diff --git a/climada_petals/hazard/copernicus_forecast/handler.py b/climada_petals/hazard/copernicus_forecast/handler.py index 971923571..c43324af7 100644 --- a/climada_petals/hazard/copernicus_forecast/handler.py +++ b/climada_petals/hazard/copernicus_forecast/handler.py @@ -462,25 +462,25 @@ def save_index_to_hazard( os.makedirs(output_dir, exist_ok=True) try: - # open input file - ds = xr.open_dataset(input_file_name) - ds["step"] = xr.DataArray( - [f"{date}-01" for date in ds["step"].values], dims=["step"] - ) - ds["step"] = pd.to_datetime(ds["step"].values) - ensemble_members = ds["number"].values + # check if file already exists + file_path = f"{output_dir}/hazard_{hazard_type}_" \ + f"{area_str}_{year}{month:02d}.hdf5" + if os.path.exists(file_path) and not overwrite: + self.logger.info(f'hazard file {file_path} already exists.') - for member in ensemble_members: - # check if data already exists - file_path = f"{output_dir}/hazard_{hazard_type}_member_{member}_" \ - f"{area_str}_{year}{month:02d}.hdf5" - if os.path.exists(file_path) and not overwrite: - self.logger.info(f'hazard file {file_path} already exists.') + else: + # open input file + ds = xr.open_dataset(input_file_name) + ds["step"] = xr.DataArray( + [f"{date}-01" for date in ds["step"].values], dims=["step"] + ) + ds["step"] = pd.to_datetime(ds["step"].values) + ensemble_members = ds["number"].values + hazard = [] - # create and write hazard object - else: + for i, member in enumerate(ensemble_members): ds_subset = ds.sel(number=member) - hazard = Hazard.from_xarray_raster( + hazard.append(Hazard.from_xarray_raster( data=ds_subset, hazard_type=hazard_type, intensity_unit=intensity_unit, @@ -488,13 +488,18 @@ def save_index_to_hazard( coordinate_vars={ "event": "step", "longitude": "longitude", "latitude": "latitude"} - ) - - hazard.check() - hazard.write_hdf5(file_path) - - print(f"Completed processing for {year}-{month:02d}. "\ - f"Data saved in {output_dir}.") + )) + if i==0: + number_lead_times = len(hazard[0].event_name) + hazard[i].event_name = [f'member{member}'] * number_lead_times + + # concatenate and write hazards + hazard = Hazard.concat(hazard) + hazard.check() + hazard.write_hdf5(file_path) + + print(f"Completed processing for {year}-{month:02d}. "\ + f"Data saved in {output_dir}.") except FileNotFoundError as e: print(f"File not found: {e.filename}") diff --git a/doc/tutorial/climada_hazard_copernicus_forecast.ipynb b/doc/tutorial/climada_hazard_copernicus_forecast.ipynb index 3b7e3c018..15963841b 100644 --- a/doc/tutorial/climada_hazard_copernicus_forecast.ipynb +++ b/doc/tutorial/climada_hazard_copernicus_forecast.ipynb @@ -44,22 +44,18 @@ "execution_count": 1, "id": "170187ce", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/dask/dataframe/_pyarrow_compat.py:17: FutureWarning: Minimal version of pyarrow will soon be increased to 14.0.1. You are using 12.0.1. Please consider upgrading.\n", - " warnings.warn(\n" - ] - } - ], + "outputs": [], "source": [ "# import packages\n", "import os\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", "from climada.hazard import Hazard\n", "from climada_petals.hazard.copernicus_forecast.handler import ForecastHandler\n", "from climada.util.constants import SYSTEM_DIR\n", + "# to hide the warnings\n", + "\n", "\n", "# set path to store data\n", "DATA_OUT = SYSTEM_DIR / \"copernicus_forecast_data\"\n", @@ -117,8 +113,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Selected Index: TX30\n", - "Explanation: Hot Days: This indicator counts the number of days where the maximum temperature exceeds 30°C.\n", + "Selected Index: TR\n", + "Explanation: Tropical Nights: This indicator counts the number of nights where the minimum temperature remains above a certain threshold, typically 20°C.\n", "Input Data: 2m temperature (t2m)\n" ] } @@ -170,10 +166,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-09-27 15:46:43,134 | INFO : File /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/grib/2022/06/t2m_d2m_area4_56_45_16_202206.grib already exists.\n", - "2024-09-27 15:46:43,135 | INFO : File /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/grib/2022/07/t2m_d2m_area4_56_45_16_202207.grib already exists.\n", - "2024-09-27 15:46:43,136 | INFO : Daily file /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/netcdf/daily/2022/06/t2m_d2m_area4_56_45_16_202206.nc already exists.\n", - "2024-09-27 15:46:43,136 | INFO : Daily file /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/netcdf/daily/2022/07/t2m_d2m_area4_56_45_16_202207.nc already exists.\n" + "2024-09-27 16:59:58,766 | INFO : File /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/grib/2022/06/t2m_d2m_area4_56_45_16_202206.grib already exists.\n", + "2024-09-27 16:59:58,766 | INFO : File /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/grib/2022/07/t2m_d2m_area4_56_45_16_202207.grib already exists.\n", + "2024-09-27 16:59:58,767 | INFO : Daily file /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/netcdf/daily/2022/06/t2m_d2m_area4_56_45_16_202206.nc already exists.\n", + "2024-09-27 16:59:58,767 | INFO : Daily file /Users/vgebhart/climada/data/copernicus_forecast_data/input_data/netcdf/daily/2022/07/t2m_d2m_area4_56_45_16_202207.nc already exists.\n" ] } ], @@ -216,8 +212,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-09-27 15:46:50,431 | INFO : Writing index data to /Users/vgebhart/climada/data/copernicus_forecast_data/indeces/TX30/2022/06/TX30_area4_56_45_16_202206.nc.\n", - "2024-09-27 15:46:54,840 | INFO : Writing index data to /Users/vgebhart/climada/data/copernicus_forecast_data/indeces/TX30/2022/07/TX30_area4_56_45_16_202207.nc.\n" + "2024-09-27 17:00:01,641 | INFO : Index file /Users/vgebhart/climada/data/copernicus_forecast_data/indeces/TR/2022/06/TR_area4_56_45_16_202206.nc already exists.\n", + "2024-09-27 17:00:01,642 | INFO : Index file /Users/vgebhart/climada/data/copernicus_forecast_data/indeces/TR/2022/07/TR_area4_56_45_16_202207.nc already exists.\n" ] } ], @@ -267,1771 +263,23 @@ "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "2024-09-27 15:46:57,767 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_0_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,771 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_0_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,815 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_1_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,819 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_1_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,829 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_2_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,833 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_2_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,843 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_3_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,847 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_3_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,858 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_4_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,862 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_4_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,871 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_5_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,875 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_5_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,885 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_6_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,889 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_6_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,900 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_7_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,904 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_7_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,914 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_8_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,918 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_8_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,936 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_9_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,942 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_9_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,953 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_10_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,957 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_10_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,968 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_11_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,972 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_11_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,982 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_12_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,986 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_12_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:57,996 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_13_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,000 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_13_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,010 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_14_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,014 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_14_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,024 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_15_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,028 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_15_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,038 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_16_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,042 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_16_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,053 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_17_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,057 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_17_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,067 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_18_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,071 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_18_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,082 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_19_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,085 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_19_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,096 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_20_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,100 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_20_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,110 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_21_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,114 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_21_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,124 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_22_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,128 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_22_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,138 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_23_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,142 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_23_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,152 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_24_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,156 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_24_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,167 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_25_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,170 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_25_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,181 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_26_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,185 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_26_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,195 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_27_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,199 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_27_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,210 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_28_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,214 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_28_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,224 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_29_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,228 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_29_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,238 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_30_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,242 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_30_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,252 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_31_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,256 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_31_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,267 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_32_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,271 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_32_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,289 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_33_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,294 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_33_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,305 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_34_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,309 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_34_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,320 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_35_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,323 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_35_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,334 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_36_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,338 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_36_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,348 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_37_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,352 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_37_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,362 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_38_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,366 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_38_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,377 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_39_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,381 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_39_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,391 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_40_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,395 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_40_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,405 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_41_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,409 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_41_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,419 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_42_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,423 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_42_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,433 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_43_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,437 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_43_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,448 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_44_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,452 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_44_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,462 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_45_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,466 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_45_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,477 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_46_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,481 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_46_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,491 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_47_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,495 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_47_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,505 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_48_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,509 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_48_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,519 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_49_area4_56_45_16_202206.hdf5\n", - "2024-09-27 15:46:58,523 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06/hazard_TX30_member_49_area4_56_45_16_202206.hdf5\n", - "Completed processing for 2022-06. Data saved in /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/06.\n", - "2024-09-27 15:46:58,538 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_0_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,542 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_0_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,553 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_1_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,557 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_1_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,567 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_2_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,571 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_2_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,581 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_3_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,585 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_3_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,595 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_4_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,599 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_4_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,610 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_5_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,614 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_5_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,624 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_6_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,628 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_6_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,638 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_7_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,642 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_7_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,653 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_8_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,657 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_8_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,668 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_9_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,672 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_9_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,708 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_10_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,718 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_10_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,733 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_11_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,737 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_11_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,748 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_12_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,752 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_12_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,763 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_13_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,766 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_13_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,777 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_14_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,781 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_14_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,791 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_15_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,795 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_15_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,805 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_16_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,809 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_16_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,819 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_17_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,823 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_17_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,833 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_18_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,837 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_18_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,847 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_19_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,851 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_19_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,862 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_20_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,866 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_20_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,876 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_21_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,880 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_21_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,890 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_22_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,894 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_22_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,905 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_23_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,909 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_23_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,919 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_24_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,923 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_24_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,933 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_25_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,937 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_25_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,947 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_26_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,951 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_26_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,961 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_27_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,965 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_27_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,976 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_28_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,980 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_28_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,991 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_29_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:58,994 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_29_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,005 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_30_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,008 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_30_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,018 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_31_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,022 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_31_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,033 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_32_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,036 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_32_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,047 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_33_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,051 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_33_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,061 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_34_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,065 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_34_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,075 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_35_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,079 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_35_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,090 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_36_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,094 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_36_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,103 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_37_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,108 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_37_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,118 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_38_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,122 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_38_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,132 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_39_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,136 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_39_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,146 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_40_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,150 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_40_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,160 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_41_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,165 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_41_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,175 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_42_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,179 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_42_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,189 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_43_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,193 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_43_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,203 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_44_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,207 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_44_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,218 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_45_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,222 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_45_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,232 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_46_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,236 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_46_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,247 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_47_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,250 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_47_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,261 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_48_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,265 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_48_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,275 - climada.hazard.io - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_49_area4_56_45_16_202207.hdf5\n", - "2024-09-27 15:46:59,279 - climada.hazard.centroids.centr - INFO - Writing /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_49_area4_56_45_16_202207.hdf5\n", - "Completed processing for 2022-07. Data saved in /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07.\n", - "2024-09-27 15:46:59,284 - climada.hazard.io - INFO - Reading /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TX30/2022/07/hazard_TX30_member_49_area4_56_45_16_202207.hdf5\n" + "2024-09-27 17:00:04,530 | INFO : hazard file /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TR/2022/06/hazard_TR_area4_56_45_16_202206.hdf5 already exists.\n", + "2024-09-27 17:00:04,530 | INFO : hazard file /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TR/2022/07/hazard_TR_area4_56_45_16_202207.hdf5 already exists.\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n", - "/Users/vgebhart/miniforge3/envs/climada_env/lib/python3.9/site-packages/shapely/constructive.py:181: RuntimeWarning: invalid value encountered in buffer\n", - " return lib.buffer(\n" + "2024-09-27 17:00:04,530 - climada.hazard.io - INFO - Reading /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TR/2022/07/hazard_TR_area4_56_45_16_202207.hdf5\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAKGCAYAAAAcdOmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5Rd5XXw/+8p99xeplf1CkggQKKJajqYbhwwsYG4vNiOkze/lcRZtmPAcRwnK07sOIltYr8m7jRbphmMDYgmqkQXQl2a3m4vp//+ODNXGqaPZqQr6fmsNUszuuee89w2c/bZz7O35LquiyAIgiAIgiAIgnDEkA/1AARBEARBEARBEISZJQI9QRAEQRAEQRCEI4wI9ARBEARBEARBEI4wItATBEEQBEEQBEE4wohATxAEQRAEQRAE4QgjAj1BEARBEARBEIQjjAj0BEEQBEEQBEEQjjAi0BMEQRAEQRAEQTjCiEBPEARBEARBEAThCCMCPUEQBEEQBEEQhCOMCPQEQSh7+umnkSRpSl933HHHoR72YWP/53es522051iWZWKxGHPmzOHkk0/mU5/6FHfddRf9/f0zNrZSqcSGDRv49re/zY033sjChQvLx58/f/6MHWeytmzZwr//+79z9dVXs2DBAoLBIKFQiAULFnDDDTfw6KOPTml/GzZs4OMf/zjz588nEAjQ1NTEJZdcwq9+9asJ79vb28uPf/xjPvGJT7BixQqi0SiappX3cdddd1EsFifcz8aNG/nGN77BpZdeypw5c/D7/UQiEZYuXcqtt97Kc889N6XHNFmPPfYY1157La2trfj9flpbW7n22mt57LHHxr3fHXfccch+H7zzzjvcdtttLF68mGAwSF1dHWeffTY/+MEPsCxr3PtalsXGjRv53ve+xy233MIxxxyDLMvlMQqCIBw1XEEQhEFPPfWUC0zp6/bbbz/Uw55VM/k4939+x9rfVJ77QCDg3nLLLW5vb+8Bj+2WW24Z8zjz5s074P1PxSc+8YlJPf5LLrnETSaTE+7vzjvvdGVZHnM/V1xxhVssFke971133eUqijLhWJYsWeK+8cYbY47h7LPPntRj+vjHP+7quj7dp24Yx3Hcz3zmM+Me7zOf+YzrOM6o97/99tun/PvgF7/4xQGP+4c//KHr9/vHPMZpp53m9vX1jXn/O+64Y9wxCoIgHC3UCSNBQRCOSp/97Gf53Oc+N+F29fX1B2E0R5/Vq1fz4x//uPyzruskk0m2bt3Ks88+y29+8xtKpRJ33303jz32GL/5zW847bTTpn0813XL3ycSCdasWcOGDRvI5XIH9Dimo729HYDq6mo+8pGPcO655zJ//nxUVWXTpk3827/9G1u2bOGxxx7jiiuuYP369cjy6BNUfvjDH3L77bcDsGjRIr70pS+xcuVKOjo6+M53vsNTTz3FQw89xKc+9Sl+9rOfjbh/d3c3tm2jaRof/vCHueiiizjmmGOIRqNs376d//mf/+H3v/89W7du5YILLmDjxo20traO+Ziam5u5/vrrOeuss5g7dy62bbNhwwa+9a1v0d7ezk9/+lMsy+IXv/jFAT+PX/nKV7jrrrsAOPHEE/nbv/1bFi1axPbt2/mXf/kXNm3axF133UVdXR1f//rXR9z/c5/7HB/5yEfGPYZt25x99tlkMhlisRhXX331AY358ccf5zOf+QyO49DQ0MCXv/xlTj31VAYGBvif//kffv3rX/Piiy9y7bXX8tRTT436uu//Xg6Hw5x88sm8//77dHV1HdDYBEEQDjuHOtIUBKFyTCbjdLSZyedjKhm9c845Z9x9dXd3uzfccEN5+7q6OnfXrl3THts999zj3n333e7mzZvLGZ558+YdkozezTff7P7gBz9wS6XSqLfn83n3zDPPLD/2//3f/x11u2Qy6SYSCRdw586dOyLzaVmWe8UVV5T3s379+hH7+Ld/+zf3i1/8otvT0zPmeP+//+//K+/j1ltvHXWbyy+/3L3nnntcy7JGvb23t9ddunTpuGOZiq1bt7qqqrqAu3r1ardQKAy7PZ/Pu6tXr3YBV1VVd9u2bdM6zqOPPloe8yc/+ckDGrNpmu7ixYtdwI3FYqOO6XOf+9yEr/tjjz3m3nXXXe7rr79efr7POecckdETBOGoI37jCYJQJgK9kSo10Bvy6U9/unyfq6666oDHuL9DFehNxltvvTVs6uVo/uVf/qW8zS9/+ctRt9m7d295auaHP/zhaY1F13W3qanJBdx4PO7atj2t/Tz00EPl8X7hC1+Y1j6G7B8QbdiwYdRtNmzYUN7mz//8z6d1nP0vNhxocHrvvfeW9/VP//RPo26Tz+fdqqoqF3BXrFgx6X2LQE8QhKORKMYiCMKMufPOO8sFD3bu3Dnh9meffTaSJLFo0aIxt1m3bh3XX389c+fOJRAIkEgkWL16NXfeeSfJZHLM+91yyy3DCon09/fz5S9/mWOOOYZQKERVVRUXXHABDz744Kj3nz9//rDCDfs/tqGvW265ZcLHONv+4z/+ozxV8MEHH+Sdd945xCM6OFasWEFtbS0A27dvH3WbdevWARCLxbj22mtH3aa1tZULLrgAgCeeeGJaU1U1TWPt2rUApNPpaRfJOffcc8vfj/WYJsN1XX77298CsHz58jGn9J522mksW7YM8J4rd78pj5ORyWTKx1mwYAFnnXXWtMc8NIYhY322QqEQH/3oRwF4++232bp16wEdUxAE4UgmAj1BEGbMTTfdVP5+ojVGe/fuLVcZ/NjHPjbi9mQyyfnnn88111zD/fffz969e9F1nXQ6zWuvvcYdd9zB8uXLefHFFycc17vvvsuJJ57IN77xDd577z2KxSKpVIo//vGPXHXVVfzTP/3TFB9p5QgEAtx2223A8BP8Q+Xcc88tB8K7du2a1WMZhgGAoiij3vbyyy8DcPrpp6Np2pj7OeeccwBvHeQrr7wyrbHoul7+frTxTMbQ4zmQfQDs3LmzvCZw6LGNZej2tra2Kb9e9913X7na6Mc//vEDrmj57LPPArBs2TIaGxvH3G7/xzRblUoFQRCOBCLQEwRhxixevJhTTjkFmDjQ++Uvf1nOIHww0NN1nfPPP58nn3wSVVX55Cc/ybp163jttdd47rnn+MY3vkFdXR09PT1cdtll7N69e8zjFAoFrrrqKjKZDHfccQfPPPMMr7zyCt/5zneorq4G4O///u956623ht3v97///bD/++xnP8tbb7017Osf//EfJ//kzKKLLrqo/P3QyfKRbtOmTWQyGQCOOeaYEbdv3bq1XIZ/+fLl4+5r/9s3b9485bGYpsmGDRsArzjR0PtqqtavX1/+frTHNFn7P4bZfOw/+clPyt9/4hOfmNJ9PyiXy9HW1jZiTKM50NdLEAThaCGqbgqCMKqenh7efvvtCbc79thjh1W++9jHPsbLL7/Mu+++yxtvvMEJJ5ww6v2GAsGTTjppxEntnXfeyaZNmwiHwzz++OPlaXFD1q5dy5/+6Z9y2mmn0dHRwVe+8hV++tOfjnqc3t5eLMvixRdfHHaCuHr1atasWcPatWuxbZu77rqL7373u+Xbly5dOmw/9fX1rFixYsLn41A44YQTkGUZx3F4//33D/VwDopvfOMb5e+vv/76Ebfv3bu3/P1oVTD3N2fOnFHvN1l33XUXfX19Y45lMhzH4Zvf/Gb55+nuBw7OY9+9e3f5osLatWvHnX49GW1tbeULP7P9egmCIBwtREZPEIRRfe9732PlypUTfg1lVYbccMMN5WlnP//5z0fd91AQCCOzeblcjv/6r/8C4Etf+tKIIG/InDlz+Pu//3sA7rnnHgqFwpiP5R/+4R9GzRKcfvrp5fVLh/MUME3TiEajAOOuWzxSPPDAA9x///0AnHzyyVx33XUjtslms+XvI5HIuPsLh8Pl76e6Rm/Hjh18+ctfLh/nS1/60pTuP+Tf//3fy1NNr7nmGlavXj2t/cDBeew/+clPyoHZzTffPMURjnSwXi9BEISjiQj0BEGYUQ0NDZx//vkA/OpXvxq1wMNQACjLMjfccMOw255++uly8DhUdGEsQ8UfTNPktddeG3UbSZJGHGN/J510EsCkisdUsqGT4/1PmA+Fp59+Gter6FwuhDOT3nvvPW699VYAgsEgP/nJT0ZdG1Yqlcrfj7c+D8Dv95e/H1pzNhmFQoFrr72WdDoNwHe/+12am5snff8h69ev5+/+7u8AL3P8ve99b8r72N/BeOxDPQcDgcCEn9PJOBhjFgRBONqIqZuCIIzq9ttv54477pjWfW+66SZ+//vfs3fvXp599lnOPvvsYbf/8pe/BLzCHS0tLcNu2z9gW7JkyaSPOVYz5NraWmpqasa839B6qkMdIB2oofHHYrFDPJLZ09HRwaWXXko2m0WSJP7f//t/HHvssaNuGwgEyt/vX+RkNPsXUgkGg5Mai2VZXH/99eXM9Gc/+9lpVWF95513uOaaa7Asi0AgwH333UdDQ8Oo2443lXrBggXlTNdsP/YXX3yxPEX4qquuIh6Pj7ntzp07yefzo95WX19PfX39QRmzIAjC0UgEeoIgzLhrrrmG2267jWKxyM9//vNhgd4LL7xQzp7tX6VzSE9Pz7SOOdbUzVAoNO79htYXOo4zreNWAl3Xy4HedAuBVLqBgQEuuuiicmXI7373u+NmaoemssLE0/v2D0QmmjYIXnXTW265hUcffRTwMs//+Z//OeH9Pmjnzp1cdNFFJJNJFEXhV7/61YiLIvtbuXLlmLc99dRT5fYMs/nYYWpFWG699dZhRWb2t//FpNkesyAIwtFIBHqCIMy4aDTKFVdcwb333sv999/Pf/7nf+Lz+YB9RVj8fv+oa6ts2wa8KZcbN25EVSf3a2qiAg5HsjfeeKM8RXaoL9qRJJvNcskll5R7BP7DP/wDn//858e9z/7vh6FqjmPZv6DH/oU+xvL5z3++PP340ksv5Wc/+9mwgkST0dHRwQUXXEBHR0c5O3nVVVdNaR9jmc3HbhgG99xzD+BN07744ounOcrhZnPMgiAIRysR6AmCMCtuuukm7r33XgYGBnjssce44oorsCyL++67D4DLL7981ClfQ9MsXdclEomwePHigzruw9ETTzxR/v7MM888hCOZecVikSuuuKLc3+5v/uZv+MpXvjLh/ZYuXYqiKNi2zXvvvTfutvvfPlFbgy9+8YvlNXRnn302DzzwQPkixmT19fVx4YUXsmPHDsDLTk6mPcFkG5rvP511Jh87wMMPP8zAwADgfcYn6vf39NNPT7hP8DJzc+bMYe/evTM+ZkEQhKOVKMYiCMKsuPTSS8vTCIeyH0888UR5auZo0zYBTjzxxPL3+wcwwuhKpRLf//73AS8LOlNZoUpgmibXXXddeerfbbfdxr/8y79M6r6appV7Om7YsGHcdV9D+/f7/eNWu/z6179ePv6aNWt4+OGHp7xGLJ1Oc/HFF/Puu+8C8M1vfnPC7ORULViwoFwUZqxpk0OeeeYZAFpaWiZVPGcme+d90NBFii1btoy55haGP6axqvIKgiAIItATBGGW+Hw+PvKRjwDw0EMPkcvlytM24/E4l19++aj3u+CCC8rr6r7zne9MWJhhtg0Vidi/AEQl+au/+qvyVLerr776iMlw2LbNxz72MX73u98B8PGPf5z//u//ntI+rr76agAymQy//vWvR92mra2NP/zhDwCcf/75w9aK7e873/lOuZ3HypUreeyxx8bcdiyFQoHLL7+cjRs3AvDlL3+ZL37xi1Pax2TsH/C/9957vPjii6Nu9+KLL5azY1ddddWo1Uv319/fX16XeMIJJ4zZI3O6hl4vgLvvvnvUbQqFAvfeey/gZS4/2O9SEARB2EcEeoIgzJqhrF2hUOCXv/wl69atA+C6664bViJ9f4lEgj//8z8HvCv7f/Znf4ZpmmMeo7e3lx/96EczO/D9NDU1AbB9+/ZZO8Z09PX18ad/+qflbF5DQwPf+c53DvGovEqqkiQhSVK5cMpUua7Lpz/96XKvvOuuu44f//jHEwYiH/SpT32qPD347/7u7+jv7x92u23bfO5znyuvC/3rv/7rUffz4x//mL/6q78CvCmhTzzxxJSL3hiGwTXXXMPzzz8PwF/+5V/y9a9/fUr7mIr/+3//b3l96xe+8IURbQiKxSJf+MIXAFBVlf/7f//vhPv85S9/Wf4sznQ2D7wiTkON1//pn/5p1M/c3/zN35R7Rf7N3/zNjI9BEAThSCLW6AmCMKqenp5xy7kPCYfDLFiwYNTbzjrrLObOncuePXv427/923I1vbGmbQ752te+xvr163nppZf4+c9/ziuvvMJtt93G6tWriUajpFIp3n33Xf7whz/wyCOPsHLlSj75yU9O/UFOwhlnnMHOnTt58MEH+cEPfsDatWvLWb5YLFYuDz/T8vn8sOdf13VSqRRbt27lueee49e//nX55L25uZl169YdUGGKrq4uHnvssWH/N/R65XK5ERmWM888c9bWT/71X/81P/7xjwFYsWIFX/rSl9i8efOY22uaNmpmp7q6mn/+53/mtttuY/fu3Zx66ql8+ctfZuXKlXR0dPDtb3+bp556CoAbb7yR8847b8Q+1q1bx6c//Wlc1yUWi/Gd73yH3t5eent7xxzPsmXLRqzbu/HGG/n9738PwIc+9CE++clPjvv5Gu9zNRlLly7lr//6r/nmN7/Jq6++ytq1a/niF7/IokWL2L59O//8z//Mpk2bAC9gmkwrk6Fpm4qiTPgZng6fz8d//Md/cMUVV5DJZFi7di1f+cpXOOWUU0gmk/zP//wPDzzwAOC9/z7+8Y+Pup9cLle+SDBk/6mgH3wvr1q1ilWrVs3oYxEEQagIriAIwqCnnnrKBab0dc4554y7zy9+8YvDtm9ubnZt255wLJlMxr322msnNYbzzjtvxP1vvvlmF3DnzZs37nFuv/328n5Gs2nTJtfv94963JtvvnnCx7G//Z/f22+/fdRtpvLcBwIB98/+7M/cvr6+KY1jorFN5uvHP/7xqPs555xzytvs3LlzWmOZN2/elMYy0Wv81a9+1ZUkacz7X3bZZW6xWBz1vkPvo6l8jfa4Z/pzNRm2bbt/9md/Nu5xPvnJT07q8/jee+8Ne75m01133eVqmjbmmE855RS3t7d3zPvv3LlzSs/1WJ9FQRCEw52YuikIwqz64JX/G264YVKl6KPRKA888ADPPvssn/rUp1i2bBnRaBRVVamurmbNmjV8/vOf59FHH53Voi2rVq1iw4YN3HDDDcydOxdN02btWOOJRCI0Nzdz4okn8slPfpK77rqL9vZ2fvSjH43bEF6AO++8k+eee46PfexjzJkzB03TqK+v58ILL+QXv/gFjzzyyLCG3UcKWZb50Y9+xCOPPMJVV11Fc3MzmqbR3NzMVVddxaOPPsoPf/jDSX0eZ7MIywd9+tOf5rXXXuPTn/40CxcuJBAIUFNTw5lnnsn3vvc9nn/+eWpra2d1DIIgCEcCyXUnWa9ZEARBEARBEARBOCyIjJ4gCIIgCIIgCMIRRgR6giAIgiAIgiAIRxgR6AmCIAiCIAiCIBxhRKAnCIIgCIIgCIJwhBGBniAIgiAIgiAIwhFGBHqCIAiCIAiCIAhHGPVQD0A4cKVSCcMwDvUwBEEQBEEQjlqapk2qJ2eln7dN9nEIlU8Eeoe5UqlEPFiFQelQD0UQBEEQBOGo1djYyM6dO8cNkkqlEgvmRejqsQ/iyKZmMo9DODyIQO8wZxgGBiXO5DJUfId6OAIgyRI18xL0707hOu6hHo4waLzXZc71CfI7DQZeLRyi0R29DufPixqVmffRajr/kKGwu3Kvzk/HoX5d1LBM8+VxZJ9E9v0S6S0lrIxz0MdRaQ716yKMTpIlYnNC/Hb3LzAMY9wAyTAMunpsdr82n1i08lZQZbIO807eNeHjEA4PItA7Qqj4UCUR6FUCSZLwyRqq5MOVxB/iSjHe6+KTNLQAqJJ5iEZ39DqcPy+hKg1N03AGpCPu9+8hf10K0P1Igarjg9SsiFG/OkF+j0H6nSL5IyyonopD/roIoxp6XaYiEpWIRKVZGtH0OVTemITpq7xLCYIgCAeZa7vIivjjJkyNGvH+hNq6OOGeDXbBoe/FPDt/2k/XkxkUv0TzpXESJwQP9dAEQRAOCyKjJwjCUc+xXCQR6AlToEZlqlaFyO8xcE0R6M0m14bs+zrZ93VqTwtTe0qYQpuB0V+5a5wEQRAqgQj0BEE46rk2SKoI9I40kgKuA8xwHBaa46Px/Bi27tL7fG5md34UkFQIz/NT6jaxclNbd9f/cp5Qq0bTBTH2rkvhiGyqcJiyXQe7At++tivWwh5JRKAnCMJRz7VcJOVQj0KYKa1XJ9ASCrJPwio69L2Q8zJv1oHvu+rEEDWnhCjsMej6YxbHqMAztQoXqPfRdGGs/HNmS4lip0mx08RMj5+lcx3ofCJD69UJ5lydIP1eidwOHSsrTk4FQRA+SAR6giAc9VzbRQmIJcuHu9BcjcTKIMFGH2bWZuC1AqE5PpouigOQfrdIzzPTy8DJPomG86JEFvrpfzUvKrQegGKHSd/LeWpPCQMQWxYgusSPJEtYBYdip0Gxwwv8jIGRgZ+Ztml/KEXNmjA1p4SpPTVM229TlLpnIJIXhIPEwcWZ6ekGM6ASxyRMnwj0BEE46rk2Yo3eYS7QqNJ8cQy936L3+Rypt4oApN4qMueaBIEGH9nt+pT3669ViR8bILLYD0DHY2nyu47eqo8zJbmxQPL1AtUnhqheHaL9oTSSAsFmH8Emjdoz/MiKhJW36XwiQ6lreBBnDNh0Pp7BF1eYf2M1WrUqAj3hkJI18TdEqDwi0BME4ajniKmbhzV/nUrTRXGK3SbtD6fBATkgISsSkgKBBh/9r+Uptg9vnyEpULMmTHRZADNlk9+tk9+7r8hH4vggtaeHsXIOqTeLZDaXsPJiiuCMcWBgU4HwAo2GD0XZ+0CSQpsJFLzXrd5HzSlhWj6cILutRH6HQaDBO22xda+AUmy5Hytvk9sx9SBeEGZS1QlB2DL57R0cKvG3SWWOSpguEegJgnDUc21XFGM5DKkRmcTxQRLHBdH7LfpfyhOeq5FYESTU6vW0yu/RcR2X2NIAA6/sm24paxLNl8Xx16lk3i2iRhVqT4tQvdpl18/6cR2oPTVM+u0ivS/kZ7ygizDIgc7HMsy5roqaU8P0rPem1ro2FDtN2h9NkzguQNWqEPHlQayC40219ku4DhS7TPpezIuiLMKkyJpEZJEfHJfM+/qMfK4ln0Tt6hDB5qn10ROEg0EEeoIgCMJhRQlK1J4eIbrYj2O4DLxWIL/XYO51VQCUek26nswgSRLVa0JIskSxY182L1Cv0nBeFCUo07YuhZG0qDohhOyTCLVog9N4vYxRod0UQd4ss3IOmXeLxI8Lemso93u+XdMl+XqR1NtF1JCMmRHZhiOOBFq1QqDOh5mxh31Wx6KGZQINKrkdH5hGLYESkLBL7rD3kb9OJbrIT+zYAIrmrce2Cim0apVQi4/Me6WpF2ySILEiSNVJ3u+O1NvFKdwZbNfFdivvl0sljkmYPhHoCYJw1PNXq1hZ0ZPrcKBVKTRfHkeSJXpfyJN5r1g+OUu+WaDq+BB2ycW1XNSYjF1wUAIysiZRtSqI3mfRfHkcvcei4/EUZsrGl1CoWeMVBul7MYeVd/DFvbm8kqjRc1DkdxtUnxym6oQgyddHnjC7FiLIq0QyBBt8aFUKDE6K0Pus8npJrVpBCcg4houtO2hxhfB8P7IqYeZs9B6L8HyN+LHB8i533zeAnXcINPoA770xFLQNZeRqTgmjBmV6X8iRetN7v0QW+ak7M4IalLGLDr0bcthFh4bzYqghGVt3SL9bIrYsgBqUqVkdxl+rYqRtmi6K41gupW6T/lcKlLpMJNWbPqyGZfK7DJz9+2XK0HxJnFCrFyQmNxYJ1+57DIJQKUSgJwjCUU2NyARbfPQ8LfqhHQ4azoviGC7tD6ewC8NP/PteyFPYY1B/TrR84lbYY1DsKhJdHCCywE+hw0CSJPpfLWCmvODeTNl0Pp6m8YIYVSeG0KpVL/gvOt5JpjDrSj0WAxsL1J4WQR+wKewRz3ulU4ISzZfHCdT6cB0X1wFJ8gpblbpNMu+XqD8rOuJ+ZsbGKjiE5mqoq/ddSen6Y4b6c6LMu7562PZWwUHvs1BDMr4qBUnyKreqrRp1Z0QotBtocYWmC2Nkt5fIbtWJLPTT+CGvhYeRtti7LkOp28vO+6tV1LkaakSm7eE0pU4TrVohsTJIdHGAlivi2HkHNSIjyV70ahUddv60n6Hla3VrI4RafHQ8mqbQZpa3mwpRdVM4GESgJwjCUS22LIBrumS3lw71UIQJSD4Jf61K8vXiiCBvSKHNZNcvBpD9Ek7JO2Hx16pUHR8CILdNR9Fkqk4MUti7L5jI7TTY9asB4scGCbX4sPI2fS/ncUWid1Jkv0R4roaseWvnXNsFxzupL/VMbj5c/8t5tGqFxg9F2fNAUvTGq3BVq0L4ogp71yX3VUWVvMqpdadHykFex2NprLyD4pcws86wXom+mEywRSM8T0Pvt9hzX9LLDuK10UD2fkf7ogrFLrPcN1FLKOV1uEOBYanHpOuJLAD5XQbZrTqxZX4yW0qUuvZNB+14LE2wyUep08R1ABnsokPP+hy9z+eIHxdE8cuYWRu9z6L+rIgXyA2+HWPLAySOC9K9PjtYPEgQKpcI9ARBOKpFl/rJbtcJNvkI1HtrRAodJraorlhxXNMl9XaR6pNCWDmb9LtjBOcu5SAPwEjb2CWHUo9F+r0Ssl+i9tQIalQeFkxYWYf+l/L0z/YDOUKoEZnIAj/h+RrBJh+SLHmFjT7QqsTK2+R2GuR26BQ7x1/z2P1kljnXVdHy4Tidj2dG7aMnVAZfTBnZmsaFYrvJnvuTaDUKVtbBMcZ+wc2Mg5kpkdm877O8fyAIXqb+g4oFh933DBCoV3HxpvYWO4ZngQt7jWEXc8ocyhV4fXGF1ivjqGEFu+RN887vMeh4NA1A4wVRtGqV9odTgLe+t+6sCOl3isPGPB0OLnYFZs9ERu/IIgI9QRCOWpIKWlwls0Wn+TKvqbYkeSctRsqi0G6S3z14siD+9lWEvhfySJJE3doIhTZjUuu2XNOl55ksjRfGWPKZOsCbDiaqiE+PVq1QfWKIyCI/rgvFdoOeZ3Pkd+nYxaHFVN76Rn+tj8hCjcgCP4kVQRzTxbH2fZjsvEN2W4nUOyVc08UxXDoeSdF0cZw511bR90Ju7IBeOKRSbxWpr1JouTzOngeS5bYkQz7480wzkjZG8sCOUXViEDkg0/9qnprV3jpdefDMWAnLRBZ67/HY8gBalUXtqWH0Houe58VUf+HwIAI9QRCOepLsBXh71yUxU7bXtLlFI9TiI3FcEDNr0/tcTqzXqhB9L+WIHRsgNNdPepKV7nI7DPben8Jfr2IXHAodJq4povepCNSrVJ0UIjLf730mns+RfV8fXqRiiAOuA6Uuk1KXSd8Lefx1KsFm3771TBJoCYXqNWGqTgiR3aZTaDfI7zbY++sktadHqD87SrBFo2d9dtzMkHDwFTtMdt+bZN71VTRfHKfjd+kDDrwOtvS7JaKLvPYdruNiZm3aHvSyeXbeYfevBogs9JM43mvvkdup0/10VlwkEg4bItATBOGo5VrgOi6yzzvxlGSvLHduh1Eu2+2vU6lZHaLp4hjdT2fJvi8aMx9qrgOu5SL7pnY/vd9C759K/XQBINjio/rEEKFWDSNp0fVkhuw2fconu3qvhd478vnvfylP1aogobl+EiuDmBmb5OsF+jbkKLQbNJwbZe71VXQ8lp71LJGwj6RCsEmj7swIruV61TR7TNLv7JdhdaD9kTTNl8ZpvTox2K7k8HmN9B6LnT/rJ35ckGCjj8yW4dljM+OQfL1I8o3isHW/M0EUYxEOBhHoCYJwVHN0F1/UW/w/WmZC77XoeCxD4wVRak8Ni0CvAtScEkbxy16PO2FWSAqEWn20rooTqPdR6jXpfDxNbtfMT2O28g69z+fh+Tz+GpWaU0LUnx3Fl1DoeyHPnt4kzZfEaTwvxp77kzN7cGE4CRLHB0msDOKLKMNu8teoRBb6yW7Vh2VXrZxD27oUiz5ZS+MFMfbcd3i9Ro7uktxYYNxRf2DdryAcLkSgJwjCUc3WHSIL/Ti2i5EcI9vjQuptb4qPv15Fn2QVQWHmRZf4qV7lVdBsviTOrl8OiCmYM0WGUItGdLGf8AKNqtoI3VtKtD+cOmjVBR3LRR0MMIayK1bOYWBTgaYLY17xpGlkE4WJSSo0fihGeL5G5r0SxU4TfcDC6LdRozLhORr1Z0dZ9Ge1dD2ZQZIkIov92AWn3G9SCUggI16fSRAN04WDQQR6giAc1QptJlpCRVakcuPt0RiDU/58ERm95yANThjByjsU2g1CLZqXgbUnf1IiqVB9chgtodD3Yn5Edb9DxV+vUr0qRG6XTqHNHLN1xGxRQjJVxweJLQugBGWMpEX6zSJFQ6Lr7Qyuc3BO/EKtPhovimEPVlTcfwpgfpdObqdO44diVJ9k0fG7TMW8fkcCr61FDF9cofPxzIj1yFbW8SqmDhrqUWfrDopfxjFdup/KkNkqgnBBqCQi0BME4aiW3FQgsSIIQHxFcMziHq7t4tguseUBCu0mji6ueh4KxQ6TYpNJoN5Hx+/SXh+sSWo4L+b1evNJ6H0WA68VZm+gU6AGvep+kYV+wFtLWGgzKLSZFDu9E25Jkab9npNkCDT6kH0S+T37pl5KKtSeFiG2PIBru2Q2e82m9X4LSZaonR+Ykcc3Gb6EQtNFMYpdFp1PZEZkaV0bOh/PoNUoNF0Up/bUMJ2/zxy08R2plIBEYmWQqlUhjLTN3nUjq2cOMZI2W7/fCwxWLE6o6P0WoVYfRtLGyokIbyocKjMmrsQxCdMnAj1BEI5qVt4h9U6RxHFBqk8OkX6nOOoaJNeGrt9naDhvsDDE70RhiENFjcgYAxZmagrPvwyRBRp9G/KE52v4ayrnz19+t0HyzUK5qbu/RsVfo1J1wshtrbyNVXSwCy520cEuOlhFh2K7id7nZZ2VgIRWraJVqwTqVMLzNRS/N7cu/U6Rnme90vB1Z0aILg4w8FqB3PYSWrVKdImfujMjKEGJsBYmV8yVg81ZI0Pjh6JYeYfO36cnyKzbZN4rUn1iCElBNLSfptAcHzWrwwQafDimS/KNAgOvFiZ94cS1KL/fCnvFWllBqFSV85dOEAThEMluLZE4LogalAk0+Ch1jX7ikt9tsOe+JE2XxGi9IsHe36TE9LFDwLFcJJ808Yb7kSSv2E58RQAt7v3pSxzvZXCnkhWcLX0v5EluLBBo8hGo9xFoUAk1ayO2U8MKSBJWxsQXUwg0qqghBfl0CVt3kBQJWfWeG8fy1p1mNpcIzdXwV6sYGe/9KikQWxpAkiXixwWoPTVcPkZ2Wwm91yF6nEzzh2O0rUuNWi1zptSeGsZfq7L3N6lxg7whuR0GNavDzL2+ir4X8+R3ibYnU+FLKDRdHEfvMen6Y4bCXgNbFBo56OwKbZheiWMSpk8EeoIgHPX0HgvHcpFVichCbcxAD7wMYPtDaeZck6DhvCht61IHb6ACAFpMmfI0RteGtt+mqDohhOKXUQIydWdEqDsjQn6PTsejh34aoF1yye80yO/cF7jImoSkSsgqqFGFxHFBwvM1sltL5Ia2kyCy0I8akb0pxoZLdJEfJSijRhUii2R8UYWuP2bIbvWqxro27F2XIrYkgGM4VJ+8L9CTZIncDgOpJ0vgZJfqE0OzNk3SX69SdUKIzPulSQeTZtpm77oUNWvCNF0UY+fPBg76usbDlaRA/ZkRrLxN+yNpkREVhCOcfKgHIAiCcKi5DpS6veAustBfriA3FsdwSb9XItjoQ1LG31aYOUpIpuWKOOF5/hH9ribDGLDpfirLzp/1Y2ZtCm1eoCRrgy/41JKEB4VjuNgFBzPjTc/sfCJDfpdBw3nRfRu5kNuuk3qjSPrtEmpYJjzPD5K3/m+ofUjpA9Vi9R6L3udz9L9S8HoM9ll0P5XFX6/SenWC2jMipN8qEl6g4YvNzumCMeD1Zoss8BOeNzKDORa916L3hRySLBGoF9esJ+KvV2k8P8qCT9QQaPLR+1xeBHmHmO1W7pdw5BC/HQVBEIBip0moRUMNylSvDtP/cn7U7WRNonpNiMRxQfJ7DHGydIASKwPUnRDBf7xXol1SJC/QlrzCK70v5HAtqFoVpPa0CI7l0vFY+oCm6yl+GVmTKPVa+GtU7IJD65VxfAmVXb/on9T0wUPGBX3AItAw9p/vzHslYksDqCGZrqcyqCEFo98ad5px1x8zzLmmikCjyq6fDzDnmgSB2hDZrTo1p4SJLQ+O+Zk4oIdjeZnWxvNjNF4UY+8DSYyByX2ozJTtNVQ/J0q3k/UKzQgjRBb5afhQFDNtk3qzSHabLqacC8JRQgR6giAIeEEFQKHdILFy+EmtJIO/ViWyxE98eRBcl76X8qTeGr1CpzBSaO5QARTXC6QkCM3RCLX6cPMuZsbGtVxc26twigLxY4LYukv/S3lix3gVIHf9YvrT9NSwTHxFkPgxARzDJfVmATNl0XBerLxNJazXG48SkIgu8g9rPfBBdtGl7cEULVckqD0lzN51Kazs+A/MGLDpfSFHwzlRsu/rOKb3WuBCscvEXzN7qWvXhq4/ZJh3YzXx44L0DhaLmYzOJzI0nBul+bI4pR6T/B6DzOYSVr7CX8iDJLrET+P5MTJbSnSvz4qSioJwlBGBniAIAlDqMXFtl/BcP0ZqsHphUCK+Ikji2CBKUMYuOiTfKJB+p4hdFPNbJkvySbRcFh/x/0bSovsPWQKuQ9+u3Ih+bY7uUn1yyFt3VnJh5C4mPwYZ5lybQFIkslt1BjbmsYsu5mBJeDNrs+f+ZEWcCAebfUQW+km/U8TKOwQafdSeFkYNy+CA67j0PD5+MGQXXdofTNF6TRWN58do+21q1Gqy+8vt1Kk/M0KgyUfqzRL1H1GoOzPsPSfq7M5rdR2v2FFkgUbf85MPuJ2SS+djGSILNCIL/V6rgBNC5SqSRzMlKFF3ZoTM+yW6n8oe6uEIHyDaKwgHgwj0BEEQ8KaQGUkbf62KXXRpvixOqMWH60D6vSLZ93WMfqviMz6VyDVd9tyXpPaMMIF6r58bgFalUnd2hLAvgrrHQu+1SL5eKE+HHXi1gCRLVJ/otR3ofjo77Wyev15FDSvs/U2SUve+uZnheRpG2mb3LwcO7EHOIH+tSmJFsNzfEbysWvL9AkpAJr25NO7UO19cIVCvYuUdsu+XqFkTJlCnjlijB95U5MhCP1q1QqhVw7FdMpuLOLrXYzK2PIjeb6EEZW9V/yy+/1NvFYkfGyCxKkRy49SCtNxOg9xOA9knUXVSiJrVYUrd5lFd+r/2tAiuA73PTz5DKgjCkUUEeoIgCIPyew38tSqBRtVbH7Yh501jM0T27kDp/RbtD6UBb/qhGlXwRWV8MQV1YYBAg4/IfD/FLpNi+76T8/6X8wxszIMkjWiiPRVDAaLsH15URDrA/c6G1JtFtCqF+DFBep/PUegwJtWzUatSCM3RqD01jKQMz8B98GfwprK2XpNADcmYGRu9z6LnGS9bLckS+V0G/piDv0ZF9kmE52jkd8/eOjgzbZN8vUjN6hBGvzWtYzmmN9U3ushPeK7/6A30JK9v5MDrxSlXqBUODgcJuwIrQDkVOCZh+kSgJwiCMKjYYcKJsPeBVLkZsDDz7JKLXbLQe71S/r5CkdAaKPWalDpHnph7xVEO7GTVzDiYOZuqVUFKnSaO6SL7JPx1Kk6FBXoAVs7B1h1S7xQnlUWLLvbTeMG+tYZmxsYX89bV2UWH5svi7L53YNhavYbzo+B66x6t3OgHSb1RpOlib7+x5YFZDfQA+l/JU31SiNABBpXFLnPcgjVHOn+tiqzJFNtFgRpBOJodvb8FBUEQPmCoxYJWpYhA7yAKtWr4ojb5XTrhhX5y2/RZOU73k1maLo4x74Yq9D6LQL0PySfR8Wh6Vo43ggSSOn4GUfJJ+KsVoov93oWHSU6VLHaZFDoMlICMMWDh6C7FHpPcdu+5nH9TDbWnhel6wlurFWr1EWrWaH84NWaQB5DfY2AXvdvDczWUgDSrzbWHWpuUeqafias/J0JsaYD05qO3WJJW5QX54vdY5XJc76vSVOKYhOmbVmMcSZIm9XXuueeOev+777570vu4++67D+Dhwfz58yd1nPnz50+4r5/97GesWrWKQCDAnDlz+Ou//msymbGbyN5yyy3DjvHYY49NeIyhbW+55ZYpPEpBEGbCUDEQV/yhO6iGpsYmVoZouiA2a70Jix0me3+TKjcNz27X2fXLgXLF1cmKHxtg/seqabkyTsN5UapOChFd4ifU6kOrUVBCMmpYJlCvEl8RoPGCKEtuq2PJ/6lj8SdrSRwfJNDoBZmS6q2pq14dYv5N1Sz+ZC1zrqlCUiX6X5l8OwMr59D+YJo99ybpf6WAY7tEFweYc00VC/60BjUoE6jzlbdXAt6ff2eiOMAFq+BQaDNwgejSwJSeq6lSB3v+HUgD9KFpqtHFAebfVI0vcfQ1u/RFFKyiI9q/CMJRTmT0JulrX/sat99+e/nntrY2vvWtb/Hkk0/y7LPPEg6HJ9zHV7/6VS655JLZHKYgCAdAGVy/VWlrtiqBVqMgyZJXkGboP90P/DsdEsSPC1CiQHpzkexWfVZPTs2UTd+LB9YPzl+r4osp5amR43FsFysz/AHVnREZuZ3hkN2qU+w0MTI2eq817ee14ZwIweaRzcfNrI0kexUt9X4vwgvP0yh1DQ90Y8sDRBZpRINBaNLRqhWy23Qk1SCy0E/qzdnLlAUbvWB0aHzT0f2011NPiyvEjw0w55qhaqslep7JHegs4MOGJDHrBXSE6bMrdI3edMfU3d3NSy+9VP565ZVXysmQ22+/nTvuuGPc++/atYsFCxZM6Zjz5s1j165d0xrv/Pnz2b1796weoxIcUKD32c9+ls997nNj3j6Z4Ofxxx+nubl5zNtbW1unNbYPuuqqq/j6178+5u2aNvKP4pB3332XO++8k0AgwJe//GUuuOAC9uzZw1e/+lU2bdrEP/zDP/DNb35zwjG88sorPPjgg1x55ZXTegyCIMyuUKuG67rlKZyCR/ZLzLu+eszbHdMlu7XEwMbCmNMAZb+Ev0ZFq1LQqgf/rVJRNAktrpJtt+lZf3hUB+x5JkfyzSJqSEZWJZSwXC6AknqriN5v4Zgudt7BSFm4NoTnazSeHwMJ5P1aFXQ/lcHKOxS7zBlr1N7zfI6qVSEUTcIxXS9j6kJ0WYCWKxJ0/j5N08Ux9AFrRHVLNSpTf1YESZGIxAI4tSEGXsuT3FSg5cr4rBcmMrNeULzw5lq2/qB3ekGZQ3n6b6HNINSiIakSVScGCTT46HoiM24fwiNBbpdO9eoQjR+K0rshjy36CgqzrLGx8aAfc9myZQf9mIebAwr06uvrWbFixQENYOnSpZOaNnmgEonEtMd633334TgO//Iv/8IXvvAFAE477TTWrl3L0qVLuffeeycM9Gpra+nr6+OrX/0qV1xxBZJUeVdxBOFoF1mkUeq2ZnUN0mHJ8daADWVbPqjUaxJe4Ce2PIDea1HsNil1W7i2i5ZQCM/zE2hUvQqXtouRsjGSFun2Iq7l4lsRpPe5A8uyHWxmysZM7QsWih0mjedHqT7J6/tX6rEodppktriYaZv8LoNdv+gnflyQQJ2K7JfJvFcis2Xm1yMa/TbdfxzZNy2zTWfOVQkW3lyLrTvsfSC5rxDNYGa15uSRFTt9MYXYMQFCzRodj83eekY1KtN6RaL8c2xZgMx7pQPaZ6nbKrfTyO3UaTgvSuMFMfbclzyg/VY6Y8Cm649Z6s+OsGCBn9wOnd7nc+J3WwU50jJ6+1u4cCGtra0888wzk75PS0sLb7311oTb/dM//RO/+MUvALj55punPcYhB5IIOhyIqZuT0N7eDsB555037P9bWlpYvnw5b7/99oT7+Nu//Vv+9m//ljfeeINf//rXXHfddbMyVkEQpkerUQjP9dP15Njrbo9WjunSti6FpOxXpl/yCj7Unhoh1KyR32NQ7DDQqlXC8/xUHR8q37fQZtCzPkexy8TM2MOmkkmyhJrNU9h7eFYHbL0yXp4maRUdrIKDGpIJNvkINvmoPinErl8OYKZt7KJ7SJt4B+r2/cnveiKDmdn3QjSeHyW6eN/6O6vowGARz+iSAKG5GunNRfK7Zud1UoISc66p8o6dtyl2mNSeEabQbgyrFHog9F6L9NtF6s+OIqnMWAa1UuW26xT2GESXBag+KUTTpXHafpM61MMSjlBf/epXOfXUUzn11FOpqanh6aefHnHePB6fzzdhQsa2bZ5++mkAotEoV1999QGM2HMgiaDDgQj0JqG+vh6A9evXD3szdHV1sWXLlkmlqz//+c/zrW99i+7ubm6//XauueYaZHlatXAEQZgFNWvCmBmb7CxVfDwSuDa49r6MQKnLou23KaKL/dSdGUGSof2RNLjeVE1JAttwj+g1QvsX7lGDo/9OVyPyuA3ODxbHcDGSFp2/H2Xq4uAsk1KvSX63QerNEuYqBbdh39THgddmPkhVAhKxY4LUnrpvqUf7w2msnMPc66to/FCMtgdTM7KuTtYk4scFKXXP3DTZSueYLum3i+C61J8VPdTDEY5gd95556wf4w9/+AMdHR0AfOQjHyEUCs36MQ93ItCbhKuvvpp//Md/5G/+5m/IZDKcd955tLW1cfvtt5PP57ntttsm3EcoFOLv/u7v+Ku/+iveeecd7rnnHm688caDMHpBECYSWewnMt9Px+PpIzoomS3ZbTpW0aHl8jgLb67B2q9iohqRUTSZjsfSM54NkmSvmIhjQ7HTnFYRHTUi49oudnF6kUT7Q2mQvP1oCQUtoeJLKAQaVAK1PhzDIdjg8yp7HuJZc5n3SmNOhex6IkPXE/t+lmQJvc+i79UMLi6KdmBtFWRNIjxPQwnK6P0WxXYTZGi5MoG/2jsVMdIWHY9mykFx15MZWq9MULUqRHLT9INMyScRW+IncUIIJSDRti417X0droY+k+F5s9v0Xpg8x5Vw3MqbulmJYxryk5/8pPz9TEzbPBocUKB333338ctf/pI9e/agqiqNjY2cccYZ3HLLLZNO195yyy1s3ryZZDJJLBZj8eLFXHDBBXz2s5+lpaXlQIY3zDPPPMPxxx/P9u3bcV2XhoYGTjnlFG688UauuuqqcdfMrV69mr/8y7/kO9/5Dl/60peG3bZixQq++tWvTmoMt912G//6r/9Ke3s7d955Jx/96EdRlKOv7LMgVBIlKFG/NkJ2W4n8TnECNF3Fdq91QXiuVi68EmrZt7ZhJqbfheZqhOdpaFUKsiqhhmXUsPc71LVd8rsN0puLFNomF1SF5mi0XB4HYOD1AgOv5qeX6XG9x2dlHQp79xXy8cUV4scEqF7tNQDv+mNm3J51FcthWkGe5JOILvQTWaR5WUFFKjeqHyq6ooa8LGjmvRLdTw9fV1jqski9XaT21DD5XfqUC6ioUZmqE0LElvqRVIn8boO+F/MVkV092PK7DHK7dJovjZN5v0TPM9mjJqspHBmy2Szr1q0DvEqYZ5999qEd0GHigAK9d999d9jP27ZtY9u2bfzkJz/h6quv5u677yYej4+7j/Xr15e/7+/vp7+/n5deeolvfetbfPvb3+b//J//cyBDLNu5c+ewn3ft2sWuXbu49957Wbt2Lffcc8+4geW3v/1tli1bxn/+53+ydetWampquP766/na175GLBab1BgCgQBf+tKX+PznP8+WLVv4+c9/zic+8YkDelyCIByYujMjuEDvc6NXfAzP0wi2+FD8MnbJobDX8AIJYQS918IYsKg9I0KoRcPM2qTeKpLZXNpX9GMK1KiMv0bFX6cSXRxAiysYKQu910KOK+Ugr+23Kfy1KrHlAVouT5SPm3qrOG7Ap1V798/t1EmsCBJs9NHxaHrGKkuaaa+VQ26XTuP5MVquSLDn/uRR0b4jusRP7WlhlJBMsdOk94UcuV0Gdt4h0OgjssC7CJDbaVB/ZgRZG36xVQ5IhFo0Igv8uI6L5JtaliF2TIC6MyI4pkvyrSKZd0tYR3PlSRc6H8sQW+andm2ElnjCe6/rR/57sVIdycVYZsP9999PoeBl9j/xiU/MWFHDA0kEHQ6mFeiFQiGuvPJKzj//fJYvX04kEqG3t5f169fz/e9/n/7+ftatW8dVV13FE088gc83slLbwoULufbaazn99NOZM2cOADt27OCBBx7g/vvvp1QqcdtttyFJEp/5zGem/QA1TePKK6/koosuYsWKFcTjcVKpFBs2bOB73/see/fu5fnnn+fCCy9kw4YN4wamn/3sZ/nsZz877bEAfOpTn+Kf//mf2bNnD1/72tf42Mc+hqqKGbSCcCiE52lEFwXofCIzasai8fwo0SUBjLSFFvc+p4kVQbb9T9/BHmrFix0TIDJfQ6tRUQIyPc9mSb9bmvR0RdkvEWrV8Neq5a+hvoZW0Quwu/+YodQzmIaQvX50er9X3bLYaZJ6q4i/XiVxbJDa08MEm3x0/TEzeuZCgrrTvX52uR06AxsLtFwep/XKBO0Pp2a0OmGpy6LtwRTzbqgmtsxP+u0DqyRZybQahfq1Xh+/7HadvhdzI7K5pS5zWO++1FsFGs6LEVmgYaRsqleHiCzwI8kShQ6D9ofTU8rC+eIKDedESW8u0vt8TmSu9pPZoqP32+X3ettvU7PeMkM4PA31wBvi9/vx+/2HaDTDp23OZJLkQBNBlW5aEUZ7ezuJRGLE/1944YV84Qtf4NJLL2XTpk2sX7+e733ve/zFX/zFsO2uueYabr755hFR8po1a/iTP/kTHn74Ya699lpM0+Sv/uqvuPLKK6fdn+Pll18edaznnnsuf/7nf85HPvIRfv/737N582buvPNO/u3f/m1ax5ksTdP4yle+wmc+8xm2b9/O3Xffzac+9alZPaYgCKMLNHi/AmVVItTqw8o7mGkb1/ECj+iSAKUek73rUoTnaDRfGscqOkgKs9rU+3AiyRBo9NFwThQjaeGLKBhpm/ixQapXh7Fy9ogKj/sLtfioOS1EPCwjKRJG2kbvs0i+UUTvs9D7LOzCKPd1Rs/C6j0W3T1Zsjt0mi6MsfDmWlzbxTFdBl4r7Fuj5npNuf01KqUeCzNt0/bbFC0fjtN8eZy9D6Rm5PmRfRL+OhVfXAEHZO3ILcJVvTpE9UkhjJRN20Mpbx3eJGTe1wnNKdF0sXeh1cza9L6QI7/TmFYWLrrEj6079D6XE5/TUeh9Fnt/m2LudVUkjg8e0kqwRzMbGZvK+30w9JEZSsIMmUzT89myZ8+e8gzAM844g8WLFx/wPmcyEVTJphXojRY4DWloaOD+++/nmGOOwTAMvvvd744I9CZ6sj784Q9z++2385WvfIVCocCPfvQjvvzlL09nqOOONRqNcu+997Jo0SL6+/u56667+OY3vznrPTNuvfVWvvnNb7Jjxw6+/vWv84lPfOKw79MhCIej9OYSwWaNhvP2VaOzDYf8DoPkG4Vy77jWK7wr352Pp2n4kDcFr/Px9LQLeByOIgs1wnP9FDsNrKJLZL5GaI6GGpHLF+2UgFfYxEhaWDkHu+BQc0qYurUR+l8poPdZSApoNSrhORqx5QF8UQWfq9C9IU/m/dKMZdIKewz23J8ksSJAYmUIJQAN50axSw6O4dJ6ZQJbdwbHLWGmwUja9G3I03hBjGDzYAGVAyD7JOb+SRW+iDdFVB/wyvsfieIrgtSsDtP/Sp6BTYWpFTVyoesPWXI7DVzba8dxIFk4x3CRVAnZJ2HbR89ndCrMlI2ZtctrJAXhg/bu3TtsadKhzOb97Gc/wx0scTxT2bxKSwTNllmZM7hw4UIuvPBCHnnkEbZt20ZHRwfNzc1T2senP/1p/v7v/x7XdVm/fv20A72JxONxbrjhBv7rv/6LfD7Pq6++yhlnnDErxxqiqipf/epXueWWW9i9ezc/+tGPDnhKqCRLh/084iOF91p4/wqVY7TXxc67tD+YRpJBCXmFPUItKtFlAWLLq8vbBZt81K0NM/BqkfaH0jRdHGXOtVV0/i6DkTqyUwbBJh+BeoWaU71pjrHlXq81M2eT36GjhORy/zXbdOh4NIfev+8s3S7Y1JweYe5HqrCKDoomlYty5LaX6HnPIBK2Se/WcZ2Z/dxYWYfcDoPEyhBW3qbvhTzFDpNAvbecYGhqqJlyysct7DEp9Zq0Xpmg/6UcyTemP81Sq1bLQR6Av1ql4fwovU/nsCt8bdRUfo+F52jUnREm9WaB5KYiEhLTSVTsK4YkIR1A/JF9X6f65BBNl8XpfCQzrfWhlWom/r4oIZn6s8NoCYX+DXnxt2oGDL0uU+FWaNVNd3BMsVhs0jUoZttPf/pTwAs2/+RP/mRG9lmJiaDZMGuLw4499lgeeeQRwJvqOdVAr76+ntraWnp7e8sNy2fLscceW/5+to815E//9E/5xje+wfvvv88//uM/cuuttxIIBCa+4xhq5iXwyYffG/BIJMkSieYoSBKuc+ScYBzuJv26DED+JQjNlUmsCKEGvDPO2NoYzSfZdD+VpbjJWx+WuDlO8vUChT2HvnT+bKg/K0KgYeQaa4CSbiJH/EQWavhi3p+S3IBOokHGju73ZBiQfdbFXyMRaPBjFxyMpI2ZdnAdjUjEP2ufF19cpvrkMP6YiuWzybkQnB8mUOdDK/nLAV/1nOFN3I3NElX1IeacGUZJZ8bY+yTI4LT5wHYp9Vr4Ygr1K2qonVNF95NZ3AquDTLZz4sSlmi6ME6p24Ruh9r5h+6q//70N2TqzoxRdXOcnmdzR0zRkQP9+xJeoJFYGcS1XQZeKxLyRQjNn/lxHm0kWSJUr8GOQz2SI8/LL7/Me++9B8CVV145boA2kw5FImg2zFqg57oH/kt1JvZRScfZn6Io3H777dx00020t7fzgx/8gL/8y7+c9v76d6dQpdFPyISDS5IlcF36dqdEoFdBpvy67IA9T0N4vkbViUECdd7ny46W6H+tiB0tkTghhLYM3DqX7Hsl9H4bM23j2F6TcNd1D+tCEFa0SO3pEYyUhZm1MVPe+jlZlQjN1wgv9JNKlii+bZBYEYJqiJ4pk363SHJjcVg/vbFOgGbr8xKepxE7KUomk6HwtoEaU/AdIxFs8iGrDgZFjIw3jdKOFjGzDlqVQqDZR7DeR8HKk3y5wMCuA5tq2feBx629oTDnugRmpEjqzcotyjLZ10WNyERyEv1v50ntrKzH07crScsVcZRFFj2PHkDAXkGm+3mJLNCoPjWEL2bT+XovfRsKR1Sm81CTZIm4PbXm3aLq5uTMVhGWyTgUiaCZNmuB3v6tF6aazQPo6emhv79/2vefigMd63TdcMMNfOMb3+Cdd97hm9/8Jp/+9KenvS/XcXEl8Uu7Urju4GsiAr2KMp3XJbdDJ7dDJ9Tq8yoJbi1RsyZEbHkAM2PjiynYJYfaMyKj3t82HMyUTeZ9nczm4mFVHCL5RpHkG6MHOtldBs2XyLgWFDstEiv23RY/Nkj82CDFTtMr4T7BCeVsfF5qzwgDkNuuE13iR0uoFNoM+l/OU3taeNh0taFpqUMGNhZIvVmY0cqbQ/R+i/S7JapODJF6u1jRFwIm87qYGZvMFu+iR+qdQ/t4JJVhx5f9EkpQJtyqIQek0Yv6VDJp8OsDw57q5yV+bID6s6Pkdup0/yG7r3KtMKMOQc7giGeaJvfccw/gzfS75JJLDurxD0UiaKbNSqC3Y8cOnnjiCcBbrzedsqR33XVX+Qk+55xzZnR8+0un0+U3USgUYvXq1bN2rA+SZZk77riD66+/nq6uLv77v//7oB1bEISpKbSZ5f55suY1fO5/OU/zJXFCzdpgVcc8+oCNJDP4JaFGZPx1PurOCBOe66PjMM4saFUKjefH8MUVZJ+3zq79kRSlLosOJ03zxcMLbQWbfEQW+slsOfiZnu4nszReECVxQhAr57Dz5/1YWQfJJ1F9Uggl4AV6XX/M4Drgr1a8oGC+n9gxAfJ7dOyu2TkhTr5RILEiSHRxYF8V0MPYwMYCsaUBWj6coP/l/AEXsZkyCRoviBFd5Ce3Uyf1pndxouZUL9jP7zVwrUN7whZoVPHFvM+N7JPKxWKGvlzHC5qtnI3sl73+nY2+8npWfcCi0GaQe1+f0nGjy/zUnx0l+VaBvufzs/ToBGF2PPLII/T1ee2MDkU7skOVCJpJU37GHnroIS699NIxn+zu7m4+8pGPYJreL/rPf/7zw27ftWsXyWSSE088ccxjPPzww/zDP/wD4DUZv/XWW0fd7txzzy2XW925cyfz588fdvtjjz3GOeecQzAYHPX+uVyOj370o+XM4Sc/+cmDXlXouuuu44QTTuCNN97gn//5nw/qsQVBmJ7MeyValyVQQzJ7f51Eq1JoOC+GVq2SfH20DFiR0BwfLZcnCM/XyO8yRtmm8qlhGX+tSqnHZGBTgWKHWV77lN9psP3HfQSbfITmaCSO837vNpwXpdhpjNleYbYUO012/nRgxP+7psvuewbw16oYA3a5fH9uu3e7/HKepotitF6RoOeZ3KwEqUPPWc2a0BER6FlZh/ZH09SeFqb1ygSlHhN9wMI1wbFc7KJDfrcxpV54U1G3NkJkgUby9QLRJX5ar0qUbzMzNrkdOlpCOSSZLNkv0XRxjFCzt4Z+qNXH0Jdref9KquRVsQ3JOJbrNZnfkMMxXJSATKBOJbEiSM3JYTQjhLGhQHa7PnYPPAkSK4PUnhYm/W5RBHkVyHZlbLfyqp5WUqHa/adt3nzzzQf12IcyETSTphzofeELX8A0Ta677jpOP/105s+fTzAYpK+vj6effpof/OAH5ej7zDPPHDXQO++88zj99NO54oorWLVqFfX19biuy44dO7j//vu5//77y9m8f/3Xf512o8JvfvOb3HTTTVx77bWceeaZLFq0iEgkQjqd5oUXXuD73/8+e/bsAWDZsmWHpD+IJEnceeedXH311eXnTRCEylbsNEm/W6T2tDC7700ia152aLygoLDXRO+ziCzwH7aBXqHNJLdDJ9Dk269C4j6O7pLfZaD3WuVAD6D+7CjtD6cP5lDHZRddCntHzzo5JZf2h9PUnxmh4bwoWrVC34v5GSm2I6kQWeQVgXFMFzN3mE0lHEex3WTvAynC8zWii/1oVSqy6mWu1JBM3RkRrzH9a4VhVVkPlOyXSKwIYuZstGoVZAm75GDlHfw1Xhat/qwIkixR6jHJ7zUwBmxcy5v6aJdcjAHrgKdUa9UKsWUBAg0+fFEZx3SxC443JqD9kRTFDnPi48h477VR3m+SApGFfuacHqTu7Ah1Z0e8wkYZe1ixGUmFQL0PX1RhYFOB/pdEkCccfgYGBspFHVeuXMmqVasmfd8jIRE0U6aVA+3o6OC73/0u3/3ud8fc5rrrruOHP/zhmE/Mhg0b2LBhw5j3D4VC/Pu//zuf+cxnpjPEsoGBAX74wx/ywx/+cMxtzj77bH7xi19QXV095jaz6aqrrmL16tW8+uqrh+T4giBMXd+GPKE5Gk2XxOh7wTuR8sWUcZtEFztNQq2Hf9EkNSiXp26OpuqkfUUJCu0GvS+MbGxe0RzoecZrE1G3NoJWpdL1h8zY2ZNxRJf4vWbpeK0p1LCMkbTJbisxsPHIa1Sd32WMuJAhyRBdEqDqpCBzPpIg+XpxxoIPR/f6NmpVqrcW9t0iWo2KEpDp3eBlZB3DJdTsI3F8iPjyAGpYGbYP13bR+y1KPRalHpNSj4U5ibYpkk8iusib6hts8GEVHQp7DQptBrIqoYZlit0lUm8XsSfb+H2czVwbctsNeu0cqZ40gRaVQJ0PNSLji8oM1fd3HZf8boPMlhJ6r1iPV6kcJJwKbJjuTPOq1nPPPce2bdvKPw9VygR4/fXXufvuu4dtf8stt4y7v1/96lcYhve7ZKazeYdDImimTDnQ+9///V/Wr1/Phg0b2LFjB319fWQyGSKRCHPmzOGMM87g5ptv5vTTTx/1/ieffDI/+9nP2LBhA6+++iqdnZ309fVhWRZVVVUcd9xxnH/++XzqU5+ivr7+gB7cv/7rv/LHP/6RDRs2sGXLFvr6+kilUoRCIZqbmzn11FO58cYbueiiiw55D7qvfe1rXHbZZYd0DIIgTJ5junT8Lk3rlQnqzvSKeTScEyW3TR8zACr1mcRXBJA1aVpBQyXQ+y0iC/3Mv6ma7vXZUTN7/S/lUYMykYVeZqfl8jjIEqUuk64nMhXdVmB/6XdKmGmbxgtjNF0So/3BqWcla8+IoAaHn8w5ukv2fR0re5g8EQfIdbxsd+b9ElUnBKk5NYyVs0m/MzPTVnffk/SKlozzkfLW2Hqvn6xJSIq3hlYJe9MiA/U+Qi0+Eiu8K/y27qD3WpR6LaycjWO6+9bUaTL+GoVgs4akQKHNoOPxNPndxtQaxR8Aq+CQ3aKT3TK1NXuCMFt++MMf8r//+7+j3vbb3/6W3/72t8P+b6JAb2japqIo3HTTTTMyxv0dDomgmTDlQO+cc845oOIo0WiUm266aUZetKeffnrc21evXn1I59TefffdI65gjOXSSy89Iqr7CMLRxBiwafttivpzouX/U4JjZ7oKewxcB2LHBEiNUc2y0g28ViDzXokFH6+h8fwY2/9f34iTW8dw6fx9hkCjz8tguhBs9hFZ4EcOyIdV9cNCm0nn4xlar0wQXeonO8ViGMmNBerWRsqBAnhFamLLAxQ7D3LRkkPNheTrRYLNGuG52owFekP7nqx9F1lcrLyD3mOVxyJrEv46lUC9F/xFF/tRQzKSIg1bX2ckbQY2Fsi+Xyqv8xSEqRDtFca2detWXnrpJQAuvPBCGhsbZ3T/h1Mi6EAd3PI1giAIRxgjadO2LoUalSfM0NhFl2K7QahVO2wDPQAr75QDF0ka+xy71GVS6vKCmVjOT6hFwzEOr5NiNSITbPam29afFSW/05hS/7HU20WQvP3YBYfa07zsb3730ZuJKfWYJFYGKzKz7RguxXZzcAr2fp9RmYOWrTtcRRZoaLUq6beKs9KaRKhsU0luTGTJkiUHlPyo9ETQwVR5k4MFQRAOQ5OZhif7JQINPozk4b9upuvJDI7l0nRxHEmZePtSj4XrukSXBGZ/cDOo4bwoVcd70/lkn0Rk8RQX5LuQerNI3wt5kq8XaX8kjd5n0XRRnObL4oTmarMw6sqW2VxC9kkkVo5eCKEiiSBvXGpEpvGiGDUnh5lzXRVa9SR+KRzlhqpuVuKXcOQQr6YgCMJB4q9RUfwymc2Hf0n9/E6DjkfTBJt8zP1oFdEl4wdAZtbGLjgEGw+vYjRqSEYfsNlzX5LcLv2Ag/TCXoM99yfpfCKDLyrTclkcf93RMblG9kskjg/ScoXXb9E6jKbwCuOrOiGEY7js+tUAdslhzjVVRJcenlUKBeFIcnT8dREEQagAZtar5KdGvMqLh7tih0nbQylqTw3TeH6MQnv/mOvvwvP8qGGF/O7DqwJn7/M5mi6OU7s27LWImKHYJLfdCxrnfbSa+jMjBBp89DyTJf3uYX4RYHCaqi+m7Pcl44sqaNUqkgS5HTpdf8yKipBHiPixARIrg/S+kMNMDa5bPjtK44dixJYbDLxWGLca8dHKq7pZeeu/KnFMwvSJQE8QBOEgsbIOjuH19xqrj9vhRu+xyO82CLVoyCqMFb4W2w3MrE316jBIEnq/hZmp/GC30GbS8WialivjRBdPvRjLZAQavCynXRo9ivTFFeyiU3Hr2SQVYssCaNXqvqAu4hUuAa/Mv5VzMDM2er9FdqtOdmtJrN86gmg1CnVnRki+VSD1prem0bWg+8ks2fdL1J4RofWKBEbaIvVmkcyWkld1d4xegYIgzCwR6AmCIMwwSQVZlUY9oS10mITmaiRfP3yLsexP8knUnBom/W4RMzN2ussuuXQ+lqHurAhNF8YAr39Z5r0SbvvBGu30FDtNzIyNv1oly8wFemZ6X6Db/nAKX0KlevW+HoRqWCY8V0MNK7iui95nUWw3MQZ7vBXaDaycM3pzbdXrXaeGZIpd5oxmVCSfRPWJIWLL/CgBGT1pYWUc8jt1zIy97yvniLVtR7jwHA3Hcsu9RPdXaDPZc2+SQKOPxHEB6tZGqD09gqR4PQGTmwoMvHbk9ZIUhEoiAj1BEIQZEj8uQO2pYWTNW/5s6w7GgE3qrQK5HV6/ufxug/qzIiiB0QPBShVo8lF9YgjZJ2Hlbay8g2t7bRNkRSI5iSqier9F27oUSkhGSyg0nh8lflyQ0MowyjaLgVfyuI63T0nynqtKKV0v+2Qca2ZfL9eG/pfz1JwSpvny+LAy3mbO9vrtbdcp7DVQQzLBZo3IYj++yL5CF47tYmVsjLSN3mtRaPeaddefHfUqfeouNWvCtD+aprBnZM/DyfDFZHwJlVKPCS60XpnAF5XJvK+Teqs4LGAVji5yQMYujn6xYUipy6Sry0R9OU9koR9Hd9GqFWrWhJEUr1jR4fS7cKY4yNgVWCpjug3ThcokAj1BEIQZEGz2UX9WlPTmIsUOE9dyvSCmVSPYFGfP/Un0PovcDp3a08JUnRQa9Sp4JZE1Ca1aIbrIT/zYIHq/hZGyUUMy/loVSZYwUjadj6endLJvFxyKBQcz46CGFdSIQqBOZd6feE1pXccFF2pOcWl7MIUxcGgDidAczcuMzULfu4GNBQqdJsEmH+HBCpydj6VHPfHNDDbHHsoY++sGp0wmFLS4SuL4IDVrwgAUu03aH0kTXeKnZnUYaRrnk764TOPFUSLzvKIadsmh1GOhRmT2/iZ1RKwzFQ6M4p/8BSsr6wxrK+PoLlUnhag6IURup076ndLR11tSEGaZCPQEQRBmQLDJh1V06FnvFRtRIzJNrd6Ju97vnRw7hoyZc0i+UaTm5BADrxSm1JPtYIos1Gi6aLA6Yt5mYFOBgY2FGZ2Kl9upE2zy1qeVei16n8/h2i7FThNJkWi9IkHTxXHaH05Nqn3FbJBUr8VCfq8xYvqj7JdoujiGFlcY2FQk/fb0puOWOk1KnSbJjZObxuZaYFvu4DrP/cYkeZVdJQVK3RaS7FVDBKhZE6b29Aiu7ZJ6qzipyq+JFUHMsETyzQK5bTpzrq0iPFcjv9cQQZ4AgBKQcfTpfTYHXiuQertIbGmA+LEBWq9KYCQtih0mpT6Lwp7KyejPhkptZWAfQP86ofKIQE8QBGEG+OtUjP59VQTt4r4TFH+NSvMl8RH3UUIyTgVOewsv2BfkAey+N4mjz/wf/9x2nbozvAbi0YV+CnsMMu95AYhruXT+Ps38j9XQfGmcPfcmZ/z4k+GvVVFDMh2PDM++yn6Jlivi+CIKsk8iUKeSPiQj3I8Let++96DrQOfjaRovjOGv2ffnvuGcKHqPhd4/ftXL3E4Deb5N1fEhqo7ft3YwPEej+bI4ep9J+p3SEX0yLoxPDcsTvo/G4+jehYfUW0WCzT6iS/0EGn3EjgkgyRKdj6fJ7ZzelGNBEESgJwiCMCMCdWo5SAFv/ZWR9KY6ZjaX8NeqBBp9BJt8yD4Ju+RU5tomGZovHh6UVp8cov+lPO4MD9e1hwePQ8+HrEnElgdIrPAaau//vB5MakSm7owIjuEMrxAqQfMlcdSwQv8reerPipLZUpltEeIrgih+Gcd0MbPe2kqj38JITXxyXuww6XsxSajVV56u64sr6AMWvqhC/Lgg/lqVjkczB+GRCJVG1iR8cYX8rpkJxIodJsUOL0MdWeSn6cIYauTIbbzuIOOINXrCLBOBniAIwgyQZAn2K6YRnqehValkturk9xjkBwthDJ3AdDx2yPM/o3Ng58/7y0VWfDGF+IoggXofHb9Lj5nZk2RQwjJKUMbRXay8jTtBLGGXXLbd1Uf9MoeBvSnMnE3d2giJlcHyNsVO05smKHkBpy+qYOVsstv1WV27J/m8jJ0kS7Q9lB42xbbqhCCBRpW236aIHxPESNvlE9RDKb4iQLDBR36v4bU06LXofS6Hv1pF9knldVBj9ToclcOoJ/K+uELDeVECdb4ZfATC4SR2TADFL2PMwgUrvdf7PI3VckQQhMkRgZ4gCMIBUCMyVsEhu0MnfkyAUo9JZIGf2LIA+oBXfKVMgtrTwuR26pS6KrdZtJV1yG4ZPu6qE0LElgZIvbVvHZpWrRBq1QjN0bxMpTq80W52a4me53ITTvt0dBdrMPjw1+y7gq/3WyghmZbL4ziWi6xK6AMW4bka1SeH0fssMu+XyO/Svd5c4LUbmAI1LCP5BsftgmO5SDLUnhpGDSnsuW9gWNsIrUqhek2Y5OtFjAGbyEK/t3axAtSsCaP4ZaJLAuX/s4oOpS4TJSBTdXyI6lUhstt0ep7NThiIj0aNyCz40xrAqyrbt2H4lFY1LIM09ddBOPxkt+pEFnoXroorTAY2FaZd2fWDQnO89c32LEwZrxS2K2G7ldecvBLHJEyfCPQEQRCmQfJJzL+hCjW8X2CStGi+JI6tO3Q9lRkeLAGR+Rq+qFK52bxB/joVX1TGF1OILPATaPCR2+k9lsgiP1bepuWKBLKy74Qg+UaB/B4Du+Sg+GWvfPrqMPM+WkX3+tykTwDbHkyX+2wNCc/Xymsc9/46iet468SiSwPUnBour/MDLzhMby5ipmwcw8Uxva/9Aw8lIFF9cojI4gBqcPSpU47p0v10dkRvwNiyAE7JYeDVPNGlASQFMu9XxrTNnT/pp+pEr4qhPBi8qkGZyAL/sO1iywJEFvnZ/qO+KTetlvZ7zXf9fGBYE/fqNSFqTvaqfva/mmfg1coIgIXZYRcc2n6TIjxPo+rEEC2XxdH7LTLvldAHLIykPbXs8aD4cQHqz4qSfH3mAkdBOFqJQE8QBGGK1IjM/Burh530AmQ2l8jt1LELzqjr2QINPoy0jdFfgWvz8AqMzLk2gRYf/qfBsV2v/P98bVivt/0ZA/Z+VSm9qYy5HQYN50RouSxOocPw+uJlbayCg95rjbnm74P/n99lsPWuXtSQXM5C5Xd7+5M1iUC9N15JkYgfF6Tu9MiI18bM2uR3GVgFm8SKIJIikX6vRKnDxDa8k1FJksrZvVK3OSIT6a9ViS4NUNhr4NoQP8b73q6QYiSuDQOvek2o1YiMrEpIiuT1LLwgNmxbWZWILfWXWzZMlpm22XN/ktarE9SeHi5XmQVQQ17Q7JguNavDRBb6KXWZ2LqLa7u41mDQnXewco7XK/Ao7J92pBn6LAYafVSfGKTmtHD5IpBdcih1m2S36uR26ZPKIlevDpPfrdP3YmW3nzlQdoX20bPFGr0jigj0BEEQpqj+7AiO6VJqNwnP1TCzNrt+PjDh/bz1a5URFIzGtV180X0ZSjNnl6s4mmmb5KYCkiJRc2qY2NLAsPsGW3z4EgqyJiH7JJSATH6XTsfvMkQW+4kt8VOzJlye3mkbDrntOgMvTzLr44w+HdAxXApt+9bH5XcbIHtTCGWfhKx6YwnN0QjP01BCMoU9Bj3P56YUoEUWajScF8NIWvS9lCc0x1det1hxXIa1o9D7LLLbepFkCDT6Bqfb+mg4L4bky5J+u+StyfRJGGkbMzX+hQi9z6L32SwN58XIvFei1O29R/o25JFkidgy771R6jbx13vrAyXFey2Gvh/imF47jf5X8ui9lTudWZhYqcuk43cmSOCLKWhVClq1SniuRuMFMRzTJbdTp9huUOyyRi1GJWsSSkA6oqdsCsLBJAI9QRCEKYgs1AjP9abChedq6ANe/7fJKHaZRJf4UaPyIesLNx7Xgl2/GMBfq6L3WWOss3LpfjJL9v0SNaeECdR7xTiGAj+r4OCYLlpcIVCvkn63RG6bTm6blzmSNQk1KhOZ7yexIkh4vh/zPQV2zeADcRjx/Ob3GPQ+P/Vd+WIyieNDJFYEyW4t0f10FiSoO2NflvJw4Tr7Khv2vwx1Z0aoPTUCDtSfHS1vl9+t0//SyABc9ksEG3zIAQn/4OsenqvhmC7GgDdVtufZLLFlAfJ79GHZvv0pAQk1quCLyKgxhdiyAHOvq6LziQy57VPLMAoVyPUuDJlpL4ue3FhAjXprR6ML/USX+JEkCdtwvOnVhlvePrzAXw4Ij3SOK+NUYB89R/TRO6KIQE8QBGGSZJ9Ew3neFLhil+mt4Zog+7G/7DadmtUh6s+M0PG7yixJb+UcrNzEwUuhzaTQlkIJSPgSKv5qr0jJ0PQ98JopL7y1hu6ns+QHe2E5hovRbzPQXyD9bpHGC2LUnxkn1ZseXrjmA2LLA2jVCgOvFoatC5s1ElStClGzOoRjuvRuyJF6ozjYWiGGGpbp/H1lvoaj8cVkJEUqNzqXFBh4LU9iRbAc5LU/nEIOyNSsCTPnIwnUbADDX8AqOYTnaUSXBIatywSoPjlcLoxj5e1yAFjsHDs7Z5dc7JKF3uv9nHqzSPOlMWpWh0Sgd4Sysg7JjQWSGwvl6dZajZftVfwSvrhKZJEfI2nT8cjItbGCIEyPCPQEQRAmqXrNviIXPeunFuQBuKZL7wt5mi6M4UsoU75/JbJLLnaXSanLRI0oVJ+0r7G2a7sofpnmi+Ns/X7vyPsWXTp+lyEaidJ4fpS9ORu9Z/QAITxPI7LAT9XxIfJ7DHI7dPK7dOxZWOOlVXmtA/y1KsnXiwy8tq+HYN3aCKE5Gh2/S5eDprHIPgk5MFgUJTKYwRrKZEUU1IjstS/Ya5B+pzgrlSqDLT6qTwwRavWqGHqtPnSqTxoelBc6DAptJkpIpv2hFJEFGq2nhak7K4IkS5g5m4FX8mS36YRaNRrO3ZcB7Hs5j5ZQUAIymXeLFNpNjLRN4oQgoRYNrdq7zbUGe/llHcys7X2fcXAsFzPtEJ7rR6tSJnxehcPb0HTr/adcC4IwO0SgJwiCMAn+WpXEiiDJNwpUnRDCX6tO64S01OWd3ATq1cMv0JMg2OTDF1cw+i1KHwjK8nuMcqDX8Xia2tPC5cIuY05XdaD/lQKBVQ71Z0bY++vUqIfufT5Xrh7pi8nUnx2BsyPk9xj0v5KfsQI34bkajRfGsHI2e9elhgWe8eO8Ju7d67MU9o5/khqep1F/TnRYMAVeuwMr5wU7hTavmEz8mABVJwTJbtPJbCl5PflmIH5VAhKtVyQA6Hsxh5nx+hSG50bJ7dQxkjZqWCa2LED6nRILb6lBCcg4tkvnoxm6/5hloC0FsjssoE4c7/U57HkuS/Z9fViGVfYNruE8JgCO1wcxu6WEVXSRfeCLKqhRhfA8DTWqDMsQFjqMWenJJgiVSBRjEQ4GEegJgiBMRPIKsBhJm8yWElUnhMp936Yqttxby5Yfq2y44pXEr8Q+ZI0fig7r0ZZ8s0DfC/sq45W69wU/0cUB2h9Ko0YU7IKNJEskVgZxDJdS72AT9KHzCQf6ni/QelWc6BI/2a0jp+9ZOYf2h1M0nB9DCcr0v1rAKTkkjg8y99oqup/Okt2qe6XeV4W85u5TnOKphmUaL4xR6jbp/H1meADjl6g5JUzqnSKZzeO3U6g9LUzVqhD53Tq97+s4