig_partial_signature *partial_sigs, size_t n_partial_sigs, int nonce_is_negated) { + secp256k1_scalar t; + secp256k1_scalar s; + int overflow; + size_t i; + + (void) ctx; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(sec_adaptor32 != NULL); + ARG_CHECK(sig != NULL); + ARG_CHECK(partial_sigs != NULL); + + secp256k1_scalar_set_b32(&t, &sig->data[32], &overflow); + if (overflow) { + return 0; + } + secp256k1_scalar_negate(&t, &t); + + for (i = 0; i < n_partial_sigs; i++) { + secp256k1_scalar_set_b32(&s, partial_sigs[i].data, &overflow); + if (overflow) { + secp256k1_scalar_clear(&t); + return 0; + } + secp256k1_scalar_add(&t, &t, &s); + } + + if (!nonce_is_negated) { + secp256k1_scalar_negate(&t, &t); + } + secp256k1_scalar_get_b32(sec_adaptor32, &t); + secp256k1_scalar_clear(&t); + return 1; +} + +#endif diff --git a/src/modules/musig/tests_impl.h b/src/modules/musig/tests_impl.h new file mode 100644 index 000000000..79688af24 --- /dev/null +++ b/src/modules/musig/tests_impl.h @@ -0,0 +1,757 @@ +/********************************************************************** + * Copyright (c) 2018 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_MUSIG_TESTS_ +#define _SECP256K1_MODULE_MUSIG_TESTS_ + +#include "secp256k1_musig.h" + +void musig_api_tests(secp256k1_scratch_space *scratch) { + secp256k1_scratch_space *scratch_small; + secp256k1_musig_session session[2]; + secp256k1_musig_session verifier_session; + secp256k1_musig_session_signer_data signer0[2]; + secp256k1_musig_session_signer_data signer1[2]; + secp256k1_musig_session_signer_data verifier_signer_data[2]; + secp256k1_musig_partial_signature partial_sig[2]; + secp256k1_musig_partial_signature partial_sig_adapted[2]; + secp256k1_musig_partial_signature partial_sig_overflow; + secp256k1_schnorrsig final_sig; + secp256k1_schnorrsig final_sig_cmp; + + unsigned char buf[32]; + unsigned char sk[2][32]; + unsigned char ones[32]; + unsigned char session_id[2][32]; + unsigned char nonce_commitment[2][32]; + int nonce_is_negated; + const unsigned char *ncs[2]; + unsigned char msg[32]; + unsigned char msghash[32]; + secp256k1_pubkey combined_pk; + unsigned char pk_hash[32]; + secp256k1_pubkey pk[2]; + + unsigned char sec_adaptor[32]; + unsigned char sec_adaptor1[32]; + secp256k1_pubkey adaptor; + + /** setup **/ + secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); + int ecount; + + secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); + + memset(ones, 0xff, 32); + + secp256k1_rand256(session_id[0]); + secp256k1_rand256(session_id[1]); + secp256k1_rand256(sk[0]); + secp256k1_rand256(sk[1]); + secp256k1_rand256(msg); + secp256k1_rand256(sec_adaptor); + + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk[0]) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk[1]) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &adaptor, sec_adaptor) == 1); + + /** main test body **/ + + /* Key combination */ + ecount = 0; + CHECK(secp256k1_musig_pubkey_combine(none, scratch, &combined_pk, pk_hash, pk, 2) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_pubkey_combine(sign, scratch, &combined_pk, pk_hash, pk, 2) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1); + CHECK(ecount == 2); + /* pubkey_combine does not require a scratch space */ + CHECK(secp256k1_musig_pubkey_combine(vrfy, NULL, &combined_pk, pk_hash, pk, 2) == 1); + CHECK(ecount == 2); + /* If a scratch space is given it shouldn't be too small */ + scratch_small = secp256k1_scratch_space_create(ctx, 1); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch_small, &combined_pk, pk_hash, pk, 2) == 0); + secp256k1_scratch_space_destroy(scratch_small); + CHECK(ecount == 2); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, NULL, pk_hash, pk, 2) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, NULL, pk, 2) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, NULL, 2) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 0) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, NULL, 0) == 0); + CHECK(ecount == 6); + + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1); + CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1); + + /** Session creation **/ + ecount = 0; + CHECK(secp256k1_musig_session_initialize(none, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_session_initialize(vrfy, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_initialize(sign, NULL, signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], NULL, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, NULL, session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], NULL, msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 6); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], NULL, &combined_pk, pk_hash, 2, 0, sk[0]) == 1); + CHECK(ecount == 6); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, NULL, pk_hash, 2, 0, sk[0]) == 0); + CHECK(ecount == 7); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, NULL, 2, 0, sk[0]) == 0); + CHECK(ecount == 8); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 0, 0, sk[0]) == 0); + CHECK(ecount == 8); + /* If more than UINT32_MAX fits in a size_t, test that session_initialize + * rejects n_signers that high. */ + if (SIZE_MAX > UINT32_MAX) { + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, ((size_t) UINT32_MAX) + 2, 0, sk[0]) == 0); + } + CHECK(ecount == 8); + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, NULL) == 0); + CHECK(ecount == 9); + /* secret key overflows */ + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, ones) == 0); + CHECK(ecount == 9); + + + { + secp256k1_musig_session session_without_msg; + CHECK(secp256k1_musig_session_initialize(sign, &session_without_msg, signer0, nonce_commitment[0], session_id[0], NULL, &combined_pk, pk_hash, 2, 0, sk[0]) == 1); + CHECK(secp256k1_musig_session_set_msg(none, &session_without_msg, msg) == 1); + CHECK(secp256k1_musig_session_set_msg(none, &session_without_msg, msg) == 0); + } + CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1); + CHECK(secp256k1_musig_session_initialize(sign, &session[1], signer1, nonce_commitment[1], session_id[1], msg, &combined_pk, pk_hash, 2, 1, sk[1]) == 1); + ncs[0] = nonce_commitment[0]; + ncs[1] = nonce_commitment[1]; + + ecount = 0; + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 1); + CHECK(ecount == 0); + CHECK(secp256k1_musig_session_initialize_verifier(none, NULL, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, NULL, &combined_pk, pk_hash, ncs, 2) == 1); + CHECK(ecount == 1); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, NULL, pk_hash, ncs, 2) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, NULL, ncs, 2) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, NULL, 2) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 0) == 0); + CHECK(ecount == 4); + if (SIZE_MAX > UINT32_MAX) { + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, ((size_t) UINT32_MAX) + 2) == 0); + } + CHECK(ecount == 4); + CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 1); + + CHECK(secp256k1_musig_compute_messagehash(none, msghash, &verifier_session) == 0); + CHECK(secp256k1_musig_compute_messagehash(none, msghash, &session[0]) == 0); + + /** Signing step 0 -- exchange nonce commitments */ + ecount = 0; + { + secp256k1_pubkey nonce; + + /* Can obtain public nonce after commitments have been exchanged; still can't sign */ + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &nonce, ncs, 2) == 1); + CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 0); + CHECK(ecount == 0); + } + + /** Signing step 1 -- exchange nonces */ + ecount = 0; + { + secp256k1_pubkey public_nonce[3]; + + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 2) == 1); + CHECK(ecount == 0); + CHECK(secp256k1_musig_session_get_public_nonce(none, NULL, signer0, &public_nonce[0], ncs, 2) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], NULL, &public_nonce[0], ncs, 2) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, NULL, ncs, 2) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], NULL, 2) == 0); + CHECK(ecount == 4); + /* Number of commitments and number of signers are different */ + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 1) == 0); + CHECK(ecount == 4); + + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 2) == 1); + CHECK(secp256k1_musig_session_get_public_nonce(none, &session[1], signer1, &public_nonce[1], ncs, 2) == 1); + + CHECK(secp256k1_musig_set_nonce(none, &signer0[0], &public_nonce[0]) == 1); + CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[0]) == 0); + CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[1]) == 1); + CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[1]) == 1); + CHECK(ecount == 4); + + CHECK(secp256k1_musig_set_nonce(none, NULL, &public_nonce[0]) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_musig_set_nonce(none, &signer1[0], NULL) == 0); + CHECK(ecount == 6); + + CHECK(secp256k1_musig_set_nonce(none, &signer1[0], &public_nonce[0]) == 1); + CHECK(secp256k1_musig_set_nonce(none, &signer1[1], &public_nonce[1]) == 1); + CHECK(secp256k1_musig_set_nonce(none, &verifier_signer_data[0], &public_nonce[0]) == 1); + CHECK(secp256k1_musig_set_nonce(none, &verifier_signer_data[1], &public_nonce[1]) == 1); + + ecount = 0; + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, &adaptor) == 1); + CHECK(secp256k1_musig_session_combine_nonces(none, NULL, signer0, 2, &nonce_is_negated, &adaptor) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], NULL, 2, &nonce_is_negated, &adaptor) == 0); + CHECK(ecount == 2); + /* Number of signers differs from number during intialization */ + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 1, &nonce_is_negated, &adaptor) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, NULL, &adaptor) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, NULL) == 1); + + CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, &adaptor) == 1); + CHECK(secp256k1_musig_session_combine_nonces(none, &session[1], signer0, 2, &nonce_is_negated, &adaptor) == 1); + CHECK(secp256k1_musig_session_combine_nonces(none, &verifier_session, verifier_signer_data, 2, &nonce_is_negated, &adaptor) == 1); + } + + /** Signing step 2 -- partial signatures */ + ecount = 0; + CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 1); + CHECK(ecount == 0); + CHECK(secp256k1_musig_partial_sign(none, NULL, &partial_sig[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_partial_sign(none, &session[0], NULL) == 0); + CHECK(ecount == 2); + + CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 1); + CHECK(secp256k1_musig_partial_sign(none, &session[1], &partial_sig[1]) == 1); + /* observer can't sign */ + CHECK(secp256k1_musig_partial_sign(none, &verifier_session, &partial_sig[2]) == 0); + CHECK(ecount == 2); + + ecount = 0; + CHECK(secp256k1_musig_partial_signature_serialize(none, buf, &partial_sig[0]) == 