diff --git a/climada/engine/unsequa/input_var.py b/climada/engine/unsequa/input_var.py
index 32a81cbaf..cf5a401f4 100644
--- a/climada/engine/unsequa/input_var.py
+++ b/climada/engine/unsequa/input_var.py
@@ -222,7 +222,7 @@ def var_to_inputvar(var):
return InputVar(func=lambda: var, distr_dict={})
@staticmethod
- def haz(haz, n_ev=None, bounds_int=None, bounds_freq=None):
+ def haz(haz_list, n_ev=None, bounds_int=None, bounds_frac=None, bounds_freq=None):
"""
Helper wrapper for basic hazard uncertainty input variable
@@ -234,22 +234,33 @@ def haz(haz, n_ev=None, bounds_int=None, bounds_freq=None):
HI: scale the intensity of all events (homogeneously)
The instensity of all events is multiplied by a number
sampled uniformly from a distribution with (min, max) = bounds_int
+ HA: scale the fraction of all events (homogeneously)
+ The fraction of all events is multiplied by a number
+ sampled uniformly from a distribution with (min, max) = bounds_frac
HF: scale the frequency of all events (homogeneously)
The frequency of all events is multiplied by a number
sampled uniformly from a distribution with (min, max) = bounds_freq
+ HL: sample uniformly from hazard list
+ From the provided list of hazard is elements are uniformly
+ sampled. For example, Hazards outputs from dynamical models
+ for different input factors.
If a bounds is None, this parameter is assumed to have no uncertainty.
Parameters
----------
- haz : climada.hazard.Hazard
- The base hazard
+ haz : List of climada.hazard.Hazard
+ The list of base hazard. Can be one or many to uniformly sample
+ from.
n_ev : int, optional
Number of events to be subsampled per sample. Can be equal or
larger than haz.size. The default is None.
bounds_int : (float, float), optional
Bounds of the uniform distribution for the homogeneous intensity
scaling. The default is None.
+ bounds_frac : (float, float), optional
+ Bounds of the uniform distribution for the homogeneous fraction
+ scaling. The default is None.
bounds_freq : (float, float), optional
Bounds of the uniform distribution for the homogeneous frequency
scaling. The default is None.
@@ -260,16 +271,21 @@ def haz(haz, n_ev=None, bounds_int=None, bounds_freq=None):
Uncertainty input variable for a hazard object.
"""
- kwargs = {'haz': haz, 'n_ev': n_ev}
+ n_haz = len(haz_list)
+ kwargs = {'haz_list': haz_list, 'n_ev': n_ev}
if n_ev is None:
kwargs['HE'] = None
if bounds_int is None:
kwargs['HI'] = None
+ if bounds_frac is None:
+ kwargs['HA'] = None
if bounds_freq is None:
kwargs['HF'] = None
+ if n_haz == 1:
+ kwargs['HL'] = 0
return InputVar(
partial(_haz_uncfunc, **kwargs),
- _haz_unc_dict(n_ev, bounds_int, bounds_freq)
+ _haz_unc_dict(n_ev, bounds_int, bounds_frac, bounds_freq, n_haz)
)
@staticmethod
@@ -327,7 +343,7 @@ def exp(exp_list, bounds_totval=None, bounds_noise=None):
)
@staticmethod
- def impfset(impf_set, haz_id_dict= None, bounds_mdd=None, bounds_paa=None,
+ def impfset(impf_set_list, haz_id_dict= None, bounds_mdd=None, bounds_paa=None,
bounds_impfi=None):
"""
Helper wrapper for basic impact function set uncertainty input variable.
@@ -347,13 +363,20 @@ def impfset(impf_set, haz_id_dict= None, bounds_mdd=None, bounds_paa=None,
The value intensity are all summed with a random number
sampled uniformly from a distribution with
(min, max) = bounds_int
+ IL: sample uniformly from impact function set list
+ From the provided list of impact function sets elements are uniformly
+ sampled. For example, impact functions obtained from different
+ calibration methods.
+
If a bounds is None, this parameter is assumed to have no uncertainty.
Parameters
----------
- impf_set : climada.entity.impact_funcs.impact_func_set.ImpactFuncSet
- The base impact function set.
+ impf_set_list : list of ImpactFuncSet
+ The list of base impact function set. Can be one or many to
+ uniformly sample from. The impact function ids must identical
+ for all impact function sets.
bounds_mdd : (float, float), optional
Bounds of the uniform distribution for the homogeneous mdd
scaling. The default is None.
@@ -375,7 +398,8 @@ def impfset(impf_set, haz_id_dict= None, bounds_mdd=None, bounds_paa=None,
Uncertainty input variable for an impact function set object.
"""
- kwargs = {}
+ n_impf_set = len(impf_set_list)
+ kwargs = {'impf_set_list': impf_set_list}
if bounds_mdd is None:
kwargs['MDD'] = None
if bounds_paa is None:
@@ -383,17 +407,19 @@ def impfset(impf_set, haz_id_dict= None, bounds_mdd=None, bounds_paa=None,
if bounds_impfi is None:
kwargs['IFi'] = None
if haz_id_dict is None:
- haz_id_dict = impf_set.get_ids()
+ haz_id_dict = impf_set_list[0].get_ids()
+ if n_impf_set == 1:
+ kwargs['IL'] = 0
return InputVar(
partial(
- _impfset_uncfunc, impf_set=impf_set, haz_id_dict=haz_id_dict,
+ _impfset_uncfunc, haz_id_dict=haz_id_dict,
**kwargs
),
- _impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa)
+ _impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa, n_impf_set)
)
@staticmethod
- def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
+ def ent(impf_set_list, disc_rate, exp_list, meas_set, haz_id_dict,
bounds_disc=None, bounds_cost=None, bounds_totval=None,
bounds_noise=None, bounds_mdd=None, bounds_paa=None,
bounds_impfi=None):
@@ -436,6 +462,10 @@ def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
The value intensity are all summed with a random number
sampled uniformly from a distribution with
(min, max) = bounds_int
+ IL: sample uniformly from impact function set list
+ From the provided list of impact function sets elements are uniformly
+ sampled. For example, impact functions obtained from different
+ calibration methods.
If a bounds is None, this parameter is assumed to have no uncertainty.
@@ -464,8 +494,10 @@ def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
bounds_impfi : (float, float), optional
Bounds of the uniform distribution for the homogeneous shift
of intensity. The default is None.
- impf_set : climada.engine.impact_funcs.impact_func_set.ImpactFuncSet
- The base impact function set.
+ impf_set_list : list of ImpactFuncSet
+ The list of base impact function set. Can be one or many to
+ uniformly sample from. The impact function ids must identical
+ for all impact function sets.
disc_rate : climada.entity.disc_rates.base.DiscRates
The base discount rates.
exp_list : [climada.entity.exposures.base.Exposure]
@@ -485,6 +517,7 @@ def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
"""
n_exp = len(exp_list)
+ n_impf_set = len(impf_set_list)
kwargs = {}
if bounds_mdd is None:
@@ -493,6 +526,8 @@ def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
kwargs['PAA'] = None
if bounds_impfi is None:
kwargs['IFi'] = None
+ if n_impf_set== 1:
+ kwargs['IL'] = 0
if bounds_disc is None:
kwargs['DR'] = None
if bounds_cost is None:
@@ -506,18 +541,19 @@ def ent(impf_set, disc_rate, exp_list, meas_set, haz_id_dict,
return InputVar(
partial(_ent_unc_func,
- impf_set=impf_set, haz_id_dict=haz_id_dict,
+ impf_set_list=impf_set_list, haz_id_dict=haz_id_dict,
disc_rate=disc_rate, bounds_noise=bounds_noise,
exp_list=exp_list, meas_set=meas_set, **kwargs
),
_ent_unc_dict(bounds_totval=bounds_totval, bounds_noise=bounds_noise,
- bounds_impfi=bounds_impfi, bounds_mdd=bounds_mdd,
+ bounds_impfi=bounds_impfi, n_impf_set=n_impf_set,
+ bounds_mdd=bounds_mdd,
bounds_paa=bounds_paa, bounds_disc=bounds_disc,
- bounds_cost=bounds_cost, n_exp=n_exp)
+ bounds_cost=bounds_cost, n_exp=n_exp,)
)
@staticmethod
- def entfut(impf_set, exp_list, meas_set, haz_id_dict,
+ def entfut(impf_set_list, exp_list, meas_set, haz_id_dict,
bounds_cost=None, bounds_eg=None, bounds_noise=None,
bounds_impfi=None, bounds_mdd=None, bounds_paa=None,
):
@@ -556,6 +592,10 @@ def entfut(impf_set, exp_list, meas_set, haz_id_dict,
The value intensity are all summed with a random number
sampled uniformly from a distribution with
(min, max) = bounds_impfi
+ IL: sample uniformly from impact function set list
+ From the provided list of impact function sets elements are uniformly
+ sampled. For example, impact functions obtained from different
+ calibration methods.
If a bounds is None, this parameter is assumed to have no uncertainty.
@@ -581,8 +621,10 @@ def entfut(impf_set, exp_list, meas_set, haz_id_dict,
bounds_impfi : (float, float), optional
Bounds of the uniform distribution for the homogeneous shift
of intensity. The default is None.
- impf_set : climada.engine.impact_funcs.impact_func_set.ImpactFuncSet
- The base impact function set.
+ impf_set_list : list of ImpactFuncSet
+ The list of base impact function set. Can be one or many to
+ uniformly sample from. The impact function ids must identical
+ for all impact function sets.
exp_list : [climada.entity.exposures.base.Exposure]
The list of base exposure. Can be one or many to uniformly sample
from.
@@ -600,6 +642,7 @@ def entfut(impf_set, exp_list, meas_set, haz_id_dict,
"""
n_exp = len(exp_list)
+ n_impf_set = len(impf_set_list)
kwargs = {}
if bounds_mdd is None:
@@ -608,6 +651,8 @@ def entfut(impf_set, exp_list, meas_set, haz_id_dict,
kwargs['PAA'] = None
if bounds_impfi is None:
kwargs['IFi'] = None
+ if n_impf_set == 1:
+ kwargs['IL'] = 0
if bounds_cost is None:
kwargs['CO'] = None
if bounds_eg is None:
@@ -619,38 +664,46 @@ def entfut(impf_set, exp_list, meas_set, haz_id_dict,
return InputVar(
partial(_entfut_unc_func, haz_id_dict=haz_id_dict,
- bounds_noise=bounds_noise, impf_set=impf_set,
+ bounds_noise=bounds_noise, impf_set_list=impf_set_list,
exp_list=exp_list, meas_set=meas_set, **kwargs),
_entfut_unc_dict(bounds_eg=bounds_eg, bounds_noise=bounds_noise,
- bounds_impfi=bounds_impfi, bounds_paa=bounds_paa,
+ bounds_impfi=bounds_impfi, n_impf_set=n_impf_set,
+ bounds_paa=bounds_paa,
bounds_mdd=bounds_mdd, bounds_cost=bounds_cost,
n_exp=n_exp)
)
#Hazard
-def _haz_uncfunc(HE, HI, HF, haz, n_ev):
- haz_tmp = copy.deepcopy(haz)
+def _haz_uncfunc(HE, HI, HA, HF, HL, haz_list, n_ev):
+ haz_tmp = copy.deepcopy(haz_list[int(HL)])
if HE is not None:
rng = np.random.RandomState(int(HE))
event_id = list(rng.choice(haz_tmp.event_id, int(n_ev)))
haz_tmp = haz_tmp.select(event_id=event_id)
if HI is not None:
haz_tmp.intensity = haz_tmp.intensity.multiply(HI)
+ if HA is not None:
+ haz_tmp.fraction = haz_tmp.fraction.multiply(HA)
if HF is not None:
haz_tmp.frequency = np.multiply(haz_tmp.frequency, HF)
return haz_tmp
-def _haz_unc_dict(n_ev, bounds_int, bounds_freq):
+def _haz_unc_dict(n_ev, bounds_int, bounds_frac, bounds_freq, n_haz):
hud = {}
if n_ev is not None:
hud['HE'] = sp.stats.randint(0, 2**32 - 1) #seed for rnd generator
if bounds_int is not None:
imin, idelta = bounds_int[0], bounds_int[1] - bounds_int[0]
hud['HI'] = sp.stats.uniform(imin, idelta)
+ if bounds_frac is not None:
+ amin, adelta = bounds_frac[0], bounds_frac[1] - bounds_frac[0]
+ hud['HA'] = sp.stats.uniform(amin, adelta)
if bounds_freq is not None:
fmin, fdelta = bounds_freq[0], bounds_freq[1] - bounds_freq[0]
hud['HF'] = sp.stats.uniform(fmin, fdelta)
+ if n_haz > 1:
+ hud['HL'] = sp.stats.randint(0, n_haz)
return hud
#Exposure
@@ -676,8 +729,8 @@ def _exp_unc_dict(bounds_totval, bounds_noise, n_exp):
return eud
#Impact function set
-def _impfset_uncfunc(IFi, MDD, PAA, impf_set, haz_id_dict):
- impf_set_tmp = copy.deepcopy(impf_set)
+def _impfset_uncfunc(IFi, MDD, PAA, IL, impf_set_list, haz_id_dict):
+ impf_set_tmp = copy.deepcopy(impf_set_list[int(IL)])
for haz_type, fun_id_list in haz_id_dict.items():
for fun_id in fun_id_list:
if MDD is not None:
@@ -700,7 +753,7 @@ def _impfset_uncfunc(IFi, MDD, PAA, impf_set, haz_id_dict):
impf_set_tmp.get_func(haz_type=haz_type, fun_id=fun_id).intensity = new_int
return impf_set_tmp
-def _impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa):
+def _impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa, n_impf_set):
iud = {}
if bounds_impfi is not None:
xmin, xdelta = bounds_impfi[0], bounds_impfi[1] - bounds_impfi[0]
@@ -711,6 +764,8 @@ def _impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa):
if bounds_mdd is not None:
xmin, xdelta = bounds_mdd[0], bounds_mdd[1] - bounds_mdd[0]
iud['MDD'] = sp.stats.uniform(xmin, xdelta)
+ if n_impf_set > 1:
+ iud['IL'] = sp.stats.randint(0, n_impf_set)
return iud
#Entity
@@ -738,36 +793,36 @@ def _meas_set_unc_dict(bounds_cost):
cmin, cdelta = bounds_cost[0], bounds_cost[1] - bounds_cost[0]
return {'CO': sp.stats.uniform(cmin, cdelta)}
-def _ent_unc_func(EN, ET, EL, IFi, MDD, PAA, CO, DR, bounds_noise,
- impf_set, haz_id_dict, disc_rate, exp_list, meas_set):
+def _ent_unc_func(EN, ET, EL, IFi, IL, MDD, PAA, CO, DR, bounds_noise,
+ impf_set_list, haz_id_dict, disc_rate, exp_list, meas_set):
ent = Entity()
ent.exposures = _exp_uncfunc(EN, ET, EL, exp_list, bounds_noise)
- ent.impact_funcs = _impfset_uncfunc(IFi, MDD, PAA, impf_set=impf_set,
+ ent.impact_funcs = _impfset_uncfunc(IFi, MDD, PAA, IL, impf_set_list=impf_set_list,
haz_id_dict=haz_id_dict)
ent.measures = _meas_set_uncfunc(CO, meas_set=meas_set)
ent.disc_rates = _disc_uncfunc(DR, disc_rate)
return ent
def _ent_unc_dict(bounds_totval, bounds_noise, bounds_impfi, bounds_mdd,
- bounds_paa, bounds_disc, bounds_cost, n_exp):
+ bounds_paa, n_impf_set, bounds_disc, bounds_cost, n_exp):
ent_unc_dict = _exp_unc_dict(bounds_totval, bounds_noise, n_exp)
- ent_unc_dict.update(_impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa))
+ ent_unc_dict.update(_impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa, n_impf_set))
ent_unc_dict.update(_disc_unc_dict(bounds_disc))
ent_unc_dict.update(_meas_set_unc_dict(bounds_cost))
return ent_unc_dict
-def _entfut_unc_func(EN, EG, EL, IFi, MDD, PAA, CO, bounds_noise,
- impf_set, haz_id_dict, exp_list, meas_set):
+def _entfut_unc_func(EN, EG, EL, IFi, IL, MDD, PAA, CO, bounds_noise,
+ impf_set_list, haz_id_dict, exp_list, meas_set):
ent = Entity()
ent.exposures = _exp_uncfunc(EN=EN, ET=EG, EL=EL, exp_list=exp_list, bounds_noise=bounds_noise)
- ent.impact_funcs = _impfset_uncfunc(IFi, MDD, PAA, impf_set=impf_set,
+ ent.impact_funcs = _impfset_uncfunc(IFi, MDD, PAA, IL, impf_set_list=impf_set_list,
haz_id_dict=haz_id_dict)
ent.measures = _meas_set_uncfunc(CO, meas_set=meas_set)
ent.disc_rates = DiscRates() #Disc rate of future entity ignored in cost_benefit.calc()
return ent
def _entfut_unc_dict(bounds_impfi, bounds_mdd,
- bounds_paa, bounds_eg, bounds_noise,
+ bounds_paa, n_impf_set, bounds_eg, bounds_noise,
bounds_cost, n_exp):
eud = {}
if bounds_eg is not None:
@@ -777,7 +832,7 @@ def _entfut_unc_dict(bounds_impfi, bounds_mdd,
eud['EN'] = sp.stats.randint(0, 2**32 - 1) #seed for rnd generator
if n_exp > 1:
eud['EL'] = sp.stats.randint(0, n_exp)
- eud.update(_impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa))
+ eud.update(_impfset_unc_dict(bounds_impfi, bounds_mdd, bounds_paa, n_impf_set))
if bounds_cost is not None:
eud.update(_meas_set_unc_dict(bounds_cost))
return eud
diff --git a/climada/engine/unsequa/test/test_unsequa.py b/climada/engine/unsequa/test/test_unsequa.py
index a6361175c..cd3d59a97 100755
--- a/climada/engine/unsequa/test/test_unsequa.py
+++ b/climada/engine/unsequa/test/test_unsequa.py
@@ -122,7 +122,7 @@ def make_costben_iv():
entdem = ent_dem()
ent_iv = InputVar.ent(
- impf_set = entdem.impact_funcs,
+ impf_set_list = [entdem.impact_funcs],
disc_rate = entdem.disc_rates,
exp_list = [entdem.exposures],
meas_set = entdem.measures,
@@ -134,7 +134,7 @@ def make_costben_iv():
entfutdem = ent_fut_dem()
entfut_iv = InputVar.entfut(
- impf_set = entfutdem.impact_funcs,
+ impf_set_list = [entfutdem.impact_funcs],
exp_list = [entfutdem.exposures],
meas_set = entfutdem.measures,
bounds_eg=[0.8, 1.5],
diff --git a/doc/tutorial/climada_engine_unsequa_helper.ipynb b/doc/tutorial/climada_engine_unsequa_helper.ipynb
index f55e14a8b..d4f57c721 100644
--- a/doc/tutorial/climada_engine_unsequa_helper.ipynb
+++ b/doc/tutorial/climada_engine_unsequa_helper.ipynb
@@ -41,8 +41,8 @@
"id": "e446c327-d6cf-457f-b181-fef150bdbe81",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:29.292044Z",
- "start_time": "2022-01-10T20:10:29.289389Z"
+ "end_time": "2022-07-07T13:17:40.632751Z",
+ "start_time": "2022-07-07T13:17:40.629637Z"
}
},
"outputs": [],
@@ -96,8 +96,8 @@
"id": "0fd2b3ec-c0e8-4ae6-8439-39b4501e6196",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:32.886682Z",
- "start_time": "2022-01-10T20:10:29.504756Z"
+ "end_time": "2022-07-07T13:13:32.066932Z",
+ "start_time": "2022-07-07T13:13:28.979968Z"
}
},
"outputs": [
@@ -105,7 +105,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "2022-01-10 21:10:32,810 - climada.entity.exposures.base - INFO - Reading /Users/ckropf/climada/demo/data/exp_demo_today.h5\n"
+ "2022-07-07 15:13:32,000 - climada.entity.exposures.base - INFO - Reading /Users/ckropf/climada/demo/data/exp_demo_today.h5\n"
]
}
],
@@ -122,8 +122,8 @@
"id": "b062b610-787c-41ab-a355-bbb6291361bd",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:33.458079Z",
- "start_time": "2022-01-10T20:10:32.888874Z"
+ "end_time": "2022-07-07T13:13:32.552786Z",
+ "start_time": "2022-07-07T13:13:32.068811Z"
}
},
"outputs": [],
@@ -140,8 +140,8 @@
"id": "87cc5928-3a53-4cef-acc9-097e85da398a",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:33.471516Z",
- "start_time": "2022-01-10T20:10:33.459502Z"
+ "end_time": "2022-07-07T13:13:32.566201Z",
+ "start_time": "2022-07-07T13:13:32.554801Z"
}
},
"outputs": [
@@ -169,8 +169,8 @@
"id": "53e56665-c74f-49f3-a355-135fd0e5ed40",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:33.696309Z",
- "start_time": "2022-01-10T20:10:33.474333Z"
+ "end_time": "2022-07-07T13:13:32.776385Z",
+ "start_time": "2022-07-07T13:13:32.568822Z"
}
},
"outputs": [
@@ -210,8 +210,8 @@
"id": "802ac379-39a0-476d-b068-36520d03a459",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:33.703989Z",
- "start_time": "2022-01-10T20:10:33.697855Z"
+ "end_time": "2022-07-07T13:13:32.783469Z",
+ "start_time": "2022-07-07T13:13:32.778810Z"
}
},
"outputs": [],
@@ -242,8 +242,8 @@
"id": "ac28063d-83aa-43f8-a75d-f91fe20e44e8",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:33.740545Z",
- "start_time": "2022-01-10T20:10:33.706259Z"
+ "end_time": "2022-07-07T13:13:32.811623Z",
+ "start_time": "2022-07-07T13:13:32.785563Z"
}
},
"outputs": [
@@ -251,7 +251,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "2022-01-10 21:10:33,708 - climada.hazard.base - INFO - Reading /Users/ckropf/climada/demo/data/tc_fl_1990_2004.h5\n"
+ "2022-07-07 15:13:32,787 - climada.hazard.base - INFO - Reading /Users/ckropf/climada/demo/data/tc_fl_1990_2004.h5\n"
]
}
],
@@ -262,7 +262,7 @@
"value_unit = 'people'\n",
"litpop_kwargs = {\n",
" 'countries' : ['CUB'],\n",
- " 'res_arcsec' : 300, \n",
+ " 'res_arcsec' : 150, \n",
" 'reference_year' : 2020,\n",
" 'fin_mode' : 'norm',\n",
" 'total_values' : [tot_pop]\n",
@@ -281,8 +281,8 @@
"id": "a0370352-db8d-4507-90e2-931108fd0854",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:38.921653Z",
- "start_time": "2022-01-10T20:10:33.742286Z"
+ "end_time": "2022-07-07T13:13:39.652566Z",
+ "start_time": "2022-07-07T13:13:32.813253Z"
}
},
"outputs": [
@@ -293,48 +293,177 @@
"\n",
" Computing litpop for m=0, n=0 \n",
"\n",
- "2022-01-10 21:10:33,998 - climada.entity.exposures.litpop.litpop - INFO - \n",
+ "2022-07-07 15:13:33,055 - climada.entity.exposures.litpop.litpop - INFO - \n",
" LitPop: Init Exposure for country: CUB (192)...\n",
"\n",
- "2022-01-10 21:10:33,999 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
- "2022-01-10 21:10:35,544 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
- "2022-01-10 21:10:35,545 - climada.entity.exposures.base - INFO - category_id not set.\n",
- "2022-01-10 21:10:35,545 - climada.entity.exposures.base - INFO - cover not set.\n",
- "2022-01-10 21:10:35,546 - climada.entity.exposures.base - INFO - deductible not set.\n",
- "2022-01-10 21:10:35,546 - climada.entity.exposures.base - INFO - centr_ not set.\n",
- "2022-01-10 21:10:35,549 - climada.entity.exposures.base - INFO - Matching 1388 exposures with 2500 centroids.\n",
- "2022-01-10 21:10:35,551 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
- "2022-01-10 21:10:35,577 - climada.util.interpolation - WARNING - Distance to closest centroid is greater than 100km for 77 coordinates.\n",
+ "2022-07-07 15:13:34,051 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,082 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,109 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,135 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,163 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,188 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,223 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,289 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,316 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,325 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:34,326 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,355 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,385 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,410 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,435 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,459 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,487 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,508 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,519 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:34,520 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,543 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,570 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,597 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,621 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,645 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,685 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,710 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,742 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,768 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,791 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,830 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,862 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,899 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,933 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,955 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:34,981 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,019 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,043 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,068 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,090 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,119 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,142 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:35,173 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
+ "2022-07-07 15:13:35,173 - climada.entity.exposures.base - INFO - category_id not set.\n",
+ "2022-07-07 15:13:35,174 - climada.entity.exposures.base - INFO - cover not set.\n",
+ "2022-07-07 15:13:35,174 - climada.entity.exposures.base - INFO - deductible not set.\n",
+ "2022-07-07 15:13:35,175 - climada.entity.exposures.base - INFO - centr_ not set.\n",
+ "2022-07-07 15:13:35,179 - climada.entity.exposures.base - INFO - Matching 5524 exposures with 2500 centroids.\n",
+ "2022-07-07 15:13:35,181 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
+ "2022-07-07 15:13:35,189 - climada.util.coordinates - WARNING - Distance to closest centroid is greater than 100km for 332 coordinates.\n",
"\n",
" Computing litpop for m=0, n=1 \n",
"\n",
- "2022-01-10 21:10:35,824 - climada.entity.exposures.litpop.litpop - INFO - \n",
+ "2022-07-07 15:13:35,416 - climada.entity.exposures.litpop.litpop - INFO - \n",
" LitPop: Init Exposure for country: CUB (192)...\n",
"\n",
- "2022-01-10 21:10:35,825 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
- "2022-01-10 21:10:37,238 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
- "2022-01-10 21:10:37,239 - climada.entity.exposures.base - INFO - category_id not set.\n",
- "2022-01-10 21:10:37,239 - climada.entity.exposures.base - INFO - cover not set.\n",
- "2022-01-10 21:10:37,239 - climada.entity.exposures.base - INFO - deductible not set.\n",
- "2022-01-10 21:10:37,240 - climada.entity.exposures.base - INFO - centr_ not set.\n",
- "2022-01-10 21:10:37,243 - climada.entity.exposures.base - INFO - Matching 1388 exposures with 2500 centroids.\n",
- "2022-01-10 21:10:37,245 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
- "2022-01-10 21:10:37,269 - climada.util.interpolation - WARNING - Distance to closest centroid is greater than 100km for 77 coordinates.\n",
+ "2022-07-07 15:13:36,256 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,284 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,309 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,335 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,367 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,392 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,424 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,494 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,519 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,529 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:36,530 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,556 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,586 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,610 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,637 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,666 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,691 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,716 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,725 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:36,726 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,754 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,786 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,818 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,843 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,872 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,909 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,936 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:36,965 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2022-07-07 15:13:36,989 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,013 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,052 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,087 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,123 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,156 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,177 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,201 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,241 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,263 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,288 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,311 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,343 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,367 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:37,400 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