uoOZ8wK80aoO9qo5YsuDVJ0QJLY0gJG26Xxs4ozhaCQFIov95Hca2CWX/lfzxI8JEFngZ+9vUuR2DSBrUrnapRqRCS/QaLrQm5Kc32sgKdB4URR7h0rfLhfX2fc8qFEZf7V36lDsNIc9R1qVQtNFMZSwzMCredLvlCZ8DZSQjKx6/dIm6rcoCIIgTI0I9ARBECYQnq8RqPexd53Xw82xXRo/FCX1ttc028zYuC7IioTk89amDZEUCUkGSfXWogxlQ2pPCWOkbFzHJdjow1/nwxeRQfbK/LuuCy64lottuOi9FrldOtltOhyCpEdsWYDokgD9r+XLvdKGslWS6k1pdG2vibbilwm1+ph/YzVG0nuMQ0Vb9jewMU/qTS9oKnWbZLfr1JzqNZQfLSAqtJns/tUAtaeHqT0lTLHTC8iqjg/ReH6MYFORYJMPrUql8fwo/S8XaDg/Su9zOS9LNoHoUj+yTyLUqlF3RsQrvDKoalUISZYYeGX8ku/h+V6g2ftCjtSbxXG3HeJakH67SPrtIv56lYZzozRdHGPvr1NTDlYji/00nhfDPsMhualA8vUCdsGh7qzBXoMOw1oaWDmHPfckiSz0Y+sO2W06iiZRf16U5lMTOLU6uR06it+bdhpdtK8nX2SBn4JmYuVsQs0adWvDmDmHvQ+kRq2oOBq74ByKt7MgHHIOldmcvPIuMQoHQgR6giAIE4gu9FPqMZFVifiJQcykjRKUvIqF0xQ/Nlj+3nW9HmNG0kbvt7B1BzUso4YVlKCMEpAIz/fWqDWc61Wps/LeOidjwKLUa1HsMHBmuG+3rElUrw6hxRVCczTS7xZJbiwQWxbAF1EYeM2rzBhdHCB+zL7Hk3zd6+UWWx7AF1OQVEYN9KpPClN9UhitGMS33EJLqPgiCqFmbcyMp6O79DydI/u+Tv3ZEeZeV8XApgL9L+eJHRMoB9mhuRpmxsFfrdJ6ZYJSt0nH45lxGziHWrR938/d970Skr1pu28WJlwTOBT8DrWlmCq9x6LzsTRzrqui5cNx0ptL5dd4Mmdgathrj5HbplOzJkxiZRC930KSBsvWjzJ+K++QemtfUGqXXLoez6L0B3AbXKpWhbBLLmbGxjHdwTYMFokVQWpWh8v3y27zqpJOpleaIAiCMPtEoCcIgjABNaoQqPfR8uEE+oB3Fjt0Qv1B+T0GxU4Tb17i4NVaCSRpMDNY52PXrwYGe9Z5lRBL3SbORIUuVYgt8hNe6Mdfo5b7VEXm7cuwuK7XkNouuVg5GyNlU9hrlCteTpakeoFo1aoQkgKlbovcTp3Y8gBW3sv6VK8K0XhhDL3XQglIlHpNJElCjcj0v1bANd1hwUPqzSLxFUECDSr+ahVJ3nclO9Dggz7Q+y3yew2K3RNn34odJnvuS1J1YojqE0OYWZvuJ7MUO01kv0TL5XESK4O4jleqPboowLw/qWLnT/tHDUQSJwQJtWrkduqUesxha/CqTwrh2q5XdXMC2W06kUV+Wq6Ik9xUoP/VwpQvkZsZh47fZag5JUTDOV7RE7vkkNulk9thUGwzcPfbp7/OWz8qa1J5HWOhzWDg9QK1p4WJLvKm2zZ/OE7fhvx+je3Hp/dZ9L2aGTZ1UwlINF0ax1+t0vdSjmKniRqUMbPOpLN4giCAg4xTgWv0KnFMwvSJQE8QBGECgQbvV2XPs1nS75SQZAi2asj7/QZ1DJdilzluNkNSJJSgXC7CMqVeehZktuhktgxfv+ZLyASbfPhrVLQqFTWioAQlfBEfoWaNxLFB9AGLPfcmJ3UYf51K8yXeOrjM+yVKvRZVK4NoCW3wufDRsz6LJHlZOl9MAQkCdT7yu3X8tSr+GoVS1/Anwkja9D472FdNhugiP6EWDSNpkTEcerZkhwUUk+HaMPBqgdx2nfqzo7RelSC9ucjAqwW6n8pSe3oYf62vHOh4U0o18ru8wHdobZqZsdESKgMbvczg/tSoTPyYAP2v5Cc1jdIxXNofTnutGdZ41S7T75TIbiuVK3dORqnLpP3BNJIKWpVKZL5GZJGf+PIgtu6Q3+1VHjVSNnOvqwK8/nfpd4sUO03yu71gsOuPWdSQQrDJR6DWR+sVifL7eDrskkv7Qykazo1Sf2aU/lfzDLw6yab3giAIwkElAj1BEIQJSJKXfRpa5+U6UBirmMo47KKDEpCRFKZ00j8eM+VgpnRgZAETOQBNF8cJNWn4EjJmanhg6Ut4zcBDzT7MtE3fizlaPhzHLjoU2nRCLRrx5UFyO3T6XykQavURPybI3I9WofdaWAUH1/amnbqWS2iuRqnXnHjaogPZrTrZrTqSLFE7Pzj+9hMwkjZtv00ROyZA7Wnh8jRSI22RfrfoNWPO2pgZZ9jUTTUkI8kSWkIlu600IsgDqFkdxi45pN6e3Ho78Cq0lrpMep7J0XButDxtNbNl6sGVa4Hea6H3WvS/UvCyuIv8RBb4iS0N4Nr7gs/OxzPDMn0AOND2UIrqE0PUrPGmWcaPC0470FNCMlXHBwkPZpIrsWiQIBwObFfGrsCG6ZU4JmH6RKAnCIIwDiWwb4rhiJPoKcrvMag51etN1vN07gBHNjGnBL3PZJn70Wrm/Uk1jrkvKJAkr0CMJEk4losvrjBvXg3gZb4kWfKyRjv18lS//C6d3HYdf72XQZR9ElJQQvZJ3nRMSQIJEsd7FSc/2PJACUj4Ygpmzhl3rdx0ZTaXyG3XCbX6QJLI79LHDajT75TI7zKoOSVMbFmA3C6D3LZ9AbNWpRBd4qf3+dyk1p3JmkTr1YlyVcohxU6T7NaZWUBpJG0GXi0w8GoBX0IhstBP9UkhZFVCq1VH70PowMBrBZSgt9bQX63ScF6UnvXZSb+nlaBEzZow0WUBXMsl9VaB1JvFWeljKAiCIMwMEegJgiCMY/+1eLJ2YBXSzLRNz/osjefHsIsu/S+NX8FxJhhJh55nssSPDZabvZdvS9kkXy9Q6rIINKiE52lYBW9a4GjTSl2bMRsdS6pXzCS23OsJV3tKmNwunc7HM+U2Ci1XekGQ67oU2036XsxjDMzsui7HcMntmHy21co7dD+VRfZLVJ8UGhboVa8OY+Uc0hO0UxgSmqPhr1bpfCKD3meh+L0gelgriRlkpmySGwskNxa8lgkTTC3tfT6HlbOpPS1CbFmA2LIAe9clR0yz/SBfXKH1qgSSBAOv5Em/O3HbBEEQxucg4VCJVTcrb0zC9IlATxAEYTyj11wZRtYkAg3e+jjZJ4ELjuUVRim2GcOyHtmtOkooR93pEXI7dPTe2S9RmNmsk9k8cmrn/krdFqXu6Y/FtSC/2yC/2wAJoov9NJ4fo/H8KI7pEqjzoVUp5Hbq5HcZJFYGmXNNgq4nshPv/CBIvVmk9coEwRYfxXYTf51KdJGfriczky6mUuw0sUsOdWsj5HfpGGkbM217LQRmOfM1qcDLheTrRVJvFak/K0pseYA5V1fR9VSG7JbR3x9KUKbl8jiO7tD2YAq7KAI8QRCEw4UI9ARBEMZh5fed5RvJ4YGQJHtZn8TxQWRVwnVcHMtFkiQkdbAfnuPS92J+WE+13A6dutMjBBt9ByXQO+hcL6CV/Vmqjg9hlxxKvSapt4vkd+nYJZfM1hItl8epOjlIadOhHrC3/lLvs6g9JUxmS4n4cV4Rm9Gat4/FLjjsud+rBBpoUIku9iNr3nqXUp9JscP01gtmHEo95iFrEO7a0L0+S2y5V6SmZk141EBP9ks0XxYDGdofTIsgTxAE4TAjAj1BEIRx2HmHnmez2EUH1/LWKvlrVYpdFo3nRQnN1Ui+XiC7VR9RXl4JSNSeEaHujAilLpPS4PopSZZwbZe6tRGiS/wMvFbwMmFHmPTbJdJvjzHt0YHUW0WaL4kjt8qw66AObVQ9z2VpuihO3VkRjAGbrj9kpjzl0so5+6qLAkpYJtTsI9SqEZ7nxxfxWmq4tkt+t0FmS4n8XuOgdimOLvNTdXwI1/UuSvgiCvNuqKLjd5nyezgyWJE0m8+yd11SFF0RhBkmirEIB4MI9ARBECYwVKGw9rQwVatCAPS+kCM8T8N1QYsraAkFx3DABTWioPdZ2CUXSZGwdWdYZtBM2+z4335CczTixwZovjROqcck+boX8M1URc5KJvskgo1eNcra0yLk9Rx9B2HN4nhKXRY7f9I/o/u08065wigAEqgRmch8P9FlfpovjWMVHbJbS2S36Oj9s5vhVaMyjefFAMjt0hl4tcDcj1ShJVQk2Vtr2XRRnPBcDb3PYvdvBrCKIsgTBEE4HIlATxAEYRJqzwhTdbwX5JlZm/S7RXI7dKKL/USXBmheEhi2vV1ycEwXX1Sh6w+ZYYEeDBYN2e5VsQw2+6hZHaLpIu+kv+Ph9Kyf8B9KDedFiS0b/nz5G1Qkn4RrHuHTA12vf2LqLW+tnFatEFsWILokQNXxIfJ7DQZeyZezvzPNynkZ6tjSAJH5ftSQjF1yaH84jZG0iS0LEJrjo/PxDEHJxj5E00srhaSCllDRqhW0KhV/tYJWraKGZXCh1GfR/1K+3HpFECbLRsauwObklTgmYfpEoCcIgjCByEKNquNDDGzM44srhOf5CdT5KHaaJF8vkny9iC8mo9WoSLKEozv4630omkSxyyw36B5LscOk7cE0voRC44eiNF0SY/e9ySM26AnN0crfW0UHYhBq1ph7XYLdv5pcY/cjhTFg07chT9+Lea9Vwskh5lxbNdj8fPxpnVq1QqjVq/SpxmTUoIxVcDAzNlbW8XoHZm3MrIM9eKFBCQy204gpmDmbQL2Pnmey5d6Hkk/Ctb3COsH54YP1NFQU2S9RfXLIm2obk8t9NM2MjZG0yG7X8Vd5vweCDT6ii/0i0BMEoSKJQE8QBGECpV4LI2URPzZI+8NpFL9M0yUxetZnye00wAUz42Bm9gV0o7UgmIiZsul8IsO8j1ZTc0qIvucP7VTG2bL7VwMoAQkz5yAhYZ+u4jvmyAxqJ83Fy/Du0L2A78QQzZfGsXWH3A6d7DadYoeJJEN8RZCq44OoYQXHdNEHLKyMjd5noYZk/NUq4fkKanDflXnHdnEMt/x/2e0lel/IM+/6KoItPtLvetOTHd1BVqURrTiOJi2Xx8tN7gFKPSZtD6bKvRSHgsBit0n2/RKZLTPTI1E4ujiuhONW3uesEsckTJ8I9ARBECZgZR32/jpF65UJWq6Ik99lEGqVabooTvf6LJlJ9lmb7LEGXstTc2qY7FZ99AbYhznHcPe1A5C9tgR5o1SuAnlUGwr4tutew/bFfiKLA8SPCWLr3hpQ2SeRea9EdrtOqcscs+m5pIIvquCLKqhRGSUgYwxYlPqscp/Enme8AjRm2qb/5QKlwSqw/tqj9/RACQ1WSu01CdT5kH1SOchDgujSAJktJbqfqozWIIIgCGM5en+TC4IgTIFjuLQ9lKL65BCRBX7yewxKPd4V/ZkUnq9Re1oEgLnXVpHbqdOzPjvrfdiEymMkbfpfKdD/SgF/nUqo1Yfsk8lsKY2o8Doa1/L2YSTH3ja3w6B3g9fX0bVhYGMBx3Tx1ymQmclHU3mqVgUJz/cTbPTRuyFH6g2vBcqee5NIMjReGMN1XAY2FQAIz9OoOzMyGDzL9L2Uxy5MUKhG5qBWVBUOH06FrtFzKnBMwvSJQE8QBGGSHN2l74U8fS/M3pRK1/ICOn3AothpElsaoOFDMbr+kJlcU+zDlBpXMDPijHgseq81az0XU28UkX0SNWvClLpNHNNFVo7s6VvBJl/5ggpA3emRcqDnGC6xZQGCzT7aH0qD6wV90UX+8vaSLLHwEzVkt5codlo4uoMakVEjCmpYRo3I+MIKSlDGNhysrENup05yU+GoqKorCEJlEIGeIAjCQSapEGz0YaTt8hS6IYU2k63f7y3/nN+p03hhjHk3VNP7fI7c9sk38D6c+GtUSl2ioMWhMrCxQKhFo/myOJLstQQ5kq/rh+d7BYFs3UHxy5gZL/qSNQklKFO1KogkSSRWBoks8I+5n+iiANFFI/8/9U6RXM7ALtjIARktoVB9YojIQj9t61JH9EUbYXIcV8apwJ51lTgmYfpEoCcIgnAQaNXeeqtgi0agzqvOmd+j0/Ho+PPjCm0mu+9JUrc2QtOFMfLLDHqezY4IEA9nWq2Kv8ql/xD30ZsNkuKt+ZI1CTNpj7me7pBzoO2hFPHlASRVIrvNoLo5dKhHNStkTSJ2jLcetNRlImsywSYfiz9di/SBTOZ4QV7Xkxnq1kZQ/MNPjPeuS4160SL9Tom5H6ki1Oojt2P8SryCIAgzQQR6giAIs6z65BA1a8LYJYfCXoPerSXqz4yO6K03RNYkYssDhFp9aFUqkiqB42UAwnM15t9QTdeT2SMiuxeep1F3Wpi+vUnyu4+ck99Ag0rt6ZFyU3gAx3IpdZkUOkyKHQalbgsqKbHjUK6+KclH7tTNxMogiuYFZ/ndBnVrvSmcxU6T9GBhJbvkEKhTSaz0qpvmd+s4hkt0v36ZNaeE2f3LAVAkJNkLCuvOiCCPdmYl7csiCoIgHCwi0BMEQZhlseUBCm0G7Y+m8Vep1JwWxrHd8knl/qKL/TReEMOxXIqdJtmtJRzTRY0oJI4LAt7JaeMFUbrgsAz2lIBEeIHfWwfV6MNIWnT+LjMs6JFkUCMyVt457NY01ZwSovqkMKVek+6nslh5G8dyCdT7CDb7qDohSO0pYYy0Tf/L+cPyNTxcSSrUrPH6A2a2lEi/VyK9ucT8G6sJNvnwxb0qpfqAxZ57kxQ7TZoujpdbKITmahT2GhhJm5o1YdSoUl47aQ0WZvHXqeX2KkpQIn5ckNiyAL6oQt9LOZHNEwCwkbCpvAsqlTgmYfpEoCcIgjDL0ptL1J4SZsln6gCvSXjHI+lRWyfUne1lF3bfM1CenumLKzRfGsMuOvQ+nyO7TWfu9YNTwCo8SFCjMrFlAWS/hBpS8NeqaHEF13HRey36XswRjcrElvvxxRTvK66gRrxG1a7tknm/xMDGwmExXTXU6qP6pDD9L+e9ao37Ba+lLovUm0WQIFCvUrUqRNOFMXoj+yo+Hm1kTaL+rAiBRh977kvO+to1rdo77dEHrGHtEfb8Okni2CCSKlF9Ugh/tUrrVQmSbxTY+ZP+8na5Hd73vrhCbHmA1qsSGAMWru0VeHEdl+TgaxlZ5KfhHO/znN2mk95cmrWCOoIgCKMRgZ4gCMIsS24sUOww0eIKVt6m0GGOWXJd77UItWjUnx1FkkAOSPhrVMy0zd7fJDGzDsFmH2pYxi5W0ry/0cWWBqhZHR71tkCDj0CDj1gsgq/PwsjYmGmH0lYdM2Nj5Wz8tSqJ40PElgXI7TTofiqzr6dZpZGg6eI4ru2SfL2AEpRxbRdH/8Dr5EKp26Lz8Qw1a0LUnR7BLjpk36/soH3GydByZZxArTe9tW5thOQbBYyB2UvhKgFvymahbXhWzSl5bRR8MQXXdqlZEybY5EOSQ+R3jczAmWmbvQ8kiS4N4K9WQQLHdMluLXmfbRnqz4lQaDPpXp8d+R4QjnqiGItwMIhATxAE4SAodZmTqirZ9USGxAkhtISCY7uYWZfUW0WMAZvqk8OE52sofhl9wCL9TuVngZJvFrEKDpH5Gv5aFSvnDAZ0thfMZRxiVQ49WwZwnZEnw4U2k9TbRRZ/qo7oIj+pt1RKXfsiPX+9SqjFh+t4ZfFLPSZG/yGa6yl5zcwBFg9mb8HLHo1VabH/FS8gbDg3il1yKew5eqb1Va3yMmd77k8SnqtRfbIX0Dumi2tPPjCy8t7aV1mTUKMKZsom+Xph3xpYGbSEgq27lLpNkm8VSL8zfNp0ZIFGw3lRZE3GdVyKHQZm1sugj8UuuV6GdjSO92VmbBHkCYJwyIhATxAEoYLYpX3VJyWfRKBWJbY8QMM5fqy8Q+qtIvk9xqjTPiuRa7pkNpfIjLIeEbyiH5HQ+CfCruVlS4od3uP216kofolgk4/qk8PYulMOsiRJQu+zSL5eILtdP7jFThxvym14gR9fVCa/y0CrUak9JUygwUdhr4EalokfF0T2eWu6rIJDbpdBoMFH04Ux2h5KHTav7YGIHxug9pQwA6/l0fss7zV7s0Cg3oe/ViXUqqFVKdhFB61KLQfQQ8ysjWO43vrVsEzVKq9CqGM4hOdohOb4SL5eJLrET6DBh6x690++WaDv+eHVXbUqhaaL4+Wfi50mAxsLFNsPrN1H+t0SiZVBMu+XZjVLKRyebCpzPZx4px5ZRKAnCIJwkAyt6zEzNmpYRqtS0BIqvriCpIzcXpK8kwAza9P7fI7M5lLlluefZam3i1SfGGLejdX4ot6T5VguAxsL9L88eOIuQ6jZR+L4II0XxKg5xSazpUSh3aDUY405XXYmGUkbI1ko/1zqMaleFaTl8jiO4SAPVns00jaKXypPJRzSdFGMXT8bmP2BHkKxZQHqz46SfLNA/yv7nivXAsUvUbM6VH6ehl7r/en9FlqVghQdeZI8dD8toVJ/ToRiu0n/y3nUqEzVyhDFjlGCNxn0Potil4lVcKg9JUyoRWPnz/qxctN/0wxszBOa62POtVXlAi5m2qbQZoxZcVcQBGEmiUBPEAThIFCCEq1XJVBD3omoVXAwkt7JZea9Eo41MvXkWi5G0kbvO/IzPOPxJRTCc7zS9LJfYu+6JFbOwS5+oCKn4031LLSZaDUKVSeESBwfpGZN2MsIdhoU2kyK7SZ6/8w8p76YjC+uooZlwvM0lJBMbrtO6s0i/nqV2BK/1x4Db4phZqM3pTC71VuPJ8lenz01LKOEZFzzyJ7mFzsmQMM5UQBCrRotH1bJ7zFA8tZz+mv2nZbsvmeAqhNDxJbua2lQ7DLJ7dBxHa/VQfeTWVzHRdYkZFWi5tQwoWaN1NtFb/rmYKAmaxKRBX7qz4qQbdHJ7zTKQZ+VdRh4LY/kkyi0m7i2S93pEeZck6D90fS0pwK7FrQ/mCZ+XIBQi0Z0iR81IoPrNagfeLUw8U6EI5ZYoyccDCLQEwRBOAiCzVo5yAMvg9D7XBYzI67sj0XySSz4eDWKJmOXvOcpu1UftkZvLEa/TfeTWZDwpgK2+Ai2aNSsCSOfIXk9DdtNsttK5HdObV2cf3A6bWSBhhoemXEKNviIHxtAS6g4llvuSWckbZKvD1/T5Tpg5ZwDyhwdLqpPClFzileYJ/VOEdd28cUU6s6IjLr9vD+pxjGGPy/BRt+w3oR1ayP0v5THsV0CzT5CzRrd67Mjpgo7hkvbuhRVJ4aILPBTtTJE+r0i6bdLNF8WH/bZHKKGFbS4ckBrPh3DJbmpSHKT97pLPomqE4LUrA7jOl6hJkEQhNkiAj1BEIRZpgQkIgv9w/4vPFejMN8/djEHAUmi3Ni62GUSbPKRfH2KJ8auV8lU77VIvl5Ekr1qn8EWH6E5Gs0Xxyl2mfRtyHkNzMfhSyjUnhomssCPlbfJbtMptJsY/RaO5VJ1QhBJkVDDMo7poiVUZFXCMV36XsyNKABy1JBhztUJAvVegNb3Yq4c8AaavPVzodZ9zcQzW0pYeZtSj1Ve1+ivVcntMFCjMo7uIingr1FpvCDG3OuryvdNvV0ccz2olXPofTZHoc173a2cQ/PlcaysV9EWB6JL/CgBGSNlk9uhT7rdw9BnXI0qKH4J2S8P/ithDNhYRYfIAr8XOKYskm8VqD0lTGJFkOSmAqm3xO+Bo43tytgVmD2rxDEJ0ycCPUEQhFlWd1aEUIuPgU0FSt2mtz7H9aoxTpWkUrntBWbY/ifZkfl+Oh5LH3AvPdfxim0UO00GXi0QbPFRe3qYOddUkd2u0/9yHjM9PIPjr1eJHxMgtiyAlXPo+kNm1EIv/S8PD0IlWSK2LHDUFFgZS/1ZkXKQB4ONxWVo/XCcYLOGVXC8tZQdBrlt+vDpuICZcTAzXtZ1/9e/0Gay+94kWpWCa4OVtyf1/pAVL8MabPKhBmWK7QaSImFmR2ZcJ9xXQKJqVYjEcUEkGcycg6M72LqLXXQwsy7xY4LD7qMlVNSQjJm18UUVak8Li0BPEIRZIQI9QRCEWSdhZmyvaMgkEgSSMngyGJWRZG/K3/5rlbb/v75ZbyxdCaT9Ki22P5yi0HZgVRBHU2w32Xt/iugSPzWnhJl/YzVm1sbM2iiajBqRUQIyVt6mb0Oe9DvFSRfESb1dJLYsgFR5hfUOmurVoXKgYxcddv68H9knUXtqmGCzRs8zWdLvTj/TaRccioWpBf/ZHTrhbSWiiwMUu0yiiwNEFwcwUhZtv01Nuj9lbHmA2jPCSEDyjQKpt4s4pZH3/WCgB17RGFnz7tf3Un7E7YIgCDNBBHqCIAizLLOlRPMlMRo/FKX3hZx3IjlYfCJ2TABZk7ALXosANSR7VTjl0aMDfcA6KoI88FozbP1+70E5VnarTm6HTmShH61KxReVMZI21g4Hvcek0G5OuVWD3m9h6w7hef4Jp4UeaQINKjVrwsOmZLY9nCK2NEDtaWFcILu1ROa9QzCd1YGuP2bxJRTc/YogaQmVhTfX0v5oekQ/QyUk44vKlHosAg0qwSaN2lPDpDcX6XspP2qAN2T3PQNo1SpNF8ZG3Nb/cv6gVIMVKo+LhFOB7RXcaY6pu7ubl156qfz1yiuvkMlkALj99tu54447JtzH3Xffza233jqp4/34xz/mlltumdZY99ff389//Md/sG7dOnbt2oXruixYsICrr76av/iLv6CmpuaAj3EoiUBPEARhlhX2GHQ9maX+rAj/P3v3HSdVdT5+/HPv3Ol9+7K7sDQF7IogKKKxYkMsRGPDoCYmMSa/tG++RsUYjSYxX40mxmhESGKiGCMqiSUqiEpVVKQobYHtdXq9c+/vj8surLTtO7t73i/mxe7MLWfm7szc555znqe8PJdEXRqTQ8aaoxCpSJJoyBjJIDRINaskP82gpXXsxWZ8R+3tDYhVp6j+d7Afn8ngpmfYkw0z2TMb1IxeLGveAWpnDEJmrwnXSAuuUVZsBWaSTSrV/w6iuGQKTneTc6IT92grkR1J6t4J9+8FCx0StSq+o/fvbSs+x0Nke5LQ50Y23NyTHDhHWA+wEahfHjlsoJZqyZAKZKh9K4StqP17+svDVIWBR1JAscko3qE9t62oqKi/m9Bpa9asYebMmdTU1LS7/9NPP+XTTz/lqaeeYvHixUycOLGfWth9ItATBEHoA5GtSWK7Ungn2LAVmsm0qNQvDRv13b7EM85G8dnG1X81mkGNakR3pWj+KCau/g8wJrtM6PPBm4TFmqfgOdKKfZgFa66CltaJ7U5R/VGQaIXRK+YsN3r13KONYMk10oprpJWdzzf3ayFxIwFPmqKz2ve0yWZjbqXnSFu7+/etg5hJaZgsMp4jbB3rldSNiwjhLUma10Sx5Ciilt4A0ZbAqdSM1a8g76l/abIZSXfkPeVTrFYrfNzx7Q7mZCyjRo2itLSUd999t8vbeP311xk2bNhBHy8tLe3ytgGqqqq4+OKLqaurQ1EU/t//+39cdNFFALz66qv89re/pbq6mosuuogPP/yQkpKSbu2vv2R9oCd1cHLD9OnTWbp0aYe3G4vFOProo9mxYwcAI0aMoKKi4pDrVFdX87//+78sWbKEaDTKySefzJ133snZZ599wOUrKioYOXJk2++TJ09m5cqVh9zHvHnzuOeeewDYsWMH5eXlHX5OgiBkNy2l70n2cOjEC/KeuWkVf2/eLzGIMLCkgxks/qz/qu0SZ7mF4nM8qDGNeHWapjVRYpWp/ZIFRStSbP1zI+4xVjzjbNgLzaQCKulQ//5tt/bgRnY0gG4E5a5RVlyjrFjzlLYT+GSjavxu2XsCHN6SxHeUHVu+Qmhz5/abSegHLtwuZA1LrglHiQVHqQV7sRnZLJGJayQaVaMGanOGTFIjk9DRkhpaUseRu3/v8FBy1113MXnyZCZPnkxubi5Lly7lzDPP7PL2jjjiiF49B77jjjuoq6sD4Nlnn+XKK69se2zatGlMnDiR2bNnU1dXx5133snTTz/da23pTYPz26cD7rrrrrYgryOqq6uZPHkylZWVbfe9++67nHfeeSxYsIBrr732sNtYtWoVS5Ys4cILL+xSmwVBGPwkGZwjLaQjGdSoCPIGOjWqYXYPrqGbskUib4oTz5E2IjuS1L4VPmxPs57WCW1KHLT0QX9qDUzViEbg03hbyRPFLeM50kbuRCcNH0RINqo4SsxY8xTshWZi1SkCG0W2zMFAcck4Si1Gvc1SC4pdRlN14jVpmtZGiVemSTYdfJ6tJEuYZctBHz8QTZfQ9Oybo9fVNrV2UgwEdXV1/PWvfwXgvPPOaxfktbryyis577zzeP3111m4cCG//OUvKSws7OumdtuACfRuvfVWvvWtbx30cafT2eFtrVu3jocffhibzYbZbCYcDh92ne9///tUVlYyZcoU/vd//xe/388///lPHn74Yb75zW8yY8aMDk3YvOuuu0SgJwi9yFaoUDZrb12t6tf2DiEbCPwnOrAVmKl6NTBkyigMVrmTjOLcDSsi/d2UbpGUPcMtR1mJVaXJPdmBySrT8H6EwGfxTiepGSjUsEbz2hiyIpF3ipOmtTGa18XE+3IAU1wyFp8Ji1/B4jNh9hs/K3YZXddJNqiENsWJVaZJ1KXFHMpB6uWXXyaTMQ7uoZK/zJkzh9dff51MJsPLL7/MzTff3FdN7DEDJtArKCjg6KOP7vZ2MpkMN998M5lMhrvvvps///nPhw30kskkixcvpqysjDfffLMtqDz11FPRNI1HHnmEJUuWcP311x90G3l5eTQ2NvLRRx/xr3/9i1mzZnX7uQiCsL8vJ3iQzdl3xfRQXCOtJOrTJGrF2eRApDhl3Hvmd1m8Jpo/ihH4JLt7fSQZFLcJs1ve878Js0cmd7gbVxoU594eSdfIvUlJojv3ryU4GDWuiuI/3kHeJCd5k5ykIxlMFonq10KdHoJpLzHjHGHB7DbRuDJKJqGRN9mJs9yKltJoWhMjsq2HkgENUZJsJAay+E2YfQoWv8kI7nxK2/eBpuqkAxlSAZVgVZxkk0q8Ot2nCYIyyGTIwjl6WdimnrZ8+fK2n6dPn37Q5fZ97L333hOB3kDwyCOP8OGHH3LkkUfyk5/8hD//+c+HXaepqYlkMsmkSZP26zk866yzeOSRR6iqqjrkNubMmcPChQupr6/n7rvv5tJLL+3w/ENBEDou1ZJhx1+bsPhMvVJ3rbeFNifIP9WFe4yV8FbjhM+ap2DNV1CcspHsojJFqklcas4WkmzMV/OMs+MoNaNnILI9Sf3SMPGavv8bNNkkPONsuEZZUZwyskUmk9BQoxpqNEMmpiFbZcxuE4pbRnHKbd9HuqajRjVj6HAkQ2hHglQoQ6ImTcnFvrZhqGo0Q7qbxesHDB0ySQ2TVUbP6JhdxmtQcqGXnYtaSAcO/V60+E04R1jwjLdj8e4NmtWohi1fwVZopvmjKNY8M0VfcbOzST3sNgWQrdKeIG5P75xvT3Dn3lueJpPQSLVkSDaqhLckSQUypFpU1Ig2JC5SDGRz5sxh06ZNtLS04PF4GDNmDGeffTa33nprtxOjbNq0CQCv13vIbKHFxcV4PB5CoVDbOgPNkAr0du7cyV133QXA448/jsXSsfHUfr8fRVFYu3YtsVgMh8PR9lhrApjDpZV1Op385Cc/4Qc/+AHr169n0aJFzJ49u2tPRBCEQ1IjmvFFPgAF1sex5ikUfsWNrdiMq9yC4jShazqZuIbiNJEOZ6j4W3N/N1UAbEUKRWd7MLtMxGvT1L8bIbItiZbun7NIs9dE6UwfskUiuiNJdGcKLa1jshkBneKUsfgVtKROOpwhVpVCDWttReLVqAaaMecor9xEc0UcXTOeS2uQ11vF67PZ9vlNbT/nTHSQO9FJJqFRfLaHXS+2YPGZsOYpmF2twbMJxWUE07JZQlN1ItuS1L0TwlZgJn+qq11pB12H2v+GKLvcR8HpLqpeCYpA5EvMXhP2YjP2YcatNeDWdZ10SCMdUIlWpPYEc0Zv3aHqG/a3wTZHr6ctW7as7eempiaamppYtWoVDz30EA8//DDf+MY3urzt3bt3Ax3L3FlWVsaGDRva1hlohlSg961vfYtoNMp1113XqUxAdrud8847jyVLlnDuuefy05/+FL/fz0svvcTDDz+Mw+HgggsuOOx2br31Vn7zm99QU1PDvHnzuOKKK5Dlwd9FLghC59QtDSPJ4DvKTnhLguCmMPHaNGiQe4qTnOMd5E9z0bQ6ipbM3hOZwcxkk/AeZSfnJAfx2jTVS4KkWvqvF8bskSk614Mtz0yyWWXXogCZeM/+bWiqjqxI6APzGkqPaV4bo3ltDGueQtllPvJPdeE5woZsllDjGmo4gxrRiFWmUCMaqWaVeM3e+V6JWpXAp3EcpWZyJzmxFZjJPclJ7klOql8LUnyuh2EzvNQvD6MOlV7TAzB7TdiHmXHsCexaL3glG1UiW5MkGlRSLSrpYEbMpesFrcXOW1mtVqOERC8bNWoUl112GVOmTKGsrAyA7du3889//pMXXniBRCLBN7/5TSRJ4pZbbunSPlqnbLlcrsMu2zqSLxIZmHOtB0ygt2jRIv7+97+za9cuFEWhqKiIqVOnMmfOnA4Fbf/4xz/497//jd/v5ze/+U2n9//www+zcuVK3n///bY6G2CUf/jd737XoUw8drudn/70p3z3u99l06ZNPPvssx3K1ikIwhCjQ+1bYerfj+x3RbppVZRMTCPnJAe2PIXd/wr0TxuHEHuxmbwpxpd9JqFh9ipYvCb0jFEuo2lNtF96X2yFCs4RVnJOdLS7v/o/wR4P8sCoO1cwzU3xuR62P9N0+BUGuWSjSv27EQqmu9qGvkZ3Jqlf2rETwlhlmlhlAHuJmdKLfQDYi8xUvxai4HQX5VfnEK9OE96aJLIjOegv6ph9pragzl7cPrALbUkSr06TqO3beXS9SUNGy8L5cK1tag2yWt19993MmzevV/c9a9Ysbrjhhv2mNp188sl89atf5dVXX+Wyyy4jnU7z/e9/n0suuaRLhdoTCSP7b0dG9rUGt/F4ds+1PpgBE+ht3Lix3e9bt25l69atLFy4kEsvvZRnnnkGr9d7wHVbWlr43ve+B8ADDzxAQUFBp/c/ZswYVq9ezU9/+lPeeOMNEokEJ5xwAj/72c861JvX6pZbbuFXv/oVlZWV/PznP+fqq6/GZBpcqbcFQegZBxx2pEPg0ziSDDkndTzbsNA1zpEWis72kKxX0XUdSZGIViRpblCJVabI9NPQMMdwCyUX7P+dp8a1XivEHdyQINWSQcq+c9N+E9qcIB3O4D/Ogb3Y3KUgJFG/N/FSskkltivFzn804x5rwz3aSuEZbgrPcJOJa4S3JLCkTVDRg0+iH7RmvzT7FOxFCvZhFhSHjK7pJBpUQl/sE9j10zDooW737t14PJ623/uiN+9g5/GtLrroIu6++25+9rOfEYvF+POf/8wdd9zR6f3YbDZisRip1OEzcieTxlx5u31g1knM+kDP4XBwySWXcNZZZzFu3DhcLhcNDQ0sW7aMP/7xjzQ1NfHSSy8xc+ZM3nzzTcxm837b+NGPfkRdXR1TpkzpVsacUaNG8dxzz3Xn6WC1Wrnjjju49dZb2bJlCwsXLjxkaldBEIYoGWz5Cia7TCamkWxS2w1PshWZSTaKzJy9yXu0jfypLiLbk9S+ffhacX1J2nN9UFN1ErVpHKUWEo1pGt6L9Go7RaHv/cWr0sSrgl1eP/ekvT2y0d0pI/lSrkL4iwQmq4Sj1Oh1MNllfMc68Hg8yCPS1C+NZPVngKTsyX7ZmvnSu6ecgXdv9ks9syew25wgXp0iXqeii8AuK3g8nnaBXra4+eabufPOO9F1nWXLlnUp0HO73cRisQ4Nx4xGo0DHhnlmo6wP9KqqqvD5fPvdf84553DbbbcxY8YM1q1bx7Jly3j88cf57ne/2265d999l6effhpFUfjjH/+YFZku586dy4MPPkhFRQX33nsv11577QEDVEEQhqaciQ58x9oxWfZ2nWSSGuEtSSLbk8hWCedwCw3vD8w5AwNF3mQX6WCG2v8evtZqr5JoS/YhmSRiVam2k/94TRp7kZnAhjgNy8Xfw0Bi9pkovyqn7ffQFwlGfDUHxW687xW3jKvc6EXZ9WILZpdM3hQXeMBklSm7zEfLJ3Ga10b7fY6aZDIuPjlKLFjz92TBdO+TYTRmJEtJ1quEvzCyX6YDqpG5dYjGdRldIpMliU/2lY1t2ldBQQF5eXk0NDQcNuP9wZSWllJXV0dlZeVhl21NwvLloawDRdYHegcK8loVFhbywgsvMH78eFKpFI8++mi7QC+ZTHLLLbeg6zq33347xx57bB+0+PDMZjN33nknc+fOZceOHTz99NPdyh4kCMLgIlskTBajIHV4SwLFZcI1yoLnSFtbpr5EfZrQ5kQ/t3RwC6yP4T/OgXuslfCWztU2s+YqWHJNmGzynpvU9r8ONK2Okag9TO+YBO4xVnImOrB4ja9rXdPbUseD0esb+jxB40oR5A00eqZ9hOM5wkZwYxzZKuMebSV3ojE0O/RFgmSjSrIeko1B/Df5MFklJFki5wQHrlEW6pdG+raUhwTWfAVHiRHc2YrMyIqRjCZRmzZKGQRV0i0ZUoHMoJlXJ2QHXe/e39OECRP48MMPCQaD1NbWHnSeX01NTVtSmvHjx3drn/0l6wO9wxk1ahTnnHMOS5YsYevWrVRXVzNs2DAA7rvvPj7//HPKysp6fQJpZ11//fX88pe/ZOvWrdx3333MmTOnW+OfJVnKit5KofVY0O5kTOh/A+m4NK2OYc1X8J/oILozRao5Q3NznOYP4211uFKBDCAN+PlS2Xxcmj+Mo3hMFJ3lIffkDMkWFckkIZkgtD5BpGLv/A6z14StwOh1c5Zb23oztJRGJqGTSWpkEhrpiIY1V6HobDd1b0dINakHnYOUP9WB92gH0d0pZCVDeGsSR5kFa45CJqVR/UqIZFPr0L2e/VvI5uMyWGSiOlufbGTYhR4cwyxoqk6qWcUzfv+5QAWnuVDDGUKbUjSvi5LIJHGOthKvTmOyy5TO9BHaGKdxVazX5rSZvSYcJQr2Ugv2YjMmq4yW0ojXpmleEyVWmT5o5tnB/nfU+n7pDFFeoWvq6+tpajKSQbWe73fWaaedxl/+8hfAKOPw1a9+9YDL7Vvi4dRTT+3SvvrbgA/0wIjMlyxZAhhDPVsP/IMPPgjA2WefzauvvnrAdVvH3kajUf7xj38ARrfwV77ylV5ts6Io3HXXXVx//fXs3r2bJ598ku985ztd3l7uCB9muWN1AYXeJckSvmFukKS2+lNC/xtox0X9QiL3TDfjrnJRtzSCrn6pzb5+aVaPy/bjom2HeFjCPsyOI09Gy+goThMFl5qoXBxAtkr4j7PjLDMu1KnRDPGaNLFtaVLt5lXKe26QbpQpOMNN7rV+AOqXh0nUtZ9rZXJKlEz1oWV0NCmBr9hOTvHex+vfi+B2u3G7e+d5Z/txGUxSn4ESlHGNtjHqfA/o0PBBBMUpk3OiE0u5A8Ulo9hkgqVx5KCFeLWKfYwLszdD89oY5qiJYSflU3SsTstHcaMcSzfJdglboYIt34ytQEGxG5lmk80qiXqVWEOaVLMOmoKCgsdrh0Pn0hi0JFnCUWCB7f3dksHvT3/6U1uP3vTp07u0jUsuuYRbb70VTdOYP3/+QQO9Z555BgBZlrnkkku6tK/+NigCvYN14bZm05k/fz7z588/5DYaGxu5+uqrAeMPp7cDPYBrrrmG+++/n82bN3P//fdz0003dXlbTTsDKJKY55cNJFkCXadxZ0CcIGWRgXhcAnVBSmZ6MY1OU/tGeFDOZRkQx6Wi/a+2QoXSmT48Z8hIMiRTcaoXNxDZkULvYG6Muo1NWHIVymb5CAXDhCqSKA4Z/4l2bMVmmj6IsHNZAs8EG6ZSmVBo74l76IsEDWuj+wf/PWhAHJfBpAJYDvZhZkou8qIXp4k1qyihDLXvhtA1KD7Xg1QC7vF29JBMihiNmyMEKhI0VoCyUib/dBfOYy2kHGka34+S6UJJBnuxGe+xNpzDLUCGWFOSprVp4pVp4nXpDv+NDyWSLOHNOA6/4D50XUbTs29Iht5PbaqoqKClpYUTTjjhoMu8+uqr3HvvvYCROfNgyQzPOOOMtt64HTt2UF5e3u7xoqIirrnmGv7yl7/w+uuv88ILL3DFFVe0W2bRokW8/vrrAFx33XVdKuOQDQZFoLdv6YWuduP2B1mWmTdvHldddRU1NTU8/vjjXd6Wrunokvgyzha6vueYiBOkrDLQjkuyWaX2v2GGzfCQP9VJ/fu9m1Gxvwy04xKvSVP1agBrnoKW1glvSXZ6DpKuQbIpjabq5J/qwneMHcVjQk/rZJI6xed7UGMaWlon8EmUWFWKnBMdOEdYCXwWR0v1/h/CQDsug0G8NkWsOoXFa8JeYAzhLDrbQ7LZiK5Cm+J4Ju/NhJgKZdqOTzqcoXpJEPdYK/mnuhh5g414TYrmdXHi1Ye+CGFyyrjKLXgn2LHmKiSbVOqXRYZE/b6e0s1pYwPee++9x9atW9t+37x5c9vPH3/8cVvvWKs5c+a0+72iooIzzzyTKVOmcPHFF3P88cdTUFCAruts376dF154gRdeeKGtc+c3v/kNJSUlXW7vfffdx2uvvUZDQwNXX301a9eubauT/eqrr/LQQw8BkJ+fzy9+8Ysu76e/DfhAb/v27bz55puAMV9v34Pekcma5eXl7Ny5kxEjRlBRUdFbzTyo2bNnc99997F+/XoeeOABrr/++j5vgyAI2Su2O2UUZZ7mwpqnUPdumFSTMR5QtkqgIxId9AOj2HX3hsfpKlS+HMA5woJsllDDmpFgRwLvBBuSWcI9ykruJCfypxKK20Sy2chcKAxOugpVLweRzBIlMzzYh1nIJDRMVoma14NEd6ahJkA0GcGcI7erwdcqvCWJrdCM72g7lhyFkgu86JqOGjUuHOhpHW3PTTZLKG65LdlPZEeShvcjooxGH8ggkSH75sN1tU1PPfUUCxYsOOBjixcvZvHixe3u+3Kg12rFihWsWLHioPtxOBz83//9H7fcckuX2tmqrKyMV155hUsvvZTa2loefPDBtilfrYqKinjppZcoLS3t1r76U1YHeq+88gozZsxAUQ7czLq6Oq644grSaeMD6dvf/nZfNq9HSJLEvHnzuPzyy6mvr9/viocgCINDa/pxs9tkFAWuTZMOdaxXJrQ5QbJJpegsNyOuzNlTqFvDNcqKJEukQxlilSmj1p4GaHsudOlGz5Gu6agRjXRQZL/LNsn6AwduLR/HAWheE2ur5yfJErVvhfq6iUInKbm5XV5XUsAzBrxHSMhmiOzSseVLxOokEiE3Sg5ILg/JZkhEQLI7UL6UuyVvIrhHGsPvdr0CZo+GLdeowycrICvGfmQ7OIran9Q3bzCTSZpR9jwFdU/SC0HobSeddBJ//etfWbFiBWvXrqWmpobGxkZUVcXv93PUUUdx1llncdNNN1FQUNAj+5w8eTLr16/nkUce4aWXXmrr8Bk5ciQzZ87ke9/7HrndeD9ng6wO9G677TbS6TSXX345U6ZMoby8HLvdTmNjI0uXLuWJJ56gsbERMDLoDMRAD2DWrFmccMIJrFu3ru35CIIwOEgm8J/gwHeMHZN179wHXdNpWRejeV2sQ3Nekg0qO59rwTXKine8DfswCy2fxkk2qtgKFZylFjzjbIfMbqfrOvGqNKHPE4S3JQflMNDBKPhZgmhFCrPH1Lcp9IU+5RoJ+RPbz49yDYd0VCe0tf0FGsUB3nESakwnFTQ+Z2QLyGbQ9+mR8U2A8FYIb4cvT/ItmLr/Z4XFB2kZtLRxE3qPpmdnhsuujtR+5plnutVZ4Xa7ueaaa7jmmmu6vI1WS5cu7fCyeXl53HvvvW1z/wabrA70AKqrq3n00Ud59NFHD7rM5ZdfzlNPPdWt8gT9SZIkfv7zn3PxxRf3d1MEQehBkgIlF/mw5ikEP4sT+jxBKpAxgr/jHOSc6MAz3k7g0xjhbUnU8GEiLx0i25JEthk13Sx+E65R1j1pzo2hWCbrwU8cJEnCUWrBUWoh9+QMTR9GCX+RHJRJXgYbNaKhRkRkPlgpjvZBXqzGCODiNTqJRiOQs/jB6gHfBAmnTUJLg2yWkBXjPa9rOloKMmlIhXVkE3jHSrhHQt17OqlA+30mm3Rs+SCbQDIZ2yg6rX2gqaXzUGMa0V1JmtfGkEwSZo/p8DUgBUHIClkd6C1YsIBly5axYsUKtm/fTmNjI6FQCJfLRVlZGVOnTuWGG25gypQp/d3UbrvooouYNGkSq1ev7u+mCILQQ3JOcmLNU6h8OdBueJ6uQvOHMUJfJMg50UHOyU7yTnGRCqikWjKkghnSwQxqVDNqmSkSZq8Ji9eE2WvCZJXQ0jqWXAU9rRvrtGSIVKTIxFrz+UsgQSZuzMsx76m/Z80x4TvGgdljouhMDzknqES2p4hXp7o950wQhK5R45AK6Vg8RsDlKJawFeh4xhjvY9m09wKORYam9TqBL4zPEtmiG0O0DzAywGSDwlMlis+UaFitE6sC2Qq2PJAtEloKJBuQ0al6U0eS9/YMymYgHcPskfEf48DiU7AVKJisMlufahDZNwVhAMjqQG/69OldrpHRUb2ZgKW8vLxDCWFarVq1qtfaIghC31KcMv5j7TR9GDto8gw1rFG/LELjB1EcZWbsxRbMXhPuUVYUl9xuGGYmrrUFgImEhqxIRHakCHwSM+blHca+yRXitcZ8v2SjSjqYwXOklZwTHVT8o5l04MAFjwVB6EU6VL2uY/HreMdKuEZIyCaJyG6dZLOOltBJhUGNQM4wncCuvVketdTBN5tJQM1SnfxJEoVTZdSEjmLb+7kS3mH0AkZ26qTD+6+vNsWxFZvxHePAWba3Vq8I8rpPy9LyCtnYJqHrsjrQEwRB6AzJBM6RVuzFZvS0Udg3tjtFJt73YxO9R9vRVJ3Ap7HDLquldSLbU0S27z1jk2SQ7TJoOrpqLNNTItuS1CtQeKaHeE2a3S8GGHldLrZCRQR6gtCPUi3QsFonulsn72QJV5mELRcCm3XSQbo0zFrPQP0KHVuBjr1AwjNWR1Ykdv9bQ40efv10oH1UF1h/+M80QRCygwj0BEEYEBylZnImOjG7ZUwOuS27pGw2rk5XLQniHm3FM86237otn8RoWtV3JyeSYqTHD21KdPnKt65BJtp7c7JCnyeRlDAF09xoaZ3oziQ5xzsIbxFJWgShv8VqYPe/daw+HddIidwTJHzjIbRFx2IDuQYyh+jJO5BEPSTqdVo+g85EjJm4zranG5FMMOqGvC4VYRf2pyGhZWF5hWxsk9B1ItATBKH/SJBzogN7sRnJJCFbJRSnbJQF0EFLaDStiSIpEkVf8bRf1QSY2v8e+iKBNc8o9hvdlcJWoOAaZSVW2ckzom7yH+9ANksEPov36X47K7ghgWyWyDvFRWhLAofHRN4pTho/6MBlfkEQepWuQqIREo06gU3gGy/hP1rC65NRyiVCX+hoGSOA+3KilVaeI8BeIJFo0Al+AZJEh4Z678viN1F2hb/t9N+aI04dBWGgEO9WQRB6jJHiW2oL1Iw6bnvquWXAMdyCxWtCU3XiVSnMPoXck53Ea9PYi8z7b9AuU3C6m9r/htAzOtGdKdS4htltQkvrJOrTxHalSLXsHW6464WWtp8j25I0rjCClkOVHTA5ZNxjrShOmXQwQ3hrEq2LV62teQo5Jzho/ig2ILIktnwcRzJL5J7kRI1p+I91oDhlghsTJGrSnT4pFASh56kRaFyj0/wRFBypkfEa5RUA5OMk1KiOGjc+ZzXV+F9xgi1XIl6vk3OsjC1PwzFMJlqpE9i0fxbOg8mb4kQ2STR/FCNemyZZL5I29YSMLpHJwvIK2dgmoetEoCcIQpdZcky4x9hwDreguGRMts5N4q550yj+3Brk1b8bJtmsgiQhycY8tXRYIx3IsPXJg9SYlMHklDHZJBS7jMlutMNklzHZJUw2mUxSI92SweZQMNXJqNG9gaFskRh1ffuCqAXT3Gz5Y0OnngsY7S08002qJUPzRwNnHkvzmhjokHOSAwD3aBvu0TYySY3ozpQR9Il06oLQ73QN1Cg0bdKNi2kS2At0bIUSJsueQuiKkTFTjUAooGPak0PFVmCcwDtLJWwFUPWGTuYwgw5sRWacw61Uvx4kuqNvR0YIgtB9ItATBOGgZLOEbDOCJZNVQo1ppAIZ0MAzzkbhGe4Ob6t+eRizx4RsNWq5oQES1L4VQjJJZGIa0V17TyRkq4TZZcLiM+Ess7QL3Nr9bN0/uNTSOpmERiaukUloWHMU3KNt+HLd2I7Taf4oStPqWNt+WqUjRm9evKprJzTusTYsOSajV3GA9YQ1r40Rq0pT9BU3iksm2aASr03jKrfiHmNl53MtpIMiUYsgZBUd4nUQr9t/BIJnLOQeb3w+6rpu1N1TILBJxz0Syi6QSDRCaKtRduFAXOUWo46eCPJ6nMi6KfQFEegJgoDJIZM/1Yl7zP6JTA5k979aiFYkCW5U2ubWaQkdNaGBhlHzzWfC7DGhpTQkRSL/NBeS1H5ISPHZHjRVJ7zFSFrimWDD7DahuGVMlr1fNlpaN4K2PYFbOpAhXqvtc1/7xw+UAEUySRQdpeOaKiMpe9uhhjWj9671rm7kGbAPM5OsV0k1DcyAKFGTZuc/mvGMt5N7sgMtrbNzUQtj5uYZGTlFoCcIA0a0Eqy5OiarMU9Ptug0rtUIV0Dwc3CWGb17hVNlEo1GgfZM3BjSmWyGTBKSTSp+h4xzpEUEe4IwAIlATxAE8k914R5tPejjqaBKOqQhmyWjnltLBi2lU/9upG0ZS46J/FNd2IeZkSQJNa4R250iFcygJTUySX3v/wmdTEpDz4D/ODv2EjOSLKGGM8Rr0qS/yKCGM6TDGmo4QybRA1nedFBjetucwQM93l1aWsdkl42gcYAmptMzEPwsjhrJMOx8L9ZcxZgX6TEdfmVBELJGJg4NK40PovIrIF6rE95hPKalIbwdwtt1HMOMzJ7WHFAcEqY9oxzSEZ2WdRKRHUkKp7tpMEfIxDUSdSpaaoB+wGURDQktC+fDiaybg4sI9ARBoO6dEM0fmVCjmpGEpBPf4WaPjO84B97xNtLBDPVLI8Rr0x3u/WlNltInNGj5KIb/JAexyjSx3T17hTr0eQLvUTa8R9kIfpbo0W33tejOFIm6NMNmeEAHV7mV5rUDZ96hIAgGec8cPbPrwFegYtUQq957v8muY80BxzBjJEZsdxo1orVlPo7sSFLzeqgvmi4IQjeJQE8QhgCTXcKaq2D2mZAtMlpKI7gh0fadr6t0frihBL5j7eSe7ERL6TStidLySTzr56Y1fxTHmq9QfL6Hxg8ixutwKLKRLMbslo25hEmdWGXqgFk5kw0q4a1JfMfY272+A5IOla8GKT7Hg3O4BZNNpvhcD/XLw/1SgF4QhK7RUhCt1HGVybjKdSIVh14+E4dYFcSqdCJbIhSd7SbwSZxUQMU9xkY6LIZwC8JAIQI9QRikrPkKOSc5sBWYURz7T6422eSu9dDI4DvajvcoO2aPTODTOE1rol0uDN4fql8PkT/FScE0N45SCy2fxEjU7v8ETE6Z0ou9WHzGR6Wu6cYQ07hGzWtBEnX7rxP4NM7wy/34j7PT8nF219E7HD2tU/1akIJpLrzj7bhGWXGWWwhvTRLanCBeLTJxCsJA0LASHMN0co+TiFR0/EJNZFuSBrtEwWlG4q2m1dEBlVE4m+lZWjBdz8I2CV0nAj1BGKS8E2y4yq2EvkhgH2bG7DLmWKnRDJmk3q72XGcUneXBPdrYbu1/4yQbBlCE10qDhvejxGtVcic5KLvUT8MHEQKftg/Mck9yIFtkdv2zhWSTChooTpmisz0Mu8BL3VthortT7Xrukg0qzR/FyDvFRTqsEdmW7OMn18M0qF8WIR3WyJvkRJIlPEfY8BxhJO4JrI8Tr0mRjhjDfjPJzg//FQSh94W26PjGyVjzdZKdqB4T/CyBrEh4j7YTHuifZ4IwxIhATxAGEMUtY8tXSDZlDjsHLvBpHOdwS9sJeavGVVHCX3T9y9rsNnoH0yEjycpAFtmWJNWsMuKrOeRPdWF2m2hcFWnrnbQPMxPZlmgXzKpRjer/BCk+zwj2MgnNSCATyqBGNNKRDJHtSSw+EwXTXMSrU4NiqGPLRzEi25K4RluxeE14jjT+rnzH2PEdY99v+XTYeB2CmxKkA2KolyD0t8yeUepSFzpsWj6OD/gRCtlG07M0GUsWtknoOhHoCcIAUnimG8cwS9vv8bo0lf8KHHDZVEuGnc+14Cgxk0kadeWKzvZ0ew5d7X9D5Ex04jvGjv84BxV/byYTG7gBX6olQ+1bIezDzPiOsZNJajSvjWHxm7D4FJrW7D9MSUvpVL0SxJqv4Cq3YCs04xxhQXGZkJX2X5IF09zUvDE4Ehekgxla9gzbqnsnjDVPMZLPjN8/0DO7TfiPcxh/I/9oFsGeIPQz057EyqoYeSkIQ4YI9AQhi0gmo0i5rnPAZB+NK6LkT5WwF5sBMLsOXdhUS+lE9ql9tOv5li63TbZKeCfYQJKIVaZQHDKOUguKQx7QgR5AdFcKxWm8lq2vu2uUcVbkGmnBf5wdPWMUfU817w1Ykg3qfkNXTTYJzzgbeae4ALD4B29ZgmSjSv2yCA3vR7B4FcweGcVjwuIxoXhMWHNMmBwysklcIRaEfrfnK0UevB9JA4oomC70BRHoCUIfk80S9lIzjhIL1lwFxSkjWyRks4T0pRPinc837xdYVC4OAEYmzb4cElhwugv3aBtqXEOxy+iakWkz2Tjw5ujJFon8qS5sxQqyWcZkk0CH4IY4wQ3G8KR4TZpYdQrFaSLZpGIrMFN2uZ/dL7YcMkOps9zaFuQBNK8b/JfPddUorJxs6u+WCIJwMNEq8I7X8R8Ldcv7uzWCIPQFEegJQjdIJpBMElq6Y8knWssRyGaJTFJD14weIOlgkyYO0RHSl0Ge2WfCWW5tS1giKXue9wF6HQcCi8+EZ5yNVDBD4LM4mWiG6K72c+ni1WmqXg62/W72yJR/LRfFIR800LP4TRSeYWSnSzaqNK2OEt3Vs7X6BEEQuiIVgGQzOIpkCqZo1K/o7xYNbWKOntAXRKAnCHtY8xQKTnchWyW0hA4mkGSjl02SjcBGarvP+H9fWlqncnGgXQ/cl+VP3dvTY7IawyMyKY1UY5pEo0pyzy0VyHS/Hp0Mil3G5JBR7DKy3QjM1KiGGtOM4ZYdjNMKprlQI5m23i5dBV0dmEEeQKJeNYafOmUCn+zpcTvM07GXGHMjD5WttHW4Z3hrgtr/hnukrYIgCD2l5m2dknPAUSJh8eukuj6aXxCEAUAEesKgpzhlzD4TZpeM4jKh7Pnf4jNhdptINKTZ/c8AeVOd2ArMtKyPYbLK2ArNWLwdn8wgmyU8R1ppXHHwoXqJhjS2fDPBjXFiVWmSjephs2ceiMkhY/GbUJwyikPGtE9AZ3Lsuc926HH2uq6TiWkk6lSjjtwBasKB0ePoKLFQ+1YIfRDl02h4P0LZ5X5GXpeLbJFAgmhFiob3IqjR9lG2yS6RN9lJ6IsEauTgEbglx/hIje0W9eUEQchOdR/olJ4vMewrEpWv6ajR/m7R0KRlaR29bGyT0HUi0BMGF5m2gM7sNuEcacFVbj3kKqHNRs7peHUaxzALnjE2JLOErEio0QzJ5gxaav/uHi2lkQ5mSIcypIOaUW4gre/X07ev6iVBFLepw7XnZLOEJceEJUfBmqNgyTVhzVHaBXGZpNE7p8aN/5MtKpk9PXZqTCcTN3rwtISGbJVQHCZMTtkIgN0yzhFWSi/1Ubk4SKJ2/wBF3tPzeKgAZyBKtWSofDmA90ibUSNPgpwTHYz4Wg6NH0QIbjD+Lkw2iZILfegaNHwQOcxWjb8T2Sq+KAVByE5qFGre1SmeLuGbAI1r+rtFgiD0FhHoCQOTDO4xVhwlFiQZo6fObQQvB5rvlmxWse7pbQlvS6KrOqkWlUhFqi3te/PaGInaNNYCM3paJ1aZ6lRRcdkm4R5pxTHMjK/IgTJW3WfIpzH8E3nP0E8Z2PP/vj/rGYjuSBKvS+M7yo6t0MiuqWs6qUCGVItK4NM4yWaVVEsGNZLpVC9bJq6TiauwT9KMpjUxhl/px3eMndoDBHptBmHskqxXqa/fG7yFtyTJneykYJob53ALegbsJWZ0DapeDhhDeg+h9VgM5kybgiAMfMkG0DWw+iU6PIZfEIQBRwR6woAhKZA70Ym92IwlT0E2SSTq02iqjp4xkqF8OcjLJDWSTSpaUidRm6bl0/gh63nFKtPEKjs27E42S7jHWlE8JmwFCvYiM0iQas6g2GQkRUJXdbS0hp4xgjVdA/b8/+WfdU3HZJXwTrDjPcpOrCpF7dshkk0q6UDnArpO2ZNtMv9UF6YDlUrQh85JgJbSaVgeIdWk4hxpRZIhuCFB4NMYmcMEea3rA20XFQRBELJVJg6Ks79bMXSJZCxCXxBnI8KAkXOSE+/RdiLbkkR2GpkMFbuMvcTcdmKdaEyTqFVJBYz6Zol6tUcvVpo9MrZiM45hFlwjLUgmiXQkQzqQoX55hGhFEi0JeeUSjRUhdK3zO29aG8NkkToUWPSU8JYkeae48I6z0fxR+zmGrQGmyTF0ausENyYIbkx0er1EXRqO3tsTKwiCkK1i1TreI2Ss+TrJhv5ujSAIvUEEesLAoRvDHB2lZtxjrUiyRCqYIV6VovnDGPGqVI8HRxa/CXux2bgNM6M4Tei6TrJJpeXTOMGNif16wA41R69DNPo0yAOjJyq8NUHOSQ60tE5wUxx9zzRCNaoRq0qRe7IDSYJ4bRpd/VKv5CBK0tIdkW1JOAtSwYFXW1AQhKElsAk8Y3X846FWBHp9TvToCX1BBHrCgNG0NooayWCyy6gxjVhlCjXc8wlCLH4T/hMcOMssmOwyekYn0aAS+iJJvCZNojZ9wOQsA13TmhiyWSJvihPvUTZaPomTqEuTas7Q8F6EwjPdFJ3lOej6bUNTdWNYa6tMUiO4IUFwU7xXjlc20TXY+udGY96lIAhCFtNSRmIWW76YpycIg5UI9ISsIZslnCMtuMfYcJSakWQj62XVq0EjKYpGl4bTHZJk1D6zFShG2QWnCVuhghrRCGyIG4FdXbqtd2swy8Q0av8bxuKPUTDdTcE0155eU5V4dZpEg0p4WxL3KCuhzxOoMW1vjUFZAhlki0T+FFe77ZqsMjknOsg50UHlywHi1YO79ICe1sUpkyAIA0Jom07ucTLOMp3o7v5uzdAievSEviACPaHfmb0mcic6cI227jfsUXGaMPtMncp+2VGKS6b4PA+2fDOpYAY1nCEdzBD+IkFoc8LonRqCUi0ZKl8KIClgLzLjGm3FVmhGccptRd6b1kYPWCsu92QHADVvBIlsTyGZwFZkxn+sHecIK+7R1kEf6AmCIAwUkV2QexxYcxCBniAMQiLQE/qNySYZCVYm2JBMewO84KY4sco08aoUWrrn53+ZPTKOMgs5E53oaZ1d/2zpcF27oURX989C6jvGTv6pLrT0Qfqs9gTqrUGgnoF4VZp4lQjuBEEQso2WAF3XcY+UiNXoJOr7u0VDh+jRE/qCCPSEfuEeayX/NFdbDxFArDJFw/uRXum9A7AVKeRPcWErNKNrOpHtSRrei/R54pOBLLw1ge84O2WX+lHjGukWlVQgQzqiYc014RppJbgpfvBAUBAEQcgqzZ/o5BwnUTxdpmGNRqSiv1skCEJPEYGe0LdkyJ/qwne0nVRQRVYk1JhGwwcRojtSvbJLSYack534j7eTbFCpfi1IvCotgpEuyMR1Kv7WjKPEjK3QjMVnwpqv4J1glBNoWhul+cPYYbYiCIIgZIvQFvAeCYodkUG5D+mARvb1nokzo8FFBHpCn3KNtOI72g6AxauQqE9T/Z8gmXjvfbTkn+7CM9ZG06ooLZ/ExadYd+n7D+nMOdlB7klOIjuS4vUVBEEYICxeKDpdwmSTCO3QxDw9QRhkRKAn9BlbsRmzx0R0ZxI1ohGvSxPe0ruBgaPUjHecnbqlYUKbezhjp9BG2zP81WSXAXFJWBAEYSAoPlNCUiC4RaP54/5uzdAi5ugJfUEEekKfcI22UnSWG03VMVlkGldHCX+R7PX9+k90EK9JiyCvlzlHWNB1nUStSLoiCIIwEFj8Rlmj4BcazZ/0d2sEQegNoqyv0OtsxWaKznIT3pqk4i/NaKpO3iRnr+/X7DPhGGYh8Fm81/c1lFn8MvYSM6mWzJCoNygIgjAYqFEj46bi6O+WCILQW0SgJ/QqR6mZ4nM8xGvS1L0TRkvr1LwRAoxevt7knWBDjWtEd/R+z+FQln+aG4Dq14L93BJBEASho7QUaEmw5Yuhev2hdehmNt6EwUMM3RR6hSXXRP6pLhzDLMRr09S+GWqbi2eyGB8i1lyFyLbeCcLMXhOecTZCG4du4fO+0vr6ml0yaki82IIgCAOCDLIFVDHoRRAGLRHoCT3OVqQw7AIvalij+t9Borval03wjLcBoLh7tkPZ7DNh8Zqw5Ch4j7KhRjSaPxKp/ntb7TthRl2XQ85EJ1Uvi149QRCEgSB/EiBB00ciVXJ/yNbes2xsk9B1ItATepTJITNshpdko0r1v4P7z9mSQUsZXyot63omCLPmKxRMc2ErMGq5aWmd6M4kjauibfsSeo8W09DSOorL1N9NEQRBEDpAVsBZKqFGIF7b360RBKG3iEBP6FEF01zoqk7N66H9gjyTTaLgDDfOMgs1rwdJNXcvDb/JIZM70YFnnI1kkxFYJhpVMjExfLCvZRI6Jpu4CigIgjAQFE4zPq8bRW9evxE9ekJfEIGe0GMks4RzhIWG9yNoyb1fHrJVIucEB96j7OiaTvVrQWK7u56GX7ZI+I+z4zvWga7qNK6MGpk1RXzXb9RIBrPL3N/NEARBEA7BXgj5kyVMVolYrUaivr9bJAhCbxKBntBjTBYJJDDZ9s69k8wSpRf7UNwyLZ/ECKyPtwsCO0OSwXuUnZwTHUiKRGB9jJaP42J4ZhbQUjqIi4CCIAhZyVECOcdLKHZAh5YNGoGN/d2qoU3XJfQs7D3LxjYJXScCPaHHqFEj+UnuyU5co62kgxmseQqyVaLyXwFSLV0fqukeYyV3khPFJRP6PEHT2hiZqOjCyxayWWrLqioIgiD0P1s+eI8wyifIZgld04nu0mn4CBA1TwVhSBCBntCjmtfGSLdk8B/vwJqnEK9KE96WJNPFXjxHqZncyU5s+WYiO5JU/TtKOtC9uX1Cz7PkmETPqiAIQhbwHwueUXuCO10nk4BwhUbzp4gpDllEQ0LLwqEw2dgmoetEoCf0LB2cI61Y84w/LfM4o56dGteo+FvT/lk4D8Bkl3CUWvAcacNRatTh2/1SC4lacQkyG9mHKZhsMtGK1OEXFgRBEHqHDOWXSkgmiUxKJ/C5RnCzURhdEIT+EY/HWbFiBR9++CHbt2+ntraWaDSK2WzG5/MxfPhwjjrqKCZPnszYsWN7fP8i0BN6lNkj4x5tpWFFhESdiuKQKD7XC4B+kI44Z7kFzzgb1lwjYJDNxtWkRH2a6teCIoDIZjIUn+cFHeqWhfq7NYIgCEObbJQY2rVYjLAQhP4SiURYtGgRf//731m+fDmpVMfOY4cPH85ll13GNddcw4knntgjbRGBntCjbIVG5sXQxgRa2viiycQ1tKSGo8xCsklFS2jIZgn7MDP+4xzYCs3Ea9OEtyTJxDXUaIZ4TZpMXHxRZTUFyq/KQbZINK6IoiX6u0GCIAhDmAbJRrDmATJimGaWE+UVBp+qqip+/etf88wzzxAOh9H1/c9j7XY7fr+feDxOMBhE0/a+UXfu3MnDDz/Mww8/zMknn8wPfvADrrzyym61SQR6Qo9S3CbUuNYW5AFUvhyg+FwPJRd491s+Xpum8uUA8equl1sQ+p5sgRFX5WCyy7SsixH4NN7fTRKEIUfJze21bUsSmHwelByJA5yrCIfi3/+7rsdIgNsJ/gMnwArWpCnMT+A5xkpol7X7uxs9rNvbyBb66vX93QRhkAoEAsybN48nnniCVCqFrusoisJpp53GKaecwqRJkzjppJMoLCzEYrG0rafrOsFgkC+++II1a9awevVqli5dyu7du1m9ejVXXXUV9957L7/+9a8577zzutQ2EegJPcqaq5AOtR+jmWrJsPO5FhS3jDVXQTZLaGmdVEuGdFAkVhloZBuUX52LbJFoWhWl5WMR5AmCIGSD1ikSkql/2yEcniivMHiMHTuW5uZmdF1n6tSpfO1rX2P27Nnk5eUdcj1JkvD5fEyaNIlJkybx7W9/G4Dly5fz7LPPsmjRIj777DMuuOACHnnkEb7zne90um3y4RcRhI6RLRKOMjOxXQcei6yGNaIVKcJbkkQrUiLIG4Bkh0z514wgr/69iAjyBEEQsoR/TILC4xLoOoSrzP3dHEEYMpqamrjgggtYuXIl7733Ht/61rcOG+QdyrRp03j88cfZtWsXDz74IAUFBTQ3N3dpWyLQE3pM3hQn6BDcLCZrDVYl53uQzRJ174QJbRDHWRAEIRvIioavPI0kQ/PnFrSUOL3Ldq1z9LLx1hV1dXW8/PLL3HHHHZx99tl4vV4kSUKSJObNm9ehbSQSCRYvXsxtt93G5MmTycnJwWw2k5uby5QpU5g3bx61tbVdat+XlZeXt7XvULfy8vLDbuvDDz/klVdeYdKkST3StlYOh4Mf/ehH7Nixg69+9atd2oYYuin0CHuxGe94O/XvhkUh80HKmq9gzVeIVaYJf5Hs7+YIgiAIe2iqTLhawVWskjsuRc6RKdAhFZGp/dguAj+h1xUVFXVr/U8//ZTTTjuNcDi832PNzc2sXLmSlStX8n//9388+eSTzJ49u1v760knnHBCr27fZrNx5JFHdmldEegJ3SdDweku4rVpghtFL89g5TvaDkD90v0/hAVBEIT+1bjRTqAig7skjcWhodh0LG6N4adFCVRYCFSYQRMBX7YYzHP0Ro0aRWlpKe+++26H1wmFQm1B3qmnnspFF13ExIkTyc3NpaGhgRdffJGnnnqKUCjE1772NdxuNzNmzOh2W2fOnMkvfvGLgz6+b/KUgUgEekK3OcssWPwKuxa19HdThF5kK1TQVR1V9NgKgiBkJTVmomXL3kwsVr9K0XFx/KNS+EamSAZlmj63kgqL0z+hZ911111MnjyZyZMnk5uby9KlSznzzDM7vL4sy8yePZu7776bCRMm7Pf4ueeey4wZM5g1axaZTIbbbruNLVu2IEndC0x9Ph9HH310t7aRzcSlHaHbnCMspAIqySa1v5si9CLZKqOlRJ51QRCEgSLZorBzqZPaT2ykwjJWr8awSXFKp0ZwFIiyRv1Jz4K5eAe6dbVH75577uGCCy4gt4tlX6ZOncpzzz13wCCv1cyZM7nssssA2LZtG+vWrevSvvpKOp1m48aNbNy4kWRy/ykviUSCH/zgB5SVlWG325kwYQKPPfZYj7ahS4FeRyYvSpLEGWecccD1B+pky7/+9a8cf/zx2Gw2ysrK+OEPf0goFDro8nPmzGm3j9dee+2w+2hdds6cOZ14lv3LXmwmXiO+MAY7WZHIJEWgJwiCMLDIxBvMVK92smu5k1iDCcWmU3hsguGnh3EWHThTtiBko317Cbdt29aPLTm8f/3rXxxzzDGceeaZB+x5nDVrFg8//DBVVVUkk0k2b97M7bffzu23395jbejzHr1PP/2UgoICLr30Uh577DFWr15NS0sLqqq2Tba85557OPLII3n++ef7unkH9fOf/5zrrruOTz75hGQySWVlJQ899BBnnHEG0Wi0Q9u46667ermVfc+Sa8LiV4jsEF8Ug51kgkxCDNsUBEEYqLSUTP2nDiqWOgnuMiOZIP+oJN6RIsGWMDDs2zNmMmV3wcjXX38dXde57LLL9pvrt2TJEl5//XUASktLmTVrFiUlJei6zmOPPcbKlSt7pA3dGqR966238q1vfeugjzudzv3uG4iTLTdu3Mg999yDzWZrSxu7a9cu7rrrLtatW8e9997LAw88cNg2rFmzhpdffplLLrmkS88hG3nG2lDjGrFKEegNehJkYiLQEwRBGPA0meYvbDRvtVB2ahT/qBSpsEy8UdTf6ys6oGfhIJksbFI7y5Yta/t5/Pjx3d7eu+++y7HHHsu2bdvQdZ3CwkImTZrE1VdfzcyZM7s1B/Cjjz5CkiROP/30/R6bP38+AEcccQSrV6/G7XYTDAaZOnUqmzdv5qmnnuKUU07p8r5bdSvQKygo6PQExoE42XLRokVomsavfvUrbrvtNgBOOeUUTj31VI444gief/75wwZ6eXl5NDY2ctddd3HxxRd3+/lkC0ephejOJIjz/0FNccpIkoQqAj1BEITBQ5OpWuWk7NQohccliNWrNG2xkkmIFA5C9vnkk09YsmQJAEcddVSPBHo7duxo93tFRQUVFRU8//zznHrqqTz33HOUlJR0adv19fWAkYV0X5qm8d///hdJkrjttttwu90AeL1evvOd7/Dtb3+b999/v0v7/LI+fycPxMmWVVVVAPtlDyopKWHcuHFtjx/Kj3/8Y8D4I33xxRd7vpH9QFLAkmMiUSuSsAx2juHGVd5EvTjWgiAIg4mWkqlZayeTAkeBStnUKPZcMe++t2lIWXsDYwTevrcDJRPpS8lkkptuuolMJgPA/fff363tWSwWLrnkEh577DGWLl3KunXreOedd7j//vspKysD4P333+ecc84hGAx2aR+NjY2AUQdvX5988klbjo8LL7yw3WOtnVKVlZVd2ueXZW1+3TPPPJN//vOfgBHsnXjiif3WloKCAsDoLt63V7C2tpbPP/+8Q0Uiv/3tb/PQQw9RV1fH3XffzaxZs5DlgX3FzFZgRpIlEnXiC2EgsJeY8Rxpw5qjICmAJIHxDx1IhzIkatOkAhnMbhnFKZNoUIlsS+I50o6u60QqxDwOQRCEwSYVVti93I3Vq1J0YpzC4xPoWoJ0Mk4kYKWl1olI1D60tAY7re6++27mzZvXP40BvvOd77B27VoAbrjhhm5Pg1q9ejU+n2+/+8844wy+853vcMUVV/DGG2+wadMm7rnnHn772992eh9WqxVVVdsCvlat9QVLS0sZMWJEu8dae/dUtWcurGftuzabJlteeumlAPzoRz/il7/8JStXruSFF17grLPOIhqNcuWVVx52Gw6Hg//5n/8BYMOGDTz33HO92eQ+YStQyKQ0UoFMfzdFOAT7MIVRc3IpvdiHe6wVs9+E4pAx2SVMVgnZKmGySThKzOROdFJ8toe8yS58RzsoOtPD6Ll52Iv2ZFYVHXqCIAiDVjKosPt9J+FqBTUhYbGp5A6LUn50I2aruKjbk1oLpmfjDWD37t0Eg8G2209/+tN+e61++ctf8tRTTwFw8skn8/vf/77b2zxQkNfK7Xbz/PPPt5WK+NOf/kQq1flcFK1B3KpVq9rd/+qrrx507l5zczMA+fn5nd7fgXSrR2/RokX8/e9/Z9euXSiKQlFREVOnTmXOnDmdKpJ4INk02XLixIncfvvtPPLII/zv//5vu8eOPvroDmfT/OY3v8lvfvMbqqqquOeee5g9e3a/B7HdYSs0k6xXs3/m7hDnnWDHZJOJ16ap/ncA7RCfVdYCBYvPRDqYIRXWcJWZcZRa0HWoezvcd40WBEEQ+oWWkmnaZAcgk+MkZ1gIf2GM4ROaaKlz0Fzt6ecWCn3B4/Hg8fT/sX7iiSfazr3HjRvHv//97wMme+xpXq+Xq666it///vdEo1HWrl3L1KlTO7WNM888kw0bNvDoo48ya9Ysxo8fz6uvvsrbb78N7D9sE+Czzz4DoLi4uPtPgm726G3cuJEvvviCRCJBJBJh69atLFy4kK985SvMmjWry2Nae2uy5fr164nFYsTj8baJlrNmzWLatGmHnWf38MMP84c//IEJEyZgNpspKiritttuY/ny5R1+I9hstrY/1s8//5y//e1v3X5e/clWaBbDNgcAfU+Ha9Oa6CGDPIBkvUr4iySJOhUtphH6PEntW2ER5AmCIAxRzdUedm3MJZOWySmKMfLYOlz+eH83a8Dr78Loh7pli7///e9t2f1HjBjBm2++SV5eXp/tf998Ih3Jx/Flt912GxaLhfr6eo4++mjy8/OZOXMmuq5TWlralo9kX2+88QaSJDFx4sRutb1VlwI9h8PBVVddxZNPPsny5ctZt24db7zxBnfccUdbN+dLL73EzJkzSac7Fwhk82TLW2+9lQ0bNpBKpaipqeF3v/vdIbt+D+Smm25i+PDhgFGbr6fG4PY1xS2jOGSRnGMAiFWl0HWdkou8FJ7p7u/mCIIgCANMOmmm4rM8AvV2TIpOXmmov5skDHIvv/wy119/PZqmUVxczFtvvUVpaWmftkHvZv2LsWPH8pe//AWHw4Gu6zQ1NaHrOj6fj2effXa/0m61tbW8+eabAJxzzjnd2nerLg3drKqqOmCAc84553DbbbcxY8YM1q1bx7Jly3j88cf57ne/2+FtD8TJlp1hsVj42c9+xi233MK2bdt45plnuOmmm3p1n73BVrAnC6Po0ctqRed4sBcZb3NJknCNslD3Tj83ShAEQRiAZBzeJLoODbv6f0jfQKfrWVpHLwva9NZbbzF79mxUVSU3N5c333yT0aNH93k7Nm7c2PbzsGHDurSNK6+8kunTp7NkyRJqa2spLi7mkksuIScnZ79lP/30U772ta8B8JWvfKVrjf6SLvXoHaoXq7CwkBdeeKEtSn300Uc7vN2BOtmys2688ca2mhq/+MUv+mSfPc1WqJAKZsgksuATQTgo92gritNEojZN7dshtv25qb+bJAiCIAxANmcSi1Uj3GwjGrT3d3OEQeqDDz5g5syZJJNJPB4Pr7/+OkcddVSftyMYDLYlTnQ4HN0aSllQUMCNN97IT3/6U+bMmXPAIA+MWuLz589n/vz5PTY/slfKK4waNYpzzjmHJUuWsHXrVqqrqw8bCQ/kyZadpSgKd911F3PmzGHnzp38+c9/5tZbb+3WNiVZ6tMi7PYSM4mGNJKcPWO5s4VxLMiK1ya0OY5nnJ26tyOoUS0r2tRfsum4CHuJ49J1vfmRL0kY5VfEYem8QXRc9t2Pw22M4HF4kkiSRhYnbj+wXvyMaf0cE7rn448/5sILLyQajeJ0Ovn3v//NSSed1OntnHHGGW1JHXfs2EF5eXm7x1977TWmT5+O3X7gCxaRSITZs2fT1GRcHJ87dy5Wq7XT7dB1vU/PzQ+k1+roTZgwoS2hSlVV1SEDvYE+2bIrrr32Wu6//36++OIL7rvvPm688cb9Cip2Ru4IH2bZcvgFe4DnSCu+kQ7qK8PklZv7ZJ8DiSRL+Ia5QZLQtf7t8bTLZjweF8NOkontGtrDbLPpuAh7iePSdSZf7w2fkwBvoRNJF4mVO83dexepJQm8+Xaj/mkfHBjNu++JsB2HzYTi0UmWWVFTWVuK+YD0cn+vbVuSJRwFFtjeifbsU8ogm3S1Te+99x5bt25t+33z5s1tP3/88cc888wz7ZafM2dOu9+3bdvGeeedRyAQAIwRb16vty0L5YGUlpZ2OlcGwAMPPMA111zDZZddxmmnncbo0aNxuVwEg0E++OAD/vjHP7Jr1y4AjjzyyC7XDywtLeWGG25gzpw5HHHEEV3aRnf12ru0oxMYB8Nky64wmUzcfffdXHPNNVRVVfHEE09w++23d3l7TTsDKFLfBF3OqX4q10aoXxXpk/0NNJIsga7TuDPQ7yeuzVWgjM2gjIFMOEFwQ/ywmTcHq2w6LsJe4rh0nZLTiz0UEugSNO8OZcWcnQHF38vHBWiujvbJcckk9v7syY8SjYdJB0zU7nYAA+vioV7R0mvblmQJb8bRa9sfCJ566ikWLFhwwMcWL17M4sWL29335UBv+fLl1NfXt/3+/e9//7D7nD9//n7b6ajm5maeeuqptiljB3L66afz7LPPHnSo5eHU1NTw4IMP8uCDDzJlyhTmzp3L7Nmz+2TEYqteC/Q6MoFxME227IqrrrqK+++/nw0bNvDAAw9w8803d3lbuqajS73/qW/xmzC7TNRvjYiTskPQ9T3HpJ9fo0wSat4IUXSWh9yTneSe7DQubGigZXS0hE6iPk14e5J4ZcoIAk3gHmUlf5qLTEJn1/PN6IMkuWq2HBehPXFcuqbXT/T17E0YkdUG0XHRdZBljcLyIA5vEi0jUbk5d0D+TfT250tnX5PB1qM3kPzmN7/hrbfeYsWKFXz++ec0NjYSCARwOBwMGzaMyZMnc/XVV3Puued2a+jljBkzeOONN8hkMqxYsYIVK1bw3e9+lyuvvJIbb7yRadOm9eCzOrBeCfS2b9/elh501KhRlJSU7LfMYJxs2VmyLDNv3jyuvPJKamtr+cMf/tBn++4q/wkO1JhGvGqIdgsNQNEdKbY91Yiz3IJjuAXFIWOyy5hsMopdwjXainuMMWx43/Hkuq4jmyXKv5ZDxbODJ9gTBEEQOia3JISvIAZAKq5Q9UUOmjbA5uYJfeKZZ57Zb3hmZ8yZM6fLvXNftnTp0kM+PnHixD4532/NtLlw4UIWLFjApk2biEajLFiwgAULFjBq1Ci+/vWvc/311x8wVuoJnX63vvLKK4es/VZXV8cVV1zRVj/v29/+9n7L9ORkS0kykpBUVFTs9/hrr71GPH7wop49NdmyOy6//HKOO+44AB588ME+3XdnWfMVPEfYaFoTbSvCLQwc0YoUDe9GqHktROW/Auz8ezPbnm5i+/xG6paHCWyME92RIvR5gvr3wmyf30jT6igmu0z513KQBtZ0DEEQBKGbfAUxdE2iequf3ZvzRJDXg/q7KPpAKJg+GBQVFfHjH/+YDRs2sGLFCm6++WY8Hg+6rrNt2zZ+9rOfUV5ezowZM1i0aFGn648fTqdP3W677TbS6TSXX345U6ZMoby8HLvdTmNjI0uXLuWJJ56gsbERgNNOO22/QG8wTrbsDkmSuOeee7j00kvbXrdslTfFSbJZJbQ5cfiFhQFDS0Fow4GPacu6OOiQO9nJiK/mUPG35j5unSAIgtBftIyElpGIh/v2IrggDEaTJ09m8uTJPPLII7z44ovMnz+ft99+m0wmwxtvvMEbb7yB3+/nmmuuYc6cOZxwwgnd3meXrtFXV1fz6KOPHrJG3uWXX85TTz21Xw/ZYJxs2V0zZ85k4sSJbYXis5FzhAXHMAtVSwIiBdsQ0/JxHMUl4zvagfdoG8HPRKAvCIIwFKSTJqwOFVlR0VQxrKMnZev812xs02Bjs9n42te+xte+9jV27drFM888w8KFC9m+fTvNzc089thjPPbYYxx77LHMnTuX6667Dq/X26V9dboPfsGCBdxzzz2cf/75HHHEEeTk5KAoCj6fj2OOOYZvfOMbfPDBB7zwwgtd6oXrSb/5zW944IEHmDlzJuPGjSMvLw9FUfB4PIwbN44bbriB1157jaVLl/ba2NiO+vnPf96v+z8kGfJOcRLdnSK2e2Bl2RJ6RsPKKLqu4xjWNyU8BEEQhP5Xv8so4VE8MtjPLRGEwWn48OH8+Mc/5q677qKoqKhdnoRPPvmE22+/ndLSUn784x8TDoc7vX1J74/aAkKPCYVCeL1ezmBmr5VXyJ3kwH+Cg10vtJBqEpPzDkeSJfLK/TRWtAyaLIKe8VYKp3uoeydE6PNkfzenSwbjcRkMxHHpOiU3t9e2LUmQO9xD0y5RXqHT/F278t4RkgS5w5w09VV5hRwnJUc0YXOmqdnmIxbqer3f/qavXt9r25ZkCe9wJy/seIZgMIjHc/Aal63nbWP/+j+YHNn3emZiCbZc+8Bhn4fQfStWrGD+/Pk8//zzbUGcrut4vV4uv/xyPvvsM1avXg0YU73Ky8tZvnx5pyoEiFm1wiF5J9jIOdFJ48qoCPKGKhPkT3WhZ3RCWwdmkCcIgiB0Tc1WP7oORaMC/d0UQRjwWmvrjRs3jtNOO40///nPhEIhdF1n2rRpLFy4kJqaGp566ilWrlzJhg0b2qavVVRU8LOf/axT+xMDroWDco60kD/NRcunMQKfHDx7qTC4FZ3pRlIk6paGQcT6giAIQ4qmyaTiipir18NEHb2hI51Os3jxYubPn88bb7yBpmm0DqgsKirihhtuYO7cuYwZM2a/dcePH8/TTz9NeXk58+bN47///W+n9i3ercIB2YrMFJ3lIbItSeMH0f5ujtCP7MPMZBI64QE6ZFMQBEHonmjIitWhMvKYRtJJE/GwhXjUQqTZihgcJggHtm7dOubPn8+zzz5LS0sLYAzNNJlMXHDBBcydO5cLL7wQk8l02G3NmjWLefPmUV1d3ak2iEBP2I/Fb2LYDA+JujR1b3d+4qcwuGhpMLvEFT5BEIShqqXGTTxkIa80gtWexpIfx5sfRx8BoWYbDTt9/d1EQcg6J510EpIktfXejRkzhq9//evMmTOHoqKiTm3L4XAA0NnUKiLQE9pRnDLDLvSihjVqXg+ha/3dIqFfyaBGM1i8JgrPclP3lgj8BUEQhqJE1Erl50bJLFlRcXmT+IqieHISRFsSAzpRS3/Qyc5qVdnYpoHMZrNx2WWXcdNNNzF9+vQub6ekpIR33nmn0+uJQE9oY/aaKLnICxpU/TuIlhJv96Esd5ID//EOJFlCz+hEdoihm4IgCAJoqkKoSUGxaOQURzFb1f5ukiBknccee4xrrrmmyzXw9mWz2boUKIpATwDAWqBQMsOLGteoXhIkExNdeUNZ/jQX3gk2MjGNxpVRwltEkCcIgiDspVhU/EVGmYdwk6O/mzPgiGQsg9+3vvWt/m6CCPQEcJRZKD7XQ7JJpfo/QbSk6MkbimyFCt6j7DjKLCh2mVRAZec/Wvq7WYIgCEIWUlOyMc5PMjJzCoKQfUSgN8S5j7BSON1NdHeK2v+G0MXoiyFHUqDsMj/WHAVd19HTOoH1MRreF9lWBUEQhIMzeqX6uxUDlJikJ/QBEegNYb7j7ORPcRHcFKf+3Yh4cw9Rwy/3Y/aZCG9L0LgiihoRw3YFQRCEQ3PlJJFNOk3Vrv5uiiBktWQyyd/+9jdeeuklPvnkE5qamojHD12fWpIkVLX7vS8i0BuKZMib4sR/jIPmj6I0rY71d4uEPuIcYcYzzo7JLiNbJEx2GcUuG8H+skh/N08QBEEYIOzOFADJmDiV7JIsnaNHNrZpANu8eTOXXnopW7Zs6XRphJ4g3p1DjOKSKTrbgy1foX55mOCGRH83SegLMgy/zIc1z2x80OigZ3Q0FQIb4jQsF0GeIAiC0HEtdU48eXGKRwdIp2SaKt1Eg/b+bpYgZI1wOMz555/Prl27MJlMzJw5k9zcXJ588kkkSeLOO++kpaWFtWvXsnLlSgBOOeUUzj333B5rgwj0hhDncAuFX3GjpXUqFwdI1IsJeUOBrVAhb6oLS65CZHuSmrdDIA69IAiC0A1qSmHH+jwKysI4fUmKRweJh2NUbcnt76YNCLpOVs5vzMY2DVSPP/44u3btQlEU3n77bU477TQ2bNjAk08+CcC8efPall2/fj3XXnstq1at4sorr+R73/tej7RBpEkaCmTIPcXJsAu8xGvT7HqhRQR5Q8SIq3Mom+XHXmgmXp2m5g0R5AmCIAg9Q1MVanf4yajG6WQyLvoPBKHVK6+8giRJXHPNNZx22mmHXPaYY47hnXfeobi4mB/96EesWrWqR9ogAr1BTnHKlF7iw3+MnYYPItS8FhLlE4YQs0dG13SaPoxStSTY380RBEEQBhmbM4li1gg22mis7H5haEEYLDZv3gzARRdd1HafJO2dA5nJZNotn5OTww9+8AMymQyPPfZYj7RBXHoZxJzDLRSe6UZTdSpfDpCoE105Q028No29yEzuSU5yTnCQbFIJfhYn9LkogC4IgiB0l0bRqAC6Ds0i+2aniILpg18waFxgHzFiRNt9Vqu17edIJILX2/7iyJQpUwB47733eqQNItAbJPwn2SFqAsDsNOEcZcGWZya6M0nt22HRizdEVS0OItvAPcaG50gb1lyFwjM95E/TqVsaJrJVBHyCIAhC15SMbcGkGCUWMqo4pRSEfTmdTkKhULtsm36/v+3nnTt3cuyxx7Zbp7WkQm1tbY+0QQzdHCTcY2wUnemh6EwPvmPtqGGNqn8Hqf6PGKo51GkJCH6WYPc/A2x9qpGGFUaGzaKz3LiPtB5mbUEQBEE4MKszTTppIlAnevM6TZey9yb0iNGjRwOwe/futvtycnLIz88H4J133tlvnRUrVgBgt/dMBlsR6A0SNW+G2PpkA1ufbGD7M03UvB4itivV380Sso0GgU/ixGvSSJKEs8zS3y0SBEEQBihJoi0RiyAI7U2ePBmANWvWtLv/vPPOQ9d1HnzwQbZu3dp2/9q1a3nwwQeRJImJEyf2SBvEu3OQ8B/vQM+Anjn8ssLQVnKJF2eZhVQoQ+PqaH83RxAEQRjAtIzoAeqK1vIK2XgTesb555+Pruu8+OKL7e7/wQ9+gMlkoq6ujgkTJnDyySdz9NFHM2XKFJqamgD47ne/2yNtEIHeIOEqt6C4xOEUDs7kkBl+hQ/HMAvR3Ul2PtuMGtL6u1mCIAjCAGR3J5EkSCdN/d0UQchK559/Ptdffz2TJk1ix44dbfcfd9xx/OEPf8BkMqGqKh9++CEbN25sy8J55513tsvU2R1i5uwgIUkSiktGjYgT92zlPdpIiKKldYIbEz2eCMWSa8I92op9mAWzWwZZQpIByRheIynGVdfw1gS1/w336L4FQeh76p4rv71BkiUyHh21uQVdE5f4O6W3j0vGj1rRv8fF5JApvtqPrkk0vboLXcwU6Tx9zy3bZGObBiiz2cwzzzxzwMduvvlmpk2bxoIFC9iwYQPpdJqxY8dy7bXXMmnSpB5rgwj0BgktraNGRZCXrYpneHCNMBKf6LqOY5iFzDSNwGdxAhsSaCkNq18h2aRCJw5j7iQH7iNsKA4ZSTYCOV3TySR19IyOroKuAbpOqiVD80cxkg2izIYgCILQNe6xVgrOcCPJUPtWGE0EeYLQJePGjeOXv/xlr+5DBHqDRCahUXaZn+r/BEnWixP5bGHJNeEcYUE2753DoKsQ2ZnAOcJq1Lc70QEYvbJaWmPXP1tIB/ZGeyOu8iNbZZINaeK1KulQBkepBfcYK7JirJNoUIlXp4hsT4lAThAEQehxsg1KLvRhzVPQM1D97yCx3en+btaAJeroCX1BBHqDRKI2jfMoO8PO97JjYe8NGxEOz5Kr4D/ejvsMCZPFmDe5bw0V2SzhHmNjyx8bsJea8RxhAx0ySQ3fMXbKr8pF13W0lE7tWyEsPuNtaiqz4By+txyCGs/QsCJGaEOib5+gIAiCMKRY/DLDr8wBCaK7UtS8EQKR/E0Qsp4I9AYJW5GZdChDyyex/m7KkJR3igPv0Q4kk9Ez5/bYaGlI0LI+RmR7kkSNiuKVcZZZcI6wtg2zjVemiVfuvSIa3prEc6QNs0vGMdxCyQU+AFIBlZ3/aMFWpKC4TCQb0+16/QRBEAShtxSf5wUJql4JEK8Wo0YEYV+7du3qle0OHz6829sQgd4gsWtRCwrm/m7GkOU7zoEkSSRbVKI7kkRVqPm4ud1keTWoEQwmCH528B64ZL1KQ71R0Nx/kgNHiZlkQ5rmj4wAPlGrAuJLVhAEQehjOqTD4gJjjxKJTwaFkSNH9vg2JUlCVbt/vify8Q8SxTM8SCLDcb9pXBlFU3UsXhOB9XHSge6PaWn5MEbVy0EaV8TQejZBpyAIgiB0WOOqKEhQ/rUcis5293dzBCGr6LreK7eeIHr0Bglbvpnck2UaV4oC2P0h8EkcSYK8U1w4yyyi000QBEEYNKI7Uuz+V4CiM924x9hI1KkE1sf7u1kDmkjGMnjMnz//oI/pus4f/vAH1q5di8Vi4bzzzuPkk0+moKAAgPr6etasWcMbb7xBKpVi4sSJ3HrrrUhSzxwHEegNEpEtCdxlThCBXr9wllvIO8UFgBrTsVr6uUGCIAiC0IOS9So7n2thzDfysJeYRaAnCHvccMMNB31szpw5fPjhh1xwwQU8+eSTFBcXH3C52tpabrnlFpYsWcKyZcsOGTx2hhi6OUgkGlQsfhP+Ex3Yis3t0vkLvc8+bO/8yJKLvJRc7MUzXkR7giAIwuCSSWg4Siyiq6C79Cy+CT3iH//4BwsXLuSUU07hlVdeOWiQB1BUVMRLL73E5MmTWbhwIc8++2yPtEEEeoNEZEeS0OYEOSc6KJvpY/TcPEZc5SfnJAeyVQR9va3xgyi1b4VoeD9CcFMc2SJRMM2DJVdMnBQEQRAGj5aP4kgKjL4hF8946+FXEIQh6oknnkCSJL7//e93aCimLMv8v//3/9B1nSeffLJH2iCuxwwSw6/MQQ9KBD6Nk2xIkzvJicWvkHuyQu7JTrY+2YAuat70qvAWI2OKJEsUH6ehZ3RSTeJFFwRBEAaPwPo4maRGweluCqd7yD05Q907YVE8vdOkPbdsk41tGpg2bNgAwOjRozu8Tuuyn332WY+0QfToDRLhLUbKfu9RNorP82LxK4S3JAh9nqDhg4gI8vqYltKRTBLl1+SQf6oTs1e81QRBEITBIfxFkm1PNdLyaQyTVWbYDC+KW3zPCcK+olEjb0Z1dXWH12ldNhbrmbrY4l05SIQ2JQh8liDVZKR7TDap1L4Vpu6dMIFPxYTpvlb7Rpjw9iQmu4zvGAflV+cy6sZcJNGHLgiCIAwSjR9E2f1SACQomObq7+YMLP09D0/M0et1o0aNAowhnB3Vumzrut0lAr1BYsRVOZRc6MXsV4jXpLHkmMif5sJ7tA3PeBu2AhFh9LW6/4bZ9lQjOxc1o6k6sllCF7VmBUEQhEEk2aCiRjTsRebDLywIQ8gVV1yBrussWbKE22+/nWTy4EWRU6kU3//+93n11VeRJInZs2f3SBvE2f8go9hlFLsRv/uOsrd7rObNEJFtovJ2X8vEdSQTRHemQAR6giAIwiCTSWooDnFKKQj7+tGPfsTf/vY3tm7dymOPPcY///lPZs+ezcSJE9vV0Vu7di2LFi1qG7Y5ZswYfvjDH/ZIG8S7cpAIbYqTCST3zA0DySQhmSRMVglbkRlnmQVXuUUEev0gk9BAB2eZBVuxQqJGVFMXBEEQBgdHmRlrrkIqIJIBdEq2DpPMxjYNUA6Hg7fffpsLL7yQ9evXU11dzSOPPHLAZXXdeOGPPfZYlixZgt1uP+BynSUCvUFCy+hEthmB3oFYckxoafHu7RcaVC0JUnKBl9JLfNS/Gya0SQTcgiAIwsCmuIxELHoGqv8T7O/mCELWKS0t5cMPP+T3v/89TzzxBJs3bz7gcuPGjeOb3/wm3/rWt1CUngvPRKA3SHiOsJEz3kLg0zjRXUkkJGSLhBrXSAcypJrFlbb+FK9KU/FcM8Ov8FNwuhuLX6Hxg2h/N0sQBEEQuix3khNJltj9rxbUkJib0Cm6ZNyyTTa2aYBTFIXbb7+d22+/nZqaGtavX09LSwu6rpOTk8MxxxxzyGLq3dp3r2xV6HOBz+I4/JBzooO8yc52j6UjGeLVadKhDGpEI7Y7hRoVH8h9TQ1p7FjYxPDZOfiPdeAotVC5uAVNdO4JgiAIA1AmYZxL5JzkoOG9CGpEnFsIwqEUFxf3WlB3ICLQGyRyTnSih2R2Pt+MYpfRdaOWm9kj4yi1YCsyYx9mRnEaiVoi25LUvxs56FDP7pKt4Cy3kmrOkGwQc9Ja6SrsfLaZwjPduI+wUn5NLtufburvZgmCIAhCpzWujOIoseAqt+Iqt6JndNJRjWhFksZVURCDiQ5K141btsnGNgldJwK9QWL3SwFGXJxHwWkuqv8Tars/HcwQ251u+102S7jGWMk7xcmw8z1UvnzoMfWyFezDLJhdJmKVSVIth75aZ/bKDLvQh9ktI0lG97+m6gQ+jdG0+tDFHyUFHMMtxCtTaKnDPeOBre6dMFpKw3eMA0uuiVST+DYUBEEQBhgNdi1qwVas4B5jw16oYPaa8B/rwHeMnVTAuNgbq0oR3pIUmacFoY+JQG+QSDWpNLwbpvg8L44yc7vgbl9aWie0KYGu6hSd5UFxyfsNtfAdY8d9hBWLz4SkSG0Bm6472f1i4KA9dJ7xVgqmuUGC2G7jQ93iN+E9yo7/BAfhLYmDB4oyjLohz6g1p+sk6tJUvhqEQdwZGPoiie8YB56xVhqbDh0EC4IgCEK2StSoJGoibb+7xljxH2fH4lew+Ex4jrBReIZOol6l5vUQmZiI+ETWzcHjsssu4+677+a4447r8W0nEgn++Mc/4nA4uOWWWzq9vgj0BglLnkJkR4pYZYqisz0ENyXQ0zomu4xslUg2qpisEiAhmcA53EI6lCET3/thW3y+B1e5FQBd00lHNJJ1KWLVKexFFjxH2rDmmw4Y6BWf68E50oKW1ql8OUiqce8ykiLhP9aBbJM52OW8wuluZLNEeGsCs9eErdDMiCv87PxHS4++Ttkk2aCi6zrWfFFkVhAEQRg8IluTRLYaE9BlC7hGW/GMs2MrUBh5bQ67XwqQrB/EV3KFIeWll15i8eLFXHTRRfzgBz/g9NNP7/Y26+vrWbBgAb/97W+pr6/n7rvv7tJ2RKA3SJTN9JHcpdG0Oor3KDvu0VYkk0QmrqGlddyjrGRSOopdJhXMkGpRaf4ohr7PiMHWIK/u3RChje0zhPiPNxK8WPPMFJ1tAUki2ZgGWcI3wYbiNJGoT7N7cQAyxgd7ycU+JJOExW9Cz+gHrR+XP82F+wgrqRaV2v+Ggb1Bp9krkw4Ozit/tiIFqfV1FARBEIRBSEtBaFOS0KYktmKFspl+Cqe72bVo8F7I7RCRdXPQuOOOO3jooYd45ZVXePXVVykpKeGqq67isssu48QTT8RisXRoO1VVVbz11ls8++yzvP3222QyGXRdZ9q0aVx++eVdapsI9AaJWFUKV7Ed9xgbySbV6C3SdGNSrWbM1bMVKGCXCW9N0Lxm/6GCuqajpfT9gjyAyLYE/uMd+CbY24o6ukfv7f1rXheladXebeZMdGLbt6fKBOXX5JBJaMSrUgTWJ0CBYed5seYopAIqO/f50LcXmY1exUEa5AH4jjZey+Z1YtimIAiCMPhpe65rxqoG+UR8YUi59957ueWWW7j33ntZsGABlZWVPPTQQzz00EOYzWaOOeYYTjjhBAoKCvD7/fj9fuLxOC0tLbS0tLBlyxbWrFlDfX09sLd4+lFHHcUvf/lLLrrooi63TQR6g4SjxEJsR5roriiOEjOKS0aSZCQZzF4T6BCvSaO4TdjyDnzYUy0ZrLkKpZf6qHwp0O6xptVGMhXFKRulGWSMwFGHRN3+PXXNH8ex+ExYchRMdqMdskVCcSjY8s34jnMgScZ8vPDWRFtPHhgFWE02meDmRI++RtlG10CSJHJPdtGwPHL4FQRBEARhAEs1G1MWWjOAC4NHXV0dq1atarutWbOGUMhIDnj33Xczb968Tm3vtdde409/+hOrV6+moaGB/Px8Jk2axC233ML555/fY+1uamrid7/7HS+99BIVFRXous7IkSO59NJL+e53v0tubm6HtlNWVsaf/vQn5s2bx+9//3sWLFhAdXU1qVSKDz/8kI8++uiQ67cGd2azmUsuuYRbbrmFc845p9vPTwR6g0T9u2FKz87F7DGRDmUIb0mSCmZwjbLiKDG6jCVFIlGfxjHcwthv5pMOZ4jsSNL8URQtYWTOKr3Uh73IjPsIK+Ev9u/Za6u/p0Gi9uDj67WYRvW/Qwd8zFao4J1gR1N1gp/F9k/Qoht/8K5RFoIblEFbnqFxZRTPETbMbvGFJwiCIAwBmnGR0+w19XdL+p2kG7ds09U2FRUV9cj+dV3nm9/8Jn/605/a3V9VVcW//vUv/vWvf3HLLbfwxz/+sS1ZYFetWbOGmTNnUlNT0+7+Tz/9lE8//ZSnnnqKxYsXM3HixA5vc9iwYdx333384he/4L333uOdd95h+fLlrFy5kmg0esB1xo4dy7Rp05g2bRoXXHAB+fn53Xpe+xKB3iAR3pKklhDOkVYsuSY8R3raHmtcHcVkMxKiKPa944TN7r0pkNuyP0nGmyzV0nvp/hN1Kom68EEfV6MajR9EyZvipOwyH7VvhdsmdQ8m7rHG0NfwtsH33ARBEAThQLSkhuIUgd5gNmrUKEpLS3n33Xc7ve7PfvaztiDvhBNO4Mc//jGjR49m27Zt/OpXv2LdunX86U9/Ij8/n1/84hddbmNVVRUXX3wxdXV1KIrC//t//69tiOSrr77Kb3/7W6qrq7nooov48MMPKSkp6dT2JUlqC95atbS00NDQQHNzMzabjfz8fPLz8zs8h68rRKA3iIS3JgnvCYhMDhmTTUJXjeyZ5VfnoOs6gQ1xvEcavWnxqhTBjXE8R9pRPDKyybgyEtwQ7/detMD6OJEdSUZclUPBaa5BFehZ/DJFZ3mx5JrQ0jrhzwfPcxMEQRCEQ0kFMtiLzXunggxVg6y8wl133cXkyZOZPHkyubm5LF26lDPPPLNT29i6dSu/+tWvAJg4cSLvvvsudrsdgJNPPplLLrmE6dOns3btWh588EFuvPFGRo8e3aX23nHHHdTV1QHw7LPPcuWVV7Y9Nm3aNCZOnMjs2bOpq6vjzjvv5Omnn+7SfvbVOj+vL4kxY4NUJqaRas6gqTDyulwUl0xwQ5yWD2OoMQ3FLuMeY0OSJerfDVO1OMjuFwPsfjFAKEsCDzWiEdwQw2STGXl9DuXX5jDy+hxGXOXHmj8wr1FYck0MvzIHS66JeE2anf9o7u8mCYIgCEKfaVptDF8bPtuPIqYuDBr33HMPF1xwQYfntB3I//3f/6GqRkfDo48+2hbktXI4HDz66KMAqKrKww8/3KX91NXV8de//hWA8847r12Q1+rKK6/kvPPOA2DhwoVtQeFAI95hg5RsgaKz3Yy8NgeTTaJxZZSG96Jk4jq7/9lCstl4I5Vc5KP0Ul//NvYQGlfECG9LIJkkZEUCHcweE2WzfB3+65VtkH+6i+Ff9VM6y4fnSGuvtvlQ7Si71LiSs/vFAFUvB4f21UxBEARhyEnUqtQvDyNbJMqvzsFWNDAv3HZba3mFbLz1x8uh6yxevBiAcePGccoppxxwuVNOOYUjjzwSMOrXtSYx6YyXX36ZTMaYonTjjTcedLk5c+YAkMlkePnllzu9n2wwRN9dg5QM3gk2o7B5rgISpMMa9UtDxKv3DsXUUjq7FrUw9hvGZM/Y7uxOc1z7Zvv5fHlTnfiPdWDxypj9ChavCV0FTdX2/K+jpY2sXt4JRoFWAD0Dkgz2Mz3knJRh1wvNaH311GUYMTsHSYGaN0P9PjRWEARBEPpLaGOSZEOGslk+hp3vZfszTf3dJKGf7dixg6qqKgCmT59+yGWnT5/O559/TmVlJRUVFYwcObJT+1q+fHm7bR1qP63ee+89br755k7tJxuIQG+QKLvChzPPbpQs0IxkKg0rIsQrD1yMWzJBojFNOpih6QA19bJZJmlcvRnx1cMPD9B1nWSDSsP7EaMMhAz5p7rwTrBR+BUPNa8dODNoT1JcMmWX+TDZZZrWRIluz+7AWhAEQRB6W7JBJdWcweIfoolZBtkcve7atGlT28/jxo075LL7Pr5p06ZOB3qt+/J6vYfMFlpcXIzH4yEUCrVr30CS9UM3JUnq0O2MM8444PqaprFhwwaefvppvvGNb3DcccehKErbehUVFR1uS3V1NXPmzCE/Px+Hw8H06dP573//e9DlKyoq2rXxYN3Q+5o3b16X2mZ2mUjUq9S9E2LrnxrZtajloEEegK7C7hcCRm9ZNn7QHELLuhiNqyIENsSpeyfErhdbqHy5her/BKh5M0TtOyHq3wtT+3aIrX9uZPeLgb21/jRoWB4hE9OwF5sPvaOeIMOI2f49QV6Mlo/ivb9PQRAEQRgALDkm40w0689Ghd62e/futp9LS0sPuWxZWdkB1+vsvg63n3331ZX9ZINB36P3l7/8pW2MbXdUV1czefJkKisr2+579913Oe+881iwYAHXXnvtYbexatUqlixZwoUXXtjt9nzZ9meaUKQ+CFyygQYt67oXMCWbVZxlVoZf6Se2O0lkZ4pETc8Pp/Sf4EC2yNS/Fyb42eAuAC8IgiAIHeUYbkaSJVItKgzF6epZ3qPXWuy8ldVqxWrtvRwH4fDeaToul+uQyzqdzrafI5FIl/d1uP3su6+u7CcbDJhA79Zbb+Vb3/rWQR/f96Dva99JmlarleOPP57Gxka2bdvWqf1///vfp7KykilTpvC///u/+P1+/vnPf/Lwww/zzW9+kxkzZnQo09Bdd93VK4Ge0Dm1b4YoPs+LvdiMNdeJ/3gnuqYT2ZGkaXUUi8+EJc+MbILgxgRqpGvfQs5SM7qmtwV5ljwFR4mZyLZkl7cpCIIgCANdwTQ3uqaz658t/d0U4QD27TUDuPvuu5k3b16v7S+R2Hsx/HB15fYNOOPxzl/4b91XR+rXte6rK/vJBgMm0CsoKODoo4/u9HoTJkzg0UcfZdKkSRx//PFYLBbmzJnTqUAvmUyyePFiysrKePPNN9uCylNPPRVN03jkkUdYsmQJ119//UG3kZeXR2NjIx999BH/+te/mDVrVqefi9BztBRUvRIEjLp2zpFWPEfYcI82bvvyn+AgsD5O4wfRzu8nrYMEBdNdOEotmN3GXIT8KS62/LGh+09EEARBEAYYk0NGcclEd6TQh2pusizv0du9ezcej6ft7t7szQOw2faee6VSh85lkEzuLQP25RIMHd1XLBY77H723VdX9pMNBkyg11WTJk1i0qRJ3dpGU1MTyWSSSZMm7ddzeNZZZ/HII4+0ZQo6mDlz5rBw4ULq6+u5++67ufTSS5Gk/klhK7SXatFItcRp+SiOc4QZW5EZNaoZ8/okKDrbg/9YB97xdiQF0KHpwxgtHx4+iU3D+xHKLvfjHW9Hz+z9RE8Fhuo3myAIgjDUecZZkSSJwGcDKxncUOLxeNoFer3N7Xa3/Xy4YZLR6N4L7x0ZfnmgfcVisQ4Nx2zdV1f2kw3E9NcO8Pv9KIrC2rVricXafygtXboU4JBZe8AYWvqTn/wEgPXr17No0aJeaavQPdGdaZpWxQh+liDZoJKsV9n5bDPBTXHUmEaiNo0kS+Se6OjQ9tJBje1PN9G4JkqyWW0bShz6XMzXEwRBEIYmxWGcfrbW9BWEfROj7JsP40D2TYzy5SGmndnX4faz7766sp9sIAK9DrDb7Zx33nns3LmTc889lyVLlvDBBx/w4x//mIcffhiHw8EFF1xw2O3ceuutFBcXA0Z2TU0Tc7QGivplEXb+vZlIhdHNr6U7Nt4id5KD0XPzyDvZiTVPIdWUofqNYLeTyQiCIAjCQKS4ZTxH2tA1HW0oX/Ps76LoWVYwfcKECW0/b968+ZDL7vv4+PHju7yvYDBIbW3tQZerqalpS0rTlf1cddVVvPHGG10q6t5TBkygt2jRIo488kjsdjtut5uxY8dyww038M477/TJ/h9++GFyc3N5//33ueiiizj11FP59a9/ja7r/O53v6OwsPCw27Db7fz0pz8FjBoezz77bG83W+hBljyFvMnG0F2TTUbxHvzt4z3axqiv55JzopHkpXFVhK1PNrLrhRZRR08QBEEYsgqnu5EUifr3wodfWBgyRo4cybBhwwBYtmzZIZd99913ASgpKaG8vLzT+zrttNPafj7UvvZ97NRTT+30fp5//nlmzJjBiBEjuPPOOzudCLInDJhAb+PGjXzxxRckEgkikQhbt25l4cKFfOUrX2HWrFkEg8Fe3f+YMWNYvXo1s2fPxufzYbPZmDJlCq+++ipz587t8HZuueWWti7jn//852Qymd5qstDDTDYJSZbQMzp1y8Oowf17ZN1jrYz6ei7ecXZ0Vaf+vTDb5zcZPXiiA1cQBEEY4kx2GT0DoY3Jwy88iEl69t765fWQJGbOnAkYPXYrV6484HIrV65s69GbOXNml/JdXHLJJciyEQLNnz//oMs988wzAMiyzCWXXNLp/fj9fnRdp7Kykvvvv58jjjiC6dOns3Dhwv2mgvWWrA/0HA4HV111FU8++STLly9n3bp1vPHGG9xxxx1t5QxeeuklZs6cSTp98ALhPWHUqFE899xztLS0EI/H+eCDDzo0ZHNfVquVO+64A4AtW7awcOHC3miq0INkC4yem0fpRT50XWfXiy3EKlLkn+6iZKYXe6lRv9BeaqbwK27QdZo+irBjYbOonScIgiAIe0gKWHwmMglx5VPY3/e+9z0UxcgTedttt+1X0iAej3PbbbcBoCgK3/ve9w64nTPOOANJkpAkiYqKiv0eLyoq4pprrgHg9ddf54UXXthvmUWLFvH6668DcN111x02F8eB1NTUtPXqybKMruu899573HjjjRQXF3PzzTfzwQcfdHq7nZH1WTerqqrw+Xz73X/OOedw2223MWPGDNatW8eyZct4/PHH+e53v9v3jeykuXPn8uCDD1JRUcG9997Ltddei9k8RIqdD0DeCXZks0QmqdG4KkKqKcOoG3ORLcZVpJILvSTqVWx5CmhQ8Y8AOYXefm61IAiCIBgsuSaGnedFcckgga7qpIMZat8Jk2pqP7JoxFf9xKrTNCzv+QLRxed7QTYyUg95WV5eobPee+89tm7d2vb7vvPoPv7447besVZz5szZbxtHHHEEP/zhD3nggQdYu3Ytp556Kj/5yU8YPXo027Zt48EHH2TdunUA/OhHP2Ls2LFdayxw33338dprr9HQ0MDVV1/N2rVrueiiiwB49dVXeeihhwDIz8/nF7/4RZf2YbFYuOKKK7jiiiuoqalhwYIFLFiwgM8//5xwOMzTTz/N008/zdixY/n617/Odddd15bLo6dkfaB3oCCvVWFhIS+88ALjx48nlUrx6KOPDohAz2w2c+eddzJ37lx27NjB008/zTe+8Y3+bpZwELEqo6c4k9DbhppkkjqSSWLHXxspvcSPrUBBS+nUvB5Ei4srlYIgCEJ2UFwyw6/wA5CoU9GSGmafgiVXYfjlftSohuI0AkAwhtBZ/ArxmjSRrT03vNJeYsZRYiZRrxLdkcJzlI2CU13G77tSJOrTxKvToBmBae7JTsJbkz3aBqH3PPXUUyxYsOCAjy1evJjFixe3u+9AgR4YAVh9fT1PP/0069at46qrrtpvmblz53Y5+GpVVlbGK6+8wqWXXkptbS0PPvggDz74YLtlioqKeOmll9plBO2q4uJi/ud//of/+Z//YcWKFTz99NMsWrSIUCjEF198wU9/+lN+9rOfce655zJ37lwuvvjitt7N7sj6QO9wRo0axTnnnMOSJUvYunUr1dXVbZM5s9n111/PL3/5S7Zu3cp9993HnDlzulWMUpIlUZevl+TuScAS2hBHkqW2n/OmuMg53sHuFwLtljeOBW3LCtlBHJfsJI5LdhLHJTt15bgUnm3UJ6v8V5Bk495yBtZ8haKz3Mg2iWSTSiqYQTZJpIMq3qMdFJ/tQT9LR41o1LweItXcvZwCxed4QIeWtVFGz81FNhuzh2yFCvYiY1RTJqVR+0aYYRd4kGQJ5wgLO3an0Hp3Zk63tR4XoftkWebPf/4zl19+OX/6059Ys2YNjY2N5OXlcfLJJ/ONb3yDGTNm9Mi+Jk+ezPr163nkkUd46aWX2oZ5jhw5kpkzZ/K9732vbZpYT5oyZQpTpkzhd7/7HS+88ALz589n2bJlqKrKf/7zH/7zn/+Qm5vLtddey4033sgxxxzT5X0N+EAPjDSpS5YsAYyhngMh0FMUhbvuuovrr7+e3bt38+STT/Kd73yny9vLHeHDLFt6sIUCQN4UJ44SC4mGNEokQ1653XggDC6HG/dpboqOzqC4ZHQN1IgGko7b58b0howaFb172UKSJXzD3CBJ6Fo2jpcZmsRxyU7iuGSnzh4Xa6FC4RFGoOf8qgs1otG4KoqWMNaNrgRjrJ4MyGiAhEJomYZnrA1rnoKnWCFnjo+aN4Oo4a79LeRMdOAqsBL4LEbxCfl4c+3omk7VkgBa2pi35yiz4Btjxf81HwCBjXG8420c9x0PRnZ6nUxMI7Q1QXR7dkV+kizhKLDA9v5uSf955pln9hue2R0XXHBBp/NgtGqtcd0ReXl53Hvvvdx7771d2ld32O12rrvuOq677jqWLVvG1VdfTV1dHQCNjY088sgjPPLII0ydOpWf/vSnXXo9BkWg15/1Kbrjmmuu4f7772fz5s3cf//93HTTTV3eVtPOAIok5vn1pJyT7KhuE6FQAk3SaKxoafe4qwEUpwld1lEbNCSTUXZBkiXSJjMJKUKgQgw5yRaSLIGu07gzIE5cs4g4LtlJHJfs1OnjUgEZbwJLjoLFYwIraL44jSsPX8u1cU8meFuhQulMHxlPgsb1nc8UaM1X8PplGndH2fVaAGQYhgd7sRnrsTq7FwWMBT8CxSnjP85GOqwRWJ8gt8GOY4QVJJBkMLtMKKNBCyVoXps99WglWcKbcXRuHfovw+WhiI7JvpNIJHjxxReZP38+77zzDrqut8U0o0aNoqqqimQyyfvvv8/FF1/MpZdeyrPPPtupEYCDItDbuHFj288DoTevlSzLzJs3j6uuuoqamhoef/zxLm9L13T0bPzEGMCiu1N4JthR7DKZpL7fl+ruFwNYckzEdre/slgy04vbrRP4LClOkLKMru95r4jjklXEcclO4rhkp84el5rXjILP/uPt5J3iwnuUA/swK/H6NC0fxYyRKIfgGWcDIF6vdulvofh8Y8hm1StBY30Nql4OMuIqP2aX3G6b6XCG+veibb83rorBqr3BpWyBUTfm4Rpjo2l136Sn76gB2ucg9INVq1Yxf/58nnvuOUKhUFtw53K5mD17NnPnzmXKlCkEg0GeffZZHnnkEb744gteeuklHnzwQe66664O7yvryysczvbt23nzzTcBI/otKSnp5xZ1zuzZs9vG3j7wwANEo9HDrCH0CQUsuQomq4Sm6uxa1LzfImpU2y/IA4hXppAkiVFfz6XkYi++Y+x90WJBEARBOKiWj+NU/ydIOqph8ZvwjrdRfk3OIb+jbEUKniNt6LpOzvEOxtycx6iv5yLbOrbPYRd6UewyTWvbB5S2QgWzx4TeydkNuSc7kSSJ5g/FuZIwsNTW1vLrX/+aCRMmMHXqVJ588kmCwSC6rjN58mSefPJJampqeOqpp5gyZQoAXq+XW2+9lQ0bNnDFFVeg6zp/+9vfOrXfrO7Re+WVV5gxY8ZBs87U1dVxxRVXtNXP+/a3v92XzesRkiQxb948Lr/8curr63t0fLPQNf7j7eROcrYVR698OYCW6vj6LesS+HJjaAUajhILjhILWkoj9LkYxikIgiD0n+jOFNGdxoXL/NNd+CbYkUwHX97iNR6UJAnFbULXwWSRcY20Etp08O80xStTdqkPxW4iXmv0HO7LM86GJEvUvBnsVPvNPgVd14lsGwTfp7pk3LJNNrZpgFJVlZdffpn58+fz+uuvk8lk2nrv8vLyuPbaa7npppuYMGHCIbdjMpn44Q9/yAsvvHDAuoCHktWBx2LovgAAyzlJREFU3m233UY6nebyyy9nypQplJeXY7fbaWxsZOnSpTzxxBM0NjYCcNpppx000Pty8LRvnY8XXniBvLy8tt/HjBnDaaed1vNP5hBmzZrFCSecwLp169qej9D3ZAuUXOLDlmcmk9BoWBEmvCUJXcinEt6apPG/LRSd58Y1wtpWokEQBEEQ+oQJSi/2YctXQDaCNV3X2+qkSbKEltYIbjr4XLfQ50kSjUZgmApkGD0nD03VD33hUoYRV+QgKdC4JkrLh/sPsWxNVJaJdi6TZ2B9DEepl6JzPNT8J9SpdQWhrxUXF9PcbLx/dF1HlmXOOecc5s6dy6WXXtqpGtqt2T9VVT3Mku1ldaAHUF1dzaOPPsqjjz560GUuv/xynnrqqYNOTrzxxhsPuu6PfvSjdr/fcMMNfR7oSZLEz3/+cy6++OI+3a+wl32YwrALfEgmiGxPUvNG979AZDPEq9O4RlhxjbIS+DR7Jo4LgiAIg5fFL1NysQ+TXSbVkiHVoqKrIJslZIuEZJZI1KVp/ODwQyBbC6r7T3QgmyXq3gkd8gKorciMbDaCytwTHeRO3CdJSWuR8NaJQyaZzlxNje1Kk2xUcQ63kD/N1StF3fvMICuYLuyvqakJgOHDh3PjjTdy4403Mnz48C5tKycnh7vvvrvT62V1oLdgwQKWLVvGihUr2L59O42NjYRCIVwuF2VlZUydOpUbbrihbSzrQHbRRRcxadIkVq9e3d9NGZJyJ7uQTFDzRojojk6M0zwQkzH53JuRjSuoGZ3QFyLIEwRBEHqPa4wV73gbtnwFyWwMv2taE6Xlo575/mkd4llwhpvcyUYx88aV0f3itLzJTnRdJxPXUKMaqUAGSTKCTMksISvG/1pSJ9XYud4JgN2LA5R/NQffUXa8420k6tJU/yfYqSkWgtAXrrjiCm666SbOOeecbte69vv9gy/Qmz59OtOnT+/2dvqr/EJ5eXmn9r1q1apebI1wKGooAwUK7jFWYrtT6J3/7mnjHWfF7DKR2KqSbFRp+SSGlui5tgqCIAiC4pTxHWvDOcKK2WMy5pXrupEobFuS5o9iqOGeq+XavCYGOthLzFhzFfzHOvAdZSdemybZpJKJadgKzdgKFGKVaaqXdG7+XYepUPG3ZjzjrfiOcmArMlNysY/d/wz0zv56i+jRG/Sef/75/m5Cdgd6gtBXat8JMzxXwT36/7N33/FxlVfi/z/3zp1eVaxmyZaNwcYYDAYMmIBNMR0DAQKEEkIJBDbLJr8saRtaEkI2yWY32Q2QLyRACBAghFBCM8U0AzbFgA0Gd8myrK4ZTb9zn98f15Yt3NRnJJ336zUgzdxy5BmN5tznec7xEJjsxuyy6PwktcMC8j0pOtBLcKpdjqzjvSRd0kdPCCHEAOgeqD69CFeRAzQIBUOEO/XudXeWqUg1m3StStOxIgl9W/bWJ21LE7DU/jq4j5uS2X68VU58413d22Q6TBqeGaIkbzvRT9JEP0lT8+UI7nEGRkCn8sQQhk9Hc2jkUhbJRpP42hTx9bJOXgy/yy67DE3T+OlPf0plZWWv9mlubuZ73/semqZx9913DzgGSfSEALBgw8Pt+GqcFM/y4a10UTTTS/t7CYpmecl05Iiv2fO8kK3VOjOdJvENMo9ECCFE3zl8OtULwuhuHYdbAw1STSa5pIW7yiTdaZLtyNGxPEmqcQBTUAYg9lma2Gf2xUzDr2MEdLIxi1xi8EYRe0Nz2FPiJp5fjOaAXMrCMhVGwEFoqoPwNLs9RC6lyLSZJOoyxD5PdxeEyRdNFWjD9AKMaaS655570DSN/+//+/96nehFo9Hu/STRE2KQJeqyZKIxJl1Qgu7UmHRxMYbfXpiQbskS35Cx1yloGppDQ2Utkpuy5FIKy1R0rU0T3MuD7h7xLSqFEELkScVxQZxhB7mkRTZq0fxGF4m6LJquYdYatKzrLKhG9mbcylvi1PlJknFHBtB0aHwxRteqbTNpHD6d4N5ufDUu3MWO7tHHksP8qByYsRxda9MF13xdiMEiiZ4QX2ClLcx4DsPvwOHTaf8wgTPkwD/Rhbt0x1K4RQfueAzDoxPcx0X0U5m6KYQQovf8tS7c4+yPZ2vva8tzNIWv8+MUnR/vfCF8LmHRsSxJx7JtBWm81U6Ce7nxlDtxhhwUz/ITmOyma00ad6ndyN3h09ENDWVB40vRXs3o6TNZoyd2IpWyX8sul2sPW/aOJHpCfIGVgrV/bgMH9hvelouUugt0rw45sEwLZYIR0PFVu9ANDRwaugPcFU5CISg51I+VBU+FgZVRtL2b6FdPPiGEECOPq0jHXebEsXWGx9YP0Dq4iw085QZGwIGmg7JAWQpNt6tSKqVIbc7PlMzRLlmfJVm/bc1e2dwAoWkeimfZ1UKVqTCTikwih6fcoOKYIGsbWqWomhgWb7zxBgAVFRWDcjxJ9ITYlS8saLcyYGV6ZmrZDovOjp7v/pquUT6lBMPvoHJ+qPv+opk+Nj7ZIX+8hRBilApMcVM8y4eryLHbcupKKVQOstEcVtpCMzR0t44yLRIb0rQsTYD8qRgWTYu6aHm7C8Ork2nv+Tc+MMVNxXFBas8vYe39rTtW5DaQ50l0u+WWW3Z6/+9//3vKysp2u286nWb16tU88cQTaJrGnDlzBiUmSfSEGAKbX4mS9SZJt5kk6rJ4xzspnxuk+owIG5/qINkgfxmEEGI00V1Qebx9cS/ZmCHZkCXVYrcdQIOteZ9SkGk1pe9bAbFSkEntOOWma1WaFq9O6Rw/tRcUE12Zwhly4Cl3Yvh1NN2uerr5xVjfpzzK1M1R56abbtrhAo9Sittvv73Xx1BK4fF4uP766wclJkn0hBgC2Q6Llg8S3YvlYyvTZNpy1JwZYfxpETb+s7PH1BEhhBAjm2Xa0y8tU1H/+NC3FxDDo+OjJA6vRtFBvm3TO7N2S4tMe47gFDcV84O0vS5r8kXP3t1bk77e9NT2eDxUVlYyZ84cvvvd7zJz5sxBiUcSPSGGSbrZZMNj7Uw8t5jq0yKsfbAVs1MW7QkhxEjnKtKZcG4xmq4RW5nc8w5iRGl9J0H7hwl0t04ubvWYwtm5PEnNlyOUzPbD8t4fU9orjD6W1fMzna7raJrGxx9/zPTp0/MSkyR6QgyjTGuOXMrC4dEpOypIujm7ZRE+JOoypJtkSqcQQhQiT7lB5QkhHF6d6MoUTYu67Ad0KJsXQtM1Uk1Zmt+I5zdQMSSsFFg7md6ZjVuoHLi2tGISYqsJEyagadqgVdDsD0n0hBhm9U92UH16BN94J/7qbb/8uZle1vyxNY+RCSGE+CLNgAnnFOEM2x/klakITfPgKjZINWYITfOiuzTSbSYbn+7Ib7Bi2FXMDaAbdrXUPlGafSs0hRjTCLVu3bp8hyCJnhDDLdOaY809reguCO/vo2SWD82hkaiTNXtCCJFvoX3dFB3gI9ORo+XtLsqOtpuXx9dm2PxqFCsF1WdG8JQbeMudqJyi5a14j15tYuxo/yiJM+xAGTKiJwqPJHpC5IER1qlZEMHwO1A5RfSzFJtfiuU7LCGEGNN0D5QdFQTAGXEQmFQCQKo5y6bno93b1T/eAQY4AzrZDllrPZYl67NseLiD8AR/33aUqptiGEiiJ8Rw02HiucVoDmj/KEGLrOcQQoiCUHVSBDSo/0cHuaRFZIaXdLtJdMVOKiqaSJInhODYY48F7CqbL7744g7398cXj9VfkugJMcw0ne65/LHPpByzEEIUAn+tC0+5QXJTllSjXRhLCquIoSJVN0ePV155BWCHHnqvvPIKmqb1qr3CVlu3/+Kx+ksSPSGGmTIh2ZjFW+Gk5ssRVt3ZAjq4SwzSzVJ1UwghBpsR0AlO9ZDcmCHVaOKtMvDXutEMDZW1MPwOApPdqBxsek564Akheu/oo4/eaWK2q/uHkyR6QuRB/eMdTL60BIdHZ6/LS9AMzb6Kk1PkUha5tCKXttj0TCdWJt/RCiHEyFZ7QTGaQ4ND/Tu9Wq6UwoxbNDwbxZKJFkKIPtg6otfb+4eTJHpC5Mma+1qpOjmMM+Qg25ElG7fwljlx+HXcxXb1LiNkkGmRUT4hhOgvZ1hHc2jEVqcxu0wMn4N0u0lsVRozYWF4dADMLllvJ4aRFGMRw0ASPSHyxYKGp3c+RWjSJcU43Dp5HvEXQoiC4ypx4Aw4QIfwvh6UCa3vxsm05na6vb/WDUDssxTx9TtOkZAETwgxWkmiJ0QBanq9i8r5IWrOirDqDy35DkcIIfLON8FJ5fwQulPvvm9rkQP/JBe5hEXnJyna3kvAltzNU2lQcogPZamdJnlC5E2BFmOREb3ht3r1alpaWqitraW8vHxQjy2JnhAFKL4mQ7rZxD1OfkWFEKOf7gJPhROHV8fh0XG4NZSCTHuOVLNdvKp8XhBlQfuyOJnOHLpTJ7oyiW7olB7uxz/RTckhfopn+chG7dE9Z9gBCjYvkj6lQojh1dzczCOPPALAhRdeSDgc7vH4qlWrOO+88/jggw8Au+LmmWeeyV133UUkEhmUGORTpBAFylVsYMZlSpEQYpQyoPLYEL4JLjTHjqXJv8jKKtY/2obZ2fN90cKicWEMiBGY4qb4IB/OkA6aRrrZZOM/O7BSQ/hzCNEfskZv1Pvb3/7Gv/zLvzB16lSuueaaHo+l02lOPvlk1qxZ0z0zQSnF3//+d1paWgatkIskekIUIE+lgW5oxOqz+Q5FCCEGnXucQc2ZEdDBjFkkG7MkN2fJJSxySQszaaHr4B7nxFXkQFnQ9n4C9lCbqmtVmq5VUjZTCJF/zz//PJqmcfbZZ+/w2D333MPq1avRNI0FCxZw3HHHsXDhQp588klee+01HnnkEc4999wBxyCJnhAFKNVkYpmK0D5uOpcnpb+eEGLU0D1QdUoYdNj0XJT4ul2vncu0S9ImRikZ0Rv1Vq5cCcDs2bN3eOzBBx8E4Nhjj+Xxxx8H4Fvf+hYnnHACCxcu5MEHHxyURE/f8yZiJJh4fhFGSJ7OUSMHdX9vB6D6jIj8pgohRjxPhUHNlyNM/lophlcnl7R2m+QJIcRI1tzcDEBVVVWP+5PJJIsXL0bTNL7xjW/0eOyyyy4D4N133x2UGGREb5Rw+HRqLygm3WLS+GKUbIes7RqJIvt7iezvRVmKbMxCWaAbGp5xBqnNMqonhMiPcUcHiEz3AlsqXSrIdllsfilKqnHP703BqW7K5wUByLTlaHm7i8QGmZouxi6tQKtuFmJMI1VHRwcAut7zav3bb79NNptF13WOP/74Ho9NmjQJgKampkGJQcYJRom6xztINZm4Sw0mnleMt9qZ75BEHxXN8lE6x4/Dp2MEHPi2PIfxDWlJ8oQQedX5UaL7ayujSLeYOIO6PQVzDzwVBuXzglhZxZp7W9jwSLskeUKIUS8QCADQ2NjY4/6thVb2228/ioqKejzmdNqf/QxjcMbiZERvlMi25aj/ewdGWKf2K8VUnRim85Mk4elecimLtiVxoitlrUMhK57lAwWr75K+eUKIwpJpt/j8jmamfKMUM25R91gH1WeE8VQ4iezvJRvLkW43d6iIWTY3QGiaByyo+1u7VL8UQowZ06ZN4+233+bZZ5/llFNO6b7/b3/7G5qmMXfu3B322ZoUDlY/PUn0Rhmz06Lx5RgVxwUpOsBn3+nRKT8mhO7pomNZMr8Bim6ecoOSw/y4iw10t4amaWS7cvkOSwghdqC7YOL5xWi6Rqbdfp9qey9B1clhxh0Z6N5u08Jod9XL4FQ34X29ZLtyNDzTSbZTlhQIIcaOU089lbfeeos//OEP7Lvvvhx99NHce++9LF++HE3TOOuss3bY57333gOgurp6UGKQRG8U6lqVZrMDwvt6Sbea+Ce40IMODN/uexSJYWJAxTFBApPdAOQSFslNJom6DO3vSyIuhCg8wX08GD4HylJ0bJnGmajLsuquFvw1LipPCKE5NJwhBwCuEgdlRwVRSrHugTaQHE8IMcb8y7/8C7///e/ZtGkT//Iv/9LjsSOOOIJjjjlmh32efPJJNE3jqKOOGpQYZI3eKBVbmabt3Tjh6R4Mv07nJ0laFif2vKMYchPPLSa4lwezy2LdQ22s/XMbG5/olCRPCFGwOj9OkdiYAc2uBDzpa8V4qwywIL4+Q/PiLpSlKDnEh+7TqZwfQnPApmejkuQJsTOqgG9iUITDYRYuXMisWbNQSnXfjjrqKB5++OEdtl+2bBlLliwBYP78+YMSg4zojWKlRwRAwdr728gl5C9toUhszOAKe0nUZ3ZYzyKEEIVq45Od6G4oPTxAaB8P40+P0Lo0Qfu7CTo/TpFpM6leUETJLC+GXycbtYivl/YJQoixa99992Xp0qWsXbuWxsZGKisrqa2t3eX2f/rTnwCYM2fOoJxfEr1RSvfpuIocpJvNvCd5RlDHylhYo7wWjO6yk2tPuZPiyjDRv0RJt5jdj1kZKJntwzPOQCmFwysD6kKIkcVKQ9OiLlqWJJh4ToSSQ3wkNmRIN5skG0xyaYvQNC8ohVN6uwqxS9JeYWyZNGlSd+uEXZk5cyYzZ84c1PNKojdKVcy1F8c3vdaVtxgCU9yUHRXA4daxshbRz9JoOjS93gWjsOZIzVlFuIoMlKVwuHWqzwiTac/hDDlweHRyGQuHS0dZCjNu0fx6/p4bIYQYCCthUfe3DiZdXEJ4Py9Nr8QAaHmri7Kjg2iajpWTT4xCCJFPkuiNUt4quw/HuC8FUFnFpuc7sYZpBo3ugqpTI3jKDFQOcikLh0cnsp/dbNfh0dn0XHR4ghkmngoDZ8RBYmOGhqejTD7JiSoHd4mBlVVkOkxcEfvXLdmYZeMTnXmOWAghBsZdbr+nZdq39fmMfpIm1ZjFPc5JbPUon8YhxEDJtRAxxCTRG6WsjMJw6njGGWi6RvmxIXtR/BALz/Aw7ogA6JCoz9DwbBRyYAR0LAsmX1yMNopedaVH+AjsZRe8QcHmLVe1o5+maXm2HWXZ7+LOiE7t+SUAeZ9KK4QQg8G1pcJmtqPnFI1Mu0WmXZI8IYQAyGazPPXUU7z++uusXbuWWCxGLrf7qW2apvHiiy8O+Nyj6CO32N7aP7fhDOtkOy1qLyzGV+Ma0vPpHqg+vQh3iUEuY9H4bJREXbb7cStrMfErxWiaRmJDdjdHGjkmXVyM4XdgZS0S9RmaFnVhdllo+o5tLLIdFpapUDlF48JYHqIVQojB1flpkpLZfipPDJHYmKHx5S4suZAlRO8UaoXLQoxpBHvllVe49NJLqaur675PqV3/I2uahlIKTRuclmiS6I1iW5vTdnyUZNycAKVz/LS8GR+Sc004pxjDrxNbnaLxhR0TmeoFRRh+++pv1/qRf6XXCOkYfgdda9Jsen7PI6VGQEc3NGJrR/7PLoQQAFYK6p/ooPyYEL5qF5MvLGbdQ22YMUn2hBBi+fLlnHLKKaTTaZRSuFwu9t57b4qLi9H14SlWJYneKOcq0vFPskfzQtM8Q5boGT67lPbOkjxXqYG7xKBrbZrNi6JYqSEJYdh4q51UnRRGKUX7st71JgzsZTdH37p2UgghRoNUo8n6B9vwVjupPi1CyaF+Nr8ksxaE2BOpujn6/exnPyOVSuFwOPjpT3/KtddeSyAQGNYYJNEbxapODuGbYCd5mXaTtveGrmG6XXBl58PMTr991SK1OTvikzyA0tl+NAc0LoyR2mzueQfsqasAukvKjQshRp9kfRYrpwju7cZX4yK+Lk3buwnMLhndE0KMTa+88gqapvGd73yH733ve3mJQRK9Uari+CD+iW5STVk2PR8d2j+2Oji8+i6TntIjAyiliK0a+dMWS2b7cBXb1US7+lBRLroijbciRXBvd/faSSGEGE3WP9RGyaF+/BNdhKZ5CE3zkEtYxFanaXsvPiou9AkhRG+1tbUBcOaZZ+YtBkn0RilvpT1FsO7xDhjCnMIZ1ik9IoCmaXR+ktzh8chML66Qg85PkiP+ym7JbB/Fs/xYpqJtad+nwGY6cmiaRmCSm/YPdvy3EkKIkcyMWd3TNl0lDkoO9uOrdlJ0gI/I/l7MLouWt+N0rU2Pyl6qQvSJFGMZ9crLy6mvr8fpzN+yHUn0RqlMNIfhd1B+TJDNLw7eegl3mUHRTB++aie6S+uuCpRuM4mt/MIIl8Oe5phLWzQtGvnNwTW7lgydyxP9StQ6P05QfJCXksP8JDZmSTf3btqnEEKMNJnWXHehKk+lQfFBPnzjXVQeHwJAWYrWdxO0vzt0SwqEECKfjj32WO677z4++OADDjnkkLzEIIneKJXYkMFX6SK0t4fgXm6y0RzoGg6XhmZoaDpYpsLsssi0miQ2ZUisz2LGdxx181Y7KZrpxVvhRHfqKKXIJS3ia7NkOkxSzSbxtTt2Yw/t40ZzaLT3Y/SroDig+rQwnjL7ikymrX+Xoq0MrP9rO7UXFlPz5QipJpP6f3QM6YirEELkW2qTScOmKBhQNNOHM6ATnOKm5GCfJHpizJJiLKPfd7/7XR5++GF+9atfccEFF+D3+4c9Bkn0Rqn295O0v58ktJ+HyHQvzpCOUnYjdasrRy6rcAYcOEMOXEUOgnt7APsqay5lYXZZ6C4NI+BAN+yeHmbcovPTBB0fJHeaEH5RYmMWZSlKZvspOtBHqjFLw/PRETdlp/r0CJ5yg2xnjo6Pk0S/OHLZB2aXRezzNKF9PHjLnUw4p4gND7cPYrRCCFGgTLoTO/8EFw7f4PSJEkLk17x581i0aFGf9nn55ZeZN29en/a56aabuPnmm4fs+INtv/3249577+WSSy7h+OOP549//CP77rvvsMYgid4oF12eIrp89yvgNQN8NS581S7cpQbOkI67xEBZCrMrR2x1mo5lCawdB+12y4xabHikjeKD/XgrnfgmuJhw9shKbEpm+/CUGyQbsmx8snNQjrn5pRippizeShfBvdwUHeiVNXtCiDFFWXZj4CnfKCXdYrL55SiZdpneIMaQMbxGT9d19t5776E/UZ5ddtllAOy77768/fbbzJgxgwMOOICpU6fi8/l2u6+madx9990DjkESvVHCKC7G0F393j8dhfSK7e/Z+puuA170oJf+NAawgJb3gfehYi54xjkwxpWMiOmKgVooOkjDTMLmNw2MkpJe7adp4IiEMIo11C7eMOOb7Juv2h7xjG/29TmRFn3Tm+dF7JzZ2prvEMQos+4vbYT2dVN0gA9PmZPKU4rZ+Kz8Yu6JvI8NQFF4yA6taaCXOWDtkJ2ioP3pT38iHt/9Mp0VK1Zw3nnnAXDccccxfvz4AZ3zo48+2u3jkyZNGtDxB8M999zTXctC0+zZcR9++CEffvjhbvdTSkmiJ0YeVwg7wRsBSR5A8Uy72Ey8bugC3rxYUTlXo+Y0jUSDIvo5pOUztRBiDIh+kib6eZopl5WipDaVGGtG0Yheb5KqP//5z91fX3LJJX0/yRfMmDFjwMcYahMmTOhO9PJFEj0xLEoPBYdHo3PVCMnygM7PFMUzNCJTdVxhi82vDf450s3Q/Lai5CANf7VGoEYj3aFoeKEQ3/2FEGJwTfhyEWjQ/rG85wkxWlmWxV/+8hcAAoEAX/7yl/Mc0fBYt25dvkOQRE8MD0+JfUWja02eA+kDa7uaK9nB61Cxg3gdxOsUugfGHarwVehM/DJgQaJB0byUETMKKoQQveGvdVFyiB93sUF0ZYpkY/+XHggxEo2lqpsvvvgiGzduBOCcc87Z4/o0MXj6s+xKiD5rfNN+5wiNoLW3gQl2ctr6vkXbB0N/PisFm1+DbEKBApUD/wSNiWdqFO0HDh/ohn0TQoiRSndB5Ykh3KUGZjzH5peH8EqaECLv7rvvvu6vB2Papug9+cgohoVp981la70Ywwf+ieAt13C4INulaPsAzAJqqZTLKJSC7DD3eq9/etvlNP8EKJ2lEZmuE5m+bZutC3Wjay1alw5vfEIIMRDuMieaphFblaL5zRHeZ1UIsVtdXV38/e9/B+w1a4PV8mD+/Pm89957xGIxIpEI06dP56STTuKqq66iqKhoUM4xFJRStLW1kUgkqKqqwuFwDOn5JNETw0ZZCv94ndpzVPfiVKUUygJnSMNXBdHPFW3L8hzoFi3vwYRKqDhKR+UUbR8rop8NbwzxDRDfoPBWKrxldI/BOwPgq9DwjtMozNXcQgixc6EtfVtjn6fIJWReuhijRlExlt3529/+1l2R8+KLLx604iQLFy7s/rq5uZlFixaxaNEifvGLX3DPPfdwxhlnDMp5BkMul+O+++7jT3/6E0uWLCGTyaBpGh9++CHTp2+7iv/UU0/x6quvEg6H+dGPfjQo55ZETwyb+ucUob0VDjfkkorEJkg12Y+5wlD+JY3wPjrBvRTZKKRaFR0fgZWnamxWCuqeUYT3UQQmahQfoJGNKpKNwx9LcpN928oIga8CEo2F+FdCCCF6ckZ0qk6J4AzqaJqGGc8RX5/Nd1hCiF2IRqM9vne73bjd7j4fZ7Cnbe6///6ceeaZzJ49m6qqKrLZLCtXruQvf/kLzz//PB0dHZx99tk8+eSTnHzyyQM+30A1NTVx5pln8vbbb6P20BNl0qRJLFiwAE3TOPXUUznwwAMHfP5BXaN3/fXXo2la9+2VV17Z7farV6/muuuuY7/99iMYDOL3+5k2bRrXXXcdn302OEMntbW1PWLa1a22tnaPx7r//vs58MAD8Xg81NTU8N3vfneHX4TtXXrppT3O8eyzz+7xHFu3vfTSS/vwU44MZhe0vQ/Nb0Hbsm1JHkCmE+qeVrR9ZJFL2YlfeIpOzQINVyRvIZNLQNsHUP+MAgvK5uS3TO5W4S1rHZX03hNCjADjT7WTvNTmLE2vx1j757Z8hyREfqkCvgE1NTWEw+Hu289//vM+/4j19fXducDhhx/OPvvs0+djbO/f/u3f+PDDD7nllls47bTTmDVrFocddhiXXHIJzz33HHfccQdgj6BdccUVJJPJAZ1voHK5HKeffjpvvfUWuq5z3nnn8b//+7+73H6//fbjiCOOAOie7jpQg5boLVu2jN/85je93v7OO+9k33335be//S0rVqygq6uLRCLBypUr+e1vf8uBBx7IPffcM1jhDdgtt9zCxRdfzLJly0in09TX1/PrX/+aefPm7bFJ5FY33HDDEEc58nV+CvX/VKz7m6LxdQtNg6rjNNzj8huXlYGOlQrdoVE1X6P4ILs4Sr54iu2EM1aXvxiEEKK3lGl/emz/IEnnx6k8RyOE2JO6ujo6Ozu7bz/4wQ/6fIz7778fy7KnZ3/ta18bcEyRSGS3j1911VVcccUVADQ0NPDYY48N+JwDce+997JkyRKcTif//Oc/efDBB7nmmmt2u8+CBQtQSvH6668PSgyDkuhZlsWVV16JaZqUlZXtcfuHHnqIq6++mmw2SyQS4ac//SlvvPEG77zzDr///e+ZOHEiyWSSK664gmeeeWYwQuSMM87go48+2uXt+eef3+W+K1as4Oabb8bj8fCTn/yExYsX89e//pWpU6fy/vvv85Of/KRXMSxZsoQnnnhiUH6esSC5CRpesj8cVM7VKD5w22O6C3zjwV89fPHE1oKZUt2jjZXH5Gl0zwBXxD538X75CUEIIfpi41OdqJxdbbP4UCmtLsTW9gqFeAMIhUI9bv2Ztrm1Sbrb7ea8884bzH++Xbrqqqu6v160aNGwnHNXHnzwQTRN45vf/Cbz58/v1T4HHXQQACtXrhyUGAZljd5vf/tblixZwrRp0zjrrLN2O7ybSCS47rrrAAgGg7zxxhs9FiIeeuihnHvuuRx++OGsXr2aa6+9lk8//RSXa2A9diKRCDNmzOjXvo888giWZfGf//mffOtb3wLsIegjjzySffbZh4cffpjbbrttt8coLS2lpaWFG264gdNPP33QFqOOdpl2qH9eUTlXI7y3TmiK3XoAje5/QyuraHxdkW4Z2lhyCah7UuEugapjtR599oaDqwhKDtRwl2yJJ61oWjK8MQghRH+YcYv1D7VRc3YRJQf7KT7QR6o5S8dHKbpWD/ObqRBiyC1dupQVK1YAcNpppw1bJcztc4qtvfvy5cMPPwTg9NNP7/U+48bZU9haW1sHJYYBj+jV1dXx4x//GIDbb799jwnZM888Q1OTvTjr3/7t33o8IVuVlpZ2J05r167lr3/960DDHJCtL5Rjjjmmx/3jx49n2rRpvXohXX/99YA9xTXfQ8kjjRmDuqcUTe9YpJoUmU7oWqdoXmLR/rGF5oDKeRrequGJx7NlGqkrBONmD885w9O2TGEtsdczNr5mseEJBXkqVCOEEH1ldlmsvbeV5je7yMZyeMqdVM4PUX5sMN+hCTH88r0Obw9r9AZq+yIsgzFts7f2VPBkOHV0dADbkrfeyGbtIlWD1XZhwIneNddcQ1dXF1/72td61RtjyZJtQxAnnXTSLrfb/rG//e1vA4pxoLZOR/3iEHBjYyMrV66koqJij8e49tprKS8vB+DGG2/snrMsei++HhpfhYaFipal0LUOOj6Bxtfsdg3F+w/PKGnnZ5BotJ8//wQNZ3jozxmaYhfpaX1P0fBCfip/CiHEYOj4MMn6h9pZ9f9asHIKf+3AZuwIIQpLNpvloYceAuwkZzirX24dRQSoqhqmEYBdKC4uBqClpfdTzj755BOgb8nh7gwo0Xv44Yd56qmnKC4u5pe//GWv9mlr21Zpa3fr+QKBAD6fPY//1VdfHUiYA3bmmWcC8O///u/8/Oc/56233uLRRx/luOOOIx6Pc+655+7xGD6fj+9///sALF++PO+jlKNJaLL9fysLE7+sUX2yRsksMPxDdEILoqvp/u3JDcOso63nKKALVUIIMWC6Q8PhGtQC4EKMCPleh7enNXoD8cwzz9Dc3AzAV7/6VQxj+Lq53Xnnnd1fz507d9jOuzP77WcXUuhLHnP//fejaRqHHnrooMTQ73fXjo6O7rV2v/jFL3qdefr92z59d3Z27nK7TCbTXRa1vb2dxsaBDWG8+uqrHHDAAfj9fnw+H5MmTeK8887j8ccf3+Mw7yGHHMJ1111HMpnkhz/8IUcccQTnnnsuK1asYMaMGb2upnn11Vczfvx4AG6++WZyudyAfiZhS225duApsUf0HF4I7aVTfbJG0QFDc85xh2pg2esHraEsIKdvmbIZ0UhssuhaO4TnEkKI4WSBmbD/Dk48SyM0Jc/xCCEGRX96591zzz3dLcZuuummHR7/6KOPWLVq1W6P8Yc//IG7774bgIqKCs4666zeBz0EzjzzTJRS/N///V/3srXdueOOO3jxxRcBOPvsswclhn4netdffz2NjY3MmTOHyy+/vNf7TZs2rfvr1157bZfbvf766z0SsA0bNvQv0C3Wrl3LRx99RCKRIJlMsm7dOh5++GHOOussjjrqqD2us/vv//5vfv/73zN9+nScTicVFRV861vf4rXXXiMUCvUqBo/Hww9/+EOA7uaOYuCin0HDSxYt71qsf1yx/jFF/fMWuSSE99EI7TW456s+RcPh0mhfoTB33UZxcM51koarCOL1FpsHp9KuEEIUjLX3t9H2XhwUFB+o4ezdn1MhRIFqb2/nqaeeAmDGjBnMmjVrUI777rvvMm3aNObPn89//dd/8cILL/Dee+/xzjvvcN9993HiiSd2V9x0OBzceeedPQaX8uHKK69kwoQJtLW1ceyxx/L222/vdLuVK1dy+eWXc+2116JpGjNmzOArX/nKoMTQr7HU119/nbvuugvDMLjjjjv6VEHylFNOwTAMTNPk17/+NZdcckn3HNatstnsDqNksVisP6HicrlYsGABJ5xwAjNmzCAcDtPR0cHixYu5/fbbqaur44033mD+/PksXryYcHjXC66++c1v8s1vfrNfcWx1xRVX8Itf/IINGzZwyy23DPuQ9miVbrVvW2U7oe4ZxYTTNYoP0shEFanmwTmX02+/3jPtg3O8XSmaYZ+rY6VF+4dDey4hhMgLC1rfSRBv9lJzok5wsqLtg3wHJcQwGMTCJ4NqgDH99a9/JZ2215v0djSvt3K5HAsXLmThwoW73KakpIS7776bBQsWDOq5+8PtdvOPf/yDefPmsWLFCubMmdM9sw/sf5+mpqbuwSalFCUlJfztb38btOr8fR7Ry2QyfOMb30Apxbe//W3233//Pu1fU1PD1VdfDUB9fT1HHnkkTz75JLFYjFQqxeuvv878+fN54403cDqd3fv1t7v9O++8wz/+8Q+uvfZa5s6dy4EHHsi8efP4wQ9+wPLlyznhhBMAe/HjzTff3K9z9IXL5eI//uM/AFi9enVBNYUfdSxoeMFux1BxlLbbyxquIig/yh6tq5irEai176s+SaP2HI2JZ2pUHgMTFmxJ8joVyc1DG74zZP/SS5InhBjtzCh2YZZqaT0kxEi2tXeew+HgwgsvHLTjnnLKKdx9991cccUVHHzwwVRXV+P1evF4PFRVVXHyySfzP//zP6xZs4Yzzjhj0M47UDNnzmTJkiUcfvjhKKWor6/vfuz999+nvr4epRRKKWbPns3bb7/NlCmDN4+9z0NJt956K5988gkTJkzgxhtv7NdJf/WrX7FmzRr++c9/8umnn+40695333055phj+P3vfw/YPff6IxKJ7PKxYDDIww8/zF577UVrayt/+MMfuO222wbcs29Pvv71r3PbbbexZs0afvrTn3LJJZcM+TnHKjMBrR8oSmfpBCcoYmvACEDxAeAMaCQ2KXIpKJ5pf7hQJhg+8JbZ10CUUqRa7FYK7hJ77nhi0/BMo9QGp7KuEEKMCF3rFKG9dMqOVHSuZMh7owqRV6N0RO+NN97o136XXnopl1566S4fLysr47LLLuOyyy7rZ2T5M2XKFN58801ee+01nnjiCd59912amprI5XKUlJRw0EEHsWDBgl43Ve+LPiV6n376aXcz9N/97nf9nvvqdrt58skn+dOf/sT//d//8cEHH3SvxyspKeHSSy/l5ptv7i72AgxZo8VwOMz555/P//3f/xGPx1m6dClz5swZknNtZRgGN9xwA5deeinr16/n7rvvHvCUULuB+ODEN9o47eKteMZBcC8N19bZuQoi4W0J3cZnFGYC0CEwQeEMQLweMh3b9i8/CrwVGmVHKDo+saeIfpGmsdvnI1ALzgBoHtB1sNKQ2ASpL6zTdYY0VFae18Gyp+dF7JqmD90/mqZraNrQnkP03XA/L5oGbe+Du1jhr9LxV0Emqmh4vhA/CeePvI8NwBD+m219XoTYnaOOOoqjjjpqWM/Zp0TvN7/5DZlMhsmTJ5NIJLp7ZGzv448/7v76pZde6q6Wefrpp/dIDHVd5/LLL+fyyy8nFouxefNmvF4vlZWV6Lr94fujjz6ygzQM9t57777/dL20fdP23jQ/HwwXXXQRt956K5999hk/+9nP+PrXv47H4+n38Yprgrgc7kGMcPRwKggGNUIzNJSyG663L1fkkuAK21M0k80QLt1uJwuIQjAEbFccIPkxlM7SCO0LldPt41mmnazF1trTOTUgXO5HUz0vjEWmg69S6zHvWinV/b2VUyQaFJ2fYRcmGKeRTUDJBPmgMxh29byIPcuFhu5fTNM1IlVB0DSUJc9MoRju58URsd9oM5+DVgRFB2gE/JCW978e5H1sAIJDV5hD08Ab6VumV6i5YSHGJPqvT4ne1sWVa9as4YILLtjj9j/5yU+6v167du0uRwCDweAOUzO7urpYtmwZAPvvvz9er7cvofbJntorDAWHw8GNN97IhRdeyMaNG7nzzjt7jGD2VVtdDKc+DA3dRqjG5eAugXQ7dhI3AE2f2dM/Q3uBM6Jh+MDwgmMCmDFFdCUoDdrqot1970oOhVxAJ9qhUBY0L9nS9Nyyp4oGJkFwkoYjrBE4WJFsUkS7NKwsOPeyRwCzcehao+haN8B/jDFK03Z8XkTvmG1DV3lI0zVQipb1HZLoFZDhfl6M4u0+Xm6AXETDUwqtG+Q1sT15HxuAoiGcmaBBwJT1FqInXdfRdZ0PP/ywx6DS7qxevZq9994bXdcxTXPAMRRsucfHHnusO7EcrBKju7JixYrur6uqqob0XNs7//zzufXWW1m+fDm33XYbV155Zf8PpqSZ9p6kBnG9RzYGrR9A9zVVHSYu0IhM1whOhnCRhi+2ZeqTw/7QlEurnfbdy8ah/WNo/1jhr1EU7a/hLbdH/hwu0IvtdYTuIvAcolMyyx6VjK2x1xyKPtjyeyK/K30z1B/0lbLPIYleYRnO5+WLv5PZmMJTquEIMuRtbEYceR/rn6H+9+rr8UfpGj3RU38HkwZrEKpPVTfvueee7sowu7ptX6Dl5Zdf7r6/tra21+dJp9Pdo4Fer3e3izMHqrOzk7/+9a8A+Hw+DjnkkCE71xfput7dFLKxsbG78IwYgSxo+8j+pdQc9h9gKwNmEjKd0PGpxYYn9txcPV4H9f9UbHhKsflti+Z3LTY8pah7SrHuUUXr+xaZKLgiUHqwzoQFGnr/Z/wKIURB6lxp/3/8cRqhoVu5IYQQBSlv7RUGQ0tLyy7bJaTTaS6++GJWrVoFwE033URFRcVOt503bx6aZo98rFu3bofHn3322d22Zejq6uIrX/kKra12A7bLL78ct3t417mdffbZzJw5E4Bf/OIXw3puMbhiq2Hd3xR1Tyo2v67Y+Kxi43OKhoWK9o/6diwrBYkN0LWGHslhdJXdMmLdo4qOFRYOt0b5kTKjXggxuphd0LJUgQYlB+rUnqMx/sTtimkJMcJpqnBvIn9aWuzpZ4PV7D0vUzdfeeUVrrzySi666CKOP/54ampqSCQSLF26lNtvv53PPvsMgDPPPJPvfOc7/T7PbbfdxoUXXsiXv/xlvvSlL7HXXnsRCATo7OzkzTff5I477mDDhg0ATJ06tXt0bThpmsbNN9/MmWee2f3kCtEb7cshOFnhKdYomaVofS/fEQkhxODpWme3XAjUKoKTNNwlUDVfY/PrW9Y4CyHECNDb0bl4PM7vfvc7APbaa69BOXfe1uh1dHTwv//7v/zv//7vDo9pmsZVV13Fb3/7WwxjYCG2tbVx1113cdddd+1ym6OPPpoHHniA4uLiAZ2rv8444wwOOeQQli5dmpfzi5Gr/gVF1TEQ2kvHV6nY+OKep4cKIcRIsjXhM3xQfZJG2REa6/+hBlxYS4i8kjV6o87kyZN3ev8JJ5yA0+nc7b7pdJqmpiYsy0LTNE4//fRBiSkvid5RRx3FL3/5S1588UU+/fRTmpqa0HWd8ePHc+yxx3LZZZcNylq5X/3qV7z44ossXryYlStX0tLSQkdHBz6fj6qqKg477DAuuOACTjjhhEGbC9tft9xyC6ecckpeYxAjj5WC+mcUtWeD4dMomalofjvfUQkhxOAzE9DynqL0EI3KozU2vdLzE6kRBG8ZpJohKwVchBDDbGfLyJRSfW7ddvjhh3P99dcPSkyaykdvATFootEo4XCY44u/jqG78h2OwC6zXDIhROuG4Sl/7a2CiiN1lFI0vKjIDF0l/BFtuJ+X0cTcso55KGi6RmltES3r2qXqZgEZ7ufFKCnp9bYVR4O3XMfK2f1Qc2nIpRT+8dvKDiilSLdD89sKs2soIs4PeR8bgKKhW+CpaRAsc/Dw6z+ns7OTUCi0y223fm7b76pbcbgLr5paLp1i+Z0/3OPPIXb09a9/vcf39957L5qmsWDBAiKRyC730zQNj8dDZWUlc+bM4dhjjx20AaiCba8ghOidZAPk0grdBcX7Q+PryJQmIcSo1fgqhPe1CE7UcHjsXqRs+VCU7lAkGxXecg13kT3Vs/MzRfvHyPuiKDySrI8qf/rTn3p8f++99wLws5/9rNd99AabJHpCjAIbnlJUztXwlGnUngmtH0iPPSHE6NX5CXR+8sVPydu+b/9IYQShcq5GZKpOeG9F3TOKXGJ44xRCjF1bW86VlZXlLQZJ9IQYDSzY9LLCNx7GHapRerCOt9Ki6Y18ByaEEPlhxqDuKUV4mqJ4f52SmYqmxfmOSghbobYyKMSYRqrte4vnS1766AkhhkZiI6x/XGGZCl+lRtF++Y5ICCHyq/NTyHYp/NU6lcdo6IW3LEoIIYaEjOgJMQq1f6womqER3lcjVqcwpQKdEGIMq39GUf4lhbdCY8JpGk2LFYm+FcITYnBJe4UxJZfLsWLFCtauXUssFiOXy+1xn0suuWTA55VET4hRKPo5JDYqqk/RqD5Bw0xA/T93fPcuPRS8FRq5FJhxheYAlYPoKkg15SFwIYQYIptfB3eJouJouxdf2zJF9PN8RyWEGM0SiQS33HILd999N21tbb3eT9M0SfSEELtmJiBRr/DX6Dj99gec9HZV8nUXBCbaleocTnCFt5Xy9Y/XsLKKRIMi1Qrx9WCZw/0TCCHE4Eq3Qt0ziuoTNIpnahh+RdsH+Y5KjEWyRm/0SyQSzJs3j3fffZd8dbOTRE+IUazpLahwWXjLdbKdPR+zMoCyE8L6Z7a9AekGRPZTBCZo+CdoBCZq+MdbNL46sFgCtRCYYDd2z8YUm6VQjBAiD6yUXam4+kSN8N46hs+i6c18RyWEGG1++ctfsnTpUgAOOOAArr32WmbNmkVxcTG6PjxlUiTRE2KUSzSCp0wx4Uyte+59LgPZTvsb3dlze8uEtmXQtkxh+KD6ZNAcGlt39lZAsok+9aSqPEbDU6rZV7QUOIM6tefYx7MysPmNnqONQggxpCz7AlflMeAfr1N+lMXm1/IdlBhTZI3eqPfII4+gaRpHHXUUL7zwAk6nc887DTJJ9IQY5aKfgZVRBCYAmobmAGcAPGUaKgebF+/6Xd1MgLK2NCQGqo7XcBdpKEsRr1O0frBlZHAndA+UHQaGX8PwQapVsekl+1zFMxUOLzgD9vFKD4aNz8tfFyHE8Nr0sp3secs1QnspoqvzHZEQYrRYu3YtAN/97nfzkuSBJHpCjAld6+xbfy7VJRoU/hqN6lM0nH57VM5MgX+Chn+CnQh2H3bL/7MxMAL2aKGVhUwHbH5127nbltn/91YoKo7ScIbsZNKUZsZCiGG2aZFiwmkaxQdphPaGTIfCytmFqdJt0LWBPs1gEEIIAK/XSyqVorq6Om8xSB89IcRuNS+BVLPC8EKmU9G4SFH/tGLTy4rERoXZBWbcTtLMpD0t1FVkJ3ltHyk2/EPRsFDttJhLshE2v2l/ghp/gp3wCSHEsLKg/llFqklh+MFXrRGs1QntpTPuUJ3aszT8+fucJkaprcVYCvEmBseMGTMAqK+vz1sMMqInhNg9CxoXwRdHA9Ot0LR4x/u7GUAvKnUmNkLz24pxh2mMP0HDykAubTc47vwUWbsnhBhyVoYtBae2TU/QDfBPgOKZGuMO1zA+tt+ThBCiN77xjW/w6quvcv/993PaaaflJQYZ0RNCDI0+tGOI19mFEZKbVPeaQF+lRuUxGkUH2NvoLnukcCtXEZTMgsh+Pe8XQojBYJkQWwN1TyusNBTvrzN+vobuyndkYlRQBXwTg+KrX/0qX/nKV3jkkUf41a9+lZcYZERPCFEQzDhbWi5sqQbqsou/hPfRCE8BdLuBqFJ2Mqht+R6gaDoopbAy9ocz3QGawz5utgs6P1ckNuTlxxJCjHBWBjY8qSg7XOGr1phwmsaGp9QuC1EJIQTAq6++yje+8Q3q6ur43ve+x6OPPsoFF1zA1KlT8fl8e9z/6KOPHnAMkugJIQqSlYH65xXjDgZnSCPbqcjEFJ5SMDwaqXZFxwqFww3+8eAu0XAG7bWBKge5FGgauCJQNltHHaJwK41EBhKb8v3TCSFGmqa3wFupKD9So/RQaJJeoP2me6BoBjickGqCrrpdV3AetQp19KwQYxqh5s2b131BGmDJkiUsWbKkV/tqmoZp9mFq1C5IoieEKFwmNL8N2//lsfu+b/s+l4BMe8/7vii0jyI4SSM0Hsq/pGOZduGF9hVb9xVCiD1LbgIUGN5tvUVF31UcpeGO2DM0/NUaxQfZMzWw7At1Vs6ufrqzRvbucfYFvWTDsIctRJ8pld/3CUn0hBCjXvQziH2uSE9SWH4L3wQNb6WGr0pD5RRW1q4YasYVmQ7oWi+tHoQQO2fG7ZkCpYdCy3YX511FEN4bzBTEVsl7yK7oHnCFIRtX1P9T4Ruv8I8HV1hDM+xp9w6X3cg+ONkitma7fV1QOVdD0zRyaYVSdoufbFQRW2MX9xopCrXCZSHGNFK9/PLL+Q5BEj0hxBiSg/aP7bYPugeKpivcxRqGF1whcEU0/NUaRTOg/jmLbDTfAQshCk3DQkXV8XYLBn+1IrpKkdwMFUdr3dO0wvsoMp0Q/VyRjUn14O0Fauxpaa0f2K11Ehu3Jmg9M4zac+x+rbE1Cncp+CogMNH+N87GFdqWcoK6YTe891XYF+4ynZBsVsTWgSnv4SKP5s6dm+8QJNETQoxNVgpa34PtP1xE9oOi6RpWTpGTq/FCiJ2wTLvvXmgvRWSGRmSaTniqAgV1/7TQnVA8EzxlGuMO1VFKse4xJU3Xt9qyZMlK73oTI2Ang95xdsK3NYFWStH5uUXbB1/YQYfwVEWwVsMVAXexTngfRS4NLe+qwpzmKWv0xDCQRE8IIQBPGUT21TBTiron5S+dEGL3oqshulrhr1EEJ2vE61T3dM3GV0E3FKWzFf7xdiLY+Ul+4y0U2Zj9f1d41yOdVgbS7QrdaU/LTLUqkpsg07mLg1rQ+Ql0fqK2HFsR2gcCEzTK52hko9C22iTZpiOdxcRYIomeGJPM1qGbR6PpGrmQwmxrR1mSMPSFUVKSt3OXH6mBBRtfGJznbChfY0KMNiP596WzFTo/2PljDU/C5K+XULSfRqY5RmzlboaxemE0/H1JZnWgBIcjidm666kTG/7a/3OYrZBYAxhQeVwIf62LillJlIJsRicZc9HZ7COTHJymiJoGKqTteUMhhpkkekKIMa/kYNANjeYlFlYq39EIIUaTDY+2M/HcIsrnBRl3RACzyyLblaN9WYLUpoGXTx9pDK89omblhuFkJmx6LorugcgJk/CH07g8WUIlKUIlKaycRqzNQ1tDEMvafqTPIjwugTeYRQPiURfRFv+ghqYphZbniow7U4gxjQS33HLLoB/zhhtuGPAxJNETQoxpuguCtRrZhKJrXb6jEUKMNmbMYvW9rZTPDeKrduKMOHCVOPBPdNH0ehfR5WPr6lJkfy9KKaKfDt/PbaWgvTFAe2MAAMNlUlzZhT+SJlKWJDwuSS6rkzN1NIeF02XZo3Rbch5fOI3TnSPe4SYVdw9b3GLkuOmmm3r0zBsMkugJIcQAjTsM0KD5HbmKKYQYIjnY/FKs+1vdA7Xnl1D2pQC5rhzx9dk8Bje8fDUucikLM5a/6jRmxqBpfQTWgzeYpriiC5fXxOkxQWmkEwadzT5ibR4Mt8XE6S0UlScoKrenmkbbPDStiwwsCCnGMuoMZs+8wUoaJdETQoxZnnF2We5MB6Sb8x2NEGKssFKw7qFWJl1USsX8MGvvbxkT08Y9lQa6SyP66cDWKg6mZMzNxtiuR+nMtM7q98tweUxq9m1D0yBUnCJY1EjDqiKSu9lXjB2F0DNvZyTRE0KMLQYUTQV/tYYRABQ0vSmXMIUQw8tKwabnO6k6OUzNWcWsf7At3yENudLD7amTLW935TmSvtLJpFysfr8CsKie2o7Hn6VqSjudTV5aG4KAo09HlIbpo0sh9MzbGUn0hBBjSs3JGg63hrIUqRZoWbqtJLoQQgynxIYsnR8niezvY/zpYTY+3Tni++2FZ3goPsgHOlhpRS5pEd+QoXNFkkybibfcSWCym+iKwhnV6xud+pUlBIsTlFbHiJRvWeOXDuU7MCF2IImeEGLUGzfbnqIZKtKIJzVi6yxaluQ7KiGEgOY34rjHGfjGu5hyZSkqq0i35Wh5u2vkVeU0YNycACjIpSwMn44z7MBb6aJktr97/ZeVyW+YgyHW5iPW5iNYnKBkvF3YpU9kjZ4YBpLoCSFGNVcRBCbqWKZC5SDRKEmeEKKwODw6SimSm7IYAQeecoPqBREy7TkaX4ySaR2OXgQDN/6UMGiw6fko8XXbsjn/RCehqV6MoE6iLkPXqpE6mrejWJuPrnYf5RNGQfYqRh1J9IQQo1poiv3/5rcVcaeidUN+4xFCiO1FDvDiihjEVqVoXGhX5tTdUHFsCN8EFxPOKSKXUnStSdO2NJ7naHctsr8Xb6WTTEeuR5IHEF+fHfWVRVNdfSvKImv0xHCQRE8IMSq5iqB8jobh08h2KZKbwDch31EJIURPmmGXUffXuvFNSJHYkMVKQ8MzUQy/TslsP/5aF5H9vISne1B1LlrW5Tfm7bnHGVSeGMIZcJDLWDQtiu15JyHEsJBETwgx6oT3haL9NFAQXWPR+i4Mch9TIYQYFO3vJQhP9+AMOAhP95LYsG3ky4xbbH7ZTpw8FQaVJ4Qo2s9DcYuX1nfyX0XKVeKg5qwIAB0fJ2h+vXBHHIUYiyTRE0KMGmVzwFepoekaubSi4SWFOdKqeAshxpxcwi5csunZ6C63STWarHuonfA1YYpn+fFUONn4ROcwRrmj8nlB0KDu7x2km0ZY4Zh8k2IsYhhIoieEGBUq5mp4yzSyMUVsvUXnJ/mOSAgheifTkcM9zkAzQO0uX9r+sUGepRCZ6SUyw0vnJ0na30v2ah/Dr5NLWpLkCVGgJNETQox45V8Cb5lGYpPF5tfzHY0QQvSNlbbQNA3NpaPMXTfS052gOzVyUYuN/xi80TxXqUHp4X4ASg71E5rmJboyRWxlisAkN8G93egujabXu0jWb1dURdNQORkC6g8pxiKGgyR6QogRzQiBt0Ij1aokyRNCjEje8S6UpbASu++WbmUhtdnE4dOZdHExsdVputakyXSYWKn+n7/yBLvZ97q/tDFuTgD/RBelh/opPdRO/pSlQIPxp4bJJSyaF8fpWpVGc4Aa3cU0hRjRJNETQoxoocmgaRotS3f/AUkIIYZCeIaHwGQ3zpAD3amhTEWmPUdyc5b4+swepzUGp7pxFTlI1PWuD1vz611QlSY0zUvRAT6KDvABoJQCBcoClVMoU5FLWiQ2ZYl9libd3DOO4D5uQlM9eMqc6E6Nzk+SmF0Wm5631wn6J7nwVjpJN5vEPk8z7ugAob09ODw6FccFSUz14HDpJDeNnp54w0rW6IlhIImeEGJEcwbsDzjZXdcwEEKIITHxq8W4Qg6UUlhp+6a7NbzjnfiqXZQc7EcpO+GKfprqUSmzbG4AzzgDV4mBMhUNz/X+TazlTbvCpXucgW+8E4dfx/DqOLw6DreG7tbRDA1XkYG71EnR/j6UpTC7LDKdJt4KJ7rTbtJuxi1alybpWNZzXV58bYb42m3JZ/OrXTS/2oUzojPhnGL8NS6y0RybF0nFKyEKlSR6QoiRbevVRx2QQT0hxDByBnTMpMXae1t3eMw9zsA/0YWnwomnzKB4lp/gPh7qH+8gMtNLeF8vKqfIduZoeLYTcn0/f7rZ3GGkbocYwzqhqR581S5cEQe+oAsro2h5u4v2D5N9Pm+2w2L1XS3ynjsIZD2cGGqS6AkhRrSuDeCr0iidpWhZmu9ohBBjSaYth6vEgbvM2GGK5heTsNLDfURm+qi9sBhN08hlLNb8cccEcbBlOy1a30kMft89SfKEKHh6vgMQQoj+CtTCuEPtGuOWFAQQQgyz1vfiaJpGcC/XHrdteSvBhr91EFuVxoznaP+gdy0MxCilVOHexKghiZ4QYsQqPURDKWh6y6JtWb6jEUKMNWVHBVGWouPD3pW8zLSYbH4xxto/t9H+3iCPsAmRR5qm9eo2b968QTnfQw89xIknnkhlZSUej4fa2louvvhi3nrrrUE5/mghUzeFECOSt9z+w9L5mUW8Lt/RCCHGGneZgeHVaf8ogRmXeYyib6SPXv+kUinOPfdcnnrqqR73r1+/nvXr1/PAAw9w00038eMf/zhPERYWSfSEECNS2RwNZSk6V+c7EiHEWKQ57P+bXZLkCbHVN7/5Ta655ppdPu73+wd0/Msvv7w7yTvmmGO47rrrqKqq4qOPPuLWW29l9erV3HDDDVRWVnLFFVcM6FyjgSR6QogRJ7Iv6IZG8xJrQE2ChRCiv1yRLZlegY+ACDGcysrKmDFjxpAce9GiRTzwwAMAnH766fz973/H4bB/Dw899FAWLFjAwQcfzIYNG7j++us555xziEQiQxLLSCFr9IQQI46/2h7N61qX70iEEGNVyewAlqnoXCFFVUQ/qAK+Faj//M//BMDhcPD73/++O8nbqrS0lF/84hcAtLe3c/fddw97jIVGEj0hxIjj8EIune8ohBBjlbfaicOjkajLoHbfxk4IMQi6urp48cUXAZg/fz7V1dU73e7LX/4yoVAIgMcee2zY4itUkugJIUacbAwcHtA9+Y5ECDGmGFB5Yojxp4ZROWh+oyvfEYkRSrMK91aI3nnnHdJp+wrv3Llzd7mdy+Xi8MMP794nmx3bvZck0RNCjDitHyg0TSMyNd+RCCHGiqJZXqZ8vRR/rYtMW471f22TQixCfMEjjzzC1KlT8Xq9BINB9t57b772ta/x8ssvD+i4n3zySffX06ZN2+22Wx83TZPPP/98QOcd6aQYixBiRHGPg9JZdpP0rFxMF0IMMf9EJ2Vzgxg+B7m0xeZXYsTXZvIdlhjpCnU93JaYotFoj7vdbjdut3uPu69YsaLH96tWrWLVqlXcd999nHnmmdxzzz2Ew+E+h1VXt62P0q6mbW5VU1PTY7/p06f3+XyjhSR6QogRo3gmhPa2k7x4vUVMWisIIQaJq0jHPc6Jq8iBK2xgBHVcYQe6S0dZivZlcVoWS5NzMTZsnywB3Hjjjdx000273N7n87FgwQKOO+44pk2bRiAQoLm5mUWLFnHHHXfQ2trK448/zhlnnMELL7yA0+nsUzyxWKz760AgsNttt2/h0NU1tq8IS6InhBgxgpM0rAzU/1NhSQEEIUQ/ecoNQvt68Y13Yvh00EHTtO7HlVJgQS5l0flpgralcSwZxBODqNAbptfV1XUXNQH2OJq3cePGnbYymD9/Pt/61rc4+eSTef/991m0aBG33347//qv/9qnuFKpbb2UXC7XbrfdPtZkcmxXxZVETwgxYmgGpBolyRNC9F3RgV6C+3hwhR1oDg2lFMpUpFtNsrEc2c4c6dYcqeYsZlTW3omxLRQK9Uj09mR3/erKy8t59NFH2XfffclkMvzud7/rc6Ln8WyrvpbJ7P6qy9aiLQBer7dP5xltJNETQowI4Wn2Fffk5gK8BCqEKFjeaieV80M43Doqp8h05IivT9O5IiXFVET+KGXfCs0QxTR58mTmz5/P008/zapVq2hoaKCqqqrX+weDwe6v9zQdMx6Pd3+9p2meo92Irbp5/fXXo2la9+2VV17Z7fbr16/n+9//PgcffDCRSASn00lxcTFz5szhJz/5Cc3NzXs8Z0NDA5deeinjxo3D5/Mxd+5cFi5cuMvt161b1yPGreVed+emm27q3n7dunV73F6IscBfA0UzNHIZRXRsF9ASQvRScB83E75SxPhTw+iGRsvbXaz6fy1seKSd1ncSkuQJMcy2L4qycePGPu27fQGW+vr63W67feGWL641HGtG5IjesmXL+M1vftPr7R944AGuvPJKEomei6jb29tZvHgxixcv5n/+5394+OGHOfbYY3d6jIaGBg477LAeL65XX32VE088kXvvvZeLLrpoj3G8/fbbPP3005x66qm9jl2IsS44GUpmaagcNLxYgFc/hRAFwVNpEJjsxhUx8FU70TQNZSmSm7Jseq4TK73nYwghho4awGjh9knip59+uttttz5uGAZTpkzp9zlHgxE3omdZFldeeSWmaVJWVrbH7RcvXswll1xCIpFA13W+/vWv8/jjj/POO+/w6KOPcvrppwPQ2trKggULdjmK9u1vf5v6+nqOOOIInnzySV5//XW+/e1vo5Ti6quvprW1tVfx33DDDb3+WYUY68LT7CTPykLdMwpzbBfPEkLsjA4TvlJEzRlFFO3vw1ftBAvidRlW3dXCxickyROFZ2sxlkK8DZXtWy/0ZdomwKGHHtpdhGXRokW73C6TyfDWW2/tsM9YNeISvd/+9rcsWbKEadOmcfnll+9x+1tvvZVcLgfA7373O/74xz9yxhlncOihh3L22WfzxBNP8J3vfAew5/T+13/91w7HSKfT/OMf/6CmpoYXXniB0047jSOPPJL/+q//4l//9V+Jx+M8/fTTu42jtLQUgPfee4+///3vff2xhRhz3OO2TNdMQ/3TCiu1532EEGOLZsDE84pxFTmIrU6x9v5WVt3Zwqr/10LD050gszOFKAhr1qzhhRdeAOz1euPHj+/T/sFgkOOOOw6AhQsX7nL65mOPPdbdA/Css84aQMSjw4hK9Orq6vjxj38MwO23396rLP2NN94AoKSkhGuuuWan22w/yvbmm2/u8HhrayvpdJrZs2f36M0BdL/o9jTX+NJLL+0egbzxxhsHNHwtxFgQmWb/f+MzUmVTCNGT7oHKE0PsdVkpzpBO5/IkjS/EZN2dGDlUAd/66Mknn8Q0d/2HevPmzZxzzjlks1kArr322h22ueeee7prVOyqX993v/tdAEzT5Nprr+0eyNmqpaWF733ve4BdBfSKK67o+w8zyoyoRO+aa66hq6uLr33ta8ybN69X+2wtwTpp0qRdbhMOh7tH3LYvybpVUVERhmGwdOnSHdb5bS0CU1FRsds4/H5/94vvo48+4pFHHulV/EKMRf4J4C3XMONIkieE6CGwl5tJF5bgr3WRjebY+HQnza/H97yjEGJIfOtb32LixIn867/+Kw8++CCLFy/mgw8+YOHChfzHf/wHM2bM4P333wfgS1/60k4Tvd449thjOf/88wF44oknmD9/Pk888QRLly7lT3/6E4cffjgbNmwA4LbbbqOoqGhwfsARbMQUY3n44Yd56qmnKC4u5pe//GWv99t777354IMPWLt27S63iUajtLS0ALDPPvvs8LjX6+XEE0/k6aef5oQTTuAHP/gBRUVFPP744/z3f/83Pp+PU045ZY+xfPOb3+RXv/oVmzZt4qabbuKcc85B10dUri3EsCiZqaEsqH9BRr6FENtUnxnGW+FCKUXjwhhdq2XxnRiZCr1hel81NDTwu9/9jt/97ne73Obss8/mrrvu2mPz9d354x//SDQa5Z///Ccvv/wyL7/8co/HdV3nxz/+MVdddVW/zzGajIgso6Ojg+uuuw6AX/ziF4wbN67X+1555ZWAPf3yjjvu2Ok2P/nJT7q//uY3v7nTbf77v/+bkpIS3njjje41er/85S9RSvHb3/6W8vLyPcbi9Xr5wQ9+AMAnn3zCAw880OufQ4ixwuED3Q2JegUymieE2I67xCCXtlj3lzZJ8oQoEPfeey8333wzJ510Evvssw/FxcUYhkEkEmH//ffnqquu4s033+TRRx/dbWP13vB6vTz99NP85S9/Yf78+ZSVleFyuaipqeGrX/0qr7/++i6nfo5FI2JE7/rrr6exsZE5c+b0qgDL9r7xjW/w2muv8dBDD3Httdfy7rvvsmDBAiorK9mwYQP3339/d3GUH/3oRxx//PE7Pc6UKVN45513+MEPfsDzzz9PKpXioIMO4j/+4z96NZq3fTz/+Z//SX19PbfccgsXXHABDoejTz+TEKOZ7rQbo2e7CvBSpxAir9KtJp5yJ97xTmIrJdETI9goapg+d+5c5s6dO6DTXnrppVx66aW93v6rX/0qX/3qVwd0zrGg4BO9119/nbvuugvDMLjjjjvQNK1P+xuGwQMPPMAZZ5zBbbfdxl133cVdd93VY5tjjjmGH/zgB8yfP3+3x5o8eTJ//etf+/wzbM/tdvOjH/2Ib37zm3z++efcd999fP3rXx/QMYUYTbIx+//OQH7jEEIUnoZ/dlJ7UQnl84L4a1w0LozlOyQhhChYBT11M5PJ8I1vfAOlFN/+9rfZf//9+3WclStX8uCDD/Lxxx/v9PHFixdz7733smnTpoGE22uXX345tbW1gD1tdGsVIiEEYEEurfBP0PDsuVWmEGIMsTKw7i+tZFpzBKd4mPS1ElwlMitGjDz57pWXjz56YvgVdKJ366238sknnzBhwgRuvPHGfh3jtdde44gjjuCJJ56gurqaP//5zzQ2NpLJZKirq+P//u//8Hq9/OUvf2H27Nl88skng/xT7MjpdHa3iVi7di1//OMfh/ycQowkDQsVKKg4SsPw5TsaIUQhsdKw4dF2Wt7pwuHWmHBOEYEp/S/uIIQQo1XBTt389NNP+fnPfw7Yjc6/2L+uN9LpNBdccAEdHR1UVFTw1ltv9WiDUF1dzTXXXMPcuXM55JBDqK+v55JLLmHJkiWD9nPsyiWXXMLPf/5zVq1axc9+9jMuvfTSAVUhQoM+zmod0zR96P6xNF1D04b2HKPV1tdwLgmbX1OUH61RdqTGpoUDv8SoaQzr74k8/70jvy+FaSQ8Lx0fpOhak2HCOUWUzwsSX5+B3J73G8lGwvNSqIbyvV+Tz2CiQBVsoveb3/yGTCbD5MmTSSQSPPTQQztss/1UzJdeeonGxkYATj/9dPx+P88++2x3I/Nvfetbu+x1t99++3HRRRdx1113sXTpUpYtW8bMmTOH4KfaxjAMbrjhBi655BLq6ur4f//v//Ev//Iv/T5ecU0Ql0OuaPZWLjR0cxM0XSNSFQRNQ1kyB6IvHJFQj+8DXg3lhsyEQUj0gHC5H031qx9snw3la2w0kd+XwjSSnpfceoOSg/xMnu8k+unoLtAykp6XQqOVe4fu2IAv2Mfno5/NyYdcIcYk+q1gE72tjcvXrFnDBRdcsMftt2+RsHbtWvx+f49pmLNmzdrt/gcffHB3kZZPP/10yBM9gAsvvJBbb72VTz/9lFtvvZUrrrii38dqq4vh1Ef3H7jBZLa1D9mxNV0DpWhZ3yF/iPvIKN52SbToAOhKamQ6oXXD4IzoKQ3a6qLDUuhsKF9jo4n8vhSmkfS8tKwDvaYYvUbDF1Y0Phcl02HlO6whMZKel0KjjUsO3bE1CJsypCcKT8EmeoPBMLb9eKa5+4Zc2xdE2X6/oaTrOjfddBPnn38+mzZt4vbbb+//wQq0Sm+hGuo/kErZ55A/xH2z9TU8bjYEJuqYCUXjIjV4r201fBWt5bnvPfl9KUwj6XnZ8Nd2yuYF8VU7qTm3iPj6DJuej8IozPdG0vNSUIb4n6uvf1cKtfBJIcYk+q9gi7Hcc889KKV2e9u+QMvLL7/cff/WipaTJk3qfvy1117b7fkWLVrU/fX2+w21r3zlK93VRG+77Tbi8fiwnVuIQuWt1MilFHVPK6xMvqMRQhQ6M27R8HQn6x9qI9Oewz/RRc2ZkXyHJYQQeTWqR/SOO+44fD4fiUSC22+/nYsuuminLRqeeeaZ7qbp48eP58ADDxy2GDVN46abbuLss8+mqamJe+65p1/HyU2qQDM8gxvcFzhWNwzp8YUwW1txlTjQnUVk2nKYrYM3/VHTNXIhhdnWLlfChRilsp0WGx5up/LkEP4JLoL7uIl9JssaxNB+htE00FJ9rJNgKftWaAoxJtFvBTuiNxgikQjf//73AYjFYsyZM4cf/vCHvPzyy3zwwQc899xzXHPNNSxYsADLsud33Hbbbej68P6znHXWWRx00EEAtLS0DOu5hSg01WdEANj8ijRCFkL0z6bnoigTyo4Ooo3qS9pCCLFro/7t7z/+4z9oa2vjf/7nf+jq6uLnP/95d9uG7TmdTm699VYuuuiiYY9R0zRuueUWTj/99GE/txCFRtM1slGLdPPu19UKIcQuWfbFoorjg9R+tZj1D7XJNHBRWKTqphgGo3pED+wk6je/+Q1Llizh6quvZsaMGQSDQRwOB+FwmIMPPpjvfOc7fPzxx3z3u9/NW5ynnXYas2fPztv5hSgEngoDTQeHV6qXCSEGpmt1mviGDIbPwbijgvkORwghht2IHtG76aabuOmmm3q17cEHH8zBBx88tAF9QW1tLaoPZZjefvvtIYxGiMJXdXIYgPZlQ1cGWwgxNnirDPwTXFimovUtKXQmCotGYVa4lMuso8uITvSEEKNHYIobh1un7b047e8m8h3OgIVneCiZ7UfTNay0Res7cRKbsvgnuOj8NAUyM1WIIeMqcTD+tAhYsOHRNsz4KOyzIIQQeyCJnhCiIIT2caOUonXpyE3ynBEdV5GBZ5xB8Sw/AJkOE2fYwbgvBdAcGpquUXKonzX3tUIuzwELMQrpPp2as4oAqH+ig+wobZ4uhBB7IomeEKIgpFtM/BPc+GtcxNePrKoJugsmnl+M4XP0uD/blaPusXYqTgjjr3YBkGrK4h5nMPmSEnIpRdOiKMkGGd4TYrCUzw2gOWDTs52kNsvvlihQSvW9y/pwKMSYRL+N+mIsQoiRofW9BEopwtOHth/kUKg6NYLDqxNdmWLzq1HWP9LG53c0s+5+u9Jf82sxsrEcycYsdY910PFxEk0HV9hB+TGhfIcvxIA5fDqR/b3g2PO2Q8lVpOOvdmGlFfH12fwGI4QQeSYjekKIglAxL4imaeTSI+dqou6C4kP8eMoMUk0mm1/eee+/bKfFur+0dX/f8kYcd4mBr8pF23txNAMmnleMZmiYXTna3k0QXzeyRjXF2GSEdSqODeEtdwJgWYro8lTe4qk+swjNoRFdnsQZ1sl2WvgnOglM9pBpN2n/QAo9icKgqQItxlKAMYn+k0RPCJF3vglOglM8ZDrMEdMo3VNhUL0ggqZr5FIWTa9E+7R/ujmLr8pFyaF+xh0RQHfpmIkc7lKDqpPC5DIWdY+1y/oiUbAiB3gZNyfQo7p0bGUKV6mBwwXJJnNb0SEDQlM9OP06HR+nyCWG5nWdqMsQnOKh6AAfRQf4UEqhadvqCBYd6GP9w+1Ddn4hhCgkkugJIfLOytofFGOr0zBCPn8F9nKj6Rotb3fR/n7fRwlaFicITvHg8OndH0Q3vxwjsSnLlMtLcbh0qk4Ks/6h9h32dUZ0Sg8P4Aw5yKUtrKTCTFqYcQuzK9f976lMRaJOpq+JoZGN2dWElAkY9mtur8tK0XT79ayUAguUpdAMrft1Htnfy+q7W3d7bCOoE6h14y410BygcpDcnCGxIYvZtes3icaFMVoWx/FUOHGXODCCDjJtJp3Lk4T381Iy28+Ec4tY++fWEfNeI0YpaZguhoEkekKIvEttMlE5RfEsH66Ig8YXCn9Uz8rYfw2LD/aTjVl0rUoDdhJWcogfV7GBw6OhGRq5uEV8Q5qWxT0riq79c9sOxwVofz9B8Sw/zrCDqlNCJBuy4NBwBnQ8ZU5cxfZCKJUDl+4AjR6jFtvLduVIt5goU5FqNomvT8sooRgU8bUZWt7ponR2ADORQ9M1zIRF19o0VkbhLjFwRRzoLo1MZ47Y52lcRQ5KDvZTOsdPy5s79rbz1TgpPyaIw2tfANl+tDA0ddv63UyHudOLIABm3KJrdZqu1T3vb38/ibKg9HA/FccGaVxY+O8zQggxEJLoCSEKwvpH2qg8PkxwLw/ZaI7Wtwu7zUL0kxT+GhfuEoPK40PkjrJQpsLhs2tcqRxYGQvdqeEoMnAVGTskervS+k6CeF2G8rlBfDUu/BPc3Y+pnCLbkWPT851k2rclbLobnCEDI6ijO+2kz1/jIrCXG8NvV/wMTvFQerifXMKi/YMkHR/JeiUxMO3vJSk5xE+mI8fGJzp7tU94mofI/l78E1w0vd5Fpi2Hp9yg6EAfnjIDLIh9nib2eYpEQ9ZuQ2KAv9qFb4KLyHQvhl/HCOqYsb5dtOhYlqRophffliq4QuSLphRaAVa4LMSYRP9JoieEKAjZDosNj7ZTe1ExRQf6SLfmukfJhovu0ymd7ccV1nH4HOhOe1paus0ktirdIx6zy6LusQ7QofQIP8G93N3TMHNpi1STScNznex1aSmaAWaib03zUpu2jFg4wFtukMuAGTWxdlGjxUpDutkk3bztvtjKNGwdtdDBW2EQnu7FX+tm3JEBSg7zE1+bpmlxHEvWLI15RlDH8OlYGQtlaujOPe9TNi+Ipmtko71//ax9oI3K40L4J7moPi3Sfb9SiuSmLJue7dzxdW5CfF2G+LoMuqER3NtN7VeLSW3OUv9kZ596Um6dWiqEEKOdJHpCiIJS/3gHE88vpuK4IA1ZhbvIgTPsIPZ5apf95lxFOt7xLuIbMlgpa5fJ0K4EprgpOsCLu8Swm84osEyFyip0j4Z/ogv/RBcNaWvHNW+WXUUzONltTzXLKVDgq3Yy6avFoBS5lGLdAzufprlHOQanz55lHyfZEANiRPb3UnSgl8AUN4EpbjKtJs1vxUnWy5q+kUz3gNWLopdGQKdsbhBXxNE9xfiL039DoRChqKPH9Mmt64q23qUbGuk2k6ZX+zANMgebno+ieyC8nw+HWyMbzRFblepV7JtfipHcnKX8qCDeChelh+18GujORGZ6cXh0Oj/NX2VQIQB7jWghXl8rxJhEv0miJ4QoGEZQp3iWD2UpdENn/Mnh7sfcpQZ1f+vYYR9XiYMJX7ZLqm+llELlYP2DbZjx3fzV0u22Bq6wA2Upsl0WLW/Edui/pbth8iWlVJ0SRpkKM6nA2vbh1xl0oDk02j9K0PKG/YGz6GAfJYf40DSNroa0XbCigHR8ZE/ddI8zGDfHj6fCSfVpEXIpi47lSdreTfT5D74R0Bl/Whhn2F5DmG42qXu8Iy8fHEL7efDXuDB8OpteiPZ5it9IUzTLS8nBfjSH1v36V2bPKVgqpzATFtnOHP4JLjSnhpVRmHGLbCxHpj1HLmGhOTUcTtAqXUTbUmgO0BxbksGtXzvskbHU5ixNi7r6FbOVgvZ3+zdFu+Rg+32i46MELb2c5h3a121PXc5YNI2Q6r5CCDEQkugJIfLOVaRTMT+Mq2hbkREzaWF49e5tWt7edsXeCOl4K532GrTJ9vq1tvfjoEB329PPApPcTDivCHPrlDINwkVBvO0KTQeHV0d328lh5ydJml7r2mVCYqVh/cNtlB4WwFXssKdosi2xzKXsqZpbkzywP8CmNmdxBnWinwzvFNS+SDeb1P+jE82A0iMChPZ2U3Kwn+KDfCTqMjS92YXZueckyQjp1J5XDDokN2XRDQ1PmZOig3z9/jDfX4EpbsqPCnZ/X/alAA3PbGt/obug4vgQrmIDZdrTBaOfpkhtLrBsvJfKjwkSmuohl7bo+iyFw6PjDNlFULanOcBdbOAutf/0ty5J0P7ezp8bTdeg1kPLui6UVXhrdhwenXSL2et1rwDhfb1omsaGh/s5ui6EECOMJHpCiLwa9yU/kRk+gC2VKbvItFvoPp3JFxd3TyerOikMqmeZdqUUuYTFxn92kmntuUin5uwIriIDZ8TRfZ8RcOC0HKAgl7bIdJh0Lk8R+3zPiVi202LT833rlZeszzJSyp0oE5pf66L5tS6C+7gpPtiPb4KL2gnFZKM5Olck6Vie2tYXbXs61JwZAR02PtVJcmMWw68z6eISQvt48JQa6B6NxIYMmbYcmlMjtLebxpeiqCGYKZqoT9sl/besxdLdOq5Sg0ybieHXmXBOEbpLw0orNLdOaJqD8L5ee1Q3miNRn6Hzk9QOrymwRy3NhFVQ05uCU9xkYznW/aWXCYy+5TYy81oAsl0W7nEGE88vItVk0vxmbI/TPt3j7I88u2vPIMRwkWIsYjhIoieEyCtvlV39zjIVDf/clkhZCYtVd7Zg+HWKD/HhKXeiaWyZYmaS3GySbDR3WUTki9M8NV2jtNaiZV17QY5QFJLYZ2lin6UxwjplRwbwVbsYd0SQcUcEsUy1JdFRoGloOhh+HTRoXZogudHO3My4RabdxBlx4AzZz7Gvsmelw7Kjgmx+qX/T/nbHSkGqycRTbmClFd4KJxPPKeqx1qzptRjRFXaCbwR0wtM9+Ca4cEUMIjN8RGb4MJM5Wt+J44o48E904ww7ukv+JxuybHpuJ0VDhpMDqk4IoTm0vlVQLdS1QX1Q97c2Ko4P4610Egw7CO7lpvHl2B4LOMU3FO7ouhBCDDZJ9IQQu7R1zVwuadG5IoVlgXecA1eRQSaaI74+06dqd1tphj2NzMrSPV0zG935gcy41e81QGJgzE6Lhn9G8dY4qT41gmVamDELh9+euqoAFGTaTNqXJXcYGV3/13aMgD391uyy8I534gzZ35fMDhDYy40CrDWDH7uryEEuabH2vjY8FQbe8S5cIbvnYPv78R6tKcwui9Z3ErS+Y08DdEZ0ig70E5rqpnxuCLDXt6WaTHJJi0CtG994F6VHBIb8tVl6hI/wfj40B1tGou31obpLt3+PNI1UU5aOD0fK2PHgsNLQ8LTdzsFbZVB1cpiK44LE93KzaWF05+9LCpxh+dgjCoQ0TBfDQN7xhBA7NX5BGF/VthGY4ln+HbbZfoRkw6PtO53q9kWecoPqMyN2G4KU1V2pcsPDO29+LPIvWZcl2ZjBW+HCTJk0vhQj3dy7eX/bT5NLbsyS3Gh/HV2ZZuJXighN8eDZy0cwq9H8WlevptH2hu7S0DSd4D5uYp+lSTX2fp5itsMu1tH+QRxXkUG2w+xODPe6ohSwR6DbhnLtoQNqzojgKXNiJnKkNpvoHg1X2AE6ZLtymNEcnStTxNfkc1gx/5INJqvvbaXmjAiBSW6mXFZK58oUHcsSeMc7ia/L4tjSitLw67s/mBBCjCKS6Akhdm5LHYfNr8XIbRmN0TRIt5tk2nO4ihwEp3i6k8FcsneXAb9YBdNM5Gh8SSrgFbr6xzupPiOMt8LJhLOLyKUsNr8SI76un0mGBU2vxhh/esQuHBLVKD82CJo9dXSgGl+MUT43SNnRwX4fL9thke3o+fN1fpwgsr8P3dCovbCYZEOWjU93DvpUyAlnF+EuNrCy9qik2APTnq7tn+Si7EsBItO9RKZ7AVBHbXlvUtD8mrzXiAKhtutTUkgKMSbRb5LoCSF2KvpJCl+li0Ctm4anO+1pmttJbTKJrkgz5apSzLiF7oLcTgY4dA/2OiYL0ME3wbmlT53Fmntah+VnEYOj/h+dGH6dogO9hKd7qTwxxIaH23pMg+yLZIPJ6j+2UjrJon1jJxPOi1B+jF0tc6DJXteqNN4qJ5Hp3l73luuNlrcStLyVwFtlUHJYAG+Vk8lfK2HjU529HuXcFVeRTmhfL4ZXR3faV1o0Q5p790V8bYa1a9vw17rwVTtJbTaJ7O9F0zUaX472ataBEEKMFpLoCSG20WHiuUUYQQe6YU+pbP9g99PTEvVZfNVOas8vQeUUsTVpnEEdd4mzew0RbJvmqWkaVk7ZoyBixDHjFs1vxEm3mZTPDeEMGWTaBzB1MAeYkEtarH+ondqvFlM+r/+jcNtzBnS7p9wQVJdMNpjU/72D8AwP4+YEqDkrwpp7WnZbnMUZ1ik7Ooi71EDT7d+dTc/ZBYgqjg8S2MvdXewF7HWBHcvH1tq7wRJfl+kebR6s6cBCDCZN2bdCU4gxif6TRE8IYXNA+bwgriIDM54jujJDy+KuPX5Ibni6E2dEJzzdS2gfD6G9PSilyMYsMi0mZjxnt0QwNDQNElt6lvWniIsoHA6fXUTHMgfvU0FoX499gcFSdvn/AUyHdIZ1fNUuslFrSJvVd36cIjDZja/Khe7SsTI7Bu0pNyg7KoirxP43M+MWDreGv9aFf6KL0sP9uIoM0q0mjQs7+z1CKoQQQmxPEj0hBLpPp/a8IhxunVzKYv0jbX2a6pbtsGh5M07Lm/HufmUjvXy72DVfjZOSg31YW5qNDxZXyE6Eop+lt71+DPCWO/GMM8h2WXssnw/gr3VRcZy93m/T80M/cpxqzOKrclF7YXHPinUK0OzWHltbMmxeFMOMWlSdGsJf46bq5DBKKaIrU2x+WdaPCTFmyBo9MQwk0RNCMPHsCA63TmxVitRmk6KZPhxeB0ZAx13kILY6Tcub8V4dK9Mygrswiz0Kz/Aw7sgAKgcbn+wY1IR+88sxgvu48U9wMvH8ItA1nAG9u/E5QOqALHWPdex0/8hML6WH+e3EylJsemF41mS1vpMgG8sRmOxB07GTO40t/4F0S5bWpfEeF082PRclNM2D5tCIfprEktmFQgghBpkkekKMcbobDL89khKc4iE4ZdtjW9c3FR3gIzjFzboH2oZ0GpwofOPmBLAydjuML1ZQHQxdq9ME9nLjcNsDYrmkRfuHSdLNWcafGkH37Lw8vqfCoPRwP1ZG0f5BnM7lyWFtZh79JE30k95na8q0p30KIcYmzbJvhaYQYxL9J4meEGOclYam12PoTg0zYWF2WXaPrpgFFoSmuyk7KojhcxCY7B6UIhliZCqdY4+WtbzTNSRJHkDjwhj6m3GsRM/jR/b3ojk0Yp/tmBwZQZ3xp4ZBwYZH2nv07hNCCCHGKkn0hBA7HVnwT3RSclgAd7GBshTx+owkeWNY5Ukh/BNddqGe5UM7EvXFJA8gNN0u8tO2tGcV2OJDfRQf6APd7p0nSZ4QQghhk0RPCLGDyAFeSo/wA5BoyLDxCWmFMJZVnhwiMNFNsjFL/eMdw37+CV8pwhVxYGUURkjHXWoQnubBN96F5tDIpS02PddJskHmFQshRggpxiKGgSR6QogdRA7wonKw9r7d9wUTo1/5MQE7yduUof4fw5/wl8z24S62/1Q53BqTvloC0N3Co/3dONGVMtIshBBCfJEkekKIHeiGhpVVkuSNcaF93YSmegEGtY1CX8RWp/FVu7CyCjNhkYvnyERzdK1Ky+tTCDFyKXq2YykUhRiT6DdJ9IQQ3SIzvRQf7MPh0sl0SkfzMU2HcUcGsUyFbmgUzfTR+k5iz/sNskxrbpftFIQQQgixa5LoCSHwVjupnB/C4daxshYtS+K0vzv8H+pF4Sg93I9uaDS+HKX4IB/OsAP/RBfx9TKMJoQQA6UphVaA6+EKMSbRf5LoCTHGlRzmo+hAH1hIgie6eSudqJwitjJNoi7LpIuKGfelAPH1bfkOTQghhBC9IImeEGNY6RE+Igf4MOMWGx5tw5L+zWIL3al1F19zhnQ0XUPl5EqvEEIMCqm6KYaBnu8AhBDDzz3OYNLFxRTN9GPGLdY9JEme6Cm+IWOvzZvlQ+XsKpeuiMHEC4rlEqEQQggxAkiiJ8QYEpzqZvzpYWq+HMHh1WlfFmfd/W0g7cfEF7S8GcdMWpQc4iPdZrLmTy1EV6ZwhnRqzy/Od3hCCDGyKcAqwJsM6I0qcl1WiDGidI6fogN8KKXItOdo+GcnZpeV77BEAev4KEHp7ACeMoPUJpPNL8ewcorIdC/+WhfxdVKYRQghhChUkugJMcp5KgxKDvHjq3YBsO6BNsyYJHhi94yATmSGF6VUj9dL50cJItO9eMc7JdEbw4ywjrfCiTPkILEhQ2qzTAsQQohCI4meEKNYaF83ZUcHATDjORqei0qSJ/ZMh4nnF6MbGq3vxreN/OpQeUIYpRSxz9L5jVEMK90FxQf7CE7x4PDpaJrW/VjJwX5al8ZpWyoVe4XoLWmvIIaDJHpCjGKlhwdAwZr7WqTYiug13Qmaw/66eJaPopk+rKzC4dbQdPsDfs2ZEXuVtwVmwiLdbBJfnya2Oo2SwZ2RTwfdDZEDPISmeXCGHWiahpW1SNRnybRlSTXlAKicH8Lwy5J/Icay9957j2effZbXXnuNjz/+mKamJpxOJ1VVVRx55JFcfvnlfOlLXxrweW666SZuvvnmXm378ssvM2/evAGfcySTRE+IUcz+cK6ju3SslIzkid6x0rDh0XaCU9y4igyMgI7h1TETCk2zX1e5tMJKWzh8Os6QA/8kF4HJbsrmKZSpyHbmSDZm6VqTJtkgmV8hC051E5rqwV1ioLvsRF7TNEKhENGoA5VTJDdlaXsvQbI+C2wZ4TvUT3hfe3pv7HO5kiREnygKs5VBP0KaO3cur7766g73ZzIZPv/8cz7//HPuueceLr74Yu666y5cLtcgBCp6QxI9IUah0HQ3pYcFcLh1Yp+nMKOS5Im+ybTmaG3tw1Q8A4KT3fgnuHCXOXEVGbhLnURm2AWAkpuybHyic+gCHgN8E5x4K50k6rMkN2YHdjADKo4JEqh1ozk0lFLkEhaJJhMrbaFMhVbsYvOKKNFPt03T1V1QvSCCq8RA0zRyaYvGF6KSzAsxhm3cuBGAqqoqzj33XI466igmTJhALpdj8eLF/PrXv2bjxo38+c9/xjRNHnjggUE570cffbTbxydNmjQo5xnJJNETYpTQ3RDax0vRLC+G14FlKlre7qL9/WS+QxNjgQmxz9I91u4ZQZ3g3m5KDvXjq3IRmemlY9nQvB4De7kpPtiHEdCJfZ6m+bWuITnPUNBd4B7nxF1q4HBrpJpNEnWZbVNgdag6OYy/xr4KXnwQZDpMzKSFu9gehdM0O1mzsgorrVAWZDtNmhZ1YcbtCz2RmV58450YPgeuIgfoYHZZdC5P0v5h0i6tvoWma1i1LmJfKLhTeVIYd6mTZGOW1qXx7hE+IUQfjaKG6dOmTePWW2/l7LPPxuFw9Hjs8MMP5+KLL+bII4/ks88+48EHH+Tqq6/m6KOPHnCoM2bMGPAxRjtJ9IQYoXwTnAQmufGU25XvNIc93UrlFO0fJmh5M57vEMUYZ8Ys2t9LkktZlB8dQjO0Pe/UVzpUnx7GW+lCWXaCE9nPi8Oj0fhCbPDPN1AOCE3zEJjgshM7r9697nF7SinMLgsznsNdbKA5NZKbMjS9GqP4ED+ByW6cYQdm3CLVZJJLWhh+HSPgwOHRQANnyEXtRcVkO3I4/DoOl45SCpWz11U2vx4jvr5viZq+5Tnc9HyUXEJmCggh4Kmnntrt46Wlpfz617/m9NNPB+DRRx8dlERP7JkkekKMIIZfp3SOH/9EN7qhbfvQ1pUj1WTStS5tl7yXz1+igDgD9hXe+PrBb8dQc2YE9ziD+IY0Dc9GwYKaL0cI7uXBXepk80vRgin9X35MkODebjR9y+hbRpFqMkm3mWTbc6Rbs+SSFp5KJ4FJHrwVBobficopml6LEV1hj5baCeyek1hXiYPyuUFcxQYqp2h5q4v2DwY2otr8Rhc1ZxVRNNNDy2KpsilEv1nAEFz7GrAh+vywfVGU1atXD81JxA4k0RNiBJlwXhG6UyOXsGh7P0X0k5RcVRcFzxm2/9Q4PIPzqcY9zkBzgDPswFPmpGttmk3PRbsfr3usg/LjggSnuKk+M0LjizG6VuWvHYSrxMH4U8MYPgeZaI62pXFiq9K7/ECVaU93J3UDkWnNUfdYx4CPs73UZhPLVISmeSXRE0L0Wiaz7ULfF6d3iqEjiZ4QI0RoqhuHS6f13ThtS+QDlhg5Wpd0Eah1Mf7UMNnOHImNWbpWp/pVwGP8GWF8lT0rtjUv3nE93uYXYzQvjjP5omKKD/TlLdErPsRH8cE+UIyaXnPZDhN3qZPQvm6in0g/RSH6Y6z10Vu0aFH31/vuu++gHHP+/Pm89957xGIxIpEI06dP56STTuKqq66iqKhoUM4x0kmiJ8QI4dtSiCFRN/jT34QYStkOizV/bqHiuDC+KieR/Qwi+9ll+XNJCy8Boh2dpNtyuz1OcB83vkoXyU0Z4nUZjICDbEdul1VldR3QIBvb/XGHihHWKT7YRy5pUfd4x6ipfuuM2B8dyueGKDkkR93fOzC7RsfPJkavjRdPHbJja8A4Zw4+GLJTjGiWZXHbbbd1f3/uuecOynEXLlzY/XVzczOLFi1i0aJF/OIXv+Cee+7hjDPOGJTzjGSS6AkxQrS8FScw2U3lCSHW3teW73CE6BMrBQ1P2+0Vtlbj9FW7cBUZeMoMas4tonNFarfVMiP728lh/ZOdvVpHEt7Pg6ZptH/Qi1E0BzDI+WDRTB8AG58cPUkewNr7Wgjs5cZX5SIwxU3tV4vJJS2UspPqzS/GJPETYoSLRqM9vne73bjd7n4d6ze/+Q3vvPMOAGeddRaHHHLIgGLbf//9OfPMM5k9ezZVVVVks1lWrlzJX/7yF55//nk6Ojo4++yzefLJJzn55JMHdK6RThI9IUYIs8si3WLiLpVfWzGyba3G2f5eEk3XSM4A9wxFZD8v4Wke0q0myYYMySYTV8iBv9aNp8ywt23se7Gh8mODNL/eRaYtBzoEat14q5y4ig0Mv462ZbmIMhWx1RlaFsewBmFGYnAvNyqryLSPrqTHykD0kzTRT9L4V6UoOTyAw62hOzS8FU6qz4iw7i9yMUqI3Srw9go1NTU97r7xxhu56aab+ny4RYsW8f3vfx+AsrIybr/99gGF92//9m87jeOwww7jkksu4c477+Tqq68ml8txxRVXsGrVKrxe74DOOZLJJ0YhRghXiQP3OIPsKBoZEAIg16XY8FA7wX3dFB3gw11q4ClzsnWFhVKKbEeOzhUpOj7qfdVIw+9AKYUz5GD8qZEejymlUFlFNpoj02aiLPBVOwlNdROa6ibdatL8ehepxv5V7Cyd48fh1ml5Z3S3OYmvzxJf3979feWJIfy1LnSXnRAKMepZFhNybVQM9pSAPKurqyMUCnV/35/RvOXLl3PWWWdhmiYej4dHHnmE8vLyAcUViUR2+/hVV13F0qVLueuuu2hoaOCxxx7jwgsvHNA5RzJJ9IQYIcrnBQF7GpgQo1F0eYro8hSw5cJGiYEZt0hu7HtTbt2n4691oXKw/sE2AlPcGH4dgER9hkR9dqcjg54Kg9IjAnjLt41M9XUaou6C0FQPVlbR/t7IL77SFw6f/W9syfUoMUbMzqzDRQ6X0cdEqMBH9EKhUI9Er6/Wrl3LCSecQHt7Ow6Hg4ceemjYeuddddVV3HXXXYA9oiiJnhCi4LlLDbKdOVn7IsaETGuOTGs/r5DrMOmrxWgOu++bGbfoWNa7kcBUo4nZlYNyJ5qm4a10Evu89/M4dRdMuqgE3aWT2Dj2hrTcRQ571kFhtC4UYsjpWCjgY6Mq36EUjIaGBo4//ngaGhrQNI0//vGPw1oYZfr06d1fb9y4cdjOW4gk0RNihLDSCmfYgRHUMWOS7AmxK7oLdEMj0ZCh8+NUn/f3lDu7v644LkTZXLs6qMOjkY1aNL4URZmK0FQPriIDZSnMhEW6yaT0CD+aU2PzouiYbD1gmQpnSGfi+UVk2nLE1qTz2sNQiKGmo0hoTtD72Ce0wEf0+qulpYX58+ezZs0aAH73u99xySWXDEZkvaYK8d81TyTRE2KESLWY+KtdODyS6AmxO1YKcmkLd0n//sRteKSN8H5e0i0mnnInoakedJeGmVC4ih1MPLe4e9utHyg0Tev+vnVpYkwmeQB1j3dQcWwId6mBM+wgMNlNtCbF5pdj+Q5NiMFnWWhAUutfNcrRprOzkxNPPJEVK1YAcNttt3HttdcOexxbzw9QVTW2R1r1wTzY9ddfj6Zp3bdXXnmlV/u98sorXHbZZey9994EAgFCoRB77703X/7yl/n9739PV9euy23vSW1tbY+YdnWrra3d47Huv/9+DjzwQDweDzU1NXz3u9/dofzs9i699NIe53j22Wf3eI6t21566aV9+CnFaKW7oeqUEFOuLMVf7SLdapJuljlRQuxO5QkhdJeGMvt3VddKQ/t7SRIbsrQtSbDu/jbW/KmV9Q+2se6BNjpWJGn/MMGGx9pZdWcLq+5sYe39rTS+HGXdg220vzu21uVtz4xa1D/eweq7Wlj1/1ow4zmCU9yD/GlDiMKi0Y/3GquAb/2QSCQ49dRTee+99wD40Y9+xPe+973+HWyA7rzzzu6v586dm5cYCsWgvfUuW7aM3/zmN33aJxaLcd5553HMMcfwpz/9iVWrVhGPx4nFYqxatYq///3vXHvttaxatWqwwuy3W265hYsvvphly5aRTqepr6/n17/+NfPmzSMe711VtRtuuGGIoxSjia/GyaSLS/HVuMjGLZrf6GLDI+173lGIMcw73klgshszblH3WMegH9+MWTS/2kXLm3HSTdsuuphdFrGV6VHVL2/ALGh+Mw46VB7f/6IOQgwJy2LfTAO12WYiuThOq+dF1HAuztTMJman1nBk6nOOTH3OnNTnHJxaS022Fd2yQNfJolNkxQnnel8ReLTJZDKcddZZvPHGGwBcd911/PSnP+3zce65557uAY+dtVD46KOP9pgT/OEPf+Duu+8GoKKigrPOOqvPcYwmgzJ107IsrrzySkzTpKysjKampj3uE4/HOfnkk7tfFCeddBIXXHAB++yzD5ZlsX79epYsWcIjjzwyGCFyxhln7PZF53K5dvnYihUruPnmm/F4PPzoRz/i+OOPZ8OGDdxwww28//77/OQnP+G2227bYwxLlizhiSeeYMGCBf36GcTopxlQcqiP4N4eHF4dLNj0XJT4urFX1EGI/nAX23/Wmt+0i7CI/OpanSZzsA//JBcTzi1i0/OdZDvleRH5FyRNiWVfqK/OdQCgtty0LTcFmOjENA85TcepTHwqw8RcGxNybSQ1Jzl0XNgtFvpCUwqtANeS9SemCy64gOeffx6AY489lssvv5yPP/54l9v7/X4mTZrU5/O8++67XHHFFRxzzDGcfPLJ7L///pSUlGCaJp9++ml3w3QAh8PBnXfeid/v7/N5RpNBSfR++9vfsmTJEqZNm8ZZZ53Fz3/+8z3u8+///u+88cYb6LrO3XffvcNUxTlz5nDBBRfw61//mlxu4L1JIpEIM2bM6Ne+jzzyCJZl8Z//+Z9861vfAuDwww/nyCOPZJ999uHhhx/eY6JXWlpKS0sLN9xwA6effnr3eg4hAHQPVJ0UwVNuoGkaVsYi9nma5tdj0otKiF7yT3RROsePZSriG+QXp1BseLSdyvl2f72J5xfbTeQ7c5gxi0yHSeeKlFQTFkPOa6WpzHXgUSYWGh5lt23Z4CgiqznwqCwelcWpLCxNI6p52OSIkNW/8FHZsii14ozPteNXmf5N2xxlHnvsse6vX3rpJQ444IDdbj937txeL+/6olwux8KFC1m4cOEutykpKeHuu++WgRUGIdGrq6vjxz/+MQC33357r564Dz74gDvuuAOA73znO7tdj6ZpGoaR35oxW0uzHnPMMT3uHz9+PNOmTdvtVYutrr/+eq6//nqWLVvGY489xtlnnz0ksYqRp2iWl5JD/KBButmkdWmcxIa+9w0TYqwL7+dB0zTqnmiX8v6FZMvMBGdYp+hAH74aF+5iA3cpBDQ3RQf5SLeYdhsLDZxBHcPvAMBMWpixHJ3Lk3LRa5RzlTgw4zmsvhfK3aOig31MyWzoHqXbKqa52eAoBr0PK5l0nRY9SIth97bFsiix4hyILK0Yaqeccgp33303ixcv5v3332fz5s20trailKK4uJiZM2dy0kkncemllw6oB+BoMuAM6pprrqGrq4uvfe1rzJs3r1eJ3u23345SCrfbzfe///2BhjDkysrKALvp4vajgo2NjaxcuZKKioo9HuPaa6/l17/+NZs3b+bGG2/krLPOQu/LG4sYdVxFOlWnRHAGHeRSFpue7yTZIJ9Oheiv9g+T+GpcjD8tTLrFJJewaHs3TqZdRosKQbbTomlRz+Jq7jKDcXMCeMoNPOO2tbX4YjXTkkP9ZNpMjIADZSnSLSZt7yVINcp75kile6Dy+DDuUgPdrfWoXIsCZYHKKZSpsLJbXg8ODU23/4++5fWhg7ZlrqXKQabdpOnVrm2Fy3QoOdiHic4yVw0p3QWWhQ5Yg/E5TNdp04Msd3j6tt8oaq8wWO0MLr300t0O/pSVlXHZZZdx2WWXDcr5xoIBJXoPP/wwTz31FMXFxfzyl7/s1T5KKR599FHAnsdbUlICgGmaNDQ0oJSioqICt7twStWeeeaZ/OxnP+Pf//3fiUajHHPMMdTX13PjjTcSj8e5+uqr93gMn8/H97//fb797W+zfPly/vrXv3LBBRcMQ/SiEJXNCxKaar/GO5YnaX6t/5VlhRiNjKBOYLIb33gnrmIDw6t3lw+LrUqz+cUdy/Un67M0vd7FuMP9eCucoEFgLzdNr3cRXT4EwwRiwNJNJvWPd4ADvJVOVE6RaTe7R3U0A3zjXZQe4cdVZJBLW2i6hq/Gha/GhRm3k/mu9VmshCT0hcxX46Rkth9N12h5q4uK+SF0p0YuaZGoN0k1ZdFdGoZXx+HVcbg1dJeO5tQw/Nq25M9SWKZC5UDlLDsZzCksE5wBHXepQc2XI6RbTMyYhafSiaZrrDFK7SQPQNf7W1xylwYlaRRikPU70evo6OC6664D4Be/+AXjxo3r1X6rVq2irc1esHrEEUfQ0tLCj370Ix588EFiMfsPt9vtZt68efzoRz/iqKOO6m+IPbz66qsccMABrF69GqUU5eXlzJ49mwsuuIAzzjhjt2vmDjnkEK677jr+53/+hx/+8Ic9HpsxY0avq2leffXV/OpXv2Ljxo3cfPPNfOUrX8HhcAzo5xIji7fKoPLEMA63TqbDZOMznZhSmECIHiZdXNw9dU8phZVRpNtMstEcvvEuglPcO030AKLLU91JnRHUmXheMSWzfJLoFbqcnah/kTIhvj5D/P9v787joyrvxY9/zpkze2Yy2SCBhLAvKqhlEREFF9wVpUq1WtfWq7X9VW2rXbyKS634agu9va22F8Xeeq1Wi0vFBUXQglDAoqKyCwlbQvZl9pnz/P4YMiRkIQlZhuT7fr3ycsic5Zl5nMn5nud5vt+ipvM2dTsMmO4hbbidgTO8DGzY/tBoUOOgIBEIkBgZiiX+f4pUxwkeiBLYG+6WqYICLC6d/Nk+DLeOpiVG4RpGfgZdnA5A6co66rZ2bc1Ji0sn73wvjoGJ6cEqBpX/9lM2Lb1Lz3PMTAVaCo7omSnYJtFpnQ707r33XkpKSpg2bRq33npru/drXMRQKcWECRM4cOBAk23C4TDvvPMOy5Yt44knnuBHP/pRZ5uZtGvXrib/3r17N7t37+Zvf/sbZ5xxBi+++CKDBw9udf+FCxcyZswY/vu//5vt27eTlZXF1VdfzcMPP9zuecAOh4Of/exn3HnnnWzdupX/+7//44Ybbjim1yWOH1afzuDLfKASGQGrP+u/qZiFaI3vZCeG20J9UZjqTcFmF/8FX/dhtxsY6fpRb5LE6hLru4w0udPe15hhKFleB8vr8I13Ynh0LHYd3aahWzU066H/Ghq6hcRjhwa6hqYlRgl9JzqBRDAYqYxTtra+xWBTdIIFCq/JQLdqRKriqLgidDBG+Zp67NkGued5qVjnp25b1wZ5APFAopZjYm5moyemdfmphEh5nQr0Vq1axaJFizAMg6eeeqpDGSQbRvMAHnvsMcLhMBdeeCEPP/wwEyZMoLa2lr///e/85Cc/oaamhh//+MeMHTuWSy+9tDNNxWazcfnll3P++edz0kknkZ6eTnV1NWvWrOHJJ59kz549rF69mlmzZrFmzRrS01u/43PHHXdwxx13dKodDb797W8zf/58iouLefjhh/nmN7/Z68lmRM+wei1omka0Pk71FxLkCXEkzYCMU1youOLAW7UtbhMqjeLIsTLs2izMmKJsdR21m1u/WLS4dcyI3KHuy6o3dfz7VHfpuPOtOHKtOHIM7NkG+Zf6iIdMareH8BdFMMMKi0PDkWvFnmVgTbdguHQ0i4YZVZhhE/REIImuEdwXoeS9lkea+5u8Q9MyD37Y/PMZKomx+7mOlSLolFSfLNOH1uiJ1NXhCCMSiXDbbbehlOLuu+9m/PjxHdq/cXHxcDjMrFmzeOONN5JTGHNycrj99ts56aSTmDFjBqZp8pOf/IRLLrmkUyUJ1q1bh8/na/b7mTNn8r3vfY+rrrqKZcuWsXnzZh566CF+85vfdPgcHWGz2bj//vu57bbb2LlzJ88++yzf/va3u/WcIjUEiqNEqmPYfAYDpqc1S0ogRH/mGGAw6NJ0NAtUbQy0ul3ZKj9128N4RjvwjkpM2xtwpkoUvQLMqCJWbxKpiKE7NCw2neodcmNFNGUGTOq2hZMjSpoB2aen4R1lJ2O8i4zxribbK5WY/hkPmpgRE4tDw3DryYQhAJ6RDtJG2OHQlNForUmwJErdjhChA/0naYxuT5Q6iVTH27wJI4Tofh0O9B577DE2b97MkCFDePDBBzt8QoejaVai+fPnt7hObfr06cyZM4eXX36ZL774gk2bNh21LkdLWgryGng8Hv72t78xYsQIKioq+NOf/sTjjz/eZvH0rnDzzTfz+OOP89VXX/Hoo49yww03dPs5Re/LnubGmp7IsFmxvvULWSH6o9xZHjQdDrxbi/+rtvPoh0pjhErrKVtTT85pbuw5BmYMUApruoHVa8GWkRhBj9TEKftQbqqItqkYlP2znrJ/1mPLNnDmGug2DRWFwP4IkYqj1/P1TXDiHmpDs2hYHDo2nwV7loHvRCdKKeIBk3BlHM2SWK8WLosS2B8luDeSLB1hy7IkslBaNcLlseMyq2jeBYmZUQc/lNHNtqXoiJ7UBexTOhTobdmyJVkM/Xe/+12nqs17PJ7k45ycHE499dRWt73ggguSGTo3bNjQqUDvaNLT07nmmmv4/e9/j9/vZ8OGDUyb1r0TuQ3D4IEHHuCmm26iqKiIp59++pinhGraofTC3agv1XjX9O57MdqhNSCNz+E7yYFvvJNonUnxS1UQ7942iOZa6pf+KOMUB/YcKxZXYt2af2eY6s8T2Sicg62kFVopWxvosWlPDf2i2zSitXECu6Pt7yMTyte0fNNEM0DTwYxIn3dGf/68RCvjRCubBnbteR9qPg9R83nTzC6GR8czyo4r34rNZ+DKtyZnJzkHWvGd1DQ1/ZEzl5SpCFfEqN0cpHZLJCX7xT3Ehn2ABTOkcA214cyzEiqNEi6Np1Q7u7MlWjcfX4jO6lCgt2DBAiKRCMOHDycQCPDCCy8026Zx8fD333+fkpISAC677DLcbjcFBQXJ5/Pz89s8X+NtDx482JGmdsgJJ5yQfNxQHL27XX/99Tz22GNs27aNX/ziF9x8883NRjs7ImuAE6u18/u3hx7tO8Un497uu2Ol6Rq+QR7QNJSpcOQa5JyRhhlR7Hu/huyCjG47t2jdkf3S7+gw6CIvhtOSzEyo6RpqpKLUUYd3pANXfmJmgScj2GNZKhv6JS1TJxyPkT1ULpdSQb//vHSlSghXQhiFq8Ag+7Q06ovD1HweTGSGzLJiuHTiYZNovUmsJo4ZU9gyEoGhd7iFASM01MWKmD+Oy5VGXsQLGpghhb840i1JTdoj58w0nAOb1j+M1cep21xH9tDU+lunp3XvzKl0vYOjr7JGT/SADgV64XDii+Srr75qVw24Rx55JPl4165duN3uJkFVPN72VIjGz3dnwpKuKvTYERaLhQcffJDrrruOffv28cc//jFZrqIzKg4GMYzufR2W4paTIxyPYpVV3XZsTddAKcqLqrH6dNJn+aipqqX4xSpi/q4dJrH5dBx5BtY0S+JvRkyhYhAsjR0uFiuApv3SVReuuhXM4yRJ36BLvfgj9VSvD1CxLrFmzTnYyqCLvDhPhZgWoqyoHnuGQX0wRPnunpnu2NAvZq0OdqitriFSnepZFPq+7vi8CMgpcFNba1L0TiXRGhO+PPo+6OAda8c7zoEt3cDAQl1dHSqusDh0LEM1PLkape/XEeihrKHesTYyJ7mJOoPUbKuh5pMgZgyCB6OQon96SuvbnhJ+LDQgbj369F4helqPp3v0+XyMHz+eTZs2sXv3bkzTRG+lyOTOnTuTj9sqfXCsGpd8GDRoULed50jXXHMNjz32GF988QWPP/443/nOdzp9rJ64MdSXbvJ094WLUolzWFwamqZRvTlAtK5r/gikn+Qgc6ILi0NvM0FRQ/2xWL1JuCJG8ECk3xcVbuiXzva/e5iNzFNdWNMtiXTteqIuVDyk2PNy1wfyXUUzEsWow2UxytcenuoY2BPhq+cqyT3bk8h0+V4tI2/NxmLr2VGcxt8t0UAclZpvY79zrJ+Xfk+H3HM92HOsie8LDXS7RjxsEqnqwN8D8/C0UE3XyB5qUr67KtkvmZNcZJ7qIu8iL5GqONHq+KH6gQ39l0gYo2KNHh96zpZhYE3TqdkSwr+r7UDIM8aOPcvANdiGLTORWyFcHmPfqzWdfot6Unf/X9zh45uqM3t1P/m89ykdCvSeffZZnn322Ta3mTdvHg899BAAK1asYObMmc22mTNnDps2baK2tpb333+f8847r8VjLVmyJPm4qwqnH6mmpoYXX3wRAJfLxaRJk7rlPC3RdZ158+Zx9dVXU1JSwh/+8IceO7foGfFg4gvTlt484VBHZU524RvvxGLTMWMKf1GESGWM0MEY4coYugU0Q0e3azhzrTgGWrH5LFh9FmyZFryjHQwEzLiibltIsn52hAFDrszAnmUkpib5zUQB7+o4FoeOe6iNvAu87FlS3dstbZFjgIHWyhQ8M2Cyf2mjCzUTdFvP152LB0wMt4Vh12cTq4sTrYsTLo9R9VlAClqL444tQ6dgTgaakSjFoKIKBQT3xyj9oGuTlFRuCFD9WYC889NxDrJiy0j8vWlvpnKlFK4hNup3hqn5MogywZlrpX5XODHqCAyZm4E900huH9gTYf/btalfwkCIfq5XCrjdeeed/OY3v6Guro577rmHVatWNSs6/txzz7Fy5UoALrnkkhbX882cOZMPPvgASEwNHTp0aJPn3377bWbMmIHT6WyxHfX19cydO5eKigoAbr31Vux2+zG+uo75+te/zsknn8ynn37K/Pnze/Tcovuln5BYN+keYifvQi9l/6w/6qiP4dVJH5tImKEZYLgsWNMStZviEZPy9X6qPm4ta2fi2EcW/dVt4CqwJ5JtDLWRPs5J3c6wFAdup8EXp2PPMqjbGaLk/To44mb80OszsXqPPZjvLsH9MUJlUZy5NrKnupqM6h1JmQrd1vPr5Hb/tYqs01y4h9gx0hI3KNxD7GSc7GLn4nJUik4HE+JIriFWBl2QDhqUrqjrkfVzZgT2vdHCyJqemGKuGzoYoBsamkVDNwBdI3IoC2jBlT7SRtjxjDy81j9ripviJdW48qzYMxPff2Wr/cT78awQIY43vRLo5eTk8Pjjj3PnnXeyadMmpkyZwn333ZcsmL5kyRKefPJJALxeLwsWLOjUeR5//HGuu+465syZw/Tp0xkxYgRpaWnU1NTw0Ucf8dRTT1FcXAzAmDFjmDdvXle9xHbTNI2HHnqIK664gvLy8h4/v+heBz+oJ1gSJXOiG3ehDfeQTPa/VUNgT/MAS7eRuCM7OJGVrSFhhoororVxqj7vfIIMMwL1O8PU7wwT2Gtj0PmJwEUCvfaxOBIjXDWbQ82CPEisjdR6ITjqiAPv1DLs+iw4ShY8ZYJm9MJrMaF8tZ/y1YdrreZf4cOZa8Xi1onVyMWlSG3u4Ymp3fZsA0zY90Y1wf29fIfCBDNMorh7G3b9byVGmo5ndOJmd7TWJPccD/mXpScKxMcUJe9KuYQupUxScp56KrZJdFqvBHoA3/3ud6msrGTevHls3bqVW265pdk2OTk5vPrqq4waNarT56msrGTRokUsWrSo1W3OOussnn/+eTIzMzt9nmMxe/ZsJk2axIYNG3rl/KJ71W0NU7c1jCPXIP8yH3kXpLNzUdOg3kjXKbwqMc0ndDBG2ep6wge7/gLBmW8l71wvSilqN0sR6aMxPDpZk93YfJZEmvPKVtbV6FoqrrRowjQTU64M11GmZSqwenQGX55O6ft1xOqP7Y++b7wT7wmOxKh0QwCpIOY3qdzgp257y+uC8s734hhoEAvEJcgTKUt36WQcKp+jW3WUUoQOxtj/ZjXmcVYrPFZvUvXvw38XyhwaOWekgYKDqyTIE+J41GuBHsD999/PhRdeyB/+8AdWrFjBgQMHsNvtjBo1issvv5z/9//+X5sFz4/mV7/6FcuXL2fNmjVs3bqV8vJyqqurcblcDBo0iNNOO41rr72W888/v91z2bvLww8/zMUXX9yrbRDdK1QSI+o3sXqaXmjbcwwKrvCBDiXL66jf0X1XB4MvSkwn2re0JlmgV7TMd7KT7KmJWqHxoMmBd2tbTWRjODRiodQO9cyASTxo4i5sO8X4vjdryD3bgzPPypCrMvjq2YqjH1yHwm9kYvXoRCpjBPZHceZasWcbiYQ1ZmJUOlZvEg8rjDQdR7bBgJkeoA6OGFjOPt1F2nA74YoYe//RfRlyhTgWgy7x4sq3oWmJafUVH/up/HegxVH/41FLdQFFF5LyCqIHdHmgN2/evA5NgZw0aRLPPPNMp87VsIavrWP3ZHKVI7UneU2Diy66qFfKPIiek36SA5vXQt2Ow384DbdOwZU+ILG+IrivG6dSNoovY12UAbSvyp7mxjfeSTxksu/1aiJVrY8oWdN1NKtG6CgZ61JBYG8U72gHmkGra97CB2MUvVhF1hQXmV9zkzHR1caa0ATfiU5s6RZi/ji2LAN7thWlFJHKONWfB6jd3MLNCx1Gficbz1gHkU1Nn0ob7sCMKopfkiBPpCbvCXbcBXbC5VEqPg4cNWOlEEL0hl4d0ROi39Ah5/Q04hGTkvcOT4HxTXCg6Rr7l3VzkAeJNSNv1TD4knQKv5FJ2Uf1cre2Ed0GzsGH1tjkGETrTIperDzq3fmMU1wAVH3ib3vDFGDPNhLp1tsxK7hiXYD0E5xkTXJh81qoWO9vdRqnY2DiT0nJ+3UED0SxevRktr5WmaDiYLh0jrxEjlTHceXr5Jzhpmx16r+von9xF1oZMN1DPGJSvKRaMk8KACxmB5dbSHkF0QMk0BOiB/hOdKJZNMo+bLrOoXZ7BN8EF74Tnfi/6v47wsG9UYr/Xk3+ZenknJGGbtOarMnodyww6HwvzsE2NAvJJDjB/VH2/aN9taGcg2yomGpz1C8VeMfZsWVYCOxt//9nxS9XkX+FD89oezJJQxMK0BLvW8wfT96sOGqQd0i4IoZjgIF3nI3y3Yd/v//tGgq/kYlvvAtXoZ29r1ZLpj+REvJnp+PMs6FMxd5XqiTI68c88QAF8SocKopNxXDZbSzr7UYJcQQJ9IToAe6hNpRS1G1tOoUtUh4jUhXHOchK7nkezKjq9vp2kfIYX/25gmHXZ5I12Y2/OEqkvP/lrjfSdArnZqBZNaK1JsEDUUIHI9Tv7lhReYtDIx5O7Tugug0GTPegoor9b9W2e79Yvcnu5ypxDDTwjnUkErlogKYdCvAS24VKo1RsaHt6Z0v2v1VN4dxMMk90UujLYP+bh6bJxqHo+UpyprtJP9HJkKt87Prfyg4fX4iu1pCQcN+bNSl/c0d0EdMkXQWxqjgWTNJUmOx4PVZMFGCiEcVCreY46qGakDV6ogdIoCdEN7H5dNLHOzGjCscAK6qVKYAl79Yw5KrMZP2i4IFo99ddanR9oqL982Il9zwPuk2nelPgmKYHxsPtyGTZy7JPT0OzaBxYVtOpEYhQaYxQadffgDBDsPu5KqxXOjGydQquzGDnM4eTv5Sv9eMeasdw6+gOpHC66HUH3q1h+I3ZpI91SHmaPk43TU6M7sOrQhyZri+KzgGLlyJLFjHdQANyrLL2XaQeCfSE6EK6SyfndDd549NJD+rJbK5KKfy7W54yF6ky+eov5eTPzsCeYWDPstDdiazzLvBiuCyUr/e3e5pdX1OzOYRjgJX0k5yEDsao29654Lp2S5DsKWkMvS6T6s+CVG8OQgoNkOo28IxyEAua+ItS88K0amMQlRMi41Q32dMSmU7dBTasPguaplG3IyRBnkgJZgjiIUXaCDv5HguGSydcFiNcFaP6s8BxV1JBtMI0OSVajFNF8Ws2yvU0QpoVE42QbiWgd3D0riWK1Bw9S8Emic6TQE+ILpJ+kiNRcwhAQd22MBUbEiNFsbpW0vJ7dAbM8OAabAXAXxSmfE3Hp8B1hC3LgnuojVBZ9KjZFPuyuq1h/EVhhl2XxcCZHoL7o8T8HQ96q/4dxHBbSB+X6P/saW4ilXH2v13Tar/3lLwLvIlyChqUf9i9U4KPVWB/jIxTIWNCIrmNGVeEy2NUrPMT2JOaAaron/YsqWLoNzNxDkx8b1s9FtKwkzXRjYorareHObhS6s6lPNNkbKyETNOfHLFLpEfR0FDowAGLl53Wgb3YSCGOjQR6QnQRzygHmqZRsryWmrhJ+e56VBvZqwZd5MU1JFHTLFIVp2xVHcH93T8UNHCGB4ADb7d/rVZfZYYSNQXzZ/vIu9DLnr9Xd+o4Zf+sp+yf9aSNtOM7yYFjoJWh12ZS+kFds3WZPSXrNBdpw+xEauOUr65L2dG8BsF9UYpeqsTi1In747L+SaSsWJ1JzedBvGMcxEOKva9VY882cBXacBfYSB/rIG2ojZrNQcxYYh1vtCYuWY5TzIRD0zKDGPh1OxZMDGWiHwr3Dlh8lBi+3m6mEMdEAj0hukjZ6noKrvQxcKaH+o9aD/B0Bwz5eiZWj4XQwSgl79cSre65i1p7jkG4LNap0au+KFQSIx4wMdzHvs6ufkeY+h1h7DkGgy9LZ+BMT3J0t8fokD3FhW+Ci3jYpOj54yeJSaQiTp+pNi36tLLV/iZre2P+CP6iCGVAxilOsqa4yTzV3WSftOF29r3evmy+onsNiZbjVSEqdRdf2gb3TiMkGYvoARLoCdFFwgcbAgYLvvEOLCO9WKw6miWRsKN2WxCbzyD9BCeaJVF3rXxtz06ddA+zJdY87ZSFJI1pVq1L1yWEy2LsfqGKoddkMPBsDyoO9d38nmsG5Ez34B1lR7NoxMMm+9+Si0ohelrVJ0GqPgliTdfRbTrxkMnQb2Ziz5JLrlSgmyb58Soi6Hxp5PV2c4ToVvKtI0QXSRtpx3BbAHAPsROrCSUybSqF1afhzPUCJIqmL6/Dv6v76+YdKVpnopQia3IibX20Nk6kIkr1FyFitf1zhC/3PA8Wm07Fx11bmNsMmBS/WEXhNRnknueh1KDbpnEaHp3CuZno1kQ9u/J1/l6bMiqESIjWmKCbFMzxAVD+r9ReJ9tfFMQr0YEdxgDQezFjsmmSkoUYzRRsk+g0CfSE6CIqroiHTGq+DFIXNCn9ovLwGj0dPKPsxOriPbIOrzWR8hiVHwfwjLRjcelYPVbc+TZ8E1zs+0d1r7atpznzreSe48FwWQhXxqhc3/WjqzG/SdGLVRR+I5Pcs70MnKEIlkYpX+MnfDBG9lQXjlwbpSuPbfpu/uU+NAMOvFdL/Q4J8IRIBVmHplDrhkbdzhC1X8pnMxVYD9U6qtWdvdwSIbqfBHpCdBH/rghf7apA0zWyhx6RetnsvtGcjqrcEKCyUXHr4bdkYbHp2HOsfT7Q0wwovDYDIy1R+kKZisp/+6lY131TaGP1Jrv+Uo7v5ERyFGeulYIrfaBA0zWUUhTOzcSMKtAgHkiM+IbL2t8XhksnXB6TIE+IFOAb7yRrsis5bbPkn72XlEk0V2ZJY6BZy0nRfXxiLei9UT1Zoyd6gAR6QvRzFpuOUorqT4O93ZRul3Gqi3haiMDeKJGKKJUbe6bulRmByvUBKtcH0B2QfVoaNp8Ff1GEcEWMrCludHviYsPqtVBwpY99S2sI7mtHpkwd0EjWbBRC9A53oY0BMz0YTh0zalK2pr5ffK8eb2osbiribrJMP6dFdrHHkkmJJR2zN6dxCtFNJNATop9TpgIFw2/OQsUU1Z8HqdrYNy9OrB4LcRP2L+29JCVmCA5+0HStTmBPdfKxZ4yd3LO9ZJzibDPQcxVYyTnTg9WTuDip3Sqp24XoLck6qmbvJNoSHbPFNojB0QoK45UMj5czLF5Ope5ms21QzzVCRvRED5BAT4h+Lh42MZwWNBM0W2K0yV1oY+/rNSm5TvxYWFwa8ZrU/SPmyDUYcKYHZSoOrmw9cYNntJ2BZydKN4RKY9RsDsrUMCF6UeZEN5qmsev5Cildc5zYZ81inyWDbLOegngVWaaf4dFSvpIC6aIPkUBPiH5u158rsWVZDtUwg0EXe3EV2Bj2rSz2vFLVZ7JxekfbsNh1QqWpWTjcSNfJv9wHwP63a9q8WHTkWtE0jf1v1+Av6vnsrUKIw7wnOrA4EuttY8G+8X3Zb+g65bqXLNOPW0WI9uRlsZkozJ5yzBRsk+g0CfSEEMkgD2D/m7X4TnaSPdXN0Gsy2f92DYHingmOrD4d3ap3KBFJa5z5VlyDrNizDazpBlavjoorSpbXdUFLu17B5T40XaPopcom/dGSin/Vkz7OQfbpbgn0hOhl2VMSo3k1m4NNZ0EY4B5sI+o3iZT37URXxzXTJNusJ6BZ2WPN6u3WCNGlJNATQjRT/WmQ4IEoBVf6GHCWh93PVXb7OfOvSMcxMDFSpZTCjCpi9SaRyhj1uyLtLjjuyDUYfKkP3UgkJ1FKoWIqkZVyVS20HUP1CqtPT9ZgLLgyg8C+CBXr/C0GfIZXZ8jXM9A0jbiMHgjR6/a+Xk3BFT68Yx0YLh0VB0eegcWhJ7/PSlfUUbdNplenIismGlAj5RZEHySBnhCiReGDMWq3hEgf58Q93Ib/qy4eOdITWTA9I+xYPYmRvMD+CMEDURwDDGw+A6vXgi3Dgmekg/iZJnvfqDnqnfG8C9LRdChf58dfFE4GS4myFxld+xq6SLTaZP+yGpy5VtKG2XEPseEeYiPmN9n7ajWx+sMBne8EBxa7TrQuzt7Xei+pjBAiIVIRZ9dzFRTMycRdaE/cqIoo/LsihMqjZE12k/k1lwR6KSqKjgIsPZyERCkTpVLvZl0qtkl0ngR6QohWHfxnPd4xDnJOT8P/VdeN6mVPc+M70Ylm0VBxRcxvUrs1QNkqf/ONDcj6mouMU1wMudJH9RdBDLeFcFmUmi1BzEPJJnUHDLs+G93QqC8KU/Xv4yvrnf+rCP6vIpR/5MdI08k6zY1npJ3Bl/soev7we1++LkDaCAdGmo4jzyB0QKaECdHbzDAU/bUycVXV6CPpGGigTdEI7E/NtcGCZB09SypO9xDiGEmgJ4RolTPPiqZrWD0Whnwjgz1/r0K1I65wFVjJOMWFbtOIhxVm0CQWNLFnGzgGWNENjVgwTvla/9GzRcagYl0Af3GE/Mt9ZExwoZTCM8JO1mluMA8tZ1egGxqhg1HKVrWesfJ4EKs3KV1ehxlV+E5wMmCmh4MrD60tNBPJWoZ8PYOC2RkoU1G7NdSsZIMQohcc8f044CwPSikq1snnM1U5zTAaENV6+JJYqdRMfCLlFfoUCfT6CPXxlyjN2q3nkHGD/mfQhV5UXBGuiGHPMRh+YxYly+vw724+jdNdaMU7zokzz4rFnijCrkzQDtWgbVirEvOblH3sp3Zzx6YxhUpi7HimHEe2QehgDFe+Fe9oB1avBU0Hi9tC8EC0V2vkdbWyD+tx5VnxjrFTuzlIqDTxKYxUxNn9fCW+CU7ShtvxjnVQ82WoS5LYtGTfkhO75bgAGmDi5ADBHsk/971xH/TAWfoApWENa0Tt5aB1f898UDmm28/RUwpdFQBEN9sJf2jBMjTCyWu66OAK3BHIt5H48HSzxwd+2v0n6SG7Y6ta/P3/Pn02B0vTuf+2l/BldG4miFIa5QcHsfyJY2mhEF1PAj0hRIvyLvCiW3XKVtdTvSmYqN0208OgC9NRcUU8kij2qhkauqGh6YlALh4yqf4ySPlH9U1G/ywunXjgGOf+xxIBH0CgONpj2UB7057Xqhh+YzZZU9zs+8fhIDZWb1L+kR+LQ8c72tGLLRRCHMmMQni1BwyF/dza3m6OaEN1lRunM9LpIK/TVIqWV5ARvT5FAj0hBJoB9mwD3abhHmrHM8KeqDl3MEr1piAAddvC1H0VJnuKG2eeFcOVGKqLhxRhf4zAngg1nwcxW8nZcsxBXj9lhgATLE692XPOfCueUXYiNfFuG80TQnRc5F9uiGvYz61DlyutlFY47CDbtw5i25Y8Ro890NvNEaJLydePEP2RBbJPc+MeYsPi0LE4mgYR8YhJxcd+KtcfcYczBuUftZAwRXSbtJF2NIuG4dbJn51O7fYQtVvCuAtt5M3yggl7Xun+8hdCiPZTVQagsI6UTJupoLTCyf46gwG5NRjG4ZuOpgn5Q8rZvnUwO7f3cKBnmqCl4A1QybrZp0igJ0Q/NOybmRhuC2ZMoeKJaRrRujjVnwXxF4eJ1sgXfapwDU6svdVtGo5cK848GwPOTPSZisGe16qTmUeFECni0Pq56A4b1pFdXJpGHNVry0eweWcWAzIDlJS72X8wjUSnKDRNYbGYKKURj+uAhm6JM2nqtl5utRBdTwI9IfqZ9JMcGG4LVZ8FkqNz9gEG4YMy9S8VHVxVT/1X4UR6dgXeMXaceTZ0q0bpB7US5AmRYlRQQy8IE99nI7w8nfCHJppdobnjWE8IYR0to3zdaUdxOu+uHgYo9pZ4ABg7vJLMwaVUVqRRW+MmHLai6yYOR4ThI0s4ddJOjJ6+IpY1eqIHSKAnRD/jzLOhlGoyBVOCvBQWh8Cew0lnajeHO5yxVAjRnBYC60GI5gJxsO0F60ENTAicrDC9HT+m7gf/m5kQajQdPqqjoqDqdcKlNiLr49jPrsUYJN+7XSkS0/l0cw5rNw4C4PRT9nP1hVvRdRPDgN2xul5uoRA9TwI9IfoZM5q4W6fbaDVxihBC9HWeDzSsBzXiHoUWBS0M8YzEf31LNUIjIZ6hiKdDPB2U7ejHdGxOTA90XV8BMY1YkY14kY34fiukx7GkxYnvtxH6hw9sCsvgKNaTAxgDJejrqNp6G+s+zeWLHdnsO5hGIGilYXpmmivMmZP2YrPJMgTRv0mgJ0Q/E9gTIX2sA+8YZzKjphBC9CfGwUOjd4ClTiOWrqi7RGG6gCi4PtGw7QV9i4Z2aMGd6VQoC8TTwH+awkwDjkiGq0WAkE5omRfnxTXYJgRhQpB4uYXwCi/xEhvWyX5UlUFsj434LhvxXXY0bwznN6rQmyfXFUdY9fEg3l09lIpqJw2Bnccd4YQRFZw0uoxJ40txOVI/cFamiUrBZCxKkrH0KRLoCdHP1O8Mo85TeEbZJdATQvQ7js3g3qCjjMRoXe3ZCuXgcAFyKwQmKwKTgRhYahWWGrBUa2hRcOyEjNd0lK7wT1aER4GlCoxycOw8FBQetKLihw9pyY7jvLKK8Jo0ouvSMIaHcF9TiYpohNe4ie9yEPpHOq7ZNS20WDT421uj+XD9EHTdZOzwSs6avIcTRpVjSIAsRIsk0BOiHwqVxnAMNMg9z0PJ+3UgN/CEEP2EbbdGLEPhn6KwHtDIfFmnfqpJeFQLGxsQz0z8NCTOCE4A2z6F+yMN97rEyJ9tXyKki+YovDOq0DPjaFrTQ2kGOM6sJzY4QugDD/ElGTgvrsZ5fh3BpRrxvXZCH6bhOKu+W1//8eyzrTkAnDdtN5ef81Uvt+YYSTIW0QMk0BOiH9r7ajVD5mbgGekgbbideNAkWBKjZEUtpP6MFyGE6LTwSIX7Xxrp7xweBoq3M/GKFoLMlxoNHykwyhV1Z5lEBgFWyHDF2zyGMTyCK7uK4JvpBN9KxzWnGvtFtQRfzCC22UEkM4rtpNRKuBSJ6Ri62etTS++49hN+95evsWzVML7YkU1ZhQuLRXHHtRsZXlDbu40TIgXJYLcQ/VTx36ooeb+WSFUczaKRNtzGiJuyyZjowkiXrwYhRN8UHgV1MxOjFjGfouZCk9jA9u2rrBDJTewb9yoCExTVVygihYC1/W3QvSaOWbWoGoPoVge6Ds6vV4FNEVntIbY/Ne7Dx0z45R9P457HzuaeX55NbX07MtJ0o8ED/fzs9n+R7gmzr8SDQiMUNljw7GR27/X0ats6zFSp+yP6jNT4JhFC9Iq6bWHqtiXuHKeNsDNwpofsyW6yJ7uJh02K/1ZFzC/zOoUQxx8tCJZqsNQDJmjxxH/1sIatGOIeRc0lqmO3vC1QN6trptxFNzkBiHyUhlEQQffFcV1ZReClTEJv+LAMiWCfVo/u7b3v4OdePZF9pR68aWFq6+1s2pbFGV870GvtAfCmRfjF3auorbexdVcG7/xzGCXlaSz482R++/P3e7VtQqQaCfSEEEAiSUv9zjCuIVbShtlJH+cka4qb0hVSe0gIcZxQYJSA8wsN24HDi+SUngjolJ4YlYtlQeDUDgZ5XdlMBZaCKPE9NlTAQuDFTGyn12MdH8Qxu5rQG+nEi+yEYxrOS3snQUtoZRobtjoYmFXPRWft4tlXxmNJkcke7300hFffG0VD1k3DEidvgP9ou6UWpUjJBfKyRq9PkUBPCNFEoDiKd7QDpRSB/VJoTwhxHDDBVgTOLzWMykSylfppJtEcWiyD0NtCb3qJ77U3+V1kTRrWMSGIAPFEAGOd1DvBS+AVH+ZBKwOy/Nz3nXVU1DgAxRsrh3PCyAq8ab33t2Hx30/k4y9ysVnjzD53B1Mm7MfpSMGAqR8rLi7mv/7rv1i6dCnFxcXY7XZGjhzJ3Llz+e53v4vL5eqS87zwwgssXryYzz77jKqqKnJzcznzzDO58847mTp1apec43gngZ4QohlnnhVMqNuZWgkBhBB9SyxgObYBhEPlDhxfalj8GpE8Re25JtE8Dtc2SDFmgGZBHgB2E///ZUJUAx0cl1Vj5PZ8dqzoNjvmQSuW/DAP3LIGgLycADOm7OGDdQX8fMGZTDyxhDnnb8Wb1vPt27knA9C466YNDMk7fjOUKlOhtNQbPVPHOKK3dOlSrrvuOmpqDo9EBwIB1q9fz/r161m0aBFvvvkmw4cP7/Q5QqEQV199NW+88UaT3xcVFVFUVMTzzz/PvHnz+M///M9On6OvSLF7XEKIVFC5MQA65M48zha3CyGOC7Gghb3v5rHlf0az66WhySVvWgCIHn1/LQjOTzUyXtFwbdCI5UD1JSZ15ymig0jZIA9Ad4H97EMZIi0K25m16FlR0BSaQ6EPiOGaW4kxqHdSIMd22gGF/YKmWSyvvnAbd920gQxviA2f53H/wrOore/58YKvn78VgPWb8nr83KJtn376KXPnzqWmpoa0tDR+8Ytf8NFHH7F8+XK+853vALB161YuueQS6us7H6TfeuutySDv7LPP5tVXX2XdunU8/fTTjBgxAtM0eeCBB1i0aFGXvK7jmYzoCSGaqfk8RPZpbuzZ8hUhhDh2ZkyjZpuX9DE1RGps7Hq5EEwNz4g66nZ68KxUaCGwlmsET1AEJjYfVdBCYCsG+24NoxSwQGgUhMapxPTMFGIGNGLbHGgOExXUUX4Lpl9HBXTUof8CENfQXQrXVdW92t4GpgnxUivYFHoLX/8jh9Tw8A9WJwuX7zng5cRRlT3axlNPKMOim2zZmQVs79Fzdyllkppr9DrfprvuuotAIIBhGCxbtozTTz89+dw555zDqFGjuPfee9myZQu/+c1veOCBBzp8jg8++IDnn38egMsuu4xXXnkFi8UCwOTJk7n88suZOHEixcXF3HvvvVx11VX4fL5Ov6bjnYzoCSFaFA8pLC75ihBCHLsDK3PZ9+4gtj49ih1/GUE8aDDqWzspvHQv3lG12PZqWMsTw3DhEYeDPC0M9u3geU8j4+VEgXKlg3+qourrisDkFAryzEQwCmCWWYn8K43wB14i693E91shpqFnxDDGhLCfUY/jghqcX6/EUti+9W6x/QaxPVZUNw30xSt0gi9lQFjHOi7Y5rZed2Ja/19eO5FX3h151JG9WAw+XD+Yf32ai9kFsU3ugHpKyt29Xu5BHLZ+/XpWrlwJJEbcGgd5DX74wx8ybtw4ABYuXEg02o7h+yM88cQTAFgsFv7whz8kg7wG2dnZzJ8/H4CqqiqefvrpDp+jL5Hb9UKIFvmLwvhOcjH8pixqt4UoX+eXYupCiHYLldup+iKd4EEngf2J5Avx4OHLji2LGrImJmrShUYrwkMTz9l3gm23hvUAoCA2EPxTFJEhoBw9+zray71Bw7FVI1joxTIijJ4XwTxgwzGrFmPYsSUviW62E/7QA2jYvB7qgxrWSQHsE1oOyMwoxHfZiZcbWAZEsQyPtFrs3IxAeFk68X2JQoCWYWHsUwNttuf86UXU1DtYs3EQy9cMZfmaQtJcEcaNqODyc3eQ4W36el9fMZL31wwF4MU3x3Lp2Ts59YTSZtu11xXnbuf3//c1Hv7v07n83B2cNXlfp44jus6rr76afHzzzTe3uI2u69xwww389Kc/paqqipUrVzJr1qx2n6O+vp7ly5cDMGvWLPLz81vcbs6cOXi9Xmpra1myZAk//OEP2/9C+hgJ9IQQLSpblcj25hnlIGOCC99JTmo2hyhbXZ+Ss02EEKkh6jfYvzyXul0eLM4YaQWtZY48vJAumg16nYb3XTBqEr+PDlAEJinChaCcPdDwY2SUg9IUKqgTed+b/H28zDjmQC9ebgAamjeOJT8C2yG6Jo3op06sI0Poh5K2mAcNYrvsqBoLDe9vDGC5QkuPo2fE0TNiYCTaaZZaMcsSl4J6TgzHebXtqtun6/CNi7fyjYu3svWrDFb8awg7in2s3zSIf3+Ry/x7V+KwJY4TM2H9Z3lomuKSGTt5Z/Uwliwbw5JlY3A6ouRm+7Hoivy8Wq6YtR2jHRNJxo2oYs7523h9+Uj+9tY4Xnp7LPff8REDs9seiUwlfS0Zyz//+U8A3G43EydObHW7GTNmJB+vWrWqQ4HeunXrCIfDzY5zJJvNxtSpU1m2bBnr1q0jGo1itVrbfZ6+RAI9IUSrylb5KVvlxz3UxoAz0/Cd6MQzws6u5yq6bfqQEOL4Vb/XxZ6lg9F0GDjtIJph4soNknvWQULldqo3p1OzNR17RhjDHSNcaScWMHB8pRFPU0RzITjeJJp7fAR3jUUGK5xVGo5z6kBTxIqtRNanEd3oIrbLju6JQ0xDxTWIgzK1xBq99Bj2M+rR01sOsMwQaNbExbeq1bFODOCaWkVktZvYdgfRz9zwWaMddIU+MIoxOoSRFyW2x0ZsuwOzyiBeYyG+u3HGT4WeFcM22Y9R2PFpdABjhlcxZngVAKs+HsQLS8fxwMLp5OX4CUUMSstdxOI6F0zfxYVn7eacacWs3ZhH0f50Nn45gKL9XpTS2FGcwZqNg/nmZV8y8cSDbZ4zZsLMKXsYOqiW3zw7GaU0Kmscx1Wg19ds3rwZgJEjR2IYrYcXY8eObbZPR89x5HFaO8+yZcuIxWJs376dE044oUPn6isk0BNCHJV/d4RduyvJOMVJ1mlu8i5MZ/8bvVPEVwiRmqJ+gz1vDsaRHWbQuQfY9fdCYvWJu+iDzj2Ac2CQmq3pAISrbISr7Oi2OAOnHWTLgGzM4zzJb2gMuD7TiH7hwD7Nj+2kMMbYMOG304nvtxKvthwexNQO/eiKeK2NwAuZ6JlxHBfUJEfUTBPCbzZMqdRAU1hPDaBZHOgGOGbWw8x6YmUGZpkFTNBz4ug5sSbTNG0ZIWwTQsljmhUGxEFPM8FltjqlszOmT9zPzmIfn2/L4au9PjRNkeULcdqE/Vx41u5Eewzz0FTLfXxr9pfJfZevKeD190ex+O/jWbaqntu+8SlZvkS7IxGdtZ/m8cmXAyku8RAKGzS8mZqmuP2ajYwbUdV1L6Qn9KFkLKFQiPLycoBWp1M2yMjIwO124/f72bNnT4fO03j7o52noKCgyX4S6InjWoxoMj216F2a0oiaEWIqesz1aFJN2cYo1nwN5wAr+d/0EDgQoerTENGK1B/e68v90t3ige6rp6gBMTTihHvkKyxYn/r/r6YEpRELR4lGY9DO6WVFr+cSrDHJu2gvoXoIVCoS1b9h91tZh7ZK/Hvg9FKcA0LYs8LohiJc5YXeqQ3eZSzViYDErItC/eHRMX1meZuZ78xqnciaNCIlVkJ/TkukybOoxN/0GOhZAaynBtAHR0HTCNXrhG3Rw/3ijMKQxMM4EG97eV1i+0PbcpRta13xoxysuSvP28SV57VwrLq295t80m5OHl3MX14/kc07s/jpryZjsSgsukkk2jAVVeFxhxhVWIvTHsNqjTFzyl6yfKGjHr8u1n1BlVIa9fUde69S9botdqi+SW1t0/Iadrsdu72F+o9AXd3hNz8t7ejZkRoCvY6WWOjIedxud/LxsZRyON5JoHecs9ls5Obmsqrkzd5uimhgArt6uxHd6B+93YBO6uv90p2ue61bD7+1W4/e1I968Fz9VnuS3DXbZlU3NEQcq//qlbPu6JWzHrtScnNzsdnazgR6PFy3paWlNRkRA3jwwQeZN29ei9uHQqHk46O9fiAZMAaDHZtq25HzNA5KO3qevkQCveOcw+Fg165dRCLHttBbCCGEEEJ0ns1mw+FoOy3s8XDdppRC07Qmv2ttNA9o8prb87oaEqo4nR1biNuR8zScozPn6Usk0OsDHA7HUb9YhBBCCCFE7+tr120ez+EFtu2ZJun3J+Zpt2eaZ2fP03COzpynL5FqyEIIIYQQQohOcTgcZGdnA7B37942t62qqkoGYUdODz2axglYjnaexolbOnqevkQCPSGEEEIIIUSnjRs3DoAdO3YQi7We9GrLli3N9mmvxpkzGx+nrfMYhsHIkSM7dJ6+RAI9IYQQQgghRKdNnz4dSEyZ/Pjjj1vd7oMPPkg+PuOMMzp0jsmTJyeTsDQ+zpEikQhr165ttk9/JIGeEEIIIYQQotOuuOKK5OPFixe3uI1pmvzv//4vAD6fj7PPPrtD5/B4PJx77rkAvPfee61O31yyZEmyPMSVV17ZoXP0NRLoCSGEEEIIITptypQpnHnmmQA8/fTTrFmzptk2v/71r9m8eTMAP/jBD7BarU2ef/bZZ9E0DU3TWi3l8KMfJYrkxGIx7rzzTuLxpvULy8vLue+++4BEMPntb3/7mF7X8U4CPSGOsG/fPh5++GEmT55MTk4ODoeDgoICpk+fzn/+53/y+eeft7ifUoqFCxcyduxY7HY7I0eO5NFHH20zBfDMmTOTX2rt/elvIpEITz/9NBdeeCF5eXnY7XbS0tIYM2YMt9xyS3J6RmukX9qvtLSU119/nZ///Oecd955pKenH/WPblvefvtt5syZQ35+Pna7nfz8fObMmcPbb7/drv3379/PTTfdRE5ODi6XixkzZvDee++1uv3u3bs73G833XRTh19XT+uKfgmFQrz22mt8//vf57TTTiMzMxOr1UpWVhann3468+bNo6SkpF3Hkn5J6OrPS2OBQIDhw4cnjzd06NCj7iP9ktAd/bJy5UpuueUWRo0aRVpaGl6vl1GjRjFnzhz+8Ic/tJkBsj/1y29/+1ucTiexWIzzzz+fX/7yl6xdu5YVK1bwH//xH9x7770AjB49mh/+8IedOsc555zDNddcA8Drr7/OrFmzeP3119mwYQOLFy9m6tSpFBcXA/D444+TkZHRNS/ueKWEEEn/8z//ozwejwJa/fnBD37Q4r633HJLi9tfeOGFKhaLtbjPjBkz2jxXSz/9SXFxsRo/fvxR35O7775bmabZ4jGkX9qvrdf34IMPtvs4pmmq2267rc3j3Xbbba32mVJK7du3T+Xn5zfbT9d19Ze//KXFfXbt2tXhfrvxxhs7+C71vGPtl08//fSo32uA8nq96sUXX2zzWNIvh3XV56UlP/zhD5scr7CwsM3tpV8O68p+qa2tVXPnzj3q+7Jx48YW9++P/fL6668rr9fbaltHjx6ttm/f3uK+ixcvbldfBQIBdfHFF7d6Dl3Xj/kz2FdIHT0hDlm4cCF33303AEOGDOH2229n6tSpeL1e9u3bx7Zt23j11VfR9eYD4W+99RbPPPMMGRkZPPTQQ0yZMoUvv/yS+++/n7fffpv/+Z//4fbbb2/z/Js2beqW13W8isViXHLJJcn3ZcKECdxzzz2MGTOGuro6Vq1axa9//Wv8fj8LFiwgLy+PH//4x02OIf3SecOHDyc/P58PP/yww/vef//9/OlPfwLg1FNP5d5772XEiBHs3LmTJ554go0bN/KnP/2JnJwcHn300RaPcffdd7N3715OP/10fvazn5GRkcHf//53Fi5cyO23385FF11EVlZWq22YPXt2q8du7Hi729uZfqmtraWurg5IJD+49NJLmTRpEllZWZSVlbFkyRIWLVpEbW0t3/zmN/F4PFx00UUtHkv6pWXH8nk50saNG1m4cCEOhwOr1Zrsu7ZIv7TsWPrF7/dz0UUXsXr1agAuvPBCrr32WkaPHo1pmhQVFbF+/XpeeumlVo/RH/vlsssu47PPPuO3v/0tS5cuZe/evdhsNkaOHMnVV1/N9773PVwu1zGdw+l0snTpUp5//nmeffZZPv30U6qrqxk4cCBnnnkm3/ve9zj99NO76BUd53o70hQiFaxdu1bpuq4Ademll6pAINDqtpFIpNnvbrrpJgWo119/vcnvN27cqAB19tlnt3isxiNHoqmXX345+d6cfvrpLY6+bdiwQVmtVgWojIwMFY1Gmzwv/dIxDzzwgFq6dKkqLy9XSim1YsWKDt8J3759uzIMQwFq0qRJzT5Lfr9fTZo0SQHKMAy1Y8eOZscIhULKbrergoICVV9f3+S5H/zgBwpQf/7zn5vt1/hOeCrd4T5Wx9ovq1evVnPnzlVffPFFq9u8+uqrStM0BagRI0a0ONoq/dJUV3xejhSLxdTEiRMVoB5++GFVWFh41BE96Zemuqpf7rjjjuTo0OLFi1vdzjTNZn97lJJ+EalB1ugJAdxxxx2YpklhYSEvvPACTqez1W2PXDwMiXV9QLMMUqeccgqZmZnJ50X7NdxFBfjpT3+KxWJpts3EiRO59NJLgUQR1iPr6ki/dMxDDz3ExRdf3OYd5qNZsGBBsobS7373u2afJZfLxe9+9zsgMWq7cOHCZseoqKggHA4zZcoU3G53k+caMq71p7471n6ZNm0aL774YpMaVEeaPXs2c+bMAWDnzp1s3Lix2TbSL011xeflSL/97W/5+OOPGTNmTDKhxNFIvzTVFf3yySef8NRTTwFwzz33tLkGTtM0DKP5BDnpF5EKJNAT/d6aNWuSFzU//vGPm30ht8eAAQOA5nVdNm3aRGVlJbm5ucfe0H6mcbKU4cOHt7rdiBEjko/D4XCT56RfepZSitdeew2AsWPHMnXq1Ba3mzp1KmPGjAHg1VdfRSnV5PmMjAwMw2DDhg0EAoEmz61cuRJA+q4bNL4hsnPnzmbPS790r6KiIh544AEAnnzyyXbX/pJ+6XpPPvkkSinsdjs/+clPOnUM6ReRCiTQE/1e4/n1V199dfJxRUUF27dvp7q6+qjHaKgfc8MNN/D73/+edevW8ec//5mLL7642XFF+4waNSr5+Kuvvmp1u4YLUk3TmuwD0i89bdeuXck71DNmzGhz24bn9+7dy+7du5s853Q6ueCCCygqKuL8889n6dKlfPTRR9x7770sXLgQl8uV7EPRdRrfKGlpBF36pXt997vfxe/3861vfatD9cWkX7qWUoqXX34ZSGR4bBgZjMViFBcXU1RU1OymYkukX0RK6N2Zo0L0vmnTpilADR8+XJmmqZ566ik1evToJhmcxo0bpxYsWKDC4XCLxzBNU11xxRUtZn8699xzW5y/r1T/XQvWHqWlpSotLU0B6owzzmhxjd6///1vZbPZFKCuv/76Zs9Lvxybjq5teeONN5LbL1iwoM1tf/Ob3yS3Xbp0abPnt2/frrKyspr1m6ZpatGiRS0es7+sbemKtWAtufzyy5PH/fLLL1vcRvqldcfSL3/961+Ta41LS0uTv2/PGj2lpF/a0tF+2bZtW3L7hx9+WJWVlanbbrutSeZau92uLrjgAvXhhx+2eSzpF9HbJOum6Pe+/PJLAAoLC7nuuuv461//2mybzZs3c/fdd7NkyRL+8Y9/kJ6e3uR5TdN46aWXmD9/Ps888wx79uxh0KBBfOtb3+L+++9vcf7+kVqrz9dYdnZ2v5nqMWDAABYvXsy3vvUtVq9ezeTJk7nrrrsYPXo09fX1rF69ml//+tdEIhG+9rWv8etf/7rZMaRfetaePXuSj/Pz89vctqCgoMX9GowcOZJ169bx05/+lGXLlhEKhTj11FO5//7723UXvLq6ul19N3LkSBwOx1G36+s+/fRTli5dCsCJJ57IuHHjWtxO+qXrVVVVcddddwGJul8NU847Qvql6zRcE0BidG/ChAkcOHCgyTbhcJh33nmHZcuW8cQTTySLeB9J+kX0ut6ONIXoTfF4PJlpzm63K0Dl5uaqv/zlL6qyslIFAgH1wQcfqKlTpybvsF111VVddv6O1mtrrYZfX/b555+rm2++ucX3Y+DAgWrBggXK7/d36TmlXxI6eif8iSeeSG7/1ltvtbntm2++mdz2V7/6VZe0tzP1p1qrf5XKunpELxQKJTOhAuq111479kY2Iv3StltvvVVBIrvwkdlO2zui1xnSLy175plnmozcQaLu6rp161QoFFIHDx5UTz75pEpPT09u949//KPL2ttf+kX0DFmjJ/q1QCCQTAQRDodxuVysXLmS66+/noyMDJxOJ2eddRbvv/8+J598MgAvv/wy69at681m9xuRSITnn3+eN954o8XnS0tLef7551mxYkUPt0y0JBQKJR8fLZGE3W5PPg4Gg93WJnF03/ve99iwYQMAN954I5dffnkvt6j/+PDDD3nmmWcwDIOnnnoKTdN6u0n9nt/vTz4Oh8PMmjWLN954g8mTJ2O328nJyeH222/njTfeSNbV/clPftIsqZQQqUACPdGvHTnV4dvf/nYyG2BjTqeTX/ziF8l/v/DCC13eFqXUUX9aSkXfV/n9fmbNmsVjjz1GZWUl9957L5s3byYcDlNTU8OyZcuYPn0669ev57LLLuO3v/1tt7RD+qX9Gn+eGmdNbUnjZAZtlTPprBtvvLFdfXfKKad0+bmPJ7/85S9ZtGgRAJMnT+b3v/99t55P+uWwcDjMbbfdhlKKH/zgB0yYMKHX2iL9ctiR1wXz589vMTnR9OnTkyVJvvjiCzZt2tTlbZF+EcdKAj3RrxmG0eRL/YILLmh123PPPTe5pqvh7rfoPg8++CAffvghAE8//TTz589n7Nix2Gw2vF4vs2bNYsWKFZx99tkopbjnnnv47LPPernV/ZvH40k+rq+vb3PbxnfN09LSuq1NonV//OMf+dnPfgYkymG8+eabnSovIzrnF7/4BVu3bqWgoIB58+b1dnPEIY2/x3Jycjj11FNb3bbxNYNcF4hUJMlYRL9XUFDA9u3bgbYTSDgcDrKzsykpKeHgwYM91bx+SSnF4sWLARg9ejQ33nhji9sZhsEjjzzC9OnTMU2TxYsXs2DBgp5sqmik8edn7969bW7bOAFL48Qsomf89a9/5bvf/S6QSET17rvvkp2d3cut6l/mz58PwHnnndfq9PSGGyJ+vz85k2TAgAGcc845PdPIfqjx91FHkkrJdYFIRRLoiX7vhBNOSAZ68Xi8zW0bnm9PtkbReaWlpVRWVgK0eTcVYOLEicnHW7Zs6dZ2ibadcMIJycdH64vGz7eW4VF0j9dff50bbrgB0zTJy8tj+fLlR72gFV2vYXrz4sWLkze2WlNeXs61114LJGpQSqDXfRp/j7X3mgDkukCkJpm6Kfq9s846K/m4rcLctbW1lJeXAzB48OBub1d/1vgPZiwWa3PbaDTa4n6i5w0bNoxBgwYB8MEHH7S5bcO03MGDBzN06NDubpo4ZPny5cydO5dYLEZWVhbvvvsuI0aM6O1mCZEyfD4f48ePB2D37t2Yptnqtjt37kw+lusCkYok0BP93pVXXpnMdPbKK6+0ut0rr7ySzKp15pln9kjb+qvMzEy8Xi8Aa9asaTPYaxxQDBs2rNvbJlqnaRqzZ88GEiN2a9eubXG7tWvXJkf0Zs+eLZkGe8hHH33E7NmzCYfDeL1e3nnnHU488cTebla/1Z4kG4WFhUBiem3D71auXNm7De8HGpKs1NbW8v7777e63ZIlS5KP5bpApCIJ9ES/N2zYMK6++mogsW5l+fLlzbYpKSnh/vvvBxJp42+++eYebWN/o+s6l1xyCQD79+9vkvG0saqqKu67777kvy+99NIeaZ9o3V133ZUcWf3+97/frHRCMBjk+9//PpAYgW0oFC261yeffMIll1yC3+/H7Xbz5ptvNpn2LIQ47M4770wmZbnnnnuora1tts1zzz2XDLovueQSmf4sUpLMcxICeOKJJ1ixYgVlZWVceuml3HXXXVx88cU4nU7WrVvHL3/5y2RyiUceeaRbpmh8/vnn7dpu2LBh/SIz3gMPPMBrr71GIBBg3rx5fPzxx9x4440MHz6cUCjE2rVrWbhwIcXFxUAiK+r555/f5e3oT/2yatUqduzYkfx343V0n3zyCc8++2yT7W+66aZmxxg9ejQ/+tGPePzxx9mwYQNnnHEG9913HyNGjGDnzp3Mnz+fjRs3AvDjH/+YUaNGdctrqa6ublff2Ww2Ro8e3S1t6CrH2i87d+7kggsuoLq6GoBHH32U9PT0Nt+f/Px8fD7fsTa9GemX1CT90lROTg6PP/44d955J5s2bWLKlCncd999TJgwgdraWpYsWcKTTz4JgNfr7bYkYH2pX0QvOYZi60L0KevWrVODBw9WQIs/mqapn//85116zhkzZrR6vtZ+VqxY0aVtSGXvvvuuys7OPup7cs4556jKysouO29/7Zcbb7yxQ6+5NfF4XN1yyy1t7nvrrbeqeDzepe3ftWtXh/utsLCwS9vQHY61XxYvXtzh92Xx4sVd1n7pl7Y/L20pLCzstvdD+uXo/fLII48oi8XS6r45OTlq9erVXdr+vtovonfI1E0hDpk8eTKff/45jzzyCF/72tdIT0/HbrczbNgwbrrpJtavX8+jjz7a283sV8477zy2bNnC/PnzmTlzJjk5OVitVpxOJ8OGDWPu3Lm8+uqrvPfee2RkZPR2c8Uhuq7z9NNPs3TpUmbPns2gQYOw2WwMGjSI2bNn8+abb7Jo0SJ0Xf4ECSFS1/3338/atWu5+eabGTp0KHa7Ha/Xy8SJE3nooYfYtm0b06ZN6+1mCtEqTalD2SWEEEIIIYQQQvQJcjtVCCGEEEIIIfoYCfSEEEIIIYQQoo+RQE8IIYQQQggh+hgJ9IQQQgghhBCij5FATwghhBBCCCH6GAn0hBBCCCGEEKKPkUBPCCGEEEIIIfoYCfSEEEIIIYQQoo+RQE8IIYQQQggh+hgJ9IQQQgghhBCij5FATwghhBBCCCH6GAn0hBBCCCGEEKKPkUBPCCGEEEIIIfoYCfSEEEIIIYQQoo+RQE8IIYQQQggh+pj/D5/YUJcDKztpAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAKcCAYAAAC+OchTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZglVX3//zpVdfe192X2BWaYYWCAYd8F3CIgogbjggY1EJP4JL/HxEQjaowx+WoSY2LUaMR8jSsqX9xFgWEb1oEBBph97X29+1JV5/z+qO7b0/Te0z1zu+e8nuc+fftW1alTp6ruPe/6bEIppdBoNBqNRqPRaDQazaLBONkd0Gg0Go1Go9FoNBrN3KKFnkaj0Wg0Go1Go9EsMrTQ02g0Go1Go9FoNJpFhhZ6Go1Go9FoNBqNRrPI0EJPo9FoNBqNRqPRaBYZWuhpNBqNRqPRaDQazSJDCz2NRqPRaDQajUajWWRooafRaDQajUaj0Wg0iwwt9DQajUaj0Wg0Go1mkaGFnkaj0Wg0mgrvfe97EUKwcuXKk90VjUaj0RwHWuhpNJoTyoMPPogQYkavT37ykye72wuGY8d3onEbb4wNwyAej7Ns2TLOO+883v/+9/O1r32Nvr6+OetbsVhk27Zt/Ou//ivveMc7WL16dWX/WlRo5pKdO3dy++23s3btWkKhEA0NDVxxxRV89atfxXGck909jUajOSFooafRaDQnmWoQtEopMpkMR48eZfv27XzjG9/gj/7oj1i6dCnve9/76O3tPe593HHHHVxyySX8+Z//Od/73vc4cODAHPRcoxnNN77xDc477zy++tWvsm/fPorFIr29vTz88MPcfvvtXH755XP6AEOj0WiqFetkd0Cj0Zy63HHHHfzxH//xlOs1NjaegN6cemzZsoVvfvOblf9LpRIDAwPs2bOHhx9+mJ/85CcUi0XuuusufvWrX/GTn/yEiy66aNb7U0pV3ieTSc4//3y2bdtGNps9ruPQaIb59a9/zQc/+EGklDQ1NfGxj32MCy+8kP7+fv7rv/6LH//4xzz++OO85S1v4YEHHsAw9PNujUazeNFCT6PRnDQaGxs588wzT3Y3Tlkikci443/ttddyxx130N3dzYc//GG+973v0dnZyQ033MBTTz3FihUrZrW/N77xjVx99dVceOGFrFu3ruKyqYWeZi5wHIc/+ZM/QUpJPB7n0UcfZc2aNZXlr3/96/nQhz7El7/8ZR566CG+/e1v8573vOck9lij0WjmF/0oS6PRaDTj0tjYyHe/+10+8IEPANDT08OHP/zhWbf39re/nVtvvZX169cjhJirbmo0APzkJz9h7969APz1X//1KJE3zP/5P/+HmpqaynuNRqNZzGihp9FoFhSf+tSnKjFt04nxuuKKKxBCjDvpG+aee+7hbW97G8uXLycYDJJMJtmyZQuf+tSnGBgYmHC7V2cn7Ovr42Mf+xhnnHEG4XCYmpoarr32Wu69995xt1+5cuUowXPssQ2/3vve9055jPPNv/3bv7F06VIA7r33Xnbu3HmSe3T83HXXXZUxPnjwIKVSic9//vOce+65xONxGhoaeO1rX8vWrVtHbdfZ2clHP/rRyjlubGzk93//99m9e/e09vvAAw9w6623snr1asLhMPF4nE2bNvGRj3yE9vb2Cbf75Cc/WekvQCqV4hOf+AQbN24kEonQ0tLCW97yFnbs2DFqu3379nHHHXdUkpK0trbygQ98gI6OjmmP1ZEjR/jwhz9caaOpqYmbbrqJhx9+eFrbd3Z28rGPfYwtW7ZQW1tLIBBg2bJlvP3tb+e3v/3thNsdPHiwcsx33XUXAD/+8Y954xvfSGtrK5ZlcdVVV1XWv+eeeyrvJ7pvwuEwb3/72wF48cUX2bNnz7SOQaPRaBYkSqPRaE4gDzzwgAIUoO68884Zb79nz57K9p/5zGcmXffw4cNKCKEA9fGPf3zM8v7+fvWa17ym0t54r8bGRrVt27Zx27/11lsVoFasWKF27typli1bNmE7n/3sZ8dsv2LFikn3Dahbb711RuMznfEdXn7llVdOu93PfOYzle3+/u//fkZ9mozhMVixYsW0t7nyyisrfTlw4MCs9vvNb36z0sZzzz2nzj///HHH3zAM9Z3vfEcppdT27dtVS0vLuOslEgm1Y8eOCfdXKBTUO97xjknPdSQSUffee++42995552V9Q4dOqTWrl07bhvBYFA98MADSimlfvOb36hYLDbuekuXLlVHjhwZd1/HXtdPPPGEqqurG7cNIYT63Oc+N+k4f/vb31aRSGTS477tttuUbdtjtj1w4EBlnf/+7/9W73nPe8Zse+w1PHz/rVu3btI+fec73xnVrkaj0SxWtEVPo9EsKNauXcsFF1wAwHe+851J1/3ud79bSQDyB3/wB6OWlUolrrnmGu6//34sy+K2227jnnvu4ZlnnuGRRx7hs5/9LA0NDXR3d/PGN76RQ4cOTbiffD7PjTfeSDqd5pOf/CQPPfQQTz31FF/84hepra0F4G//9m954YUXRm33m9/8ZtRnd9xxBy+88MKo19///d9Pf3Dmkde+9rWV99O15CwUPvjBD/Lcc8/xZ3/2Z/zud7/j6aef5ktf+hLJZBIpJR/84AfZt28fN9xwA7Zt84//+I889thjPPbYY3zkIx9BCEEqleL973//uO0rpXjrW9/Kd7/7XQDe+ta38oMf/ICnnnqKbdu28W//9m+sXLmSXC7HW9/6Vp555plJ+/u2t72Njo4OPv7xj/PQQw/xxBNP8JnPfIZAIECxWOTWW29l9+7d3HzzzdTW1vIf//EfPPHEE2zdupU//MM/BODo0aP8xV/8xaT7yefzvP3tbyefz/Pxj3+cRx55hMcff5x//Md/JJlMopTiox/9KD/4wQ/G3f773/8+7373u8nlcqxfv54vfvGLPPzww2zfvp0f//jHvOlNbwK8LJl/9Vd/NWlf/vVf/5X/+Z//4fLLL+c73/kOTz/9NL/97W9597vfDUA2m+Xo0aMArF+/ftK2jl3+8ssvT7quRqPRLGhOstDUaDSnGMdanO644w71wgsvTPlyXXdUG//6r/86yhozEWeffbYC1Lnnnjtm2V//9V9XrCiPPPLIuNsfPnxYtba2KkC9613vGrN82PIBqJqaGvXyyy+PWeexxx6rWBX/5E/+ZNz9DLcxGwvnq5kvi16pVFKGYShArV69+rj7OUw1WPSEEOqnP/3pmHV+9atfVdapr69XjY2Nav/+/WPW++hHP1pZ75lnnhmz/Ktf/WrFOnj33XeP25+BgQG1adMmBajLLrtszPJjLXrBYFA99dRTY9b5yle+Mqq/69evV729vWPWu+WWWxSgTNNUXV1dY5Yfe137/f5x74+XX35ZJRIJBajm5mZVKpVGLe/u7lbxeFwB6m1ve9uY5cP87d/+bWVsdu3aNWrZsRY9QL3nPe9RUspx23n55Zcr633oQx8ad51henp6Kuvecsstk66r0Wg0Cxlt0dNoNCeN//zP/2TTpk1TvtLp9KjtbrnlFkzTBOB///d/x237pZdeqsQrvdqal81m+Y//+A8A/uZv/oZLL7103DaWLVvG3/7t3wKedSKfz094LH/3d383riXh4osvrpQkeOSRRybcvtrx+/3EYjGASeMWFyLveMc7KtalY3nd615Xib/s7e3lM5/5DKtWrRqz3u233155/2prp1KKf/qnfwLgtttu4+abbx63D8lksrLeI488UkkqMh5/8Rd/wZYtW8Z8fuuttxIKhSr9/bd/+zfq6uom7K/rumzbtm3C/QD88R//8bj3x/r16yv3Rmdn56j4OPDu7XQ6TW1tLf/93/+N3+8ft/1PfOITLFmyBCkl//M//zNhP5LJJP/+7/8+YRKfTCZTeR+NRic9pkgkUnmvM75qNJrFjBZ6Go1mwdHU1MQ111wDwPe+971R9dmGGRaAhmFwyy23jFr24IMPVsTjcGKGibj88ssBsG17Qpc6IcSYfRzLueeeC7DgC4QPT6CPnVSfDB588EGUUiilKkLseJjsGjjrrLMA7xy/9a1vHXedFStWEI/HgbHneOfOnezbt2/K/cDItQZMKsAmaicYDHLaaacBVBIBjcemTZsq76e6Jm+99dZJlw0Lr9/97nejlg0nIHrDG94wqfCyLIuLL74YmPyYr7/++sqDhvEoFouV9xOJymECgUDlfaFQmHRdjUajWchooafRaE4ad955Z2XCPtkrmUyO2fad73wn4GUEHC9mbDge6qqrrmLJkiWjlh0r2E477bQxmS6PfR1bZ66zs3Pc46ivrx/XcjLMcJzeyRZIx8tw/4dFzWLh9NNPn3BZIpEAoKGhoZKWf7L1Xn2Oj73WrrvuukmvtWMF0UTX2nT7O3xdj8ex99Nk12QgEBglCl9NfX19xcL54osvVj53XZfnnnsO8B64THbMQgjuvvtuYPJjHhbcExEMBivvy+XypOuWSqXK+2ELqEaj0SxGtNDTaDQLkptuuqkySXu1++Zjjz1WsVQMC8Jj6e7untU+J3LdDIfDk25nGN5XrZRyVvutBkqlUkUUDAvXxcJkk/3hczeVIBhez3XdUZ/P9bU2VV+m09/hdWBsf4+ltra24iI9EY2NjQD09/dXPuvv75+03YmY7JgnE9nAKGvfVO6YuVyu8n4qN0+NRqNZyFgnuwMajUYzG2KxGNdffz0/+MEPuPvuu/n3f/93fD4fMJKNMxAIjBsTNTwJFUKwfft2LGt6X4XDteRORXbs2FFxkV23bt1J7s3C4VjB84