1); + CHECK(secp256k1_musig_partial_signature_serialize(none, NULL, &partial_sig[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_partial_signature_serialize(none, buf, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig[0], buf) == 1); + CHECK(secp256k1_musig_partial_signature_parse(none, NULL, buf) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig[0], NULL) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig_overflow, ones) == 1); + + /** Partial signature verification */ + ecount = 0; + CHECK(secp256k1_musig_partial_sig_verify(none, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_partial_sig_verify(sign, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[1], &pk[0]) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, NULL, &signer0[0], &partial_sig[0], &pk[0]) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], NULL, &partial_sig[0], &pk[0]) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], NULL, &pk[0]) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig_overflow, &pk[0]) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], NULL) == 0); + CHECK(ecount == 6); + + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[1], &signer1[0], &partial_sig[0], &pk[0]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[1], &partial_sig[1], &pk[1]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[1], &signer1[1], &partial_sig[1], &pk[1]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &verifier_session, &verifier_signer_data[0], &partial_sig[0], &pk[0]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(vrfy, &verifier_session, &verifier_signer_data[1], &partial_sig[1], &pk[1]) == 1); + CHECK(ecount == 6); + + /** Adaptor signature verification */ + memcpy(&partial_sig_adapted[1], &partial_sig[1], sizeof(partial_sig_adapted[1])); + ecount = 0; + CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], sec_adaptor, nonce_is_negated) == 1); + CHECK(secp256k1_musig_partial_sig_adapt(none, NULL, &partial_sig[0], sec_adaptor, 0) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], NULL, sec_adaptor, 0) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig_overflow, sec_adaptor, nonce_is_negated) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], NULL, 0) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], ones, nonce_is_negated) == 0); + CHECK(ecount == 3); + + /** Signing combining and verification */ + ecount = 0; + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_adapted, 2) == 1); + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig_cmp, partial_sig_adapted, 2) == 1); + CHECK(memcmp(&final_sig, &final_sig_cmp, sizeof(final_sig)) == 0); + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig_cmp, partial_sig_adapted, 2) == 1); + CHECK(memcmp(&final_sig, &final_sig_cmp, sizeof(final_sig)) == 0); + + CHECK(secp256k1_musig_partial_sig_combine(none, NULL, &final_sig, partial_sig_adapted, 2) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], NULL, partial_sig_adapted, 2) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, NULL, 2) == 0); + CHECK(ecount == 3); + { + secp256k1_musig_partial_signature partial_sig_tmp[2]; + partial_sig_tmp[0] = partial_sig_adapted[0]; + partial_sig_tmp[1] = partial_sig_overflow; + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_tmp, 2) == 0); + } + CHECK(ecount == 3); + /* Wrong number of partial sigs */ + CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_adapted, 1) == 0); + CHECK(ecount == 3); + + CHECK(secp256k1_schnorrsig_verify(vrfy, &final_sig, msg, &combined_pk) == 1); + + /** Secret adaptor can be extracted from signature */ + ecount = 0; + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 2, nonce_is_negated) == 1); + CHECK(memcmp(sec_adaptor, sec_adaptor1, 32) == 0); + CHECK(secp256k1_musig_extract_secret_adaptor(none, NULL, &final_sig, partial_sig, 2, 0) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, NULL, partial_sig, 2, 0) == 0); + CHECK(ecount == 2); + { + secp256k1_schnorrsig final_sig_tmp = final_sig; + memcpy(&final_sig_tmp.data[32], ones, 32); + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig_tmp, partial_sig, 2, nonce_is_negated) == 0); + } + CHECK(ecount == 2); + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, NULL, 2, 0) == 0); + CHECK(ecount == 3); + { + secp256k1_musig_partial_signature partial_sig_tmp[2]; + partial_sig_tmp[0] = partial_sig[0]; + partial_sig_tmp[1] = partial_sig_overflow; + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig_tmp, 2, nonce_is_negated) == 0); + } + CHECK(ecount == 3); + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 0, 0) == 1); + CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 2, 1) == 1); + + /** cleanup **/ + memset(&session, 0, sizeof(session)); + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(vrfy); +} + +/* Initializes two sessions, one use the given parameters (session_id, + * nonce_commitments, etc.) except that `session_tmp` uses new signers with different + * public keys. The point of this test is to call `musig_session_get_public_nonce` + * with signers from `session_tmp` who have different public keys than the correct + * ones and return the resulting messagehash. This should not result in a different + * messagehash because the public keys of the signers are only used during session + * initialization. */ +int musig_state_machine_diff_signer_msghash_test(unsigned char *msghash, secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, const unsigned char * const *nonce_commitments, unsigned char *msg, secp256k1_pubkey *nonce_other, unsigned