+ "2022-07-07 15:13:37,400 - climada.entity.exposures.base - INFO - category_id not set.\n",
+ "2022-07-07 15:13:37,401 - climada.entity.exposures.base - INFO - cover not set.\n",
+ "2022-07-07 15:13:37,401 - climada.entity.exposures.base - INFO - deductible not set.\n",
+ "2022-07-07 15:13:37,402 - climada.entity.exposures.base - INFO - centr_ not set.\n",
+ "2022-07-07 15:13:37,406 - climada.entity.exposures.base - INFO - Matching 5524 exposures with 2500 centroids.\n",
+ "2022-07-07 15:13:37,407 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
+ "2022-07-07 15:13:37,415 - climada.util.coordinates - WARNING - Distance to closest centroid is greater than 100km for 332 coordinates.\n",
"\n",
" Computing litpop for m=0, n=2 \n",
"\n",
- "2022-01-10 21:10:37,499 - climada.entity.exposures.litpop.litpop - INFO - \n",
+ "2022-07-07 15:13:37,637 - climada.entity.exposures.litpop.litpop - INFO - \n",
" LitPop: Init Exposure for country: CUB (192)...\n",
"\n",
- "2022-01-10 21:10:37,501 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
- "2022-01-10 21:10:38,888 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
- "2022-01-10 21:10:38,889 - climada.entity.exposures.base - INFO - category_id not set.\n",
- "2022-01-10 21:10:38,889 - climada.entity.exposures.base - INFO - cover not set.\n",
- "2022-01-10 21:10:38,890 - climada.entity.exposures.base - INFO - deductible not set.\n",
- "2022-01-10 21:10:38,891 - climada.entity.exposures.base - INFO - centr_ not set.\n",
- "2022-01-10 21:10:38,894 - climada.entity.exposures.base - INFO - Matching 1388 exposures with 2500 centroids.\n",
- "2022-01-10 21:10:38,895 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
- "2022-01-10 21:10:38,919 - climada.util.interpolation - WARNING - Distance to closest centroid is greater than 100km for 77 coordinates.\n"
+ "2022-07-07 15:13:38,561 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,589 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,615 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,638 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,665 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,689 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,720 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,784 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,808 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,820 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:38,820 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,844 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,873 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,897 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,920 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,944 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,968 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,990 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:38,999 - climada.entity.exposures.litpop.litpop - INFO - No data point on destination grid within polygon.\n",
+ "2022-07-07 15:13:39,000 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,022 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,047 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,074 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,097 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,123 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,161 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,187 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,217 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,242 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,265 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,304 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,334 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,370 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,402 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,423 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,448 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,487 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,510 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,532 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,554 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,580 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,603 - climada.entity.exposures.litpop.gpw_population - INFO - GPW Version v4.11\n",
+ "2022-07-07 15:13:39,633 - climada.entity.exposures.base - INFO - Hazard type not set in impf_\n",
+ "2022-07-07 15:13:39,634 - climada.entity.exposures.base - INFO - category_id not set.\n",
+ "2022-07-07 15:13:39,634 - climada.entity.exposures.base - INFO - cover not set.\n",
+ "2022-07-07 15:13:39,635 - climada.entity.exposures.base - INFO - deductible not set.\n",
+ "2022-07-07 15:13:39,635 - climada.entity.exposures.base - INFO - centr_ not set.\n",
+ "2022-07-07 15:13:39,639 - climada.entity.exposures.base - INFO - Matching 5524 exposures with 2500 centroids.\n",
+ "2022-07-07 15:13:39,641 - climada.util.coordinates - INFO - No exact centroid match found. Reprojecting coordinates to nearest neighbor closer than the threshold = 100\n",
+ "2022-07-07 15:13:39,649 - climada.util.coordinates - WARNING - Distance to closest centroid is greater than 100km for 332 coordinates.\n"
]
}
],
@@ -352,8 +481,8 @@
"id": "cfa54889-cb6c-4b4d-afc7-81a20dd77eb8",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:38.926915Z",
- "start_time": "2022-01-10T20:10:38.923116Z"
+ "end_time": "2022-07-07T13:13:39.658265Z",
+ "start_time": "2022-07-07T13:13:39.654050Z"
}
},
"outputs": [],
@@ -370,8 +499,8 @@
"id": "ee5cfd3d-9f71-4ccc-95e1-dc8e6ea9d8b3",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:38.934028Z",
- "start_time": "2022-01-10T20:10:38.928323Z"
+ "end_time": "2022-07-07T13:13:39.666418Z",
+ "start_time": "2022-07-07T13:13:39.660259Z"
}
},
"outputs": [],
@@ -386,8 +515,8 @@
"id": "15c78c6a-d1ee-4eb0-982a-2920eda04f25",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:38.949269Z",
- "start_time": "2022-01-10T20:10:38.937644Z"
+ "end_time": "2022-07-07T13:13:39.681827Z",
+ "start_time": "2022-07-07T13:13:39.670420Z"
}
},
"outputs": [
@@ -423,51 +552,51 @@
" \n",
"
\n",
" \n",
- " 1383 | \n",
- " 1713.015083 | \n",
- " POINT (-78.29167 22.45833) | \n",
- " 22.458333 | \n",
- " -78.291667 | \n",
+ " 5519 | \n",
+ " 92.974926 | \n",
+ " POINT (-80.52083 23.18750) | \n",
+ " 23.187500 | \n",
+ " -80.520833 | \n",
" 192 | \n",
" 1 | \n",
- " 431 | \n",
+ " 619 | \n",
"
\n",
" \n",
- " 1384 | \n",
- " 1085.168934 | \n",
- " POINT (-79.20833 22.62500) | \n",
- " 22.625000 | \n",
- " -79.208333 | \n",
+ " 5520 | \n",
+ " 131.480741 | \n",
+ " POINT (-80.47917 23.18750) | \n",
+ " 23.187500 | \n",
+ " -80.479167 | \n",
" 192 | \n",
" 1 | \n",
- " 476 | \n",
+ " 619 | \n",
"
\n",
" \n",
- " 1385 | \n",
- " 950.764517 | \n",
- " POINT (-79.62500 22.79167) | \n",
- " 22.791667 | \n",
- " -79.625000 | \n",
+ " 5521 | \n",
+ " 77.695093 | \n",
+ " POINT (-80.68750 23.18750) | \n",
+ " 23.187500 | \n",
+ " -80.687500 | \n",
" 192 | \n",
" 1 | \n",
- " 524 | \n",
+ " 618 | \n",
"
\n",
" \n",
- " 1386 | \n",
- " 1129.619078 | \n",
- " POINT (-79.45833 22.70833) | \n",
- " 22.708333 | \n",
- " -79.458333 | \n",
+ " 5522 | \n",
+ " 43.122163 | \n",
+ " POINT (-80.89583 23.14583) | \n",
+ " 23.145833 | \n",
+ " -80.895833 | \n",
" 192 | \n",
" 1 | \n",
- " 475 | \n",
+ " 617 | \n",
"
\n",
" \n",
- " 1387 | \n",
- " 300.552289 | \n",
- " POINT (-80.79167 23.20833) | \n",
- " 23.208333 | \n",
- " -80.791667 | \n",
+ " 5523 | \n",
+ " 106.033524 | \n",
+ " POINT (-80.85417 23.14583) | \n",
+ " 23.145833 | \n",
+ " -80.854167 | \n",
" 192 | \n",
" 1 | \n",
" 617 | \n",
@@ -477,19 +606,19 @@
""
],
"text/plain": [
- " value geometry latitude longitude \\\n",
- "1383 1713.015083 POINT (-78.29167 22.45833) 22.458333 -78.291667 \n",
- "1384 1085.168934 POINT (-79.20833 22.62500) 22.625000 -79.208333 \n",
- "1385 950.764517 POINT (-79.62500 22.79167) 22.791667 -79.625000 \n",
- "1386 1129.619078 POINT (-79.45833 22.70833) 22.708333 -79.458333 \n",
- "1387 300.552289 POINT (-80.79167 23.20833) 23.208333 -80.791667 \n",
+ " value geometry latitude longitude region_id \\\n",
+ "5519 92.974926 POINT (-80.52083 23.18750) 23.187500 -80.520833 192 \n",
+ "5520 131.480741 POINT (-80.47917 23.18750) 23.187500 -80.479167 192 \n",
+ "5521 77.695093 POINT (-80.68750 23.18750) 23.187500 -80.687500 192 \n",
+ "5522 43.122163 POINT (-80.89583 23.14583) 23.145833 -80.895833 192 \n",
+ "5523 106.033524 POINT (-80.85417 23.14583) 23.145833 -80.854167 192 \n",
"\n",
- " region_id impf_TC centr_TC \n",
- "1383 192 1 431 \n",
- "1384 192 1 476 \n",
- "1385 192 1 524 \n",
- "1386 192 1 475 \n",
- "1387 192 1 617 "
+ " impf_TC centr_TC \n",
+ "5519 1 619 \n",
+ "5520 1 619 \n",
+ "5521 1 618 \n",
+ "5522 1 617 \n",
+ "5523 1 617 "
]
},
"execution_count": 11,
@@ -507,14 +636,21 @@
"id": "b11722a1-0609-4fdc-9f92-e735a14f5c56",
"metadata": {
"ExecuteTime": {
- "end_time": "2022-01-10T20:10:41.243291Z",
- "start_time": "2022-01-10T20:10:38.951093Z"
+ "end_time": "2022-07-07T13:13:45.556216Z",
+ "start_time": "2022-07-07T13:13:39.684061Z"
}
},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2022-07-07 15:13:39,690 - climada.util.plot - WARNING - Error parsing coordinate system 'GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]'. Using projection PlateCarree in plot.\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAADVCAYAAADHEUFOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3xUxdeHn+0tnTQghN5JIFQp0ouASBFRQZFmAxGsgBQpIshPLCDIC4KAiAUElK6CiKh0QQgtdAKkkL7ZvnvfP272JptCErqwj5985O7M3Hvu3NndszNnzlcmCIKAFy9evHjx4sWLlwcG+d02wIsXL168ePHixcudxesAevHixYsXL168PGB4HUAvXrx48eLFi5cHDK8D6MWLFy9evHjx8oDhdQC9ePHixYsXL14eMLwOoBcvXrx48eLFywOG1wG8xdSsWZPffvut0LL4+Hhq1qzJqVOnpONff/1VKn/22WepWbOm9FenTh1atmzJpEmTSElJua02F/X3448/3rbr3iu4XC7Gjh1L/fr1adeu3S0559ixY6U+PH78ODVr1mTNmjVSuclk4tNPP6VLly5ER0fToUMHPvjgA7KysqQ6c+fOpU+fPoWe/9lnn+WDDz4AYM+ePR7PrFatWrRs2ZIpU6ZgNpuB3LG3Z88eWrduTc2aNWnWrNkN39/evXs5fvx4keVHjhyhf//+NGjQgPbt27NkyRKP8qysLN544w0aNWpEq1at+OKLL0pV/iBz8OBBnn76aWJiYujYsSMLFy7E5XJJ5QkJCbzwwgvExMTQoUMH1q1bd0vbF8dHH31Ew4YNadSoEb/88gs1a9YkOzv7Zm75ltC+fXtWrFhRorp53193gz59+jB37ty7dn0vDwbKu23Ag0TZsmXZtWsXgYGBAIwbN4569erRsWNHqc7TTz/NiBEjANExuXr1KuPGjePNN9/kyy+/vG22zZo1ixYtWhR43c/P77Zd817hn3/+Ye3atSxcuJCaNWvesvO2a9eOadOmSc9bJpMBYDQaefrpp9Hr9UyYMIFKlSpx7tw5Zs6cycGDB/nqq69Qq9Wlvt6vv/6KVqvF6XRy6dIlJk6cyIcffsjEiROla8tkMtatW8f69euZP3/+Dd/bs88+y4IFC6hdu3aBsvT0dIYNG0aPHj2YOXMmp0+f5s0338Tf35/HH38cgPHjx5OcnMzXX3/N+fPnGTduHOHh4Tz66KMlKn9QSUhI4Pnnn+fpp59mxowZnDlzhnfeeQe1Ws2gQYMAGDFiBOXKlWPVqlUcOHCACRMmEBkZScOGDW+6fXEkJibyf//3f0ybNo0WLVoQGhrKrl270Ov1t7FXSsbq1avR6XR32wwvXu4ZvA7gHUShUBASEnLdOjqdzqNOWFgYr7zyCq+//jqZmZm3zSHz8/Mr1rb7FfesW5s2bW7pedVqtdSnZcqUITg4GIDZs2fjcrlYtmwZWq0WgAoVKlC1alW6dOnCjz/+yBNPPFHq6wUFBWEwGAAIDw+nf//+fPbZZ0ycOJGgoCBkMhnBwcEEBQXh6+t7i+6yIFeuXKFVq1a88847yOVyIiMjadGiBXv27OHxxx/n8uXL/Pzzz6xfv57q1atTq1YtTp8+zbJly3j00UeLLX+Q2bx5M6Ghobz55psAVKpUiUGDBrF27VoGDRrE/v37OXnyJF9++SV+fn5Uq1aNQ4cOsXz5cho2bHjT7YsjMzMTgBYtWhAREQFwz3yuBAUF3W0TvHi5p/AuAd9B8i4Bjx07lr1797JkyRLat29/3XZyuRyZTIZSKfrrsbGxPPfcczRs2JBWrVrxv//9D7vdDojLgY0bN2b16tW0atWKxo0bM3HiRCwWyw3bnZaWRosWLXjvvfek1yZNmkSnTp0wmUzMnTuXl156iWnTphETE0Pr1q1ZunSpxzn+/vtv+vXrR4MGDWjXrh1ffPEFbhEao9HIG2+8QbNmzWjQoAFDhw7l/PnzAKxZs6bAUuXYsWN59dVXpfJevXpJy4ULFy4E4KeffqJLly7Ur1+f3r17s2PHjkLvbc2aNbz44ouAuBTuXna5nr1z585l2LBhDB06lMaNG5dombxSpUpUqVIFm83GTz/9xDPPPCM5f27Kly/PsmXL6NSpU7HnKwl5v/B0Oh3ly5cnMjKyRG3//PNPnnrqKerXr0/9+vUZOHAg586dA5DG60svvcTYsWMLtK1Tpw6zZ89GLpcjCAL79+9n3759PPTQQwAcOnQIPz8/qlevLrVp3LgxR48exWq1FlteWnsB5s2bR5s2bYiKiqJXr178/vvvJeqHYcOG8dZbb3m89vHHH/Pcc88BkJKSwmuvvSa9F8ePH++xjH/06FGGDBlCTEwMUVFRPPHEExw6dAjI/TyYN28eTZs25aWXXgI8x2F+OnTowIwZMwq87u6XgwcPUr16dY8fio0bN+bAgQO3pP312LNnj+Sgd+jQgbFjx0rhCe4lYHcoRJ8+fYiKiqJ37978+++/JeqvkrS/cuUKw4cPp2HDhrRs2ZIZM2bgcDgAzyVgk8nEtGnTaN26NXXr1qVNmzYsWLCg2HsE8f0/evRoPvzwQylEYe3atfz+++906dKFmJgYXn31VY/P3E2bNvHYY48RHR1Nly5dWLt2rcc5lyxZQuvWrYmJiWH27NkFrnm9zzN3H+/Zs6dE9nvx4sbrAN4lxo8fT0xMDE8//TSrV68utI4gCJw+fZoFCxbQsmVL9Ho9Fy5c4JlnnqFy5cqsWrWKadOm8eOPP/LRRx9J7UwmE19++SVz5szh888/56+//mLKlCk3bGtgYCATJ05k5cqVHD9+nL///pvVq1czc+ZMaWln165dJCQk8P333/P666/z0UcfSR9y+/fvZ9iwYbRu3Zq1a9fy2muvMX/+fFauXAnAp59+ypkzZ1i2bBlr165FoVAwbty4Ett3/PhxAgMDWbNmDT169ODPP//kvffeY/To0axfv54nn3ySV199lX/++adA227dujFr1izpHoYMGVKsvQB//PEHzZs357vvvuPhhx8u1saVK1dSvnx5Ll26hNFoJCoqqtB6jRo1IiAgoMT3XhSJiYmsWLGCnj17Sq9t27ZN+hFxPeLj43nxxRfp1q0bGzduZNmyZWRkZEj95B6vs2bNYvz48UWeRxAEGjZsyIABA2jQoAGPPfaYZFtoaKhH3ZCQEFwuF0lJScWWl9beX3/9lcWLFzNjxgw2b95MmzZtGDVqlIejVhSPPfYY27Zt83A8N23aRI8ePQB45ZVXAPjuu+/4/PPPuXjxIq+99hog/rAZOnQoderU4aeffmLVqlUYDAYmTZrkcY0///yT77//XpqVc4/DwoiMjKRBgwbSsclk4vvvv6dx48ZA4X0bHBxMUlISgiDcdPvrERMTw1dffQXAqlWrihwbc+bMYdSoUaxatQq9Xs/kyZOBkvdXUe1tNhuDBw/GarWycuVKPv30UzZv3lyoYzdjxgz++ecf5s2bx5YtWxg4cCAff/wxx44du+49uvn111+x2+2sXbuWrl27MnnyZObMmcP//vc/PvvsM3bt2sWqVasA2LBhA2+//TZPPvkkP/30E88++ywTJ06UnLg1a9Ywd+5cxo4dy6pVq7h8+TKxsbHStYr7PIuJiWHXrl3ExMSUyHYvXtx4l4DvEr6+vqhUKnQ6ncdMzVdffcW3334LgN1ux+l00qxZM2n27dtvv6V8+fK8++67yGQyqlatyjvvvMPbb7/NyJEjAXA6nUybNk1ashk3bhyjR49m/Pjx+Pj4FGrPqFGjUCgUHq+p1WrpV2XXrl3ZtGkTU6ZMITk5mcGDB9OoUSOprl6vZ9asWRgMBqpXr05sbCwrV66kd+/eLF++nBYtWkhflpUrVyYhIYEFCxYwYMAA4uPj0ev1RERE4OPjw7Rp07h8+XKp+nP48OFSP7799tsMHTqUrl27AuKXZmxsLF9++WWBD0mtVivNdriXqoqz132/Q4cOlWLrSkpGRgbAbVmCbdWqFSDGjlosFkJCQvjwww9LfR6Hw8HYsWN55plnAIiIiKB3797S7Im7n/38/K57Hy6Xi+XLl5OcnMyUKVOYNGkS77//PmazuUCMo/vYZrMVW15ae+Pj41GpVJQvX56IiAhGjBhBkyZNUKlUxfZFp06dePfdd/n999/p3Lkz//77LwkJCXTp0oU9e/Zw4sQJli1bJtn34Ycf0rp1a+Li4ggMDGTYsGEMGTJEem8NGDBAmr12M3DgQCpVqiQdl3TJ1G638/rrr2MymaSxWlzfaTSaW9Y+P2q1Wvrxcr0wg/79+0vhFkOGDGH48OHY7XYsFkuJ+quo9n///TeXL1/mm2++kcbotGnTSEhIKGBDw4YNeeqpp6hbty4AQ4cO5fPPP+fUqVPUqVOnyHt0o9frefvtt1EoFDz11FMsX76cl19+mejoaACaNGlCXFwcIM7u9e3bV/rsqFSpEnFxcSxYsIC2bdvyzTff8NRTT9GtWzcApk+fzq5du6RrLViw4LqfZ3lDTbx4KQ1eB/Aeo2fPnrzwwguAGDNYpkwZj8Dl06dP06BBAw/Ho1GjRtjtdi5cuACASqXy+JUfFRWF3W7n7Nmz0gdUfiZMmFBgqVUu95wgnjRpEo888ghBQUGMGjXKo6x27dpS/BlAdHS09Av49OnT0oxJXptnz55NZmYmL7/8Ms8//zwtWrSgadOmtG/f3mPmqjj0er2HE33q1CkOHTrk8cvfbrdTuXLlEp2vOHtBXK4trfMHSBtC3I7g9VAqlUXOurhcrgKzed988w06nQ6Xy0Vqaipff/01Tz31FD/99FOp4p8qVaqETqfjiy++4MyZM5w5c4Zjx44VmBkqDoVCIc102mw2XnvtNcaNG4dWqy3gyLmPdTpdseWltfexxx5j3bp1dOnShXr16tG2bVv69OlTYAm+MHQ6HR07dmTTpk107tyZjRs30q5dO3x9fYmLi8NsNhe6m/rs2bN06dKFfv36sXLlSk6dOsXZs2eJjY312HEL4lgqLRaLhdGjR7Nnzx6WLFlCeHg4IP6gyZ8xwGazIZfLPZy3m21/M+R1dt0/SO12O8HBwSXqr6Lax8XFUb58eY+xXlRcb69evfjtt9/YsGED586d49ixY2RlZRW4VlGULVtWclLd/eKOeXS/5h6zZ86ckTbYuGnUqBGbNm0CIC4uTgopAHHM5Q1/uNnPMy9eisLrAN5j+Pn5UbFixSLLC9sd6v7Qcv9fLpd7OG9uJyL/DF9eQkJCrntdgIsXL2KxWLh69Srnz5+nRo0aUll+Z8Tlckk2FGaz2yaXy0V0dDTbtm1j586d7Ny5k08//ZSVK1cWuTTujulxk//8TqeTN954o0BKl5Isf5bE3qLqlITIyEgCAgI4cuRIoc74e++9R2RkJAMHDsTPzw+j0VjoeQrbEFShQgXJCa9cuTJRUVE0a9aMzZs3S7MPJeH06dM8+eSTNG/enCZNmtC7d28OHz7MN998U6L2Fy9e5Pz587Ru3Vp6rVq1arhcLjIyMggPDyc5OdmjTVJSEkqlkjJlyhRbXlp7g4KC+OGHH9izZw+///47P/74I8uWLeOrr76iVq1axd7PY489xsiRIzGZTGzevJmJEycC4jgsV65cobvzy5QpQ3JyMo8//jiVK1emdevWdOnShbS0NGmp101pHSuj0ciLL77IyZMnWbJkicesdnh4uEfMHEBycrKH836z7W+WwmZeBUEocX8V1b6k728QQ3B27dpFr1696NGjBxMnTqRXr14lbl/YZ2n+H8xuCnu+LpcLp9MJiDvz8//Qy3uPN/t55sVLUXhjAP9jVK1alcOHD3t8YPzzzz+oVCoqVKgAiAHd7uUHEIPuNRrNTf1itFqtvPPOOwwYMIBHH32Ud955R/oAAzh58qS0EQXg8OHD0pdr1apVC8TfHTx4kDJlyuDv78/SpUs5cOAA3bp1Y+bMmXz33XfExcVx8uRJVCoVZrPZ45d5fHz8dW2tWrUqly9fpmLFitLfhg0b2LhxY4nutTh7bwaFQsGjjz7KihUrCmxoOHfuHN999530hVGnTh3i4+MLxL2lpaVx7tw56tWrd91ruTdh5H1OJWHNmjXUqlWLzz77jOeee46mTZty+fLlYmPA3Bw4cIBRo0ZhMpmk144cOYLBYKBcuXI0aNCA9PR0zpw549GmTp06aDSaYstLa+/vv//OV199RYsWLRg3bhybN2/Gx8eHnTt3luh+WrRogcFgYPHixZjNZmlWqWrVqiQlJWEwGKRxplQqmTFjBqmpqfz8888olUqWLl3K0KFDadWqlbQcWdK+zI/T6WT48OGcPXuWr776qkBIQ4MGDYiLi/OIbzxw4IBU72bb305utr8qV67MlStXSE9Pl177/vvveeqppzzqGY1G1q5dywcffMDrr79O9+7dUavVZGVl3fBzuR5VqlQp8Hnyzz//UKVKFQBq1KjB4cOHpTKbzebx+X2zn2devBSF1wG8DcTGxkqzWe6/woLXDQYDFy5cIDExscTndsfMvffee5w5c4bff/+dmTNn0qtXL48ZoQkTJhAbG8vu3buZNWsW/fr1u24urszMTJKTkwv8uWeg5syZg9ls5tVXX+Wtt97iwoULHjt9k5OTmTp1KmfPnmXNmjWsWrVKWtYYMmQIf/zxB/Pnz+fcuXNs2LCB//u//+PZZ59FJpORmJjItGnT2LdvH5cuXWLNmjX4+PhQuXJloqOjsVqtLFq0iPj4eBYuXFhsoPawYcP49ttv+eabb7h48SLff/898+fP91iiuR7F2XuzjBgxAofDwXPPPceff/7JpUuX2LJlC0OHDpV2+YH4ZRwdHc2rr77Kvn37iI+P5++//2b48OHUrl27wNJjamqq9NzOnj3LpEmTcLlcHnkmS0JAQABnz55l//79XLp0iaVLl7J69WqPZVm9Xk9cXJzHl62bTp064e/vz/jx4zl79izbtm3jf//7H8OHD0cul1O+fHnatWvH2LFjOXbsGFu3bmXx4sXSMllx5aW11+VyMXv2bDZs2CClmElOTpaWp9PT06+7IUShUNCtWzcWLVpEly5dpNnfli1bUr16dV577TWOHj3KiRMnePvtt7l8+TLly5cnICCAa9eusWPHDuLj41mzZo20jFdYLKOb5OTkIhMnf/311+zdu5f33nuP4OBg6Xm7l20bN25M1apVeeuttzh16hTff/89GzZs4Nlnn70l7d323UxWgaK40f5y06pVKyIjI3nnnXc4deoUe/fuZf78+bRt29ajnkajQafT8csvv3Dp0iUOHDjAyJEjEQShRNcpLcOGDWPVqlV88803nD9/nq+//poffviBgQMHAjBo0CC+//571q5dy9mzZ5kyZQppaWke7a/3eWaz2UhOTr4ttnu5zxG83FJq1KhR6N+6deuES5cuCTVq1BBOnjwpCIIg7NixQ2jWrJnQtGlTwel0Cs8884wwc+bMYq+xb98+oV+/fkLdunWFVq1aCR999JFgtVoFQRCE3bt3CzVq1BC+/PJLoVmzZkKzZs2EDz74QLDZbKW2uUaNGsLEiROFI0eOCLVr1xa2bNkitVmxYoUQHR0tnDt3TpgzZ47Qo0cPYfLkyUL9+vWFjh07CmvWrPG4xi+//CI8+uijQt26dYUOHToIS5YsEVwulyAIgmA2m4VJkyYJLVq0EOrVqyf07dtX2Ldvn9T2yy+/FFq2bCk0aNBAePvtt4UPP/xQGDlypCAIgvDDDz8ITZs2LXBP3333ndC5c2ehbt26QufOnYXvv/++yPvfvn27UKNGjRLbO2fOHKF3795Fnk8QBGHMmDGSjYWRnJwsTJkyRWjXrp1Qr149oWPHjsLs2bOFrKwsj3oZGRnCpEmThNatWwt169YVHn74YWHSpElCenq6VMf9zPP+xcTECIMGDfLox7wU1W+CIAgmk0l4/fXXhUaNGgmNGzcWBg4cKHz//fdCzZo1hatXrwqCIAhz584VoqOjheHDhxd6jtOnTwuDBw8WGjRoIDz88MPC559/LvWfIAhCWlqaMHLkSCE6Olp4+OGHhS+//NKjfXHlpbV36dKlQocOHYS6desKHTt2FL799lup/TPPPCOMGTOmyPMLgiAcPnxYqFGjhrB7926P169evSq88sorQkxMjNCoUSPhlVdeka7pdDqFadOmCU2bNhViYmKEfv36CRs3bhRq1qwp7N+/v8DngZsaNWoIc+bMKdSOp556qtD3ad5neenSJWHQoEFCVFSU0LFjR2H9+vW3rL3bvh9++KFQ+06ePCnUqFFDuHTpkiAIuWPTaDRKbbdv3y7Vz1teXH8V114QBOHChQvCsGHDhOjoaKFly5bCxx9/LDidTkEQBKFdu3bCV199JQiC+J7v0qWLEBUVJXTo0EGYM2eO8Pzzzwvjx48XBEG47mdx/vd/Yc9x5MiRHmPqu+++Ezp16iTUrVtX6Natm7B27VqPc3777bdCu3bthPr16wvjx48XhgwZ4jEGrvd55u6D/GPTi5fikAnCbZjz9nLX2LNnDwMHDuTgwYMemzJuJ3PnzuW3337zkDp70Bk7diwmk4k5c+bcbVMKZc2aNXzwwQfe3GHApUuXWLRoEVOnTi2yzrZt25g2bRrbt28vMtbrQeGHH35Aq9XSvXv3u22KFy9eboIH+5PMi5fbiHtpJv+mlbtNampqiXLgPSgsXryYRx55pNCyS5cusWnTJj7++GP69ev3wDt/LpeLtWvX3pSOtBcvXu4NvNuIvHi5Tfz222+0atWKdevWFaqZe7fo1asXiYmJtyTh9P3A+PHji8wJmJCQwPjx42ncuHGRyZkfJORyOV9++WWJcih68eLl3sa7BOzFixcvXrx48fKA8WCvZ3jx4sWLFy9evDyAeB1AL168ePHixYuXBwyvA+jFy33KlStX6N27t7QJJS4ujv79+1O/fn26d+9e4kTI+dmwYQN9+vTxeG3r1q2MGzfupm2+HtnZ2dSsWfOGdy4/++yzfPDBB6VuV9j93k7mzp17y65Xs2bNQv86depUovZjx44toMXrxYuX+wPvJhAvXu5Tpk2bxvPPP49SqcRisfD888/Trl07pk2bxtatWxk5ciQbNmyQFGRKwl9//cWECRMkFQM3Xbp0YdGiRezbt48mTZrc6lu5JcydO7fU8llF3e9/iVmzZtGiRQuP164nC+nFi5cHA+8MoBcv9yHHjh3jyJEjUnqTLVu24HA4GD9+PFWrVmX48OFER0fz7bfflvicH3zwAS+88EKRDuOAAQP47LPPbon9t4OAgAB8fHxKXL+4+/2v4OfnR0hIiMdfUFDQ3TbLixcvdxmvA+jlP0nNmjVZs2YNffr0ISoqit69e/Pvv/9K5deuXWPMmDG0aNGChg0bMmrUKEmOLz4+npo1azJv3jyaNm3KSy+9xJ49e2jZsiUbN26kdevWxMTE8N5773H+/HkGDBhA/fr1eeKJJzh//nyJbfzjjz/o1asX0dHRdO/enR9++EEqGzx4ML1795Z0ejds2EC9evU4ceIEe/bsoXHjxqxevZpWrVrRuHFjJk6c6CG/1b59e8aOHVvktb/66is6duwo5a07ePAgDRo08JgBa9KkCQcOHCjx/Rw4cIDly5fTuXPnQsvbt2/PgQMHOH36dInOl5KSwpgxY2jevDn16tWjY8eOrF69Wio3m81SCpZWrVqxefNmj/bPPvssCxcu5KWXXiI6Oppu3boRGxvLwoULad68Oc2aNfNwSPMuAc+dO5dXXnmFmTNn0rRpU5o0acKMGTM8NKeLu9/i+Oabb+jSpYs0dvLqwS5fvpxHHnmEevXq0bRpU95++20P7eS87NmzhyeffJL69evTqVMnjz4qbhwUh8Ph4NNPP6VDhw7UrVuXFi1aMH369EL1o41GI2+88QbNmjWjQYMGDB061OP9cOTIEfr37090dDSdO3dm0aJFHv3pxYuXewuvA+jlP8ucOXMYNWoUq1atQq/XM3nyZED8Uhs0aBCXLl3i//7v/1i2bBmJiYmMGDHCQ+z9zz//5Pvvv+fNN98ERE3Y1atXs3jxYqZNm8ZXX33FkCFDGDx4MN999x02m43Zs2eXyLYzZ87w6quvMmDAADZs2MCIESP44IMP2LRpEyAuz54/f56VK1eSkpLCe++9x6uvvkqtWrUAMJlMfPnll8yZM4fPP/+cv/76iylTpkjnX716NePHjy/y+r///jutWrWSjpOSkggNDfWoExwcXCod6u+//56GDRsWWe7v709UVBQ7duwo0fneeustUlJSWLp0KRs3bqRDhw5MnjyZa9euATBlyhQOHDjAwoULmTdvHsuXLy9wjvnz5/PII4/w008/ERAQwODBgzl27BgrVqxg+PDhzJ07lxMnThR6/R07dpCdnc23337LmDFjWL58uYftxd3v9Vi7di0zZ87khRde4KeffqJhw4a88MILZGZmsn79eubOncs777zD1q1bmTFjBtu2beP7778vcJ5z584xbNgwGjduzLp16xgxYgSTJ0+W4iCLGwfF8cUXX/Djjz/ywQcfsHXrVt5++21WrlzJ9u3bC9T99NNPOXPmDMuWLWPt2rUoFAop7jM1NZUhQ4bQtm1b1q9fz/jx41m5ciVffPHFDdvmxYuX24s3BtDLf5b+/fvTpk0bAIYMGcLw4cOx2+3s2rWLc+fOsX37dsLCwgD45JNP6NChA3/99RcVK1YEYODAgVSqVAkQZ6McDgdvvfUW1atXp3r16rz//vt07NiRjh07AvDYY48V+iVdGIsWLaJHjx488cQTAERGRnLx4kUWL15Mt27diIiI4PXXX2fOnDns2rWLSpUqMXToUKm90+lk2rRpkgMybtw4Ro8ezfjx4/Hx8bnuEt7ly5dJSUmhatWq0mtmsxm1Wu1RT61W33IB+WrVqnHkyJES1W3bti3t2rWTlliHDx/O0qVLOX/+PFqtlg0bNvDZZ59JfTBlyhSeeuopj3M0b96cXr16AfDoo48yZcoUpk6dip+fH1WrVuWTTz7h9OnTkmOdF41Gw8SJE1Gr1VSpUoWvv/6aw4cP0759+5voAZGvv/6ap556iscffxyAt99+G7lcTkZGBiEhIcyYMYPWrVsDUL58eZo2bcqpU6cKnGfVqlVUq1aNt956C4DKlSuTlZUlzayVZCl31KhRBWL+tmzZQlhYGNWqVeP999+ncePGAERERLBkyRJOnTpVYKNIfHw8er2eiIgIfHx8mDZtGpcvX5buNzo6mhdeeAGAihUr8vrrrzN9+nTpNS9evNxbeB3A+5RKlT7hzTdb8MorTT1eP38+ncqVP+XIkZepVy+0iNb/DdzOGyDFdtntdk6fPk358uUl5w8gPDyc8uXLExcXJzmA5cuXL3DOiIgI6d9ardbjWKPRYLfbS2TbqVOnOHXqFOvXr5deczgcHkuwzzzzDBs2bGDnzp1s2rTJ40tapVLRoEED6TgqKgq73c7Zs2eJjo6+7rVTUlIACAwM9LiX/M6ezWZDq9WW6H5KSkBAAOfOnStR3f79+7NlyxaWLVvG+fPniY2NBUTn9+zZs9jtdurUqSPVj4qKKiDFlv95+fv74+fnJ712PSe3XLlyHk6xj4/PLXOIT58+zaBBg6RjhULBmDFjAKhQoQKxsbHMmTOHs2fPEhcXx5kzZyRHNv95oqKiPF579tlnS2XLhAkTCki3BQcHA9CxY0f27t3L7NmzOXfuHCdOnODSpUuF7hJ++eWXef7552nRogVNmzalffv29OzZExB3mO/evZuYmBipvsvlwmKxkJaW5jEWvXjxcm/gdQC9/GcpTI5KEIQCM11uXC6XxxKwRqMpUCf/TMmNar86nU6effbZAjNWecnMzCQ+Ph6ZTMbevXupXLmyx3XzXtttd2l2b+aNvwoLC5OWVt0kJyd7OMm3AqfTiUwmK7aeIAg8//zzXL16le7du9OvXz+qVatG165dC9Rzo1AoCtx//l29Jbm2m9spZ3a93cbr1q1j0qRJ9OnTh5YtW/Liiy8yd+7cUp+npISEhEg/evIzb948li5dyuOPP07Hjh157bXXeOONNwqtGx0dzbZt29i5cyc7d+7k008/ZeXKlaxevRqHw0Hnzp0ZPXp0gXa+vr43fQ9evHi59XhjAL3cd1StWpUrV654xLclJCRw9erVO5bOo2rVqly4cIGKFStKf7t372bFihVSnenTpxMWFsaUKVOYNWsWCQkJUpnVaiUuLk46PnToEBqNxsNJLAp3rF9aWpr0WkxMDIcOHfII7t+/f7/HjM2tIC0tjZCQkGLrnTlzhr/++otFixYxcuRIOnfujNFoBESnr0qVKqhUKo+NPSdPnizxDOzdpnLlyhw7dkw6FgSBLl268Ouvv7JixQqGDh3K5MmTeeKJJ6hVqxYXLlygMFXO/OcBcTn5f//73y2xc8WKFYwZM4axY8fSq1cvKlSowJUrVwq1ZenSpRw4cIBu3boxc+ZMvvvuO+Li4jh58iRVq1bl7NmzHuM9Li6OuXPn3vCPKC9evNxevO/MB5jsbBsjR24iIuIjVKppVKjwMe+//wcA27adRaWaRkpK7s7Eq1ezUCimcvDgVRwOF5Mm/UaVKp+iUk0jLOxDRo/egtMpzjpNnryDPn2+4403thIU9AGBgR/w+utbcbnEL5bi2t8MLVq0oEaNGrzxxhscPXqUI0eO8Prrr1OpUiWaN29+0+d3k5yc7LEzNy9Dhgxhx44dLFiwgAsXLrB161Zmzpwpzbj9/vvvbNiwgSlTptC3b19q1KjBu+++63GOCRMmEBsby+7du5k1axb9+vVDr9cDYtB9VlZWodcOCwsjJCTEY/ND586dcblcTJo0iTNnzvD5559z5MgRaYbS6XSSnJx800ugJ0+elJYsLRYLycnJhdbz9fVFoVCwceNGLl++zJ9//iktkdpsNnx8fHjiiSeYMWMGe/bsITY2lkmTJpVqhu9uMmjQIL755hs2bNjAhQsX+OCDDzAajTRu3Bh/f3/27NnD6dOniYuLY+LEiZw+fbrQvn/66ac5efIkc+fO5fz586xbt47NmzfTrl074PrjoCT4+/vz+++/c+HCBWJjYxk1ahQZGRmF2pKYmMi0adPYt28fly5dYs2aNfj4+FC5cmUGDBjAhQsXeO+99zh79ix//fUXkydPxtfX1+sAevFyj+J9Zz7AvPbaVv7+O551657i5MlXGDWqGePHb+eff67Srl1lQkL0rFuX60SsXn2M6tWDaNiwLLNm/cny5YdZvrw3cXEj+d//OjFv3j5++umkVH/DhlNkZdn4+++hzJ7dmU8/3cPGjWKge0na3yhyuZx58+YREBDAs88+y+DBgwkPD2fp0qVFLg/fCK1atZJ29eanXr16zJkzh02bNtG9e3dmzpzJSy+9xNChQzEajbz77rs8/fTTREVFIZPJePfdd9m1axc//vijdI6uXbsydOhQRo8ezSOPPCI5SAB9+/Zl+vTphV5bJpPx8MMPs2/fPuk1g8HAokWLOHXqFL169WLTpk3Mnz9f2oBx9epVWrVq5ZGqpLRkZWVx8uRJ2rZtC8CmTZs8diLnJSwsjKlTp/L999/TtWtX3nvvPfr370/NmjWlWMBx48bRvn17Ro4cydChQ+nZsyc6ne6G7buTdO/enVGjRvHRRx/x2GOP8e+//7Jo0SICAgIYP348MpmMxx9/nMGDB2O1WnnxxRcLzPSBGOO4YMECtm/fTo8ePViwYAEffPCBtGnjeuOgJMycOZP4+Hh69OjBiBEjKF++PH379pWeQV5GjRpFy5YtGT16NN26dePvv//m//7v//Dz8yM8PJwvvviCo0eP0rNnT95++2169Ohx29VhvHjxcuPIhMLm+r3856lU6ROuXjWiUnn6+IIAJpOdI0de5sCBK0RFhdGwYVmpPCBgJnPnduXZZ+vz+utbOXYsmS1bngHg4Ye/pFOnKkya1IZ1607g76+hXbvcJcn69RfQt29tJk5sw+TJO/j4490kJ7+FWi3GbTVs+H907VqN6dM7FNv+v8APP/yAVqule/fut/S8e/bsYeDAgRw8eBCDwXBD5/j333954YUX+OOPP0oc6zZnzhxat27tsfmkNHz77bds3ryZZcuWSa8NGTKEJUuW3ND5vHjx4sXL7cM7A3gfM25cKw4desnjb9Om/lL5wIH1uXw5kzff/JnHHvuGiIiPyMiw4nSKvwn6949i27ZzpKSYuHIli7/+usTTT9cDoFevWsjlMsaN+5U+fb6jatU5/PtvotQWoGJFf8n5A/Dz02CzOUvc/l7G5XKxdu3aArsr7xWio6OpW7dugeTJRWE0Gvn77789dt2WBkEQ+Pbbb3n55Zel1/bv3094ePgNnc+LFy9evNxevA7gfUxwsJ5q1YI8/ipWDJDKhw37iZdf3oharaB//yj+/HMIAQG5aUEaNy5H1aqBrFt3gtWrj9GoUVmqVy8DwLRpv9Or13fYbE569arFxo39adDA88s+r/Pnxj3fXJL29zJyuZwvv/xSSqdxLzJ58mQWL16Mw+Eotq6Pjw/Lly+/4SXyLVu2UKNGDR566CHptQYNGtzU8uS9yogRI4iJiSny72YSM3vx4sXLncKbBuYBRRAEli49zC+/PEv79uIybEKCkYwMi8cOwKefrsePP54kLc1C//65+cjmzt3L7NmdGTJE3EVqtTq4cCG90N2DhXGz7e8FblcakWbNmnHy5M3HQlaoUMEjprA4buZ+unbtWiCFy61IYXIv8u6772I2m4ssv9Fley9evHi5k9yfn9B5SE9Pl9JLPEg4nU7S09OJj4/3eP3qVXHHYEJCInq9kuXL96HVWkhMNPH++3sRBEhIuCa1a98+lJkzd+F0CnzySUvpdT8/FatX/0v16hqMRhsff/wPaWkWrl0Tr5mZmYnNZve4vtVqJSsri/j4+GLbe/FyL3O9fIwWi8U7hr3c1/j4+BAQEFBk+d363i3OLi+e3NebQNLT0+ncuTMZGRl325Q7ztmzjxEYeILAQE95KbvdwLlzPalYcSN2u4Hk5BgcDgNKpRlf3/NYrUEoFGbCw/dKbS5e7Ixc7iAiIlcf1GwuQ1JSE2w2PxQKKz4+8bhcChwOAxERv3HtWhTZ2eWoWHGr1ObSpQ5otamEhPxTbHsvXrx48XJv4u/vz88//1yos5Wenk7jxo1LlbT+TtjlpSD39Qyg0WgkIyODr7/++p4MRrdYLLdciqvkDC2+SgFKGts0Ic+/3y62dt5++Omnk3z4YXnGjGmEXH6VzZv/ZccOJR076mnbtixVq1YlMjKSK1eucOnSJdLS0vDz8yMyMpLw8HD8/PyQy+Xs3r2b3377jdDQUEJDQ/Hx8cHHx4eyZctitVqlHwXuvHIymczjLzMzk2vXrhESEkJAQAB16tQpVQ46QRA4cOCAtAQbHBxMkyZNiIqKKlIZIW8/mM1m9u7dS3JyMocPHwZEfdWhQ4eSmZnJhQsXcDgcJCYmEhUVRbly5Th16hQWi4W4uDiUSiVms5njx48jk8l47LHHqF27NpmZmVgsFgIDA+/ZD8m7+764d/D2g8j93A9ZWVnMmjWLqlWrcubMGUDUyD5y5Ah169YlLS2Nfv36AfdOPyQkJDBgwACMRmOhnyFGoxGFQsHFixdLFH98q1AqlURGRhZpl5eC3NcOoJvw8HAPzdB7BbPZ/J/Ja3Y7cfdDUlIS06b9RfPmaVy+vJvo6Gg+//wdjh7JYtSon/n+++EACC6BWjVqIlOIe5gEpyv33y4BZPDEE0/Qs2dPTp8+TXJyMllZWaSnp/Pbb7+hUqkIDw+X4g0FQfD4A9DpdNSoUYPMzEwOHz7MiRMn6PdEP8qWK1vIHYgaxIcPH+bcuXMkJydz9OhRQNQbfuedd6QEzsX1g1arZefOnXz33XfS6zqdDn9/f9LS0ggLC6NChQrUrVvXo+2+fftYs2YNAC1btmTAgAGAmFTZ4XBI0l15mT9/PiCmnfnnn39o2bJlAd3Zu4H3fSHi7QeR+70fPvzwQ3766SeuXLkCiPrVrVq1Yv/+/aSnp3P16lUaN26MxWL5T/WD0+nA6bxzDuB/JEf8PcUtdwATEhJ4//332bNnD0qlkjZt2jB27Fj8/PykTPH79+/HYDDQu3dvRo0aJQWLb9y4kQ8//JCyZcsye/ZsypYtS3x8PB06dGDAgAFMmjTJ41q//fYbL7300i0JmPdy97DZbOzdu5eNGzeSlGRg5vQX6dOqAY3mfUFYWBjHerzF8WO5Em7X1h3FnpxNuRcfwpKYReqeSwQ/XBl1oI7UU0lo/LT4lPNHrVYT4V+OiiEVMIT4Ysm0YM204FtOnCW0ZVsxp5nxDfdFppCTcTENjb8WXYCejHOpWNNMhHaOwOl0svnHTXzy8cfM+GAmcrkcl8tFSkoKCQkJJCQkcOjQIeRyOdHR0ZTxCeLo0aNERkbSoUOHIp0/p9PJlStXMBqNkkKIW4c1ICCAnj17EhwcTEJCAsnJybRu3brIXbqNGjVixYoV2O122rdvL72uVqtRq9WSzNyTTz5JrVq18PPzk+ps/3U7ly5f4uTJk7z88stcvHiRvXv38tZbb91WvVwvXrxAmTJlGDx4MG3atOHjjz+Wcne6ZQ83bdrEzp07adq0KTExMfj4+Nxli0uGLOe/O3k9L6XjljqALpeLESNGEBgYyPLly7FarUyePJkxY8bw2Wef8fzzz1OnTh1++OEHrl27Jn3BvPrqq1itVhYsWMDHH3/MiRMnmDNnDjNmzJDO/c0339CzZ0/q169/K032chcRBIE///yTn3/+mdDQUEaPHs2mTeu4nKBmy8HjhJcXZ23t49+m1tgdUrsy3WojuETJOE2oD6EdqqHQi45KYLVgZPLcDwKfcD9p6Vbjq0GtV0vSVCq9GqVGiVwpxqr4lfdHllPmGxmAT4Q/IAb8P9KjK1u2b8XpdLJgwQKOHz8uKSCEh4fTtm1bGjZsiEKhwOV0EdUomjNnz7BhwwaMRqMk3eXm2rVrzJgxAz8/P/z8/EhMTEQmk1G+fHmGDBlC2bK5M42VKlUiMTGRM2fOsHPnThISErDZbAQHBxMREYFCoeDAgQPY7XbatGnj0dbNoEGDGDRoUKHP4aWXX+K777/j33//Zc6cObhcLipXrsxnn31GkyZNqFy5MuXLly/ZQ/XixcsNUaVKFT799FN++eUXKXQkICCALl26kJmZyfnz51m7di1Vq1ale/fuVKpU6e4aXAxymfh3J6/npXTcUgfw+PHjHD16lF27dkmC8OPHj6d///4kJSVRu3Ztpk6dip+fH1WqVOGRRx5hz549gLiEptVqqVGjBgB//fWXx7nLli3LxIkTWbNmzX2bXuJBwel0snv3bn7++WdcLhcvvPCCJEk2fvzDDB36E4sXP0ZYORm//XaOl17bxvTpubNacm3u85fJZCgNubNibmdOOlbIPerKlLJ8x4pC28oVcshzqstXLhMSEkJcXByZmZnMnj27yNk4uUJOSGgIIaEhVK9endmzZ6PX6z2SRm/bto1WrVrRu3dv6bXPPvuMli1b4nQ62b59OxcvXuTy5cskJSURGBhI+fLlKV++PM2aNUOtVpOUlMTFixdxOp00bNiQ0NBQjh07RkJCQqliXgODAnnppZck3dpr166RnZ2NzWZj5cqVNG3alKeffppdu3bRtGnTImMYvXjxcnPI5XK6dOlCixYtOHv2LJcvX+bff//l8uXLCIJAjRo1qFGjBvPnz6djx4506tTpntXHluX83cnreSkdt9STKleuHIsWLZKcP48LKZUeMUgnTpxg27Zt9OzZExC3b7do0YImTZrg4+PD4sWLPdq/8847vP766yxZsoQXXnjhVprt5RYgCALp6enIZDJp2VEul5OZmUlqairJSckkXk3g6PFYMjMzCQ0J5cnHnqB2w7oYMzI4tGwZNR97jKefjsJudzBgwNckJrqoXTuYFweWpW7ENela1lNJODMt6BtH4nI4sSRnow31Qa6QY82yoFArUWrEoW3LtiFXylBqVLgcThwWByqDGplMhsvpwm62o85xIG1ZVpQ6FQqVArvRisNkRxcqLresXrWa5ORkVq1aRfOHmuMyOnD5KZEr5QiCgDXDgtqgRq5SYDfZEAQBtUFDmTJlePnFl/ls3mekpqbStm1bjh8/zuHDhxk7dix2sw25Qo5CraR58+asXrUKlVpN9erVqV6tOq2at6JCpQpoNBpcLpdov06FTCajeuXqKNQKFDmOq91iZ0fQDlasWMHrr78uzXSWlEcffVR6lqdOneL48eOEhITQrFkzNm7cyNatW9m/f7+HJrEXL15uPb6+vtSvX99jxSstLY0NGzbw77//8tZbb7Fo0SKsVis9evS4i5YWjUwmQ34HndN71RG+l7mlDmBgYCCtW7f2eG3p0qVUrFjRwyns3r07p0+fpm7dugwePFh6/bXXXmPw4MHo9foCsyuRkZG8/PLLzJs3j65du0ozRl5uH9nZ2Zw8eZKaNWuSkZFBUFAQWq2W9PR05s+fj9FoxGAwEBAQQFJSEmazGYVCgc1mw2q1IggCPj4+BAUF4e/rT5BfIP369cPPzw+dVY0t1SReJzGR/Z9/TnDNmkQ89BDt2gWj1S7hp5/m0r17dz4dOYxfVzqIflhcRjXuOoMjIRN940gcJjvG+HRUflrkBjWWNDMqgzrXAcwyI1cpUWpUOKwOrJkWVHoVyGQ4bU6sWVbJoTKnm9AKOhT+OizXsrGmmSUHsM8jvThy6DDVGtaiepVqGC9lIFcrUPtoEJwClrRs5AoZapUCa6YFwelCbdAAUMYnkJcGPs/v+3cxZswYVCoVo0aNws/Pj+zkLBQaJQq1kjp16lC7Si3kcjlafx12ix2r0SLF4bnsLmzZVvHe5GAzWlHp1Sh8RAfQlm2l1UMtOXDwAHv37vVQ5SgNMpmMmjVrUrNmTem1ypXFZOEXLlwgLS2NwMDAGzq3Fy9ebgytVsuAAQNYtGgRGzduZOTIkXzyySeoVCoeeeSRu21eARR3eApQ4fX/Ss1tzQO4cOFCPvroIxYsWEDbtm2l12NjxVmg999/n6CgIA/x+Py4N4GsX7+eypUr07t3b8LCwli8eHGxm0Dcbbdt2+bdBVzE9ffv309ycjI1a9akbt26JCcn888//xAfH8+JEycoW7Ysly5dwmKxUKZMGaZOncqXX35JYGAgbdq0wWg0kp6eTlBQEOXLl/f4FeZyuUo0C3W3++FO4nSKWsiF5ci6Vf1w/vx5FixYwMCBA6lUqVKRm1BcLhfZ2dlkZ2ezbds2Tpw4gUql4rXXXitymffkyZNUr1691LOLpeFBGg/Xw9sPIt5+EHH3g81mY8aMGTz11FOEh4cza9YsOnXq5PEdezsp7nvVXZ506QLOO5gGRqFUElqh4j37fX8vctuC6ebNm8ecOXOYMGFCgYHpTmHx/vvv07dvX06dOiXF/l0PlUrFlClTGDBgAOvXry/xbiiLxXJd6aa7hdVqvSvXFQSBw4cPs337diIjIwkLC+Pbb7+lbNmypKSkULduXerWrUuXLl0ICgoiIyOD+fPnY7fbWb9+PZcvX6ZPnz5oNBp0Op00u2uxWG7InrvVD/cat6ofwsLCePLJJ/nll19IS0tDo9FQuXJlOnbs6CFTtnHjRg4cOACIqWNatWrFjh07yMjIKDLONjIyskR2CoJww0sy3vEg4u0HEW8/iOTth2bNmnHq1CkiIyOpXr06ly5dumPfcSX9nJfJ7mxqFu8KcOm5LQ7g9OnT+eqrr5g0aZKUjywpKYlDhw7RuXNnqV61atUAMbahpDRq1Ih+/foxY8YM3n67+CTDIE6d36u/IO+kXU6nk127drHz952oVCqeeeYZyoeXJyslk40bNwJQs0ZNurTuhC7AgEwhw5SaTZBvIEOHDmXNmjVcunCJ/v2eJiAgAKvRii3TIu60lcuwm2yY00zSztusy+loAnRofLWYU004rQ58yorpR8wp2dgyLfhVCsKZbSNr22kCHq6MOtQHZ5aVlBUH8O9SE02VMlz7bBs4XQSP6gRA5pGrOLNtBD5UEYfVgemaEUOoLwqVAmNCJkqdCq2/2K/ZyVkoVAq0AXpsZhs2ow1DGQMyuUxcEs4yowsUj7MTM1H7aFH7aLCkmbCb7fiWE3cCW9LN2LIs+EYE4HK4yLqYhqGsHyq9GpfThTExE12gHpVOjTk1G5fThSFEnEUzp2bn3Ls/TquD7MQsDOG+KNRK0T61UrIXm4BMJkfrp8VhtWM1WtHn2OewiUvYukA9MrkMU6oJlU6FWi+GS5hSs1FolGgMGurWqkuNyBpoA7SkXEth+y/bWLBgAUOHDqVMmTKA6PRdu3aNK1eu8Msvv6DT6aSYzYiICH7//Xd+/vln2rdvT8uWLdFqtZw5c4Zz587Rpk0bVCoVCQkJ/PDDD8TGxlKhQgUaNmzIzp07MZvNvPjiix7LyKXhXn2/3mm8/SDi7QcRdz/UqlWLL774gi5dulCuXDkOHTp0x/qopMmo5XBHl4Bv35rE/cstdwA//fRTvv76a2bOnEmvXr2k18+fP8/IkSPZvn27lFLiyJEjyOVyqlatWqprvPnmm2zfvp25c+feStPva1wuF0uXLiUjI4Nej/WiRvXqaAxanA4nap0ajUaDv78/J0+eQN6jD7Kcd5NSLaZJqVixIq+99hpWo0XadKBQKVBqldKbXKaUo9SK8XTIkDZUACg0Co9faAqNEqVe3IwhV8lRh/ki14mxbjK1AnWFAOS+YgydpnoYgtMltVUF6JCrxaErV4gbPNypX8R4utzl1bxpXhQKBUq1ItdehQyFSinNVCk0KuRue9VK8kZHKNQKlNoc++QyVHo1cqXYSTKZaIN7x7FCrUTuyts29xoyhQylTimlm1GolVIfASiUCqlMJpeLZTn2yuUyFGpFrr1qhWSD+9j9bMSNJQrkcjkhISH0fKwXO//aydy5c8nOzpbatGvXjqFDhyKXy7l27RqJiYlUq1aNq1evcvjwYZRKJefPn2fLli3ExMQQHx/P+fPnOXXqFMOHD+fIkSPExsYCcOnSJZxOJ2lpachkMuLi4m7YAfTixUvRVKpUiSpVqrB582a6devGli1byM7O9pjhv9soclSV7hR3csPJ/cItdQCPHTvGggULGDZsGC1btiQ5OVkqa9iwIXXr1mXcuHFMmDCB1NRUJk2axFNPPUVwcHCpruPn58c777zDa6+9divNv68QBEEK1pfJZOzcuZPU1FRGjx7tkdxXoVRgCPThhRde4N9//6Vz587ofHJjxjS+nr/2ND65x0pN7m5bEJ1FZZncY31w7hK92qCBPJ9Nah8Nah/RwZOplQS0qiSVyTVKAh6tIx37dqnnYYOuQkBuXaUCfXDuiXWBnvFuGr/cX8UKtQKFOs+xUoHCX1doW5VBjSpPehmVXo0qZ6ZNppBhKJubSFkml6Evk2uD+74KO5YrFehDcuPrtP6ev9rdG0dAdLAVKp1HW22e+9Fe79molShznGRkoPPT0eWRLnR5pItUJysri5UrVzJx4kRq166Nr68vVquVDRs2kJWVRePGjXnqqacIDQ3l2rVrHDp0iICAAF5++WVmzZrFiRMnaNSoEVevXqVnz55cu3aN9PR0Fi9ejCAIHhvCrFYrCQkJVKxYES9evNw8ffr0YcqUKTRr1oyyZcty9epVaVXtXkB+hzeBePMAlp5b6gBu3boVl8vFwoULWbhwoUfZ+vXr+fzzz5k+fToDBgxAoVDQs2dPSfmgtHTr1o0ff/yRHTt23ALL7w+cTiculwulUsnSpUs5cuQIoaGhtG3blq1btzJ8+HBUKpU0s+X+dSYIAtWqVZM+PPLGbxVW132cv+x6ba93HhAl3PImcC6pDXfN3nwxbrfD3pu5TknO4+Pjw4svvkhiYiJxcXGYTCYCAwNp3LgxVapUkTaqCIJAcHAwHTt2lM7bt29fvv32W9555x0GDhwIiELsmZmZxMTEkJCQwNixY3n44Yd5+umn+eqrrzh48CCzZ8/2Lud58XILCAgIICgoiKlTpxIVFYXRaLzbJnkgl8uQCXcwDYzXAyw1t9QBfO2114qdlZszZ06pzhkREVHkLt//+7//K9W57me2bdvGDz/8AIjyX74+vrw3ZRpfLl/K8uXL6d6pO+HBYnLg7OQsZDIZhhBfbCYrlnQzPqG+yJUK7GYbphSTeKySk3k5A7VBLc2OZV7JQKVVoS9jwJJuwpJmJqBSGWRyGZZ0E6YkIwFVyoBMRuqxRPRhPuhDfTFezcRhthNYVZztzbqYhiU5m5BGETjMdpL+TSKgRgiaQD1Om4P0syn4lPVD468j43wqAAGVxdg145UMHFYngVXKYDfZMCZk4lvOH6VWRdrpa6h9NfiEizN06edTUWqV+Jb1x2q0Ys3IIwWX595lCjlZVzNQ+2jQ+ukwp5twmO34lQsAwJJpxp5tw7esPy6Hi+zkLCnmzx0DqPXXoTZoMCZmIThd+JUX2xoTMnGYxHu3m2xkxafjGxGASq8m/XwKKr0anzDR3qyETORKBT4hPliNon2+Zf2QK+TYTDbMqSZ8wnyRK+VkJWSiNqilWcGshExUOhW6AD3WLAu2bBu+4X4ITgFjcpZon16Ny+XCmJiFxk+LxqDBR2mgfrUofMPFeEdTajbGq1n4RwTgsDrITjaiDzag0qowJmaiUCmIjo7m0KFDTJ06lTZt2hAYGEhERAQff/wxWVlZ0riMjo4GkLSRJ02axMsvv0yVKrnSfl68eLkxxo8fz7vvvsv58+c9Es3fCyhkcAf9P+8mkBvgtqaBudvc72lgbDYbqampWCwWFixYwCuvvEJSUhJ//PEHvXr2IrJiJIIgYLfbUSqUyBVyKQEyiHFigiDgcrqk2DFBEHA5XMiVOXUdLmRymfTrSjwW49MEV07bnBg2wSXgcjhR5Cw9Om0O5EoFMnnONQVBisdzOV0IDhcKjRKTyYRapkKhVUqzVy67E7lKIdkASPFuec+Vv67T7kQml0nxeC6HE2Syou81z7HL4UQmlyOTyxBcAoIgSOcRXAKCS5ASP7ucLqk/AZwOZ6H9W5y9ee0zm81o1JobfzZOl6hu4rb/Ova6HE5kOceCy4UgUPS95r2m0yXu7suJUzxz5gx79+7l77//xuFwUL16dbRaLU8++SRqtVraqX/q1CmWLVsmbfh66aWXJOcwP960HyLefhDx9oNIUf0QGxvLnj176Nu3r4fG963AHe9bpkwZYmJikMvlJU4DY02KB+edSwODQokmNOKe/b6/F/Fqqv0HsVgszJgxg+TkZEJDQ1Gr1cTExBAREUFERAQNGzaU6spkMjQaz5i0/PJoijwSaDKZzGNTQt5NBvmPZXIZCrnC81idO6Ty/jvvNaVjRZ5NFLrcuESZzPM8BWzIb3/ea6o88+vJ89/bdY496so9hczzOlr52wGe5ynsXou8t+tL15Xq2Sg8n8317PW8V7lHqE6Btqqi761q1apUrVqVRx99FLVazfbt27lw4QIBAQEeuQJr1KjB1KlT+e677zh37pwU95udnY1cLvd+wXvxcoO403bdav79918WLFhA69atOXToENu2bSMqKqpICcz83OkYQK8WXOnxOoD/Aex2O0ePHuXwocNYrVb0Bj3Jycm0bN6CAc8+A4DT7sRutqHSqRFcgvRvmVycUbObbCh1KuRyOQ6LHWQylBolLqcLh9nuIY+W99hmsuVsRsiRG8sjXea0O3FY7Kh9NNJslt1kR52zezevtJrDYsflcEkbIhxWB06LA42/FkEQsKSZUPtppZkvW5YVlUGNXCHHbrYDAiqdWmorOF1iChaXC3u2DbVBg0wuw5ZlRa5W5JOCk4v36nDhsNpR6fPcq8Uube6wm+woNQrkSgVOuxOXwyld0+lw4rKLx1J/alWSvXmPHRY7guBpr8vhRG3QILhcWI02ND5qZHI5tmwrcmWuvXazHZk859k4nKJUnbt/nTn36ise2022nJ3ACqmtXCnuHHY5XDjtDmnnst1sF3dEu+0126Sdyw6bA8EpoMpxwvPee/6xZDfbkStynVj3WPL19cXldPFw81bExcUxbtw4AgMDCfQP5KEWD1G/fn0UCgX9+/cHxB3DUyZPITEpEYCuXbves5JWXrw8iAQFBaHRaOjQoQNlypTh0KFDXLx4scRx9wrwOmX3OF4H8B7GbDbzxx9/sH37dsLCwqhTrQ5+QX6cv3iep/o+SUxUjFTXbrbhsDpyYtKcWLMsyFUKlGolgtMlHivkyLVyrEZrTuoSJU6rA0umWUzfopThsjuxZJpRaESdW1E6TS05gNZMUWtXp1ZiN9mwpJvFnasysFscYm46vRqZTMz1pw3So/DXYc204rDaJQfQmmHBlmlG7afBZXdhSTaJzoxBg+B0YU4zIVPIUBs0WDLEBKduh8qWZcHpcIoOoM2JJcOMMkdOzZyajcqgkRwqS7pJ1AYO8RGl1TItoqMjk+G0ObBkWMR7l8uwZFrQ+KrR+Cg8+hPAYbZjy3HyPPpTIS6FWzIt6GQy5Ho11iwrgsvlYa/D6kBt0OC0OTGnZufsoJZjSTej1CpRanxy+teMXCFHqfHBYXFgdvenQobT6sCcZhIdeaUcS5aoP6zJkYKzGsV7UagU2C12bCYrPloVgkvAmmVBJteJM3iCgDXTgsxPtNdutOJ0uCQH0GayiY6xTo3L4cKSYZGcVGuWBYVKgS7HAfQYSzYngsXFiOEjyMjMIPVaKvHnL7F27Vr27dvHk08+ia+vL4IgkJWVRWJSIgH+AbgEF5s3b75nJa28eHkQiYiIoEePHixZsoQ33niDhg0b0rBhQ+rXr8+6deuKbS+X3Vl93jsZb3i/4I0BvIvkj+nIyspiz549ZGVlkZGRQWxsLHXq1KFTp073pP23Cm+Mj8j92g82m40NGzawd+9e6tSpw+7du6lUqRIvvPACfn5+mM1m3nrrLUBMbdGiRYsi5eseJO7X8VBavP0gcjf6QRAEPv/8c8LDw+nTpw9Qcik4RUo8MpfzztkqV+As440BLA3e5Nl3GLvdjt1u93gtKyuL7777jjFjxnDlyhV0Oh01atRg7NixDB482DuYvfynUavV9OnTh/79+yOTyXj//fdJTU3F4XAgl8sxGAy88cYbyOVy1qxZw/fff8/+/fsxmUx323QvXh5oZDIZAwcOZP/+/ezbtw9HKbR9ZTmJoO/kn5fS4XUA7yCHDh1i1KhRvPnmm1JajIMHDzJ9+nQyMjKoWaMmfbr3oUuXLjzU7CG0ggaHVXzDCS6B7BSjGHMFWLMsmNNzvyCt2VZMqaLCg8vhJPuaEadd/PXlcrowJhtx2MRzmdPN0rKqw2LHmJQl7Vx1WB0YEzJxOZwIgoAxKQurMVf70ZRixJolHtuyrRgTMhFyVC/sZjuXTl7g560/8/PPP3Nk37+YMkUbLRlmspNz04NYM81i25xdpplX0qV7dTldGBMypHs1p2ZjTs1Vr7CkmzGliDmvnDYHxoQM6V6zEjKlewPIvmaUju1mG9nJRsleh9WBMdko7kgWBLKvGbGZbAX6E8BmsmJKMUo7avP2p8vpwpiUlWtvusmjrSXdRHZSVo69Tg97s68ZsWTm2mtKMWJOM0n2Zl3NyH02FjvGhAxcDtFeU4oRmylXH9SUlo0125pjr43sPPZmXzN6jqVkI/Ycey2ZFkxpJRtLprRsLJm548GSYZbsd1gdZF8zSvY6bbnHgiBQLaIKT/bpR0BAANWrV+f06dPSeapWrcrw4cNRKBRcu3aNP//Yxbhx4zh06BBevHi5e/j4+NCjRw/WrFnDq6++ysGDB0vUTi4TU8Hcqb+i0gBeuHCB559/npiYGFq1asXs2bMlR9ZutzN16lSaNWtGs2bNmDVrFk5n7qzl3S6/3XhjAO8g7nyGdrudhQsXUq9ePa5evcqLL75I5cqVcdgckhPhlkiTklvKxF2fMoV4LFfKPQJs5Qo5gntXqEwm1pV2coIiz7FcKUOWo/UmU4ibBiSpMrkMuVohJVVSqBQeO0blytxjuVKeU1csu5aazKcL59KwUUOUSiX79u7j2sprVKpUiaqVqiCXyUlMSSI4OJjQMiHExsZyOeEKlStXJsQ/GLlGQVp6Gunp6ZTxC6JilUrIFDKuJV4jIz0dl1yQHEa9Tk/d6LpUrBApplRxS8GpczesuFwuzDYzpkwzlkQL5mwTMpeM2gF1UMnFuD+FMjc1ilwpz5Vzy9ufgFyhQK50Fdqf7p2ykrybSiE5QQBylQJ3oIVMLpNSwLj7M/9OZEliTp7v2SjkOfeap67Cs60ip61cKZfOW+hYUsmRu/ss31hSXGcsyRUKFKo8u42VuTuIxXuTe44lpVzKz5X33qpVq0ZcXBwPPfSQdK46deowadIk1q1bx7HYY9L7JDo6mubNmxMVFeWxs7g4nE4nDocDtVrtnR3w4uUmcLlcZGRk0LFjR37//fcStVHIZHdUnq2w97jT6eT555+nTp06/PDDD1y7do233noLlUrFq6++ykcffcTff//NwoULyc7O5u2338bf358XX3wR4K6X3/Y+88YA3hmuXbvGhg0biIyMZPXq1fTu3ZugoCCio6M9pNn+y6xfvx673S7FigCYTCbOnDnDqVOncDqdREREkJKSwpUrV6hYsSJ169aV9GUVCgVlypTBz8+PhIQErly5gkwmIyAggICAAI90Nunp6Zw8eZKrV69Ss2ZNmjRpIsmNJSQkkJiYSEpKCjqdDh8fH3x9fdFoNGRnZ5OcnExUVBQNGzakVq1aKJX3xu+gBynW6cqVK3z22WdMnDixwD2bzWZJcWTBggWcPn2a8PBwIiIiGDRoUImcQLPZXKjKUL169RgwYAD+/v635kZuIw/SeLge3n4QuVv9IAgCU6dOpVGjRjz66KNcunSJjh07FhsD6JNxBfkdjAF0yRUY/ct52HX16lVmzpzJtGnTpByJM2bM4OjRoyxZsoRmzZrxySef0LZtWwDWrl3L7Nmz2blzJ3a7/a6Wl+bH7o1yb3zzPQDs3LmTq1evkpaWxquvvkqtWrUwm80olcoC8l63Wm6sJG1vxXUyMzOJjIz0uG+9Xk9UVBRRUVEF+uS3335DJpPRoEEDmjdvXoJeLIjJZOLQoUP8/fff+Pr6EhYWRosWLQgPDyc4OLhQ5y4tLY1//vmHrVu3smzZMqKjo+nSpQshISG3XaLtZuoW1jZ/2fWucy/Y664bHh5OlSpVmDRpEr1796ZFixbkxb0JZOTIkSxfvpzz58+zf/9+AgICPH5gmM1mpk+fTmpqKk2bNmXQoEEA6HQ63nzzTQ4dOoTRaCQlJYW4uDiOHj3KxYsXCx2PXrx48UQQBDZt2kRiYiKBgYFAyXf2yq6zLHs7KGwXcNmyZfn000+l4xMnTrBt2zZ69uzJ8ePHMZvNNG7cWCpv3LgxycnJXLx4kfT09LtaXqlSpVvUM0VTIgcwISGB999/nz179qBUKmnTpg1jx46VZmqKKiuMTZs2FZCLq169Ohs2bABg6dKlLFmyhNq1a/Phhx/i6+vLnj17GDhwIG+//TZDhw71aLtixQqWLFnC9u3bb+T+bzvnz59ny5YtnDp1iiFDhhBZpgJqQ24izbzyXZZMcx75LjGuTBugF+W78smNmVOzcdqdknyXJd2EPUe6zC3fZQg2oNSqcNqdGBMy0ZcxoNKrMSZmIZPL8An1xZZtxZxmxjfcD7lSjt0kxsn5lvVDrlKQcTENta8GfZABgIxLaah0agwhPlgyzFgzLejDfDgVd4rY2NgCX+TXY9WqVahUKmbOnHnD/avX62nRokWprhsYGEj79u1p3749qamp7Nmzh//97390aduZlq1aovPXY04zYTfZ8Y8IAMT0N7Zsa4mk4LKTjQhOF75lc6TVrhlxWBz4VwjEYbGLzybUB6VGRebldFFaL1hMA5N1NRO5Uo5PqK8Y55lqwq98AHJljhRcSjY+Oc/qelJwlgwz1iwrfuX9EZwushJEe9UG0d6sq5loA3RofDSYUsSx5Jdjb957d9gcmK4Z0QeJY8ktBacvI9rrKStow5JuypUVtNgxp2ZjCBGl6zLj01H7aNAF6pHL5TzRtS9prdL4YsVidDodMTEx5EelUjFkyBCOHz/O5s2b+fXXX+nYsaP0+aJQKEhNFaUC8zt1VapU8ZCci42NRaFQULNmzRKPFS9eHlSMRiPLli0jNjYWjUZDkyZNStVegQzFPZQJunv37pw+fZq6desyePBg/vzzT/R6vaRWBBASEgKIPk9GRsZdLb8nHECXy8WIESMIDAxk+fLlWK1WJk+ezJgxY5g3b16RZZ9//nmh5ztz5gytWrXy+NJ3z9LEx8ezefNmPv/8c3799VeWLVvGK6+8ItWbO3cuXbp0uevLucXhcrmwWCwkJSWxZs0aateuTbdu3ahQoYIoyZVnatcnxFeKr9L4aKUkxSjk0hcniDF+hhBfKUZNG+CZJkPrr0PjqwXEODi3li+I8WA+YX7SsSEkd8Cp9GoUaqUUW6jUqSTnTyaT4VvOXyoDxOOcX4AaXy0nzpxk5dyVhIaG0qtXLypXrlzifipbtixXr16VZobuBkFBQXTt2pX69euzePFiLiXFM2DAALQBOrR+WqmexleLOic5tlzp+WxkcpnHsb6MAfLcki7IgDsIUKFRilq+OXGKvuF+HiKWPqG+0ueY2qBBqVFJ/a/SqVCE+UmybIYQn6LHkq/nWHLrB4M4lnzCcseSLlDvYW/ee1eoFB73Zgj29ficdTuCkn0qUVcZQKlRSm1lMhk+Zf2kuEMA3zBffMP9eO6556SZWIXCU7EExBmHOnXqUKdOHQ4cOOChRKBWq5k9ezZy5Gh0mgJt83I71BK8eLkfycrKYs6cOfj6+qLX63nllVdKrADiRoG4OeNeYdasWWRmZvL+++8zYsQIevfuXeCe3Mc2mw2z2XxXy+8ExTqAx48f5+jRo+zatUvyTsePH0///v2vW5aZmVnoLGBcXBw1atSQ6ufFZDIRFBREjRo1OH/+vLRT1k1QUBBTpkxh0aJFN3Szd4Ls7Gwpp1lQUBCpqakMHz4crTbnC7WAJFfh0mr5JbiA60pyiRq25LZV55MQUxfeNv91ipNWk3RzXS42btzI33//zcsvv1wqx8+NWxf2XqBcuXKMGTOGr7/+msmTJ1OtWjWeeeYZ1OQ8D7kMWRHPpji5tFJJweUfD9d5jrdrLMnlcik/QKnk54rpl6Lk6KpXr05gYCD79u3z2BRSGI0aNSrw2r0UH+ZOXePNY+jlv8xPP/1EYGAg8fHx9OvX74Zmo+SyOzsDKBSzNO3+Afj+++/Tt29fmjVrVsDRch/rdDq0Wu1dLb8TFOsAlitXjkWLFhXqsAUHBxdZZrVaC7wGcPr0aR5++OFCy2rUqIGvry/169cnPDycr776yqP83Xff5cUXX2TTpk1069atONPvCnq9nvLly9O4cWPatm3LoUOHkLvkUiyU3WzP2VkrfnHaLXZpx6ZbvkuSG8sv32Wyo9SKx3nl0OD68l0FpMpy0oFIUnAWByq9CplMhuByYTfnyqXZTTbkOVJwgiBw/vx54uLiOHbsGIIgXHe5vzgqVKhArVq17pkdmmq1mkGDBnH16lXee+89unftTljZMEBMh+LMKwVntqPSKpHJxWfjsNhRqJWStBouQZJhc9qcuJyi0kbh0mpyybFzWO2Sk+hyunDaRDk3mUyGy5XzrHSqEoylfPbmGTv5x5bT5kDIa2+BsWQXrymX4bDYkSlkKFQ5UnBWB8hAqS5+LBWUFcyVruv7eF/mzZ9HmTJl7voM/+nTpzl+/Di1atVCLpezYsUKypQpg0atISIigsZNGhf4zHO5XKxdu5Y///wTQRDw9fGlZYuWdOzcsdBZTS9e7mXOnTtHUlIS/fr1o2nTpjd0DrnszuaZKyzeMCkpiUOHDtG5c2fptWrVqgHiyqPJZCI7OxuDQQxxSk5OBiAsLAyVSnVXy0tK/rjr0lCsAxgYGEjr1q09Xlu6dCkVK1YkLCysgKHussKcQrvdzoULF9i9ezeLFy/GarXy8MMP89Zbb+Hr6wuI07Rjx47F39+/wAdn48aN6du3L++//z6tWrW6YcfjdmIymcjIyKBRo0ZoNBoa1m8oSpWplaAAS6Y5R75LnBG0ZllEGTM/HXaLDVu2W25MwJppRuavR67LkRtLN6ENEOPMrJlmUZs2xwG0ZVvzyHc5saSbJfkul8OFJd2MLkiOXCcXZcFkbvkuhySlJlPKcNrEtgq1KAVnyTCj1Kk4d+U8mzdvJjMzk6ioKJo2bUqzZs1u6svNHQtqNpuLqXnncCcUDQoMwqDMncWxFyYFJ9eh1IrPxmq0ovGVIVfIsWVZcbkEfHIcKlu2FadNdNyc9pxnkyPT5+57nVq8lltiTqfOeTaZFgw5S/ROmyjxV7KxZMeWbZXGkiXDjE6edyyZc2IW1ViNNlwOp4e9HmMpwyzpKbslBnUBOVrLRouoKx1UgrGUZkJlUKPLCV+wZFpQahToAvSEh4TzZM9+LFiwgMjISBwOB+3bty80LvB2kpaWxkcffQSIKSR+/vlnQHTw2rVqx5WEK8yaNYtKlSqhVCqxWq1otVpSU1NRq9W89957aDQa4o6cYs7CuRyJPcKbb755R+/Bi5ebpWrVqgwYMOCGVnbcKHL+7hSFBRKdP3+ekSNHsn37dsqXLw/AkSNHkMvldO/enfnz53PgwAHJx9m/fz/BwcFERkYSGhqKTqe7a+VFYTabWbduHb///jtHjhwhLS0NuVxOYGAgUVFRtGvXju7du5doFaLUu4AXLlzIL7/8woIFC0pVBuLDcDgcKJVKPv74Y5KSkpg5cyajR49m8eLFUr2goKAir//WW2/x22+/8eGHHzJ16tTSmn9bSU9PZ+XKlTRu3Jjg4GAAVFoVKm1umhffME+n1SfEV/q3xkcrfZnLlDJpgweIS21+5QOkY0OedoD0pQqgUCs96ipUCs+2wXnjttSSZi2AUqvyqJvuyOTbRd9isVh45JFHaNiw4X0/o2GxWNDqtJ7PxlcrxVjKlAqP5yhXyD3q6ssYPM6nC8x9NkqN57PxDfccD4bg3PPkfzY3M5b8yuUbS3mO9UGeHxQFxlKeuvnHnWcM4PXHUt5/i/bnsdegoVHLxtSOqUNCQgKZmZmsXLmS8uXLExoayp3CYDBQt25dAgMD6dq1q+QAJicnYwgw0L9Tf7pndOfixYvY7XY0Gg1WqxWNRkOtWrWk90atBrV5+OGH+fPPP4sMh/Hi5V7l6aefvulz3OklYFchs2ANGzakbt26jBs3jgkTJpCamsqkSZN46qmnKF++PH379mXatGnMnDkTm83G7Nmzee655wDQarV3tTw/DoeDhQsXsnTpUiIiImjdujWPPvooAQEBOJ1O0tLSOHnyJN999x0ffvghzz77LC+88MJ1YzdL5QDOmzePOXPmMGHCBClvTUnK3FSvXp3du3dL28lr165NUFAQffv25fz58yWKM/D392fcuHG8+eab9OzZs0R2WyyW2zbL5HA4WLFiBVeuXEGhUFC/fn06duxYousVtUx+r3DgwAF27NhBhw4dqF+/vriMdxuCU++lfhAEgd27d1O2bNk7PjN5L/XD3UImkxEUFETZsmXp2rUra9as4dlnn70jObHcDBkyBBBn/SZMmIBer+fbb79l8+bNnDhxgrCwMKpUqSItJbnJ/97o2bMngYGBLFy4kGeeeabUuQe940HE2w8i90o/WCyW4iuRo9Bxm23Ji6sQX1OpVPL5558zffp0BgwYgEKhoGfPnlKO0Lfeegur1crzzz+PRqOhb9++DBs2TGp/t8vz0q9fPx566CHWrVtHuXLlrtsX586dY+XKlTzxxBP8+OOPRdYrcSLo6dOn89VXXzFx4kQGDBhQ4rLiMJvNNGjQgOXLl9OsWbNC67jTwBw8eFBaKx86dCgJCQn07duXr776qtA0MHciEfSZM2eYPXs2DzV9iGefe1Zcpsu2og/QI5PLxGWxLCu6AB0yuQxzmgmlToVapxYT3loElGoFaoMGm9mGw2xHF6hHcAmYU01o/LRSrF5WfDq6MgbUPhqyEzJx2Zz4RorOtCXTjMPiwCfUF6fDiTnVhC5QL6lSmFOz0fjrUKqVmNPNyGTizmGH1YE104IuSC/Gg9nFZcejp2NZv349o0ePlmYzbxd3M9GrIAicPXuW+Ph40tPTOXPmDIIgMHDAs/jofND5i7NhNrMNh9WBzl8nLqFmmtH4aMXYSJeAOcMk7tpVK7EaLQgupJ20VqMFl8OJLsCQswRsQhsgPhtTSjYKtQKNrxaz2YzMJiCTy9H4anFY7ViNVvSBemRyec5YsqDLGVvm1GyUOjXqnDAAU1o2SrVSHEsmK/ZsO/pgQ4GxJLgETGnZaHzEXcaifS5p5s+aZcFhdWAI9sFpd2JOzUYXaEChVpB1JQOFWok+WHwfGi9nIJOBoZw/dpMNU5IR3wgxbY3D6sCSZkIfbECmkGO6ZkSpU6PxEXfr5r13m9mGPduGvoxBfF+YXSi0ShYtWYTL5WLIkCFSmMjdwp18/PLly+zfv59atWoRHR2NRq3BnGUmJT2Fv3b/hV6vZ/jgl1AZNKh1arZu2sLOP//grbfeIiAgoMTX8yZAFvH2g8i90g/Ffa+6yyubElEJdy4RtF2m4Jw+7J4QfrgdJCYmlio2sCRtSjQD+Omnn/L1118zc+ZMevXqVeKy/Pzyyy9MmDCBHTt2SAM5NjYWuVxe6l1GkydPpkePHqxYsaJU7W4ldrudVatW8XDLh+nxaA8xfkwuxoFJM99yWY70Wh45rzyzGXKFTEqbIVfIpX/LZDJRZiuv3FjOJgNASiOSex4FCkmqTCal3hCPxetK8mMKmZR6JFeuK/c6NoeNtWvX8vLLL9925+9mMZlMHDt2TAotUKlUqFQqFAoFV65cISEhAX9/f2w2G2lpafj7+xMWFial6Tl16hQgbkgJDw+nbdu2REVFIXMh6d+C+GzkeZ6NXJErcYYs59lJfSoHWe7vKplCjixPEmSPZ6GUe+7eVeR55u6x5B5M+a4rU8rFZ5nHxrxjSUpTk28sFbRX5rGb1+Ne5TLkylz5OYVKIaUTApCrPWUEFXmkAd3ScEj3qvC8Tl5pQ7m8gA0qtYoRI0awfv16PvjgA55//nkqVqzI3SIgIED6kfrII4/w+++/89dff2G323E5XQSHBJOYmAhA7KljXEm4yoVLF7h08RIms4kDBw5Qt25d/vnnH1JTUwkNDcXX15fo6GjvrmEv9x13egnYeY9sJrxdFOXIZWRk4OvrW+gqSXEOY7EO4LFjx1iwYAHDhg2jZcuW0i4VEGVWiioLDAxEqVSSnp6OQqHA19eXxo0bo1QqGTduHCNHjiQ5OZl3332Xxx9/vNSebYUKFRgxYgQffvihFNx5p1m7di1lypThqf5PSV+CCpUCnX/urzSFUiHNIgEeZYCUxBfEnZRKd4oQGejzxI7J5GIeNek8+eLM1AY15CSYlivkUuJmsa3nsTuWTbI3z3XkSgV/7NlFrVq17uqXbUmIjY1l6dKlVK5cGb1ej8PhwG63Y7fbcTgchIWFUa5cOTIzM6UYrbS0NM6cOYNGoyE8PJxmzZpRuXLlQndRKTW58Xb5n03e5yaTyTyO3TNy0nGeuDi50vNZaPONB3fcHoBCpZQ2W4jHCo/4vLzjCvKNJY0q1/78Y0km8ziPWu+ZP0+lV0ubi+QKuUdMoz5PDsn8x0qtCp888YJ5E0aDZywkeN67UqNEqVHmsS+3rGfPnkRGRjJv3jw6depEs2bNcDgc140Vzk96ejpZWVloNBoCAgJKndMsP3q9nq5du3q8Fh8fz99//41KpWLvwX1UrFiR9u3bc+TIEXbt2sUPP/zApk2baNq0KUajkawsMYn2unXr6N+/P9HR0Tdlkxcv9xJ3ehPI/R2ZXpAvvviCxYsXk5GRwdatW5kzZw7+/v6MHTu2xPKmxdbaunUrLpeLhQsXsnDhQo+yLl26FFm2fv16atSowciRIylfvjwzZ84kMDCQxYsXM3PmTJ544gk0Gg2PPvqolDevtAwePJgNGzaQlZV1Q+1vFEEQOHnyJLt37+a9996TXrtR+a4bqZtfgutm2uYtS01N5Y8//mDcuHE32Dt3jm3bttGnTx8eeuihG5JHy398u55NaSXa7ra912t7q6XrSlq3QYMGlC1blo0bN7Jx40bkcjmtWrUiJiaGs2fPEhYWRsWKFUlLS2PFihWEhobSqFEjEhMT2b9/PxkZGQQGBmI2m8nIyECj0eDv7y/pTPv7+4tpdhwOOnTowLFjx7h27RqNGzcuNt7GTbly5XjvvfcIDAz0uI8vvvgCgJo1a5KQkECnTp086pw5c4YvvvgCl8tFgwYNSnQtL7cXs9nMyZMnvc/jJlDc4RlAxX0+A5iXL774gpUrVzJ+/HgmTJgAiP7YlClT0Gg0JfapShwD+F/kdsUA/vXnX/z0009069aN1m1ak5WUJSp1lDGIclgZZlGJQyHHbrZhTjeLqg0KOVlXM1D7aND66TCbzdjTrKj06gLyXS6Hi6wrGeiDDagNGlwOF2mnkjCE+6EN0pN+KgmHyU5wA3H2M/NCGrZ0M8H1y+Gw2Mm6koFPWT9UOnUBKbisxExRmSE0r3yXqDDx5ZdfEhwcTI8ePW5ZfxXHjca2/P3336xZs4YK5SpQo1YNHun6CFmJohyaezbMmJwlzZxZs63YjFZJMcNutolpVoJ9kMllGJOypLQq5gwzDqsd31Bx1tWSZcFusuET6ovL6cKUko3WX4dKq8LldJF9zYjGT4tap8aUmo3gEqTd1uZ0E06bE59QXxxWB6bUbPRlDCjVSjKvZqDUKtEHirFvjkwxN56hjA82oxVzullUZlGIMn2mVJOk6pF5OQO1r0aaVc6IT0OlV6MPMmBON2HNsOAfGZg7lnLiR/NL15lSjDgdTnzDcqTrUozYsm0ERAbljqVwP1R6Ncn/xKMyqAmoIe7MTd59AZlSTnDjCpgTssg4nkTwQ5EodSpsRivGKxn4VQxCoS5cVlCpVYmygplmrBkW/MoH5LwvbOgCRfsEl0BWQoa0E9uUZiIjNZ3Nv29h//79NG7YmLTUNK4kXsHhcNCpTSfUejVnz58lKDCImpVqUKteLTQGLdnXjLhcLtDJuJZ0jeQryVhcFrKMWeCCkydPUiGyAiaziT179qDRaBg+fDjVq1e/qTFuMpnQ6/WMGTOGoMAgomrVo23ndmhUGrKTs0jKSuaLLxfz7rvvSu+FeyXm625zN/rh+PHjzJ07l8mTJ9/RXejX414ZDyWNAaxjSUZzB2MArTIFx7Qh920MYF66dOnChAkTePjhh4mJieGnn36iQoUK/PXXX4wdO5adO3eW6DylTgPzoGO32/nxpx95YdgLVKkm6owaggxS3JNKq0KhUkjxVkqtCkOwQoq5EuXccn+pGEJ980iraaSkuXKlHJ9wPylBsEwhw79KGenYt1IZcOX67j7l/HCFiQ6HQqPEt7y/pDghSsHlyo8ZyvjgcrnYunUrmZmZVKpYkSBzGQ4dOsTFixdvSQqAO0Hz5s2pXr06Z+LOsOqHVfj4+lCtSlVCfXLDCfSBuc9GrVOLy7g5x0qtCr1SfFYymQx9GYMUR6Hx1aDJo9msMWikBMzuJfa8UnB5jwss6/pqpSRVCrUCQxlD7rMI8fGY6TKUMUgxc6JMX56xpFPhE+qTK60W5jmWfML8pLpaPy3q/GNJlatqUkBWMM/vQG2AHk2OA51/LAXWDhNjHHMIrF9OiknUhhhQGiJQaMW6KoMav8hA8R5kObKCebK1+oTn2qvx0aLSismxkZFzn0XY66dF6xvGkCFDGDx4MIIgILgEFEoxWbnL7pSkDAVBwOVwSc/GvQwtV8jx8fEhMjJS6k9BEIiOjmbBwgVMmzaNy/GXqVylMosWLSIsLIyYmBgaNGhQqqVnN+4QhaysLLKyslAoFJy+eIaRI0diCPahall/KleuzL///lvkZjgvdw73Du8//viDxx9//C5b899EXAK+gzOAd+xKd5+itILLli1LRkZGic/jdQBLyYkTJwgNDaVq9arSa0VJcEEhclhFSKuJbeW44+DdiZrznkeZJwdcXkkwEDeFuJ0Ksa3Ko21e+TGjyciqVas4cOAAvXv3Zt/+/RiNRkJDQ3n99dcl2br/AsHBwQQHB1MmpAy//vor69ev56GHHuKRRx5Bp9OV7tnkeRZ55dDyt72VUnBFyaNJ11Qri257HXk3mVyOQp27CST/WCrWXgV52uaJhcwzBkF0SqXzKuSofHPjCQuM2evamytzl/8+89fN358yWa7kQP6217vXwp5jRGQEZrOZV155BY1Gw+tvvM4TTzzByZMnOXjwIJs3byYkJITmzZvTsmXLUqWnUSqVNGnSBJPJhMlkktJpuO0tX748SUlJgBhfrdVqC8z4uFwuTCaTh4C8l1uPSqVi+vTpqFSq4it7KRRvDODto169emzdurVAypivv/6aOnXqlPg8XgewlBw5coT69etjt9hRqpWiPJbNIX2ZiPJdTpRapSSH5bDmynkVkO/KI4flcjhx2Jyo9W75rlz5tkKl4FwCqpwvYIfFjtPqROOvRXAJ2LIsqH01klSZW7oMmYwdO3Zw8uRJRo4cSe3atenUqdPd7NJbQrVq1ahWrRpZWVmsXr2aCRMmEBUVRZPGTahRowYqtbhU67Q7RaUK97OxOSXnyGF1iM9GIcflcOJyClKZy+nC5XCi1KhE6TerQ3r+7mOFWoFcLsdpdyIIgrRpxOlwIuScS5SNc0jjw2F1iM5PjiNSYCxZHSh1eaTVipOCU7jHkigjpypiLDnMdhSSFJwTweXKJwWXR7rOZBNnpuUy7NlWZAq5VNeWKarKqHw1uOxObBkWNGX0ufaa7KgMBWUFIf/Yd+HIUUsRBEFSMSnUXnuOvTmOqcvhxOlwodKqJFk+pUaV+2wsOW1zUukIiJt6BJeAw2qX3pvu41dffZU9e/ZQq3pNVEoVCqWCunXrUrNaDZ584klOnz3Nhg0buBx/mX5P9iuVEzh48GBAjPtbtmwZ48aNQ6fTERgYSHh4OIcOHaJZs2ZMmzYNf39/2rRpwyOPPAKI8YSvvPIKAB06dKBPnz6Fbl7ycmtw56v1cmMoZDKUd3AG0PEAvRfGjh3L0KFD2b17N3a7nU8++YSzZ89y/vx5D1GN4riTUn33BfHx8VSMrIgl04zTIcY3WLMs2Ixikk63HJaQszzrsDkxp5sRnC4EQcCcZsJmyk0Ya0k3YcsW29qybZhTssUlLacLc6pJ0u0Vc7ll4zDbxXYZZkwp2dJ5zMnZGC+liTZYHWRfzcRhEdu6HC4sqSay0o3MmTOHo0ePSs7f/Yavry+DBw9m8uTJVKxYkXVr1/Luu+/y008/cTX+KpZMi7Qc67A5sWTmPitrlgW7Rexfm9mOJSs34ak7XtD9bCyZZpz23GdjybTgtInjwZYTa+jmn30HmfvZXLZt24bDaseSZcblEFP2WDLNHuPBmmXBmtPWYXWIY8c9lqxOLGlmXEWOJTO2bPHYZrJhTjPljqWUbBw59ya4xLbuY2uWBUtGbtJrm9GKOVUcW067E1NKNk6beK/ZiUYsqSapbvaldLLjxSUHW6aFzHOpuHL6wWF1YE7NxpXjEJtSc8c6gDnNhDXTkmtvSrb4bATEsZ9jHwKY083YzTapfz3szYm7dS/3mtPzPBunIB7nvI+sxtxn47A5MGdYEJwu6V7NGWYqlK/Ak08+SZXyVbBn5+nfTAtOs4M6deow7LmhnDt7jgWfLyAlJYXSUrVqVaZMmcKYMWN44YUXePjhhzl58iTp6elMnjwZgIoVK7JhwwaPjTbvvvsuQUFBbNu2jd27d5f6ul683Clkd+HvQSEqKootW7ZQv3592rdvj8Vi4eGHH2bLli00bNiwxOfxbgIpBYIgMG7cON5+++0bigPKz60K6k1MTCQkJKTYmYivv/4aQRDo37//HVVWKI7bHdwcHx/P7t272bdvH5UrV2bIkCE3nQakNLz33ns0b96cffv20bRpU9q3b19ovXslyPtu81/pB7vdzi+//ML27dupVq0aVapUITw8nJCQEJRKZaF66NfD6XSyY8cO/v77bxwOB1ar1WMG0M1vv/3Gli1b0Ov1vPvuu7fylu5J7vZ4cKcrmzt37l2Vwbzb/eCmpJtAmllT0AmuO2aXWSZnj6bMA7EJ5FbhXQIuBadPn0atVt9TSwPnzp3jf//7Hz179qRLly6F1rHZbFy+fJmjR4/y6quv3lPO350gIiKCvn370rt3b5YsWcKWLVt47LHH7tj1w8PD0Wg0DBs2jA8++IAaNWp4P6DuA1QqFd26daNNmzbExsZy8eJFTp06xYULF8jOzmbq1KmlSqSuUCjo0KEDHTp0YOXKlRw5coRjx45x+vRpHnnkEY4dO0arVq2IjIzE5XKRmJhIUlLSPbNL9X7FaDQCcO3atVLnq72fiI2NJS0tjbS0tBLV98YA3loef/zxEod8rF69ukT1vA5gCcnKyuLjjz/mueeeE6W0MkxofUUpMEuGGZlChsZHi8PqwJZtleS6HLYcqbVA8diUakKlU+XKd6Vko9Ao0fhosJls2E2iHJZ7yVfjp8uV70rJRuOrQalVYc2ykJ6ewVdffUWzZs348ccfaR7VDL9yAeKyXWIW+lAfEq8lSbkKmzRuQtmyZe9mN95VFAoF3bt355NPPqFx48aEBYdizbai89cTdzoOW7aNChUrkJaZxk8//kSlCpVo0boFwcHB2M02Tp04hdZPR+VKlQuRgjOjNoi7jK3ZVgSXgDYn4XZUnXrs3bePVq1aUa1qVY4fOU658HLIlXLM6WbkKjkag7h5wpJpRibPM5aMFnSBhlKPJWuWBVuWFZ+yfghOF1mX0tGH+YoxgS4XWVcy0QXqURnUWDLFJWl3ehar0YrT5kAfZMDlcGJOy5WuM6eZkCvlUjJxc5oJmUzcOWy32LGkmTDkpEBy2sQlbH2QAZlChulaNkqdKo8UnBGFWilKwZls2IxWDCE+CC5BSlOjzInrM6VkozaoUenUWLOtuOxOKZm1zWTFaXWgDciRUEw3ofXT5cogppvQ+GpRqpXisr4g7iR22p2itJ6/ToottGRZ0PmJm4fMadkocqT1AMwZZuQKORofDQ6rHZvRii7QgF6np161ujSs3xClRonZbOaNN97gk08+YerUqaX6wSUIAkeOHOGff/5h2LBhZKVnEX85no8++giALVu2oNPpJAnMz+d/zqhXRxEQFHCT7w4vRVGhQgUApkyZwmefffbA/YAG0fn94osviIyM5N9//y1RGwV3OA/gfb4I3K5du1t+Tq8DWEIsFgs6nY64uDiaNG6CXC7LleRSyDzku9ypLCBnl6I8V75LLpchz5MKw93WZrORnW1EIYhB706nkwVLF9KwYUMebvMwKddSuHw+nvTsDDKzMikbGs5PG9bTslVLGjZsSGxsLO9/OpO69eoSFBiESlBilzk4eeokTZo0oUbl6jzUqvmd7LJ7knLlytG3b1/mzp1Lm9ZtCPALYPnXywHw9/PHarOiVqtp0rgJ6ZnpzJo1i8DAQEJDQzkddxq5Qk5khQoE+AUiV8mpUqUKUfWixOfolkTLsysVICgoiGyTOIuQkZlJubLl8sil4ZEaRRo/5Er4SWUlHEsg7nbd889ewlLC2b17Ny2iHqJmeC13TTEtkceY9dwtnSsb55auK6TMfZx3rHtI5MlyZAcL2ie2zbVBnleOTpazW1eWv1/ySNvlPU++47xSjLmyfbn3Sp6gF3k+++V537t57CuqXzzuzZ0OR6tl9owPmbdwPmvXruXRRx9Fo/FUWymKy5cvs2DBAoYMGUJkZCSKCgrq1qlLQlKC9MXbo0cPHnroIY7FHuPAwQO8M+EdPvzwQ6+c3G3C6czNZRcbG0tUVNRdtObukJWVhdVq5erVq7Rt25a//vqr2DYy7uwmg/vb/UPaAHYr8TqAJSQkJIRp06YxceJEHnnkEY+lHU/5Lk+5LoVKgT4oj3xXPjksjZ+WVatW8ddff6FWq6XUEHK5HIPBwKofVrH2x7X4+/sTEhKCQqEgNjaWKlWqMPC5gdSsWROAWbNmceXKFc6ePUtqaioZxgwMBgNNmjShRYsWdzV25V6jadOmBAQEcPjwYS5cvIBMJuO5556jadOmBeq6XC5Wr14tShi+Mw61Ws2BAwcwm824XC5J4mvixInS7tb8UnAqrVpyZlwuFxofTZ6cdteRglMr0eVL+3K9sZR33NkEO2s2rqV69eqkpKRw6tQpejp60qpVqwKygnmvKdmvL1xWMH+Ow/xybj6hvp725pGCy3ue/PYrtSppZ7FMJkMXnNtOJpN5tC3QvzpxZhBERyxvP8jknsfumVa3fXnL5Eq5x3GBe80joeghDYinLJ9MJkPnr+f5F55n1apVTJ06lbp16+Lr60uTJk0IDw+nKCIiIujUqRM//PADvr6+0vv7pZdeIj4+nu+++44//viDpKQknuj3BHqDnj/++INr164RGRlZ5Hm93DgajYZu3bqxa9cu/Pz8im9wH+JODfbiiy+i0Wh4//33i23jnQG8vaxbt45vvvmGU6dOoVAoqFWrFoMGDaJjx44lPod3E0gp+f3339m8eTPt2rWjXr16lC1b9oaXBIxGIytXrsRsNvPCCy9IAb52ux2n04lWqyU7OxutVuvhwDmdzvvKobtXgptvlPnz59OkSROaNGkivXbp0iXWrl3LuXPn6NGjB3v27GHcuHH8/PPPXLp0iaFDhxY4z63sB6fTyaxZsyhfvjxPPPEEv/76K4cOHWLChAn3fOqQ//p4yM/p06e5fPkyKSkp7N27F5VKhZ+fH76+vnTr1q1Qx+3gwYP88ssv9O7dmy1btpCUlETfvn2Jjo7m7NmzfPTRR4wePZoaNWrchTu6s9xv4+FGudv94HK5kMvlJd4E0smajv4ObgIxyeT8ogl4IDaBLFu2jI8++ognn3yS6OhoXC4Xhw4d4ocffmDq1Kn07NmzROe55TO0CQkJvPrqqzRr1oyWLVvyzjvvkJmZWWwZwMaNG2nXrh39+/fn6tWrgDiYatasydSpUwtc67fffpN+Id8p2rRpwyuvvEJycjLTp0/n0KFDGJOyMOWkzbCZbGRezcCVk1rCbraTeTVDzAUnCGReSceSKaawOHXqFKmpqQwfPtzjja1SqaRfXAaDoYCzdz85f/cDDRo0YO/fe7CbbdjtdhIuXmXT+o1ERkbSt29f1q1bJ6UMat26NXFxcVy+fBkQperMeVKaZF8zYkoT06wUHEs2Mq+kFzqWANIvpGBKEZeazYnZPNO2H3KZnE8//RSVSkVycjIff/wxZ+POkPj3BUwJooa2MSGTjIup0nlMaSYyLqcDYqqUjPh0KSVL5pUMsq8ZpbrGhEyMSeJ5bNlWMi6l4cq5V7vZRsalNDHPoCCQfiFVep8AZFxMJTtZbGvJMJF+PgXBJaatST+fgjUnDY/gEtu6U7+YUoxk5tgHotReRny6GDphd5J5JV1K5+NyOMmIT5fS5RiTsjAmite0m2xkxKfjtLvT1uS8V3NS3mReTcecnpvyJisxQ7LfarSQeSUdl8uFy+UiKzFTSnEjCAJZiZlYjaL9EaHlaVg7hj59+vD+++