diff --git a/Other_Tasks/CF2031_A_Penchick_and_Modern_Monument.py b/Other_Tasks/CF2031_A_Penchick_and_Modern_Monument.py new file mode 100644 index 0000000..b536e18 --- /dev/null +++ b/Other_Tasks/CF2031_A_Penchick_and_Modern_Monument.py @@ -0,0 +1,7 @@ +from collections import Counter +for _ in range(int(input())): + n = int(input()) + arr = list(map(int, input().split())) + c = Counter(arr) + maxi = max(c.values()) + print(n - maxi) \ No newline at end of file diff --git a/Other_Tasks/CF2031_B_Penchick_and_Satay_Sticks.py b/Other_Tasks/CF2031_B_Penchick_and_Satay_Sticks.py new file mode 100644 index 0000000..7bbc0d4 --- /dev/null +++ b/Other_Tasks/CF2031_B_Penchick_and_Satay_Sticks.py @@ -0,0 +1,20 @@ +for _ in range(int(input())): + n = int(input()) + arr = list(map(int, input().split())) + arr = [x - 1 for x in arr] + + i = 0 + while i < n: + if arr[i] == i: + i += 1 + continue + + elif arr[i] == i + 1 and arr[i + 1] == i: + i += 2 + continue + + else: + print("NO") + break + else: + print("YES") diff --git a/Other_Tasks/CF2031_C_Penchick_and_BBQ_Buns.py b/Other_Tasks/CF2031_C_Penchick_and_BBQ_Buns.py new file mode 100644 index 0000000..63b3030 --- /dev/null +++ b/Other_Tasks/CF2031_C_Penchick_and_BBQ_Buns.py @@ -0,0 +1,32 @@ +for _ in range(int(input())): + + n = int(input()) + if n % 2 == 0: + for i in range(1, n + 1): + print((i + 1) // 2, end=" ") + print() + continue + + if n < 27: + print(-1) + continue + + ans = [0] * n + ans[0] = 1 + ans[9] = 1 + ans[25] = 1 + ans[26] = 2 + ans[22] = 2 + + cur = 3 + i = 0 + while i < n: + if ans[i] == 0: + ans[i] = cur + ans[i + 1] = cur + cur += 1 + i += 2 + else: + i += 1 + + print(" ".join(map(str, ans))) diff --git a/Other_Tasks/CF2031_D_Penchick_and_Desert_Rabbit.cpp b/Other_Tasks/CF2031_D_Penchick_and_Desert_Rabbit.cpp new file mode 100644 index 0000000..b890757 --- /dev/null +++ b/Other_Tasks/CF2031_D_Penchick_and_Desert_Rabbit.cpp @@ -0,0 +1,200 @@ +/**CF2031D + * Observe that the connected components are in contiguous ranges (simple case analysis: suppose we can go from i -> j for i < j, then we can go to anything between i and j). + * Consider going through the array from the left to right. We figure out how big the leftmost connected component is. To do so, we repeatedly expand it to the right as long as + * the maximum of the connected component is bigger than some element on the right. For the sake of simplicity, we pick the minimum element on the right to expand to. When we can + * no longer expand, that is the largest connected component. We can then recurse to the subproblem of dealing with the next connected component starting immdiately after the + * current connected component. Observe that we can do up to O(n) expansions in total since each expansion increses the size of some connected component by at least 1 and the + * sum of connected component sizes is n. We can use either a sparse table or segment tree for finding the index of the minimum element of a range, I just chose a segment tree + * because I had the code for it but a sparse table is more efficient. + * + * Time complexity: O(n log n) for each test case + * Space complexity: O(n) + */ +#pragma GCC optimize("Ofast") +#pragma GCC optimize("unroll-loops") +#include +using namespace std; + +typedef long long ll; +typedef vector vi; +#define fast_cin() \ + ios_base::sync_with_stdio(false); \ + cin.tie(NULL); \ + cout.tie(NULL); + +typedef long long ll; +struct Node { + int s, e; + ll mn, mx, sum, add_val, set_val; + ll mn_idx, mx_idx; // left most index of minimum and maximum + ll num_mn, num_mx; // number of minimums and maximums + bool lset; + Node *l, *r; + Node(int _s, int _e, int A[] = NULL) : s(_s), e(_e), mn(0), mx(0), sum(0), mn_idx(_s), mx_idx(_s), num_mn(_e - _s + 1), num_mx(_e - _s + 1), lset(0), add_val(0), set_val(0), l(NULL), r(NULL) { + if (A == NULL) return; + if (s == e) { + mn = mx = sum = A[s]; + } else { + l = new Node(s, (s + e) >> 1, A), r = new Node((s + e + 2) >> 1, e, A); + combine(); + } + } + void create_children() { + if (s == e) return; + if (l != NULL) return; + int m = (s + e) >> 1; + l = new