char *sk, unsigned char *session_id) { + secp256k1_musig_session session; + secp256k1_musig_session session_tmp; + unsigned char nonce_commitment[32]; + secp256k1_musig_session_signer_data signers[2]; + secp256k1_musig_session_signer_data signers_tmp[2]; + unsigned char sk_dummy[32]; + secp256k1_pubkey pks_tmp[2]; + secp256k1_pubkey combined_pk_tmp; + unsigned char pk_hash_tmp[32]; + secp256k1_pubkey nonce; + + /* Set up signers with different public keys */ + secp256k1_rand256(sk_dummy); + pks_tmp[0] = pks[0]; + CHECK(secp256k1_ec_pubkey_create(ctx, &pks_tmp[1], sk_dummy) == 1); + CHECK(secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk_tmp, pk_hash_tmp, pks_tmp, 2) == 1); + CHECK(secp256k1_musig_session_initialize(ctx, &session_tmp, signers_tmp, nonce_commitment, session_id, msg, &combined_pk_tmp, pk_hash_tmp, 2, 0, sk_dummy) == 1); + + CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1); + CHECK(memcmp(nonce_commitment, nonce_commitments[1], 32) == 0); + /* Call get_public_nonce with different signers than the signers the session was + * initialized with. */ + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session_tmp, signers, &nonce, nonce_commitments, 2) == 1); + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers_tmp, &nonce, nonce_commitments, 2) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1); + + return secp256k1_musig_compute_messagehash(ctx, msghash, &session); +} + +/* Creates a new session (with a different session id) and tries to use that session + * to combine nonces with given signers_other. This should fail, because the nonce + * commitments of signers_other do not match the nonce commitments the new session + * was initialized with. If do_test is 0, the correct signers are being used and + * therefore the function should return 1. */ +int musig_state_machine_diff_signers_combine_nonce_test(secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, unsigned char *msg, unsigned char *sk, secp256k1_musig_session_signer_data *signers_other, int do_test) { + secp256k1_musig_session session; + secp256k1_musig_session_signer_data signers[2]; + secp256k1_musig_session_signer_data *signers_to_use; + unsigned char nonce_commitment[32]; + unsigned char session_id[32]; + secp256k1_pubkey nonce; + const unsigned char *ncs[2]; + + /* Initialize new signers */ + secp256k1_rand256(session_id); + CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 1, sk) == 1); + ncs[0] = nonce_commitment_other; + ncs[1] = nonce_commitment; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1); + secp256k1_musig_session_combine_nonces(ctx, &session, signers_other, 2, NULL, NULL); + if (do_test) { + signers_to_use = signers_other; + } else { + signers_to_use = signers; + } + return secp256k1_musig_session_combine_nonces(ctx, &session, signers_to_use, 2, NULL, NULL); +} + +/* Recreates a session with the given session_id, signers, pk, msg etc. parameters + * and tries to sign and verify the other signers partial signature. Both should fail + * if msg is NULL. */ +int musig_state_machine_missing_msg_test(secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, secp256k1_musig_partial_signature *partial_sig_other, unsigned char *sk, unsigned char *session_id, unsigned char *msg) { + secp256k1_musig_session session; + secp256k1_musig_session_signer_data signers[2]; + unsigned char nonce_commitment[32]; + const unsigned char *ncs[2]; + secp256k1_pubkey nonce; + secp256k1_musig_partial_signature partial_sig; + int partial_sign, partial_verify; + + CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1); + ncs[0] = nonce_commitment_other; + ncs[1] = nonce_commitment; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1); + + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1); + partial_sign = secp256k1_musig_partial_sign(ctx, &session, &partial_sig); + partial_verify = secp256k1_musig_partial_sig_verify(ctx, &session, &signers[0], partial_sig_other, &pks[0]); + if (msg != NULL) { + /* Return 1 if both succeeded */ + return partial_sign && partial_verify; + } + /* Return 0 if both failed */ + return partial_sign || partial_verify; +} + +/* Recreates a session with the given session_id, signers, pk, msg etc. parameters + * and tries to verify and combine partial sigs. If do_combine is 0, the + * combine_nonces step is left out. In that case verify and combine should fail and + * this function should return 0. */ +int musig_state_machine_missing_combine_test(secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, secp256k1_musig_partial_signature *partial_sig_other, unsigned char *msg, unsigned char *sk, unsigned char *session_id, secp256k1_musig_partial_signature *partial_sig, int do_combine) { + secp256k1_musig_session session; + secp256k1_musig_session_signer_data signers[2]; + unsigned char nonce_commitment[32]; + const unsigned char *ncs[2]; + secp256k1_pubkey nonce; + secp256k1_musig_partial_signature partial_sigs[2]; + secp256k1_schnorrsig sig; + int partial_verify, sig_combine; + + CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1); + ncs[0] = nonce_commitment_other; + ncs[1] = nonce_commitment; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1); + + partial_sigs[0] = *partial_sig_other; + partial_sigs[1] = *partial_sig; + if (do_combine != 0) { + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1); + } + partial_verify = secp256k1_musig_partial_sig_verify(ctx, &session, signers, partial_sig_other, &pks[0]); + sig_combine = secp256k1_musig_partial_sig_combine(ctx, &session, &sig, partial_sigs, 2); + if (do_combine != 0) { + /* Return 1 if both succeeded */ + return partial_verify && sig_combine; + } + /* Return 0 if both failed */ + return partial_verify || sig_combine; +} + +void musig_state_machine_tests(secp256k1_scratch_space *scratch) { + size_t i; + secp256k1_musig_session session[2]; + secp256k1_musig_session_signer_data signers0[2]; + secp256k1_musig_session_signer_data signers1[2]; + unsigned char nonce_commitment[2][32]; + unsigned char session_id[2][32]; + unsigned char msg[32]; + unsigned char sk[2][32]; + secp256k1_pubkey pk[2]; + secp256k1_pubkey combined_pk; + unsigned char pk_hash[32]; + secp256k1_pubkey nonce[2]; + const unsigned char *ncs[2]; + secp256k1_musig_partial_signature partial_sig[2]; + unsigned char msghash1[32]; + unsigned char msghash2[32]; + + /* Run state machine with the same objects twice to test that it's allowed to + * reinitialize session and session_signer_data. */ + for (i = 0; i < 2; i++) { + /* Setup */ + secp256k1_rand256(session_id[0]); + secp256k1_rand256(session_id[1]); + secp256k1_rand256(sk[0]); + secp256k1_rand256(sk[1]); + secp256k1_rand256(msg); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk[0]) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk[1]) == 1); + CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk, pk_hash, pk, 2) == 1); + CHECK(secp256k1_musig_session_initialize(ctx, &session[0], signers0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1); + CHECK(secp256k1_musig_session_initialize(ctx, &session[1], signers1, nonce_commitment[1], session_id[1], msg, &combined_pk, pk_hash, 2, 1, sk[1]) == 1); + + /* Set nonce commitments */ + ncs[0] = nonce_commitment[0]; + ncs[1] = nonce_commitment[1]; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 1); + /* Changing a nonce commitment is not okay */ + ncs[1] = (unsigned char*) "this isn't a nonce commitment..."; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 0); + /* Repeating with the same nonce commitments is okay */ + ncs[1] = nonce_commitment[1]; + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 1); + + /* Get nonce for signer 1 */ + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[1], signers1, &nonce[1], ncs, 2) == 1); + + /* Set nonces */ + CHECK(secp256k1_musig_set_nonce(ctx, &signers0[0], &nonce[0]) == 1); + /* Can't set nonce that doesn't match nonce commitment */ + CHECK(secp256k1_musig_set_nonce(ctx, &signers0[1], &nonce[0]) == 0); + /* Set correct nonce */ + CHECK(secp256k1_musig_set_nonce(ctx, &signers0[1], &nonce[1]) == 1); + + /* Combine nonces */ + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[0], signers0, 2, NULL, NULL) == 1); + /* Not everyone is present from signer 1's view */ + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[1], signers1, 2, NULL, NULL) == 0); + /* Make everyone present */ + CHECK(secp256k1_musig_set_nonce(ctx, &signers1[0], &nonce[0]) == 1); + CHECK(secp256k1_musig_set_nonce(ctx, &signers1[1], &nonce[1]) == 1); + + /* Can't combine nonces from signers of a different session */ + CHECK(musig_state_machine_diff_signers_combine_nonce_test(&combined_pk, pk_hash, nonce_commitment[0], &nonce[0], msg, sk[1], signers1, 1) == 0); + CHECK(musig_state_machine_diff_signers_combine_nonce_test(&combined_pk, pk_hash, nonce_commitment[0], &nonce[0], msg, sk[1], signers1, 0) == 1); + + /* Partially sign */ + CHECK(secp256k1_musig_partial_sign(ctx, &session[0], &partial_sig[0]) == 1); + /* Can't verify or sign until nonce is combined */ + CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[0], &partial_sig[0], &pk[0]) == 0); + CHECK(secp256k1_musig_partial_sign(ctx, &session[1], &partial_sig[1]) == 0); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[1], signers1, 2, NULL, NULL) == 1); + CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[0], &partial_sig[0], &pk[0]) == 1); + /* messagehash should be the same as a session whose get_public_nonce was called + * with different signers (i.e. they diff in public keys). This is because the + * public keys of the signers is set in stone when initializing the session. */ + CHECK(secp256k1_musig_compute_messagehash(ctx, msghash1, &session[1]) == 1); + CHECK(musig_state_machine_diff_signer_msghash_test(msghash2, pk, &combined_pk, pk_hash, ncs, msg, &nonce[0], sk[1], session_id[1]) == 1); + CHECK(memcmp(msghash1, msghash2, 32) == 0); + CHECK(secp256k1_musig_partial_sign(ctx, &session[1], &partial_sig[1]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[1], &partial_sig[1], &pk[1]) == 1); + /* Wrong signature */ + CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[1], &partial_sig[0], &pk[1]) == 0); + /* Can't sign or verify until msg is set */ + CHECK(musig_state_machine_missing_msg_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], sk[1], session_id[1], NULL) == 0); + CHECK(musig_state_machine_missing_msg_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], sk[1], session_id[1], msg) == 1); + + /* Can't verify and combine partial sigs until nonces are combined */ + CHECK(musig_state_machine_missing_combine_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], msg, sk[1], session_id[1], &partial_sig[1], 0) == 0); + CHECK(musig_state_machine_missing_combine_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], msg, sk[1], session_id[1], &partial_sig[1], 1) == 1); + } +} + +void scriptless_atomic_swap(secp256k1_scratch_space *scratch) { + /* Throughout