tf/IJly5ZNa7thAbUQOfaYP/jBD/Knf/qn09puMpfLqQTnsffmcPbNiThy5Ejl/XTPh0aj0SxEtNDTaDQLlne+85384Ac/oL+/n1/96ldcf/31OI7DD3/4QwB+7/d+r+LKdizDbpZKKaLRKGvXrj2h/V6I3HfffZX3l1122UnsycLiWJden883yhW42hm2zE0msoYtlsdaeY99n8vlTsgxR6NRli1bxpEjR3jllVcmXffY5WecccZ8d02j0WhOGtp1U6PRLFje8IY3VCaVw+6b9913X2XyOZ7bJsA555xTeX+sgNGMT7FY5Ctf+QrgWUFvvPHGk9yjhcNCvtZKpdKY2o/H0tvbW3GRPlbM+f1+Nm7cCMD9998/KzfO2TD8AGLXrl2Txvtt3bq18n6ijLsajUazGNBCT6PRLFh8Pl8lE+JPf/pTstlsxW0zkUjwe7/3e+Nud+2111bi6r74xS9OmbxhvhlOJHFskohq4s///M8r7nBvfvObtRVkBpx77rkVt8Kvf/3ro2LZFgKTlTz4n//5n4o773AW3GFuuOEGADo6Ovj2t789fx08hje/+c2V93fddde46+Tz+UqB9w0bNkya2Eaj0WgWOlroaTSaBc2w1S6fz/Pd7363Us/r5ptvHpVG/ViSySR/8id/AnhP///wD/8Q27Yn3EdPTw/f+MY35rbjx9DS0gJQScNfLfT29vKud72rYs1ramrii1/84knulZdJdThj48GDB092dybFMAz+5m/+BvBcId/+9rdPmukyk8nw7//+7yeqe1Py5S9/mccff3zM57t37+Yzn/kMAM3NzaNEFsCHP/zhSqKTP/uzP5uyXt8vfvELnn/++ePq60033cSaNWsA+Id/+Idx76ePfOQjlTqQH/nIR45rfxqNRlPt6Bg9jUZz0uju7h6Vln0iIpHIuIWqwas9tnz5cg4fPsxf/uVfVjLuTeS2OcynP/1ptm7dyhNPPMH//u//8tRTT3H77bezZcsWYrEYg4ODvPTSS/z2t7/l5z//OZs2beK2226b+UFOg0suuYQDBw5w77338tWvfpVLL720YuWLx+Pzlpgjl8uNGv9SqcTg4CB79uzhkUce4cc//nGlzlhrayv33HPPcSWv6Ozs5Fe/+tWoz4bPVzabHWOFueyyyxZF/OTtt9/Offfdx09+8hN+97vfccYZZ3DHHXdwySWXUFNTQyaTYffu3Tz44IPcc889BAKByoOIk0lDQwOhUIhrrrmG/+//+/94/etfj2maPPzww/zDP/xDRTB98YtfHJNIpampiW9961u89a1vJZ1Oc8UVV/Cud72LG264geXLl+O6Lm1tbTz55JPcfffd7N27l5/+9KdTllGYDJ/Px7/9279x/fXXk06nufTSS/n4xz/OBRdcwMDAAP/1X//Fj370I8C7tt797nfPfnA0Go1mIaA0Go3mBPLAAw8oYEavK6+8ctI2/+qv/mrU+q2trcp13Sn7kk6n1Vve8pZp9eHqq68es/2tt96qALVixYpJ93PnnXdW2hmPZ599VgUCgXH3e+utt055HMdy7Pjeeeed464zk7EPBoPqD//wD1Vvb++M+jFV36bz+uY3vzluO1deeWVlnQMHDsyqL9/85jen1cZ0z/GKFSsmPV/lclndcccdSggx5XGvWrVqzPZTXUPDDI/NVPfMZNfIscf8+OOPq9ra2nH7KYRQ//AP/zDpfu69994Jtz/2ZRiGuv/++0dte+DAgSmvhfH42te+pvx+/4T7uuCCC1RPT8+029NoNJqFinbd1Gg0C55XW+9uueWWUbXCJiIWi/GjH/2Ihx9+mPe///2sW7eOWCyGZVnU1tZy/vnn86EPfYhf/OIX85pIY/PmzWzbto1bbrmF5cuXT5pmfj6JRqO0trZyzjnncNttt/G1r32NtrY2vvGNb0xaEF4zNT6fjy9/+cvs2LGDP/3TP2XTpk0kEglM0ySRSLB582Zuu+027r77bl5++eWT3d0KF154Idu3b+eP//iPWb16NYFAgPr6em688Ua2bt3KRz/60Um3v/766zlw4ACf//znec1rXkNTUxM+n49QKMSqVat405vexD//8z9z8OBBrr766jnp8wc+8AGeeeYZPvCBD7B69WqCwSB1dXVcdtll/Od//iePPvoo9fX1c7IvjUajqWaEUkOR1BqNRqPRaDQajUajWRRoi55Go9FoNBqNRqPRLDK00NNoNBqNRqPRaDSaRYYWehqNRqPRaDQajUazyNBCT6PRaDQajUaj0WgWGVroaTQajUaj0Wg0Gs0iQxdMXwQUi0XK5fLJ7oZGo9FoNBqNZh7x+/0Eg8Ep11sIc8PpHotm9miht8ApFoskQjWUKZ7srmg0Go1Go9Fo5pHm5mYOHDgwqUAqFousWhGls9s9gT2bOdM5Fs3xoYXeAqdcLlOmyGW8EQvfye6OZhyEIahbkaTv0CBK6rKV1cxE5yqyOkDz1TH2f6sX5ZzEDi4AzFh03vchBNQui9N/JM1CrQTbdJUf5Sq6H7ZPyv7dTHbe93Giv/usluYxn4VbJPWbJYVuQfqAQakfQMx7XxYUAmpbo/S3Z+EE3E9OR+f872QRIgxBfFmY/3foO5TL5UnFUblcprPb5dAzK4nHqjNKK52RrDjv4JTHojk+tNBbJFj4sIQWetWIEAKf4ccSPpRYoLPSU4SJzpWlLPx+P36fH9fV53AyTOGf930IAT4zgCX8J2JeOi9EGwKkXnawxMkRHeIE/F6c6O8+yxh77ZW7YPB5Sc16SfIKKKchfdAge1SgHC34wLuf/FYAn1E+MQ9O9FxlVgzfTzMhHjOIx8x56pFmIaCFnkaj0UyBcrzZjzAFJ+SRt2ZxI8AMCFztcX9CyHcY5DsEwXpFfKWi7kxJ7Qbofsqg0FOd1g6NZi6QKCTyZHdjXKT+LT0h6G84jUajmQI5FOYgLG0B0Bw/sVXeE/ZSf3VOwBYngmKvQffTJkd+a1LqFzScKzH8erKp0WgWL9qip9FoNFOg3GGL3knuiGbBkzjDpHazRfagS3lAi4yTgVsUdD9rsPQql4bNkq4nDXTcnmYx4ipJtUYbuEo/6DoRaKGn0Wg0U1Bx3dQWvUVLoEEQavScXAy/IL3bwcnNXfvChIaLfERXmgzudOjfobP6HC8tr48TXRlg8IUC+bYytlJIe3r3qCwJep41aLpQUneWZOBlY9rbajQazUJBCz2NRqOZAjXkummYeiK4GPElBPXn+wjUGEhboSTETzPJt0vKKcngi+5xhWZaUUHTFT58UUHXw2Vyh/WT7LnAHvRuzOSmEMlNIcClnIZin6i83NLE92yh26B3B9SfLYktdyn0Cvp3GtgZfZ9rFgdejF51mvSqtV+LDS30NBqNZgpGkrGc5I5o5pz6Cyzip1lIR9HxQJlCh8TwQXKjRXKDBZikd7vI0szbNvwQXWlSc5aFLCnafl3GTunJzVzR+3iO9O4iiY0hkhtD2Fko9g8lXVnljbOd9YRfvluQ7xC82kUze9ig0CUItyhqN0pq1km6n9Y3ukajWRxooafRaDRTIF3turkYSaw3iZ9m0fu0TfaAiyx7nw//VVLR+YA9rsjzxQW+hKDUK3ELo5cZPqg7zyKy0kQIyB2W9D5pI09OybxFTbnfpefhLMpRJDaGSR8w6HteYAQUwVpFsM57xVYoUvsFg7sNZHn0feyWhFdfT4KdPznHodFMh8gqPxyY/vqyanNuUsU9W1xooafRaDRTMLq8gmbBY0DNJovkRpPBlxzSu1yED2JrTHxxQe6IS6DOwC1CsXfsZCS50bPSCcO7HsqDkvRul/Qez5Ww5Vo/VlQw8LxDdr+ryyicAPqeyhFeGabpApf2rSay5Fnw8h3e8vgaSe0ZkuhSl2KfIFCjEIKK+LYiXo291B6djFxTnVgRg8SGENx/snuiWUhooafRaDRTUInR09+YCxphebF3ifUWZhAGnncQhhc/F2o2ECa4JUhusHAKCiskiCwzyB4YEnvCs9Ql1lkMvOiQ3uMQajJInGFRd55Feq+LFRUEag06HyyTb9NPrE8UyoHup0yWvsYlukyRPjD6oUx6n1ckPXmaxB9XZA8LpCMw/AoBlDOCXJtASf0wRzNLDIifHiS+PohyFJ33Z3DzEuETKHv2LtvCgPgZQerOjyDL+jtFMzP0tEWj0WimwPB7kz95HD/WmpNLZKVB/fk+DBOyB10GX3Jx8opVvx8EoNAl6X6kjFuE2FrPYpc96JI96E2sfAlBw8U+AjWCnsdtMvtcQq0GjZf4gaGaeIrjmtBpjg8nLyj2CsJNivQ47m2yJOh/UcffnUoEmywiKwIEGiyKXTb9T0/tm2vFDOovipLaWaDQPuJvLSyILPdj+AT5dhsnI8GAcKuP8HI/0dUBfNGR6yvUbBE/I0RkmZ/c4TKZPUWyB0qoGSTcDS/10XhlDCtikNlTYrCtPKPjd5XCVdX5nVSt/VpsaKGn0Wg0UxBq8QFQ6ndPck80syG+zqR+i4/MAZf+Z+1RMXWHflSk8TI/gXpB7bmeEAw1Gxh+QXSlSaBekN7lElluYoUE7b8pU+rzJijHCv++Z7zZW6DOc/1zC3oSczLItgkazpHEV0nSB7Qb5kLFDAni64IEG31ggBDgZCXpvSWKHTbBZovwMu8hi5vzBFeo2Ud4qR9pK+yMS6HDpmZzGMMUlAccIssiyJLCyUuCzRamzyD1SoFip4OwwF9jEVsbIL4uiOEXhJf6OHrPIOUBF3+tSesbEvhinpBTrqL3iRzhpT4iywPYWZfcoTLpl4ssfXMSwxI0XBpFSeh9MkdsbYDma+IAZA+W6Hk0ixk0CDb5CDZalPsdBncWRz0oiqzy0/LaOPmjNm0/T+GkJYnlkRN/MjQLGi30NBqNZgri64MUu+1KOnfNwsEMQu1mi9QrTkWMHYtbhM77yyQ3WoSXGrglRWqXS6FTEl5ikNxgUXeeQb7NhagYVeS81KPo+F2Zhkt8tF7nx85IzJCg2CMp9WuhdzLIHhH4Y4LajZJySlDs166YCw0rarD0zUnMgEGxy0Y6XsmT0FI/iY0hMvtKxNYEALCzLlbIQAHlPofBFwsIQ+BLmCQ2hColcbofztJ0VYyGS6MAOHmJkor4+iDSVhg+bz2nIEnvKWKFTWJrAiy5IUnnfWlarovj5CQHf9qHU1DUnR+m4RKvrf7tOfqeHLEU9m/PU39BhEKnTc8jWdyCYmB7nkCjRWJDkNhpQVa9sw4A6SjKAw7x04NgCAa2e+34a0yaXxMnu79E530ZgEpM8EzQ5RU0WuhpNBrNJJgRg8hyPz2PZE92VzSzQFgCwxKTZrxUEgZecBh4YfTnded5P5H9z9nk2iRL3+AndppJeteI4C90Sg7fUyKyzPASuOQV2UP6gcCMESNudmZQoKSX9RQX3KIkd6hMeWA64yrof9nAn5Q0bPESs0xWS09TfcTXBzF8goPf7cfNj45Ji50eoPa8MG5R0v9MnsEXCiMVM8bRDf46k2C9j2KXzcHv9lcyJw9bzkKtPgL1Fm5BYmdcit0OSFj65iQAVshg6Q1JlFR0/TKDnfb60/tYjvTLRUJL/GR2jc62NLA9z8BzeYaTSppBQaDRR7HTpvvBLAPb8/jiJm5ZUe51qDk3TLDBR+6Ql97X8AtaXh/HTrt0PZCZgxHVnMpooafRaDSTEF3lR0kodNg0XRVDoSj1OOTbtIVvIeBkFQPPO14tO0eRemn65yz1ikPjJX7srALpJWqJLB8t9ACQkDskyR3SiRJmSniZn+hqP5GVAayQgZNzsbMSYXgWDGF42QbrL4pSHnDIHiiR3V+mPDjaOjsq7kkJup8xWHKFS8tlLt1Pm5RTWuwtFAyfwPAJEhuC9D+THyXgMrtLZHa/qt7JJIahcp9LuW/kfn11DG2h3R4VhzfM0XsGsSIGRkCgHIVbVMjy6G3LAy7lgcKYbYGKyPMlTZbd5Fknj+XQ9/spD7jE1wWp2xKh98mc108BzdfGMQMGh382MKN4vvG7oXCr1HKmLXonBi30NBqNZhL8CQs75ZI4M1Rx4YyfFkSYAifnUmi3yewrkTtUnnTCoTl5DLzggAG1Z1vkDkmc3PROVPaAJLrSpekyLxZIKTVW5GlmjgGxNQFqzgkTqLUoDzqkXymSO1DyLCqvQpgQXuInstpPYkOI2nPHximVeh3SRyXZIwKUQJYEHY+aNJ7n0nq5S/9LBun9Ywuma6qPgR0FzKBB3ZYIbkGS2nly6pM4OQm542sjtjaAGTDofiRD7TlhrIiJk/esh+BZFAFqzgohTC/OMNTio/0XKS/Zi0ZznGihp9FoNJOghtSbMKDQZXP0J4MIa+gHeYmf8DIfra9PYGc9N5tCm66KXY0M7nRIbjAJtRhk9k5frHU+aBOodRAmlAdVpZi6ZuYIE+LrgtRsDuOLm2QPlujemqHYNbnZQrmQO1wmd7hMt5El1OzDDI1YSAwLIisCNGyWJE+HQpcg3yko9AjaHzGp3SCpO1MSqhf0PDe2YLqmunDzkq4HMiipaLgkirTVWCveAiG1s0B0dYDGy2Io1/stOfjtPtSQhut6IMPAjjyJDSGSm0LIkqLtZ6lxrYwazWzQQk+j0WgmQZYURkCA9MQeeG5i+aM2+aM2fU94cSD1F0VZ8sYEHfelyR3UaqAqUV72vpluM5xlUzM7hCVInBGk5qwQZsggu69E+69SlGeTxVYy7iQ4vatEaF0zidWSUIMivkpRTsPgHoP+nQaFHkXDOZIlV7p0PWVSHtRi7+SgMEOCyPIAjVdFKfe72BmX/OEyqZdGW+66H/bioptfE0eYGdIvnxzL3vHgFhSHfzhAZIWf6KoAxW67IvKGKfe79DySnZc4cJ2MRaOFnkaj0UyCLCvMgIERFGNiNIYp97m0/zLFkjcmqN0S1kKvCqnfYiFMQaFTu0OdKKyoQXxDkNgVNRg+QXp3kYHnCtip+XF/tTOC3h0moAjWQt3ZLo3nSXotg8whg7atgqYLXBrOcWl7QE9/TiSGX1F7hiSyRGFY9SilEEIQqLMI1FkEGywye0qja5VK6N6axfAbNF0ZI3eoPCY5y4JAQe5gWf8uaE4K+ptOo9FoJsEtSgyfILzUT/qVSZ4oS0i9XKTlujhWzNDxFVVEcqNJbI33c9f8Gj9Hf1ZC6VC7ecEMCaJrAsTWBgk1+4iGgxx9IsXAcwUv5umEIACF4fMS6OQ6PeudWxQM7jFoOl8SWSLJtXvxfJr5xRdVNF3oYliQ2mtQODhAqcfByUl8cYPwUj+NV8RY9e5auh7IIF3PxVc5CjvlVkop+GLGwhR6JxFdMF2jhZ5Go9FMQqHdRinPqjfV71Kp14s18sVMLfSqCDurKPZKgvUGKDXleXw1/qQgsd6kNFB9yVh8cUH8NJNCp6TQJY87S99sCS/3k9wUIrzEBwryR8t03Z8mhaR3b94rlXCCiK30YvKK/dDzjIk8przCcPxe43mS8unQ/bSJndFib76ItErqzpK4RWh/zMQpCJz2EcuWnZYUh743Db9By+sSALglWclUObAjT/+zeWRRCwONZqZooafRaDST4GQlhQ6bcKuf2s1hBp7NI0vjTziU430eXR2g0GlXUmxrTi65Q5JAjcSfEHQ+OLPz4osLWl/nx7AEMSCz160qa6AVFSTWWyTWe/8XuiWFDpdCx1DR9jmaGw+nmn91XF1kuZ/a8706YIUum+6Hs2T3l5AlhTAEgZUndnIebpHUnyVJ7Rf07zTGWOyUFHQ9aeJPKhrOcak/y6XjUT0VmmusiKJmvSS6RJFtE/TtMJDO+IK61O2w52s9CFNgWOCvtSh22YSafUgXih06MclskVTvz1C19muxob/dNBqNZgq6H8yw8g/qAM+laPD58WsnOTlJz7Ys9RdECDRYdPw6rV2NqgRfXFDsltjpmQmP6EoT5UD7AyVarwvgT4qqSs5SaJdk9rnE1pgAhBoNQo0GnO0tV9ITXG5RYWe9emBuUeGkwzh5hVuQOHlJsdMeJQrNsEGg1iTQ6CO2JkCgzpsupHYWKkkyQq0+Wt+YIN9W5ui9g5R6HIJNFslNIfw1llcE3fXTe+jEjIUZVNSf7blk9r9oMFkphfKgILXXoH6zxPArnYlzLjC8JDjRpRJ/3HOb7X7aINduTL2t9K5V16aSuTh/VAs8jeZ40UJPo9FopsBOS/JHy4SX+omuDkwo9AAGdxQodtg0vzbO0hsTHP3JIK52OTrpSAes8Mwn88L0XqEWT0jVnGXR/ahdVWUWeh63GXzJIdRiEKw3CDYYWBHvWIXh/TWDAjPovS/2SUJNQcyQgWF5n5VTLk7OxbAEvriJGfQm57IsyR0u4xYl4SV+hG9kDOsu8OrZuUVFw6XRihh0C5JSn1eSova0MAUVpev+zPwOggENmyVKQu+OyUXeMPkuAQqazncZ2GVQ7J2GINFMSN2ZkthyRa5dkN4vyLUJlNQC+mTiVnHB9Grt12JDCz2NRqOZBoV2m/BSv1fDKzx5UoBit8PR/zfIsptqaHpNjPZfpE9gTzXjYfio1LGaCYM7HaywIH66J/TCrSbL32xQTikGXnAotFeHxdZOK+y0W4khNALgiwqE5bnDGX4INhrE11qUeiXdDwx46/kE/lqT+PogwhQoV5E7VMZfayEMT7QBxNb6GXyxQO/jIyngex/PUXteGDMg8CXNyufFXoeeR7M4aYl1VYj46UEGXyhQ6pm/AMK68yOEGhUd2wykPT1xIcuCricMatZLmi+WdDwiKA1oYTIbAjWK+EpF7w4vw6lGo6kOtNDTaDSaaZDvsKkbeh9d5Se1c/KaTk5G0vdkjqarYphBccpY9UQsOv/7ECDCYUTMnUYMmhcrFFmq6NtpIGKBGe1LAT3PAy8okqdLatYpymlBsF4QWhKgmDGnauKkoIByGTjG8pjrhXJWUr/ZojyYrBSOt/PQt314LUHtOQFiayycgsIKjQifzEEDIxSr/G/noOshTwjWnuMSP92k/1mHxBkWK2+ppdQvsY/6IGNTc26cnsfmzxVP2t55iLQoir1q2tk0Cz0GhR7Byje5BGqVFnozQhFqUIRbFJElitIgZA7p8dNoqgkt9DQajWYalLptpKswTEHtuWGv5tMEdfUAgi0+kptCOAWJO8l6mpkhTEWkWRFZInGC0vPQEwphgnIE2aMCJ+9NNsPNktqNEl8E+l8ySO87jkmoEhT7vbT9hR6DYJ0k126QPE2ilJc2fiGQOWxQs0Fi+Cdep9TribdCp8TJKUKNBuWUxM5MfB0PvuQQWWESXW1y9OdlIstNGi/24WYNBne71J5j0b8d3HmqeZ3e46J8AerPlgghh+rpTRcvE2dijaTYIyintViZCmEqGs6VRFoUds4TeKk903OZ1Zw4XOW9qpFq7ddiQws9jUajmQbKhVKXDabAX2NSc06YvidyY9YLNlvUnB0muipAscum/ecpnV5slhjWkICT3ssfh7qzXAIJiIYVKunFZDG03Awo4qvh6P0mhglNF3gD37nNoNAzeyEmTEW4WVG7UVIagNR+QWwFLLnKs4hJe+EIPV9UYfrByU48y8odkXQ9WqbxYh/Zg5L235antJzKEnQ/XKb1tX7ip5sUe7yxt7OS7EGXuvN8BBsNcofn72bIHjFAeLF66QNqRoKt7wWDpgtdWq9wSR8Q5DsMigPoOnvjYFiKpotc/HHoetIg3ynQAk+jqU600NNoNJppku+wSW4KIUsKKzQysQ/UWSQ2BQm1+PEnTMoDDp33p8nsLp3E3i5sllzt4I+N/dwpQPtWk1jcpO+oNaomnhlQLL3GpW6TpOdZAzvvuXkej8gLJL1Jren3knf0PGugHMHgboP6sz3R0vZgFblvCoUVBKcwMvEO1CoirRK3JIivkpQzUOiYXHDlDkq6lU3jJT7sjMngi1PXlCj1KTL7XWo2Whz6SQm3pEhusOh6eahrJ2CYskcEdWdCuHlmQs8tCdofMak5XRJdrkiscXHy0P+yQa5NC5ljqd0o8cWg41GTckqPSzWjyytotNDTaDSaaVLssDHPi2D6oWtXhthpAeLrg4SX+LEzLtkDJXqO2OSPVFFKxgVKrs3Av370VMApQK5DEKxTBOMSX0pRTsPwJNwteUKs8VxJ+HUuhg9Sx+OuCSTWStwStD9s4uRG2ooukxT7oPNxE+VWz2Q33KxoOt8bt8wRgRWCUL3CKXiWSScHnU+ayGmEy+UOSQaTLjWbLLKHJM4krpvCgkCtINTsWfOUAx2/LbP+bYKazRZKqkrWz3lFedke46u8Wnpqgtpt4yIFA6+YDLyi8CchuVbSeJ4kVSPof7GKxPxJJFgnia3wkq5okafRVD9a6Gk0Gs00KXSOzI6X3pisfNZxX5rs/tKcFafWwOBug8xhT9RZIbDCCisMoUaFFVIkaxS+5S7ZNkHPMyOT8HyHQdtWQaRF4RQ9C8/xYAY8y9CxIg/ACkHmsKgqkQdQ6BrpT6RFUejxxK83DlP31YoJ6s+38CcNnKzCDHolGiaKRw21GNSdZ+FPeFZTJ6fofcbLrmmnFOldLvE1FnZWEl1pknp5/qvND+42iCxxqT9L0rN9NnFjgvIgdD9tUrvBJbpM0f+imkU7i4/EaYrigE66slCQCNwqvW5llfZrsaGFnkaj0UwT5UCx2ybY6KP74QzZg2XcnHZAmS/cohhymxuNEApno4F/tXdOXo2dFQzumZtJRHFAEF2qwFBQqQnmiR5RhWF5SgqO/NZk2bUuPc8a5Dum18nwUoPasz2BB1AakAQbRrZtvNhH59bRRdX9SUHTlT6K3ZLBF8uUU4rywGhBmD3iEqpRXn2+qMBfI8asM9c4BUHv855lt9Cjjkvs5zoNEmtd/EkoD85ZFxcmQhGsVQzu1klXNJqFQhX+TGk0Gk31km+3cXIuqZ1FLfJOGoLoComdhb6d8/szlms3MHzQfJGXft8XVdRvllghKPRU52Q3WOcJqWLv9PsXbjUqIg8gUGNgpyV9z9r0Pm0TXmISWzvafbH+Qh92WtH1oE32oBxfwCnI7HEw/CAdRWz1iXGBtIfi8+zccZwjofDHvGMyLG2u98fAsKDYV53XvUajGYsWehqNRjMD7EEXK2LqB9onFUUgAb4orHyjS3TZ/Anu8qCgc5uJPwatl7ksfY1LuEnR+7xBsXemP6EKM6gQxvRFgxn0SknUneWSOE0yvn+wIlgnia/21qvdKCn0imkXDgfofcrh6C9LtP2mxJGflTj0kyId99sUuyVu3ttnzZkjTkC+uCBYb5B6yfEyn05CsVsiDEGxWxJdZZ6QmYcZ8Prs5GffRnSpqiTcMXxgRU5tsTd8/PbYZMOaKkWq6n7Nhu3bt/PZz36WN7zhDSxbtoxAIEA0GuX000/nfe97H4888siUbdx1110IIab1uuuuu2bX0SpBu25qNBrNDBCWZ5nQ8XgnD8M/2m1yvl0oS/2CI/eZWFGwQopi7+xi8+JrFHUbx6qiXKfALYJbAmkLTL/CikCw1otPHEERXQLF/pFab1bQK1bti4B0PGGTPSKG3OtmgIJyv3dR155jkdwwdnrg5NWY95HlJtmD4yg9YyTLprC8vuaOSsKtJpElBrkj82sND9SAa3tjOlty7YL4Kggkoel8iZOHnh0GhgH5bnHKlV4wA14ZE6lzTWlOEldeeSUPPfTQmM/L5TJ79uxhz5493HXXXbz73e/m61//On7/JAVDTxFmJfSEmN6X25VXXsmDDz445vO77rqL973vfdNq45vf/Cbvfe97Z9C70axcuZJDhw5Nud6KFSs4ePDgpOt8+9vf5vOf/zyvvPIKDQ0N/P7v/z6f+MQniMfj467/3ve+l29961uV/3/5y1/y+te/ftJ9DI/trbfeuuCfImg0ixFf3MQtaJfNyfDFFIm1ktKA8LI7vkoUOwVBaQBmYhYVhsKKgi+iiC7zGux/0SBzZGaWq9mipMBOj7gEzoZij8C1wfSN/jzSrCilvM8Nv0KWvQyj2TaBLAtqN3jXW7EfgrXgjytAoSS4ZSoJV0r9MBem5nDr+CLRiggC9YJSr8IXEyilxs3eGWw0aL7ah2EJwqaPbNFHqV+SPeCVXgjUz7/QM4PewxjDN3tholxB+0MWwlL449ByqUvLxV6/s0cFfS8YJ+TaqxbckvdQxZ+Acupk90YzHdwqTsYym361tbUB0Nraytve9jYuv/xyli9fjuu6bNu2jS984Qu0tbXxf//v/8VxHL7zne9M2eavf/1rWltbJ1y+dOnSGfezmtAWvWny6U9/mjvvvLPy/9GjR/nCF77A/fffz8MPP0wkEpmyjU984hNTCj2NRlPdRFYEyB3Wj7QnI3maJLpUEVs2sdmzNOhlRyz0jLWOCVMRalAEkgpfzBOOvohXE+9YyukTI/LminJacPiXx/7sKiKtioZzJShI7Tco9HqC8ljBVuwT1J3lEqw9ZksFB39mMh8+xG2/KhNqMRAWKBukrXDyXkKWlmv9dG21qb/QR7lf0fvkaKVnBKDuXAtjyIpnRQzclKL9N2V8cYEZAjs93+ZwhRkA0w8rXu9y4N7jGyflCEr9cPjXJoYFgRrPpTNY79L5uHlc4n8hke8UlFLQfIlLaigr7kK6/zQLn/Xr1/PZz36Wm2++GdMcHe970UUX8e53v5tLL72U3bt3893vfpfbb7+dK664YtI2Tz/9dFauXDmPvT65HJfQu+OOO/jjP/7jCZdPR/ycKCV944038pnPfGbC5ZOZd1966SU+9alPEQwG+djHPsa1117L4cOH+cQnPsGzzz7L3/3d3/G5z31uyj489dRT3Hvvvdxwww2zOgaNRnNyCTZZ+BMmPY/oQuiTkdpvoKTEF1UIc0igCS+Zg3S8Wni+sKLpAolSUE5DaUCgJPgiEKxXGKZn1bIzgkKXIJ0RlLMCJ+e5NJbqjIWdFEJ4bpmFPkHXkwbxlYraDRJheFa6Yq+gf6cxZP0UtG81CQxZ85TjFW+fr0BR5UL+6FiLW8cDZVb9fpCW1/hxi4r2h8qoY6olxNeZ1J5lYfhH98sXNYiuMkmsNykPKjIH5rPEgqJ2oyTSMiImY8sVmcPHP1ayLDxra15Q7BW0XOqSPE2OKu+xqFGCzsdMajdIatZLkuug/yWDzEGd7qFaWWwWvZ/97GeTLq+vr+cLX/gC119/PQB33333lEJvsXNcQq+xsZEzzzzzuDpwopR0MpmcdV9/+MMfIqXkn/7pn/jTP/1TwHtycOmll3L66afzgx/8YEqhV19fT29vL5/4xCe4/vrrp+3+qtFoqofa88KU+h3yR6ZRbfoUpjwo6H1u7OTXDHliJrZMUeyD9kdM/FFFoNZL2w5e0fOBlw3yXWNr1w2T7xSErIX9HVq7UZJYPb5ly/RDpFURaXU58DNzqKyDZ1Uq9Z+8446uHDmnnVvLuMckOomuNqnfMuKT6hYVuSMu8fO8/xsu9KGk4ujPyzCPXpuJtYrEGm9ce5838McVtWdKCn0TX0+zwS0JyhmBFTq1gnWlLejdYdL/iqJ2vaT+LEmxV2BnF/b9qFk8XHXVVZX3+/btO3kdqRK06+Y0GPYJvvrqq0d9vmTJEtavX8+LL744ZRt/+Zd/yV/+5V+yY8cOfvzjH3PzzTfPS181Gs38EGr1EVkeoPO36ZPdlQWLW/CKm2cOShrPlyRPl/Q8Y5A5fOpZBPJdgugSz8VwIjKHxbyKoplS7pcM7HRIveSMiXuzM5Jin5ehs9DlxeMpGwK2TSngEGwwKHbLeXPbjK0xqT3HqYxn9oggc1AgTEGo3qXhXJeOR8w5S6ASafWshr3Pn3rXLoAsCQb3GMRWuFghpYVelSKVQFZp0qD56le5PPLl9Gr3zlMRLfSmQWNjIwBbt24dZRXs7Oxk165dNDc3T9nGhz70Ib7whS/Q1dXFnXfeyU033YRhnJo/EBrNQkNY0HRVjHxbmcxe7bZ5vBT7DHqegaYLJCve4I5Kzz+cQbP/ZYPUnrn/jhSWIrbCS9RR6BHYGZipC6ThVwQS3uTWKcxuslLsMTj866HjE14Moi/qxSSGmyTBWs+qVxpQZA7NvI/zQalfUeofp0I9UOpRtP9qtPoTwiu83nfIQc2BvjP8EFlq4q/zXChzh1zKg4roKoOGi0asid3PGOTaPCuocqFnu0nLZS7J0yWDu45n4ufFjsZWKiItqiImT1XckueKHVupKA4olHPqjoWmeti6dWvl/RlnnDHl+u9973t5+eWXGRgYIB6Ps3btWq699lruuOMOlixZMp9dPSFooTcN3vzmN/P3f//3fOQjHyGdTnP11Vdz9OhR7rzzTnK5HLfffvuUbYTDYT760Y/y53/+5+zcuZPvf//7vOMd7zgBvddoNMdL/YVRzJBB288GT3ZXFg2FHoOjDwgCNQrDB6EGNSquKt95/JNGw6eILvcm576IwrA80W4cM9cvpyFz2CB71MtwOR3qzvSSzUjXSyiT2nucqfaVwM7iWUU6IbXHwAwpkqdJ6s+WhBoFvc+dWhkehxEGRFeZRJYbhJoNEGCnFGZQUHOmhVtSmAGBk1dYYUHbVpNyavQ4lQYFmcOCmnWKXLvCzsxwHIUivkoRXyXxRaCUgp5nDbJH5i9OciGgXEHPdoOGcyVLX+PS+6xBoUc/wNbMjHR6tJdMIBAgEJjE1WESpJSjQqne9ra3TbnNscKwr6+Pvr4+nnjiCb7whS/wr//6r/zRH/3RrPpSLRyX0PvhD3/Id7/7XQ4fPoxlWTQ3N3PJJZfw3ve+d4yb40ScKCX90EMPcdZZZ7Fv3z6UUjQ1NXHBBRfwjne8gxtvvHHSmLktW7bw4Q9/mC9+8Yv8zd/8zahlZ555Jp/4xCem1Yfbb7+dz3/+87S1tfGpT32Kt7/97dqsrNFUOcEWH8lNIXoezWKnx/rRCZ8gsT5IoNHLNOiWJLn9ZZ2Zcxo4eYF0oH6z9EoMDEBqn0GuY3bCSZgKf8JLWBKsVYRbFAIo9Apy7QJ/HMJNnpg88jsTX9gTgrUbJLVneHXT+l4ykKWJ9234FL6o10b6gKBmnSSQEHRvN4Zi6eYGtyDoe96k0C2p3yxpOE/S9bjBqSQswksM6s6zsCJesfXepx3yR1zcIiC85f6kwM4o7LRi6RsD+KJqlNDzRRWhRkV0qcIpMmVx91djRRSNW1z8Me/66NluzLg0yGIm32lw9H5B/dmSpgslPdsh167FXrWwEJKxLFu2bNTnd955J5/85Cdn1ea//Mu/8OSTTwJw0003sWXLlgnXXb16NW95y1u4+OKLK33Yv38/P/rRj7j77rspFovcfvvtCCH44Ac/OKv+VANCqZk7VEwnkcib3/xm7rrrLhKJxJhl06mjFwwG50RJT6eO3qWXXsr3v//9KYXlf/7nf/Lv//7v7Nmzh7q6Ot72trfx6U9/mmQyOe76x9bRGx7mL3/5y3zoQx8C4Fvf+hbvec97Rm0z0zp66XSaRCLBVdyIJXxTrq858QhDUL+yht6DAyh5agXuLzTGnCsBK26pwS0ojv6/wTH14Ay/YNlNSXxxk2K3Q6jFuwednMuB/9t/4g+gCrBaW6ZeSShqzpAEEuBPKpDQu8MYsuJN/fsiBNQtjZIrpPHXeMIukFD4ot5yJT1LXa59KAX8sKVOKGrWScppMWoyavg9IZA8TaIkdG4zJ4w5ii6XNGz21MLBn5uE6hUNWyTFPkH3U8asCqlPRbjJm0S3P2RSGpyb9lUmOyftTIYQULciQd+h1IxcN30xQd0Wi3CrSb7dpe9pBzszdQPN14TwxxUd20x8EUVynSRY45WiyB7xspjO1CraeL6LP6HofmqspXCx4N1PMfqOZmbvYisUDZslkaWKnu0GubaJxZ7T3jHLnZzaCEOQWB7h7gN3kUqlJqzhDCNzw60vLiEaq07hnc1IrjyzjSNHjow6ltla9LZu3cq1116L4zg0Njby/PPP09TUNO66w+M3kZ752c9+xlve8hZs2yYcDrNv375phWlVI7Oy6IXDYW644QauueYa1q9fTzQapaenh61bt/KVr3yFvr4+7rnnHm688Ubuu+8+fL6xAuREKWm/388NN9zAa1/7Ws4880wSiQSDg4Ns27aN//zP/+TIkSM8+uijXHfddWzbtm1cYTrMHXfcwR133DHrvgC8//3v5x//8R85fPgwn/70p/mDP/gDLEt70Go01YjhE/gTFunOIpFlfpycxM65yKI3Gwot8eGvseh9MsfA9jzxdUGaro5hZyQYVFUijarBUMSWK5JrFYUegenzauol10nqzwanCD3PTCy0zKAivlzRtEmStyWu7RVvzncJynsE5ZSgnGF8i6ASDLwy1otClgXp/YJcm6D5YpclV7mV4tC5Di8L6LBAyLcL2DzUnAv5LoOuJ7x4w/rNc5tq3wx41kN/0rvehKVY7JakxHqT2s0WTkHRubU8bpmHieh7waD5Ypdl13jlG4p90PXk+LUap4PhU4SbFP07jUUr8uYMJeh51gAhqTtTku8QqDm0cGtmh4uBS3UKveEiK/F4fFLROh127tzJTTfdhOM4BINBfvjDH04o8oBJ5/oAb3rTm7jzzjv5+Mc/Tj6f5xvf+AYf+9jHjquPJ4tZWfQGBwcntGJ1dXXxhje8gWeffRaAL37xi/zZn/3ZqHVOpJKerK+ZTIa3vvWt/OY3vwHgz//8z/nnf/7nWe1nPMaz6AH813/9V0W8/td//Rfvf//7K8u0RW/xoS16C4fxzlXteWFqzglXCkADFHts0q8Uye4rsfq99QD0PZ2j/2lP7DVeESXfbtN5XxpZPrXOudXagmEp4msk0hGU+gWmXxFdpvAnFFZ4pPC5nQUz6NWMcwpeyvqa9ZJ8p6D/JQM7CyAwAp4rZmy554anXPCV4xx9Nkexz1tnrhCmIrJEVax2wxy416J+s0uowat/5xTgyH0jD+mSp0sSp0na7jdnnaDlWEINnhVvODlN5rAXpzdXx1qNFr3oSoPGS/2kXnbo3+GMqtE3rf3Fop44a/YKvHt1Fmc/XsJULH+dS2qfOM4kLtXNnFj0hogukzScIzn0S3NC66m26M2O2Vj07n9xWVVb9F5z5pEpj2UqDhw4wGWXXUZ7ezumafKjH/2IG2+88bj7193dTXNzM0oprrvuuopWWGjMypQ0kXACaGpq4u677+aMM86gXC7zpS99aYzQO5FKerK+xmIxfvCDH7BmzRr6+vr42te+xuc+97lJi6fPBe973/v43Oc+x/79+/nMZz7De97znuPepzCErs1XpXjnxvurqW7GO1cDzxYYeK6AGTSwIgb+hEF4VYCGS6M0XBKtrFe3JYKbl6R3lXCykubrYiy9KUnHL9M42VPDtGf4BOFGSXSlItKsONbXtZSGfIfAn4RQvfe5lND98GjrnVuE2jO95A52FoQJVshbVhyE/ue9GL6aZpPygGDOv/akIHdEkDxd4gvD4C6vpp8QYIVH+uIUGLXvXJsgtgKWvMal7znjuOOUws2qIvKG/685XTG4B+ZE7J2AryMxpLOmc46CDYKGi3xk9jv0P+uMbD/D/SlHkDsqZrX9GKQge1SQWKsoD0oK3dU5YT5eZnKeJkYRafWK1Rf6vPMwUXv6t3B2DP8+zQRVxeUV1Bz0q729nWuvvZb29naEEPz3f//3nIg88DLu19fX09PTUymzthCZF5/B1atXc9111/Hzn/+cvXv30t7eTmtr64za+MAHPsDf/u3fopRi69at82YyTSQS3HLLLfzHf/wHuVyOp59+mksuuWRe9jWMZVl84hOf4L3vfS+HDh3iG9/4xnG7hNatSOIz5legamaHMATJ1hgIoS16Vc60zpUL7l7IdSripwWJrglWFsXfFKd4oU3Po1kK2wUNlyWoeW+S/qdzFDvHT0u/WAi1+Gi4NDrqM6fgCSPpAP3eTLJh9YjoHewUxGsEJI/5wVeQ36nw1yiCNQpVgnKvwM4I3JLADwSaIdEYRsCcpO0fjWc5jDV6QsuJCsy8gUgorIIiElSYfrAKULd0tJWntFfRcK4kcj50H6cLp89RWAVJOeNZO4M1imXnQ+1SSO05fuuSys+/hUoISDRHpzxPZhAaL/FjZySZToe6FbPcXzg8uw0nazOlCLRK1l4D/S8Lir2LT+wJcXz3kxlQJNZKQvVQ6IFCm0Hd0okn8W5Al6iZDcIQhBv9sP9k96Q66O3t5brrrmP/fm9AvvSlL43Je3G8zMLpseqYt+CwDRs28POf/xzwCo7PVOidSCW9YcOGyvsTpdrf9a538dnPfpbdu3fz93//97zvfe8jGAxOveEE9B0a1K6bVYowBChF76FBLfSqnJmeq84XwQwZJM8KkjgjiOE3IADlQIHUi0Vy5QxNV8UJngWyziX1fJFir4NbWHwWvrDrJzCUldQtg53zygXYKYG/RhFuVARqof0lgRlShOrAaIZgFAb3GENWmGMmh4cn3pcQnq2wfw5czUa1a3lCTdUq2l8WCBPKg4JAiyJU75VnyBWBIqTaBbm0gVIQSCoCdYpgoyJvQ3q/oP/oHAipV0b/G1spqdskyeZMSgPH9zT8RLluKqB/CtdNf60gUgrQ83SZ7MHZ3xsiNkNfz2nSe0RRf46XaCR76PjHvtqY7f1k+BXJ0yXBZYqCA233G+Q7phbCTsfA7Dt7CiMMQcKd+4cZC5FUKsXrXvc6XnrpJQA+97nPVRIdzhXd3d309fUBzFjDVBPzJvTmQgWfKCV9MhS7aZrceeedvPOd76StrY2vfvWrfPjDH551e0oqlNAiolpRaugcaaFX9cz0XDk5l95tOfqfyZM4M0So2Uex2yaxKUjDxVGkqzBMgRUxaHmDF4fgliSyrLxU70ohywo77VLotEnvKqHshXed5A6V2POVHqzWZsbzCzT8ihWvd7FzDC33jtEXhYZzJMnTIbXXIHNomnFVauhczeFQ1Z4hCTcpBnZ5mTrrNkloVRR6vbp+0aUjO0usUSTWjBYWg3sF2SPGzOu0TZP0AUF0GdRscOl45Ph+vk/Yz940zlOpT5Fvd0lssMgcLI/JbjuTfc0LQ3UOhYCaM1w6Hl2ECdRmeD+ZQUXLpS6Gz3uwkdo3/Yym+ndw9sz0vl0I5RVmSj6f5/d+7/fYvn07AB/72Mf4q7/6q7nsGgBf+9rXKvrgyiuvnPP2TxTz9m01rLJhdkr4RCrp4+3rbLnlllv47Gc/y86dO/nc5z7HBz7wgRO2b41GM7fIsmJge57hZ9XJTSGKvTa9j+VYekMS6SicvCR7oISTdRGm8CyIBpgBgS9h0nBxlNrzIhz9ycC4NfsWBiM/3sF6SXSZwhdW+GKepS97xEDaIAxJpHVk1uKLQP3ZEukY5NpOzsQkc9Ag0upSs86LL8wcFvQ+79XHS54uOVZJpA8I/AmFP+aVczAD3jE4+fnsoWBwj0HT+RJfbBaFv6uYgecdlrw+QN15FgPPO8iTVIbSn1DUbXJxcoL+lw3cosDwq6FrAsrpahlzhRkAYYFhDv21FMIEwwKE5zrt5AXKpVJX0hdWSFfgFqE0IMh1CmRxZsdkBhTNl7gIAe1b5yb5kEYzHcrlMjfddBOPPvooAB/+8If5zGc+M6M2Dh48yMDAAOecc86E6/zsZz/j7/7u7wCv3NtUJeGqmXkRevv37+e+++4DvHi92RQ+P1FKOpVK8f3vfx/wykZMVlxxrjEMg09+8pO87W1vo7Ozky9/+csnbN8ajWZ+yR4s03JtHGFC98MZgg0+rBUm4SU+Dn1vfLc5K2qw5PokTVfFOHpv6gT3eO6p3SAJJCF7VFDoEWSPiMqksPtpg1CTItSgiC1TGEOe5/FVckjonfjJYzktOPo7EzPklU5wKtZHSO0TSMfw3DfbxZjyD+FmScO5kpbLXLqeNHHnafLr5L12a9ZLup9aPJkgS32K/udskhstYqtN0ntcSr0S6YB0FMqGckrNn9UOsMKKpgtdL6trRLFsqYu0wfB5lpSBlw3SB062qPFqUMZXea7EM6E04F3jwvSONdKiqD3Ty07qK0lEh0I5kx+fFfLGyDCh41Et8qodVxm4qjrjSt1Z3MvveMc7KtkvX/Oa13Dbbbfx4osvTrh+JBJh1apVoz47ePAgV199NRdffDHXX389mzdvprGxEaUU+/fv5+677+buu++uaJDPf/7zs9Ix1cKMhd5Pf/pT3vCGN0xY+62rq4u3vvWt2LYNMMZndi6V9FVXXcXWrVsBL73qypUrRy3/1a9+xZVXXkkoFBp3+2w2y9vf/vaK5fC2226bVZHG4+Hmm2/m7LPPZseOHfzjP/7jCd23RqOZP7J7S+TPKNN4RYxDPxggvavIyhV1kyZlcbKSvidztFwXx4oZOJmFatXzGNxt0HSBpNAryB5+9WRDUOgSFLogtU+x/DrPDTJYC00XSboePzkiRtoCaY/9XLlerb2JyHcatD8saLrAZckVntib61guw68w/QqlPNe5xcbgTpf0XpfkBovYGpPkhtHzDLekSO9xSb3iIOchn0f92RKUl2k1UOuVabAzAl/UK6lRu0FSuwGK/ZDaZ1AaFLgFmI+HEsLwSon4YmAFFW5J4JYh0qII1ilSewXFAYFyBNIB5YB0vcRHw2UprJAn6IThCTz3VZY7YXqZMqPLJbVnKIxGl0KPoDToJQA69j4QpheLGluhkA50bjMrDx00mhPFj3/848r7+++/n7POOmvS9a+88koefPDBcZdt27aNbdu2TbhtOBzmX/7lX46rlnc1MGOh96d/+qfYts3NN9/MxRdfzMqVKwmFQvT29vLggw/y1a9+ld7eXgAuu+yycYXeiVLSn/vc53jnO9/JW97yFi677DLWrFlDNBollUrx2GOP8ZWvfIXDh72I/3Xr1vHJT35yVvs5HoQQfOpTn+LNb35zZdw0Gs3ioOvBDCveXkvj5VH6nshhhQxKA5Nn38wf8XzWQs0+MpmFnZ2u0ONNQn3hyUVJfNVoQVvsXZgTSDsjaH/YpOl8l5ZLXHqfN8gemf3TdDPgjZvh9yx44WaFEF5R+YGXq/Mp/fEiS9D/rFdiwfAPuyYKjCBElpkk1psk1pkMvOCQesWdUwufUp44ajhX4hS9mLxQgydsUvsExX6BYUFsuaTpfO+alS4gPfddtwSlQUFpwHuVM8AMU8j7457wii71sru6Za/kiOH3XDXLaeh83JhW9k8nz6RiTLmelT131EB1G5QNg0CdInmarFjYj8Ute9b5wV3Tj8fTnFwkAlmlBdPlfJrnJ+G8887j29/+Ntu2bePpp5+mo6OD3t5eHMehpqaGjRs3cs011/D+97+fxsbGk9LHuWRWrpvt7e186Utf4ktf+tKE69x88818/etfn9BCdqKUdH9/P1//+tf5+te/PuE6V1xxBd/5zneora09rn3NlhtvvJEtW7bw9NNPn5T9azSa+cHJSLq2Zmi+JoZyFNn9JZKbQqReKHiJWMZBlhXllEOgwSKzZ2ELPTPoxQvFVyvsrCT76syaQxR7BKz1fvTTBwUISK5zsTOCXPvJceOcLbIs6HjMpP4sr3C0GYTUnplPtPwJxZIrRyd7KWcgc9jwLItVWhtrLpFloAwuCjJQ6nEY3OlQs9Gi9hwLf0LQ8/jclS3pe94gV6copwTltPeZFfIEjnJHxjt7RGCFwRdT+MKAwVCdRUUgqYgu9axo0oVyyouFKw0OWcryjJw74blfWiEI1CpiyySBGk/IZw4JMocNnNyx51kxX/eCWxQMHjUqyT6EpTDMkd0pOXQ+FtC9qFl8zEXyxFgsxjvf+U7e+c53zkGPqp8ZC71vfetbbN26lW3btrF//356e3tJp9NEo1GWLVvGJZdcwq233srFF1887vYnUkl//vOf53e/+x3btm1j165d9Pb2Mjg4SDgcprW1lQsvvJB3vOMdvPa1rz3pxcY//elP88Y3vvGk9kGj0cw92b0lui1Bw2VRDMv7nklsDDH4QmHCbYodDpEVAXq35eY1Jmm+cXKCjkdN4qu8+DUzaJDaO/a7ttBjcOQ+Qc16SaTFS4TiJZVQdDxqUOxbYJNLJejdYeAUJTXrJYVuQTk1s2Nwxrk8/DGo2ygRYvxxPBWQJejb7mBnFPUX+Oh/3sGdowQ4Tl6QfZUFbLzzAKJiLRtvsTAU/gQEajzhF25WJNZ4N7JSnnulMLwkKsMoCYVuQdeTgnzXREL+xJ1z5QjcxV3685RgMWbd1MyMGQu9K6+88riSo8ylkp7I73aYLVu2nNDkKq/mrrvu4q677prWum94wxsWRWFGjUYzlvQrRQrtZRIbQzg5SXpXcdL1B18qsHx9kFCrj0LbOAFjC4hin0BJL5tloGbi7zinIOh5dmTm648rllzlIt2FOhnwMmRGWlzqNrl0PHKMeWQayLKg+xmDhnOGEpLYXlZP8JJqnOrkOzyTeKDGIJ+vrlhWJQWlAUbFaBo+T/SZITB9nrVPDcXUuSVBOTXaaqgZjREQyJKeI2k0M2URFoPRaDSa6sNOS89CNw2GJzRmsDpjK2aKtD1Lhi+qMPwKWZ56Qjv83MsKKcqDC28CHFspPevbkHYNtyjyHTM7jlybQa7Dq2btj+PVLbMgtkLhFNWr3PpOLZysojQgSaw3ybdVl9AbD2l7mWc1M6fu/DC150XI7C3StTW7IOuMajQni8Uxi9BoNJpFRHJTCCfnkju0sGP0hrGzgrYHTAyfJ1Z88aknanZGUOyD+KqFOalLrJGUBhkqAO8l9ZgV0nPjK6cEh35p0rvDIFinWHaNS9NFLsJcmONzvJghcHKKULOJGT7ZvdHMF2ZQkNwcpthtE17uZ9mbk1gxPXWdLsPlFar1pZl/tEVPo9FoqgzDJ3ByErWIYmTsrBev13KJy9KrXFL7BP07Jy6hYPgUVoRKUoyFRmlQEG5UDLwiSB8wsOcijkwJMoe8TImJtYqa9ZJAAlxbIcueC+CiRYAVEfgTgthqk/BSA+VC71P2nMXoaaqP+kuiKFfR9vMUVtig5fUJlr+1ht7Hc6RfKS7oGGaN5kSghZ5Go9FUGaV+h+jqE1vT80Tg5ARH7zepO1MSW6no3zlxFkHDD1YQcu0nto9zRe9zBk3nS5oukrRvNacsRD0TlBQUeqEGaLnMy8yZOSTo3bGwC6gLH/iiAl9UYMWG/g7/HxEIwxvD8qCk72mHzAF3UT0M0Yym/qIIsdMCdN2fQZYU5ZLLkR8P0HBxlKYrYyTPDJHaWSCzt4Qsa8U3Hl55hep8AFSt/VpsaKGn0Wg0VUap18HwCfy1JuV+d+oNFhiBWoWdhcmSkzg5wcAuQc06hT/mUuz3Piv0CWSx+icIyhV0PWmw9BqX2Ao5qfVyNnip7kdIHxzrBmUGFeEmL4NpsV9QHoRqS48fajWo2WjhSwjMwEjfZFlhZ71X7rDEziqcof+drJ7UL3Z8SZOazWF6HsuOKjMjS4quBzOkXi5QszlMw2VR6i6KkH6pSO5wGTNkYGdcSt36CYBGA1roaTQazQnHlzDxxQ3MoIFbkJQGXNzcSEKJYqeNtBWR5X7K/ROXYah2hKGG6gWOTOAjLQp/DI4+MLXwGdxlYGcV0WWK2AqFFfQm+F2PGxj+6p/sKymwc2DOg3HWznr13WQZeneY1G6QhBoUpQHPm82wvHIMSnqJbQzTS4pT7BMIA0q9FqU+iZ1R2Bk1xjIWbDRIbjAxAoJil6T/eQfmMOdJqNWg/nwLX9Sg0C1Jvex4Ii7jiblXC1nNqUWg1vt+SL8yfobiYpdDx6/TmBGD5MYQiY1BajaPBGv2PZ2j/2nt0ysxcKs0HcfJKph+qqGFnkaj0ZxAEhuDNF4eG3fZ4bsHKPU6KBfyR8rE1gYZeG7hCT0rrGg8zyVQ46WQd4rglkCYXvbIYr+XbGVqBLk2Qa7N+y+61KvH13SRJB6XyLhLvkPgTyj8cXDykNpn4FaNxc8rqF1OzUfbgu6nDRq3SFouHbH6WhHItQuUhMHdXk025UIgCaF6RbBeoRREV5kkN4xMAZyCotgjKXZJfAlB4nSLYp/EySiSGy3KaUV2/+ysy2bI2x9A9qAkUCtovNxHoV3Ss61EsVtP+DSjMQIGSqopXTLdnKTvyRz923NYURM3L0luClF3fgRfzCS1s0BRW/c0pzBa6Gk0Gs0JwooaNF4eY+CFPIPPFXCLkvBSP61vSABQc06Yzvu87CMDzxdY9uYk0TUBsvuqP/umFTMINvqInu4SWaJwS9DzrIFheS6EZtATfekDnnibDeKYB9OFXgg3KmLLFG4ZyoOC6FJFuNml/WFzWiUc5pvIEoUVhnzneH3xaqq5BZitO2Wx1+DwbwT+OFhBhRWCzGExbj22Sl23PUN7zxQw/OCLCe+VMAg1GdSdZyEd6HvGJrXbpfUaPwD24EipCDVdvSegZpNFLBIYsuxC/DQQFuSPSroeWtg1IjXzhxk0cGdQN085YA96F2b/M3ncoqRmc5j4uiDFXpvUziKZPcVTLqazmrNburp29AlBCz2NRqM5Qfhrva/cwecKOEOumslNocpywy+o3RKm2GlT6nPIHy2T3BiseqFnRQ1W3lKLMAV2TpHaJ0jvN5D23IqtXIeg7ixP8AVqoP0hg0KvwC0BCMyQYskVLk0XuHQ9eXLFnrAU9WdJskcFxb5X9cNQNJ4nibQo7Dy0P2giZ5usRXqxd+VZiEVZhlKfotSnAMkAjGhO5VlgrZj3Qevr/QghUNKLmet5wp5y0mxFBJGlJum0oOOBMqEmg5pN3j1QTulJnmZizJBAFmfvK5zaWST1UpHwUj+JDUEaL4/ScEmUUo9Nsdchd7BMoV0/aNAsfrTQ02g0mhNEqNnCKciKyANw8iPvI8v8RJb5T0bXZk2w2ceSNyUQpicIMgcNUvvm5wmytAV21nP/NExIniHJ/nbkZ8wtCPpeNGg8T1KzTtL3wsnLQumPgeFjaCxGRJgwFI1bJMEGRSkFVoiKtasqOEZ/KRd6ttnUX+jDCgEChCGIrjTJt7lkD07ecSerGHzZQdYqWq8dfV3XnGkRXmJQ7pcMvODi5LTw04xghY1R35OzQnku8PkjZayoQXRNgGCDRXRlgJqzwvQ+mWNgu47j0yxutNDTaDSaE4S/xqLUM/opcqnHQa5R7L+rDyts4E+YBFt8JDYEMQMGHfdVdyG55JlBDGtEyNRulJRSnlvhfFDsF/iHCq6PWMq82LP4ai/LpFOA1P6T567kiykaznFxS2DnRi+rPdMTed1PGdRv9ix+Sp58N9OJSKwz8UUETl5RHnBx8kOZMI9MbxKePejS93AJf43A8HnlEoQBQoAvLogsMxGmoPtRbV3ReAgTgk0+8kfnLiOPk5UM7vDinUNLfCy9Plll+WfnB4mB1MlYTmm00NNoNJoThDBAHCOKfEmT2GkB3IJE2Qo75WKnXHKHywQbLKyIUfVum52/yzD4QgEzZCBMQfKcBM0XSXp3QPbIxBMMw/Ji1Ey/lz3SKTCtWnN9z5v0vwB1ywz6jhj4YoqlV48OGst3CQzLK7peu9GLLXPykGszKKfnd3pn+BXNF7vIMrQ/Mrp+XqhBEl+p6N1hIAyvTmD2cHVMwoQFDRf5kLai1Kuw05Jin6J7m03LNV4tOzunSO9ysdMznKBJKPUqXl3dOtggCDYa+JOnwpRbM10iKwP4YiZ2RnrG8DnWA6Vez+dYOlpoaBY/WuhpNBrNPGOGDWRRktlTovnaOImNQYQhqLswgiwr+p8ebfYJL/MTXuqn7Rfzkq5xblFeqvNhHGGw5EqX2g2S7BFBxW1RKIK1ilCDItSoCCTHNpVtE/S9YEwvtk55bRvWyGTNznrZPcNNitgKFzHUTKFHEKpXJE9zKac9AZrr8LJRYswiIYpQWEFv2+ExkI7nqll3pkQY0LnNxC0d47JpKeo3S/LdgswhQeMFktIg8y48p4swILpiyNV17cjnTl5R6JI4WUV0uUnidIt8u0vPNht3/Mz3UxJsFLRe59WcsLOK3idHW/OMABiW0O6cpyi5QyXSe4rUXxAhvi7I4I486V3F6ScBmoLoKu/aO27X0AWAqwSuqo7vmFdTrf1abGihp9FoNPOFAa2vixNZMVJILd9WpvHyGEoq0ruK9DySHTOBSW4KUey2yR+u/mJi5pC7qRU1CDX7iK1zccuQ2msQXaYoDUKoQVF35uhJVe8Oz7omy97E3h9X1KyXLLnKpXeHQaFrepau0oDgwL3DsXgjrpzxNYq6jRI764kuhCcwo0sVyfWS2o0jbdh5SO83KKe8OEDpgHSHipIfMxkJ1CqSaz3XS2OC8D/Xhp5njFEiDzzxaYWg4xEDM+BlDO17sTqseeAd68G7i9SeZRFbY1ZiLq2wILZq9MGGW01W3Gxy8IfFWdW7G7Zq21nFkf832mIdX2dSv8UHQHqvQ+8Tp1iaRA3Kga7fZRjcUaDmnBANl0ep3RLxSiV02Z4L8SxFWvyMIE1XxhjcWah6bwmNZi7QQk+j0WjmASMoWHZjEn/N6K9ZJWH///SBVLjF8S0WoWaL/gWQJKDp6hjxdcExn5fTUH/W5BOxYr8YqaWXg1K/IN8hqD9b0nyhpNCtyHWKISudwMkxSSzbqz8XpPcJsodEpSQASlDoEhS6POtasHZk7KPLFLUb5KjyDeCJtkKnoNDrxQXGVyvKaRh4xcBOH9MfoTAs79wW+8UYF1TDr0islpTT4BQEibUSpSB3tLqeaMsS9D7l0PeMgxXxxk6YXixd4yVjkwTVnGnRt33mQqzQLul6pEzTZX7ip5ukd4886fBFvDEppyXxtRbBeoNCp8QpKJTriQDleuU7nJzCyak5s/RoqotSr0PnfRl8iTw1Z4eo2RzG8HnXh1uSlAdcsgdKZPeWpi386i+IkDtcpufh7Hx2vWpwq7hguqtj9E4IWuhpNBrNPNBwcRQzZJDZVyS2xhND+/67d8oCwMICw2+MysZZrfjioy09pT4HqSxQgu7tnnALNylqz5Seq+MxhBoUwTqF4fPi9QwfFLoFXU8aRJZ69fGG3SABpO2VVxjcY+DmpyeQpCNgHB2iHEGhe6SNQjf0CIUvMjT+lmex8ycVkRZFdJlCOjDwskFq7zHuqBUm7o8vpmi60MUwoesJE2Eq4qskuTYx+5IK84ySYGdGrtNSnyJ7oIiwIFhvEGrxXokzLDCh7ykH4QN/TOAU1JAr7OTkDklSdQ5151nkjriVbQZecDCCI1ZEO6MItxoYfjF0bsaOmVv0BF+mTZI5JEZZYTULHzvl0v1Qlu6Hs/hiBv4aC3+NSbDRR935EeovilBot8nuK1HotCn3T6D8Da+EjVuo/u9WjWau0EJPo9Fo5phQq69i6YqtCSLLkr6n81OKPPAsFuUBh8gyP5nd1e1a1PGbFNHVAey0S7HLQZYVVmvLqHVy7Z6oSq6XJFaPHP+wK6db9qxGhgmBpCLfaZE7KsgdBWEqzACYQQjVK2LLJZFWl/6dBsz1XE151kMPTyjku2BwFyCU99EMsmMKw3MTrT1TYueg41ETtyCoOcPF8MPgrup8yj4ZyoFCp6TQKeFZiJ9mUn+Bj0KHpPnKEYtfqU/S96xDqXuckyS8Iu2GD5TyyjX4EwbFskS5nqDvecwmusLALUL3Y2Pr9QnTuyassMCKeC9/rUHdJkl8FbQ/ZI5bNF6zwFFgpyV2ukzuEEABwy+IrvITOy1Iw2VRhCEq1j7lKNySwh50sNOS+IYgCCh06gyvmlMHLfQ0Go1mDhEGNF0VA8DOuvQ8kiV/pDwj97LBFws0XBYl+GJhVKKTasMtKFI7p87IIR1B/4smg7sU/rjCF/Ni8uIrFW5xSOhFIJCExi0ug3sNyoMC5QqcvJcxs9QvSO0T1G6U1J8tEQMufUcVk1nTIkskdk5QHjzOSb8SM8r8F2ry+mgFIXtU0LvDQLmCSKskeZqi/yUDp7DwhUh6j0t0tVkRedJW9Dxuk1hv0Xqtn3yHiy9nYHaD8Aviq01ia0wM/+hjb7nG2z6zz6unF6gTCENQ7HbHLcquXHBynusmPcMnxiWw1E/r5S6xFYr0/oU/vpqpkWVFeleJ9K6SZ3Fu9BFs9uGPmwgLzKBBcF0QX9SkPOBw5J5BSt3V+50610hlIFV1PlSSSrtungi00NNoNJo5pGZzuOLS2PGrdCWV90xIvVQkvi5I3fkR2n62ADJvThNpC4p9gmKf978v4hJqGPmxd0sQaVVEWt2hBCujJ+vKFfQ9b+DmFSsugkSnYnDPxBP6xvM8i1KxH3LtBvkOMa8Cy/B5FrzYMkW+U9Cx08DJefsL1Crqz/EykXrunzNp2EvkYoWG/4IV9mLT8t1e7OGMsobOZNcBSJxuETvNxLAgvdclvcsleaZJqNnACo3st/03ZcqDitzhMpFlBjVnW9St8+Fb61m33ZIitdul0CEJNgpqz/ZVts0ddgnUCcJLDEr9kr5nbbL7XXwxQajFIFBnYAa9BynDIs/OykqcnpOHcsqrrRhbIUmfxDqKmpODcqDQblNoH2uxExbjPjTQaBY7WuhpNBrNHOGLG9ScGyZ7oER0VQBf3KDUO4uGFGT2lqi/KIIwWdDJJoTpJSp5dRZKgHynINTgFTjPHhEk1o6IPn/cS+oyTouk9gkyLZBcJ8m2i4qYejW9Owzqz5YEa8GfkNSdCaVBr7xC5tDcFir3xxVNF7gIH/Q8a4wqLWFFvGWlAUHPcwZTibJwk6T2TImSXsmGV8c3OkWv7qDpg/gqhZ2F1D7DK74+hy6LZhBW3OztPL3HwS1B4gyT5BkWbklRHpAUexSxVSbpvQ6BOoO68wx8CYPUSw5tPy9jn14imy/jljyXzuFrueVaLxNtz+M25UFJqW/00/1Ag6DhEh/hFhPlKkoDCjevkNJLDhNqNbBCr57CeI1n27Q1TzOaU1Xk6WQsGi30NBqNZo5ouDyGm5f0Pp4juiqAPI7JRWSFHzvtLliRJ0wvCUmwDoSAUspLRuIWRybh+W5BHZ6FqpwWHP2dV5JBumDnwAgor0bdOHX1MocNgqdB7QZJ91Pj1zrIHBIE6wTRpYpirxcrGKzziqgn1kDnEyZ2RmD4FOEW5YmzWSTyMAOK5ktdnBx0PTL6GAHqN0lkGbqfMiZv31DUb5LEVijyXZ7bqlsSOAWGXt77Y2MF/QlF8jRJ3VmekM11CPpfMsb0YSYMWz+kC6V+SaDWQJiCgR02mX2e5a3Q4R0TAkJNBqEmg/hab0KZO+JSd54P5XpW2vxRL8toZbzCIIaKHJZTrxJ5Amo2WdRssigNeNk5821y3Im6MIfi9KICKywgEMApeFY9jUaj0Wihp9FoNHNCZLmfyDI/7b9IYQ65s8XWBigPODiZ8TOHmLHY6A+E55omTAgv8ePk1Kh1fAmvqHWw2cQXEQjDi4tyi+AUFE5Wkjvizs6KOEeojJfRpO4Ci0DCJHdEEl1uEkhApK5I6hXXEwctngumU/BjhQSNWySFTpd8hwQJjecYhFtHBFyuzSWz1yV/VIIAmTXpf7ZM46V+AuE8xa7xx7h7K+RXGtSd5yOQhP5nHfqfljRe5qPlEkXPNs/Nq2Gzn+RpiiP3lAi1GpQHZCUTpJvJTHrMNZdFMX0hyvkyllOg1D5SXC7U6iPUmKT9VynKhyYvOtd4ZZTIkiBdW7OkX55eNXKnHfIvgxUziK4KUHN2iMZzJUfvGZyVFSO5KUTDpVEGXyjQvz3H4R8oajaHqD0/Qud9GdwMlDpGb9P2szy150VwcgaDz+fJ7i/TfE2M+guC+Msmmf4SpQEHX9zECgkaLveu6dyRMuXuLO5QanwjIGi+Jk54qUnvE1kGnp06faczOPNjXEiM+Y6YDwSovInKZNFhU4sLSfUWJte5T08MWuhpNBrNHJA4M0ih0yZ3pEyoxUfucJnoSj/x04O4ZYmd8qxzVsTAF5ug2varsCKCVX8QqCQCEYb3g62UQpY9l04zKLAiEBACIUySG3woqXDyimKvotTtUuyVlAfm68hHEJZn3Qk0GMRPs+h5wsbwQXS5SaFLkt7jmSeTG0xqN4/EZ+XbXDL7XBJnWCTPsMZNox9ZYhJZ4o1b5wNlAjUjsX61Z1m03zexiMoelOTbS9Sda9FwkY9Ct6T3SZuasy2arxrJFumLCHwJQcvV3mfpPQ4Dzzu4k+s8gk3eT2mo1Y8CcscUuq+7IEKx2yZ3cOrK4pGVATK7itMWecfiZCSDzxfIt5VZ9uYamq6M0f1oFjlBrcaJCDZ75yV2eoD4+iCDL+RxchLDFBiWQNpj2yv3u3TeN9rPtvN3GdK7Sqx5Y5gl1yfG3Vd4qY9V766jPOjg5CSBegsUtP8iRf6ozoyo0Wg0x4sWehqNRjMH+JMWZthg5R/UVoScnXFBKEy/gdkw8ziJwZ02/hoDMSR6Sn0u2UMO5b7x17fiEFtlEmox8ccF0RWC2EqvL0oplARZBievcLJDMVZ9imKvHLfe3EyILPesZlbY62t6n1d0e+AFh7pzfYSaDKyYZ4U0gwLpKgxTYGckXQ/bKNez8BzbXtPlY4t0AzRf7Sce9xNIe8vd0tRiRpah53GHzAFJ/QUWrdf5GXzJZfDFEmZQ4OQUTVf6WfamQGWb8FKTYIPBoe9Ndtx+gg2euLbTLvnD5VHLQs0+2n42OGX/APJHysTPCOIUJP3P5GeU6XOYcp9L14MZml8TI7omgJ2RFLtssvtLE2Z/FQYEGi2EKYit8Y7/yI8GiK8Pkdw0UqQ6cWaIwR151DQfxRfabTp/myGTy2AGBHbWxc1LkmeFqT03THZ/mdyhEoF6CytskHqxQOql4rSLX2s0msmRGMgqjdGr1n4tNrTQ02g0mjlgONNmrtuh4740hiWo2RyqiDQYrkNmk3qpgCyqCd2ylt3gJ39U0v+cy3CCiengpGFgh8vADm8bww+BBoNgncCfNLxYppAgkBQEagXRFSMiEAVOVtH1cJny4PSPO7zEoHazhT9pkGtz6XvGJdhokFjn/bxkD7pkD7lEV5gs+70REVXslRQ6XJIbzXETzuQOS/Z/p4gvLgjUCMJLTKJDotXJKbpfLNP1ShEpQc3A+FPskrT9vEzyTIvkBpPIcoPeJ21KfYq2X5aIr7MINRs4OUV0uQkhwdI3Jzl6z8igmGEDK2IQavFRd0GE3KES7b8cmzmm7oII+fbytK1TXQ9ksAddareECS/1e/+nZh6kmd1X4kBbmcjKAP4ak/BSz7IsbUXuUIns/hK5w2WUA8Fmi+Zr4/iiI1bmYq+NtBV9T+ZI7yqy4u01CFNQf2GE+LoAHfelKfdNv1+lHgclR1Rr35M57JRLw+VRAnUm7b9Mz+o4NRqNRjM5WuhpNBrNcWIGR8Rcz2MjMUfjpfmeDoZf4E6juPpUyDIU2iSFNhgjGA0I1EKg3iRQI/DFDQJ1gubXBDj844kLtVsxr6i1LEJkhUHTZV69tNQem0CNoOlyP25RkTviEllmktxokTvikt7jYPg91z/DL2i8xEew3kK5kxynAjulsFOK7EFJz+O2V2RbQd2KoOe+OothUhIGnnfIHnJpuNBH63UBcke8Gm6xteZQQW5BoVviTwhSLx8TKyZg9XvqKv+mdhboeTQ7Zh/RNQEC9RZH7pmBz6yC/u158m1lmq+Ns/IdtZT6HY7eM4ic4fXgFhXpV4ZdQHP4EibR1QGiq/20vDaBtBX5I2WsqIEvatKzLUvuYNmzQh9jULNTLm0/S9F8bQwrYuJPWiy9Psn+uyYwK0+TfHuZYpdNeImf+LoAfU/mj6s9jUaj0YxFCz2NRqM5TqzIiDXEnQO3s1K/JLLUZPAld/4i1iWUeqHUOyIAm670EV5iUHOWiZ0dERbCgOhKi0CdF6ellKI8qAjUGEhXEaw3CLeYOHlF71M26d1ewpX6CxShJoPYqrEumHZGUi4r0nscL3vjNKhY/eYot4CdUrT/pkxsjVfIO1BnkN7jMvC8MyqRiZs5RvgqaP9ViqarY5gBz612jNgUUHd+mNyhEsXO6fnEmkFB4swQoWYfbklR6nHwxUz8SXNyMTztY3UZeDbPwLN5fHFjSPQFCDZ6MXkNF0cZ3NEz7raFDpuD3xtg7W31Q301MCPGrK51f41JzTlhYmsDuCVF75M5Bl+YOumKRqOZOa4ycKu0YHq19muxoYWeRqPRHCdWZOQHay4K8w7scGi9zk/DRT4vK+QJyoTXt90m3BqgZpNvzDKlFG4BMnsdAg0GgeRQevxBSf6oJN8mKQ8c01EFvU94A2EEwBcTCEMMWcsg2OiJw8aL/NSepcgfdUntcrHTI22ElxhElptDLocuxZ75GYjMPi8ZzHTJHSyz/5t9xE4L0HxNnPzRMpk9I2Iwvi6IP2nRcd+4hQDHpenqGKEWH/k2G8PvjVNmX4nex7NzXmLDTksGnisw8FwBK2qQOCOIMCdXz8pWHPxev+fGaQhWv7uOwRcK9DyWndb1KSxovDxGfF0QO+PS81iW9CvFU7a+mUaj0ZwItNDTaDSa48QMjQg9I2DgOsdnhiv1Kbofs2m81IeTsRh44cTMhp0MHPhuiWCT8BJwDM39lfSKXcuZJ4MEQJagVFIcqwiyByQIh1CzQajZILrSi8E78rMSbsEThskzLfwJgVuGxDqLYo+k+9EybpV4+WX2lIidXia5KVQResKE2vPCZPYWZxTHZsVMSv0u3Y9k58QqPF2crKTvqekNqD3osu+/e6nZHKZuS4TkphDJTSH2fr1ncsFmQMvrEoSaLLq2ZkjvKurc6hrNCUAikHPlAjHHVGu/Fhta6Gk0Gs1xoo7x3ZOl8WewkeV+wsv8+GtMDP9QmQQ8t7zyoCKzd7Q1K3dYMljjkjzTZPBl54RaPopdo0XZvKGg0CEpdEgGdzosfVOApb8XQBhg+DwX0ewBSc82m1CzQf2FPlpe4+foz6bp63kCGHyhwJI3Jgg2WRS7HBIbQ1gRY9riaZieR7K0vDbO6nfXYWdd7LRLecCl0FYm32Yjp5FZ9ESgHOh/2nMBXfuBBgBWvaeOwz8cmLBeZONVUUKtPtp/npp13KpGo9FoZo4WehqNRnOcFLs8FVbstscIMjMoPGtGi49yyqHU63oJLxQYQQPDguhKk/hpJp0P2qMLfyuvdl54iUG+TS5qNzdZphIvJ8uK8oDyrIhDuqDQKel+pMyS1wcItVRPbEf+cJnyoEPztXHKgy7hVh+pl4ozziJZaLc5+L/9RFb58SVM/HGTcKuP5MYQSirKg574s9MuhaM2uaPlk2oVE4ag1OsQqLcw/QZinIfzwhLUbgnh1hh03pfWIk+jOcHoGD2NFnoajUZznNgpl8M/HBiqmwextQFCrT4Gns3TfF0cf9Ki7eeD5I+MnugOl1cQJqx8e4Casyw6jin8XeiSRJZJmi7z45YUgy85pHe5cx6zVS04WcXAjonVbKnPE3+151k4+6vH7af9Fylqz49gmIK+p/MM7pidb6m0FZndozOeWlGD8BI/gQYLX9wgsiJAzVlhnLwks6dIevfMXETngroLI9SeE0baivTuIvHTg6z8gzpSOwt0P+xlIA0v89NweZRwc4AD9/WT3V89VliNRqM5VdBCT6PRaOaAUp+DGRSseldtJQtnvs0G6bkhNr8mTmZ/iUKHjZuX+GtNnLygNKCIrjQRhiC9a7QQLHZJjv68jBUVJM4wqT3LInmGRXqPS2a/i5OtDne+E4EVEdScbRGo854C11/hZ6BDUOo/+WNgpyVdv8vMS9tOVnoxbbtGPgvUWcTWBYidHqTm7DClXof07iLpV4ozLsMwYwTUbA4B4BYlA8/lCbX68EVNsgc9kVq7xYvhK3SU6bgvRWrnLIM7TwGEAb6EiTAFbkHqYvEajWZO0UJPo9Fo5gDhE7S+MVEReZk9RbJ7S2T3lvDXmsROCxJbEyC5MTTu9pn9LrnD40/ynKyi7ymH1EsuyQ0miXUmyQ2eq2ehc/FPDGs2W9RsHPtz5a8xKA24JywrabVQ6nMoPebQ+3iOyDI/sdODnpXt3DADOwoMvlhA2bMYFMHUY6ng4Hf6SWwIUXtOmOZr45hBgyP3DFLs9B5UJDeFGHyhQO+2HPUra2bej8WIAf6Eib/Wwl9j4q+xCNSansgzRqzTpV6Hoz8drJqYTM3CxsXApTpdJKu1X4sNLfQ0Go1mDqjdHCLY6KPzd2n8NRa154bJHSmT2V2i3O/S90SOvidyGAGBGTJw0i6h5XGsqMAtQrF7asHm5BS9Tzn0bXdousJH46U+jvyshJy4vvmiYDj+yy0pygMSKyIgDg0XeWUgZlIaYVEhIXeoTO5QGTNiULs5TO2WMDVnhUi9XPQyf/aPPza+pEl4qZ9wqw9fwsQX9wrFO1mJnfHiSJ30yHs7I5FFib/WItTiI7EhiJNzEQKyB0oVkQcgTIGdPkXPyaswwwYNF0eIrA5gDJWwcPKScr9D/miZ0vMuhk+Q3BTCFzMJ1FsYPqGFnkajmRO00NNoNJo5IPVKkciKAA2XRWm7N4UZEjRdFcMXMxl8oVBxqZMlhSx5k2Av5mzmEzrlQs82m6VvClB37lCtvUVM/7MO/c+OxO4ZFpiXOhhLPfGrATcn6Xk0y8BzeWo2h0lsCFJ7bphSv0N2X4nM3hJ2yiW83E/9hRECdRbSVRS7bAqdNundRZStsGImvphBoMYissLECo196q6kIrOnRM+jWeovjhBdFcCKGZWsm05OYsX003qA5mtihJf4K/+7ZcnB7/RVEiv5a0yWv7WGcmqotuDuIrKor2nN3CCVQKrqiWc+lmrt12JDCz2NRqOZA5yM5Oi9gyx5U4KlNyXJHSwhDEHd+RGUgoHtc1v8zS3CwPMO9ef7yB5wTwkXzmGUC9nDLvGlXuyeZgRnSPD1bMsSXuontiZAzdkh6s6PIG2F4RPk28u0/SJFob08ZSZXYYEvZmLFTMyQoDzgUu4fKffR+3iOUIuPJW9McOQez+Ww1GMTqNfTC6BSizJ3qERkRcDLUGoI1JCPbHR1AAQc+dHAok2ypNFoTh76m1ij0WjmCFlWHP1pipqzQ0RXBsjsKZJvt8nsmvtkFNFVBvXne66LLdf4KXRLeh63cTKnhjVAVIq5nxrHO2OkV/ohf7hM90NeFkxf3BxyGZy+BVg5eOJuYHwVIkuK9l+kWHpTDUvelKD9l2lKvQ6154bn6kiqHmFC/UVRwst9+BMW3Y9kSL3o3fNtP00hBDRcHgWg7+kcsqywYgZNV8cIt3rWvsTGEIPPF6bemYEuNq+ZNrKKY/RklfZrsaGFnkaj0cwhylb0P52n/+m5teC9GncoLq/QJSn1S6IrTZou9dG5tYw7jfniQscMe0rPPoUyj84W5ULu4PyVN7DTkrafDrLk+iQNl0QodNoI89SxtMbXB0luGkmy1HhZrCL0UBBoskicEaLrgQz5tjL1F0eoOXu0EG64JErtuWFSLxUp9TsYlsCKGviSFlZYeK+IwPAJ3LLCySpyh10GX3a18NNoNBOihZ5Go9FUKcIHgRpBsVeNmcwV2iX7/3fEUpg96NJ8lZ9lbwrQ95xDZs/i9gPzx4aEXloLvWqg3O/S92SOxiuiRFYEcE+hZCKRFQEAnJyLFTEpdo9YTA2/IHGGJwIDDRYNV0QrSVmGGXapNYPGuJbQUp+k0Clx8gq3qDBDAn/CoOYsi8hyk/b7pnbB1ZyaSGUgq7QwebX2a7GhhZ5Go9FUEcFGQXiJSajJwF8jEIag5wmbzN7JhVu5X3H0ZyVqz7FouMBHbJVJzxM2dmpxTrjDSw3S/XLxZxz1CQSeGKh20i8XKQ+6RJb5KHadGsrDX2sSWe65X2b3l/DXWISX+ln17lrMoDHKspk8c8Tq5xYlZtCb6Bo+QfdDGUJLvJjKV9PxQHmc69wlvVuw5PUBwq3GhKVZNBrNqY0WehqNRlMFGH4v1i5Qa+DkFYUuSb5DUnOmNfEkX0C41SDUbOCvNTC8En64RUWwwfCse8/apF5aPNY9YUHdeRbBepPDjy1OMRFZ6af2vDD+hInhN1BKUe5zybeXKbTZFDrs+S+MPkuKHTbFDs+idWx9uMXKsRa4YrdDclO48j5/pIxblN792GSR2OCVUJCOouPXaZbemKxs23hFjI7fpul7MoewvLFrvCKKGbYmtNb5EyNCUaPRaMZDCz2NRqOpAsJLDAK1Bp0Plsm3SXwxQdMVPtyiIt829ml9sMmg4SILX9TAzkpKvQrbViAgUOd9tRe6JXXn+DADYlR5goWIFYHIcpPEGRaG38s4WmhfXFYM4RO0vi5OeKmf3JEyfXvyuHkJJoRb/ERXBag5K4xSityBMn1P5SZMkqKZf3xxg9jaIADpXUUye0pkD/Sw6t11BJt9CBMiywOUUy6HvttPeneJFb9fQ+GojZ11UUohhKDnsSw1Z4eILPeT3Ttiuiv3u8QbfPgSgnK/J+y9Ng1iayxCTQbpPQ6Z/foa0IyPi8ClOh8EVGu/Fhta6Gk0Gk0VUOpVSEdRf4EPaSv8CQMnpyaMv2m+0ofhE7T9qjRSi09A3bne13ruqEvXVpvacyzip5sLRugJA4KNBkYAzKDAnxQE6gwCNQbKVWQPuqRecqldESK81MCKCnwxUflr+AWlXsngSy7FroUlBBsuiRBstGj7RYr84dHJUzK7PAFgxQwiy/0kzwqz7OYaOn6VmlEWzcWKGRQkN4cp9zlk9pwYf97oas/Nsv+ZHH1PecmXlANH7x2kdnMYYXkTWX/CpPbcMLkjZQ7+3/6KhX7vV3srbYVafMTWBjAsgZ1xCdR5LqC5o25F5IWXeJl2rYig0OnS9UiZ3KGFdY1rNJoTixZ6Go1GUwXYGUX7r8tEV5sIw7NY5dvkhLW1pA2GD0LNBqFmL+lDuNXAFxf0PmmTHkrGIgwWVH2u2FqzUjbiWKSjsNOKUItJbI1FPO4nnPYjbYWdUdhZRe6QRNqK8DKT1mv9FLokA8/bFLur083xWMLL/V5mxgczY0TesTgZSWpnkfQrRVpeG6fldQmO/nSQUvfCEPLzgRUzWHZTDVbYc2XMt/fh5uZfAAUavOs03zZaaJf7XDp/lwEgtMTH0uuT1F0Qoe6CCHu+1jNuWx2/SVNzdojwMj+RGj/DmefTu7yb1wxC42U+it2Sjt852KdIGRXN8aGTsWi00NNoNJoqoTyo6N8+vQl796Nlas/1kdxgoaSXrKPUp+h90gYB9edbhJaY+CKCgRcXjgjIHXUJNRmEWg2MIYuIW/LEnJP13FidrKSYKNP9ShFnnFISgztdwksNmq/0E7ouwKEfFXGPLWUowBcXoLxxq4ZyFOFWTzQ0XBIhcUYQYQlkSTK4s0h231gLlXKh4740S96UZMkbvGLldmoBKfo5pPHyKMr16vk1Xxdn9bvrKA84lPoc1Az0kCor8m1l7Kwk1OzDLUgK7TbOBKIxu7+EP2lSHhh9f/kSJvUXRfDXWvgTJkp62TL7nspNXApBwcBzBQaeG30xmrEYAEZAYFiC1CuuFnkajWbaaKGn0Wg0C5Bit6L9V6MtP4EGQc0mi3CLiZ2R5I+45A67FHsWzsTQzUPXw56FxBcTuCWFfJWBSwgIrFCjxdurcPLeMaf3OKPW8ye92EdfbORpslscqUnmnKS6fKmXiwhTEDs9gFtW2N024aV+Gi6NjhJ6gUYLIcDJS9y8pP2XKZbemGTJmxIc+cmgF9N3ClF/SYTI8gDtv0yRO1zmwP/2EVnmJ9Tsw5c0EZZAmCDLikCtVcl0OUyp30GWFEoqrHqDxEYvM6Z0VOVBw8Hv9mMGBZEVAYJNFqEWz736yI8HOfzDgVHtmUHBynfUVv7PHSnTeV/6uJPn2ClFeVCS3GhR6CzDwrmlNScRl+qNhTs1H0udeLTQ02g0mirD8HmumE5B4YsJ/AmBLy7wRYWncl69vgX+GoEvZlAelHRuLZM/uvAn/MdjuSgPKuyMxAwK6i/0ElcYfoEZEJQGJO2/LYNUGH5BoMEgttokttYkd0SSesXx4h5P4GTaTrn0PJql59Fs5bOazZL6i6I0vSaGtBXJjaEx27lFiXIVVsRkyRsTHP7xwClTQLv+ogg1Z4XpfihD7pD3NEAWFZk9JYo9Dg2XRgk3eZZS6aox9esAArVWZbkqe4JPGAK3IDFiXhrbYeHm5CXFThtheNeRGMfzLLTEX3lf7LaJLPOz6t11HPnxwHEnzul92qHlGh9Nl/nI7HcppxRO7sRepxqNZmGhhZ5Go9FUEb6EoOUaP1ZIVLLygWd1sjNqXFc05Xgujfk2h0LnKTLLnwZOASLLTKSrSO92cYsj7p8jcYve/4MvOERXmyTPMFnyOq/gd7FLUuiSZPeZ2IPz+/zZ8HuJZJzs0PkTYKe9fcZPD1Lq99wDS30Onb9LY4UNzLCBFTawIgZm2EQMPQc4Feb9tVvC1GwOY2dclIJgk0Wx28FfYxJq9dF4Wayybsd9aeKnByqFzQFSrxQYfL6Av8Yivj5I/mgZYYDhMzB8IExBYoMnrDP7iqReKlIYisWrPS9MzblhQi2ee6dbHBnx7L4Sew70VMR27flh6s6LEGrxYafd44qXLXZJuh+1qd1s0TxUu09JrxTLwA5nJCmTRqPRDKGFnkaj0VQRdedZWCFP3BU6JeldLsXexV8YfK4wApA8wyK8xEtMA5Dd504Z+6hcyOxxyex1CTYIQk0mwWaDunMt6s+vxcm55NtsCm1l8m32iCCbaf/8gsgqP+FWP4F6C1/cHFUHLX+0TKnfIbY2WEkuApA/Uv7/2bvvOLvKOvHjn+e02+fe6SUz6QkhoYWSEIoBpEgRBJRFUQiCrKgs+nPVVRSwoOLqCosrUqTtLhZQQYirQXqHQKQkQEiZJNPbnbn9nnvK74+TTDKkTSZT7sw879frvGbm3lOeO7ed73me5/tl8++3DxM0eybpwCcBNSdFiMzxyhooPq/enNhFTzdArrNA7KAAgdqBCX6i8wJE5wX6C5ebPRZdL6b7768+IYJtOrT8pY9c28DXTvwfGfSYSuXxYSqPD5Nrt+h4Okmhz6Z8SYjITB9CE94cwa1PU9WHIvirddqfTO7Xw09vckhvMtFCoIUVjKggMkul9sMGrY+bMtiTBpDJWCQZ6EmSJBULAb7S7V9+wVqVYK3K5ofyOHl5AjcY0bkasQUajumSbXUI1Cr9GUgHxfXmP+Y6LHjLq1tmRHIEphgEp+hE5kQQQpDakKfr5fSgE6BoEYXyI0OEZ/kQKuS7LLJtBdKbzAFFt4P1BsF6Y8C2ufYC8X9kBv8YJiihwdRPlGJEvVOXxvu7KSQcEF55gvqzYztto5eo5NoKtD2RQPUrlB0epHl5H5E5Xu+e64AWVCg9NIi/2uuhUwMKgRqd9icTOwV54F0UaH88SdcLKSqODlNygJ/IHD++Sm/+Xt/bWVwXInN86GGVQtLGjNt0vZzeaV+Decyqb3uPr6JDvtvBsUALCVwHet+xiB6gUXOiQdfLBTItu8/WK0nS5CIDPUmSpCIgVKg71UD1b+vNs1H9AivtYssgb9DSTTalh2igQKBOIf6Ghdk79P+fa0NmS4HMlgLdeD1I4ek+yo4MMu2CUvrWZOl+LYOT2/UxFJ+g7IggsQVe71HPyjSJtfkBSVO6X9keAOglCkIXTPuENy+s7fHEqNWFK2YfDPIACgkHoUHpoUEic/39t1sZh82/78F12ekCSe+bXlbLfOfAAC69ySS6wI9Q6E9ys23e3+7YWRcUKKRs7KxDqMGgdUUfqQ3edt1DCOwA/FUapQuDBKcau5xXuG0e4Y7ib1u4jkL1h7yLBJsfzo9ZYiGpeNiugl2kPWfF2q6JRgZ6kiRJRcCICXxlCu3PmKS3DH2endAgNFVFDwsSa609ZqaciLYFyoomSKyz6F09vF0bTt4l8V6O5LocsYMDlC70gozet7LkOiyslI3qU9DCCsEGg/AMH67r0r0yQ+9bGdy9VLooJLznPrUxj+ITMsgDEFB7arQ/yMt1FvqDqLLDg5QuDJJ4J0fXCyaZZnOv/+NdSa3P77KMxd6kG01K5vgpXxzCtV2qTywhUJsl/mYWK7lv72OjXKViUYjQNB/5HovuV9I4toGTB9v0ss+6tsu08/w7bVt6kNZfiD25wfaStEiSNOnJQE+SJKkIWGkv45+/Rtk50BPgKxW4eL0IQhVoATBiytZsm4JAjUpyo02wVtmhV9DBzk2u5Cxmr+MVm2+xR3S+kmt7dc8S7+a85ByHBgfMtQMw4xY9r2dIvJMdkLBjMLJtBcqPDHmFsyfXUziAYgiqjg8T2pp8pJCwaf1bAsUnqDsjSmiqQWpjno5nUnvZ08hIrc/TbiSpXhqh65U0FYtCxA4OEjs4SPfKNH1vD+65D8/yUfPhiPf4/p4gtc4LOtXIzqdpds7tf4/vSNEFHc+bpBon8QtGGsBF4BRpeQW3SNs10chAT5IkqQjYOeh61aJysY4eFvS+bZHvcQnWK5Qd5t32Qa7tYibc/uQtkRlq/32J9y1yHZPvhM/OQvyt0SsQb+dcOp9P0/l8Gi3k9eTZORcrbQ+pZ2mb9CaTyiVhwtMMUhv3PIRwIlIDguiCALGDAwgB8TcylB4apG9NlmC9QdWHwhT6bDqeSZIcQk/ccEq8k6P0sAAlBwzsaSs/MoQaUOh8LjUgFWpoukHsoAA9qzL4q3X8VRrBeoPk+jztTyT3mjZ10x/yaBHB1LN9O903nmpmSpI08mSgJ0mSVCSS62zsrEvZQo26U7efxKW32HQ872XwUwMC1/YCDDvrEp6hEqhSCE3dHuT1vWvRvZcsk9Lws9IOVnp4gmvV5wXv24bjTQZaRCE8w0d4hg9/jYZrQd+aLPE3sgjVm4tXcXS4f/3uV9Jk2wpFkago8V6eikWhnW6PLQgQnecn1ZjH7LEpPTzYP+/ug0l3Cn32oGtjWEmXDb/JoQUFUz5ioPq8+bxWduz/F9J+Et77X/F5ozNUv4LiE2gBhUidDzYOfldyjp4kAz1JkqQikml2yLSY+MoERswrgD5gCGJ8+++lh2iUHqyR7XDoW2thpV3yXQ65DnmyN96JrcFAYYhlHMYN4c2zK5nnR4+oOJZLpsmk/akk6UZzexAnIP5WhpI5flS/d4JYe1qUbFuBpod6x679W8Vfz9D3dpbpny5DNRRs00E1vHYKVRCZ5YdZu94202SiGILSQ4PEV2UGnzHTASvlsulBOY9zPNMiytZsuzqBWmNAWZUdOaaDrhq7vE+SdkcGepIkScXGhXy3S757z2d8267edzxvYsvs+xNKvsvrkfVXaSNerH2sCNWrLxeZ4/MKkreYpLcUcHfVi+lC1/Npul5ME5pq4K/SUHwKPa8VzwvfMV023NXd/7cWUQjP9OGv1DBKNXzlGnbWIb3ZJFCro5d4vfB6VPV6bXSB0AWuLS/UTGSKXxDcWq4lWG+gl6i4jlfSJfFulkLCm1tt512cHX6CIDp1515jSdqTog/0dlcE9YOWLl3KU089Nej9ZjIZDjroIDZu9PrAp02bRmNj4x63aWlp4Vvf+hbLly8nnU5z1FFH8Z3vfIeTTz55l+s3NjYyY8aM/r8XL17MSy+9tMdjXH/99Xz3u98FYOPGjUyfPn3Qj0mSpMlDDUDpAo1cp4OdHevWSMNNMYSXRn8X6fUngsAUneoTImhBhbYnkv3JR/bK8TJdphuLf96ilXTofWP7m1MLKUw5O4qvUmPzA3G0sIK/SkMrUVENQXqTudsyHdL4pfoFvgrNq8VZr+Or0BBCkO+xSG/Kk2kqkG0t4Jh7fu7FEEY6Oq7AcYvzM6RY2zXRFH2gN1Kuvfba/iBvMFpaWli8eDFNTU39tz3zzDOcdtpp3HvvvXz605/e6z5efvllli9fzplnnjmkNkuStP9CUw3qzoj2/92zKjPkeldjqWyhDgLanzUHPa9HGh/81Rq1H4lipR3SjeN/WJ4aUDBKFSJz/QRqdXIdBSKz/Fhpm02/jw+66Px4Z6UdWv4vQcO5MRrOi9H1kldTUTHEsM8zFKoXGDiFYd2ttAdaRMEo1TBiKkapihHzflcDXoRmpW0yTQV638qSaS5gD9N8Xknak3ET6F155ZV84Qtf2O39odDgu7NXrVrFTTfdhN/vR9d1ksnkXrf5yle+QlNTE0uWLOFb3/oWpaWl/OEPf+Cmm27i85//PKeffjrl5eV73c+1114rAz1JGkO5joFnPtuGyI03/krFG+Ije/MmBMUQRGb7KJnnx1+lY/bZND3c6xXlHkvCS9u/p94GNSDQIip6REWPKOgR1fs7qlBWGyOW8YYomr3W1nW8v7WQSiExOYK8bQq9NvE3slQsClF3ehSn4KLogkyTSfOjffu0L6FCaJpKeKqCEVPofKlArtuh4gid8HQFoQoyzTbtzxYGP+9P2iOhekNtPxjQ6TEVRdueQMnstTDjNuktJoW4RT5uj8kQbBsFm+JMelKs7Zpoxk2gV1VVxUEHHbTf+7Ftm8997nPYts11113Hr3/9670Gevl8nocffpiGhgYee+yx/qDy2GOPxXEcbr75ZpYvX87FF1+8231UVFTQ1dXF66+/zp/+9CfOPffc/X4skiTtOzvnsu72TrSIOq57EuJvWVQt0SmZ65BYa4MAf4XAV6mgBQUIb55fasP4fYyTQaBOp2Sen/BMH0KB9GaTlr/2kd5sjln9PF+5RvQgP6HpPrStvRGu7WJlnP7MoooOWtgL2nasH2jnHQpJGyvpkNlkonRn6VybwOzzTnznfL6yf92eVZlJ3RvtFFzy3RaBGm+uVuVxYa8Uwx4I1bvIE2xQiExXEfr2KS6lB2vYeZdQg0r36wUcC8qP8BI29fxjfF7QGiuqX6DHtK2B3PaAToso/f9vK+tgxi1y7QUS7+Uw4xZmr4010RMoSePKuAn0hsvNN9/Ma6+9xgEHHMA3vvENfv3rX+91m+7ubvL5PIsWLdqp5/DDH/4wN998M83NzXvcx7Jly7jvvvvo6Ojguuuu42Mf+9ig5x9KkjS8XIdxHeQBpDbYGDFBxVE6vgqlv1C6U3Cx0i56iUDMFeQ6HKzUJD6bLlJqUKHm5AjBOsMrrL7SG8ZnZ8b2JDE03aD21BKstEPiHS8xhGM6qAEFLaR6tQJDCk7BJdNsYiUdCgm7P7jbsedPKAKm+0hvNnEdF2WHIt/r7+4qirIIYyH+eob4614SGT2mUv/RKGafTeygAPkui+T7OULTvCQdeqmGFhRoIYEWFP2F0q2MS99am+Q6G1+ZoGKRjr9qew9JsE6h8yWLXp9F6cEaqU02Znxy/r8HQwsrBOp0b6k1MKJer7PruBQSNmavTXJDnkLc9nrreu1x8fqVc/SkSRXobdq0iWuvvRaAW2+9FcMYXJra0tJSNE1j5cqVZDIZgsFg/33bEsDU1NTscR+hUIhvfOMbfPWrX+Wtt97igQce4IILLhjaA5EkSQJ6XrcQAqLzNJIbbRLvekXWAfxVgrpTfFQdp9P9amFgiQZpzAgVQtN9VB4bBtel+dFeMk1jP5EqPMtH5TFege/Uxjxtf9974e595VruLn+fzAq9Nhv/uweA6hMjVB4bRo+qlC30zjPMXqe/bEo642JlXPI9LoW+7f8/K+2S3uIVUS9doBKZpRGoUZn6MZW2p0zMuEvtSQbdrxVINcreJvDm0wXqdIJ1xoAMqPkui/TmPN1tFmaPRaHPxpX/Mmkcm1SB3he+8AXS6TSf+cxnOPHEEwe9XSAQ4LTTTmP58uWceuqpfPOb36S0tJSHHnqIm266iWAwyBlnnLHX/Vx55ZX89Kc/pbW1leuvv56Pf/zjKIocoyxJ0tB1v2bR8w9rpzk4uQ6XlhV5yo/UqTvFoOn/zAEnh9LI85VrVB4bQmgCK+WglSj4SjWEKkhvztP+RBJ7jLIsChWCUw3C07x5gTtqe3z4gzwA1/LmyPqrdMoXheh6cfwlQRpJHc8mBwR5AN2rLLItg4s0rKRL50sW8bdtKo7SCNap1Jxg0PhgjoqjdKqONSg9zCW9ySbVOLl6+PQShUCt0d9rp0dUXNcbOptqzJNt2Zr5chz00u0LBwWnSOfCFWu7JppxE+g98MAD/OY3v2Hz5s1omkZNTQ3HHHMMy5YtG1TQ9tvf/pa//OUvlJaW8tOf/nSfj3/TTTfx0ksv8fzzz3PWWWf13y6E4D//8z+prq7e6z4CgQDf/OY3+Zd/+Rfeeecd7r///kFl65QkSdqT3SVayHW6tD1pMu18P0aJkIHeKArU6dR+pAQr4WDnHbSIQr7TIrEmR7a1gBkf26HDNSeXEJ7h2+n29JaRnRu45Y+9ROb6MPdSI3Iyci1ofqSX0oVBIrN96BF1SCn1rZTb/5mQ73Fw8tDxXIG+dy3CM1Qis1Ri873Tv9Qmm1zbxDrlVnzCm1NXqhGo3RrYhb1adflui9SGHQK7vZQ0kKTxbtwEemvWrBnw97p161i3bh333XcfH/vYx7jnnnuIRqO73DYej/PlL38ZgB//+MdUVVXt8/Fnz57NK6+8wje/+U1WrFhBLpdj4cKFfPvb3x5Ub942V1xxBT/5yU9oamrie9/7Hp/85CdRVXWf2yNJkrSN6gc1KLBz7k6F030V3ilcvlee0IyWyBwfVSdEyLYUaP1bH24R5sHYlvI921ZAMQS+Mo1sW4GOZ/aehXp/JdeO/5IRI8W1oWdlhp6V3htZjUT2eR9GmSDU4J1XxN+yvERNlYJC0qVnlUWgSkH1efOjwtNUwtNUIiEDJ6rR/YZVlK/XnSigR7xEKXpsa8KUD5QzcB2XfJdFat3WwK5NBnbS5FP0gV4wGOTss8/mwx/+MPPmzSMcDtPZ2cnTTz/Nr371K7q7u3nooYc455xzeOyxx9B1fad9fO1rX6O9vZ0lS5bwuc99bshtmTlzJr/73e/25+Hg8/m45ppruPLKK3n//fe57777uPTSS/drn5IkTU6R2Solc1V8pduvx1sZl+QGm9QGGyvrEp2nke9xsJLyBGdUKFB9QgSzz6b1//qKZn6PFlYwYir5rT2JvjIV13Yxuy2iCwK0/T1BcrBFy6WiJFSoPcnoT8qS2mQTmaFSdYyOogsKKYeWx0yMmEIh6dD5kkV4ukLJHG84cXi2SqBeoetli2xbkbxwAaFBoM4gUKP3Z8HUS1SEurWcgelg9tqYfTaZLSZmn40Z3zq/bpJ3HNuuwC7SpCfF2q6JpugDvebmZmKx2E63n3LKKVx11VWcfvrprFq1iqeffppbb72Vf/mXfxmw3jPPPMNdd92Fpmn86le/KopMl5dddhk33ngjjY2NfP/73+fTn/70LgNUSZKkPQlUK/hKFXreKJBpcVD9guAUhehcldKDvI9313Vpf3rsk31MGg4k1+cJTTMwyrQh1WlUAwItpKL6BWpAQfUrKH6B6ldwTJf4PzKDmkuk+ASlhwQomR/oL5PwQZG5frpfS8sgbwIQKjtl3rRNSKy1iS3Q0MMKtScaOJZL7xqbXIdDrsPBzrhEjnOxsy56RKH2wwbJ9Rbdr1s45hg8EAX81TrBKTrBKQb+Ki8QtdI2+R6bdJNJodfGjHvBnSw8Lkm7V/SB3q6CvG2qq6t58MEHOfDAAzFNk1tuuWVAoJfP57niiitwXZerr76aQw45ZBRavHe6rvOd73yHyy67jI0bN3LXXXfxz//8z/u1T6GIoghipZ15z83WVONSURvt52p/37LdKwsYZYLwDJXkWptC3CXX6hBfZeGvUtACguzW8goT6eNBCEDs//9v0Mfbx9dD1/NpjFKVhnNjpDaZmN1edlShC7JNBTLNAwNvRRfoMZVQvU5wpoG/fOCFP8dysbMOtulgRFSMMpW2FXtOmGKUqkw5O4pQBPmuAoWEoPvlDPVne1Mcsu0FOp5IYmUdXGtkXvPys2//7ctr3C3Axt/kqD3FwF+hoOiCrpdMdpyAZ8QUkhtscCE8VSHX7dD3rk1+noOVBz0CyUabYINKoE6lZ2WB9JbhDaR29XrwlWsEpmgEpng9d4ousHMOmZYCXS+kyDRbFBK77p6bLK+vbe+nfSHLK0hFH+jtzcyZMznllFNYvnw569ato6Wlhbq6OgBuuOEG3nvvPRoaGrj++uvHtqEfcPHFF/OjH/2IdevWccMNN7Bs2TJ8vp0nxg9W+bQYujK4chHS6BKKIFYXASFwHTl8rpiN9nOlhIJ7X2kvrPWCyiU64bMdul6zBp7822CUA+X7fZiiIgREa8IIwB2Ft5ST3vcRF/m3QJ+hU14fQj9Q8V5PQqAeI2hZ0YeddtGjCqWHBvFXefu3Cw651gLZNQWslBfYOaa7w5wpBaVBo25xjJoDKygkbLpfSe+yQHPVCRH8FRrN/9dLzUllqD6Fqlll/SfFvSviRMt3Pa99uMjPvv03lM8I8z1QEwqxAzVmn+k93+kmm1yXQ2y+RslhA0+wWx/PYzX7sdosItMMHNUm+6ZNbL7G7DNVsm02vast7GHq3XPSOlpYwV+l4avS8VdqqD4Fx/Lm1OWaC2Q6LMxeF9DQ0YiWAWXDc/zxSiiCYJUBG8a6JdJ4Mu4DPYD58+ezfPlywBvquS3Qu/HGGwE4+eSTefTRR3e5bTqd7v/529/+FoCqqipOOumkEW2zpmlce+21XHzxxWzZsoU77riDL33pS0PeX/emXjQhh38WI6EIcF26NvXKk50iN9rPlRoeniGVfT0KNSfqUG7T/dp4yKSwf4Tw4tmeTX2jEujZqdSQtutcN/Bv1SeYcUk5+gE2JByC0wxSySRNf86Q73Ewe6y9z+lrhI61PfirNSqODpN1UvQ1esMufRUakVkGibV5lPUmJUaA8BJBOp+CHUZmdr+cIt6YG9Jj2hfys2//DfkzYhM0vQRGqaDmJAMz59L5homo8ZHrdOh8oUD1Up1gnYpTYeGbqeOryJJM5+nabJLe5NCxFkJTFcqO0PEfAvFVltcbONTH4oeSORqhQwR6ROA6FqnOHJ0vmGSbLXIdhaKZ01qMhCKI2vsW+LuuguMWZ05Vt0jbNdFMiEDP3c03vWl6l5/uvvtu7r777j3uo6uri09+8pMALF26dMQDPYCLLrqIH/7wh7z77rv88Ic/5PLLLx/yvlzHxRXyi7RYue7W50ie7BS90XyuhitIybY5dL1qUblYx0y4JNZOggwE7tbnahTeUsP1WrCyLh3PpQjPMNCCCl0vp+l9O7vP5QyyrQXMPpuKo8OEpvtQfAq+So3wdG9USHiOn8TaHMn1eXBdch0W4ekGgTqDTLNJz6rssDyewZCffftnf1/f+R6XXIdDqEGl4RwfQhGEp6nkexyCdV5mTj2qoEcUjK0n3ukmp/+4qU0OmdY85UfoVBytE56jkt5kk3jfHnR2Tl+ZoOQAjfA0BdeB5Noc6U2mV96gIF8X+2I0Pu+kiWVCBHo7ll7Y1ps3HiiKwvXXX8+FF15Ia2srt95661g3SZKkcSq5zsaICiqO0tEjgp5Vg+gdkkZd39tZ+t7e/0DLzjj0vJ4hPNMgOt+PlXFoezxBtqVA9UkRwtMNjJiG63iBXvtTSab+UxnpTWORXUMaSx3PFdBCFv5qhcrF3sif8oU6ZsIh+b5N4j0b/VgLK+IgVC+py45BnGNC54sF0ltsapYa+MsVSg/WyLY7mL0uTsEbXuwUXJwC4HrlXowSLzmUHlEopFx6/mGRXG9T6BlaD7kkSftu3Ad6GzZs4LHHHgO8+XpTpkzpv293PX07mj59Ops2bWLatGk0NjaOVDN364ILLuCGG27grbfe4sc//jEXX3zxqLdBksaDodST2ldCeHNi1HBhXF457X7NopB0KT9cI1iv0veuRXqLTWSmiq9coZDwru5n250Rq5Ul6qpHZsc7HkOAqAwhCv49JiQZLhoj/5iGoq8P+lbtcIMC1EP72q1/C5eymTkqjxFUHhPGygvShTq0A0Yv2ZBaF0Izysbl+6kYOKGhz93fxsVFL8tTUpfGdWx6mkOUN6TpaikjaxuIOZAWAbrWh73naerO+wiVZqmZ49VY7NwYRtVd/BGTcKWNorooirvb4u597QG6NoUBAdNB8/fs92OajIQApdyAjYPfxkZgU5xJT4q1XRNNUQd6jzzyCKeffjqatutmtre38/GPf5xCwRvD/sUvfnE0mzcshBBcf/31nH/++XR0dHDPPfeMdZMkSRojgTqFklleUKb4wM5BaoNNfLU16OF9ibU22TaH2EEa5YdrVByp47ou2TaH0DSV2HwN13W9+lIuXq/ftiGQLriWSyHtUuhzSW22yXfKM/RxyxX0rA+QjWtEak2yPTquI0+uJg+XcHmO0ikZDL83nDuf1ojVZrALglzqg/P6XYyAjZlTYUBGRBehbv8rFffhWCoQGri5cNF0h4aDe1DU7Z8bwVgeNo38hTpJknZW1IHeVVddRaFQ4Pzzz2fJkiVMnz6dQCBAV1cXTz31FLfddhtdXV0AHHfcceMy0AM499xzWbhwIatWrep/PJIkTR6KAVXH6QRrVfLdDsmNNnbORY8IYgephKYpxN+wBp3mvJBw6XyhQM/r4KtUsNIuZo+L0L3aWpFZXpF1oXnFiAWAwtYSLQK9BKiF6DwNK+sNuUpttEel90waftkenWyPTNY12VRMSxGtHjhMWFEdEh0BEh2BHYJ+Fz1oUXNAL8GSArYlsEwFRXFRNBdFHVieZcbh3SQ6/XQ1RnB3DAhdgT9iDgjytqmZ04ttKTi2wI3aOAWBlYVsh8C15cWHkeK4xVvGQE7bHR1FHegBtLS0cMstt3DLLbfsdp3zzz+fO++8c7/KE4wlIQTf+973+OhHPzrWTZEkaQxUf8jAiApanzTJtgwM5pLrbMoO16j+kEEh6ZDe4pBtcygkHKz0rvcnNNAjAi0ocAvgK1WoWaqhBbd/4ds5FzuHV48O76fZa6P6BGrQS2upBQVaQFC1RCe2QCX+lkV6s7PPyUMkSRp9gZKB8zF7moPYBQUEhMryaIaNEbAwAjZlFWG6O23a15eg+2wUzcF1BI4lsG0FxxI4loIrXHwBm7KGFLrfpu39KI61fcxmqtuP6whCpXkiFXkcG3JJA0Vz0P02quqgRF0U3UXRwLGg/WUVPeISrHZpf0X5QG+iJEn7o6gDvXvvvZenn36aF198kQ0bNtDV1UUikSAcDtPQ0MAxxxzDJZdcwpIlS8a6qfvtrLPOYtGiRbzyyitj3RRJkkZRZJZKoFqh5e8mufadIyiz16XtiQK+SovITJXwDG/4JYBju1hJFyvjggBFFWhhMSCg2ya1ySa9xaaQdCkkXdxBZG3XI4LqpTpGVAEXqo81cI52yXe5dL5YwErLS7KSVKxa34tRNTNBoMR7s5dNyeA6WzvmXa/XzsxqpLp1rGSYlg2+gT10u5FLQC6lUzO3l/r5PcRbQ9imQll9Gs2wUXXvc8GxBe3rSsj0DbwIr7R5c/SMqMuUpTa1x27PEiyEzCw5nJwiLq9QrO2aaIo60Fu6dClLly4d0WOMZAKW6dOnDyohzDYvv/zyiLVFkqQiJCC2QCXVaO8yyNtRvtMl32kBFlrYq0Oll3g/1YAAB2zHJdvuUEg6FBJeACgUr8vOSu372VMh6dLymEndKQZC83ocjRJB+RE6/ipBaqM8I5OkYmWZKi3vlgIQrc5QMS1FLqWTTeokOgLYBW/inRBQUa0Dg8/QlE/rNK8uo3JGgqoZyQH3ta6Nkk9rXg/gHgJHX+nAzw8zhZxDKknDrKgDPUmSpEEToIUEeligGODa3rAg1/JSfhcSLr4KQc1SA9W//WQitckm/qZFITH6Qcu21OPtz+X3vvIOrJSLlXLJtg5m7f17XE4eWh/3gr2KIzRaHjOJzFIJTVNJbZRjOCVpPOhrD1LIq8RqM8RqssRqMyQ6AvS2BrcmVtl3lqnS+l4pQnHwhwsYQZtUjw/bHNz+kpu80QfhKS5aAFKbZQ/PcHMQOEWa3bJY2zXRyEBPkqTiJry6TkLfPpdsG2frFBQjJqg50djlkMVt2p4yicxWBwR5AOFpKqEGhY2/2bdgazhED9TIdjiYPcXdM2ZnofXxAnWnGtR+2CCxzqbiSB1/lU2uQwZ7kjQeZHp9ZHp9KKpDtDpLtCZDSVWWTK+PUBASCYt8ZrCnhS7bPoxdRyGb8JFN7HubzD5BZ4eg9hgH1V/cn4OSNB7JQE+SpKJVc0qE8Ezf1myQO3Ndl+a/mtSdbKDou17HKbhkWh3y3Q65TofsDO+nGXfRQgItJCgkRz9YCU1TCFQptD01PgpYW2m3v2cvMlMl3+NQdZxO81/z2Jmxbp0kSYPl2ArxlhC9bQGi1VmCMZNwWY4p8xNkkzquK8j0GqR7fV7ylh2HXwqXymlJIpU5CjmVjo0RFAVyKQ3X2bceuZLpLuUHb//sdeU1I0kadjLQkyRpRKl+gRpS0IKqV4tpW802x+2v3WalbKpOiKAaCmbcItNcINdRIDLLT7a9QKB616nhhRDoIUHnSwX8FQrJRhtfzCsbYOe94uD2wOziJN7bPvF/2xDIvVKg9CCNQK2CooOddWl/roAzxE5A1Q8VR+mkGm0yzePn7KaQ8IK92pMNXAe0gKDhoz6SG2yyLQ6Z1vHzWCRpsnMdhd7WEH1tIQq9fhzVQvPbKKpDxdQUldNTW9cDxxG4jkDVHBAQbwlSUpmjcnoSX9D7TE10+unaFBnUPDtFd4kd4JBuFfSuVTD7ADmUb9jZrsAu0iymxdquiUYGepIkDTtflUb0AD/BaQZ6eN/mf/gqNCJz/DQ/2kshafcHeR0vFnau5Sbo/zu92QsyzB7vpENoXpDpK98abPoEin/776qfrT8Fju1S6PWKhAeCCmoHWDv0UlUcqVEyZ4ePyyiUHuzSvXLwyQt2VLFIx3Wg69VBpL4sMmavS+vfTaqO0yEgEAqEGlSiczUc0yXdnSG+wY9tyvk2kjRuuIKe5nB/xktF8+bdqZqDUFwUxUWoLraloPtsglETzXAwszrgfeZGynPgQveWMI695/d/yXQXoUD3mwp2Xp7wS4P3+uuv89e//pVnn32Wt99+m46ODnRdp66ujmOPPZbLLruM4447btD7++tf/8rtt9/OK6+8QmdnJ5WVlSxatIgrrriCj3zkIyP4SEaHDPQkSRo0oYDiV7xgaYefjuVS6LPJdVrgwtTzSge1Pyttk++26VudRTEERrlGsM4L7HxVOl0vpTHjlpdQxQ15bVDpH3Kphb0ePTUoUH3bAzfF75Ua+CA772LnXZyc93u+x8HOg6KBHhWEZ6uUVesoU3xs+sP27rpCyltXKF5AmdpiDzl5ixEThBpU2p8z++cYjjdmr0vz/5mUHaZRMtcL5HveKCCEILqggBDQ+U5wjFspSdJQOZZCpnfn2sThshyxaan+v42AF+Sl4waZhEFFQ4pIZY5sQqd7cwQzu+vTTH+FSz4uZJA3wiZaeYWlS5fyzDPP7HS7aZq8//77vP/++9xzzz185jOf4c4778QwjN3uy3VdPv/5z3P77bcPuL25uZk//elP/OlPf+KKK67gV7/61W6nj4wHMtCTJGm3fFUadaeVoIUG1yuXeC9H+5NJNv2uB3+Vhl6i4rpgZx2cgosWVjFi3qKXqGghbwlNHfhh7DouelRF9Slk2wpYaQc9qnvBXUAMWM/KuNgZrwB4Pu1gbw3i7JyLk99WGNzFzrPXBJRCgP8cG8ceuGLfGpu+NfZutto3Rpn35ZbZMr6HObo2dL9m0feeTfnhGqWHaDQ9aqKWBfHHhtbTKUlScUv1+GB9Cb5QgVhNFs1waF9XQiruA1eQ7vERjJnEqjPUH9RDPq1hmSpWXiGf1smldBxcMm2C8oMd/JUOuc7iDESk4tPc3AxAXV0dn/jEJzj++OOZOnUqtm3z4osv8rOf/Yzm5mb++7//G8uyuP/++3e7r29/+9v9Qd7ChQv5+te/zqxZs1i/fj0/+clPWLVqFbfffjuVlZX84Ac/GJXHNxJkoCdJ0m5VHhPeZZBnZR0KfTaFXptCysa1QQsqxN/0xjuacRszvjUwUqD0kAAVi0MohoJTcMl1FOhbnaWQdLDzDk7e7f/p5F2cghdohWcahGf6UP0KhT6HTLOLld5hybC/1QN2IgRepk8N3BGIV5y812C9RGD2jv8sc1bKm6849RwfpQdrmHkFze+AcAcmcZAkaQIQpLr9pLr9RCpyuA6kevz999oFlWRngGSXn5LKLP6wharbhEoLxGq9CdOFOdC7ViHbKag63CH+npdBOdcte/iGm4PAKdLP4aGUV5g3bx4//OEPOf/881HVgecmRx99NJ/5zGc49thjWbt2Lb/5zW/4/Oc/z4c+9KGd9rNu3Tp+8pOfAHDkkUfyzDPPEAgEADjqqKM4++yzWbp0KStXruTGG2/k0ksvZdasWUN4lGNPBnqSJO1W08O9CHWIAY+AyBwfpYcFMWIqvW9nSb6fJ99twSA7s1IbTFIbvPGNaiQyhEbsu761Nv4FgsrFOh3PD/8cukyrg9nnUH6ERuvj42+O3i450POGRdUSHTNlomgQKLPIdu86iY4kSRODorkomoNjfaBXzhUkOoIkOnZc18EfKhAJJ6hc6JDcIhAqlB/sIASk2wQdrwytpp80OTz66KN7vL+iooKf/exnfPSjHwXgwQcf3GWg9/Of/xzL8k5sbrnllv4gb5tgMMgtt9zCkiVLsCyLm266iVtuuWWYHsXokv3lkjSJ6SUK4RkGsUMClB0e3GkIJe7Qgjw9plJ/TozqEyNYKYctf+il64U0+c7BB3ljxUq7dL1UIDRNoeZEHWX3Q/z7CRUCtQrhGQqR2SrBBi/z5y45EH/DIlCjYsSK80rrUKQ22LQ/Z6IHvSe4+qAMoSqTYe9ylSSpKHRsiCAE1MzuHdT6jqWQ6fPR+ZpK92qFSINLqkkh0+p9DhaSI9hYadI44YQT+n9fv379Tve7rsvDDz8MeD2ERx999C73c/TRR3PAAQcA8NBDD+G64/O7TPboSdJkIqD0sAChaT585doua881/bmXbMvQepp8FRqlhwYIz/RRSNo0PdRLrn38zddKb3GwnyhQdaxO/Rk+4m9ZpBq9Iaof5CsXVC81BswdBLAyLm1PmZjxnb8c0s0OhaRD+ZE6rY+bEyYWSm9yaAuFqF2YRihQtSCLOS1PstUg1a7jFOS1RUmaKDK9fvLpDP6Ihe63KOQGf0qZWK+g+V0qDvEuDHW/pZDYKD8fhpuLGNIQydHgjlC7THN7lrMPDu8E2LhxY/9cv6VLl+5xX0uXLuW9996jqamJxsZGZsyYMbyNHQXyXSVJk4geUahYHCZQo9PzWnrAfYWkjdln98+P21fBep2G82P4qjS6Xk6z+YH4uAzytsm2OTT9X5583KHyaJ2Gc3y7/MSsOErHzrhseSTPht/k2PC/OTY/nMfKuNSeZOCr3MWXmYNX+69SUHXMxBremOvVaHo5TCHrPW4j7FA+J8e045LUHp4iUpfHCNuohpe2XZKk8at9XQkAZfWpvay5s57VColGgZ33hm1K0nB4+umn+38/8MADd7r/nXfe6f993rx5e9zXjvfvuN14Inv0JGmcExoYMQ2z19rrMMtCwiH5fo7IHD9lR4YG3Lf5gTiOOfQTb6NcQwhBar1JptncZe/XeGNnoP3pArWnCAJVCpWLNBLrbfKd3v9JMcBXrtDxvDmg3IKVcml70qTmRIMpp/ooJL1i4lbSyxJqpV0KCZeOFwtUH2uQ3myTHudZOHdUyKg0vxIhXF3AH7MwwjZG2MEftfFHB74wHBscS1DIKqQ7dNIdsudPksYLy/ROI4d20UbQ/aZK95suslj6yHDcIk7GsrVdiURiwO0+nw+fb+fSHoPap+Pw4x//uP/vT3ziEzuts2XLlv7f6+vr97i/hoaGXW43nshAT5LGudpTSghN2/6hmN5s0vLXvt3OhWt7PElibR5fuUquwyI03aD0kCBqUMExhx6d9a3OokdUogv8lB0epOO5FH1vZ4e8v2LS81qBkrkqvkqFuukqmx/KY+e8eXkAue6dT3IcE1pWmARqFEL1CoEqBW2GGDBc1sp421V/yKDxgdy4rau3K64jSLYaJFu9SY6K5hKuNolOzaP5t/+/FBUU1UXz2QRiNhVzc2x5MYKVk8GeJBU/74vG/mAyln1SnIGINDp2DKYArrvuOq6//voh7evnP/85r7zyCgDnnnsuRx555E7rJJPbJ4OGw+E97i8U2n5BPJXa917rYiADPUka53pX5wYEeqGpBmpAwU7vvocos8Uks/XiVLalQNcL6d2uOxhGuVcPL/FujsR7OerPjhGs1ydMoJfvcelaaVG2UMOYq7FtTnZkljf+P9SgYJQoWBmX3rct3G3/eheyrQ7Z1u3PhWKAFhToEUHVcduHbWohgbkfParFzrEEiWYfiWYDI2KjBx30gIPm3/5zWwCoh2wZ6EnSODGOa0lPeOOhYPqWLVsoKSnpv32ovXlPP/00//Zv/wZAVVUVt9566y7Xy+Vy/b/vqaD6B9uSzY7P8xkZ6ElSMRDgq9QIVOvoMRXVJ1AMBUUXKIZADSpoAYXk+jxtjycG9NZlNpu8/6tOFJ/AV66R77b6a7WNhsAUnSlnRRE7fNvbOYf4P8bnh+I2RkwQnqmiBQSKAf5KBaFCzz8KOHlvHSvt/Z9LD9IwEy6h6QqhBoXmFSbubvLZOCZYuJQfpSMU73/mWO4uk7ZMTAIzqWHuIsPetuFfriPPHCVpfFBwHQhECnhfTMUZVEjFq6SkZECgNxSrV6/m3HPPxbIs/H4/DzzwANXV1btc1+/fXvdxx8Qtu5LP5/t//2AJhvFCBnqSNIYUQ1B6WJDofD+q3ysmbucctJDSHwTsKDLLR+dzAju7i6GCeXfI2TL3R+khAQp9Ns2P9KEGFfSwQra1gJ0b34FL9QkGekiQbbNxCtC72iK5wcbeIX7tetmi6+XtEyMDdQq1JxoYMdE/j29Xqo7VCVR5J0TZNpuuleM3ac1wkgGeJI0/yR4fJRV5pszvpXlNDBnsFY/xMEdvf23cuJFTTz2VeDyOqqr89re/3WXtvG0iO9Tk3dtwzHR6+2invQ3zLFYy0JOk3QhONQhNM7CSNgivsKtQtv5UBUIZ+JNtf6tQ6LNJbzLJbN7z1aKKJSGiB3pXiay0jeuCHvGGAzoFl3y3Rb5r+2Kl7OENoAQIhSEnTglNNwhN89G6og8r7WClHfKdw9e8sZRabxNboNL5ktXfc7c36tZRIDsmZvkgvUQQrPOe4+YV+T0GhJIkScWuc0MUReklXGYSq8nS2xba+0aSNAxaWlo4+eSTaWlpQQjBXXfdxTnnnLPHbXZMwNLU1LTHdXdMwPLBuYTjhQz0pMlJgBZS0MIKWlhFDysEphi4lkvb3xP4q3WmnBGlkLBRfALX9opiq75BXqmsg+iBARLv5eh4evdXjHYcYmnG7f6ALtdlUeizh1xfrX+4Z1BBDWz9uXX4pxpUUIPC+z3g9RzaeS9IszPeTytlk2kpkG3ecw9h6aFBMk0mqQ0TKIvIVr3vWERmq1R/SCfX4aCFBVbKpe9de5eBn9Cg9FDN6wHM72KHW/nKvKuY2TZbBnmSJE0I7etKCB7RRVlDmlxaI5cc2jwrSRqsrq4uTjnlFDZs2ADALbfcwsUXX7zX7ebPn9//+7vvvrvHdXe8f1elGsYDGehJk4OA8Ewf0QP96FG1v9dsd/QS7/5sW4FC0iZQqxOo3nO9M9t0KCRsCn3eTxyXvndye9wm/o8Mik/QtzpHvmsfh+8pYERVjDINX7n30yjV0MIKijpwSIRjuV4Ql/GCuVy73f+3a7teIBhS0IIqelQl2GBQdkSIbItJ81/6dlu2QY+p9L41vufi7Y5rQfvTJlXH6oSmquTjDqFpKpFZKr1rLHpX7xCIC6hYpKP6Ba2P7zk4FluzbjqjP8pWkiRphCg0rymlfkGcmjkJGl+vHOsGSYBTxAXT96ddfX19nHbaaaxZswaAH//4x3zxi18c1LYzZsygrq6OlpaWATX3duWZZ54BYMqUKUyfPn3I7R1LMtCTJgQtpKAYAsXvzRHTIip6REGPqGgRr9dOUQW26WD22DsFelbaJtNUoPP5FK4NiXdzKIag5AA/wXqDXLt3nxf4OeDs3BOzu+GPRkzDiKn4q7QBwzuF4g0FzbYW8FVoW+/fOhR0630oYGcdku/ncR2XkgP8+Gt0fGXePsXWgM5K2+S7bdKNeQrJbUGci531AruhFEEP1uvUnRGl5AA/fav3ELBO4E6pfI/Llke291YKHcoO0Sg9WMOIKvS9Y6EYgug8lUCtQsfzBazUXv4hWxPp6CXF+eUrSZI0FGZWJ9OnE4zJxCzSyMlkMpx55pm8/vrrAFxzzTV84xvfGPT2QgjOOeccbr31Vt59911eeukljj766J3We+mll/p79M4555wBCefGExnoSeOTAr5yLzgK1BmEZxo7ZX1UDLFTQhPVUAjUeF8+Pf/IEF+VwbXdXfZY9b6ZpffNfe+tUnSBv0YjNN1HeLqBFlIpKSkhmNjzdq7t4jrgOi649P+uBRTKF3lzHhRNkOu0yLUV6FuTJd9jY/aMTJbNTFOBdKNJdH5g94HeJKtz6xag+zWLXIdD5TE64ene8KRCyqX9mQKZ5r0XPXe3XiQwoop3HjRx6qRLkjTJZRMGodICgWiBbJ8cvjnWJloyFtM0Offcc3n++ecBuPrqq/nBD36wz/v58pe/zB133IFlWVx11VU888wzA7JqZrNZrrrqKgA0TePLX/7yPh+jWMhATxp/FGj4WAx/lY5rewlLOp9L4RRc/JVeeQJ/lYZQBK7rYqUccm0FMk0F8l0WTsHBzrk4w1izTI+pROf7KTnA3z+Pr5CwSa7Pk91SIFMJXY1xHMvBtQcGda7DHk/21YAgOj8AwutptFKjFxn0rcky5awY/hqNXNuux28W51fIyEpvccj8IY9eInALUEgO/rW0Y6IWPSIo9E3gLlFJkiaVVI+P8qlpSiqzMtCTht0nP/lJVqxYAcBJJ53EZZddxttvv73b9UOhEDNmzNjp9rlz5/Kv//qv/PjHP2blypUce+yxfOMb32DWrFmsX7+eG2+8kVWrVgHwta99jTlz5ozMAxoFMtCTxp1gvYG/Sif5fo5sawF/lU7pwiB6WMW1XXIdFr1vZsk0m+Q7rSFnlNwTo1QlUKd7c/dqdbSQip116FuTI99tYXZbmHHvwEIRBHUbs9fu783ZF3bWpee1zHA/hEHJNBUw+yzKFgZp+b+duyQLvRahaQY9r49N+8aSa4HZs+/PZ36HbUbitSlJkjRW7IKGXRAEoxMvQdd4NNF69P74xz/2//7EE09wyCGH7HH9pUuX8tRTT+3yvhtuuIGOjg7uuusuVq1axYUXXrjTOpdddtmQegyLiQz0pHEn22SSaTaJzPETmeMn32WRWp8n01wg22LuNnHI/vBVav1BXaBWR/UrXlDZaZFYmyfbWiDbbE7IE/feN7NUHR9h2idL6X4pTWrj9i/w7pUZ6s+OMf1TZaS3mNg5B5wP9FjaeLdt7b10bRcccGwXs8faZU3ACc2Fpv/LE52nDbpsgyRJ0niR7PZTWpslUJInm5C9elJxUhSFX//615x//vncfvvtvPrqq3R1dVFRUcFRRx3FP//zP3P66aePdTP3mwz0pKKlGAKjTMPJO9g5pz8gcB1ofqQPsfXVOxKBHYDqF/hrdMqPDOGr0HAsl1x7gd63s2RbCuQ6CiN27GKyLSNo2REhak+LkusskOuwSG/Mk2kp0PTnXsIzfQTqdBRdbE8ks63u4La/96D17wlS6/ZQk2CCMXtcOl+QaTclSZp4eptDxGqylNalZaAnDSvXHf6Lo2eccQZnnHHGsO+3WMhATyoqQoXQVIPIHD/hmQO/IHrfytL5/PaadMMdZCl+QfkRQYL1BnrJ9oyWmRaTpkd6ybYWJm3ijFy7Rctf+ojM9hGsNwjWG8QWBHAKLkKBTEsBX5lGcl2Otr8nd96BgOgCP1XHRcj3eDUC9YiKr8L7CKo9uYR2PUliL+UoJEmSpOLmOApWXsEXmgRXQovcRBu6Ke07GehJxUGB2IIAZYcHUQM7p2S28w7ZtpHrAfFVaNSdXoLQBMn385hvZ7HSDoWkjdk9AcdjDlFyXZ7k1p43X7lGcKqOYiiUzPWCcju3m6ttLpQeFsSxXDb/Pt5/s1AgNN2g7MgQTn6SRtGSJEkTjGUqaL5tmcZkmQVJGisy0JPGXHiGQfnRYYzo9tp2hYRN18tpMlvMYc2OuSPFEISmeb1Tkdk+8t0WLX9NYGdkwDEY+W6LfLd3xbb7lTQzl5Wjl3hJavJd1oDnTQ0IhID0poET9F0HUhtMUhvkxH1JkqSJItPrI1BiMf3wblreiWFm9bFu0qQke/QkGehJY0YxBNUnRgjP2D5E0ym4xFdliL+RGdHEJtEFfsqPCqH6FfJdFt2vZej9R8YrdSDtOxe6XkpTdkSQ+rNjAFgZB7PXQigCPaaC7dL9cmrP+5EkSZLGvd62EEJ1KZuSof6gOBterUD27EnS6JOBnjQm9JhK3eklaEGVbFsBf5VGZotJx7OpEa0TpwYE1SeVEGow6FuTpee1DFZaRnfDIfFOjsQ7OYxyFSOmYZSqGDGVyGw/ruOy8b97Jl+GTUmSpEnKMr1ROlZeQQZ5Y8MFnCKtdivPBkaHDPSkMVEy148R9V5+/iqN3reydL2UHvF3fu2pUfSoSvOjvWSaZNbDkWB2D5zXGKjVQSCDPEmSpEnBoe7AXvxhC9sSbH67bKwbJEmTlgz0pNEloPTQAEKDxHte2v70FpNC78gnPIku8BOo1Wl6eGsGTWlUuC4oanFeUZQkSZKGV/nUNIGIRTap0fZ+FBzZmzdW5Bw9SQZ60uhRoObDEcLTfdh5Fy2o0LKhb1SCPIDSQ4Mk1uZkkDeKhAZaSCHfKdNsS5IkTQahWB7HhpZ3ZE+eJI01eZlFGjWVS8KEp/tofSxBy1/6ACg50D8qxw7W6+glKn2rs6NyPMlTd3oUgO5X02PcEkmSJGk0WAUFoQCKnP8uSWNN9uhJI06oXm9a7OAAHc8kSTd6qfQ7X0hReUwYo1wd8Vp10fkB8t0WuXbZszSatpVayGyRvaiSJEmTQV97gEAkSUlFjkRHcKybM6nJoZuSDPSkEVVyoJ/yI70i6D2vZ+hbk+u/T2wtm2fEtBEN9PxVGqHpBp3Py9T+Y0Ex5MABSZKkySJY4l3Ys0z52S9JY00GetKIqTg2ROnBQRLv5+h5NU0hMXAYR/mRIcCbwzXcVL9Aj6r4q3RKDw+Sa7dIvJPb+4bSsEo3moSmG2hhZUTLZkiSJEljT1EcIpU5CnmFTO/oTM2Qdk/26Eky0JNGROlhAUoPDtLxTHJAL942QgEzbuOr0Eitzw/bcYMNBhVHh/CVey9t13ZJNZp0PpuUxdDHQKoxT3iGD3+NTmrd8D3PkiRJUvGpnJkAoLMxMsYtkSQJZKAnjQCjVKXsqBA9qzK7DPIUXVBzagl6zKtnNxwFy7WIQsWiEJE5fjJNJq0r+jB7bQoJG1dOyxsz2TZvCI+/QiW1bowbI0mSJI0YzbAIlZpYeYVsn2+smyMhe/QkGehJI6Bknh8n59CzcmCmRUUXRA8OUHpIAKFAy1/6yLbsX5IO1S8oPSJIbH4AO+fQ/mSSxHtyiGaxsPocXNdFj8mPGkmSpIkqVpOmrN77zm9bXzLGrZEkaRt59iUNOyOmYmUd3B3yq2ghhfpzY6gBhcQ7OeKrMvvVkyc0iB0SpPSwALjQvTJD71sZ2XtXjBxQA3JSviRJ0sTiEK3JUlqXQdVcbEvQ/n4JZtoY64ZJW7muwC3SnrNibddEIwM9adjF38wy5awodWdESW/KIzRByQF+cGHTb3r2LymH8HoMy48MovoVeldn6Xk9g5Nzh+8BSMNLgGvJ50eSJGkiMAIFYrUZQqV5FBUcG+KtAXq2hJDlmSWpuMhATxp22eYC7U8mic4PUHlMGNeBfJdF22OJ/QryQtMNKhaH0GMqyffzdL+axkrKDCvFTAsrIJAZNyVJksYxRXGomJ7sD+5cFxxL0NMaIN4SRAZ4klScZKAnjYj0JpPwTB9WxsFKOVgZm+oPR+h9M0ty7b5lXwzU6pQvDhGo0UlvNmn9e2LEC6xLw6N0YRAhBH1rsmPdFEmSJGmfOdTO7SMQ9ebT2wVBsstHb2sQy5SnkMXOQeBQnEMki7VdE418l0ojovTQIIE6ncS7OdSAghZU8FfohGc4uw/0FAjW6RjlGlpAQQsrBOoMtKBCrrNA0yO9ZJv3L3mLNHq0kEL0QD9WxibXLidPSpIkjTeKBsFYAdeFlnej5JIym6YkjScy0JNGRGiaQWpDnq4XvCxcgSk6wSkGqY27CPIEROb4KD8yhF6iYpsOdsZbEu/myDSZ+52dUxpdigEN58dAQMv/Jca6OZIkSdIQOJZCIa+g6o4M8sYhWV5BkoHeBKHNmYmmjvyHsNvSPqj1jJhKcoOLGvGKptom5HscqpZGiC4IY/Z5WTkVHQK1KnpIkN5s0/5cHjO+Y+IOBfCjRvzD/2C2EpHwiO0bQAhQKyNoeR/uJMhJohgO9Sc5KDrE3xPYeiVa3Vi3anCEABEMIiI2jMZzFQmNwkFGlxMa+c8hIcD16zihyfGeGgmpGSNf0FoI8Jf6SJQF5PM0RIXgyJ8MC8CIGcTL9V1+7AVEgToljnOwSp+z/59Z1lHR/d5HMYpsGtkL0kKAEXFh5YgeRppgZKAnDTvFB0IV2DtkwrRz0LLCpGSuiq9cIVDlJelwLMg227SvtzF75JnAeKf4HRpOdBAa9KwWJDaoY90kSZIkaT90FKLUGXGiWoo+c+JdnJrIZHkFSQZ60rAL1HrZt3KdAzMtujb0vWMDMpHKRKQFHaac4CBU6HpDIbVZZmGTJEka3xzqjS4A0vbIjayRpIkqm83y4osv8tprr7Fhwwba2tpIp9Pouk4sFmPq1KksWLCAxYsXM2fOnGE/vgz0pOElIHqARq7LwZaJFicPZXuQ1/maQrpFBnmSJEnjmYLFIcFNaMIl52h02yM/3FeSJoJUKsUDDzzAb37zG5599llM0xzUdlOnTuW8887joosu4vDDDx+WtsizMWlYeUMzBd0rZfKUyaTqCNcL8l6XQZ4kSdJEoW6dtZdzDGr1OGVqAoGsizpebEvGUqzLRNPc3MyXv/xl6uvrufzyy/n73/9OPp/Hdd3+xe/3U1tbSywWQwgx4L5NmzZx0003cdRRR3H00UfzwAMP7HebZI+eNGy0EJQdqpFYa5PvlvPtJg+HYI1LIQXpZhnkSZIkTQQOGmtztczwdRBVM8S0DACu20FHIcqWQuUYt1CSikNvby/XX389t912G6Zp4roumqZx3HHHcfTRR7No0SKOOOIIqqurMQyjfzvXdenr62Pt2rW8+uqrvPLKKzz11FNs2bKFV155hQsvvJDvf//7/Pu//zunnXbakNomAz1p2JQfruMUoOcfsmbaZBKo9rKBJTdPvKtzkiRJk1nSCfFmdgbgEFRMAiJPnRGn2uijVEvRbUVoKZThygFiRUkmYxkdc+bMoaenB9d1OeaYY/jUpz7FBRdcQEVFxR63E0IQi8VYtGgRixYt4otf/CIAzz77LPfffz8PPPAAb7/9NmeccQY333wzX/rSl/a5bfKdKQ0LRYdgvULvagtXxnmTSqDK671NbZk4H9qSJEnSjhQyjp9uO8pb2al0FCJowqHW6OXw4AZm+1owGNw8JEmaaLq7uznjjDN46aWXeO655/jCF76w1yBvT44//nhuvfVWNm/ezI033khVVRU9PT1D2pfs0ZOGhb9GQSiCdJPMqDnZaH5wXXBMed1IkiRp4lPYbFaz2awmpiSZ4ushqmY4OLiZrGOwyawg7QTHupESXq9Zsc6Fm0g9eq+99hoLFy4c9v0Gg0G+9rWvcdVVV7Fp06Yh7UMGetKwCFQrWGkXOzPWLZFGm+pzR6e4uCRJklRUep0IvdkIfvJM83cSVnLM87dguhprs3XkMfa+E0ka50YiyNuR3+/ngAMOGNK2MtCT9p+A8DSV5AbZmzcZKQa4MgmbJEnSpJXDx3u5elQsphpdlGkpFgQ383ZmKqYM9saMizfiphgVabMmnCGNtRJCDGo54YQTdrl9Lpfj4Ycf5qqrrmLx4sWUlZWh6zrl5eUsWbKE66+/nra2tv15XP2mT58+qLZOnz59r/v6n//5Hw477DD8fj8NDQ3867/+K4lEYrfrL1u2bMAx/vrXv+71GNvWXbZs2T48yrEVqFVQ/YJUowz0JiNVA0fOy5QkSZr0bDQ2mjWszdUigPnBJlmOQZLG0KhPqnnzzTepqqriYx/7GL/4xS945ZVXiMfjWJZFT08PL730Et/97nc54IAD+P3vfz/azdut733ve3zmM5/hjTfeIJ/P09TUxM9+9jNOOOEE0un0oPZx7bXXjnArx8a2YZtmXF6fmYyEBo4smyhJkiRtlXRCbDHLUXE4NNhIvd4JMuCTJplCocCaNWtYs2YN+Xx+p/tzuRxf/epXaWhoIBAIMH/+fH7xi18Maxv2a+jmlVdeyRe+8IXd3h8KhXa6LZFIkEwmATj22GM566yzOPLIIykvL6ezs5M//vGP3HnnnSQSCT71qU8RiUQ4/fTT96eZAJxzzjn84Ac/2O39O9a1+KA1a9bw3e9+F7/fzzXXXMPJJ5/M5s2bufbaa1m1ahXf//73+fGPf7zXNrz66qv8+c9/5uyzzx7SYyhWvgqFXJf8AJ+cHIQKVmbiTKqWJEmS9l+HVYoqHGr0XmqMPsq0FGuyDVjoY920ScNBICjO72enSNs1nP70pz/xyU9+koqKCrZs2bLT/eeeey4rVqzA3Tq+9t133+Xqq6/m/fff5+abbx6WNuxXoFdVVcVBBx20T9soisIFF1zAddddx/z583e6/9RTT+X000/n3HPPxbZtrrrqKt5//32E2L8XRCwW2+e2bvPAAw/gOA4/+clPuOqqqwA4+uijOfbYY5k7dy6///3v9xroVVRU0NXVxbXXXstHP/rR/X48RUOAr0wQf0MO2xyfHEINEKxy0UMuYlsf/7aXpwuFlCDXLTCToAVBD7qYCUG6DUqmuwgB2c6xar8kSZJUrFoL5bQWypmid1Gj93JosBELhQw+2onSQ2SsmyhJI+Zvf/sbruty3nnn7dShtHz5cv72t78hhKC+vp6jjjqKV155hebmZn7xi1/wyU9+kqOPPnq/2zDqQzePOeYYfve73+0yyNvmnHPO4bzzzgNg/fr1rFq1arSat0vNzc0AnHjiiQNunzJlCvPmzeu/f0++/vWvA/DGG2/wxz/+cfgbOUaMUoGiCdmjNw6VzreZdqZD1UKHUJ2LEQEt5AVzWmDrEoJgrUv5wQ61xzhUHuYQm+tSdaTD9DMdyha4OAVINE6QCxeSJEnSsGsuVLA2V0ufHcQFSsgyhzYWsAUFeaF4pGwrmF6sy0T3+uuvI4TgQx/60E733X333QDMnTuX1atX84c//IG3336bAw88EIA777xzWNpQtIWvdgyq1q9fP4Yt8XouAZ5++ukBt7e1tfHee+9RU1Oz13188YtfpLq6GoDrrrsOx5kYgZG/QsG1XcweOT9vvInOdFFU6F4taFyu0LhcY9NyjU1/2WFZrtG4XKHtZYXu1YK2VxSanlToelMh0ybIx6H5GQWcov0okSRJkopA0gmxLl/H68ziZWbRR5AwOY5gI2Ukx7p5kjTsOjo6AJg5c+aA2x3H4e9//ztCCK666ioiEa9nOxqN8qUvfQnXdXn++eeHpQ1Fe3a246RFVVXHsCXwsY99DICvfe1r/OhHP+Kll17iwQcf5MMf/jDpdJpPfOITe91HMBjk3/7t3wBYvXo1v/vd70ayyaPGV6GQj7syvf445Dpgm5BYr+45UHMUsu0KifUq2TaFQlIh2ajQ8apK63MaVrpoP0YkSZKkoqTwLlN4nxoEMIc2DmETIbJj3bAJxdlaML1Yl4muq6sL