Node(s, m); + r = new Node(m + 1, e); + } + void self_set(ll v) { + lset = 1; + mn = mx = set_val = v; + mn_idx = mx_idx = s; // left most index + num_mn = num_mx = e - s + 1; // all are the same + sum = v * (e - s + 1); + add_val = 0; + } + void self_add(ll v) { + if (lset) { + self_set(v + set_val); + return; + } + mn += v, mx += v, add_val += v; + sum += v * (e - s + 1); + } + void lazy_propagate() { + if (s == e) return; + if (lset) { + l->self_set(set_val), r->self_set(set_val); + lset = set_val = 0; + } + if (add_val != 0) { + l->self_add(add_val), r->self_add(add_val); + add_val = 0; + } + } + void combine() { + if (l == NULL) return; + sum = l->sum + r->sum; + mn = min(l->mn, r->mn); + mx = max(l->mx, r->mx); + mn_idx = l->mn <= r->mn ? l->mn_idx : r->mn_idx; + mx_idx = l->mx >= r->mx ? l->mx_idx : r->mx_idx; + num_mn = (l->mn == mn ? l->num_mn : 0) + (r->mn == mn ? r->num_mn : 0); + num_mx = (l->mx == mx ? l->num_mx : 0) + (r->mx == mx ? r->num_mx : 0); + } + +#define UPDATE(name) \ + void name(int x, int y, ll v) { \ + if (s == x && e == y) { \ + self_##name(v); \ + return; \ + } \ + int m = (s + e) >> 1; \ + create_children(); \ + lazy_propagate(); \ + if (x <= m) l->name(x, min(y, m), v); \ + if (y > m) r->name(max(x, m + 1), y, v); \ + combine(); \ + } + UPDATE(add) // generates add + UPDATE(set) // generates set + +#define QUERY(name, fn, var, lazyfn) \ + ll range_##name(int x, int y) { \ + if (s == x && e == y) return var; \ + /* optimise for when all the elements in the range are equal*/ \ + if (l == NULL || lset) return lazyfn(var); \ + int m = (s + e) >> 1; \ + lazy_propagate(); \ + if (y <= m) return l->range_##name(x, y); \ + if (x > m) return r->range_##name(x, y); \ + return fn(l->range_##name(x, m), r->range_##name(m + 1, y)); \ + } + +#define SAME(var) (var) +#define PART(var) ((var) / (e - s + 1) * (y - x + 1)) +#define SUM(a, b) ((a) + (b)) + QUERY(min, min, mn, SAME) // generates range_min + QUERY(max, max, mx, SAME) // generates range_max + QUERY(sum, SUM, sum, PART) // generates range_sum + QUERY(num_min, SUM, num_mn, PART) // generates range_num_min + QUERY(num_max, SUM, num_mx, PART) // generates range_num_max + + pair get_min_with_idx(pair a, pair b) { + if (a.first < b.first) return a; + if (a.first > b.first) return b; + return a.second < b.second ? a : b; // right most index + } + pair range_min_with_idx(int x, int y) { // returns (mn, idx) + if (s == x && e == y) return {mn, mn_idx}; + if (l == NULL || lset) return {mn, mn_idx}; + int m = (s + e) >> 1; + lazy_propagate(); + if (y <= m) return l->range_min_with_idx(x, y); + if (x > m) return r->range_min_with_idx(x, y); + return get_min_with_idx(l->range_min_with_idx(x, m), r->range_min_with_idx(m + 1, y)); + } + + pair get_max_with_idx(pair a, pair b) { + if (a.first > b.first) return a; + if (a.first < b.first) return b; + return a.second > b.second ? a : b; // right most index + } + pair range_max_with_idx(int x, int y) { // returns (mx, idx) + if (s == x && e == y) return {mx, mx_idx}; + if (l == NULL || lset) return {mx, mx_idx}; + int m = (s + e) >> 1; + lazy_propagate(); + if (y <= m) return l->range_max_with_idx(x, y); + if (x > m) return r->range_max_with_idx(x, y); + return get_max_with_idx(l->range_max_with_idx(x, m), r->range_max_with_idx(m + 1, y)); + } + + ~Node() { + if (l != NULL) delete l; + if (r != NULL) delete r; + } +}; + +int main() { + fast_cin(); + int tc; + cin >> tc; + while (tc--) { + int n; + cin >> n; + vector a(n); + for (int i = 0; i < n; i++) { + cin >> a[i]; + } + Node *seg = new Node(0, n - 1, a.data()); + + vector ans(n, -1); // the component it is in + for (int left = 0; left < n;) { + int right = left; + int maxi = a[left]; + while (right < n - 1) { + auto [mn, mn_idx] = seg->range_min_with_idx(right + 1, n - 1); + if (mn >= maxi) break; + right = mn_idx; + maxi = seg->range_max(left, right); + } + + for (int j = left; j <= right; j++) { + ans[j] = maxi; + } + + left = right + 1; + } + + for (int i = 0; i < n; i++) { + cout << ans[i] << " "; + } + cout << endl; + + delete seg; + } + + return 0; +} \ No newline at end of file