this test "a" and "b" refer to two hypothetical blockchains, + * while the indices 0 and 1 refer to the two signers. Here signer 0 is + * sending a-coins to signer 1, while signer 1 is sending b-coins to signer + * 0. Signer 0 produces the adaptor signatures. */ + secp256k1_schnorrsig final_sig_a; + secp256k1_schnorrsig final_sig_b; + secp256k1_musig_partial_signature partial_sig_a[2]; + secp256k1_musig_partial_signature partial_sig_b_adapted[2]; + secp256k1_musig_partial_signature partial_sig_b[2]; + unsigned char sec_adaptor[32]; + unsigned char sec_adaptor_extracted[32]; + secp256k1_pubkey pub_adaptor; + + unsigned char seckey_a[2][32]; + unsigned char seckey_b[2][32]; + secp256k1_pubkey pk_a[2]; + secp256k1_pubkey pk_b[2]; + unsigned char pk_hash_a[32]; + unsigned char pk_hash_b[32]; + secp256k1_pubkey combined_pk_a; + secp256k1_pubkey combined_pk_b; + secp256k1_musig_session musig_session_a[2]; + secp256k1_musig_session musig_session_b[2]; + unsigned char noncommit_a[2][32]; + unsigned char noncommit_b[2][32]; + const unsigned char *noncommit_a_ptr[2]; + const unsigned char *noncommit_b_ptr[2]; + secp256k1_pubkey pubnon_a[2]; + secp256k1_pubkey pubnon_b[2]; + int nonce_is_negated_a; + int nonce_is_negated_b; + secp256k1_musig_session_signer_data data_a[2]; + secp256k1_musig_session_signer_data data_b[2]; + + const unsigned char seed[32] = "still tired of choosing seeds..."; + const unsigned char msg32_a[32] = "this is the message blockchain a"; + const unsigned char msg32_b[32] = "this is the message blockchain b"; + + /* Step 1: key setup */ + secp256k1_rand256(seckey_a[0]); + secp256k1_rand256(seckey_a[1]); + secp256k1_rand256(seckey_b[0]); + secp256k1_rand256(seckey_b[1]); + secp256k1_rand256(sec_adaptor); + + CHECK(secp256k1_ec_pubkey_create(ctx, &pk_a[0], seckey_a[0])); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk_a[1], seckey_a[1])); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk_b[0], seckey_b[0])); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk_b[1], seckey_b[1])); + CHECK(secp256k1_ec_pubkey_create(ctx, &pub_adaptor, sec_adaptor)); + + CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk_a, pk_hash_a, pk_a, 2)); + CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk_b, pk_hash_b, pk_b, 2)); + + CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_a[0], data_a, noncommit_a[0], seed, msg32_a, &combined_pk_a, pk_hash_a, 2, 0, seckey_a[0])); + CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_a[1], data_a, noncommit_a[1], seed, msg32_a, &combined_pk_a, pk_hash_a, 2, 1, seckey_a[1])); + noncommit_a_ptr[0] = noncommit_a[0]; + noncommit_a_ptr[1] = noncommit_a[1]; + + CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_b[0], data_b, noncommit_b[0], seed, msg32_b, &combined_pk_b, pk_hash_b, 2, 0, seckey_b[0])); + CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_b[1], data_b, noncommit_b[1], seed, msg32_b, &combined_pk_b, pk_hash_b, 2, 1, seckey_b[1])); + noncommit_b_ptr[0] = noncommit_b[0]; + noncommit_b_ptr[1] = noncommit_b[1]; + + /* Step 2: Exchange nonces */ + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_a[0], data_a, &pubnon_a[0], noncommit_a_ptr, 2)); + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_a[1], data_a, &pubnon_a[1], noncommit_a_ptr, 2)); + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_b[0], data_b, &pubnon_b[0], noncommit_b_ptr, 2)); + CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_b[1], data_b, &pubnon_b[1], noncommit_b_ptr, 2)); + CHECK(secp256k1_musig_set_nonce(ctx, &data_a[0], &pubnon_a[0])); + CHECK(secp256k1_musig_set_nonce(ctx, &data_a[1], &pubnon_a[1])); + CHECK(secp256k1_musig_set_nonce(ctx, &data_b[0], &pubnon_b[0])); + CHECK(secp256k1_musig_set_nonce(ctx, &data_b[1], &pubnon_b[1])); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_a[0], data_a, 2, &nonce_is_negated_a, &pub_adaptor)); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_a[1], data_a, 2, NULL, &pub_adaptor)); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_b[0], data_b, 2, &nonce_is_negated_b, &pub_adaptor)); + CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_b[1], data_b, 2, NULL, &pub_adaptor)); + + /* Step 3: Signer 0 produces partial signatures for both chains. */ + CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_a[0], &partial_sig_a[0])); + CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_b[0], &partial_sig_b[0])); + + /* Step 4: Signer 1 receives partial signatures, verifies them and creates a + * partial signature to send B-coins to signer 0. */ + CHECK(secp256k1_musig_partial_sig_verify(ctx, &musig_session_a[1], data_a, &partial_sig_a[0], &pk_a[0]) == 1); + CHECK(secp256k1_musig_partial_sig_verify(ctx, &musig_session_b[1], data_b, &partial_sig_b[0], &pk_b[0]) == 1); + CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_b[1], &partial_sig_b[1])); + + /* Step 5: Signer 0 adapts its own partial signature and combines it with the + * partial signature from signer 1. This results in a complete signature which + * is broadcasted by signer 0 to take B-coins. */ + CHECK(secp256k1_musig_partial_sig_adapt(ctx, &partial_sig_b_adapted[0], &partial_sig_b[0], sec_adaptor, nonce_is_negated_b)); + memcpy(&partial_sig_b_adapted[1], &partial_sig_b[1], sizeof(partial_sig_b_adapted[1])); + CHECK(secp256k1_musig_partial_sig_combine(ctx, &musig_session_b[0], &final_sig_b, partial_sig_b_adapted, 2) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, &final_sig_b, msg32_b, &combined_pk_b) == 