8Org7eiNN97oz9p/5plnDrhv2zSzpqamYWnDfp2hPfDAAxxwwAEEAgEikQhz5szhkksu4cknn9zvhu3Ye7atG3N/PPPMMxxyyCGEQiGCwSAzZszgn/7pn3jooYf6J0HuzpFHHsnVV19NNpvlW9/6FkuWLOETn/gEa9as4aCDDhp0Ns3Pf/7zTJkyBYDvfve72Pb4H67gLxfk5bDNccm1QNGhbqmFFpLPoSRJkjS6eoiwkhn0ESSAyYG0jHWTJGnY+Hw+YHvAt80zzzwDQH19PdOmTRtw37bePcsanrpV+xXorVmzhrVr15LL5UilUqxbt4777ruPk046iXPPPZe+vr4h7feNN95g+fLlACxYsGBYAr2NGzfy1ltvkclkyGazNDY28vvf/55zzz2X448/fq/z7G666SZ++ctfMn/+fHRdp6amhquuuopnn32WkpKSQbXB7/fzrW99C4D33nuP//3f/93vxzWWFB/oJTLj5nijGA6l822sPAgBvihULpTPoSRJkjT6HLxRW0JAK9Exbo0kDZ9tQdzLL7884PZHH310t3P3enp6AKisrByWNgwp0AsGg1x44YXccccdPPvss6xatYoVK1ZwzTXXUF5eDsBDDz3EOeecQ6GwbwW28vk8l19+eX9v1w9/+MOhNLGfYRicffbZ/OIXv+Cpp55i1apVPPnkk/zwhz+koaEBgOeff55TTjllr4HplVdeyerVqzFNk9bWVv7zP/+TWCy2T+25/PLLmTp1KuDV5huuiH0s+Mq9l0++S87PG08qDnWJzXbxRcFMQe97gtaX5PBLSZIkafQFyBMlQ9L100zFWDdnQnHd4l4muhNPPBHXdbnlllt45513AC/Ie+KJJ4Cdh20CvP322wDU1tYOSxuGVF6hubl5lwHOKaecwlVXXcXpp5/OqlWrePrpp7n11lv5l3/5l0Hv+0tf+hIrV64E4JJLLtnvmnOvvPLKLtt6wgkn8KUvfYmPf/zjrFixgnfeeYfvfve7/Md//Md+HW9vDMPg29/+NldccQXr16/nnnvu4fLLLx/RY44Uf4WClXWx0pPg3TqBdL0lCNa45Huh9dn9qrAiSZIkSfulij6EAMuVFxylieWqq67i9ttvp6Ojg4MOOoiysjJ6enpwXZeGhob+CgM7WrFiBUIIjjzyyGFpw5DeVXvqxaqurubBBx/srxdxyy23DHq/P/rRj/rTiR511FH813/911CaN8Ce2hqJRPj973/f3wt5++23Y5rmfh9zby699NL+DDw/+MEPhueYwhv2MFqLFoSSOSrZdmdUjztel9F+fva0uHkFx/TKJ4x1W4pxKabnSi7yeRr3C0XQhvG8MPGXFsqwXEGpyBAgP+btGfIySq+HfTHW5RMme3mFOXPm8N///d8Eg0Fc16W7uxvXdYnFYtx///071dZra2vjscceA7zOs+EwIpfzZ86cySmnnMLy5ctZt24dLS0t1NXV7XGb2267rX/+2rx58/jLX/5CKBQaieYNEI1GufDCC/mv//ov0uk0K1eu5JhjjhnRY2qaxrXXXsuyZcvYtGkTv/71r7nyyiv3a59ltUEMzb/3FfeTq3vj50sP1vCVKGTfNCmftpeNipwIBkd2/wKiVUEExTNUIeizMSLgHCrId8urqNuM+nMVCozCQUaX69dH/iACYuW+rQcc+cNNRMFS34gfQwgojeggiuezb7yxRv5rHQGURbz37Wg8TbZ/4Am+jkJsa+H0UsK4+xzOFIdg+ch+lwoBocD4T+I32XziE59g6dKlLF++nLa2Nmprazn77LMpKyvbad0333yTT33qUwCcdNJJw3L8ERu3NX/+/P6EKs3NzXsM9H7zm9/whS98AfAmLj722GNUVIzeOO0di7cPpvj5cPj0pz/ND3/4Q9auXcsNN9zApZdeulP61X3R05pBV0f+A8Bt6QMgeJiP+Fs23evG7xzDbURkZP9vQnhfnj1NyaI52UkmHGqOc9AbQK0FKwtOXmDlwclCLi7ItsOuOv2jc73/V9/asS17MhJG/bmKTLwkOE5odAIIgO72bNG8p8abVHDkh20LAbjQ0ZuXz9MQFQIjH/RsO0J7rzkqgZ4V3P6YguSYTxNJXNZSQy/7ltehmES6R7btQkAhvG/PUDH3nBVru0ZCVVUVl1566V7XO/XUUzn11FOH9dgj9km/t5IF2/z5z3/m4osvxnEcamtrefzxx6mvrx+pZu3SYNs6nFRV5brrruOiiy6iubmZ2267jauvvnroOxylia2uC4EaBS0kSG1xJsaX92g8hiKbfJzvU9jyNyg7yCVQ5aKHQES8xgkBUVxcF5y8g5UDpyAQmoseBHXrebwRselYOfGCvVF9rork9TCcRu01XmTvqfFmtP5vLvJ52h+j+HbqX0bjWAYmc2gnTA6A96khvrVXb7walXOwkT+ENIxc10WIsQ1oR6yfec2aNf2/76437/HHH+eCCy7AsizKy8t57LHHmDVr1kg1abcG09aRcOGFF7JgwQIAfvzjH5PJZEbt2PujbKFGrtMh1z7xeiMmE8dS6PqHypYVGpuWazQ+otH4iMKWJxS63xbkurwJAUYE/BVelk6AVJMgF4dQnUvVkXIYiSRJkjR4ChYL2USYHEn8rGI6PeM8yCtWY10QfbIXTK+vr+db3/oWa9euHbM2jEigt2HDhv7JhDNnzuwvEr6jF154gXPOOYd8Pk9JSQl/+9vf+oOe0dTX18fvfvc7wCsbMVxZbgZDURSuv/56wJuA+ctf/nLUjj1U4RkKvjKF7tfH7/AKaU8UrJRCYoNK24sqm/+m0bgtCHxUY/PfNDpfV2l9ViHXI4M9SZIkaV95p57dhFlDAyajMK9XksZAa2srN954IwceeCDHHXccd999N+l0elTbsM+B3iOPPLLH2m/t7e18/OMf76+f98UvfnGndf7xj39w5plnkk6nCYVC/OUvf+GII47Y16ZwwgknIIRACEFjY+NO9//1r38lm83udvtUKsUFF1xAd3c3AJdddll/FfvRcv7553PooYcCcOONN47qsfeVUFzKDtVJbbJl7bxJT6H1OaW/Zy9UL3t3JUmSpL1zUHCBACOf5VySxtLpp5+Ooii4rsuLL77I5ZdfTk1NDZ/97Gd59tlnR6UN+zxH76qrrqJQKHD++eezZMkSpk+fTiAQoKuri6eeeorbbruNrq4uAI477ridAr3169dz2mmn0dvbC3jlBaLRaH+BwF2pr6/f58Lk4A2HvOiiizjvvPM47rjjmDVrFuFwmL6+Pl544QV+9atfsXnzZgAOOOCA/t610SSE4Lvf/S4f+9jH+v9vxaqkIY/qh55/jP8ELNJwUGh9Fqaf6VA23yHdJLN3SpIkSXuXwUeIPH7y5BjdC+yTSTHPjy3Wdg2nbZk277vvPu69917eeecd0uk09957L/feey8zZ87ks5/9LBdffPEuRz8OhyElY2lpaeGWW27ZY428888/nzvvvHOnHrJnn32Wjo6O/r+/8pWv7PV4d999N8uWLRtKU+np6eHOO+/sr8+3Kx/60Ie4//77d5nqdDScc845HHnkkf2F4ouRojvEpuZJrLWxUpPg3SkNkoLrOriyQ0+SJEkapLXUsJBNzKGNtxjnNZokaQ9qamr4+te/zte//nVefvll7rrrLn7/+9/T19fH+vXr+fa3v821117LySefzGc/+1k+9rGPoevDN5x5nwO9e++9l6effpoXX3yRDRs20NXVRSKRIBwO09DQwDHHHMMll1zCkiVLhq2RQ/XTn/6Uxx9/nBdffJH33nuPrq4uent7CQaD1NXVsXjxYj75yU9y6qmnjnlWnO9973ucccYZY9qG3RGKS/VBGVxHEH9b9uZJ2/lKHYQK+Z6JP6lakiRJGh4mBnFClJKmhjhtlI51kyYkr0evOL+fJ0OP3gctXryYxYsXc/PNN/PHP/6Ru+++myeeeALbtlmxYgUrVqygtLSUiy66iGXLlrFw4cL9PqZwx6K2gDRsEokE0WiUk+d8BU0dieEPLlUHZQiUWbT9I0Tu3e4ROMbYEpHwyO5fQHl9hO4iqqM3PBymnu6gqLD57wpObvwP3Rz15yoSGoWDjK7RqqNXUR2gS9bRG7LUjJHPcigEVJX66IjLOnpDVQiOTh296pgxBnX0HI5kIwourzB7FI48siKbRr6OXizi8vDv/o2+vj5KSkp2u+62c8M5//NvqMGh12geSXYmx/uf/vFeH8tEt3nzZu655x7uu+8+NmzYANDf+XTIIYdw2WWX8ZnPfIZoNDqk/Y//MzNpBLmUz80RLLfoWB0knxj5ArvS+FE6z0XVoWeNmBBBniRJkjSaFGwEApcoo5uJcLLYVjC9WBcJpk6dyte//nWuvfZaampq+oM813V54403uPrqq6mvr+frX/86yWRyn/cvz86k3YpNy1MyxaTrvQDZbpn+WBrIV+YVVU9smIBF0yVJkqQRt4VyXOBA0cJRrOMgNjOLtq2Bn5z8LU1sL774IldccQU1NTVceumltLe347ouJSUlfPazn2XRokW4rks6neZnP/sZhx12GC0tLft0DBnoSbsUrjUpnZknvsFHqs0Y6+ZIRaiQEggBgSr5ZSxJkiTtuy6ivM4MWt0oFipB8lSQ5EDRwkI2IYM9aaLZVltv3rx5HHfccfz6178mkUjgui7HH3889913H62trdx555289NJLrF69uj8hZWNjI9/+9rf36XhyLJ60k0B5gYq5WRLNBr2bZNpjaRcUB3drnfSKwxy2rJDXjCRJkqR9Z6GxiSo2bf1bw2Kq20UlSWbQyUaqx7R945m7dSlGxdqukVAoFHj44Ye5++67WbFiBY7jsC1FSk1NDZdccgmXXXYZs2fvPFf1wAMP5K677mL69Olcf/31/P3vf9+nY8tATxogVGVSeWCWTLdG91o/3jRtSdouOtum9EAXIcCxoW+9fI1IkiRJw8NCI0mASpKoskdPGsdWrVrF3Xffzf333088Hge8uXeqqnLGGWdw2WWXceaZZ6Kqe58Cc+6553L99dfv89BNGehJ/Urq85TPyZFs1el6L4AM8qQPKp1nE53j4pjQ9aZCplX25EmSJEnDayZeveXNlI9xS8a3Yk56UqztGk5HHHEEQoj+3rvZs2fz2c9+lmXLllFTU7NP+woGgwDsa7EEGehJgEvpzByxaSa9m3zEN/iQQZ60jRF1iEx3CVa7aH6wsrDlcQUcGeRJkiRJw6+Aio491s2QpP3m9/s577zzuPzyy1m6dOmQ9zNlyhSefPLJfd5OBnqTnXCpOCBLpLZA9/t+Ek1yTp7kUXSH2uMcjMjWoqs2JDYJut8QyDxOkiRJ0kixEeiAKU9T94+cpDemfvGLX3DRRRcNuQbejvx+/5ACRfkOmsSEsrUYeqlFx+oA6Q6ZXVPaxqFuqYMWgHSLoGeNwMrI4E6SJEkaWQYmfizihJAXFaXx7Atf+MJYN0EGepOVajhUHZTBCNm0vRkkF5d18iYzX7lDqMZF9YFigBFx0QLQu04QXyPr5EmSJEmjo4w0QkCvGxzrpox/RTxHj2Jt1wQjA71JyB+zqJyfAaB1VRgzJU/kJyvV7w3P1Ld+n26b4+s63jBNGeRJkiRJo6mLCFPdLmbQSRUJNlJJmsBYN0uSxiUZ6E0qLrHpeWLT8+TiGh1rAjgFOSxi0lIcpix1UAxIbhL0rhVYWZBDZSRJkqSxYqHxJlOZSQcRchwsmki7Bm/RgPx+ksajfD7P//7v//LQQw/xxhtv0N3dTTab3eM2Qggsy9rvY8tAb5JQdIeq+Rn8pTa9jT56G2VmzclKCznUHe+gbB2t27tW0Pue7LmTJEmSikMOH2toYCqd1NGLn8JYN2lcct3tI3WKTbG2a7i9++67fOxjH+P999/f59IIw0EGepPAjkM12/4RItcrn/bJrGyBi2pAtlOQaBSyFp4kSZJUlGrow3IVXmcasjdPGm+SySQf+chH2Lx5M6qqcs4551BeXs4dd9yBEILvfOc7xONxVq5cyUsvvQTA0UcfzamnnjpsbZBn/BOaS2xantiMPLlelc41QWxTflBOdrluCNWAv8LFV+qSbXDpfU9g9snXhiRJklQc6uhGES5tbhRHnq4OiSyYPrZuvfVWNm/ejKZpPPHEExx33HGsXr2aO+64A4Drr7++f9233nqLT3/607z88st84hOf4Mtf/vKwtEG+cyYI1W+D5YILiuYSKLMoqTfxlcihmtJAifUqZp9DyXQXX5lXCD1U4+IUHHrXC/rWymGckiRJ0tiJkaKBHgquwmbKx7o5kjQkjzzyCEIILrroIo477rg9rnvwwQfz5JNPcuihh/K1r32NJUuWsHjx4v1ugwz0Joj6RWl0rYDrgrL1PD0bV+VQTWmXcl0KuS7vd8XvUDrXJTTFpWyeS3iKRfOTCnKYjCRJkjQWptGFC7whh2zuH1cUbxmDYm3XMHr33XcBOOuss/pvE2L747ZtG1XdfnG9rKyMr371q/y///f/+MUvfiEDPWm7jtUB/EEdIcAyFcyUgpWVPTPS3jk5he43oftNhyknOBglEJoC6eaxbpkkSZI0GWnYWKhY8jRVGsf6+voAmDZtWv9tPp+v//dUKkU0Gh2wzZIlSwB47rnnhqUN8jLJBKEHHZItPhLNPjKdugzypH1WtsBFj3iZsPKJsW6NJEmSNFkJXBw53WS/bcu6WazLRBcKhQAGZNssLS3t/33Tpk07bbOtpEJbW9uwtEEGehNEyRQToUyCd400ImIH2JTMdLEysPlvClZSfjRIkiRJY0PBxZanqNI4N2vWLAC2bNnSf1tZWRmVlZUAPPnkkztt8+KLLwIQCASGpQ2yT3yCUA0XDgiQyQ3PC2N3tOrIiO5/LGgpc0T3LwS45QEcS9/FFSzHu9zijPwXmmZYaD4boYAiXFBcdMMhUpnDCLhYpmDzO+VQVpxfrlbYGPFjCAGFSj+mPzQprjaOBCs48l8rQkC+zEfOFfJ5kiY0KzjyvVoCsP0CKygYjbeTtZfTlPpCN4oN3WoISx+FBg2T5LSRbawADJ89oseQhtfixYtZtWoVr776Kuedd17/7aeddhr/8z//w4033siZZ57J7NmzAVi5ciU33ngjQgiOPPLIYWmDDPQmCMcRFCz5dI4XiuZQP78HzecA4NiCdI+PzsYww9HRrigOofI8wWgeX9BCMxzEbnbrupDqMWhfVzIsx5YkSZKkoagrxJlm91BAYbNaNtbNGf/crUsxKtZ2DaOPfOQj3Hrrrfzxj3/kRz/6Uf/tX/3qV/nNb35De3s78+fP59BDDyWbzfLee+9h2zZCCP7lX/5lWNogI4MJQlFcIsEM3YkSZBmF4mcECuj+bUEe4EJJVY5IRY5cWiOX0tEMGyGge3MYyxz4VlU0C8faOTOmP2xSMT2JEfC2dV1wHTCzKrmUQSGneHV1HIHjgGMrZPv0nfYjSZIkSaNFcywWFFoIu3ksFFYZU0GR30vS+PaRj3yEiy++GNu22bhxIzNmzADg0EMP5Ze//CVf/OIXsSyL1157bcB23/nOdwZk6twfMtCbILoTEWor4hh6gdbucmSwV3w0wyJak8EfLqAZDo7tlcJQVHAVl/YNEcrq0vjDFoGI1T8kLRjrIdERoJBVScX94MCMw3sAL0i0TBW7IND9DqruBY/ZhE6i00+61zcqw0IlSZIkaSjqC91MtXsQQK8S4B2tDkcGecNCFkwfW7quc8899+zyvs997nMcf/zx3HvvvaxevZpCocCcOXP49Kc/zaJFi4atDTLQmyDCgSygUBZJ0REvxXZk1s2xZgRN/JECvoBNVb1JJN/r3eGCbSm4NgjhIhRvzpE/ZLH5zQrAwQjYmFmVUMykek6CWE0WgIrpKZKd/v5jWAUVzbDR/V7PXTpu0NlYsrW3T5IkSZKK19RCF1PtOAUU3tVr6FNDY90kSRo18+bNGzCkcyTIQG+CyOT8mLaPvlRYBnlFoH5BN77Q9knTumEQ79bo2hTGzAxMKqIoDr5IgWxy20RuBTPrBWrpXj8bXjXQDAdfuED1rCQlVTlcFxIdfro2lYzWQ5IkSZKkYVVn92IheNmYIYdqjpRJMBdO2j0Z6E0Qnb1RhLwSVjSMoBfkZXp1OjZGKSsP0dXu32WGQMdRyPb5dr6jn4JlKlg9Gu2uQKgumV4Dx5IBvSRJkjR+Waj4sCh1M8QJj3VzJGnCkYHeBDGjto2m7mlYtnxKi0HT6hi1c/sIRAto+vClQ07H/XtfSZIkSZLGgXeNGg4xm5hfaCVjGazSG2TPnjTubN68eUT2O3Xq1P3eh4wKJpDash62dFaNdTMkwMwY9LUFKZ+axh8ujHVzJEmSJKnopJQArxgzmG11UOGkmWr3sFmpGOtmTRgyGcvo2JZNczgJIbAsa7/3Iy+bTBC9qTBBfw45GLs4RCqzlE9NA9s+zOTzIkmSJEkfZCka72o1uECJmxvr5kjSPnNdd0SW4SB79CaITN5AU7PUlvWQygbImQYFW0WWWRgbun/7VZjKGUkiYQH+Ap2NIeT1FUmSJEnagaKQR6PEyaI5FpYiT0+HhSyYPiruvvvu3d7nui6//OUvWblyJYZhcNppp3HUUUdRVeWNwOvo6ODVV19lxYoVmKbJkUceyZVXXokQw3P+Lt9JE0Q256e9R6E82kdZSRIAy1ZIZgN090XJF4y97EEaTj1bImTiPlTdxvDbhOdBSVWWfFYh0S6T5kiSJEnSjhq1cg6w2llkbmSzWkaTWirn60njwiWXXLLb+5YtW8Zrr73GGWecwR133EFtbe0u12tra+OKK65g+fLlPP3003sMHveFfAdNELOmtBDw5+hJRtjYVk08GUZTHUrDaWZPaSHkz451EyedXMogHQ/Q2xamYCq4LqS6ZTIVSZIkSfqgLq2E1XodDoLpdg9HmxuotnrHulnjnCjyZd+1t7fz5z//mWuuuYaTTz6ZaDSKEAIhBNdff/2g9nHPPff0b7O3ZXcFzwfjt7/9Lffddx9HH300jzzyyG6DPICamhoeeughFi9ezH333cf9998/5OPuSPboTRCJTJBwEMoiSapifQCkcz7ypoFQHPIFfS97kEaSaysIAQ0HxUn1+OhrD2Dl5dtPkiRJkrbpVUO8JGZSb8dpsOPMtjrJC51eWT5K2qqmpmasmzBot912G0IIvvKVrwxqKKaiKPy///f/uOCCC7jjjjv41Kc+td9tkGeaE0RHPEYqp1FWkqB869DNxrbdXzmQRldXYwQCGcLlOWI1WaLVWVwH2teXkOmVvXySJEmSBICi0KSU06ZGWWRuZHahg5Xq8Gc1nBQm+By9mTNnUl9fzzPPPDPkffztb3+jrq5ut/fX19cPed+rV68GYNasWYPeZtu6b7/99pCPuyMZ6E0QB0zdgt9n4DiCbN4g4DOpKe0hmQ3gugLbUeQ8vTHW1VhC58YSjKBJ9awkRsBG8zlj3SxJkiRJKjqWotGrBCl1MiiOgyPn60nAtddey+LFi1m8eDHl5eU89dRTnHjiiUPe39y5c5k+ffrwNXAH6bSXfb2lpYWFCxcOapuWlhYAMpnMsLRBBnoThLK1R9gFFMULHsqjCcqjif51ehIRWnvKx6B10o7MjIGqOTg2JNplb54kSZIk7UpK+Cgjgx+TDPL7UoLvfve7Y92EQZs5cyZr1qzhtttu48wzzxzUNrfddlv/tsNBXh6ZIDJ5ne5EhO5ECclMkO5EhHgyTDrnw3a8KNDLxlmsffiTi+uCUCAQlcXUJUmSJGknjkONncAFcsg8A0PiFvkywX384x/HdV2WL1/O1VdfTT6f3+26pmnyla98hUcffRQhBBdccMGwtEH26E0Q3YkouUIpu8tiFDDyWwuqy7p6xaDt/Sh1B/ZSO7eP7s0h+mTJBUmSJEnqt7CwBR2bZrUUR1HHujmStM++9rWv8b//+7+sW7eOX/ziF/zhD3/gggsu4MgjjxxQR2/lypU88MAD/cM2Z8+ezb/+678OSxtkoDdBNFR2Ydom7fFScqbBBwO6rOkja/rGpnHSTvJpg81vlNFwUJzyqWmMgE1nY8lYN0uSJEmSxlzMThNyTTqVMI16xVg3Z/xyhbcUoyJp17Jly3jnnXeIx+OUlJQwe/ZsTj75ZK688kqmTJmyX/sOBoM88cQTnHnmmbz11lu0tLRw880373Jd1/W6OA855BCWL19OIBDYr2NvI4duThCt3WXomsWsulbm1Dcxe0oTBzRsZk79FqZUdBINpfAbeVTFZlL0l48DdkGj8Y1yCjmVkqoc9Qd198+vlCRJkqTJKuiYAOSFHLI50SUSiQHLnoY3joSnn36ajo4OCoUC3d3dvPzyy9xwww3Mnj27f77c/qivr+e1117j5z//OfPmzcN13V0u8+bN46abbmLlypX7HWDuSPboTRDVpXES6QoyeR8hfw4A21FQFYeQP0csnO5ft2Cp9KVDdPZFcRw5HGJMOQpb3iqlalaScFmeaYd30fJOjHxaZkiVJEmSJqc2NcpUu5spdpxqu4+sMEgofjrUCBlFJmUZLNf1lmK0rV0NDQ0Dbr/uuusGXfh8f8ycOZPzzjuPJUuW9Ldhw4YN/OEPf+DBBx8kl8vx+c9/HiEEV1xxxX4dS9M0rr76aq6++mpaW1t56623iMfjuK5LWVkZBx988B6Lqe/XsUdkr9Ko60mFqS3vo6svSnu8bKf7VcVG1yx0zSLkz1EaSVISzNDYXk3BGv4rZppmUVndRzCUQ1GgUFDpjQfp7QkjO5I/SKFjfZRUd46aOQnKp6ZoeWfn51CSJEmSJgNHUXjJmMlcq52YkyXi5iixc0yxeymg0KrGaFdLMBXZ4zfebdmyhZKS7VNXfL6Rn2Z07rnncskll+xUxPyoo47in/7pn3j00Uc577zzKBQKfOUrX+Hss88etkLttbW1IxbU7YoM9CaIzngpqpqjKtZLXzq0U80821GxTZWc6SOZCdGdKGFGbSvlJQnadlNywW/kiIbThHw5dM1GES5WQWHTxmocZ/fBWqQkTe2UOACOLbAKCoZuUV2TIBLJsWVT1R4fS1V1nJJoBtPU6GyPks1Ojqt3mV4/dsGrrydJkiRJk5qisNbYfkIccnJMs7qJORmm2T1Ms3twABONLjVMo1oOstbeuFNSUjIg0BsN0Wh0j/efddZZXHfddXz7298mk8nw61//mmuuuWaUWje85DtiAunui2JaGnXl3Vvn4oEQDrpqoQiHHXPauq7AcRQ0dWBQ4dPzNFS1c+DURmbVtVFRksRnFHBdgeUoGD6b0vLkblrgUDOlm9opcVxXsLmxgnVrp7BxfS1r362jYKr4A+YeH4NhmMTK0gjFxR8o0DC9i+ranv3+34wXubSOorog5+pJkiRJUr+04meNMYUXjFms0WpoVUtICx86NvV2L8eYG6i0+sa6mcVlrMsnjOPyCp/73Of6e/yefvrpMW7N0MkevQmivrKDnnQNLV0VTK1uZ97ULTiOQFG8d5LjgusoqOr2AMJxYUvH9t61kD/D9JoOAExLpS8ZojcZxrS83sG68k6MSBozt/PLRlEsps3sxDBscjmNLY1VW3v9HAyfhZnX0DSbgrX7OYGK4jB1RicAG9fV4DgwbUYn0ViGVCJAOj08GYiKWf8gAhnnSZIkSdLOFIUeJUIPkf6bKqwEc6wO5lodZBWDlDLxzxekkVVVVUVFRQWdnZ00Nzfvcd3zzjuP6667jkMPPXTY25HL5fjVr35FMBgc0lxBGehNED7dYnZdC33pEG09ZaiKg6o4WLZKwVYxNAtDL1ASzGDbKm1byzBY9vaXQL7gjXUvWCrvNzXsdIyAz+uNq6nrpUbEEQIcR+A4Ak3zIpN4d4iO9tL+babN6MQf2F4U3HUEimLhOANfeobPZNqMToRw6WiLYlne/T3dEWrqetF9BZgEgZ4/UsCxBLKzXZIkSZIGp0srocJJUeGk8TkWKfkV6pHlFfaLO8hMNg899BAPP/wwZ511Fl/96lf50Ic+tN/H7ujo4N577+U//uM/6Ojo4LrrrhvSfmSgN0FYjqA3Fd4pw+auaKpD/gNBnne7N4zTcQVel9LAT8qNbdVMiXbjD5g4toLjCnTdQgiXXE735tNlBs6n0/QPDA31W8yZ14brglVQyWR8aJpNMOSl021tLiWZ2F48vLK6D8dhaxKXiU9RXXJJ+baUJEmSpH1ho+ACcSW013UlaW86Ojro7u4GoK6ubo/rXnPNNfzsZz/jkUce4dFHH2XKlClceOGFnHfeeRx++OEYxuAyqTc3N/P4449z//3388QTT2DbNq7rcvzxx3P++ecP6XHIM8oJQhEuAX+WjW01COFiaF4AJoBYOIWhF0jn/CQzQaZVdxAKZEll/Vi2yraALmf6SWQCRAJZ5tY3sbapnh2DPcfRaG3edeKW3Vm/toZQOI/hK6AIF6G4KMLF5y/gDxSIxjK4LpimRtPmcqzCwAxaiuKSy+pMph6uQImFEShgZmU2MUmSJEkajLTwIUgScbP0IYM9AOF6SzEq1nZtc/vtt/f36C1dunSP637/+9/niiuu4Pvf/z733nsvTU1N/OxnP+NnP/sZuq5z8MEHs3DhQqqqqigtLaW0tJRsNks8Hicej/P+++/z6quv0tHhTZ/adtwFCxbwox/9iLPOOmvIj0MGehPElo4q5k6NM7e+GceFTM5PzjTQVZtIMItlK5RFUsTCKSxbYUqFd5XCcSGb95HIBMkXNLp6oxiahd8ooKk2lr2/AZZCOhUgndr1sEtFs3Ashd0FclZB9ZKyTOtgy6aK3a43UZgZFSNoY2ZlfUNJkiRJGqyk6gcbSpwcfaoM9KRda2xsJB6Ps3Dhwt2u8+ijj/L9738fAL/fz6WXXrrX/TY0NHD77bdz/fXX81//9V/ce++9tLS0YJomr732Gq+//voet98W3Om6ztlnn80VV1zBKaecsg+PbNdkoDdBWLbGupY6Qv4chmYRCWSJBDMI4dLSVU48FWL+tM0oApQdErJYtkrQlyfkz39gfwqWPfI9So6155fghnXV1E/tJhjKM31WO43rR6/2yGgzAgWMgI1l7j7wlSRJkiRpZ0l8uEDYzY11U4pHMWe3HGK7nnvuOdatW9f/97vvvtv/+z/+8Q/uueeeAesvW7ZswN+NjY2ceOKJLFmyhI9+9KMcdthhVFVV4bouGzZs4MEHH+TBBx/sD7x++tOfMmXKlEG3r66ujhtuuIEf/OAHPPfcczz55JM8++yzvPTSS6TTu55aNWfOHI4//niOP/54zjjjDCorKwd9vL2Rgd4E4jgqyYx3Fas7sWONEIfpNe0IAe3xGGWRJEK4aKpDU2cl2bxBKJBFV21UxcG2VXrTxXI1TKFpcyW19V1EIjkCwdxO8wDHO0WzqDuwD8PvzWfs3jw55iNKkiRJ0rBRFCwUYk4WxbFwFHmKOxHdeeed3Hvvvbu87+GHH+bhhx8ecNsHA71tXnzxRV588cXdHicYDPLzn/98SJkuAYQQ/cHbNvF4nM7OTnp6evD7/VRWVlJZWTnoOXxDId8FE5yiWMyqbcXQbZJZP119MbJ5H9Nr2gGYWdvGls4Kkpkgrlu8vUjtLTEiB7TRMK0L14WtpU3I5XQ2b6xk3PaAKQ5TD4mjqC6ZPp2uxgiWKd+WkiRJkrSvGrVyZludHGVu4g2jgZwycifQ0vh0xBFH8D//8z+8+OKLrFy5ktbWVrq6urAsi9LSUhYsWMCHP/xhLr/8cqqqqva+w32wbX7eaJJnlBOUoljUlXdTEswC0JWI0N7jJVJJ5wK8t6WeAxqaAGio7KIjHqOzLzZWzd0rx9HYtLGSyqoEiurg2F5NQL+/QF19Dy1NFYPaTyCUpbIyieHzisCnUz56NoS2zhMcbQ4NB3lBXtemMImO4Bi0QZIkSZImhnYthubaTLd7ONzcxOvGtMkd7E3A8gr33HPPTsMz90UkEuGiiy7ioosuGvI+xhMZ6E0girApL0kQDacxNAsA09Jo7SonnR+YDMWyNbZ0VNJQ5RUoj6eKf7hgPuejafPAcctz5zWhGxaRkjSBgIlQXFxH4LhiwE9vnWx/vT+roKKoDiXRLJHDsjS/E8NMj+6XQe0B3nDNvvaADPIkSZIkaRg06+UklACHFJqZX2jhdd/0sW6SJI0ZGehNELOnNBMMqF4R862ZNNvjMTL53RcZtx2FdM5HS1fFTjX1xgsXgd9vUVcf3+u6jgOJviAdbTEcx+vBC0WyTKnvpmZWgs1vDq5XcP851C+I4wvZ3nDNTZFROq4kSZIkTXxJNYhTECiDLHg9YU3AZCzSvhmfZ/fSTlTFIZUL0Z2IkM4OLpFKOhcg3bb7QHA82Liumkg0g22pZNI+LEtBURwUxcsuqiguiuJgFVRMc+ceu3QyQC6p4Y9Yo9bm+gVxjKBNstugY33JqB1XkiRJkiYFx0HFBeyxbokkjamiz2AhhBjUcsIJJ+xye8dxWL16NXfddRf//M//zKGHHoqmaf3bNTY2DrotLS0tLFu2jMrKSoLBIEuXLuXvf//7btdvbGwc0Majjz56r8e4/vrrh9S297Y0sLm9ZtBB3kRhWRrx7hISfSEsSwMUHEfDsjTMvEEu6yOTDuwyyNsmmzQQAqYd1kXFtATBWA5wdrv+/tD9FkbQ68nrWB9jHLwFJUmSJGlcmWl701I6leKfljKi3CJfpBE34Xv0/vu//3u3qVX3RUtLC4sXL6apqan/tmeeeYbTTjuNe++9l09/+tN73cfLL7/M8uXLOfPMM/e7PdLwiTcH0QybSHmeaHWOaHUO1wUzq9K2NorjKPjDJobfJp/VyPb5hnyscFkOISDevC0gdwiX5zEzGmZ25OsWSpIkSdJEpjgONXaCPCrrjJqxbo4kjalxE+hdeeWVfOELX9jt/aHQrnuy3B3GZ/t8Pg477DC6urpYv379Ph3/K1/5Ck1NTSxZsoRvfetblJaW8oc//IGbbrqJz3/+85x++umUl5fvdT/XXnutDPSKjkLnxiidG0EzLIKleUIxk0BJgWmH9ey0tl0QNK0uHVIZBMf2skxFq7MIJUOo1OwvFdHXHpDz9SRJkiRpP9TYvSh4pRYkabIbN4FeVVUVBx100D5vN3/+fG655RYWLVrEYYcdhmEYLFu2bJ8CvXw+z8MPP0xDQwOPPfZYf1B57LHH4jgON998M8uXL+fiiy/e7T4qKiro6uri9ddf509/+hPnnnvuPj8WaeRZpkaiXSPRHkL3W8RqMl7vXkbDzGoES/PEarJMPbQHuyBQNBfXFjS9U4qV2/vbqa89QGldhkhFfkA9QIDecT5fUpIkSZLGWoWTwgU6FXnhtKiHSBZruyaYCT9BaNGiRXzpS19i0aJFQ648393dTT6fZ9GiRTv1HH74wx8GoLm5eY/7WLZsWX/hxeuuu25AT6NUnAo5jc7GEro2lZDoDJJLGfRsidDybhTLVBACbFNB1V1qZvcNcq8KjasqaXknSqLDTyHnvQVtS2Dlx811F0mSJEkqShoONgKUCX+KK0l7Jd8Fg1BaWoqmaaxcuZJMJjPgvqeeegqAmpo9jwMPhUJ84xvfAOCtt97igQceGJG2SiMvl/Sx+Y0KGldVUsirW28b3EUEVbeonRundl4f0eocmuGQTWhsfrNsJJssSZIkSRNe2MnidwvY8vTWs61gerEu0oiT74RBCAQCnHbaaWzatIlTTz2V5cuX88ILL/D1r3+dm266iWAwyBlnnLHX/Vx55ZXU1tYCXnZNxxmZzI7S6AiVZQlECgCUVGb3uK6q29QcEGfaYT0EogUv0cu6CBtWVtDybhmOpY5GkyVJkiRpwlpgtiCAjVrlWDdFkrjwwgtZsWLFmI7iGzeB3gMPPMABBxxAIBAgEokwZ84cLrnkEp588slROf5NN91EeXk5zz//PGeddRbHHnss//7v/47ruvznf/4n1dXVe91HIBDgm9/8JgDvvPMO999//0g3WxpB0aosQvEKsfe273p+naI41B7QQ83cBIFIATOj0vR2KU1vl5PuCTCO3oKSJEmSVNQ0HBLCT5cm5+cBCLe4l4nu97//PaeffjrTpk3jO9/5zj4nghwO4+Ysc82aNaxdu5ZcLkcqlWLdunXcd999nHTSSZx77rn09Q12jtTQzJ49m1deeYULLriAWCyG3+9nyZIlPProo1x22WWD3s8VV1xBfX09AN/73vewbVnMc7wxAgWmHtKFP2LhurDx9Qp6tkQwAgUC0fz2FRWHqQu78UcszJxC8+pSmlaXyzIKkiRJkjTM/I4JQEHIETJScSgtLcV1XZqamvjhD3/I3LlzWbp0Kffdd99OU8FGStEHesFgkAsvvJA77riDZ599llWrVrFixQquueaa/nIGDz30EOeccw6FQmFE2zJz5kx+97vfEY/HyWazvPDCC4Masrkjn8/HNddcA8D777/PfffdNxJNlUZQ1cwEut8bdtu1KQwOTDusk/qD4tQd0Me0w7oIRPI0LIijKC5djRE610dlgCdJkiRNKFHSHEgTh7CJ+WyhgS40rF2s6TCVDpRd3jc8FhRaANgkyypsN9YF0Sd5wfTW1tb+Xj1FUXBdl+eee45LL72U2tpaPve5z/HCCy+MaBuKPtBrbm7mN7/5DZdffjnHHXcchx12GKeccgo/+MEPWL16NQsXLgTg6aef5tZbbx3j1g7OZZddxvTp0wH4/ve/P+IBqjS8xNZ3Tdv7JSQ6ggCouotdEPS1B1B1h7oD+9D9NskuP8kuWTZBkiRJmlhm0cY8Wighi48CEXJMEXGOYCN1dDONDg5mEwezybtN9HEgLSPSlrpCnIBboEOJkFV8xOw0881mDGfX51eaY3nzLiRpBBmGwcc//nGWL1/O5s2b+3v1XNclmUxy1113cfzxxzNv3jx+8pOf0NraOuxtKPpALxaL7fa+6upqHnzwwf6yCbfccssotWr/6LrOd77zHQA2btzIXXfdtd/7FEIuo7XYlsCbVyu23qZg5b0yC/GmEFveKiPeHKT1vShdjSVerbwiaLdc5DKhFvm5Nz4W+Tzt//+vCJcgeSpIkkNjJTNYyWxeYRbvunU4CKaKHmpFHwFM/BRQcHFdCJPnqNwGDjKbiNnpYWmL6thMt7uwEGxWS1lgNrOg0EKZk+Eos5Fjcu+zKLeeaYUuBHBIfguLzY0sMTcgHGfM/5f7ukjjU21tLf/2b//GO++8w/PPP89ll11GJBLBdV3Wrl3LN7/5TaZNm8ZZZ53Fn/70JyxreHq/x33hrpkzZ3LKKaewfPly1q1bR0tLC3V1dWPdrL26+OKL+dGPfsS6deu44YYbWLZsGT6fb8j7qyjzoRtD336w1NC4f8nsRAsNfjx/aX2KUCxILqUR8kcI+b3bnXQNJZUpZi50SXUG8Uc0IiUK2aSO6wrKK3XAlemE94MVHPmhr0JArNS7cCRLXQ6N7R/5+TFCQGnUACGfp6GyA6P0PEV0+Tzth3zJyH9nCKA85H2+DvZpOpAONFFC1i1hCjoFtn0++2kiRoQsBTRy7Fh6yKWBLkpFjgqggRRx4bBZ37+hlrPNdkL+Ejaq5fx/9u48PrKySvj477n31l6pLXvSSacXaJpdNqGVRQR9UVkURXhVBBEUkXF0HBxHBxAFcXTGBRUXHGBmFEVc2F5XFARkVXaaht6zb5VKVWq/y/tHdac7vWXpJFWpnO/nU9qkbt17KpXc3HOf5znnDVYCLwYmYfq0EAGngMcpUoNJLRarGMBwuzHxYODwBpUkq9w4QE65SCg/aDP7nutz/CdKATX63E19FfPnhBNO4IQTTuBb3/oWd911F7feeisPPfQQpmnym9/8ht/85jfU1tby/ve/n4svvpjDDjtsxseqiqv2gw8+mPvvvx8oTfVcCImeYRhcffXVXHjhhXR2dvLDH/6Qj3/84zPe31A8j+Ga+z8IRqb6TjLGWGFK2zWtGsHSiiST0PVyhEJ6YksFdyyJ0sDXULrA0YBgsPRvXyiEM1JkeKtUApspMzj3hYvUtl+hocGcXJjOkOmf+z8rSgEODMbz8jnNkDmNG1wztf1zGkjI5zRT2Xlo+r39yqEvWZhiomezhCS6cvCTxA+kHC8v0za+Rd/45eXEv699hDF9YTTb5PBiNwEnSdalkdADM4q9zkximUN0Ky/rPAZm0aLJSmKj2OAOkdFCAGi2zWqzl5CdxULxtHsZrytswUuS7Ysr/EAEeM1oZMgITTsWY99dlvabAooeKeBXTXw+Hx/4wAf4wAc+wEMPPcQFF1xAf38/AENDQ3zzm9/km9/8JmvWrOGzn/3stOuCQJUkeuXsT7E/3ve+93HDDTfwyiuvcMMNN/DhD394xvtynPm5Y7pAv9X7NNX35AvumOtf2zZGz9qJTc6zSRcuj0U26SY15EV3WfjDRQLRUiXO3JhRld+/+TJf37vtv0vyWc3MvH1OyOe0P+RzWhjm69s2vfoYGk+xHL9ToI4kLWqUIDk8FHYZwdv7sSzNoEcPc4A5iMcpzuh9arbNSnMAG8WLrlYcYL2rkbjys9rsY3lxkBc8peTT0jRedLdOeP3T7qW4MdEAhUPUytBhDXOg2c+gFoRpJtnz8VlN9xgKKraNgcxvglwuxy9/+UtuvfVW/vznP+M4znhOs3z5crq7u8nn8zz66KOceeaZnHPOOfzkJz+Z1gzAil+jNxUvv/zy+L8Xwmjedpqmce211wKlyjwLpZjMYrXluRiOXVq/3ffa7nf7etdF2fp8HYObQ+TG3KRHfAxuDpEe55f7qQAAzftJREFUKc3vdPssQBZ/CyGEWOg0MnjZSh0JpzQmdqTawut5jSPYTC3Jfb7asE2Wm0PYQFzz01IcIWamphXBIcVuNBxeMxqwd0rKElppdFCf7O+tplHQ3OQ0N1nNQ48e3pHszsNIqli8nnjiCT760Y/S3NzMBz7wAR544AFs2yYQCPChD32IRx99lPXr19PX18d3vvOd8QIuv/71r/nKV74yrWMt+BG9jRs38oc//AEoZb+tra2TvKKynHfeeVx//fW88MIL3HjjjVx44YXlDmmf5mNa1nzL1e/7zohHy9MSHCbozgGwebSJVNvUp5nkdS/NdoJoS4ZIcwbL0egeqyORn7tpnKm26vsjNdfTYqB0h9ETcjNSq+bl7mzNluqruOsdmPveQEqBRzl4B7LzMlKkXts69weZZ1ZqehfVM6E0hbcjin/zCI499x+U0dI858eYb8Gm2OQb7SelINrow+qf2e/TMDWk/B5q6vJ4g0W8gSIrnX60p/e8s8Fjw6xgEF2VCrQcm98yPm3+5aJGksn+vtocRC8hcqTwkiiGMHY6lR5CFwAJJzCtvxsR0ujKodOJzsvfm3nhqMqtDVCpcc2Rvr4+/ud//odbb72VdevWATtmJL7+9a/nwx/+MOeffz6BwI6f/3A4zOWXX85ll13GBRdcwF133cWPf/xjrr766ikft6Kv2u+9917OOOMMDGPPYfb39/Pud797vD3BFVdcMZ/hzQqlFNdeey3nnnsuAwMD3HbbbeUOSeyk0T9Moz8BgOVodKXqSRWnt5bAtF1sGG3BTHtoDMRx6RYhd3pOEz0hhBBibth4gyaeYBHdZeNYCsvUxpcneAImZnHfNxtHCBJ10thopPDic4r4VWHS6XwGJkeyBR2bMTy8zO439w1sbBRd1E3rXRW2FZTxzmGvP7G4mKbJPffcw6233srvfvc7LMsaT+7q6up4//vfz4c//GEOPvjgfe5H13U+/elPc9ddd7F58+ZpxVDRid6VV15JsVjk3HPP5YQTTqCjowOfz8fQ0BAPPvgg3//+9xkaGgLgjW98414TvV2Tp/Xr14//+6677qKubsfJYOXKlbzxjW+c/TezD+985zt53etexzPPPDP+fkR5aZisjPbgM4oULY0NiRby9v5UNdWIF0LkLIOV0V4se+4LIQghhBCzyXCbLDlkBN2196E/q6gY2LjvYiZxaohTutnpI8fhdJJzDEYnGc07hC50bLqIUUCnhREsdIroFNEw0XEorbmbrgxe8o5BHSm6iZJj7iuZz7lKbkxeqXHNoubmZuLxOFAavdM0jdNPP51LLrmEc845B5dr6qVaa2tL1Wmn23ahohM9gJ6eHm666aZ99sg799xzueWWW/a6OPHiiy/e62v/+Z//ecJ/f/CDH5z3RE8pxXXXXceZZ545r8cVe2ZoJqtjW1DASC7A1lQD+7+c1SbmTmDoFo4Dbr36puwJIYSoTpphE24sLT9QChJ9PtIjbsy8jmbY6C4H3SiN7qUT3mntu5kESkGXE6O0jn1vf29tPBRRCtqI73Of1gynBb5CM4fTyeF00k2UXqLY1VHOQpTB8PAwAO3t7Vx88cVcfPHFtLe3z2hfsViMa665Ztqvq+hE7/bbb+ehhx7iscceY+PGjQwNDZFMJgkGg7S1tbFmzRo++MEPcsIJJ5Q71P32jne8g+OOO44nn3yy3KEsekFXBk1BbzrKQGY21kfYrAj3kNZLi9NtB7rHpjelRAghhJhP3mCBUGMGX6iIbjgoBbYF/etDE5O5qXUo2qs0XhwnxUo1wApngAxuNlNPCv+E7doZRlNsG/nzM4qfPAYGNi4sDCx0bAwsRnd57VRl8fIqTayknzYVZ4kTZ5AaNtK0f29SLErvfve7+fCHP8zpp5+OUvu3JjEajVZfonfyySdz8skn7/d+ytV+oaOjY1rHfuKJJ+YwGjFVY0UfjgON/gSOoxjMhtmfEb2AkUPXIJn3M5AJkzW9codQCCFEmdnbqkFva3io2YTrsgRr83j8JkortcWwLUUm4WZ0wEd21MVsF2zvJ8IoPmLOGFEyBMlxMN2YaORxUUDHwKaGHAVH51mWzerxdzVCDU8RoNYZo41h6kmRIDA+1XRBkambZXXnnXeWO4TKTvSEKAfTdrE52cjS0AAtwTjNgThFW2dDooWCPXmPoJ21BgYJeTKAn1TBR9qc2V1GIYQQYrbUtqcIN2bHq12GQiahZGnWieNAMaeTHnGT6PNhm3N/qZjDQw8eeqjFwGQZA4TI4ic/vmovj8FLLJnzWEo0hgkxQoBj2UgdKcJkqCM1vv7PRCeNhwQBBgliyyW12MWHPvQhlFJ86Utforl5alWBBwcH+cxnPoNSih/96Ef7HYP8VAqxB8lCkBeG/MQ8KZqDcdy6RdCVI28XqfWmGMyGyZq+SfcT86XQlEPONBjO73txuhBCCDFXGlYkCEYLOJTaxJkFjeSgF6VAs1wkR7xkEi7ScQ/lbLNsYvAaldET2Y2JUhB2MujKoeho5Lc1hfdSJEKGqMrQ4Qxio8jhIoW31HICL+VuV62cCm6YXqFxzabbbrsNpRT/9E//NOVEL5lMjr9OEj0h5pRGPB+m3j+Krmwi3jGCrtId0IgnTargo2gbpbt7qlTly7J10qYXy9awHcVwNki9P4VHl3LNQgghysPwmgRjBWyz1AohM+pmeGsA0FAKdNPHUL8+L30pF5IcLtKOGz8FUo6Xl2hlYvJmE3PSRBmjhhw+CgRUgSaSpZFRdJL42EgDNlJtW8w/SfSEmMRoPkC9f5SgK4tpa2wcbWZpaIAa945pL1Ca7qIU1JHcbR9KQaNvhL5M7TxGLoQQYrEz3CaxJWMoBekRD4ObZXbJ1Gm8wNJ9Pr9zqwgAr1OgliQRsvgoUMsYETL0E8ZHAS9F3Jjo2ACM4eUl2uYmfFmjt+DkcjkA3O7pLRXaG0n0hJhEX6Z2twRt3Ug72raTdOl/S3f4XFqBgCuHho2mlUb5fHqBUAjqfKOMFvzUuLNoOAzlajCnueZPCCHEYmRjuG08wSLa9oGh7RfKCtw+E19NAZfXGr8Badulf2h6aUPbgtGB6bU+ENOXw003dXRv++8mRljKEK1qpFTcBoWJTgY3AfIEydHCMD3IjWABjz76KABNTbNT6VUSPSFmaE+VM4u2m0R+YvKmFLRaw+iaw4HRnvGvN/gT9KZjDGajcx6rEEKIhcYm1Jgh0pjB8NhMVp3dsUvr7syihtIcNN1BAbmUQbwrSCE79ebMYvb0EWWAMF6nQAY3O0/91LA5kk20EaeIziCRssUp9t911123x69/97vfpaGhYZ+vzefzbNiwgXvuuQelFGvWrJmVmCTRE2IedKbq0QomecsgVfCjcOgI99MciKMpm36Z0imEEGIn0VUOkaVjOA5kky7yGYNC1sAqaihVSuK2y2cMzIJc0lUqG40Mu4+m2mg8z1KOZDPLGcSNRQGdEDlqyJaKwQBZXKxlCTDNXmwydXNeXXvttbv1y3Mch5tvvnnK+3AcB6/Xy1VXXTUrMclZQYh5UHRcDIw1TljovnZ4KatiW2n0J9Bw6M1IE3UhhBAlYz2KyCqHbNJF7zqZ+VGtTAyep50j2EqbigOMT/HM4MFGUUOOQ+mkc67W8olZs3P/7O1J31R6anu9Xpqbm1mzZg2f/vSnOeKII2YlHkn0hCgTG4218XZWx7bSEBjFQUmxFiGEENQstak9zMZxIDko6+qqXQE3f6ODiJMBFCm8FNkx1badAVrUKA17KPa2L9JeYX7Ztj3hvzVNQynFiy++yMEHH1yWmCTRE6KsNIayYVqCcer9CRK5IDaq9LCVNGAVQogqFWy3ia22yScU/U8oxtduaTaxg22UBn3ra0jHJ+/ZKhY+G4M4e66I2kUtzc4oIbLzHJXYH+3t7SilZq2C5kzIVaQQZTaYDVPvG8WlW6yq7Zrw3EA6LFM6hRCiigRabWoPtdE9pSl6vgaH1lMc+p8Cdwjqj7RRBuRH2da8XCx2h9KFUuBR1vRe6KjSoxJValyzaPPmzeUOQRI9IcpP4+V4BzWuNH5XDp9RIOzJAFCw5VdUCCEWKs2wqVnuUEwpMr0aRo1N/VE2jg3JzYrhFxV1RzgElzi0vbk07cuxYeg5jbGtGjTtXt1ZLD5ZXPicAmYVTncUc0uuIoWoEKajE/WO4dZMHAdG8kGGc5FyhyWEEGKGWk6xcfkBHGxrR4uE7j9rmJlSEjf0DIyut6npcLDyMLpRgSkJntjhNVpQQC3THdGjcqtbVmpcVUYSPSEqQI0rzbJwHwCJfICuVJ2szxNCiAUstKyU5I11Kcw0BNoccCDx2o4kb7tiSiP+QpkCFULsl1NPPRUoVdl84IEHdvv6TOy6r5mSK0khKkBTII5S0J+OSOVNIYRY6DSb6ME2tgmDfy8VWhlZV+6ghBBz4cEHHwTYrYfegw8+iFJqSu0Vttu+/a77milJ9ISoAH2ZGMvDfTQGEowW/GRNqbImhBALkWbYNL+xVDVz8O8a49U0hZhn0l5hfpx00kl7TMz29vX5JImeEBUgVfBhOwpNObQGh8kUvQRcpTLKo4UA6YKXtOlFLhiEEKJ8NLdNy0k2uhuKY2Cb4AqCvnP19G3XdekuRbpbztlCVLvtI3pT/fp8kkRPiIqg8cJQBwdGuwi48gRcebaP9PtdBQiU/u048PzQMiThE0KI+Rc5yMHlh2Km1AoBBXYR8olStUylAzaMrNPIDcl5WpSZFGNZ9CTRE6JiaLw60o7fyGLaOgXbDdj4jTxBd5bmwAi2s1NTXSGEEPPKU+Pg2ND1R7l8EkJUPjlTCVFhMhPW52lkTB8Z00e9bxRd2TT44wxkYmWLTwghFjpfg01omYPuKSVu7jAoDYopSLyqke7Z0w01G3cI7MK8hyvEzFTwGj0Z0dthw4YNDA0N0dHRQWNj46zuWxI9IRaIDaPNHBjppsGXkERPCCFmqO5Ii2DbtqtMG1Bg5koJnDsMDcfY2KZNpl8Rf0lh5TQ8MZvGY200FyQ2lbe4ghBiYRgcHOTnP/85AO973/sIh8MTnl+/fj3vfe97efbZZ4FSxc1zzjmHW265hUgkMisxSKInxAKRM73YjsJ2ZOqmEEJMYECgxcZbX1pDpwwHTS+tmXNssHKqtK6uxsEbg0ISuh/Rdm9MrtlEDnCoWeoQaCk9Stkg4EB8rWL0NX3e354QYuH5xS9+wcc//nFWrVrFxz72sQnP5fN5zjjjDDZu3DjefsFxHH71q18xNDQ0a4VcJNETYoEIutJoyiGR95c7FCGEqAwaNJ5cQ80BHpRmjxexwikleDiAAlfQwadKBa2yQ9D31720PbA1EusgsQ5cNaWkT3ODY8HQcwq7IDfaxAIixVjK6ve//z1KKc4999zdnrvtttvYsGEDSinOOuss3vzmN/PHP/6Re++9l4cffpif//znvOc979nvGCTRE2KBCLpyKAVZ0z35xkIIsQh0XBDDVaNTTFqMbnKR7mXvyZhhlwbn7Kkla8WUxuDfZy9WIcTism7dOgCOO+643Z674447ADj11FP59a9/DcCVV17JW97yFv74xz9yxx13zEqiJ7emqoSmmeUOQcyxgUwYy1a0BocJGNlyhyOEEOWjQ9NpNbhqdNJdBTb/JE5qi7bvETdTm3KSJ0RVcCr8UeUGBwcBaGlpmfD1bDbLY489hlKKyy67bMJzH/rQhwD429/+NisxyBmvShywpIdQYKzcYYg5ZGPw2kgrAMsjvWWORgghpkfzgq/FwBXR0Dwz24cR1mh7V4SVl9QRXOHBthxGX8jMbqBCCDELEokEAJo2Md164oknKBaLKKU47bTTJjy3bNkyAAYGBmYlBpm6WS0cRVv9EGYsTv9IhMRYqNwRiVmgYbI80ofPKGDZGta2QiyK7QUC5F6NEGJhWPreWgzfjnOW4zhYOZu+PyTJ9kw+K8UIaXScFwMN8kMm8b9nSG+SXgdC7I2q4PYKlRrXbAoGg4yOjtLX1zfh69sLrRxyyCFEo9EJz7lcLgAMY3ZSNLlKrBKvdrYSTwbRlENrXZzGaLzcIYlZsCrWhd/IU7R1lHJw6yamrdObjiG/vkKIhWTgL6nxf6c7C6Q3FdA9Gk2nTX5jUnND+7lR0KD73gSdv0hIkieEqGgHHXQQAL/97W8nfP0Xv/gFSilOPvnk3V6zPSmcrX56MqJXJRw0euN19MZjHLCkm9pQEstW1IeTgEMq66dnsA5bkoMFQ8fErVukix7WJ5aUOxwhhNgv6U0FNt8xTMcFtZhjFgMPjdF+XhR3RCd6pI/imE1hxKQwbE14XeQwH7WvD6D0UrI4ldE/IYQot7e//e08/vjj/OAHP2D16tWcdNJJ3H777bz00ksopXjnO9+522v+/vdSBaglS2bnuk8Svaqjsam3iQOXdNMYHQWgaOqEAxl87m5e624rc3xi72ya/XHC3jQuzdo2PRPSRW+Z4xJCiP3na3XR+vYwjuOQ7SkCMPx0mubTQtQdHxzfbvDRMRIvlApOKQPq1gRwTIe+P44xtiFfltiFEGK6Pv7xj/Pd736X3t5ePv7xj0947oQTTuBNb3rTbq+59957UUpx4oknzkoMMrxThUzLxcbeJlJZLyOpANm8G8cBTVsEE6IXqBp3mtWxrTQERnFpFnnLIJEPsH6khd50XbnDE0KI/VZ7bAClKfKDJunOUsKW3lhg/S1DdN2XwC6WGpMbAVV6gQFL3xtDKUXfn1OS5AkhFpRwOMwf//hHjjrqKBzHGX+ceOKJ3Hnnnbtt/9xzz/HUU08BcPrpp89KDDKiV6VyBS9b+xtY1daFrtkUigZbBxrKHZbYg6gnSXuoVIJ3MBOiJ11f5oiEEGL29f0xSdu7InjqDZZ/sI78kEn3/QnsHGS7igw9kab+DUEiR/hJrM1Re3QAI6gx8mya9EZZjyfEtFVyG4NKjWuWrV69mqeffppNmzbR19dHc3MzHR0de93+1ltvBWDNmjWzcnxJ9KpYXXgUQ7fpi0cYTkbKHY7Yi7zlwnHAQUmSJ4SoWuaYzab/juNtMqh7fQBvk4vlH6ij+/+Nku0uMvpijmxvkfZ3R6k7NoCn1sCxYOhxaZ8ghFjYli1bNt46YW+OOOIIjjjiiFk9rkzdrGLR4Bi2A8NJabVQHjYRT4q2QD9La/rw6rndtjC0IhHPGJajja/JE0KIapbrM+m6e5Tu+0rryFvfHh7vq1cYtrAyNoEOD2baRjMU7qhcqggxE9vbK1TqQ8w9GdGrUgFvFpdhMZr2U+58PhYapS5UGl0cTtaQzXsomgbZQnUXGVkW6iPkKRUU8Bghlod7GckFcesmNe4spq2jKwtdc3AcGM0HyhyxEELMn2x3kd7fJ2k5I0zkMD/xp0sjd0NPpmk8pQb/EjeO46D7dRixyxytEEIsPJLoVamGSAKAbMFDQyTOUDKEbc/vx21oJh1NfXjcJratUArqwikghePAlv4G0jn/vMY0XzRKyVzeMtg02sxKl4WuktT7kzgOWI6GSzNRChwHnh9aUe6QhRBi3mnuUuEVO7/j9n5qXR674BDs8JDakCPbXSxXeEIsfDJyVnbFYpH77ruPRx55hE2bNpFKpbAsa5+vUUrxwAMP7PexJdGrUppmoxQ0x0YACAfTvNY1f60V6sMj1EdK03ISY366h+pwGSbRYBpds4iFxvC6C1WX6HmNHA2+BGFP6c50Z6qOgu1mKOdhYMSDrixMWwc0DqvbgCpvuEIIUVbeZhcAydeyE76e3lSQhuhCiAXvwQcf5KKLLqKzs3P8a46z9+xbKYXjOCg1O1eIkuhVqU19jdSFkhSKLkKBDEFfFo8rT77omdPjuo0CSxv7cbssTEtjS38DuW1TNIumm4GEwYqWXgBSmWpK8mxWRnrwG6Xy35aj0T1WR7oYYMfvqoZp75hGmyr4CXsy9KWj8x+uEEJUgMyWPOHVXtreFSs1Q++S0TshRHV46aWXeNvb3kY+n8dxHNxuNwcccACxWAxNm59lVZLoVSnbNhhIxAAYy3k5cEk3zbVxNvc1z9kxA54sS5v6AYgng/TGY+y6PvCA1m7crtJwdcF0z1ks8y3kzhBw5UkXPWxONmDak783n1HAshUD2dg8RCiEEJUnvaVI8pUcoYO8LHlHhHzcZOtdIyBL8oTYf9Jeoayuv/56crkcuq7zpS99iSuuuIJgMDivMUgpq0XAdkpDSgFvHp9798qPs6UhmgBgfXcLvfE6dv3xqg+P4HZZZPNueoerJ7kxtAItwWEcB7ZOMckDcOsmujSxF0IscgMPjbHx1iFSG/J4YgZ1x0thKiHEwvfggw+ilOJTn/oUn/nMZ+Y9yQMZ0atqCpu2hkGCvixKgWWrCVMHZ1uu4MLvzaPrFpi7P+/zFHAc2NjbRDXdYzgw0oOhWYzkgxSmmORNvF1tU03fDyGEmC67AH1/SBJcXkf4YB84DvG/ZbBlmZ4QM1bJbQwqNa7ZFI/HATjnnHPKFoMkelVK00xWLelGKYd80UXvcIxM3jenx9R1G8eBfH7P6wB9nvz26OY0jvllo2s2BdugM9U4jddpxHNBYt4xGvwjDGRq5yxCIYRYKEaeyRA5zE/0iACRw/0UUzbJdTlGnsvs8QaiEEJUqsbGRrq6unC5XGWLoZquuMVOmqMjaJpDz3CMDT2tc57kgU3Ql8WyNew9/Fg1ROLb+uhVT/P2Rv8wh9dtQlMO6eL0ewJ2pupxHKhxzd10WiGEWEiGn8yw4UdDdN2XINtdxAho1B0bYOUldSx9b5TI4T65chFiqpwKf1S5U089FYBnn322bDHIiF6VyhVLdw/cxtzdAvV7skSDY7hcJm6jtN5sMLF7ImdoJnXhJKal0T8SmbN45lutN4lS0JmsJ56fSQKr4aAIuHL4jBxZs7obyAshxFRlu4p0d5Va9ASWuYke4cfbYFC/Jkjd6wNk+4tYWYfECxlyfTLUJ4SoPJ/+9Ke58847+drXvsYFF1xAIDD/64/lvliVsiwdgPpIkta6AdxGAbBxGwVqfGlqQwlqQ4ltX58qmxpfmqWNfaxu38Ky5n7CwTR+Tx5Ns0mM+RlI7N4qoKV+CICtA/VUy4+cWyugbZtgnrf1Ge9nQ6JUBXV5uBdN5iUJIcRu0psKdP06wfofDNH/lyRWwcHX5CK43M2SsyPUHDi3bYOEWKi2r9Gr1Ee1O+SQQ7j99tvZunUrp512GmvXrp33GGREr0ol0gGioRQeV5FwIEMkmMFxYNf+i02xBI4Dlq1RNA1yBRfpnJdU1odtG4BNOJAmVjOG15NHU+A4UDR1kqkAQ6MhLHvfP0Yeo9QXKeDNUSi6Jt2+0rXX9BHxpFEKMkU36eLM79BkTB+DmTANgVEOq99CuuhhfaKFakmIhRBiNiVfzpN8ubTe2whpdFwQo2aFh9Sr+UleKYQQ8+tDH/oQAKtXr+aJJ57g0EMP5fDDD2fVqlX4/fvuJa2U4kc/+tF+x7Cwr7jFPmhs6m0BSk3MY6EkumZTNF0Uigb5ogtNswn4cvg9edyGicddwOsuEK1J4+x0p0VtS+4KRYNEOkB8NLzHdXh70zVUR0dTP43RURoioxQtnfVdrTgLMJkJu1NEPGlylovuVD1pc//XPvZmYoS9aTy6ScCVpzU4TPdY/SxEK4QQ1Su4zINSCldIx6hZeH9PhBDV7bbbbkNtG2FRSuE4Ds8//zzPP//8Pl/nOI4kemIiM6CDa89TCE18uxdj2VYAaLRQAzvN3tQxCXkyBN1Z3FoR09FJF30MZUOMjzJNcwArRZAXhvzUuLLEfEnC7gxLW/tZn1gyvR3NkaJfTb4RENCyLPUOYKNYm2/FdhswhW4KCjC9UPSpvaw91nkh1wHYHObbSq03Sa8dIT+Vne+FkZ3xSytWbh5aLyog74ecMT/rxHOx8lXimivBrrkvuKQAd8TNSK1rftbzH3LofBxlXplTPO/tDwW4Qm6Gk4U5+ZzS5Ak73bgi0PF/ayni8DztmHJpMy0K0ENuBtvc8/L7NAv3RyvSXL8vBRSmez+jkoueVGpcs6i9vX080SsXORuKCSwMRvIhRmZUXGRfNFLFAKligINjm/DqC6s5kobJKm83AGuzrdhz8quj8Vq2mUP8nRzo6+GFbDsyhVMIIfYsh4e/sxwfeZYxQEjlaHBG6UHa1Qghym/z5s3lDkGuIsX88htZDM2eUTuCcqo1xtC23ZSJ6Jk5O04ODwPFMG5lcpR/I6u9ncT05JwdTwghFrosHvLbbr6lqNLhIiFmotztExZ5e4VKIImemFcrIj0AdI41lDmS6Rk0Q+RsA6VgiSc+p8lXZ7Gezfl6Co6BX8uz3DvAAZ6eOTueEEIsZLUkqWOMrOMixb4LHAghxGIiUzfFvFKUbuKY9kK7x6Dh1UrtD9KWh5Q1t3eNh60ww9kwYLPa20XYyHC0vh6ApOVnQ75pWgVxhBCi2rgo0sEQUcawUbxAZaz7FqJSVHIbg0qNa645jkM8HieTydDS0oKuz7xF11TIlaKYV4OZMJoC37T695Wfhg1A0dZYm2ulyHwV0dB4LddC3jbI2m5yjouQnuFI/0aWuvup0dIEtCwBLYshffiEEIvISvqpVWMoYD2Nc7R2Wggh9o9lWdx6662cdNJJ+P1+GhoaWLZsGevWrZuw3X333cdVV13F9ddfP2vHlrOimFeWU7q34NGL5E03PleWiCdNwJVDVzZ5y0XPWC05q7LW8Nkw3nLCwMacx3skJgYvZDvG/zuspejwDFLvSlHvSo1/fXufxJxt8CzL5i0+IYQoBy9FTEfjedopzNvNNyEWkEpeC1epcc2ygYEBzjnnHJ544gkcZ99vetmyZZx11lkopXj729/OkUceud/HlxE9Ma/SRS+OA0tDAxxWv4mVkT7qfCk8ehFNOQRdOQ6MdtNW0w/bRtEqg0ZfMYKhbI4MbOYI30Y8lGdUctSu4bnscl7KLqEzX0tXIUZXIcaQWQOAW1lliUsIIeaLnxwuTEw0SfKEEBXJsizOPPNMHn/8cTRN473vfS/f/va397r9IYccwgknnADAr371q1mJQUb0xLxKm342JFoIedLjI3iJfICiXeoZ59YKLAv3EfOOEfGMkTPdZE0PA5kIBXvmfeVmQ3exjqTlo9ZIUWuMsdrfyXOZZWVr/J61vWTtnUc+beqMFGOWF+Z2yrcQQpTFAfQQIYOuHBwHeomWOyQhhNij22+/naeeegqXy8V9993H6aefDsDHP/7xvb7mrLPO4rHHHuORRx6ZlRgk0RPzLm36SO+ls2jBdrNupJ2YZ5QGfwKvUcBnFIh5U2xN1ZOY9f5+05OyA6QKAdJ2gnb3EAd6e1iXq4wCADF9DKXAprzNOYUQYi60MkytSpN3DAYdPz1EKVDeG4BCVDSZullWd9xxB0opLr/88vEkbzKve93rAHZbvzdTkuiJihTPh4nnwwB49RwrIz201wxiaDZD2Uh5gwMGzQgNrlGCWo5W1xB5x2DIDFHO2dBhPV2KrVgjI3pCiKqz/bowiY/NNJY1FiGEmMzzzz8PwJlnnjnl19TX1wMwPDw8KzHM6lXpVVddhVJq/PHggw/uc/sNGzbwiU98gkMOOYSamhoCgQAHHXQQn/jEJ3j11VdnJaaOjo4JMe3t0dHRMem+/vd//5cjjzwSr9dLW1sbn/70p0km995P7aKLLppwjN/+9reTHmP7thdddNE03mV1y1leXhlux3I0WgLDtNf0MXH9no2hmcz3mr6hYml0sdmdoMMzxHJ3/7wef1chPQtAm2d2Tg5CCFFJeoiSdtzUqxSr6Kay1nELUXm2t1eo1Ee1SyQSwI7kbSqKxSLArLVdmLURveeee46vf/3rU97++9//PldeeeX4G9pu3bp1rFu3jh/+8Id897vfrZiE57rrruOaa64Z/++uri7+4z/+gz/96U88/PDDBAKBSfdx9dVX83/+z/+ZyzCrlonB2uE2Doj2EPWmiXg2UbR1dGWjKQelSlUnB7NhetN18xJTvxml34zS5hqg0Z2kHDMmFTatrjh1rlGMbWfNLfl6qKyipUIIMQs0XqCNQ5wuoirDcc4GxvDST5hhgkh9OSFEJYnFYgwMDDA0NDTl16xduxaYXnK4L7NyVrRtm0svvRTTNGloaJh0+5/+9Kd89KMfpVgsEolE+NKXvsSjjz7Kk08+yXe/+12WLl1KNpvlwx/+ML/5zW9mI0TOPvtsXnjhhb0+fv/73+/1tS+//DJf+MIX8Hq9fPGLX+Sxxx7jZz/7GatWreKZZ57hi1/84pRieOqpp7jnnntm5f0sRjYG60ba2TzaQNZ0oykH09FJFvwMZkIUbZ0G/ygHRDrnNS6/Xqq+6VYWIS09b8cNaymO8m+kyZ0AoK8Q5m/p5aTsyW86CCHEwqTxEu285jRSwKCGHAeofo5lI5r0EhViIqfCH1XukEMOAeAvf/nLlF/zv//7vyilOPbYY2clhllJ9L71rW/x1FNPcdBBB3HJJZfsc9tMJsMnPvEJAGpqanj00Uf53Oc+x5o1azj22GO5/PLLefrpp1mxYgWWZXHFFVdQKOx/GftIJMKhhx6618eBBx6419f+/Oc/x7Zt/v3f/53Pf/7zHH/88Zx33nk88MAD+P1+7rzzzkmPX1dXGmW6+uqrJ+2jIfZttFDDa4k2XhpexivxpWxONtOTrmdtvJ2s6cLvKhD17H1K7WzrKUQxHUVAy3GAt5f5mk60zDuAUtCZr+XZzAq6ivVlqwAqhBDzaZgQz7KMp1hBvxNCVw6tJModlhBijvX393PPPffwuc99jtNOO41wODy+7Onaa6+d9v5++9vf8q53vYslS5bg8XhYsmQJ73rXu6a03Goy55xzDo7j8J3vfIeBgYFJt//e977HAw88AMC5556738eHWUj0Ojs7+bd/+zcAbr75ZtzufVfA+s1vfjP+Zv/xH/+Rgw8+eLdt6urquPHGGwHYtGkTP/vZz/Y3zP3S3d0NwJve9KYJX29tbeWggw4af35frrrqKqA0xfWXv/zl7AcpAA2XZuE44HflWBnpos6XmPO7vCk7wPpc87zfnMptazehlKxTEUIsTjYaatvZ1yUjekJUvaamJs4++2xuuOEGHnjggX3WytgXx3H4yEc+whlnnMGvfvUruru7KRQKdHd386tf/YozzjiDj3zkI/s1OHPppZfS3t5OPB7n1FNP5YknntjjduvWreOSSy7hiiuuQCnFoYceynnnnTfj4+5svxO9j33sY4yNjfHBD36QU045ZdLtn3rqqfF/72u92s7P/eIXv9ivGPfX9umoDz300ISv9/X1sW7dOpqamibdxxVXXEFjY6lK2DXXXINty8X5XKr1pvAbeVqDwxxat4VV0a24tLlqcG6z0tuLAjblG5iPdSLNrmECWp68bdBXlD5SQojFK7VtUXI9KdoYRIq0CFFS7mIrc12MZfny5Zx00kkzeu3nP/95fvCDHwCllgZ33HEHTz75JHfcccd4i4Mf/OAH44NZM+HxeLj77rsJhUK8/PLLrFmzhvb29vHnL7zwQtrb2zn44IO57bbbcByHWCzGL37xC5SancIP+3VFeuedd3LfffcRi8X46le/OqXXxOPx8X/vaz1fMBjE7/cD05vbOhfOOeccAP75n/+ZL3/5yzz++OPcddddvPnNbyadTvOe97xn0n34/X7+5V/+BYCXXnqp7KOU1WrzaCPpopexopeX40vZPNpAquDDoxdZFe2ag9E9m9XeLgzl0F2IEbfmvs/fck8vLa4Rio7O2uwSpACBEGIxGyRCtxPBRtGqEhzM5LNshBAL09VXX83999/P0NAQGzZs4Atf+MK097F+/Xr+/d//HYBjjjmGRx99lPPPP59jjz2W888/n0ceeYRjjjkGgK985Sts2LBhxvEeccQRPPXUUxx//PE4jkNXV9f4c8888wxdXV04joPjOBx33HE88cQTrFy5csbH29WMrxATicT4WruvfOUrU64Os3N1ytHR0b1uVygUyGZL5eJHRkbo6+ubaahAKVk8/PDDCQQC+P1+li1bxnvf+15+/etfTzose8wxx/CJT3yCbDbLv/7rv3LCCSfwnve8h5dffplDDz2Uq6++ekoxfPSjH6W1tRWAL3zhC1iWtV/vSewubfrZMNrKxtFWTNtgtFDDpmQLXal6NOVwYGx2S3IHtRyBbcVY+szIrO13b5pcw8SMNBnbw/PZpZjSClMIIeiknqdYyZjjoYYcMqonBOUvtjIHxVi+8IUv8La3vY3a2tqZ7QD4+te/jmmWbvzfdNNN+Hy+Cc/7/X5uuukmAEzT5Bvf+MaMjwWwcuVK/vrXv/LQQw/xT//0T5xyyimsXr2aAw88kDVr1nDFFVfwu9/9jscff5zly5fv17F2NeNE76qrrqKvr481a9ZMWoBlZwcddND4vx9++OG9bvfII49MSMC2bt06s0C32bRpEy+88AKZTIZsNsvmzZu58847eec738mJJ5446Tq7b3zjG3z3u9/l4IMPxuVy0dTUxJVXXsnDDz9MKDS1URyv18u//uu/AqX5uD/+8Y/36z2JqYvnQwxlw3h0k+Xh3im8wiaipfBrWbZfMChslrr7OcDTTVgbQ8Ok1kgBULQ15mNkrVYfw3Zgba51Xo4nhBALySAhlCpN4xRCiF05jsPdd98NlHKS448/fo/bHX/88axatQpgSoNCU3HiiSfy1a9+lT/96U+8+OKLrF27lkceeYSbbrqJ008/fb/3vyczulJ85JFHuOWWWzAMg+9973vTmkf6tre9DcMojUL8x3/8x4SpnNsVi8XdRslSqZmdtN1uN2eddRbf/va3efDBB3nmmWf485//zA033EBbWxsAjz76KKeffvo+RxgBLr/8cl566SUKhQK9vb1861vfIhKJTCueD3/4w+Pzc6+77rrxOwpi7vWk6xgreAm6cviN7E7P2PjUjjvAra4hjvZvZKWvn4N93Rzt38hhvs0c6d9EnZEipGc5wNfHUYHN1LtS5G2Dl7Nt8/MmFDgoJMkTQojd9RPCdqCdIWRUTyx65R6xm4MRvf21adOm8cGdk08+eZ/bbn++q6uLzZs3z3Voc2LaV4uFQoHLLrsMx3H45Cc/yWGHHTat17e1tfHRj34UKH3j3vCGN3DvvfeSSqXI5XI88sgjnH766Tz66KO4XK7x122fxjldTz75JHfffTdXXHEFJ598MkceeSSnnHIKn/3sZ3nppZd4y1veApQaFM5knu90ud1uPv/5zwOwYcMGbrvttjk/ptghWfCjFBiahY5JR6iXo/0bOcTfNZ7QNbsTmI5GZ76WnkKUrO3CUBYOis5CLc9kltNbCLP95s6IGaCIa98HniUuZWE5kuQJIcSeaXQTw8DmWDZyOJupIVPuoIQQFWJ7Q3KYOMtwT3Z+fufXTZWmaRiGwcsvvzzl12zYsGH8dbNh2nu54YYbWLt2Le3t7VxzzTUzOujXvvY1Nm7cyP/7f/+PV155hbPOOmu3bVavXs2b3vQmvvvd7wKlnnszsa8Rt5qaGu68805WrFjB8PAwP/jBD7jxxhsnbRGxvy6++GJuvPFGNm7cyJe+9CUuvPDC/T6mUqWH2DdDldZFttcMoG0r+ZRzXKSKfoJ6Fo9WpGDrrM22ja9/6y3uPg+8p1hPXzHKwb4umtyj1LuSpC0vGdvDmOUjZfuwt91HUTs9duWmwAG+Hlzb4iqVCVdYjiJre+guxsjY2+eO2+jYZGzfHve1s2r8UZiP97Svz0pMjXxOC0M1f0491GKj0UIcvyqyzBngBTrmOYqFY74/p2r9vZ3r9zWTz6iSz5Pb49q1PYLH48Hj8czZcTs7O8f/vWTJkn1uu33m366vm46ZTvmcrZ7b00r0XnnlFb785S8DpcWLOxdWmQ6Px8O9997Lrbfeyne+8x2effbZ8TdUW1vLRRddxBe+8IXxYi8A0ejclJAPh8Ocf/75fOc73yGdTvP000+zZs2aOTnWdoZhcPXVV3PRRRexZcsWfvSjH3H55Zfv1z7rI25c7rn7xagWNs1oXjc+vUjRNhjKhhhze8EDO08irp3St9LNIAdQbySJ6Gkiyt7W0y6N46TJ2QZbCvU46MRqSiN+O//atrsGCRp5oFRdNmcb2I5Cw8FQFjHl0EqKvJOlrxAh53gI+0LYpp+moguPKpJzXOzpNG55K/XUPnN5/9wfQwF13t0/KzF1/sjcf+cU7PF3SkzdfJwjFFAbKNfn1EgPjRxEFz4UTcztDdyFbL4/J6tKL1XMOX5fCghXYa/InZMpKLUgm0nj86naeSlYMBjc57Y75zljY2NzFtOezFZ7hWklel//+tcpFAosX76cTCbDT3/60922efHFF8f//ac//Wm8WuaZZ5454RumaRqXXHIJl1xyCalUiv7+fnw+H83NzWhaaSTkhRdeKAVpGBxwwAHTf3dTtHPT9qk0P58N73//+7nhhht49dVXuf7667n44ovxer0z3t9gooDhkil9UzEwMrF4TtG3f/31+vEBPsDGS5EaI0tET1OjJwlaWdbnm9GxGE1k0DQbA5MmdwK7mGfY1ugrRhkxg7tN/zQw6fAMENKTRIljoZEs2mhOkhb6UAocB7K2m2GzhgEzzPbZ2Ka/+hK93DwUGN3+XevNFCSBmKFgYn4SPYD+hHxOMzUf54jtR+hLlu9zaiCDG5M+plYZfDGa78/J9E2+zUJkznEhdQWYWvVVa+/s7JxQ1HAuR/MAcrnc+L8nm023cywzXUI2XUNDQwAzHkzb1bQunfL5PAAbN27kggsumHT7L37xi+P/3rRp016Drqmp2W1q5tjYGM899xwAhx122G6lT2fTbA2PToeu61xzzTW8733vo7u7m+9///sTRjCny3GgDG+jKszet00ji4es6WHAjHCwdys1epbX+TcS9oVIFndMT3AcSFseXss177VFQhGD1/It6JgscQ8T0dPj65dztptRy09Iz+DXCrR5hlniHiZnu9haqGOEfd+lWojm68e7zOvEFzz5nBaGxfI5ZfDgpUiQDCnmYVrAAjWfn1O1/s5W5Peukk+S2+IKhUJTrl4/G3YeVCkU9n2jf3veA+xXHjLV0bl0Oj3e1mHFihUzPt7OKrYJ1y9/+cvxb/B55503p8faeZFkS0vLnB5rZ+effz433HADL730EjfeeCOXXnrpvB1bzL0NuSaWefvJ2y7MYoChgo7paNgokqaf/BSnElkYbCk0smUPz3UXAWxq9THqXaMEtDwHenvpIkY3M+8xI4QQ1WALdUQZ42C6SeGljwhxAkjlYiEWp50HliabjplOp8f/Pdk0T2CvPfDe8pa3TCgwuSf5fJ6BgQFs20YpxZlnnjnp8aZiWonebbfdNmmVyGuvvXa8euWf//xnTjnllGkHlc/nx0cDfT4fF1100bT3MVWjo6P87Gc/A0oNEo855pg5O9auNE3j2muv5T3veQ99fX3jhWdEdcjj5pVcGwpoNN30F+dqWozGsBVi2AqhYXKkfzNLiNNNFLmYEUIsZgVcvEAbB9BPDTlCqg/bgR6idFFX7vCEmFPKKT0qUbni2rkAS1dX1z633bkAy65rCfdkTy0YHMeZ9rKw448/nquuumpar9mbsozoDQ0NEQgE9jgMms/n+cAHPsD69euBUuLY1NS0x/2ccsopPPTQQ0BpamhHR8eE53/7299y8skn73W4dWxsjPPOO4/h4WEALrnkkjmfG7yrc889lyOOOILnnnuOr3zlK/N6bFF9bAyGzBoaXCmOcTaxlhbSVOmCCCGEmIIsXp5nKRo2Tc4IzSRYokbQHIetsnZPiEVl57ocr7zyyj633fn51atXT7rvD37wgxP++/bbb0cpxVlnnbXPLgBKKbxeL83NzaxZs4ZTTz21PMVYZsuDDz7IpZdeyvvf/35OO+002trayGQyPP3009x88828+uqrAJxzzjl86lOfmvFxbrzxRt73vvfxrne9ize+8Y2sWLGCYDDI6Ogof/3rX/ne977H1q1bAVi1atWcVvnZG6UUX/jCFzjnnHPGF2AKsT+2FhrJGS7aiHMoXTKNUwghABuNHmrpIcrrnM00k2CQGrLMvBCaEBVtAazRm2/Lli2jpaWFnp6e8cGivfnLX/4CQGtr626DSXty6623Tvjv22+/HYDrr79+QoI5n8q2Ri+RSPDtb3+bb3/727s9p5TiIx/5CN/61rf2u2FgPB7nlltu4ZZbbtnrNieddBI/+clPiMVi+3WsmTr77LM55phjePrpp8tyfFF9eqglRpqgytPkJCTRE0KIcRprWcIRbOFgunmOpROKYrkp0EyCIjoJAmRwI9PghagOSinOPvtsbr75Zl555RUef/xxjj/++N22e/zxx8dH9M4+++wZjbBt7zfe0NCwf0Hvh7IkeieeeCJf/epXeeCBB3jllVcYGBhA0zRaW1s59dRT+dCHPjQra+W+9rWv8cADD/DYY4+xbt06hoaGSCQS+P1+WlpaeP3rX88FF1zAW97yllkbIp2p6667jre97W1ljUFUlwClYkabZWqSEEJMkMNNJzHaiHM0m7DQsNAoohNUOyrttRPHdhRDBNlIA5LwCbHw/eM//iM//OEPMU2TK6+8kr/85S8Tlnlls1muvPJKoNTi7R//8R9ndJztiV45KaccvQXErEkmk4TDYY47+0sYLpl+MhPFOe4npYDGiHtee36ZfsVKeqllDAuNdTSRYnZ6spRLbh4G3BXQ7HdLH739EOyanz568/07VW3mq49eU8hd1j56k6khQytxfBTRsSnVRYYiOq/RRJQ0taTwKAvT0dhAAyNVVrVzvj+nqu2jN8fvSwH1msVDX/pnRkdH99mSYPu14SEfuQHdXZnXhlYhx0vf/9dJ38uuHnnkkfE6HlBaR7e9xsXZZ5/NOeecM2H7vRV0/OxnP8uNN94IwOte9zo+85nPsGLFCjZs2MBXvvIVnnnmmfHtbrjhhmm8s8pSse0VhBD7Zz3NpInTxjAH08MoPl6lBbuKLlCEEGJ/pPDzyj7666Xws5V6mpwRljLEKtVH2nHzAkvnMUohxHa33HLL+Nq3Xd19993cfffdE762t0Tv+uuvZ2BggP/6r//imWee4fzzz99tm0suuYQvfelL+x0zgGVZvPzyy2zatIlUKoVlWZO+5sILL9zv40qiJ0QV6yXGICFW0UOYLEezkWfo2GuTdiGEELvrI8oANRzqdOOngJ8cGSniIiqctFfYO03T+NGPfsS5557LD37wA5566imGhoaoq6vj2GOP5SMf+QhnnHHGfh8nk8lw3XXX8aMf/Yh4PD7l1ymlJNETQkzOxOAl2llOHw0qxWqnm7W0SrInhBDTYGOwnkYOo5PD6GQLdfQRppqmcQpR6abS03s63va2t81ZjYxMJsMpp5zC3/72N8q1Uk6u9IRYJLZSR9jJ4KfAgfTyMpM3/xRCCLFDBi/P08YhdNGhhmh2EjxHG7ZcTolKJO0VyuqrX/3qeEX9ww8/nCuuuIKjjjqKWCyGps3PDSI5MwmxSJgYPMNyDmMLIZXjKGcjncQYJLLbth30EyRPFjdZXOg42Cj6CctIoBBiUcvi5WmW0+EM0kiSo9jM87RTwF3u0IQQFeTnP/85SilOPPFE/vCHP+ByueY9BrliE2KR2UQDhzhduJXFEie+W6IXJk2TSuI4pRYNO3ceWeLEyWPQR4QhajDRkGlLQojFR2MzjaTxsJxBjmQLL7GENFVaUlIsSLJGr7w2bdoEwKc//emyJHkgiZ4Qi84YPp7gAF7vvLbHCpwmGo4DQwTZRCN+J4+JjpsirYxQQ5YONUQHQ2QdF8/Rsd8xGZjUk8RHgTQe+onu9z6FEGKuDRKhgItV9HAoXbxGE3Fqyh2WEKIC+Hw+crkcS5YsKVsMkugJsUg5KLwUOZLSHScLjRRexrZVkguSx0ZjbNsd6hxukgQAm3onSQdDGExeHngyK+ijjtROI4cp2pw4Foo8LjbSQA7Pfh9HCCHmwigBXqCNQ+niAPrYiLXHKfFCiMXl0EMP5eGHH6arq4sjjzyyLDHInCshFqm1tJDHwMDCwMJHgSaVZKUaAKCTvXUo1xgkgomOtm01dQ0ZjmU9x7CBFoYBe5Kj2zSQYBn91JEij8ErTjNPO8vIOC5sFDoOIZVjNT2z9p6FEGIuZPHyDB1YKJYziJtCuUMSYkcxlkp9VLnLLrsMx3H43//937LFICN6QixSKfw8y7IJX/M6BcJkGME/aWGBYQK0qFGWOf1ESaMrB8dxaFdxljgjpHFTRAdKQ3UOYKHTR5hV9OJRJgCWo3iZ1vHjPb9tKqiHAq9jCx5lojkWoM/m2xdCiFllYrCOFg6mmyPYSjfR8bXMtqxnFmLR+b//9/9yzz338POf/5xjjjmGT3/60/MegyR6QohxOdzkplg5ros66pwxGrcVbsk5Bs+zlAZnlCYSBMnv8XUNKglAvxOik9q9VvHM46bHidBMgiPYwhN2B/Y8lSMWQoiZSOFnAw0sZ5B2FaedHQ2SHQeyuHiVZpmOLuaFFGMpr7/85S9cdtlldHZ28pnPfIa77rqLCy64gFWrVuH3+yd9/UknnbTfMUiiJ4SYERuNv7OcqJMih4vstrV9fUTp20sxFTcFmp0EBQx69zo1dIet1GOjaGWEN4xupM9dQ9LwktK9ZAy5UBJCVJ4hwgxRQ60zRoD8tvE8Bx8FguQ5nK2so4VRAuUOVQgxh0455RTUTqXLn3rqKZ566qkpvVYphWma+x2DJHpCiP0yMo0KcwXcbKFhWvvvoo4iBm0M0VpI0loojQhaKLo8ETb566a1PyGEmHsaw4QY3uWrAbIcQjcH0UMvYbZO83woxLRU8lq4So1rljlOed+oJHpCiIrXT4Qt0Qhes0CNlSNk5WksJGnPj+Czi9hKUWPmcFAkjdLIYm0xjduxsFDkNBdjhocRw09OM/DYJh7bBBzirgDpba8RQoi5lMbHs7RzCF20qFFqnTFeoo0C5emxJYSYO3/+85/LHYIkekKIhSNnuMkZbgaBTd5ajktuoaE4hgPYKBQOwUKp2p2FIql7cTsmfrtIoFCgqZDabZ/Lc3FMpTHkCrDFG4MprlEUQoiZKODmGZbT7gzQzCir6eK5XQpjCSEWvpNPPrncIUiiJ4RYmGxN4/HIMtx2ERuFqZVOZ27bRDk2eX1iwmbYZmmUz7bIawb5bds3FZLUFdM0FVI0FVL4iODPO2z2xsb3KYQQs20rDQQoECJb7lCqyiGFLsJ26XuaxyCl+RjVvBSUQUHpFDEooMNiKO4lUzcXPbmKEUIsaAXNtct/7/m0ZmoG/Z7wbl8fdflZBwTMHMtycZZisySfpDU/Sk4z6HfVMOLyk9S9OIvhwkAIMW8K2y7DwqSlOMss0GybiJ3FQZFVLrxOkXo7RYM9cTaHDTztXkpBm3hDsKUYp8UaZYsRY1TzAWrxJIWiKkmiJ4QQQNrw8lKwhbjfTdYeoT03QtjM0pEfoSM/Mn5j1FIaeWWw0VdH3C0XZkKImeskRi1jHEQPwwTZSCM2GgYmq+nGQ5EiOoOE6CGK9OLbtwPNPgBeNRoZMkqFwgzbJGRncWHhcizcmDRbSVaYQ6x1t+x4sW3TYcXRcFhlDox/2QGK6AzrATr12G43FyuZtFcQkugJIcQuEq4AI64A2DZhK0fIzBK0CvjsIgGrQNApcEi6l4fdK8sdqhBiASvg5lnaOYge6tQYMWeMBAEC5HBjUcDAg0W7itPqjJDGwxhetlJf7tArktcp4qDGkzwozeaIaxOrQzdZSYJ2jkYzQcjOEXDy+JwiCocuPYKNQsNB4eB3CtTYOZqtJE1WEnvbaOGQFqRLj8ponwDguuuum/V9Xn311fu9D0n0hBBibzSNUc3PqKvU2NRtFzl+dDMO8KpfLrSEEPuvgJvn6SDmpGhniChplIJ+J8QmGgGbFmeEZhLUkKOGHFupRUb39kQx2eIvl22iAR4sDjAHx2drFDDoNqL0GpE9vi5gZ2ndlhj6nQIdVpx2K06XHmWrHqMiPw9Zozdvrr322gk982aDJHpiXGKlhu6Z+5OMNz7nh5h3RqbKzjZAzZZiuUOYdUZm7k9XCvBHHIIJZw9/g2wO93WiFLyaayadDhDcz79Upn92/yhUgpotuTk/hlLgz0LNYI75aFHk7t+9WquYnFIQawng9KTn5XOyA565P8gc6yaG4TbxRwqMDbipZxSAIgZbqSPUmKZ+aZqD+noY3jr1Hqb7ohREG31Y/dl5+ZxyDf4527dVr6P8EH0lz94TL5veUBSXbpHNuxnL+rAdffzZKHv7+2kwSB2D2/YRCaRpjI3QzggthVF6VQ097jBZY+H/HIqZmc2eebOVNEqiJ4QQU7DUPYhbs+gpREnZsjZPCDE3zIJBcmDPl2fJ/gDR5izhxixKwdCWABU5klQmlqWh1GTjehrx5O6FuaZHI5GuIZEOUB8epS48Slu+9LBQZHQXg64gnZ5oWYt4KcdBlblh995UalwzVQk98/ZEEj0hhJiEjkmdkSJvG/QUa8sdjhBiEet8PsaSw+KEG7OEGrLYlsIyNcaGPYx0B8sdXlkZhoXjzOesQI3B0SiDo1Eyh1k050eJmVkCVoEaK86yXJyU7mGLN8qwe8cIrLJtluRHaCim0RwbWynW+pvIyGjgglUJPfP2RBI9IYSYxHJPPwCb8g1ljkQIsdjZtsbW5+oI1Weoqc+hu2wMl0WsNYPHX6TvtWi5QyybgDeHaWmUY5QzbXhZb3hL/2HbNBbHaMuNUGPlOSzdh53uw1Q64OBy7PFRx+2FX1431sWgK8hWT5Sc4d7HkYSYOkn0hBBiH7zkCelZMrabMXvu1pYIIcR0JAf9JAd3nJNaDooTiBapW5piaMvsrN9bSHzuHLrmMDpWAVPrNY1+T4h+TwjNtujIxYkVM7gdEwdFUvfS4wnT7wqCprEq3UdTIUVLIUlLIQnAq756eryR/YtDirEsepLoCSHEXtkc4OsFYEOuqcyxCCHE3vW8EqH98DihhizphJvs6OKaBtgQTeA4MJiIlDuUCWxNZ6O/no372GZdoIl1gSZihTEOT5f+5hyYHWRZbphHQ8ukhYOYMfnJEUKIXUT1FAd4ejjKvwmPZjJQDFFAptIIISqZRtfLMRwHmg8YRTPscgc0rwLeHAXTwLQX7hhG3B3kwegBPB9ooaA0XI7NmuQmGvPJGe1ve8P0Sn2IubdwfxuEEGIOtLiG0bz9OA4UHIP+QpgBc/GueRFCLBy2qdH3WpjmA0dpO3SYzhej2GZ1XOoZmkl74wCGbmLbGpatkyu4iKdqyBc9OI7CZZgobJwFPo4Rdwf4q7GMA7ODNBWSrM70szI7yEhNXblDEwtMdfz2CyHEfqjVR2lyJ9BwCOt+4rbGi9l2LDlFCiEWmOyoh5EeP9GWDB2vi2NbCjOvkej3MzbkK3d4M9bWOIDXXcCyNQzDwq1M/N48sdAYtl3qBwhVtPRL03g10MirvnpW5IZoySdpy49Obx+yRm/Rk6sYIcSi1+EptcC1UBQdnU35JknyhBALlm2Wsh6rqHAchdtv0bg8RV3bGIObg6RHFlbCF/Cl8bkLZAtuNvW2jH/dbRSIhZIEvDkU0D8SpepWJWkaG/wNbPTWcZiVKHc0YoGRKxkhxKIW0EqNhweLNWwtNNLodpOyC+UOSwghZkTTbOqWprEt2PJsLaXExybWlibSmKXpgBSWNUZmxE28K4BVrOxLQU0zaYnFAdjS1zjhuYLppi++SKYzahp9xvQavVfyWrhKjavaVPZvtxBCzBmbZe4BYsYYjgO9BVmHJ4RY+Fw+EwClga+mSDblATTinTXEuwPULUkTqM0RrM0TrM1TyOkUhlvLG/Qe2TRGR6gNpQBIZvzYjl7mmIRYWKpsfFsIISbnocCR/s3EjDEKjsFLmTapqimEqAr5tJtEnw+loGnVLmu6bI2hrTVseaaezhdiZBIu3F6LxgMTQCVV6bRZ3txLXTiFaWls7muka7Ch3EEJseDIiJ4QYtGI6UmaXSN4tSIAnYVaqagphKg6ZqF0Hz/etffm4cWcQd9rUaLNY4QOhmVHD9H7Wrgi+u81RBL4PEUSY366hyTBmzEpxrLoyYieEGJRaHYNs8wzgEcrkrHdvJRdIkmeEKIqFbKl+/jOFC6mkwN+oDTVs6YuN+uxBCI5oi1jTGfE0O/N4zhIkifEfpIRPSFE1Ws0RmhxjVB0dF7ILl3wPZaEEGJf8mkXAG7v5MlVpDWNUi5yYwYDG2pmNY5QY4a69jGUglBDjoFNNeTwb3vWJhTIoCubkbEgO4896Jo9pSRV7JsUYxGS6AkhqppPy7HEPYzpaLwoSZ4QYhHwBErT04v5yc93qUEfzgEmbp+JP1Igk/DOUhQ2tUvGcGxIDPiINGVpWTVKkz2KZesYujXe+642lCSRDjA0GkYmmwkxeyTRE0JUtUajVIxgbXYJtlxACCEqno03aOIOFNENh3zaIJNwM50EqH5pCseB1BQapBdzBsNdblyhJM0HJnHsJJapYVsKy1TYpoZV1DCLGlZBo5DTyaVc+4jHJhDNE2tLo+kwsLGG1JCPeHeAaHOGYEMBTbPJFtyMjgVpiI7gcZs0ukepDaV4rXMJbsPEsuV8vd9kjd6iJ4meEKKqBbQcDkqqagohKpxN6+oEnqA5PtK1neOAY4NZ0ClkdcbiHtLxUtuEnV+vGaUeei6vTXLAi21OLVnKjXroWV9HqClDIJrHcNkYbhuXB1DsMR6rqMinDdIJL6lhDx6fSf2yFG5faaTOcSA56NmRbNoaI91Beov+CftKpP2E/Bk8riJ14RQHLd0KwGh6dqeRCrEYSaInhKhqSjly41AIUfHqlqbx1pjkMzrpEQ+5pAvL1PCGivhqCrh9FobbwuW1CMYK2FaKwc01jA370AyTpUfE0ba1mctndQY3B6d1fHtbIjbSvYfXaTYut43hsfD4ivjCRTx+E3+kSCBapL4jNb5pPm0wFvcwOuCDKYzK2bZBYiwEgGkZBHxZEqkgycz04hdC7E4SPSFEVTMdHY8ycVGkiKvc4QghxB5lUwbhRkiPeCYkW4Wsi2T/TqNgmk20KUOkOUPD8hSh+iy620bTITXsJh33kB6ZfMrmtNgaxZxGMWeQHfWQ6NsRSzCaxx/JY5sa8e4AtjnzpubDyTDDyfDsxCwAKXqy2EmiJ4SoYjZFR0cpaHaNsLUopbqFEJUpHfdgWymizZk9j6ptZ2uM9AQZHfDSevAo3prSVE/LVAxsiMxbvNtjGRv2MTY8y4mlEGJWSKInhKhSNkf4NuPSbIq2Rl8xUu6AhBBinxxHTXkIxjYNOp+vBc0mVJcjNyaXdGIXjjO1ZorlUKlxVRk5KwghqlK9kcSl2fQXQnTKSJ4QosLVd4yhGw5DWwLTe6GtjTc9F0KInUmiJ4SoSrVGqbx4bzFW7lCEEGJS3lAR24LR/mkmekLshTRMF9KkRAhRdeqNBEE9T8ryYcr9LCHEAuDYgJp0MyGEmDK5AhJCVJ0mVwLbUbyaby53KEIIMQU2Lo+FY0umJ2aRNExf9GRETwhRddzKJGPv2kxYCCEqU6Q5g6ZDvFvW2gkhZo9cBQkhqowNQN6WCQtCiAVAs4k0ZXEcSPZLmwIhxOyRKyEhRJXRsFBEjDQUyh2LEELsjU20NUO0OQMK4p1+5P67mE3KLj0qUaXGVW0k0RNCVJ3hYg2N7iRelSPneMsdjhBCTOAL52lcnkR3OVhFRf/GENlRT7nDEkJUGUn0hBBVxKbJlaDOVWqtUHDkFCeEqByG16RxeRJPwASntCZvpFtG8sQckWIsi55cBQkhqsZhvq14NBPbUWzO12PLKU4IUQaaYeEJmHj8RVw+C5fbwuW10F2lq9vsqIv+9WFsWxI8IcTckasgIURVCGgZPJpJvBhgY6ERuUMuhJgPbl+RUEMOX7iA4bJQGqiduiQ420YubEuRHnEz3BnEzMvll5h70jBdyJlGCFEVInoGgJ5iFEnyhBBzxybSnCEQy+P2WWjbTje2DcW8jpnXMPMGhaxOPm2QzxogI3dCiDKQRE8IURUiehrHgZzjLncoQogqVVOXpa4jhaaVRuqKOZ3sqJvRAR/FnFxSCSEqi5yVhBALXrtrAK9WZNSSogZCiNlmE4jlibVmcHktHBsGNwVJDnqR842oaI6zY+5wpanUuKrMgj1DXXXVVSilxh8PPvjgPrffsmUL//Iv/8LRRx9NJBLB5XIRi8VYs2YNX/ziFxkcHJz0mD09PVx00UXU19fj9/s5+eST+eMf/7jX7Tdv3jwhxuOPP37SY1x77bXj22/evHnS7YVY7Ja5+6h3Jck7BuvzTeUORwhRBXSXSSCWpXFlguXHDNG0MoXLa5EecbPpb3UkB+WmkhCi8i3IEb3nnnuOr3/961Pe/ic/+QmXXnopmUxmwtdHRkZ47LHHeOyxx/jmN7/JnXfeyamnnrrHffT09PD617+erq6u8a/95S9/4a1vfSu3334773//+yeN44knnuD+++/n7W9/+5RjF0Lsjc0Bnl7CRpa05WZtbgly4SWE2B++mjyNByTRjYmjDdIGQSxEUoxFLLgzlm3bXHrppZimSUNDw6TbP/bYY1x44YVkMhk0TePiiy/m17/+NU8++SR33XUXZ555JgDDw8OcddZZex1F++QnP0lXVxcnnHAC9957L4888gif/OQncRyHj370owwPD08p/quvvnrK71UIsXcrPX2EjSxJ0ydJnhBiv/lq8jQfNIqmOSQHvPRvrGHL8zE2PFnHSHcQOccIIRaaBXfW+ta3vsVTTz3FQQcdxCWXXDLp9jfccAOWZQFw00038V//9V+cffbZHHvssZx77rncc889fOpTnwIgnU7zn//5n7vtI5/Pc/fdd9PW1sYf/vAH3vGOd/CGN7yB//zP/+Qf/uEfSKfT3H///fuMo66uDoC///3v/OpXv5ru2xZCTGAT1jNkLDev5ltZgKcyIUSF0F0mTQeO0HzQKDjQ+WKMwc0hxoZ8mDkDOb+IBcup8IeYcwvq7NXZ2cm//du/AXDzzTfjdk9eXe/RRx8FoLa2lo997GN73GbnUba//vWvuz0/PDxMPp/nuOOOIxAITHjuzW9+MwDd3d37jOOiiy4aH4G85pprcGQRqhAztsLTh1IwaIbKHYoQYgGLtaVYemQcf7hIIauz9fmYVM8UQlSNBZXofexjH2NsbIwPfvCDnHLKKVN6TaFQAGDZsmV73SYcDo+PuOXz+d2ej0ajGIbB008/vds6v+1FYJqa9l0EIhAI8JnPfAaAF154gZ///OdTil8IMVFISxPRM6QtD4NmpNzhCCEWoEA0R8dRg0SaspgFja4Xo3S9WItZkCRPVI/ta/Qq9SHm3oJJ9O68807uu+8+YrEYX/3qV6f8ugMOOACATZs27XWbZDLJ0NAQAAceeOBuz/t8Pt761reyZcsW3vKWt3D//ffz17/+lauuuopvfOMb+P1+3va2t00ay+WXX05zczNQqq5p2/aU34cQoqTFHQdgXa61zJEIIRaquqVjaLpDJuFi63MxCllXuUMSQohZtyASvUQiwSc+8QkAvvKVr1BfXz/l11566aVAafrl9773vT1u88UvfnH835dffvket/nGN75BbW0tjz766Pgava9+9as4jsO3vvUtGhsbJ43F5/Px2c9+FoC1a9fyk5/8ZMrvQwhR4tWKFB0de2GcvoQQFci2AQcGNoVZIJdCQggxbQvi7HbVVVfR19fHmjVrplSAZWeXXXYZ559/PgBXXHEFl156Kffeey9PP/00v/zlL3nXu97F1772NQA+97nPcdppp+1xPytXruTJJ5/kvPPOIxKJ4PV6OeGEE7jvvvumFdNll13GkiVLALjuuuvGC8UIIabGdhRKVnELIfbD0JYaUNB+2DCG1yx3OELMje0N0yv1IeZcxU9Gf+SRR7jlllswDIPvfe97KKWm9XrDMPjJT37C2WefzY033sgtt9zCLbfcMmGbN73pTXz2s5/l9NNP3+e+li9fzs9+9rNpv4edeTwePve5z3H55Zfz2muv8d///d9cfPHF+7VPIRYT09HxaQV8KkfW8ZY7HCHEApQd9TC8NUBte5r2w+KMdPsZ6QmWOywhhJhVFT2iVygUuOyyy3Ach09+8pMcdthhM9rPunXruOOOO3jxxRf3+Pxjjz3G7bffTm9v7/6EO2WXXHIJHR0dQGnaaLFYnJfjClENNhVK1WsP8nWjI3fihRAzM9ofoOvFKJapiC3JsOTQYTRD1s6L6lHuYitSjKX8KjrRu+GGG1i7di3t7e1cc801M9rHww8/zAknnMA999zDkiVL+J//+R/6+vooFAp0dnbyne98B5/Px49//GOOO+441q5dO8vvYncul2u8TcSmTZv4r//6r/3ep5KHPHZ+qCp8bHtvOdvL5nwDGg4H+7rK/72WR/X/7Mljxg8qIIZ9PYo5F1ufrSUV9+D2WbQdNoxSdtnjks9pAT7m6RwrxHRU7NTNV155hS9/+ctAqdH5rv3rpiKfz3PBBReQSCRoamri8ccfn9AGYcmSJXzsYx/j5JNP5phjjqGrq4sLL7yQp556atbex95ceOGFfPnLX2b9+vVcf/31XHTRRXg8nhnvr8nnwvBO3ldwf3mqcABFd8/tbSUFxGpKFd3m6waWx9Hn6UjzJx/Z+T3V4bgU9UaWNo+iwOxUzJvvz8ryVt+f7Zr6uf/OKQWRaOl8Nx/LPFy6jPLMhALCdV6UMz+/T4535ucBZywAviyxxhzG4RrJft8sRlbhFERqt11/zMMHlY/N/Fqnkhn+ub2kVkB4urNYHCq3MXmlxlVlKjbR+/rXv06hUGD58uVkMhl++tOf7rbNzlMx//SnP9HX1wfAmWeeSSAQ4Le//e14I/Mrr7xyr73uDjnkEN7//vdzyy238PTTT/Pcc89xxBFHzMG72sEwDK6++mouvPBCOjs7+eEPf8jHP/7xGe+vL1tEt+f+4t6bnPNDzDsjM/eJHkB/ojBv5zXfcPVl5Fk18XSlXEU0d5JkNsCoPf0bQXsy35+V6a++RC8/mJvzY6ht37ahwdy8JHru/vTcH6QKKQWOgnhvel4+JzuwfwnEUD90uJM4eorESHTR9NTb/vs03J+dl88p51TfeQ9gMDO3N4QUYGpSwE9MT8WexbY3Lt+4cSMXXHDBpNvv3CJh06ZNBAKBCdMwjzrqqH2+/uijjx4v0vLKK6/MeaIH8L73vY8bbriBV155hRtuuIEPf/jDM97XfN20qcYbMPP1fZvPG2vVWMxq57fUZMRpccWxHUjanln9vs7nZ1WFH9O8/ezNZ+G2avx9mjcL7HMa6Q4Qa0vTdnicXMqg59UI2BW9ymV2LLDPqRLJ3wxRiar67GUYO/JY09z3CMfOBVF2ft1c0jSNa6+9FoDe3l5uvvnmeTmuEAtZSEvT6o5jobE2uwS7cu9XCSEWmERfqUBLbszAW2Oy/Oghoi1j5Q5LiBkpd7EVKcZSfhV7hXTbbbdx22237XOba6+9li984QsA/PnPf+aUU06Z8PyyZcvG//3www/zjne8Y6/7euihh/b4url23nnncf311/PCCy9w4403cuGFF85oP9kmG8039+tI8rHqm3LRce/cTjVTCvxZqJmnaWYA7v7U/BxoHvke7Qeg7vUGaqVB188z+Arrmc2VNEpBaGmY4pbRefmsrFT1fU7zQWkKrSOKtnkEx577D6r6JkLPD6UprEIUc54+p9mSA7oehcBSNw2n1BBtTZN7qZf0pkK5Q5sTSlPYHVHsefqc5r6aQHnUc+yc7l8piNQsnN8jURmqekTvzW9+M36/H4Cbb76ZF154YY/b/eY3v+FXv/oVAK2trRx55JHzFSJKqfFRvYGBgUmTWyEWM82AwBIdx3Gw5epbCDGH0lsKbP7xMI4FTafWVPkVk6hKtlPZDzHnqvq0FYlE+Jd/+RcAUqkUa9as4V//9V/585//zLPPPsvvfvc7Pvaxj3HWWWdh26XRsBtvvBFNm99vyzvf+U5e97rXATA0NDSvxxZiIal/gwvNA4kXTZBCiEKIOeaYMPhoCmUomt8SKnc4QggxLRU7dXO2fP7znycej/PNb36TsbExvvzlL4+3bdiZy+Xihhtu4P3vf/+8x6iU4rrrruPMM8+c92MLsRCNvCyVx4QQ8yO5Nk94tY/AUjf1JwUZ/Ius2RMLhLRXWPSqekQPSknU17/+dZ566ik++tGPcuihh1JTU4Ou64TDYY4++mg+9alP8eKLL/LpT3+6bHG+4x3v4Ljjjivb8YWoeAa4owqlFJ5IuYMRQiwmnb9MoJQivNqLVq2LzIQQVWdBj+hde+214+vbJnP00Udz9NFHz21Au+jo6MCZRkWHJ554Yg6jEWJha1zjwvArckM2eZnhLISYR81nlKZtpjcXsKuzJouoQorKrW5ZfaX9KtOCTvSEEIuEZuNv1TDHHHp+Vz1XWZoHWt8ewRXWcSyHXJ9J7++TeOoN7IJNcVQWIgpRbg0nBwku9ZDtLdD7u2S5wxFCiCmTRE8IUfH8MROlKUZfrZJSmxp4ahWRVSG8Da5SFdECBJd7WHJOGG+jC4CRZzMMP5Epc7BCLF61x/kJHeQlHzfpunu03OEIIcS0SKInhKh4hYyG4zh4YhqwcAux1L3eoGaFDpTWD28X/1uGkWczrLikDl+TG8dxsDI20SP9eBtdmCmb/odSUmlUiPlkQPR1fqyMzda7RsodjRDT5zjMWwPf6arUuKqMJHpCiIpnZgzsPPhbFm79qNBBOqGVBsUxm9ygQyFhk+0cI9u3o1VEtqeIr8lF4qUsI89mWXpeFF+zC9WisE2HwYel2p+obpoX7Fy5oyipPyGIUorhv2fkJosQYkGSRE8IUfEMv4lygbNAB/OMAMQON7BNh867d6wxtFITp6J23ztxatjG24ZZdmEM3aeR3pxHGZR6eSlFtq/IyDNyASqqQ+xYP7HX+VGaYujxMUaezZY1ntAhXiKH+DDTFsmXdmSeml/DE9Em3KARolIpp4KLsVRoXNVGEj0hRMVrPSaN0mD4b8VyhzI9Gix5mxtXqDRNM/Hi9NcYKr30WmUolpwVGV/TF2hzU3u0n+S6HAMPyUifWJhqVnloPKlm/OccIL0lv8/XaG7mvPKlZpTiMQI6Ky+rwy46oEBzlVq8OLbD4F/HGH2xQoYfhRBiDyTRE0JUPKVBbsAh9drCuoUeOVjHHdbID9sMPFagOINaDr2/T7LkzAgtbw2Pf23j/8QJtLpoenOI8Gof7phB168Se3y95tcIrfBgFWzMlEUxaWOOLazvo6he3gYXSlcUUxZGUAMbGk4J4YnpKE1hFx3MtI2ZtjCCOu6wjtJLidbWXyYoDE3t5olRo6E0sItgZSb/+U88lyU3UCR8kA9XWMMIlNbWZjoL5IdMokf6qX9DEMd2SL6878RUiLKRhumLniR6QoiKZ5vgrVdEj9AZeW7hzN8sjpb+kmkeKKZ3edKAwDI3nloDV1jHytqMbcyT65t44ZrtLtL7hySuGg3HAXPMxs7YpF7LEzq4gL+5tA9vkzHhtf42F5HDfPjb3BMKvwA7+nvaO9bDO5ZD/5+S5Ecs7JwtvcLEvBj86xj+JW7cYR3bdNAMhbfBoJi0sQsWhl/DFdZxx3QcGwqjFvkhk5oDPDSdWsPWO/dcJEVzQ+MpIXytLjS3mvA74NgOdsHBLjrkh8y9tkzI9ZrkelN7fC7xQpZlH6il4cQaMluLcvNECFGRJNETQlS8wbU+6ldliB7qQjMUw39bGG0WrIKD4zi4ghrL3uMh3WmTG7AIdhh46hRKeYFS4qWUInq4n+SrOfr/NPHicmzDnkcMuu8dpenNIYLL3bSdE8Wxt2VtqlTV03EcCsMWw0+lQQNXjY4RUOh+Hd2nobvVeNdaT61ByxmR8XhwwEzbjDyXkelpYu5YsOWOOCs/Uke2u8DAX8Yws/ak6980tyKw1E3rmWF6/zA6oYBL9Gg/tUf5QSuN3mUGTArxIo5VmnrprjNwh/Rtvw8zK/DkmND16xHaz4tRvyZI7++lv56oPMpxUBVa3bJS46o2kugJISpedtjNlrtGaDvbTWiVTqbbJttXxjvoGrjD4I5qaG5FMemQ7dk9nly/w6af5Am0acSONgi0awSXlqaAWQWH9OYcI89lCC73UHt0oPT1zDRGLG3o+0MSzQuxowJ46gxwwMo55AeLpNbnpzzSYIQ1wqtKiafu1/HEdNy1Bg1vrKHu+CBjm/IMPpqqmIqIonq4a0u/E6jSzYWp6P19kiVnRfC1uFj+wTqKKRulQPdpaIbCytn0/jFJtmvv63o73hfDCGp0vD/G4F/HSG+c3jB2YaSUkBrBhVsNWAhR3STRE0IsGN2/K7D0HA9Np7oY+GuR9Ob5Tfb8bRp1x7jQfexxOmQx6dB13+4Xi+lOm3RngZoVGrXHutB0he5WhA704qkzSK0vjdgVUxbxv0+/Qbqdg6G/7jo3dHrMUZvhJ3c/duRwH9EjfNSs9FCz0kN+yGToifQ+L6DFIqGBt9HA1+jCXWvgDpdGih0HsBwcB0KhGjzDFk6xND3YNrf/v4NjOihdEV7tBQeGn57Gz74NXb9O4G0yqH9jEFdIL41CpyyS6/OM/G3yfW3+cZzGU2sIHeil5S1hRtdmp1XYqGaVB6UrclNcJyiE2H+7/u3dm5NPPpkHH3xwboNZACTRE0IsGHYOeh4o0PoWD41vcGO+zkH3lZ7ruj+/12InLW914woqzIyDbYFjOuTjNiPPTmH0TIPGE134WzSUVpoOmemyKSRsCgkHM+vgqdUIduh4azVa3upmbItFbsDCscDZlot6ajXqjnMBMLbZIt1p4W+yCa70UHuMHyiNUlTa2rjE81kSz2fxNBjUrwnibTRY8o4IZtZm9KVsKTHdj3zbt8RVutC3If73dGmUpMzmo6pjpdHc0PimELpPw0xb5OMW5ti2349tBR1s0yHbW8DOQWC5m+bTQiitdNHlOA7YpW2A0teVwh3W8Wqln3t2uj7b+WLNLjp03j31wio7y/WZdN6VmMlbBqAQ33FMOz/1nz1vk0HjSTWl/paPSNVbUaFsKrcNSKXGVWUk0RNCVD7Npu71BoE2Hc2948uGf8fForWntlsaLDnDjTui4VgOrrBCKUAp/M06Vg6Sr+w52XPXgq9BJ3yQge6DYsohtd4ktcnabfpiftAi+YpFy1vceOoU3joX4Nptn47j0PdgcXyaZ/KlFPV5m9CBXtI9BfKDlTsykB8w6fp1As0NtccHCR3gofaYALGj/KQ7Cww+OoaZnN5f7pa3h/Ev2fF9Cq700PnLRNm+D23nRvDUGqCgmLDY8rPdC30YAQ3NqyiMWlC5H9e0RA7zUXdCoJSIOYAyqFmx97vmOxfzGXpijFx/kWy/Cbv8KilNUddhM7R5ZMf60e100FyguTTMVPmu+CJH+LGLNht+NDyt17X8nzBKV/T+blQuWIUog8svv5yPfexje30+EAjMYzSVSxI9IUQFs4muyBNeUgClYxcgvdUmtdmi/vUuDG/pYtTMOngbNQwfeKIaRljD5VfopYEyUhtMBh+feFW+7AIPdUe7qDt6YkIWCnkIJb3j/+04DqNrTeLPTD761/P7Amjga9Dw1G9PKkvPmRmH3IC926jj4CNpBh/Zv2mX88kuwOBfxhj8yxg1qzzEjgoQaHcTaI9RHLUYfiqz1+IxO2s6PUSgzU2mt0Dvb0ZxRw3a3hkldJCXwcHyjJB46ozxkaY9rbtqe1cET70xXujGzjvkBoqkNuRJvZZfkBf8mhvq1gSwiw69v0uS7S6CVvpejBcq2fYzrHsUnjoX7oiO5lYMPZ4ubT8TFtgW2LnyftMc00G5NTz1xrRuMOheDcdxSG9aZEO/YkGp5mIsDQ0NHHroobMUTfWSRE8IUbHqD84SbCxdfPU9VCTTteOisDeVp/GNpWbkhk/RdFJpqG97xUi7CPm4Q+JFc8Lrtut7qEiwfZeLeQV6nUlqyMRMO2QHSsnZtC7gbcj22WT7pv12F5zUujypdXlcYY36Nwbxt7ppPj2EfapDrq9ApqtIenN+wnRMzQt1rw8SXO4mP1Sk++5S5lsYMXEch/BqL6EDPShDYWVszLSN45Sqgo5tyNP/5z2Xu58NyVdyhFeX5gIrQ9H2rgjFpIWZsalZ4UH3a2S6i2R7i3jrDbwNBv42N4F2D42nOFhZm1y/SfyZDPmBbUmDBuGDvfiaXVgZm+G/pSuqoE3saD9KKXp/P7ojabNLI7h7Tterq2fcyHMZ6t8QpO1dEbAh012g57fJff7O1xzgAWBsmsVbhBBivkmiJ4SoWNpOZ6jcLlU2i6PQdX/pQssdBU9Mw8xCfsDGnsKN+WyPvVulTKXAWWoxvMWkQm+CVqTiqE3P/UnQoPYYP7GjAvhbPfhbPdS9Prhjqh871mYVxyy27tTk3S7AwCNjxI70ozQoDJl4osb4VEqlKWpWehh9JUu+f256KRa3VSgd/luampWlQjnjI3i2w8izGYaf2KXIhw6hlR6CK7146w0CHW4CHW7yQya6V8MIauMjgEopIof5if89vcfCN3PBCGkEl5YSk9xgkVyfiRHQ8DQY1KzwEFzhwcrbi7a4zuiLOcY2Fqh7fQBvYylxX/7BWrruSVAY3vPPmStSqhIaf2Z+PkMhZkwapi96kugJIaZFM2zCbXkCjUWUguyIgVVQGF4bw2uDgkJKJ9XjRulQTGvY5lTLj9uElhTR3TapHg/eSCljywzr+0zeCiNURBGPRc+G4Scz+FrdeBsMUq/msLI2rpBRWqO1raBH8tUcud7dP9DkSzmSL+15uCuw1E3zW0MsOStC589H0LxTq7w2HcGlpVHh+FMZ4k/tuIg3gtre21RYkFyXJ7muNNLlrtVZcmYET8zANh1yfUVG1+ZQBjScWINSCl/z7us350Ljm2qoOdAzsVn4toRz+7/NMZuuuxPzEk+lsjL2+Ehx+FAv9WuCtL87SvKVHAMPj+02uje2MU/t0QFqj/HT+1vpnyeEqFyS6AkhpqXh0Ay+qIVjg+NATXNpJMDZ6c6hp8Ym1Fr6ulVQbH00NKV9e8I2tQeULvTD7YXSCJsN/c/7gYWzjm2x67o3wbL/G6PmQC/5QZPRV7IkX96/KX/pLQW2/CzO0vNjtL07SigcIngCbPnZyJR7BU5qWz607AMxNv1PfPzL09l/Ydhi4227F/boeF9sfGQvN2iieZmzKZyaG9rPi+EK6uTjJkOPjeHY4G1y4a01KI5ZFBImmS3FKfetWyxGX8yR6SzQemaE8GofoQO9pNbnUUZpVHnoiTHq3xgEwJmbgWUhxBT8/Oc/54477mDr1q0YhkFTUxNr1qzhoosu4k1velO5w6sYkugJIaYlM+TCF7UY63cx9IoftNJInpnRgNLInbvGpP6gLO6gTXpw6qeZ/KiGbYGmQ2bIQOlO6RhIQ+IFxYTNP4mz5OxS8ZLGhhB1x9v0P5AivWXm65qKozbpTQX8S1wURy2UoVj63hhb7ozPSuXGzl8kqHtDgOhhfsKHehl9cfYysa57EjSeUoO30UX0cD+RQ30MPJLa7wR4TxpOqsEVLE0v7LpvFDtT+t7MuHDKIlMctdn8v3GCKzzUvyFAaJV3fPpxcFltqQjL1jx9f5DRPFHhHIeKXYewLa5kcuLvkcfjwePxTPryl19+ecJ/r1+/nvXr1/Pf//3fnHPOOdx2222Ew+HZi3eBkkRPCDENNkovnZy3T6vE1rYleTsUUgb5lI4rYKO7HXyxItm4zvaETdNtPBELzbCxLYVjlYZSgo1FlAZWEQZelNLIC5ljlhIngOhRPmqPDtB0WogNPxrar/32/j65rWy/Q5Y0TafXlJK9O+KzMjo19Gia6GF+PHUuYPYSPTNl031vqfCMb4mL5reEaDixhuByLz3/b/9L9AeWuYkc4kP3ayh9x1RNX5NBWoqGzMjYhjxjG/K4IhpWzsbwaUSPDJDpKpSqrAoh9ltbW9uE/77mmmu49tpr97q93+/nrLPO4s1vfjMHHXQQwWCQwcFBHnroIb73ve8xPDzMr3/9a84++2z+8Ic/4HLNz1T5SiWJnhBicppN+5oUmlEqWGKbMLjWv8+XxDd48UZM/HUmgXoTx4ZcQsddY43vZ1eOU5rq2f10cI7eiCiHkb9nCXZ4SoVVZlF6c4HePyRpeUuYpreE6NqpuMtMBVeU7iQXU3M3Ly/bVWTjbcO0viNMYImbxlNq6P/TvquJRo/0ETnch+4r3SzJ9u2oWNp6Vnh83Z9jAY6DmbUZW5+TJG8WFBOlLLyQs+e06qsQs005pUcl2h5XZ2cnodCO5R2TjeZ1d3cTiUR2+/rpp5/OlVdeyRlnnMEzzzzDQw89xM0338w//MM/zGbYC44kekKIfdLcNg2rM+guKIxpJLvdpHpcTDad0i5qdD0eQnPbBBsLRJfl8UYt7KIiPaiTT5SKuCjDQdMBBZlBAzOnz8v7EvNL92mzPoNIc0HTqaULhMLILCRmGjScFCxV2Jzrioo2DD+Vxn+2G0/dnv8UKwNqj/UTPtiP5lLYRZtMd6m1g6/RReRwH9EjfBgBnUxXge7fjO7WtFwIISpZKBSakOhNZk9J3naNjY3cddddrF69mkKhwE033SSJXrkDEEJULlfApOWYNEpBMavo/lsA7Omtl7MLGslOL8lOL6X5abLebrFpeVsIV41OagqN1KfDtnaMDA88uGOkxRXW8LW4cEcNsn3FKY1q+Za4aDylptQI/K/peWl+Xhgu9Q70xAxWfqRuj9sopbByNoNPp0k8lwVgyTsj+Bpd1K8pJaXz2a5BCLGALIA1erNt+fLlnH766dx///2sX7+enp4eWlpa5uRYC4EkekKIvbBpOTqNpsFopwszpxNdlkd3OegeG0/QJj+mMfiSfxrtEyTJW2yWvjeKO2qQ6SnMfvEKG0bX5Ygc7KP1rDDuqI5jgRHQxlsIRA+H5Gs5+h/Y85S7QEepybvSSxUxR57NkHghO7tx7i38Amy8fYjYUQEMf+l3Q2mqVP1TgVN0SG3Mk940MVHtujtBoM0FmtrtOSGEWOwOPvhg7r//fqA01VMSPSGE2IUnbJemVALhtiKwo2Kf45TWAvmiFu1vSNH7bID8qJxOxER1x/txRw1G12YZeGhsTo4x/OQYoZUefM0u7IKD7lZku4skXspSTFq0vzuKvpeee7pfo/n0EI5TmkY5ujY3XqFyvtg5SiOI03oRpLdIBU0hxL4pu/SoRHMZl1Opo5hlIFdmQog9yo9qDK8vLYq2Cgozp2HlNcycAjTcQZP6gzO4Aw7Rjhx9z0kBFbETA0IH+bCLzpwleVBKlDb81/Ae+9I1nVYDwMizexihM6D93Aho0HNvgmzP7g3chRBCLDw7t15YzKN5IImeEGKvtG3r6ibSPTaxFWkCDaULYzOvGHxl3xU4xeLiCmu0vSuK5lbE/z4/a8f21Hw8sNSNlXN26x8XWF6qdKm5SvFJkieEENVh48aN/OEPfwBK6/VaW1vLHFF5SaInhJgyT7hI8+syKFUa5ev5WxAzJ+vuxA5GQKP9PTGUDgMPz01D8Mkog1IMhsLa1ibBCGhEjvARWuVF92g4llO2+IQQYl5UWTGWe++9lzPOOAPD2HP60t/fz7vf/W6KxdLNvSuuuGK/QqwGkugJIaYstqI0bNL9dIBCSk4fYhcGtL8nitKh5zejZLaWZx1Z6zvCuMOlBabuqM7Kj9SNF2ex8jYjz2cYejINMpAnhBALxpVXXkmxWOTcc8/lhBNOoKOjA5/Px9DQEA8++CDf//73GRoaAuCNb3yjJHpIoieEmAbd7eBYSJIn9qjjghi6V6OQMMuW5AHkBk3cMQMr52DnbaycTTFlk3o1R65PsjshxCLhbHtUohnG1dPTw0033cRNN920123OPfdcbrnllkmbry8GcrUmhJiU7rGpX53B8DqV+0dDlFXdmgCuwLZRtIhB9Gg/I38rT2+3oUfTDD06zUqWQgghKtrtt9/OQw89xGOPPcbGjRsZGhoimUwSDAZpa2tjzZo1fPCDH+SEE04od6gVQxI9IcTeaTZNh2fwRkrrnApjGoNrfWUOSlQcDSKH+DAzFiPPZKl/QxB3RC93VEIIsagpx0FV6Bq9mcR18sknc/LJJ89BNNVLEj0hxB75YkUaDs2gtB0JXjEtpwyxu0CHG6UrRp7JknghS+RwHzUrPcSfTlMcrdAmTkIIIUSVk6s2IcRuPGGTxsMzOA4MvOgjM+Qud0iigrlqSqN3uaHSurxi0sIIamhuDZBETwghhCgHqYsuhNiJTd1BGZpflwYHup8KSJInJlVMlAqchA4s9V10xwyUUjScGETzy58ZIYQoi+3tFSr1Ieac/AUWQgClqZpLT0xR01zEzCq6nghiZmTQX0wuvaVIMWUROsiLO6rR+9tRcgNFPPUGy86PYgTlT40QQggx3+SvrxCLXGxlhqUnjdJ0RGk93vBrXrqeCGHmpJiGmLquexIA1J0QJNdv0vnLBP1/SqFcipb/EypvcEIIsRg5lGbPV+JDBvTmhdyuF2IR80aLhJYUUQqS3S5GNnixLbn/I6bPLpTW4mluNf611Gt5wof68DbInxohhBBivslfXyEWIV9dgfqDsuiu0jT50S4X8df85Q5LLFDeJoPWd0QAGHlmYu883aOkHouYILDcTbDDgyusYwQ0NJeiOGrR+8ckZlJ+WISYLdXWXkFMnyR6QiwyroBJ46FZHAfSAwbxjR7MrJwKxMw1vyWEZihyg0VcEQOfBVbOoem0GtwRg0LCJHqkD82tyA2ZpDcXJPlbZLxNBrGjA/iaXWiGwnEccMAuODiWg7fBRfRwH4OPSKN7IYSYLXJ1J8Qi4/KVrrCzcYOBlwJljkZUg2xPkeAyDW+9C2+9a7fn3RGDuuOD4//tOA52waE4apHtKZDaUCA/aM5nyGIuGBBaURqpU4ZCdytiSwLUnKLQ3RqO42CmbOLrcow8l4FtH3ndCX6iRwSw8nKHX4hZ5VC51S0rNKxqI4meEIuKTaCxtCZP0+QsK2ZH3x9TQArNDZ46A0+tC92nyMdNjICOlbUpjlrYBRtvi5tAm7u0XZ1RGsk5MoBjO1hZm/ywSaazSPLVLHa+3O9MTMao0ag9LkCg3Y3mViilJjzvq3GRG4DEixmGn05j50pfVwbUnuCn5kAvulejOGYR32XarxBCiP0jiZ4Qi4JNeGmByNI8mg75lEbfc7ImT8wuuwDZHpNsz95H5wojOZIv5cb/212rU7PCg6/VjTui429zE2j3ULcmwMbbh8YTg7mkuUuxV7PQKg+RI/zYRYfRF7OkXitl0a6IVppO6dbID5lk+4pgTb4/d1Sj6fQw7mipOq+Vs0lvLjK2KU+uv4hVBKfgUNduMbR5BMfecWMpcpiPujUBlFLYBZvUq3n6H0rJdF4hhJhlkugJUa00m0Cdib+2iL/ORDPANmFonZdUj6fc0QkBQGHYYng4A2wbzdGg/d1RPDGDptPC9Nw3OmfHrj8pSOgAD5pLw8rbdP16hMLIwsk2vE2lEVFXRMcV0tE9CjNlk+0rkngpW0rYNGg+LURgmXt8qpT31BrqTgigezWUNnEEbvvaOQArazP41zRjG/Lofo3GNwXx1Bpobg21rftKpqvA0F/H9vh923Xf29W+PgAO9Pw2QXpLcba+HUKIXVVyY/JKjavKSKInRJXQNJtYXRK/P4/nwCJKB6W2nectiG/0MLrFjbTPFBXNht7fjdJxQS3FxNys29O80P7uGK6gjpm1yA0V8DW5aDs3xpafxjHHKjPZCyxzE17txVNroPu1CdMkHccBGzx1EFzuoe6EAHbeQRmqVChnqEjnrxLgQPNbQ3gbXBRGLDJdebK9JnbBxlPvwlNrYARLCaC33qD59BD2m5zxxM7K2RSTFsWkxeAjYzP6XllZGyOgSZInhBBzTBI9IRY4ry9HY9MoHm9xPLEz84pCQic7bJAecGGbktyJhcPXUiroku2bm0Sv/V0xjIBG/Jk0w0+URhIDHW6a3xqi430xxjbk6ftT5UwldNfqtL4tjBHQS4Vs8g65viKZ7iLZ3iL5weKEqaeB5W4ih/lwBXUwHYaezTD64o45sL2/Se7xOLtNudWg7oQAgTY3dsGh/y9jFIb2/zNJPJ+l/g1BAsvdpDdW+ZxZIcrJBvY8sF5+FXJ+rXaS6AmxoNm0LR1CKchlXQwNhsikfbj7U+UOTIgZ0/2l4SN/q4ux9bNQkUWH0EFecByMQGmaY+Kl7HiSB5DeXKDzlwma3lxDcIWH9lqDrT8b2f9j76e6NQEih/kAGHkhw9Dj6UnX0KU3FmYngbJh6NE0Q8xuy4PRtVnq1gSoXxMkvTE+q/sWQgixgyR6YlqMTKXeGpq5uU6KlAKXbuPuT8/6lPTQkjyaBsOveUl2eQATNymcnv7ZPVAFsFJzn7wqTWGnXVhjYxOKR4j5NfJMhvBBXsKrfdSs8JAbMsl0Fki9lp/+VEENlr0/huHTx7/kOE6pvP8u8oMmW346wpJzIngby/znUYOO82O4QjrFlEXXvYmqaSbumKXp5K6gjqfBID8grTUWE6OludwhzImtJ+zeWmY2KcBWFvxsGq+RhumLniR6QixgnlDpAqmQlqmZoorYsPnHcaJH+Ygc6sPX7MLf4qbu9UFsy8EcszDGvAxtnnxXDScG0b2laZq5/9/efcfHUZ2L///MbK9adUuWLLkXbGPcMNiATe8GEgiEhJpwSUi+BBIISbj0JMAvBLi5CdyEdpPchBZa6M2mGBsXbONeJUu21duutu/O/P5Ye21ZXZa0Ks/79dqXVtozM2f3aHfnmXPOc6pjicCpMdZh0GRyq2jR1J6E5C5yYXSpNG4MDLlFxFUrqMbERcNRl6QT88cpf6WRmH9oBLJCCDFQSKAnxCBWt9OGI9tHzjEByj5PS3V1hOhVDV8FafgqCICtwIRzjAXbCBMmtwFPoY1iTzr73m4iUtfOWEYVHEVm9JjeYphmZww2Ff+e1M4dc4wyEw9pQy7IA9BCsOOpGhwFZhzFFtwTLRRfmUE8pIEOMb9G1RLvoMqAKoQQA5EEekIMYlpEJdRkwOrpwsJXQgxiwb1RgnsTWRoVVWHchWYMuSqjvplOrFkjVBXFvydCzB/HOsKMa4wFc6YBRVFo3Nj9hbjthSbSplrx7QihhRMJURzFiUDTnG7AaFOTCWzjAY3GDUEa1gV75bla84yoZoXmnUM4UUksMS8ycQuTOdeBwaKAqmDJNlJwcTq7n6lLdS2FGNxkeYVhTwI9IQYxoy2G1RMnHhl6cyeF6Ejj1yEaa5vImu/Anm/COdaCa5w1+biu6YRrYjSsD9K8q+sJXZLLFiiQs8BFzgIXuq4nlzLQdR0tohOujxFpjGOwKNjyzWTNc5I5x4G/PNLjZQcOyjvDDTpULxseSZUOBnwHZZ3oIH26HesII6E+yrwqxGCiahqFgUby9RifpboyYlCRQE+IQSx7UiJleuV6e4prIkT/izVryaUCVDM4RlswWFRC1dEeBwhZJzgAqHjfi8llwJSmYrCpRJvi+Msi7e7XPcVCxgwHzmIL9gIzu5+rRe9BFSzZRox2A76dIbRQ5+WHItWc6CrVZaCCEKiaxslVuzGgY7ZYurex9OgNexLoCTFYqRqWtDhRv0rUL29lMbxpEfBtO7qlGPLOdOMcYyHSGGvRw9QV3s1hrDlm0twGFAMYrGq3e/Wc4yyMOC3Rg9hcMoSHbXbCXmAiHtEI10hvnhAAKjpRRWFjen6qqyIGGTk7FGKw0gAdTA4N1ayhRSTzphBHw15oIh7S2PN8z9bPc41LXG1XFIXiKzOI+jQiDTFMLgNRb5yqpV60UGJ4qL3QhGpSiPk1glUxLOkGRpzqQo/p7H2jaVgHOboGqkkh/1w3gb1RAuVhScwihi31wMriDRYHqN2cpiE9esOeBHpCDFoqzZUmXPlRTLY4YQn0hDgq4bo41lwjipEeDbuseK8Jz1QbkYYY5kwj9nwzJpcZPQ7mdANjrs5Cj4NiIDnnDxLz/gDQoPyVhmEf1FR+4CXvTDf2QjOOURZ03UGgPML+t72prpoQ/c4TDqIADWZbqqsiBiEJ9IQYdDRc+VHcBRFMdg0tBuEmQ+ebCSHaZc4yYkpLXCwx2NUeLU4eKI8SKI+2+Zh1hJHsE50oJoVQVQx/WRgtomNyqFhHJBZarl0VQAsM7yAPEgvXl/5fPRjBlmsiZ4ETe6EZo7P7w2GFGOxMWuJ/Pqr24HteI7HS+kAkb+V+IYGeEIOIatbIn9WMyaqj6xBqNFC90U4yz7sQokcKL/KgGKBpc6hHQV5nQpUxyl9pbPX3IOA9yrmFQ1YMgvuiVLzfxKjLMsg7y035vxpTXSshuiwtHCBsMBIymtt8XNXijAx4yQ41Y9YS2YeCBhMVdjfVFgeoKg0WGzpQ4G9kr1V69UT39OrZ4e23346iKMnb0qVLu7Td0qVLue666xg/fjxOpxO328348eO55JJL+NOf/kRzc3OP61RcXNyiTu3diouLO93X3//+d2bMmIHVaqWwsJCf/exneL3tDyW55pprWhzj3Xff7fQYB8tec8013XiWYqgz2mPkTPMz6gQfRotOU7mJ0qUuKtc50WIS5AlxtBRDIs1/zWc9/74RfSPSoBHYG8GSZSTvLLdc1xKDgqppzKrfx/yaPSys2MlJlbs4obqE2bVlzK4tY0HVbhZW7WaCrxZPNIRFi2GNx8iMBJjWWMmiql0cV7cXVzRMwGjCEw1xbENFqp+WGGR6rUdv/fr1PProo93axufz8b3vfY8XX3yxzcd27tzJq6++yoknnsiMGTN6qaY9c99993H33Xcnf9+7dy+PPPIIH3/8MZ999hkOh6PTfdx1112cffbZfVlNMaRoeIojuPIjGMyJOTyxsELtVhuhBlOK6ybE0DHywjQURSFY0fawS5F6+9/zMuridBzFZsZdn0WoOopvV5hgRZRInazDIAYITcOixYiranJuXURRCRmMmLU4Zi2ONZ6YABxXVOrM9ha9d5AIEIv8DeQFvKRHgmREgsndG+leAhNF11EGaNKTgVqvoaZXAj1N0/j+979PLBYjJyeH6urqTrfx+/2cc845LFu2DICzzz6bK664ggkTJqBpGnv27GHVqlW89NJLvVFFFi9ezAMPPNDu42Zz293qAJs3b+bee+/FarXyq1/9itNPP52ysjLuuusu1q5dy/3338+DDz7YaR1WrVrFG2+8wYUXXtij5yCGD0talNxpQQwmHS0OgRoj9busxEIyF0+I3uSZZsOebyZYGaHx62DnG4jUiEHZSw04x1nImuvAOsKELS/xva3rOnocmneHqfnch3b4yhQqMhdI9DlLusb8qt1YtDgKJMMxHViTWUDA1PX17zRVpcSVSYkrE6MWIzfYjDMaJjMcoJur6AnRO4Hef/3Xf7Fq1SomTZrExRdfzG9/+9tOt7nttttYtmwZqqry9NNPtxqqeOKJJ3LFFVfwyCOPEI8f/dU6j8fD1KlTe7TtSy+9hKZpPPzww/z4xz8GYN68ecyfP58JEybw4osvdhroZWVlUVtby1133cUFF1zQIuOaEEmqRu7UILaMGOhQv9tC0x5rqmslxJAVaTyQXlMH1cqwXaR8sGjeGaZ5ZxhUcBSZsWQZMXsMWHNNuMZbcI23oEd1MCgoamI6xMGspnocAvsi1C5vxl6QCBJ9O0JoMkVySDLaNRwFOrYsHaM9kUk3HgEtohCLQDwE8aBCLHhwSQ9QjQd/6qhGUIygGhI/FRVCteAtV6DFlAmNESdqKBrUme34jWbMeuK8tdSR3q0g70gx1cg+hwdI5FSZ5a/t3g5keYVh76gDvfLycv7zP/8TgCeeeKJL8/LWrVvHk08+CcCtt97a4Xw0RVEwGlObM2bfvn0ALFq0qMXfR44cyaRJk9i4cWOn+7j99tu5/fbbWb9+Pa+88grf+MY3+qSuYvByjgiTOSGEokLEp1K53iHz74ToCSM4iy04Cs0YbIm16mqWNbe5ZEKgPEpgXwT7SDNjr8lG13XiIZ3Kj7wE98pQzgFLA39JBP9hC8vb8o2kz3RgcqpoUZ14SCPm11ENoFpVTGkGHKPMOIsyk9tkz3cSD2rUfxWgaaNE+YOXhjkNYn7QYpC3QMOakXhE1w8sl2IBkwtA59C19q4FGwdjEkceZEzV8ZXp1G1QQIPMYxP/Y9tdWZQ703v3aR2hr/cvhp6jjqB++MMf0tzczNVXX83ChQu7FOg98cQT6LqOxWLhjjvuONoq9LmcnBwAPvnkkxa9gpWVlWzbto0RI0Z0uo+bbrqJRx55hKqqKu6++24uvvhiVFVO4kUik2besX5MDg1dg5rNNvzV7Q8lFkK0lj3fgb3AjNFpSFx9P6wnR1EUHEVmSv5a3+a2+/7dhHOcBVuuEaMzEQyMPCeNnX/p5tVzkVLB/TGC+5s6LGPJNuIabyFYmQjiXWOtOIrM5CxwkXW8g3BdHC2qoYV14hEdPaIRD+nEwxrx4IHgMZC4MXzXtE89VcNVCIpBx+wGR36iB07XIRYAkwOCNQoN2xXCdXBkBh/VqGF0gNEORpsOCmhRBT2WCBTjUdAioB34eXAMsCMf0qdouIt0XKMOfr5ALAjluWn9/CJ0gaaDMkB7zrQBWq8h5qgCvRdffJE333yTjIwM/r//7//r0ja6rvPyyy8DcOqpp5KZmbiyFovF2L9/P7quM2LECCyWgTMS+aKLLuLXv/41t912G16vl0WLFrF3717uvvtu/H4/N954Y6f7sNvt3HHHHdxyyy1s2rSJF154gSuuuKIfai8GMseIMNmTEleRA7VGqjfakJRyQnRP3llunKMtaDGdWHOccG2MwL4IzbvDaGEoujwdk6vj+a3JIYFA+kw7WXMd2ApM0qs3xIRrYoRrDkVo/t2JHsH0mTY80+xYc4zJdcc6m2Jx8EKCFtGJBTSiDXFC1VGaNgdbzhMUvUo1axSepqEelpMsHoGmXQquIh2TA5r3KdSsaf89r8VUIk0Q6fi6wJFHxr8f/PtV7HkaaWM0tJhCsAa8uxX4D/nuFgNPjwO9xsZGbr75ZgAeeughsrOzu7Tdzp07qa9PXFU94YQTqK2t5Ve/+hX//Oc/8fl8AFgsFhYuXMivfvUrTjrppJ5WsYVPP/2U6dOns2vXLnRdJzc3l7lz53LFFVewePHiDj/QZ8+ezc0338zjjz/OL3/5yxaPTZ06lbvuuqtLdbjxxhv53e9+x759+7j33nu57LLLMBgkucZwljUhEeTtX+Mg4pNlLYXoCccoMxFvnD3/aLvHTjUpoELemW6820P4Szs+C9fjB640yxXnYaPhqyANXx2RjMcARruKwaZitKkYrAqqVcVgOfDTrGCwqZjcBkwuA2aPAecYC5nHOwhVxahZ1twiqDyS0aFiyTUSD2qEamKJHsIDx9TjEA9IFpm25J+soRihfqtCuF4h2gzxUCLIatyhYcsB/96+DboCFSqBikEQ2MkcvWGvx2eWt99+O5WVlZx44olcf/31Xd5u8+bNyfu6rjN9+nQqKlquCxIOh3nvvfd4//33efjhh/nZz37W02omlZSUtPi9tLSU0tJSXnzxRebPn88LL7zAyJEj293+scceY+LEifz3f/83O3bsIDMzk0svvZT77rsPt9vdpTpYrVZ++ctfctNNN7Ft2zb+7//+j6uuuuqonpcY3OIRBaNVxz0yQu1WCfSE6BYDFCz2oBgUmja0nzGzdqWf7PlOHKPNOMdYCNdGadgQRDGAwawSrIoSqjh0Qu4cY0HXdYJVMjZvWItDzKcR82l0KV+LCo5CMxmz7VhzjRRe4iEe0ok0xNCiOooKJpcBg01FNSstLjAfPsz44O+hqliidzCqE66PEWuSwM9drGGyQ9NuhabtrS+UaxEV/94UVEyIAapHZ5aff/45Tz31FEajkSeffLJbGSQP9uYB/OY3vyEcDnP22Wdz3333MX36dLxeL//617+44447aGpq4rbbbmPSpEmcf/75PakqZrOZCy+8kDPPPJOpU6eSlpZGY2Mjy5cv54knnqC8vJxly5ZxxhlnsHz5ctLS2h9j/YMf/IAf/OAHParHQd/73vd46KGHKCsr47777uPb3/52ypPNiNTx7rWQMS6EPUuGhwnRHaoJRn83A9Wk4N8TprGDQM+3LYxvWxjVDLmL3DiKzYxY1PICna7raFEdLaJjdKiEqmMgy7OJ7tDAvyeCf08E1QrZ8104Cs3YRpiSw0H1mE48qBOujRGpjxGqjWGwqlgyjCjGxDBQLaxhyTFhyzNhG3Ho/1SP60SbNULVUZpLwome6WEV+2l4JmlocajfKJnLheiKbkcYkUiEG264AV3XueWWW5g2bVq3tvf7/cn74XCYM844gzfffDM5hDE7O5sbb7yRqVOncsopp6BpGnfccQfnnXdej5YkWLlyJR6Pp9XfFy5cyI9+9CO++c1v8v7777Nlyxbuvfdefv/733f7GN1hNpu58847ueGGG9i1axfPPfcc3/ve9/r0mGJgSisKkT46jBaDfatcqa6OEIOKc6wV1RylZnkzjeu7tv6dFoGK97yoVrCPtKDHNOIR/cAJtQmzx4hqUQjXxNj7emPfPgExpGkhqPrId1T7MKermNKNqCYFS6YRe74JU5oB1zgL7vHWxMWJyIGeQINCPKARaYoTrokSqoqimFQsGQZMaQaMdpV4SCdUFaVhY3BQJpJJn6JjMEPjdgWZy95VA3joZjcXfxc90+1A7ze/+Q1btmxh1KhR3H333d0+oNXack2whx56qM15agsWLOCSSy7h5ZdfZtOmTWzYsIHp06d3+3htBXkHuVwuXnzxRcaOHUtdXR1//vOfefDBBztcPL03XHvttTz44IPs3r2bBx54gKuuuuqoj6mQvGDYp4biNbS+XtJQOdA4hx/HlhVJBHlRhfIVTtDU3q3HEGwoRe37J6WoCorSP8ca6IxuldxTXRjtamKOmwKhmhgVb3kB8Ey14ppspf7LAP6y/s08oagKBpuCTiKZRnfbS4/QIi1/uCpOIy1T6ysoci55lOT9dHSiTTrRpsRoj+YdEeoO/F01g2u8BfsoM+Z0IyZn4hxKtyrYXSYchS3PJ3RdT5xTK+AcnZhDGPVpNO8M0bg+iB7v33bq2nedRvokHUu2jhZWMDl0jA6IhaBxm9Ln39s90ddV6q/zPDG0dCvQ27p1a3Ix9D/84Q84HI5uH9DlOtRzkZ2dzXHHHddu2bPOOiuZoXP16tU9CvQ6k5aWxuWXX84f//hH/H4/q1ev5sQTT+z14xzOaDRy1113cc0117Bnzx6efvrpox4SmmcyYzyKRTm7ymwbeh8zmfnd/z/uDgVIy7KiHPiuNTtjZE3Q0XUTVRvsZI7o/bNJ3TQA0zwfJc1v6rzQUVJUBU++CxQFfRgn4jBnGMhdlPis1iKJIY1Gu4qSpWBXHJichuSC02lpbio/PLqei+5SVIX0UWlEjSE8ufFhNnxt8JD3Ux/yQ3QLmApMuOc58e0K4VsbBHRMHhVzhgE9CpHGGDHfodfeNtKEa5wF1wgjWQUK+imJXkGn20FB0AOAFtUJVkSp/yrQJ+8tQ3ZnI1g0smboWNIOdUbpGkR80LhbIbNgYF6BCdn6tpNAATxaN7tiJRnLsNetQO/RRx8lEokwZswYAoEAzz//fKsyhy8e/vHHH1NZWQnABRdcgMPhoLCwMPl4QUFBh8c7vGx1dXV3qtotU6ZMSd4/uDh6X/vOd77Db37zG7Zv386vf/1rrr322la9nd1REY2gGvv+w88SHJgfsEfDut/feaGjoCigK1Bf4UfXNYpO8eH1QsVaBxFf14acdZXRqmFJi2LO8mN0KolRG1riFg9oBCt1QpWD86w43tzc58dQVAV0ndo9jb1yYqoYwZprQgsnkikMloBk9CkZeJu8lL/cQKQxUWmDTaXwkjSM+QZiRKkpbcZoTyxMXVva0K/1U1QF52YzhtExbDN1yl9u7Nfji67p7feTaC1nlAOvV2PvssbEvNLOlALLEnftBSbSptswpxnQIhp1FY2gg9ljxJCu4F6oUrvch3dL7/bYG8PtX5ROnxLHVaQTVqB+u0LNKgOJD86Bf+6xP9i3IxsUIKbIxGHRPd0K9MLhRN6p3bt3d2kNuPvvvz95v6SkBIfD0SKoisc7/oc9/PG+TFiip+CqgsFg4O677+bKK69k3759/M///E9yuYqe0Omf0c5D8au6X5pfb3lhLRpUCXt7639aI31MGHdBBDU5CtrY6v9aUQx4piT+3/UYxAI6kUadUE2cwF6NWN/Gu0etv04UdT1xrJ4eL2OOHfdEK0abCuphWfQ0nYoPvC2GDA5EjtFmDBaV+q/8hOsPfQbH/HFK/lZP+gwbBptC7ZcBir+dgWJMTW+NOcNAnBjByqgEEQPY0b6fxCHmdJURZ6RhdKqohgOja1SIBeLJBeC7w18WwV+WGPqcVQy1pd5kO7nGW8g52UnOSW4yZsaJ+bUDFw11dA3QdPR4IkGMrrX8qZpVzOkG9LhO5Ye+VstEtPhqMmqkT9AxOcHi0TFaQY9DqB6qVx78Qhv4QR4M0HMwrb/ODntAPhP6Rb+ne/R4PEybNo0NGzZQWlqKpmmoattv4l27diXvd7T0wdE6fMmH/Pz8PjvOkS6//HJ+85vfsGnTJh588EG+//3v99uxRWqoB95xRksvdO2oGpnjQ7hGRFFUiEehqdJEuMlAaHtjq8DNlAb2fAPWbBVzmoLRoWByKziLDDAbtLhO/boY3q1yxbAnjGkqoy5Ox2BN9HKF62JEGhKLdytmhYzj7OQudLG7pK7znaWQOSPxT2pyt73GZ8O6Q73QekzHYE7NcO7g/igmt07aZCvucZbEgtXNGsH9kUQdB0nvqRBdkTbVSvZ8JwBRn0Y0nPicDtfGqF3e+6MdfDvC+HaEyVnowjnGjCXz0ELybU0Ua7VUxIE5gcWXp+PdFqK5JIzJY8CcZsBboaFFVDBqjDpdw2A+eEEAvKUKdV9LshUheku3Ar3nnnuO5557rsMy99xzD/feey8AS5YsYeHCha3KXHLJJWzYsAGv18vHH3/M6aef3ua+XnnlleT93lo4/UhNTU288MILANjtdmbPnt0nx2mLqqrcc889XHrppVRWVvKnP/2p344tUsPijicmvRth5Fwv9butBGs7H9dvTY/iyIlismuoqo7BomMw6ygKxMIKDSUWmisODYfR2+idizZBU1Ocpi2HBXIq2Eao2PNUXGMNZM40SqDXQ4UXejBYVWpXNLcIhg6y5Zmwj+z7eYZHq2FNgLTJVlzjrPjLI/i2tb+CmBbRUVypCfQC5VG8G5rwzLBjG2HC6FAxpRlwFJhxjbNS9mL/DicVoq9kzbPjOdaOFtYpe7WhX9fTq17qo3pp18oqxsRNjyVunmNtZM6245mWuB2UNkVjz3uQNVVHNUHdRgXv7rYvLAkhjk5KLpncdNNNyaQst956K16vt1WZv//97yxduhSA8847r835fAsXLkRREouOlpaWtnr83XffJRhsfw5Uc3Mzl112GXV1iSvs119/PRZL3yc0Odw3vvENjj32WCCRgVQMbcF6E+VfOgjUGzDZdXKnBsme3P6YSbMrRsEJXvJmBHDlRbGmxTE7NRQVIj6Vyg02yr9wtwjyukWD4H6NujUxggfn7smF1J45kLGuaWvbnzlaePAMU6ld0bVxvFpMT2kauEijRtXHPkr/Uc+up+vY+T+1icQxTvknFoOcCumz7Iz+bgbpMxzE/Bql/6gb0Ium67HEshL6gamCjeuD7Hq6jj0vN1CzvJn97zVRs6wZxQgFizSchTrxMBLk9aWDk/QH6k30uZSs1J2dnc2DDz7ITTfdxIYNG5g7dy4///nPkwumv/LKKzzxxBMAuN1uHn300R4d58EHH+TKK6/kkksuYcGCBYwdOxan00lTUxNffPEFTz75JGVlZQBMnDiRe+65p7eeYpcpisK9997LRRddRG1tbb8fX/S/WMBI1XonqBojZ/lx5MYI1IfxV7UM1lz5YTInJFK+e/ebaCixJoa79IH06QbsBSrxIDLkrZtMaSqZcxwYrApaTEcLtV1OScmnbc/o0cQ/gdHZyQmYBihQ+E0PNcuaCVUc/eJcjmIz6TPsmD2GxLIOKqBDPKTh3RqibmWgze2MTpWRF3hQTQre7e33QgoxkBkdKtkLnDiKzChq4jOlaUuQ6k/6PhlVX4nUxojUHvpssBa6cBYmhnfWfCUXZYToSyk79fjhD39IfX0999xzD9u2beO6665rVSY7O5vXXnuN8ePH9/g49fX1PPXUUzz11FPtljn55JP5xz/+QUZGRo+PczQWL17M7NmzWb16dUqOL1JEU2ncYyHnmCAWVxx/1aGHPMUhPMWJxdT3r3YRC/Xdl6EtXyV9molYUGfvO3KC3B25i1y4JiQC9Fizxr63Gtsta3IZ0AfJqFj/nihaTCdtkpWGNW0HVgAVHzaRf7YHa66Rggs97Hmhnmhj51cKDHaVwos9qBaFQHmUwP4IziIztnwzqlFB13Vifo2oN048pKFaVCzpBjJmOrDmmNj/dutRIIUXezDY1UF/UiyGJ1OaSuE30jGYVXRdJ9oUp25VgOZdQ+8zuXadgdqvtQMXFSXQ61OyvMKwl9JrzHfeeSdnn302f/rTn1iyZAkVFRVYLBbGjx/PhRdeyP/7f/+vwwXPO/O73/2Ojz76iOXLl7Nt2zZqa2tpbGzEbreTn5/P8ccfzxVXXMGZZ57ZYiJxKtx3332ce+65Ka2D6GeqRtakIJoG9bsPLa1xMMiLRxT2felEi/ftF6HpwDKCUV/7vVGitfzz0nAUmgnXx6h4r4loJ0OqzB4DkcZBEukBoZoothEdzynUQrD3tUZMHpWib2WQd0YaZS91PjcuZ4ETk8tALBDHOcaMa6wlGdw1bg9R/1UgOfzrcEWXp2PNa10ng13FYFdp3hWWIE8MSsne6G0hGjcGCdccfe/4gKZJgCdEf+j1QO+ee+7p1hDI2bNn88wzz/ToWAfn8HW07/5MrnKkriSvOeicc85JyTIPInVypgRRVKjdZm3xpecuDKNrUL7C2S9fht4dGvbCOPY8A4UXmNn3XgRtYK8AkFLmdJW8M9MwpxsJ7Iuw799NnW7jGJMYhuXbPngiaaOj6z2Q0UYN/54IjiIzeWe7qfrY2+H/kNGZ6LUo+Ws9RreKJctIoCzSZnB3uJhfw5TWejipFkkE2baRZlS7ihaQ8cdi8BhxhhuT00DD1wFqvxjg69yI1OrukgSyvMKwN4hmjQgxlGjYs2JEA0qrRCrxkIrJoaEa6beAq/LjKFnH67jGGhh1sYWy18PSu3eA0aWSc5ITa44J1aygqImhhd7tIao+9nVpH+6JVnRdp2Fj+8mhBhL3ZAsml4p/T9f/ASve91J4sQdHkZkx12ahRfRDc+0PXsTSQTEqqGaFaFMiiox5NWLerh3HXxrBPtJMziInWsmhv+sxqPvST+bxDsZcmUH15z68W4bekDcxtFhHGBl5vgfVqBCqiUqQJ1oxx2IUBBqxxyI44hEyDCqfpbpSYlCRQE+IFLB6Esss+KtbL61Qu91G3nF+sicHaK4wE/YaiIX6PitZ7ZcxAvs1ck8yUXiehT3/khNl92QLOSe5QIF4QCNYGSNSF6Ph6yAxX9d7jZLz8wbBaCzVCjkLXOhRnYr3W8+Fa5cG5f9qxJZvxHOsHUvGoXW3lMPW39JjOs3lESq7GCQfrnFDEPcUK+7xVuxTHPhe8BGqTiwU3bAuSLAqSv45aeSc7EI1qjRuGByBtRiezGkGVKNCLBCn/F+Nqa6OGCg0jYKAl8JAA7Z4DIVEn5yGQshs72zrlmSO3rAngZ4Q/Ug1a6CDMzdxchpsaB3AhZuMRJpV7Blx7BlBtBjs+SytX+oXKNfQIqBaSHw6DILApK8YnSo5J7tAh7J/NbbIGtddekxHGSRTUnJPcYNKIuFJD0ZABvfHCO7vRoDYTWUvNJA934HrBBcFF6ex943GZLbPUEWM3c/VMe57WWTMsUugJwY077YwmcfHUYypzREgUscSizC5qZq0aAjDYYGPQuLjt95so8SZQZPJiqKq5CiDZ563GBgk0BOijxksGmlFIezFXlSTnuzd0HWIBtvuqdu/2kFaUQRPURjVCKpRQ4v1faSQc5IJg0WhYUN0WAd5QDKtv6IqpE20UHMUgV7zngjWHBP557nZ/5534L62KjhGmYn6NIL7oqmuTbtqlwcwNDXhPFEhZ4GLspcaMGcZ8RxjxTnWcmA+pAR5YuAL7o/iHGshfaYdPa4TqooSa9aINcs806HOHg1zfG0ZChBWjTSZTGiKgo5Cg9nGXnsaqIPkCqEYsCTQE6KPGK1xcqf7Mdl1HG43jQ06/moj8ZiCFlHxVZjbWRdPw1McJq0wgmqAUJOK1g+BgW2EiqNQJVSn0fC1XDWMeTVK/l5P4cUe0qbaCFRE8e/u2aTJhjUBnEVm7AVmxl2fRTyg4dsVpvZLPwyQl9o10ULW8Q5QoX7VwJ8rFA8kFls2ZxgYd0MWyoEF6+Nhjfqv/O2utyfEQFL9qQ/7KDNZcx0t/q7FElloA/si1CxrHjCfE6J7HNEwY3212GNR4opKXFGIqSoaClnhAArwVUY+jRZHp/vqEZ2BO0RygFZrqJFAT4g+kjUpiNmhE6g3EN5rpXKX0snnrUbmhBCuvCiKCloM6nZa8ZZbOtqo9+o71wg67P9QUm4eFA9olL1Uz+irssg7zc3uvbU9TpBT/koj9lEmPNNs2EaYSJ9uJ22ylf3vNBHcn9ouvtxTXbgnWNE1nYa1AXw7Bsf8zPovm3GOt4IC4doYTZuCnS5zIcRAokWgbqWf7PlOFEVB13SaNgWxj7JgtCt4pthwT7BS+bG3xxeaRGpkBX1Mb6wEQFMUFF3n8EG6MUVhc9qIvgvyhEACPSH6TKjRiC09jsGkEwl2PPxCNWrkz2nGZNWJhRUaSy349vdPgAdgSgOjU8Ffrg3cYYUpokWg5gsfuSe7sY+y0Lyz50FQoCxKoCwxJNI90ULOyS5GXuCh4oPUncSZ01Vc4yxEfXFK/68+JXXoKe/2CE1bB0dQKkR7mjaG8Jcm3v/JIZvLEr3qznEWche6yDvDfagH5EBSo6pPmo/q80j0HWsswrTGSjQUVmUV4jcd8X2uaf0zLFOSsQx7EugJ0UcaS604cyNYXBqGUBz2axitOoohkXY+Fky8/SzuGCNm+FFUaCwz07DL1u91dU8woigK9esH7rysVIrUJ8ZNmVy998Xs3RYmsDdK0eXp5J3hpuI9b/Jkrz9YcozknOTEkpX4P6xa0ncJVIQQHWtvTl7zzjD+0jDZ852Y0xPvVS2q4yg0kzXPIYHeAHVc/T4UYE3myNZBHsjcO9FvJNAToq+oGiZ74oqVZ3QYQ5bvUJp5QIuDHldQTTroUL3RRqC29XIL/cHsSSxgbctWCcY1YgN/ila/yprnRNcTiRJ6U8yvsefFBoq+lUHeWW72v91EoLxvg22jU2Xk+WnJhceDFVGqPvERkyGPQgxIegyqP2lO/u4+xoq9wETUKxP3BqL0kB9bPEa11YnX3P8XblvQNHqUPrk/aAO0XkOMBHpC9BHPqEO9M/GwQqDWSDSoHgjuNOyZMVRjIkFL/S4b8XDqrvA1bogx4lQT2fMSgaau62hR8O+JU7ty+I7lVIyQd5Yba66RwN5on8yli/k09rxUT9GlGeSfm4Z/TwTvliD+Pb0f8KlmKLosHcWk4C+NUPWJFy3U64cRQvSRrBMdeKbZ0CI6+95sSnV1RBtyQ80owNa07FRXRQgJ9IToK41lZsI+lVC9kcx8B3X7Ww5Jr9+RurodKVipseflMLYRKpZsFbNHwZat4h5vJFil4d8zfK68KUbImG3DlGbEWWwGFcI1Mfa/03cnVbEmjfJ/1TPyfA+OIjPOYgvxiEbzrjC6DmkTEwlH6lb6EwuEqwqhyih6N+POjFl2VLNK5RIvvm0y5EuIwSJ9pp2MmfbkAut732gcsB01w138wNAdTzhIrc2V4tqI4U4CPSH6iqYSrDO3GK45kGkR8Jdp+Ms0VDMUX2oFIFw7jM4mVMg/Lw1/0ICu68RDOtWf+Ppl7lykQaPkb/UoRsicY8c90Uba5MSwn1hQQzUrZM1zJsvruk7j1wFql3d9GQHFlOg19pdIkCfEYOCebCFrnhODRSUe0aj61Id3s7x/B7JdrkwKAk1Ma6xkA6Q22JNkLMOeBHpCiHaFajVQQDXSL2v5pZqz2IzBpNK4wk9NNwKo3qTHEguC1y4PYExTUY0Kkbo4GMA1xoLBmgjWPNNteKbb0eN0ac04S44Re74JXU8kAxJCDFwGu8qob3gwOgxoMZ3aVX4a1sjakIOBphpYn57P9IYKpjdWEvTVUm1xUuLKQFMNqa6eGGYk0BNCtMuSqVB4YSJjWKRRp+L9yJAO+EyexJewb/fAyD7aIkFKnBbr2xlsChkzHSjGjruMXRMtZM93YjAnEu74SyPdHvIphOg/ihGKr8xANSg0bgxQ87lkxxps6q0OPs8tZlpDJZ5IkOJAI6MCjazJLOjfBC3SozfsSaAnhGhFi0CoRsOcrhCq1kAFW67KqG9Y2P9hmEhdqmvYN+wFiR6vcM3AjoSyFzhIO8ZGLBCn9ov2TwJVC+QudIEGDev9NG0OyYLiQgxwBpuKalDQYroEeYNYTDWyNrMASCyefmxjJdMaKlmWOzrFNRPDiQR6Qog27X+/5bw0R7FKzgkmRp5loe6rGN6tQyu1t2O0GWuuiWjTwH5enmk2PFPtRBpj7Hm5oePCBy6YRpri3ZrLJ4RIDdWayIwL4C+VuXhDRU44EbDXWO39e2BNJ/lFMNBoA7ReQ4wEekKILvGXapTXhhl5toXMmUbMaQq1X/Zfz5ct34i9wExgf5Tg/uhRZZxT7SqeY6xYsoyY0wwY7SqKSUGPQ/UXzZ3vIEVUC2TPT6zpV/ZyA3Ty8msRiHo1zOkGjC6VmE9684QYyMweI+qBpEkNXwcPPaCCo9iMPc9EoCKKf3ffJ4gSvScn1ExYNbA9LTfVVRHDjAR6QoguizXDnlfCFF1swTXGQP3aGFo/nG/kzDfhLE5kAc2Ymcg4qccgFtCINMRo/DrQ5TXuHGPM5J3hRlGUA/vRiQV0IvuiVH/uJyM3rS+fylFxFCXmSyqKwtjrs4jUxalfF6B5Z9tX/ou/k4HJaSDaHCcWlCBPiIEuVBlj/7tN5J3ppvBiD6HKKAabiinNgHIghXPaVJ2qpT5ZImUQUXSdoNHU78fVdQ19gGbfGqj1Gmok0BNCdI8GVZ9HyDvNTNZcE9Wf90HiEhUyZhhwFBow2hQUg0K4NkrVJ83Y8kxYc01YMgwYHSomtxlHkZlwTYzy1xo77ekbsdCFHod97zQS3Ney7oo6sNfC8G0PE6ysw5ZnIm2KDWu2kbzT3WinaOz9dxPh6kPBrmoFoyORgKX0H/Wy5pYQg4S/NMKeF+spuNCDNdeErkGoOoZ3W5BQVYxR30wnbbJNAr1BREfBIIGNSAEJ9IQQ3Raq0okHwVGoolpA663zDRUyZxlxjzWgHEhGEGnSCdfFqfqoEeBAopRDQ5pUM+Se5sYxykzxtzMI7I1itCv4yyJ4t4aSGSZNHpWib2WgKAq+XaFWQd5gEfNq+LzhxEmeCukz7GTOtjPyvDR2P3soS44Wgrov/WTNc5J3hpuKj7ydDvUUQgwM0UaNkr/Wt/p72lQriqLg3R5sYysxUOkKEuiJlJBAb4jI+xz6Y1SAs6Sp7w/Sz/T9VX17AAV0Uxr6/qZ+yyYc9/n6dP9Gp4rBakFRFUZdZGHv641dzlTpOdaGa1xiCGI8rBMPasRDGtZsI9ZsE4pBIeaPU/OFn+ZdnUeQWgQq3vGSNd+BZ6oN98TEvh2jEssKcNhc9ESQF6b6s759fbrKmJ931PvwVYKyOU7GMToF38ym8otDH+u+anD7YjhHWxh3fTZaBPYuUdEi6lEftz1b7i/os30fpAABg4V98XC/pBmwpw+9RDb/nPl0nx9D1xUiwQLMtr0oSt+31LT+TFvfT6rjh+YMaxo88tg5hMMaf3jnY9ReehvrukIgUIjdXt4v7fRVJKPPj5EKawPFbf5di0DFXwqxZQW56pKPen4AXYE6F591axt94CY9keUV+oUEekKIbht5fhoo0LwnjKPQTOElHuq/ClC/qo0TYhXckyy4JySGGioGBV3TE8HXgROVg/PlYs0adav8+LZ3v4uwdpmf+jV+VINKzK/hGGPGPd6KwaaiGMFoVwnsi1L10cAI8nqTd7cBW04cW7aOo1DDX37oDHDfEhVnIdhydBz5OrlzNSo+77tATwjRN977YBrBoIWTFmzptSBP9L3GpZkAuGYOve8eMfBJoCeE6BbPsTZMaQaad4Wp/NCHMU2l8KJ0Mmc5yDjOTjykocVAUUC1KKgmJRnIRX0aTRuCNG5oOezIYFeJB45+WIsWAu3AZDT/7siwykxXtUKh+Dyd9AktAz1QaS6HQKWGI09HMaSsikKIHqqvt7Nq9RjcrgCLTtmW6uqIbohUmRNr0Y5JwXBbfQAvryA9ev1CAj0hRKdUM7gmWPFMTQR58ZBO5ZLE1clYk0bJ/9bhPsZK2iQrRoeKwaKADvGQTqg6hm9HCN+OcLsJQXojyBMq8YiG2s4Q7rwFGijQsEW6AoQYbF57YxYA37psRYprIrrLNi5A81dpeFe5cc/xpro6YpiRQE8I0YJnug1HsRmDWcGcaUym9AbQNR3/nggVH3rhiHXFvZtCeDeF+rm24iCDVcNog3gUsmbEad6rEKpVAY28+RpmF/jKFILVEugJMdg0Ntmx2SLkjZBAYSDSOrhW6Zjmo/krN8Hdtv4P9DQNlAF6IVWS0/QLCfSEEAAoRhj9nUwM1kRKfvTE3Ll4SKO5JExwfzTRKycGJEd+YhiMwQSuUTquUTq6pqHroKjgr1SoXTewl48QQrRN01QiESORiIrZLCfIqaRpULK6gKDXQnp+E2Ub8qgr8yQeNOioZg3FpIOuoEUU9HDi4ppjkj91lRbDlgR6QggARpzqRrUo1K7y07AmgGqBtGPsNH4dSC5RIAau5nIFgxVCdQrhBkgbo2PN1jFYwF+u0LBNJucJMRjFYiqzZ5bw6eeTePiR8xmZ34DbHSA728fMGaU4ncNnLvJAsOH98ZRvSGRMLl07EtBxZfuJ2FTizUa0oAEtqIKioxh1zKOCuGZ7seRJO4n+J4GeEAIAa64RLazTsCaROVMLQ8NXQy+t/FClRVUaNh/6vWErsDVl1RFiWNF1iMZUzKZEb1tDk4WdZelEoiqzp1Zi6WEvXFWVm+dfmkdTkx1I9OyV780EEpkcl34ymSmT93Hh+V9JT18/iIRUakrTAZj/nTV4q5x48n2k5QTaXV4hpSQZy7AngZ4QIkk+d4UQovv++H/HsW13BqfPL6W8ws3W3ZnJxz5eXsRFZ+ygKN+LyxFB6cYI6g8/PgajMc4V3/qC+gYn27ePoHRPFgDFRbU0NDrYvGUkW7flUzSqlrlzdjN+XKUsv9BLmuus7N2cS01pOs11duJRA6BgMMVxpAdJz5PhmGJgk0BPCAFA1KdhzZGPBCGE6I5wxJAM7D5YNhqjIc5VF21kyrg6mgMm/vraMfzP8zMAsFujjMj2MyLLT3paiGDIyBnzS3E5om3ue3+Fh/y8RhyOMOPHVXP8nN0EgyZWrhrDZ8smMiK3ibmzd7Fi5ThKSrMpKc1BVTXGjK7m8stWSMDXA9UlHrYvK6apyomuHVzsVcfqDJM9uoG88bXkTaoZFK+trmnoAzQZiy7JWPqFnNUJIQBoLgljG2HCMdqMv0TmEgghRGfWbs7h+bcmJX+/7ptfMzKnmdysxLB3pz3KbdevorreTmWNI3GrdVBe6WLdlhxicYWvNuVSmOdjXFEDp84rS/b41dTbCAYt7Nqdy67dudz1q9cAsNminHLyNsaPq+Jfr81m6aeTueC8dYwdU8WKL8eyYVMhO3eN4PkX5/Hty2U5hq6KRVSWPjObkM8K6DgygmQWNjJyShXp+b5BEdgJcSQJ9IQQAHi3BMma5yDnJCclZfWtlk8QQghxSCyu8NfXjmHC6HrOPWU3RoPGzrJ0DIaWPRWKArmZAXIzAxw7qabFY/uqHHyxdiQV1U5e/WACWelBdpensW5LLnWNNjxpfmYcW8bUqeWtjp+f38gN1y/lzbdn8K9X5zBzRinnnL2ehads45nnTmLnrlw++ngKp526udW2orWtn44m5LPiym7mhMvXYbYOgR4nmaM37EmgJ4QAQItA3Zd+Mo93MPbaLLzbQwT3RWkuDUvQJ4QQRzCoOmmuMPsqXfzfG1PYX+0CwHzBZrLS93dpH5qmUlHtZG+VE4C/vHgsJmOc+TP3kZfTzMjxpdjt7Y+wsFhiXHLRakYX1/DOe9PxByxc9s0vueaqz3j8v89i2fLx5GQ3MW3avqN/wkNczph69qzPw1fjoH6vh3jEQM0eD+OOL8eZIWvEisFJAj0hRFLDuiCxgEb2iU48U2x4ptjQdZ2GtQHqVkoGTiGEOEhR4IffXssr709g445sAGYdU8nxM7oW5AF8uLyI7aUZyd8nj63lkjN3kJedSPJRHe98GL2iwMzj9uB0hnj+xRNYtXo0c+eU8B/fW8Lj/30mr/17NpmZzeTnN3XzGfatiu0ZlH41koyCJiYuKEt1dcgZ08Bp/7GSj/88l9WvTk3+fd+mXOZ8YyM5oxtTV7me0nRQBmjPmfTo9QsJ9IQQLfi2h/FtD2N0qdgLTWTOcpAx00HaVBvRpji+nWEa1wdTXU0hhEi5NFcYszmOyxHmxivWUZTv69b2V1+8kVPmlFPfZKUo30t2Rs8/Wx2OMAArV49l7pwS7PYI1139CX9+ehHP/e0kvn/dUrKzm3u8/95Uum4EGz8YDyjUlXsYObkaZ2bqe82szgin3rCSTR+NIR5XKZ65j5UvTWfly9NY9L1VONJTX0chukMCPSFEm2I+De/mMN7NYbJOsOMaZ8WSacSabUI1K9Svkh4+IcTQdjBZys4yD5U1TvxBE/G4QiyuEo8r+AMmNF3lu4s3dTvIA1AVGFPYxJjCo+9t83ptANTXO3nx5bl84+JV5Ob6+MZFq3j51bk88efTcLuC/OT/vX/Uxzoavjobmz4ah8GkMf6EPWz9dAyBJtuACPQgEexlj26gfMMI1rw6FUhkx9ny6WhmL96S2soJ0U0S6AkhOlW7PEDt8gBGh0rxdzKwF5gl0BNCDFnBsIFla0ay9MtRNPqsjMz1kZfdTPHIJowGDYNBx2jQcDoijB3VyIis1H4eRiIGSkqzGV1cTUlpDlu35fPrBxfzvWuXMmVKBZeblvP8iyfia7amtJ4bNozk03/PRtdh1sWb8NUlgtNw0JTSeh1u55cFbP10NJAI+kaOrcKeFmLUsV0fkjtg6DowQJPKyNDNfiGBnhCiy3JPSyQbqP1iYAz/EUKI3tToM7P0y1F8vqaAaFRlzvRKTjthT3LO3ED12B/OIhQyt/q7P2Bm3fpC3nz7OEDnwvPX9n/lDtixK4dX35iNwagx77KvSR/pw53jY+snY/j6nYkEmyyMm1ee0mUMNi0ZTcnqQlRDnDN/tByjeYAGSUJ0kQR6QoguU9TEEBaDXRYUEkIMDE31DnZvy6NgRi3paeEe7aOyxs5Hy4tY+XUeJpPGgll7WTi3HI+7Z/vrT5oGsagh+bvFEiUcTvSQ/fOFEwFQ1ThXXbmM4uK6lNQR4IMPpqIoOou+/yVWZwwAqzPGvMvXs+qVqWxfNpqS1QWMmbOX8Se0Xk6iP7hzEgF97ri6IRHk6ZqOPkCTsei90KNXVlbGf/3Xf/HWW29RVlaGxWJh3LhxXHbZZfzwhz/Ebrf3Qk0HNwn0hBBdtv/dRsZ8N4useU78JfWpro4QYhiLhA2s+nQSG9eMBhSM3n18+4ItNDRZ+Hp7NrOOqcJpj7a7fSyusGVXJsu+GsnG7dmkuUJccOou5s/ci806ONaUicVUvD4r37psBS+/Mpdw2MT5567F4Qzz9deFWK1RXM4Q06aW43R2nsGzLzU22Un3BJJB3kGZBT7O/NFytn1eTMnqkWz7fDSunGZGjG3o9zoWHlPN1k9GU707o/PCIqXeeustrrzySpqaDs1vDQQCrFq1ilWrVvHUU0/x9ttvM2bMmBTWMvUk0BNCdJkWgmizhtGmpLoqQohhRtdhzbIJZI9oJH9UHW+9MI/6GjfzFm0mHlf54tPJbN2dQX1TYt5XbmaASWNaXpCKxxW2laTz1eYRrN+aTTBkIi+nme9cuInZ0yoxGgZm78f2Hbl8sXw8Gel+fM3WxM1nIxhsPVwzHjdQPKqO4lGp67070qbN+cRiBkaNqm3zcVWFySeX4vAE+fq9ifjr7JCCQA8gfaSXyu1ZBL1mbO7UBsdHTdcYuHP0el6v9evXc9lllxEIBHA6nfziF79g0aJFBINBnn/+ef7yl7+wbds2zjvvPFatWoXT6ezFig8uEugJIbol1hzH5Dah2lW0wAD9AhFCDDm7t+Wx5vOJLf42/4wNTJ1VSjRqYNWnk5NB3vHH7mfi6ESQp2mwY086X23KZd2WHPxBM9kZfk6ZU85xU6rIz/GjDMBrV/urHdTHFXJyfDQ22ikrz6KsPIvRo6sZVViHyxXC7QricoVwuYK4XSEslljnOz6gocHGZ8sm4vEEycszM6a4HIOh8+26IxQy8sabx7F1Wz5Go8bpp25kK+52y9s9IUBnyydj2Lclh5FTqig6bj/GDs5WyzfkULE9m8zCJkbP3nvUc/zGzi2ncnsWGz4Yz9xvbDq6nYk+8ZOf/IRAIIDRaOT999/nhBNOSD526qmnMn78eG6//Xa2bt3K73//e+66664U1ja1JNATQnRL/Ro/I/M9jPluBpH6OHUr/fj3DPKrnkKIAUfXoWpfOlvWj6J8Vy7BgKVVmWUfTGPZB9OSv1946g5mHlONyxFh885MNu3MYu3mHHx+C5meICcet5+Zx1RRMMI3IIO7g0JhA79/Zg6hiJFRhbVMmbyPjAwf9fUuzj1rPZmZR58c5rm/nYzPlwiM3W43fn8xpy7czAnzdrVZvr7ezpq1xVRUekj3+JlxbBmFBW33umkafPLZRD5fNhFdV8hI9/ONS1Zit8egg6+LrFFNnHDFOja8PwFvjRPvUhdblo7Flhai6NgKxh2/t9U2Gz4cjxZTqd6dyfYvRjFmzl4yC5vIGtWzJSvS85px5zRTvTuDpc/MYuppO8kqGliLzXfVUJyjt2rVKpYuXQrA9ddf3yLIO+inP/0pzz77LFu2bOGxxx7jF7/4BSbTwMns2p8k0BNCdEtwf4y9bzSSdbwTa46RvLPdRL0aVUu8hCq7fjVZCCHa42+28Ok7x1K2KxdXmp+Jx5axcfVoYtGOT1tCYSN/ffUYSve70TSV9LQgc6ZVMvOYKoryvQM6uDtcIGQkFDEyYXwFmqbw/ofT0LREV9WWrXksmL/zqI+haQqgM+/4XZgt6Xz5pZsPPprG519MYOyYanJzm9A1hYrKNEr3ZB8YJprYppQc1q4bjdEYw+MJ4EkL4HIFCYVMNDfb2Lc/HU1TsVojXHzRasaPre5yvTILfCy8bg2aBvs25VC2IY/GChdbPx2DpilMOCxRy66VBWgxlfzJ1bgyA2z/oogdXxSzAzCYYphtURRVx5PnY8bZ21C7eNZ74pVrWfPaMdSUZLDixWNJH9nE/G+v787LK/rIa6+9lrx/7bXXtllGVVWuuuoqfvGLX9DQ0MDSpUs544wz+qmGA4sEekKIbgtVxNj7WiMYYcQpLpxjLRQs9lD9qQ/vloGfpU4IMXBV7k3n3ZfnYjBonHz2esIhExZblKtvfo9QwEw0YuTFpxYBMP6YvSiqxvYNowBY9tVIJhQ3cOnZ25gwuoGcjMCgCe4Ol+4OM7awgfp6J//x/Y8Jh43sKcvkzbeP4+Olx7Bm7WgcjjDxmEosbiAeV4nHVbS4gsUS4+STtjB92r42961psGVrPi5nCL/fyo6duVzz3R2cdGI5H350DF+tK2bjpgI2bio8sIWO1RJlyuR9nDBvByPzm2hstLFi5Ti2bR9BY6OD2loXB4NARYE0d4B5x+9k9qySHg+lVFUonFZN4bRqNA3e+8OJbP+8mPKv8zBaYgQarcSjBkzWKNPP3obRCGPnlNOw303Fjiz2bckhGjKhawr7t9io3JHFlEW7KJ5R2eFxYxGVcMDE1NN2sfo1C75aJ6oq0xQGis8++wwAh8PBrFmz2i13yimnJO9//vnnEugJIUS3xaDyIx/qMh+jv51JzgIXzbvDaBLrCSF6IBQ08eHrs/BkNnPWN1bx/iuzqa7woMUNlGzLY+G56/jgtdnJ8js2FQBQOKaKyxftoTDfizoIA7sjKQqML27g3c/GUFvnIjfHy+RJlUyc8A7PvziPPWVZ+Hw2FEVHVQ/eNFRVp7HJzmtvzOGd92Zw1ulfM2PGoR6wrVtH8Mrrc4jFDICOJ83PlZd/AWSjqnDWmRs568yNNDebqa93oqGQP6IB8xFLDXg8Qc4+cwNnn7kBSASPkYgRsznWJ+vgqSrMuXgTGz4YT7jZTKjZjNURIX1cHVMW7UrO4VONkDnKS+YoL1NP253cvmxDLps+HMfGDyawe1UBcy7ahCs7mKh7DCq2Z7NvSw4N+11EQyYSQSuATu64WuZcvLn3n1R/GILJWLZs2QLAuHHjMHYweXPSpEmtthmOJNAbIuLRUL8cJxYfemfwit6388sUIBoPE9Mj9MKyMV0S19tPKd4nglD+YT0jTnNRcIWbcH2M5p1hmjb1z/9lb1F0hagWIaZHe2WNn05pQ29uoxbs+zZXgJhBR4uH6Y+3VNwy9D73mn19f/Kn6wqRUAxzTEPp4jyhz98bT0OdgeMXbSIWC1Gx10I0Egfi7NrqYdfWhQdKRpgys4SicVWkZzVjsURJN1tpbu6rZ9P/quoUIpEIsWgY32HtdcF5X3S4XSwGny2bxFdri3n51Wn867WpGAxxzOYYgYAFgyHC/BO2M2tmCWazhq4r+JpjxOOHt1OI9PTEezkcTtw6FyHaha+eQKRnS1fY0+s5/rIvW/1d0yDg63jbrOL9nHTtfr7+YDyV27P54M/TUQ4Ex/GYgYO9kUZLBE9ePY6MAOgKWUUNZBc1dbp/gFCwj793dQX83TtGjCj98iHZAzESz8Xr9bb4u8ViwWJpPR8XIBQKUVubyNxaUFDQ4f7T09NxOBz4/X7Ky1OzLuNAoOj9cjYj+kooFGL06NFUVnY8FEEIIYQQQgxuI0aMoKSkBKvV2m6ZwXJu6HQ6aT7i6szdd9/NPffc02b5mpoacnJyAPjWt77F888/3+H+c3Nzqa6uZurUqWzYsKFX6jzYSI/eIGe1WikpKSESGXo9A0IIIYQQ4hCz2dxhkAeD59xQ13WUIybRttebB4kA9iCzufUakkc6uK9gMNjDGg5+EugNAVartdM3vRBCCCGEGB6G4rnh4c+nK0Fs+MCYY5vN1md1Guj6YMqsEEIIIYQQQvQel8uVvH/kkM+2+P2J9SadTmef1Wmgk0BPCCGEEEIIMaBZrVaysrIA2Lt3b4dlGxoakoFeYWFhh2WHMgn0hBBCCCGEEAPe5MmTAdi5cyexWKzdclu3bm21zXAkgZ4QQgghhBBiwFuwYAGQGJa5Zs2adst98sknyfvz58/v83oNVBLoCSGEEEIIIQa8iy66KHn/2WefbbOMpmn89a9/BcDj8bBo0aL+qNqAJIGeEEIIIYQQYsCbO3cuJ510EgBPP/00y5cvb1XmkUceYcuWLQDcfPPNmEymfq3jQCKBnhCd2LdvH/fddx9z5swhOzsbq9VKYWEhCxYs4D//8z/ZuHFjm9vpus5jjz3GpEmTsFgsjBs3jgceeKDDlMALFy5EUZRu3Ya7SCTC008/zdlnn01eXh4WiwWn08nEiRO57rrrWLFiRYfbSzv1XFVVFW+88Qa/+tWvOP3000lLS0s+3/YWvO3Iu+++yyWXXEJBQQEWi4WCggIuueQS3n333S5tv3//fq655hqys7Ox2+2ccsopfPjhh+2WLy0t7XY7XnPNNd1+XgNBb7RVKBTi9ddf58c//jHHH388GRkZmEwmMjMzOeGEE7jnnnu6vECztFXbevs9dbhAIMCYMWOS+ysuLu50G2mntvVFOy1dupTrrruO8ePH43Q6cbvdjB8/nksuuYQ//elPHWaZHG7t9Pjjj2Oz2YjFYpx55pn89re/ZcWKFSxZsoT/+I//4PbbbwdgwoQJ/PSnP01xbVNMF0K06y9/+Yvucrl0oN3bzTff3Oa21113XZvlzz77bD0Wi7W5zSmnnNLhsdq6DWdlZWX6tGnTOn2NbrnlFl3TtDb3Ie3Ucx0937vvvrvL+9E0Tb/hhhs63N8NN9zQbhvquq7v27dPLygoaLWdqqr63/72tza3KSkp6XY7Xn311d18lQaGo22r9evXd/pZCOhut1t/4YUXOtyXtFX7eus91Zaf/vSnLfZXVFTUYXlpp/b1Zjt5vV79sssu6/R1Wrt2bZvbD9d2euONN3S3291ufSdMmKDv2LEj1dVMOVkwXYh2PPbYY9xyyy0AjBo1ihtvvJF58+bhdrvZt28f27dv57XXXkNVW3eMv/POOzzzzDOkp6dz7733MnfuXDZv3sydd97Ju+++y1/+8hduvPHGDo+/YcOGPnleQ0UsFuO8885Lvk7Tp0/n1ltvZeLEifh8Pj7//HMeeeQR/H4/jz76KHl5edx2220t9iHt1HvGjBlDQUEBn376abe3vfPOO/nzn/8MwHHHHcftt9/O2LFj2bVrFw8//DBr167lz3/+M9nZ2TzwwANt7uOWW25h7969nHDCCfzyl78kPT2df/3rXzz22GPceOONnHPOOWRmZrZbh8WLF7e778Olp6d3+/kNND1pK6/Xi8/nAxKJDc4//3xmz55NZmYmNTU1vPLKKzz11FN4vV6+/e1v43K5OOecc9rcl7RV1xzNe+pIa9eu5bHHHsNqtWIymZJt2RFpp645mnby+/2cc845LFu2DICzzz6bK664ggkTJqBpGnv27GHVqlW89NJL7e5juLbTBRdcwNdff83jjz/OW2+9xd69ezGbzYwbN45LL72UH/3oR9jt9lRXM/VSHWkKMRCtWLFCV1VVB/Tzzz9fDwQC7ZaNRCKt/nbNNdfogP7GG2+0+PvatWt1QF+0aFGb+zq8p0h07OWXX06+VieccEKbvW+rV6/WTSaTDujp6el6NBpt8bi009G566679Lfeekuvra3VdV3XlyxZ0u2r2jt27NCNRqMO6LNnz271XvP7/frs2bN1QDcajfrOnTtb7SMUCukWi0UvLCzUm5ubWzx2880364D+v//7v622O/yq9kC7Wt3bjratli1bpl922WX6pk2b2i3z2muv6Yqi6IA+duzYNntgpa061hvvqSPFYjF91qxZOqDfd999elFRUac9etJOHeutdvrBD36Q7H179tln2y2naVqr7y9dl3YSnZM5ekK04Qc/+AGaplFUVMTzzz+PzWZrt2xbk3z37dsH0CrT04wZM8jIyEg+Lnru4BVQgF/84hcYDIZWZWbNmsX5558PJBZPPXxdHZB2Olr33nsv5557bodXizvz6KOPJtdC+sMf/tDqvWa32/nDH/4AJHpxH3vssVb7qKurIxwOM3fuXBwOR4vHTjvtNIBh35ZH21YnnngiL7zwAlOmTGm3zOLFi7nkkksA2LVrF2vXrm1VRtqqY73xnjrS448/zpo1a5g4cSI///nPu7SNtFPHeqOd1q1bx5NPPgnArbfe2uEcOEVRMBpbD8KTdhKdkUBPiCMsX748eYJy2223tfrw7IqcnByg5ToukBjmV19fz4gRI46+osPc4clSxowZ0265sWPHJu+Hw+EWj0k7pZau67z++usATJo0iXnz5rVZbt68eUycOBGA1157DV3XWzyenp6O0Whk9erVBAKBFo8tXboUQNqynxx+0WTXrl2tHpe26l979uzhrrvuAuCJJ57AbDZ3aTtpp773xBNPoOs6FouFO+64o0f7kHYSnZFAT4gjHD4W/tJLL03er6urY8eOHTQ2Nna6j4PrvFx11VX88Y9/ZOXKlfzv//4v5557bqv9ip4ZP3588v7u3bvbLXfwZFNRlBbbgLRTqpWUlCSvNp9yyikdlj34+N69eyktLW3xmM1m46yzzmLPnj2ceeaZvPXWW3zxxRfcfvvtPPbYY9jt9mSbir51+MWUtnrZpa361w9/+EP8fj/f/e53u7WWmLRT39J1nZdffhmAU089NdkzGIvFKCsrY8+ePa0uTLZF2kl0KrUjR4UYeE488UQd0MeMGaNrmqY/+eST+oQJE1pkc5o8ebL+6KOP6uFwuM19aJqmX3TRRW1mgjrttNPaHGuv6zL3qzuqqqp0p9OpA/r8+fPbnKP31Vdf6WazWQf073znO60el3bqXd2dp/Lmm28myz/66KMdlv3973+fLPvWW2+1enzHjh16ZmZmq3ZUFEV/6qmn2tzncJ6n0htzv9py4YUXJve7efPmNstIW3Xd0bTTP//5z+T85KqqquTfuzJHT9elnbqju+20ffv2ZPn77rtPr6mp0W+44YYWmW0tFot+1lln6Z9++mmH+5J2Eh2RrJtCHGHz5s0AFBUVceWVV/LPf/6zVZktW7Zwyy238Morr/Dvf/+btLS0Fo8risJLL73EQw89xDPPPEN5eTn5+fl897vf5c4772xzrP2R2luf73BZWVnDdlhGTk4Ozz77LN/97ndZtmwZc+bM4Sc/+QkTJkygubmZZcuW8cgjjxCJRJg5cyaPPPJIq31IO6VWeXl58n5BQUGHZQsLC9vc7qBx48axcuVKfvGLX/D+++8TCoU47rjjuPPOO7t0RbuxsbFLbTlu3DisVmun5Yaj9evX89ZbbwFwzDHHMHny5DbLSVv1vYaGBn7yk58A8OCDDyaHqXeHtFPfOXieAYnevenTp1NRUdGiTDgc5r333uP999/n4Ycf5mc/+1mb+5J2Eh1KdaQpxEASj8eTWeMsFosO6CNGjND/9re/6fX19XogENA/+eQTfd68ecmrYd/85jd77fjdXZ+tvTX8hpONGzfq1157bZuvT25urv7oo4/qfr+/V48p7dS27l7Vfvjhh5Pl33nnnQ7Lvv3228myv/vd73qlvj1ZS6q9tawGm97u0QuFQsnsqID++uuvH30lDzNc26qn7XT99dfrkMhIfGT206726PWEtFPX2umZZ55p0XMHibVbV65cqYdCIb26ulp/4okn9LS0tGS5f//7371W3+HaTsORzNET4jCBQCCZ6CEcDmO321m6dCnf+c53SE9Px2azcfLJJ/Pxxx9z7LHHAvDyyy+zcuXKVFZ72IpEIvzjH//gzTffbPPxqqoq/vGPf7BkyZJ+rpnoilAolLzfWZIIi8WSvB8MBvusTqJnfvSjH7F69WoArr76ai688MIU12j4+vTTT3nmmWcwGo08+eSTKIqS6iqJI/j9/uT9cDjMGWecwZtvvsmcOXOwWCxkZ2dz44038uabbybX6r3jjjtaJaISojMS6AlxmCOHJXzve99LZvs7nM1m49e//nXy9+eff77X66Lreqe3tlLNDxd+v58zzjiD3/zmN9TX13P77bezZcsWwuEwTU1NvP/++yxYsIBVq1ZxwQUX8Pjjj/dJPaSdeu7w99vhWVTbcnhigo6WO+mpq6++ukttOWPGjF4/9mD329/+lqeeegqAOXPm8Mc//rFPjydt1b5wOMwNN9yAruvcfPPNTJ8+PWV1kXZq35HnGg899FCbyYsWLFiQXLJk06ZNbNiwodfrIu00tEmgJ8RhjEZjiw/gs846q92yp512WnIO18Er2aL/3H333Xz66acAPP300zz00ENMmjQJs9mM2+3mjDPOYMmSJSxatAhd17n11lv5+uuvU1xrcTiXy5W839zc3GHZw6+AO53OPquT6J7/+Z//4Ze//CWQWCLj7bff7tGSNKJ3/PrXv2bbtm0UFhZyzz33pLo6oh2Hf/ZlZ2dz3HHHtVv28PMQOdcQ3SXJWIQ4QmFhITt27AA6ThBhtVrJysqisrKS6urq/qqeINGL9uyzzwIwYcIErr766jbLGY1G7r//fhYsWICmaTz77LM8+uij/VlV0YHD31979+7tsOzhCVgOT8wiUuef//wnP/zhD4FE8qoPPviArKysFNdqeHvooYcAOP3009sd0n7woonf70+ORsnJyeHUU0/tn0qKFp9h3UlEJecaorsk0BPiCFOmTEkGevF4vMOyBx/vSnZG0Xuqqqqor68H6PBKKMCsWbOS97du3dqn9RLdM2XKlOT9ztrm8Mfby+Yo+s8bb7zBVVddhaZp5OXl8dFHH3V6wir63sEh0M8++2zyYlh7amtrueKKK4DEOpUS6PWfwz/7unqeAXKuIbpPhm4KcYSTTz45eb+jhbi9Xi+1tbUAjBw5ss/rJQ45/MsuFot1WDYajba5nUi90aNHk5+fD8Ann3zSYdmDw3RHjhxJcXFxX1dNdOCjjz7isssuIxaLkZmZyQcffMDYsWNTXS0hBg2Px8O0adMAKC0tRdO0dsvu2rUreV/ONUR3SaAnxBEuvvjiZJayV199td1yr776ajID1kknndQvdRMJGRkZuN1uAJYvX95hsHd4ADF69Og+r5voOkVRWLx4MZDosVuxYkWb5VasWJHs0Vu8eLFkEUyhL774gsWLFxMOh3G73bz33nscc8wxqa6WOKArSTWKioqAxHDbg39bunRpais+DB1MsuL1evn444/bLffKK68k78u5huguCfSEOMLo0aO59NJLgcQclI8++qhVmcrKSu68804gkRb+2muv7dc6DneqqnLeeecBsH///hYZUA/X0NDAz3/+8+Tv559/fr/UT3TdT37yk2RP649//ONWSycEg0F+/OMfA4ke2YOLQIv+t27dOs477zz8fj8Oh4O33367xdBoIUTX3XTTTcmkLLfeeiter7dVmb///e/JIPy8886T4dGi22QckxBtePjhh1myZAk1NTWcf/75/OQnP+Hcc8/FZrOxcuVKfvvb3yaTR9x///19Mpxi48aNXSo3evToYZnl7q677uL1118nEAhwzz33sGbNGq6++mrGjBlDKBRixYoVPPbYY5SVlQGJLKlnnnlmr9djOLfT559/zs6dO5O/Hz6Pbt26dTz33HMtyl9zzTWt9jFhwgR+9rOf8eCDD7J69Wrmz5/Pz3/+c8aOHcuuXbt46KGHWLt2LQC33XYb48eP75Pn0tjY2KW2NJvNTJgwoU/q0JeOtq127drFWWedRWNjIwAPPPAAaWlpHb5mBQUFeDyeo616K0O5rXrjPTVQSDsd0lY7ZWdn8+CDD3LTTTexYcMG5s6dy89//nOmT5+O1+vllVde4YknngDA7Xb3WSKxodxOAjiKxdaFGNJWrlypjxw5UgfavCmKov/qV7/q1WOecsop7R6vvduSJUt6tQ6DyQcffKBnZWV1+hqdeuqpen19fa8dV9op4eqrr+7Wa9CeeDyuX3fddR1ue/311+vxeLxX619SUtLtdiwqKurVOvSXo22rZ599ttuv1bPPPttr9R8ubdVb76mOFBUV9dnrI+3U/Xa6//77dYPB0O622dnZ+rJly3q1/sOlnYSuy9BNIdoxZ84cNm7cyP3338/MmTNJS0vDYrEwevRorrnmGlatWsUDDzyQ6moOa6effjpbt27loYceYuHChWRnZ2MymbDZbIwePZrLLruM1157jQ8//JD09PRUV1e0Q1VVnn76ad566y0WL15Mfn4+ZrOZ/Px8Fi9ezNtvv81TTz2FqspXlhBiaLnzzjtZsWIF1157LcXFxVgsFtxuN7NmzeLee+9l+/btnHjiiamuphikFF0/kE1CCCGEEEIIIcSQIJdHhRBCCCGEEGKIkUBPCCGEEEIIIYYYCfSEEEIIIYQQYoiRQE8IIYQQQgghhhgJ9IQQQgghhBBiiJFATwghhBBCCCGGGAn0hBBCCCGEEGKIkUBPCCGEEEIIIYYYCfSEEEIIIYQQYoiRQE8IIYQQQgghhhgJ9IQQQgghhBBiiJFATwghhBBCCCGGGAn0hBBCCCGEEGKIkUBPCCGEEEIIIYaY/x/YAvEhqqEluAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2049,7 +297,9 @@ "id": "d9280e7d", "metadata": {}, "source": [ - "## Example for reading and plotting hazard" + "## Example for reading and plotting hazard\n", + "\n", + "The saved hazard file can then be read and processed by standard CLIMADA methods. For instance, below, we load the hazard for the last month and plot the intensity per grid point maximized over all forecast ensemble members." ] }, { @@ -2057,29 +307,45 @@ "execution_count": 6, "id": "8275a52a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-09-27 17:00:13,942 - climada.hazard.io - INFO - Reading /Users/vgebhart/climada/data/copernicus_forecast_data/hazard/TR/2022/07/hazard_TR_area4_56_45_16_202207.hdf5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAKcCAYAAAC+OchTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hkVZ34//eNlWNX58mBGaKygIIJWMU1rKCCrvxgRUyrouuuaV1RAXVdcNFlzQsGwLCPKKZVv64YQFFAMiNhYJjYOVUON57fH9Vd0z2de7p7eprzep56pqfrhnOrblfdzz3nfD6KEEIgSZIkSZIkSZIkrRrqkW6AJEmSJEmSJEmStLhkoCdJkiRJkiRJkrTKyEBPkiRJkiRJkiRplZGBniRJkiRJkiRJ0iojAz1JkiRJkiRJkqRVRgZ6kiRJkiRJkiRJq4wM9CRJkiRJkiRJklYZGehJkiRJkiRJkiStMjLQkyRJkiRJkiRJWmVkoCdJkrQAb3rTm1AUhQ0bNhzppqwaV155JYqioCjKkW6KdITcfvvtjXPg9ttvP9LNWRbyvJckaanIQE+SlsnevXsbX+aH8wC48cYbp30+Go2yadMmLrjgAr7//e/j+/4RPnJJkiRJkiRpuclAT5JWmXK5zJ49e7j11lt5/etfz5lnnkk2mz3SzZIWYHxAv3fv3iPdnCPurLPOQlEUzjrrrCPdlEWzYcMGFEXhTW9605FuirSKPRN7SiVJAv1IN0CSnik6OzvZsWPHtM+feOKJAJx66ql885vfnPN2P/WpT3Heeec1/t/T08MDDzzAZz7zGbLZLHfeeScXX3wxP//5zxfeeGmSG2+8kRtvvPFIN2NVufLKK7nyyiuPdDMkaVnJ816SpKUiAz1JWiaGYXDCCSfMulwkEpnTcmM6OzsnLH/CCSfw0pe+lIsvvpjjjz+eQqHAL37xC+677z5OPfXUBbVdkiRJkiRJOrrIoZuStEqtWbOG97znPY3///rXvz6CrZEkSZIkSZKWkwz0JGkVO+mkkxo/HzhwYMHbOTTDZE9PD+973/vYunUr4XCYdevWcckll7B79+4J6z300ENcfPHFbNiwgWAwyIYNG3j/+99PPp+fdl++7/Ob3/yG973vfZxxxhk0NTVhGAbpdJpTTz2Vj370owwMDEy5rhCCv/mbv0FRFHRd56677pp2P5/+9Kcbc1b+4z/+47Bfk0ONbXtsSNZdd93F6173Ojo7OwkEAqxbt463ve1t7Nu3b9K6Y/NpLr300sbvNm7cOCnxznRzbX784x/zute9jnXr1hEMBkkmk5x66qlcddVVM87XPPSYhoeHufzyyzn22GMJh8OkUile8pKX8NOf/nTG18bzPG688Ub+5m/+hra2NkzTJJFIsHXrVl784hfz6U9/mscee2zSetNlHxxr1x133AHAHXfcMem1GGvzl770pcbv7r///hnbCfDKV74SRVFob2/H87xZlx/Ptm1++tOf8q53vYtTTjmFZDKJYRhkMhle8IIXcM0111AoFKZcd2y+4dj7f9NNN006psOZi/jAAw/wjne8g23bthGNRolEImzbto13vvOdPPnkkzOuu3v3bq699lr+9m//lvXr1xMMBgmHw2zatImLL76YO++8c87t+OMf/8hb3/pWtm3bRjweJxqNsn37dl796ldz8803T/v6jPfd736Xs846i6amJsLhMMcffzxXXnkl5XJ5zu2YyqF/o7/85S955StfSVtbG6FQiK1bt/KBD3yAoaGhWbdl2zZf/vKXOfvss2lubsY0Tdra2njlK1/Jd7/7XYQQ0647W9bNQ+dxPvroo1x66aWsW7eOQCBAe3s7F154IX/5y18mrTuWBOzss89u/O7ss8+edK7JYeiStEoJSZJWBEAA4swzz5x12W9+85uN5b/5zW9Ou9yPfvSjxnL/+I//uOC2XXLJJQIQ69evFw888IBobW1tbHf8o6mpSfzlL38RQghx8803C8MwplzupJNOEoVCYcp9XXHFFVOuM/6RSqXE73//+ynX7+npEU1NTQIQmzZtEsVicdIy9913X6NtZ511lvA877Bek6mMtfWKK64Q1113ndA0bdrXbMeOHRPW/d3vfjfrawCI3/3udxPWGxkZEX/913894zotLS3irrvumvWYHn30UbF27dppt/PpT396ym0Ui0Xxwhe+cNa2n3/++ZPWHf/eT9WumR5j70M2mxWhUEgA4rLLLpuyjWN6enoa78uHPvShGZed6fWa6bFu3Trx6KOPTlr3zDPPnHXduXwWHMrzPPHP//zPQlGUaber67r47//+7ynX371795zOvQ984AMztqNSqYgLL7xw1u1cccUVE9Ybf+7/+te/Fn/3d3837bqnnHLKlH/fczW+DR/72Mem3U9ra6t45JFHpt3O3r17xbHHHjvjcb7oRS8S2Wx2yvWnO+/HrF+/XgDikksuEbfcckvj/D70EQwGxW9+85sJ6+7Zs2dO7+dM3yOSJB29ZKAnSSvEfC7u5hroffrTn24s97nPfW7BbRu7oG1ubhYbN24UmUxGfOYznxF/+tOfxB//+EfxgQ98oHFhefrpp4u7775baJomTjjhBHHjjTeKe++9V9x2223i3HPPbbTngx/84JT7uvzyy0VHR4d497vfLb7zne+IP/3pT+K+++4TP/zhD8V73vMeEQwGBdQDpN7e3im38cMf/rCxn0svvXTCc5VKRWzfvl0AIpFIiH379h3WazJboHf66acLRVHEKaecIm6++WZx7733it/+9rfizW9+c2OZ0047bcK6pVJJ7NixQ3zqU59qLPN///d/YseOHRMepVKpsU6tVhMnn3xy40L+LW95i/jxj38s7r//fnHnnXeKT3/606K5uVlAPVDeu3fvtMfU3NwstmzZIhKJhLjyyivF73//e3HvvfeK//qv/xLpdFoAQtO0KS9+3//+9zfa/Ld/+7fif/7nf8Qf//hHcf/994tf/vKX4pprrhEvfOELxQUXXDBp3ekueLu6usSOHTvEqaeeKgBx6qmnTnotdu7c2Vj+oosuahxnrVab9j285pprGvt7/PHHp11uOhdddJHYsmWL+OAHPyi+//3vi7vvvlvcc8894pZbbhFvfOMbG0Hk1q1bRaVSmbDu7t27xY4dO0RHR4cAxHnnnTfpmHbv3j3vNr3rXe9qHNM555wjbr75ZnHPPfeIe++9V3zta18TJ554YuP5n/70p5PWf+qpp4RpmuLcc88VX/jCF8Rvf/tb8cADD4hf/epX4r/+67/E5s2bG+t/7Wtfm7INnueJc845p7HcMcccI6677jrxhz/8Qdx///3iZz/7mfjIRz4itmzZMmOgd8YZZwhAXHDBBeInP/mJuP/++8VPfvKTCTcSpvscmYuxbYydV8cdd5y46aabxH333Sd++ctfNs4jQHR0dEwZqBWLRbFp06bGcq95zWvE//7v/4r77rtP3HLLLeJFL3pR47kXvOAFU95Ummugd/LJJ4tgMCi2bNkivvrVr4p77rlH3HnnneIDH/iAUFVVAGLt2rUTznnbtsWOHTvEN77xjcY+vvGNb0w616YLQiVJOrrJQE+SVojFDvQKhULjIlLTNLFnz54Ft218z0VLS8uUF6Af/vCHG8tkMhnxwhe+cNLFred54nnPe54ARDqdFrZtT9rOnj17hOM407blscceE/F4XADi8ssvn3a58YHUrbfe2vj9+Avh73znO3M5/CnNNdADxKte9aopj/Uf/uEfGsvcd999k54f/z7P9v7967/+qwBEJBIRd95555TL7N+/v3FOXHzxxdMe01iQNFXw86c//akR1L/73e+e9PxYL+BUgdx4w8PDk3432wXvWC/YbH8j44OF733ve9MuN9YLc8YZZ8y4vens2rVL+L4/7fN33HFHI9i74YYbplxmfG/N4fq///u/xnH/53/+55TL1Go18ZKXvEQAYsOGDZP+1kqlkujp6Zl2H7Zti1e84hUC6r2VrutOWua6665rtOP8888XlmVNuS3P80RXV9eE3x3am3311VdPWs+yLHHSSSfN+DkyF+P3c9ppp4lyuTxpmX//939vLPO+971v0vMf+MAHGs9/7GMfm/S87/sTAsavfvWrk5aZa6A31s6pRkOMb+cPfvCDSc+Pf10PHQkgSdLqJQM9SVohFivQ6+7uFj/96U/F8ccf31jm/e9//2G1bXwAcP3110+5zN69exvLKIoinnjiiSmXu/HGGxvLPfTQQwtqz/ve9z4BiOOPP37aZYrFotiyZYuAeu9fd3e3+H//7/819n3hhRcuaN9j5hrohUIhMTAwMOUyO3fubCx33XXXTXp+roFesVhsBL//9m//NmO7v/KVrwhAGIYx6cJ2/Pv8xS9+cdptjPW0PPvZz5703NiQ2M9//vMztmMqixXo+b7feO9f9rKXTbnMXXfd1djXdEHYYnjta18rAPHKV75yyucXM9A7++yzGz15M3n88ccbx37bbbfNez+PPPJIY/177713wnOe54nOzs5G79L4Xue5GB+QHNrTPd5///d/H/bnyPhA78EHH5xyGc/zGkHloT3EtVpNJJPJRm/gVEGvEELk8/nGcPKpPrPmE+gdOsx7TKFQEKZpCkD80z/906TnZaAnSc9MMhmLJB3lLr300gmT6js7Ozn33HN59NFHicfjXHXVVQtKNjIVRVG44IILpnxu/fr1xONxAJ71rGexbdu2KZcbqxcIsGfPnln3mc/n2b17N48++ih/+ctf+Mtf/tLYz+OPP45t21OuF41G+da3voWu6wwPD3PRRRc1kpusXbuWL3/5y7PuezGcc845NDc3T/ncMcccQzQaBeb2Wkzn9ttvbyS1eP3rXz/jsi984QsBcBxn2mQliqLwhje8Ydpt/NVf/RUwdZvb29sBuOWWW6hWq7M3fgkoisKb3/xmAH71q1/R3d09aZmxWpXhcJi/+7u/W5T9Dg8Ps2vXrgnnalNTEwAPP/zwouxjOoVCoZGsZrZzYPv27WQyGYAZExZBPcnIgQMHePzxxxvHND5pzaHH9dBDDzVe77e+9a1EIpF5H8uYCy+8cNrnxs5BOLy/Hah/Xj372c+e8jlVVbnkkksAyGazPPDAA43n7r//fnK5HFBPGKRp2pTbiMfjjffk0Ucfpa+vb0HtPOmkk6YtvROLxdi6dStw+K+HJEmrhwz0JGkVe9GLXsRll102bTa3+WpubiaVSk37fCKRAOoBzHSSyWTj52KxOOUyu3fv5l3vehdr164lmUyyefNmTjjhBE488UROPPHERpY83/cbF1pTOf300/noRz8K1IOhvr4+VFXl5ptvntCOpTRdwDtm7PWc7rWYi/EB29atWydl1Bv/GH+hON0FZyaTaQQoU0mn09O2eeyi+M4772Tjxo285z3v4cc//jGDg4MLOraFGrvw9n2fm2++ecJz1WqV733vewBccMEFxGKxBe/noYce4o1vfCMtLS1kMhm2bt064Vy94YYbgHoQuJQefPBBfN8H4G1ve9uM54CiKI1MklOdA7Zt81//9V+cdtppRKNR1q1bx3HHHdc4ppNPPrmx7KHH9eCDDzZ+HrupsFAz/e2MnYNweH87wKz1RU877bTGz+MzW47/+bnPfe6M2xj//I4dO+bbRGD2z5KZ/i4lSXpmkoGeJB3lPvWpT7Fjxw527NjBfffdx6233sqrX/1qAH72s5/xkpe8ZNF6VkKh0IzPq6o663JjywBTprP/+c9/zvHHH89XvvIVurq6Zm3TbMf20Y9+lPXr1zf+f9lllx1W2vr5CofDMz4/9nrMN7X/eNOVm5hNpVKZ8vdzbfNYYDHexz72Md785jejKAr9/f188Ytf5DWveQ2tra2ceOKJXHHFFfT39y+ovfPR3t7OK17xCuBg792YH/7wh40SH2M9fwtxww03cOqpp/Ktb31r1kB2qXs3F+scGB4e5vTTT+ef/umfuO+++3AcZ8b1Dz2u8aUIxnp3F2qm83C2z5H5aGlpmfPzIyMjU/7c2to64zba2tqmXG8+luOzRJKk1UU/0g2QJOnwdHZ2TuilOeWUU3jta1/LVVddxZVXXslDDz3Ev/zLv/D5z3/+CLZyboaGhrjooouo1WrEYjE++MEP8jd/8zds2rSJeDyOaZpA/cJ97AJdzFCfCuCnP/3phFp1d9xxB7ZtN7a1Goxd2CmKwgMPPICuz+2jfc2aNYveFsMw+PrXv8773/9+/ud//off/e533Hvvvdi23Rj697nPfY5vf/vbnHfeeYu+//He8pa38L//+7889dRT/PGPf+T5z38+cDDw27RpEy960YsWtO3HH3+cd73rXXieR2trKx/60If467/+a9avX080GsUwDACuuOIKPvGJTyzOAc1g/MX9DTfcwOmnnz6n9Q7toX/ve9/b6JU7//zzufTSSznxxBNpaWkhEAigKApCiEZQMdPf32KNJDgazHass31OSZIkLQUZ6EnSKvWxj32Mn//859x77718+ctf5rLLLpt16M+R9oMf/KDR0/KjH/2IF7/4xVMuN1PR7/H6+vp4+9vfDtTnyRQKBR555BEuv/zyRZu3uBKMDbMUQhCNRtmyZcsRbhEcd9xxfPKTnwSgVqtx55138t3vfpebb76ZUqnEhRdeyNNPP33YvT4zGSt+3dfXxze/+U2e//zns2/fPn77298CB+e3LsRNN92E67pomsYdd9wx7d/WXM/Vw3XoUNvp5nLNpFAocMsttwBw8cUX861vfWvK5WY6prG5fwA9PT0r/jMHZu8NHf/8+CGj43/u6+ubccj6+F7s8etJkiQtJTl0U5JWKVVV+fd//3egfrf/iiuuOMItmt2jjz4K1C+EpgvyAO677745be/SSy9laGgITdP4xS9+0ehB+tznPsftt99+2O1danMNQsbPmbrtttuWqjkLFgwGeclLXsI3vvGNRoBdrVb52c9+Nq/tzDco03W9MWfwlltuoVKpcNNNNzV6pMaeW4ixc3WmxEMw+7m6WL1ez372sxvbWug58NRTTzWGas6U0GWmYxqfJOUPf/jDgtqx3GZ7j+69997Gz+MD6PE/33PPPTNu489//nPj5/EJqZbLM6l3VZKkg2SgJ0mr2Itf/GLOOOMMAL7//e/z5JNPHuEWzWzsItOyrCnnf0H9zvhPfvKTWbf1xS9+kV/+8pcA/Ou//ivPf/7zueGGG2htbcX3fS655JJG7+FKFQwGGz9bljXtci95yUsa83f+67/+a9pMpCvB+AB+/HyuuRh7PWZ6LQ71lre8BagnqPj+97/PTTfdBNRfs7Vr185r/+ONnaszzb3bsWMHd99994zbWcgxTaW5ubkxXPNHP/oRu3btmvc2xs/Hm+m4rr/++mmfe9azntV4Xb/2ta9RLpfn3Y7l9vDDD/PII49M+ZwQopHMJ5lMTghkTznllMbQ15tuumnauXHFYrHRU3rCCSdMmK+3XOb6WSJJ0uoiAz1JWuUuv/xyoJ44Y6yHb6UaSw9eLpf54Q9/OOn5Wq3GxRdfPG0SkTFPPPEEH/rQh4B6Rr2Pf/zjQP1i+Otf/zoA+/fv57LLLlvM5i+68cMan3766WmXSyaTvPvd7wZg586dvPnNb54xicbg4GDjdVhMIyMj/PSnP51xPtKvfvWrxs8bN26c1/bHXo/du3fPec7T1q1bG/PwPvzhD7N7926ARqmNhRo7V3fu3Dmht2bMyMgIF1988aztHDummd7fuRrLMOs4Dueff/6Mafwty+LLX/4ytVqt8bstW7Y0en6mG7b5ta99jVtvvXXa7aqqygc/+EEADhw4wJve9KZpz0Xf9+np6Zn5oJbJ29/+9imD22uvvbZRQuLSSy8lEAg0ngsEArz1rW8F6j28V1111aT1hRC8+93vbtzUGPs7XW5z/SyRJGl1kYGeJK1yr3zlKxs1or797W9PSEyy0rz+9a9vJEm55JJL+NjHPtZI5nHDDTfwV3/1V/z617/mec973rTbcByHiy66iGq1Sjgc5tvf/nYjMQbUX493vOMdAHznO99ppNlfiU4++eTGnfiPfexj3HbbbTz55JPs2rWLXbt2Tbgw/cQnPtFI4f6d73yHE044gf/8z//kD3/4Aw899BC33347X/7yl3nta1/LmjVr+MpXvrLo7S0UCpx33nls2rSJ97///dxyyy3cc8893H///fzsZz/jH/7hH/iXf/kXoJ4I5lWvetW8tj/2vg8MDPC+972P+++/v/FazHRej12MjwU+qVSK17zmNQs5xIaLL74YqAcrr3jFK/iP//gP7rzzTu6++26uu+46nvWsZ7Fjx45Zk6KMHdO9997L1VdfzcMPP9w4pqnq/83kFa94Be9973sBeOSRRzjuuOP4yEc+wq9+9Sseeugh/vSnP/Gtb32Lt7/97XR0dHDZZZfhum5j/Uwmw8te9jKgnrH3la98JT/5yU944IEH+NnPfsaFF17I2972tsYogelcdtllnHPOOUB93u2JJ57I5z//ef74xz/y4IMP8v/+3//jiiuuYPv27TP2Di6XU045hXvuuYfnPOc5fOtb3+L+++/ntttu441vfGPjhlFHR0fjhtF4H//4x9m0aRMAn/zkJzn//PP5+c9/zgMPPMCtt97KX//1Xzd6BF/wghfwtre9bfkObJx169Y1ki9de+21/PSnP2Xnzp2Nc02WZJCkVeoIFWqXJOkQgADEmWeeOeuy3/zmNxvLf/Ob35x1+VtuuaWx/Dvf+c55t+2SSy4RgFi/fv2My61fv14A4pJLLpl2mT179szY9uuvv16oqtpY5tDHe9/73gnHv2fPngnrf/jDH2489+Uvf3nKNpTLZXHMMccIQKRSKXHgwIFZXoHJZntNxtpwxRVXzLid2V6zD33oQ9O+Fr/73e8mLFsoFMRrX/vaaZcf/zj77LPnfUxjrrjiisZ2xhv/3s706OzsFA888MCctzumWCyKTZs2TbnNmdpcqVREIpFoLHvZZZfNeHxz9bGPfWzaY1RVVVx77bWzHlNXV5dIp9NTbmMunwWH8n1fXHXVVULX9Vnfh0gkIiqVyoT19+7dK9asWTPtOscdd5zo6uqa9fwul8viggsumLUNh67/u9/9btrze7zZPkfmYnwbLr/88mnb2NLSIh555JEZ27J9+/YZj/NFL3qRGBkZmXL92c6RuXyuCiHEmWeeOeN58+Uvf3na9i30NZQkaWWTPXqS9Axw/vnns337dgC+8Y1v0Nvbe4RbNL23ve1t3H777Zx77rlkMhkMw6Cjo4Nzzz2Xn//851x33XXTrnvnnXfymc98Bqj3brzzne+ccrlwOMy3vvUtdF0nm83ypje9acWmP7/66qu54YYbeOELX0g6nUbTtGmXjcVi3HrrrfzhD3/grW99K9u2bSMWi6HrOul0mtNOO43LLruMX/ziF0uStGX9+vU89NBD/Md//Acvf/nL2bZtG4lEAl3XyWQynHnmmXz2s5/l8ccfn5BAZq6i0Sh/+tOfeO9738uxxx47a12xMaFQiPPPP7/x/8MdtjnmE5/4BD/5yU948YtfTCKRwDRN1q1bx4UXXsgf/vAH3v/+98+6jc7OTv785z/zlre8hc2bN0+YS7UQiqLw8Y9/nCeffJIPfehDnHrqqY3zJhaLcdxxx3HRRRdx00030dvbO6nm5fr163nggQf453/+ZzZv3oxpmqRSKU455RSuvvpq7r33Xjo7O2dtRzgc5vvf/z6//e1v+fu//3s2btxIKBQiFouxfft2Xvva1/Ld7363MczzSPvUpz7F//7v//Kyl72sUUpi8+bNvO997+PRRx+dMYHKhg0bePjhh/niF7/ImWeeSVNTE4Zh0Nraystf/nK+/e1vc/vtt08qZbHc3vnOd3Lrrbdyzjnn0NzcPOcyLJIkHb0UsVKvbiRJkiRpkTz3uc/lz3/+MyeddFJjzpX0zDY2H/GKK67gyiuvPLKNkSRJWgKyR0+SJEla1R577LFGwpQ3v/nNR7g1kiRJkrQ8ZKAnSZIkrWrXXnstUB9O+MY3vvEIt0aSJEmSloccoC1JkiStKtVqle7ubiqVCj/+8Y+58cYbAXjHO95xxOdJSZIkSdJykYGeJEmStKrcc889nH322RN+t379+inT40uSJEnSaiWHbkqSJEmrkqIodHZ28sY3vpE777yTRCJxpJskSZIkSctGZt1cBWq1GrZtH+lmSJIkSZIkSUvINM05lWE5Gq4N53os0sLJoZtHuVqtRiKUwqZ2pJsiSZIkSZIkLaG2tjb27NkzY4BUq9XYuD5K34C3jC2bv7kci3R4ZKB3lLNtG5saL+AV6BhHujnSFBRVoWl9kuF9OYQvO9AXSotGlnwfigLptXFGDhQYP9YhvFaj5Xkm+26tItxF3F9z0+JtbIWw1yx9shNFgaZMkOGhGkfrmJTONYP4vkJvT+aI7F+rLuKJPA1FgabmEMOD1WV5n9SqM+l34SaL5i1lKjmdQk8Iq6gDytI35iiiKJBuDTHSvzzvk7QwigKxJpUf3XENtm3PGBzZtk3fgMe++zcQj63MWVqFos/6U/bOeizS4ZGB3iqhY6ArMtBbiRRFwVBNdMVAKPJbdKE0xVzyfSgKGFoAXTEZ/07pqJimiaF7+It4g1RRA4u3sRXC15f+C1tRwDCC6DpH7YVpLKYwMhJHX4bXayqavjyBXv19EssT6GmTL2jtXIDcngCpdRVSJ1vYFZdCb5DioInwVuYF8HJTFDD0ILrmH7V/T88E9fdpfudsPKYSj2lL1CLpaCADPUmSpFmI0eBO0RRAXglJh0ugaQLPlYHGcigPBygPmwQTLvG2Gk2byqQ3lOl/IkY1t/Q3kCTpSPER+PhHuhlT8uV36bKQ3zKSJEmzGAv0VHljVFoE8UQZgFpNBhnLR6GWNxjYGWP/fUlqBYPmrSVUY2VeBEuSJC0G2aMnSZI0C+HV7zwqMtCTDosglS7S3JynkA9jWTLQOxI8W2PwqShrnp2jeUuJ/sdjyHl70mrkCR9vhXaceULeZFkOMtCTJEmaxcGhm0e2HdLSCYUsQmELAE31yWajuO7ifUUqik9b+wjxeJXh4RhDg7Km3+Fq3zRCJGGRGwxTLQawbPDnOBzWc1QGdkVpO7ZIZnOZkb1hfDlnT5KkVUYGepIkSbPw5Ry9VUxgmi6trVkCQQfPUwCFZLJEqRzEtgyGh+McTo+PYbh0dg5hmC7d3U2UiuFFa/0zmV3TiSQsks0Vks0V2AR2WaNa0KkVDGoFA8+ePnirZk2Gno6Q2Vwm1mJRzRsM7w3jVOSlkbQ61OforczvrJXartVGfppJkiTNQvborVaC1tYsyVQZ31foOpChXA6iqoKmpgLppiJQJZeL4nnzf/NV1SceL5NpzuN5Gvv2tmDbcrjmYhnuiVMcCZHIVEg0V3CqKrWiTijhkGiv9846VZVqwaCaNSgPmxwasBf7g1SyJpG0TXpDmdTaKgM7Y0fgaCRJkhafDPQkSZJmIeforU6pVIlkqkx/f5JCPozv199g368HA0JA14HmKYM803QwTYdazZw0xFNVfVpacsTiZRQFioUw/f0pfF8ODVxsds1gsCuBLxQSTWXyvUGGno6iGT7BuEMw7hJMOMRbLfI9QbIHQpOGd3p2PUBEKLg1+R5JK1ekyZ7X8v6KzbnJCm7Z6iIDPUmSpFlMLK8gHf0EmUyBdFOBkeEYuWwMVfVJJEqYpkuxGCIYsnFdbYrMmIJ0U5FMJo8yejpYNYNcLkIuFwMEa9cNYBguw0MJ8vnIgnoDpfkZ6Y0SjtRoO7ZI90MJPEcdLatQr1WZ6KiS3lAh2mJRy+sEYi6KAr6rIAAj6GOXNXJdoSN7IJI0Dc30iLXWjnQzjqiRkRF+8YtfcO+993L//ffT09PD0NAQlmWRTqc58cQTOe+887jkkkuIRqOzbu+Xv/wl119/PX/+858ZHBykubmZ5zznObz97W/nZS972TIc0dKTgZ4kSdIs5NDN1UFVfRLJEqlUCV33GB6KgwIdnYOEwxaqKvA8lXRTEddV0XWfaLRKoRAZ3YKgpTVHKlVieChGLhclHLZIp4s0t+TI5aIYhksw6NDVlaFckkHDchG+Sv/jMdb+VY5oi0Whd+Jrn+8JURoMkFxTxYy4FPuDCE9plFewyxrloQBCyJs50gIpglizRazVQvgw8GQMz1FRNIHwDuO8UgTx1hqpdVV8L7B47T0K/fa3v+Xv//7vp3yur6+Pvr4+brvtNq655hpuvfVWTjvttCmXFULwjne8g+uvv37C77u7u/nRj37Ej370I97+9rfz1a9+FUU5uj8TZKAnSZI0C9Wo/ytcOXn8aBWLl2ltzaKqgkI+wshIDMfVOOaYbgAqlQA93U14nkoiUZ9XV8iHKRTqiVNM06atfYRg0KGvN0U+HyUSqdLeMQJArVY/SRrDM+WpsuxcS6OaNwinnEmBHtQzbQ7viUyxprRaBWIO4ZRDIOpiFXWyB2ZPhKQHPNIbKhT6gtTyRuP3iioIp2wUTVDLG7iWBooglKjvI9JkowcODkcMxh1irRbhlEMla1AaDFAeNqlXFZhb8BBK2GS2lNEDPqXBAPni/M5fTwg8sTI/jBbars7OTl70ohfxvOc9j7Vr19LR0UGtVmP//v185zvf4Ze//CUHDhzgpS99KY8++igdHR2TtvHRj360EeSdfPLJfOhDH2Lz5s08/fTTfOYzn+HBBx/k+uuvp7m5mU996lOHdZxHmgz0JEmSZhFsqV+827mV+YUpzSyVKtLSmqOQDzM4mJgwp27XUx10dA4TDFo0t+RQVUE4XEPTBPFEhWDIIpeNEYtV0HWf/ftaqNXqd9XHz7kbGEgCCsFQfQ6NJ1P1HxGlIZOWrWXi7dUpgz3p6KAZPtEWi2DUBbX+uevZKqXBALWC0QjgAFxbRVEEwbhLKOHgewqupVIrGCQ7qygq2BWNcKqK5yp4jkow5qJqgkJ/AKuoo6hghj0iGYtYi4WqC8JJh+5H4jhVHSPs0nZsESNYD+SEDyP7wvUgL+3gWiqVEYNCf5COE/OoGjRtKoNQGNkXIpqxaTmmBEB5xGB4dwTNEARi9SDUrugU+oITev7CaYvW7SWqOYO+x2K4NZ145pn9ufLqV7+aCy64YNrnL7roIj7/+c/z3ve+l1wux7XXXsvnPve5Ccvs2rWLz3zmMwCceuqp/P73vycUqn9WnHbaaZx77rmceeaZ3HfffVxzzTVceumlbN68eekOaonJQE+SJGkWsS06tWEfpyADvaONpnlkmvNkR6KNYGw8z9PoOtBMuqlANFrF81Sy2RiVSoBopEa6qR4klkpBDMWdUOS8Wg1wYH8z7R3DrFs3iG1r6LpPtWI2gkFpeZUGAphhj6aNFexyvcyCdHTRAx4dJxZQdR+rqNeTIwkIJRzibRalIZNopn5DxbVUtLHhtxWNQl8QFIER9Im31VBG46Kh3RGat5TIbKrU17MVEAqxVgvfA3V0WL5nK5QGA2imTzRj03FCgf4nY7RuK+LaKvvvT+I5Kul1FZo21reVPRAiuz/E2GdLritEen2VWqEe0HmOSq4rTCBab3+02SJyag4A3wenohFrsVEUQa6r3uNohFxajilRHjYZ2BkFFBYygnC1lVfQ9dnDlne9611cfvnllEolfv/73096/j//8z9xXReAL3zhC40gb0w4HOYLX/gCZ5xxBq7rct111/GFL3xh3m1dKWSgJ0mSNAMtBOEOlaF7nSPdFGkBVFXU597NkPFSCIXhoQTDQxOLmLe05AAYHExQKgXZsKGfRLJELnsw/X6lEuTpXR3EYpVGApeDc/qkuRMEIw6RRA1V80EoCFF/bzxXpVIIYNd0Zh/ypjCyN0wg6tKyrUj3w8kZa+lJK0+sxULRBAceSB3y3gmizRaptVU8RyF7IDTaazsWMBx6bgjMsNcYtnng/mRjnvXYvOtgwiUQcfEcFaemYpXq2Vc7TswDoJmCjhMKCAFDj0Vwa/UNDO+JUOgLEEo6FAcCE/ad6wqT6w7B6HxPVfcJxFxqBZ3BXRGyXSGMgIfvKVhlndTaKoFolUq2fhNJ1Xzaji3i1DQGn4pOcVzSTHRdJxgMUiqVsCxrwnNCCH7yk58AsH37dk4//fQpt3H66aezbds2du7cyY9//GM+//nPH7Vz9WSgJ0mSNIPIOg0hoDbg03yGAQKsEZ9qn+zhOxo4js7QUJxMpoDwFUZG4nNeNzsSo71jBMeuX/x5nkosVp0Q6NUpFIsRivOcPyMJwnGLSKJGJGGhGz6uo+La9blPigKKItANn0xnEbumUcoFKedC2Na4zEhCOSSJisLAzhidz8rTcUKe/idj2CV5uXO0UDSBqtUTkGQPHOwpA4XSYJDSYJB6cHfw99NsCbuiY1cOvvdjAd6YWt6YMA9vTM+OBJrpoeoC4Sv4joJ/yHBsp6rjVKc5r0bPRyPk0XFSHk2f+F1x4IEETlUn1lIjtbbKyL4QdlkHBC3bSqi6oPfhOMI/vODCR+Ctoh69ufjNb37D0NAQUA/mxtuzZw/d3fV52WeeeeaM2znzzDPZuXMnXV1d7N27l40bNy5Je5ea/OSTJEmagRFTcQuC+DE6sc31IZzRTRqKquBWBbU+j9I+j0q3LxNwrFDDQwkUBJnmPMViGMeZ21dfoRAmHq/Q0TkM1OvqlcvBpWzqM4QglqqSai1jhlzsmkZxJEQpF8SqGBx64a4oglDMIpqskchUSLeVJ23RquoUugP13hVRn4fVsyNOy7YinSfmGd4bptAbnLRtaeXJ94TQDJ/UunrPXaFvqrmWS/8+eraGN7+ydZNEMxaaLhjaHSbZWUUPCFxbqSdyAYLx+hDCREd9mOlY7ce+x2KNZaTZFYtFurq6+P73v89nP/vZxu//8R//ccJyjz/+eOPnQ4PAQ41//vHHH5eBniRJ0mqmaFAb9On5PwtFh2CzSqhNJdSu0XaWjlsWDNxlU+uTRWBXopGROOmmIuFwjXx+9vpKdQpdXRmCwfr8GcsyGkXVpflTFEGsqUKqpYwR8CjnAwzsT1CbIrgbTwiFSiFIpVDvyQlFbTT94N+ZogoiCYvmLWWSa6pUsgaVEZNqzqBnR4L0+gqZTRVCSYfBp6KTCqZLK4tnqww+FUP4JZo2VvC9ehKWo1GhL0gkY5PZVBnNtgn770s1evwGd0XI9QSJt9VItNfwXIXeR+NT9jKuVoVCYcL/A4EAgcDs7/e1117LBz/4wSmf0zSNz372s7zwhS+c8PsDBw40fl6zZs2M21+7du2U6x1tZKAnSZI0A98WqCbg05jYL1yo9vpUe3140MVMKaRPNmg/26T/DzaVLhnsrTSNWTzKfLtdFZlY5TApqk+iqUKypYym+5RyQXp3p7BrC7mYVaiWJr8fxZEwASok2muEkw6JdgtrtAD6yN4w1bxBy9YSa56do/+JeH0ulnQECDSjXqYgs6WMU9FwLJVK1qTYN7G3fGh3BBRoOaaEogqK/Udfb7rnqHQ9mCCctomkncYcwIMUnIrO8O4ow7th4pDUw3c0JGMZH1ABXHHFFVx55ZUL3u5ZZ53Fl770JY477rhJzxWLxcbPsxVUj0QODsUvlUoLbs+RJj/pJEmSZlAP9BTUAPjO1F+YdlbQ9zubtr82SZ1kUOmyplxOOlIErS1ZFEUOvVxOuukSz5SJtgzU6xeOhMgNRHGspbn0cCo6Q09HgXqq/czmMq3bSgxqEYr9QboeStB2bJHmrSW6HkwuSRukqamGT3p9hWjGQtXqw6AVBcyIhxmpJ0wpDZqI8fPghMLQrgiqJmjeUqaSNY/SxDoKlZEAlZG53DB65g0tPnDgAPH4wbnTc+nNA7j00kt52cteBkClUuGJJ57g5ptv5je/+Q1veMMbuOGGG3juc587YZ1ardb42TRNZjK+HdVqdU5tWolkoCdJkjQDzwbVUAi1aRR3e9MvKKD4lEfri0z0iIJbXpl3UZ+J0k1FEsl6KvS16wbZs7sNIY7GC8aVT9M9oska0VSVUNQhGonTvTfESH8Uz1muYa8Hsx16tkJlpH5B59n1Hr7W7SUiGYvykMkz8cJ6uRkhj7bjCqiaINcVwq7oWCUNz9bQgx6hpEPz5jLrT8vWh9b6CrEWC+ErOFW1UUpBD3hHaaB35BwNBdPj8fiEQG+umpqaaGpqavz/Oc95Dm984xu5+uqr+dd//VfOOussfvKTn/DSl760sUwwePBGn23PPAFzfMbOQ0swHE1koCdJkjSDWr+PEAItoIA/8xemla0P2dSjMtBbSRxbp1o1CYXsRsr++QgEbFKpEjXLmCLj5pFlmg7JZIlyJUilEkDMUEZi6dSzZyaby4Ri9YunSiFA/74khUCSoT6L5bzWjLfVaNpUplbQGdgZw3MOviaVEZPyiEHrthL2Wo3+nVGcirwUWiqRjEVmcxnPVun+S3xSghG3pmGX6p+bqgat2+tD5DxXaWSqzHUHyXWF5NxKaU4+/OEP85Of/IS7776bt73tbTz99NON+nux2MHP79mGY5bLB5M+zTbMcyWTn26SJEkzcMuC2oBPqFUjebxB7lEXf5obgWOpuyPrNGoDMgvnSlEshgkEbQIBh+6uZubTi2OaDuvW14ceJoB8LrKiegMNwyWVLpFK1y9aKpUAlXKAcjlIrbZ4PVaa4aFp/qRaduF4jXR7kWDYpVY2GDyQoJQL4nsqigLBluV9rSJN9cAi3xNkeE+YQ49fCIX+x+MEoi7NW0tkNpXp/Uti6o1JC6YHvdGhmjalIZOhXZFJ5QnGWCWD3X9Ko6j1updG2MMq6gTjDsJXZNH7w+CPPlaipWzXueeey913383+/fv585//zPOe9zxgYgKWrq6uGbcxPgHLofMIjyYy0JMkSZrF4F0O615dvxMd26SRf2LqIZxeRTB8v0P6ZJ1AWqX/9xbe0Tu0f1UxTYdKJYBtz++iMRav4PsKXQcyrFs/SCDgrKjkLOVykHw+TCJRH5oaDluEwxaZ5nomu7G5UK6r4jg6nqviehp+DTxXw3NUXEelVh4fFAo03ccMuQTDNtFUjUCongY+PxRm8EA9MApFLTo2Z6kUTbqfSlOrGAQjDsnmMmbQBQWCpsLQwOImmJiOZnpkNpcpDZlTBnnjWSWdXHeQ5i1lVN2XvUWLQREk2mtEmy3MiIfnKPTvjFIemsPfi1AQHniegpevvxfV3MxzqCRpOplMpvHzvn37GoHe+AQtTzzxxIzbGP/8scceu8gtXD4y0JMkSZqFWxJUej3C7RqRddMHegD5x11qgx6tLwzQcU6A7v+z8GVuliNO+CqaMcMcy2moikBVBJFIfRJ/JlOgpye9gsosKPT1NjEyHCcSqREM2YRCFsbosSqjsY6u++h6vSu6WjXQwz6a7qGOxjeOpeHaGooqMAJuY9ic7ymUCwE8VyUcs1HVg/fhmzrqGex8VyWzptAIBj1XwaoaKAqkWktULIeBvcklfhnqCTuEgKGnI8wlsKyMmCDKtB1bZGR/+BmV0n4pZDaVibVYlIdN8j1BysOBwy74LR0ebwUXTF/Kdo0VRYeJwy43btxIR0cHPT093HHHHTNu4/e//z0AnZ2dbNiwYUnauRxkoCdJkjQHtQGfcLtGsEVDCzFjT501JOi5zaLjbwK0PM+k73eHWXVXOmyq5uMv4KJzeDiGrnskU/WhkZFojU2be7Ftg+GhOOXyypikb9tGvbcyW/+/pnkYhouqChRVoKk+obBFMlmmVgswvLd+8aOogkDQJZ6pgALCh3IhQCDogiLwRnu6Yimb3GCY4Z6Dc1yGuuOk24qouo8ZcBu/tyoGg10JXFtHVxTiqR7y/WGs6tL10DS1FwmnHHr/Eptz75zvqvQ9HiO1rkL78QV6dsSxijLYW4hAzCHeZjH4dGRSmQRJWk6+7/PDH/6w8f/jjz++8bOiKJx33nl85Stf4YknnuDuu+/m9NNPn7SNu+++u9Gjd95556EoR+8NCxnoSdIqpLe2HOkmLL5IeMl3oSigpCMoVWPS/DrL9oB6r07kuATFAzNfEHpAdrdD8/E22pomfHvyF4WIrL4LolrT0g+3UhSwEwY1359Dkg9BW3iEaKRGT6lpQe3r7dUAQVOmQCZTwLJMwmGLUMhaMYHeoTxPw/Mm9joWChFqVZO29ixOUaUwHKnPgaqY1PYffF2aOgpEUzVcR0U3DvbgFYbCE5K91MomPU83NdZJNJcZ7o6TbCmz/rhBahUDp9oOukaypUz/vqU7Nxy7fqyRjE21YBxSq2x61Vy9sPrGM0YIxtwVF+g5TcvzuecmgzgO80yaIwhHasSiVWLxCrWawYiTgqaZX/vcltX3uQfgLvFhKYBjevCbpd3PSvaNb3yDv//7v8cwpv479X2fD33oQ+zYsQOA5z//+WzatGnCMv/0T//EDTfcgOu6vOc97+H3v//9hKya1WqV97znPQDous4//dM/Lc3BLBMZ6EmSJM2BlVcRo0XTkxsdyr06vjv9BU0w5ZFY5+DZ4DvL2NBVTsEnaVZIBmxEsAyKQKVeCN0TCrlaDNuvXwTEzTId0SECmktvKc1g9XCSbihUK/W5RpVygHDYolgMk27Kg1AYGZl/evAjIZ+P0tySQ9Wnv6KvVeqvX6UYwLVVQlEbu2Zgz1D/LjsQIZqqEUtX2f9EhmiyRuv6PC4OuaEITR0Fhro9PHdphrwWhiJQ82jeXAYFhnbNJ0tevQRDorNKNW9gl+Wl0WwUxae9Y4RYrIpta+RzUYaH48hyFSuLJ+qPlWgh7Xrf+97HRz7yES644AKe97znsWHDBiKRCLlcjgcffJCbbrqJhx56CKhn2PzSl740aRvHHHMMH/jAB7j66qu57777eP7zn8+//Mu/sHnzZp5++mmuueYaHnzwQQA++MEPsnXr1sM5zCNOfppJkiTNgfAVrLwKCphRn8RGh+xTh/ZQCAJJn8QGh0iLRy2vMnh/YM69C9JEquKhKgIhFIRQCOo2a2KDhHSbSCiObpcQKI3nddWjOZTniZF1qIrPxkQfALtz7RSdhfeMKIpPNFalpSVHtWqQzcZIJMts2NgP1BNIHC2Bnmk6aJqYlOZ+vHIuRN9eaF2fo5gN0f1UE7NdwPuuRt+eJGuOGSaRqYwmdwHH0ilmg2Q6C4SiNqXc0vWAlgaCKAo0bylT6Aliz6NswtDuCG3HFeg8KU+hL0h52KRWmJhhVKpTVZ81awdHs9hmKJWCyNdJWi79/f186UtfmjKIG7Nt2za+9a1v8axnPWvK5//t3/6NgYEBvvGNb/Dggw/yhje8YdIyb3nLW/jUpz61aO0+UmSgJ0mSNEfVEY3EegfPUdDMg7cjzZhHfJ1LMOVhhAV2SWHwLyalHnmhuFDbUvsJ6pO7Qm1P48nsGuJenIHsxPpsuuJybNN+1kQH2V9sxfZ0FMRhBXlhvcamLb1omk+pFKSvN43vqwwPxWlrr0+I27unbcHbX3wCXfdw3YNf76GQRSxWwfU0UskilqVTKc6cCbGUDYGA1g05nJpGtn/2+oFWxaQ4EiLVVmLvX1rwXIVUa4m+rnrQp6hL37VQ7A/QtLFMOG3PK9DzHJXuRxKk1laJtdZIdNRwLZWRfWFKg7Kw+njNLTlM02H//hasmsyMuZKttvIKd999N7/+9a/53e9+x5NPPkl/fz/ZbJZwOEx7ezsnn3wyr3nNa3j1q1+NaU5/bqqqyte//nXOP/98rr/+eu69916GhobIZDKcdtpp/MM//AMvf/nLF35wK4gM9CRJkuaoltVIbXZQdcFQj0603SHa6RJK+zhVhcqARnVYozqkIS8MD0/OitKmZyf8zvY0CnaEqFElYhgENYeqe/Ai3BU6+wstrIv3c7y5F031GawcXo205nAO11XZt7cFxzk4LySRLFOpBOg6kFlRdfWisSqdncMA5PNhDN0jHLFwHA1V9bFtvV5LcA7jpkq5EGa/Q7q9RCkXwplh6Kai+gRCDqGoTa1kInyVnl1NHHuKTVNHASFA05fjklOhNBQg3l4j3xtETFO7bUpCIbs/THZ/iEDUJdlZo+WYEoFokOE9kaVr8lEkFK6RTJbp603JIE9adtu3b2f79u28+93vXpTtveIVr+AVr3jFomxrpZKBniRJ0hxZ+YMXje2n1ROz1LIqAw8HKA9ocojmIuqvpBmpxYkYVUzVxdRcTM0halQxg0WSUYeYXyBbi7K/2NpYL29HeTJrkgiUcTyNrDV7T9RMdNXDqhoTgjwAXffI51dW8XSAcung0MhYrEq5HKS3N0UhP7HkgIY7xdpgBFya1+QxQy6uraHpPopSH546lXDMIrMmjxmsl3NwbJWh7vowVrtmkB80iDf14lgasVSV3MB85s4tTO5AiGimXjh98Mko87/pomCVDPp3GqStesmA2eryPVM0pYtUqyb5vAx8jwY+Ct4KPW/9Fdqu1UYGepIkSXMkvPo8vUDCZ+hxk8qAhmetrAv91cTxdXJTBGqKIlivQoIC/hTBteWZDFQWp7eh4gRJhwooo3MF60SjHSuNEAq7n25n0+ZeenvTlIpzG7YaSdRItxcbtfCsqk4wcnDobOu6PL27U4wPdsygQ9umEWolk5G+aD1hS3XicOVSLkhY01A1HyMgMEMOdnVpM1u6lsbQ01FajilRy1kUBxaeDrE8bJLsrBGIulillZWRc/kJQmGL4SGZdEWSjhbyCkWSJGkeqiMabk2heECXQd4Ro5AOFrFcg55y05LuKWdFULV68olQyMI0HdraRzAMj0p5ZaaJD4UtoJ4ddK7CcasR5AEEQi52TWOoO8ZgV5xIwqrX2msQtKzL41g6vbvTlLLh0QDu0ABAoTAcRtUEvg/xdIXlYFfqyWac2mFk+VQEZqTeU6lqKy+oX26BgIOqCirVuZ9XkiQdWbJHT5IkaR6cioIelBd9R5YgrFt4usOJmb3sLzSTtZYm62XVDdJ1oIWOziHWrR8AwHVV+vtSVCrzDfTqiVI8T53zkE9ddwmFLcIhC8fVGRmOMTmYqve0BAMOpukQi1eolAP4/tyDnMEDcQpDIRQVfE/B91RQBLrhoxn1YCfdVqqXMQCMoEsw4tC3Nzmup3Nq1ZKJotTLNcTSVYZ64ks+zFkbrf/n1BZ+MybabNXLNQCqLjCC3uEFjkc5w6jfCHBseel4tPBF/bESrdR2rTbyr1WSJGkeVBV8D+TQpSNHU+rzxsYs9RDKajXA7qc7ME0HXfeoVAMTCofPVSpdpKUlP+n3pWIQ19NwXQ3fU9E0D8N0CYVsjNEga0w8XqZaCWBZ9WGEuu4Ri1cxTRffV3AcjXw+wvDQfJPQKFjV+nDXpo4CqdbypCVcW5v0czRZrWfonLQ50ciyqY7+W84HiMQtIoka5SUsswAQiLl4roLnLDzQKw8FsNprBKIerdtLuJbK4FMRFA0qI1P1Xq5uuu4hBHjzSXAjSdIRtaC/VkVR5vQ466yzplz/xhtvnPM2brzxxsM4PNiwYcOc9rNhw4ZZt/Xtb3+bZz/72QSDQdauXcsHPvABCoXCtMu/6U1vmrCPX/7yl7PuY2zZN73pTfM4SkmSlose9vHsZ9YF3nwFNYu1sX6agnmSgeLoo0Ri9BHWa4zNc5srBZ+gZpEwS6yJDgLQU2riL0MbGKkdXmbNuRBCwbJMyuXQgoI8gEo5OGVSk2isRjBok0iUyTTniScq6LpPsRBmcODgsVUrJoGASzJVprUtR0trjkSyTLVqsn9fC0892cnePe0MDqTwF9hGEITj1pTP6KZHMGwDYAbqF/3+FBf9oajFppP62HRSP22bRmjbmMWq6BRHQji2SjA8uWzGYtPNeo/eTIXhZyN8he6Hk+y5O0X3I3E006f9hCJtxxZpOaaEuixZRFcO19VQlPoQTuno4I0mY1mpD2npyR69OfrEJz7BFVdc0fh/V1cXn/3sZ/ntb3/LH/7wByKR2TNQffzjH+dlL3vZUjZTkqQlJQg3e6PlE6TptIRzpIIl0sHStMtUHJP+SoqSHcY/5J6jik/UrBLWawR1h4BmE9CcCb14EKfqBfDE0fNeWJbJrqfWjPuNIBar0t5RL4eQHYlRafTWHTzYSiVAa1uW0GiQBSAEPLlzDYvfq6TQ9WQT4ZiNoorRYZwKrqPRuj5Hx9Zh+nanaV6Xx6oaDB6YGGSrmk9TZwF19C01TB8vr9L1VBNGwEM3/BnLNCwOgWb4aLpgw3Oy7P5jmsN5nYSnYhVV9v05haoJgnGXzOYSaxIOfY/G51Wv72hWKoWo1QzWrhtgeDhOPhc9jBsKkiQth8P6dHrnO9/Ju971rmmfn0vw83//9390dHRM+/yaNWumfW4+zjvvvBkr3M9UWPGxxx7jqquuIhgMcvnll/OSl7yE/fv38/GPf5wHH3yQT37yk1x99dWztuHee+/lpz/9Keeee+6CjkGSpCMrkPAxwoLhx4+e4OJIGKwmECgENBsVAQooCIK6gycU8lYEU3PZmOhHCKi5JmU3iBAKAc0halZRFYHjadQ8k6IdZtAzqbkGtmcQMS1SSpiyczTfERb1hC6VAN1dGZKpEs0tudFSBiqVSoCB/iSuq1OrBdi3t5VQyCYQsPF9lVIpxFINHRS+Sjk/ef5hz9NpNj+rn44tI7iOSt/u1IRMpInmCun2ItohiUuMgEcsVSXZUsaq6hRGlnLYpiC9oUKk6WCvU6zVoth/+IlzfFfFd6E0qFHNGXScmCe5tsrAzsMr4XH0UDiwv4XmlhyZTJ5MpsDgQJJcbulLZkgLs5J7zlZqu1abwwr0WlpaOOGEEw6rAcccc8ychk0ermQyueC2fv/738f3fT7zmc/wnve8B4DTTz+d5z//+RxzzDHccsstswZ6mUyGoaEhPv7xj/OqV70KRZEnuCQdbZKbHOySQnVYBnozqbpBDhQnX1gbqkNHZJh0sETZCfJUtoOg7hDRa0SM+nBO19fpLacpWBFsf+p09gVbJ+gGgKmHGB4NWlpypNJT93hqmk8sViUWq/LkzjWjwZRCtRqgegQzHsZS1cbPfbtTuM7Bv4NYukrzmoNTGTynHizGR3PktKyrF03f/3hmSROxJDprJDvrNS6Hno5gRlyaNpap5g3cRUyk4jkqdkVrDBF9pvB9lf6+NEODCTLNeVrbslQqAWz7mV56QpJWJtnnPgfd3d0AnH322RN+39nZyfbt2xvPz+RDH/oQAA8//DA//OEPF7+RkiQtqWDaI9zskdtt8kxLwrBYHN9gX7GNXbkOAppNWyRL3opwoNTCk9m1PJldx+58B0PV5LRB3mpRKoVw3Zm/gvO5MGIFZaazqgbZvgi7H2mldkidQsfSqZUNSrkAg11x9j3ezGBXgoH9cQrDIeyaRmE4hGMtxfsqiDdVWP+cEZo21Ms3FAdMCn0BhvdE8GyVlmNKsIhJeyIZi0iTQ2nwmVlqwPM0RobrUbyue7MsLR0pvlBW9ENaes+MgeWHqaWlBYA77rhjQq9gX18fO3fupK2tbdZtXHbZZXz2s5+lv7+fK664gte85jWoqoyzJelooGiCzPEW1RGVcp/szTtcZSfE/kIrGxK9nJDZOyGYGRvs0FtOM1BJLfq+VcWjKVhEACU7RM2bf+CuaR6BoI1tGbjuwr5GK5UgT+/qHP2fwDRdTNPBDLhEI1VCYZtYvEq1Viafi8y7jUvBqphY0xSir5VNup7MTPidotTXGRpILkrAqmo+kUSNQNjB91RK2SB2zSCWrtKy7mA20/6dUcpD9fdV+DDwZJSOkwqk1lTJHphbAfmpCUJJh3hbjUiT0wgmn6lcV8X3FJKpErWaKefrSdIKJAO9OXj1q1/Nv/3bv/HBD36QQqHA2WefTVdXF1dccQXlcpl3vOMds24jHA7z4Q9/mH/+53/m0Ucf5Xvf+x4XXnjhMrRekqTDldpqo5mCvvuCrIQL7tWg6ITZObKOsFFDU3xiZoVE4GAx7YJ1OBfkdZrikQ4WiZoVApqDqgg0xUcd17NTcw2Ga3GytdicE7u0tOSIJyr4PgwPJ6apbTcfCrZt1Ie/lWBkOI6uuzQ1FWhryxKJ1OjrTc2rLt5qoSiCaKpKLFUlFKsno7FrOrruk24r4bkKmi5wbRXd9Ol6KIFdnnhpY5UMiv0BUuuqlIZMnOo8L30UQbytRqK9hhHysUoag09FKA4EeCZ/Hgih0tubpr1jhI2beuntTVMpL23ZDEmS5uewbr98//vfZ9u2bYRCIWKxGFu3buWSSy7hd7/73Zy38aY3vYnW1lZM0ySTyXD66afz0Y9+dE7DIefj97//PSeddBKRSIRwOMzGjRv5u7/7O3784x8jZrnVeOqpp/Le976XarXKRz7yEc444wxe97rX8dhjj3HCCSfw8Y9/fE5teMc73kFnZ/0O7lVXXYXnyeEOkrTSBVMeiXUu2adM3Orkj0xFE8TXOTSfWKPl2TUyx1uEMu4RaOnRx/YNina4EeRVnAD7Ci08PLiJmjf/nhJV8YnoVZqCedbF+jmuaR9tkWEQCnkrStUJNIK8x4fXsTvXTs01aY8Mc1zTXtbG+tGVmd87VfUwR9PL57IxMpk8HR3Di17Lz3V1+vvTdHc1EQ5bdHSMMN+SFEc3QTheY92xg/XeOgUGu+Ls/UsLB55oZs9fWujdnSI3EKFvT5Ke3WkAjNDE71Uj5JHoqBJttnBtZdbi7ofSgx6dJ+Vp2lihVtTpfiRO98MJigPypg9AqRRmz+42ajWTNWuGiMUqs68kLZsjXT5Bllc48g6rR++xxx6b8P9du3axa9cubr75Zl796ldz4403kkjMXN/ojjvuaPw8PDzM8PAw99xzD5/97Ge57rrr+Id/+IfDaWLDnj17Jvx/79697N27l1tuuYXnP//5fO9732sEYVO57rrr2LZtG1/84hd56qmnaGpq4nWvex2f+MQniI/NNp9FMBjkIx/5CJdddhk7d+7kO9/5Dm984xsP67gkSVpCiiBznEUtq1LYP/njUtUF7c+tYoQEVl4lmKonZgg1eRz4vRwwMT1Be2SEkG4R1i0EsCffRsEOM/eLZ0HEqJdgCGkWId0moNcDMH80k2d/OcVwLT6up07QFh6h6gWwfaMeaDphtJJHKlikJZwjluri6XwHljf1EMVYrEowWN/P0FCcSjVAR8cQnZ1DdHc3IcTiDl8rlcL09iqsWTNEMGhTq63+oYJGwCWzpkAkblEuBOh5Oj1FSQaFcj44ITtoecSgaUMFq6RjBD1S66oEYy5CQGkgwPDeMP4s8yIP1bShjKoLuh+e3FMo1bmuTndXhrb2kXqpkF5BsTB71nVJkpbegj61wuEw5557Li9+8YvZvn070WiUwcFB7rjjDr761a8yPDzMj3/8Y8477zxuu+02DGPy5OtNmzbx2te+ljPOOIO1a9cCsHv3bm699VZ+8IMfUKvVeMc73oGiKLz97W9f8AGapsm5557LS1/6Uk444QQSiQS5XI677rqLr3zlKxw4cIA//vGPnHPOOdx1110zBqbvfOc7eec737ngtgC89a1v5ZprrmH//v184hOf4P/7//4/dF1+eUjSSqRqYEQEtZxGKOPhWQpuTcUfTesfTHuYEcHIUwb5PQbRDpfmE2zcmlJP/CAnm0+iIEgHC7SEcxTtIJrqU3FM2iIjrIkN4noa+4qt0wZahuqSDhbZEBfUtCyer1J1TQp2mGrFpOoGsDwTMWXAqNBXaZr0W09oDFWT5KwomxI9bEsdwPE1FEWQt6Jks9HGsMliMUxbexaoF1Evl0J0dzXTuWaItvYRensyk7a/UJpW7z0MButDFlV19ffoJZpLZDqKuI5G7+4U5fzch0cO747QdnyBdafkAKjmdfoej1HNGQh//n+LquYTTjkM7w3LIG9WCn29aRTqQ5tLxdCi3/SQ5s9DxVuheRflmLblsaBPru7ubpLJ5KTfn3POObznPe/h5S9/OQ8++CB33HEHX/nKV/jHf/zHCcu95jWv4ZJLLplUYuC0007j7/7u7/jZz37Ga1/7WhzH4Z//+Z8599xz55TwZCp//vOfp2zrWWedxbvf/W4uuOACfvWrX/H4449z1VVX8bnPfW5B+5kr0zT56Ec/ytvf/naefvppbrzxRt761rcu6T4lSVoY31XI7jJIbHSIdR4c0mcVVIrdOuW++kdoequDokLu6XpwkjnOpu3kGgOPBPHdZ16wpyoeLaE8nlApO0F0td5jFtItTNVtJFwxVQ9PKDi+juPruL5GWyRLe2SY3nITllcvHK4rLhGjRjpYJGZW8FGoOq08neug7CzeEDrX19mVXUMyWGJtbBCATKhA5pgCO59YS1vbMOFIvaSD42iN/VYqQUaGY6SbCui6u+AELeOFI1XWrBlqvFb5fJhKZXX35kVTVZrXFMkNRBjuic17mKVrafQ8kiCStnFqGrWCzmEVShcKQoCmr/4Ae3EolMtB4okKisKKyhgrSc9UCwrzpwqcxrS2tvKDH/ygUYD8C1/4wqRlEonEjHXk/vZv/5YrrrgCgEqlwte//vWFNHPWtsZiMW655Raamup3eK+//nps217wvubq0ksvZdOmTQB86lOfWpR9KqoiHyv5oSzze6QgHwt8cMj/83tM9v8uzIHfh+i5J8jgjgBuTaFpu826Mw/OR0ltdoivcSj36vQ/EMRM+LQ/p4oR9o/4MS3XQ9V94maF9bFBWiNZOqLDbE11szHRR0BzKFhRSs7BoXY+Crtya9hXbKen3MxANc2BQjNRs8r29AG2pw5wbHovx2f2sSHRj6Z6dJeaeSK7gYFqmqoXQlEW93wXikrWimN79WCtr5xi375WFAV0w8Mw6vehHUefsF6xGMHzNDZu6iMerxx2O2LRWv18HBWN1mjKFFAUccTf56V4hKI2retyFEZCDPfUk9ss6P3zVEqDQayicdjnBkKhNBgg0VklnLKP+Gu0sh+CeLxCS2u9rp4Q6vTLIh+H85gPsQJKKEz3mO+NHGlhlmQswqZNmzjnnHP4+c9/zq5du+jp6aGjo2Ne23jb297Gxz72MYQQ3HHHHVx++eVL0VQSiQRveMMb+NKXvkS5XOa+++7jec973pLsa4yu63z84x/nTW96E/v27ePrX//6YQ8JbVqfxFCnHuokHVmKqpDsiIGiIPzlucWpNcWWZT/LKjS5APdiU4BEc6g+6nKG5fwhqBYF0XaXaNvBASjx08EqKAw/HsA+EKNpu0XqHMjuMrDykzMmiuDq6aEJJhwyGytAGdCAOLanYWoeng+2FcPQg3TGB4H6Z1WlnCShHFo6oJkhv4mQYREN1/BRKLkmNdfEVXX0MGQUSMUMUJai10CQDhZpCoZRFCircUzLJB4TaFoL4XABXReoapBM88RzslwKjWYg9OnpObzzVdczqGoY29JxHJ1gyGLjxirNGZvhkZnnvs+FVlv6gVOKAsl0/Ryf6X3SdI/WDWUcK03BSpBpWdgFoFJb/EsapRoioFTY+hyXkf061dzyfs+6yeX53EsmTZjlc286uuaRSheIRBzKpQzFQpxM8/T9CMH46rxWcZf441wB4qpM9CXNz5INOj/uuOP4+c9/DtSHes430GtpaSGTyTA4OLjoGTgPddxxxzV+Xup9jbn44ov59Kc/zZNPPsm//du/cemllxIMLvwDfXhfDl1Z3QWGj1aKWr8aHdqXW7ZAT6+swvkkkeW5MBUKjPSU5xRADOwGzfSJr3eJrXFQR192WzUpPK1TrrpkjrcxO8ELqRT2GdhFFc+q35sVy3BMyyVk2ZhNRQBcX8XyTGzXoOqZhHWLmNlLUvXZNxDFUF2iZo0wBTRh0F9JkbOjTAz4VGB8iQWPsVkd9d4WGMhZixroqYrPumg/hl1hfyGGoggqbomYUSYSsVBVQWW0Ezc7IigW6nelg0GbcNgiHKlSrfpks1GGBmuH3Z6enrErRwGYJJM2La0DlEpQqx7eVaVWXfoLRmX07RwaqM74PgVCDtGWAv37EpSyC3/d1MrSjMgZ6oPmrTUiTQVK3XGs4vJ91zrO0u9DGe0qGhqqzevvSdM8mpoKRKNlLEvhwP4UpVIQmPl9yM0tf91Rx13imFwBXHP1fGdIy2PJrgZnK1mwXNtYSfsZT9M0rrjiCi666CK6u7v57//+b9773vcueHvCF4hFTu8tLR4hRt+jZQr0VuXciOU6JjH6fs1xf66lMvKkSW63QXytQyDlU8upxNa5NG2zET4oKugBQevJ9fldngPCVRBUEdTnAro1jVpRpzgQRHhH35CWyojJ7j+mKR6TZKoBRrricnxmH7Y38SI5oDusiw/Q6o0wUEkyUotPuf6hBPN7n+aiLTJMPFChr5zC8zU6Y0MkKVGpBCgVQ8QT44bqpouk0sUJ648Mx8gXwtjW0vRYZLMR4okSzZkc+/e3Hta2luszQszh76lWMSgXAiRbyhRHQsx/gNrBfS0JoeBUNJQMpNZV6P3L4feoznnXK+h9Gk/XXdauG0DTBNlsjJGR2JwLpq/GrydYnuOa7z5WchmDldqu1WbJAr3xpRfm25sHMDAwwPDw8ILXn4/DbetCveENb+DTn/40jz76KFdffTVve9vblm3fkiQtLt9VyO0xYbSSS3y9g1WoB4Htp9bwPQXPEpQHdNyagqICpo6iCFRDYAQ9mjZUSK2p0r0jgVs7GotjT5xFEjUqpIJFTM0lqNm4vspILYYnVBRFkAyUG8sGNJe1sSF8oZKzjszQ45FanGSgRFuknlVzpBqjq9RMYNihqSk/YdlsNkIw4GAGHIRQ0HUfw3Rx7KXsTVcYHorTuWYY03TqBdZXiZHeKGu3DZNZU2CkN4bvHZlMgWbEJbOpjFNTGdkXxrM1VN0nta4KgF1ZKX+XAk3zUVUfVRWjDx9l7F/q80gdR0MIhVDIJhqrYBgewldwXY1qzaRUDOF58ztnNc1j7dpBFAX27mldlORDkiQtjSX569y9eze33XYbUJ+vN1N9uulcf/31jZ62M888c1HbN14+n+d73/seUC8bceqppy7Zvg6lqipXXnklr3vd6+jr6+PLX/7ysu1bkqSlVRnQaTnJQlEEQ4+bBOI+etAnlPbo+mN9SKKITBzro5keHScUaN5SWtZeg6XSHhkhbFhka1FKdoiRWgzHrwcn+wqtZM0KUaNKOlhAGy0dkAnlyVmHDuNcHlU3wBMj6zBUF1+o2P7BrI1jPRaq6lMshicFWdFohfb2EdatH6C7K7NkF7+OU99upjlPT/filXI40qyKyXBPjFRriXi6Sn4oTK1sIHwV31fwPQW7dnhZNGejBzzajisgPAUj6BFtzuF7CqomEAJG9oUp9C79nLmZCTLNeVKp0rzLbVSrBpZloioCw3CJxiq0tOSoVALoejPDQ2LWkgi67rJm7SCKKjiwv0UGeSucJ1S8FVrmwlutXbsrzLz/Qv/3f/+Xl7/85dPWfuvv7+eCCy7AGR1Yftlll014fu/evWSzWU4++eRp9/Gzn/2MT37yk0C9yPill1465XJnnXVWo+D6nj172LBhw4Tnf/nLX3LmmWcSCoWmXL9UKvH617++0XP4lre8hUBgeZMjnH/++TzrWc/i4Ycf5pprrlnWfUuStHTKfRrVNSpNx9l0/ylEqQfCzS613PQ9Ap6tMbIvTOv2EnrAw7VWSu/BwvRXUmxM9FFyQqNDMsdTKNgRCnaEwWqC45r2AxAxLDYletmdX77RFeN5QsPzpkicI1Sy2el7GkulMPv263R2DrF+Qz/d3ZnDnkd3KE3z0DQfIUDXV99cnWx/lMJwiGRLmXhThVTrxCtBz1XID0XIDUSWpMeveUsJBGQPhAnGHMJNNk5Fwwj56AGfpg0VmjZUqBV0ct1BrJKOZ6ssRfCpKIJQykFrctF1D89V8TyVaKxKOGwxMhynWjPxPQXfV+tZDP3Rn0drBhqGh2G4KIrAsoxJQZmi+sRiFRKJCs3NBXS9SKUSpFY1cRxtwlBMRREEQzbJZAnfV+k60Ny46SBJ0so177/S97znPTiOw/nnn88ZZ5zBhg0bCIVCDA0Ncfvtt/Pf//3fDA0NAfCCF7xgykDv7LPP5owzzuBVr3oVz372s2lpaUEIwe7du/nBD37AD37wg0Zv3rXXXrugHkGAq6++mosuuojXvva1vOAFL2Dz5s1Eo1Hy+Tx/+tOf+OpXv8r+/fWLi23btnHllVcuaD+HQ1EUrrrqKl796lc3XjdJklYDhaFHA3SeUSVzrMXIUyaaCU555ovCaq7eUxSMu5QGj+5Ar2SH8IWCqc6cUSITmjgssmhPfXNupbMtk/37WunoHGbt2gH6+9IUCpEFb0/TPRCgaT6Z5hzR0ZILrqsyNHj09/hOxXM1hnviDPfEULX6kERFFWi6TyRZI9lcJtlcZqQvSm7g0Iyth0cIBT0gaDmmhGsrKEAo6eJ7kOsOUivoaLog1mrRdmwJAN8DRuvtebaKVdKpFXWskl4f5jnPFPJm2CXWahFtttAMgeepuI6GpteDfMsy6DrQTKUye89ifejm9Jd5wlcp5KMUC1Fc18CxIRSySDcV0LTJ3S2ep1LIRxgaiuP7R/dn0zOFj4K/Qgum+6t2tubKsqDbMT09PXzhC1+YskbemPPPP5+vfe1r0/aQ3XXXXdx1113Trh8Oh/nP//xP3v72ty+kiQ0jIyN87Wtf42tf+9q0y7zoRS/iu9/9Lul0+rD2tVDnnXcep556Kvfdd98R2b8kSUvDraoMPRag+UQL33Mo92vE17nk9xnTXgD6nopTVQlEXUqDR3f5BV31UBVBJpzH8kyy0wzJLNlhWsL1YG+oGkdRoDU8guWZ5KzFvZhfap6ncWB/M61tWdo7RtANj5Hh+acZDARsNmzsn/A7y9LJ5yNkR+p15la3+nBNf7Tj0rGgVjbJ9kVJt5Vo6ihiBl0G9icXbY9DT0cIxh3sst6Yi6cHfDxHRfgHX+/iQAA96GOGPPSg18haaQQ9AlGXaIuFotSDQLusTwj+3Nq4HkClHsjqQZ9gzCHaYhGMebi2QrE/QLE/SCUyvhdZsFTvu+tqDA8nGslYxub7KaMX40IoeN7S9F5KkrR05h3o3XTTTdxxxx3cdddd7N69m6GhIQqFAtFolLVr1/K85z2PSy65hDPOOGPK9U855RS+/e1vc9ddd3HffffR29vL0NAQruuSSqU4/vjjefGLX8xb3/pWWlpaDuvgrr32Wn7zm99w1113sXPnToaGhsjlcoTDYTo6Onjuc5/LhRdeyEtf+lJmKuC+HD7xiU/wile84oi2QZKkxVfu01E0QdN2G3X0Jnh8rUth//SJNGoFg3DKZnhPmKP5wsr2DXblOsiE8qyLD6CXXAarqUnLFZ0wjw2voy0yQjJQQgCqItAUgZProOwcbT18Cv19KVxXI5PJUy4HsWrzy8TpupN7TAIBl5aWPAowMrJKc9TPwvdUhrrj2JZGy9p64hbXWZzeJdfSJvWiTz18up4ld7qESYoqMCMugahLMOYSTtkkOuplI4QA31NGk6YcXEcIqGQN+h4PU8mOuxE0oUN4+T4LfF8Ff9l2Jy0RmXVTmnegd+aZZx5WcpRYLMZFF13ERRddtOBtjLn99ttnfP7UU09d1uQqh7rxxhu58cYb57Tsy1/+8iNS5kGSpKVX6jaojWjE1zq4lkqpZ+aP3kJfgFirRSjhUM0f3cWFy04IIRSSgTIRo8ZgderlHN/gQPFgyYCQbnFMqgt/nkPfVg6FkeE4sViF1pYs+/e3MJ8Ldc/T6OlO094xgu/Xe1PM0Rpa1XkGjatRtVDv7TZDzqIFeotF+ApW0cAqGhR6679TdZ9A1EUP+Ki6QHjg+wrCU3BtFbusT+g1lMYTaPh4rKz3WZKOBnImrSRJ0jJwqyojT85tKKbv1m/1q/rquPnjCRUhIKA56IqLK2b/6hm772WqLtPEhitaMlmiuSXb6LWJxqqUiuGZVzpEsRih9GS4/toFHNatH0BVBclEGdfRcJzVU15hvhxbw6rqJFvKVApHOhPm7HxXpZqTAfpCrFGH6VSzDPtRdvutK3bOmSStRPKvRZIkaYWJd1RxbYVKdnVcGFqeyc7sWjTFZ3Oyh6BmzbpOzQtQsoOTErUcLVLpArWaSS5XH3sXCdcWtB0h6hPALMvkqSc76etNEQpbbNrcx5o1gyjKM3N8nWb4uLZGOGajG6svA6lUp+PSruQoiQBJpcLx2gFMZk7uJB00Vl5hpT6kpSd79CRJklYYVQXXUlfVUC7LM9mV72Bzoodt6S4GKwl6ytPXgdMUj4DuUHWPzmC3VjOJRGoMDSXIZaOLlIpeIZ+PUiiESaeLZJoLBIM2nqfh+SreFPP6Vg+BbnqYQZd4U4VIwkL4CoMH4itu6Ka0WATr1SEECju9TgxcjtF6OVHbz34/w6CIczTPYZak5SADPUmSpBXGrmhEMhZLmWXvSLA9kydG1tEZHaIpVKCn3MR0x6epHobqkfeOzuGJfb1pOtcMsWbNIPv2tk2oSXa4hFBH0+sXWLd+EIBcLkJ/35HJHL1YVNXHCHjoARfD9DACHobp1n9njma3BKyqzmBXnOJICLGIr6u0sqxTh2hSijztt+Ki4aLxqLeWdeogm7QB2kSOfj/BsIjJ+XvTqJdXWJnfISu1XauNDPQkSZJWGLusoWpghD2cyur6mFaAiFHD8gxmCmJtz6SvnKItkiWgOZSdILZnUHKCuGLlB39CqHR3NbNxUy+JZInBgcnZRg+Hd0jB8Fw2OmkZXXeJRGuoiqBaNanVTFbWjQNBOG6Rai1hBl20cXNSPU/BsTRcS6eUM3AsDcfW67+zNVbWcUiLLYhNu5pjn5dhWBzMMOuisdtvY8BP0K5m2aAOso5hBkScnIig42EJgzIB5DkiSTLQkyRJWnZG2EcP+agxC89RsCsann2wRlWtYOB7EE455I/iQE/BRzBaZGxUIlAmqDs8MbJ21vX7KykszyAdLNIULGBo9blYe/LtaMrKv4MvhILj6Oja4s+js20dz1PxPJW+3hTNLTkiEYtqtT7UVVV9AgEXIertUFWB5ylUqwEURWCXdKyKgWPp2JY2qWcsFLVItpTRdJ9qyWS4Nzbv4t8zCcdrNK8pYAQ8qiWT3EB0NJjTcCwd35t43kjPLGGlPo93UExdRqREiKf8EAYurWqOViVPu5prPN/lp+n2m5ajqSuaj4q3QtNxyILpy+PovYKQJEk6CsXWOmSOtUf/NzEpSddDiXqadaFQzZlEmy3y3UGOtgteU3VYH+8nbFj4Ahxfx/V1VMUnqNmUnQCWN5e5dwo5K0bOqheNTgWKrIsPsDHRSzxeRrcFOStCSLcI6Ra2ZzBYTeL4K+WrTWAYLrXaUvRAKvR0N9HROdQYvglgmg7FYhjhKwwPm5RLIXxfIRiyCYdrhMMWCIVYukqqtdxYz3VUaiWTasnEDLokmivUyvWetFRrGbumUxyZX9bQMZrhEUtVAIViNkgg5NC2MUelEKB/X4JaeaX1NEpHmo6PEMwapDjodPkZekhj4uKg0abkWKONEMBhwE9Q4uj7DJWkxbJSvg0lSZJWPT3okznWJr9PJ7/XwDNDhJIObccWAUiuqTKwsx7U5HuCdJxYIJKxKQ/NrSzDkaQHPAIxl0R0gGSghCs0DhSbUREYmouuuvhCZaiaIGdNHmY4F4py8A5wyQ4SM4dIBYu4vkrVDZAMFokHyuzKds6phMNSi8UrGIZHqTRVwXeBrnujhdEXdhFaqQR5elcngYCNrnvohkc+F0FMkc2uVg1QqwYYGa7/X6u6qJqPEajPgTODDqGoTWZNAd9TGOqKkRuK0LmlvoJd0+uvvyLmMS9OkGorEm8bHM0eCvFMGVUVlPMB+vakFnzs0uqm4+Ey978NH5Ua9ZtH3SKN62m0q1ma9SJlEWDATzAkYs+40gwrObulJ2tHL4sj/00oSZL0DGFE60P48nsNPEtF6Arx9oNp91VNkFpXoZbXsSs61ZxOvK224gM9PeCx9q9yKCpYns5gNclQNYEnFnd4Zd6KsCY6iKJA2Kixp9RMyQ7iivoFoaE6bE11syHRx9582xEN9lTVp7U1SyEfplqZ+P4piqC9Y4hYrIbjaOzds/BkLUIo1GoLOz98T8WqmFgVgLFgdOziS0FRBEagPlx2zTHDKEq9vmEpG2TgQGLWgM8wPaJJi0IBep5KEYrZpNtKQD1wlEGeNB1d8XAXHJQp9Isk/V6ChFKhVcmzQR1gHYOUCVAWQbIiQlEsrIdako4mMtCTJElaJsGkj2eDZx28wPXsgz+HUw7hlAOzT19bMYJxh7bjCiij12TD1TiD1cVNPDLGExqWZxDUHVQF2iPDPG6tbzzv+AY9pSbWxwdojWTpLjUvSTvmwgw4aJpgZCTG+IBGUQQdnUOEwzVqNQPD8Bq9XSvDwbYIoTCwL0nzunyjVp2iQCxdo1wIUMrOfKHs2Bq5/jC+XqJz68iE59JtZSIJC6tiMNIXxbXl5Yh0kImLfdg3ahTyIkJeRDBxaFJKRJQaKaVEu5rjgNdEjzi6M9VK0mzkJ6skSdIyMaI+Vn7icCSrpBPN2Oz9cxrd9DGCHsG4Q6zNQtMF/TsXNsxxucTba6jjOu46oiNU3QAlZ2nulpecEEG9XjC57BzshYoaVTKhPHGzgu1pDFaSS7L/uTBNm/b2EVxXnVQ/r6UlSzhs0dOdoa19hEI+vMICvYkSzWUM08O1VayqgeuoOJZOOTfVcNRDKRSzIYYGWwiEHFTVr5dJUAEEZtAjmqihqIL+vUtzc0A6+ij4RJUa+UXscbMx6BUpEBBXKhyrdcMzIBmIj7pih6vKZCzLQwZ6kiRJy0RRQNEOfrkZIY9os4XnqAhPwalqOFWNStYgEHXRTEF5aGUXDB/YGSXf46IZAkUVRDa6bEr0cqDYTNaaOmMegKp4mKqLpvq4vobj6/hzmEvSXWqmp9xMq2fSX7IIahbb0l0TlinYETTVRxMeHZFhVMXH9g2ytSg1b2mHwWqax9p1g3iuxv4DLROGZIYjVZKpMn19KRQFdN0nn48saXvmSlF9Wtbl8T2FWtnEsXRqFYOB/Qk6toxgmB6OrZEfjOBY87x0EMpowpUJvyQYcQhFLcygu2jHIR39UkqZgOJi+QZLUUu0LOqfASs1AJKkxSQDPUmSpCWmmT6eo1Dq1Wk5ySK21kFRILW1jO8pZA9MvHMdSjqEki69j00c9rcyKVjFg1klRzJpjkkdoCM6TNY62H4FQdioETMrxIwKYcOetKVcLUJXqXlOc/vGyjao4xK0WK6B42vEzTJNwUKjwHbRDpE2C7SEc1Rdk2wtSt6K4qOgIEazdM7ndRbohocybj6b7yuoqk9Law5FgQMHmvG8g8ehqj5tbVnKpSD5XITOziFqVQPLWhmBvKJALFWfL5rIVBu/dx2VSjGAY2lEkzWSzRXKhQAD+xJ47sLmYAYjFmuOqQ/ldCyNoa7YhOc13UNRhayX9wyVExGG/BhrtWGaRYFeP8mgiCMWKTBLK6PzRJ8Bl8CeUPBW6IiBldqu1Wb1n+WSJElHiiJofbZFuNlr/Ko6opI51kYIKA4EGN4dQfgTv/ASHTVqRY1qduUXBtcMHyPkoQd8gnGHaHoE19cYqCRJB4tUnABRs0pndHjCegeKGWpuAE+o6IpHULdpi4ywLX2ArmIzBXtuPV0VN8jDg5tG/zf2OgqaQ3k6osNYrsHufAcgiJkV0oEibZEsHdGDc8ZsT2ewmqDqBvB8FV+o+EJpJHkZEwpZpJsKhMMWqjr1sCPPU+jtaZoQ5AFEolUMw2P//hY0zScSrTHQv3KGK/qeyu4dLTS1lYg3VRpzLnXDJ56uTlg2ErfYeOIAux9pxffmf/GtjvZqO5bGvseamVBnsblM85oCAPmhEIMHEshg75nFR+Vpv41eP0nHaFH0TkYapRKqwhwN0uZ/XjQreTZpA/T7CUbEyh4WL0mLQQZ6kiRJS0A1BO3PqWJGDgkIfNh/ewghFDxz6rT7wbgz2su3si9wm7eUiLVak37v+BprYkMzrlt2Qo1aehZQdkPk7Qhro4NsTPRRtEPkrQiWZ+D69SQs09/RP/R1UhisJhmuxVDH9boV7QhFO4Ja8ogYB7OdpgNF2iPDqIdsxvNV8nYYyzUIBBxSqRKWZTA0FMeqmYxlB1cUUFWBEFCtBiZl0NQ0j1SqiGXpuI5OOl1ACIVCYWVl/fNdjcGuBEPd8fpcOqU+HNcMuLRuyE9aPt1WYqh7/r3OlUKQvj1J2jbmSGQq5IcOBvWGWb8pYtc0EpkqwYhDtWjiuhrCVxC+gu+D76o4joZrTy72Lq0OFYLs8tsJYNOhZmlXs2ijPfiuUKlikvWjDIsoNnO7KbZWHSLnh9nrT7zBsFp5K7hguifn6C0LGehJkiQtgfQ2G80UlPo0om31i9e9vw0j3HEXF1OM2lNUULWJ2ThXKj3oTfi/XdawDQOBwr5CCwUrQjxQpiMyjKFNXDZmVoiKan0uneKjKj5FO8SeQhvJQIl0sEhndKgx/NLzFfJ2lP5KEsef23BHX2j40/y+OK7HsGhHUIoCU3NQlbH2CEK6RSJQJt1ewvcVhgYTk7JozsYM2KxZM4SiCLq7MiiKTzJVolgMLbikwlITQpkwD8+qmBSzYRTVJxhxCMcswnGLZEsZRREMdiVQVR8j6OLaGp6rMttrVMqFyA04ZNYUKOWDeE69B3SkL4qme8TS9UDcsTTCcQtN91FUgTrFS+a5Co6tU+w1KfYHQA4JW1UsTPb4reyhhQAOIcUmhE1UqbFGHWYtQxREiBERpShCVDGZ6vxTEGj4OPOozydJRzsZ6EmSJC2yYMoj1lFPMBFt8/BdyD5tTgzypiF8sCsq4ZRDaTC41E09LAM7Y0SabJyailXU8T2V4jHJCcvkrBgFO0xbOEtz+GCv0NhQTtdXURWBqgjCeo2CHSVnxchZMRR8DNXDUF2iZpV0sEgyVaKnlAEWt3SCQGn0MI4p2BH6K2mCw9ZoDbm5Xxwqik88XqGlJYft6HR3ZXBdnUxzDk3zGRpKLGr7l4PwVarFANVigOGeevHzlrUFKsUA7ZuyjeVqFZ3h7ji18lSJb+q1+VTNR4h6b6gZdKl5CsJX8T2V/n0poqlePEelf1/ykB47gaLU5/Hppo9uuhimTyDkkNlUJtFeo/vhxKTh0NJqoGBhYgmTHIAADY+UUiKjFNmg1mtsjvX2+ULBRaOGgSUMWtQCClAUc8kYK0mrgwz0JEmSFpMiyBxfH87o1hSGHzepDmvzuPBUKPSGaNpUJtDrTEh0stJ4jkqhb/Zg1BcaPeUM/ZUUQd0mqNmEdJumUAHX11AUQUBzCRs26+N9DFSSVN0gAhXbV7F9g7IbYrCSpCM6zJrYII5hMECQme7MJwNFLM+g6h5uwKw0hmnORSRapa11BN3wKeTD9PWlEEIlFqvQ1FRkcCCB6xxtX78Hh8COKQyFiaerjSDP9xT69ydItZTp3DpCuRDAoAkt66GqPvGmKrGmCpo28cXs3FKfL1kYDuHaGoFwPVlRtWxOMSyz/l64jo7rAOOyeQaVCp0n5Ym31cj3yIv5ZwIPjSGRYEgkUEfLMkSpEVRsVAQ6Hs1KDVN1qQqDR721lFnZN9AWU32+8cocOeDP50NVWrCj7ZtGkiRpRUtudDDC9S+w/gcD2MX5ZyYs9AWItdZIravS9+jKDfTmyxMaZSfUqH9nag4xc1yGR18lGSiTDJRHE6xMDOJ8VLpKGWxPZ1tHiZZgjf4ZirOvjw8AUHaC5KwIeSuC4y/d61nPupklkahQKgUZ2J/Ecer7C4Us2tqHyefDo8M/505RBLruYhgeuuFi6B6G4eELhXIpSLk8c8B7OFTdI5mpEM9UUFVBfjhMfjBMuq1EKGo3CqkDdD3ZhF0zKOeCRBI10u0lMq0lzHg9uYrnKuQHw1SLAYJRm6b2UmPdUi5IIOwQjltYVYOhnhjF4RBGwCUcswiEHTTDR1Hq2ThdW8MZfbiWhuto2GWNWkEn1mrJQO8ZyEelIMIUCE8qkafi449m6pWkZxIZ6EmSJC0SPeST2OhQHtCItHjoYYFdXMiWFEqDAdIbKiiKWNEFtWej4qOqPq4/+eumYIeJmVVsTyNrxWgJ5RrPhXSbqjvV0D+FwVqKTK1Ka6SHrB3B9qaes9dVzLAmNkTEqBHSLTqjw1Qck6wVY7i6eOnaAQIBm841Q6iqT29vmkL+YDIdw3DoXDNErRqgrzfNbBebkWiVlpYsQihomo+uT5xpOFaIXdN8UqkStq0zMhIbLb6+eMek6R4bT6wHy/mhMJ6rkmwpkWop47kKVtWgVjaIpWvkh0IEI/U5d2bQJTcQoWtnM3bRpFzW8Nx6Lb36uSzoGO3FG9ifwKrqWJWJ72EwYtO6Pkc4biN8GsXafaFiBl3CcQvdmGoGJpQGV0bJCmnleKbWzJPJWCQZ6EmSJC0KQdOxNp6tkH3SJNJSRXizrzWdcKo+9+1oHd2iKj4b471EjFp9GJ5rsiffPlqzrq5gReiMDmNqHlU3wOMj60gHi/hCpeYa6IqLQJmyrt5INU6KAToiw+wttE/ZhuFanIhRIxUsUbJDFJ0QEaNGR2SY5lCePfk2al4ATfFIBMqM1BZWt7BeJH0Ax9HZv68F15341dralsXzVLq7MzNuX1EELa1ZkskypVIQx9HxXBXH1XAdvZ5l0tUnBP6BoE1TukBra5aWliylYpjBwcSkNsxdPdOm8FWEr2BVdAJhF0UVjPTGKAyHCIYdKsXAaGkFQSg6QDhmN+rvlXIBMp3F+pw7N0g5H5xwHuuG30iyY08K8gTp9hLpthJWVadvT5JyITBlZk1FEeimh2G66KaPYrm4lko1v3p6wSVJkg6HDPRWCS0aQVPkXcyFUFoyS7t9BbTOCLoSX7aLdq85vjw7WkZWeqrencWlKBBpClCJhuf9XkVDFcKZCvsGWvC3qECV4DE6hZYkjjfXmk8CZTQxSSg5jONqVNdEYfSOrKnbJCNlIsEahu6iKALfV3E9FcfTcVydQiVM1T5yc1BqqXpbN6iDhBSLrIiSVkqEdJtIskyfSAGChFLBFjq20DAVjw3xfvJ+iLwII1BYF+4nqVYa2836YQZFgqyIoKBgxTT2FzNsCfRhpmsUxNSlCp6kjSavyHpziLBZY7+fYZ+XYYvWx+ZUD0/7rQCs1QZpiWZ5yNtIQilTEQGc0a/IWmrm13O9OoCmCsqqhrsRcuLg8nGlQkSzeNJrJ7tp5nIKG9V+4kqF3V4Lg8E4BOdyzgTpJ07Ac0gpJdrjWdriIzzmrVlQL0arkmWDNkSfn6DbTzNInHZvhDWpER6PR5jqPK5g0qmOYAqXPj/JSDTKZr+P5rV5tJhBb2uAijAJ4qArLp1qPRFPzg8zuDnWSI2v4bFF7SOhVDjgNdFjpGDt3APvw56KuQJVW5d+HwrgBU16apNGPErzYE6uQLKoFMCf50wAn5VbmHzq/nhpsclAT5IkaRGkY0UqVoBSNUQ4UKNYDRELV0hGy3i+gu3Uyw7omoupz62rz9A9jlu3v/H/sV4QIeo13upD+zwM3SWEjaJAJlFACHA8jUotQMUKUrECWI4BSzyER1V8kkqJmFKjVS2wx2tBwydNiYII0S/qmSY7lCxrtYMF1LN+mCERp03N0a5kURGNelljUmqFFPXAb6fXQRiBPfrcGnWYx7zpgiiFYREn70VYqw6xSRugIILs9ZpZo46wTettLBlQXEJYbNd6AOj343T7TY2AbzoxpV4KIK7UQM2R88YKMQvWqMOURICsmL0AfEopMyhiDIr5Z+S0MOgTKQpemOO0A2xU+9nnt+AyvyvD+OixZJQizVqBPpHEFjqqUk9N702xvSoBdvkTe1Wf9tsZEhVOpMp2rXvKfSWUCifre6kKA0fohBULATzhd1CYw+slSZIkzUwGepIkSYsgYDjoqsfWzq5GIGe7GuCjqYJQwJ55A1MYzMcJmjbqaNBTtU0K5QhV22Ry0OZj6m69xy9UJWA4JCIVktF6cCTEwQDR9XRsR6fmGFRHA8HDm68miIcrtKVGGvXyBv0YpuLQ5adZxxBxpUoQp54JT6knElEVQU3o7PLb8VEZ8Q4mKUkrRbZqfVPubZvWQ1yPU9DqST6cKYZ2HspFY4/fyrCIsUEd4Fitix6RpttNYyguljA4RuvhJP1gYJ1WysS0Gju89dNuN6mUiCgWQkANg5wfHvdcmZhS4wmvg7n06OZFmBalgKPqdPuzz+WbSoUAu/1WNqt9NGklLAxKIsiIiJIT4SnfZwWfCBaqIkir9QQpf/HW0qwWaFNyaGr9/GtV8vSK5JzPlYII87SXoOhG0EdfYweNdjVHh5qtt8mPEFYsTFz6RYIBPzHn4teSJM3Mr8+SPtLNmNJKbddqIwM9SZKkwyYw9XrdvGo1QNdgAkXxySQKqMrBASq+UKnUAmRLMbwZxuBs7eiiWA0zkEvPow0qtmsykDchX89EqaoukYBFyLQJGDam4aJrHgHTJmjaJBSAfGOYqu3qHBhsxnLmPkw2GqrQmswSNB2KlRD7iBNVq7Sp9SBs2I8x7EdpUksTgqiSCJL3w3QoIyhTDBgbETHucaOEsAkrFkmlTGY0CLGEzi63lQNuBgFT9jJNpyDC7PDW0alm6VBGaNKK7PFaKBPkL9462tQccaWCLQzSagkDj+O0AzzmrW1sw8DFxCWmVFmrDpP1wzzpHxrM1XvzCqI+HHUunvZbqSoGa9QRElqFp71WLOY/JH9ExCh4IVJKmZBik1AqZNQinlDIicho0BfBRyVKlS1aHwHFbaxfFoF6hlM/wxBxTtT2oSqwVhsmIwrs8tqpMNdzRKHMxDl6B/wMNWGwQR0krFg86XVQW8BxSpIkSTOTgZ4kSdJh0tSDwVxfNo3r1T9a9w8sLMW7pvq4UySfmC/f1ylWdYrVqYbB+YRMm3DAImjamIZDyLTZ0NrPzq51020RU3fr8wJ9nXi4zNrmQUrVIL0jUYKGwxa9H0dojPgR0mq50XPT7ybQ8fBR0BSfzeoAUbWGP+P8EYUqAaoiwLCIs9sfe51V2jDxsBc0p0ig0uU3MUyUjdoAx+ndjPgRbAyalTwqAkPxKIggYWwG/MSEtf9K39P4X78fZ5/fzKG9b2mlRESxedRdM+m5mY63RzRR8MJs0fp4tr6PijB5zFszr2AWwEWvDwEdfYGC2KSVEmm1xFa1D08o5EUYU3EJKC77vAxZUX8NxLj21jB5wutki9aHqXiEFIftWhcPeJvn1Z5DFUSYkggSV6tk1AJd/tLOlZYkSXomkoGeJEnSYTK0g70hrjf/unmHqtom8VCF4XxiwkX34lKp2sEJiVvWNvcTC1VpSWSxx2dtVATJSJmQaaOqAiHAcgyCpoMvIBSoEQ3VcFyNvV5zYy7eRgaIj/YmHaomdFyhMeAl5pz+e2zI4GK9IlUCPOatoVkp0KwWiFJjQCTo8ptmGFak8KTXzia1H13xURFTvEf13rysH6bE3IJ9HZdWNU+MKh4aZREYnTNoj9b/Ojw1THpEmh4vTWBc0BdVLADWa0P0uVPXJCwS5mFvA6fpTwNgKD4G7qxzF6cSwqJDzdKkFHHROOA10SeSCz4uSZKm5wkVb4UWTF+p7VptZKAnSZJ0mPRxyVUWo+7dQC7JhrY+OjJDdA/NnJJ/MfVnU8RCVZqTk9PHCVEPYrOlMOGARcCszzmsWSbFWphSJUTNMSl1HhyCt2c0o6WOSxCnnlEUgYFHTKmSUCps0gdYI4bJiih9fnLCEL6kUiKtlPBQGfFjFFmKwuAKgyLBoDf3BChZEeV+L0pGKbBZ6ycvwgyLg5lum5UCIcVhlzd12YepbFL7iStV8iKMRr0w+LAf5YCfWdR6fwAWJr0iTa+XxsShRc1POXx2PB+Vh931nKTtQ1Hgr/Q99PmJKXszp6Lis0EdoFktYgmdfX4zgyIu5+lIkiQtIRnoSZIkHSZdPRjoaaqP6x3exWvVDtI91MyazCB2QmcwP3VPy2KzXZPH9q8jErBQ1YnJr6tWYMqi53PholNCn5C7fUjEGSuzkFAqNClFmrQij3jrcdAI4tCpZglh4aLRpucpiiC7vDacFZKsY0jEyfhF2tQcw169Bp+CT6c6wrAfncc8tnrGzwoB9votC+opWygbY87DJmuY3Odtpl3NskYdoU3N06bmudfdPGPApiA4Ru0lqlTZ47UwKOJL2FMtSdIYH2VRRgQshZXartVGBnqSJEmHafxFqzfl3DpBNFQlGqxnw1TV+lecLxSEUKg5JrlSFMs52JtVqEQYKtg0J/IMFxL4yzbMRaVsLWxu4fwp5EWEvIjQTZqTtH31HqPR8gpCwJCIsdtvJa5U2KQOcKzWzSMzZMFcbn0iyTa1hyg1SoRoVfKYuHT5TfPazj6/mS1qL3+l78EWOjUMqsJsJHOZ7xy9peKj0u030eOneM7oUM6/0vaww1uHNWUALtik9hNTquz0O6atdyhJkiQtPhnoSZIkHaaqFRj910QcEpBpqsfa5gEiQQvL0anZJo6rIwB1tDh6MlIiHS2yf7CFcu1gkCVEvXZeNFSlVA0tY7C3/Dy0+nw5tYArNKqYlESwEeAURIRdXhvH610klArMo7dsKeVEmKow2KL1URMmMaVCv0jMO4tkQdTnwaWUMkHFIYBNXKnQqtazolYxsYRBDWM0+Isc0V4xFUFZmEQUG03xmarUtopPh5pFU4rs8ttkkCdJy0zO0ZNkoCdJknSYbNfg6Z720QQmgkSkTCRYYzCfYG1mkIDhsK+/hVJt6gtdRfE5du1+mhO5CYFexQpSsyusbR7E9VSGCwmGi7FJweRqYWHOOIywRJCyCLBOHSRPdNrllpfCTq+DNeoIKj7dfhO9C0wu4qHVh7SOi5lMHBJKhYhiEcAhpZRpV3P/P3v3HSZZVSf+/33uvZVz5zR5hixBiQJiAhZREVAWF0UUdEVl0a+rrgkxofjTR1xcMaAgu4sBTCv4KEZUJDMizMDkmc6huqorV910fn9Ud8803RO6p0N193k9T81UV91wKt/PPed8PlhSJykjJN3otIaIzoYVWpI2LY0jBUk3QoOW40RjDwNulN1uM2NDcldrQ8REgM1uIykZOeh2FUVRlNmlAj1FUZRZULZ86JrDEW3deEaTs+RL/mrPnSZpb0iSLYYolH04ro7PY1E2vZRNL7FQASEglYtO2GahHGBHXzsew6IhmqUxnqY+miGVizBSCGPZtTFXbT74sOjQhgmNZolsNvpJEqdQAz17FbzscFvmZNsmnmqymPHgTxKkQoOWo0HkaDVGKEgvSTfKkIzOwxBPSatIA9Ui9L1ugqgo4RU2aVkNvtu1FB1aiqz0s91pZUC6B9rgsiakix8LDYmFjimWz2daUZS5pwI9RVGUWaAJl1VNA+NBXqYQIlsMky2G8XlM4qE80VCRusjkUgMAI/kQ2eJU9e7Asj30pepJZqI0xLLUR7M0xDJ0DjZP6AFcqsZ6kF4oKCoUpJf5ykpaGwRF/HS6frpoICYKNIgcK7Rh2knR5ybol/EZZLMciyQP9lwKnnZW06RlaNPSbND7MXDYbHeQGy0l0SJG6HdjdLqNtGAA5jTbsvQIKfFjEpSjF0yCskIAa8IznsfLJr0DW9TGnExlcXPQDrl8zXyr1XYtNSrQUxRFmQUNsQwBn0l3sgGfx6IxliFXCpApVJOsDIzUMTBSh6456JqDZXvwe008ho3jahTK/oPuw3KqAV9/OsGKxiE6GobY3tuO4y7tg8Kx1P+W1CiO1peLAmv1AXBktTD4MiQRjMgwIzKMB5s2LUW7lqKFNEMyRtKNUGKqQFjiHx0SGhXF0TmB1V6lCgbm6FzAijQw8VCWHip4sNEIYhIRJZpEBlPqgCQlw+NBHlTn75WlZ4r9Lj8eabPGHaJeFtBG38cmOkXhZUQE6RU+dFxa3RH82IQx0XChRpLvKIqyuKlAT1EUZRakc2EigSKtiRS7B5oxNIf2+iRew2Y4Gx1PpOK4+nhgVjJ9lMzpDz2UUqMn2cD6th5aEil6hhtn9bHUmk63kU5372PUcTnKsQiTxVQ/YwBYGOxxm+gjQauWplFkaDPSlKSXYTfMsIxQxkNcFFmhJQkKE1cK8vjJycBoTTuBT9j4sAiKCglRwCOcSfsay4a6x21kpZYkIfL4sMazbpoY+IQ9VX6WZecIt5+4LI3/baPxpL4aV1S/D4KywglOJ2W87NIaGBRR1ZunzBpXCtzDrOs6V2q1XUuN+oVUFEWZBZbjYVd/K6ub+1nT0k+uFEAIaIqPIIFkJj6r+3NcnaFMnNa6FCOF8LIYwjnGRSMlw4QBL/ZCN6emmHjY4zbRSSPR0fqErVqaDpHCkQJdSLIywBanjawMTB7i+YLgTMPFh4VP2Bg4lKSXEt7x9brcBiJ6iSP1HjY7K7DRKUjf+FzK5U6MPp8pEaROFjFwJxSnr5d5BPB3fQVSqKFsiqLMLhXoKYqizBJXauweaKE+miEaLDJSCFEs+xnJz36GyFgoT2tdCoDVzQMUyj56hxswl0mClrFzwarw9tTkPjUKd+ESF0V8WJTwkpFBDnVYpYtGCR8lOXXPs43OFqeNY/VujtJ72OK0UZA+2kWK5dKlp0mXVW6ShCwSwGKn1kifFgfgWb0dgWSdOwRAl6jDETo+abHBGSBGtbevVWboJV6tp3IAQroqIFQOmVvDc/SmP49YmQkV6CmKoswiV2oMZRIMZRJzup+xwuyFcnX4ZyyUp6NhiM6hJmxn6X+1j/XkVeeCKQci0cYzYs6FCl6ec9o5Wu9hlTZETgYm9FotdU0yS5vMjP+91h0aD/QQgrAs0yyzbNOayIggq50h2uXIhG2scZN0kGJAxCgIX7UnVdroaRu/Y+Nzqv8b0sUSGmXDw0AgzJ5wAnmQ4FBRlOVr6R8NKIqiLFKacPF7TUoV36Seq3wpyKY9q8f/zhRCrGwaYH1bDwPpBOl8hKWcDMMvqpkcy6hArxaU8NHl1rNGGyQuCtjoLOX3377qZAGoJlnx4pAfK/khJTouLW41CAzLCuvcofGkLGMcBDoSDy4dMj2xI7QIWY+PlC9IWTewNB2vaxO2TNZmh2ku5XiioQNHU/P6lMlcqY3PD681tdqupUYFeoqiKDVDEvRViASKhPxl/F4TIaB3uH40cNu/suljR287zfE0bfUp4qECval6KpZ3nto+nyQJUSArfdhL/GdMG53TNff18Q7fkIxRdrzEtAJ5efAssktBUFZIyCIASREmiElcljjZ3onnBYPmWvfp9bPQ8FCtL6gj2aE1EpMlGmR+0j421rdj6ZNf/y4zxqlD3dRXigwGVEF6RVEmW9q/kIqiKIuEpjmsbh4g4DWxbJ1C2U++HKAxlhkfpjmZJBwoEfaX8HtNtNHMD7ajEfRXWN/Wy0A6QTIbZan0rmi4rNKGCGvwnFu/0M2ZA9Ugtl1L4cdEFxIpoYiXrAySlQFyMlCzgV+OADm3mhhoabzjDmyFmxq/nhd+2kZ77/LCz4gIYqFjoxOmTIubwY+Ng+B5vZUXOT3j665zh9iitbBHq0dHVuf1OYPouoOjTf1Mhq1qr7bhqoL0iqJMTQV6iqIoNSASKBHwmuwZbCJfCuA1bFY0DmI7GvnS5IyaQV+J9oZhvIaNaRsUKz5cVyCAgK96AFgo+2hOpNE1h4GRunl+RLPLi0W9yNOqpdFx6XZWkpFLq7dSw+UIrZeYVmLEDZKU9VjoCCAqitSJPK3aCFJCWoboduspMf3yHMrs8EtzvAduQEQYEhGG9TCnOLuIyjICSZ0sUsLDU8ZqhkSUk5w9ZESACh4k1WB4l9ZAu5smIQsktb09c0XhpcnJEbJMct5qD6kmXZpKedoLWRJmie5glN5gdAEevbIYOAicGj3lUqvtWmpUoKcoilIDSqOBWlvdMK4U+Dw2pq2zq79lyrkMK5sG0TXJzr5WSuZYUWxJS6Law5AtBugaaqI5nqYukls0gZ7AJSJKGLh4cAiKCiFRJjRa921Yhulz62iWPhIihxcLvzDxY+ETFgYueemnTybIygCLqV9plTZEWJR53mkjI0MT7kvK6sG8D4uYKNCqjXCc3sVWt3XSssuRgU27M0JReBnS5ifwqR8N8rpEgk69AQAXwTN6Bx1uanwuXgCLDneYERHiCX11dUCnEPzN2DC+rags0Shz6I5LGQ8hKsRliSF/iJynGsw3lPIclRnC79ikfAGeSbQwEAgfNFOnoijLlwr0FEVRaoBpe9jZ30o8nEcgGRzxkysFkPuZsO66GrrmEPKXCPlL6JpLOFDC57HoHa4jnY8CEiHkoipM2ySyrNaHJt3uSEEZLzFRpNHIETWiZPXs6O0eKtJLSvpxpEZCy3O01kNWBuh26slR+zUG46JAk5Zlp9N0wMCtgodBGWfIibJB62OD1sdzTgcFlsecuKn4sDhG78IrHZCQEUFMMfeHN2FZrRWYEcEJtxeFj616KwAxt8hxbg+r3BSrSPE3ff2UgdnzWivtMk1cFknIwvjpia5QDITA69i8KN3PiDfAU/XtFD1LqzdbmRsqGYuiAj1FUZQaUbG8DKQPreetO9lISyJFQyyDlALX1SiZPvpS1XlrrXXDhANFvIbDUCY2l82eVWkZIuoWiYki+uicQ0tqVPBQlh7ShDBdDxE7QpddHdr4wl67XidBQhQ4Qu/jGKObJ+01E5K2CCR+TCQCB23Kbcy3iKgm9FilDdFEBg2JjcaAGyclJyfakGhsd1s5Su8ZL1ZeZjke/EtWa4NIBJu1Vo50+znF2UURDwXhYzqvq4NgRASpCA9RWcJCJyMCmGLqzK5JESYgTYpi4vPulyar3SRBaRLAQgIWOp1a/f5LIQhBj6ijh4mf/9Jo/O5xHXQp6QzHVZCnLGtPPfUUv/71r/nLX/7Cs88+y+DgIB6Ph7a2Ns4880yuvvpqzjrrrANu48477+Ttb3/7Ie3vjjvu4KqrrpqFli8MFegpiqIsQsWKn539bfvcUs3Y2RgbIRwoY1oGuWKQbDFEsbJ45nGZeNjmtgESPxYW+qTEIwIw8GJj7mcrAlNWf94G3OiEIC9IhQ16H35hjd9mSZ2UDNPnxqksULA05MbQkDSIHI7UyeMhJoqs0oZIOWOBniREBYHExMAaLVZ+zGix8k3OCqxl9bMuWakliWtFtjitpD1hnhBrSMgCUVkigIUm5WjWUo0glfFMl2OKeLHRkELgkTYtMgtUh2CODb18Sl+FgUOdWyBCmags4aDxD30FfzdWTdieIW1e4uwZ/zstgmzRWnDE4SXPKRhe8oaX1bk0w76gGq6pHBKH2p0L58xgnXPOOYc///nPk243TZNt27axbds27rzzTt761rdy++234/WqkyLL6RdBURRlUdCEg6672LaB12PhG714DHvKQtSaJvF7TLwem7LpoXOwkVwpyEL3Uh0ecVg9VEW8lKUHDw5rtAGiooSOg0e4FGW1wLeUAl04RESZRpGlSc+QkmH63Th5/Mzn81fGyx63iT00jd/WKlKs1IdZp/XjoNGsZSatZ8tqAQavcDhS72GTs3JSzcWlqRrktWoj7HIaGRktCG8LnSERJS/9rHGHiFECJgZu+wqOnixwZTVpxViCFBMdPzYALx4N3Ex0ssI/eqLBhSm2F5el8es5fCRkkVOcXTytr6AkDuOEixBsiTXy4uEejk/10RuMUvB4KeseVTBdWTZ6eqqZatva2njTm97E2WefzcqVK3Ech4cffpivfOUr9PT08N///d/Yts3dd9990G3+5je/oa2tbb/3d3R0zFr7F4IK9BRFUWqIz2OyurkfQ3eRcu+Je9vRMG0PcvKxJVIKcqUAuVSQQnl+A5TaJTDRqdMKuFIwIGNYUqeCh7QMIccqnEkYkWG6qaNRZGnVRjjW6MaWGlkZICuDZGRwtDD7XD2v1cLaOi4mBmOJdSqjxeAbtBzF0QyjRellu9OCV9h4cPBgV6/LsTBlLFRZ2tq1FK3aCBVpIBGEKTEi/QQxickSa9298zy3aC00yix1o/XuAAZElF4tTkCaNMvs6Dw7iS6rr4OGHO/dS4ow/SJGRgRACIruMB1umtjo8E57n/mASS3CsAhXQ0AhWOkMs0KmiMlStT9RzHxeUtof5NlEC+uzSU5M9QHgAmlfkB3RerLe5TtPU1kejjrqKG666SYuvfRS9BfUljz99NN561vfyplnnsnWrVv5wQ9+wLvf/W5e9rKXHXCbRxxxBKtXr57DVi8sFegpiqLUkJZECkOvDi8rlP0M56KUKj4ctzbrptUaA5tWbYS4KBAY7a0ZklE63cYDrifRGJRxBp1YdXieViQqiqwUQ2gCTKmPBn3V4M9k6nlbB6PjkBAFoqJISFTwYY3PRQTIuAGK+KgXObxi7+CmjAzyjLN3mGBJ7tM7NEXwv3RJ1mn9NGjVjJcGLmu0weoJkSnGguXx0eKOEKM84fZmmaXZyY4XLi/iZbfWAJoAKVnvDmCjsVlvIycmJvPpFgkCwmKtO8RahsjhZ4feRAkPq91hGmQODUkBH+7omZp17hARUWab3nJYj34gGGEgEMbv2ARsi5Bt0l7M8OJkN081dKhgT5lgqSVjue+++w54f0NDA1/5yld43eteB8C999570EBvqVOBnqIoSs2Q+L17552FA2XCgTJbe9pVoHeImrUMbVoaW2pkZJAYRQbc6SSjEeNFv3uoRxst9xAVJWKiSL3IIQSk3BCdbsMhz+nzYdGuDVMvqllVi/jIyQAjhGgT6fHlYlppfLjhmLz00esmpvEYliYNlxfpnePzK/9urxp9/iVRUeJovWfSOn4sssLPVtGMB4cON8VmvZ1GNwdUh3R6sWmXI0ScMpbQ8UiHKGW2aU2TgjwAKTS26i3skg2scpM0yxwNbo4wFWKyRJ+IIRE0yhw+aVPGoCRGA8npkBLddfG4Lh7XwXBdDOmS9fpwhMDv2Egh2B1OsDKf4aRkD88lmkj6Q4fVc6goi9nLX/7y8es7duxYuIbUCBXoKYqi1AAhXNaMDtkEyJf9GJqD5Rg4jgryDlXaDdOhVWuYxUTxsIuKu2hkZIiMDNFFtUeuTuRp11Icr+9hUMboceuxmfo1MnBo01I0ixFsdLrdOpIyOiFpSpc7FgDIag8fkhcZnQDscJpJygjLYTjmgbwwyAOo4EXDpVWkadBy47eb6GzUVwICe7Rm3ZherRow5/WJPV9pN0SLm6kmuhE6z4lWUlr4gG2yhIEGVDCwhE7CLfK81sLwaNHzPUwzsBsVliU63DQJWUTrm9xd6wIvDON2hRO4Ao5P9QPwUPNqSsbMep2VpcORGk6N9ujNVbtMc+/J0hcO71yOVKCnKIpSA/wek4DPpGuokWxx5olUNOESDRbwGjapfATbWV5f8x5RTaChCcmgG6VXzm5PmIPOkIyRdCK0iBHatDQNeo5+Gacg/VSkgYGDV9jERZGEyAOCHreefhnHnXSIvi8x3kOYckMYwh0vlL68STZoezOlFqSPLrdaRqRNS9Em0gzJKDv1BjIiOKPerKQWIalNLmNxMMMiRKPMscodxgU2uANEZYleLUFlP2UZ9ickK6x0k9TJIkW8dGr15GIGlqZhaTq2puEKjbP7d01ad00+jT0a0PYFIpT15fW5V5QxDz744Pj1o48++qDLX3XVVTz33HOk02mi0Sjr16/n1a9+Nddeey3t7e1z2dR5ob4JFEVRasBYopWQvzwa6O1r75BO29ERQuLRHXweE7/XxGvYhANlRvIhwoHShF7B5RboFaWPbreOjBskP4eF0iUafbKOISdaTQwi0ujaxN6XkvTQ69YxKCeWeDgUORmgQwwjkMski+bUdBxWa4PEtWoilbI02Oq0YuBypNZDXCuSckPscpuxF6DjYliLsB2X9e4ge7R6VrnDtMkMbU6GTlFHnxabkKxlf+rdHEe6/ZTxsEVrISnCIASlSV8FElPT8LrupG0YUvJsopn+oDo5oFRJBG6Nfn+Mfa9ls9kJt/t8Pny+mY3CcF2XL37xi+N/v+lNbzroOvsGhsPDwwwPD/Poo4/yla98hVtuuYV//dd/nVFbasXyOgJQFEWpUY6r05eqp61+GK9hMZSJUzK9RAJFmhNpvMbkTBOuBNPyYOjV++Lhwvh9qVyYYmXuAp1aZWHQM9rbMx9sjNGyCI14sfFiY6NjYhyk9+7ARmSIVSJJXORJT1EwfanzYNOkZWgRIwgkfW6cVm2EQTdGTBRZow1SxsMup5HhBX5+BrQY7W6aJnfiAetKmcLjOuzUGicMH61z87TKEbpFHRHKRGSZmCySFBG2as0HrpEnBH9uXUfANjlzYM+ku0e8y+8zryxuK1asmPD3pz71KW688cYZbeurX/0qjz32GAAXX3wxJ5988n6XXbt2LZdccglnnHHGeBt27tzJT37yE+69917K5TLvfve7EULwrne9a0btqQUq0FMURakR6XwE29FpTqRY09I/fnu2GKA7GUO6AkN3kAhsR8d2dGKhPCFfhWhob+r44WyE/nTdQjyEZUxg4plxNs4XMkZTSB5OsLjY+LBIiDx1Wp4wZVwEgzJGn5tAQ9KqjbBSHx5fvsupJycDOPuZHzmfBrUoq9zhSbe3ygzNToaUCFMUXjrc9Hg9v7icmDymhOeQC6GXDC+/b1uH37E5ZbALr3Qp6wYVNWRz8ZMSDw6GdPFIB0M6eEav13mml2J3MczR6+rqIhrd2ws90968Bx98kP/4j/8AoKmpidtuu22/y1588cW87W1vQ7zg83bKKafwz//8z9x3331ccsklWJbFBz7wAV7/+tfT0nJ4GXMXivpGUBRFqSG5UpBcKUDAa+LzmlRMLyVznx++vbkoaIylaYpnKJR9pHIRTNugVPFRrKgU64udNlpyoSKXekINSbtI0ahl8QkbVwoyMshO2UxahvYJ4iT9bpwGkcUQ1WGLR+j95KSfzc6K/W9+nnRrdfSJGCc7uzFwsdFGi6pXE6c0yPx+y2CMiAC6dGmXabplAnmIcwyl0CgZXv7ctm6WHoWyEPyuRdwpknCKxJwSXjlFnRDARmBMkQV2sYtGoxMCvZnYtGkTF198MbZt4/f7ueeee2hubt7v8rHYgTMxv/a1r+VTn/oUn/jEJygWi3z3u9/l4x//+GG1caGoQE9RFKXmCEqmb2KANwV7NBtnd7Jx2c3FW+oKo3XywqJMWR5aCYfFRozWwGsQOQZljKwbYESG9tOLKdjjNtJJA3FRICTKGLj0uLXTc+0InUeNvUGXT1o0yDxhWSYgTUKYWGikRYioLOGnmjgoIC0MHHQkOnL0VmWpMqRD3K4GdnGnSEDaSCCr+ek3opQ1D5bQsYWOhVb9X2ggNBr1qYPA5WzXrl2cd955pNNpdF3nhz/84azUznvnO9/JJz/5SaSUPPjgg4s20KvN/tx9CCEO6bJv3YxDUSwWWbt27fj6q1evPug6vb29XHXVVTQ2NhIMBjnnnHP43e9+t9/ld+/ePaGNp59++kH3ceONN44vv3v37mk8IkVRpm/xVpo2dJuGWIZi2Tce8ClLh46LlCAW8Xv0QKKiyAn6HupFjh1uC7vdJlIyctChqhJBWobpdhvY7TZNKFNRayrCQ4+WYIveyt+NVTyur8ZGJyQr/F1fyUZ9Jdu0JgZFlAERZZPWhi3UZ3mp8UibhF1gTSXJScVOzijs5JhKP1GnTMoI8ay/lb+F1vJ0cAW7fQ30e2IMG2EyeoCi7sPUjEPu5X0hV4qavhyu3t5eXv3qV9Pb24sQgu9973tcdNFFh71dqA7/bGiolkjp6Zlco3OxqN1vyDl2ww03sGvX5BTF+9Pb28tpp51Gd3f3+G1//vOfOf/88/n+97/PW97yloNu49FHH+X+++/nwgsvnFGbFUU5fOFAkVVNg+N/JzNRBkZqp1fgUDXH0wigK9nIcq+xttSEKXGE3oeJQVqGFro5h0niwSYgKjSIHBFRIi/91Gt5TKnzjLOK8iEWnV/sTOHhOb2N450ujne62K01MCiiGMKd9QBPky6alNiaChznhZT4XZuAaxJ8wcUzOoS3InRG9CA9njgjehBTW7aH4LMimUxy7rnnsnPnTgBuvfVWrrzyylndh5SL/0TbonmXXXvttbznPe/Z7/2h0KH/GG7cuJFbbrkFv9+Px+Mhl8sddJ0PfOADdHd3c8YZZ/Cxj32MRCLBT37yE2655Rbe/e53c8EFF1Bff/BMbzfccIMK9BRlAZUqE4dDlszFeZAZ9JepWB41ZHOJ0HGoFzkatSxhUaEsPWx2OqZdlmH2SXRcHDSmPqEgMXDwYeMTFj6s0f+rfzfqAfJGNRtlSXrwCRufyAPgFQ7lWUpes1iUhJceLcEqd5hj3D4cBDqSERFgk94xrW1prktzKUdzKU/YNtkcbyLj9XNkZoiWYg4NSPqC/KO+dUa1BZXJNOkStC1ClknQNgmNXoKWhT7a++4gKGpeipqXtBGiqHkoaD5K4tCT7cwWB230s1t7DqddmUyG888/n82bNwPwxS9+kfe+972z1TQABgcHGR6uJlhqa2ub1W3Pp4X+BTlkTU1NHHfccYe9HcdxeOc734njOHzqU5/iu9/97kEDvUqlwi9+8QtWrFjBb3/72/Gg8swzz8R1Xb72ta9x//33H/BMQkNDA8lkkqeeeoqf/exnXHzxxYf9WBRFmT7H1dm8ZxUew8a0F+9B5tBInPaGYeoiWVK5KCAJ+ioEfBU8uo0QUKp4GSmEUT1+tUoSFSUaRZY6kUcgGZEhtrp1jMjQgtXPC1KmWcuQEAU8YjT7p6yWrjAxsKSBhotP2Hix0MXes9621KjgoSINMjKE40bpdUKUpYcSXk4zto8v2+smWM7vTQdBAR9RysRlibXO4KRSDC+kuS5xs0RjuUBrMYcu91ZJW5tLYWo6TeUC26IN2JrgiJEka7Mptsca5udBLREexyZkW3uDudHALuDY48+3qekUDC8Zj5/eYBSzUg3uKsKY94BuOSkWi1x44YU89dRTAHz84x/nIx/5yKzv59vf/vZ4j94555wz69ufL4sm0JstX/va13jyySc58sgj+chHPsJ3v/vdg64zPDxMpVLh1FNPndRz+KpXvYqvfe1rBx2/e9VVV3HXXXcxODjIpz71Kd7whjdMSuuqKMr8kIhFHeQBjBQi+LwWrXUpAt7KeKF0xxVYtoHPY1EXgULFj7XIH+tS5MFmvd5PVJQoSQ/dbh1JGV3wOWcJkWeDVh02OiijVFwPDhoeHDzCHq8V6KKRkUEq0hgN7DxURlOKjBFAi/QyIk0ke0tGADxhr62JsggLoVuro1urDhcPSJNjnW7KeGmVGfLSxxAR6mQBPxb6iI3fsfE5Nn7HGi+UXtYMusIxeoIxolaZo0aGiJvl8X3UlwtsTjSzO+KyJjfMQCBMzquy8e6P37ZImCUSlRLxSomgU01vLIGi7qHo8TIYiFA0PBQMLwWPd9KwWG8N5kmZrblwc2Em7TJNk4svvpiHHnoIgOuvv57Pfe5z09rG7t27SafTnHTSSftd5r777uOzn/0sAH6/n7e//e3TbmutWFaB3p49e7jhhhsAuO222/B6D23IViKRwDAMnnjiCYrFIsFgcPy+P/3pTwAHra8RCoX4yEc+wgc/+EGeeeYZ7rnnHi677LKZPRBFURRgIJ1AIKmP5hjJhxjORSmbXkAQ9JVZ09LPioYh+lL1B83gqcwPgUtCFFitDSGB5502MjLIwvZsSepEnlXaEB4cUjLMdrdlcpsOc7qKu8/23GXck7evkvDyhLEWgPVOP2vdIQLCokOmAchXvJR1g6zXz6Aepqwb5Dw+CoZ3vNeobHgYDEQI2CZrcinaijnqzBJnDezm73Wt5D0+ThruZWusgf5ARPU2SYnfsUlUSiTMIolKiYBTzXWaM7wk/SFGvH4KHi9FwzPjRCjK7Hvzm9/MAw88AMArX/lKrr76ap599tn9Lh8KhVizZs2E23bv3s0rXvEKzjjjDF73utdx4okn0tTUhJSSnTt3cu+993LvvfeO9+Z9+ctfpr29fe4e1BxbVoHee97zHgqFAm9961t5xSteccjrBQIBzj//fO6//37OO+88PvrRj5JIJPj5z3/OLbfcQjAY5DWvec1Bt3Pttdfy5S9/mb6+Pm688Ube+MY3omnqC0RRlJkS9KfrGRhJIF9QFLdY8bOrv4WWRIrVLX3s7GujYi3O+YiLVZAyq/QhNCSmNPAJmwAVNAEjbpAdbvOCzcETuMRFkYTI06hNnL6ww5kiyJsFLhp56SMsKqzQhul0G2d9H4vZTq2JgLM3yAPYFmtg2H9oOQhKhpfNiRZ2Reo4amSI+kqRE1N9PNiyhiMzQxyXHmBddpiBQKTaw+fxLY+gT0oCjlUN7Col4mY1sJNA3uNjyB8m7Qsw4g1g6Uurl9lFO2gm24Uyk3b99Kc/Hb/+hz/8geOPP/6Ay59zzjnjHTIv9PDDD/Pwww/vd91gMMhXv/pV3vWud027nbVk0QR699xzDz/4wQ/o7OzEMAxaWlp46UtfylVXXXVIQdsPf/hDfvWrX5FIJPjyl7887f3fcsstPPLIIzz00EO89rWvHb9dCMF//ud/HrAw45hAIMBHP/pR/u3f/o3nnnuOu++++5CydSqKohzIC4O8McWKn87BJo5c0Y3PY6lAbx5FRZEjtD7KGNhSxydsCtLHoIySkwFKLGwP63qtnzqtMOn2jBuc07mBm5wVNIgcxSVaG/BwuELjWb2dDjdNo8zhw0KbQda/kuHFGQ3gsh4flm7wbF0rXZUSLaUcbYUMq/PVYLI/ECbtC6L7Dp5MbrHwOA5B2yRsm8QrJRJmCf9oYJfz+BgMhEl7A4z4Aior6TL0kpe8hP/5n//h4Ycf5oknnqCvr49kMolt2yQSCY499lhe9apXcc0119DU1LTQzT1siybQG8usM2b79u1s376du+66ize84Q3ceeed+610n06nef/73w9UM/PM5IVbv349jz32GB/96Ed54IEHKJfLnHTSSXziE584pN68Me9617v40pe+RHd3N5/5zGd485vfjL7EziApijK/dM3BY9g4jo7l6OzbGxPwmQCjQzqV+VAvsqzVBsnJAFvd1po8oz6WZCUn/Ri4BIRJTvrZ5c71gY0gKaNzvI/FSwqNLr2eLqqBVykw/W1EzDJN5WoQvytSh5CSmFmiaHjZHm0gUSnhtavfCy2lPC2lPGG3TMDR2B6tx1kEI42ElATGk6XsTZoStM3xeYySaqA7oAK7JWM2yh1EIhGuuOIKrrjiilloUe2r+UAvGAzy+te/nle96lUcddRRhMNhhoaGePDBB/nmN7/J8PAwP//5z7nooov47W9/i8czOenAhz70IQYGBjjjjDN45zvfOeO2rF27lh/96EeH83Dw+Xx8/OMf59prr2Xbtm3cddddi3qSp6IoCycRzlEXyeL3WuO3WbbOSCHMSD6M7ejURzOUTC+mXfNf90uCQLJWG6CCly1uK7ImgjyJF5uAMCnKak9ikAquhKL00qxl2e40M6wCsEVNc11ePNwznpRlIBCmtZjl2PQAhnQp6QZPNHQQtk2KusFziWaaizk6ilk0oK2YoaGc57l4E6lDHC46H/TRTKPxSmm8nEHAtsY/WbYQFA0vBcPLsC9IwfBSHJ1ft9zLSjhS4NRoMpZabddSU/O//D09PcTj8Um3n3vuuVx33XVccMEFbNy4kQcffJDbbruNf/u3f5uw3J///Ge+973vYRgG3/zmN2si0+XVV1/NzTffzO7du/nsZz/LW97ylikDVEVRlAMJ+cv4vRaDI3FypQCG7hAJlKiLZGmMZQCQEjqHmljOaeznk0SQkhHiokAAkyLTz3Towa5ehINB9eIRLgYODhp9bgL7EDJW6ji0ammaRHa8B++FGsjR49YxLCPTbqdSWzTkpMyblqbTHYqxOp8m4NicNNyLg2BPpI60L0jaF6RieDgRi4qmE3RsXjzcS28wwtZY44L0gFV7IMvUVYrUVYpEzTIaUNZ0Ch4fw74QxZBnNFmKl4qmL4+5hooyAzUf6E0V5I1pbm7m3nvv5eijj8Y0TW699dYJgV6lUuFd73oXUkquv/76g07anC8ej4dPfvKTXH311ezatYvvfe97/Ou//uthbVMI9T03U3P9vAkBzPPrsxTfC/PxmISohkOL5fnrS9fh91aIhQqkchEqlo9COcjASIKQr4yhO+PlFebrMc3HbsQ+l1q0x23Er5scq3eRkWEK0odAoglJRgbIyom9JToOfixiokBCKxASlQn3u1JgoWOj48ckqJlsdVs50DMQoMLRejcCSQEfZemh22ngaKMbqA7Z3Ok0Y2Hgos3Jcznfr1Otvh8Ox3Qek6Pp/KFtPS9JdhMzyxhS8lysgX3KHBK2TfqCESTQXMqR8fjpDCdYU8li6SY4Nv2BCI2lAvXlIlvjjQwG5vgkgJRErAp1lRKJSpG4WUKXElNojPiCbI01kvYFKRpTFxyvldd9rtsxk8/SUiuvoExfzQd6B7N27VrOPfdc7r//frZv305vb+94BfvPf/7zbNmyhRUrVnDjjTcubENf4Morr+QLX/gC27dv5/Of/zxXXXUVPt/MJ+fXrYji0VX69JkQdXM7REUAscYAQh52dvJD5sZnMLGjxpmxue/1FgISMS+Iak/YYlByVtFWnyQUKtGXrmPvoUD1PRCf59JZ4ej8/KzUhz3z9nmaiTTrECJPg1akHQuJQAAaebY5ESwMfFi0amnCWjWwc6QgJ+OMyCCmNLDRcNAnJEeJiQIr9RQdcpAyHrqdekwmfzbW6GlCIszzdivr9X4MIWmTWYSoDs/stDtIzMMh8ny+TvYS/AmszODz27tiHZVygVX5Ec60iwAMNbWQ8QRYnUtxJBLcMriAXeSp+nbS8TaGYg20J7vxhuPs8bWzOpfiTLNIquKyO1KHNVu9e1Lic21iZpmoWSFqlvEgcYBcOEzW20DW46OwT2AXH73UMo89t9sXQEzM8U6UJWfRB3oAxxxzDPfffz9QHeo5FujdfPPNALz61a/mvvvum3LdQqEw/v8Pf/hDAJqamnjlK185p202DIMbbriBK6+8kq6uLr7zne/wvve9b8bbS3VlMYRKtjATojS3AYQQIAWkegvzFjw45tKbcF6x3TnfhxCAhKFUZdEEegCZrJ+VjQPoToX+kYXNnpf3zcPrNHoZyJo1Hez14YN9smsa2LzY2EVUVjClh5jIU8DDdjdBSfoo4n3BnD539LJXPx56iBIWZVbqScqOxqCMAxCiTJ2WI+lG6dNMmrQsrTJL8QXxXJdTT7+0mGvz/TrZS7AeeCl48GWm0ouHZ0INhC2TFye7KZUtttYFiOXzjPgCbEq0cMJwL/WVImFb0uzz4M/myDsWvXqQAeFjjzdKk6txRGqIVcNJtsca6A1GZzzkwevYdBQytBSzBBwbF8h5/XT7gqR8ATJe/96adQ7gzP17dDZ5JyexnVUCsPXpVWWXUsPdT1bmhba/bNHK7FoSgd7+svCYZjWr1B133MEdd9xxwG0kk0ne/OY3A9W6G3Md6AFcccUV3HTTTTz//PPcdNNNXHPNNTPelpzH3qIlZz6eODn6Gs3Ti7SYgpRDNW/PHfP7Ws2GfClAX6qetvphKpaHVH7hkmrM19Mm97ksFhYGu51G6kQeQ9h0uQ0MyPi0yxnkCFCWHlaSJCHyGDiERIXEaLmEepEjKaOk3HC1VpjrJ6HliYoyGTdAr6ybg0c3tfl8nRbTe+FQHdZjEoKc10faF6CpXODM/l0IoLmUJ+tJU1+p9vYFLZOgIbBHA6shf6i6XyEYCERIeYNsyAxx9MggbYURBgMRukMxnEPp4ZOSqFVhRX6E5lIOVwj6AxGS/hBpX+DQtrFIqPe4UouWRKC3b+mFsd68xUDTNG688UYuv/xy+vr6uO222xa6SYqiLFLpfASfx6S1PoXXYzGQTtRIxkdlXwMyzsBoD9zhsNDpdRMkRJ4mkcHCYLvTTE4GWKsNkBB5AsJCSsiPzsc7Xu9kRNZONkVlfjxb14LftkmYJY4eGQRgQ3aYgu6hJxSjK5LAlCbeUgVdumjSxdnnu8PSdTbXtTBUDHFCup+YNcyaXJq0L0De8GJrGo7QcDQNW2hIwOfahCyLhnKBoGNR0g22RxvoDUVViQNFmUeLPtDbuXMnv/3tb4HqfL329vbx+w6l3sbq1avZs2cPq1atYvfu3XPVzP267LLL+PznP88zzzzDF7/4Ra688soZbad0xpEYnrkft1KuX/RvmUls/9zOUxGAFvUyeERMnY2rcYLqHLO8z52X18ooz+5edtNEoeKjI5IkHC4xaMVJ2yEajBxBvUzZ9ZJ3AuScwJzVdqvE52SzEwjADEFFW85nuAXbaQAaJt3zNB3VJaRktZlklZVkFUlModMVjuEK0MuTVpuDFlbnzdn++XmdnCU4dNPxH/4z50ioL5TpKI7gAtvr6jgilWJzUyOpYBCBZMAXoiewYp/XaeJ+m3M5TkgPALCpoQGf4xIvl2gp59BdF8Pd/zdKZzTK8w2NyPEhn0v0U5upveQiDgKnZtLVTFSr7Vpqavqo/Ze//CUXXHABhjF1MwcGBnjjG9+IZVWHG7z3ve+dz+bNCiEEN954I5deeimDg4PceeedC90kRVEWhCSqF2nwZAlpFXThYEudYTtCv1l3iMP7BENWnJwdpMWbpsObZIUviZSQcwIkjDwt3pHRod5idEhddbtSVv920TBdg5LrJW2HKbh+aievnTIdUgh2+RoZ0YO0WFnSRnDZ1xVbVqSkNZ9jXTpNaPQ4Kev1smZkBFPTGPH7Jy0fNk0KXu8+QVn1dl3unSs6GApjTnFcJqTEZ9uc2dWJsc+J9sZikecWSypjRVliajrQu+6667Asi0svvZQzzjiD1atXEwgESCaT/OlPf+Jb3/oWyWQSgLPOOmtRBnoAF198MSeddBIbN24cfzyKoiwfOg5r/f1EjRIFx8ewHcGWOj5h0epJkzDy9FbqGXFCHErQVZZedlea6TbrCWtlTGlQdP1oOMSMIg1GloBmogt3b7g3XgLEwa9ZRCnR7M1guTo9Zj3DduSQ9q3UnrQRIm2oIZvLzdHJJCuzmQm3Ga5LVzRKVzSGq40G/VISrlR4SV8v9aUSlqZRNgx018Uz2lu37yf/FXt20xOJsLmhce82qJ5YSJRLE4K8MSf29WHrGramYWkatqZTNgySwSCOpk4+zBVX1m4ZA3eJduzWmpoO9AB6e3u59dZbufXWW/e7zKWXXsrtt99+WOUJFpIQgs985jO87nWvW+imKIoy7yTrAn0ENJNtpVayzsQD8qQdpcObZF2gn7LrYcQOkXMClF0vpjSYKvjScPFpFl5h46AR0Cqs8/fh1fZmbLOkhiWrc2VG+/QoOV4M4eIVNhLwag4ezWG1f5AWN02vWceIHZ528hBFUeZfXak44e/tiQSmrlcTshTyBGybkGkSMU0aQyH6LYt/NDUTsCy8roMjBJamY+nVwMwaDcgipsmG1DBBy2JjSyuWvnfOXV84gis0mgp52vJ5bCFI+QN4XIegZWE41cDR4zoYUmILwVOtbYRNk8ZCgY2trRN7ExVFOSw1Heh9//vf58EHH+Thhx9m586dJJNJstks4XCYFStW8NKXvpS3ve1tnHHGGQvd1MP22te+llNPPZXHHntsoZuiKMo8qjeyRPQyW0pt5J3JudRLro9t5XZCWol6T456I0eLdwSonqmtuB5MWT1404TEK6wJAd2YlBVmxAxRcT2UXQ8uB0+I4BPmaBBaHfa11j+AKwcpuD52l5sx5dzXNlQUZWaeam3juMEB6srVCZnr02lcqj1vEigbBgWvl55IlIG6BM8jDinISgWDjPj9nNTfx+ndXexKJCjrButTKfy2jc+tfv/YQvB0cwvJ0NS9ydFymTN6ujm1t2f8NiGlCvRmkVvD5RVqtV1LTU0Heueccw7nnHPOnO5jLhOwrF69+pASwox59NFH56wtiqLUIkmrN03KCk8Z5O2r4AYoVAJ0IvEKG79m4tMs/MLCo9nVOXZSkJWB0WDOiyWN0aGZzCgoq0gvW0vtHBnoQSDZVmrFr1ms8CUJ6yVStgr0FKVWlTweHm+vJuZZNTLCUcNJRvx+0oEAndHY+Dw7AbT7vFAxD3nbGb+fR9o7OHZokGOHhibc91RLKxmfD1vTJgztfKFYpTLh74LHc8DlFUWZvpoO9BRFUQ6dxIeNT1gYOLgIXDRcKbDRKeMhTJkj9D48Ym+P17Abptutp4x33lsc1wv4NJud5fg01hKY0oPpeKpFheeYLY3RYK+bFb4kW0rtNBhZEkaelL1w9foURTl0e+Jxih4Pa0bSrBoZYfXICN3RKLviiSkTqxyKssfDk23t6K5LvFwmYlboD4cpG4d2Aqg7GiVgWbTk8wQcm56I+j6ZbdXfwdrsIa3Vdi01KtBTFKXGSbTxHJFVgmqC7mqtJ0GACkfpPXjF/iOfLU4rTSI7IcgDqNfyJESex50Nc9P8/ZI0eUfIOX6Kbm3nhbf2CfaO8PcyZEdZ6UsS1osH7YlUFKU2DIVCDIVCGI7DykyG1ZkROrJZhoIhAvEYGaGRO9RcB1KOZW/C0TSGg0GGg9P/Lsj5fCSDQU7p68Xn2NNeX1GUA1OBnqIoNUqyXuunTuTZ35QNKeFZZwXH6N3oYuph0o4UZGSIgvSzUwZokFlyMkAB33gPYHkB5prVizwRvcz2Uuu873smTOkZH8bZYGQpOj7W+gZ4rtSBpebqKcqiYes6O+vq2BOPszIzQlOxSEs+TySTIR0I4AhBMhhkKBSiohsT5swJKTlmaIj2XJaCx8OmxkY0WR3KOd3smSsyGY4e3ptpXPXwKMrsU4GeoihzSGLg4MXBI2w05MTabaP9dKY0WKsPouNQkl6yMkhe+qnX8uSlnzBTV3cWAvzCYqfbTFiUSboRQqKChsRCJycDWC/4muuXifHrFTxUDiFIEUjatRQxUUDHxZIG29wW7Bl+hXqwWa0NkrLCZJzFk/a+Ir1sK7dxRKAHKQUezeHYYCfDVpSsEyTrBFElGBRlcXA0jV2JOnYn6ujwePALjaBlYrguRyWTHDNa7skdXdYRAq9TLXO9I5FgRTbLMUNDREZr9E1VcmF/PI7D+nSKgVCInYkEWa+P/Z7RU2bMkQKnRssr1Gq7lhoV6CmKMutClGnUMsRFEZ+Y3nCckDBpIM9zThsVaRAW1SBvh9NEUkbZG0iM9eBV/07JCABF6WdsuKcHmzAlDOHgwcHAwSNG/9/nuougJL2U8BESMVJIKuwNAFdpgzRr2fG/A8KinRR73KaZPD2s0QZxEXRWGme0/kIquT62ltpZ4+/Hg4OGJGHkafJmcKTGUDnEbm8DpqZ+XhRlsZCaYHt9/fi3qsdxiJfLeBwHXbrobrVouqXrBC2LhmIRn+OQ83jHA73WXA6JYEt9PbZ+4Ky+K7IZhJRsbmic8RxBRVEOTn26FEU5ZAIXA3dCwFQNlDTK0kMBPxI4zug6pO2ZUqcofQzIGDouQWESFdXaT2EqdLoNlKQXFzEaeAkE7viQSx8WPmHjxZ4UxGlTDOW0pYaFjo2OJXUK0oeFjoYkSIUmkaFetwnpBZ5y1o6vV5EeCtKHQJKSYVJueMbJWwJUSGgFtjstOIdQ4qAWlVwfzxVX0O4dpslTLcjcU6lDCEmzGEEAW/wtC9tIRVFmzNJ1hqYoi9CSy3F0Zu9wy7BVzdQ5EAyRCgY4MpmkPZclFQjwfH0D+f3M+asrlcj4/SrIm2OqvIKiPmGKouxXiDJH6L0HTHKyryE3wk63hX/YKwmJMn5hIRHYUsdBw4tNQJj4hYkfC69w8IoicSYW9pUS/JqFIVxy0o8pjdGAzprQFimhgoGFgSV18tKHPXrdRscaDejs0eDuYIW+BXCym8WhNOH2PllHn1N3aE/aQYRGeyhTMrRIw7wqiUa32cigFafDl6TNm2JzcSUy5BJ3SgffgKIoi85AOMw/gGilzOpMBr/j8HRTMwPhMFIIBkJhGosFVo1keGl3Fxmfj7JhUDI8ZH0+Mn4/JcNgMBji6OEk9cXijJK4KIpyaFSgpyjKfq3Sh6YM8ixZLVdQlh4qeKrztYRNn1ud/1bCR0n6QFbnt7WINCu0JLqQOFKQl34GiFFxPdhUg0Bb6thoOKMXENSJHHUij4FDUXoZkcHxeXUVDEwMZntO2Fh2Tw0Xl9k/42iPhncBLMwFKOkw20zpYVe5heOCu2n1phgRPnyupQofK8oSJIWgLxKhLxKhLZfDFYL+SGT8/oph0B2N0ROJ0pHNEiuX8Tk2zYU8azIjABQNgx2JOoYDAV40OMDORAJT00kFAqqHb5a5CNwanQunku/MD/WJUhRlvzY7HWjIQwt4Jo2UlDSIHK1amgAm/TLOsBOhiO+gPWtjUjIyPvduvgy4cRoZYq02wHa3hdkOJDMySEl6WKUNsY32Wd32QpEIes16VvsH8dkmBpKEUyRlLJ5EM4qiTI+QEo8r8dg21gsCNCkEXbEYXbHY+G0exyFWLtOWy/GioUF6whF0o5r4RQCDwSAbW9vm+VEoytKmBsgqyrIl8WGSEDlaRJo2MUxc5F+wjJhRr5Yfk2P0btZqA5jS4FlnBZ1u4+gcvto+i2fiYZfbTJ3Ic6TWi3EIVck1XGKiQIPI0igyJEQefT/rSTS63XqiWomAVpnt5i+YYTvKznIzAbeamOHYci+NVq46vlZRlCXnmeZmNCQnDvQf0vKWrpMMhfhHSwtb6utpz+fojUQYGJ0LmPcu/hEOilJrVI+eoiwrkjaRJq4VCFKZsvbcZqednJzZnIkgZVq1NHUiTwUPm50O8gQOt9HzLiUj2K7GOq2f4/ROetw6hmVkyqB3f/MYTamzxWmjyORi6GkZpiw9rPANsbXUzlIpSZC2I+QCBieUehDA0ZV+Vlpe+o0og54IllA/OYqyVAyFwmR8PhLlMqFKhcKhFlsHdscT+Gx7vITDcw0NdMbic9TS5UsianaIZK2f9F0qVI+eoiwjPixW6MNERJked2JykYo0KEvPjDNhxUSB4/QuwqJCl9vAM87KRRnkjcnIEM86KylKH2v1QU7QdyNwJy23Rh/ExOBpexWP2et51F7P3+1VmBgcpfcQpsQLx7VKBDudZsJamTW+gXl6RPMjowd5IrCS0mhQF3JN1plJzijs4sRiF63WCCGnjNe1EXLy86koyuLxj6ZmADakUtNed0t9A53RKKamMRhUw7wVZS6o06uKsshpuPgxKeM96DDLCh6SbpgGLU+HNvGH+Rln5WGl+w9gIgQMu2GyMohcAueRTDxsdds4WnQRFWVWa0MMudHxAFbHISQqbHeaJ5RbqODleaedo/RejjW6KUsPGRmkLD2YGFSkhzIedlWaWesfIG3nGXHCC/UwZ11R9/FkcBVNdo64UyLoVgi7JlG3TLRSnrCsg8AWGiXhZcgIM+SJYIvFnI9UUZaP0uhwS20mQ7SF4LnGJp5raFTF0ueIK2s4GUuNtmupUYGeoixy67U+Etre8gQjbpCtbtt+hkUIdrgtJGWRIBXy+EmIAq3aCB6cwwr0BmUMv2vRLDK0G2l2O40MyPiMt1dLOp1GmrURIqJEg55jo7MaG4PYaM2/vJw8PNNBZ7PTQVQUSYhCdV2RnTBc1tSqz/e6QD9/z69ZtHX1puIKjX5PjH5PNRmDLh2arRwdVhq/tMeX05Ho0sEnS8TNEhvMIR4Lrqasefa3aUVRaoVb7ZW39MM4saeCPEWZMyrQU5RFbkDGSexThy6uFTFcB2u/H29BRobIUB0qk5NBOt3Gw2pDkAoeYTPoRhkiytF6NzFRXDKBXgE/u90mVmpJmrXM+O1Nonq9TuQJCJMKHnrdxHhvphx7ruXYsCSJPl7w3WSDtjeJgVezKblLJ9B7IUfo9Hrj9HpihN0KQdfELy38rkXAtfBLG99oABh0TRXoKcoiocK02qUKpisq0FOUmiAJUSEiSviFhYGDjosuXHRcPDh4hMOwG2aH2zKhty4jQzxqb8DAISgqFKRvXnuGoqLIUVrPhJOyltTGa+otVkEqNGhZPNgYuERECYGky6nHHv3qrOABSrRraUp4qCdPnZ5ns9Oxn9dA4KBTAVZpg+PPmSsFJXeZZJwTgrzuJ69P7gXVRufsuUIdACjKoqBpuECiXK727mnqs6sotUQFeoqygHQc2rQ0TSKDIVwcKbDR8WJPOZqlXsuzZz+9dTY62RlmyzwcLSJNGQ/P2+14cPAKi5wMjAdDi9URei8+YZNxAzho9Lp1JGUEk709TbvcZna5TaN/CWKiwFF6LwHMAySikazX+omK6ly1nB2g02xAnRdXAZ6iLEb94TBt+Tyn9/TwSHu7CvZqiJqjpyzuIzFFmUMxUSAhClSkgQCEkGhIxOhl8nWq/wtJWXoYkSFGZJADJbddqSVp0rJANR2/ROAT1eFrjhQU8VGQPoqy+r+JMcsBVLX9M02ckhB5ElqRbU4LJh5MPBSmmK+2GA3JKG2k2Ok2TwjuJtv7YzVWc698gOX9WMRH51Q+X2yn4C7ezKSKoijPNLegu300FwusyYywK1F38JUURZkXKtBTlimJR9h4hY0hHLxYxEQJB8F2t4WIKHOU3ktZGhjCRSIQSAxxaOngo6JEE1mG3Ai73Jb9LmfvE2CVpLca2Lk+CtI/GizM5IyX3Ge4p13tZcPGIxw82OPDQMeuCwG21DAxsKSOiYGJQVYGycrAAdvQqqXJuAFSculkjBzT5yZo0rMcofeSkwF82FQw6HMTUwZ+Gi4d2jAZ98C9maHRnryMG1BBnqIoS8Lfm5t51e5drE+lGPH5SQfnf3SJoiiTqUBPWSYkCSNPg5HFr1l4NXv/i7rVenMAeRmggoeIKI3WQ9s/R2qU8VCWHip4kMCgGzvgOn1uAgOXATc2ZWHtAxFI/JgEhElQVAiOXvdio72gELorBSY61mgwl5d+LFn920XgwcY7Gvz5hUWMIu1amqz0s8Vp32/ZBj8W/TLOUhx26KKx1Wllvd5PnShQkF7qRJ5GPUevG6dP1u0zV1KyRhvEg8PzbvsBt6uP1uJzlkD5CUVRFAA0jcfa2jm9p5sTB/r545q1C90iBXBruGB6rbZrqVGBnrIkeISNLhwMXLyahVfY+DQbr6gGdV5hoYnqcMiS68PLxEDPlDoZGWSP24hEY0hG0R2XRi1LjCI56WePbCQ3GvhNVTGoetD/wi+uajDmB8KUEGLysM+cDBASFcKUR7ew975qb5tOUkaQCBpElogoExQV/JhoYm/7i9JHWoaoSA8WOpY0qv+jjwYVB/lSlRP/qCZZ6aVRZJdM9szpKuDnaWc11SdHoOPQoaXo0FIEpUmfm0AXDi1ihLgost1tocKBk6qMBYcBYc55+xVFUeZLzu9nOBCkoVRUiVkUpUaoQE9ZpCRBrUJILxPRS8T1woTkJbbU0HEnJTTRhSSsV4fO9Ztx+s0Ell8bPbO078KCfpmg35lu5sjqsMmwKJMQBRIij1c4RI0oTUb2gGu6kn1CvL3XPcKmg2GgOjywgJ+c9DMoYxSljyLeOciyKcjKEGkZoknLMODEWIq9doeu+tgddPa4jeSEn7XaAPVGHoCKNNjqtjJyCENY9wZ61uj8yOX8vCqKspQMBwI0loo0lEokQ6GDr6DMKZWMRVGBnrLoCCRHBroJ6RVcCSXXR5fZgCM1QloFn2YS0isIAVKCKQ0Kjp+sE6To+nCkhi013NHg6PCHD0j8WDRpGRpFdnweX1kaDMsIWTdIwg4xYMdxRoM3d2K/3Whn2tTt8GBX67UJGHKjB0kMMrsGZIyjtV7ClKfMIin3+Xc5SckII04IPyYu2rTmU5bk3h4/n2ZSdn1z1EpFUZT51R8Oc2RqmPZsVgV6ilIDVKCnLDoRvUhIr5CywuScACG9TItnBK9mIyXkXT+DZpysE6Do+macUXL/JAFMIqJEVJSIiBJe4WBJrdrL5vooSi8lvIBAAAG8lJhZSGRh0CPrFySeysogZemhTUux1W3jhcFMGQ8JrUCvUzfpvqXORZv2vEqAInsDO1UwVlGUpaTi8WDqenX4prLgVI+eogI9ZdHJOUFydoA6T546T56i4yVth8k6AfJOYL+JQ2ZubzHzsYtHuLiyOocrKaPk3AAZGZiDoHKhCfrcOGv0IU4Qe+h060nLyPi9PW49R+s9nKDvJiND2OhIyZQ9lu6kvzVK0jtlTcClTCJ4xl5BqzaCKZfXY1cUZenrDUdYkxmhvlBgWPXqKcqCUkcZSs3ScAhqJjYattSxpc5YqpKt5TY05OhctrkIriQGDhFRpl0bJiRMXCnIST8DMk7ODZCX/jkIKmvPoIxTtH20aymO0PspyDR56SctQ2RlkOecNupEgagooo3OixSjr8q+SWUOZLvTwvA+AeRSV8TPDrcFYxkOe1UUZWnbGY+zOjPC2pG0CvQUZYGpQE+pKQKXmF6kzpMjYRQm3DdoxugyG/dZcna7/Q0c2rVhYqKID2s8o2VWBnjOaScnA8s2cUaeAFvcNupljpgoEhNFmrUMjqzWF8zKIAFhMeyG2e62TrEFSbPIsFofoiS9lKQHn7AIjWaeXK/3ozkuQ/LA5SgURVGU2mYbBiXDIFapLHRTlj01dFNRgZ5SEwSSRk+GVm9qyqLkttTIu9OfD3WogpQ5Uu9FQzIsI5SkFxODivRQHJ1rpwiGZZRhGQUkQSrERRFduDSIakZRe7/ZPwWtWhpXCv7hrGTs+RS4JESBdi2l6sopiqIsEWXDIGDbqsyCoiwwFegpC0wS1wu0+4bxa9b4rRXXoMesJ2MHx7NjzjYNh7hRIKyVqBc5ivjY6rQtuzljMyMo4qco/SChi3peou/Eh0VUFClI34SSDx5sBJK0DLFv0CzRSMkIKWf5DNtUFEVZ6pLBIHXlMq/Ys5vHW9vI++fuRK2yf6pHT1FHtMqC0XBY7R+cMETTlYI+M8GAFZ/DxCbV3sO20d7DgvTS49bTJ+dyn0udoNNtoF1LcbTWA1SLuJfxIqQkIExcBF1u/QK3U1EURZlruxJ16K5k3Uial/Z087s1a3FVz56izDsV6CkLwi9M1gX68AqbvOMnpJXJOEE6K41Ycu7qxBnCZo1vgKhRYsiK0mfWUfLNX126pWxIxhhyogQx8QuTgDAJYFKv5XElPO2swVZfOYqiKMtCydBH/zdUkLdAxjJe1yKVimx+qKMuZUHUeXLjQzVDWplBK0a32cDczoWTrPX34xcW20qtZB2VDWz2CYr4KErf+Ld4ROwEpAryFEVRlgPX5dTeXuKVMpYQPLRi5UK3SFGWLXXkpcwzSbNnBA2XYStC0fWRtYOUpXfO99xoZInoZbYU28m7gTnfn1IlYY5mWSqKoii15qjhYRKVMmmfj7+3tKrevAWk5ugpKtBT5pFkjW+AhJHHljoezSFdCs9LkAeSZm+aYSuigrx5pOHgxaGAb6GboiiKosyDxmIBWwge61ix0E1RlGVPnWZR5s0Kb5K4kWdHuYVt5WqttQZPZl72HdFL+DSbISs6L/tTqo7Q+gDodlQSFkVRlOWgouvoUqK5k0slKYoyv1SPnjLnBC7NnhGavBn2lBvJOGEAuioNrPAlCWgVSu7c9vg0ejIUHS+FOazFp7yQS1SUKOAjg5oPqSiKshx0xWIkBgfpyGbpjMcXujnLmhq6qahAT5lDkgYjS6s3hUc49JlxkvbeHjWN6tk+v2bOaaAX0srE9QJdc57sRZmKgbPQTVAURVHmSV2pBEDJow4xFWWhqU+hMkckHd4kzd4Mw1aYPrOOygvm4rV6UwB4hD3r+zaEg09YhPQKLZ40BddP0orN8n6UA9NIyxAJUcCLicl8zMVUFEVRFoph27TlcpR0g6FQeKGbs+ypHj1FBXrKnGj2jNA8OlQzaU8OsASSsuslqJuk7cis7TeqF+jwDhPQTQCkhBEnRGelEal68+Zd2g1RZxQIUyalAj1FUZQl7dihIQSwqbFxoZuiKAoq0FPmgF+YtHmH6TfjUwZ5Gi5r/X34tWo9O0se/tvQKyzavcPUefJk7QC9pRbK0kPF9SBVzqEFk6Oa4TQkKqRUdVRFUZQlK2CaNBcLlAyD4ZCal10LVI+eogI9ZdY1eLLYUqfXrJtwu4ZLk2eEZu8IAsm2cit5J3hY+zJwaPGmaPRksKXO7nITw3YENRevNlQwkBICwhwvoK4oiqIsLWvSKdanqtMx/tHcvMCtURRljAr0lFnn10xsqU8YKukRNkcFujGETdKK0W8lDqsnbyxobPGmAUGfWceAFVe9dzVHQwIeoRKyKIqiLCmuy6pMhnUjaTyui6Vp/L2pmYxf1aqtFVIKZI32nNVqu5YaFegps27AirPB38t6fx8ZJ4iGpN7IIYFNxVWY0nMYW69m8mzzptCFw5AVo8+sw0GfreYrs0wAjlQBuKIoylIQLpdZMzJCU7GAISWOEOyKxdlaVwea+q5XlFqiAj1l1uWcILsrTTR6sqzwJnERlFwfO8vNhxHkSeJ6gXbfMD5hkbIj9Jp1hxk0KnPNSzUpjqm+ahRFURYtw7Y5OpkcD+4kYGka2+JxdsYTKsBTlBqljr6UOZGxQySMPKY0MKWB5Rqs8Q0wYMVJ7VNL7+AkYa1Mu2+YsF4mYwfZabbMeYF1ZXa0aWmEgAFHlbZQFEVZdFyXl/T3UT9aG8/UdfqCQXbFE5S8KpNyrXMRuDWas6BW27XUqEBPmRPN3hEieomkFcUQDl7hENRNErKw30BPIAnrJYJaZXQdm4hewqM5FBwfW0tt5A4zeYsyf7xYNIksptQooOZsKIqiLDYe16WhVMIFnmhtIx1Uv8GKspioQE+ZEzG9QNoO021Wa+lE9CIRo0TanirlsqTOyNHmTeHTbBwpsKSBJXWSdpSsEyDvBFCZNBcPDZtj9S4AtjptC9waRVEUZSYsw6CkG3hdRwV5i5Aqr6CoQG+JGDrJg+6rkflqUuIfNumOxsgGqh/kkuujNeNlpX+IhJEjb3iRCHTpUmcV8bs2g94Qe4Kt5HUfiPn7AvCOzO32BWD7wPYvjwoDhmtzorsHA5dOUUfGMzu9eY5/VjZzQAIwQ1DR5ue1ysWW3g+dGXfnfB8CKHokecudl9dJ+lXW2JkQQFjXGHGseXmdRHnpJeWaj/eeABxdxw7YU75O3Y0hNvRnqCPDYPzw6+MZI0vz0LPUPLfvcgFU3OVwFKHMpqX5aVMWlEc6aICp7f3RtTSDp+IraC9liNhl4lap+uMiBMPeEH2+KDnPPBzJK3PK61qc5O5BR7JbNNCrJxa6SYqiKMph2NMYYUN/hqZMaVYCPWX+qPIKigr0lFmXMIsAZIyJPTmu0OgKqgP/pcrvmpzodqIh2a41MqjFF7pJiqIoyuFwXY7qSQMwElTJVxRlukqlEg8//DBPPvkkO3fupL+/n0KhgMfjIR6Ps3LlSo499lhOO+00NmzYMOv7V4GeMrukZEV5hIzhx9TV22u50Fx3PMjbqrWQ1CIL3SRFURTlMBi2zSuf6cHjSgo+g+768EI3SVEWhXw+zz333MMPfvAD/vKXv2Ca5iGtt3LlSi655BKuuOIKXvziF89KW1ThE2VWdZRHiNgVtocaFropyjzaIPvRkGzTmlWQpyiKsiQIjNE5YTm/h/X9GdqTOTR37ufhKrNjLBlLrV6Wmp6eHt7//vfT0dHBNddcw+9+9zsqlQpSyvGL3++ntbWVeDyOEGLCfXv27OGWW27hlFNO4fTTT+eee+457DapLhdl1vgcizWFYXr8MbKzlIBDWQRcl3pZoISHIW06NRIVRVGUWmUbOo+tb+KE3UmaMyVaMtVaeifsGWZ3Y4TNK+sXuIWKUhtGRka48cYb+da3voVpmkgpMQyDs846i9NPP51TTz2Vl7zkJTQ3N+Pdp/6klJJMJsPWrVt5/PHHeeyxx/jTn/5EV1cXjz32GJdffjmf/exn+f/+v/+P888/f0ZtU4GeMmvWF4awNZ2dQfXlv5wkKCCAAaGCPEVRlKUkGQvy+xNWorkukZJJpGRxRO8Ia4ZytI4U6a4Psa01jqupAWK1SCVjmR8bNmwglUohpeSlL30p//Iv/8Jll11GQ8OBR7cJIYjH45x66qmceuqpvPe97wXgL3/5C3fffTf33HMPzz77LK95zWv42te+xvve975pt019MpVZYbgODWaBzkACR1t6Ka6V/UvIavKdQRXoKYqiLEmuppEJ+eluiPCH49rZ0xDGYzus78/yTxs7OXnbAP6KtdDNVJQFMTw8zGte8xoeeeQR/vrXv/Ke97znoEHegZx99tncdtttdHZ2cvPNN9PU1EQqlZrRtlSPnjIr4lYJDUh6Verl5caLgwRsTX2dKIqiLHmaxrOrGnh2VQPN6QJH9aRpypZ45bM9ZAMeNq2oIx1R0zdqgazhuXBLqUfvySef5KSTTpr17QaDQT70oQ9x3XXXsWfPnhltQx2ZKbMiYRUpawYVvUaKtivzxiOdZVEIXlEURZloIBFiIBEiXDQ5rmuYunyFM7YOUPLoPLahmUJAlWRQlr65CPL25ff7OfLII2e0rhq6qRw2ISVNlTyDPpV6eTny4OCydM7MKYqiKNOTD3p55MhWHjihg95EkIDl8LLnevGX1XDOhSQBKWv0stBPzjIxo0BPCHFIl5e//OVTrl8ul/nFL37Bddddx2mnnUZdXR0ej4f6+nrOOOMMbrzxRvr7+w/ncY1bvXr1IbV19erVB93W//zP/3DiiSfi9/tZsWIF//7v/042m93v8lddddWEffz6178+6D7Glr3qqqum8SgXVsIq4pUOAz41R2s50nFx1TkjRVGUZc82DP6+tolH1zcjJJz9fJ8qx6AoC2jej87+8Y9/0NTUxBve8Aa+/vWv89hjj5FOp7Ftm1QqxSOPPMKnP/1pjjzySH784x/Pd/P26zOf+Qxvfetbefrpp6lUKnR3d/OVr3yFl7/85RQKhUPaxg033DDHrVwYY8M287oaorEc6bg4KtBTFEVRRg3HAmzuSOBxXF71j26O6RwGFfAps+Cpp57ipptu4oILLmDFihX4fD7C4TBHHHEEb3/72/nrX/86re39+te/5pJLLqGjowOfz0dHRweXXHLJIXXOHIxlWWzevJnNmzdTqVQm3V8ul/ngBz/IihUrCAQCHHPMMXz9618/7P3u67Dm6F177bW85z3v2e/9odDkxBzZbJZcLgfAmWeeyWtf+1pOPvlk6uvrGRoa4qc//Sm333472WyWf/mXfyESiXDBBRccTjMBuOiii/jc5z633/v3rWvxQps3b+bTn/40fr+fj3/847z61a+ms7OTG264gY0bN/LZz36WL37xiwdtw+OPP87//d//8frXv35Gj6FWRa0yGcMPQg3fW3ZcFw1JSai5mYqiKMpeu5tjGI7LuoEsa4ZytIwU+etRrbgqPcS8cRGIGp1aMZMpH+eccw5//vOfJ91umibbtm1j27Zt3Hnnnbz1rW/l9ttvP+CxvZSSd7/73Xz729+ecHtPTw8/+9nP+NnPfsa73vUuvvnNbyJmeHz7s5/9jDe/+c00NDTQ1dU16f6LL76YBx54ACmrA1mff/55rr/+erZt28bXvva1Ge3zhQ7r09bU1MRxxx03rXU0TeOyyy7jU5/6FMccc8yk+8877zwuuOACLr74YhzH4brrrmPbtm0zfpLHxOPxabd1zD333IPrunzpS1/iuuuuA+D000/nzDPP5IgjjuDHP/7xQQO9hoYGkskkN9xwA6973esO+/HUCiElEbvCUEjNz1uUXJdGciRkkYA0x792BRJB9Yu4JDxkRYAiXvxY+KRNUXhJEqZNZhBAhuACPghFURSlFm1vS7C9LcGRPSnW9Wd59TPdWJpGzuujKxplIBJZ6CYqi0hPTw8AbW1tvOlNb+Lss89m5cqVOI7Dww8/zFe+8hV6enr47//+b2zb5u67797vtj7xiU+MB3knnXQSH/7wh1m3bh07duzgS1/6Ehs3buTb3/42jY2NB+woOpDf/OY3SCm55JJLJgWd999/P7/5zW8QQtDR0cEpp5zCY489Rk9PD1//+td585vfzOmnnz6j/e5r3sdbvfSlL+VHP/rRlEHemIsuuohLLrkEgB07drBx48b5at6Uxt5Yr3jFKybc3t7ezlFHHTV+/4F8+MMfBuDpp5/mpz/96ew3coGEnAo6kqzhX+imKNO0yhniDHcnR7iDNMg8QUz8WNVgDhsvNn4s6mWBtW6S49xe1rtDrJBpjnQHeKm7g9UyiY2gX8QW+uEoiqIoNWpLex2Prm9mMBpAAnXlEicMDnBqd5eawzeHxgqm1+pluo466ih+9KMf0dnZyS233MKll17KKaecwumnn84HPvAB/v73v3PEEUcA8IMf/GDK3j+A7du386UvfQmAk08+mYceeojLL7+cU045hcsvv5y//vWvnHzyyQDcfPPN7NixY0bP/1NPPYUQgpe97GWT7rvjjjsAOOKII9i0aRM/+clPePbZZzn66KMBuP3222e0zxeq2Yk1+wZVM32CZ0tTUxMADz744ITb+/v72bJlCy0tLQfdxnvf+16am5sB+NSnPoW7RL7YYlYZF8gbvoVuijJNbXIEDckuUc8j2joeNjbwiLF+8kVbx2athV2inue0FjZqK9ihNTIsQuTw87S2Aler2a8SRVEUpQYMxwI8saGZP61Zy+/WrCUZCBCvVHjl7l00j07pUZQDue+++7jsssvQdX3K+xsaGvjKV74y/ve999475XJf/epXsW0bgFtvvZVAYGLdx2AwyK233gqAbdvccsstM2rv4OAgAGvXrp1wu+u6/O53v0MIwXXXXUdktGc7Fovxvve9DyklDz300Iz2+UI1e3S276TF/b2g8+UNb3gDAB/60If4whe+wCOPPMK9997Lq171KgqFAm9605sOuo1gMMh//Md/ALBp0yZ+9KMfzWWT503ULpM3fLiiZt9Kyn5IBBYavXrdAQM1V9NIaxF69TpSWoSi5qdfi7NFb+MZYwVlTQX5iqIoyqFzNY2n2tp5uql6AvyEwQFe2rmHaLm8wC1bWtzRgum1epkL+2b8n6qjSErJL37xC6DaQ7i/4ZGnn376eO26n//85+Pz6KYjmUwC1Tp4+3r66afHs/ZfeOGFE+4bm2bW3d097f1N5bCOzu+55x6OPPJIAoEAkUiEDRs28La3vY0//vGPh92wfXvPxroxD8ef//xnjj/+eEKhEMFgkDVr1vDP//zPh/TinXzyyVx//fWUSiU+9rGPccYZZ/CmN72JzZs3c9xxxx1yNs13v/vdtLe3A/DpT38ax3EO+3EttGoilsDBF1RqjoOGgcsJ9h787uRsUIqiKIoylwYiEf6weg3JQJCwZXFy78GnwijKgZimOX59qo6iXbt2jU+5Oueccw64rbH7u7u72b1797Tb4vNVT4SPBXxjxoaUdnR0sGrVqgn3jfXujfU4Hq7DCvQ2b97M1q1bKZfL5PN5tm/fzl133cUrX/lKLr74YjKZzIy2+/TTT3P//fcDcOyxx85KoLdr1y6eeeYZisUipVKJ3bt38+Mf/5iLL76Ys88++6Dz7G655Ra+8Y1vcMwxx+DxeGhpaeG6667jL3/5C9HoodWP8/v9fOxjHwNgy5Yt/O///u9hP66F5HEdgq5F1qPm5y0mhmuzyhnCREcAYUw2uAML3SxFURRlGaqOKKkmANsTiy9wa5TF7mAdRc8999z49aOOOuqA29r3/n3XO1RjQdyjjz464fb77rtvv3P3UqkUAI2NjdPe31RmFOgFg0Euv/xyvvOd7/CXv/yFjRs38sADD/Dxj3+c+vp6oNrNedFFF2FZ1rS2XalUuOaaa8Z7u2666aaZNHGc1+vl9a9/PV//+tf505/+xMaNG/njH//ITTfdxIoVKwB46KGHOPfccw8amF577bVs2rQJ0zTp6+vjP//zP4nH49NqzzXXXMPKlSuBam2+2YrYF0LUrg6xUIlYFpf1cpAOOUIYkxIeukSCTVr7QjdLURRFWYZClQoNpRJpn58do8eQyuyQsrYvUC27tu9lqnpzh8p13QlZ8KeaWrVvmYOOjo4Dbm8sTnjheofqFa94BVJKbr311vFA8b777uMPf/gDMHnYJsCzzz4LQGtr67T3N5UZBXo9PT384Ac/4JprruGss87ixBNP5Nxzz+Vzn/scmzZt4qSTTgKqUfVtt902rW2/733v44knngDgbW9722HXnHvsscf4xS9+wXvf+17OOeccTjzxRF7+8pfz0Y9+lE2bNnHeeecB1Uj905/+9GHt61B4vV4+8YlPANWxw3feeeec73OuRK0yptApa6omzmKyUzQigRw+njJW06k34GoLOw9WURRFWZ5WZKtleiyV1GtZWrFiBbFYbPzyhS98Ycbb+upXv8pjjz0GVGvUjWXO3Fdun8Q/4fCBS4PtWw88n89Puz3XXXcdXq+XwcFBjjvuOBobG7nooouQUo4XZn+hBx54ACHElG2fiRl9qg7Ui9Xc3My99947Xi9iLGvNofjCF74wnk70lFNO4b/+679m0rwJDtTWSCTCj3/84/FeyG9/+9sTxvbOlbe//e3jGXg+97nPzco+xTxf/I5FWzlD2htECDHv+1eXmV8szYONhg97wduiLuqiLuqiLsv7sitRhyUETaUiIdNc8PbU+mU6Frp8wqGUV+jq6iKTyYxfPvrRj07zUVY9+OCD40kPm5qa9tvRVN4n4c+BCqrD3jl2AKVSadpt2rBhA//93/9NMBhESsnw8DBSSuLxOHffffek/ff39/Pb3/4WgHPPPXfa+5vKnHTFrF27lnPPPZf777+f7du309vbS1tb2wHX+da3vjU+f+2oo47iV7/61YRIeq7EYjEuv/xy/uu//otCocATTzzBS1/60jndp2EY3HDDDVx11VXs2bOH7373u1x77bWHtc3WgAfDf+A37GxaXcgRi0TojrbStsjPwhlznBNHAPVBDwDTz9k0N/xOgiAWRwqbjLY4ip278/D2FkBDYP5eK2sJjnq2PHP/zAmgyZjHz5S++BNnLZQm3Tt/33ueJTgyYZ7ee/P5Oum+ia+TR9eIjyagqAuFSGjTDWeWBwHEF/F0n/2JRqOHnOtifzZt2sTFF1+Mbdv4/X7uueee8ZJmL7RvBsyDdbTsO4z0hSUYDtWb3vQmzjnnHO6//376+/tpbW3l9a9/PXV1dZOW/cc//sG//Mu/APDKV75yRvt7oTkbc3fMMceMJ1Tp6ek5YKD3gx/8gPe85z1AdeLib3/7WxoaGuaqaZPsW7z9UIqfz4a3vOUt3HTTTWzdupXPf/7zvP3tb5+UfnU6+koWujtPP3JSsjKdZLs3RGd58X/peOe4fM/YT1Z/zqyZQC/nBnmR200dWWJolDFwhI6JQQWDnPCRJgRTBPEdzjAA3fr8zqVw5iEoGnut+grz81qZS3DUs+mf+xqhY69Tj1WZl9dJqkBvRsZ6IHqc+XmdhLX0Ar35eO/N9+tkVPZ+8UXKZU7p7SEvJX9vaWFomnkdlhMB2O703g8zLUw+H2arXbt27eK8884jnU6j6zo//OEPp0xyMmYsqyUcfDhmoVAYv36wYZ4H0tTUxNvf/vaDLnfeeeeNTymbLXN2mHGo9Sb+7//+jyuvvBLXdWltbeX3v//9QSdHzraZ1MY4XLqu86lPfYorrriCnp4evvWtb3H99dfPeHuS+estSlgl/K7NkDdcM4HL4ZiXA0Xm9zU6mLzm51FWs04micsiQSyErJ7ZEgCy2lbL1ajgwREaunTxY+GheiAfdEy26LMzWfhQzNdzN5+vVa28H2aTep2UfdXad99is1Q/T37T5PjBQeKV6jC6p5uaGQzN/EB6uVCfo4l6e3t59atfTW9vL0IIvve973HRRRcdcJ19Y4yD1arbNwHLvolZDpWUEiEWNtCeszF3mzdvHr++v9683//+91x22WXYtk19fT2//e1vWbdu3Vw1ab8Opa1z4fLLL+fYY48F4Itf/CLFYnHe9j1jUrKukCRj+El7VP28xczVDLbpLTxurOVhYz1/MzbwN20dT2kr2SUayIgAAghRISZLhKgOYRgSYXL4aJB5jnR6F/ZBKIqiKIuKYdu8rKuTeKXMiM/PgytXMbBPL4syexa6IPpcFkxPJpOce+657Ny5E6jmBLnyyisPut6+o/ief/75Ay677/0zKfXW0dHBxz72MbZu3TrtdWfLnAR6O3fuHJ9MuHbt2vEi4fv629/+xkUXXUSlUiEajfKb3/xmPOiZT5lMhh/96EdAtWzEbGW5ORSapnHjjTcC1QmY3/jGN+Zt3zPVXMkRcSpsDzXAAp+lUOaAplHSfPTqCTbpHTxmrONhYwN/MzbwsLGBx4x1bNVb+YfWMRrsFVSwpyiKohwyd3RKwEAoxGMdHVQ8ngVukbLYZDIZzj///PGOmi9+8Yu8973vPaR116xZM96ps2/NvamMFTZvb29n9erV025nX18fN998M0cffTRnnXUWd9xxx4ThoPNh2oHeL3/5ywPWfhsYGOCNb3zjeP28qZ74v//971x44YUUCgVCoRC/+tWveMlLXjLdpvDyl7+8mvFRiCkr1v/6178+YJacfD7PZZddxvBwdc7R1VdfPSHDzny49NJLOeGEEwC4+eab53Xf06VJl7XFYQa9YbKqN29507QJwV6jm1noFimKoiiLgKtpSCBoqvl4yvQVi0UuvPBCnnrqKQA+/vGP85GPfOSQ1xdCjA/vfP7553nkkUemXO6RRx4Z79G76KKLZjQE84ILLkDTNKSUPPzww1xzzTW0tLTwjne8g7/85S/T3t5MTHuO3nXXXYdlWVx66aWcccYZrF69mkAgQDKZ5E9/+hPf+ta3SCaTAJx11lmTAr0dO3Zw/vnnMzIyAlTLC8RisfECgVPp6OiYdmFyqEb4V1xxBZdccglnnXUW69atIxwOk8lk+Nvf/sY3v/lNOjs7ATjyyCPHe9fmkxCCT3/607zhDW8Yf95q1YrSCF7XZmdIFTRVqAZ7dHCGu4PV7jBDWmyhW6QoiqIsAjmvj6hZIVSpUJjnE+zLyb6FyWvNTNplmiYXX3wxDz30EADXX389n/vc56a9nfe///185zvfwbZtrrvuOv785z9PyKpZKpW47rrrgGqm/Pe///3TbyyMZ9q86667+P73v89zzz1HoVDg+9//Pt///vdZu3Yt73jHO7jyyiunHP04G2aUjKW3t5dbb731gDXyLr30Um6//fZJPWR/+ctfGBwcHP/7Ax/4wEH3d8cdd3DVVVfNpKmkUiluv/328fp8U3nZy17G3XffPWWq0/lw0UUXcfLJJ48Xiq9FHtdmZSlNjz9OSZ+/Mg5KjdM0pCtwp13dR1EURVmunm5u5uyuTk4YGOBvK1cudHOUReLNb34zDzzwAFAtP3D11VcfsKMoFAqxZs2aSbcfccQR/Pu//ztf/OIXeeKJJzjzzDP5yEc+wrp169ixYwc333wzGzduBOBDH/oQGzZsmHGbW1pa+PCHP8yHP/xhHn30Ub73ve/x4x//mEwmw44dO/jEJz7BDTfcwKtf/Wre8Y538IY3vAHPLA5nnnag9/3vf58HH3yQhx9+mJ07d5JMJslms4TDYVasWMFLX/pS3va2t3HGGWfMWiNn6stf/jK///3vefjhh9myZQvJZJKRkRGCwSBtbW2cdtppvPnNb+a8885b8Kw4n/nMZ3jNa16zoG3YH026HJftw0WwO7gwwbBSmyJuCQ1JTizBgnCKoijKnCh5vQwGQzQVC6waSbMnnljoJi1J1R692jwRO5MevZ/+9Kfj1//whz9w/PHHH3D5c845hz/96U9T3vf5z3+ewcFBvve977Fx40Yuv/zySctcffXVM+ox3J/TTjuN0047ja997Wv89Kc/5Y477uAPf/gDjuPwwAMP8MADD5BIJLjiiiu46qqrOOmkkw57n0IuRG0BZdZks1lisRgbPnwTum8ODral5LhcH3Vmkb/HOsh6lt4BvXdkbrcvgJaIt6bq6M0K1+U0dxc6Lk9oqzG1uZ1QP1919FpD3vmro7cER7ua8fmpo9fu8c1fHT2/qqM3EwLo0H10z1cdvfISrKM3D++9+X6djJHRPgbX5ZW7d6FJ+N0CZFxfbATQ7Dr87cMfJpPJHLDI+Pix4f/8B3qwNo/bnGKZbW/54kEfy76m2ylzoEBvzK9+9Su+/e1v8/jjj5NMJmloaOCUU07hX//1X7ngggumtb+Z6Ozs5M477+Suu+4azyA69jiPP/54rr76at761rcSi83sgGEJlutVZo2UHFEYot4s8Gy0dUkGecrMrZQpDFx2iYY5D/IURVGUJUbTcDQNw3GoLxQYDoUWukVLzlIrmD4XfVOvec1rFnRE3cqVK/nwhz/M6tWr+Y//+A8GBgaA6mN9+umnuf766/noRz/Ktddeyyc/+ckJBd8PxZzV0VMWv1WlNO3lDFvCTQx7VSFTZaKoLCGBXl0NuVEURVGmb1tdPRI4ub+PV+3cweldXbxooJ/6QgHcuR8doCgL6eGHH+Zd73oXLS0tvP3tb2dgYAApJdFolHe84x2ceuqpSCkpFAp85Stf4cQTT6S3d3olrVSgp0yptZxhbXGYncF6+v1LcHyZctiKwosAEu781oRRFEVRlobeaJQ/rVrNnmgUS9OJmBVa83lO7u/jZZ2dKthTlpyx2npHHXUUZ511Ft/97nfJZrNIKTn77LO566676Ovr4/bbb+eRRx5h06ZN4wkpd+/ezSc+8Ylp7U8N3VQmqa/kOSI/SI8/xp6A6q1RJtNcFzmaaXO9O8Dj2toFbpGiKIqyGFmGwfONTTzfWP3ba9tsSA3TnstxTHKIzU3NC9vARUyOXmpRrbZrLliWxS9+8QvuuOMOHnjgAVzXHR+G2tLSwtve9jauvvpq1q9fP2ndo48+mu9973usXr2aG2+8kd/97nfT2rcK9JQJmio5js71M+wNsTXUCAucjVSpPe3OMKtkCgE4CHpEfKGbpCiKoiwRpmEw4vfTnsthqB49ZRHbuHEjd9xxB3fffTfpdBqozr3TdZ3XvOY1XH311Vx44YXo+sETSV188cXceOON0x66qQI9ZVxHKc2GQpI+X4Qt4WYV5CmTrHSSdMg0Nho7tCaGtelNClYURVGUgzl2aAiozuFTZm6pJWNZbF7ykpcghBjvvVu/fj3veMc7uOqqq2hpaZnWtoLBIDD9hDQq0FNAStYWh1lVSrMnkGBnsF4Fecq4kFuiVWZIyCJeHCroPKWtxtXUFF9FURRl9pm6jtdxltXwPmVp8vv9XHLJJVxzzTWcc845M95Oe3s7f/zjH6e9ngr0ljkhJUfmB2it5NgWaqBbzclTRhmuzYvcboJYSMBF0C+i7BCNoII8RVEUZY7YQuClOoxTOQxqkt6C+vrXv84VV1wx4xp4+/L7/TMKFNUnaBnTpMtx2T4SVpFNkRYGfWoYnjLKdTnB7cKHTVKE2SPqKWvehW6VoiiKssT5TZOgbTMYDKmRI8qi9p73vGehm6ACveXK69ocl+0j5FT4R7SNtFcVKl3Oom6BelnAg4OBQ1Ca+HDoEXF2640L3TxFURRlmWgqFhBAMhBY6KYsfjU8R49abdcSowK9ZShuFjkm1w/AxlgHecO/wC1SForXNXmR24MfG9g7kkIiGBARFeQpiqIo86o/HOHI4WGOGU7SkcvyXGMjGb8K+hRlJlSgt5xIyepSitXFFGlPgM2RFixNvQWWK210eKYHlwERoVPUYWKo+XeKoijKgjENg791rODYoSHilTKn9/SQ9Xh5uKND/T4pi1KlUuF///d/+fnPf87TTz/N8PAwpVLpgOsIIbBt+7D3rY7ylwmPa3NMrp+EVWJ3sI7dgTqVWXOZ8rsVTnC70anWJ+oSCbr0hgVulaIoiqJUFXw+Huvo4IhkkjWZEYK2tdBNWpSkrF5qUa22a7Y9//zzvOENb2Dbtm3TLo0wG1SgtwzsO1Tz79F2RrzBBW6RspBWyyQGLiMiQJ+IkVK18BRFUZQatDKTwdQ0/rJiperNUxadXC7HP/3TP9HZ2Ymu61x00UXU19fzne98ByEEn/zkJ0mn0zzxxBM88sgjAJx++umcd955s9YGFegtZVKyqpRiTTHFyOhQTVMN1Vz2sgSop0hMlgjLMhmZpVvUkdfUHAhFURSlNqxJp9CRdEZi2KrMwoyogukL67bbbqOzsxPDMPjDH/7AWWedxaZNm/jOd74DwI033ji+7DPPPMNb3vIWHn30Ud70pjfx/ve/f1baoE6PLBF+x0SM9tEbrkNTOcuLM92sKabYHazj79F2FeQpAPTqdTyrtTEsQjho1MkiJ7jdnGZvp8MZXujmKYqiKMtcQ6HAhlQKU9PYXle30M1RlBn55S9/iRCCK664grPOOuuAy77oRS/ij3/8I62trXzoQx/i0UcfnZU2qCP/JeLUkS6MoheJQB/NnZj2BNRQTWVKGS1EhmpJDa9r0SFTNMo8q2SKRjvHRk0Nk1EURVEWxlHDSSTw0IqVqpbe4ZCidssY1Gq7ZtHzzz8PwGtf+9rx28Q++TEcx0HX9fG/6+rq+OAHP8j/+3//j69//eucdtpph90GFegtEZvCzQQ9BgIwNZ284aOkqwLXysGZmoedNLPTbeREt4sQJg3kSRJd6KYpiqIoy5DhOJi6jqmGbCqLWCaTAWDVqlXjt/l8vvHr+XyeWCw2YZ0zzjgDgL/+9a+z0gZ1mmSJCDoWvYE4PYE4Q76ICvKUaVsjkwQxkUAB30GXVxRFUZS5oEmJqzKDH7axrJu1elnqQqHqyKl9s20mEonx63v27Jm0zlhJhf7+/llpgwr0loj2cgZNugvdDGWRWuEkaZUZKhg8rq2hpKlAT1EURVkYupTYasimssitW7cOgK6urvHb6urqaGxsBOCPf/zjpHUefvhhAAKB2UmQp/rElwivdPDX5UlG5zZzoq/fM6fbXwil5rndvgAqfigFYdIJLNdFg3mZg+C3TQK2hSZBw0VzJX7Hoq2YIyQtKprO35pX1ex8CDM+9ycyBFD0SPKWO/m1mgPe5uI87GV+zcdYAgF4kHgpzcvrpMxM9XXS8FGZl9epsgRHIhgjc3+YJgDdp2NUjHl5nRz/gfeybiiNBgxEgwdddjkRgHP49bOVeXTaaaexceNGHn/8cS655JLx288//3z+53/+h5tvvpkLL7yQ9evXA/DEE09w8803I4Tg5JNPnpU2qEBviXCEoORVL+diYTg2pw51ERj91raExmAgzNZY46wEWoZr01TMU18pErUq+Bx7v933LjDoD/GPRItKwKIoiqIsmNXJEY4YTGHqGtsaEwdfQTkwyRRnmGtErbZrFv3TP/0Tt912Gz/96U/5whe+MH77Bz/4QX7wgx8wMDDAMcccwwknnECpVGLLli04joMQgn/7t3+blTaoyGCJ0KWkeaTIzuYoqHHtNS9iVQiOBnkO1dero5ilrZgl6/Ez4vPjt200JFtjDZSNif0kXtvG1LRJgVmsUuTokSFCtomg+j3qCEHe8JLx+ikZXlwhcAS4aNiazrAvoAI8RVEUZcEYts0pe/qJlytYmsZf13ao3yVl0funf/onrrzyShzHYdeuXaxZswaAE044gW984xu8973vxbZtnnzyyQnrffKTn5yQqfNwqEBvidjVGOHonjTBisWzK+tVsFeD/LbJqlyaqFnG79jYQmBIiY5ESMmmeBNrciliVpm4VR4/2VVfLtIdilI0vAwEwiDgZQO7ALCFoKIZWLqO37bwuQ4AaW+AnmCUoUC4ZodiKoqiKMraoTRHDKYQQDIU4MmVLep3a5aogukLy+PxcOedd0553zvf+U7OPvtsvv/977Np0yYsy2LDhg285S1v4dRTT521NqhAb4loypQAjVXJPFvaE1iGftB1lLkVMcvEKyXCtskqn4GVTgHVXjZT05EINOmgUc2KFLHK/K1lDbguIdukYHhpqBQ4IdXPqkI1Re9RmSF6gnvLHpiajt+xCTgWrhAM+kM8F2/C1tVHW1EURaltGwaG2ZAcwdQ0NnY0MxxRdX+V5eOoo46aMKRzLqijwSViOOon4/PRUx9WQV4NOG1gDxHbHP/bb0QZ9vh5Pt5IzuufsKzh2sQqFdK+0UQ6mkZhdJlkIMLvW0P4XZuoWeFF6X46ilkk0BOM8nxijjPJKIqiKMocWZ3KYGmC3x25Sg3VnCvLYC6csn8q0FsidjTHsKOhhW6GMio8GuQN+wI8m2ihKRSkt2xO+X1rawbDgQN8FDWNsualbHh5RoDuugz7QqqQrKIoirKoWbpOwLJpypcYVMcwijLr1JHiEnH6ln4eP3EVFY96SWvBY40dnDjcR12lhH8W8yEPBiKzti1FURRFWUgbO5o5Y1cPL+nqJ+/z8NDaDjU/T1l0Ojs752S7K1euPOxtqKhgiRDAcZ0pnlzXtNBNUYCcN0BnKMaGXIqYWUYSPfhKiqIoirKMZIJ+fnfkKo7vHaIlV2T9UJqtzfUL3awlQyVjmR9j2TRnkxAC2z78jgJ12mSJ6K4PU5crg1SDsWtBe36EDblq8hVXoF4XRVEURZmCbRg81dGMBOLF8kI3R1GmTUo5J5fZoHr0loiRsBdvusRxXSmGogGyAS8lr67KLCyQoGONXz9mZIiwW+E5B7ZEG9WEc0VRFEXZl6ZRMgzqiuVqnVg1B312qILp8+KOO+7Y731SSr7xjW/wxBNP4PV6Of/88znllFNoaqqOwBscHOTxxx/ngQcewDRNTj75ZK699lrELB2/q0/SEpEO+XmuXWPtQIZVQzkATF1jIB5gZ3OMfMB7kC0os2lbrJFBfwif4xC0TU7AZkUhS1H30hVJLHTzFEVRFKWmbGmu48SeQV65ZQ/bGhPsaIirE6PKovC2t71tv/ddddVVPPnkk7zmNa/hO9/5Dq2trVMu19/fz7ve9S7uv/9+HnzwwQMGj9OhPkFLxNmbe6nLl+lsjPDIEc101YfxOi4rhgucs7mX+mxpoZu47GR8QQaDEfZE6ynpHiQwoJKpKIqiKMokffEIj69swdEERw6lOXfLbjpS2YVu1iInavyytP3whz/krrvu4vTTT+eXv/zlfoM8gJaWFn7+859z2mmncdddd3H33XfPShtUoLdE9CWCCAmrBnOcvnWAFcN5hsM+djdG6KoPkfd7FrqJy5ojNARw6lAnG0YGCVjmQddRFEVRlOUkGQnx2yNXs6UxgSbhRX1DNOQKC90sRZmRb33rWwgh+MAHPnBIQzE1TeP//b//h5SS73znO7PSBjV0c4nY2hYnrBmsHsqyZrA6dPORI/d/5kCZX88nmoiVyjSX8qwqZFhZyOAIwbOJZpKql09RFEVRqjSNHU11dNVFeeWWPbyoN8kfj1Q19mZEzdFbUJs2bQJg3bp1h7zO2LLPPvvsrLRBBXpLxKv/0UXA48URgpGgl3jR5OjRxCyuJrAMjZyap7egnqtrYTMQMUscmxog7FizWmNPURRFUZYK0zAYCgdoypfQHBdXV4PQlMWlUKj2Rvf29nLSSScd0jq9vb0AFIvFWWmD+tQsEfromRFXgMdxAVg7mOW07QOcsbWfl23u5bjO4QVsoTIm5w3gdR1sIegOxha6OYqiKIpSk3J+HwIImtZBl1WUWrN27VqgOoTzUI0tO7bu4VKB3hIxEvCwuzHC7uYo/fEgu5oidNWHSYV92Fp1XPCqoZyq51YjpBDoUlJfUUlyFEVRFGUS16VjJIcESh6VZ2BGZI1flrg3vvGNSCm5//77uf7666lUKvtd1jRNPvCBD3DfffchhOCyyy6blTaooZtLxK6WGMnmxH7r5sULFRL5sqqrVyOermvlJckeTkz1si3aQKcquaAoiqIo487e0Y3PdthZH8MxVL+Esvh86EMf4n//93/Zvn07X//61/nJT37CZZddxsknnzyhjt4TTzzBPffcMz5sc/369fz7v//7rLRBBXpLxEm7kmSyJlvaE2SC3kkB3UjIx0jIt0CtU14o6wvwUPMqTh/sZEM2Sciq8Fxdy0I3S1EURVEWXEOuQMS06IuE2NLSsNDNWbykqF5qUa22axYFg0H+8Ic/cOGFF/LMM8/Q29vL1772tSmXlaMj7o4//njuv/9+AoHArLRBBXpLxLMddRyZKXPW832UPDqOJvA4Lo4mSIf9DEUD5AIeyh4D09BUz14NMA0Pf21Zw6mDnbSXckQHKjzZ2I6tqY+loiiKsnyFK9U5eUWv+j1UFreOjg6efPJJ/uv/Z+++w+Mqz4T/f8+ZM72PuizJcu90DDYY07MhlFReeJMQE4JDSX7Z7JslbRcIBEI2yaawqUsS2JJsCAmhbSrdxhib6t5l9S7NaPqcOef3x9iyhYu6ZiTdn+s6l6WZU+7xjM6c+zzPcz8//CE//elP2blz53HXW7hwIbfccgu33XYbmjZ2n3v5C5oiFjb30FRVTK/HTqgviWJCRlOxZg2KIklmdB+ZhyZptdAUcrO33I+uWfIYtTBUlVdLa1jS00Z5MsqqljpeL55BxD42d3KEEEKIyaY+6GN+Rzezu8JU9/QRs1vpdjlo8nuJOqV30lCZZuGWZijUuMaDpml87nOf43Of+xwtLS1s2bKFnp4eTNMkFAqxbNmyk06mPqpjj8texYSrL/KwoDXMvnI/O6tCxzxv1bO4UjrOtE5RX5Kajj4qeuK8Or+MhH3sBzk79DRzwl0UpeKomKRUjUa3nwa3H1Tpaz+AqrKtqIK2RB+ndrcyP9zJ5tLqfEclhBBC5IVhUfnbglpOaWonFE8SSKQIJlLM7gqTtqgcDPloCPhJSYufmGQqKirGLak7HvkLmSL2zAiiuJPMa+6lKeQm+q458zKahbBmIey20xp0s7/Mx8qdLcxui7Ctpui4+/RHcy2BoWgSZzqLxcglbK+VVp20e2F5LMLi3jYUIKOopFUNZzbDgkgnpckor5ecPImZ39tOebyPhGZlt7+YsN017P+PyajT6SWtduDW0/kORQghhMgrQ1V5q/rI2HVfPMn8jm6Kownmd/Qyv6MXA0haNVq9bnaXhTDkRrIQA0iiN4XsK/NT1RVl2cEuNs8tJaNZUA0De8YgralkVQWFQ1VtFYWsRcWeyQ7YhzeWYkFzL8V9iQFz86W03Lg/VyZDTV8v+/3HGRxtGCzpbaM8ESWrKLxZVHkkSTMMzm8/iD+dPOlrcKeTVMfCmIAvk+KsziaaXD52BstG/f8zGYStDkpSMVTDkC8sIYQQ4pCIy8HmmZVgGJRGE5REY/gTKbypDLO7w8zsCbO1ooSmoC/foRaOQp7GoFDjmmIk0ZsiTtvfzv7Z5bxdW8zZe9u4/O0GdFVBM3J/SVkld3fs8GTqhx97fXZp/+/F4Tjn7G0HIGG10Bx001jkIerKtQ4uq+ugpitG1Hps/3hN11ne2YArq9On2dhUUoWhWsAw8OhpopoNW1YnaTnxR04zdM7qbALglbKZ6IrK8o4GZsQjdDg8dDndo/+PKnDKoTOfMch6QgghxLSkqrT73LT7jlwTVPT2cUpzB6c0dxC12wi7HHkMUEw3H/zgB7nrrrs49dRTx3zfyWSSn/zkJ7hcLtauXTvs7SXRmyK8CZ0LtjfTFHKzvSqETTewZg2SVgtJqwV3SseVylDeGyejWdhxaBqGo/u3Rx25sXoJq4XnTjm2e2UglutSuLi3jaU9rSiArqgYioLNyLUM1rt97A4caX1b3tGITz8yQaShKNh0nfS7Kgp50knO6mzEYprs8peQ1HLJ5UFPkEXhDlx6mi6mfqIXSCfIKKqMYxRCCCGGqCXgpTwSpaIvjiOTIYwkeoBMrzBB/vCHP/DEE09w5ZVX8v/+3//jggsuGPU+29vbeeSRR/jXf/1X2tvbueuuu0a0H0n0poi0ptAY8BDqS1J1VIXN47HrBpF3JXlAfzdOQ1XAMI5JNjbOK2PZnl58meShBE/Fkc2gmiYRq529viJ6HAOTMYeRGfC7R89wQdsBTCBp0eixOXFkdYLpBABbA2W0uY90u5gb6SKLQpPbP6z/j8lKM016bVJRTAghhBiOrKpiAh2eqX9TWBSWr371q3znO9/hqaee4umnn2bGjBlcd911fPCDH+SMM87AZrMNvhOgqamJZ599ll/96lc899xzZLNZTNNk1apVfOhDHxpRbJLoTREWw6Q4kuDVBeUopok7qaOaJooJVV1R3KkMnV4H7X4XZ+9rpyScoMPrIGmz9Cd0YY+DVr+TsnCCS7Y08uyyqgHJXtqmsbVoeJWCXiqbRXEqhjuTRgVU08RiZvFl0ngyKSoTfZhATLPydqiShHXgH4NmGkSs9mk1Xi2YTuJJJ4na5I6kEEIIMRR9dhsKEIon6PRKsgegmLmlEBVqXCNx7733snbtWu69914eeeQRGhsb+c53vsN3vvMdrFYry5Yt4/TTT6e0tJRgMEgwGCSRSNDT00NPTw979uxh06ZNtLfnhk8dnjx9yZIlfOMb3+DKK68ccWyS6E0Rr88p5YKDPVy0tYmsAj0eB2GXDUc6S2kkQdqiMrMzSlVXlLRF5ZT6LiBXaKXHZact6CJm19hf5sed0vEmMzjSWZKOUSZYqkqn00vnCaaFs+k6afXEXRWTFg1fJsWZHQ28WTRjyid8Uc3WP6ZRCCGEEEPTfWhcXiCRkkRPTLjq6mp+9rOfcffdd/PDH/6QRx55hObmZtLpNK+//jpvvPHGSbc/nNxZrVauvvpq1q5dy2WXXTbquCTRmyJSNo0XF1dS3JfEmdYp601Q3htHNUzeqSmiocjNFW/WYzHBclRBlpRmIRRLURRLDdhf2qKSdIz9/Hrv9u6xeu+2oXQmp3U1E0wnOKe9ng3lteMeU76400ncejpXsGaKJ7RCCCHEWAo77ZiAP5EadN1pQ6puTrjKykruu+8+vv71r7Nu3Tqef/55Xn75ZV599VViseMPrZo3bx6rVq1i1apVXHHFFZSUlIxZPJLoTSG6ZqE1mLuLdaDsqDFthsG5e3Lz2u2sDDCzow/VNLHrBm/OLqHHZaM0ksCRzmLNGqSsFhpDhXE3zFBV3iipYllXM6XJGMFk7JhxgJOdTc9wRlcTbj03nnHP8aauEEIIIcSJqSoZVaUolkDTdfRBbiQLMZ4URelP3g7r6emho6OD7u5uHA4HJSUllJSUDHkM30jIX8EUp+k65+9owZ3O0uF1sK8iQNhl55y9bQCs3NXKm7OKaQ24Crpb5I5AKaWtBzijqxkTOFyrKWK183pxVUHHfjKqYbCivR7NNOiyu9gZOFJxVAghhBBDt7OsiGUtHVy4t4FXZs0gbpfvU1E4Do/Pm0iS6E1Rmq5zSl0X5eFcNcsDJV621xQB0Ol38rdTqrj0nUYATj/Qya6KAHsrA/kKd1C6ReO14irmRrrQTIOsoqIZBr5MiqU9rbxTVDmk/QSTMeZEunHraQxFocvuYre/GP0k8/uNG8Pg3PaDaKbBLn8JjZ7AxMcghBBCTBGNIR+2bJYF7d1csLeBl+ZUtsTlhgAA4ctJREFUE3dM42RPpleY9iTRm0I0PcustgiVPTHcKR2AmF1ja3URXf6B1VBSVo3XZ5dw5v4OABqLPRMe73D12Z28WVI14LGLm/bg1DOUxSL4MwksBmRVBUNRMFDIKgpZ1YJLT1OWiPbP95eyaFgMg4pEH2WJKJuLZ9BnP0HFmHFyelczrqxOg8snSZ4QQggxBvaXBOlxOTi3rpmzGlp5aV5NvkMSIm8k0ZsiLtjahE+1oJCrpNnrtrNjRoAe74mTl4xFpdtt553aYpK2yflRMBQFr55mWW/boOtmUWhxetkdKEZXc6+3ONHHqd2tLOtp5ZXyWeMdLpDrrnl2RwNePU23zcmuYNngGwkhhBBiSHrcTrKKgmpO0YofQyXFWKa9yXl1L45hNQw6/W7qSr20B4ZWrKTL52SDb2Jbscbaq6U1lMX7SFs0uuwudNWCahhoGGiGgcU0sRgGSYtG/DgTkXc6vfTaegmkkxMW89kdDXj0NK0OD1slyRNCCCHGlmGgmSaKns13JELkVcFXsFAUZUjLhRdeeNztDcNg27Zt/OIXv+DTn/40p556Kpqm9W9XV1c35Fiam5tZs2YNJSUluFwuVq9ezd/+9rcTrl9XVzcgxnPPPXfQY9x9990jiu3ZU6p5bX75kJO8qSKp2TjoK6LF7SetWTFUFV3TSGo2ojYHYbuTbqf7uEneYT02Jwpwfst+FvS0UZzoQzWME64/Gu50Co+epsvuyk0+P0mLyAghhBCFaklrbq7gZn/hD0sZV2aBL2LcTfkWvf/8z/9kzZo1o95Pc3Mz55xzDo2Njf2PvfTSS7znPe/hkUce4WMf+9ig+9i4cSPPPPMM73vf+0Ydjxg7+70hHFmd8kQf1fEI1fEIJhDTbLxVVIGOSiCTwJ1JE7Pa6XSO/IujNBlFAQ54Q7kHDo0T7LPaidocY/J6hBBCiOlKNQyqeyIkNQtbZpTmOxwh8mrSJHq33nort9122wmfd7uP35JlHtU/2263c9ppp9HZ2cm+ffuGdfzPf/7zNDY2smLFCr7yla8QDAb53e9+x/e+9z1uueUW3vve91JUVDTofu68805J9AqNqrI9VM52ynHoaUoSMUqSMYLpBOe3HTxm9bSi8lpp9YimQcgquRa8qliYmmgPpclY/1QRDS6fjNcTQgghRmFmVxgV2FUayncoQuTdpEn0SktLWbp06bC3W7x4MQ8++CDLly/ntNNOw2azsWbNmmEleqlUiieeeILq6mr++te/9ieV5513HoZh8P3vf59nnnmGG2644YT7KC4uprOzkzfeeIPHH3+cD3zgA8N+LWL8JTUbDV4bDd4grnSKmdFeDAWiVjtRq42SZIyZ0V5Wth0ko1rQDIOsorC5pIq49cTdQw+rd/up7eumItE3YD5AgHrPxM6tIoQQQkw15X0xTKBpunfbhMLuIlmocU0xU36A0PLly/nMZz7D8uXLRzzzfFdXF6lUiuXLlx/TcnjJJZcA0NTUdNJ9rFmzhtLSXBeCu+66a0BLoyhMcZudHaEydgXLaPIECNtd7PWX8EZRJSmLhmKapC0WbKbBsu7Woe1UVXmpcg6vF1XS5PIRPzR/X0ZRSFin8Vw/QgghxBiwZnM3YGUMvBDTINEbC8FgEE3T2Lx5M/F4fMBzL7zwAgDl5eUn3Yfb7eaLX/wiAFu2bOG3v/3tuMQqxl+Pw8368lm8VDmHhMUKQO8Qx9fZ9AyndzZyRlczVfEIjqxOj83BhtLacYxYCCGEmPr88SSudAbdIpe3wJEJ0wt1EeNO/hKGwOl08p73vIeDBw9y+eWX88wzz/DKK69wxx138L3vfQ+Xy8UVV1wx6H5uvfVWKioqgFx1TWOcKjuKiVEWixBIJwCYEY+cdF17NsMZHY2saqsjlEoQ1WxsCZTxXMUcXi+pJq1Nml7UQgghREE6+2ALCrC9fPCaCUKMt+uuu46//OUvee3FN2kSvd/+9rcsWLAAp9OJ1+tl3rx5fOITn+D555+fkON/73vfo6ioiPXr13PllVdy3nnn8a1vfQvTNPnBD35AWdngRTScTidf/vKXAdixYwe/+tWvxjtsMY6q4rkB31kU6j2B466jGTpndjRwancrgXSCPs3GxpJqNpbNpM3tk64lQgghxBjRDINup4NWvzffoRQExSzsZap79NFHee9738vMmTP553/+52EXghwLk+Yqc/v27ezevZtkMkk0GmXv3r38x3/8BxdffDEf+MAHCIfD43r8uXPn8tprr3HttdcSCARwOBysWLGCp59+mptuumnI+1m7di1VVVUA3HPPPWSzMpnnZONJJzmv9QCBdBITeLFiFnv9JbjTSUKJWP96qpHl/NY6/OkkMYuV10qqea1spkyjIIQQQowxVzKNAqS1SXNpK6a4YDCIaZo0NjZy//33M3/+fFavXs1//Md/HDMUbLwU/F+Dy+Xiuuuu49///d95+eWXefPNN/nLX/7CV7/61f7pDP7whz9wzTXXkMlkxjWW2bNn85vf/Iaenh4SiQSvvPLKkLpsHs1ut/PVr34VgD179vAf//Ef4xGqGEdLetpwZnUAdvlLMFBY1bKfczsaOKO7mfNb9hNMxjinvQGLabIjUMK2ULkkeEIIIaaUoliMM5ubWFl/kOWNjczt6sSm68espxoGCzo70I7z3Fg5q6EFgD0yrcIR+Z4QfZpPmN7S0tLfqqeqKqZpsm7dOm688UYqKiq4+eabeeWVV8Y1hoJP9Jqamvj1r3/Npz71Kc4//3xOO+00LrvsMr7+9a+zbds2Tj/9dABefPFFfvzjH+c52qG56aabqK2tBeDee+8d9wRVjC3lUF/rt0PlNB7qsmkzsqRVCw0uH3Yjy5ldzbiyGVqcXlrcgfwFK4QQQoyDZa2tnNnaQlEigUvXCaSSzOntZfXBOmZ3d7Gwo52V9fWsrK/ngoN11IbDnNnaMi6x1Hb24knrNPk9RB12ivtinFXXjCN9/Osrm66D1EkQ48xms/HhD3+YZ555hvr6+v5WPdM06evr4xe/+AWrVq1i4cKF/Mu//AstLWP/91HwiV4gEDjhc2VlZTz22GP90yY8+OCDExTV6FitVv75n/8ZgAMHDvCLX/xi1PtUZJmwJataDt2MUnOPqSoJi4bNyLLfX8SG0pns94Z4s6iSHaHyvMcriyyyyCKLLGO5eFIpKmJR4prG8zNreXb2HP46azavl1dgKgrzenqYGYngzqRx6Rk008QE/KkUF++qY3ldM8V9sTGJRdMNFrZ1kVEV9pQEOPtgM2fVt1IaS3DRnnr+bts+Ltl5gPltXSjAuQeauGTXQS7fWYfFMPL+fzncRUxOFRUVfOlLX2LHjh2sX7+em266Ca/Xi2ma7N69my9/+cvMnDmTK6+8kscffxx9jFq/J32pv9mzZ3PZZZfxzDPPsHfvXpqbm6msrMx3WIO64YYb+MY3vsHevXu57777WLNmDXb74BNun0ilxY5mGfn2Q2V1TPqPzKjMiXRR7LTR6/XiCAY5/EnrqayhLNzJuXqCFqePgJrFr6r4rBYMVaVcU8BuxVTkND1SGev49/NQgFItN2XGRPQqsU6HvivjQAFKyJ3v5H+wcE30+5Q5NN3NVGKxW8b9GApQYh3eee/szg40n49en48am42U9dC1gdPBzkCAYCpJSrUQtx81P6xhMq+7i1AqSYkJs3rjdGQMdpcVjyr+pR3t+H0+dpSGuLw7jFO1kgnYaPR78abSODI63oxOcdpgWVMnVs1Gxm/Happc2hUlZrdiKBC3Wul0Owu2SJoCBBm/rq9i4qxYsYIVK1bwgx/8gMcee4xf/vKXvPjii+i6zh//+Ef++Mc/UlRUxMc+9jFuvPFGli1bNuJjTYmr9sWLF/PMM88Aua6ekyHR0zSNO++8kxtuuIGGhgb+/d//nc985jMj3l9zNoWaHf8kwp6cvl0dzuhoxJZOEAE2F1fRl0z3P9eMhcpIBDsRZtLaf9ctRO7k7PP5CBsqu/0leYh8akg7xv+zd/h9a8qkJuTC1EZiAo4y9Rx+n5pJSKJXwCb6fUplp973k5Ya/8u0/vNeKj2k90k1DCKRCJppEoxECAK9dgevHSo0B9CkHkpQU+kB2zZ5fWRLvGi6zrkHmvFGIqSsKp1e94hir+jtQ2nv5KDLwRa7BdPUqY70kVUUdoQ89BV5+2M+o76VUF+CrKLy/IKZXLCnAWckgu/QvgJAOfDOjFJaAoVXtVMBdH3qfcanM6fTycc//nE+/vGP8+KLL3L99dfT1tYGQGdnJ9///vf5/ve/z8qVK/nyl7887LogMEUSvXzOTzEaH/3oR7n//vvZuXMn999/P5/61KdGvK+JGtc6Of+nx4Y/feSifH64k82l1QOe77Y5cWUzdNldtLi82LNZipIxSpK5SpxhzT6t//9Ga6L+7yZynLh8HkZuGo3nn9Tk72l0CvG8l1VVnq2dhTedpjLaR204jC+VxJlOE7fZBt3eBDKaxoEiP6e0dOJMZ0b0OtWswbLmDgxF4bWaCkxgS2UpbW4XZza2sbilk1dnV/XHvKl2YCPA8/Oqceg6qgmKaVLaF2d+RzenNrXT7HMXZMvecP+fFCjYaQykfxMkk0l+//vf88tf/pLnn38e0zT7c5rZs2fT1NREKpVi/fr1XHXVVbz//e/nV7/61bB6ABbep3gEtm/f3v/zZGjNO0xVVe6++24gV5lnshSTma7WldVikJs3751QxTHPv1lSxfryWewMlhG2u2h3edkRKqfN5QHAradl8LcQQojJT1XpczjYFSqi0+lEAVY11HPZvr2cX3+Q8r7ISTe36TpLWrswgHavi9rOXkojsZNu825n17egmibvVJZgWI5cznZ6XZjk5tQb7DUkbTbidhsxh50DRX5MlFwyVYBJnpg6Nm7cyC233EJFRQUf//jHefbZZzEMA7fbzSc/+UnWr1/P3r17aW1t5Yc//GF/AZc//OEPfPOb3xzWsSZ9i97+/fv561//CuSy3xkzZuQ5ouG59tprue+++9iyZQsPPPAAN9xww4j2o9qzqPbxn5MvM3P6zfvnjqVZdDBMKJxEAV5fVEQsqMMQ+8rvK3OzYF+MWdEeaqM9ZDSV7bUBWkpH1lVlKKyOqdePf4Y/Ou7HUEwoNd2gxDDldmPBUkwImiaZCXqfoqnBWykmm/DBwLgfQwEyVjvpjDIhLVNacur90Vom4DUpgIqCJTmS98nCW6EqvOkEFfE+/OkkvkyKZe3tdFj9x98iqbCkuwvLoQItF+1p6G/deb2okh7HIN+NhsHp3S2EUkl6bQ668GPrPfL02e2NKECn1YOtd+gJW3Eihmaa7PcEh7XdYVnH+H7KFcAy3HvFpkLBfpkValzjpLW1lf/8z//kl7/8Jbt27QKO9Eg855xz+NSnPsV1112H233k8+/3+7n11ltZu3Yt119/PY899hj//d//zZ133jnk4xb0LYunnnrqpFVn2tra+PCHP9w/PcHtt98+UaGNGUVR+lv12tvbefjhh/Majxhobn2YVW+3UdybJGtReWt+iM6gc1j7SDo0Ni4pYeucICmrik03KOlNjlPEQgghxDgyDPypODMj3cwLdzAr0oU/naLX5qTXnvt+TFtO3o7Q4fSQURTSqoV2h5uolruZMlg3Q5uus7r1AKFUnIjVzptFx97c1wwDA4X9/uEVeUkdKubjyE69G6VTSVtbG08++SRf/epXufTSS/H7/SiKMuB6ejAPP/xw/zaDLaO5Ltd1nd///vdcddVV1NTU8KUvfYmdO3dimiZFRUX8/d//PVu3bmXDhg3cdNNNA5K8o1ksFr7whS8AUFdXN6wYCrpF77Of/SyZTIYPfehDrFixgtraWpxOJ52dnbzwwgv89Kc/pbOzE4Dzzz//hIneu9+kvXv39v/82GOPUVx85GQwd+5czj///LF/MSfxgQ98gNNPP50333yz//WI/NLSOudu68Cb0ElZVTYuLiHmHsVdfVWlscxDzG7hnO2d6JbpdSdLCCHE5OfQ0yxvb8BmnrhpKa2obA2UnXQ/7U4v7c5cwRNPOsk5HQ3ELRrdzpO35p3V2YhmGuz3hEhZLNREe8iolkOLSubQ9EcjaZvsszlIWDQqEn3UpYPEbeNfyXzcFfJA5hHGVV5ePrZxjKOKigq6u7uBXOudqqpcdtll3HTTTbz//e/Hah16peCioiKAYU+7UNCJHkBzczMPPvjgSefI+9CHPsRDDz10wsGJN9544wm3/cd//McBv3/iE5+Y8ERPURTuuecerrrqqgk9rjg+W1rnotdbUExoLnbx9tzg6PvrGwbVLX3Y01lMwJWUO4ZCCCEmBy2rUxPtZWa0FxWTerefDoebhGbFahjYsllsho6uqnQ4h1exsjraiwIc8IZy49hP9H1rGNizGRRgTrT7pPvMjrDUx9uhCs7paOCcjgbqvEEOeoIYMl6vYM2ePZuqqipeeumlEe/jz3/+80nre1QdVU12uLq6ugCoqanhxhtv5MYbb6SmpmZE+wqFQtx1113D3q6gE71HHnmEF198kQ0bNrB//346OzuJRCJ4PB6qq6tZuXIln/jEJ1ixYkW+Qx21K6+8kuXLl/Paa6/lO5Rpr6QniWrCnmofe6uPP8ZgOFTD4JydHcR7c4PTDQV2zAqMer9CCCHEePGn4lRHw4TScayHJhbPFSMrH5DMjXYgQsTmoDLRx5Ledhb3thPVbOwMlBC2uwasN6+vCwuQUDW6HC667S4SFg2bYWA1sliNLJqZ+7n7XdsOVdTm4O1QOUt72pjT183svm6anbnCaqIw3HnnnZxzzjmcc845FBUV8cILL3DRRReNeH/z58+ntrZ27AI8yoc//GE+9alPcdlll6GMch7lYDA49RK91atXs3r16lHvJ1/TL9TW1g7r2Bs3bhzHaMRQdfkdmMDsxgiGorC/0jOqFr1AJIVmQEfAwf4ZXnrdNgxN7hAKIYTII8PAradRUFDtVlQjy4xYhLJEH95MCpVc7zpdUem0u2h0B+iyj/2E4k2eAD02JyXJKCXJOP5MkrM6m8ioKgmLlbRqQTMNAukkSdXC+opZY3r8d+t0ennB7qYsEWVuXxeViT66Eu7+rqaTyhTsuvm1r31tbOMYR48++mi+QyjsRE+IfEg6NN6YH+K0vd0sqA8zvz5M0mbhtcXFxF3DG6e3eF83pT1JcLjpCNjp9jvGKWohhBBiaOb1tlMTC/d3cPSlfEQiuV4nJhC3WOlwuql3B0hrQx9HNFJxm52DNjsHfUVous6icDvBVAJvJtUfY9Kisal45N3ohkVVaXP76HC6uahlP+XxPkLJOOWJPtRDN/AzqoU+q51Oh5tWl4cslomJTUwan/zkJ1EUha9//etUVBw7LdfxdHR08MUvfhFFUfj5z38+6hgk0RPiONqL3fwl5KSqPc7Cg70401lCfWmcqSxV7THqKr2EvYMP1K7qiGExIOa3UF8+sq4kQgghxGgt7WqhNBnFRMGCSVK10OLyAVBpt9PtNOm0u2hzjq4Xy2jpmsaWosKYE9mh6yhAUTKOBZO0ohKz5m74uvQMRak4xak4C8IdZBWFuNVKr8NBq8dDj92R9/n4FLOAJ0wv0LjG0uHqnv/v//2/ISd6kUikfztJ9IQYT6pKY7mHWc19aFmdis44ReHc3cWKrgSdAQcJmwXVNA+dTE0ymkqPz07GomJYFBpK3NS2xXCmpt/8g0IIIQqDK5OiLBklo+QqU3Y5XOz2FYOqogBJh41mm7dge/nlS1yz0qfZ8Ohpeq0ONhfPGJC8qYZBcTJGSTKKP5PEk07jS6epiUQwgZTFQo/DydbSUinqUqDWrFnDjh076OnpwefzMXfuXC699FJuvfXWSTc39/FIoifEIFpDTma19FEUTpG2qmxaVMJpu7so7k0OqOuVK+kMM9tix+xDBeY1RNg9MzAxQQshhBDkpkSYE+lGATocbiksMhyqysaymSd82lBV2l1e2l3e/gnTXek0FX19FCUSeDJpymNRig7GafD58KQzuDJpHNksFiM3RUXY7uC1UVR2PKlJMEbvcJfhw+x2+wmr6I+HF198sf/nrq4uurq62LhxI9/5znf43ve+x6c//ekJiwUgmcyVN7LZRjGl11Ek0RNiEHtqA+ypDQx47OUzKlD13EnaUOm/w+dI6hSFk6iGiWqaWAzwxtL4MlDTGqUt5KSkN4mSNWko95B0yJ+gEEKIQRgGDkPHl06hGbkeIqYCoKCYJh49TSCVwJXN9I8hM5TcbHLaod+zKDR6Rl9JWpxc3GZjX1ER+w79XtPbw8KuLub09mKSe1/SqoWo3YY3nSKQSjKrp5sDwVA+w86b6urqAb/fddddQ574fDRmz57NBz/4QVasWNEfw/79+/nd737HY489RjKZ5JZbbkFRFNauXTvu8Ry2fv16YOzmC5SrTCFG6HiVM5MOjSaHZ8BjCjB7ZwRr1mTllvb+x+c097Grxs+BKt94hyqEEGKyMQyqohFqor04s/qgM8MZ5AqWpFUN1TTRzNxscmHNxl5fEVGbFAPLh/pAkEafH3c6TZ/NdkzXzwsO1jGvu5u0qtLkD+Qv0DxpaGjA5ztyHTQRrXkf+MAH+MQnPnHMlAdnn302/+f//B+efvppPvjBD5LJZPj85z/P1VdfPaTE65577jnu4z/60Y8oLS096bapVIp9+/bx5JNPoigKK1euHPoLOglJ9ISYAFtmB3FZMsTtGl1+Owpw+q5OFtSHsRgme2vkLqsQQogj5vb0MCfcgwn02Jz02exENRsZ1cLhfm/KoZ+iVjtJbWy6eomxZ6gqfY5jE21DVVlXXcMF9QdZ0tmJPZslpWmEEgkCyWR/MZiY1cprlTNAHeZcbJOg66bP5xuQ6E0Ev//k11xXXnkld911F//0T/9EPB7n5z//OV/96lcH3e/dd999TPJomiY//vGPhxybaZo4HA7uuOOOIW9zMjIyVIgJkHRY2TKviL01fnr8Drr9Dp4/o5KUVWVuY4QFdT35DlEIIUQBaXW7Aei2OXmjpIo9/hJa3H46nR46nV46nV46Dv0rSd7kpWsar1RVYygK83p6WNrRQUU0ii2bpc9mo9fuwJ3JsKKxEfI0L/R0dPPNN/cnbUeP4xuMaZr9i6IoKIoy4LETLXa7ndraWj760Y+yYcMGTj311DF5HdKiJ0SeGJrKi6dXcMFbrcxujmIoCnukWIsQQkx7Vb29LOrqxASaXdK9f6pL2my8UDOT4kQi14LrdJLWjlyiL+jsoDYcpupdhUsGI9MrjFxpaSnFxcV0dHTQ1NQ0pG2MQwV2DlNVFUVR2Lp1K4sXLx6PMAcliZ4QeWRoKgfLPSysDzO7uY+WYheGqmAoCrpFQbfKBKxCCDEVzYiEmd/VRdju4I3y8v6xW6phML+7CxXYEiijzS2J3nSgaxqtXu9xn9sTKmJmOEzoUEVGMTHMUbag1tTUoCjKmFXQHAlJ9ITIs4OVHma19GHPGKx6u23AcwcqPOycFcxTZEIIIcZaRSTCgq5O7IaBCRQn4qxsbOCt8gq8qRRLO9qxmCYRmy03ebmY9s5tbEAB7NlhzslrKofLsxaeQo3rkPb2drq6ugCorKwc0T7q6urGMKKRkURPiDwzVJXnzp5BcU+CYCSFN56hrCd31y5hlxY9IYSYrDRdpyYSJmq10e714k6lWNbRjoFCvdfLruISlnS0UxGNsqqhHshVz9xWUkKTz48lWdgXw2JixKw23JkMer4DmUZ+9rOf9bforV69Os/RjJwkekIUiIymUtEZx5XKYgJNJS4OVkqXHSGEmKxWNjXi1HOX59mOdpRDF47rq6tJHOrOtaWsnAOBJNWRCCmLhbpAEEOVWnniiLcrKlCAMmO4LXoUfNXNiVZXV0dPTw+nn376Cdd5+umnuffeewFwOBzceOONExXemJNET4gCUNyd4KydnQC0FjnZOiuAbpM/TyGEmKxqentx6jotbg9xq5WKaB8A+4PB/iTvsKjdwY4SmedOiMGsW7eOvXv39v++c+fO/p/feustHn744QHrr1mzZsDvdXV1XHTRRaxYsYKrrrqK0047jdLSUkzTZP/+/Tz22GM89thj/a153/72t5kxY8ZJY7r44osBUBSFZ5999pjHR+Ld+xopuZIUogAsqA+jAHtneKXyphBCTHKHC6roisI7paWgquwtKsp3WEJMeg899BCPPPLIcZ974okneOKJJwY89u5E77ANGzawYcOGEx7H5XLx3e9+l7Vr1w4a0wsvvABwzBx6L7zwQv/0CkN1eP1372ukJNETogDsqfZx5q4u5jb10R5yEvba8x2SEEKIEdB0neXNTaimyZaS0v5qmkJMNJle4Vhnnnkm//Vf/8WGDRvYvHkzLS0tdHZ2ous6wWCQJUuWcMkll/CpT32K0tLSIe3zggsuOG5idqLHJ5IkekIUgPagg6wCFhMWH+ilx2sjFEkB0BZy0uOz0+u1ybgNIYTII5uuc25jIzYjS9RqJauquDMZrEdVQzx8Wdfi9tDik3HWQoylhx9++JjumcPh9Xr56Ec/ykc/+tExi+lwi95QH59IkugJUQhUlb+cM4Pz324jEE0TiKYxyF0w+GOZ/tVM4E/nzpA7xEIIkQdzerpxZnUSmoY3nUYBMqpK2G7HVBRUw8RUFPaGgnS73PkOV0x3Uoxl2pNET4hCoaqsO72CYDhJ2qoSc9nAMAj2pQlFUsxviKBbFEnyhBAiT7yp3E24l2bW5jsUIYQYlCR6QhSYHv9RlddUlR6/gx6/g9qWPqy6ydyGMHur/fkLUAghJrniWIyacBhbVsdUFLzpNKppErXa2B8M0ur1HruRYeBNp8jIzTYxWRTwGD1p0Tti3759dHZ2UltbS1lZ2ZjuW85WQkwSry0qAWBWU1+eIxFCiMlraVsrZ7S2UJyI402n8aVSpFULEZsdTybNqe1tXLp/H6e0tuJIpwEIJuJcdLAOzTRplHF3Qogh6Ojo4Ec/+hE/+tGPCIfDxzy/d+9ezjzzTObPn8/KlSuZMWMGH/7wh+nt7R2zGKRFT4hJos9rR7coZNX8VnASQohCo2YNyvviFCXiODM6FtPAYhhYzNyYuaRFI2HVcKfTBFMp+qxWXq2qPqbAlWoYzOrpoaovQnksSnks2v+cCewJBtkfkmkShBCD+93vfsdnPvMZFixYwG233TbguVQqxXvf+17279/fP/2CaZo8/vjjdHZ2jlkhF0n0hJgkinoSaFmT1pAz36EIIURBUA2Dpc0dzAhHUTjSG8wETEXpL2rlymRQkrnHux0ONlVUHne8s6Gq7CsqYl9REZ5kklm9vdiMLFlFZXtJCWlNLpvEJCLFWPLqL3/5C4qi8KEPfeiY5x5++GH27duHoihcffXVXHLJJfztb3/jqaee4uWXX+a3v/0tH/nIR0Ydg5yxhJgkQuEUChDx2PIdihBCFITVe+px6lniVo0DvgDtHs8JkzHVMACGPE1N1OFgS3n5mMUqhJhedu3aBcDy5cuPee7Xv/41ABdffDF/+MMfAPjsZz/L5Zdfzt/+9jd+/etfj0miJ2P0pggtrec7BDHODlR60FWFxQd6CYaT+Q5HCCHyRjUMTmtoxaln6XA7eWH+TBoDgZO2uBmqKnORiunFLPBliuvo6ACgsrJywOOJRIINGzagKApr164d8NwnP/lJAF5//fUxiUHOeFPE6rfaqGiP5TsMMY50m8Yry0oxgbO3d+Q7HCGEGBZbRicUjeNOptB0HQ61sA2HK5lm5b4G3rPjABWRGFkFDoakCrEQovAcLqqivusG08aNG8lkMiiKwqWXXjrguVmzZgHQ3t4+JjFI180pwlTgtL3dLD7Qw66ZARrLPfkOSYwBLa1z1s4ufPE0GYuKblFRyJVLVg1D7k4LISaNVfsasGePJHcmkLaovDWjjC6va9DtXak0F+xryHVht9vYWxKkzS/fdUKciFLA0ysUalxjyePxEA6HaW1tHfD44UIrS5YsIRgMDnjOarUCoI3ReGC5SpwiXji9goZSNxbTZNn+HhYe6Ml3SGIMnP9OG4FomqTVgmqaONM6KavKrhq/JHlCiElla0VJ/88dbidtXhe2rMFpTW2DbqvpOuftb0QBNs6sYP3caknyhBAFbeHChQD86U9/GvD47373OxRFYfXq1cdsczgpHKv59KRFb4owNJWtc0NsnR3gwjdaqW2JktZU5jZFwISOoJN35obIapIcTBa2tI4zbdDjsfHqKWM7gaYQQky0Nr+HF+02Vu9rIGnV2DKjlFV76vGkM8zu6CFh1YjarfQ5HQO2q+3sZUF7F6oJWyuK6fYM3vonhBD59r73vY9XX32Vn/3sZyxatIgLLriARx55hG3btqEoCh/4wAeO2eaNN94AoKqqakxikERvqlFVXl1ayuo3WljQEAEgaVUp707ge7uVF8+sHGQHIm8MgwX1Ycq6EjjSWdRD3Rp6vVJlUwgx+RX1xTi7vjU3xYE7l8ztKQlyWlM7C9u7+9fbXlZEXXEAAItusKiti6yi8NaMEloC3jxELoQQw/eZz3yGH/3oR7S0tPCZz3xmwHMrVqzgoosuOmabp556CkVRWLVq1ZjEIM07U1DSofHqslI6/HYaS1yEPTZMwJKdBh2iJ6nSrjgXvd7C7OYojnSWuEOjpcjJq0tK2DkrOPgOhBCiwM3v6EEFwg4bHYda5VoDXv60aBav1ZSjKwoADj1XRVrNGv1j8t6RJE8IMcn4/X7+9re/ccYZZ2CaZv+yatUqHn300WPWf/vtt9m0aRMAl1122ZjEIC16U1TYa2fzomIu2dSMNWsSc2i8vrAo32GJ45jRFuWUfbkxlXVlbnbMCeU5IiGEGHtvVpVy3v5m/Mk0l+w6SMRhY1NNBWmrRqfXza6yEItbu5jVFaY+4GNuZw8OXWd/kZ9WvyR5QgxbIU9jUKhxjbFFixaxefNmDhw4QGtrKxUVFdTW1p5w/V/+8pcArFy5ckyOL4neFDa7qQ9b1mRXjZ/9Vb58hyNOIO7QMAFDQZI8IcSUlbTZeHZhLcFYggVtXQQTKS7efZBNNeV0ed0cLArQ7XJw/v4m5nd040umMRSFneXF+Q5dCCFGZdasWf1TJ5zIqaeeyqmnnjqmx5Wum1NYdVsMQ4H9lVKZLC8Mg4r2GMv2dHH6zk680fQxqziSOuWdcTKa2j8mTwghprIet5NXZ1fxWk05AGfXt+bm1QP6nA5SmoWyvhhJzYLFNPEkUvkMV4hJ6/D0CoW6iPEnLXpTVFFPAmc6S0uxC/Jchr+2OZJrXcwY1FV4CHtsxG0Wwn7H4BtPYmft6KQknLtAcfk0zt7WTnOJG2dKp7g3SdpqQcsaWLMmJtAacuY3YCGEmEBdXjdvVJdzVkMrs7rD7CnNDS/YVRLilJYOiuNJTMCu60Sx5zdYIYSYhCTRm6LmHaq4GfZYmV/XQ12ll7RtYt9uR1Ln7O0deJI6uqqgALNaokCua/bmRcV0BqdmcqNlshSHU8TtFl5fVMypEfBGItS2RjGBjKbgSGdRyP1f/GlldZ4jFkKIiWc1sgBkVEv/Y00hH7pFoawvTovfQ5fXna/whJj8pOUs7zKZDE8//TTr1q3jwIED9PX1kc1mT7qNoig8++yzoz62JHpTlJY1UIBFdWEAKjsTvHDWxE2tMO9gL3Oa+gBoKnbxztwgrlSWGe0x7BmD6vYY3lhmyiV63r4Uc5r7KO1OALB1dpCYy8ZBj4OmUg172iBpU0FVuXxDAxY5AQshprFgLAlA87smP2/ze2mTAixCiEnuhRdeYM2aNTQ0NPQ/ZponvvhTFAXTNFEOVSEeLUn0pqhXl5Yyq6mPuFOjoitBcW8STyxN1D2+c7K542nO2tGJK5Ulpam8vqiYsDfX5SbuVNk3w8fKLW0AdASnUNdNw2DF1g78h8bhZTSVbTP9dAWd9P+pqipJx5FutJ0BB2U9SfZUS6EcIcT01O51U93bx8oDTWytKKZTWu+EEFPEtm3buOKKK0ilUpimic1mY968eYRCIdQJGlYlid4UpVst7KkNANDld3DhGy0s3t/Da8vKxu2Yod4Ey7d3AnCwzM32WYFjxgeuersVVyrXXD3eSedEKu1OEoim6fHYeGt+EUnH4H9a3lgGXVXYV+2fgAiFEKLwtPvcNAa8VPX2sby+lT6blZfnVOV9bLkQU4JMr5BX9913H8lkEovFwte//nVuv/12PJ6JLZAoid40oKu5v6eivjT+cHLciqDMr8+NC1x3atlxk7i59WFcqSxht5WmEte4xJAPjqTOooO9mMA780JDSvIAXOmT988WQojpYMuMUnaUhVjW3EFFX5yFbd3srJApFYQQk9sLL7yAoij8wz/8A1/84hfzEoMkelOYqhucvruLkt4kCqCrChmbZdDtRirqshKMprHqxnGfD0TTmMAry0qn1N3aFVvasGcMmkpcxJ3WIW2jGsaAn40p9P8hhBDDpWsab9ZUUL5tHzN7cjcN95YE0DW5TBFipAp5GoNCjWssdXd3A/D+978/bzHIGXSKsqV1Vr/RisUwiTo1ts8O0j3O0xlYdQMTiJygS6YvlsZUmFJJHoaBVTdI2C1smVc09M1UlcYSF1UdcWY39rG3RrpvCiHE/iI/td0RZneHmdUdJmHVaAx42V8UwLBMoe8OIcSUV1ZWRmNjI1br0BoBxoOcNaeohXVhNMNk26wA606vGPckD8OgKJxEtyhktWM/VvPqerFnDA6WT53J2+cd7OXvXm3CYkK3b/hzPG2ZE8x1qQ0nxz44IYSYhHaVF/PnxbN5raacLpcDu64zv6OH9+w8wAV76pnV0QPG8XuNCCHexSzwZYq7+OKLAXjrrbfyFoO06E1Rfa7c3QNHavzGgQXDSaraYziTOu6kjjVrsnfGseWwbWmd2c19pKwqO2dOnZar6rYYCrmErbFsBAmsqmKoEOhL4+9L9VcnFUKI6a7T685V4DQMyvpizOoKE0ikWNTezYL2bnpcDtIWlbqiAD3uqTVNjxBiavjCF77Ao48+yre//W2uv/563O6Jryosid4UlbbmWtXmNvfhTGfZV+Ul5tBwJ3Q8iQzuZBYTaA86iA21+qVhUNqTZGZLlGA0hcU4ckMmqyo0F7vYMzNwzGan7OlGAd6cXzRlum2642ksRu7VJ0Yx7nHTohKWb+vgrB2dvHhGBfpxWkOFEGLaUtUjc+oZBjW9Eea39xCK53pClPfFeaeyhKagTFMjxLvJGL38WrJkCY888gg33HADl156Kb/4xS9YtGjRhMYgid4U1VTioqY1ijupU9kZZ0ZnHBN49/SLC+vDmEDGopBwaERcVrr9DtoDdnSbBobBjI441W0x/LE0qplL7hJ2C20hJ/tneEnbTv4xcid1AIoiKWJObdD1C91puzop70qgAGG3la5RTPre43dwsMLDrJYol73WRI/HxqtLS6ZMQiyEEGNGVakPBagPBQBwpdKs3ttARSQqiZ4QouB88pOfBGDRokVs3LiRpUuXcsopp7BgwQJcrpNXn1cUhZ///OejjmFyX3GLE1NVNpxaDoA7lmZmaxQta5KwW4g7NKIODc0wKQ4n8felcSd1vPEMvliG6o74gK7TCrnkLubQaClxcaDCe9xxeCfyztwQy7d3MK8hwtyGCEmbhZdOK8eYhK1XZZ0xyrsSRJ0a22YH6RmDsY87Z/op607gSmUJRtMsPtDL9jmhMYhWCCGmrrJIrvu8K63jTKVJI93fhRCF4+GHH0ZRck0siqJgmibvvPMO77zzzkm3M01TEj0x0PyqNjT3ib/kjEWQBixk8AJHj6SLABEsgAU1aeBsNnG2m1ijJlmHQrJYITJXAU0hnjIpIzK84Mpgy1w33naDUF0af0uW8/e0sPfCie+rPBrOLp15uxOYKtRdbMdpS+Jk8EIqigklphtTieWqjh7HngoXGAaL/hKnpi1GfKlJ2jd+U2FMRj77+BetUUxwZ634LMkTvlfi5AK2xLgfQzEhoGdxaJEJeZ/qCY7/QSaYZ377uB9DMaHUdMNJzn2jUp4ls07Bncpw4d4GdDvsvsiN7px8NxFPpGl36bgfQwEyVpO0w5iQ+hiW5NQ8ueoBfVz3rwDZ9DDfoUIuelKocY2hmpqa/kQvXyTREwMYDpXYbIjNHuMdqyp95Sp95RqLn+nD0Te5qqapaYN5LydAgT0XOjFs43AhoarsX+lkwbNx5rySYMelLpiErZ5CCDER0j4L26/wYA9nqXoriafbIHQwQ/tCadkTQuRfXV1dvkOQ6RXExHJ16WhpiIUmV2tVsD6TGzhsgrdt/CqZpnwWOmdbsSZMlj0dY+7zMQIH0+N2PCGEmOxSfgsZV+5yJlo8ub5bhBhX+Z4+YZpPr1AIJNETE2rOuly3roYzxnlevzHWNdtKyqWgAJXb0gQaMuN2rOZTHTScbifjUnD1Gsx8I8Ws9fFxO54QQkxmgfoMgUadlFshXiwdlYQQ4jA5I4oJpZhgKqBPtp41qoo9nrv9FAuoRIvG965xT62NnlobGAbzXkjga89yyuN9oEBfiYWDZzvGp/uoEEJMElrcYMaWFP4WHcMCuy88eRU7IaYbmV6h8JimSXd3N/F4nMrKSiyW8b2elCtFMaE65lhRTXD2TLIxenouXt0Ge1c70V0T9KejqhxY4STtVEj6VFJuBW97liX/G6PqjSTuNh1nV27RkpPr/1QIIUaj5vUkgWYdTKg/U25+CSEKUzab5Ze//CUXXHABLpeL0tJSZs2axa5duwas9/TTT3PHHXdw3333jdmxpUVPTKisNVd9yB43SfkNnF0GgWYdd1cWi26Scqs0L7ORDBTWR9NQcy2RJmBJQ3YCe57qTpUdf+fp/93XnKH6zSRFBzMUHTzShfTwPIkpt8LOyz3H7kgIIaYQe8xAt8Kui90Td/NNiMmkkMfCFWpcY6y9vZ33v//9bNy4EdM8+YueNWsWV199NYqi8L73vY/TTjtt1McvrKtpMeXFQhZMYObmgaXyDRUMC3g6s8x/PkFPtUbDGfbCmThcVWmfa6V0T4alf4yh22DPKldepkCIVFrZVmnF0aPj7cyCkesCYYsbFB3UsSamydlTCDFtOXp0tJSJblckyRNCFKRsNstVV13Fpk2bsFgsfPjDH2bVqlV85jOfOe76S5YsYcWKFbz66qs8/vjjkuiJySdWqrHvfCe+Fj3XgudR6Z1hJePOfVHbogazXokTatAJNOokvSqJoEr7fDtpT36/zFuXOogWawQbMgQbdea/GGfre915mwIhGdRIBo/6EzYMQgf1SVfRVAghhmrmq3F8bVlUI9cg0D7Pmu+QhBDiuB555BE2bdqE1Wrl6aef5rLLLgM4YaIHcPXVV7NhwwbWrVs3JjFIoicmXKxEI1Zy/I9e2qOy63IPof1pSvemcfQZOCO5BKb+DDu9M20THO1A0XKNaLlGPJRixjtp5rySYN8FhTHxe6AxiwIY8lcthJiCSnekCLRkSTsVImUaHfNseb8BKERBk66befXrX/8aRVG49dZb+5O8wZx++ukAx4zfGym5JBQFqXu2je7ZuaTO0asz96UENW+k0NImnfPyX7Kza46d4n0Z3F0G5VuTpF0q3bVaXrua+lp1ALpnyh1uIcQUlBviTbTIQtPpk2uKHiHE9PPOO+8AcNVVVw15m5KSEgC6urrGJIYxvSq94447UBSlf3nhhRdOuv6+ffv43Oc+x5IlS/B6vbjdbhYuXMjnPvc5du/ePSYx1dbWDojpREttbe2g+/qv//ovTjvtNBwOB9XV1XzhC18gEomccP01a9YMOMaf/vSnQY9xeN01a9YM41VObcmAxs7L3WStULk1Tc2mBOhHVZg0DLSEMfCxCdBdm0uoyvZkqH47xcxNqQk9/rt5O3KJXuWW/MYhhBDjoX2+lYRPJdSoU/tKHAypNCzEyRyeXqFQl6mut7cXOJK8DUUmkyuyN1bTLoxZi97bb7/Nd7/73SGv/9Of/pTPfvaz/S/osF27drFr1y7+/d//nR/96EcFk/Dcc8893HXXXf2/NzY28p3vfIfnnnuOl19+Gbd78O57d955J3/3d383nmFOWbpDZcflbua9GCfYqBNo0snYFSwZEzWbu9Frkpu+oeWUibnT2zHfTsd8O5VvJSk5kCEv/RB0g4odaYrqMlhyeR5Np8qdbiHEFKSq7L7IydyXEvjbspzyZIxYSKVrlo3eGZbCKd4lhBBAKBSivb2dzs7OIW+zY8cOYHjJ4cmMyVnRMAxuvvlmdF2ntLR00PX/53/+h1tuuYVMJkMgEODrX/8669ev57XXXuNHP/oRM2fOJJFI8KlPfYo//vGPYxEi11xzDVu2bDnh8pe//OWE227fvp2vfe1rOBwO7r33XjZs2MBvfvMbFixYwJtvvsm99947pBg2bdrEk08+OSavZzoybCq7LvNQd5aDhFdFzeYqrkXKLXTMtpJxKJTuyzDvudiExuWMZAHQkibe1swga48dX3OGU56OUbo3d8z2OVbevspNX7n0yBZCTFGqyt4L3Rw8y0HaqeDuMpi5OcnSZ2KoaWnhE2IAs8CXKW7JkiUAvPTSS0Pe5r/+679QFIWzzz57TGIYkyvCH/zgB2zatImFCxfygQ98gG984xsnXDcej/O5z30OAK/Xy/r161m8eHH/82effTYf+chHOPfcc9m3bx+33347O3fuxGYbXRGOQCDA0qVLR7Ttb3/7WwzD4F/+5V/47Gc/C8C5557Leeedx/z583n00Ud54IEHTrqP4uJiOjs7ufPOO7nqqqtQFGVEsQgIV1sJVx87Dq15mcH85xK4wgbBujQ9tRNTuKV9vh3npgTuboNZryZ55+qJubNc83oSxYTmJTY65ud/3KIQQkyU3morvdVW0A1mbElTXJehdHea1qXSo0EIURje//7389xzz/HDH/6Q2267bdDGsJ/85Cc8++yzKIrChz70oTGJYdRXow0NDfzzP/8zAD/+8Y8HTcj++Mc/0t7eDsDf//3fD0jyDisuLu5PnA4cOMBvfvOb0YY5Kk1NTQBcdNFFAx6fMWMGCxcu7H/+ZO644w4g18X197///dgHKUBVsSYNTMDVYzD3hRjFe1Ljfpe3r1zjwLnOI/1HJ0jSm/vzVeQmthBiutJyvTsAtPQ0aCIQQkwaN998MzU1NXR3d3PxxRezcePG4663a9cubrrpJm6//XYURWHp0qVce+21YxLDqBO92267jWg0yic+8QkuvPDCQdfftGlT/88nG6929HO/+93vRhXjaB3OwF988cUBj7e2trJr1y7Ky8sH3cftt99OWVkZAHfddReGDCIfV0V1GVw9BjO2pln6TIwFf41ijY3T/7lhMOvVBAD1ZzompDWvdEcKV49B2qnQPl+qbAohpq9Yca5oQahep2JLUoq0CHFIvoutTPdiLHa7nSeeeAKfz8f27dtZuXIlNTU1/c/fcMMN1NTUsHjxYh5++GFM0yQUCvG73/1uzHr+jeqK9NFHH+Xpp58mFArxrW99a0jbdHd39/98siZMj8eDy+UChte3dTy8//3vB+Af//Ef+cY3vsGrr77KY489xiWXXEIsFuMjH/nIoPtwuVx86UtfAmDbtm15b6WcquqWO4kVqUSLLWz/Ozd1ZzvoK7Vgj5oseG4cxnAYBvNeSGDRoWWxjd6a8U+6Zm6MU74zjW5X2H2hSwoQCCGmte5aG+1zrRgqlO7NMGddIt8hCSEEAKeeeiqbNm3i3HPPxTRNGhsb+5978803aWxsxDRNTNNk+fLlbNy4kblz547Z8Uc8Rq+3t7d/rN03v/nNIVeHObo6ZTgcPuF66XSaRCJ3su7p6aG1tXVILWcn8tJLL3HKKaewb98+TNOkrKyM5cuXc/3113PNNdecNHM+66yz+NznPsf3v/99vvKVrwx4bunSpdx5551DiuGWW27h29/+Nk1NTXzta1/j2muvHbPyqSInVqqxr/TIxzpcpRKushKqS1P1Zor5z8XZefnYJUfuLgNXOJc8dswd/ySvdEeKQHOWeEBlz2qnJHlCCAG0LHPQsszBvOdjuLsOTbejyflRTHOFXPSkUOMaB3PnzuWVV17h5Zdf5sknn+T111+nvb2dbDZLUVERp59+OldfffWQJ1UfjhEnenfccQetra2sXLmSm266acjbLVy4sP/nl19+mTPPPPO4661btw7TPPIpqK+vH1Wid+DAgQG/19XVUVdXx6OPPsp5553Hb37zG2bMmHHC7b/3ve+xYMEC/u3f/o09e/ZQVFTERz7yEe655x58Pt+QYnA4HHzlK1/h9ttvZ9euXfz3f/83N9xww4hfkxi67lobjrBByf4Ms9cn2b/KdfINDANfS5aMQyERVHMJlW5Q/XYKa8KkY7aVWLGFUH2u4qVuY0KSrmCjjqEgSZ4QQhxHd41GVW+aYKM+YQW5hBBiKFatWsWqVasm9JgjSvTWrVvHQw89hKZp/OQnPxlWP9IrrrgCTdPQdZ3vfOc73HDDDYRCoQHrZDKZY1rJ+vr6RhIqNpuNq6++mssvv5ylS5fi9/vp7e1lw4YN/PjHP6ahoYH169dz2WWXsWHDBvx+/wn3deutt3LrrbeOKI7DPvWpT/HNb36T+vp67rnnHv7v//2/aJqUw58Izac6cIazeDqzuLp04kWH/t8NA0fEIOnLJXTlW5OU7slw+FNtKpB2Kmip3Jx9AN6ObP9+Uy6FvYMljmPGxFSRJE8IIY6ja6aVGVvSVG5L0VOjyblSTG/SojftDfsMmE6nWbt2LaZp8vnPf55ly5YNa/vq6mpuueUWIDfp+HnnncdTTz1FX18fyWSSdevWcdlll7F+/Xqs1iNd4Q534xyu1157jSeeeILbb7+d1atXc9ppp3HhhRfy5S9/mW3btnH55ZcDuQkKv/a1r43oGMNhs9n4p3/6JwD27dvHww8/PO7HFEdEKjQUcnPeWZIGtRvinPJEjAXPJzjlyRgL/xylbE8G3ZabtqBtvo2kR0VL5xKs5qU2tl7lpm2O1n+OCldo6K6JuZjQUiaGJlNzCCHEcWkqrQtsWNKw9OkY8/8aw92h5zsqIcQ0pKoqmqaxffv2IW+zb9++/u3GwrD3cv/997Njxw5qamq46667RnTQb3/72+zfv5///d//ZefOnVx99dXHrLNo0SIuuugifvSjHwG5OfdGIhAInPA5r9fLo48+ypw5c+jq6uJnP/sZDzzwwKjn7BvMjTfeyAMPPMD+/fv5+te/zg033DD6Y05QBaPJXiVJS+VeQM0bSdRD3/0pj0K0VMPdmcUWM0g7FPaudqE7c8lb2+Jj56hrW+akY4HB/OfjlO7LUFSXIR60kAiqxIosxIotGIfGh/RXmDpePHGDOevi/XGpRq4F0dAg7rfQtshGInSk5dGSgWiJOunfh5GYsM/3NKkGNl6m4vskn4eROdm5bzx1LLSDBiW70zijBlVvpdh96eTsOTMR/3fKUctEmKq3Ksf7dY3kPZrI93W4CjWusXb0MLSJ2O7dhnXm27lzZ/9k6A8++OCAwirDYbfbeeqpp/jlL3/JD3/4Q956663+F1RUVMSaNWv42te+1l/sBSAYDI7oWIPx+/1cd911/PCHPyQWi7F582ZWrlw5Lsc6TNM07rzzTtasWcPBgwf5+c9/PuouoaGsF1t2/CfNdpiTe8yDsdCJms59+WdcCp2zbCSDuYI4R5cGCsHg3Qqs0H2pm6IDOv4WnUAalDagLbdpyqPQeJodU1MJmk7evcsZbyZx9yqgeUGDlBMMTUExcy2OwRTMeAvSztyk7Cmfgt9ngaCF0owVe9wk5VGmTdckd3b8i90oJvgNV25KxOnyLTTGvPrEvE/erGfC3qekObLvuulOMTnuuW9CzHHTOQdmvxzHpUCpOVHd68eYdfy/1xWgVMv93U7E+2SZojdOshNQXC9kyQ6+kpgSxmp6hWElet/97ndJp9PMnj2beDzO//zP/xyzztatW/t/fu6552htbQXgqquuGpAYqqrKTTfdxE033URfXx9tbW04nU4qKipQD124btmyJRekpjFv3rzhv7ohOnrS9qFMfj4WPvaxj3H//feze/du7rvvPm688UYcDseI99dt6cNqSY9hhMcX0UceY0GwQPvph38xgeTo9zcXmAsYBvaoiadTx9ecxdOcxZm2ULfCgSVtENajqGkTLW1SsjtNtsegyw4d82z0zrAeakE88g2oJQ2q3kzibcvia4OsFSIZIAJlu4/Mz570qfTUaHTOtk7ppM9nGeV7NQSKmfs/7bb0SaI3Qllt/EvbH36fwlpkQt6ndkWqI4/E4bemXYnl7e8pmIqiJU3aJ2mzbFNm/G8yHH5rmjKpiUn0UlPz5Ko7x7eLsAJks5PzcyyGrrOzE2DEjWnvNqxEL5VKAbB//36uv/76Qde/9957+38+cODACYP2er3HdM2MRqO8/fbbACxbtgyn0zmcUIdlrJpHh8NisXDXXXfx0Y9+lKamJn76058OaMEcNmVi7mzLxe9JWFSSfkj6LXTOgXnPxfB0Zln6VAy/z0JxJN6/qgnEAip15zr7u4i+W8apcmClCzVpULk9ha9F7x9XnfKpRMoseNuzOCMGlVvTVGxNk/KoNC+z01c+ObspncyEffYO/S3JZ31kpuL7JJ+FkTPJ799Twm/BH9NxderESibfeXGirk7Mo5aJONZUVJD/d1KMpSAMtXUuFovx4IMPAjBnzpwxOXbBnvV+//vf9yeW11577bge6+hBkpWVleN6rKNdd9113H///Wzbto0HHniAm2++ecKOLcbfwbMc1LyRJO1WMTwaXeU2dCtkNYgWa6R9Q2slMBwqjWcc/0ZHK4BhEKzXKarL4Oo1mLUhQetCG+2Lxr/LjxBCFLKmZXb8LTpz1iWIFal0zrIRnmGZ0r0fhBD5MXv27OM+fvnllw8oMHk8qVSK9vZ2DMNAURSuuuqqMYlpWIneww8/PGiVyLvvvru/euXzzz/PhRdeOOygUqlUf2ug0+lkzZo1w97HUIXDYX7zm98A4HK5OOuss8btWO+mqip33303H/nIR2htbe0vPCOmhrTPwt4L3SgmlJo22hX7+NzVVlV6am301NpQ0wZL/zdG+c407QumdldOIYQYjO5S2X2Rk5pNKdxdBp6uJObr0D7PRusSuRkmprbDBZEKUaHGNRp1dXXHPGaa5rCHhZ177rnccccdYxJTXlr0Ojs7cbvdx+2OmUql+PjHP87evXuBXOJ4oonSL7zwQl588UUg1zW0trZ2wPN/+tOfWL169Qm7fUajUa699lq6uroAuOmmm7DbJ/bE/6EPfYhTTz2Vt99+m29+85sTemwx9Rg2la6ZVorrMiz53xj7z3OSCBZsw70QQoy7pF9j96Uaqm5QtD9DyZ40ZbvTKIZJy7JJPu5cCFEwPvGJTwz4/ZFHHkFRFK6++uqTzgKgKAoOh4OKigpWrlzJxRdfnJ9iLGPlhRde4Oabb+ZjH/sYl156KdXV1cTjcTZv3syPf/xjdu/eDcD73/9+/uEf/mHEx3nggQf46Ec/ygc/+EHOP/985syZg8fjIRwO88orr/CTn/yE+vp6ABYsWMDdd989Fi9vWBRF4Wtf+xrvf//7+wdgCjEaTac7SLsVKralmfeCdOMUQggAQ1PpmG+nY66VRX+OU7I3Q0+1RjIgN8PEFCVj9CbUL3/5ywG/P/LIIwDcd999Awo/TqS8nd16e3v5t3/7N/7t3/7tmOcUReHTn/40P/jBD0Y9YWB3dzcPPfQQDz300AnXueCCC/jVr35FKBQa1bFG6pprruGss85i8+bNeTm+mHo65tvxN+m4ew1K9qUl0RNCiMNUlX3nO1n4tzhz1ifYdYkb3XGkm7sWMyjdm0a3K0TKLCT9qnSDF0IM2+H5xktLS/MWQ14SvVWrVvGtb32LZ599lp07d9Le3o6qqsyYMYOLL76YT37yk2MyVu7b3/42zz77LBs2bGDXrl10dnbS29uLy+WisrKSc845h+uvv57LL798zJpIR+qee+7hiiuuyGsMYmpx9RoANJ0iXZOEEOJoaa+F1kU2ynekWfzHGIYGWauCblNwhY3+9Sp2gKFCb5VGw+l2SfiEEEN2ONHLJ8XMx9wCYsxEIhH8fj+X/u+n0dzj32oTSUnSMFy5YizuCZ9Lqua1BIEmnawV6pY7iZVO7u5JPvvEzKNXlPXSJfPojVjANjHz6AV0H70TNI9efV9w/A8yBeXr3Dcc7g6d0l1pHFEDVTdR9Vzcuh0Onu3E16oTaNSxJU10KzSc7iBSMXFVO5t2j39LgALMsNonbh69ZIF+GEZJD4z/PHrlaZONt32JcDiMz+c74bqHrw2XfPp+LLbCvG7LppNs++lXBn0tYnQm95WfEOKE6pc7SexOUbE9zZz1CfpKLBw814GhyR1pIYQAiJVoHDjJ/HqxEo2WZVCyJ0XFtjSzXkuS8KnsvmT8JzIXQkwd2WyW7du3c+DAAfr6+shms4Nuc8MNN4z6uJLoCTGFdcy301VjZfarCbwdWZY8E2P7e9xkHZLsCSHEUHXMs9M108rclxI4IgaOHp2kVDQWBU6mV8i/eDzOPffcw89//nO6u7uHvJ2iKGOS6MnVnhBTnOFQ2Xuhm54aDdWAOesSqElj8A2FEEL0M2wq9WfmhkjMfyFByZ4UGHIuFUIcXzwe58ILL+Rb3/oWXV1dmKY5rGUsyO0oIaaJlsV2PO1ZHH0Gs15LsO8C6XokhBDDkQxq7L7IydyXE1RuTVO8L8Oui10YNrlvLgqQTK+QV9/61rf6K+qfcsop3H777ZxxxhmEQiHUCRrnK4meENOE7lTZ8V4P856L4ekyWPy/UVoX2+iutR2z7oy3kjh7s6TcKimviqqbGBaF7lnWAWXIhRBiukkGNLa+z82Md9IUHciw+M8xdl/kJu2Rc6MQ4ojf/va3KIrCqlWr+Otf/4rVap3wGCTRE2KaaTrVztyXElhTJmU70scket5WneIDGUzA1WNwdH208p1p0m6FrllWuqutZG1IuXEhxPSjqjSd5iARUKl6M8WCZ2PsPd9Jokguq0ThkDF6+XXgwAEAvvCFL+QlyQNJ9ISYduJFGu98wMspf+jDsBz7vG7N9ajordJoPN2OI2yg2xSscZOy3Wk8XVkqt6ap3Jom6VbYdbln1DFZkgah+gyOPoO4X6VrrkzwLoQofN21NtIOldmvJpj3UoKDyx2EZ+Tngk4IUVicTifJZJKqqqq8xSCJnhDTlKmAPWay8M9RUMCwKMRCFuLBXAudsyeLoanEi3K/p72wv0wDwyBUr1P5TgotPfpbctWbEgQb9f6WwxBQsSNNVlNIuxUaT3OQ8h0nIxVCiAIQLc+N25v3YoKZryVpPNWke/axXeKFENPL0qVLefnll2lsbOS0007LSwzS50qIaWrfeU7SLgUtbaKlTOxRg+K6DDVvpgBoW3SCVjVVpbvWRtamoBwqOOfu0Fn6ZB9Lnu6jdOcQKtEZBqH9KareSBJs1Mk4Ffaf42Db37lJeFSyFgU1a+LpMpj9yvhPwC2EEKOR9GvsuMyNoUHVOymsManGKQqAWeDLFLd27VpM0+S//uu/8haDtOgJMU3FizV2vmdgt0tbXxZvu0643IruPvl9oN5KjdJ9GareSOJrzWDJgpnNtcaV7UqT8KvodgXzcFOdAlmrQucsK7M2JrElcmf5rAX2rHL1H2/3Ze5DsRgs+lsMW8JETRsgvTmFEAVMd6ocONfJnHUJFjwbo22Bjd4qK1krGBoynlmIMdDW1sbGjRv7l02bNhGJRAC46667uPvuu4e1vz/96U/87Gc/47XXXqOjo4OSkhKWL1/O2rVr+bu/+7tRxfp//+//5cknn+S3v/0tZ511Fl/4whdGtb+RkERPCNEv7bXQ5R1aN8mWxTaCjTpFB3OFW1Juhd0XuwgdyFC8P4Or1zjuHbuigzoAnbVW2hbZTljFM+1VaZ9rpWRvhgXPxmm6UgVNLpSEEIUrVqJRf4ad6rdSVG5PU7k93f+cCSQ9KnXnOEhLd3QxAaZiMZby8vIxOb5pmtxyyy387Gc/G/B4U1MTjz/+OI8//jhr167lJz/5CYqinGAvJ/fSSy+xdu1aGhoa+OIXv8hjjz3G9ddfz4IFC3C5XINuf8EFF4zouEeTRE8IMTKayvYrPPiaM6TdCkl/7nTSOc9O57zjN79ZYwYle9NknAod8wdvomtZ5sCwKJTtSjPz8SzRmQbJYoVUSEEPSNInhCg8vTNt9FZrBBqzOMNZ1Cyoeq57vKvHYOFzcfaf6yRaLpdgQozG7Nmzqaqq4qWXXhr2tv/0T//Un+Sdfvrp3HHHHcyZM4d9+/bxL//yL7z55pv87Gc/o6SkhK9//esjiu/CCy8ckCRu2rSJTZs2DWlbRVHQdX1Exz2anGWEEKMSqRx6hbmMW6X5VMew9t+22I5uh8rtaXz7TXz7c7cBDTVLZL5Kz2lyZ1wIUWBUld4alV4Gnh+dXTpz1yWYvSFBxxwrLacM73woxLAU8li4EcZ15513cs4553DOOedQVFTECy+8wEUXXTSsfezdu5d/+Zd/AeCss87ipZdewul0AnD22Wdz9dVXs3r1ajZv3sw3v/lNbrzxRubMmTOieE0zv2+AJHpCiILXNcdOZrGJFjGw94Cty8RbZ+DfaaBFTUwN7F0mqJAsyt09czWbWJJgaqC7IRVUSJQp6G4FLQ6WeO7km6hQyASldVAIMf4SRRo7L3Uz96U4pfsyBJp09qx2obvkHCTEUHzta18b9T6++93v9reWPfjgg/1J3mEul4sHH3yQFStWoOs63/ve93jwwQeHfZznn39+1LGOliR6QohJQ/ep6D6IzYSeUxSqnsniaTRzNy1VUABb+FCLnwVSRWBJgtYH1rCJt+7YO2vmO2BYs8RnKISXqOA8ZhUhhBgzGbfKjvd6qHgnScm+DHPXxdk5BvORCiEGZ5omTzzxBAALFy7k3HPPPe565557LgsWLGDXrl384Q9/4Ac/+MGwx+qtXr161PGOliR6QojJSVNpvEZFjRuggnGoqIsaN1AMyHoG3iFXkwauZhM1CVmXgu4CTPDWGbiaTDx1Jp66LO5iHTOk07NY7d+nEEKMtZZTHDjDBp7ObL5DmVLObG4ilMhNy5PUNHrtDrqdDlKalbTFQlLTSKvq9KiCOgW7bo7WgQMHaGpqAgZPxFavXs2uXbtobGykrq6OWbNmTUSIY0oSPSHEpGa8q8vTu3/vf9yhEp197OOpstz61h6D4FYDbwx8u028u7Po7iyxmSrxMoVUEVL1UwgxpjKOXAuBt1WnT4qzjJpqGBQlEhiKQlyz4tQzVMSiVMaiA9YzgJera0jaBk5sX9vTQ3UkzN5giB6HA0NVp09SOE3s2LGj/+eFCxeedN2jn9+xY4ckekIIMVllgiod56sYWY1YpwX/dgNHp0lgu0Fg+6Gbj0oWwwpZJ3SfaiFRKV/+QoiRa1tkJ9CsM2tDgt5Kjfoz7aCpaEmD2esTLI7uJ61ZaAj42F/kl4RjEMva2gDYUlJKm9cLgFXXCSYT2LJZbNks9myW6kiEhV1dvFVRcWRjw2BuTzcW0+SUjvb+h00graq0u93sC4ZIWYdegCzfJsP0CofnwDvMbrdjt4/fxLkNDQ39P1dVVZ103erq6uNuN5lIoieEEO+SLFNJlKtgGNg7wdFhYgubWPtMrBGwhaF0fZaDH5GLLiHEyKU9KjsvdTPrlQTBZp1Ai0643IKrx8CaNElqGo6MzsL2buZ29BB22gk77OysKM536AXJpWcwFKU/yQPIaBrtHu+A9aoiEfypJDMiYUKJBJ5UGreeQTVNDvgDGAqoJqiYuNNp/Mkk1X19VPX1kVUU4lYrrR4PB/wBSb5H6ehkCkY26flw9PX19f/s8Zx8bKzb7e7/ORqNnmRNuOeee0YX2HHceeedo96HJHpCCHEiqkqqFFKlh36NG9Q8ncVUoPNM+XIXQoxexq2y+zI3/qYMlVtS+FuyKEDXTCsbPTVgGMzuCjO7q5dQPEkonmRnWUgSjOMwAWWQcvY2XUcFHNksSzs6+oexpTSNOn+A+kDguNv5kklqe3vxp5J40mnmd3czt7ubA4Ege4PBMX4lY2QSjNFraGjA5/P1PzyerXkAyWSy/2fbu7ruvtvRsSQOjfs8kbvvvnvEE6ufiCR6ot9ZwXrsnvHvTrCxu3bcjzHR9rWP751RBbDipANlws63qfD4nijzYfG8pvwGYBjM+EsWDGi7QLptnkh93/hf8CgmJE037YoFc2y/V4+raXfp+B9kClIArHaaMu4JOfdZkhPwYRhHrcCuSnCk05TG49SrvkOvycJBb4iD3hAze3tY2NXF4uZudhWXjMlxFcBigiU1cd9R4yWhWfGl02AYJ0yE06rKjqIiHHqWiN1Op9OJrg1+ORxxOHinvDz3i2EwI9rH/K4u5vTmxvU1JV00lLmJuU6ePIyUQuF2wxwNn883INEbbw7Hkbkr0+n0SddNpVL9P797CobjGcs588YqaZRETwghhqBok4GWhJ7FqiR5Qohxk7TZqD9BS8PBQJDa3l5mhsOopsmOomJp2TtKxqKiACq5givHparUB0Z5Q0pVafL5afJ4mdvTQ224l1ktUWa1RMkqEHNaaSlyUjfDi5HH90cxzUFbOPMlX3F5j+rWO1h3zFgs1v/zYN08C2HOvOORRE8IIQahJg28B0wyTug9xZLvcIQQ09j6qmpWNjVSE4lQHYmQUVUyqkqrx8veoqJ8h5dX9mwWk5MkeWNNVdlbVMTeoiLc7j6q26IUhVN44hkWxDPMb4gQdlvZV+Wjvch1ZDPDYGZzlIquOJasiaEqvDUvRMw9Pq2B4oijC7A0NjaedN2jC7C8eyzhuxXCnHnHI4meEEIMomRD7rKh41xJ8oQQ+aVrGi/NrKWqt5cZ0T7sehZHNsuc3h68qRRvVlbmO8S8CSUSpC2WvLRy9nlsbPeEcr8YBpWdCWY19+GPZThzVxeG0kVGU8EEm26gkEtIDVXBYpicu62dtpCL/TO8xJ2Tp7LnZLN48eL+n3fu3HnSdY9+ftGiReMW03iSRE8IIU5CCxs420zSgSNz7gkhRL41BgI0HlU45OymRkoTcRZ1tLOjZPqNK/UnEmimSfNRlRLzRlVpLnXTXOrGohvMbQxT0pvClsmCAr0eG/XlHpqLnaCqLN3TRVVHnOr2GNXtue6C22YFqK/wDnKgQUyCYiwTbdasWVRWVtLc3MyLL7540nVfeuklAGbMmEFtbe0ERDf25KpFCCFOxDAofykLQPtKac0TQhSuTRWVxDWN6kiE4qPGFk0Xc3u6MYF9wVC+Qxkgq6nsqg2y7rRynjt7Bs+dPYNXTymjudTd3/K4dV4Rf1pZzesLjxSHW3Kgl0s3NuYKy4gxoygK11xzDZBrsXv11VePu96rr77a36J3zTXXjHlFzYkiiZ4QQryLu96g7AWdmY9lscYgMldB98npUghRwFSVV2dUYaBwemsLVl3Pd0QTqiiRIK5ppIdQQbNQtYec/HFlNZsWFpPSVKxZk4s3t1DZPrLE/fCE6YW65Mvf//3fox36nHz2s589ZuqERCLBZz/7WQA0TePv//7vJzrEMTN5/xqEEGIcBN7Rye7ODejXXdAzXyWyUFrzhBCFL6NpvFVezhmtLaxsbGBDVfWkTnyOZtN1zmhpwZHV0VWVtGqhz26jwecjaneQVRScuo5qGHmtdDkWOkNOnjurgqX7e5nREePUvd0squulc0Yg36Hl3bp169i7d2//70ePo3vrrbd4+OGHB6y/Zs2aY/Yxf/58vvCFL/DAAw+wefNmzjvvPL74xS8yZ84c9u3bxze/+U3efPNNAP7xH/+RefPmjctrmQhT469fCCFGwbMvi3+ngZIFl+ak1w6N77VgOCb3xYIQYvrpdLs5EAgwq7eXCw/WkVUU4lYrB/0BmidwvrKxdnpLC750irSqYtd1nGaGYCpJTSRCVlFQTbNgh6ONiKqydW6IrbMDLDwYpqY1yqzWYbbsTcExeg899BCPPPLIcZ974okneOKJJwY8drxED+C+++6jvb2dX/ziF7z55ptcd911x6xz00038fWvf31kgRYISfSEENNe8abcGAjDClkPtJ8hSZ4QYvJKq7leCCmLBVNR8KbTLOtoZ0FXJ9uLS2jzjrLIxwQrjsXwp1OE7XY2Vh0pc+9OpaiJhAklEijA7mBo0rfmHUNV2TkryK6Zfs5qmH5jL8eLqqr8/Oc/50Mf+hA/+9nP2LRpE52dnRQXF3P22Wfz6U9/mve+9735DnPUJNETQkxr9vZcmevIbIXuszWKshopyxS7UBBCTBuarrOwuwtdUXixZmau4IdhML+7m5nhXk5rb0PvaKfd5WZPKETqBJOzFwpN11nU2QHA6+UVA56L2e3Tp8KoqtJQNrwEPd9j4U5mpHE9/PDDx3TPHI0rrriCK664Ysz2V2gk0RNCTE+6QclrBu56E1OB8EJJ7oQQk587kwFANU1CiQTd7lx1x93FxewNhZjf1Ul5NEpFLLfErFYaZ83Oc9THYRgs6O6iJhxGAdrcbvQpMt5QiIkiVzZCiGlHixjUPJnFXW+iu6Hx7yxSVVMIMSWEnU4O+vyowBmtrQOeM1SVnSWlvDBrNuurqulwunBnMpzW1opaSGX8DYMVTY3UhsNkLBY2VVTy9rta84QQg5NbI0KIacNdZxDYnsUayf3efZpU1BRCTD2JQy1fe0MnnlMuZrfzZmUls3u6OUPXufjAft4sr6CzACYcn9fdjS+dpsXt4Z3y8nyHM3lNwWIsYnjkFrYQYloIbMlS8moWax+kA9D0HoskeUKIKSl2aNydMYQ5nhu8uUqcKlDZ1zfmsZRG+5jd1TWsib8DqSQmSJInxChJi54QYsrzbc8S2GaQdUDDlRbQ5B6XEGLqCtvtwJHxeiczu7cXBQjb7GwtHdvCJjW9vSzs6kQBqvsibCspPdJiaBhUxKJoWYMGny9XNOYQa9bAUIaQpYqTmorFWMTwSKInhJjSbF0GoXcMDDs0XCFJnhBi6vOnUgAkNOug6zZ5vSyLhHFn0hQl4nS4PWMThGEwv7uLrKLQ4PNTG+7lzNYWsopCRlWxZ7McTuVqImFaPB7qAsGpNz2CEHkkiZ4QYkrz7cl1F2q+1AI2uYAQQhQ4wyCYSuJNpbBns/Q6HHQ5XcNKgBZ1dmACjUOYLy9mt7M7GKIsEuGM1lYMIG2xoKsqGVUlY7GQtlhIWTSSFgtxm5Vuh3NAC9y74y+LxZjX3YXFNNlaUkKTz8/eUIg5Pd2UR6NohkHEZqfZ62VudxeeTIZ5PT3UhMO8NLMWl55Bl4Rv9GSM3rQniZ4QYkqzd5uYKuheuWgQQhQu1TA4u7kJfyrFuzstmoChKCQ1jT6rjVaPh7ZD0yb0MwxshsHCzk5cuk6D1zvk6Qi63S52zKxlZjhMaSyGPavj0HVcpokCx40nbbEQttlpd7to8frwplIs6WjHk8mgHFqnyeOlyefPhaeq7CkqZk9R8YB9tXg8lMZjeNJpasNhLj2wH4Bmz+Sa1F2IQiSJnhBiSlMMpOyUEKLgLejqJJBK0We10ub20ONwkNYshBJJgokE3nQql3xlMpTHY+iKwvbiElp8Pmy6zqr6g2hmrpkkarWyvbhkWMfXNY29RUXsLSo65jnVMHBmMjh1HW86RVE8F09JIk5pIs6Szs7+dSM2Oy0eDw1+/5BaITOa1p8MJi0axYk4jV4fbUNojRRCnJwkekKIKS1rAy0KaszAcEvGJ4QoTD0OJzWRCO1uN/uOSraidgf1gUD/76phUNvTw+xwL8s62qnqi2DXdTTTpNXtptXtGfMkyVBVYnY7MbudTrebA8EjsZRFo5TEY+iqyt5QEelRTGp+MBjkYDA4RlELkKIn051c9Qghpi7DIOtQUIDA9gKaDFgIId6l1e1GVxRm9faedD1DVdlfVMRLNTOJaxrBZBK3rpNRFN4ur5jQljBDVWnx+XinvILtpWWjSvKEEGNP/iKFEFOTYVDzRBZLCrJ2iCyS+1pCiMJmAuYQpxVIaxrrZtaiGgYzIhHCDsf4BicmH9PMLYWoUOOaYiTRE0JMSd59JpYUhOcpdJ8ppzohRGFb3NmB1TTZGTp2jNzJGKpKw1FdO4UQ4jC5+hFCTEmeOgMT6F0iLXlCiMIXSiTQFUXGqIkxIxOmC7kCEkJMOd49WRxdkCxVMBxymhNCFD5DUY+ZxkAIIUZDWvSEEFOOf4eBoULrhZLkCSEKn2oYOPUMxhDH5wkxJDJh+rQnV0FCiClHi0M6yMDJhIUQokDNDPeimSZ7pdumEGIMyVWQEGJq0XPTKOguuTMuhCh8qmFQ29uLAdQfmjhcCCHGgnTdFEJMLZqKYc3iapF+IUKIAmYYzO3pYVZvDwqwJxSSXghiTClGbilEhRrXVCOJnhBiyonWKvj3mFh7DDJBuXASQhSW4liMZe1t2AyDtKqypbSMTrc732EJIaYYSfSEEFOHYeDfYeLdb2ICWbluEkIUEFc6zSltbfjSKUxgfyDAnqC05IlxIsVYpj1J9IQQU0bVU1msCTBU6FyuYtjk4kkIMfFsuo4vlcKbTuFJp3HoOu5MBls2C0CX08nbpWXomlyGCSHGj5xhhBBTgr3dwJqAaJVCx0pV7pALISaEJ5WkOhKhKB7Hkc2imuaA+fAON6pkFYU2l5s9RUXEbbY8RSumE5kwXUiiJ4SYEg4XX+ldIkmeEGIcGQazwr2URaN4MhksZu7ck1UUEpqWW6xWolYbEbudPrsdQ85JQog8kERPCDEluJoMTCAj1cmFEONkRiTMos5OLKaJASSsVjqdThp8fmJ2e77DE0KIASTRE0JMeqHNOtYIxCsVac0TQowtw6A8FmVOTw/uTIasorCtqJhGn0/ON6KwmWZuKUSFGtcUM2nPUHfccQeKovQvL7zwwknXP3jwIF/60pc488wzCQQCWK1WQqEQK1eu5N5776Wjo2PQYzY3N7NmzRpKSkpwuVysXr2av/3tbydcv66ubkCM55577qDHuPvuu/vXr6urG3R9Iaa7kvU6vr0mugfaz5+0pzQhRAGxZzKU9/VxWksLlx3Yz6nt7bgzGdpdbp6tnUVjICBJnhCi4E3KFr23336b7373u0Ne/1e/+hU333wz8Xh8wOM9PT1s2LCBDRs28P3vf59HH32Uiy+++Lj7aG5u5pxzzqGxsbH/sZdeeon3vOc9PPLII3zsYx8bNI6NGzfyzDPP8L73vW/IsQshTsAwKHvJwNVqkgpA8+UWufASQoxKKBbjtPY2rMbA2Zz3BYLsDwZlrJ2YVKQYi5h0ZyzDMLj55pvRdZ3S0tJB19+wYQM33HAD8XgcVVW58cYb+cMf/sBrr73GY489xlVXXQVAV1cXV1999Qlb0T7/+c/T2NjIihUreOqpp1i3bh2f//znMU2TW265ha6uriHFf+eddw75tQohTqx0XS7JS5QqkuQJIUYtFItxVmsLFsOg0etlS0kpL1fX8OdZs9lbVCRJnhBi0pl0Z60f/OAHbNq0iYULF3LTTTcNuv79999P9tC8NQ8++CC/+MUvuOaaazj77LP50Ic+xJNPPsk//MM/ABCLxfjXf/3XY/aRSqV44oknqK6u5q9//StXXnkl5513Hv/6r//K//f//X/EYjGeeeaZk8ZRXFwMwBtvvMHjjz8+3JcthDiaYeBqNkn5ofViTZI8IcSI2TMZzmhu5qzWFkzglapqtpWW0ezz5aZBkPOLmKzMAl/EuJtUZ6+Ghgb++Z//GYAf//jH2IYwD8369esBKCoq4rbbbjvuOke3sr3yyivHPN/V1UUqlWL58uW43e4Bz11yySUANDU1nTSONWvW9LdA3nXXXZgyCFWIEStdZ6AA0dmT6hQmhCgw8zs7WV1/kOJEnKjVysvVNVI9UwgxZUyqq6TbbruNaDTKJz7xCS688MIhbZNOpwGYNWvWCdfx+/39LW6pVOqY54PBIJqmsXnz5mPG+R0uAlNeXn7SONxuN1/84hcB2LJlC7/97W+HFL8QYiBnc641LxmCyAJLvsMRQkxCpX19XLx/H7XhXpKaxiszqnilZiZJmchcTCGHx+gV6iLG36RJ9B599FGefvppQqEQ3/rWt4a83bx58wA4cODACdeJRCJ0dnYCMH/+/GOedzqdvOc97+HgwYNcfvnlPPPMM7zyyivccccdfO9738PlcnHFFVcMGsutt95KRUUFkKuuabxrsLcQYnCBrbmu2C0XSpInhBiZRV2daKZJp9PFuuoaog5HvkMSQogxNykSvd7eXj73uc8B8M1vfpOSkpIhb3vzzTcDue6XP/nJT467zr333tv/86233nrcdb73ve9RVFTE+vXr+8fofetb38I0TX7wgx9QVlY2aCxOp5Mvf/nLAOzYsYNf/epXQ34dQogcax9knYBtUpy+hBAFKKsomMCW0lIpsiKEmLImxdntjjvuoLW1lZUrVw6pAMvR1q5dy3XXXQfA7bffzs0338xTTz3F5s2b+f3vf88HP/hBvv3tbwPw1a9+lUsvvfS4+5k7dy6vvfYa1157LYFAAIfDwYoVK3j66aeHFdPatWupqqoC4J577ukvFCOEGBrTAoo0hgshRmFncQkKcH5DPa5DQzyEmHIOT5heqIsYdwU/j966det46KGH0DSNn/zkJyiKMqztNU3jV7/6Fddccw0PPPAADz30EA899NCAdS666CK+/OUvc9lll510X7Nnz+Y3v/nNsF/D0ex2O1/96le59dZb2bNnD//xH//BjTfeOKp9CjGdGHawhsHaY5AJTop7VUKIAtPpdrMrVMSC7i7Ob6hnbzDI/lBRvsMSQogxVdBXSel0mrVr12KaJp///OdZtmzZiPaza9cufv3rX7N169bjPr9hwwYeeeQRWlpaRhPukN10003U1tYCuW6jmUxmQo4rxFTQsTw3Nq/yb1nUpDTtCSFG5mAwyCtVVaRVlXk9PaysP4im6/kOS4gxk+9iK1KMJf8KOtG7//772bFjBzU1Ndx1110j2sfLL7/MihUrePLJJ6mqquI///M/aW1tJZ1O09DQwA9/+EOcTif//d//zfLly9mxY8cYv4pjWa3W/mkiDhw4wC9+8YvR79RUJmTJ90lhXBZkmRTLofcrE1LpPNeCkoXKP2fH/osn359HWQpvyfdnX5ZxW2J2By/OrKXV7cGTyXB+Qz2KYeQ9LllkOdEixHAUbNfNnTt38o1vfAPITXT+7vnrhiKVSnH99dfT29tLeXk5r7766oBpEKqqqrjttttYvXo1Z511Fo2Njdxwww1s2rRpzF7Hidxwww184xvfYO/evdx3332sWbMG+yjm7nGkgzjS418WuijrHfdjTLQEznHdvwKUkHtvzXE90hEZi3WCjjRxBnz2qkCbr+NvhUyvStY7NvesFBP8hguF3L0NMXwOc/zPQ4oJQTP3dzshf1NWmVdtJBSgVMudiybifbKM4iBdM2tw9IapifZxbipJQyAwZnEVOgUosU7c+zRVGer4fmkoQFAdZl0Hk8J9Uws1rimmYBO97373u6TTaWbPnk08Hud//ud/jlnn6K6Yzz33HK2trQBcddVVuN1u/vSnP/VPZP7Zz372hHPdLVmyhI997GM89NBDbN68mbfffptTTz11HF7VEZqmceedd3LDDTfQ0NDAv//7v/OZz3xmxPtL2nowbeN/cd9lmXqJXjPjexF3+NTfTGLCzmup7NTr0uiz9A34XbdnyUYM+mIWEoGxS/RMoNvSJ4neCEX08S9Tf/itaVdiE/I+NWWGf6NRHHmfmjKpiUn0UqP7MDQ5nXhbmnH29dFl0abNnHr971MqLdfeo2AYx87DPJYUQJ96X+1inBVsond44vL9+/dz/fXXD7r+0VMkHDhwALfbPaAb5hlnnHHS7c8888z+Ii07d+4c90QP4KMf/Sj3338/O3fu5P777+dTn/rUyHd2uI/ROJuKF78T8cVmMrE31qbil/XRnz3f9iyBLQamAsnSMf5cKkd6K4vhm6j/N5OJe5+m4t/TRJnIc99YHGNfMMi87m5WNdTTa3ewubJyWky/MNHfUVPRZPmMi+llSp+9NO1IHqsPMsD66IIoR283nlRV5e677wagpaWFH//4xxNyXCEmM2ezQegdA8MGTZdbMGQ+PSHEGDkQDLFhRhW9dgeBVJJLDuxndndXvsMSYkTyPr55kEWMv4Jt0Xv44Yd5+OGHT7rO3Xffzde+9jUAnn/+eS688MIBz8+aNav/55dffpkrr7zyhPt68cUXj7vdeLv22mu577772LJlCw888AA33HDDiPazyr0Lt8cyxtEda2N37bgfY6Kl21zjun8FyFjtpDPKhN2NK3576iU/2YeKAXBW96IUJzi4qQxj49i+TkUBo9RJtt0+IVP8WOpax/8gE8zVtn/cj6GoCo7aIK66Hkxj/N+oeYz/a5qKFFWheALfp7HUCSRm2ii90Mtcsxv3/9QROzDx8+1ZPJ5xP4aiQNFMP66D4Qk573Vcd8r4HyQP+maOb8VWBdAM6WoihmfqXQ0e5ZJLLsHlyl3E//jHP2bLli3HXe+Pf/wjjz/+OAAzZszgtNNOm6gQURSlv1Wvvb190ORWiOlMVQ3c/hSmCYaMVRBCjKPYwTR1/92FmYXyi71T/IpJTEmGWdiLGHdT+rQVCAT40pe+BEBfXx8rV67kK1/5Cs8//zxvvfUWf/7zn7ntttu4+uqrMQ5dNT7wwAOoE9wf/wMf+ACnn346AJ2dnRN6bCEmk7LaXiyaQXermyl++hJCFABTh471fSiaQsXlvnyHI4QQw1KwXTfHyj/90z/R3d3N97//faLRKN/4xjf6p204mtVq5f777+djH/vYhMeoKAr33HMPV1111YQfW4jJqKd9/LszCSEEQGRHCv8iJ+6ZNkou8NDxUjTfIQkxNIVcYadQ45pipvwtcUVR+O53v8umTZu45ZZbWLp0KV6vF4vFgt/v58wzz+Qf/uEf2Lp1K1/4whfyFueVV17J8uXL83Z8IQqeamBzZlAUsDsyg68vhBBjpOH3vSiKgn+RA3V6zLoghJgCJnWL3t13390/vm0wZ555Jmeeeeb4BvQutbW1mMMY2bxx48ZxjEaIya18Zi+a1SAZs5KKT70J4YUQhavivblum7G6NMbE12QRYkQUCre6pZSVmRiTOtETQkwXuSIsmZSFxt3F+Q5mzKg2k7KVYPOAmYVkF7S/BrYgGBnQo/JVKES+la724JlpJ9GSpuXPkXyHI4QQQyaJnhCi4AWJoSgQ7hzfqTAmjoHDnSF0JjiC9Jc0d8+AigvAHsr9Ht5j0rNNkj0h8qVouQvfQgepbp3GJ8L5DkcIIYZFEj0hRMFLYMM0we6a3GPzSqp78RUlgNzcVYf17oTevVB7JTiKcolfNgn+eWAPmehx6HwdpLOLEBNIg+DpLrJxg/rHevIdjRDDZ5pMyOSII1GocU0xkugJIQpeEjtGVsHtS+U7lBHzl0TxFyfIpFUSURvphJX0/j5S3cChSXCTHSaOYojsh949UHVJLvFTisHQofvt/L4GIcab6gAjme8ockpWeFAUha434iDzdgohJiFJ9IQQBc9BCkU1MY3J2aKl2XRCFVEMAw5uK+FwwWNL58Ay7a3rB76++meg5r0mqh0SLYBmUnY2oOTG84V3gbTyiakgdLaL0OkuFFWh89UoPW8l8hqPb4mDwBIneixLZNuRzFN1qdgDKolWXZI/UfAUs4CLsRRoXFONJHpCiIK3zNKAAnQ2e/MdyjAZVC/swubQAUY20fuh1RUNKs8H+6Exfa4yCC6EvnqTrjdBEj4xGXkX2Cm7wItiOfL5jR08ecu9amPcK1+qWi4ezW1h7tpijIwJCqhWBUVRMA2TjleihLcWSPOjEEIchyR6QoiCp2CSjFqJdLnzHcqwBMtj2J06ybhG28EAmeTwp4Vofw0qzoeyc448Vv9HcJZC6VngqwWbD1pePP72qt3EU3WoimccMjHIJkASQ1EIHKVWFItCpi+L5lHBgNILfdhDFhRVwciY6DEDPZZF81iw+S0ollyiVf/7XtKd+pCOo3lVFDX3d5CND94U1/t2gmR7Bv9CJ1a/iua2ABBvSJPq1Ame5qLkPA+mYRLZPnm7lIspTiZMn/Yk0RNCFLwsKg5PhlBFhO4WX77DGbJ0IneKtVgMMmnLwCdVA1elic0HVjdk0xBrIjdm76gkLNmh0P6aicUFmLkkzUgpxBogUWviLAabH+xFJqmuw9uZOEvBNwecZQMLv8DhMfAmGEe+a80sdLwOmT4wUmDokgiK8dfxShRXlQ2b34Khm6iagqNUIxMxMNJZNJeK1W/BFrJgGpAOZ0l16njn2Sm/2Ev9o8cvkqLaoOxCH84ZVlRbrhXuMNMwMdImRsYk1amfcMqEZItOsqXvuM/1bkkw6+NFlK7yEq/PoEelH6cQovBIoieEKHj7sqXMpY1QeQzVYtLZ6M93SENiZFVME6x2gzmntBHtdZCIWvGFkthdmf4EzDRzyZh/LkTrcwnX0WJNx0+6Wl+G0uXgqoTKC8A8qoqZouT2m45Az3ZQVNCcYHGCZgeLA1Qr/TmlzQflK47Eg2miJyCyN1ccRloAxbjIwsFfdzP308UkmtK0vxRFTxiDjn9TbQrumTZmXOWn5a/hAQVcgme6KDrDBWqu9S7erpPuzmBmc10vbcUaNp8Fq9eC5h5mV+pDTB0a/9BDzbUhSlZ6aPmLzK8nCo9imigFWt2yUOOaaiTRE0IUvF68HNhiUrO4E39xnFjYTqLPkceIDGwOHbsrg8VikkpaSPTZeff4u0TUzr63KnD7ExRXRfAEkniDuSvSrK6QaDYJ780lasGFuW30YQ35UWh/LTfxemAB2AKAkeueluyBWCNkE0NL0DS3iXdm7meLA6w+sPug6FQILoV4k0nXFjDSkvCJsWUrOtTarYAeG1rLWMtfIlRdHcBZaWX2J4rJ9BkoClicKqqmkE0atPwtQqLxxFOy1H40hOZRqf1YiI5XosT2D2/gX7onl5BqnpEli0IIMd4k0RNCTBIqjbtDzFrSQeWcHtoO+on2TOQE6gZuf4qSqggWq3Hc7pDppEbDzpJjtoyFncTCTnyhGMXVEVQVLJqJpyaXnEUbc+tlYocraQ4zsrRC95bhb3c0PabQs/3dj5r45uZaGt3VuSUdNuneBsl2SfimPRUcZRrOMiu2Ig2b34LFmWvFJmtimuDzebF3ZTEzYGZNDP3wvyambqJYFPyLHGBC1+b40I9tQOMfenGUa5Sc78Hqs4AJel+WyN4UPa8Pvq+6/+6m7GIvvvkOKi/3E96RoP3F6KDbHeZdYEexKCSHOE5QCCEmmiR6QohJw9A1mvaGqJrfTXltGL2yD4s11wJQv7P4BMVODKrmd6PZdbJpC4ahYBoKqbhGV8tQuoAaVMzuxeVL9XeHjIXtpBIa6aSVbEbF7srgDSZwuHWq5ncS7XEQj9owTaV/TliHK0NJTa57V1+Pg2ivA6/Wi7sKgoty67S/Vmhj45Rc1829YAuaFC0DewgqzoNsyszN97czt95IOausuQt9A7rfiOVaSfJsIqo6FhrVBmUX+bA4VfRYllR3Fv3/b+++4+OozsX/f2Z2thf1LlnuNsY2vRmDaaaEDoGENAjJJYSEm0ACaVxaGuR3CeTmm5BCS6eF0GsAQzDNgA3u3bKK1bVaafvsnN8fa8uWLcmSLGlVnvfrtS+vd6ec3dHuzjPnnOfpTKWf3JnQwTIV0R0JrBh4pzooOS2ApqePvVLpOZ+Wmf6D13QNNA1Hlg2XvvNzucefyZ5z5qykovqp/idW2VOs3qT68eBgXjIAidbd+7Ti/f/bcxUbFJ3oxzIVTW/1PzgUYkRZjN4yIKO1XeOMBHpCiFFPx6KgIogvO4Zu2z2u33Ds/qVImT0Nn0qXN3C6TZQFusvs6onzBBKYpo32pr17BdO/jE6PiduXILsgjM1ukYzbCLV4CLW6sMzuX52xsJP2Jg/lM1txepK4vD0PF1MK6jZnE+1wp9fb1k4qkR4yGWmCRHA0BXndJdo0drwJuqHImQu+inSAmj0LIg2K1k/AjAys/aVnZ+Ep3x2c+6Y7qX4iSLwpMz0kFRdn48wzQINkMEXVI/sm+jC8OrpLI9GegnHSkZM9z03+cd50IKYAzcA/rfdj2TUX1ILm9zqJNSSJNpiQ6r6cpmvkT7Zo3taGsvaaj2NLzxHV7TpmR+bO+LIP8WAlLTbf3zKg9UrPzEKzaex4qV1OWIUQo5YEekKIUcxiktZCkR5EywMrpdEZdNHR6qRwUgfGzt48M6nj9iaw2VM43SYOl4ndkerq7Qu1uGncnt1tu9MObaCgvIOC8u5Z9QKBAFmluxMrKAXBRg8tdfvr/dOp2ZAPWLj9iZ3BnuoKLM2EjVjYTiLm6LZW6ycarZ8M/J3JFMvUaFkBLSvAO0mRMws8xelbslPR8q6Tzs37TzdfvDiAt8JBZEeCHS+048gxqLgwh8BsF01NmekhceYbXT1NPc27qrgoG2dBehmlFFZcEWtM0rE5TsfG+Jg84dcdkL/Ai5VU7HgpRLQ2CXr6vehKVLLzb9jm1HDm23Fk29AdGs3vhtPLD0YKrBRYscy+acpUaA4dZ4ExoAsMNpeOUorw1gnW9SvGFEnGIiTQE0KMWtP0BvL19En/ji3ZhNvdXc/VbrJTPDmIw2Vi2NPDK4GuoZJWSiMeNWir93VbL02nbnMOvpzumU80DXTLSSjoJhnXiYUdRDscDKzIuU60w5XhZDEjI7xdI7wdDJ8ibz64C6BkcQDrFEWsPkGkJkl4W7zbcEzdBfnH+PBNdRBvTlL7VDsAiTYTpRRZB7kIzHSiGRqpiIUZtlAKnHkGnZvjNLzec7r7oRBaFyProPTfimZoVFyUTTKUwoxY+Kc5sXl0IrVJojuSuAoMXIUGngoH3klOik5SpKIWsQaT1uUR4o07gwYdsua4cJfYSUUsWj4Md8sQmWm5R3jQNI0dL7fvDtosiDea9Byuj6+acW0fRyg43kfFRdlgQaQ2Qd2LoT6Ddv8MJwCdA0zeIoQQI00CPSHEqGXb42wrndVyt2TM3pX4xOFO4HInSSZ14mEnlrX/wKynYEzTQMXcNDcayMXG/jM7NRreBnRFVkWY3MO9eMqceMqc5B/j26vsQ7p7KNmZYvu/gl2PWwlofKuT3EM9aDokmk2cOUbXUEpN1/BPd9K+Lkq8Ya8xgkMkubMWWsuHYfzTXTjzjd09eJaibUWElvf2SvJhg8B0J77pLlwFBt7JDryTHcSbTWwuHcOnd/UAappG9jwPrR+FaXl/AIlHDoAR0PFVpj87saYksXoTw6vjLDTwT3Pim+YkFbf6zE45nrWvitG5JUH+MV5cRenAferledQ8HSTR0vPfmT07nSW0dfnIHEMhBk0Kpk94EugJIQZEx6RUC5Knd6CjaFceksrAqSVxaEk0IKycNFpZ2LCI4sDs91eNRZHWjgOTBpVFlhYFIGh5+gzeElEHiaij1+fFCLE0Wt6P4C5z4Co06NgQIxW1sAeM9BytnQk9QhtixHbsO0wutDpGaHXP3V3eSgclZwQoPy+b6sfa0F1DP5/RV5n+G2pdFqF12e6TeMOn914QOwWh9XFC69M9XY48G+XnZuPMNbBMRaw+SfvaGJoBhSf40TQNd0lPSYOGXtHJfvwznd2Lhe8MOHfdNzstap4Kjkh7RqtUxOrqKc6a66JggY9Jn84htC5G43869+nd69wSJ+8IL3lHetjxotTPE0KMXhLoCSEGZKZeT5YeJX3erlGgp0+QlNp9gc6rxSky0idACaWzPDWtX9v2EWOyrRmAEhVE08BSsN4qIQ+5ej5W1DwTZMrncvHPdBFvMmlfFyW05sCG/IWrElQ90krlZ3Op+HQOgawAvuOg6pG23oOwgdoZD035Yi5b/9La9fBAtp9oSbHloX0Te0z+fG5Xz16syUR3MWxDOHUHTLo0F7vPRrzVpPmdTpQFrmI7rjyDZGeKRNAkUpXsd926iaJ9VYxIdYKyc7PJOshNYKaLjk1xNCPdq9z8XicFC30AqOHpWBZCiCEjgZ4QYkCCyksWUVqUny1WMTopHJjEsLNrLpuXKFNtjXi0BG3K1+9td+IipTRsmqJNedGVxVarkIHNkRMZZ8K2v7dSfn46eUlRYYD8Yy0aXu0gXDX4eU3Jdovw1gSecjvJ9hSaoVH5mVyqHm0dksyN1f8Mkn+8l5x5HrLmumhfNXSRWM3TQYpO8uMqspMz30P2XDeNb3UccADck8IT/dh96eGFNc+2Y0XS782gE6dMMMl2i21/bcU3zUnB8V4Cs1xdw499U/LSSVi2x6l/RXrzxCinFKN2HsJobdc4I4GeEGIALPSd45j8O4dVWtiIYeu2VBg3YeXETQI7KbII046bXQGbjkmAGDYsUmik0NGA/J3DQU2ls9EqHckXJoaYMtOBE0DO4W7yjvBSfFqAzfc3H9B2d7wc2pm2XxElTPFifzrY+0frkPRONS8NkzPPgzPfDgxdoGd2WNQ+k0484y63U3J6gMIT/Pimuqh7/sBT9HunOMg+2I3No6PZdg/VdBcbhCVpyKB0bo7TuTmOPVsnFbMw3Do5h3qJ1CTSWVaFEGKUk0BPCLFfOhaH2bZiw0LTIKU0tqSK+lxnu5WP3xYlRwuTa4SxFHQoN14t3rWdvSkFSWysSlUM0ysRmdD2URTfZGc6scoQCm9LsOOVEKWnZ1F8eoCaPZK7DJZvWjpxSbJj+MblRWuSbHmohbJzsvCWOyg6yU/Da31nE8051E32fDc2d/piSbR+d8bSsvOyuub9qRSgFGbUonNTTIK8IZAMpqPwRMwa1qyvQgw1TaVvo9Fobdd4I4GeEKJPdpJM0xswNIuwctBgZtFEgP0NpzQx+Dg1BQdJ8rQQZXobAS2KiU6r8tGRcpPEho0UOgpNU7QpH3Ekqcp4ZHPrQz5SR7dD8SkBABJtQxCY6VB4oi+dYXO4Mypa0LIsjOd8B878nn+KNQPyjvKQNceDbtewkhaR2nRpB3eRnez5bnIOcWN4bURqEtS+0L5P0XIhhBATlwR6QoheuYkx11aDhiKmDNakyrH2Gqa5Pwns7FB57EjlkR6f1kuAKFf3xq3STwWw+2109KOQ+kBYKbp6hhuX7O5psWfpuEvtOHIMovXJfvVqucvtFJ3kTxcCfzs8IsXPEy3p2oHOXIPpX8vvcRlN00jFLJo+CBP8OD1cuvzCbNxFdgoWpIPSkSzXIIQYQ2SO3oQngZ4QohcWB9tq0DXFDiuLhLJTprVi11LYMfFocSLKyUarGKvfXyWSVGWiqfxMDo4cg0hdYuiTV1jQvj5G9hw3Zedl4cixoVJgePWuEgI58yG0MUbDqz0PufNOdlCyOIBmS2fEbFsRIbgyOrTt7K35Cdjyp2ZyD/dieNKfDU3X0tk/NVBJRceWOOGt3QPVmqeCeCvsoGv7PCeEEELsIoGeEKJHfmLYdg6iL9Hbuz2nFKTQyNKiHGHbytpUGZ14MtFMMYrlH+vBkWPQvjZK4xudw7KPlvc7CUx34i6xYyUUNodGtDZJcHWUZCjFpE/nYOul5p7No1OyOIBS6WGU7WtjXRkqR4oVI92DOKCVIFwlGTSFEH3TrPRtNBpsu7SeJvj3YNGiRSxZsmRwOxlHJNATQvSoAxfbU7kAJJSdBDbi2ElgADoeYky31ePWkpTrrayzJNATezAgMNuNlVTDFuRBOlDa/EBLj3Xpik/zA9C2ooceOgMmXZwNOtQ9EyRat28BdyGEEGIsk0BPCNELnR0qb59HHSSYpLeQq6VP3hPKxharcKQbJ0Yxe5ZOxUU56A6N1o9GZu5YT8XHvZUOUjG1T/0479R0pkvdnm6fBHlCCDG2fP3rX+eaa67p9Xmv1zuCrRm9JNATQvSbnzAH2erQNEgqnVWpChKSJVPswfDqTLokF80Gjf8ZnoLg+6MZpNtgaKR2lkkwvDrZh7gJzHJhc+qolMpY+4QQYkSM42QshYWFzJ07d4gaM35JoCeE6LcKWwsAq8xywrgz3Box6uiKSZfkoNmg7oV2ItszM4+s7JwsHFnp7LCOHBvTv5bfNa8jFbdo+yRC8/thkI48IYQQ45gEekKIfrOTwkKTIE/0QFFxOthcOomgmbEgDyDWZOLINUjFFFbcIhWzSHZYdGyIEauX6E4IMUEoRm/potHarnFGAj0hxH45SDBVb8SJKd/Noke588DYGf87sg1yjvDQ9mFmars1Lw3TvHSAmSyFEEKIcUaKWgkheqWTYrZew6G2KgJalDBOVqUqMt0sMdroisBUSMWgaWk6SY8j25bhRgkhxMSmKTWqbwfiscceY9asWbjdbvx+PzNmzODyyy/n9ddfH6J3b3yQHj0hRI+yCDPTtgMNRRgnW1KFRHFlulliFPKWgKZDcAMEV0bJnu/GP91J6wdhku2jtIiTEEKIjAuFQt3+73Q6cTqd+11vzZo13f6/adMmNm3axJ///GcuuOACHnroIbKysoa0rWOR9OgJIfbhJ8IsWx0AG1PFrE5NkiBP9Mq2c8hmPJj+NxlKZ7rUHfITI4QQoncVFRVkZWV13X7+85/3ubzH4+Gzn/0sf/zjH/nPf/7D8uXLefnll/nRj35EXl66JNSTTz7J+eefTzKZubnio4X06Akh9mAxVW8kX+tAAStTFcTY/5U1MbEld9ZD902C8Bpw5BpomkbhCT5qXwxhRaRXTwghRtwYKK9QXV1NIBDoenh/vXm1tbVkZ2fv8/jixYu59tprOeuss1i+fDlvvPEG9957L//93/89pM0ea+RyqxACSA/VPMK2hQK9gxh2PklVSpAn+iVar5EMg78SHDk6O15sJ9aYxFlgMOWzORg++akRQgixr0Ag0O22v0CvpyBvl6KiIh5//HEcjnR931//+tdD2dQxSX59hZjgKvVGjrJtYrZRh46iKpXPJ6nJxKUQuhiA+rfS/+Yf5yPWYFL9RJCG1zrQ7BqlZwb6XlkIIcTQU4A1Sm/D1NE4depUFi9eDKTn7dXV1Q3PjsYICfSEmMD8hCnS2tE1RYMV4MPUFOpVTqabJcYga2d5Ot2hdT3WsTFOrNHEkSezBIQQQoyMOXPmdN2vra3NYEsyT359hZiAsulgmq0RQ7NQCuqtAFVWUaabJcYoZ66ieGH6ftvy7rXzbE4tffVWiJ28Ux34JjuxZ9kwvDq6XSPZnmLHv0OYIfljEWKoDEUZg+EynO1So/Q1Z4IEekJMMG5izLTVo9BosbzUWHkyF08ckMJjQLels27asw3cKUjFFMWn+XFkGySCJjmHutEdGrFmk/C2hAR/E4yr2CD3CC/uEju6oaVPxBRYCYVKKVyFdnLmu2l6SwrdCyEOzJ6lF0pLSzPYksyTQE+ICcZFOt1wUHnYZE3sL0AxNGJN4C0DZzYUHOfb53lHtkH+sbsfV0phJRTJ9hTRugQdmxPEm8wRbLEYFgYEpqV76jRDw+bQyC334j9Jw+bQUUphdli0ro/R9nEEdh7y/OM85BziJRWXq/BCDCnFKM66OTyb3bJlC6+88gqQnq9XVlY2PDsaIyTQE2JCscjTO9E0sCnpUhFDo+kDjaYPQDcUNtWGM8+Oza0RbzUxvDZSUYtkeworYeEqdeCtcODMN3DmG+menEO9KEuRilrEW0wi1UlCG6JY8Uy/MrE/hl8n72gv3kkOdIeGpmndnnf77cQaIbgqQssHYaxY+nHNgLzjPPhnurC5dJKdKVr3GvYrhBB7euaZZzjrrLMwjJ7Dl4aGBj796U931c/7xje+MZLNG5Uk0BNiQrAo1doo1duwaYqwcrBOevPEELNMjUSDSbSu9965RFuM0OpY1/8deTb805y4yxw4sm14Khx4JznJX+Bly5+auwKD4aQ7wEoM/34yKTDLSfYhHqykon1VlI6N6Sjanq2nh1M6dOLNJtH6JKT2vz1Hjk7x4iwcOTYAUjGL8LYknVvjxBqSpJKgEor8SSmat7WhrN2X77Pnuclf4EXTNKyERceGOA1vdMhwXiFEn6699lqSySQXX3wxxx13HJMnT8btdtPc3MySJUv4/e9/T3NzMwALFy6UQA8J9IQYxyxy6SRHD5OthTE0hak0tpkFNJCd6cYJAUCiJUVLSwTY2Zujw6RP5+DMNSg+LYu6Z9uHbd8FJ/oIzHCi23VScYuaJ9tItI2daMNVnO4RtWfbsAds2JwaZodFtD5JcHU0HbDpUHJaAO8UR9dQKdcpfvKP82Jz6Wh69x64XXPnAFJRi6a3w3RujmPz6BSd7MOZZ6A7dLR0fEekJkHz2509vm97b3uXvGO8oKDuxSDhquRQvR1CiL2NgYLpA1VXV8evf/3rPmvkXXzxxdx33337rck3EUigJ8Q4YZgm05qD5IWj+GxJbCg0Lf1dmkKjOpVLncpBqqqIUc2CHS+1M/myPJLB4Zm3p7tg0qdzsftsmNEUseYE7mI7FRfnUvVwK2bn6Az2vFMcZB3kwplnYPPo3YZJKqXAAmc++KY6yT/OixVXaIaGbmjEmpNU/ysICkrOCOAqtJNoSxGpiRPdYWIlLJwFdpx5BoYvHQC6CgxKFgewTlZdgV0qZpEMpUiGUjS91Tmo9yoVtTC8ugR5QogB+dOf/sQbb7zBO++8w5YtW2hubiYUCuHz+aioqGDBggVcfvnlHHfccZlu6qghgZ4QY1xOOMqcHc0E4gk00qOfkhiElIP2lJdWfJjyURdjiLvUDkC0fngCvUkX5WJ4dVqXh2l5L92T6J3soOSMAJM/n0vn5jj1r42eoYSOPBtln8rC8NrSiWziilh9kkhtkuiOJPGmZLehp96pDrLnubH7bGAqmldEaF+1ewzsjhdCPe5nnyG3OuQf58Vb4cBKKBre7CTRfODHJPhJlILjfXinOghvGedjZoXIJAvouWM98wbx/bpo0SIWLVo09G0Zx+TsT4ixzLI4uqoOXUHQ5WRjYQ7Nfi95H0uvnRi7bJ5095GnzE7npiHIyGKDwGwXKIXhTQ9zDK6OdgV5AOFtCaqfCFJ8qh/fNCeT8gy2P9J24Ps+QPkLvGTPcwPQtjJC87vh/c6hC29JDE0AZUHz0jDNDG3Jg/a1UfIXeClY4CO8pXVIty2EEGI3CfTGibtrFmN4ZSzyYGStH96gSAN8fo2sDn3IswmXptqxKdiq5VNn5kAdZAEF742/k6fUynXDvxNdQ03OQe2VPGK4SEGBnrUtj5A120XWQW7805zEmk0i1Qk6NsYHPlRQhylfyMVw27oeUkql0/vvJd5kUvVwG+UXZOMqyvDPow6TP5uLPWAj2ZGi5pnguCkmrkxQKbD7bDgLDeKNQ/NJMIoKh2Q7o8m2/5o+7PvQgKTHQV0kMVwZ77uJVI7PIbs3zH19eHegNMyWbN4awCoTtWC62E0CPSHGMB/p4VhhzZHhlggxhCzY9rdWcg53kz3XjbvEjqfUQf4xPqyUwuxMYXS6aN62/00VnuDD5koP04w1munAKWj2GTTZAzpWMrMnIUUn+zH8OsFVkXFXRFx3gW6kx5NNuigHM5yi+okgZnh8BLJCCDFaSKAnxBi2VSsgT3Uy26rnPX1appsjxJBq+yhK20dRANzldnxTnbiL7dgDNrIr3EzOzqH2+XYSLb2MZdTBW+lAmarbMM39sbl1wlWZnTvmneQgFbPGXZAHYMVg431NeMsdeCc7CcxyMvnzuaRiFigwwxYNr4fGVAZUIYQYjSTQE2IMS+oGIeUmS0Uz3RQhhlW0Jkm0Jj3kS9M1pp/nwFakM+nTOZidFrGGJOGqBGY4havYgX+qE0eeDU3TCK4aeCFuT4WdrLkuOjbGsOLphCjeyelA05Fjw3DrXQlsUxGL4MoobSuG5nPoKjHQHRqdm8ZxohIzPS8yfYuTd7QXm1MDXcNZYFB+YQ5bHmjJdCuFGNvGYXkFMTAS6AkxhrmsBFkqSgLb/hcWYhwJfhIj2NxO/vFePKV2fNOc+Ke7up5XliLeZNL2cZTOzf1P6NJVtkCDwoV+Chf6UUp1lTJQSmElFPFWk0Qwhc2p4S51kH+sj7yjvISrE4MuO7BLyeIAKGhc2jHobYwluwK+XfIXeMmZ78FVbBAbpsyrQowlVgJaV+YQr83LdFPEGCOBnhBj2HSrAYA1emmGWyLEyDM7ra5SAboDvFOc2Jw6scbkoAOE/OO8AOx4OYTdb8OepWNz6yTbU4S3J3rdbmCOk9xDvfgmO/GUO9jyUDNqEE1wFhgYHhsdm2JYsf0vPx7pjnRXqdpPdlEhJgIrAevvm4kydZzOAc7Hlx69CU8CPSHGKssiQIwIDiK6a//LCzGOWQnoWH9gpRhKTg/gm+okETS79TD1R2hNHFehg6yADc0GNpc+4F4933QnxaemexA7t47jYZv74Sm3k0pYxJukN08IAGVq6I4Uky6ohnsy3RoxlkigJ8QYpgAPCeyWSVKXj7MQB8JTYScVs6h6eHD18/zT0yVuNE1j8udzSXZYJNpM7H4byVCKhiUhrFh6eKinwo5u1zDDFtEGE2eOjeJT/ChTUfN0+4QOcpQFul2j9FMBIjVJItVxScwiJizLSvdweyeF0QY6S0N69CY8OTMUYqzSdZqUnyLVgZs4Sfk4C3FA4i0pXEUGmsGghl3ueKmd7LluEm0mjjwDT6kDu9+BSoEjx8bUy/NRKdBsdM35g/S8PwAsqH6ibcIHNfWvhCg5PYCnwoF3khOlvESqE9Q9H8p004QYcZEaD6DhLZeka2Lg5MxQiLHGsigiRKkVxE0SE40Q7ky3SogxzZFvYM9KXzm3efRBFSePVCeJVPdcDNpVbFCwwIdm14g1mIS3x7ESCrtXx1VsB6B5WQQrMrGDPEgXrt/2t1YwwF1kp3ChD0+FA8M38OGwQox1qfjO7yVnCgaaeM0CtP0ulRnyUR4REugJMYbYLZNDrGqcmCigXXOzXisGXc9004QY0youyEazQfua2KCCvP2J1ZtUPxHc5/EoEDrAuYXjlgnR2iQ7Xm5n0qW5lJwRoPqfwUy3Soh+C9e4sfuTOLJ6HiJgxnXaV2cR2uwnFbWBBvZAkuyD2vFP70DXwVMaARStK7PxnDgxMvGKoTOkZ4c33ngjmqZ13ZYsWdKv9ZYsWcKVV17JjBkz8Pl8BAIBZsyYwUUXXcRvf/tbOjs7B92myZMnd2tTb7fJkyfvd1t//etfOfTQQ3G5XFRUVPDd736XUKj3oSRXXHFFt328+OKL+93HrmWvuOKKAbxKMd65rTizU3UcaW3FgUmdlsXb+jRW28oxZW6eEAdMs6XT/Df9Z/C/N2J4JNosIjUJnPkGJWcEhvjMRYjhYZlQ9cQkNv1pOmt/M5N1v5/BxoemsuWRSrY8Usn6P05nw+9n0PBWEdEdbpKddpIddsJVXmpfLGPdb2ey7YkKYs0uHDkJonUeqp8ty/TLEmPMkJ0hfvzxx9x9990DWqejo4OvfvWrPProoz0+t2nTJv71r3+xYMECDj300CFq6eDcfvvt3HLLLV3/r6mp4a677uK1117jP//5D16vd7/buPnmmznzzDOHs5liPLEsKlQrxSqEnXSe8QQGG/VC2vX9/70JIfqn7LwsNE0juqPnYZci8+peCjHpwhy8kx1M/0o+scYkHZvjRHckSbRIHQYxOlgWmJ0GusMiUusGNHRnCrs/SSpqIxW1keywgwa63cI7KUz2nN29d5DOINz8UR7ta7OI1HiI1Oz+vVfJgQ3d1JRCG6VJT0Zru8abIQn0LMviv/7rvzBNk8LCQhobG/e7Tjgc5qyzzmLp0qUAnHnmmVx22WXMnDkTy7Koqqpi2bJlPPbYY0PRRM4//3x+8pOf9Pq8w9F7bZI1a9Zw22234XK5+NGPfsRpp53G9u3bufnmm1m+fDk//vGPueOOO/bbhmXLlvH0009z3nnnDeo1iIkjYIWZbdVjxyKFRovmo0rLI6YPsIaOEKJP2fPceEodROsTBD+RZAejlgnbH2vDN91J/tFeXMV23CXp70OlFCoFkTpFy8dgmXtMStLVzrlAo3WikhgPcjqibLh/GmbYIP23tiuIUUz+dBWuvP6XS9EdUHhsC4XHtmBGdEKbAsSanYSrvJBwDkfzxTg2JIHe//3f/7Fs2TJmz57NhRdeyM9//vP9rnPDDTewdOlSdF3n/vvv32eo4oIFC7jsssu46667SKUO/GpddnY2c+fOHdS6jz32GJZl8Ytf/IJrr70WgGOPPZbjjz+emTNn8uijj+430MvPz6e5uZmbb76Zc889t1vGNSF20S2LWWoHOSoCwHYtl2pbXoZbJcT4lQjunDujQHcxYYuUjxWdm+J0boqDDt5KB858A0e2DVeRHW+FDW8FqJRC0wAdNG1XFneFsiDWBC0rwVO4c3s1YCXk93g8cscSlLWGye+I4U6YmLpO0tBJ2Gwk7Doxu42YwyBqN7B0sJsW9pSFLaWwWxaGpTBSFjYr/ZimFK1+FzV5fkxjj/HDlsUxGxsxMfBOCuPMjZOK2UBB3pGtAwry9mZ4LHLnB9P/URr1L08Z2AakvMKEd8CBXnV1Nf/zP/8DwL333tuveXkrVqzgd7/7HQDXX399n/PRNE3DMDI7B6m2thaAk08+udvjZWVlzJ49m1WrVu13GzfeeCM33ngjH3/8MU888QQXX3zxsLRVjF2FVjtTrSZ0FJ04WaOXyvw7IQbDAN9kJ94KBzZ3ulZd09LOHksmRKqTRGoTeMocTLuiAKUUqZii/tUQ0RoZyjlqWRDemiC8R2F538EFZM8Cw5OeH5WKQyoGmp7uJbH7wF0EFcW7N5M7H1JxRft6CG0B6fkboyyLrEiCsMuOqWss2NBATjid5EgBpq7hVCn0nRdyBnqUd4UkJe1R5tS0UZ3nZfWkPCxg3vYWbEpRuLCR/MMHV4Ozv/KPGN7ti/HngM8ir7nmGjo7O7n88ss56aST+hXo3XvvvSilcDqdfP/73z/QJgy7wsL0pb833nijW69gfX0969evp7i4uLdVu3zjG9/grrvuoqGhgVtuuYULL7wQXTIlCsBhJZlj1eEhgYXGBr2IZj2Q6WYJMaYUHO/FU+7A8NnQjPRFwl316TRNw1vpYOufW3tct/aZdnzTnbiLDAyfDe8kB2VnZbHpj80j+RLEAYo1a9Tv55A5chS+cojv/FPwloG7GPIOgZyDIdGusEywkt1vqUQ6aLQS6QDSjAKWBIWZolsW5c2d2CxFIJqgOBjBsBQKiDgMvAmTZp+LjSVZtPqc+2SmNkwTb9zEHU/hTpiAImXTSdp0TJtGwmbD3Pn/hKGn17csSoIRZte0MaklTEVLGEgHjVG7jdxDR2EQZinQRmnPmTVK2zXOHFCg9+ijj/Lss8+Sm5vL//f//X/9WkcpxeOPPw7AKaecQl5eeliaaZrU1dWhlKK4uBinc/SMQ77gggv46U9/yg033EAoFOLkk0+mpqaGW265hXA4zNVXX73fbXg8Hr7//e9z3XXXsXr1ah555BEuu+yyEWi9GM0KrHZmWOk5rS2aV0olCDEIJWcE8E1xYpkKszNFvNkkUpugc0scKw6Vn83B7u87iUHXkEAg53AP+Ud7cZfbpVdvnEm0abTucT4ergVQZM2ErOngzKGru2d/Myx2XUiwTEhFIdkJ8Tbo2LLXPEExpBwJk5NW12LfI1BI2HS2FvioaOnEmzCpy/awfFphr9swDYN2w6B9IHnNdJ0duT525Poobg0zpTGEadNp9rvYWujnCH31AbwqIYbHoAO9YDDIt771LQDuvPNOCgoK+rXepk2baG1NX0o77rjjaG5u5kc/+hH/+Mc/6OhI1wdxOp2cdNJJ/OhHP+KEE04YbBO7efPNN5k/fz6bN29GKUVRURFHH300l112Geeff36fc+aOPPJIvvWtb/GrX/2KH/7wh92emzt3LjfffHO/2nD11Vfzv//7v9TW1nLbbbdx6aWXYrMNsPilGFemW00AfKKX06lL0XMhBsM7yUEilKLq7z332Ol2DXQoOT1AaEOM8La+58yo1M4TSLniPEFotG+A9g17PawrDBfoTrDtvOl2sDnSQ0F1A2yu9FBRwwt2P3hLIWcOxFsVLSvTgWVvdJfCnQdmLB0gYmld+7QssGISLPZk4bodGJZifUkWbV4XYZdBzGkHYFNxFgWhKLX5/mFtQ32ul/rcMZD9WuboTXiDDvRuvPFG6uvrWbBgAV/5ylf6vd6aNWu67iulmD9/Pjt27Oi2TDwe56WXXuLll1/mF7/4Bd/97ncH28wuW7du7fb/bdu2sW3bNh599FGOP/54HnnkEcrKeq9Pcs899zBr1iz+3//7f2zcuJG8vDwuueQSbr/9dgKB/g2zc7lc/PCHP+Qb3/gG69ev529/+xtf+tKXDuh1ibEtjg0XJiWqnY1IoCfEgNig/PxsNJtG+8reM2Y2vx+m4Hgf3ikOfFOdxJuTtK2MotnA5tCJNiSJ7dg9gc831YlSimhDz0WOxQRhaZgRINLfFRTuYsg5CJy5ULoIrIQiEQKVArSdQaGLncOL91hzZ8KYXY8plQ4Wo9F2UrpO2OYkakjW5cqGEO5kim0FPjaV5uzzfMJhDHuQJ8RYMqhA76233uK+++7DMAx+97vfDSiD5K7ePICf/exnxONxzjzzTG6//Xbmz59PKBTin//8J9///vdpb2/nhhtuYPbs2ZxzzjmDaSoOh4PzzjuP008/nblz55KVlUUwGOSdd97h3nvvpbq6mqVLl7J48WLeeecdsrKyet3W17/+db7+9a8Pqh27fPWrX+XOO+9k+/bt3H777Xzuc5/LeLIZkTn1WjaTVTM5Kpzppggxpuh2mPLFXHS7RrgqTrCPQK9jfZyO9XF0BxSdHMA72UHxyd0v0CmlsJIKK6EwvDqxRhOkPJsYEI1oPUTrQXco8ual5/+58ncvoVI75/gFIRGCRDDdO+gIpHsIU8n0PEBnLrjyYE54d7kqC4jrBu2Giyanj2a7d2IN9bcsZu4IktJgdXluplsjxJgw4AgjkUhw1VVXoZTiuuuuY968eQNaPxzefUIbj8dZvHgxzz77bNcQxoKCAq6++mrmzp3LokWLsCyL73//+5x99tmDKknw/vvvk52dvc/jJ510Et/85jf59Kc/zcsvv8zatWu57bbb+OUvfzngfQyEw+Hgpptu4qqrrmLz5s089NBDfPWrXx3WfYrRqTzVwiTVionOCr0i080RYkzxTXOhO5I0vdNJ8OP+1b+zErDjpRC6CzxlTpRpkUoo3CV23MV2HNkGulMj3mRS81RweF+AGNeshEbThwe2DcOvCF5YjGFZ+FJxspNRPKkkRYlOihOd6WyS6IBCR5HQDaI2OyGbi5DdhU1Z+MwEbiuJwzJJ6jZChpMaVw7WGAwQZ9cGcaQsNhUHJlaAe0BG8dBNRmu7xpcBB3o/+9nPWLt2LZMmTeKWW24Z8A5dLle3/9955509zlNbuHAhF110EY8//jirV69m5cqVzJ8/f8D76ynI28Xv9/Poo48ybdo0Wlpa+MMf/sAdd9zRZ/H0ofDlL3+ZO+64gy1btvCTn/yEL33pSwe+z1GcWGm0G+5ZENoet11yrQ4mqVaS6HykT8HS9SFtx3gs06jpw/+iNF1D00ZmX6OdEdApOsWP4dHTc9w0iDWZ7HguBED2XBf+g1y0vhchvH3wdaIGQ9M1bG4NBYS3JAZ8vFSCbmn54w0pgnQvoKeRntcnBm+kP0/j7Xsv1anR4kwPQ2zY43HDMimKd5KXCONJxnDtPGG2WylclkluMsqef857nhoUJMJMjbQS0w0anX62u7OxdGOf36jh1K/9WBazdgTJD8WIGza88SSeuEnM0NlQkj06i2CoYW6V0oZ/H2LcGVCgt27duq5i6L/+9a/xegc+EdXv3z12uqCggMMOO6zXZc8444yuDJ0ffPDBoAK9/cnKyuKzn/0sv/nNbwiHw3zwwQcsWLBgyPezJ8MwuPnmm7niiiuoqqri/vvvP+AhobkpP47U6MlUOpZY/uEN7DUgz5OeKK4AnxVlmopgEWCtVkqhPvQJefKKPUO+zUyzOvedjzHUNF0ju9QPmoaawIk4HLk2ik5Of1dbifSQRsOjo+VreDQvdp8NT3n6c5OVFaD+3x0j2j5N18iZlEXSiJFdlEqPaROjzkh/nmx5429uVsLT0++TA+Xz0AzkxMMURltptHvZ7s0FS+G2knjNOClNJ2pzENMN0DWwFNlmlMJ4B/mpBEWkmGu2kELDZ/cQTaRHXKXQCNrdVLlzUcMQpMds+7mCohTzq5sJxEAZ6c4By2mnI8vOtrJsyu2jc7qLPd6/pISDpoDkAM+7JRnLhDegT8vdd99NIpFg6tSpRCIRHn744X2W2bN4+GuvvUZ9fT0A5557Ll6vl4qK3UPUysvL+9zfnss2Njb2seSBmTNnTtf9XcXRh9sXvvAFfvazn7FhwwZ++tOf8uUvf3mf3s6BaLV1YLeN7FX18aK+I29Yt7/rZ7K+I4GyLI6zttAOrNLL6dRTDOVEIIeVIIsYyh3EcKbPftPf8xqpuE40aCfWbjAWuypS24a/RpGma6AUzVXBITkx1QxwFdmx4op4qzlmApIpi3IJtYeofryNRDDdaJtbp+KiLIxSGyZJmrZ1Ynh0rKSieQSOzZ40XcO3xoFtion7cEX148ER3b/on6H+PO2PERmdAcCBqIv0/bvu72ghFO9gTSBAqNuyOy/8phSwu0RIHQZrbDlgg9x4mIpYG+5UElPTaYokUIAnlcCu2plKA5u9+dS5s4f0NUVSvZcsmV3TyqSmDrAUG7PcfDi9KJ2CtGuoZgpSo3PybNLZNLw7UBqmXRJEiYEZ0LdiPJ6uMbRly5Z+1YD78Y9/3HV/69ateL3ebkFVaj8f1j2fH86EJSoDVxVsNhu33HILn//856mtreX3v/99V7mKQZEe/UEbiaOv9rgBxLDTMVTlFCyLStVCiWrHtmsPJfteLNM0yC6LpQM/C8y4TiJiIxayE2m1Y8ZH90nSSPWwpd8fNej95R7lITDLheHWQadrbrGyFDteCXUbMjgaeac4sDl1Wj8KE2/d/R1shlNs/UsrOYe6sbk1mt+LMPlzuWhGZno/Hbk2UphE65MTuvd1tDvQz9NA9zXe7PmSPGacgzvqcaWS6Duf0YC4ZqPdGPiInhanlxanFw0o9Tiosye69lcUDTEr3MjMcBOVkVbiNgOFhgUoTUOhoTQNi503jfTzmoahLDypBBYaa/zFJGz2Xl+TYVpM3xHEG0+SHUngSqawNGjzOPhgelF6obEyH28k5s8MdB/Wnmceo4x8b4+IET+zy87OZt68eaxcuZJt27ZhWRZ6Lx/izZs3d93vq/TBgdqz5ENpaemw7Wdvn/3sZ/nZz37G6tWrueOOO/iv//qvEdu3yAxjZ5eOgwO/KqdbFlNUE4UqhE56Uv4OzU+H5sb1Xgwz0f3jbXebeHISuAImDk8Kw2lhd1v48pMwNX3RtLXKQ6hOyjwMhpGlM+nCHGyudC9XvMUk0ZYu3q05NHIP81B0kp8tW1sy3dQ+OXLTfzf2QM9DittW7E58okyFzZGZK0zRuiT2gCLrIBeB6U7MiEWy0yJal0i3cYz0ngrRH+XRNqaHmwGI6Qamlv58dhhONnnzhjwYanAHaHD6mB1upCDeic9MX+jv7dO+5+O7QgsNOKatinqnnyanD08qiTuVZH3CR8JhYJgWJ6+qwZGyUIClaVTl+1hVkTt2gjshRrkBBXoPPfQQDz30UJ/L3Hrrrdx2220AvP7665x00kn7LHPRRRexcuVKQqEQr732GqeddlqP23riiSe67g9V4fS9tbe388gjjwDg8Xg48sgjh2U/PdF1nVtvvZVLLrmE+vp6fvvb347YvkVm+IijAQaKw81tbNPzaNX3P68kywpToDpwqfSVXAcmDlJoQAIb2/VcGvTsruVLEvsGksmoQXvUoL1uz0ct3DlJPNlJ/EVx8iZHJNAbpIrzsrG5dJrf7ewWDO3iLrHjKbP3sObo0vZhhKyDXPinuwhXJ+hYH+91WSuh0PyZCfQi1UlCK9vJPtSDu9iO4dWxZ9nwljvwT3ex/dGRHU4qxHCZ1tlERSyIqel8mFUxcvX0dJ11/mLW9Wfqo2Who7ChSKFh6TYqIq1MibRSHg9RHg91LVqyup1/z6vg4OoW7CmLNeU5bC3qvbSVEGLwMnLJ5Bvf+EZXUpbrr7+eUCi0zzJ//etfWbJkCQBnn312j/P5TjrpJDRNQ9M0tm3bts/zL774ItFo72m3Ozs7ufTSS2lpSV9h/8pXvoLTObIJTS6++GIOOeQQIJ2BVIxvQd3LR/ok2jQ3LpLMtuqZmdrR6/JeK8qR5lbmWnUUqg4CxPASR0fRiZO1ejHLjKndgryB0Ym2OWnZ6iMa3BmE6NIVMig7kxa0r+v5O8eKj51hKs3v9q+uo2WqkUvV14NE0KLhtQ62/b2Vzfe3sOn3zenEMT7pDRBjnK7Inq1Y0LKFSbEgcc3GuzmVo7douq5j6TaSuoG1M8FYtSeXN/Onsyyrgk2ePFb6i9noycewFCeuraOsNUzcbpMgbzgpa3TfxLDLyKScgoIC7rjjDr7xjW+wcuVKjj76aL73ve91FUx/4oknuPfeewEIBALcfffdg9rPHXfcwec//3kuuugiFi5cyLRp0/D5fLS3t/P222/zu9/9ju3btwMwa9Ysbr311qF6if2maRq33XYbF1xwAc3NzSO+fzHyorqTNZSjWxbzrWryVSdtVogmvXsB5yIryDQrPbm7XgtQreWS0IenRyinIoInN0kqoYElJ8kDYc/SyTvKi82lYZkKK9bzctrongLZjUqmf4AN334ywlqABhWfzqZpaSexHQc+JNk72UHOoR4c2bZ0WYd0mTBSMYvQuhgt70d6XM/w6ZSdm41u1wht6L0XUojRTHcp8g8FT3F6XnVKWdQ5A6z3FozZ4Yyddhed9t3J5tyuKGWtYZQGKyrz+1hTCHGgMnbqcc0119Da2sqtt97K+vXrufLKK/dZpqCggCeffJIZM2YMej+tra3cd9993Hfffb0uc+KJJ/L3v/+d3NzcQe/nQJx//vkceeSRfPDBBxnZv8gMS9epIYdZVgM+FaOJ3YFeRaqFCtVKCp3legUJffiu4rpz4uRMimImNGo+kSurA1F0sh//zPQoALPTova5YK/L2v021OhMFrePcFUSy1RkzXbR9mHPgRXAjn+3U3pmNq4ig/Lzsql6pJVkcP9XaW0enYoLs9GdGpHqJJG6BL5KB+5SB7qhoZTCDFskQylSMQvdqePMsZF7uBdXoZ265/cdBVJxYTY2j0772iiNb3Qe0OsXYqQZPkXZSaDb00llkp0QXAurz5w6ZgO83nw8pYCVFXnpa4rj7LWNOlJeYcLL6DXmm266iTPPPJPf/va3vP766+zYsQOn08mMGTM477zz+O///u8+C57vz//+7//y6quv8s4777B+/Xqam5sJBoN4PB5KS0s55phjuOyyyzj99NO7MuNlyu23386nPvWpjLZBjDDLYrrViIVGlba7xMOuIC+JjQ/1SVj68H5M7TvLMCSjNqzE0Nf0G69Kz87CW+Eg3mqy46V2ku19BziObBuJ4BiJ9IBYUxJ3cd89yFYMap4MYs/WqfxMLiWLs9j+2P7nxhUu9GH32zAjKXxTHfinObuCu+CGGK0fRVA9dA5WfjYHV8m+bbJ5dGwenc7NcQnyxJhUfHy6179jO4Q2QyK485xknAZCljE+X5cQo82Qn0HeeuutAxoCeeSRR/LAAw8Mal+75vD1te2RTK6yt/4kr9nlrLPOykiZB5E5s1U9OopNekHXnAaAUhXEQmOZPnlEfuRD9W48eQk82SYVh7dR+0kWlik/wr1x5OiUnJ6FI8cgUpug9pn2/a7jnepA0zU6NvQyrnMUMrz974FMBi3CVQm8lQ5KzgzQ8FoIq48qEoZPRynF1j+3YgR0nPkGke2JHoO7PZlhC3vWvhcjrEQ6yHaXOdA9OlZE5n6IsaPwaIXdA+2boHWl1EkSvRvwqBAprzDhjaFZI0KMI5ZFrgoTw07jXolU4hh4SGDHIjlC+ZLqV/vJnxbGX5Rg0pFtbP8oW3r3djL8OoUn+HAV2tEdGpqeHloY2hCj4bWOfm0jMMuFUoq2Vb0nhxpNAgc5sft1wlX9r/m34+UQFRdm4610MPXL+VgJtXuu/a6LWAo0Q0N3aCTb02csZsjCDPVvP+FtCTxlDgpP9mFt3f24MqHlvTB5x3iZ+vlcGt/qILRW5umJ0c2ZqyheCLoN4kEJ8sS+kp022lbmEG91EG91okX6kwJViN0k0BMiA7KIogFN2r5f2pv1AuZZtcxQ9TRaATpwER/GOXppOs2b/UTa4hTN7qTikHaqlmWTocS8o0bgICeFJ/hBg1TEIlpvkmgxafskitnR/16jrvl5B56rZNjpLihc6EclFTte3ncuXK8sqP5nEHepQfYhHpy5RldGzq6R8Vq69l5ndYL6fgbJewqujBKY4yIww4VnjpeORzqINSaBdH2/aEOS0rOyKDzRj27oBFeOjcBaTEx2fzrIS8Wg7vVMt0aMFpYFbZ9k0/pxLsl2O+kvUoVmU3hz+n/xDZA5ekICPSFGksNKYqFRoNInue2aa59lOnQPYctBjoqSo6Kk0HhXnz4i7Yu02rFMDd2u0jHeBB4BZ/h0Ck/0g4Lt/wySaB58lKZMhTZGYuaiRQHQSSc8GcTxj9aZROsGECAO0PZH2ig43ov/OD/lF2ZR83SwK9tnbIfJlodamP7VfHKP8kigJ0a1ziqN3DmKdO1z6c2biBIhg7pXS4jWu1HJPf8GNNAUnvIIBUc34y6NomsaZks2/DhTrRVjkQR6Qgwzh5WgPNVJhdmAgdX1c66AKD3XbfxYr6BCtVGu2rChMCwTc5iTsgAUzurEZle0bXdLmYWdaf01XSNrlpOmAwj0OqsSuArtlJ4doO6l0Ojt2dPBO8lBssMiWpvMdGt61fxOBFt7O74FGoUL/Wx/rA1HvkH2wS5805w750NKkCdGv2gzeMsga5ZCpSDemu7hMyMgwd/4FmtxsOXvU0CB4TNxFCXQDQvNpvCURsg5JNh9mr50gIlBkEBPiGHitBIcbNXhIkmAAG1As+bDRCeJQYPmJ9lT8GZZVKhWSlUQHUUHTswRGELpzk7gzUsS67DRVu0Z9v2NdmbIYutfW6m4MJusuW4iO5KEtwxw2MxObR9G8FU68JQ7mP6VfFIRi47NcZrfC8MoScTpn+Uk/xgv6NC6rH8F0zMpFVGk4uDItTH9qny0nQXrU3GL1o/CvdbbE2I0aVkOniLIndP9cSsFqajC0dHAJm8B1jjNvjnexZodNL5dQCLoQLMrdLuFzZFCsyk6t/lAQeWF2/FWDNOFKcXoHSI5Sps13kigJ8QwmWE14CZJUPNQrxWx1Sjq+3vNspiqmihSIXTARGOrlkedbWTqO+ZPTZ/c160K7GfJiSMVsdj+WCtTvpRPyakBttQ095lNsi/VTwTxTLKTPc+Nu9hOznwPWQe5qHuhnWhdZrv4ik7xE5jpQlmKtuUROjaOjUQmre914pvhAg3izSbtq6P7LXMhxGhimRptaxS589NzWZUFoa3p4M/mgrJ4iOJ4B2v8RTQ7JRHHWBLa7KXmuXIANGNnciqldQU4usOidPGO4QvyhEACPSGGTbvmJkvFMJRJFDvQ+1A4wzI5xKrGhUkCG9v1XBr2ysY5nOxuE8NlEW6xy5DNvVgJaHq7g6ITA3gmOencNPggKLI9SWR7+u8gMMtJ4Yl+ys7NZscroUH3Fh4oR46Of7qTZEeKbX9rzUgbBiu0IUH7urERlArRm9AWjUi9QilIRQE0dn0SI18sZHZnI3M76lEd9aSfBQuNdb5CGl1yYW40SrQb1DxfjmZTTPnMNlz53b/fLWuESiRKMpYJTwI9IYZJtS2fArMDHwkSRKi3bDgxsWFhoRPbmUnTb0U52KpFR1GrZbPNVjDibQ2UxNA0aN0uQzZ7kmhNj6+0+4fulzm0Pk6kJknlZ3MoWRxgx0shwttGLthzFhoUnuDDmZ/+GWh4ffgSqAgh+mZGep6P1+gK0OzwMiPchDeVvkiU0jRyk1GmhZsl0Bulqp6clB6WedH2fYI8GKEgTwgk0BNi2OiWhXtn1o1JqpUcK9Rtan3K0rDQMHamNlyvF9OiZ2ZojsOTQilwB5JELTDj8tWwp/xjfSiliDUMbYISM2xR9WgblZ/JpeSMAHXPtxOpHt4kKIZPp+ycrK7C49EdSRre6MCUIY9CjEqWbmO9v7jr/6XRIDnJKDGbPYOtEr3pqPKQbLfjn96BpySW2cZYFqM2fbY1Sts1zsjZnBDDpEztHgaXwKBV8xHDIIWGnRQ5KoINi2bNxzYtj8Sw18rrXbDaTfHBHRRMTyewUCqdDCDc7KB5s5eJWk9PM6DkjACuIoNITXJY5tKZHRZVj7VSeUkupZ/KIlyVILQ2Srhq6AM+3QGVl+ag2TXC2xI0vBHCyvB5iBCinyyL6ZFmymPtmJrOx4GyTLdI9KBjYwDQKDmlPtNNEUICPSGGS62WS6fmJIiXYpuLelti1CaZirY7qHo/B3d2Eqc/icOTwh0wCRQniLY7CDf3XAZiPNIMyD3SjT3LwDfZATrEm0zqXmgftn2a7RbV/2yl7JxsvJUOfJOdpBIWnZvjKAVZs9IJR1reD6cLhOsasfokaoBxZ+4RHnSHTv3rITrWy9w2IcYEy6Iy2kZlNF1uJ6HpLM8ql0yco5RmT/dURWrdBKaN/gzGYnyTQE+IYWLpOm34x0wlJMvUCTc7CTc70Q2Lyce0ARAP2TLcshGkQ+nZWYSjNpRSpGKKxjc6RmTuXKLNYutfWtEMyDvKQ2CWm6yD3ACYUQvdoZF/rK9reaUUwU8iNL/T/zICmj19YhjeKkGeEGNBSTTI9HALBhYmGuu9BdS5szPdLNGHgmObaVuZTc0LZZSfVZvZYE+SsUx4EugJIXoV67CBDrpuYU2AbJy+yQ5sdp3gu2GaBhBADSVlpguCN78TwcjS0Q2NREsKbOCf6sTmSh+H7Plusud7UCn6VTPOWWjgKbWj1M4030KIUUt3KcpOAiPcRAqNLe5cqtw5ksVjDDCcFhXn1FLzXBk1z5Vjz0oQmNZB3lGtGE758hUjSwI9IUSvnL4UFYenhywmwjZ2rAyM64DPnp3uvezYMrwJUfqrW4KUFN3q29ncGrmHe9GMvvuM/bOcFBzvw+bQUUoR3pYY8JBPIcQIMhSTTgfNBjXOABu9BRLgjTH+yWFmfGUTNc+XEalz0/JRPi0r8ph8cdXIJmiRHr0JTwI9IcQ+LBNiIRsOb4pYyAAN3Fkmk45uo25VgETn+Mz25ilP93jFm0Z3JFSw0EvWwW7MSIrmt3sfFqQ7oegkP1jQ9nGY9jUxKSguxChnONJBnpWCjf6iTDdHDJLhsph8UTUAoU0+ap4vp+aFMmZeuTnDLRMTiQR6Qoge6NStzO72iDc/TuHMTsrmh2jZ5iFU585M04aJd4oDV5GdZHsq003pU/Y8N9lzPSSCJlWPt/W98M4Lpon21IDm8gkhMkN3KMpOTd+P7AAkzhsXOrak51f7p3SO7I4tBaM1DZw1Sts1zkigJ4Tol3Czk+pOG2XzQ+RNjuDwmDRvGrm6f+5SA0+5g0hdkmhd8oBKA+keneyDXTjzDRxZNgyPjmbXUClofHuEf4gHQHdCwfHpmn7bH2+D/XQ8WglIhiwcOTYMv47ZIb15Qoxmdj/oO8/M2jcBh6bv65ZFXiJMdjJCm8NDszMzNVfF4IQ2BTA8SUpObsh0U8QEI4GeEKLfzJhB1fvZVB4VxF+YoHWbhWUO/9yRwpkd+ApyAMg9PJ1xUplgRiwSbSbBTyL9rnHnneqgZHEATdN2bkdhRhSJ2iSNb4XJLcoazpdyQLyV6TIXmqYx7Sv5JFpStK6I0Lmp5yyak7+Qi91nI9mZwoxKkCfEaBdv0ah/R1F0DJQuAm+wGruVwmMluzI4l8VDrLMs6t2j97tKdKdSGkZg5KcEKGWhRmn2rdHarvFGAj0hxADpNGzwUXJwB/lTwzRuGI4ryxa5k6N48xIYDgtNh3hzkoY3OnGX2HEV2XHm2jC8OvaAA2+lg3iTSfWTwf329BWf5EeloPaFINHa7klXNH10F8Po2BAnWt+Cu8RO1hw3rgKDktMCWIssap5pJ964+0RCd4HhTSdg2fb31gPqARVCjJxovUbNq4rSEyBLi2Gh0WE42eEM0G53cVSwmtJ4SAK9MUTTFSo5un9fxPgkgZ4QYsBi7Q5SCQ1vfgJ9SwrLHKpaexZ5UyMEiuJoejoZQSJiI95po+HJJoCdiVKiXWvoDig6NYB3koPJn8slUpPE8GiEtycIrYt1ZZi0Z+tUfiYXTdPo2BzbJ8gbK8yQRUconi54rkPOoR7yjvRQdnYWWx5s6VrOikHLe2Hyj/VRsjjAjldD+x3qKYQYHcxOje0vwLb/mt7t8fJoGxpQL0M3xxRNV1imBHpi5EmgN06s21yK7nYN+348VeMv2+LkxzYN6/Y1DfIq/OjVHSOWTViFhzfxhuEFm92FpmlMOqKNulfiJFr69+ICB9nwTTbQgFQiXZTcioMjV8OVp6PZNMyoouWDBOGq3d1QNp+v1202/sci78gUgVk2ArPSwxu9k9JlBdhjLrqmaXRWmbQsVz1uT9NA97ixeRMjcqw23jJvSLZT2dbGrNYW8r5dwbKy8m7PHb+9Ct8UmP7VApK6ztKKSSSM4fvqv+7sZ4dt212Uhj2uk3S2gDb8B+qa7Jph38d4pJRGe6SULE8d2ggcp/Hpla57lgU/uOtEYrrBS9f9Y8gqLshxGl6JhM53zFmU+WIH9F2ilEZ1PMF1A1tp9CY9kfIKI0ICPSHEgJWc6gQNwrUmnhIbZWc6Ca40afukhy4jHfzTbPim2nDlpgM5Zal08LVzqOSu+XJmWNH2SYLOLQMfZ9jyQZK2T5JggBUBb6WOb7IN3aWh2zRsbo1ovUnT0rHZk9eXqpwc8qMR8qJRSkMh6gKBrueWlldQ1tlBXiRCcTjMYfU7eK+8IoOtFUIMxuMvzSQcdXDmCVukrN4Y8rdnDkIpOP34rZluipiAJNATQgxI1hwbhl8jXJWi8a0khj9J2RkucubbyZ5rkIqDMhXooNs1dPsegVynon19ktC67iUMdDdY0V52OABWAkik74errG49guPdh8UlLN66hWltrd0CPXSd2kAWDR4vReEw+mi9uiuE6FVTq4v/LKsgOxDjnJO3ZLo5YgC21WVh0xXzZzeP/M7VKC6vID16I0ICPSHEfukO8E2xEZhpYA9oWHFofDvdM2Z2QNXjMQIzbPimGxgeDd2pgQIrroi3KDq3mnRus3pNCDIUQd6Ep+skbDbsVs9v8jF1tWjAxry8kW2XEOKA/fnJuSjga59ZkemmiAE6fE4DryydwotvTubME7dlujligpFATwjRTWC2DW+FDd2u4cjR0LTdE8iVpYjUWDQsTewTtIU2pghtHN3FxsczVyKBK5UiqWnMbWhgh89Hi9cLlsXRdXX4kklqfX6avd5MN1UIMUCtQRded5KKktFb53Misyx6HU676KhqXlk6meXrCkc+0LMs0EbpyBYprzAiJNATQqQZUHmhC5szPcwSlR5ymYorwttTRBtThLfKF/NoVRQOA2BXirLODso6O7AApWnoStHo8bCqoCCzjRRCDErK0oknbCQSOg6HfA9nkmXBa+9MojXkYmp5O28vL2PDtnSdV8OwcDtNnI4UlqURi9uIxNJJ7I6dX5fJZosJSgI9IQQAhQvs6A5o/ThJcKWJ7oDATIPgOlPS8o8BtX4/jlSKoNtFu9PFpPYgedEozlSKOp+fTTJkU4gxKWnqnHBkNS+8OY0bfnESlWUhcgJRSgo6WXB4LQGffEGPpH88N5t3lqezG7+5DEBRVtRJli9OW8hFR9hOR9iBrikc9hRzprVw5olbmFoRymi7xcQkgZ4QAgBXvg0rAcGV6ZMGKwHBVXICMVaYhsHG/Pyu/2/Ky2d4C4cIIXZRKh2QOezp3ra2diebtueQSOocObce5yB74WobfPz+4UNobXcD6Z69LdXZQDYAzy2ZzmFzGvjCeWukp28ERGIG6zanL5rd+NX32L7Dz5TydsqKwhluWS8kGcuEJ4GeEGI3+d4VQogB+83fDmP9llxOO34b1TsCrNuyuwf9tXcquWDxRipLQ/i9CbQB1M1+8t/TsRsWX79sOU2tHlZuyGfjthwUMHNyG81tHj5aU8TH6wqZXtnGoqOrmTujWcovDJGGZjfvfVLC+i151Dd7iSdsgIbDblKQG2ZSaUemmyhEnyTQE0IAkAxbuPLl7EAIIQYinrB1BXavLJ2CYUvxpQtWMWd6C50RO39+8mB+//ChAHhcSYoLwhTnh8nJihGNGSw+fht+b8/1PbfXBboCxINntHDSMdVEogZL3q/gpf9Moay4g0VHb+f1dyexfmsu67fmYdMtZk9t4Wuf/VgCvkFYszmX516fRk2Dn1Qq/QZqmiLLH+OgaS0cMruRww5uwBgD762yLNQoTcaiJBnLiJBATwgBQKQ6hbvAhqdCJ1ItX8BCCLE/y9cU8vBzs7v+f+WnP6GssJOi/AgAPk+SG76yjMZWD/VN3vSt2Ut1vZ8VawsxUxofrS6ioqSD6ZVtnHLs9q4ev6ZWN+GogzWb81mzOZ//d/O/AfC4TT61aCsHz2jmwX/O4/kl07js3LUcNK2F19+tYNnKElZvKuD3Dx/C1z/38Yi/J2NVLKHzk98uIBhyAYqivDAzJrdx5Lx6ppa3S9AsxiQJ9IQQAHRsSJF7mKLgGAdVtbFea94JIYQAM6Xx5ycPZuaUVj61aAuGzWLT9hxstu5fnpoGRXkRivIiHDK7qdtztQ1e3l5exo5GH/96ZSb5OVG2VGexYm0RLUE3edlRjj20jiPn1u+z/8rSDr531Xs8/OxBPPjPeSw4vIZLz1rP2Sdt5a4HjmT1pnyeenUa55+6eVjfh/Hi6VenEwy5KCvq4FuXf4jHNQ7mqMscvQlPAj0hBACWCa0rkuQeamfyZ1x0bkkRrU8Rru690LkQQkxUNl2R5Y9TW+/nb0/Poa7RD4Dj3DXk5/Qvlb5l6exo9FHT4APgj48egt1IcfzhtZQUdnLI7CZ8np6HdQK4nSmuuGgVs6a08ugLs+kMO/jqpZ/wrSs+4NZfLeSVpZMpLezkqHkNB/6Cx7mDpzez9MNyaht8bKrKJp6wsX5LHosXbqUoL5rp5gkxKBLoCSG6tK9OkYoq8o5wEJhhEJhhoJQiuNqkbcU4uLophBBDRNPgms8t54mXZ7JqY7pG5REH13PMof2vl/bvdyrZsC236/8HTWvmotM3UlLQ/yyOmgYLDq/D70vw+4cP5T/Lyll0dA3f/9q73Pyrhfz5ybkU5UVGXeKQFevyefO9SUyrbOPsk7ZmujkcPKOV2/77LW799fH84ZFDux5/f2UxV1+2gjnTWjPXuMGyFGijtOdMevRGhAR6QohuOrdYdG6JYfjAXWIjZ76dnLl2smYaJDoUndtMQmtTmW6mEEJkXJY/jsORwu+Nc/VlK6gcYDB1+YWrWHRUNa3tLipLQxTkDr7nKOBNALDk/QoWHV2Dz2PynSuXcccfjuXuh47kxv96j5KCyKC3P5Te+qCMh5+fDWhsqMrhyLn1FOVnvtcsO5Dg1muX8s+XZ5JM2lh09HZ++/fD+e3fDuOWby6lIDeW6SYKMSAS6AkhemR2QsfGFB0bU+QebuCbbODM0XDlObA5krR9LD18QojxbVeylE3bs6lv8hGO2kmlNMyUTiqlEY7YsZTOF89fPeAgD0DXYGpFO1Mr2g+4rW0hJwBNrV7++Oh8rrx4JWVFYa68eCUPPD6Pn957HNmBOD/59lsHvK8DsaPJw2MvzsJhT3HmCVt5+rUZNLe5R0WgB+lgb87UFt5eUcYfHz0EpdLZcZ56dQZfvWRlhlsnxMBIoCeE2K/Wj0xaPzLRPVB5oQt3sU6bJHMTQoxT0biNpR+WseS9SQQ70gk6Sgo6mVzWjmGzsNkUhs3C500wbVKQ4vzM9pTFEzbWb81l1pQW1m/N4+N1hXzrp6dyw1ff47A5jXztsyv43cOHEepwZLSdy1YW8ZcnD0Ypjas+8wn1zV4AOiOZbdeeXllayVOvTgcg2x/nqHn15GVHWXhkbYZbNghKMWon2cvQzREhgZ4Qot+Kjk//GLd82HtyACGEGKuCHQ6WvDeJtz4sJ5nUOWp+PaceVzWgOXOZ8D/3LCQSs+/zeGfYzrsrSvjHswehofj8eWsy0Lq01Rtz+dO/5uKwp/jmFz5iakWIipJOnnp1Bn97eg4tQTdnnrA1o2UM/vnyDF5/txK7keLn330Dl2OUBklC9JMEekKI/tv5A2y4NeKjNWWzEGJCaWxxs2JtIUfNqycnKz6obdQ3eXj1nUre/6QEu91i4RE1nHR0NdmBwW1vJFkWJMzd0ZHLmSQWTwd99/7jcABsusW1X/qQmZODmWgiAE+8MhNNg1uvfZuALz2fMOBL8O0vfci9Dx/K829MY8l7FZy6oIozFlZlpI3lRenht/NmNo2LIE9ZCjVKk7GoIejR2759O//3f//Hc889x/bt23E6nUyfPp1LL72Ua665Bo/HMwQtHdsk0BNC9FvDGwkqL3SRe7idcPXoPwESQoxfsbiNZ16fxpvvV6DQaG7z8Llz19LW7uSTDQUccXBDn6UJzJTG2s15LP2ojFUbCsjyxzj3lM0cf3gNbtfYSDiVNHWCISdf+8zH3P/4fGJxg8+dsxa/N857n5TicZlk+WMcNW8HAV9m51W3Bt3k50S7grxdpk5q587vvsGzS6bx+ruTeOa1GZQVdjJ3ZsuIt/GYQ+p56tUZrN6UP+L7FgPz3HPP8fnPf5729t3zWyORCMuWLWPZsmXcd999PP/880ydOjWDrcw8CfSEEP1mxcCMKGwuLdNNEUJMMErBC29OoaKkg5mTW/l/fz2MukY/FyzeiGnqPPP6dNZtyaW13Q2ki5TPnto9JX4qpbF+aw4frSnm43UFRGN2Sgo7+cJ5qzlyXj2GbXT2fqzckM+/366kIDdKe4eD9g4nwQ4nkei+c9vMlM6Mye3MmHzgCV6GyoerC0maOtMntfX4vK7DeadspiA7wt+ePZj6Zm9GAj2AaRVtLF9bRFvIQU4gsf8VRjNlMXrn6A2+XR9//DGXXnopkUgEn8/HD37wA04++WSi0SgPP/wwf/zjH1m/fj1nn302y5Ytw+fzDWHDxxYJ9IQQA5IMKwyfhu5KB35CCDESlq8t5Pk3pnV77JIz17Ho6BoSyXSgtyvIO+aQOmZNSQd5lgUbq3L4aHURK9YWEo46KMgNs+ioag6b00BpYRhtFF67qmtMJyopLQzTGnSxeXsOm7fnMGtKC9MmBcn2x8kKxMn2x8n2x8gKxHE7+98T2dzm4sX/TCEvO0Z5iQP/VLDZhvY1RGIGf3v6ID5ZV4jdsDj/tI19Lp+XGwUUT/17BstWFXP0vB2ccFQtDqP3oODdFSUsX1PIjMo2Tjlu+wHP8Tt1QRXL1xbx8HMH8fXLJOvYaPTtb3+bSCSCYRi8/PLLHHfccV3PnXLKKcyYMYMbb7yRdevW8ctf/pKbb745g63NLAn0hBADElxp4i5yUHmxi0RQ0boiSbR2lF4xFEKMWUrB1posln5UxppNeXSEnfss89iLs3nsxdld/z/vlI0cfnAjfm+CNZvyWL0pn+VrCukIO8nLjrLgsDoOP7iB8uKOURnc7RKL2/jlA0cRSxhMm9TGYXMaKMwN09jq5dJPraco78CzfN7z0JEEO1wABAIBwuEyzjtlI6ceV93j8k2tLt76sJyaHX5yc6Icd2gdUytCPS5rWfD8G1N5+a3JWEqjIDfKlRd/gs/T9/DRmZODXH/FB/zjuYOoa/Dzr/oA/3plJnnZUY4/vJbTe5i798jzs0maOqs3FfDCm1M5dUEV0yvbBj0fcXJZB+XFHazemM+Pf3ssl561nllTeu6JHO3G4xy9ZcuWsWTJEgC+8pWvdAvydvnOd77Dgw8+yNq1a7nnnnv4wQ9+gN2+b7KiiUACPSHEgMQaLOpeSZB7mIErX6f4JAdmp6Lx7STxJgn4hBAHrr3Dwd+fmcPqTfnkZUc47tA6lrw/iUSy7y6nWNzgz/86mG11ASxLJycrylHz6jn84AYqS0OjOrjbUyRmEEsYzJ3ZhGVpPPHyTCwr3VX18dqCHgOegUpZGqA45dhq7I5s3njPzb9emcXLb03hoGktlBV1Yimo2eFnw7ZcwlE7kF6HbRrvLC/HbqTIy46Slx0lyx8nGjNo73RRVRsgZem4XUmuuHAlB89o3U9rdps6qZ0fff1dTAs++KSEt5eXUVUb4OnXZmBZGmeeuK1r2X8vnUTS1Dlybj0lhZ08/8a0rl5fp93E602ia4rJZe184bzVGP08673+yg+479H5rN2Ux6//cgRTK4Jc/+UP+v0axPB58sknu+5/+ctf7nEZXdf50pe+xA9+8APa2tpYsmQJixcvHqEWji4S6AkhBizeaLHjpQQYUHCMHd9kG6WnO2h+L0nHprGRxEAIMTptqc7idw8fgmFTXHbOGiJRO153kjtveIPOiJ1Y3OCn96av4h81bwe6rnjv41IAln5UxszJbVxy5npmTmmjMDcyZoK7PeUE4kyraKOp1cMPvvYusbjBpqos/vHsHJ5+bTr/+bCcgDeBmdIxzV0F3HVSlobLmeKsEzdz9PyGHrdtWelhsAF/nI6wk9Ubc7n2imrOPKGOp/49nXc+KuODVcV8sGrXG6dwu0wOn9PAKcdVMbmsg5agi9fencTK9QW0BN076+Glg0BNg5ysGKceW8UJR9YMeiilocOxh+7g2EN3YFlwwy9O4rk3prF0eRkel0lTq5tE0obXneRz563FYVicemwVW2uyWLGuiA9WFhOJGqQsnQ9WFfPxukIuPn3DfuvhJRI6obCDS85cxx8fPYS6Rj82XS5ijhb/+c9/APB6vRxxxBG9Lrdo0aKu+2+99ZYEekIIMWAmNC1N0vJhkknnu8g/yk54ewprjM9fF0JkRmfEzgP/nEdxXoSrPvsxf3xkPlV1WZgpnRVrC/nC+Wu4//F5XcsvW1kCwJzpzZy9aAsVpSH0MRjY7U3TYMbkNl78z1Qamj2UFYU59KBm5s56kz8+fAgbq3IIdTjRNIWup2+2nf+2BF38+cl5PPrCbC4+YwPHHbqja7sr1uXz0BPzME0boMjLjnDN55cD+Rg6fPqMjXz6jI2EOg0aW70oCypLO3DsVWogLzvGJWdu4JIzNwDp4DGWMHA5zGGpg6fr8LXPruDh5w4i1Okg1OEk4Iszf1YTF52+vmsOn2HQlYhmV9sA3llRwmMvzOLh5w/i3+9U8rXPrqCkID381TRh+dp0YLitNmuPnksAxfxZjVz1mU+G/kWNhHGYjGXt2rUATJ8+HaOPLtrZs3cP6d61zkQkgd44YUVHJitGKj7+emvM4Y5KNEik4iStBCNVek6pEY60olD7pknhQgcl5+kkgorOKpOODWPr70UDkqk4pkowBCV+9suKjb9sNtHOEUjhrjTMeJJk0oQRmH8Sso2tv+PRQimNUMRES6XQ+nmcHnl+Bo3NOhedtoGUGWNrjYNYPP03tWJtgBVrj925ZIITjtzO/JnNFOWH8bjTy3R2DscryYyGFo1EIoFpxgl17P4b/Py5H/W5nmnCC/+ZytKPynnw8Rk89M/pGLYUTkeKzogDw5Zg8fHbOP6IGlwOC6U02jv2Pk4pCnPSJXRi8fRt/1J09l7N4oAV57Xw7S+9te8TCkIdfa978LQaZl1dwyPPH8TytUXc8qsj0HWFYbN2DgdO90Z6XAmmlLdQlBfGUjB7aiuzp7Ttd/sjQSmNjgF+v5okR+y8Y6BM0n8soVD3eZ5OpxOnc9/5uACxWIzm5mYAysvL+9x+Tk4OXq+XcDhMdXXP804nAk0NRcVCkTGxWIwpU6ZQX1+f6aYIIYQQQohhVFxczNatW3G5XL0uM1bODX0+H517XZ255ZZbuPXWW3tcvqmpicLCQgA+85nP8PDDD/e5/aKiIhobG5k7dy4rV64ckjaPNdKjN8a5XC62bt1KIiFj5YQQQgghxjOHw9FnkAdj59xQKYW21yTa3nrzIB3A7uJw7FtDcm+7thWNRgfZwrFPAr1xwOVy7fdDL4QQQgghJobxeG645+vpTxAbj6fHHLvd7mFr02g3DFNmhRBCCCGEEGLo+P3+rvt7D/nsSTgcBtJDRCcqCfSEEEIIIYQQo5rL5SI/Px+AmpqaPpdta2vrCvQqKiqGvW2jlQR6QgghhBBCiFHvoIMOAmDTpk2YZu9ZSNetW7fPOhORBHpCCCGEEEKIUW/hwoVAeljmhx9+2Otyb7zxRtf9448/ftjbNVpJoCeEEEIIIYQY9S644IKu+w8++GCPy1iWxZ///GcAsrOzOfnkk0eiaaOSBHpCCCGEEEKIUe/oo4/mhBNOAOD+++/nnXfe2WeZu+66i7Vr1wLwrW99C7vdPqJtHE0k0BNiP2pra7n99ts56qijKCgowOVyUVFRwcKFC/mf//kfVq1a1eN6SinuueceZs+ejdPpZPr06fzkJz/pMyXwSSedhKZpA7pNdIlEgvvvv58zzzyTkpISnE4nPp+PWbNmceWVV/Luu+/2ub4cp8FraGjg6aef5kc/+hGnnXYaWVlZXa+3t4K3fXnxxRe56KKLKC8vx+l0Ul5ezkUXXcSLL77Yr/Xr6uq44oorKCgowOPxsGjRIv7973/3uvy2bdsGfByvuOKKAb+u0WAojlUsFuOpp57i2muv5ZhjjiE3Nxe73U5eXh7HHXcct956a78LNMux6tlQf6b2FIlEmDp1atf2Jk+evN915Dj1bDiO05IlS7jyyiuZMWMGPp+PQCDAjBkzuOiii/jtb3/bZ5bJiXacfvWrX+F2uzFNk9NPP52f//znvPvuu7z++ut87Wtf48YbbwRg5syZfOc738lwazNMCSF69cc//lH5/X4F9Hr71re+1eO6V155ZY/Ln3nmmco0zR7XWbRoUZ/76uk2kW3fvl3Nmzdvv+/RddddpyzL6nEbcpwGr6/Xe8stt/R7O5ZlqauuuqrP7V111VW9HkOllKqtrVXl5eX7rKfruvrLX/7S4zpbt24d8HG8/PLLB/gujQ4Heqw+/vjj/X4XAioQCKhHHnmkz23JserdUH2mevKd73yn2/YqKyv7XF6OU++G8jiFQiF16aWX7vd9Wr58eY/rT9Tj9PTTT6tAINBre2fOnKk2btyY6WZmnBRMF6IX99xzD9dddx0AkyZN4uqrr+bYY48lEAhQW1vLhg0bePLJJ9H1fTvGX3jhBR544AFycnK47bbbOProo1mzZg033XQTL774In/84x+5+uqr+9z/ypUrh+V1jRemaXL22Wd3vU/z58/n+uuvZ9asWXR0dPDWW29x1113EQ6HufvuuykpKeGGG27otg05TkNn6tSplJeX8+abbw543Ztuuok//OEPABx22GHceOONTJs2jc2bN/OLX/yC5cuX84c//IGCggJ+8pOf9LiN6667jpqaGo477jh++MMfkpOTwz//+U/uuecerr76as466yzy8vJ6bcP555/f67b3lJOTM+DXN9oM5liFQiE6OjqAdGKDc845hyOPPJK8vDyampp44oknuO+++wiFQnzuc5/D7/dz1lln9bgtOVb9cyCfqb0tX76ce+65B5fLhd1u7zqWfZHj1D8HcpzC4TBnnXUWS5cuBeDMM8/ksssuY+bMmViWRVVVFcuWLeOxxx7rdRsT9Tide+65fPLJJ/zqV7/iueeeo6amBofDwfTp07nkkkv45je/icfjyXQzMy/TkaYQo9G7776rdF1XgDrnnHNUJBLpddlEIrHPY1dccYUC1NNPP93t8eXLlytAnXzyyT1ua8+eItG3xx9/vOu9Ou6443rsffvggw+U3W5XgMrJyVHJZLLb83KcDszNN9+snnvuOdXc3KyUUur1118f8FXtjRs3KsMwFKCOPPLIfT5r4XBYHXnkkQpQhmGoTZs27bONWCymnE6nqqioUJ2dnd2e+9a3vqUA9ac//Wmf9fa8qj3arlYPtQM9VkuXLlWXXnqpWr16da/LPPnkk0rTNAWoadOm9dgDK8eqb0PxmdqbaZrqiCOOUIC6/fbbVWVl5X579OQ49W2ojtPXv/71rt63Bx98sNflLMva5/dLKTlOYv9kjp4QPfj617+OZVlUVlby8MMP43a7e122p0m+tbW1APtkejr00EPJzc3tel4M3q4roAA/+MEPsNls+yxzxBFHcM455wDp4ql71tUBOU4H6rbbbuNTn/pUn1eL9+fuu+/uqoX061//ep/Pmsfj4de//jWQ7sW955579tlGS0sL8Xico48+Gq/X2+25U089FWDCH8sDPVYLFizgkUceYc6cOb0uc/7553PRRRcBsHnzZpYvX77PMnKs+jYUn6m9/epXv+LDDz9k1qxZfO973+vXOnKc+jYUx2nFihX87ne/A+D666/vcw6cpmkYxr6D8OQ4if2RQE+IvbzzzjtdJyg33HDDPl+e/VFYWAh0r+MC6WF+ra2tFBcXH3hDJ7g9k6VMnTq11+WmTZvWdT8ej3d7To5TZimleOqppwCYPXs2xx57bI/LHXvsscyaNQuAJ598EqVUt+dzcnIwDIMPPviASCTS7bklS5YAyLEcIXteNNm8efM+z8uxGllVVVXcfPPNANx77704HI5+rSfHafjde++9KKVwOp18//vfH9Q25DiJ/ZFAT4i97DkW/pJLLum639LSwsaNGwkGg/vdxq46L1/60pf4zW9+w/vvv8+f/vQnPvWpT+2zXTE4M2bM6Lq/ZcuWXpfbdbKpaVq3dUCOU6Zt3bq162rzokWL+lx21/M1NTVs27at23Nut5szzjiDqqoqTj/9dJ577jnefvttbrzxRu655x48Hk/XMRXDa8+LKT31ssuxGlnXXHMN4XCYL37xiwOqJSbHaXgppXj88ccBOOWUU7p6Bk3TZPv27VRVVe1zYbIncpzEfmV25KgQo8+CBQsUoKZOnaosy1K/+93v1MyZM7tlczrooIPU3XffreLxeI/bsCxLXXDBBT1mgjr11FN7HGuvlMz9GoiGhgbl8/kUoI4//vge5+h99NFHyuFwKEB94Qtf2Od5OU5Da6DzVJ599tmu5e++++4+l/3lL3/Ztexzzz23z/MbN25UeXl5+xxHTdPUfffd1+M2J/I8laGY+9WT8847r2u7a9as6XEZOVb9dyDH6R//+EfX/OSGhoaux/szR08pOU4DMdDjtGHDhq7lb7/9dtXU1KSuuuqqbpltnU6nOuOMM9Sbb77Z57bkOIm+SNZNIfayZs0aACorK/n85z/PP/7xj32WWbt2Lddddx1PPPEEzzzzDFlZWd2e1zSNxx57jDvvvJMHHniA6upqSktL+eIXv8hNN93U41j7vfVWn29P+fn5E3ZYRmFhIQ8++CBf/OIXWbp0KUcddRTf/va3mTlzJp2dnSxdupS77rqLRCLB4Ycfzl133bXPNuQ4ZVZ1dXXX/fLy8j6Xraio6HG9XaZPn87777/PD37wA15++WVisRiHHXYYN910U7+uaAeDwX4dy+nTp+Nyufa73ET08ccf89xzzwFw8MEHc9BBB/W4nByr4dfW1sa3v/1tAO64446uYeoDIcdp+Ow6z4B07978+fPZsWNHt2Xi8TgvvfQSL7/8Mr/4xS/47ne/2+O25DiJPmU60hRiNEmlUl1Z45xOpwJUcXGx+stf/qJaW1tVJBJRb7zxhjr22GO7roZ9+tOfHrL9D7Q+W281/CaSVatWqS9/+cs9vj9FRUXq7rvvVuFweEj3KcepZwO9qv2LX/yia/kXXnihz2Wff/75rmX/93//d0jaO5haUr3VshprhrpHLxaLdWVHBdRTTz114I3cw0Q9VoM9Tl/5ylcUpDMS7539tL89eoMhx6l/x+mBBx7o1nMH6dqt77//vorFYqqxsVHde++9Kisrq2u5Z555ZsjaO1GP00Qkc/SE2EMkEulK9BCPx/F4PCxZsoQvfOEL5OTk4Ha7OfHEE3nttdc45JBDAHj88cd5//33M9nsCSuRSPD3v/+dZ599tsfnGxoa+Pvf/87rr78+wi0T/RGLxbru7y9JhNPp7LofjUaHrU1icL75zW/ywQcfAHD55Zdz3nnnZbhFE9ebb77JAw88gGEY/O53v0PTtEw3SewlHA533Y/H4yxevJhnn32Wo446CqfTSUFBAVdffTXPPvtsV63e73//+/skohJifyTQE2IPew9L+OpXv9qV7W9Pbrebn/70p13/f/jhh4e8LUqp/d56SjU/UYTDYRYvXszPfvYzWltbufHGG1m7di3xeJz29nZefvllFi5cyLJlyzj33HP51a9+NSztkOM0eHt+3vbMotqTPRMT9FXuZLAuv/zyfh3LQw89dMj3Pdb9/Oc/57777gPgqKOO4je/+c2w7k+OVe/i8ThXXXUVSim+9a1vMX/+/Iy1RY5T7/Y+17jzzjt7TF60cOHCrpIlq1evZuXKlUPeFjlO45sEekLswTCMbl/AZ5xxRq/LnnrqqV1zuHZdyRYj55ZbbuHNN98E4P777+fOO+9k9uzZOBwOAoEAixcv5vXXX+fkk09GKcX111/PJ598kuFWiz35/f6u+52dnX0uu+cVcJ/PN2xtEgPz+9//nh/+8IdAukTG888/P6iSNGJo/PSnP2X9+vVUVFRw6623Zro5ohd7fvcVFBRw2GGH9brsnuchcq4hBkqSsQixl4qKCjZu3Aj0nSDC5XKRn59PfX09jY2NI9U8QboX7cEHHwRg5syZXH755T0uZxgGP/7xj1m4cCGWZfHggw9y9913j2RTRR/2/HzV1NT0ueyeCVj2TMwiMucf//gH11xzDZBOXvXKK6+Qn5+f4VZNbHfeeScAp512Wq9D2nddNAmHw12jUQoLCznllFNGppGi23fYQBJRybmGGCgJ9ITYy5w5c7oCvVQq1eeyu57vT3ZGMXQaGhpobW0F6PNKKMARRxzRdX/dunXD2i4xMHPmzOm6v79js+fzvWVzFCPn6aef5ktf+hKWZVFSUsKrr7663xNWMfx2DYF+8MEHuy6G9aa5uZnLLrsMSNeplEBv5Oz53dff8wyQcw0xcDJ0U4i9nHjiiV33+yrEHQqFaG5uBqCsrGzY2yV22/PHzjTNPpdNJpM9ricyb8qUKZSWlgLwxhtv9LnsrmG6ZWVlTJ48ebibJvrw6quvcumll2KaJnl5ebzyyitMmzYt080SYszIzs5m3rx5AGzbtg3LsnpddvPmzV335VxDDJQEekLs5cILL+zKUvavf/2r1+X+9a9/dWXAOuGEE0akbSItNzeXQCAAwDvvvNNnsLdnADFlypRhb5voP03TOP/884F0j927777b43LvvvtuV4/e+eefL1kEM+jtt9/m/PPPJx6PEwgEeOmllzj44IMz3SyxU3+SalRWVgLp4ba7HluyZElmGz4B7UqyEgqFeO2113pd7oknnui6L+caYqAk0BNiL1OmTOGSSy4B0nNQXn311X2Wqa+v56abbgLSaeG//OUvj2gbJzpd1zn77LMBqKur65YBdU9tbW1873vf6/r/OeecMyLtE/337W9/u6un9dprr92ndEI0GuXaa68F0j2yu4pAi5G3YsUKzj77bMLhMF6vl+eff77b0GghRP994xvf6ErKcv311xMKhfZZ5q9//WtXEH722WfL8GgxYDKOSYge/OIXv+D111+nqamJc845h29/+9t86lOfwu128/777/Pzn/+8K3nEj3/842EZTrFq1ap+LTdlypQJmeXu5ptv5qmnniISiXDrrbfy4YcfcvnllzN16lRisRjvvvsu99xzD9u3bwfSWVJPP/30IW/HRD5Ob731Fps2ber6/57z6FasWMFDDz3Ubfkrrrhin23MnDmT7373u9xxxx188MEHHH/88Xzve99j2rRpbN68mTvvvJPly5cDcMMNNzBjxoxheS3BYLBfx9LhcDBz5sxhacNwOtBjtXnzZs444wyCwSAAP/nJT8jKyurzPSsvLyc7O/tAm76P8XyshuIzNVrIcdqtp+NUUFDAHXfcwTe+8Q1WrlzJ0Ucfzfe+9z3mz59PKBTiiSee4N577wUgEAgMWyKx8XycBHAAxdaFGNfef/99VVZWpoAeb5qmqR/96EdDus9Fixb1ur/ebq+//vqQtmEseeWVV1R+fv5+36NTTjlFtba2Dtl+5TilXX755QN6D3qTSqXUlVde2ee6X/nKV1QqlRrS9m/dunXAx7GysnJI2zBSDvRYPfjggwN+rx588MEha/9EOVZD9ZnqS2Vl5bC9P3KcBn6cfvzjHyubzdbrugUFBWrp0qVD2v6JcpyEUjJ0U4heHHXUUaxatYof//jHHH744WRlZeF0OpkyZQpXXHEFy5Yt4yc/+UmmmzmhnXbaaaxbt44777yTk046iYKCAux2O263mylTpnDppZfy5JNP8u9//5ucnJxMN1f0Qtd17r//fp577jnOP/98SktLcTgclJaWcv755/P8889z3333oevykyWEGF9uuukm3n33Xb785S8zefJknE4ngUCAI444gttuu40NGzawYMGCTDdTjFGaUjuzSQghhBBCCCGEGBfk8qgQQgghhBBCjDMS6AkhhBBCCCHEOCOBnhBCCCGEEEKMMxLoCSGEEEIIIcQ4I4GeEEIIIYQQQowzEugJIYQQQgghxDgjgZ4QQgghhBBCjDMS6AkhhBBCCCHEOCOBnhBCCCGEEEKMMxLoCSGEEEIIIcQ4I4GeEEIIIYQQQowzEugJIYQQQgghxDgjgZ4QQgghhBBCjDMS6AkhhBBCCCHEOPP/A751AR0UcKlOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# # choose example hazard\n", - "# year = year_list[-1]\n", - "# month = month_list[-1]\n", - "# memberNo = 0\n", - "# bounds = handler._get_bounds_for_area_selection(area_selection)\n", - "# area_str = f\"{int(bounds[1])}_{int(bounds[0])}_{int(bounds[2])}_{int(bounds[3])}\"\n", - "\n", - "\n", - "# # hazard path\n", - "# hazard_directory = f'{DATA_OUT}/{tf_index}/hazard/{year}/{month:02d}'\n", - "# hazard_path = f'{hazard_directory}/hazard_{tf_index}_member_{memberNo}_{area_str}_{year}{month:02d}.hdf5'\n", - "\n", - "# # load and plot hazard\n", - "# haz = Hazard.from_hdf5(hazard_path)\n", - "# haz.plot_intensity(event=1, smooth=False)" + "# choose example hazard\n", + "year = year_list[-1]\n", + "month = month_list[-1]\n", + "bounds = handler._get_bounds_for_area_selection(area_selection)\n", + "area_str = f\"area{int(bounds[1])}_{int(bounds[0])}_{int(bounds[2])}_{int(bounds[3])}\"\n", + "\n", + "# hazard path\n", + "hazard_directory = f'{DATA_OUT}/hazard/{tf_index}/{year}/{month:02d}'\n", + "hazard_path = f'{hazard_directory}/hazard_{tf_index}_{area_str}_{year}{month:02d}.hdf5'\n", + "\n", + "# load hazard and plot intensity for each grid maximized over ensemble\n", + "haz = Hazard.from_hdf5(hazard_path)\n", + "haz.plot_intensity(event=0, smooth=False);" ] }, { "cell_type": "code", "execution_count": null, - "id": "0af4b303", + "id": "4795c7d6", "metadata": {}, "outputs": [], "source": []