1); + + /* Step 6: Signer 1 extracts adaptor from the published signature, applies it to + * other partial signature, and takes A-coins. */ + CHECK(secp256k1_musig_extract_secret_adaptor(ctx, sec_adaptor_extracted, &final_sig_b, partial_sig_b, 2, nonce_is_negated_b) == 1); + CHECK(memcmp(sec_adaptor_extracted, sec_adaptor, sizeof(sec_adaptor)) == 0); /* in real life we couldn't check this, of course */ + CHECK(secp256k1_musig_partial_sig_adapt(ctx, &partial_sig_a[0], &partial_sig_a[0], sec_adaptor_extracted, nonce_is_negated_a)); + CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_a[1], &partial_sig_a[1])); + CHECK(secp256k1_musig_partial_sig_combine(ctx, &musig_session_a[1], &final_sig_a, partial_sig_a, 2) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, &final_sig_a, msg32_a, &combined_pk_a) == 1); +} + +/* Checks that hash initialized by secp256k1_musig_sha256_init_tagged has the + * expected state. */ +void sha256_tag_test(void) { + char tag[17] = "MuSig coefficient"; + secp256k1_sha256 sha; + secp256k1_sha256 sha_tagged; + unsigned char buf[32]; + unsigned char buf2[32]; + size_t i; + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, (unsigned char *) tag, 17); + secp256k1_sha256_finalize(&sha, buf); + /* buf = SHA256("MuSig coefficient") */ + + secp256k1_sha256_initialize(&sha); + secp256k1_sha256_write(&sha, buf, 32); + secp256k1_sha256_write(&sha, buf, 32); + /* Is buffer fully consumed? */ + CHECK((sha.bytes & 0x3F) == 0); + + /* Compare with tagged SHA */ + secp256k1_musig_sha256_init_tagged(&sha_tagged); + for (i = 0; i < 8; i++) { + CHECK(sha_tagged.s[i] == sha.s[i]); + } + secp256k1_sha256_write(&sha, buf, 32); + secp256k1_sha256_write(&sha_tagged, buf, 32); + secp256k1_sha256_finalize(&sha, buf); + secp256k1_sha256_finalize(&sha_tagged, buf2); + CHECK(memcmp(buf, buf2, 32) == 0); +} + +void run_musig_tests(void) { + int i; + secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024); + + musig_api_tests(scratch); + musig_state_machine_tests(scratch); + for (i = 0; i < count; i++) { + /* Run multiple times to ensure that the nonce is negated in some tests */ + scriptless_atomic_swap(scratch); + } + sha256_tag_test(); + + secp256k1_scratch_space_destroy(scratch); +} + +#endif diff --git a/src/secp256k1.c b/src/secp256k1.c index 95ad5a86f..a3f6726be 100644 --- a/src/secp256k1.c +++ b/src/secp256k1.c @@ -639,6 +639,10 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey * # include "modules/schnorrsig/main_impl.h" #endif +#ifdef ENABLE_MODULE_MUSIG +# include "modules/musig/main_impl.h" +#endif + #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/main_impl.h" #endif diff --git a/src/tests.c b/src/tests.c index 60c451967..b7714e532 100644 --- a/src/tests.c +++ b/src/tests.c @@ -5123,6 +5123,10 @@ void run_ecdsa_openssl(void) { # include "modules/schnorrsig/tests_impl.h" #endif +#ifdef ENABLE_MODULE_MUSIG +# include "modules/musig/tests_impl.h" +#endif + #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/tests_impl.h" #endif @@ -5256,6 +5260,10 @@ int main(int argc, char **argv) { run_schnorrsig_tests(); #endif +#ifdef ENABLE_MODULE_MUSIG + run_musig_tests(); +#endif + /* ecdsa tests */ run_random_pubkeys(); run_ecdsa_der_parse(); From 2fc700a943a52ecff7e6488b37de1a4f42da5f56 Mon Sep 17 00:00:00 2001 From: Jonas Nick Date: Sat, 22 Dec 2018 22:15:19 +0000 Subject: [PATCH 5/5] Add 3-of-3 MuSig example --- include/secp256k1_musig.h | 4 +- src/modules/musig/Makefile.am.include | 13 ++ src/modules/musig/example.c | 165 ++++++++++++++++++++++++++ 3 files changed, 181 insertions(+), 1 deletion(-) create mode 100644 src/modules/musig/example.c diff --git a/include/secp256k1_musig.h b/include/secp256k1_musig.h index 035adfe0e..ead762d2c 100644 --- a/include/secp256k1_musig.h +++ b/include/secp256k1_musig.h @@ -4,7 +4,9 @@ #include /** This module implements a Schnorr-based multi-signature scheme called MuSig - * (https://eprint.iacr.org/2018/068.pdf). + * (https://eprint.iacr.org/2018/068.pdf). There's an example C source file in the + * module's directory (src/modules/musig/example.c) that demonstrates how it can be + * used. */ /** Data structure containing data related to a signing session resulting in a single diff --git a/src/modules/musig/Makefile.am.include b/src/modules/musig/Makefile.am.include index 6099ab727..0cd254d8a 100644 --- a/src/modules/musig/Makefile.am.include +++ b/src/modules/musig/Makefile.am.include @@ -1,3 +1,16 @@ include_HEADERS += include/secp256k1_musig.h noinst_HEADERS += src/modules/musig/main_impl.h noinst_HEADERS += src/modules/musig/tests_impl.h + +noinst_PROGRAMS += example_musig +example_musig_SOURCES = src/modules/musig/example.c +example_musig_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include $(SECP_INCLUDES) +if !ENABLE_COVERAGE +example_musig_CPPFLAGS += -DVERIFY +endif +example_musig_LDADD = libsecp256k1.la $(SECP_LIBS) +example_musig_LDFLAGS = -static + +if USE_TESTS +TESTS += example_musig +endif diff --git a/src/modules/musig/example.c b/src/modules/musig/example.c new file mode 100644 index 000000000..5aebfa205 --- /dev/null +++ b/src/modules/musig/example.c @@ -0,0 +1,165 @@ +/********************************************************************** + * Copyright (c) 2018 Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +/** + * This file demonstrates how to use the MuSig module to create a multisignature. + * Additionally, see the documentation in include/secp256k1_musig.h. + */ + +#include +#include +#include +#include +#include + + /* Number of public keys involved in creating the aggregate signature */ +#define N_SIGNERS 3 + /* Create a key pair and store it in seckey and pubkey */ +int create_key(const secp256k1_context* ctx, unsigned char* seckey, secp256k1_pubkey* pubkey) { + int ret; + FILE *frand = fopen("/dev/urandom", "r"); + if (frand == NULL) { + return 0; + } + do { + if(!fread(seckey, 32, 1, frand)) { + fclose(frand); + return 0; + } + /* The probability that this not a valid secret key is approximately 2^-128 */ + } while (!secp256k1_ec_seckey_verify(ctx, seckey)); + fclose(frand); + ret = secp256k1_ec_pubkey_create(ctx, pubkey, seckey); + return ret; +} + +/* Sign a message hash with the given key pairs and store the result in sig */ +int sign(const secp256k1_context* ctx, unsigned char seckeys[][32], const secp256k1_pubkey* pubkeys, const unsigned char* msg32, secp256k1_schnorrsig *sig) { + secp256k1_musig_session musig_session[N_SIGNERS]; + unsigned char nonce_commitment[N_SIGNERS][32]; + const unsigned char *nonce_commitment_ptr[N_SIGNERS]; + secp256k1_musig_session_signer_data signer_data[N_SIGNERS][N_SIGNERS]; + secp256k1_pubkey nonce[N_SIGNERS]; + int i, j; + secp256k1_musig_partial_signature partial_sig[N_SIGNERS]; + + for (i = 0; i < N_SIGNERS; i++) { + FILE *frand; + unsigned char session_id32[32]; + unsigned char pk_hash[32]; + secp256k1_pubkey combined_pk; + + /* Create combined pubkey and initialize signer data */ + if (!secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk, pk_hash, pubkeys, N_SIGNERS)) { + return 0; + } + /* Create random session ID. It is absolutely necessary that the session ID + * is unique for every call of secp256k1_musig_session_initialize. Otherwise + * it's trivial for an attacker to extract the secret key! */ + frand = fopen("/dev/urandom", "r"); + if(frand == NULL) { + return 0; + } + if (!fread(session_id32, 32, 1, frand)) { + fclose(frand); + return 0; + } + fclose(frand); + /* Initialize session */ + if (!secp256k1_musig_session_initialize(ctx, &musig_session[i], signer_data[i], nonce_commitment[i], session_id32, msg32, &combined_pk, pk_hash, N_SIGNERS, i, seckeys[i])) { + return 0; + } + nonce_commitment_ptr[i] = &nonce_commitment[i][0]; + } + /* Communication round 1: Exchange nonce commitments */ + for (i = 0; i < N_SIGNERS; i++) { + /* Set nonce commitments in the signer data and get the own public nonce */ + if (!secp256k1_musig_session_get_public_nonce(ctx, &musig_session[i], signer_data[i], &nonce[i], nonce_commitment_ptr, N_SIGNERS)) { + return 0; + } + } + /* Communication round 2: Exchange nonces */ + for (i = 0; i < N_SIGNERS; i++) { + for (j = 0; j < N_SIGNERS; j++) { + if (!secp256k1_musig_set_nonce(ctx, &signer_data[i][j], &nonce[j])) { + /* Signer j's nonce does not match the nonce commitment. In this case + * abort the protocol. If you make another attempt at finishing the + * protocol, create a new session (with a fresh session ID!). */ + return 0; + } + } + if (!secp256k1_musig_session_combine_nonces(ctx, &musig_session[i], signer_data[i], N_SIGNERS, NULL, NULL)) { + return 0; + } + } + for (i = 0; i < N_SIGNERS; i++) { + if (!secp256k1_musig_partial_sign(ctx, &musig_session[i], &partial_sig[i])) { + return 0; + } + } + /* Communication round 3: Exchange partial signatures */ + for (i = 0; i < N_SIGNERS; i++) { + for (j = 0; j < N_SIGNERS; j++) { + /* To check whether signing was successful, it suffices to either verify + * the the combined signature with the combined public key using + * secp256k1_schnorrsig_verify, or verify all partial signatures of all + * signers individually. Verifying the combined signature is cheaper but + * verifying the individual partial signatures has the advantage that it + * can be used to determine which of the partial signatures are invalid + * (if any), i.e., which of the partial signatures cause the combined + * signature to be invalid and thus the protocol run to fail. It's also + * fine to first verify the combined sig, and only verify the individual + * sigs if it does not work. + */ + if (!secp256k1_musig_partial_sig_verify(ctx, &musig_session[i], &signer_data[i][j], &partial_sig[j], &pubkeys[j])) { + return 0; + } + } + } + return secp256k1_musig_partial_sig_combine(ctx, &musig_session[0], sig, partial_sig, N_SIGNERS); +} + + int main(void) { + secp256k1_context* ctx; + int i; + unsigned char seckeys[N_SIGNERS][32]; + secp256k1_pubkey pubkeys[N_SIGNERS]; + secp256k1_pubkey combined_pk; + unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!"; + secp256k1_schnorrsig sig; + + /* Create a context for signing and verification */ + ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + printf("Creating key pairs......"); + for (i = 0; i < N_SIGNERS; i++) { + if (!create_key(ctx, seckeys[i], &pubkeys[i])) { + printf("FAILED\n"); + return 1; + } + } + printf("ok\n"); + printf("Combining public keys..."); + if (!secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk, NULL, pubkeys, N_SIGNERS)) { + printf("FAILED\n"); + return 1; + } + printf("ok\n"); + printf("Signing message........."); + if (!sign(ctx, seckeys, pubkeys, msg, &sig)) { + printf("FAILED\n"); + return 1; + } + printf("ok\n"); + printf("Verifying signature....."); + if (!secp256k1_schnorrsig_verify(ctx, &sig, msg, &combined_pk)) { + printf("FAILED\n"); + return 1; + } + printf("ok\n"); + secp256k1_context_destroy(ctx); + return 0; +} +