/z/ODneaRtF3x9ffnll19ITU0l/+/whg0b0rZtWxZ/sZgTJ07w0EMPsXnTZhLOXSX+UjzVq1e/aXk6L15Kw41MdHhTwNwevvzyS6ZNm8Y777zDo48+ymOPPcakSZN49913mT9/fonPc0sdQJfLxYgRIzCZTCxfvpzPP/+cEydOMGbMmOuWAVitVhYsWMDHH3/MY489xpw5czzO/c0333D48OFbae4NExERQa9evaRjXZBeWi5SaVXoyxjySMEpRYkxSQrOB3VOEPyZM2do1KiRN9v8f5z69etz7uJ5fvhxDfPmzWPqzGmciDtJ7dq1ad68OQ6HA4tVdAa0Wi1dunThm2++ISMjA12gXtoUAaAL0KH1E53/gmNJhT7Yp9CxBOBb1h9tzlKkPtSH8PoVGPDMAPz8/BAEgREjRpCcnMyHH89GU8UXbbC4rKoPNuATnru0pfXTSku5CpUCQ4gPipyE2IYQH49lUl2wQVqWVunUorRhzvK2UqsSN4SoRHt9y/p5LKv6hPuhCxRtUPto8SmbIxWXs0Tt3nyBTKyryVEZ0QboMeRZatb4iva6Ze/0wT5SAm+ZQo4hxAdVzvKyPkiProxor1In6hC7E2kr1DnvVbdMX7CvtNlFbOsj2a/Wa0QN6RwlEn2QIXcZOudYrRftVRty9Y/lcjkVKkVQp0FdOnfuzJUrV5gwYQLfffcd6enpZGVlSdeLjo6WcgLu2bMHi9XCe7On8/2q71EoFHz88cds27bNI0bNi5d7BSWyO/73oJCRkUHdunULvB4TEyOpCZWEWxoDePz4cY4ePcquXbukHFjjx4+nf//+1y3LzMxELpej1WqlJY38QaZly5Zl4sSJrFmzBqXy7ocu+vj4MGjQIDZt2kRUVBRfLvmSZ555Br1e7xEbJJPJPI4VKvHf165d4+DBg/eFCsf9zKVLl9i8eTNNmjQhJiam0DoGg4Hx48fz559/UqZMGSZOnIjVaqVSpUqYzeKsVd4x26ZNG1JSUpg6dSoajYZGjRrRoUMHNBpNASm4/GNJoVJgt9tRKpXSWHKTVwJNrpQjV4oOSZ8+fZg5cybPPfccERERZGRkcCnpMlFhQTl188nRFZCCu478XH5788sX5m2bX94tr70KuRQXWZiUYd7z5LWvUHvzv//ytlUqiiwr+F4tTrquZHXzS+25JR9DQkKYOHEip0+f5ueff2bKlCnIZDJGjRpFxYoVAdDpdahUKmJiYvjrr7+oXr06ly9fJjo6mtDQULZs2cKxY8e4evUq5cuXp2/fvmg0Go4cOUKzZs3uaL5LL17yohBkKARvDODt4PHHH+eTTz7hf//7n7Ra6HQ6+fLLL+nTp0+Jz3NLPaly5cqxaNGiQhOgBgcHF1lmtVoJCQmhRYsWNGnSBB8fnwJyJu+88w6vv/46S5Ys4YUXXriVZheKy+Vi7969pKam0rBhQ8LDwxEEgUuXLnHmzBnKhpWlWtVqrMpYxYoVKzh06BCDBg3C5cqRgpPkxgQcNod07LDYkasUfP311wDenXv3OBcuXODQoUMcOnSIN954g6pVqxZaLzAwkEcffbTA62fOnAHEpV83crmcvn378vjjj5OcnMzOnTuZNm0a1apVQ6PR4Ofnh5+fH0qlkoyMDNLT00lPTycjI4OMjAycTiculwutVoter0ev16PT6VAoFDgcDo8/hUJBVFQUNpuNRYsWYTAYaN++PdUiquByOJErFTnSarmyd06HE8HhklKw5JVWK1S6DtGZE1wuUeZOlyutZrfY80nXySUnzGGxI8snXafMkYKzm2yS9FtJpOBcRdjrbqvUKpHJ5ThsDhDISa3kKa2XXxrOYRWl9SR789x7XllBENV35DlSgGJdO3KlW1ZQXCZ2O5eirKBLkgasGFGRl196GZlcxs6dO1m9ajUjR+bu+IuJiSExMZExb4/hcvxlIiIjpGdeNrQs23/fTteuXTl39hwffvghLpeLwMBA/vnnH1555ZUHMm2Jl7uPAu7orNyDFBh1+fJldu3aRZs2bahTpw5KpZKTJ0+SnJxMzZo16du3r1T3ejkBb6kDGBgY6PFFB7B06VIqVqxIWFhYgSSa7jK3U/jaa68xePBg9Hp9gV+ukZGRvPzyy8ybN4+uXbtKuZluB0lJSSxfvhyZTIbZbGbDhg08/vjjHDlyhNTUVKpXq872X7dTqXIlateuzb59+wgLC0OtVouyVJlmfEJ8kSnE3G3mdBM+wT6gEPO+qQxqtFot9erVY/ny5TRt2tT7IX2P0qxZM+x2O3FxcSVO5ZGXevXqFRmTIZPJCA0NpW/fvvTo0YOzZ8+SlZVFRkYGmZmZOJ1O/P39KVeuHP7+/gQEBODv749Wq8XlcmE2mzGZTNKfIAgolUpxdlChQKlUYrFY+Oeff2jSpAkOh4PY2FgqRkaSfSkDWXnQljFgzbTgtDvxzVkGthmt2M0O/MqqcNmdmFJNGHKWVc3pppzdyOKSpiXdLC1HOywOTKnZ+Ib7I1OKzqLpmhHfcH/kKjmmFCNqH420hGxKMaLUiMvaNpMVa7oZv4hAcEF2Shb6MjlL3AJkX8tGm7M8bs2y4LQ68C3rD4A1W8yf6RvulyMFZ0IfaBAdQqcLU2q2uESrV2NJN4Mg4BPmJ9p7zYhvWX8UKgVOu/heNQT7oFCJ96rSqqVlX0uGeO+6QAN2ix1rlgXfnKVoc05eSLeOt5gXUoPGoMFmtuGw2vEJFuvazTbsJruY8zBHVlDnr0OpUdH8oeYcPXyURYu+YMjQIQAMGDCAr7/+mvXr1/Nop0eZOXMmJpOJFs1b0LPLY/R6rCcKlZKyAeE0im6ISykQFBTEtGnTuHDhApUrVy71uPXi5WaRIbujc3J39mp3l7p16xZYAq5fv36pz3Nb11IXLlzIL7/8woIFC0pcFhAQUOT5hg0bxsaNG5k8eXKpBI9LSnp6On/88Qc7d+6ka9eutG3bFpfLxT///MOpU6do3rw5jRs3RqEQl+HmzZvHqVOnqFatmuT4qvVqjzQVKq0KVbi/dOz+kn388ceZPXs2cGPBtV7uDCqVinbt2t2WJJx50Wg0VKpUqcS7/BQKBT4+Pvj4+BRbt1q1atK/9+7dy/oNGxg9ejTaHCdOXyZfepYAPbqAnOuolfiXD5DKfMM802DkTfui0qvxzzv2dSoCInMlE/0jPBV0/MrnHmv9dFJKHJlCRkDFMlKZTC4jIDK3boF0Mv46dDlOmkKlwK9srr1ypcLjuvntzWufUqPyaOsblvu+FdvmSZ2T49xJdfOUyWQyj2OtrxbyxBJqfLRS6h2ZUuFRV6VW8eLwF5k4cSJXrlyhatWqqFQqnnrqKaZMmcLHpz/GZBI3phw7foxnnn1GamsI9sGAOB5sNhsmkwlf39z79eLlTqIQZCjvYI6RB2kJ+FblBLxtDuC8efOYM2cOEyZMoG3btiUuux4qlYopU6YwYMAA1q9fX6IvPxCTOLtjsfIjCAIXLlxg//79nDt3jrp16zJ69GiCgoKwWsVdffXq1aNevXqA+MHqZsCAASQmJkrLgkVdozC2bt1KnTp16NKlS6na5cdqFRMX3+upPa6Hu58fdO5EP0RFRWEymfjiiy8YOHAg/v7+xTe6w3jHA3Tv3p0dO3ZQtmxZ6b09duxYMjIyUKvV/Pnnn9LMb2Hv/X379lGrVi0MBsNNfb7cC3jHg8i90g/uXLXFoRDkKO5glrkHyQEEMSXd//3f/3HmzBmcTidVqlThueeeo3v37iU+x21xAKdPn85XX33FpEmTGDBgQInLSkKjRo3o168fM2bM4O233y5RG61W6zGzYjKZ+Pfwvxz59whxZ+Lw8/OjedPmPNa1B/7BAYAoL+VyuND66XA5nFgyLWhzJKJcTheWDDNBAUGEhITkyHflSETZcqTg/EW5LqfdiTXbitZPi0wmw5JpRqFW8ueff/L666/flI7nsWPH+Oyzz6TjadOmUaZMmeu0uDksFgsajabUzmZKSgpXrlyhZs2aRQale/N8idyJfnDPbM+fP5/Ro0djUOsRnIK01GnLtuK0OdEF6qUlVa2/KK1mTjeLUnA5u4/dqVm0/jocVgeWDLO06z2/FJw51YRSmyut5ikFZ8WWZcUQ6iumc8mwow3IkYJzCWQnZ6H21aDWizJ3TrtTmgm0mWw4LHZ0gaIUnCXdhMYtBedyYUkTpeAUaiWWTAsI4r06bQ4sOdJ67thCc5oJfZAeuVKBKTUbpSbX3gKSjyarlADanGFCrddIcX3mdFGmT6VVYzPbcNmd0gyn3WLDYXWi9dOK9mZZ0Bg0ubKCmWaaNmrCiRMn+PDDDxk4cKA0O2y325k2bRp2u5jm5sSJE0RERCCTyejX6wnkKgUavYbDhw/TqFGj++Z9db/cx81yL/SDe9NBcYg7c+8cD9Iu4HXr1jFhwgT69u3L008/jcvl4uDBg4wdOxan01lirftb/nw+/fRTvv76a2bOnOmRKqW4stLw5ptvsn37dubOnVui+l988QUtWrSgVatW/Pbbb+zYsYNq1apRo0oNevXqRUhYiBiDZLURGxvLuXPnSExIxG6zUy6iHM2bNcdHbfBINiST5UpGIcsjJ+UuA+Li4ti8aTP/3955x0dRrX/4me272U0vJHRCQu9VmiCiqChc4VrA+gO7XkXEgopYQQWxcUUUQVBQrx0QEEEUVFBBpEnvLSF9e5v5/TG7s7tJgIAQIszz+axyZuaceefsye6757zn/R46dIjatWvT56I+ZNdtRCAYoEGDBuzduzdmee5kadKkCbfddhv79u2jqKioyjOip8KsWbNYtWoVAOnp6SQlJSmvWrVq0ahRI5KTkyt1Dl988UVAnm298MILueyyy9RchmeZiy66CIBXX32Ve26/m4T4qJlAQSB6QMfKvRGbdEuIjPfy1xKWaIuSWouRdxOiz1WUXStvgxIqIQgVxlnFukrVmLYEAaSoh6m8nfC1wvGfVSj/bMdqh5jnhtj+rFBXENBotVx//fVs2bKF//73v4wYMYLc3Fy2bt2K3+8nPT2d3NxcunfvTl5eHlu2bOHzr7/gjz//UHIKlpWV0a1bN8rKyjh8+DCNGzdW/+5Uqg1BEtBU4xLw+RQD+Pbbb/PYY4/FTKINHDiQ3Nxc3nnnnbPjAG7evJmpU6cyYsQIunfvztGjR5Vzhw8fPua5pKSkk0rtEh8fz5gxYxg5cmSVrt+7dy/5+fksWbKEVq1aMXr0aGXmzeVysWzZMjZu3Mju3bupW7cu2dnZtGjZAp1Ox44dO5g6bSqjR49W0jlotJoYGauwRNT+/fsVWZa//vqLgwcPcuWVV9K4cWN27tzJF198QSAQwOfzkZ2dHaMccSpotVratWt3zPQkp5PoL8rhw4djt9spLi6muLiYtWvX8umnn6LVasnOziYnJ4emTZuSlpYmz0xccw2fffYZpaWlfPPNN7Ru3VqVraoBhJ3AN9+ewv3334+JcI47A4SG9wml4KKk7HQGHbooCTetXktcVNmcXE66LqpdvVmP3hyRgrNExerJm0yi8v5ZYzfjREvXCVpByS0IcsqV6HJ0Xj9Zqi4uphxjbzmpvQrPGi0Fl1hRCk55NpMBfdSkid6kV/ISIghK/KJsb6QsBATat2+PxWLh3Xff5Y477lCWc6+77jqaNpW1nevXr0+rVq0YN26c4vw9/PDD1K5dm507d/L2228THx+PyWRixIgRx42zVlE5XchpYKrxfueRA3jo0CF69uxZ4XiPHj2UCZeqcFodwMWLFyOKItOmTWPatGkx5y699NJjnps3b95JSxpdfvnlfPXVVyxfvvyE17Zu3ZrWrVvTqlUrxfHz+XwsXLiQFStW0KJFCy688EJuu+22ClPsHTp0YPLkyWzevJn27dtXaDsYDPLHH3+wbt06du7cSdu2bRFFkVatWjF8+HBlyTMlJYWOHTty6NAhdDodtWrV+sfE5ixcuJCtW7cyfPhw2rZtW+ksgiRJHD16lJ07d7J161YWLlyI2WzmX//6Fx07dqRdu3aUlpZisViqvISgcua56KKL0Ov1TJw4kcGDB9O6detT2u2scuZo2rQp//73v/nkk09o3rw58fHxfP3119SvX1/5vDKbzdx7771s2bKFiy++WA438XiYNGkS/fv3Z8CAASxatIhXX32Vp5566h8dM6zyz0DeBKKmgTkTNGjQgJ9//rnCRMovv/xCZmZmlds5rQ7gyJEjqzwrV1Xq1KnD1q1bKz339ttvV6mNq6++mjq16+AqdOL3+Nm2cxsfffQRDRs2ZMyYMSQnJx+zriAIlJWWYdVZCfoCaA06gv4gzgIHAW2AmR+8jyRJdOzYkRtuuOG4zo1Go/nHaRRu2LCBpUuXMnbsWOLj47HnlaEz6jAnWvA6PHjtXmwZ8fJOTWsiLRo0p0vnLgD8sfoPZs6cydixY0lISDhuP6ucPXr27EmtWrX45ptvmDt3LtkNs7nqkiup26QeAV8AZ76DuFQ5rYr9cKk8cxaaKbMfLkXQCFgz4vE5vbgKnMTXTkCj0+J3+XAedWDLjEej11K6vxijzaTMrJXuL0JnMhCXZsVd7MJd5CKpYQpSUKRoZwFxaVaM8SYkUaR0XzGmJFlxx1XoJOD1E5+VCMjpWXwuH7ZaCYgBEedRO+bkOPQmPWIgiCPfjjnJgt5swHHUIaeBSbfhLfNg319CUuNUtEYd3lI3JVvySW5RC73VSOGWPIzxZqxZ8i5de16ZkgLH6/TiLfNgy7AhAY48O8Z4E8Y4oywFd6QMg9WIyWbCXeom4PErO6g9ZW58TjltjRQUcRY6MSWYZXuDIs4Ch6IG4yp2IYkiHTt25Mcff+S7775j2LBh7N27l8ceewyT0cTQ66+ndds21K1bNyY9lsvlok6dOqxcuZIm2U3o3robv/zyCwcOHDijabRUVCC8CaQa71d9tzrr3HHHHTzyyCNs375dWQH8448/+N///seTTz5Z5XbOvqRGNaDVyglZfRo/H83+mP3793P99dfTvHnzE9bduXMngWCA+jn1FYkojU7DkZI8Zs6eSbdu3bj88svPyVQuX375Jb/99ht33nkn8fHyl5clOSJNZrAY0Bp0Sllv0ssyZaFy6w6t+XLhl7hcrhq521QlQk5ODvfffz9ut5sflv/AlBn/pVOnTtSrV48mjXMVKThLihUhaqhbopZM9WYD1gxNrBRchg2NXosgyE5iWHYNIC49Ho1WHivGeJOcgDkkBWfLSkBnVOQ9sNaKV/7+TAlmJDEyS2mwmtCbDREpuJQ4RaVD0GqwpFiVxNXmRHNUPQPxDZLQGORzBpuJpKYZ6ELLyQn1kxGi7LUkxymxewazQW5TkCOPLClxiiqKIAjyRphQXaPVGJMayhBnVJJNEwonCdsnaAS5rNPKG0VsJiQkBEHgjjvuYNeuXbRs2ZKuXbsyYMAAtm3dxlfzvqZ124o5wJKTkxkzZgwbNmxg+vvTGXjlQPr168ebb77JNddcQ4cOHY4xGlRU/j4aqjcGUHMeTWpffvnliKLIjBkz+OyzzzAajTRs2JDJkyfTt2/fKrdzXjiACxYswO12s3//fi688EJuvvnmKkskzZ8/n8suuwyjWf7CkSSJ5cuXs2jRIm688UYlPcy5RklJCStXrmTcuHExm0ti5bA06AyaqHKstJbdacdut/+tnc4q1YvZbKb/Zf1p3qI5mzdv5rfffmPu3Lnk5OTQoEEDOnXqRGpqqnJ9eXk0nUkfU9ZHlaPHRvmyRqtBY45IwYXjAcPl6HZlx0oTU5cqysiVH7+GqFx+gkbAkBCZwdeZYzW6KzxrVAygrpzMna6czF156boY2bvjSEdGO8xWq5XWrVsr5bi4ONq0bcOs2bNwOp3ExcXmRwzTqlUrRo0axauvvsp1113Hddddx1dffcW6deu49tprz+jmMZXzF42oQStW4/2q71Y1ggEDBlSqPnUynBcOYHJyMs2bN6dhw4YnJb22bds2CgsL6dKlCwGvH78YYO7cuRw5coTRo0fHfBGea+zcuZPs7GxMehNiUFS+sAK+ABqNRkmHIwaC8iygICCFZPDCs0VWcxyNsxsrOedqQgoDlapRr149Jb7E5XKxefNmdu+WpcbGPDaG+AR5RjjoCwACWoNWloLzBpTZLUkMybKFpNYCHn9Io1j2hvweWWqtSlJw3gBafVhaLYgoSseUVgt4A+hCM9OyNFxIilEjEPQFAQmtQYcYFPHbvRgS5BRNUlDEW+LGmCSncPI7vWj0WmU2MegLgEZAq5PTy4hRYz3oC6DRR0vBBeRnrYIUXHl7g76AovMcDARBQkkREy0rKV8bpFmzZrz//vv06tULs9lMQkICqampcjoatxuj0UhGRgZ33nknU6ZMweVyER8fz5o1a9i2bRvDhg2LcSxVVE4HumqOAdQdI+fgkSNHeOGFF1i9ejU6nY4LL7yQRx99lPj4ePx+P+PHj2fBggWALNAwatQoJc79bJ8/Hn/++SczZsxg9+7dTJ06lfnz51OvXj0uvfTSqvdZla/8B3PBBRecUuzd6tWrad26NQf2HWDjnxtZsWoFrVu35qGHHjrnRdZNJhMulwt3sQu9Ra/sgHSXuOQYwAQLfrcPr8MrKxkI4PfIeeCs6TY5CL3Uwy033sK8hfN48cUXufjii2nbtq064/APw2Kx0LFjRzp27EhRfiFrVv9On0vkHcTuEpeyS9fv9isxgIJOS8Drj4kBdObLufzCu3KdeXb0Zj1x6Ta8Do8cA9ggBURwHC3DkmqVd+1K4Cp0Yoo3YbSZ8Dq8BLwBJabO5/Tid/mwZoSk4ELSb4oUXKETS7JFloIrdSFJsiKIv8xL6a4CklvUQmfS47N7KdmcR0rb2uhtRsr2FmNMNGPNSlCeVaPXYkmKw+/24y11y3F8gKvIFRMD6Cp2YrQaMVpNeJ3emBhAn8uHzynHzopBEXexS45RDOU8dJe4lRhAn8OLGJSIS4mT8yoWh6XqtErewhuG3sCqX1exePFi7HY7TqeT5ORkCgoKEEV5CqZr165cccUVXHjhhaxfv56DBw8Cciqpzz77jMWLF9OuXTtatmxJrVq1qm1sqZy7aEUNWrE6N4FIQOyUoyiK3HPPPSQlJTFr1iy8Xi/jxo3jkUce4a233uKVV17hl19+Ydq0aTidTh5++GESEhK44447AM76+WPxww8/cP/993PVVVexe/duJbvIqFGjcDqdXH311VXqM0GSqjFVdzVz4MAB+vbty9KlS0/JAdy3bx/Tp0/HYDCQmZnJpZdeSu3atU+bfW63u8bOivn9fh599FHGjBlzWpJLr1mzhlWrVhEIBLj//vtjztXkfqhO/gn98O2331JYWEhKSgqiKNKyZUtSU1MpKChg/vz5XHfddX87zcg/oR+qg1Pth8LCQkpLS0lPTycuLg6Hw8E333zDDz/8gMFgICMjg/379yvXt23blgsuuIANGzawYcMGcnJyuPHGG9Hr9ce5S/WhjgeZmtIPJ/peDZ9/oEBHUjU6gMUaiVdTAzF2bdq0iauvvpqVK1eSlpYGyN9FQ4cOZeXKlfTr149XX31VUST74osvmDRpEj/++CN+v58uXbqctfPH21dw9dVXc91113HNNdfQrl07vv76a+rWrcsnn3zCjBkzWLhwYZX67LyYATxV6tWrx9NPP322zTgr6PV6+vbty6effnrCXyNVoUOHDrRt25Ynn3ySffv2qXkA/6F07NiR559/XklhtGrVKkpKSrDZbBQWFnLBBReoeebOMikpKTE/2mw2G9deey3dunVTcpDu2LGDV155BYB169Zx00030apVK/x+P7Nnz2by5MmMGDFC3bmvcspopWqeARQqzmVlZWXxzjvvKM5fNAcPHsTtdtOxY0flWMeOHTl69Cj79u2jpKTkrJ5v0KDBMZ91165dXHDBBRWOX3DBBTz33HPH7qRynG9xkyonQb9+/Th06BAbNmxQjrlL3fhcsial3+PHXexSks8GfIFQ2goptAzmwu+RJat8Li/FeUUEg8EaM7NwOigtLWXGjBmMenAUZSWlZ9ucM05ycjL33nsvycnJdO3alXHjxvHqq6/y7LPPkpuby9tvv43X4+HQoUPMnDmTOXPm8Ntvv1FWVoaryKmMHZCXdb12WVfU5/LhzC9DkkJjp8BBwBsAqHQshSXoAHxuH+4SeRyKQRFXkZOgPyjXFUNln9yWx+6R5eCQ4/ac+XbEoBgqB7EfKUMMyHXdRU58zoi9nlI33lA54A3gKnbKY12UcBU5Y+x1Fzvxe3yKve4Sl9KO3+1T/m7EoIir2BVlr/ysgZC9XqcXT6iPgv4griKnYq8YCJVD9npKXbH22j0Re30BUqwpNGrYSL5PUCKrVhZvvvEmrVu35uflP+Fz+dDr9Qy7digtmrRg/PjxzJs3j0AgUOXxoaISRhvUoAtqq+2lDVZ0Z5KSkujVq1fMsZkzZ1K/fn3y8vKwWCwxIUlhR/HIkSNn/fzxqFWrFn/99VeF4z/99BNZWVnHrRuNOgOockz0ej3XXnstc+fOVXR85TQY0bpVx64fLYsH8NGnH2E0Gk8qUWVNZufOnUyZMgWPx0Naaho63bnj2B6Phg0bVvorU6eVP05+/fVXVv70Ey1btsRqtbJmzRo++ugjLCYzBqMRvUGP2Wzmou59yG0anQA+Rg8tpu3yY6niuDvBTMOxTpc7HqvYVv5kBWU4+T9SxUtDFlfNthObVcWrhSpXrF+/Ph6vh127d9GvXz+mvf02WoOOHhf2QBA0XNSzN527deZ///sfL7/8MrfeeqsaG6hyUmhFLVqx+uaYtFVIbj5t2jSWLFnC1KlTKSkpqRDLHy77fD7cbvdZPX887r77bp588kn27NmDKIp8//33HDx4kI8++ognnnjihP0QRnUAVY5L8+bNqV+/PosXL+bKK6+MkcOKkbSiEnmsKCktg8VIcmoKFmvlqSqqA0mS2LlzJ6tXr6Z9+/Y0a9bspNsIBoMUFBSQmprKf//7XzweDx07dqxRMVNni7vvuZvt27ezfPlybDYbV1xxBRqNhj59+ij95vf7CQQCHD58mI+++JinnnoKkHNKhnPlCYKAOaWctFq5sRSNwWwgpGKHoBVipOsETTkpu2gpOIMuRmJOa9BiDW3UgBNIwRl1kfQyArHycxXsjUjVgZwvUW+OSNdZoq4VNFFltx9jVJqacBLqMBqd9vgyfVHPWv5v02Ay0L1Hd37++Weuu+46ho8Ywddff83RoqMMGTIELAbMxHHXXXexYsUKJk2aROfOnUlJSUGn01WYVVFRKY9GFNBU4xKw5gQO4JQpU3j99dd54okn6N27N4sWLargaIXLZrMZk8l0Vs8fj6uuuoqUlBSmTp2K2WzmjTfeIDs7m0mTJnHxxRcft240qgOoAsibPo7lwAwZMoTnn3+ezp07k5GRccr3aNGiBXPmzGHSpElcc801Z1SNQJIkZs+eTceOHfH5fNhsNl555RVlufpU9ZM/+eQTVqxYoZSHDBlCnz59VGktZKWbJk2a0KRJkwrntFptzNhp0KABO3bsYNy4cTRr1ow2bdrQoEEDpkyZwq233nrWgt1LS0tZvXo16enptG7d+pxM8B6mS5cuTJs2jYceeoiUlBSaNWvGr7/+KjuAIQRBoFevXrRs2ZKff/6ZefPmYTabVQdQ5YRoJC1asfr0OTSa4DHPPf/888yePZuxY8cybNgwQF5GdblcMTk0jx49CkBGRgZ6vf6snj8R3bt3p3v37ifRQxWpkgN4vDw6YXw+H4MHD+bBBx+kT58+x2zrm2++qSAXl5OTw/z58wF5ff69996jWbNmTJw4EZvNxurVq7npppt4+OGHGT58eEzdDz74gPfee49ly5ZV+aFVYvF4PDz44INcfPHFDBw4sEIOosTERPr378+cOXMYdvVQbIk2zAkVpeB8Ll9MGhh7XhlGmwmj1Yi7xEWjzIY8++yzPPjggxQXF58RB7CwsJDVq1ezZcsWduzYgUajYf/+/cqux7p16zJixIhKg4KPRWlpKRNfnogoihSXFGOz2cjIyOD//u//1A0Pf4MbbriBI0eOsHXrVj7//HO8Hi+lZaXMmzePfw8YQlxiHHqzAUmUcBy1Y7AaMcbJYyngC8jphwhJq7n82DJsshRcgQNLkgWdSY8YEHEctWNONKM3G3AWOgGJuBQrjhI7P/24EmfATWlpKXv37qWsrIx27dqxbt065n89n5uG3US9bHnDkiO/TJl18zo8shRcrXgkCRx5ZRgTzBEpuMOl8ti3mXCXugi4/dhqJUTsdXoV6TpHnh1LShx6syxdV7qvGEuaFXTgOFKKGBCJr5MkS+vl27FlJaA16Ah4/Djy7Fhr2dAZ9TEyjQCOo3Y0WnkGNPpvU6PV4Hf70Hk0jH5oNAiw9qc1zPhoJgArv1+JRW/Gp/OTm5uLRWtG44ArrrhC0UbfvXs3DRs2rPYxo/LPQV4Crj4H8FhJp1977TU+/PBDJkyYwKBBg5TjTZs2xWw2s2bNGuUHze+//05qair16tUjPT39rJ4/EeEk/du3b0ej0dCsWTNuuOGGkxKnOKEDeKI8OhBxILZt23bCG+7cuZMePXowYcKEiBE62YwDBw6wcOFC3nrrLb777jvef/997r33XuW6N954g0svvfQfp6db0zGZTKSmpvLdd9+xdetWbr755gqBpL1792bTpk2Me/FpWrRowT333IPebJAT1oYmv2QpOEGRgrMkx6HRh+WwTBhEEa1Bx6BBg5g1axa33XZbpbNFp4Lf72f16tXMmTNHOZaWlkbfvn1JSkpi0aJFxMXFcdFFF1UpyWY0ZWVlFBYVAnLs1IABA2jRosVpsft8RhAEMjMzyczMpGuXruzauYtGjRvx4Ycf8sa7b9KsaTNESaS4uBiH3UGr1q3o16+fMpbCREuraXQaLEkWtEYdbrdb3unndBE4EmTz5s3s27ePtLQ0kpOT2bljJ2azmcY5jcnMzKRfv35kZmai0WjIy8tj86bNvPv+u4wZMwaTyYQ50RIrgxiWghNCUnD68lJwctkYZ1KWfBV7jVH2psYpy7OCVoO1VrysTezzYk6OI5yoS2eScyaGJfG0Rh1x6VYlUbUlKWIfIDuCx/jb1Bn18t+nVoMgCNSqJ8fltmnThmU/LuNI3hGys7P57LPPyM7OplePXiSQRGZmJllZWbz88svExcUxcOBAevTocVrHhcq5gVbSopWqb5GxMt3hzZs3M3XqVEaMGEH37t2VGTaQN4gMGTKEZ599lgkTJuDz+Zg0aRI333wzIH8vns3zx2PBggWMHj2aPn36MGDAAERR5M8//+S6667jrbfeomfPnlXqsxO+O3/99RcbN26MyaPz+OOPM3ToUMrKyti/fz+PPPJIlb9Ut2/fTm5ubqUzMC6Xi+TkZHJzc9mzZw8bN26MOZ+cnMzTTz/NO++8U6V7qVSdSy65hO3bt5OTk8Orr77K448/HqPfu2PHDg4fPqz8G2IlrSAsBVe59Fe0fFenTp34/PPPlVQif5f9+/czfvx4pdyjRw+6detG/fr1laXZ6F9+J0udOnUYP348ZrP5nE8AfrYwmU00bylrc19//fUcOHCAPXv2oNPpyMnJwWw28+WXX7JlyxYuuOACmjZtis0gx++Vl1YrcZSy7Otl/Prrr6Snp2MymdDr9dSpU4fu3btjNBopLS2lbbu2XHjhhRXe0+gUKSCvgDRo0EBxtCAkg2iMjP3ocV++rNFp0JSTrou2NzqOVhAE9FHxgrH3jD0nS+ZVfi1UIl0XLZFXTravboO63HbbbXz33XdYbVba125PamoqN9xwA1u3buV/n/2PxKWJtGzZkm3bttG+fXuuuOIKpkyZgsFgoHPnzqioRCNIAppqVAIRKrnX4sWLEUWRadOmMW3atJhz8+bNY/To0Xi9Xm677TaMRiNDhgxhxIgRyjVn+/yxeP3113nkkUcqOIvTp0/n5ZdfPn0O4PHy6Hi9XlatWkXfvn256667aNOmoiB5eXbs2HFM43Jzc7HZbLRp04ZatWoxe/bsmPNPPfUUd9xxB9988w2XX375Ce+lUnWaN2/OV199xeDBg7GX2Xn++efp2LEj8bZ4ysrKWPvHWq699lpmvDeD+++TEzmHJa20Bq0i/RX0B9Ea5C+eoC+IRq9Bo5HlsCRJ4tCRQ7z77rtceeWVtG3b9rTYXlJSAkDfvn255JJLsNlsx69wkgiCEOMMq5xZBEEgNzeX3NzcmOMPPfQQq1evVnYVp6Sk0LBhQ2w2G5IkUVZWxu7duykpKaF79+488cQTp7REn5qaSk5ODtu3b0cQBL766iv69u1LsybNlFk7SRRDYz0iBafVaxEqk4ILikhBUbm2vBRc0BuQ5RTD0nUuP1pTqF1vAEmSZFUTUZbI08cZIlJ77pDUnkYg6AsghGQaQU4bgwBanTbmbzPytxpQZBwD3gBtWrehVatWrPl9DU6Hk30H9jFv3jxGjBhBjx49+PDDD/nss88AGHr9UCxxFu666y5ef+11EuITaNL09Mzmq5wbaNGhrcZtBpVNQY0cObJCyFl5nn32WZ599tlKzxmNxrN6/ljk5eVVGofbt29fXn/99Sq3c8J353h5dNLS0irE5B0Pv9/P3r17WbVqFdOnT8fr9dKzZ09Gjx6tfGm/9NJLPProoyQkJFSYVezYsSNDhgzhhRdeoEePHjExiCp/j+TkZHr16sUrk15h0OUDGfnASNZvWE9xfhFag45Ro0aRlpZG4yeylZk9v9sXioNKCEnB+WNiAF1FTow2E6JW5Psly9iwaSOFxYUMGTLktM4YtGrViv/+97+nrT2VmolOp1MCn4PBIHv27GH//v3Y7XY0Gg1169ale/fu1K1b96SX+aNJTExk5MiRSJKEw+Fg+/btfPTRR3Ru15mLL7oYS5IFn8sXEwPoKnTGxAC6Ch1KDKDX7pGl4EIxgD6nNyYG0HnUIccAWgxIAZGy/cVYM+PBIMvliYEgiY1S8Tt92PcXk9AoBZ1JT8Drx36wBFvdJPRmPa5iJzqjXokBdJe4lBjAmL9NrUDAK+fwjAvFBDqP2jHaTJgSzLRu2oqCI0f5c8OfivKRRqPhhhtuwOl0kpqQil4jfwZkZWZy3dXXMv296YwcOfKcSfGk8vfRoEVTjQ6ghnNW1KwCffv2VTa1RDNv3jz69u1b5XZO+t2JzqNzsuzZs4dAIIBOp2Py5Mnk5+czYcIEHnjgAaZPn65cd7zs86NHj+b7779n4sSJPPPMMydtg8qxufLKK6lXrx4fffQRAwcOrFRU2haVJsNoNWG0RlJNRKfyABCsGhYvW8yKFSto1qwZA/81kEaNGqnLqCp/G61WS3Z2NtnZ2WfsHoIgYLPZaN++PY0aNWLy5Mlk1c+iY8eOMWNfAOKzEmPqRZfDDlkYU7xZSSmj1WtJqJuknNPotaQ0lXcAut1u4utFzhlsRlKaR3Lx6c0GknPTlbItI3aW2hqV4qb832Z0KhqAhDqR+5gTLRzcchi32x0TOiEIAk6nk969e0fS2Gg0tOvaHi8+/vvf//LQQw+ps+UqAGgEHVqhGh3ASpRAzlXi4uL43//+x6pVq2jfvj06nY5NmzaxceNGunfvHiO3+tprrx2znZN6d8rn0TlZcnJyWLVqFUlJ8odNs2bNSE5OZsiQIezZs+e40idhEhISeOyxx3jooYcYOHBgle7r8XhOW7zZ6cTr9Z74omomNzeXu+++m5kzZ5KamnpK2sclJSX88ssvbNy4kRYtWvDggw8qS3HBYLDCe1ET++FsoPaDTE3sB6PRyC233MIHH3xAdnY2JpPpxJX+JmezHxo3bsy3337Lli1bCAaD1K5dm/379+NwOMjMzKzwN9ymTRtKS0uZNWsWN91002n9kVcTx8PZoKb0g8fjqdJ1gqBBEKpvF7AgHDsNzLmG3+9nwIABgPydGgwGady4MY0bNz6pdqrsAFaWR+dUCDt/YcIG5+XlVckBBBgwYABffPEFY8eOjclZdSxMJlONENGujJpoV926dRk0aBBTp05VEr+2bNmSpk2bEvQE0Bn0ZNbJRIsWv9uHKcGM0+lk3bp1rFmzhv3799OjRw/uv//+Ks8G1MR+OBuo/SBTE/uhYcOG1K9fn9WrV3PxRRfjd3oxJVpAkmXY9HFGdAY5rs9T4kZnlhOl+1w+gv4A5gR5JtDn8hHw+DEnWWTptwIHpkSLHBMYFHEcKcOcHAdGwC0iBSUsaVaC3gCuow7iatnQ6LSyNFy+HUu6Da1ei7vIhcagxWiVk0d77G4EjQZjnJGgL4DPKf+tChqBoD+I1+HFlGBCEAS8dg9agw69SY/f7SNOH0efPn1YvHgxu3fvBqB27doMvGogBvQYdPIuaEmS8JR5MJj1XHLJJeQdzuPtqW8z4rbTqyNcE8fD2aAm9ENVf/xotbrq3QV8rDww5yDRmx7/DlV6d46VR+dkWbJkCU888QTLly9XBvKmTZvQaDRVdv7CjBs3jiuvvJIPPvjglO1ROTatWrVizJgxOBwOPB4Pa9as4ZNPPsHvk5UcJCQa1G9ASXEJdqedkpISmjdvTq9evWjRooW6zKtyTtKhQweWLl3KxX0ultOzhFadov8NIBF9QKJCeFL0Kanc4ZAeclhmLnxBWCc5UleKtaGyxsJ1FZvKGSEBQuU29OjRg549e7J+3XrcTjcdu3ZEI2jwlJVbTZHklgVB4Joh/+a7pUt54YUX6NSpE507d6Z27drq58F5iEajRaOtxiXg4ySCPhd4/PHH+c9//lNlMYZDhw7xxhtvHNdZPOG7c6I8OuEcfseipKQErVaLzWajY8eO6HQ6HnvsMe677z6OHj3KU089xeDBg09aYaJu3brcc889TJw48ZSWKVVOTHJysvIrPnpHpiRJbN68mdLSUhITE0lISCAtLU39kFc556lbty779u0DLTEybDHyc4KAJUoazmAxQlQYYIzsnU7AVisSV6vRarCF4vECbjfmlEg7OpOe+Kh4Qa1BR3ydxEptgHLSdeWk4LR6bYyN5igZOVlaL/K33Lpt65h2o2MaBUGIKZusZgYMHEDP3j354Ycf+Oijjzhy5Ai1a9fm5ptv/ltKQir/LAStFqHSvbln7n7nMj179mTYsGG0adOGfv360aNHD6xWa8w1hYWF/Pbbb3z99dds2rSJRx555LhtntABPFEenfKpGspz3333Ubt2bSZMmEBSUhLTp09nwoQJ/Pvf/8ZoNDJgwABGjx59IjMq5dZbb2X+/PnY7fZTqq9yagiCoCZCVjkviY+PJzs7m++++47+/fufbXNqLAkJCVx11VVcddVV+P1+XnjhBZ5++mluu+02WrZsed7rZp8PCFotmmrcBCJoAtV2r7NB//796dWrF5988gmTJk1i5MiRpKWlkZSUJKtUFRdTWFhInTp1uPbaa3nppZcqOIjlESRJKr8ucM5w4MAB+vbty9KlS2ukeojb7a4RMR1nG7UfZNR+kKnp/VBQUMALL7zAkw89QWKtRCRCUnDxUVJwR0rlncJhKTiPX9ml6y524i31kFA/GdEXpGRXAbY6iRhsJkR/kOIdR7FmJiAaIVDgQQyIJDRMwefwYj9YQkKDFHRGHX63H/uBYuLrJKEz67EfLkVr1CkzgceTggt4/LhL3cSlxCFoNbLUnsWA0WrCE0pbE5dqleMDQ2lrrGk2pKAUktazyNJ1oogjX04hY4wz4ip2IQaCWNNsBLwB8vYdwRFwsmPXDhYsWIBOp0Ov09MouxF6vZ5+/fpRr16946btqenjobqoKf1wou/V8PkppR1JF8/8Zqkw+RoP9yT8XmO/7083O3bsYOPGjRQUFCAIAmlpabRo0eKkMiNUn3uuoqKicg6QmpqKxWLBHfSQKAgIgDmpnBRcUpwi2WaMM6I3RZZUjTZTRLrOoMVWJxGdsiSsUcpenxdzmlWJ8dNb9CEdYLldnVGHNTMBbSgvpzk5LlYKLsEMISUcvUmHoIlIxWkNOsyJZoSQFJw5waIkkDZYDOiMOkVFR2/So9XJCaTRgjnJEpGuCy0Bh20y2oxIomzwqt9W8eUXX1Irsxa7du0C4MUXXsQv+tm6dSuFhYV8+OGH5OXl0aJFC26++eYa4eConB40Oh0aqfpmejXCuT0DWJ5T2fVbHtUBVFFRUTlJ6tevz76D+8iqK2tmR8u5ATEyaxqdFk3UJ61cjjiLBltklqR8ObodQaOJvVYjYAjt+IVY6UUoLyOnQW+qomxjOYnHE0rXRZW1ushM3s8//8zgIYMpKipi165dtG7dGrPVjBkznTp1QhRF+vfvj8/n47333uPTTz/lxhtvROXcQNBoECTNiS88XfcTqu9e5wqqA6iioqJykjRp0oStW7fStWtXWc7NH5RnyUIzbAFfSApOE5KCE0W0+igpuKCopIwJuP3yjGBYCs7jVxyyoD8IkoTWECUbF5qdkySJoC8i7xb0BxE0guKsBf1BBEF2OCtIwVVWVytE2SspM5qSKNur1esqPGv5cljyUavX0rVrVz788EPatWsHQK9evQh4/GiNOjZu3Mhbb73FRX0u4uChg2zduhWAhPgE2rVvR926dav1/VQ5/Qg6HQLVNwMo4K+2e50rqA6gioqKyknStGlTFi5cyPjx4xk0cBC1EzMxxsvqIJIk5/Yz2IyYbGa8dg9+t5/4TDkG0Ovw4rN7ia+dgOgPYj9QgjUzAYPNiBQUse8vIS7DBgZwFTgQgyIJdZIIuP04jzqwZcajNegI+oI4jzqIS7OiM+pwFTrQGXWYQ7t73cVOOQYwxYrf48NT4saaES9LwXkCuEtcxKVZ0Wg1uIqc6C0GTDYTPpcXv8uvSDr6XD58Th/WdDkG0FXoxJxoRm82hGTvnPKzxxnxlLkJ+oPYMuK5oHNXcrIak14vnWHDhqETdDjz7cSlWZVsEsu+X8bVV1/N7t27ad+mPV6Xl//+97+UlpYCkJmZSSAQwOVyodPplJfVaqVt27b07t37b8n+qZw5BJ2uWqXgBNWdOWnUHlNRUVE5SdLT0+nVqxdr167lhx9/4M4771TOVSYFZ44UMSeYlbQrWoMuRs5No9MqZbfbjS0zkkhdbzGQWD+SXFln1JEQlQYmrDUcxpoeSS9jsBjldDThtsx69ObI9dESjyabGZMtEosXI3unExRHFmSN4OhydCoavclAZmN5iVwb+qoJy9716NEDk8nEzp07+fbbb/H7/az6bRU333wzV/7rSh588EFATj/Vv39/tFotgUCAQCCA3++nuLiY7777jh9++IFu3brRr18/1RGsYQg6LUJ17gKWtHBupwI87agOoIqKisopMG/ePLKysrj44ovPtin/OAwGA926daNbt24cPHiQH374gZUrV/L+++/TunVrGjdurCSg12g0WCwWOnbsqOQRzMzMpFmzZuzbt4/58+ezadMmhg4dSmZm5ll+MpUwgkZbvVJw55kDuHDhQqZPn86ePXv44osvmD17NpmZmdx6661VbkONmlRRUVE5BdLT5aXN7Oxs3CUuAj55F6IkSXLZK8ck+dxyCpYwfo8Pd4kLSZIQgyLOow6C4bqihKvIpZR9Ti9eh6y9GgwEcZe4EIOy5JUYFGPKnjI3PrdPuY/X7sHnlPVjg74A7mKXskM3GAjiLnUjiVJIzs2NP2Sv3+PHU+YmnCEs4AsoZUmUny3oD8Y+a5S9Hrv8rGIgiKvIGWOvq9CJGJDrekrdeB1eateuzdChQ3n2qWcBWL9+PYcOHeKee+5h8ODB7Nq1iwULFrBk0bdyfGLonn6Pn/r16zPiluG0yG3Gq6++yksvvcTy5cvV3LA1AEGnQ9BX4+sEohTnEp9//jnjxo2jX79++P3y3212djZvvPEG77zzTpXbOX96TEVFReU00r17d7777jtGDB8RK9GG7MiFnS1ECUmK6JRKEkSnX5VEMVaKLaocdrrkApF/hxqSxIj8myTJ94q2ASHqnmKUVmrIBgkJAaFcO1I5eyI2SMTek3C7UXURo+9ZTrpOjLQtiRKCJnKjOJOFO/7vDrbs3EJJSQnTpk3j8OHDdOrUieuuvY5Ua0rss4WqCoJAzwt6cfFll7B161Z+/fVX5s2bR6NGjejXr98JxQpUzgyCTougqcYlYPH8CQGYMWMG48aN47LLLmPq1KkAXHvttSQmJvLiiy9y2223Vakd1QFUUVFROQUuvPBCli5dSv7R/BiJM0EQYmLhDHFGIBJ/ZzAbZLk1QNAKWKPi7wSNQFyqnL3f7/YrsXcQkm+Lalejiy1Hy7kBmKLKOqMOnTGiCqDVa7FESbhFy7nJUnCRdvQmvZLqpfyzCRoBS3Kk3fL2hp8lbG9cWqRsTorSxwvZ26ZjG9p0bIPH42Hp0qVce+21pKWlVcgPGNO/UfGNLVq0oEWLFng8HtatW8f7779P586dGThwICrVi6DTIVSjFrAQPH/cmX379tGyZcsKx5s1a0ZBQUGV21GXgFVUVFROAYPBQKtWrdi8efPZNuWcw2QyccUVV1CvXr1Trt+1a1dGjx7NihUrEKNnP6uA2+1mx44dJ11PJQqNABpNNb6EE9t0jtCoUSN+/fXXCscXLlxIo0aNqtzOaXeZjxw5wgsvvMDq1avR6XRceOGFPProo8THR37l+nw+Bg8ezIMPPkifPn2U4wsWLGDixIlkZmYyadIkMjMzFVmZYcOGMXbs2Jh7ff/999x5551KDikVFZVzj61btvLa669RKyODyy6/nE6dOp1tkxRSUlIoKSmh7EgpJpsJQ0gKzpFXhsFqlKXVSt34PX5lp63H7sbv9GHNiJdjAAscsrSaSY8YFGWptdDsnavYhSSKxKVYCXj9uIpdxKVY0eq1BH0BXCUuLEkWtHodjqN2WeEjVNdZ4EDQarAkWfC7fbhL3VjTQlJw3pAUXLIVQSvgLHCgN+srl4JzePA5vFgz4pGCIqX7S4hLs2KwGhGDIvZDpZgSzbLsXbGTYEBUpOCcBQ6sadZQ2poAjnw7calWdCY99iNl8kxkijyb58y3gyAQl2bF7/LhKnIqO5v9Hj+uAgfWjHg0Og1lB0sxWA2YEy24i114y9wk1EtGEAQ8pW48xS4S6iWRmJiIXq+nuLgYjUaDw+Ggdu3aaDSRuY9gMMj69esRBIFmzZqxe/duPvjgA0B2JDMyMvB6vRgMBurVq0ffvn1VLeMqIGirNy7vfEoD8+CDD/Kf//yH9evXEwwGmTt3Lvv27WP58uW89tprVW7ntPaYKIrcc889JCUlMWvWLLxeL+PGjeORRx7hrbfeAsDj8fDggw+ybdu2mLper5epU6cyefJktmzZwuuvv8748eOV83PnzmXgwIG0adPmdJqsoqJSw0lNSwXgSF4eM2bM4PDhw1x55ZWKVNnZxGw2U1JSIsuhRUnBmaLKhjgDOlPko9ZgNqLVy8mcNVoN5oQoaTVNRFot4A1itBqVeEGtXhcj2abRazHFmxVVEVO8GUEb6RNjvEnpI61RhzkxSgpOr1OuFwQBU7xJacdgMaAzREnBmQ1oFCk4jZx30KyP2JsSpySuNlhNSrygVq/FkmRRJPE0oSXssEKJOcmMEOWIGRPMYeU6RdNY0ArgB51BLmt0snSdJSXSrtFmjJGuM8QZ5T4KlRMSEpgzZw779u3DYrGQmJjIddddx4YNG9Bqtaxfvx6/349er2fatGkA3HvvvTRt2pQVK1ZgsVhk6T+3m99//50ZM2Zw++23n+xQOf/QaRB01RmXd/4saPbs2ZNPP/2Ud999l5ycHH7++Weys7P5+OOPadGiRZXbOa0O4F9//cXGjRtZuXIlaWlpADz++OMMHTqUsrIy9u/fzyOPPFJpvia/34/JZFICdn/++eeY85mZmTz55JN8/vnn6M6j3T4qKuc7KSkpvPrqqzzwwAMALFq0CIPBQP/+/c+uYcgOoMvlqiAFp68gBaeNKmsUJ04QBPTm40ir6SP1BM3xry0vBaeLkoLTaDRoyknBxdaNsvcEUnDR8nOCIGCwRHSOK9gbdU4QYsvR9yxvv0arQRNdt1xbenPk35X1r0EXsfH6669n5cqV3HLLLcTFxXHvvffy7LPyjuPevXvTvn17evTogSAITJs2jZYtW9K8eXNAjvOMplWrVjz66KMsXLgQu91O3759SUlJQaUSdDrQV+d39fnlF2RnZ8dMkp0Kp7XHsrKyeOeddxTnLxqv18uqVavo27cvd911V4WZPKvVSrdu3ejUqRNWq5Xp06fHnB8zZgwPPvgg7733nvrrS0XlPMNgMPDAAw/w3XffIUkSDRo0ONsmAZCRkcG3335L0B9Eo9UoM2zR5fLSaqIoIgXlsiKlpo9ItIn+oOLQiEERJNmpkSQJMRBUZuOUa0N1g4GgMqsIIAZEEGRnShLllDPhGbTy95XtFRAqkYITgyJiQERnDEnXeQLyjFtYCs4bkNvRahADQbluWLrOdwL5OUFQnOFwepjy0nVAqG4AbWhmMuANyE6iTrZX9AcV3WQxKCL6gujMeiRJonZGFkOvH6q8N/fdcx/bd26nUaNGNG/aXJauC01K3H7b7UihtDXl7xn0B9FrdfTt2xe3241ep+fFF1/kkUceUZ3AygjH5lXn/c4TXnrppeOef/jhh6vUzml1AJOSkujVq1fMsZkzZ1K/fn3S0tIYPnz4ceuPHDmSW2+9FYvFgsFgiDlXr1497rrrLqZMmcJll12makWqqJxn5Obm1riUHllZWfj9fl6Z9Ao33HADmXUykSQJZ4EDg9WIyWYKScH5iM9MBMDn8OJzeLFlJii58cyJFvRmPZIo4Sx0yjt4BTm3nxSUiEu1yrn8StzyMqpeS9AfxF3swpwkLyG7i1xojVrMCfLuWneJC0ErYEmKw+/14y3zyHF9lUjBOQscGOIMmOJl6Tqfw0d87QQ5pq7EjafIRVJ2KmJApGxvEdbMeIwJZqSgROmeIizpVszJcTjzHQS9ARIbphDwBHDm27HWikdnDEnXhaTgdCY9zlDMYninsLPAiSAIWDNscsxikQtbphw3GXD7cebbsWUloNFrKdtbhDHRTFy6DXeBE0+hk+RmGbK9RS5cR+wkN88ASaJsfwlx6VbZXlEiMy6dhhfWx5RgwXnUTsDtJ6GerLDiKXXjK/OQUD8Z0R/EcbiMuHQbeosBZ74djU7LgAEDAHDk29GjY+bMmYwcOTImrlAFBG31LgEL4vnT/xs2bIgpB4NBDhw4QFlZGZdffnmV2zmjc6bTpk1jyZIlSp6aqpCYmHjMcyNGjGDBggWMGzeuwgyhiorK+YfL5eKrr75i9+7dNGzYkMGDB1f48Xgm0ev1jB07lqVLlzL59cn83//9H02bNo2RR5Ol4CIpT0zxZkzxISk4nTZWWk0bkVZzu91YkiLpTnRGPbaMqGVbgy5Gws2abouxLToFS3TqGagoBXc8ey0pccpGDa1BS0rTSMobjU4TU7ZlRUnXmfUVpetCUnBAjFwegK1WlHRdnDGUPgfwh2TwGkRm2aLl8+IybLJ2ctjeNCuWqHQzyTmRFSlBI8S0E5cW22eW5DglxYzWoIu5Nr52rL3WdBuXD7qC9RM2sG7dOtq3b49KFDqt/KouzqM8gLNnz670+PPPP39SIXJnzAGcMmUKr7/+Ok888QS9e/c+LW3q9Xqefvpphg0bxrx587BarSeuhLzxxO12n/jCasbr9Z5tE2oEaj/IqP0gczL94PF4WL9+PSArSKxfv57rr7+enJycM2VepfTs2ZO6devyv//9j3vuuadC3rpTQR0PMjW5H5xOJ4FAgDp16pzx75ia0g8ej6dK1wlabfXuAg6ePw7gsbjpppsYPHgwjzzySJWuPyPvzvPPP8/s2bMZO3Ysw4YNO61td+jQgWuuuYbx48dXeZ3bZDKdlg/kM0FNtau6UftBRu0Hmar2g9lsZuTIkSxatIhVq1YBMHXqVIZeN5QevXqcSRMr0KxZM3Jycvjyyy+5qGcf0ArUrV8X0Rck6A8qs34BbwC/x48p3gSShKfMg8FqRBuKffPY3UpiY60kx+8ZrSbEgIjX5cVoNaIJxep5nV6McUY0Wg1ehweNVqNskPA6PAgaAYPFSNAfwOf0yTt/NXI8m9fhxZxgAkHAU+ZGb9KjM+rxu30EvEFMCSYl3s7v8mFKNIMk4S5yYYw3yXF+ooQz344pwYzOrMdT6kb0B7GkWgn6g3hKXJiT4pRYPU+pW9lx7Cl1yxs2QjN9njI3giBgtJkI+gJ47V4lWbRBq8dd5MISWsK2byvAkGzGlGbFW+DEk+cgvnk6giDgK3LhOlBCQkt5Od6+uwhLLRv60I5qV6ETo9WIzqTH5/QS9AeVGU+fy0fQG8CUKC8Xe4pdGBPMaPWyvYJGtg/AXmRn7py5NG/enPT0dKqDmvD5YDKZTnwRhPIAVuNO/fMoD+CxCGtnV5XT7gC+9tprfPjhh0yYMIFBgwad7uYBeOihh1i2bBlvvPHGGWlfRUXln0N6ejo33XQTLVu25N133wVgzkdzQAM9elSvEzho0CBmz57NzA/elzeAiCLX//s66tepr1wjiqIiyyZJIEbLpQFiUFJSv8TIsEmSvEEhWlotqiwFJaQoaTUpGC0Lh6LJq7QVkCXnBEG+VgxG7hl9rRgUlbIkoWwSCbUU2vgROh+QN4yELxYDYkT2LmRvtBRctLSdFJSQhMizhnV/o+2VKwsEPQFEv3yfoDdA0ONX2gn6gwTdgbDmHkFvQNnYgRSyMfw8ohSxt3w5ZL8icxeMfZ9Wrf4FMSiqKiPHorqXgM+jGcDBgwdXSIPlcDjYu3fvSW2SPa0O4ObNm5k6dSojRoyge/fuHD16VDmXlJR02tK3xMfHM2bMGEaOHHla2lNRUfnn0759e4YOHcqcOXPQaDTMmTOHevXqnbKaxKlgMplidDjXrVvHzA/ep0uXLgwYMAC9Xl9BCi6unLRauFypFFxSOSm4qLLpJKTgdAYduqg4ufLSdUr8HXJewHCql4rSdRri60Ti+swpkXa0Bh226PhGnTYm5q68FFx0WWfUY02PTVNjq5OolJPaZEZsr52ApXZUDGOGDXMoJlAAklvUirJXwBoVa2i0mTBGhQEarUaMoTQ3gk6rXLtz504mTZoEwJ133kmLFi3Y8NdGunXrpiaFPgbyEnA1bgIJnD8OYO/evSs4gHq9ntatW3PBBRdUuZ3T6gAuXrwYURSZNm2aklAzzLx5807rDr7LL7+cr776iuXLl5+2NlVUVP7Z9OjRA4vFoswETpgwgXbt2nHppZdSp06dat+p2bZtW7Kzs5kzZw5Tp07lvvvuq9b7q5wewsogtWrV4quvvmLp0qWYTKYapUpT49BpqncGUHf+7AI+XZ8jp9UBHDlyZJVn5aoq31anTp1jXvv2229X2TYVFZXzg/bt2/Paa6/x/fff8+WXX7Llry3s3LETu8NOp06duOWWW6rVHpvNxogRI3jqqafYtm0b9bPq4XP6sKbbkIIizgInpkSzIgXnPOrAlCDP/MVKwQVwF7uwpMRFpOCKXFiSLWgNlUnB2UNScHH4XD48JW6sGbIUnN/tx13sIi5dTgPjyCvDEGfEaDPhKXPjd/uxptsqkYKTcOTbMSeZ0ZsNiEGR0j2FmFOtmBLMOA6XEfQGSGiQTMDjx3nUgTXDpkjBOY86sKTGoTPqceSVKeogAI78MgRBIC7Nhs/lw13oVNLA+F2+mDQwhesPY0qxYK2TiH1HIc69xWT0yUbQCDj2FOHYXkB6n2wASnYWEFcrXkkDYz9cijHeFJKucxHwBZTd1O4SF36nD1tWAmJAxHGkDEuqlUaNGlGnTh0kSWLt2rUAWCwWPnz/Ay6/6gpSU1OrdUz9IxCqOQbwBMpAlUnQ+v1+xo8fz4IFCwB5aXXUqFFKXsizfT6a+++/v8pdUVU5uPMrdbaKisp5gV6v55JLLqF9+/Z88tEnHDh0AL1ez5EjRygsLMRisVRrQL1Wq+X666/n3Xff5a477iItNU2RVjMlmGKk4EwJ8gaLgC8kBRclrWZKMEWk4HShsj4sBWeKlVazRaTVdEYdpkSzkgxZZ9RiSjTLyaoFAVNoowPIS77a8lJwoevQginRrMi5CRoBS7pNUSgxJZmV2EOtQYc5yaIktdbo5HtqQ+oQpoSIPbL9ZuVLXGfUYU62IGg1shScSYclNU5Jem2rl4TWHJKUy7KhsxqUtswhh1MIJcSOqxWPPi6UAkeQl5rD9husRnTByBKuIc6oyOBpdBrZBh0MGTKEUaNG0blzZx599FHcbjd79+yluLiY8ePHc+utt9KyZcuTHxjnMtUdA3icex1LgvaVV17hl19+Ydq0aTidTh5++GESEhK44447asT5aCwWS4VjfxfVAVRRUTlnSU1N5e577+bw4cMsWLCAnJwcnnzySXJycqo9hrhFixbodDrem/kegUCAG2+8kebNm8fImsnScMeRVjMbjlk+kbSaIUZaLbZ8XGk1rQZNOGaxnPRbeNeucs8oeTlBU042TiPExBbqysnnRZc1Wk3MtYJGgyEqHtKYFBXfaDGgi5ajM+sxR0nmGaNiIcvL0Wn12pg+ji4Lgmzv3XffDchx7Pv372fy5Mmkp6ej0+kwGAxceumlLFmyhPj4+GqNN63xaKt5CVhb+RLwpk2bKpWg9Xq9zJ07l1dffVVRJhs1ahSTJk3itttuw+/3n9Xz5cNV/q7sW2WoDqCKiso5T2ZmJiNGjODdd9+lWbNm/PXXX4wbNw6APn36VNB8PVM899xzaDQatm3bxnvvvcfQoUNp0axFjESbGBAj8mih3aoarSbmXOTaiDScGAjC8aTgAiIafVTdaBm5KCk4SRQRRQlt6Ms7vCs4LF0XlqqLkYIzyNJw8o5gOWF0ZVJwx5euCwJCRPYudC1Qqb2CRq4bLVUX7rNoKbhoe6GiTB+SFCO9F5bBkySJgNdPYmIit912G0ajEZ/PR926ddFqtQQCASZPnszy5cspKSlh6XdL6XVhLxo1alQhQP98RNBpEKoxLu9Y9zqWBO1ff/2F2+2mY8eOyrGOHTty9OhR9u3bR0lJyVk9fzy5S0mSWLp0Kdu3bycYDCrHfT4fmzZtqrJQxvkTNamionLec/311yv/zs/PJz8/n48//piCgoJquX/4V31ubi4jRozgo7kfUXy4iIAnAMjOlrPAgd8tpzVxl7hwFToBOX+gs8ChpCkJ+oI4jzoI+uQvAEeeA09JJBmx86gDV5ELkGPoHPl2ZTk54PbjyHcoaVoceXY8ZXKiYY/dgzPfrqRg8To8OI/aFQfUfqgUv8sn2xuSgvOUyPdxHLFTtq9IuUfZgRKC3oBiryPPTiBUdhwpU54NwJHvwFngiNibZ1fStwQ8Adlef8jeI2V4y+SExO4CJyU7ChR73QVOirfmK86cI88esTdU9jpCz1rixpHnUGzwlnlwHCkLOY4iW/7cgtFopEGDBmRlZdGgQQO0Wi2iKLJkyRJuu+02WrRogSAI7N69m/fff5+vvvrq5AbFuYqgqf5XJQwfPpyRI0dWyF+Yl5eHxWKJEZRIS5NVY44cOXLWzx+P8ePH88ADD7Bo0SKmTJnC0qVLmT17Nu+88w5ZWVnHrRuNOgOooqJy3hAXF6fsoHO73eTl5fHll1+yfft2li9fTtOmTZUv9DNN48aNycnNYe5XH9G5c2fat2+PXq/HViseQRBkKbio9Cx6kx5d6BzIS7y2zASlbMuKj2nfWiuS38RgNaKPM0Ti+iwG4s16pRzW/QUwJ1jkhNGhsinejNEmJ4XW6rUk1E9Wzml0GpKbpEdsiErHorcYSGqUEmNvfJ3EqHsmxtgb3vABciye3hKy1y/LykXbGN1OXIYNS7r1mOXoawWNEPusyRVT0ZgS5WfXGrT4dH7S09NjxkN49mX58uWsXr2a7t27k52dzZAhQ7DZbLzwwgt06dKFzMxMzmu0murdmXuMJeBj4Xa7K8hGhss+n++snz8eCxYs4Pnnn2fgwIH069ePV155hdq1a/PAAw9UPVE3qgOooqJynmI2m2nQoAEPPPAA8+fPZ9myZaxdu5asrCyGDRtGUlLSiRtBzmiwY8cOUlJSaNu27Ul9AN9www389NNP/Pzzz/z+++9ce+21JCYmKjlTox2Pffv2sX37dkwmE2lpaTRq1Cgmt2p5p/Vkyqfr2jN1z+qyt/yxwsJCHI7IDKHf7+ejjz5iz549jBo1irfffpvs7GxcLhczZsygtLQUj8fDp59+iiAI5Ofno9FoqFevHv369aNu3bqArGEdDAax2+2kpKRgNBor2PGPRydUrwOoO7kfbSaTqYKjFS6bzeazfv54lJaWKimImjZtyvr162nYsCH33HMP9913H48//vjxHz6E6gCqqKic91x22WU4nU5+//13/vrrL9auXUvfvn2PeX3YEdi/fz8HDhxQjuv1ejp06FDl++r1enr37k3Pnj2ZMmUKY8eOpWP7jvJStQZ8bh8Bf4BlPy7jp59+ok2bNvj9flasWIHL5eKqy6+kSfOmWOIseOxudAY9xpCMXKwUXBCf0xuRggsE8Tm8eEQPv/3+Ozt37qSgoACj0UiHdu3p1rmbMgsoS9fJMnJIsmSbIc6oxMl5StwY4uSdwz6nFzEoYoo3IwZEPGVuTAlmJVbPU+bBZJN3MnvKPLIUXGhThtfuAQGMVpNsr8OrJLMWA0E8dm9op7OAp8yD3qhDZ9IT8PoJeAIY46Ok69w+ua4EntKQvaG4RE+pG73ZgM6ow+/2EfQFlfsEPH5Zpi+UMqZru66sXLmSBQsWcPHFF/Ppp5/idDoZPXo0+OHw4cNMnDiRQYMGMWzYMFJSUtiyZQuzZ88G4MYbb6RBgwb8+suvjB8/nquuuorFixeDBF6fvAxtMBhITEikU+dOXHHFFZWOE1EU8Xq9NUIKrspoq3kXcCWpU45HrVq1cLlcOJ1O4uLkmfaweEVGRgZ6vf6snj+R7Xl5eWRlZdGwYUO2bNnCwIEDsdlsFBUVVbkPVAdQRUXlvEer1XLttdfSu3dvCgoKaN68+XGvLykp4ZdffgHkZeXmzZvTtGlT2rdvf8r3v+OOO9i0cRPLli7jsccfIyUlheLiYvx+Pzk5OTz22GPEx0eWSdf9sY5FCxcx938f4fF4kCSJhIQE6tWrRzAYpEHdBtSpXYdlPy7DXmanVfNWdOzaEavVysYNG1m/7k/27N9L+/bt6dKlC+np6TgcDj7/7DPspXYGDh4EyM5HOO5QkWgLS7hJsnMmBkW0hDZRBMrJrEVJwUVLw0lBkYgIm1xXQIipGy2JJ7cVujYgEtSJ6EL15A0kVLBXlqoLS+9plbpiSLpOjJauA4IxUnagQcPdd97F/G8WMGbMGILBIM8//zwmkwmP181zTz7H3M/n8uWXXwKyM6fRaEhMTKSkpASdTkdmZiapySkAfP311wDkNM7h0osvoXHTHES/yBtvvsGCBQtwOp0kJiZiMpkIBoPMmzcPq9VKSUkJiYmJWCwWunXrRs+ePWv+RhNBOGFuvtN+v5OgadOmmM1m1qxZQ69evQD4/fffSU1NpV69eqSnp5/V88fjyiuv5KGHHmL8+PH07NmTe+65h5ycHJYvX06jRo2q3AeqA6iioqISIiMjo8Kv70AgwLJly2jYsCGCIOByuWjZsiVTpkxhz5491K5du0Isz6lgNBpp36E97Tu0x+fzUVZWhsViQa/XVyo31rZdW9q2awuEtHIliby8PPLy8tBqtaxYsYJ1G9bRr18/0tPTWbNmDTNmzMDlctG4cWPq1K/LoMH/ok6dOjHt3nvffYwfP57sJo3x+/1kZ2eTkCLH9glagbiUSNC6oBFi5N1M8ZEZKq1BizU9ck6j02KNkp+rIAWXGC0FFytVpzXoYurGRUnOGSxGDJYo6booqT0EgbioeoIgEJcaKUensIHyUnAC1jQrVqyMGDGCvLw8/H6/MltjSjBjSjBzyy238OOPP5KVlUWzZs0oLS0lNTWVPXv2KF/kF/TqxpcLvsLpdNKzZ09++ukn3pw6hcGDB9O3b19uvPlGfv/9d44ePYpGo1EcSoCHHnqI1NRUAoEAu3bt4pNPPmHdunUAtGzZkj59+tRMZ1BXzTGAJ3kvk8nEkCFDePbZZ5kwYQI+n49JkyZx880314jz5fnll18Umbd7770Xk8mE3W6nb9++3HzzzUycOJGEhARefPHFKveBIClK3eceBw4coG/fvixdurTCh1xNwO12/7Om9M8Qaj/IqP0gU9P6weVy8dBDD6HX6/H75d25999/P02aNDmj9z2b/bB582befPNN4uPjCQaD9OvXj379+p0VR6OmjYe/w549e9ixYwcGgwGbzUZOTk7MLtAwf/75J3Xr1sVsNivPHu6H0tJStm/fjsFg4JtvvqFWrVpcfvnlJCUlVYsu8Ym+V8PnP7jmeWrZqk8h5Yi9gBs+efy43/dNmjRh6tSpihKI1+vlueeeY8GCBRiNRoYMGcLIkSOV3fpn+3w0zZo1Iz09nauuuopBgwaRnZ39t/usSg7gkSNHeOGFF1i9ejU6nY4LL7yQRx99lPj4+JOSMgH45ptvKiRgzcnJYf78+QDMnDmT9957j2bNmjFx4kRsNhurV6/mpptu4uGHH2b48OExdT/44APee+89li1bVuFeqgP4z0DtBxm1H2RqYj+Elwx37NhBcXExnTp1ivmQliSJI0eOkJqaetq+hM92P+zbtw+r1YrdbufFF1/kmWeeITkpGWeBA1OCLF0niSKOfDtGmwlDnBF3iQsxECQu1RaSrnNiSbHK0nX+IK5CB+akOHRGHY58O1q9VpkJdBY4EAQBS0qcIlVnTbfh9XvRCzpcRS7i0qxodBqcR+3ozHpMNjNeuwefyxeRrnN68dk9WNPjkSQJ51G7bK/ZIEvBHQlJwVlNuIqcBL0BbJnyDKen1I3f5cNaKx4xIOLMt2NJiUNn0uPIt6PRarCEZh9dBQ4kSSIuzSbbW+QkLsOGVqcl4A3gKnAQl2ZFa9BhP1KGzqxXZPoc+XZZBi/JgtfpxVvqUXZtO47YMSaYMMYZkSSJsgMlGBNMSHqQXCJ+l4+EuvIGpZL8Ir7+eh7b9mynrLQMk8lISkoqrVq3om/fvmdkc0mVHcBrX6h+B/DjMTX2+/7vcuTIEebPn88333zD5s2bad68OYMGDeKKK64gJSXllNo84RKwKIrcc889JCUlMWvWLLxeL+PGjeORRx7hrbfeOikpE4CdO3fSo0cPJkyYEDEitJPtwIEDLFy4kLfeeovvvvuO999/n3vvvVe57o033lBE3VVUVFSqi+j8fZWxYMECvvnmG+Li4hg5cuRJ5eKqqdSrV4+dO3fyxRdf0Lt3b1JTU5EkCaPNFFHPEASM8WYlCbPBYoiRrjPGm5REzxqtBmN8pK4x3oQmSgouejlWa9DKUnFaOQ2MXDYpSbCNtogEnt6sV46DnC5HIwgghJRK4iPSdQjy0m1YNcVoNSJGKZDoLQa0oWTTGp1GlsgzRKT2ouPMDDaTEt+oNUSk9cLPbkowKwmm5X9HyfRFPbvepEdAiKTdSTCjM0W+ms1JFrRGHb6AD6PNGHPOlpTAdddfhyHOSDAYpCi/kKLSYl57/TUEQeCyyy478Rt9hhC01ZwI+iTTwPzTqFWrFiNGjGDEiBHs3r2bBQsW8PHHH/PSSy/RvXt3Bg4cyMUXX3xS4Sgn7LG//vqLjRs3Mn78eJo0aULr1q15/PHHWbZsGUePHmXu3Lk88sgjtGnThm7dujFq1Chmz56t/GIuz/bt28nNzSUtLU15hdMtuFwukpOTyc3NpXHjxjidzpi6ycnJPP3001V+OBUVFZXqoEuXLnTu3Bmn08lzzz1Hfn4+P/74I2VlZWfbtL/F9OnTadOmDYMHDwYiUnBhR6d8WWvQKZJu4R3IYQWO8mW9SR9xzAjF/YUcSVkKLpK3UNDI0nDR+sTaKI3hGCk7rUbJIVipvXFGxRnTGnQVpOHCZUGQpezC+so6kz5GXk9njDxrWLouOt+gXDdsrz5Gci762aOfVbavnL1Wo1JXa9DFSORp9VqlrNVqSctMp0nTJrRs2fKY38HVhlZT/a/zhIYNG3LvvfeyYMEC/ve//5GTk8Nrr71Gt27deOKJJ6rczgl7LCsri3feeUfJUB3NwYMHjytlUhk7duw45i6V3NxcbDYbbdq0YdKkSdxwww0x55966ilWrFjBN998cyKzVVRUVKqNtLQ0brnlFkaNGgXAuHHj+PTTT5k8eTKBQOAsW3fqpKenU1xczIoVK1i+fLmcv84fJDpyKBiIlMWgqMjXSZIUc60srRaIXOsPKtcqZX8wUtcXiKkb3ZYsORe9QziyC1gSJYKBYKX1QJaCC9ctv4M4uq0K94x6tqo8a0V7o+oGouqK8rWV2Xdie0WlbnSfXXLJJSxdupTPP/uc/fv3c1ZC/cN5AKvtVQM3wlQDzZo148477+S+++6jXr16fPbZZ1Wue0IHMCkpSdmiHGbmzJnUr1//pKVM/H4/e/fuZdWqVfTv358+ffowduxY7Ha7cs1LL73EypUrWbJkCbVr146p37FjR4YMGcILL7zwj/9lraKicu6RnZ1Nv379AGjYoCFer5dt27adZatOnVtvvRWv18snn3zCJ598wpNPPslXn32J2y5LzolBOU7O5wxLq7lwHpU/z4PeAM6jdsWpC3oClO0tIhCSZSvdV4zzSORzvHRPEWV7iwHwO33YD5UqKVkC4bZCqWHsR+x4SmUbPGUe7EeipOucXlnKTpRkab2j5aTgjpTJOQcBd5GTskMRGzylLuyHw1JwQRxHygh45I0/jjx7jHSdq8ChPKvf7cdxpCzGXseRMkWmz364DHeUTJ8jrwx3kdyW1+GRnzXkUNoPlSr2KbJ3YXuLXZQdKFHacRe7KN1XrNhbur8En9NH48aNGXnnA3gcbqZMmcLq1aur+pafPgQBNNX4qok7oc8gDoeDr7/+mrvuuotu3brxxhtvcNFFF/Htt99WuY2TTgMzbdo0lixZwtSpUykpKTkpKZM9e/YQCATQ6XRMnjyZ/Px8JkyYwAMPPBAjXpycnHzM+48ePZrvv/+eiRMn8swzz5ys+SoqKipnlH/9619ccsklLF68mPyj+aSmVl8g/OkmISGBG2+8kf79+5OSkkJJSQlz585l+vvTueeee9BoNTFydOYo6TqdSR9zTmfWk5STppQTG8UGric2jvRTjHRdICSDF9VWfJTknCnBhCnBFImhs5kwWuXlWAEhxgZBI8RIw1lSY3fgmhItmBItISm4WOm6aKk6gLioFDcGiwF9lLSe3qSPlb2rkxhT15YVZX+U1B5AQr2kiL1CxF632y1vQIlKgWNOjsOcHKfYGy29VyenLtfnDKXLrl1MmzaN/Px8+vfvf1pSFlWJ6l6WPQ+WgJ1OJ0uXLmXRokWsXLkSi8XC5ZdfzqxZs2jbtu1Jt3dSDuCUKVN4/fXXeeKJJ+jduzeLFi06KSmTnJwcVq1apcT8NWvWjOTkZIYMGcKePXto0KDBCW1ISEjgscce46GHHmLgwIFVstvj8eB2u098YTXj9XrPtgk1ArUfZNR+kDkX+kGj0XDZZZcpQfin8vlTk/rBarUqShS33norM2fOZOXKlYoc1ZmkJvXD2eRU+yErK4tRo0axZMkSJk+ezODBgyusrp0MHo+naheqDuBp5a677uLnn39GkiR69+7N5MmTufDCC2PkIE+WKtd8/vnnmT17NmPHjmXYsGHAiaVUKqO8vmbjxo0ByMvLq5IDCDBgwAC++OILxo4dy5AhQ054vclkqnFpJcLUVLuqG7UfZNR+kFH7Qaam9sPVV1/Nyy+/LMd/eyQMViM6gw6/y0cwIGKKNyEGRLx2j7ITWAyIuEtcmBPl3bGuPDtaow5jYijPXYEDQaPBlGwh6AvgKfNgCc0oGvUGvHYvxtBMn7fMo2zCiJZ+U6TgXF5MiZbKpeBKXOgtRlkKzuUj6I9Iwfk9fgJRUnCeUre8c1mnlaXrtIKy6cLn9IIkz1ZGS9cJGqHCs3tK3WiNOvShTSOeUjcavRaDxUDA48dr92AJJdh25tkxJZrRmfUh6ToPerMejKDX6Aj4gphCO6ZlmT6/vENZknCXuJVd2l67R9lEYjab+fegIaxZu0b5Hj9WqrYTUWWta201J4I+xx1Au93OE088Qf/+/bHZbCeuUAWq1GOvvfYaH374IRMmTFCcP4iVUglzPCmTJUuW0KVLl5hfw5s2bUKj0VTZ+Qszbtw4Dh48yAcffHBS9VRUVFRU/h6CIKDX6zHoDfLmjVDsW9AfLLeJQozdGOENIAblcsATUOLrlLJbLotB+drojR5Bv0hYOy7oDxIMhOXcIptHwuWgLxiSjQttxhAj8m5BX8TGoD8YswFD9AeVuD0kCdEXRApGNq2U36yhbMAQy20CCZdD9gf9sTYG/UHE0H3EgEjQGwBkNZegx1/BpvCGEVmqLvZZlY0zIrK94rHtbdO8DRkZGcybN48zjRBKw1N9rzP+SGeVDz74gH//+9+nzfmDKswAbt68malTpzJixAi6d++uzPCBPJt3IimTkpIStFotNpuNjh07otPpeOyxx7jvvvs4evQoTz31FIMHDz6h+HF56tatyz333MPEiRP/1nS2ioqKikrVEUWR999/X15+0uuwZkRi48IzaSCnKLGmW2PK8bUTlXJ8/djVIFtUnJzerEcfvtYfkoKLaitazs0QZ4xJjRJbFmLk6ASNcEx7Qc5FGM5HKOi0WGtFrrVExd5BRem66PuUl8GLKxdrGGO/1YghLD8HJDSMxEYKUVJ2brcbY5wRjvGsgk6IsTc6HjPa3ptuuonx48dTu3btM7uErxWqd2eu9hz3AM8AJ3QAFy9ejCiKTJs2jWnTpsWcmzdvHqNHj8br9XLbbbcpUiYjRoxQrrnvvvuoXbs2EyZMICkpienTpzNhwgT+/e9/YzQaGTBgAKNHjz4l42+99Vbmz58fs4tYRUVFReXMUVZWRkFBAf379z/bpqicAlarlTvuuIM33ngDs9lMy5Ytz8yN1BjAGs8JHcCRI0dWkG4rz7PPPsuzzz5b6bnZs2fHlJs2bcrMmTOrbiFyktWtW7dWOK7T6fjqq69Oqi0VFRUVlVOnuLgYm02WXRODIqV7CjGnWjElmHEedSD6g9iyEvB7/DiO2LFlxqMz6gi4/ZTtKcJWLwl9nIGS7UfRmvTY6iYCULqrUN6l2yAZn0NO5RKWPAt4/LiKnMSl2dDoNNgPl2GIM2BKMOMuduEt9ZBQX9496y5y4S5wkpSdgiRJlO4qxFIrHmO8CUmUKDtQjDHRjCnejLvISaCcFJzP6cOWGY/oF3HklWFJtaI363HklclScKHZO1ehU5aCS7WGpOucWNNtaMJScIUO4lJDUnCHS9GZ9Irsnf1IKVq9FkuKFU+xC1eeQ9kFXbz9KJYMK+bkuFAaGDsGqwF04LF7CHj8WNPk2UWvw4Pf5ScuzYoUlHAWOjAnykonzkIHAoIycxlOo2PLTCAzPZObhtzArFmzuPHGG2nVqtXpHyiqA1jjOfXtIyoqKioq5w2iKPLdd9+xZMkSLr/8ckBeUjWnWBX1DKPNGCMFZ062RFQsjFrM6Va0ISkzc7pVkUoDMKfFKbncdCYd5pQ4WUosABq9FlO8LLUmCAKmBJOipBFWzginPzFYDXIzGjkNjDlNduBkg8GUZFEUPPRWI9pyUnBhWTmNToMpMSIFZ4yPpGoJ3zeM1iDbF5Yj0+o1GOMjUnDGeDNafcRBib5WH2fEko4sewdYMmzKknD4vlqjFp/fJyuIRPWZzqSPPLtWXsJW7hlnjMmNZ7SZYt6b3OZNuCvtLt6a+hbNmjUjJyeHTp06nT794HAewOriXA8CPAOoDqCKioqKyglZu3Ytq1ev5uGHH1YS/guCgCkxEkeni3KmNFqNvDs1hKDRYI6KozOWi78zRGkBa3TamPg8jVYT4xTFyKEZdDGScuXLpqRIrF5YR1ix16CDqLR4Wr1WcVgFTey10XJzlT1rtH2CRoMxxt7YujHycwYt2uSIjebkWHuVuv5Y+wC0Oq3iEIZl7yqzrzJ7jTYTDW0NefTRRxXJ12+++YabbrqJpk2bUh6Hw8H27durLMIgaAXFqa0OqvNe5wqqA6iioqJyGgkERCZO/JkZM9axZ08JCQlGLr64Ec8+24fs7GMnuT8Z/P4g77yzlrvvloP4x41bzvz52/j999tPS/thNm/eTHFxMRdccAE//fQTF154IckJSUiSpMyGBX1BedZMIy8JI8HDj37H778fYumSG5UZtbBahUavlZeP/UHQCIrurRgQQZCdE0mS2LGtkAkv/cSiRTsoKfGS3SiJO+7swN13d0IKigga+Z6SKCIGJGWmLiznpjXoaNDgVR58oAv33d81Yq8/KM+ahepKoqTMmkWXJUlCDIiK/eGduIq9UeXy11aoGxARNIKiDRxTN8pekBVUNHpt5NpAUNEjlkR5p3DYhrDaiUYXsiEoKjOCVbU3OTmZbt260bVzV7bv3M6MGTP416B/UWYvIykpibS0NNatW8eKFSvIzs5m//79VRs8WqGal4BVB/BkURfNVVRUVE4jY8Ys5Z131vLKK5ewdeu9zJt3PcXFHnr2nEFJSRWT6J6AOXM2MHbs90r5oYe6sXjxDcepcfJs2bKFN998kw8//JBnnnkGnU5Hl46dKdlRgLdUfo5wDKCnxAXI8mj2QyWA7JzYD5UqaVWCngCle4vxu+RUL8XbC7DvL1buV3awBPvBUgBW/7SPzl3execNMnfuv1jz63Buv7kVY8Ys48EHF1N2oAR3sSyl5sx3ULz9qJKCxV3goHjrUcXhcRe68IZk2CRRpHRfsSLL5jzqoHR/iWKDqygirRb0BSnbX6zIyDmOlOE86ohcW+DAmX8MKThPrBRc2cESXEURGTn7oVJcBXLZXeSkeHuBrA8cECnamo+7UL6PJEmUHSyNyN6VunDkRWbgvHY3jvwyxaFz5tuV1DrOow7lHuGy/bBcN+D2Yz9YEnlvvAHsB0to3CCbq666ilmzZ3Fo/yH++OMP5syZQ0lBCQ/eM5K7776b4TcPP8aIKYdWg6CrvpcaA3jyqDOAKioqKqeR6dP/4NVXL+WKK3IBaNAgkU8//TcZGRP58sst3HJL2799j5Cvo2C1GrBaT5/EVyAQYNGiRdx0000kJiZiNBpp0KCBvMzYLEOZTdNoNSTlpCn14sqlXImWNdOZ9SQ1TlXKyc3SY+6ZUC8p9GwSI+5cwKB/NWXGjEG43W7MZjNNmqeTnJXAjTd+wV13dSQnlOYkLsNGXLotIkeXZsWcalVm0CzpViXZtKDRkBQlQRdtL8ipXiwpsrSazqgjsWFEWi1avq183QpScOZYKbjws4WJloYzp4Tk3EL2prbMlPPBIC/rhut6PJ6QVF2kHWO8GWO8nABbq9fGyN5ZM2KfLbqstxhIqJ8ceW9MeqXcrVs3mjdvTmJixH4pasAZ46oYIyigPEe1oE4AnjSqy6yioqJyGtFoBJYt20MgNBsEEBdnYN26O/nXv+TYqkBAZOzY72nU6DX0+mfJyJjIAw8sIhiatRo3bjnXXfcFo0YtJjn5RZKSXuTBBxcjihLLl+/h1lu/orDQjSA8zfLlexg3bjkdO0bSdM2du4F27d7GZHqO+PjxDBz4EXl5kdmrZct207btVMzm5+nZcwZPPfU9vXvPZPPmzbz55pvccMNo3nrLxSWXfE+fPguYOnWH8jxCuWB7QRBYvHgnrVq9hcXyAgMHfkRpaIYwfO3vvx+iZ88ZWCwvkJPzBi+99BOSFNtWOKHv6tUH2bTpKI880qPCfa69tgXffXcj9esnhq5/mgULtivO0/Lle9BonsHpiiSY3rGjiAsumI7J9Bzdu7/Hjh1Fyn137ixm8OBPSEp6EaPxOVq1eosFC7bH3LO8fccrl7e3KnUFIbI0DLLjfNxrq2jDqdorCAJJSUnHtaFKhHcBV+dL5aRQe0xFRUXlNDJq1AXMnLmOOnVe4ZZbvuT999eRl+egceNkEhLkTQUvvfQTs2b9yaxZ/2L79vt4+eV+TJnyG19/HUl3tXDhTux2H7/8MpxJky7htddWs2DBNrp1q8urr15KcrKZw4dH0a1b3Zj7//zzfm655SsefrgbW7fey5dfXse6dUd44YUVAOzeXcwVV8zh8stzWLfuDgYNyuX551ewd+9ePv/8c1KTc5g/L42+fduwevUIpk65jFnv/8ljjy1FEkWcefaQcoU8M/Tn6n1cddVchgxpxm+r/o8uHTOZPv0PkMBd4ibviJ1+/WZz+WWN+e2nW3l18qVMmfIb45/9QVleBVlazef08ccfh7HZDDTIjIuoWoRk5DQC9OnTEMnrV5Y6g74AnhJXzCyVu8iplN9+ew0j/q8tf/xxB3Xq2OjT+31cdi+SJHHFFR9iMWpZtWo469bdQcsWadx6y5f4fLL6hqvQqShveO0eWf4t2l6HXA76g7iLXRXsDS9De0PpW8J47R78bvnZAx4/ziNlSjyf41CpoogiSRKuIqdSN+Dx4y2LhBEEvLJkniTJdT1lbsVen8sX079+t0+xXwyIeErdikKKGBRxl7hj7PVH2etzehV7xagfNsdDqOYlYEF1AE8atcdUVFRUTiOPPtqDTz/9Ny1bpjNnzgZuueUratd+hfvvX6jM8DVvnsaMGQPp0aMeDRokctNNbWjePI2NG/OVdsxmHW++eTlNmqTyf//XjjZtMli16gAGg5aEBBOCALVqWTEYYjVdjUYt77xzJddf34r69RO56KKGDBrUhI0bZRWnd95ZS7NmqbzwQl9E8SiFhQto3UpHakoqjz/+OKtXBalXL54337yMZs3S6N+vES881YvXX1+Nw+7F7/JFnABRYsbM9bRulc5TT/WmcYNERt7TiX79spGQCPoCTPnvb3TuXJuHR3ejQR0b/S/JZvz4vkx+49eI7BqyIxf0Bygu9hAfbyTgDShOnCiKijRcWFIuGIhIqQU8gZg+CHj9ISk4uPG6Ftx8Q2uaNUtj2ttXUlrq4auvtuBy+bl5aCvGj+tFkyapNGuWxgP3dqKg0M2RI3YkUSLg8Udk2LyBcvYGCfhCjnBQlO1VpOvEGCm7gDcQK8vmi0jOBX1B/C6/7MRJEgGnj6Av8jwBT6Ru0B+5p/zswRhnPOgNICryc4HjSNeJBH3lpPaiygHf8WTvquYAoiW0EaS6XlUzSyWCGgOooqKicpoZPLg5gwc3x+HwsXz5HmbN+pPXX/+VzEwbjz7ag0GDmvLDD3t47LHv2Lq1kD//zGPXrmJliRigXr2EGOcuPt6IL8oBORYdOmQRH2/kued+ZMuWAjZtOsqGDXn06CHrs69fn0enTlns27ePGTNmMHz4cDIyivniiy0IgsDWHcV071EPTWjnqdFm4pKrmuK/eyE7d5fStm0t5V6CVsP2fWV06JgFRKTVunSpzY8/7sWabmPz5gKWLdtNQtKLSj1RlHC7AziDEuFEK+YkOaYvNdVCSYknRkpNZ4iVnItLi41ni5ZAA7BlJirLqr36NlLSriQkmsjJTWHH7hLi4gyMfLg7c+ZsYO3rv7FlSyFr1hwK2VdRus5STs7NHJVeRmfSY6sVSbOiLW9vubrRsnLGeBPGqHQ5iVExlYIgEB+KPXS73SGpukg7MVJwWiGmX8wJEftAzj0YbV/0tbJsX5R03XFk76JT7ByP8kvOZ5rqvNe5gjoDqKKionKaWL8+j/vvX6iUrVYDAwbk8skn/+baa1uwaNEOAJ599gcGDfoYny/IoEFNWbBgaIxjBaDXV/x4Lr/5ozKWLdtNq1ZvsX17Ed271+Wtt65Q0sUAiGKAv/7aypQpU7j22mtp0qRJTH2jseIXfHhWKfz/E9kV7bgGAiKDBzdj3bo7ldf69Xexfft9ypJ4NJ06ZeF0+tm8+WiFc4GASP/+H7B06a5K7QhUsjypLbc0KIoSRqMOl8tPly7vMnXqGmrXjmfkyK58+eV1lbarEiEvL69qF4a1gKvrpaaBOWlOuwN45MgR/vOf/9ClSxe6d+/OmDFjlMSRfr+fZ555hi5dutClSxdeeuklgsHIL9oFCxbQp08fhg4dyuHDhwE4cOAATZo04Zlnnqlwr++//77Ch5eKiorK2SIYFHn99V/54Yc9Fc7FxxtJS5NnVt5441cmTbqESZMu5aab2tCwYSJ795bExLEdj+NNdkyd+jvXXNOC998fxF13daJr1zrs2FGEJMH+/fspLt7KwYMiD939EO3atEWSJH75ca+y1JnTKJGfV+5DDC31eUrdfPf1FvR6DfXrxlO8/Sg+eyQNTG6DeFavOgCAu9iF46iDtWsPy7Jrh8tokpvCli0FNKyfQHqcjgZ149m0KZ8nHv0Obyi9CcjSaq4iJ+3aZdKyZRovPL08Kq2Kn7JDpcx+fx2LF+8kyajBU+ZGr9dQmOfAfrgUSZLYtUtOK1N2sFhZzvx1xR4l9q2o0MX2bYVk14tn+fI9bN1ayII5/2LMmJ4MGJDLgV2F8nOJIgGPn4INh/HZ5brFW/MpDZ0HOS2M/bCctsbv9lN2sERZJg14A5RFpcBxHLXjKYs8qyOvTEkL4yl2UbQlT0kDU7glD0+xnFZHkiRK9xdHpYFxl0sD48F+JJwGJog9r0yJF3QVOZVUOQDuEheuUHqZgDeAPb9MWUYP+gLY88qUpWdngV25p/zeOHCXuCgpKeGdd9459uCLQtBqqv2lcnKc1h4TRZF77rkHl8vFrFmzeOutt9iyZQuPPPIIAK+88gq//PIL06ZNY/LkyXz99de8++67AHi9XqZOncrkyZO56qqreP3112Panjt3Ln/++efpNFdFRUXltNKuXSZXX92Mf//7f0ybtoadO4tYt+4IEyf+zIcfbuDBB7sCkJxsZsGC7ezYUcTatYe55ppPKS724PWeeIkX5JlFh8PH5s1H8ZSLf0tONvPrrwdZu/Yw27YVMnr0IhYu3IHD4WbmzJmMGXMJBw/6mDRlHdt3FvP222v47OttSsLge+/txN79Zdx//yK2bClgyQ/7ePKFldx0UxuSUy2YU+IUVQlBI3DnHR3ZsbOYhx9ewu6DdqbPXs/8+dtCShpG7r23M9u3F/HAg9+y97CD73/Yw113LSApxRyjlqGPMyhKFm/99wq+mL+d4bd9zdq1R9ixu4Rps9Zz738W8eij3WnZLhO9yUDnzrV5Z8Y6dh9y8v33e5g48WdATo8STgvyzqwNfPL5FjZtyueWW7+ifv0ErhzUlORkMz5fkHlL97B3bwlffPEXDz+xHACfT0Rr0GLJsKEzyzOilnQr5tTyS7fysqrWoMUYb0Kji5KCsxmVsjHOGJGjQ1Y9CSt86OMMmNOsinKGJc2KPko5xJRgVpaw9WY9BmuUkolJj9FmlJdbtbL6iCakFGKwGGIUR/RmA/rQcrFGr8EYZ1Tec41OK9cNJcQ2lLNXH2dEbzawf/9+6tSpU9mQrICgqWYHUKM6gCfLaY0BDMvJrFy5UpEKevzxxxk6dChHjx5l7ty5vPrqq7Rp0waAUaNGMWnSJG677Tb8fj8mk4ncXDl31s8//xzTdmZmJk8++SSff/45Op0auqiiolIzmTPnal5++Wdee201DzywCK1WQ5cutVm0aBgXXCDv2J05cxB3372AVq3eIi3NwqBBTRk+vB1r1hyu0j369m1Eu3aZtGv3NnPmXB1z7umne/N///c1vXrNwGzWYbUWc8EFftaskRgzph0DBvTiiy+yGDXqWya/tpoLLqjDjTe25uBBOalxvYbJLFw4jIcf/o42baaSmmrhllva8tRTvWXpt3JSZU1a12Lx4hu4//5FvP76ai64oC733tuZtWsPY7QaqWs1snjxDTz88BI6vbOG5GQzQ4e24oUX+qKLWirWR0mV9ehZnxUrbuW5537k6qs/w+HwkZOTzGuv9Wf48HZKvNebb17O7bfPo1O392jePI0JEy5m8OBPMNoiur2jR3dj4qRf+OuvAnr0qMe8+UMxmPR07VqH55+/iCee/oH/jPqW3NwUJk68hNtvn8fFF8/i8GEHzZql8vjjPbn++lYYk2Jj6qKdq7C0mtIvmthy9LVAjGSb1qDDnBL5TouWyxMEIRIfGAjL3EXaiZGuE4QYibwKUnBRS/sajUa51m63U1ZWRmlpKQcOHGD//v0UFRWh1+uxWq1kZ2eTlZWF2+3m448/plu3bsyePZsTouYBrPEIUlXXHKpAcXExGzZsoFevXsqxNWvWMHToUD7++GOuvfZa1qxZg9UqB8Tu37+fiy++mMWLF9OgQQMmT57Mu+++i9VqZfr06bRs2ZIDBw7Qt29fpkyZwoMPPsi9997L7bfLckfff/89d955J1u3bq3UnnDdpUuXVvlXS3USTnB6vqP2g4zaDzJqP8icjn4IBoM8++yz5OTkcOWAK4lPiGfjxnw8Hj/t29ZSZnzuuH0ePr/IjBkDY+TFQF6GlIKRshgIyjMuQliqTJRnrwQhRqpMricq15Yvi0ExJgeeKIqyz6DRxNzT7XZjMpmOWTecAkWRRzuBvUFfAI1OlloTAyKIEpqQIzrnw/U88cT3TH/vKrp3r8uP3+/m9ru+4fnnL+LaIc1BEGLaBSKycf6InFtlMnIxz1re/qCovBf2UjszZ81Eo9Fwzz33yNdqBDkRtNEUKwUX9ezh53a6neTl5XH48GH8fj8ZGRmkpaWxZ88e9u7dS61atfD5fOzevZtdu3bh9XpJTEzEZrNRp04d6tatS0pKCsFgkJKSEnbs2EF+fj6iKNKvXz+Sk5OP+70a/t799L9zyUzP/Fvj92Q4nH+YIXdfX2O/72sip3UqLSkpKcb5A5g5cyb169cnLy8Pi8WiOH+AMkt45MgRGjRowMiRI7n11luxWCwYDLG/mOrVq8ddd93FlClTuOyyy6hbNzb3lYqKiopKBLfbzbvvvktqaioDLh2AZBcRrSK7dhVzww2fM/2N/nToXo/f1x5hzpwNfDDzKrlesQufw6uoeHhK3HjLPCTUS0IMiNgPlWJOicNoNSIGReyHSzEmmDDFm3EVOgn6g8RnJRDwBnAVOIlLs6Iz6gj6gjiPOrCkxqE36XHk2dHqtcSlyd8JznwHgiBgzbDhd/lwF7ux1ZJ3pgY8flyFLqzpVjR6LY68MvQWA+ZEC55SNz6Hj/jasgqGt8yDt8xDfO1ERfrNkhqHMd6MGBQpXHcIS+0ErLUTKNtegK/ETfoF9QF47ukfeHlUF3r3bkDA6aOlWctbr1zCqCe+p2/DBLQmHSlt5R3PxVvykUSJ1NZZeEs92PcVk5Sbhs6kl6XhDpcRXzsBnUmP/XAZeoseS0i9JPrZvWUePCVuAhaRX1b9wrq166hVqxab/tqEz+fDne/CYDOCQZaC87v9xGclAuApc+NzePlr/1Z++OEH8vLyEIBamZlkZWWh0+nYuHEj+fn5ZGRkkJuby549e9Dr9bRq1YqrrrqKtLS04+6g7dKlS0z5wIEDVRp/4SXt6qI673WucEbXUqdNm8aSJUuYOnUqJSUlFZy6cNnniySrTExMPGZ7I0aMYMGCBYwbN47p06efEZtVVFRUzgXmzp1LYmIiQ4cOlVO6SHLM3lVXNeGxx3ow+qkfOHLEQcOGSbzxxuVcNbgFAOZkC+Zki+IUmBLNmBIicmMJdZOU5TaNViOnSgmVLVExcnqTnvisBGXWS2fUxZRtmbGpW8pLlenNBvlav7ycGVs3IstmSojYB6HYPJtJVtTQaElskBJjb1qHOhBqJ6FpWswW5q07i7nyto4IgoDeaiSjewMuEiX+Gvw/0jrHTjokN4/s2jYmmDC2rKXEoRksBpIapij2xteOlZGLfvawvVP+O0XuB5uVQVcPYsOzG/B6vUrdyqTgDFYj//vqUw4cOMDAgQOpV68ecXFxSgqfs0k4EXR13k/l5DhjDuCUKVN4/fXXeeKJJ+jduzeLFi2KcfQg4vhVdZlDr9fz9NNPM2zYMObNmxczm3g8PB4Pbrf7xBdWM16v98QXnQeo/SCj9oOM2g8yf6cfNm/eTEFBAbfffnuFz12ABx7oyAMPdIw55vF4KlxXEzhRP7hcLvbu3cuePXs4ePAgPp8PURSxWq3Ex8djs9lITEwkKyuLzMzM4zpHTZumsOz7HVx4YX3l2A8/7KVp0xQ83jPbP3q9nj179tCmTRtmzpxJnz590Ol0yvsS7geXy0V+fj5ut5s//vgDURS599570ev1MdedKao8TgTh+NvVTzdqHsCT5ow4gM8//zyzZ89m7NixDBs2DIBatWrhcrlwOp3Excm/Eo8elfM8ZWRkVLntDh06cM011zB+/HgefvjhKtUxmUw1NqaoptpV3aj9IKP2g4zaDzKn0g9//PEHn3zyCXcMv504Yxx6s56gP4jf5cMYL2+OEANBfE6fvFFBkNOJ6Ix6dEadrFrhDSibD4K+AH5PAKPNCJJ8rT7OgDYU++Yt86C3GNDqtfjdsnJGeHnY5/RitBoRNBpEUcTn8GGIM6DRavA5vQhaDTqjDr/fj+gLotXq0Jv1sn1uP0arEbfbzbp169i1axcul0t5Tq/XS0FBAWVlZTRq1Ijc3Fwuu+wyZQasrKyMkpISiouLOXDgACtWrKCgoIC6deuSnZ1No0aNSEpKYtWqVezYsYOioiIaNtQybNgnjBqVQ69e9fn95zxeenUb//d/9Vm3ei0tmrcgPj0RAE+BE0mUMKdbCXj8uA/biaubiEanIegL4DpsJy4rHo1ei+uoA51ZjyG06zn87HqTnmAgyBeff65kufjxxx8B+ftx0KBB+BxeZUOH3+vnxRdfJCMjA7PZTJMmTejduzdabfXJYJhMFXM3Vko1LwGreQBPntPuAL722mt8+OGHTJgwgUGDBinHmzZtitlsZs2aNUqc4O+//05qair16tU7qXs89NBDLFu2jDfeeON0mq6ioqLyj0YURT7++GMGDx5MrdRaBLyBkEMl57UzWI0IWgExKMucGeLkcsATQNBoQrF6AQJePwZJTi8S9AcJePwYbUZZqswbkHeU6rQgyTnlNKHdqEFfQN5YYTUiiSI7d+zkUOFhUlJSSElJ4a8Nf3HwyEGcLidlpWW4XC4cTjk3XTAYRK/XYzabMRqNGPVGJEHC5/ORlZVFkyZNsFqtylKvXq8nJSWFjIyMSh2gyiYW3G63svnh+++/p6ioiNatW3PNNdeQkpKCIAi8/fZPvPnmep54YhuZtXT8a2AyrVoJ/Lbmdz6f/yX9L+tPnz598JV5QRIxp1sRvUF8xW4sWfGg0yD6gvhK3JhDMYv+kGZw2AEM+ALyxg2NxNNPP62ESPl8PiwWi9wvDodyraDVgAC//fob9erU497/3HtGxs/pJJwGpjrvp3JynFYHcPPmzUydOpURI0bQvXt3ZYYP5A0iQ4YM4dlnn2XChAn4fD4mTZrEzTfffNL3iY+PZ8yYMYwcOfJ0mq+ioqLyj+X333/nxx9/JCMjg7Zt28bEXOvN+pi8bjpjrFRZjOyaRU9AE0SSJDweDwcOHcBqtbLvr/00aNAg5lpBI8SUw1JwwWCQL7/+ijVr1tCmTRu2b99OUVERGRkZtG7dGpvNhtVqVV4Gg0GeTfR6lZCd8FJjSkoK8fGx8YKnitlspnnz5jRv3vyY14wefRmjR19W6bnDhw/z8ccfs3btWoYOHUrt2rUBMCSYSGlfW7lObzWS0iZLKSc0TIlpxxKSvfv1118pLpaTVyclJaHRaPD7/WRnZ7N161Y+/PBDPbUw6AAAD4FJREFUrFYrTZs2ZefOnSxfvpwHHnjglJ69uhE0KDGQ1XU/lZPjtDqAixcvRhRFpk2bxrRp02LOzZs3j9GjR+P1erntttswGo0MGTKEESNGnNK9Lr/8cr766iuWL19+GixXUVFR+ecSztE2YMAALrjgggob7qrKwoUL+fbbb9FoNASDQQKBAPHx8TidTho0aMCBAwdo2rQpHTp0ID09nUAggNfrxefz4fV6lWXZNWvWUKtWLcaMGVPlWG1BEDCZTJhMppjNgDUpfjszM5P//Oc/rFy5ktdff52cnBwSExPRaDRceOGFJCcnKylvli5ditfrpUWLFmRkZOD3+3G73Ypze+jQIVavXq203aRJE1asWEGfPn34888/8fl8/Pzzz9SpU4fdu3eTnZ3NyJEjycrKOo6FNQd1F3DN57TmAaxphPMRzZo1S/mlVpPweDxVj6c4h1H7QUbtBxm1H2ROph+WLVtGYX4hVw24EmNIKcJd7ELQCJgSzAQ8frx2L5aUOASNgM/txVnsRG8zIEoi9qOl5BXm88W8LwF45pln8Hq9HDx4kEaNGhEIBNDr9Xg8HjZs2MDWrVspKSlBq9ViMBgwGo3o9XoMBgPx8fHk5uaetlRdNXU8eL1e1q5dSzAYpKysjD///BNJktDpdLjdbtLT06lbty779u2jsLAQvV6P0WhUnNyUlBTq1KlDZmYmtWrVwu12s2LFCvR6PYmJiQSDQVq3bo3RKC8b15R+OHLkCMOGDTthHsB333yH9LT0arMr/2g+I+69Tc0DeBKc0w5gWVkZnTp1OvGFKioqKioqKlUiISGBb7/9ttK0bSUlJVxyySWUlpbWKLtUKnJOO4AgO4FlZWUnvlBFRUVFRUXlhFit1uM6WSUlJcomlurkRHapxHLOO4AqKioqKioqKiqxqPtmVFRUVFRUVFTOM1QHUEVFRUVFRUXlPEN1AP8GDoeDMWPG0LVrV7p27cojjzyi5HSK5pVXXuGiiy6KObZgwQL69OnD0KFDOXz4MMFgkA4dOvDhhx/GXPfxxx/TpEkTXn/99Zjj8+bNo3Xr1pXKPJ0pjve8R44c4T//+Q9dunShe/fujBkz5rixl9988w1NmjSJeQ0YMEA5P3PmTHr16sUdd9yB3W6nqKiIJk2aVEj788orr9CkSRM+++yzmONTp06lb9++p+/hq0BVxoPP5+PKK6/k+++/jzn+TxsPn3/+eYX3L/z67bffKCkp4aGHHqJLly707NmTN998E1EUj9neuTYeTtQ/Jxor59p4CAaDTJo0ie7du9OxY0dGjhxJSUnJMds738bD+vXrKxxv166dUv+fNh5U/hmoDuDf4Omnn2b79u1Mnz6d6dOns337dp588smYazZu3Mj06dNjjnm9XqZOncrkyZO56qqreP3119FqtXTo0EGRAwrzyy+/kJGRwS+//BJz/I8//qBdu3annO/rVDjW84qiyD333IPL5WLWrFm89dZbbNmyhUceeeSYbe3cuZMePXqwcuVK5TV79mxATiOwcOFC3nrrLZo3b877779PcnIyjRs3Pqn+6dKly+nvhONwovHg8Xh44IEH2LZtW0y9f+J4uPzyy2Peu5UrV9KzZ0/atm1Lu3btuO+++9iyZQtvvfUWU6ZM4dtvv2Xy5MnHbO9cGw8n6p/jjZVzcTxMmjSJL774gpdffpnZs2ezZ88exo4de8z2zrfxsGPHDho3bhxz/rvvvgP+meNB5Z+B6gD+DZYtW8bNN99MixYtaNGiBbfeeis//fSTct7n8/HYY4/F/JID8Pv9mEwmcnNzadq0KU6nE4DOnTvH/EFLksTq1asZPnw469evj9lVdTYcnGM9719//cXGjRsZP348TZo0oXXr1jz++OMsW7bsmLOA27dvJzc3l7S0NOWVlJQEyGLnycnJ5Obm0rhx42P2j91uZ9OmTQwfPpxVq1bFtL9u3boa0z8AmzZtYsiQIRw8eLBCvX/ieDCZTDHv3bp161i9ejUTJ05k69at/Prrr7z88su0b9+e1q1b8+yzzzJz5sxjJvU918bD8fpHp9Mdd6yca+PB4/Ewe/Zsxo0bR7du3WjWrBmPPPII27Ztw+/3V9re+TYetm/fTnZ2dsw1KSmyesg/cTyo/DNQHcC/QVJSEvPnz8dut+NwOJg/fz4tW7ZUzk+ZMoV69erRv3//mHpWq5Vu3brRqVMn7rjjDm6//XZA/oPes2ePsjSydetWXC4X1113HVarld9//x2QPwC3bt1K165dq+dBQxzrebOysnjnnXdIS0urUMfr9Vba1o4dO2jUqFGl53Jzc7HZbLRp04ZJkyZxww03ANCpUyfWr19PeOP66tWrycrKYtCgQRQWFrJ9+3ZAnj0oKSmpMf0DsGrVKvr27cvHH39cod4/dTyECQQCTJw4kVtvvVVJfGsymWjWrJlyTZMmTfD5fGzYsKHSNs7F8RCmfP/A8cfKuTYefv/9d7RaLRdeeKFyTdeuXVm0aBF6vb7SNs638XC85/2njweVmovqAP4NnnnmGTZu3EinTp3o2LEju3btUpa5Nm3axCeffMK4ceMqrTty5Eh++uknVqxYoXzwt2jRgri4OOVX3c8//0yHDh0wGo107tyZn3/+GYA///wTo9FIq1atzvxDRnGs501KSqJXr14x186cOZP69etX6hT6/X727t3LqlWr6N9fFlYfO3Ysdrtdueall15i5cqVLFmyRFFx6dKlC3a7nV27dgHycscFF1xAQkICzZo1U/rnjz/+oEGDBpWKwZ9Jjjcehg8fzsiRI4+Zyf+fOB7CLF68mPz8fIYPHw5AamoqHo+HoqIi5ZrwzGf0sTDn6ngIU75/4PhjBc6t8bB3715q1arF0qVLueqqq+jZsydjxoyJeX+jOR/Hw44dO9i2bZvSPw8++CD5+fnK+X/yeFCpuagO4N9g9+7dNGzYkNmzZzNjxgxMJhNjxozB5/Px6KOP8vDDD1fqAIVJTEyMickIx3WsX78ekD/Awr/aunbtqsR1rF27lg4dOhzz1/OZ4ljPW55p06axZMmSSs8B7Nmzh0AggE6nY/LkyYwbN47ffvutgsh5cnIyWq1WKaekpJCdna184IU/4EH+8I/un7Pxa7eq/XMs/mnjIcycOXO4+uqrSUhIAKBNmzbUrVuXp556itLSUoqLi3nhhRfQ6XSVLvmdq+MhTPn+gaqNlXNlPDidTvLz85k6dSqPPfYYkyZNYvPmzTz44IOV1j/fxoPT6eTw4cP4fD6ee+45Jk2axKFDhxg+fHjM38s/dTyo1GAklVNi7969UtOmTaXdu3crx7Zv3y7l5uZKw4cPl4YPH64cnz17ttSnT58qtfv2229Lw4cPl3w+n9S2bVtp/fr1kiRJ0o4dO6QmTZpIpaWl0vDhw6Vp06ad1uc5Ecd73j///FM59uabb0q5ubnSrFmzjtteUVFRTHn9+vVSbm5uTPuVMXbsWGns2LFSXl6e1KRJE6mgoECSJElavny51LlzZ0kURal///7SggULTu4B/yZV7R9JkqTc3Fxp2bJlVWq3po6HMEeOHKn0Gf/66y/psssuk5o0aSK1bdtWevfdd6ULLrjgmM99ro2HMJX1z8mMlfL8E8fD22+/LeXm5kp//fWXcmzTpk1Sbm6utGfPnkrbOZ/GgyRJUllZmeT3+5Xy0aNHpaZNm0orV648bns1fTyo1GzUGcBTZOPGjRgMBho0aKAca9y4MSaTiV27drF69WratWtHu3btmDBhAocOHaJdu3ZKXMax6NKlCxs2bODPP/9Ep9PRokULALKzs0lNTWXt2rWsX7++2n/BHu95Dxw4AMDzzz/PG2+8wdixY7nxxhuP2144oDu6LYC8vLzj1gv3z6pVq8jNzVUCpTt27IjT6WTt2rXs2bOnRvbPqVBTx0OYH3/8kczMTFq3bh1zvGnTpnzzzTf89NNPrFq1iuuvv57CwkIl5qk859p4CFNZ//ydsfJPHA/p6elA5D0FlHi3Q4cOVdrO+TQeAGw2GzqdTimnpqaSmJhY5eetqeNBpWajOoCnSEZGBh6Phz179ijHDhw4gMfjYcKECcyfP58vv/ySL7/8kjvuuIP09HS+/PLLmE0ildGiRQt8Ph/z5s2jS5cuaDSRt6hLly4sXLgQURRp3rz5mXq0Sjne89arV4/XXnuNDz/8kAkTJjBs2LDjtrVkyRK6dOkSsyN006ZNaDSamC/FyujcuTPbt2+PWd4BiIuLo2XLlnzyySc0btyY5OTkU3rOU+VE/XOq1NTxEOaPP/6gY8eOMcdKS0sZOnQohw4dIiUlBaPRyPLly0lLSyM7O7tCG+fieAhTWf/8nbHyTxwPHTp0AGDz5s3KsfCGjDp16lRo43wbDxs2bKBdu3bs379fOXbo0CGKiooq/XuJpqaPB5WajeoAniJt2rShRYsWPPbYY2zatImNGzfy0EMP0blzZzp37kz9+vWVV1JSEjqdjvr16x9zE0AYnU5H+/bt+frrr2M+wECO61i8eDGdOnWKiX2pDo73vBqNhqlTpzJ8+HC6d+/O0aNHlVcgEABkcfBwEHfHjh3R6XQ89thj7Ny5k1WrVvH4448zePDgEwZmp6amUrt2bRYtWnTM/jkb6Q6O1z8ncvqPR00dD2G2bt1KTk5OzLGEhAS8Xi8TJkxg7969/Pjjjzz99NPce++9CIIAnPvjIUxl/fN3xso/cTzUrVuX/v378/jjj7Nu3To2btzI2LFjufDCC5UZ4fN5PDRt2pTMzEwef/xxtmzZwvr163nggQfo1q0bbdq0OW57NX08qNRsVAfwFNHpdLz99ttkZWUxYsQIbr/9dho2bMibb775t9vu0qULLperwrR9165dcbvdZ+UD7HjPu3jxYkRRZNq0afTo0SPmFd6Rd9999/H8888D8vLO9OnTKSkp4d///jcjR46kV69ex00MG03nzp3x+XwVfkmH++dsLHecb+MhTGFhYczmhjCvvvoqTqeTQYMG8fTTT/Of//yH6667Tjl/ro+HMJX1z98dK//E8TBhwgQ6dOjA7bffzs0330xOTg6TJk1Szp/P40Gv1zNt2jTi4+O56aab+L//+z8aNmzIq6++WqU2a/J4UKnZCJIUSpqkoqKioqKioqJyXqDOAKqoqKioqKionGeoDqCKioqKioqKynmG6gCqqKioqKioqJxnqA6gioqKioqKisp5huoAqqioqKioqKicZ6gOoIqKioqKiorKeYbqAKqoqKioqKionGeoDqCKioqKioqKynmG6gCqqKioqKioqJxn/D/JfcWoU8ZyGgAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAADTCAYAAAARSKJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3wU1dfGv1N2Nz10AqEHEnoXFCJIkS4gNgRBmqggIPATkY6olNcGiCKoNAEpAkqxIqCAICoiRXrvoYWElN2due8fUzZLAgSkqfv4iSE7d86ts3v2lOdIQghBAAEEEEAAAQQQQAD/Gch3egABBBBAAAEEEEAAAdxeBBTAAAIIIIAAAggggP8YAgpgAAEEEEAAAQQQwH8MAQUwgAACCCCAAAII4D+GgAIYQAABBBBAAAEE8B9DQAEMIIAAAggggAAC+I8hoADeZMTFxbFq1aosrx09epS4uDh2795t//3999/b1zt06EBcXJz9U7ZsWWrXrs2wYcM4e/bsLR3zlX6++OKLW9bv3QJd1xk4cCCVKlWiXr16N0XmwIED7TX866+/iIuLY9GiRfb1lJQUxo8fT+PGjalYsSINGjRg7NixJCUl2W0mTpxImzZtspTfoUMHxo4dC8DGjRv99qx06dLUrl2bkSNHkpqaCvjO3saNG6lTpw5xcXHUrFnzhuf3yy+/8Ndff12z3YULF4iPj7fPvIUVK1ZkOmstWrSwryclJdG/f3+qVatGfHw8H3300Q2P9d+G33//nSeffJIqVarQsGFDpkyZgq7r9vWTJ0/SvXt3qlSpQoMGDViyZMlNvf9aePvtt6latSrVqlXju+++Iy4ujkuXLv2dKd8U1K9fn08//TRbbTM+X3cCbdq0YeLEiXes/wD+G1Dv9AD+SyhQoABr164lZ86cALzyyiuUL1+ehg0b2m2efPJJevbsCRiKyYkTJ3jllVf43//+x7Rp027Z2MaNG0etWrUyvR4REXHL+rxbsHnzZhYvXsyUKVOIi4u7aXLr1avHqFGj7P2WJAmA5ORknnzySUJCQhgyZAjFihXjwIEDjBkzht9//51Zs2bhdDqvu7/vv/+eoKAgNE3jyJEjDB06lDfffJOhQ4fafUuSxJIlS1i6dCnvv//+Dc+tQ4cOTJ48mTJlylyxzfnz53nuuedISEjIdG3fvn3Ex8czZswY+zVV9b0dDR48mISEBGbPns3Bgwd55ZVXiIqK8lMS/4s4efIkzzzzDE8++SSjR49m3759DBo0CKfTSadOnQDo2bMnBQsWZMGCBfz2228MGTKEIkWKULVq1b99/7Vw6tQpPvzwQ0aNGkWtWrXIly8fa9euJSQk5BauSvawcOFCgoOD7/QwAgjgrkFAAbyNUBSFvHnzXrVNcHCwX5v8+fPzwgsv0K9fPy5evHjLFLKIiIhrju3fCsvqVrdu3Zsq1+l02muaO3du8uTJA8Bbb72FruvMmDGDoKAgAAoXLkxMTAyNGzfmiy++4LHHHrvu/nLlykVoaCgAUVFRtGvXjvfee4+hQ4eSK1cuJEkiT5485MqVi/Dw8Js0y6yxbt06Bg8eTI4cObK8vmfPHmJjY7M8c8eOHePbb79l6dKllCpVitKlS7N3715mzJjxn1cAv/rqK/Lly8f//vc/AIoVK0anTp1YvHgxnTp14tdff2XXrl1MmzaNiIgISpYsyR9//MHMmTOpWrXq377/Wrh48SIAtWrVolChQgB3zftKrly57vQQAgjgrkLABXwbkdEFPHDgQH755Rc++eQT6tevf9X7ZFlGkiTbQrJ9+3aefvppqlatSnx8PP/3f/+Hx+MBDHdg9erVWbhwIfHx8VSvXp2hQ4eSlpZ2w+M+f/48tWrV4rXXXrNfGzZsGA8++CApKSlMnDiR5557jlGjRlGlShXq1KnD9OnT/WT8/PPPPP7441SuXJl69erx0UcfYRWhSU5Opn///tSsWZPKlSvTtWtXDh48CMCiRYsyuSoHDhxI79697eutW7e23YVTpkwB4Msvv6Rx48ZUqlSJhx9+mNWrV2c5t0WLFvHss88ChivccrtcbbwTJ06kW7dudO3alerVq2fLTV6sWDFKlCiB2+3myy+/5KmnnrKVPwvR0dHMmDGDBx988JrysoOMH3jBwcFER0dTpEiRbN27bt062rZtS6VKlahUqRIdO3bkwIEDAPZ5fe655xg4cGCW969du5aOHTsyYcKELK/v3buXEiVKZHntjz/+ICIiglKlStmvVa9enW3btpGenn7d4wWYNGkSdevWpUKFCrRu3Zo1a9ZcexGAbt268dJLL/m99s477/D0008DcPbsWfr27Ws/i4MHD/Zz42/bto0uXbpQpUoVKlSowGOPPcYff/wB+N4PJk2aRI0aNXjuuecA/3N4ORo0aMDo0aMzvW6ty++//06pUqX8vihWr16d33777abcfzVs3LjRVtAbNGjAwIED7fAEywVshUK0adOGChUq8PDDD/Pnn39ma72yc//x48fp0aMHVatWpXbt2owePRqv1wv4u4BTUlIYNWoUderUoVy5ctStW5fJkydfc45gPP8vvvgib775ph2isHjxYtasWUPjxo2pUqUKvXv39nvPXbFiBS1btqRixYo0btyYxYsX+8n85JNPqFOnDlWqVOGtt97K1OfV3s+sNd64cWO2xh9AABYCCuAdwuDBg6lSpQpPPvkkCxcuzLKNEIK9e/cyefJkateuTUhICIcOHeKpp56iePHiLFiwgFGjRvHFF1/w9ttv2/elpKQwbdo0JkyYwAcffMD69esZOXLkDY81Z86cDB06lDlz5vDXX3/x888/s3DhQsaMGWO7dtauXcvJkyeZP38+/fr14+2337bf5H799Ve6detGnTp1WLx4MX379uX9999nzpw5AIwfP559+/YxY8YMFi9ejKIovPLKK9ke319//UXOnDlZtGgRDz30EOvWreO1117jxRdfZOnSpTzxxBP07t2bzZs3Z7q3WbNmjBs3zp5Dly5drjlegJ9++on77ruPefPmcf/9919zjHPmzCE6OpojR46QnJxMhQoVsmxXrVq1K1rNrgenTp3i008/pVWrVvZrK1eu9HOzXglHjx7l2WefpVmzZixfvpwZM2aQmJhor5N1XseNG8fgwYOzlPHyyy/TpUsXZDnzW4zH4+HQoUNs2LCBJk2aUK9ePYYNG2YrTqdOnSJfvnx+9+TNmxdd1zl9+vR1j/f777/n448/ZvTo0Xz11VfUrVuXPn36+ClqV0LLli1ZuXKln+K5YsUKHnroIQBeeOEFAObNm8cHH3zA4cOH6du3L2B8senatStly5blyy+/ZMGCBYSGhjJs2DC/PtatW8f8+fNtq5x1DrNCkSJFqFy5sv13SkoK8+fPp3r16ldcuzx58nD69GmEEH/7/quhSpUqzJo1C4AFCxZc8WxMmDCBPn36sGDBAkJCQhgxYgSQ/fW60v1ut5vOnTuTnp7OnDlzGD9+PF999VWWit3o0aPZvHkzkyZN4uuvv6Zjx46888477Nix46pztPD999/j8XhYvHgxTZs2ZcSIEUyYMIH/+7//47333mPt2rUsWLAAgGXLljFgwACeeOIJvvzySzp06MDQoUNtJW7RokVMnDiRgQMHsmDBAo4dO8b27dvtvq71flalShXWrl1LlSpVsjX2AAKwEHAB3yGEh4fjcDgIDg72s9TMmjWLzz77DDA+KDVNo2bNmrb17bPPPiM6Oprhw4cjSRIxMTEMGjSIAQMG0KtXLwA0TWPUqFG2y+aVV17hxRdfZPDgwYSFhWU5nj59+qAoit9rTqfT/lbZtGlTVqxYwciRI0lISKBz585Uq1bNbhsSEsK4ceMIDQ2lVKlSbN++nTlz5vDwww8zc+ZMatWqZX9YFi9enJMnTzJ58mTat2/P0aNHCQkJoVChQoSFhTFq1CiOHTt2XevZo0cPex0HDBhA165dadq0KWB8aG7fvp1p06ZlepMMCgqyrR2Wq+pa47Xm27VrVzu2LrtITEwEuCUu2Pj4eMCIHU1LSyNv3ry8+eab1y3H6/UycOBAnnrqKQAKFSrEww8/bFtPrHWOiIi4oXkcPHgQr9eLqqq88847nD59mjFjxvDiiy/y8ccfk5qamikG0vrb7XZf93iPHj2Kw+EgOjqaQoUK0bNnT+655x4cDsc1x/rggw8yfPhw1qxZQ6NGjfjzzz85efIkjRs3ZuPGjezcuZMZM2bY43vzzTepU6cOe/bsIWfOnHTr1o0uXbrYz1b79u1t67WFjh07UqxYMfvv7LpMPR4P/fr1IyUlxT6r11o7l8t10+6/HE6n0/7ycrUwg3bt2tnhFl26dKFHjx54PB7S0tKytV5Xuv/nn3/m2LFjzJ071z6jo0aN4uTJk5nGULVqVdq2bUu5cuUA6Nq1Kx988AG7d++mbNmyV5yjhZCQEAYMGICiKLRt25aZM2fy/PPPU7FiRQDuuece9uzZAxjWvUcffdR+7yhWrBh79uxh8uTJPPDAA8ydO5e2bdvSrFkzAF5//XXWrl1r9zV58uSrvp9lDDUJIIDrQUABvMvQqlUrunfvDhgxg7lz5/YLXN67dy+VK1f2UzyqVatmW1UAHA6H37f8ChUq4PF42L9/v/0GdTmGDBmSydV6ufVm2LBhNGnShFy5ctGnTx+/a2XKlLHjzwAqVqxofwPeu3evbTHJOOa33nqLixcv8vzzz/PMM89Qq1YtatSoQf369f0sV9dCSEiInxK9e/du/vjjD79v/h6Ph+LFi2dL3rXGC4a79nqVP8BOCLEUwatBVdUrWl10Xc9kzZs7dy7BwcHous65c+eYPXs2bdu25csvv7yu+KdixYoRHBzMRx99xL59+9i3bx87duzIZBm6UZQqVYoNGzbYa1GmTBly5crFo48+ysGDBwkKCsqk6Fl/ZxXEf63xtmzZkiVLltC4cWPKly/PAw88QJs2bTK54LNCcHAwDRs2ZMWKFTRq1Ijly5dTr149wsPD2bNnD6mpqVlmU+/fv5/GjRvz+OOPM2fOHHbv3s3+/fvZvn27X8YtGGfpepGWlsaLL77Ixo0b+eSTT4iKigKMLzSXMwa43W5kWfZT3v7u/X8HGZVd6wupx+MhT5482VqvK92/Z88eoqOj/c76leJ6W7duzapVq1i2bBkHDhxgx44dJCUlZerrSihQoICtpFrrYsU8Wq9ZZ3bfvn12go2FatWqsWLFCsCIh7VCCsA4cxnDH/7u+1kAAVwJAQXwLkNERARFixa94vWsskOtNy3rtyzLfsqbpURcbuHLiLx58161X4DDhw+TlpbGiRMnOHjwILGxsfa1y5URXdftMWQ1ZmtMuq5TsWJFVq5cyY8//siPP/7I+PHjmTNnzhVd41ZMj4XL5WuaRv/+/TNRumTH/Zmd8V6pTXZQpEgRcuTIwdatW7NUxl977TWKFClCx44diYiIIDk5OUs5WSUEFS5c2FbCixcvToUKFahZsyZfffWVbX3IDvbu3csTTzzBfffdxz333MPDDz/Mli1bmDt37nXM9OqwlD8LJUuWBAwXZFRUVKbM4dOnT6OqKrlz577u8ebKlYvPP/+cjRs3smbNGr744gtmzJjBrFmzKF269DXH2rJlS3r16kVKSgpfffUVQ4cOBYxzWLBgwSyz83Pnzk1CQgKPPPIIxYsXp06dOjRu3Jjz58/brl4L16tYJScn8+yzz7Jr1y4++eQTP6t2VFSUX8wcQEJCgp/y/nfv/7vIyvIqhMj2el3p/uw+32CE4Kxdu5bWrVvz0EMPMXToUFq3bp3t+7N6L80q3AGy3l9d19E0DTAy8y//opdxjn/3/SyAAK6EQAzgPwwxMTFs2bLF7w1j8+bNOBwOChcuDBgB3Zb7AYygepfL9be+MaanpzNo0CDat29PixYtGDRokP0GBrBr1y47EQVgy5Yt9odrTExMpvi733//ndy5cxMZGcn06dP57bffaNasGWPGjGHevHns2bOHXbt24XA4SE1N9ftmfvTo0auONSYmhmPHjlG0aFH7Z9myZSxfvjxbc73WeP8OFEWhRYsWfPrpp5kSGg4cOMC8efPsD4yyZcty9OjRTHFv58+f58CBA5QvX/6qfcmyjBDCb5+yg0WLFlG6dGnee+89nn76aWrUqMGxY8euGQOWXXz33XfUrFnT5igEI7FJlmWKFStG5cqVuXDhAvv27bOv//bbb5QtWzbLD9NrjXfNmjXMmjWLWrVq8corr/DVV18RFhbGjz/+mK3x1qpVi9DQUNs9bVmVYmJiOH36NKGhofY5U1WV0aNHc+7cOb799ltUVWX69Ol07dqV+Ph42x15o2upaRo9evRg//79zJo1K1NIQ+XKldmzZ49ffONvv/1mt/u7999K/N31Kl68OMePH+fChQv2a/Pnz6dt27Z+7ZKTk1m8eDFjx46lX79+NG/eHKfTSVJS0k074xlRokSJTO8nmzdvtpOgYmNj2bJli33N7Xb7vX//3fezAAK4EgIK4C3A9u3bbWuW9ZNV8HpoaCiHDh3i1KlT2ZZtxcy99tpr7Nu3jzVr1jBmzBhat27tZxEaMmQI27dvZ8OGDYwbN47HH3/8qlxcFy9eJCEhIdOPZYGaMGECqamp9O7dm5deeolDhw75ZfomJCTw6quvsn//fhYtWsSCBQtst0aXLl346aefeP/99zlw4ADLli3jww8/pEOHDkiSxKlTpxg1ahSbNm3iyJEjLFq0iLCwMIoXL07FihVJT09n6tSpHD16lClTplwzULtbt2589tlnzJ07l8OHDzN//nzef/99PxfN1XCt8f5d9OzZE6/Xy9NPP826des4cuQIX3/9NV27drWz/MD4MK5YsSK9e/dm06ZNHD16lJ9//pkePXpQpkyZTK7Hc+fO2fu2f/9+hg0bhq7rfjyT2UGOHDnYv38/v/76K0eOHGH69OksXLjQzy0bEhLCnj17/D5ss4vq1aujqiqvvPIK+/btY8OGDQwePJhHHnmE/PnzEx0dTb169Rg4cCA7duzgm2++4eOPP87kRsvueHVd56233mLZsmU2xUxCQoKdiHPhwoWrJoQoikKzZs2YOnUqjRs3tq2/tWvXplSpUvTt25dt27axc+dOBgwYwLFjx4iOjiZHjhycOXOG1atXc/ToURYtWmS78bKKZbSQkJBwReLk2bNn88svv/Daa6+RJ08ee78tt2316tWJiYnhpZdeYvfu3cyfP59ly5bRoUOHm3K/Nb6/wypwJdzoelmIj4+nSJEiDBo0iN27d/PLL7/w/vvv88ADD/i1c7lcBAcH891333HkyBF+++03evXqhRAiW/1cL7p168aCBQuYO3cuBw8eZPbs2Xz++ed07NgRgE6dOjF//nwWL17M/v37GTlyJOfPn/e7/2rvZ263m4SEhFsy9gD+5RAB3FTExsZm+bNkyRJx5MgRERsbK3bt2iWEEGL16tWiZs2aokaNGkLTNPHUU0+JMWPGXLOPTZs2iccff1yUK1dOxMfHi7ffflukp6cLIYTYsGGDiI2NFdOmTRM1a9YUNWvWFGPHjhVut/u6xxwbGyuGDh0qtm7dKsqUKSO+/vpr+55PP/1UVKxYURw4cEBMmDBBPPTQQ2LEiBGiUqVKomHDhmLRokV+fXz33XeiRYsWoly5cqJBgwbik08+EbquCyGESE1NFcOGDRO1atUS5cuXF48++qjYtGmTfe+0adNE7dq1ReXKlcWAAQPEm2++KXr16iWEEOLzzz8XNWrUyDSnefPmiUaNGoly5cqJRo0aifnz519x/j/88IOIjY3N9ngnTJggHn744SvKE0KIl19+2R5jVkhISBAjR44U9erVE+XLlxcNGzYUb731lkhKSvJrl5iYKIYNGybq1KkjypUrJ+6//34xbNgwceHCBbuNtecZf6pUqSI6derkt44ZcaV1E0KIlJQU0a9fP1GtWjVRvXp10bFjRzF//nwRFxcnTpw4IYQQYuLEiaJixYqiR48eV12Hy8+8hb/++ks8/fTTokqVKuLee+8Vr732mn2GhRDi/PnzolevXqJixYri/vvvF9OmTbtiH9kZ7/Tp00WDBg1EuXLlRMOGDcVnn31m3//UU0+Jl19++arz2LJli4iNjRUbNmzwe/3EiRPihRdeEFWqVBHVqlUTL7zwgt2npmli1KhRokaNGqJKlSri8ccfF8uXLxdxcXHi119/veLaxMbGigkTJmQ5jrZt22b5nGbcyyNHjohOnTqJChUqiIYNG4qlS5fetPut8X3++edZjm/Xrl0iNjZWHDlyRAjhO5vJycn2vT/88IPdPuP1a63Xte4XQohDhw6Jbt26iYoVK4ratWuLd955R2iaJoQQol69emLWrFlCCOOZb9y4sahQoYJo0KCBmDBhgnjmmWfE4MGDhRDiqu/Flz//We1jr169/M7UvHnzxIMPPijKlSsnmjVrJhYvXuwn87PPPhP16tUTlSpVEoMHDxZdunTxOwNXez+z1uDysxlAANeCJMQtsHkHcMewceNGOnbsyO+//+6XlHErMXHiRFatWuVX6uy/joEDB5KSknJFHrw7jUWLFjF27NgAdxhw5MgRpk6dyquvvnrFNitXrmTUqFH88MMPV4z1+q/g888/JygoiObNm9/poQQQQAB/A//td7IAAriFsFwzlyet3GmcO3cuWxx4/xV8/PHHNGnSJMtrR44cYcWKFbzzzjs8/vjj/3nlT9d1Fi9e/LfqSAcQQAB3BwJpRAEEcIuwatUq4uPjWbJkyVVr5t5utG7dmlOnTt0Uwul/AwYPHnxFTsCTJ08yePBgqlevfkVy5v8SZFlm2rRp2eJQDCCAAO5uBFzAAQQQQAABBBBAAP8x/Lf9GQEEEEAAAQQQQAD/QQQUwAACCCCAAAIIIID/GAIKYAAB/Etx/PhxHn74YTsJZc+ePbRr145KlSrRvHnzbBMhX45ly5bRpk0bv9e++eYbXnnllb895qvh0qVLxMXF3XDmcocOHRg7dux135fVfG8lJk6ceNP6i4uLy/LnwQcfzNb9AwcOzFSLN4AAAvh3IJAEEkAA/1KMGjWKZ555BlVVSUtL45lnnqFevXqMGjWKb775hl69erFs2TK7gkx2sH79eoYMGWJXMbDQuHFjpk6dyqZNm7jnnntu9lRuCiZOnHjd5bOuNN9/EsaNG0etWrX8XrtaWcgAAgjgv4GABTCAAP6F2LFjB1u3brXpTb7++mu8Xi+DBw8mJiaGHj16ULFiRT777LNsyxw7dizdu3e/osLYvn173nvvvZsy/luBHDlyEBYWlu3215rvPwURERHkzZvX7ydXrlx3elgBBBDAHUZAAQzgH4m4uDgWLVpEmzZtqFChAg8//DB//vmnff3MmTO8/PLL1KpVi6pVq9KnTx+7HN/Ro0eJi4tj0qRJ1KhRg+eee46NGzdSu3Ztli9fTp06dahSpQqvvfYaBw8epH379lSqVInHHnuMgwcPZnuMP/30E61bt6ZixYo0b96czz//3L7WuXNnHn74YbtO77Jlyyhfvjw7d+5k48aNVK9enYULFxIfH0/16tUZOnSoX/mt+vXrM3DgwCv2PWvWLBo2bGjz1v3+++9UrlzZzwJ2zz338Ntvv2V7Pr/99hszZ86kUaNGWV6vX78+v/32G3v37s2WvLNnz/Lyyy9z3333Ub58eRo2bMjChQvt66mpqTYFS3x8PF999ZXf/R06dGDKlCk899xzVKxYkWbNmrF9+3amTJnCfffdR82aNf0U0owu4IkTJ/LCCy8wZswYatSowT333MPo0aP9ak5fa77Xwty5c2ncuLF9djLWg505cyZNmjShfPny1KhRgwEDBpCSkpKlnI0bN/LEE09QqVIlHnzwQb81utY5uBa8Xi/jx4+nQYMGlCtXjlq1avH6669nWT86OTmZ/v37U7NmTSpXrkzXrl39noetW7fSrl07KlasSKNGjZg6darfegYQQAB3FwIKYAD/WEyYMIE+ffqwYMECQkJCGDFiBGB8qHXq1IkjR47w4YcfMmPGDE6dOkXPnj39ir2vW7eO+fPn87///Q8wasIuXLiQjz/+mFGjRjFr1iy6dOlC586dmTdvHm63m7feeitbY9u3bx+9e/emffv2LFu2jJ49ezJ27FhWrFgBGO7ZgwcPMmfOHM6ePctrr71G7969KV26NAApKSlMmzaNCRMm8MEHH7B+/XpGjhxpy1+4cCGDBw++Yv9r1qwhPj7e/vv06dPky5fPr02ePHmuqw71/PnzqVq16hWvR0ZGUqFCBVavXp0teS+99BJnz55l+vTpLF++nAYNGjBixAjOnDkDwMiRI/ntt9+YMmUKkyZNYubMmZlkvP/++zRp0oQvv/ySHDly0LlzZ3bs2MGnn35Kjx49mDhxIjt37syy/9WrV3Pp0iU+++wzXn75ZWbOnOk39mvN92pYvHgxY8aMoXv37nz55ZdUrVqV7t27c/HiRZYuXcrEiRMZNGgQ33zzDaNHj2blypXMnz8/k5wDBw7QrVs3qlevzpIlS+jZsycjRoyw4yCvdQ6uhY8++ogvvviCsWPH8s033zBgwADmzJnDDz/8kKnt+PHj2bdvHzNmzGDx4sUoimLHfZ47d44uXbrwwAMPsHTpUgYPHsycOXP46KOPbnhsAQQQwK1FIAbwX45ixd7lf/+rxQsv1PB7/eDBCxQvPp6tW5+nfPl8V7j77ka7du2oW7cuAF26dKFHjx54PB7Wrl3LgQMH+OGHH8ifPz8A7777Lg0aNGD9+vUULVoUgI4dO1KsWDHAsEZ5vV5eeuklSpUqRalSpXjjjTdo2LAhDRs2BKBly5ZZfkhnhalTp/LQQw/x2GOPAVCkSBEOHz7Mxx9/TLNmzShUqBD9+vVjwoQJrF27lmLFitG1a1f7fk3TGDVqlK2AvPLKK7z44osMHjyYsLCwq7rwjh07xtmzZ4mJibFfS01Nxel0+rVzOp03vYB8yZIl2bp1a7baPvDAA9SrV892sfbo0YPp06dz8OBBgoKCWLZsGe+99569BiNHjqRt27Z+Mu677z5at24NQIsWLRg5ciSvvvoqERERxMTE8O6777J3715bsc4Il8vF0KFDcTqdlChRgtmzZ7Nlyxbq16//N1bAwOzZs2nbti2PPPIIAAMGDECWZRITE8mbNy+jR4+mTp06AERHR1OjRg12796dSc6CBQsoWbIkL730EgDFixcnKSnJtqxlx5Xbp0+fTDF/X3/9Nfnz56dkyZK88cYbVK9eHYBChQrxySefsHv37kyJIkePHiUkJIRChQoRFhbGqFGjOHbsmD3fihUr0r17dwCKFi1Kv379eP311+3XAggggLsLAQUwgH8sLOUNsGO7PB4Pe/fuJTo62lb+AKKiooiOjmbPnj22AhgdHZ1JZqFChex/BwUF+f3tcrnweDzZGtvu3bvZvXs3S5cutV/zer1+LtinnnqKZcuW8eOPP7JixQq/D2mHw0HlypXtvytUqIDH42H//v1UrFjxqn2fPXsWgJw5c/rN5XJlz+12ExQUlK35ZBc5cuTgwIED2Wrbrl07vv76a2bMmMHBgwfZvn07YCi/+/fvx+PxULZsWbt9hQoVMpViu3y/IiMjiYiIsF+7mpJbsGBBP6U4LCzspinEe/fupVOnTvbfiqLw8ssvA1C4cGG2b9/OhAkT2L9/P3v27GHfvn22Inu5nAoVKvi91qFDh+say5AhQzKVbsuTJw8ADRs25JdffuGtt97iwIED7Ny5kyNHjmSZJfz888/zzDPPUKtWLWrUqEH9+vVp1aoVYGSYb9iwgSpVqtjtdV0nLS2N8+fP+53FAAII4O5AQAEM4B+LrMpRCSEyWbos6Lru5wJ2uVyZ2lxuKbnR2q+aptGhQ4dMFquMuHjxIkePHkWSJH755ReKFy/u12/Gvq1xX0/2Zsb4q/z589uuVQsJCQl+SvLNgKZpSJJ0zXZCCJ555hlOnDhB8+bNefzxxylZsiRNmzbN1M6CoiiZ5n95Vm92+rZwK8uZXS3beMmSJQwbNow2bdpQu3Ztnn32WSZOnHjdcrKLvHnz2l96LsekSZOYPn06jzzyCA0bNqRv3770798/y7YVK1Zk5cqV/Pjjj/z444+MHz+eOXPmsHDhQrxeL40aNeLFF1/MdF94ePjfnkMAAQRw8xGIAQyAS5fc9Oq1gkKF3sbhGEXhwu/wxhs/AbBy5X4cjlGcPesLUD9xIglFeZXffz+B16szbNgqSpQYj8Mxivz53+TFF79G0wzlY8SI1bRpM4/+/b8hV66x5Mw5ln79vkHXjQ/2a91/I4iJieH48eN+8W0nT57kxIkTt43OIyYmhkOHDlG0aFH7Z8OGDXz66ad2m9dff538+fMzcuRIxo0bx8mTJ+1r6enp7Nmzx/77jz/+wOVy+SmJV4IV63f+/Hn7tSpVqvDHH3/4Bff/+uuvfhabm4Hz58+TN2/ea7bbt28f69evZ+rUqfTq1YtGjRqRnJwMGEpfiRIlcDgcfok9u3btyrYF9k6jePHi7Nixw/5bCEHjxo35/vvv+fTTT+natSsjRozgscceo3Tp0hw6dIisqnJeLgcMd/L//d//3ZRxfvrpp7z88ssMHDiQ1q1bU7hwYY4fP57lWKZPn85vv/1Gs2bNGDNmDPPmzWPPnj3s2rWLmJgY9u/f73fe9+zZw8SJE2/4S1QAAQRwaxF4MgOgb99v+PnnoyxZ0pZdu16gT5+aDB78A5s3n6BeveLkzRvCkiW+QPqFC3dQqlQuqlYtwLhx65g5cwszZz7Mnj29+L//e5BJkzbx5Ze77PbLlu0mKcnNzz935a23GjF+/EaWLzfinbJz//WiVq1axMbG0r9/f7Zt28bWrVvp168fxYoV47777rvxhboMCQkJfpm5GdGlSxdWr17N5MmTOXToEN988w1jxoyxLW5r1qxh2bJljBw5kkcffZTY2FiGDx/uJ2PIkCFs376dDRs2MG7cOB5//HFCQkIAI+g+KSkpy77z589P3rx5/ZIfGjVqhK7rDBs2jH379vHBBx+wdetW20KpaRoJCQl/2wW6a9cu22WZlpZGQkJClu3Cw8NRFIXly5dz7Ngx1q1bZ7tI3W43YWFhPPbYY4wePZqNGzeyfft2hg0bdl0WvjuJTp06MXfuXJYtW8ahQ4cYO3YsycnJVK9encjISDZu3MjevXvZs2cPQ4cOZe/evVmu/ZNPPsmuXbuYOHEiBw8eZMmSJXz11VfUq1cPuPo5yA4iIyNZs2YNhw4dYvv27fTp04fExMQsx3Lq1ClGjRrFpk2bOHLkCIsWLSIsLIzixYvTvn17Dh06xGuvvcb+/ftZv349I0aMIDw8PKAABhDAXYrAk/kfQP/+3xIW9obfT7ly79vXa9cuzJQpD1G9ekFKlMjJ//5Xi8hIF9u2nUaWJdq2Lc+CBT4rxPz5O2jXzviQL1s2L9OmtSI+vgjFiuWgY8dKlC2bl23bTtvtg4MdvPdeM+Li8tClSxUqVcrPhg1Hs33/9UKWZSZNmkSOHDno0KEDnTt3JioqiunTp1/RPXwjiI+Pt7N6L0f58uWZMGECK1asoHnz5owZM4bnnnuOrl27kpyczPDhw3nyySepUKECkiQxfPhw1q5dyxdffGHLaNq0KV27duXFF1+kSZMmtoIE8Oijj/L6669n2bckSdx///1s2rTJfi00NJSpU6eye/duWrduzYoVK3j//fftBIwTJ04QHx/vR1VyvUhKSmLXrl088MADAKxYscIvEzkj8ufPz6uvvsr8+fNp2rQpr732Gu3atSMuLs6OBXzllVeoX78+vXr1omvXrrRq1Yrg4OAbHt/tRPPmzenTpw9vv/02LVu25M8//2Tq1KnkyJGDwYMHI0kSjzzyCJ07dyY9PZ1nn302k6UPjBjHyZMn88MPP/DQQw8xefJkxo4daydtXO0cZAdjxozh6NGjPPTQQ/Ts2ZPo6GgeffRRew8yok+fPtSuXZsXX3yRZs2a8fPPP/Phhx8SERFBVFQUH330Edu2baNVq1YMGDCAhx566JZXhwkggABuHJLIytYfwL8GxYq9S6dOlXnqKf/EgWPHLvLAAzPYuvV5ypXLy7Jlu1mz5hC7d5/l999PcOxYEtOmtaJTp8r8+utx7rvvY06e7E96ukbhwu+wc2dPSpXKDcCaNQf5+uu97Np1li1bTrF//3mGD6/LiBEPMGLEahYt+os//3ze7vuBB6Zzzz0F+b//a3TN++9mfP755wQFBdG8efObKnfjxo107NiR33//ndDQ0BuS8eeff9K9e3d++umnbMe6TZgwgTp16vgln1wPPvvsM7766itmzJhhv9alSxc++eSTG5IXQAABBBDArUPAAvgfQJ48IZQsmcvvp2jRHPb1bt2+5Pnnl+N0KrRrV4F167qQI4cvO7R69YLExORkyZKdLFy4g2rVCtjK36hRa2jdeh5ut0br1qVZvrwdlStH+fXvdGZOXLC+dmTn/rsRuq6zePHiTNmVdwsqVqxIuXLlMpEnXwnJycn8/PPPflm31wMhBJ999hnPP+9T9H/99Veiou7+vQwggAAC+C8ikAX8H4cQgunTt/Dddx2oX99IMDh5MpnExDS/QPAnnyzPF1/s4vz5NNv9CzBx4i+89VYjunQxkgnS070cOnQhyyDyrPB3779TkGWZadOm3dJM0r+LESNG8MILL9CsWbNrZpOGhYUxc+bMG57P119/TWxsLPfee6/9WuXKlalWrdoNybub0bNnT9avX3/F682aNftbbtkAAggggNuBgAIYAKGhDhYt+ovixXNw/HgSAwZ8jxCQnu7LGG3fviJjx67D69WZP/9R+/VcuYJZvnwPdeoU5eLFdEaOXMP582l+914Nf/f+O4lbpfzVrFmTXbtuPAnGQuHChf1iCq+FvzOfpk2bZqJwuRkUJncjhg8fTmpq6hWv36jbPoAAAgjgduLf+Q6dARcuXLDpJf6L0DSNCxcucPToUb/XT5wwMgdPnTrFhAl1ee21X/joo9/Jnz+ERx4pSVCQ4Mcf99CiheHCCwqCuLichIU50LREjh5NBGDcuFoMHrye8uXfJ3fuIBo3LkrbtrGsX3+Ao0ePcvHiRdxuj1//6enpJCUlcfTo0WveH0AAdyOuxseYlpYWOLsB/KsRFhZGjhw5rnj9Tn3uXmtcAfjjX50EcuHCBRo1akRiYuKdHkoAAQQQQAAB/CsQGRnJt99+m6WydeHCBapXr35dpPW3Y1wBZMa/2gKYnJxMYmIis2fPvquD0dPS0m56Sa5/Gqw1SE5OpkGD6dx3TyrVy+fGkXqRe+vWZeu0v5iww8PCdxrjLBhhZJHIEkiApiM7VbQ0D3KQA4HAEexE83iRVQWvx8PZ8+dITUvl4oWLJJxNIDUllYKFCqJ7dZtbTsckn9YESBKqrJAjMgfJF5M5nZjAH3/8QePGja+YJXvmzBnWrVvH0aNH/Uid27ZtS7ly5bK9DmfOnOHDDz/MdC0kJIT777//itQq77//PidOnACgX79+fuW3zpw5w/jx4/3ad+/encKFC7N//37mzp1LZGQkzz77LA6Hg6SkpDtWwSHwPATWwMK/eR3S09P54Ycf7HjS0qVLEx4eztatW0lPT6d169ZUqVKF9PT0u2oNTp48Sfv27UlOTs5S0UpOTkZRFI4cPozX671t41JVFYoUueK4AsiMm64Anjx5kjfeeIONGzeiqip169Zl4MCBRERE2EShv/76K6GhoTz88MP06dPHjhVavnw5b775JgUKFOCtt96iQIECHD16lAYNGtC+fXuGDRvm19eqVat47rnnrhkvFRUV5Vcz9G5DamrqP4bf7Fbh6NGj/LVtBytXreTkiRDGv9md8IhQTp6/QN48ealYtAo9q35CyfIxqPnC0VLcyKFOhC4QukBxqWipHpQQB5pbQ3EpCK+OpMggoAQxIIHQBZIsITQd2aGge3VkRULXjNcRRhtZlfGmeVCCDLmyQ+Hg/Q8wYdIEmjZtSnp6uqHonTjJqdOnOHniBIcOH+aBOnVp3qw5CBj35jhyROYgLS2N6OjoTCTGuq6zY/sOuwpEVIEoEhMT+fzzzwkODqZr166ULVsWl8vF3r17CQ4Otnn7skLTpk2ZO3cuTZs2zVQ/NiQkhNjYWGrXrk3t2rX9vp1funQJSZK4ePEiCxYsoE6dOsycOZN27dpdUdm8lQg8D4E1sPBvX4eYmBhatWrF3Llz7c8xSZKoVq0au3btYsOGDdx7771UrlyZwoUL/2OI0AG8moZXu42x3P+gtblbcFMVQF3X6dmzJzlz5mTmzJmkp6czYsQIXn75Zd577z2eeeYZypYty+eff86ZM2d46aWXcDgc9O7dm/T0dCZPnsw777zDzp07mTBhAqNHj7Zlz507l1atWlGpUqWbOeQA7jA8Hg87d+5kyZIlFMxbgM4t27F08Y98v+wP4u+LYvepBJKOJ3B8VRKlS+bEffgcwqGgJbtRJdA1HaEJhK7juZiOS5HxpLqRlSC8bg1ZNSMchECSZXRNR5JB9+gogO7VELqCruvIsmwqlDpCKHhS3CBLeJLdqMEO8ufKixCClJQU3njjDXLnzk2e3HmIyh9FzL0laP/kU4QGh6KoMrquM/6tdzmdcJpP585GCEHr1q395r5q1SrWrFlDpYqVkGWZ1atXc/HiRZ5//nlbgdN1nTNnznDp0iV2797NihUrOH78OGfPnkVRFKKjo8mXLx+JiYn2B4hVJSIjcuXKdUVS3ri4OP73v/8xZ84cDh48yKFDh6herTpLly5l8+bN5MqViyeffDJQ0SGAAG4B8uXLR+/evdmwYQOzZs0CIDExkdjYWGJiYjh37hwfffQRDoeD9u3b37Zyln8XkvlzO/sL4PpwUxXAv/76i23btrF27Vq7HujgwYNp164dp0+fpkyZMrz66qtERERQokQJmjRpwsaNGwFDEQgKCiI2NhYgE81CgQIFGDp0KIsWLfrXZhf+V6BpGufOnWPPnj0sX76ciNBwmtVrRPmoEiQ7L/F81xIMfnMHr4/KSXThcA5fCKP3R2t57dX6ILxICCSPF0mYwfhBMigSSrADSZVwBDuQFAnFoSApEugCIUCSJWQhIakyCAlJlpBkGUmRkLD+lkAYrmXFoSBJEmqwAyXYwY7tf1KwYEG2b99OkcJF6P5Md3SvhuxQ0NI1FKeM5tGRZAlFNixsUVFRPNvtWSa8N4HQ0FAefPBBAFJSUli5ciXdunSjaNGiCCHwal7GjhvLuXPnWLxoEbv37OHEiROEhYVRsGBBogtGU7VKFVo0a0GevHlwp6Vz4tQJEk6fITQslKc7Ps28+fOYOGEi/3vpf9eV1VuiRAl69erF2rVrCQsL48cffwSMZzpfvnwIIZg2bRrFihXLUsEMIIAAbhySJHHfffdx7733cvHiRY4dO8bRo0c5duwYp0+fJioqinvuuYcPP/yQJk2a/COeQVkyfm5nfwFcH26qJlWwYEGmTp2aZTF4VVX9YpB27tzJypUradWqFWBk79SqVYt77rmHsLAwPv74Y7/7Bw0aRL9+/fjkk0/o3r37zRx2ADcIIQQnT55E0zRy5cqFw+HgwIEDHDt2DKfTicvlwul02gqf9XPgwAFUVSVv3rx06dyFgmH58Grp6Bc8ePV0mtfLTbJemtff+IN9+y9SsmQOerTPz2MtiuPdchJ0YVjxvDpIGAqcZI3JcOEiDEueJCvourCv67pAMcfOZelPQjfiAXXTTWwJ1DUdRRf89vuvHD58mAULFvBUu6fMeww5QuggZN8YzNwqSZIIDQmlR48ejJ8wnv3791OrVi2+//57qlatStGiRe3+nQ4HD7V4iC1/biFXjpy0atmK6AIFCTbr/1ryjHnJyEESMTElKV60hGF11HS6dOrC1I+nsnLlSpo0aXJd+xkZGWlXNalTpw5Hjx7F6/VSrFgx9uzZw6ZNm9i0aRNlypS5q2NqAwjgnwpJkoiMjCQyMtImZb906RJz587ljz/+YMCAAbz77rtIkmSXXLxbIUsS8m10y97Ovv4tuKkKYM6cOalTp47fa9OnT6do0aJ+SmHz5s3Zu3cv5cqVo3Pnzvbrffv2pXPnzoSEhGSq2VqkSBGef/55Jk2aRNOmTa8aCxXAzYPX6+Xnn3/m4MGDVKlShYMHD1K7dm1y5szJsmXLWLduHSEhIZw/fx6v10uBqAIUK1YMt9uNx+shPS0dRVHImTMnuXLmoliRYjzUrAX58uVH82iGwuXxIpJAIKFe8uBK9vLs/UXo0SgW+aLAWSIPx35YA5fceE6dw1WuEEJWkIJUw+yvSiDLSKqRxCEQCP0yZRAJydDMjL+FAEkgNB0hYShxYMQJenVQJCM+UNXtOMNOTz7NmQtnyRGRA1ewC+E1rwlh/saWj25ql7KhWEaGRzKg7wB++e0XVn6/koJRBWjRpIV9L4CQJUrGlKRSpUpobi+KQ0HXhF02RRjDs/sRAtB9/7asnG1at+Gtd96iRo0a5MqVK9t7fe7cOdxuN1FRUUiS5PeMFS9enIYNG/L999+zd+/egAIYQAC3CbIs8/TTT/Pee++xbt06+vTpwzvvvIPD4aB27dp3enhXhHSbLYAB/e/6cUt9qVOmTOG7775j8uTJfq+PGzeOixcv8sYbb9CzZ0+/2qFXy97p1q0by5cvZ8SIEZkshAHcGIQQ/P777/z4448kJSVRsWJFGjRowOrVq/nzzz85ffo0JUqUIC4ujrlz53L+/HnWrl3LK6+8wurVqxkyeAgR4REA6LqGLMnIqoLm1ZBVGd2j225Yy6omBHYws+F2BVVyoSoOQpT8qKEhqJqM5HKihMmo+SKIKB2Dq2BuRFwKangwmpSO4jKPrwSSLIOZvAEqsioBMpIiI3SzLwlkh4IkyyiqcY/sAFmRfbXpkJAcGPc5dRSXA4RxnwMnBcOiTeuhMR9FUpAVGcWhIikSspCRVdkWJ0nGHJElgoKDqFe/HnXr1DXaaMJYG9lQ4GRZRpFlw1WtKiBLyKZr2lg4Y66ybFo0heG+liXF/C0jYcQUNWjQgAkTJhAfH0/+/PkpXLhwpmdL0zQ2btyIruts2rSJEydOkJycTMuWLTNZDx0OB23atKFVq1aBWMAAArjNcDgcdOnShREjRtCkSRN69+7NyJEjiYqKIiYm5k4PL0vIZHKy3PL+Arg+3DIFcNKkSUyYMIEhQ4ZkMlVblBhvvPEGjz76KLt377Zj/64Gh8PByJEjad++PUuXLiUsLCxbY0lLS7sqc/+dRnp6+h3p9+TJk3z91de43W7ur3U/4RHhTJ85nY0bN1K+XHkebfMIefLmxSGryKpC1YpVeGfiuwB8NPUj6sTXQZFkLiUZhJ+W+1RWZHSvZmbbChSngubRkVXJtKaB4pDxpnlRgxx4LqWjSTokpCI7ZCTdiRuQ3BLapXSkv47j3nORiyHHSNlxiLA8EXiT0nC4TFerJCE7ZLR0L6rHgTfdg+py4E33Ijt8bwuSbLlPJSMJxKmieTQU1UgCkWTJsMila8guBW+KB4fuwXPJjZKu+nREBGjCUBJNOhrh1VGDDHmyqqBrOrIlz6Sp8aZ6cAQ78aS6UZyKqQhbg5OQZYm0tDR0XUfXhGkB1JBlBV0Y1k1ZltG8xpg1t4YSpKClaeY8fUpsrXtrkS9vPg4cPMCB/QdYvHgxJUuW9FPgTpw4wdKlSwEoVKgQj7V5jEVfLMLj8ZCamooQgsTERMLDw6/K6eXxeDh27BghISHky5ePhIQEzp8/T4kSJW4oXvdOPQ93EwJrYCCwDr41cDqdxMTEsHfvXnLmzElkZCQul+u2f7alpaVlq50iSbfVLKcETIDXjVuiAL7++uvMmjWLYcOG0b59ewBOnz7NH3/8QaNGjex2JUuWBOD8+fPZll2tWjUef/xxRo8ezYABA7J1T1BQ0F1PJXA7x3f8+HE+/fRTzp8/T5MmTahduzYSEseOH0NRjMSHlNQUSsXF2rFykiwRHBLM8OHD2bJlC2FhYcTFxhmZsxni3YSwFEDD8mdZuYQu7OsII25PhBg0LXpQEG7NjTM8wkjQ0IVh7JJlhNuLHOxAK5gTNV84IbkicRTIiZ7iQQ51YOpFpjyR+bdldTScwAjTcicsRVXT7b8Nq6RAhBrKnR6iG0pYsOZT9iyYWcVCN+YgNN1Q/Kx5+83XVBbN+YqQIONeIfxiFyVZQlJkgkOCM48vwz7YVDbW7yAfhY09PASVq1SmUqVKSLKEO93NJ9M+4eOPP6Zq1aq2Evj4449z9sxZTp0+xY9rfyQxMZGTJ08SHBzM3r17efvtt4mMjKRevXrcf//9nD9/ntdff52uXbtStWpVjh07xjvvvENKSgpgJJPs37+fyMhIKlSoQLt27W7ojN7tz+vtQGANDATWwbcGFSpU4JtvvuHFF18kLi6O7du307hx49s6luxyEsq3OQ04kARy/bjpCuD48eOZPXs2Y8aM8aO9OHjwIL169eKHH34gOjoagK1btyLL8nWbsP/3v//xww8/MHHixJs59P8Ezp8/z8SJE2nyYBNq1qgBwlDSPKlu8ubKi9B1ki5dIi4mFm+ax7hJGC5R3ashKzIVS1fAEeTAm+pBcaimtU9GCB3dq5tWPTfOMBfpF1NRgxyGsqL4XJmyIhtEzYpBt6I7BG5NR3UZVjQ0Q+HxXnLjyhNCWqqXoEtuUo6lEBQUZHD/ZUjUMOQZbmfNreEINiyAhhVNRwCqQ8HrNq2OKW4coU48KW4Up2q6gCXDiqkZVjzNoyE0Hc2joboc9niF7nvNm+rGEerCfcmNK9yJ+5IpD2Eqgda6SXhSPbgignBfcuMIdqCle5Edih0DqDhVPKkeglwu3CkenCGGtVBWZeObtKkAGtZFGa/Ha+xDuhfVqRpud8VHZaM4FLzpXhzBToRb0OXpLqxbt5a9e/YCBoXOzt07qVevHi1btrSJn5OSkli3bh0bNmwgV85cdOnUhR9W/cCgrwYREhJCdHQ0c+fOJSoqClVVSUlJoXChwqSkppA3b172799PYmIiefLkuX0HO4AA/gOIj49n/fr1bNq0iWrVqrFq1arbrgBmF4qUIXzlNiCQBHL9uKkK4I4dO5g8eTLdunWjdu3aJCQk2NeqVq1KuXLleOWVVxgyZAjnzp1j2LBhtG3b9ro/KCIiIhg0aBB9+/a9mcP/VyIhIYFfN/1KxUoViY6OZsGCBcTXjuf+uvcbDUylQlFkkCVefnkgl1IukT9vfiQrNM7i0FNlI95NNWLOHGa8muLM4B4028qKEZ8WFBFsEy5Likm0bCpssiojqcZvt+7BKTuQVQU12Ax2k8CZMxhJlgiNVpEdChHVog3LmJmxa8tTZSO+T5GMeDzVHJ8ioZjzRAKnqUw5Q11G/6Eum//PClpRhBE7KKu+eDxrvAYU1CAHkmRQzSCDK9yQ5wpzmZZBYX/7FbqCrMooThXJaqPIxr2S5LcPBoWNjDPUiazIOENcPgsg2CTWkiIb7nJZwiE7kOUM4zOTWiRJQlbM8YU6kRSZevXr+8k7c/YMy5ctZ/jw4ThUh20tjI2LpX69+pQtWxaH00GX4l1IS0/j7JmzFIguwMqVK1m8eDE9evSgT58+FC9eHKfTSVJSEn/++Sepqak4nU4OHjxIsWLFOHfuHN999x2PPfZYIIYwgABuEIqi0Lx5cyZPnkznzp05ffr0nR7SFaHcXg9wwAJ4A7ipCuA333yDrutMmTKFKVOm+F1bunQpH3zwAa+//jrt27dHURRatWpF//79b6ivZs2a8cUXX7B69eqbMPJ/Dy5dusSWLVvwer0ULVqUjz76iBLFSrB0mRHrFREeQbsnnkRze42MVzP5QPdqSIqES3URmjsEr9uLbLoyDQVLMTJTXSreNC+OIOO3f8KDEWMnK7Jxv2xY5dQg1YhXc6omybLBsedNc6MGOUm/mIbuFKSna6jBDjOpQ7KtXZIkGVa9ECdaugfFqZquUdnMotWRNQUt3Ysj2IEn1WP/9ilt+NyuJoWMIlR0j4ZwKLZVTQjdrARizFd1OfCkeQxlLWPQXkZiaZOQWhGqae1TMiiowujLqZjjMq2OLtVfHiDLEprbi6Z4DXnmPGXT1Qym5dTmHvSiBql4rRhAXwigb3xe3V7HTFZCIcidIxftnmiH1F7iwpkLKE6FEFcwqtNhZjSD7tbQhcAhO8ibKy+SgPh74/n555/59ttvadiwoR0jeObMGTtGaP78+RQtWpSXX36Z6dOns3fvXnLnzk29evXuSJ3QAAL4NyA2NpagoCDWrl17d8dI3mYFMMAEff24qQpg3759r2mVmzBhwnXJLFSo0BVLvWVVL/W/jkWLFnH69Gn27dsHGDGTHZ7qQOUqlVm+fDnPPvsswSEhmLqJbT0DYVjQ3Ea8m2zG6UkKpjUJJKdq1Mh1mpmvLtWnnJhPutANd7EiVBSnEU8oKTKOINn8iibbGbSqy4EkgcPlwCtrOEJVZJdqx7aBoVRKliXOISN0I9tWUTIcXaEYCqMZdKy6VCRFNqx0smTTpFgxdbIqI0mGu9iylCkOQyGRUex4PJwqkgSqUzWzdn1KJ2CPUVZlJG8GeYqPCFqSjPWQzHHJqowj2GEniviNT5WRFcWwFHo0OztZUiSkDPIsy6HiUJEkGcWJrdRJkoTAF3doj8+TgdwajMQVc+6qw/g7V56cKA4FzatnkGd+SRACRZWRZGM+LpeTbl268fmiz/nxxx8JDw+nSOEi/LLpF4QQlC5dGlVVeeKJJwBs9/KiRYs4cuQIbdu2DcR2BRDADSAoKIiBAwcyatSobCdC3gkokoS4jRrgP6lM3t2CQEmNfzhSU1PZvHkzJ06cID09nd9//52hg4cgKwqHDx6mVGwpdE2nYoWKlC9TLnOGqi4QpgVLslyrwlSUsBIoDOuUcU3yJSaYsXX+1jiBLAkjjk6X0DQNxU5iyGA9w7SeaaB5vGiqjoKE5DBft0iVzbHqmo6s6X59ZYSMZFoXfS5SXdMMhc60ngnJnINu1P6VFYPkWZZkH2+flcmModjqwiSG1s3XJYGu60YcoyRnWBOBZMlDMoxxVtKGZijIuqYj67q9fkZbn3VP6Mb4hBAZ9kEgCd126xr7IGyro5VwImThK2dn7QO63UbXzXkKYb8pCyEM668ukAT++2qNN8M50SXfXuu6TlRUFD2e78GJE8fZtm07O3ft5IG6D3Dw0EF69+7ttz+dO3emSJEifPHFF2zatIkCBQpcN1F1AAEEYCBfvny88sort0TpWbVqFb/++iupqak0atSImjVr3lA/fuxatwFSILLkuhFQAP+BcLvddtbloEGDAGjZoiW5cuaie7fuREREAlCmTGk7mcGwDOHLggWQJPOhkXwZrZJk1HCUfa8BhhYoMLJ0NSO5QQjdpmExlAkJHdNqZ8bByaoR/6Z7NVt5wWyDANmlInkNRQNkOz7QaqPb7E6+JAhJNrNubZcttjtbcchomqkw6YBiZveaGWl2Zq45JUk2+zGVIWO+5nVTnu7WDKuatX6SjzlakgyOQ8v9kHF8/tY9CUnz+URsK6O1H8J3vzEG85pkuugtJdEkt5YdMmggme38so5NOVhB2OY1WZbRNGMfhK3wGkKNfZX89tWw/vnOi7CYss11lGUJzSuIji5EwQIFebDhgyScPc269etYt3YdBaMLkiNHDnLmzImqqjRu3Ji4uDgOHTpEzZo12bt3L3v37kVVVe6999672poRQAB3GwoWLHjTZaamprJgwQLat29Pvnz5WLRoEZ9//jl58uShRYsWNoVbdnC7aWACTNDXj4AC+A+BEIIdO3bw008/sXv3blRVtTnW2j7Rllr31TKtNRlukmTDBSlJYCo6xjPi/6BYbYx2uq04SBJGhQ2rjZB8xMaST8mwg28t+ZJhqZJkCUm3yJBlk+vORwRtkUDLsoQuG1Y8WVHsjFwrhkSSTLJmS6Y1VgkkyXBfS7KMJAtb+bTGaSt/5pyt2EKfi1k2GeutOcm2Qiebk7H6s7OYM8zVtwYZ5Jvzt96QZJkMayrZ65cxa81aNwlDCZNk3ZwTvphIqw+RYf1lX58+LRRDOcW6J8O+SEbdY7tphr22x2XJy/CV2qJ08J+DlOEsGBsbFVWAbl26sebHNaxbv44zZ86QJ08e2rVrR6FChShWrBjFihXjr7/+8sviX7RoEWPGjCEiIuLqD0IAAQRwyxAcHEyTJk3YvHkzPXr0YMCAASQlJXHo0CFmz57Nww8/TIECBbIlK4uPmgDuMgQUwLsc6enp/Pnnn3zz9TcIBA/UeYD2bdvjUB2cvXCWUFcoYZFhRl1cxRePZ1mSdM1IxJBkTFehhNA0Q7hkxuzJErrXpDpxa4a1x5Snm3V3JcmQgyyZFkXDPStJimFxAzsJRNIlNI+OI1hF83hBUo2yaorP9YjAkKPIaF4dTdZQZAVJ001rl+STZ/aJZCRtSJJkJq3ItjzhEQYNjCzjTfcCqs/da66JbLk1nYpxvykHfPF4Vp8goZl9GOvnS0gxOzWTLDQfoTQYa2HF95mKta4LJK+O5tZsV7BiEjpnrI5iWNSMvdE95m+T9Fk33ciyuVdShn3QNYEiGfQ1vm/BpmVW01EcRvIHlgvXsv4h0M19yLivhitZMc5JxjlY6yWZ47P2IUNWr45OscLFKNklBo+ZJLRh4wYmTJhAnTp1qFu3Llu2bMHlclG5cmUKFy6Mw+Fg0aJFTJgwgb59+wayhAMI4A6iefPmvP3226xcuZIHH3yQiIgIKlSowMWLF1m1ahUPPvhgtuQoluXgdiGgbF43AgrgXQa3282BAweYN28e586dQ9d1SpQoQctWLSlbtiwSkl0NokDBAma9Wtm2ygjhewokyUgq8Fm8dEOZsE16gG5mlpoWLsWpGNx0pitTMpU1JFBkFUVVwGVa5CTJ/I2P70lIZp9eIxnEqaI6VXRV92WpmgkKqiwZSREhDoQXFFUxSqBpUhbyJLOMm9GnZFrVbHkmJY2kSjhCHEYbL8iqgqRJZiIG4JWMOZhuVEnGvtfnxpV9FkfFSN5QVMVWhizIsjn3DOuGZuyPPX4JZJPU2aLGMRI5Lls3U56SrvjJs+ermBw1koQiZ0haUWWQDBJqMu6rmd2tSZpJjaOYSSYZ4iez2leTJkdRZb9zoljnxNwze1wZ3+Qtt7YLY39dKrIiU6tWLSpWrsi0adP49ttviY2NZffu3YwZM4aQkBCEEGzfvp1du3bx6quv0qdPn0CCSAAB3CEoikKXLl0YO3YspUqVolixYgCUKVOGzZs3Z7sMawYnyG2BkG5v6bl/AwIK4B3Cjh07OHDgADVr1iQ0NBQwiLHnzJlDYmIinZ7uRFxMHCFhIab1zIhF0zWB6jIIg50hBqGxM8SFO9VtKwVgEhBrOrIqDKJgl2pQv7iEUZbNTB6w6Ea8qR6cJqGxM8xlUJWY8owMWgnNq6Mr2mVEy1cmgnaFu/BcSjeSGjy6z6NoEUG7vciqQY+iO3Q8blBdwrYMgmFpUkMceJLdOMNduJPSfMTSGa1nijDlSXhTvcYcUj2oLmEnQkiyUS4OMChZZMko82YRQVvWLrOqh1EmzrR8uoxkFVlVjCQJIVAcKt40D2qwwyCCDjPWTzUpXjJa9WRVwZtm0MB40zwQDF63IV/XjRg+1aXiTfegB+s+ecnpdja1QaZtWB11j47m8eIIMeXZ+2rug1mCz5vmxWlSz6jBDoMWxk9xNuare/z3FZfDtrIKk8pGNalsnKEuY91cqukuzyDPGp9iEnIHqXjdGqFBoXTr3I1Tp05RrFhRJrw3kT2791CpciUkSaJXr17MnDGTXzb9wvvvv09ERATVq1fngQceCFgEAwjgNiN37tw8+eSTjB8/ng4dOpA/f36io6Pp2bMn33//Pd999901ZSiS5PeF+VZDSBLe29bbvwMBBfAOYOfOnbz33nsArF+/nueefY5Vq1axZ+8eOnbsSHp6OhUqVPCR+TpkI24LxQ7Kd4Y6jd9hLoMwWHbiX9IMZJHBUqNItqXQx43nK91mWXVcEUFG+zBXpqQCWRU+omVFwmHSmyhOS56KEIJz58/x2Wef2SXBSpUqRcmSJSlVshSRkZGkp6eT6k4jPDQcIQmOHD0AQNHCRVFcKpJD4mJSErIsEx4ebvQdEQQy6E7w4EUgUCQFl8tpJ1TIqmRbHSVFxqmYRNX4kjeseVrrJoW5Lls3gWzSytiWLtMSJ6kOYx8cilFaTpJwKE6/dXOFZyHPadyvZCC+lmQJh2pY0JQMJeocIU6DUDo8yP6diQhaN+W5FPse3776zoltdTTnK8mmdVLxJYFIsoRsKtOKUzXkKZefExAO89yZMp0Z183O8sZv3RSHYlsvJUki1BFKifDigESp2FLsP7CfSpUrGWdVlmnzSBs0XePMmTNERESwcOFCvv32W1566SVy5859S57FAAIIIGvExcWRnp7ORx99hCRJtG3bltjYWEqXLp2t+++EBTCA60NAAbwDCA4Opn379ixevJjz588zfcZ0YkuW4qW+LxESFmJYdHSBJ9WD4lQs4xTgo2TRLIJfr698mmVNstra1r00D2qQA69JaGx6/gx5QiDMODzZlGfFtMmqVVZM2GXF1KAM1sdUnzwjY9WwOi6Yt4AiRYrQtWtXzp07x549e9iyZQsLFy5EVVRSU1NRHUYSi6IohIWFERYWxr69+wgNC+XixYuEhobi9XoJcgURHh5OUlISiRcT7VrFkmRY1vLmzUupkqUoU6YMJQoXJygsmPSkVC6mJXP86HHOXjhLUtJFkpKSSb6UbBROlyA2phRVq1cjX668drk4m8pG8y+j5kk1rIRCiEz7oHt1kCXDUmmWi1PULORZRNAhGYmg/c+FJEt40714ZS+6R0NxGTGPFnUPCBRVwevRDGuhaX30ZnVOLttXzTwnuskvqOsGV6A/wbdJoJ3mRVFlH6+05FNoNY8X1SxjpzhN4mtZRhfCdKtnkGcRX6ddRsgtSZQoWoJlXy3zm39ERARdu3Zl69at/Pnnn9SqVYv169czdOhQSpUqRbt27cifP3+2nrHz58+zePFi8ubNa9cCDw4OpmTJkkRGRmZLRgAB/Jfh9XqpUqUKjRs3Ji0tjXXr1vHVV1+RlJSUrftl6fZW59ADCuB1I6AA3mZcvHiRsWPHEhYaitPppH+//kRGRBAUHGxbUxxBDiRZNn6rMkIT/pQiigwmkbGu6PaHqyzLyFbdM8mw7CCD6nIY5duCjNgs232ahTxJ1g2KEciQtGEoJw7JAQo4ghzIioIjozzL2qVIHDpyiPYd2hMSEkJISAiFChWiXr166LrOuXPniIyMRFVVzp07R2pqKvny5TPpSWQSExPJmTMnDocDXddJSEggOTmZiIgIcuTIgcPhsNdS0zQOHz7Mzp07+frbr7lw4QIhISEkJCQQHh5OVFQU+fLlIzIykgLRBQkPDyc4OBiv18u2bdv4YPIHBAcHU7lyZapVrUpU/ihAQqjmPphxlWqQw1CuNX9rl2zWOjL2wSzFJql2WTZD0TbbS+AINsq7OUKcmYmbdYOQW0lXUINUdMW0PEr4laEzrI6ysa9BDkMhzua+GlZDFQm76p0ZO+qwz4msKDhcmffVkicpZtynaS1UnKoRl2q0MuS5HPa6yYp5ji+zEhYvUZzjx4+zZPESGjVuREhIiL2vJUuWNCzgQOnSpfnss89QFIV3332Xl19+mRw5cththRAcP36cpKQkChQoYCt3brebX3/9Nctn8N1338XpdP6t5ziAAP7N0HWdYcOG4Xa7eeaZZwCjAokVr/vtt99eU4aSgR3hdiBABH39yJYCePLkSd544w02btyIqqrUrVuXgQMHEhERcdVrWWHFihWZqoWUKlWKZcsMa8D06dP55JNPKFOmDG+++Sbh4eFs3LiRjh07MmDAALp27ep376effsonn3zCDz/8cCPzv604e/YsGzdupGzZsjRu2JhcuXMRGRFBaloaumaWIMPgsZNMbjfFjEmThOm2M12BfpmgZmaoUHzB/bZ7TscsBwaaV0cBm2TYKgdmxHhptlXNlicyWG30DCTKXoNnT88oTzKsXSmXLpGenu73gW5BlmW/us+5c+dm+/btvPHGG7z66qvkyZOHfPny+bXPnz//Fa0+iqJQvHhxihcvTtOmTTlx4gRer5f8+fNf8wO+dOnStGnThgMHDvDrpl+ZMHEixYoWo+0TbQkNCUEW5j7owuZHtGPidJMUEcWOqbO4FnVPhn0gQ2a0lMFq69GQMLJ2MxJoY2byCs2MgzRL6dlWXdPyKYRJTG3tmab7nxOL4FsIO2ta82ooyDbDjt850XzWZEk2MpntfZUznBMyyDMtzpfLs0i7kS0CbPOcZLQ6KjKqrNK/b39+WPUD//d//0f//v2z5AGsXr06ERERzJ8/n8TERAYNGsT7779vX9+3bx9vv/02AA899BBNmzYFIH/+/EyaNIlLly6RlpZGYmIib731FrXuq2XTJwUQQACZkZyczOzZs3G73TRu3NjvmiRJfl/ArgZZMjOBbxcC+t9145rR1bqu07NnT1JSUpg5cyYffPABO3fu5OWXX77qtSth3759xMfHs3btWvtn1qxZABw9epSvvvqKDz74gLJlyzJjxgy/eydOnMjRo0f/5pTvDA4cOMDrr7/Orl27iK8dT7FixciRMweYWb02zEOsqGYCBr5kBzsbVDIsNNYHrlVuTbZitxRftoVkZutKZgaGQX4s2/Jsvj7ZLAeXSR5mWyMKMWMGaEZ5Z8+dZeHihYx5cyzx8fF+lrqrwVLUrlTu73pQoEABChcunG3rjizLxMTE8ETbJxg1ahT58udj3Jvj2LN3r5EBjK/smjDX0lpfKUMGsLUP1r5YmdG+ffCVs7PK1QmTu9BqZ1gT8ZVvs2SoilG+zeIXNN9RJcXwr1jfev3OiSzbmchW9rAsmxyLknHd4ujKOG6szG+yPifGHxLI1pgzyDOzhe05qRbvY0Z55jkzLasFowvSrm07ypUrx7x58664T7GxsQwZMsT+4mjVGgbDWti8eXOeeeYZW/mzIEkSYWFh5MmTh5iYGCZNmsRTHZ4KJJUEEMAVcPLkSUaPHs3+/fvJmzdvpmfqeiDdgZ8Arg/X/Cr8119/sW3bNtauXUvevHkBGDx4MO3atbvqtYsXL2ZpBdyzZw+xsbF2+4xISUkhV65cxMbGcvDgQbZt2+Z3PVeuXIwcOZKpU6fe0GRvN3799VdOnjzJ/v372blzJ82aNqPxg43NyhhmhY1/QeL6jr92MHv2bGrVqkXv3r2zTRQKRpwJQGJi4q0aXrbgcDho06YNpUuXZsaMGcTHx1O6VBwxpUpe+aabtXXist9/R8bNancb0aJFC4YOHcrp06f9LMCXo1SpUn7WPwvNmzfPVj8BF1EAAVwZiYmJjB8/nri4OHbs2MEzzzzzt0IlFCSjGshtQ+D5vl5c86twwYIFmTp1apYKW548ea54LT09PUt5e/fupUSJEllei42NJTw8nEqVKvHWW2/x1FNP+V0fPnw4P/30EytWrLjWsO8K/Pnnn6xYsYKa99QEsOvyIjBImr1mLV2r3BrYH9AWIbCEL2NT13XDrSbwudfMJA1h1skVQpgJA5jtLHegSdaMeS/YbmfrfjAIfwXCJJHW7coixuuGO0+YblG31813K79j7mdzeab7M7Rq3eq6lD9rTgDFixe/rvtuFcqWLcuAAQO4cOEC70x417A4C2sfdDDX167fqxnxfXZ5OXNtAN8+IBDWulnZvLY8Yw10zXe/ta+XnxPjrAhfvxnlSZedE13PMBZjX3WTAFzXdbtWsd2PphvyzGsS+Oah63a/6AJ0Y266ptnjt+L77Dl5fWuFJU8T9hqKDPIcqoMH7q/LnDlz8Hg8N3M7bwhCCM6fPw8YFpHff/+dXbt2cf78+Uw1qC1omsbKlSuZPn06y5Yt4/Dhw7dzyAEE8Lexc+dOFEVhx44ddO/enUKFCv0teYp0+38CuD5c0wKYM2dO6tSp4/fa9OnTKVq0aJbxWda1rJRCj8fDoUOH2LBhAx9//DHp6encf//9vPTSS4SHhwMwbtw4Bg4cSGRkJIqi+N1fvXp1Hn30Ud544w3i4+Pv+rJRMTExIKBGzRpUq1oV2aEYfHiKhCwU2xWlmG5DIZl0HKarV5j8dTKyL4jedL8JYVGLKBnkWe5AUyGwSHxRzBJrpovSKuElC7teLxhuRUW1KFAyyDPpaCQk3F4369avY+26tZw7d5bYuLhMgfnXg1KlSvHcc8/ZZKN3A3Lnzs0TTzzB5s2byZkrp0mgLAHm2si+JBAhZHv9baoX2UqJMBU9082qmOsuq+Y9kuKj2pGNBBqLtsV/XzMQKEoSQjKURFkyaFYsPj/rnCAEQva5oO19Nd34GUL2fOfErxTfZeckozwHNrG0JFvyMrihzcBvSQZdMvrVseT5qGcUMPpSjb8bPvggx2Yd58MPP+See+7B5XJRunRpgoKCbtOuG9i8eTNz584lOTmZ7t27M2XKFGRZplChQpw/fx5FUWjSpAnR0dF4PB6DBklR+Pbbb/F4PNxzzz2cOnWKMWPGULBgQYYMGXJbxx9AADeKEydOIMsyzz///E35Qq5IEurttMr9Ry38vvr014/rjoaeMmUK3333HZMnT76uawAHDx7E6/WiqirvvPMOp0+fZsyYMbz44ot+7OK5cuW6Yv8vvfQSq1at4s033+TVV1+93uHfNly6dIlvvvmGTk89bQTyawLQ8KR5cQjVLBlmWFI0r4bm9mYg77XoODwG1Yam+yl3QtfRPDq6W0NL9+IIc6F5vAhVsRNFJLNaiOpS8aR5QMKkgTHlZSjLJoRA8xrWRSPBQzWTGWRbnlfTWPPjalb/tIYSJUrwdKenKVas2N92qzmdTipWrGjQs9xFuHTpErIsExIUgifVjXCZ5ewy8BoIXbatgYZL36RFUXzWPyuhxiJlVk36HNWUl7ESiK4bZNa6W8fr8aJilnBTTUupsOTp9jkh2NzXTDQw5tkyqXs0dwZaGSshw4xDtChnvOkeY6/dmkHvk4Ec2yIN97q9Np2MTQNjybNoYNK9KCZdkDCJvWVVtq3bhtJrWBW96R5UHKAJOrbvyPcrv2fP7j2cOHGCH3/8kRdeeOG2xuydOnWK5ORkcufOTcqlFHNfdEKCQ+j/Yn8OHDjAD6t+YMPPG+xkEq/XS8mSJWlU70FcwS6EgFyROZm3cD5JSUn2l9sAArib0ahRI5o2bYrL5bop8m53XN5/Rf1LTU1lyZIlrFmzhq1bt3L+/HlkWSZnzpxUqFCBevXq0bx58ywTMS/HdSmAkyZNYsKECQwZMoQHHngg29cslCpVig0bNpAzZ07AKC2TK1cuHn30UQ4ePJgtK1BkZCSvvPIK//vf/2jVqtX1DP+WIz09nV9++YXjx4+zZcsWatSoQcnYkmZwvVFWzGWVFNPMsmCKhCJUFKeKbJEBBzuQFNn+rQjFLttlEQZLJqGv7FAM2hZJNahHLMoYCZsY2RHsQFZl1GCDlsNPni7McfiC962yaVYG6OEjh5kxcwb58+enV69ef9s18E/A8ePHCQ0JNQivg522Fc2GEHapOJsk206gMX9MC6xFn6IGGxY+az8UR+Z9cAQ7DIJnxbCaWedG0jPLs8+JSQRtC8N3ToySc9b5k33jsyheJDPBJ8N5c1oVZawU3wzjM5Ji8COKlhUZCR/FC5Jqz1NxKL4KNZbfWZIQumzKs5JFjDE0bdqEdI8bh8PBu++8y5o1a6hXr97t2XSgYcOGlCtXjujoaM6ePUvt2rURQrB+/Xp++e0XSpQoQbdnuhlWeM1YE8NSn4HWRwhqx8dzKuE07018j54v9LzrvRUBBJAdheF6oEgSym1Uy8S/3ALo9XqZMmUK06dPp1ChQtSpU4cWLVqQI0cONE3j/Pnz7Nq1i3nz5vHmm2/SoUMHunfvftU4zmwrgK+//jqzZs1i2LBhtG/fPtvXLoel/FkoWdIIsjdKRBXL1lhatGjB4sWLGTZsGI8++ug126elpd0WC5NlkWxQrwGdO3YiKiqK5ORLyBZFh1keS3UqBiWLKqPrOm6326T70M0SaUYJLU+aF8Wp+FmKhBDIsow7OR1XuIu086m4IoMMy45TtS1FsuIjdfammoTBpqVI9xofXEiAyR2X0UKkOFSzfJnMkcOH+XzJIh566CHKli0LcEvW8koxo7cTmqZx6dIlTp48ydKlS7m/9v2kXkrFm24QXmuXWWJlSULz6Cgu07rnVNE0DUVRjH0wFSXdaxJLW8TNKR6UINUOBwDfvqampKB7hUEo7TDOiUHIbVoUJdlnAUw3z4dHs9ta8jDdAlq6ZvalZSL4tku3eXzyVKeC5jbbZKg+opvKjpauGRZFq7ygSUNkdmmUDPQYpNPeVI/dt5XdbJef0w2Xt5ae8dwZa+zxuHE6nTzc6mHmzp9L7ty5KVWq1G07B3ny5CE9PZ2wsDDatGmDEIIyZcqwY8cO1q5dy6VLl7i3xr3UqF6DoJAgvOkeZKfCkYOHOXD4INWrViMkJJTGDzbmx+AfmTp1Kh06dLguS+Dd8DzcDQisw923Bhmz8K8GGVCu2ermQb92k380Hn/8ce69916WLFlCwYIFr9r2wIEDzJkzh8cee4wvvvjiiu2ypQCOHz+e2bNnM2bMGFq3bp3ta5fju+++Y8iQIaxevdou9r59+3ZkWb7uGLARI0bw0EMP8emnn16zrVUJ4FYiISGBxMRE7rvvPh6o94AZm+X7YLfq0erWB7rmo+1ITU0lKCjIqC+rKHbboCCDM80iSbaC7GVVweN0oQapOFWnUeM1XbMJnG1uNovnLUg34g+Ddbumr9/4FBnNa9a59eo2+bTH62H2Z3N48sknKV++/C1dP+CW7JGmaZw4ccL+dnvuzDmCQoIoUKAAuq5z5swZ9u3dx/qf13P06FGCg4PJmzcvLR9qSbly5cz1C/Ltw2X7ainKuivzvvoSPjCsXsEG2bMeZCr6Xi3TPkiyREhYiN8+2PJ0n49XyiDPrlms6b5zYu2rx4vsMPYVRUISki0jS3nmuDISXxvnzujLm+5BcaloDq9hAQwyDXvWlwlFQuhmfGRQkFFpxJxnRgJtXTPH7vaNz6I2Sk0znocS4eE8+eSTfPLxJ9SOr03Tpk3vGIVLtWrVqFatGgDnzp1j4cKFfDf2O8LCwlAUhaSkJPuLUWhoKPfeey+HDh3CFeRi//79LFy4kB49euB2uzlx4gRRUVEIIa4a43ir37P+KQisw921BtmNy1Wl21tp4lql4NxuN4888gj9+vWzvQoej4fRo0ezfPlyAB555BH69+9v5x/c6esZ8cEHH2S7ElLx4sUZPHgwp06dumq7a+7Pjh07mDx5Mt26daN27dokJCTY106cOHHFazlz5kRVVS5cuICiKISHh1O9enVUVeWVV16hV69eJCQkMHz4cB555JFsT8xC4cKF6dmzJ2+++SbR0dHXde/NhsfjYeqUqTzc6mHq16+Prmno5ocmCFAwPqQlxSYM1jxe84PdsA5aGZK6MAibJc3KElWM2DzZlxGqCNBSPciyhDfFg6zIRnmxYIN7z3Lf6pqPeFgBI67PKitmjs+OAXRrSJJsxHhJDjS3l5WrVlKkcJHbovzdKIQQ/PDDD6xevZrz58/jcDhwOByoqorD4SApKYnIyEj7W2tEeATp7nTOnDmDLMvkypWLggUK8mCDBylWrBjh4eGGspOBZFtYGbqanmlfLyeC1jxeQ9kxxydJhrVLkjAsYxgWNuFQzExZY1+F6R7VvBpCN+LwVEnC6/aayRuGRi9Jsh+xtGKRUVvjk/EjgrYIpb2mopVV+Tn7nJiWSt1rZveaFk9bHkZ8nyTLeJLTUYMcZpygz+poxQPqZr1hBex5WtZpIYy4QyGMtZBkKcP4jFhDiyapWJFi9H2xLzNmzuDw4cM8/fTTN91Vdb3IlSsX3bt3Jy0tjeTkZDRNIzQ0lI8++ojdu3fz1ddf8cWXX1CwQEGKFC1CoUKFOHPmDJMmTeLAgQM4nU4uXLiA0+kkJiaGRx999Lqz5wMI4G6HfJtdwNpVXMBpaWn069eP3bt3+73+9ttv8/PPPzNlyhQuXbrEgAEDiIyM5Nlnn70rrmfElXSkxMREwsPDs/xyfC296poK4DfffIOu60yZMoUpU6b4XWvcuPEVry1dupTY2Fh69epFdHQ0Y8aMIWfOnHz88ceMGTOGxx57DJfLRYsWLXjppZeuNYws0blzZ5YtW5bt2oS3CqtWrSJ3ntw8ULeuEWslzNgt03oiSUZ2KJgEzxJmlq3sZ/kB2bDS6BKKU0FzG99q7CxdWTFi/8wyWwBqkIqkyHbZLStWC0ySaIdJGG3GLCFhx2RZGZ6SLIHDOAqKwyjxlZx6idVrVjNgwIDbvJrXh61bt7Ju7Vq6de1G/rz50dFJT0tHFzrpqemER4YbCoOpp1jWUc1jKVZyhrJsGfQjWUIWRgk2HYM+xSI+zrSvkrmvsrmvVvJMhvcjSTEyXyVFNuIF/fbB/G3JEaA4fNnARraxAGHEfuoIJFVGxrevggznBCPD229fVcWoKezVTXk+KyECO0lDVmSD6sUaizkuiw/IOqtqkMNw77o1JFU2KWQEslNBpBl1gjW317e2soQi+77VGmXujGxzI1bRyFQXZhiEZTGUFZmcOXLQu3dvFi8ywj5KlCiBJEk88cQTREZG4na7bQvJuXPn2Lx5M7GxsRQqVIhjx46x6ZdN7Nu/D7fbTVhYGJERkeTMlZMcOXLYP6GhobaciIgIEhISiIyMvKq1IygoyO96zZo1qVSpEsWLF6dQoUKoqsqiRYs4cuQIYFDKvNirD4WLFiHhVAL5o/Kzbv063nn7bTp36kKZcmWu8/QHcCvg8XiyTWQfwJVxtySBbN++nZdffjmTVS09PZ25c+fy7rvvUqlSJQD69+/PW2+9xTPPPIPH47mj16/l7fjoo4/4+OOPSUxM5JtvvmHChAlERkYycODAbFc7umarvn37Zirddj2wqnxYKF26NNOnT78uGTVr1syyUoSqqlf1b98OzJkzh02bNvHiiy/arjeb4ywDdCGQdSP7URJGtq6QhMnZ5rPEWaW80LE/OA0OP8utaJVx00EyrC2KLszybpJdls1oK1DMMVljs/nnADAqUsjC7MMuNyexfMVy7r333izpfO4mOJ1O3G4PR44c4WJiImXKlUWVVSM2LkyzE1kM+MqySUjIsqEQCdnkp7PKsvmtk3m/Sf1yuQXN3lfd3FfzfmGVUTPPg1Waz9pXQ9vU/axnVv8IYVgN7XMhmWcEZJO6R7IskRnPScZ9FQLZ5gY05YmM8kxuQXOswjp3wshGNnRcy4VtWTEl+6zqmo5snjvFLBNolB40LM9KBiuk0AW6pNtv0DZnoWRloZvWaEX48R8KAcjGeBSHYlvYDx48wNnz5xg9ejS6ruPxeIiIiKBQoUKcOHGCvHnz8v3335OWlkZoaCjVqlajWZNmuFwuLqVe4sK581xMTuLIkSNs3bqVxMRELl26hNPp5OzZs/Tr149x48YB0KFDB+67775sncWs2j344IN2JZJff/2VBZ8v5NlnnyUqKgpFVagTfz9RUVFMnzmdIUOGBDKG7zBOnz7NiBEjGDNmTCBx529C5fbSwOhX6GvDhg00aNCA559/3la0wChykZqaSvXq1e3XqlevTkJCAocPH+bChQt39PrVwuI++ugj5syZw+DBg22qqcaNGzNy5EhcLle2jWqBoph/Azt27GDnzp0MHzKcsLAwm2zZR51hfMjKsmRYVRwgvIBiunOtcCwhrJA9w7IENmmv5UKUZR9pL2Y5MVlV0NxeO/7KzkI0Y8GEwIj9Ev6Ewbrp4rTIfU+ePEF6mptCRQqBgC1b/2T7ju0MGzbsNq7mjSEuLo42j7Rhy5YtbN68ma5dulI2rgySGZiWcR8sLkWDY9Hk6MtQh9fmUxK+dbbqHhvrZq5rBnkIwxVsyMNW7DPKE5LlQjWVKjMrV9csJU3H8qQKM7sYL3b2raU8SeY+I1luaVNZlbLY1wyKqKyq4PX6XNl6hiBRc55Cy/AlQTKTTTQjecMiG5ccko8kWvjc37opT7KyhU33uWlmNErYSbJN+m19qZEVCbzCt26WFVb3PUfWGlpJNbly5yJHZA5kRaZKpSocP36c8uXLc/rUKU6cOokqq1SoWAF3mhuv7iXYtNBJkoRuyTKTaDImnlj7OvWTjzh+7Dht27Zl4cKFLFu6jH1791H9nuqUKlUqy9icqyE8PNzmUV22bBnHjh9j+IjhxMbG8twzz6IoCrElS1G5UmVWrVpFy5Ytb+g5CODmIDIyEoAlS5bQsWPHOzyafzZk6fYmgchX0DW7du2a5eunTp0iJCTErwa5ZfA4efIkiYmJd/T61RTABQsWMHLkSO6//36GDh0KGAwGISEhDBw4MKAA3g6sXr2aZs2aER4eZrjmdJMew3TTIsmGIiL5KDhkkyJE1mU7Vsxy68qme1GSLeJhk+BXmFQjllJhUXoopgtNkU2yYp/lz+8+sOv3Wq9jKi8/rf2JhZ8vJCp/FIkXE+2U8Z49e97xWKvsQJIkqlatStWqValduzaTJ08mNDSUJk2aUPOemn77IEkmfY65R8j+dWzBcp/Kfuun63KW+5pZnmTWzZX9rGeyVR9XmDQsJl2M3bcsIwmLRDnDOTF/2zGFppIom9qgRfxsnx9T4bUsf5Y71z4vshlLaM1VWH2Y40P2kVubxNJWvWEhGUkvikkTpDhkH7ef9cZr8k9aLmXdWh8ZnzzrTFtjVnzrZtVJlkwidGuNZdmYtKUMWvWq8+TJQ548eZBkifxRURSILoju1QyKHKcDp+y0NhUJjHNv0d5IFvWR/75WqVyFT2d/yr333kvJkiV56sn2/Lr5N7744gvOnj1LpUqVqFKlCqVLl77uhBSL3zQ+Pp7169dzOuE0BaOjQUC5cuX48acfb/xBCOCmwOVy8dxzz12x4ksA2YcCtzUG8HqVzdTU1EwUKdbfbrf7jl+/Gq6kIBYoUOC6yqoGFMAbRFpaGnv27KHDUx3wejRUp4Tm9iK5HGaCh+/DQRKG1cEq12ZblpDMMls6mscI/pcdGHQcwapB82G6FSXDIGi4xUwXmeY23XFes1SXV89QfswI4ncEO4yEAlky5OmKUbFBg5/W/cTCRZ/TokULmjVrRlJSEh6PJ8sqLP8ExMbGMm7cOI4ePcqnn37KunXrqHlPTSpXrkxIcIjhXteMtdI03XAvajqyZFZdkWR0odsZr5pHM6hd3F6ElUCh+fqThOQrv2daCnWvQfBtuOj9M2g1r2ZT7giHyJyQge8s6F7NOCdmiT7LSmhn/TqMBApk49wJodhxemCK9oKWYXyG9ctHAyPAzBQ2iardXiRZxZtmUNAIBHgxrYoG4bXXbVgFveleHNaZUhWzTKEw6F/SvTjCnEb2r8OQK5vckgJM17FA6IalUJXNhBbJSogy1gDT9WuQTzvwur0mh6UwLKFgK52WC9peN7Nv3bTu+fZVsRNjstrXcmXKUbxYcdavX0+/F/sRGhxK/Qfq80B8Xc4nXuCPLX+weNEiwsMj6PlCz+t6Tlq3bk3NmjVJSUlh8+bNfPf99+TKmYvgkGCioqI4fPgwSUlJzJgxg4SEBFq1akXVqlXt+xcuXMi6devo2LEjVapUyf6DEcB1oWLFind6CHctDh8+zMKFC7PVViYbtWZvIq63r6CgoEyKlvV3cHDwHb9+NZQvX55vvvmGbt26+b0+e/Zsm64tOwgogDeIw4cPEx0dTVh4mJ1FaSViSJLqs0dfZsWQTfoLywoi6zJe3QiatxNCTLJeg5hX8lcUBD5yYJOA2LLsSbKEbLrRbMXDqdjWQkeww3aDfr/ye7777ju6dOlixyD8G+KPVFWlWLFiDBo0iG3btrFhwwa+XPYlZcuU5d577yUuLs5YL9MCK5tWKiFkX5KI6Sa21lQNctgJOxnrqPlZEs3EBVn2ybP9+kJw8vQp9u7ZS4WKFYgIj/DJAx9ljyShOhQUp2JbdP3kmcqOlMFiJikSUpDDTuywcaVzokhmZq/ZxrquyEhBkt85yQhZmNYyRUZ2KDjBHKdikiDrCB0Up4xkkpM7TLJyR1BW8oQZxmBYEi1LpKxIeFFQMzwPqvU8ZCEHTKuobloxTWu4/XyZ+4O1fhnWLat9DXWE0q9fP5uKSWR4XvPlz8eDDz5IgwYNmDp1Ku+//z4dOnTIdhlEh8NBkSJFAIzzuXUbiYmJnD9/npU/rCQ5OZkRI0aQP39+PB4Ps2bNolixYrblMF++fKSnpzN16lSef/55KlSokK1+AwjgZkAIwdtvv51tC9Pd4gK+EqKiokhJSeHSpUuEhoYC2Ewm+fPnx+Fw3NHrV8PAgQPp2rUrGzZswOPx8O6777J//34OHjzoV1XtWggogDeIc+fOkTNHTjS3ZlB/mJYFixzXyn4UQviRAHsuuXGGunBfSkdxGo+HN92DJpulxsxSWrJDRvPoOFw+8l5dF7aVxZPqxhHixJ3sxhXmxJ3itsuyCc3imdPtGCdniNMYg0tlxVcr2LlnFwMHDiRPnjx3chlvGWRZpmLFilSsWJHk5GR+++03li1fxqxPZ1GrVi3qx9cnODwIT6rHtHYZsGIGLcvYNffVLLXmSfHgDHHiSXVnlqfpTBg/gZiSMSxfsZwXe75I3qi8/vJ0g7TbnerB5XLhvuTGGeLCnZpuKFmWkmjStsiWFc7aV6fq49uzkjOcKt4UD85QF+nJaaguh5FEZJ0TgY8XUpbwujWcIQ7DAugyy7yZCpLu1Y3ybpfcuMJcuJPTUYIchqXTa8xW13QUVUHTdZvAXA1xGKXhzBKECF+5ODVIxZ3iwRnqxH3JjeoylD5vugevUMzxyfb51zxeHMFOI7tYNeiRhMDcBw9qkANPihtHqNOgRXKqdtq3FUdoWWCdIU485vOQaR8cqp88Z6gLd4rbzNo25tq5Y2e+/vZrXn/9dWrXrk358uUpWLBgtsMmcuTIQfz98fbfzVs0Z9GiRWzcuJGDBw8SGRlJWFiYnyWgTp06REREMGXKFD7//HPKly9v72UANx9ut5tly5bRqlWrf6RH5Gbj+PHjuN1uHnjgAdavX3/N9gq3lwbmevsqXbo0wcHB/Pbbb3ac7q+//kqePHkoUqQI+fLlu6PXr4YKFSrw9ddfM3v2bEJCQkhLS+P+++9n8uTJ10WpF1AAbxB79uyhUOFCZuk0h5/lwYrxMmBYOhwhTiPeKcQoK+YMc9mZoYqu+qwpljVGkVAc/vFbCr74PofkRFZlnGFOJFXGK2uMHTeWRx55hArlKhgUJbpAdsioZhUHh+JECMEvv22ie/fu/1rl73KEhYVRt25d6taty/Hjx1m4cCFfpX3FI48+YpRRk30ZsIYVULbX/Zr7KqkG/UqIYU3LLE9CmPe3bNmSzZs389nnn/HCCy+gulSfMoYR32bR+jjDXMiKjFP2nRMwrV3CPCcO47dhsZPtcwK+cyKFSkiqhCvM5Ucs7UsKwpajOI1ygpjWM8VhOVUkf+u0KuOKDDZJnzOYHXUjgUXVha8vy8Ioyyj45FkWTqdpBXSF++bpFSqKy3hrMuZpnn+nYu6BaQm0FDJJQpUdBm1NqPGcOUP9182OwbQpZ2Tb0pnVvqqy8Uzb+xDq9JOnSvBQy4eoFV+LtWvX8vnnn3Py5EmcTidJSUn079+fmJiYbJ/R8PBwnn76aR577DH++OMPli5dSkxMDOvXr6datWpcuHCBwoULky9fPkJDQzl9+jQnT54M8AfeQpw5c4bvv/+e+Ph48uXLd6eHc0egaRqJiYkEBwfbTBy//PJLtu5VbnMW8PUqgEFBQTz66KOMGjWKMWPG4Ha7eeutt3j66afviuvXQq5cuejVq9d1zflyBBTAG8CuXbvYunUrrwwYiO7V8Lo1HEEO26Kga7rJ7iHZbjvdq6GblQ9UXTWrLRixU7pXM+L4zA9nb7oXR7ADT6ohz+9D1nRjaR4NByreNKMM1eLFiwH47LPPKPNKHLJiWB0dYU686V4upiYxc+YMDhw6SOFChSlcuPAdWbs7jYIFC/Lkk08ybtw46tapS2R4pEF+rBl0IgAORUVDZ/26dRQpWpRCBQrhCHLYbWRZRlUUe18BtHQvOEyrmbmvkiSZhM0aFStUZPPmzTRq1IjVq1dzYN9+ihUtbp8TYZVGc2voTt2Ie7NKBiqyT56ZYas4jb03LHU6iooZX+rLRkaW0N1mfF+KB0eo04ijc6h2jKJl+VODVOO8mSXqhOKfOS50HV02S9+Z5eJU00poUdkIM0vaskx6Uj04gh1oXg1d8sWmZpLnMuWZVkzdq6F7NHRN2NY9R5D5PJj7kJGzUbJiJYUZP2uWvLP2VZLxEWdbsZ2uy59XHx2PZFZ4QcWMPzRK1cnqZfI8Orly5KJZw6aozVvi9XhJTkli/IQJvPXWW7z22mu2+za7cLlcbN68mfLlyuPxeDhw4ACff/45YFgN09LSaNy4MV988QWLFy+me/fu2eb8CuD6kDdvXooVK8ann35Kv3797vRw7gg+/PBD9u/fT0pKiv1arVq1+P777695793CA3g1vPTSS6Snp/PMM8/gcrl49NFH/eLq7vT1jHjkkUeybfHPbpxm4J3jBvDll1+SnJyMw+FAcahm5qKE6lR9VpIM9G7237KE5HQgqRKKZenTZRTda1ibJGFmKBqWGEeQ8Xv79h2kp6dTtUoVI/5d10lMTiT5dDK5c+Tmi8VfcPLkSTp06MD48eOZu3geFSpUIDIsknBvGMlJyfy2+XcSzp6hVKlS9OzZ8z/tOsqbNy9Nmzbl/Q/ep/2T7chfMIo/Nv/BV19/RWJiIkWKFCE1NRVFUfhx3U8IIahapSrR0dEsWLgAgObNmpM7T27QoXDRwoQGh6KYrlpJkZF0yc4uliQoWqwou3fvNhISdJ28+fKiOKzvrJJtAVTM+DkV1bB8WZm0Zoyi+T8jNs6lGtY78CdalkBogjR3GkkXk1CdCocOHKZqtSomsbSMsMYpgWrG3zlchjVTNhVNW8EChG5ZRXX7jBuxexatCyBkO4NXVmVU8/xaZ98SaFC9WJZto4SehE+eJhRjbWQj/k4VFtm56rPGWuKsWEwzk1m1rJiSj7Ta3gcr6/hqzyu+51VSjX1QVHONL5OHmaWtuhz2nuXMlYu+ffvyzTffsGjRIjp37pxt96Gu6/Tq1YuYmBhaPNWCsJAwBII/t/yJV/Ny4cIFQkJCaNCgAX/++Sfbtm3jvffeM6zJASXwpkNRFA4ePAjAvn37rsui+2/BoUOHKF68OMeOHaNcuXJUr17djle7Fm43D2B2+rqcT9jlcjFq1ChGjRqVZfs7fT0j6pnl624mAu8aN4CXXnqJjz/+mHXr19OwYUNfKS1dB83HhQaGK8760Jcw66xKZvySabmwMh+PHTvGshXLOXf+HEGuIJxOJw6ng23btgGwfn1pzpw5w4UL5wkJCeVi0kUURSE+Pp7evXsTHBzMuHHj2LRpE5s3b+bsmbNcSrlESHAIefLmYciQIQFyUxP169dHVVQWfL6Qs+fOkpqaSv78+XnppZdITExEURSio6ORZZmjR48yY/oM/tjyB506dSIkJIRvv/mWtD/T0DSNo0eOUrFiRdq3a29Y8kyCb0NHMEmUzTcnXddJTk4mNCTMyMyVrYwdAbLBvaeb2dySbLSXJdBNDj/rnEk6diygrum2c9XiE9Q1wQ8rf+Drb7+255x4sQ33Vb8XZ7DLlCFMeSZ3n5WhrhmWMl+SitlGSKbFD/N+kxsRGd3k/JPN+yVFsi1rxjh9SSqWK1VCN0vo4XuGNCNDW7P4K3VTjirbGfRC080sezOT2Sp7aPUtS37Pl4+XUwC6b3y6bhBpZ6i3bO2D5rXWXbfXyNpX8MV2Ckn2kydLMhFh4bR8qCXTpk9j5MiRNG3alKCgIOLi4q4aIyjLMvHx8ezdu5eE0wmEFApGVhXefvMtftv8OzNmzqB8+fJs3ryZZ599lg/e/4Ddu3fzxx9/+JHJBnBzIMsyVatW5ffff+fMmTP/SQUwKSmJS5cuMWzYMLvqzdGjR7N1r8xtTgK5jX3dCbzwwgs3XWZAAbxBNG3alHfeeQeHy8E9Ve8hWA22s0J1YdSFzehCs7MyZcNq4NWwg9KRJPYd2M8n0z6hWbNmlChRArfbTVpaGm63myeeeIJTp06haRp58+Yld+7cKIrC7t27iY6O9sveDQsLo169erfk28K/DXXq1qFOXSP41u1243A4kCQpk9uucOHCDBo8yHbpAnR/trt9PSUlhXHjxnH46GEKFyxk89VduHCBtevWcu7cOYoXL25/GYiJiWHLn39QpVIV+5wIsDOSJUUCzTgvaNgKGqZc4x4wLIfYnHZW7V5dFwivjtPpICYmhk6dOpGens7o0aMJDg6hetVqADZxuJTx34pkc1da4zWImU2OP8ngGdRt0mjfGCxIsmTwD5qWREk3M5m1DMqTMGh3LB5D0M24Rdu4hrDso7IEpgtcliU0XfLF49k8hEZoBCYXp5F8LWyrqWG1E75MaTPxV5YkNKwqJ77xSZJvTvYeZSAKlyQJIVtzx24nm0psUFAQzz37HNt3bGfjxo2kp6fz6aefUjKmJPnyG3F85cqVyxSK8eSTT/LLL78wb/48unXuxsEjB9m+fTu17q3F6NdHs2HjBqZNm8YTTzzBSwMM99HVytUF8PfQqVMnWrRocd216v8tGDRoEAUKFLihJJi7PQnkn44lS5Ywd+5cdu/ejaIolC5dmk6dOtGwYcNsy7jpSvPJkyfp3bs3NWvWpHbt2gwaNIiLFy9e8xrA8uXLqVevHu3atePEiROA8W0jLi6OV199NVNfq1atIi4u7mZPIVsoWLAgffv2Zc+ePbw86GXefPPNDC4/3weIbLufZHwKhPG6HSOmaXz44Yd06tSJunXrUrhwYWJiYihXrhxVqlQhd+7clC1blgoVKhAVFYXDYdBXlC5d+l9B3XI3wOl0XtUtbpM2Z4GQkBCqVq3K5s2bDaXGdDfOnjObC4kXuJRyiVWrV9lfCJo2bcqKr74y3b6XnRPrP/OcSJJs9y1ZhNKmG9KyWlkEz4YMQwmRZYn69RsQFxfHuHHjSE5ORtM0jhw9wpmzZ/zcpoYShk+eOQfZUoBkGUnytcVS7C4718Y1/za2fGvccgbl6vLfVt+y8SPLvmcHKQNRtPV8WfLMdbLlyBmewQz75jdWez0zjtNHCm63Na/JGcZpcXzKktl3xv2Q/OdYvmw5unXrxvPPPs/w4cOpUrky4eHhnD17Nku6BkmSqFmzJvfeey//9/b/MWPGDDRNY+68uYSEhFChfAXCwsKoVq0asiwTHBz8nw7nuNVQVZWoqKj/7BoXKlTohjOgZaTb/vNfwYwZMxg+fDiVKlVi1KhRDBs2jNjYWPr3739d5XFvqgKo6zo9e/YkJSWFmTNn8sEHH7Bz505efvnlq14DozDz5MmTeeedd2jZsiUTJkzwkz137ly2bNlyM4f7t1GwYEGeffZZatWqRXhEOF6PF6ELNK+OpukmybMwyYJ1NK9mBL9ruuEywyj5dujwIaKioihTJlAM/p+KqlWr8ssvv7D5j818Nn8eo8eM5uixo9SvX59HHnmEM2fO2G3LlClDaGgoP/74k985EZqOIMM5McmXMWvvWokOmldHYJJPY503zThrXs1uK2mChrXr06JpCxYsWECfPn3Y8MsGXhvzOqvWrMab5kFowiAhFxjuXSHQPF40b4aza9Kj6F4jYUnoRsgC5j1CF+iaZrttdY8GmL8FaB4Nr0ezaYx0zSCC1j2633gBc+7GPDSvQQateby2HIMw3XAR65qwydWFriM8ui+kwqyd7JNnkq2blDZCF2hur/Gapttud2vOum7sgyXPKsNojNeQo2m+fRC6sAm8LaJxv30VOsGuYKpWrkr9evVp0/Jh0tLS6NGjB5988kmmyhO1atViyJAh5M+fn/Pnz+NyuejTtw+vvfEasbGxfPvtt/z111+BihUB3LWwXMC36+ff7gLOiGnTpjFq1CgGDRpEixYtaNmyJcOGDWP48OG8//772ZZzU13Af/31F9u2bWPt2rV2TbvBgwfTrl27q167ePEisiwTFBREbGwsQCaeoQIFCjB06FAWLVp01wU8x8fH8+GHH3L46GGCQ4Nxp7spXry4r4EV9C5JCFn2I/EVGmz5c4tdgzKAuw9JSUls2LDBtsBmhUKFCvH444+zatUq0tPTqVOnDoqiULhwYS5dugRgn1tJkmj3ZDs++OADft74M4ULF6Z2rdqUiCmBrCgoqmKfE920KCk62G5YjIogkjAsVarDSFCwsyIwy5sphrWqdnwtNmzawJkzZ3j11Vd5+eWXWbpiKfXr1TOSSLxWIoaZbOFUM8jDOL8igxVPkVGcICuKz4ImJJu3D6cxHsWlmskWSiZ5ttVRkexkGJsQWsgGl6IpTwUjcQrVtPhh+YixaFuE6Ra2ElAkfOX0JDMBxaaywezXdZk8MoxP8tHXWOOSFMkoSYfPCmv1ZSWVZCKqFhhE4Zc//8Euhg8fztY/t/Ll0i8ZMGAAiqLw9NNP218Ec+TIgSzLXLx4kfT0dKpVq8b+/ftJTU0lKCiIefPmUaZMGVJSUsiZMyeNGzfG6XRy/PhxChUq9J+1WgVwd+BuTAL5tyAxMZFy5cpler1KlSqcPn0623JuqiZVsGBBpk6dait4GZEnT54rXktPTydv3rzUqlWLe+65h7CwsEzukUGDBtGvXz8++eQTunfvnknGrYTH42H37t2EhYVRtGhRwPgwOXvWSB4oWrQohQsV5tjRoyxYtJBqVatRtHAR02pglp8y6SQMagyDhFZWZTZs3MCOHTtwuVy3dU4BZB9bt25l8eLFLF68mEGDBlGoUKEs21WrVo1q1aplet36MlOqVCn7tYLRBRk+YjjHjx9n7969zJg5g4iICOJi4wgPDyfEFULO3DlJS0nj4qWLXExM5EJiIhcvXuTChQt4PB6CgoIIDQ21f7ucLnSh4/V48bjd6AjcqW4KFipA7shczJ49m9mzZwPwSMs2eFM9SGY5OV3T0T0aarBF3Kz4EiqEQS6uOBW8aQbFizvFbVfrwH7jFeiaQY1jlFrTcASreN0+ShYEKKps06t4UjwQ6sRzyW1w/1lE0JKC0A0FUPdqSF6T+ijIKAknq4ph9cOSp/merxCHTfDtI4I2YyklCS3da1DimLQyXo8lzyT4VhXf+FJ9BN+yVTZOAt1MKjEsi17fujlNKiDFIG5HN4ivveleHCbVjlX1R5UUqlSsTOWKlblw4Ty7du9m3rx5DB482D4nsaViuXD+Ag3rN2DbX9spV6Yc1apWRfPo1LinBjNmzCC2VCznzp/j1VdfJSIiguPHj3PfvffRrn27m3D6AwjgxqAICUUEYgBvBR555BHeffdd/u///s+OAdY0jWnTptGmTZtsy7mpCmDOnDltRmsL06dPp2jRouTPnz9TIK11zVIK+/btS+fOnQkJCclUJLlIkSI8//zzTJo0iaZNm942Hrt9e/cx69NZhIWFsX//flq3bk2uXLn49ttvSbqYhMPpICIigipVqrDgc4N7p27dusgOBdkst4UMsuwEGZwhLoMIOtj4OzU9lbi4OIQQnD59+j9LOHo3o3Llyuzdu5c//viDpKSk676/Xr16VKhQIdPeqqpKkSJFKFKkCHXr1mXHjh0cO3aMk6dOcvHiRS5evIjD4SAyMpIcOXIQVSCKuNJx5IjMgdPlJDU1lZSUFFJSUkhNTbWpa1RVRVEUO1b00KFD7Ny7i5iYGPbt20elSpWoU6+OkfihyGbmqwROGUlRkGVAlpF1JYNuZ7RxKoaVzRXqBNlIujBKrWGfdUWVTSuhjKwYtDPIEopuxhLJ4DDJzp1hkkGAHua0kzhUDJ4+q0/FYd7vNGMDFYdJK6PYfTrNPlyhhhw5xLDWYZRSBkCx5JnjMuIeM8ojgzyHnzxniNMnz5yDNXfFoRgl9iSzLKBVHjCjvAzPf8Z7rT7z5M9L7jx52L13N5MmTbK5wFo/3JqZM2fy7Q/f0f2Z7ixZsoSZn86kSeMmPNTyIfq+2NeWd+TYERJOJ1A6rjRjxo3hyJEj/1m+zwDuPCS4rXF5/x31D44dO8batWupW7cuZcuWRVVVdu3aRUJCAnFxcTz66KN226txAt5SX+qUKVP47rvvmDx5cravXa2uZrdu3Vi+fDkjRoy4rnp3N4ILFy7w/Xffs2nTJh577DEqlKnAX7v/Ys2Pa5BlmQcbPEiFchWQVZmvVqywAy8LFixIwXwFDGJgsN1FmtekivDodvkpRVWoUa0GH037iAMHDtC4ceNbOqcAbgwhISF07NiRjh073tD9DofjmhUbFEWhQoUKlCxZ8pqFwK8XtWvXpl07wxqUmJjIqFGj2Lp5K3GxcShO1bBgBTnwpLpxmtY9Xxk1H4WKJEl43RnKz7kcdhlEoxaw8JVRC3bgSfaVUbM4DTErlBgZyyZptGWNM58LTfPixYNulz304Axx4DathHY2LgACSTJolixSa0eww0cI7dXM2sdG7KHiVPCmenGGSIa8INWuYGKKs8dnkW47ghxobq9B3G7GKsqqr9SiQVRtlgE0rXu+0WV4/mXJKI9nP/+ySe8jkBUFzeOlQ/sOjB//Ln/t+It7atyDy+Wic+fODB8+nEnvvcfO3QaP2dfffM2DDR9E0iVbXnRUQQrkLYCua6iKiqZpN/UcBRDA9cDIAr69/f1XUK5cuUwu4EqVKl23nFumAE6aNIkJEyYwZMgQHnjggWxfuxocDgcjR46kffv2LF26lLCwsGzdl5aWRmpq6jXbCSE4dPAQv/72KwcOHKBcuXL079efsIgwvJqX2LhYYuNi7fa6MAK96zdsQFBoMKVjS5M3f17QBR7hNb/dC9B9H6B+QeNejSPHj6AoCu3btydnzpzZGue/Eenp6Xd6CHcFbvU6OJ1Ounfvzrx582jtUoiJiUHIAt3jRsg66R43QhYI4TUUIzPWzrAWSghFx+11G8kqHh0Jkz8QsBJShCTQ3W6EopPuTTeqikiGO1QAkpBMJUn3yZOMpA4k8GoaikMDWeD2GlVJ0j1uQw5eH8+mSZ9j8wpKEkIW5visJBmwhycZySVCFr5xCa99L7pZko8M8iSB2+O2kz5seH0JLgKB7kk35q17fAqlRZUjLnv+PVYyj+YvDwGaTqPGjVm7bi2ly5S240Z79+7NoUOHaNaiuc3xKSSBjm7Iwydv957d5MyVk3z58v3j308C7wt33xqkpaVlq50iJNTbmKP0X1IAbxYn4C1RAF9//XVmzZrFsGHDaN++fbavZQfVqlXj8ccfZ/To0QwYMCBb9wQFBV3RqpKWlsauXbvYsWMHf/31F4psECu3at6K0PBQsySXijfda1QYMGFZRWRZQpN06j9QH2GWrtI1IwZK6MKk7TAK2SumHNWhouFFkiXWrVtH2bJlqV279nWvhYVjx47x+uuvA0aVi379+t2VSSVWss+VFPebbfn6p+JWr0NsbCzt2rXjww8/pEP7DsTFxhkxckJHUVV0jLJnImMMoKQbsay6F9XhwKt7zJi4DDGAVtlDs1SbLU9oyIpilIMzEzt0YfShacbz4NW8RlKJEGiKF4es2kkgRkyhhC4EqqqgYRJgm7x9iiKjoSE7FDRdQ3UqeNM043m1uawlu/ydpms4HA68utcnT5X9YgA1YcRBenWjdJ5lsfQrj2da+jR085nWMj//VgwwvudfURVDTsa8kwxW1tKlSrNt+zYmTZpE27ZtKVasGMHBweTOnZspU6awZ88e3G4348ePJ7ZkLJrmpVnT5jhdRtjMzz//P3vnHSZFlbXx371V1T2BmWHIOTNEQTKCSFRREXVFUfETEVzXRV1BEcWEuioGZAVRxAxGjKtgQgHXQBQkZyVJzkzq7grfH7equhtQB4URoV6efpipunXq3ts102dOeN+ZNDmlya+STv+VEPxeOL72oKi8k5ojVdlFMeFkcgABvvrqK5599lnWrl2LZVnUqlWLvn37ct555xXZxlF3AJ988klee+01RowYwYUXXljkc0eCW2+9lWnTpjFmzJgjum7u3LmsWbOGTp06kZmZyZdffsn//vc/qlapQoMGDRlwzQAqVaqElJJoLMrqNavZ/PPP7Nm3l8zMTKpXq07tWrVdwlqf/VV1ChoSGyupg1CdFpimyTczv2Hp0qWkpaXRqlUrGtZviKZrVK1S1Zcb+r0oW7Ys3bp1Y+nSpezdu/eYUUPEYjGfvqdqlaqULl2a7OxsSpYsSZmyZahSpQplypQ5bPfhokWLePbZZ0lJSaFx48ZccMEFR6yTGuDooXbt2lx33XW+E9iocSPA8omZpRTYjktMLQDb5Rh05eM0Q4tr47rvtxeZk45QzmHU8jtzhVQ8XV4Xsy+rpklAjfdSotLrgHbtCSnRDInjWC5HoHOI9J3P26epear5xZ06xe8n/a5fIVBdwlIitDgJtp/29jj9/Ll7KWz3lu7XQrppLunxHcY7j73uY1/OD6Gk+HSXFNsjs/buh5oTSM4//3yWLF7C008/zTXXXEP9+vVZv369rwqUkpJC586d2b59Ozu37OTDKR+yceNG1q9fD8C27dvo3KUzsViM3NxcsrOzj+0DFSDAQVBdwMV7v5MFH3zwAXfddRe9evXi8ssvx7Zt5s+fz+23345lWfTs2bNIdo7q+7Ns2TLGjRvHgAEDaN++PTt27PDPbdmy5RfPZWdnHxG1S2ZmJsOGDWPQoEFFGr9t2zbKly/PSy+9BMDXX39Neno6p556KrcNuY1SJbMRmmT/vv3M+GoGK1auYO3atVSoUIHKlSpTpmwZ9u3bx4svvUjvS3pzyimnJNlXXG3qA0vTVDfO2jWriUQi7Nu3j2nTplGpciU6d+5Mbm4ukz+azIcffkiZ0mVYt34d11xzTZHXfjiEQiH+9re/HVH3z++BlJLVq1cDsHHTRrp06cK+ffvYvXs3a39cy6RJk3Ach1q1alG7dm3q1avnO9Q5OTlUq1qNHTt3MHfuXFauXMmIESOO6XwD/DoSncArr7yS+nXqgaMcNF8ww1WrsRPr2tyUsPeKE3CpaKCSjXP8n4vEs56iB4l/o3j2HHW/g/+AUcfEQce8Dgt8pzLJnqvcYdsHOajCk+ZLkAQB/54qqs+h9twU+MFzEELtjeYkDVdp4EPMOP5abMdBHmZNjusUalKjVctWlCtfjvHjx9O3b18/4tmnT5+kjEFeXh4PPPCAT6r/f//3f+Tk5LBt2zaefvppcnNzady4MX369DmkuS5AgGMF4QjVCFVc9zuJHMBnn32WO+64IymLesEFF5CTk8Nzzz335ziAn332GbZtM378eMaPH5907uyzz/7Fcx999JHP/1dUnHvuufz3v/9lxowZvzn2zTffJDc3lwrlK1Cnbh1sy+bMs84kOyMbLaSxb88+Pp36Kd9//z1NmjShXbt29OvX7xDR6wYNGvDOO+/Q5JRTXHJX1UXpuB84B/YfYPmq5UybPo1QKERGRgapqan0ubJPkmJJmzZtWLt2LXv37qXv1X3/EnxdjuPwzjvvULJkSc456xxOaXoKYT2E1GTSZ/muXbtYt34da1av5quvvqKwsJA2bdpw3nnncdvQ29i0aRORSITKlSv/aWsJEIfnBI4fP57OZ3SmY+eOaEgcK8FH830tx49Yef97KWA/fSrdY44fTHMbJ9xxxI06bi0swh3seFJtwiVPJ8G5FC4ZtSKrJtGH9Jw3y0m4txOft3Dn4DqFbk7brTlMOO7NVZOqftBxcGxAjy/Gj9hpnoRfwj0tG9tzNl2H2cGLFjquUxrfH2+cFyVM3DeBwLEcalSrwVVX/h9vvvkm3bt3B+CrGV/RokULPxWXnp7Otddey8yZM+ndu7dKb5smN910E507daZ7t+68/f4kxj41lkGDi/ZHc4AAfxSKBqYY73cSOYCbN2+mQ4cOhxw//fTTeeSRR4ps56g6gIMGDSpyVK6oqFKlCitXrjzsuWeffbZINjp06MCmTZs4+6yzadW6laptcrnIZs6ayUcffkTrNq0ZPnz4r0qrWZZF6dKlVVrI/ZCRrgO4cNFC3njjDerVq0fPHufTtNmpv+jYSSmTOOH+CoXas2YpvsJhw4ZhaAZSVx+SUnpcFgCCsmXLUq58OVq1bIWQgu3btzHl44958803ufrqqwNaiuMQtWvXZsiQIbz+2ut8/uXn1K5Vm3O6n0ONGtXdEaoZAoGbxnWpW6Rw6VTc846KkkldixM8a27aUxMJT4nS0UWA5qZHpe6SR6NIkz1ePqEJpBO3IzwC7HjTrt+soSTbXNoZt0zDT91K5bxKXVHH+PM7iLjZSzkLIdS9bMetTcS3543TNBk/l7Bu758/QzeVLKVE6C6BNiqyKkXcnsTdU12C6RJjS0HDhg2pUqUK7733Hl26dMGMmQwfPpySJUvSo0cPGjduTO3ataldu7a/jn379gEwf8F82p/Wnquu6svtd9zO7t27g9KLAMUC1QRSnDyAJw9q1KjBd999R7Vq1ZKOz5w58zcZJxJxfElqHCM0adRERZxcGSjbsti6eTNvTXoLB4cbb7rxF8l9EzF3zhzq1KqDFbN8YlnTNPnoo4/4YdEPDBw4kBo1ahz7BRUjLMvizTffZNWqVfS98io0FKmtjiK8RcOnzMBREl+aT3xrUDK9JO3atOOjKR/+2UsJ8CsoU6YMN/3rJvLz8/nhhx8YN34crVq0olatWtSqVYu0cGoSEXSsMIYe0vwonxfuErYTl1UzLXR0rJhbIuFTqChidC2kKzqZVINYfgIRdNREl5YbgXN86TnLtNClgRW10Ax5ENG65c4vBqmoZgtDesFCwG3It5QknI5BLC+CHtYxC+PE147tUc9EMUqkYEZNhISYaw8nwem0FbWMTwQdM9GESwQtpZJ7dImgraiJCOvKju2F+RKpbIRPVG2bFrZjYzmqqcSybC67pDdz582lebPmZGZl0b5NO7bt2s7rr73Ovx/8t/uHWBylS5fm6aef5ttvv+U/Y/7D//W5knZtTmP06NH07ds3WakoQIBjANUEUoz3K75b/em47rrrGDp0KKtXr6ZZs2YALFiwgLfffpu77767yHZOCgfwmfHP0LJlS9LT0jEtk3Xr1rFp0ybOO/c8OpzR4ZBfnofD5s2bWbV6NZdffoVSGADyDhzgpZdfQkrJ0KFDfzV6+FfFqlWr+Omnnxg6dCjhUFhFewxXUkt68lvCj3ZKN/JiSEP9nxpi7U9rqXrQXyoBjk+kpaXRrl076tSpw6yZs5g5eyavvfEaderUoU6dOjSs35BKGZUIpYXcDuE4J5/3tRe5cizV8CA09QeCsOPRLiENhCYwZMglhA6pzlnHQUdHd/n+pFTdvkIKpOVG2LznLqGBwnsZqcqekWq484p7qF7zlnQbMYQIqyifoSmuQJemRmoSoWvIkCsDl2QP/HS2by9BLs6bixAq4e0krFe6drx9I9meSLBnRW1fWk5IQUYoky5duyi/UQoqVatM5RpVeP+D99m5c+cvEsi3b9+eChUq8Oyzz3LtgGupULki48aN47TTTuPcc88NagIDHDNIircG8GAVxhMZ5557LrZt89JLL/Huu+8SDoepWbMmo0aNomvXrkW2c1I4gBdeeCH79u0jGo0ipaRTp07UqVPniGgSpkyZQpdOXdDRsGIWP637iVcmvkKbNm3o0aNHkZzIvyLWrFlDowaNCOkhYvlRRRic7xH8RtAMHb8Y3yXk1TSJ6RJdWzGT+vXqM/658TRu3PiQBpoAxyfKlStHzwtUIXFBQQGLFy9m3bp1jB7zJNde+3eqlKuCkaK777Pq3k2KnqWFiOZGCJdIIZoXQYZUhY7jeMTISi7NLIwRKhEmlq9k2ayYiWlZxOxogr0YofQQ0bwIethQDSkHE0Fbrr1IIlG1ij5KzY3W2baKOhbECKWGKNiVh55q4Fjxrn6VJpYqQpmiY5k2oRJhN6IYJ4L2nnFvvaG0MNG8iIpi2ok5alUnbJsWQnPl8VKUPJ4e0vxax4Pl5xxpK7k9VxM5MYwppMCMWITSQtSpWZv33nuPbt26kZmZSSgU8sn0FTm2pHbt2vTt25fxz40nEolQsmRJPv/8cxYvXhyUZQQ4ZpC2dDXMi+l+xXer4wI9evSgR48ef8jGSeEAVq1aldNOO+13X5+bm8vChQvp2bMnP2/fzIwZM1ixYgV9+vShSZMmR3Gmxx+klCoVpWuINBWNCKWHkLpUsnYJUSDHcZBOPGoiNInUBbXr1Obaa6/lpZdfYuXKlTRr1iypXinA8Y3U1FRat25N69atKVeuHN9+9y3/1+dKVf/ncmNKQ42VUiKkK3eYEVbPSYmwT9YMbkRMl4qqxaVrMdLdSJohsQpt9BQjbs+XjQurZ8qOP2+ePWnJeCROkxiphorkaW7UUXhZV4FMV1HAlNLpqpY1Zql1uI0sUtfQYjpaWMeKKj5BQ+guNY2Mz8uN+oXS3J+HdLVuJ3F+Xn2g+/Og6UrOztDidYYAUkg/uhlKCxGJRQgZoWR7CRFF6e5J78t689X//sdbb73F7t27kVJSpUoVdu3axe7du0lLS6PD6adz5llnccYZZ7BkyRI2bdoEqPrqMWPGUKdOHZqc0oRGjRudkFmMAH8O9GKuAdSLkXPweMDChQt56aWX+Omnnxg3bhyTJ0+mWrVqR6QodlI4gH8U6enptGjRgscff5wSJUrQunVrLrvssuOKnPNY4ZRTTmH8+PGcf+75KmUlwTFtNAfsmCLz9WS4HMfBsRwcJ14DGCs00QyHGlWrc+ugW/n4k4957rnnuOqqq2jYsOGfvbwAR4jq1avzzddfs+iHRWzZtpX69epTsWJFCgsK+PzLqbRq0YoqlSqDVLKHhInLntlxImgrpmr8zELTrQGMoYcVQbIVs7CkUsZwpMSy1PNlW7aSn/Nq7Dx7urKnuc+dnuLV9SUTQdtu2tUyTfQQKqIdUtJ1KrrngG2jhZUsngGYBVGM9DBWVEneeUWAjrT9mj0lFwdm1CWCNhVRtaJ8UbVQKrrn/TxoCalzN50sHJ+o2jYtHMfGwkQ6HiG3So8nRij1kIF0NLp16UbXzl0RQrBt21Z27tpFubLlKFmyJHv37uHjTz5m8ODBhMNhUlJSfMd57ty5nH5aeypXrcL8+fN5+5236dKlC+eee+5fgpkgwPENzZZodnE2gTjExbpPbHz11Vf861//omfPnvz000+Ypkk0GuWWW24hLy+vyJRwgQNYBAgh6Nev3589jT8FVatWpXz58nz93dd0OqOTioII21dZ8CIRoGo+HE2lqPSwjhDqf/Vh6FAyuySXX345c+fO5fPPPw8cwL8gqlevjpCS5156HoCvv/2a/fv3EwqFiEQiZGZlUq1aNRVZExbS8IifBVoCJ6DuEi1rIfV8GCk60k2xaram6mzd9CluXZyI2apz2FDpZKGpWlyBQIRUV7Ee0pFSJj13Hu2g5jpPQoI0VJRQaIKQEVZzgXj3sJECUmCkhdB0dR/PHrjEzZatIuPCi+6p3xWaoamOZE3za/b0kA7SnZ8hcUxbUUgl2HOsOEG2Zdp+p7VwCa8lwk8Ha4aO0MQh9ipWqkTFSpV8PeMKlSpydd9+dOh4BrZpk1Mvh0WLFvLc8+r9+/6H+VzS+1LatWlHXmEe454dx/bt27n88suLrPgQIMDhIBx5CNflsb3fyeMAPvnkkwwbNoxLL72Ujz76CICBAwdStmxZnnvuuSI7gCdb2jzAEUIIQe/evfnss8/YvWu3Ite1LLcDUnV7Ot7Ltv1OSsdS3dbe97bLm2jbNgWFBT79xYmAvXv38tJLLzF8+HCi0eifPZ1jCikl1//jeqpXq0aJEiW4//77eeqppxg1ahTnnXceH330ET9v+pl9+/bx1tuTePONN5kzZw579+yNPy/e8+A+I/5z47/incTqeUu4xn+27Pj//vXJYxKv8e5tWfGx6mvH71i2Tcsd5yTZ9+eW+Mwf9hm3/Gfcv9Z2zx08bzvBnj8mvl5sktdysD3vXlaCfdfGIT9zlkXd2nWoXbO263AK6tWrx9NPP02Z0mVYtnQZtmWRkZHBDdffgK7r/Pvf/2bWrFnHTFUowIkPzZFuFLCYXs6J85nyW/jxxx8PW9Z22mmn8fPPPxfZThABDPCbKFeuHB07duSDDz+g/zX98Vh4vQ5gT77L/7DwIi66hh014yoLjkN+fj5vv/M2t95665+2nqOJ1atXM3bsWKLRKBUrVkTTTnwyglKlSzH09tsPOW6aJgBLVyxl48aNpKalUqViFRYvW8y7H7xLRkYG4XAYXdcJh8N069aNOjVqI4QELJUMdfkBVVTZlVOEpNo3r4HEsV11EjeVKjSBOCgAIKTiH5RS4mAnETBLKdB0qaJtCSlbqQksW0XjfEUPEbfnI+FrvyNYCizLDdMJwE0Tq8iiBsLyZpYsKUmcDFqtxu2oli5htbdOVx4P4doXJP18Ce94wr4hhL+3Qgrq1qnLG2++wdatWzm7+9m889479DyvJ81bNCOkG1ze+3J+XPsjb73zFgsXLqRPnz6/qN8dIMAvQbMkulV8Tpl2kkT/ACpUqMDy5csPaeD69ttvqVSpUpHtBA5ggCLhrLPO4t8PPMCy5ctoUK9+XPMYgRRx3WP/wyfhmEeLAfjptD+TjHbr1q188803VK5c+Xc1B1mWxc6dOyldujRjxozBNE3atG7NFX36nBQO4C+hZ8+eNG3alC+/+JK9+/byf1f9H2lpaXTp0gXLsti+fTuxWAzTNNmxYwevvPIKd99xN3rISH5eRPx5EcT1eIWdMIa4AyTwnrEEShhN+uc8+BrdLimz7Xbr+k6nq92LSLAnVN2rcKRvw4N67pVTKqVQDSIJWsDxG5OkE6zsJ9sSApAyPtbGd/SEe9wfK9XPnCBRe9gzknBPb99E8r6lpqTQqlUrvv32W3r27IkQgg8//JADeQfocNrpANSuXYshtwzhw48+5MEHH+SMM85ACEG1atWC0o0ARYJma2h2MTqAJ1Hd6j//+U/uvvtu1q1bh23bTJ8+nZ9//pk333yTu+66q8h2AgcwQBKi0ehhucFCoRC9L7uMt956i6GDbyOcmoJtWXgyW96Hnm1ZSKEpMlyP/kIKHEsVuEskLVu05MEHH6Rly5b07t37mK5n+vTpRKNR6tevz65du5g7dy4LFy4E4OKLL/5dNidNmsTXX3/tf3/ZZZfRoUOHk75wXghBjRo16D+g/yHnNE1LYqivVasW69at48FHHqR+vfo0qt+QWrVr8cyz4+jXtx+hciE/6mebKmpmuc+SR8WiZOTwyZMRGpbpNVK4UT3HBtdRUtrE6hyIuD2XosW2bFavWc2GjRto3LAxlapUcknfhU+poqJtjk95pK63AQ3LTPh5sJVT6VgqomeZqpEj0d5hqWwMRWpt2zY2at22aSfR1MT3Iv7z5f0MHmwPnIQx8fm1bd2WVya8wowZM6hUsRLVqlVj/vzvad+mPRqqcUcKyYXnX0iLZi34fv48ZvzvK7p07hI4gAGKBGkLZDE2gciT6Pdvz549KV26NOPGjSM1NZUxY8ZQu3ZtRo4cSbdu3Ypsp0gO4NatW3nooYeYPXs2uq7TsWNHbr/9djIzM/0x0WiUiy++mMGDB9O5c+dftPXxxx8fIhdXt25dJk+eDMDLL7/Miy++SIMGDXj88cfJyMhg9uzZXHXVVdx2223075/84fLqq6/y4osvMm3atCIvOsDhsXnzZv7973/Tq1cvOnXqdAi3YaNGjahSpQoff/4JPc7vQSgUQkoZHycSKCqESg/rYcNtHFEOomZoXH311XzzzTdM+XgKl1566VF3nAoKCpgzZw7Lly9n0aJFGIaBYRi88847gEoH3nLLLUekhpCbm8sjjzyCaZrs27eP9PR0qlSpwtVXX01WVtZRnf/Jgt69e9OpUydWrFjBJ59/Sn5+Hvv27+fjzz7m6quvVtQoXoTLpUjxny0pkurTpBv1S4w4C01AUl2QOm8LRfuyZesOFi9dzL69+9ixcwfr16+nZMmS1K1bl6eeeYrWrVtzwfkXqMYR27PnmhKK50zIuD2hifjPg/dIa6qRRfeIqlMMP5p5aJRQqaQQVg6j5ja0SOmHOv3GGP/nSxjx9Salk+MlGkJIn5zbm1/lKpUZNmwYlmXx/fzvmTBhAmlpaaxYvQLTihGLmjRo2ICMjAxq1qpJrTo1qVmrFh/89wPOOfcc0tLSTvo/eAL8OqSjodnFlxGR0vrtQScQ2rdvT/v27f+Qjd90AG3bZuDAgWRnZzNhwgQikQjDhw9n6NChPPPMMwAUFhYyePBgVq1a9Zs3XLt2LaeffjojRoyIT0JX09i0aROffPIJzzzzDF988QWvvPIKN9xwgz9uzJgxnH322UWSbQtw5PDUBD744AOWLFnClVdeeUiq9rLLLuP2229n+ozpXNjjQjp17pRMtWHbaLpUlBguEbQeVgS/St9VFag3O7UZM76awZNPPpn0Hv9RLF26lDfeeIPdu3f7cxowYACNGzcGIC8vj27duh0xhU9ubi67du0CVPTqvPPOo0GDBkdt3icrypcvT/ny5WnXrh3r16+natWqvPrqqzz88MPUqlEL27HYvWs3hdEIzZs2p2PHjh5zioIXJbRUxM+KmopQOmqy98A+tmzegmVb5OXlMXfeXEzTpHSp0mRmZTJ7zmzat29PxUoVadS4ETVq1CAzM5MDBw7QoUMH3nrrLaZMnkKP83soehlXlg1+gwg6kbn5V4igfWJpx0HTNWIFMYw0g8j+QpyQoDAvHz3VUI2NMmG9QmAWxghnphDNi2Kkh3yaGscjljY0zEjMJ2430hWRuxbSk39eTYv0lHRA/SH+5qQ32bdvH40bN+btd9+mUYNGdGh3OjVr1aRB7fq8tGcPQ4YMoXTp0lx11VVJmuYBAiRCpYCLzwEsTtLp4wFz587ljTfeYPXq1UgpadCgAVdeeaX/WVcU/KYDuHz5cpYsWcI333xD2bJlAbjzzju54oor2L9/Pxs3bmTo0KFFrn1avXo1OTk5vq1E5OfnU6pUKXJycli3bh1LlixJOl+qVCnuu+8+nnvuuSLdK8CRQdd1zjzzTDRNUVs89dRTDBkyxHeWHMdh1qxZ/nhLWL5kl1drJR0VaTA0qWqjDDfyoHtpZcWlZogQrVq1Yvr06UdFRSU/P58RI0awc+dOAJo0acIZZ5xBvXr1/GezS5cuv9t+hQoVeOyxx0hJSTmp6/yOFQzDoE6dOgBcfvnlbN68mQ0bNqDrOqc2a0Y4HGbSpEmsXLOSli1bUq9ePbIys+LNEm40Dglrf1rL1KlT2bBhA1WrVsUwDFJSUmh6alNKlixJNBolPz+fvn37HpbI/fXXX/fLBCzLJYKWqk5RGlrCnKVPfC21ZMJrr54wUS7Oi4ALKTB0iUD4spIAIZdSKSUrjYgZIZwaRuiHJ5bWXPqXULoaIzUDEODZE2BoSq4vVELNT6SHkyKnaj2Shqc05Oq+VzP1i6mUL1eeGjVqUL58eS655BIWLFjAy6+9QoMGDcjLzQPg2gHXohs6zz33HP/617+UznqAAAdBczQ0p/iqzIpTd/jPxpQpUxgyZAidO3emR48e2LbNwoULueyyy3jmmWfo0KFDkez85rtTqVIlnnvuucM6bJFIhFmzZtG1a1euv/56mjZt+ps3XLNmzS9OLicnh4yMDJo2bUqFChWYOHFi0vl7772X6667jo8//phzzz33N+8V4MjRtGlTXnrpJYYMupW8vDzuv/9+Tj31VNLS0li/fj15uXlc/X9X8+GUDzn9tNOxY4p2wvtgcSwHLaRhFsYwUkPECqJoIZcPzb1HzDT55LNPWLhoIbfffvtRcQBNU3Ubt23blm7duh1RJ1RRkZ6eftRtBjgUQghfezgRQ4cOZc6cOSxatIi3336bklklqVK5ChmZGUQjUfYd2MePP/5IZmYmXbp04brrrsMwjCO+f8uWLdm1axebNm1i+7btTHhlAt27dad0mVLxDLBw5eWEraLcqQZWxEQL6UpZRIsTN6tonImRomTeNMP9o8nLKDuJdYwCK2piazaxaAQtbKh6PLee0f/5KohhpIeJ5UXQU0PJ9vz52YqQO2q5UVErSc7Oi5hqIY1T6jXmlEaNmT9vAUiH+T8sYLY+mx49etCpUyeeeOIJNmzYQE7dHBrmNEAL6VzU8yKefvpphgwZ4svPBQjgQToamlOMKeCTiLJo9OjRDB06lL59+yYdf+GFF3jssceOngOYnZ3NGWeckXTs5Zdfpnr16pQtW/aQmrxfQywWY/369cyaNYsXXniBSCRChw4dGDJkiC9B9Oijj3L77beTlZV1SKSlZcuW9OrVi4ceeojTTz89qQYxwNFBrVq1qFevHqOfHsMVl1/B6e3as3zFCmKxGPXq5tCh4xnoUqdlm5Z+ob3U4jWAXvTDSA35NU/Spdr4cd2PTJ8+nTVr1lCnTh1uu+22o0YvkZmZyQMPPHBUbAU4PmEYhl/3YlkWGzZsYOvWrRw4cADDMKifVZ/evXv/4Q7zFi1a0KJFCxzHYc+ePXz77bc8+fSTDPznQNXI4qadHdvxidClJiGk+yToXs2eR83i1f7pKYaiR0r4o8mnVHIjhKYuidkxNGmgufJ2CpqnZ4eeqqJ3RnrYd+oS7UlNYJtKas6WcRsH/7wKTTnIRmoIaUjanNaGTVs28fmXU2nZqiWgGsCGDBnCfcPv48yzzkQLKRLq1m1bs/fAXsaOHcstt9wSEEcHSIJ0/xXn/U4WbNu27RC/DKBr166MHj26yHaOOD47fvx4pk6dyrhx4470UtatW4dpmui6zqhRo9i+fTsjRozg5ptv5oUXXvDH/dov8CFDhjB9+nQef/xx7r///iOeQ4DfRp8+fZg3bx7jnh3HlX2upFOHjkhdU3JbmhKtF0Jgx6ykQnwvKiKRfoelFbNYvmQ5U6d+Tn5BAd26daN3795BxCDAH4KmadSsWfOIGnmOFEIISpUqxfnnn0/ZsmV5dvyz3Dr4VtJS05COwLJsHBwV8XMl4TRdYh9Uo+jJ2CHcbnhUJ66mSZ/AWdMlVswEAVbEVJFFxwRHRc/VfPDTwV5U0IqZSZ3MqkvYQXUl22juWO9nEcc5JIoZ71IG27RYtGgRVatWpW3btv5e2LbN/gP7qVmjpurwd5ScXbcu3di1YyfPP/88119/fVAeEcCHREMWI9GI5OSJAHbt2pWJEydyzz33JB3/6KOP6Nq1a5HtHNG7M3bsWEaPHs1dd91Fp06djuRSQBUZz5o1i+zsbAAaNGhAqVKl6NWrF+vWraNGjRq/aSMrK4s77riDW2+9lQsuuKBI9y0sLKSgoOCI51tciEQif/YUDkHjxo3JzMxk0qRJlLyqJKVLl1YfFqbAdmxMx8SxHKQjXDqOOE2F0ARmNMbylSv4buZ36LpO127daNCggd85ePD7cTzuwZ+BYB+Ozz1o2rQpmzZtYtqMaZzV7Sx10HHABNt2kJg4po3laD49jFcD6NEhSV1RxUhbnYuZCT8zphobKzCxLQvTsXCkjmUqpRNVA+jZU86nFbWxoiYx21T+ppnQlWvGlF1LNWZ5P6+WI3wNY5+OxqVpsqJqfk0aN2HiaxOZO3cu0WiUmjVrMmvWLOrXq49jO0TtKMJWzqaUkp4XXMCktyfx7rvv0qNHj6PaHXw8PgvFjeNtDwoLC4s0TgodTRSjAyhOHgcwPT2dt99+m1mzZtG8eXN0XWfp0qUsWbKE9u3b869//csf++STT/6inSK/Ow8++KDvcfbp0+d3T9xz/jx4dT7btm0rkgMI0KNHD95//33uueceevXq9ZvjU1JSjrjrs7hxPM6vXr16dOrUiVH/GUU4HCY1NZXmzZpTqUJF9LCBJjTq1K2DbmgIKTFNk1WrVrFg4QIWLVpElSpVOOecc6hfv36RPhSOxz34MxDsw/G5B2eeeSYPPPAAXTt3JT09PV5jZ9oqDaspbWDLsnzOQMdx0DQNSzN9jj9Nd1VMPF5Bt2xCpXEVV6DmmBhSVzWFCdE9x9UztoSFnqJjEnM7e+N/hEG8I18KiWW5tX+m0vD2OTmlciSVg6rWYEZNqlatQts2bfnhhx/44YcfAGjdujU9zz+flJQU1XGty4QoZojLLr2MsU8/xaRJk+jdu/dRff+Ox2ehuHE87UFRU/2a1NHkkdfg/l5o8uRxAGOxGD169ABUo5plWYetm/4tFMkBfPLJJ3nttdcYMWIEF1544RFP1sPUqVO56667mDFjhv9AL126FCllkZ0/D8OHD+f888/n1Vdf/d3zCfDb6NChA82aNcM0Tfbu3cucOXOYO38elmWxb98+LMsiLS2NvXv3sn//fipVqkSLFi3o0aPHn6r2ESDA0UZWVhaVKlViw4YNNGjQQEX+pMDL0TqWje06YbZt+1Jsju2mfU1F+eI4KPlEXJ1fx1Hk6a5D5dhuatmyEaalzFtxjgvHcpRN260fBCxLOZ+2SxQtNDcyr+PL2SkKpjg9jeOa9BxLJyHX3OmMTnTp3IWly5ZStnRZylUop1LIbhraceXpbNsBxyElHObGG27k3ffe45577uG0006jYcOGVKtWjbS0tGP1lgQ4jiGkVCo2xXi/kwUPP/zwUbHzmw7gsmXLGDduHAMGDKB9+/bs2LHDP5edne1z+P0S9u7di6ZpZGRk0LJlS3Rd54477uDGG29kx44d3HvvvVx88cWUL1/+iCZetWpVBg4cyOOPPx7QEBxjeI0aJUuWTHLUbdv2OYhKlixJVlbWYVVEAgQ4UVC9enXW/riWho0aomkSqWngyrZJXVPEy+4/SND0deXabKH0hwXqA8tx/UepSXA0pCbQDB3bcdCEjtQFOCKhptBrp9cQmnTvKZGOkn7z0mA+abY3LymQmubeJ65V7HVO+jQ13jXu/40bNVLzcyX0EiltPCk6r5U5RU/liiuu4OxdZ/Ptd98yZcoUNm3aRN26dbnuuuuC+sCTDFJqSK0YU8AnOBH0nXfeyU033VRkX2nz5s2MGTPmV53F33x3PvvsM2zbZvz48YwfPz7p3EcffUROTs6vXn/jjTdSuXJlRowYQXZ2Ni+88AIjRozgkksuIRwO06NHD4YMGVKkBR2Mfv36MXnyZA4cOPC7rg/wxyClpF69en/2NAIEKDZ06NCBxx59jNPanEbJrJLYtqPIp9FV6lboKtKX4LBJXVNjwooGxjHU99KIN3jYlo0VMdExiOZFsDVV96ejY5umGuRG3zRDwyw0EVISy4+CY6iGD0eqiCPKYTOjFlpIpZ11oSdL1YFqSrFtf36Oo2HHLDTctLOMs087tmo40Ry3GSzkrldXNY/KnEpjl8ouxTndzkELaezasYv7H7qfG2+8keuuu44GDRoEfySeJBCGgSzGFLA4wZmgO3ToQJ8+fWjatClnnnkmp59++iEsGp7c6YcffsjSpUsZOnTor9oUTmIb5wmGTZs20bVrV7788svjWj2koKDguKrx+DMQ7IFCsA/H/x689dZblChRgu5ndVepVpfqxbFUA5RjuUTQnhawe0zqEjtm++TOQFyVQ4Jju6lbyyYSixLSDF/dQ7jULY5lIXTlqEnDddhCepIWsD8fDjOvX5mflzb2Glg8OHhE747byfzb9grzC1mxagUHDhzgrbfeAlQT4MaNGylRogR16tShTZs2VK5c+VepoI73Z6E4cLztwW99rnrnn9rTnHJ28VEDbZeF3JA9/7j/vP8jyM/PZ9KkSbz22mts2rSJsmXLkp2djW3b7Nmzh127dlGlShV69+7NZZdd9ps0a8UXnw0QIECAEwA1atRg8eLFmFETqUlfcs2KWughFWkTCV3xHjG6nmoQy4uih3XMiJnA7+fK2ZmqI9csNLFDDtFCByPFcGvvBMKN3ulhh1h+lFCJFCIHIoTSUbQwhmvP5RVUJM/qXkaqoeTsQjq25dlTETsVUUwkbvfUfXxzfkRRD2nECk13XqbPaYgAIRT9Exo89vhjZJfKpnTp0gC0bdOWyy65jNzcXHbs2M6KVSv54L0P2L5zO506deL8888vxncwQHFASIkoRm6+k6EGMC0tjauvvpqrr76aNWvWsGTJEnbu3IkQgrJly9KoUSNq165dZHuBAxggQIAAR4DatWvz/vvvI3WJ7pI/S92ThVNf+3JrKHk6Iy2EEAmybLoiZPYigVITKo1raGghnagVJZQSQurSVdJRdXvCLQkM6ykITZKSlerac8mobRWx8+aiGZpPVm0I45D5abqmZONSQ2pMasidl+pwxkHpGUupOod1SchbpxZSdYSGFrdnSHbv2cP+A/s56+yz+PTTTwHo2LEjelinZLgkjnDoWq0K5513Hpu3bmbEiBE0a9bshI3anKyQuo50ii8FLIVZbPc6HvB7un4PRuAABggQIMARoEyZMkgpWbtmLXXq1sGKqoifGYkpreCkohrlPHkpWi/iZscssB1VP2eDo0vMqCJqjhXEsKVNLBpF96JxXkRRxGXj9JCBGXOjeqbtdxw7DqApgmqPWFpFHROihMSpYoRQRNC6W9cHJBNLOw5Sd4+569R0zdU5TnB2XXtZGVk0atCI7777jprVa1JYUEiFchWwTRvHsRk9ZjQ7du7glEansHjpYgAmTJhATk4OHTt2JBQKkZGRwe7du4nFYkSjUXRdR9d1DMM4KtKRAY49hK4jitHFKM57nSgIdixAgAABjhDnnHMOL098mdKlS/PP6/6JIQ00Q/d59pQsW5wIGgc/5SuEUNx94NK+KAdPD+NLyTl2DCMcivP2HUQsLYSqF5S2sulF8oTQ3HuAZmgghDonBVpI8/kJwU07YyM0gYZw7SlHU3r23PsKIVx7+Ou0LftQe5aa11VX/h/SbUCRmsDrihFo5BfkA7Bh0wYuuugipk6dykUXXsTKlSt59NFHycvLA5S8Y8mSJdmzZw+maWKaJpZlUbVqVc4///wkYvkAxx+EriMpxiYQYsV2rxMFgQMYIECAAEeI6tWrk5ubS25uLvv37SclLcWNvimlDel22DoOIFWkT7iqOY50kmvsbAekVNx6Lkeg47hcgvah9hzhKDUPx/HtJRFBK94WNQYUpYzj8vcJJ85RKKTf9OHYNnhzl24r8UHtgWoecT7BRHugtFg9e7bjIG13rNTwSQeF4N677mHtTz+ycNFCPv/8c/Ly8hjz1BjuHnY3jRs35olRTwBw15134dg2aenpfn1lYUEhK9es5I033iAUCnHxxRfTsGHDY/tmB/hdKPYawJNIC/hoIXAAAwQIEOAIsXr1agzD4LLel1G6dGnVI+t4Wr0kyCM6rm/mOlkiQYPXVf9wHBXgs1F8gMJREm5exE+4TlfcnhN3zoTXQKJIqW3b9smh/do9U9Uies6iHzVzp+i4+sCeDymFwLLtJDUTn/Bakzimtz5/CklQjqzjdyGr1LCSsHNsh3A4TOPGjWmQ04AzOpzBgvnzmfrlFzzw0AOUKVOGUqVKUbduXR749wNUqVIFXde5+sq+aI6Goes0adyEhvUasmLVCiZMmECrVq3o1KmT33AS4PiA0DVEMUrBCUeDE5sK8KgjcAADBAgQ4AhRoUIFypcrT8uWLf0UrdRcYmQRJ24WjjompVBjHOX4CUeoRgqkcrx88mXFr4nDL9qD+DkppXKyZPx7vHu456SmGlHi9lxbAFKqRg7fjtvs4TZ64Lj3FMn2hCbc4/HuSyFcQmsB0onbE1Ig3X3AdSQ9O9WqVaNKxcoITfL555+zc+dOunbtSvv27SkoKGD9+vWA6wjLuD1d12jcqDG333Y7n039jBEjRlCxYkVatWpF8+bNSU9PL8anIcDhIHQDUZw8gLZxWAdw0aJFXHLJJUnH0tLSWLBgAbFYjIcffpgpU6YAcPHFF3PLLbf4pOXH+vwfwSeffMILL7zAunXreP/995k4cSIVK1akX79+RbYROIABAgQIcISoX78+b7/9NitXrqB29dqKdsW00QyRUBtn49iqFs+MuRQxMUW4jONg2S63ngM2KkrmxFSDh+3Y2I6NPIw9qUusmKsbbFp4UUbL9j79HISbQnZitmoQkULJzwklPwf4zSlSU3aEFFgxKx5htMCn/3MUP6FlO9imhSZEkrawA66msKWIpWMWQhM+wbTKaaMMOo6yE7P8NZx3znlUKl+R9PQSvPr6q8ycOZPmzZvT76qrqVW7NlbExLbtZHtAemo6F/W4kJ7nnM/SZUtZsOgH3n//fZo0acJFF11EVlZWMT8ZATwIXUPIYowA2hpEDj2+Zs0a6tSpw8svv+wf8xqJnnjiCWbOnMn48ePJy8vjtttuIysri+uuu65Yzv9evPfeezzyyCNcc801PP3004BiJ3jkkUcwTZNrr722SHYCBzBAgAABjhCapnHOOecwfcYM6v29vqKEQUXxvGgfjvSbNjSUTJweNuJEywflTqV7TGrKwdNCOlIqehkkSfaEUFE4j4bmEAhUQ4cQSE2RUAt3fo4Tb0aRUiBciTchlT01JrkAUAiB485DatKXg5NSquPg20iaX4qB0OLpbDU1AcLx6Wn0sIHUJS1atURKwS2DbyEvL49q1auRn5ePZmi+PZFiHLpeR6ILnWbNm9O8dQvy8/L5ctqXPPTQQ9x3332kpBQfGXGAOIpdC/gXagBXr15N7dq1KVu2bNLxSCTCG2+8wX/+8x+aNm0KwC233MLIkSO59tpricVix/T8H+lmf+mllxg+fDjnnHMO48aNA6B3796ULFmSRx55JHAAAwQIcGLAcRzy8vKwLOu4iug0atSIt956i2h+lFBaiGh+RHX3Jmjt4jjYUioy5rBBLBLDSFF0K57Kh4Pq4jV9ubgojrSJ5UeTaWVURweWFNgxSxE3F8bQw649zY3GOW7U0SWojhVE0VMMpR6ixzn7vLpEIZTMm5FqECs0fXuaphpJHMfxyaL1VIPovkL0tJBbG3goDYyUQq03LaSuce15jptjOYqgujCGkWYQdcmxHdvBEoLMEhlklsjAjMQwoyZmYSzJnhZSUnUAUlMydlpYJ5YfJVwijIwKzjnzHFYsX8G6deuoX79+kd/TLVu2MG/ePFq2bEnFihWPzoNykkLoOqIYtYCFdfh7rVmzhkaNGh1yfPny5RQUFNCyZUv/WMuWLdmxYwcbNmxg7969x/R8jRo1fvdaN2zYQOPGjQ853qBBA3bu3FlkO0f93dm6dSsPPfQQs2fPRtd1OnbsyO23305mZqY/JhqNcvHFFzN48GA6d+7sH58yZQqPP/44FStWZOTIkVSsWNGXlenTpw/33HNP0r2mT5/OP/7xD1auXHm0lxEgQIDjBF999RWTJk3CMAw6dOjARRdddFRqaP4o0tPTiUajaGEVyQqlhX1pOB9uA4gXMQtphhtxc2vsDHcdAgypImFChIjEohihkBstdNyAYYK8m6EhpMBwI2xeDSCewyg9expChBCa9CNzDvFInINb12fIw9rzYxQC9BQDqUnCmalKzs5ylISdJ2cnhKr9k0LdVxMYqQetF9XQIjSJIdW5UHo4LkMnku3ppo4W1pG65u6NiixpusRzsoXm7q8II3RJODMFoQnKVyjPrl27WLZsGT/9+BONGzemeo3q/luTn5/PlMlTKIwU0rxZc37e/DNTp06lySlNePjhhzEMg8LCQkKhEJUrV+byyy6ncpXKx+pxOvGgaaAXZ4zp8L8T1qxZg2EY9OzZkz179tCqVStuv/12tm3bRlpaWpJcmhcl3Lp1K/v27Tum5/+IA1irVi3mzJlD1apVk45/8skn1KpVq8h2juq7Y9s2AwcOJDs7mwkTJhCJRBg+fDhDhw7lmWeeAaCwsJDBgwezatWqpGsjkQjjxo1j1KhRrFixgtGjR/Pwww/759944w0uuOACP5QaIECAkwNt2rRh9arVLPhhAdOmTWPPnj1cc801f7oTKIQgHA6Tuz+XzKxMFTUzdJdE2eW+cztxzajp1wB6ESzljMVt2ZaN5qiIlm1bmI6pSKNdiThQzpPUJVZU3csyD5afc+JScKaNhiKC9sZqB0UALdNyo4UmekhThNCGhmXZSawyQghlJ6QibUZ6yJea8yhtvBpCL7rnrdOP2AlXUdh20Awwo2b83glRTH9/3UiiHbaJ5SdETg9KUTu2g2Nran6OhlloYqSGqFyhEu+88w5ZWVk0btiIsU+PpUWLFvz000+kpaWxbes2curmUKVKFcY+PRaAe+68h+ysbM7seiYSSVZ2FvkH8lmwZAHjnxvPfffdd0yfqRMJQtcQevH9jIrDOIB5eXls2bKF2rVr8+9//5vCwkKeeOIJ+vfvT//+/QmFQknjve+j0SgFBQXH9PwfweDBg7nppptYtGgRlmXxxhtvsGHDBmbMmMGTTz5ZZDtH1QFcvnw5S5Ys4ZtvvvE93TvvvJMrrriC/fv3s3HjRoYOHXrYX9yxWIyUlBRycnIA+O6775LOV6xYkbvvvpv33nsPvVj/qggQIMCfidTUVPoP6M8NN9wAwIIFC5g6dSrdu3f/k2cGJUqUIL+wgJKls916O+lHzxzPGdMEutBd50Z3Jdr0Q6JxXgetFtKxYsoRE1q8yxfAsaVPrOxrCbukz8ItKvTpV2TcnqZrLnl0XH5O1eypNCp4RNWqflETCb+jvQ5cVCSOtJB7P3VN3J66Xrq1iTLk3lOo9SZkxf05S0NTtZOGVzeYPD9Pys5I0VU63K0FTOIo9PhrQrq/D1KXihqmbBly6uaQmpJCzDL56quvAPjHtf8gKzuLKpWqICSULlOakBGiXPmyODaULV8Wx7SRhkaGlkHHjh357LPPeOSRR8jNzaVHjx60adPm6D5MJxp0DWH8uRHA9PR05s6dS2pqqu83PPXUU3To0IFwOHyII+Z9n5qaSkpKyjE9/0fQoUMH3nnnHZ5//nnq1q3Ld999R+3atXnrrbcOm+7+JRzVd6dSpUo899xzhxRbgorwzZo1i65du3L99dcfEskrUaIE7dq1o1WrVpQoUYIXXngh6fywYcMYPHgwL774In//+9+P5rQDBAhwnENKyciRI1m6dCmO43DKKaf82VMCoFLFSvzwww9UqFghSe5NumTIOIog2XbVQWzLQqL5/H7gZmxdrjyvjs5xFMGy9OTaXB5lFfgSCfZspJuHdQ4hgo7Px+fiO4i42bZUu+/B9pQT5npqtoPQlFSdBn6E07YUN6Ft2a4ziBvpcyOIlnQ7heM9Lz7foMSNbEpsy1LfW7biQ7Sc+PxsG8e2sUz3XmZ8/3y4DqDqQHb32lVfaXpKE2zbwbZsLrrwIjp36IzpmJTNLquiq5aFcCSNGqgPTdtyVIraVhFU4XY2a1KnX9+r1dZqkgmvTiAjIyMgof41SKlexXm/wyAjIyPp+zJlylCyZEk2btxIfn4+eXl5Pm3Qjh07AChfvjyGYRzT838UtWvXTsqS/h4cVQcwOzubM844I+nYyy+/TPXq1Slbtiz9+/f/1esHDRpEv379SEtLOyR0Wq1aNa6//nrGjh3LOeecc0juO0CAACc2UlNTkwqqjwecdfZZTJgwgQ2bNnD5JZeRkZWplDUgSaZMCJfp2Y1gOaaro+s6Y8rzcVT9ne12yjrxaF7cTtyZEiLOH2iZFlKKePTMHSg0gbDUOCznV+15pNJCCBxH0cPYHnm1FEhdRdZs0wIbPyrpRyfd1DN2sj2pSeUQJqxXdQ87/kDvWt9GgrycYyuHUUiXj9Aj1SbeMS0NCbZyuB3TxtFtNwPvOtpCYEiD0mVKu8TZVoJtVc+YdD9NIuzENLhDnTp1/H3rc3kfXp34KsPuHJZU4xUgjmJPATuH3mvx4sVcddVVfPjhh77PsHnzZnbv3s2pp55Kamoq33//ve+3zJs3jzJlylCtWjXKlSt3TM//ETz66KO/ev62224rkp1j6p6PHz+eqVOnMmzYsCJfU7JkyUOcPw8DBgygatWqDB8+/CjNMECAAH9lrFq1in/+85/+a/PmzcV6/5o1a3LnnXdSoUIFRj75BPv37/PVL/zUrcD/X4q40+Q1NAghEAjfMRNSETertCtJtvyxUqWB/WtE8lhPcUQk3PuQMf51rm1E8jUIhJDxYwnXIEk6njRGHjSWhDm568W/RsT3IvGYcKllvLkJ6a/BX4tLWh3fy/i+4dpQ95OHrjfBnn/vhHmoc3H7/rUutUm9nBxKZJRg7dq1x/wZ+8vCawIprtdhSsvq169PxYoVufPOO1mxYgWLFi3i5ptvpl27drRu3ZpevXrxwAMP8P333zNz5kxGjhxJ3759AUhJSTmm5/8IFi9enPT64YcfmDx5Mq+//jp79+4tsp1jlqAfO3Yso0eP5q677qJTp05HxaZhGNx333306dOHjz76qMh/eRUWFlJQUHBU5nAsEIkchr3yJEOwBwrBPhzZHpQtWzaJGmbMmDF069qNdu3bHYup/SLOOeccdF3n86lTOe/c89womkuhoml+84cZNdE0ebDMbgIli8CybCzbxNRMNF3zU7kq7ekghEqbaoaOFTV9ahcvxerbcxwEAttW9C+2aStqF8eVizuICFo3dMyYN79EokIHEXWjd1GwozZaSFNchYayAQn8hYZqUtEtAzNiquhcEpRt27TRvT0xtGTCa0CTksKCAhBuI0tII3Ygggwn5JQFYKoaRbMgRigzTCwvip4Wwo6YyBRdRfc0gaZJl5Bbw4xYirTbRkVOk6hs3FS8aaObGmbU8htjvPlt2LgRTdOoU6fOMf9sOd5+JxQWFhZpXLFHAO1D72UYBuPHj2fEiBFcddVV2LZN165d/aDUkCFDiEQiXHvttYTDYXr16sWAAQP864/1+d+LiRMnHvb4gw8+eEQ9EsI5mPHzKODBBx9k4sSJ3H333fTp0+ewY+rVq8e4ceOSaGAOB48G5qOPPvIbRO655x6++OILbrvtNoYOHfqLNDDetV9++SVVqlT5Y4s6higoKPjDRaF/dQR7oBDsw5HvgWmabN68mREjRvjHunXrxkUXXZSU7jzWKCgo4MEHH6Rhw4aEjBClS5fmtNNOIxwOu3VpyqnwmhgSNXkRro6wVHVoUTNK2Aj7aVhvrGMrAmXPnmPakCDLlmTPlVw75JqENLF/zrQQuvQ7jlVmNqkNOK5f7Hb6Ki5D6aZPHbdezkYzVCezDGnYMdW1fDA3ouOtxb2npmt+HaKnRCI1QX5uPmkZ6VgRZc/KjyFDmptOd9dpqdS5VWiip4ewCmJoKQa2OwdPl1l6+69L7NjB70OcbNFxHN+uNKRqBtFVvaSQgq1btvDkmNFc1vsymjVvdoyfquPvd8Jvfa565yc0/AcVwiWLbV5bI3u5atm44/7z/lhi48aNXHzxxcyZM6dI4496BPDJJ5/ktddeY8SIEVx44YVH2zwAt956K9OmTWPMmDHHxH6AAAH+OtB1nWrVqvks+wBffPEFmqZxwQUXFNs8UlNTGTRoEHPnzkXTNJYtX8a3337L//W5kgrlK/rOk6I88aJnDjiOK59m+hQqjrCJWTE0Iy575rLKYFu2Im5OCfn0MqZpus6io2hWPHthnVhBDCPVwMyPoYW0JJ49x7axhcCMWRhphk/JYnp0K4lE0C6xdDQ/im7ZOLaDbYqkrl11TEm2GS6Ni45LZePZs+04EXSKQSw/iuPSyZDgsNummlcsP6qoZ1JDRPcWYKSHsSIxEKpL2CyIoZcIEd1dgNAEBdtyCWWlKKLqmKaabHSJ7TWcxARWzMZIMxSVjet8enJ2VtRCD2tq3wixasUqLCxqVK1OOCWFOXPm0rZt22Jx/v7S0DX1Ki5Yfz436J+N77///ogURo6qA7hs2TLGjRvHgAEDaN++vd/xAqpB5GjRt2RmZjJs2DAGDRp0VOwFCBDgr4/atWtzww038NRTTwHw2Wef0ahRI6pXr45hFI8ofenSpX16mm7dujFz5kzGjnuaLl26cOaZZyo6Fk0gdJeAWU+kbTFc8uQQdiyCETL8pgo/3Wmj5Nh0ReysCzVG01zi5oTGEaGpc6HUkCJKTnMpVNy+EyRgS5ACabhEyymu5JprL7ERxRAhhCYIZyiiZceNiCV4lCpKqAm0kEfc7NmTvgSe49LKGO68PCJo3EidH4yToJs6eqqBZuhIQ0nQSUNDN3VA2dVTDURYQ4Z09BSd1EqZytG1LL8bWBVggrSkOz+34UaoPZeO9Bt3PIm6kJT875v/8fbbbwNw1pln0apVK2bNmfWHtVxPCmjF7ACaJ48DePHFFx+S3cjNzWX9+vVHxJJyVB3Azz77DNu2GT9+POPHj086l5jCPRo499xz+e9//8uMGTOOms0AAQL8tdGwYUPuvfdeXnzxRTZu3MgTTzxBeno6nTp1olKlSjRs2JBwOFwscxFC0K5dO+rXr8+YMWOoUqUKtavWQg8p2TNk3NnxKVhc0mjbjQB6JM9J0ThdUbIYrsyb5trzfSe3k9aja7GiSjbOjMTQDR3LrdnTNOkSN2vECk1fzk73onGJNYAynh62YhZGiq7q+zTNl2XTDFfOLsVQ0b30ELHcKFpYT3ISFZeKwCw0CaeH1T1TDDUXNxoHKoppFsawQ2EiBwoJlwhTsD0XIy2URFPjWCpFG9lbQFrFTAp35JJSLkPJ0KWHXHk8J0467UYd9bCuqHES0s7e+yCEeh/mzJlDZmYm3bt3Z9KkSXw+9XNatGhBhQoViuUZ+itD6LJ4awD1YqSc+ZPRqVOnQxxAwzBo0qQJp512WpHtHJMawOMFQQ3gXwfBHigE+3D09mDdunW8+uqr7Nu3j4oVK7J582batGnDJZdcchRmeWSYO3cun376KYNuHkR6ifR4w4OdkN5NqImLxCKEjbDfgerDd1JUdMuxHL9OULoUJg5Ko9d2HSPPcXM8frwke46vGuLV8/l1h27Nnqf569cQupQutmm75NbJ9XNCevVzmj/Gt4dr76A6Rm8tSkEljoK8fFLT0/x6PGVPqNS57dbqmTZaWMcsNNFSdVUnmKL7e+Xtm6rrUzWAjhXfa+VcK6dYJO5bzGbJ8iWMHz+ecDhMRkYGZcqUwXEcNm7cSIcOHejevfsvslYcLRxvvxOKWgM4sc0gKqRkF9u8thbu4f9mjzruP++PJwSSGgECBDghUaNGDe644w5mzJjBN998Q35+PhXLV+TNN9+ka9euhyWsP1Zo2bIls2fP5rHHHqN58+Z06tCJ9Ix0HJdM2YvYOZ4UnGVjcajsmRc9cywH6bjEy6gooeN10DqA5mDFLBw01RwR1rBMB+l2JkO8CQSpmiPA8RVILCtRfs4BzXE7aF1Hy5V386JrEOfTUw6lhQ5Ksi50kJydZYMXLQwZxCKqjtG2bITlNmS4dCyWaWGbthpLXArONm2Ee18rP4Zt2cQORAiJVKL7CjFIUXPyokKuJJ8i4kbV/jnuGmwtoZPZ8d+HubPnYjom1apVo27tuqSkhNm+Ywd79u7h3O7nMHfePDIyMn6zkfGkRXGngI8DffBjiX/9619FHltUObjAAQwQIMAJC03T6Nq1K506dWL16tW88847RKNRNm/ezFlnnUVmZuYfJmUtCoQQdO/enVWrVrFr1y5GPjmSf/7jesqWLeeeBzTNJVzWkNhxWTkSomKeA4hKXSLVGClV3ZpHhiuEamhQdYYaaBLpS7olzst1tnSJ0CSao0iQJfHomSNUh6/mdil7NXLC9u6Jf08bx6d9EUKg6VLN06sBBByXT09qGkLDr4uUxOsElVGB1JQUnGaovdHc2kePE1EZBBnS0FMMVVNYMhUtRfcVUPxBqHtIKXF0zSepFppAJnAFevbfevct0tPTKVOmDKvWrKJu3brUzamLEIL333+fli1bqvpABzp3CZzAQ6DL4nUAT/AUcFpa2lG3GTiAAQIEOOGhaRo5OTlkZWWxZvUadu7cyZo1awDo2bNnsegK16lTx1eT+Prrrxn7zNPcMfQOQoYBUvq8fR5/oGPbCHkY2TMHlVJ1r8GL6lkJ46THA6hSrtgcYs/nFnS57zQbvxbOuwaSjzne/9bh5qe6ih1b+GlUx6N8cdyULXHOvUR7uOtV+WPXmsCNaDrJ13j/e3WPifNzZd+k+7UvdeA6v47t4MhEe8rXVFQxLm2OA7FIFEM3GDxoMKXLlE56H23bxjAM/vvf/wKq8/LHn37kwgsvpHTp5LEnM4Qmi7Uu75DyhhMMf1T27XAIHMAAAQKcFJBS8o9//IOZM2eyc+dO9u7dy7x58/jwww/p3r27W0dXPB8iHTp0YNmyZUz/ajpndzvLP+64tDAQr6xz3EYF23Wi4lEyl3bFqyP0xjt+AE2lW10Cac+qT9uiedyD8U5ex3KwZZLwsDsHdcw27XjdYsL8cByEHqeY8bj0klK/XocKYFuWex2uA6uuE+BqKDsITYtfYzsIXMfTE0Z2g3vScMcZ0nU6bN+uIsJ2eQoTl2Q7vvybz/vnLUjA9u3byMzKPMT5279/Pw888AA9evSgSZMmrFm9hrZt27Jl8xYmTpzIv/71r2LlnjyuIYV6Fef9ThI4jsOXX37J6tWrsSzLPx6NRlm6dCkvvPBCkewEDmCAAAFOGhiGkaRXfuWVV7J582b++c9/AtClSxd69OhBSkrKMZ9Lr169GDNmDF9//TVnnnkmnc7o5LKVaAjH8lOREjeVi4poSZfaRKWL4+nQZF5poWTnBEg3leqpf3g6JCoFSvycptLFviyc17Th0sAodTh11CN3lprwo3ZqXqpL2TF0lUo2NCWfBok80CBw083qnpouFduNJpEicX5Kek3qgPu/dJVK/OSu8PgD3VSyk5hS9uw5SfsldS99LdzuaVfuDZWi/nnL5kOUpnbs2MH48eM59dRTmTx5MldeeSVz5sxh9ZrVVKlUhelfTWfOnDmUL1+e3bt3o+s6NWrUIDMz85g8P8c9pFa8dXnyxK4BTMTDDz/M66+/Tu3atVm1ahX169dn8+bN7N+/n169ehXZTuAABggQ4KRFKBSiRo0adOnShZkzZ7JgwQIWLFjA7bffTkZGxi9e5zgOP//8M0uWLGHKlClYlkXLli255pprinzv0qVLc++997Jt2zaeeeYZ5s2dR9u2bWnTog0OikzZ0TUikQgfTv6QxYsXo+kapUuXpkmjJpzRsYOSZQsrgmmPCBocZKL8XCQGEsxCl1jagxCYpsmW9RvYtWsXJbOzqFKxCkZKCNtMsOcRVUcVsbQZNdG8lGvM8pU2PJJnJ+JgRRUFjR2zlKyaZamUtUdUHVISa4YUivjaVtQzwm3GcFC6ybZlYUVNrJiFLgysmAno2Jal1D2kUjGRhubS5SjqGM2lshEk2lPpYdu0sS0LPeRRz7hydq5aiGXaVK5YiU2bNrF7125KlS7F2rVrGT9+PGd1O4sO7U/n22+/ZeHChdx4441s2rSJdevWkZWVxWuvvYZpmjQ5pQmxWIxX1r9CmzZt6NmzJwsWLGDz5s2sWbOGHTt20K1bN6pXr05OTg7aidjAoIvircvTT54I4JQpU3jwwQe54IILOPPMM3niiSeoXLkyN9988xH98Ro4gAECBDjpcfHFF1OlShW++uorKlWq9JsF188++yyLFi1KOpadfeSUF0IIKlSowA033MDw4cNZv2E927dvp0LFCpgxE9M0mTN3DpUqVWLw4MFKimzrVr6Y+gUz58wkp25dUt25ZmVlUaN6DUzTpELFCoTDIdb+9CMH9u2n0SmNMVINhJSYpsnevXv5fOrnzJ8/n+zsbMqULsOu3bsQCG76102kpaapqGJCh68QqslCpBKvP0xQUVP1c/EIm9Q1hHBrwVxiaZ9vTxMYqSpKaKQZvr0kLkMh0EwdLawf1p4/L011URvCI9I2FD+hbR+kZucScEuBY0mfnNpraPHtSUnV6tU4s9uZjHhkBF26dOHbb7/lkksuoXmzZjiOQ5s2bZg1axZr166lXLly1KxZk5ycHObOnQtA8xbNadG8BTO+msG7777r89W2b9+eChUqYBgGubm5jBkzhrp16zJw4ECfTubAgQNs3LiRPXv2sHv3bgzDoGnTplSsWPGIn68/FUEX8DHDvn37aNWqFQD169dn0aJF1KxZk4EDB3LjjTdy5513FslO4AAGCBDgpIcQgrZt29K2bdtDziU2TXjo0aMHmZmZFBYW0q5dO2rUqPGH0sZly5Zl7NixbNq0iSVLlrB161Zs20bXdbp3707z5s39+5cpU4ZGjRqxcuVKfv75ZwoKCohGo6xcuZL//e9/aJrG3r17KV2qNLl5uZQpU4bX33yDOrXrkJaWyooVK9m3fx8dOnRg+PDhSSnKd999lxdfeJF/DLgOIRMoVDy94Jh0iaANFQk04hQqHkG1HtaJ5UcJpYeI5h1EBI3rjEmBFTEJpYWJFkRde1bcnkfc7BJBx/KjGGkhYvmJ9uK8gr699BDR/BhGqqJ6kZqmopK+PRM91SWCdqlnpCax3YaZRELujqedQeNGjfn0k0+oVrUajes1woqqiOdlf+tN9arVmfTOJDJKZJC7LxccuKbvNUz/ajq1q9fCipiUL1PeX3eHDh34+uuvKV+uPDffdDMpoRR+3vQzK1et5Oabb1bRTNv2x7du2ZqSJUtiRU2eeOIJcnJyOOecczBNk+rVqx//tYaaVK/ivN9JggoVKrBt2zYqVapEzZo1WbFiBRdccAEZGRns3r27yHYCIujjAMcb0eefgWAPFIJ9OP72YPLkyXz88cc0a9aMBQsWUKdOHQYPHnxM7/lH92D9+vXs2rWLpk2bomka+/fvZ8WKFRQUFJCTk0N2djbhcPgQJ8KyLB5//HH27t1Leno6rVu3puMZHTFCRgJ5spUQsVOUNF7EznPGlDqHpwHsSsQdFAH0iKk9YunD2SsoKCA1LfWw9iDOZZhoz7ZstIQIoBdRTCSz9hy/xHvH7SXMy/3fiygm1jFKKYlGIooiR8g4mbWMdzoj4NtvvuV/X/+PnTt3ous6+fn53DL4FmrUqAFAJFJIYSSCYzvcfc/dNGnShBbNW9CiZQscyyYSjYIDL738Inv27iUSiVCjRg2uuuqqYpM4TERRiaBfvegBKpQovq7orbm7uPL9u4/7z/ujgSeffJIPP/yQhx9+GCEEAwcO5Pbbb2fGjBls2rSJ9957r0h2ihQB3Lp1Kw899BCzZ89G13U6duzI7bffTmZmJrFYjIcffpgpU6YAKpVyyy23/GJNw8cff3yIhm/dunWZPHkyAC+//DIvvvgiDRo04PHHHycjI4PZs2dz1VVXcdttt9G/f/+ka1999VVefPFFpk2bVqQFBwgQIMCRoHXr1uTn51O6dGkWLFhQbFJyfwTVq1enevXq/veZmZm0bt36N6/TNI3rr7+eUaNG0aVLF+bNm8fsWbO54/Y7VA0gLhG0oehfpIg7O0KqjlshlFycnuISQfuKICIuZ+e4RNBhg1iCPXFQStmKmVgRUxFLh1E1e649BMk1gK49s9DEMZy4PZRNR9h+rZ9t2uhh3a0BjHdSS08ezwAzarpyezG0kJMcxQRsYeHEHHRXsk4L66oWU5dKqcStxWzTsg3tTmuHGTExUnRibi2mHVPdm4Y0lJ6xgJEPP04oNUysMIYdU3WglmURNkIMuPpaNF0SKYjw5rtv8eCDD1KnTh2ys7MpWbIklStXplq1asXWyf6b0Iq5BlA7ziOifxAzZ870Zd5uuOEGUlJSOHDgAF27dqVv3748/vjjZGVl8cgjjxTZ5m86gLZtM3DgQLKzs5kwYQKRSIThw4czdOhQnnnmGZ544glmzpzJ+PHjycvL47bbbiMrK+sXxbLXrl3L6aefzogRI+KT0NU0Nm3axCeffMIzzzzDF198wSuvvMINN9zgjxszZgxnn332Ce/dBwgQ4PhBuXLluPTSSwHo2rXrIedN0+S1V19DAD16nk+pUqWKeYZHF5mZmdx7773Yts2WLVsUPY4mEWEDJOgh3XXCXDk6O+4A4kbWhFAdvOjquBbSVMJWE37toGboCE249lx1j4PsyaiGFtLdTmAZrw307KHq/5LsuTWDfjTOo4GRUjV66BJbqiYVXeqqrjCBe1BIHQToIdURracYvlycEHHuRaFJhJDx9Umh5ipUQ6qXpE62J9HDnr34Oj09YyEkQhfxe4cNzIiFFtL9+aWkp3D11VezetVqduzczu5de1izeg3vv/8+lmXx6KOP/imRwUMQpICPKq655hrKlStHz549ufDCC5N8rIEDBzJw4MAjtvmbDuDy5ctZsmQJ33zzjS+ddOedd3LFFVewY8cO3njjDf7zn//QtGlTAG655RZGjhzJtddee9i/RFavXk1OTs5hZZjy8/MpVaoUOTk5rFu3jiVLliSdL1WqFPfddx/PPffcES80QIAAAY4F8vLymD1nNgCz5szm/vvvp3Tp0sd/jdavIBaL8e9//5sSJUow4JoBPsGysMG2lCKIbdlup64ro4ZKlzoCV6tYdfFKofmk1BCvAUwcg1SchQfbs23bvbfblWxZSLRkGpiD7Zm223ls+zZwHCTqmJACy7LRvPRxQsrWT2N7Yz3ZOc+eJN4ZLZLvKT0t5AQ6HiniUVHFiSh9hRLbsgCBdEQ8Munas0wbzdWHtm3blfxL0CqWULNaDerUqYPtRkW/nz+flye8fNxEAAMi6KOL6dOn++Uozz33HA0bNuTCCy/kvPPO+90E5L+5Y5UqVeK55547rMPmFSC3bNnSP9ayZUt27NjBhg0bDmtvzZo11KpV67DncnJyyMjIoGnTpowcOZIrr7wy6fy9997L119/zccff/xb0w4QIECAYkFWVhZjxozhqquuAuCee+5h4MCBPPzww+Tl5f3Js/t9sG2b3bt3c9211/kZGlBRrzipX7zmzyN79s+5zMpCuhJrtqf6gXKepPAGK0JmG58iRkXh4rx86gtVG+h17fo3E/FuYFcWxL894NcVHuyMCxG3kzh3b5jQXRLjBIdO1Sdy0HrdeybOSyTMXXj7FidF9mfvakA7SfdWTqnU3Aiqy7vo74cUrj0tztToGjy1aVNKZZfi888+T2om+dPgEUEX5+sERoUKFRgwYADvvfcen3zyCV26dOGtt96iY8eOXHfddXz88cdEo9EjsvmbDmB2dnYScSqoOr3q1auzbds20tLSkggzPUdx69ath9iKxWKsX7+eWbNm0b17dzp37sw999zDgQMH/DGPPvoo33zzDVOnTqVy5cpJ17ds2ZJevXrx0EMPsX///iNaaIAAAQIcK2iaRtu2bbmg5wX+sYoVKzJ16tQ/cVa/H+FwmM6dO/PAgw8w9I6h3DLkFj79/DOi0YhypqRHDSOSHCwhpasX7I5xyaiVXrF6qe7iOHm15whJ6ZFay/h17te+fc8hcq9J1ARW45TWr3/em5+bJpbyoPm6zqJ3fxIItT173rWHrNe3J5Pn4K7Rc36T5+et/yB7XnpaE/4c/T1KspW8px4XIkKgaRr9+/dnydIlDBs27M8PlHgp4OJ8nSSoWbMmN9xwA1OmTOHtt9+mbt26PPnkk7Rr14677rqryHaOeMfGjx/P1KlTGTZsGAUFBT53kQfv+8N5ouvWrcM0TXRdZ9SoUQwfPpy5c+dy8803J40rVarULzaRDBkyBMdxePzxx4906gECBAhwTHHmWWcyYMAA6tevz5w5c9i1a9efPaXfjb/97W8MGjSIjh07csMNN7Bz104efOghNqxbryTjTNVU4b28NLEVs7FiFtgOtmnhuOTLVsxSr4iJbSqCZ9t0ML3vYx7psxm/zraUfZdw2jZtbPc+8Zd3zsJxHNU4Ylo4dsIY01Zzdr9X5x0sy/bXYiXcw7Pnr+1w6/WOuSlaL1WtjltYpqXmmmTPcufrElKblv+/FTUxIxaOQ8L8LWXf8tYdt2fFzARiaxvLtKlSsTI33/Avbrz+RmbMmMH06dP/vGig1wRSXK8TvAnkl9CgQQP+8Y9/cOONN1KtWjXefffdIl97RDyAY8eOZfTo0dx111106tSJTz/99BBHz/v+cBQGdevWZdasWT5haoMGDShVqhS9evVi3bp1flv8ryErK4s77riDW2+9lQsuuOA3xwcIECBAcUFKSfPmzWnWrBkrV67865H3HoRKlSrRu3dvAOrUqcOcOXN45bUJ3HHHHYSMUDwV6kI6KkUsNbdpA0/OLcEJcZVFcAmjQ+khtwFCycIBflpT0zSkIRHSiI/RZDyFLMDRpN94oppAjEPm5dkUAoQuMQ6256eDE6TiXHveNTgJ8RIHhIzb80my3SinYyfYEwfbE4fWqzlKoE9qmr8GqUmQAs2x0HRV9+hFN6UhEYRUjaJr3+86ASpWrsAtt9zCxIkTmTNnDpdddllSV3ixIGgCOabIzc1l2rRpfPLJJ3z77bdUrFiR888/nyeffLLINorsAD744INMnDiRe+65hz59+gAqJ52fn09eXh7p6emA0ksEKF++/GHtHMyWX6dOHQC2bdtWJAcQFAnr+++/zz333FMk3bvCwkIKCgqKZPvPQCQS+bOn8Kcj2AOFYB9OnD3wPnB/z++e43UPTjnlFNasWcOnn35KlzO6uJQnipJF8ylUXJk3l/JEGpqqAfR8QNsGKTELYoQzw0QPRNDTQ1iFSmrOsVVDhKZLCvILcFAydnqKgVkYQ4a0BEqWeA2eHbUwUhUNjOZSvEhdde869kFE1QUxtJCm6u0OagKx3QYPRWVjYEZM9JCGFbPj9hzQPHm8FB0zwV4il41q9lD38OxZLoG2FbPxupOtiInu7lcoPezK2Sl7UTOGGTX9sX4TSdT056eF9Dg1jkvanZaSxjV9+rHyx1VMeGUCfa/ue9ha/iNFYWFh0QYWd13eCV4DCKrh7Msvv+TTTz/lm2++IS0tjXPPPZcJEyZw6qmnHrG9IjmATz75JK+99hojRozgwgsv9I/Xr1+f1NRUvv/+e79OcN68eZQpU4Zq1aodYmfq1KncddddzJgxw48QLl26FCllkZ0/D8OHD+f888/n1Vdf/c2xKSkpxxWx7OFwvM+vOBDsgUKwD8EewPG7B02bNmXy5Mn0PL+nirQl+mI+KbNLGp3iEje7nbWOoxo+hC5wTBtpaKSmpiJ0iVPCce25Bt1aurQSadipyvmyUxPtoZpDvE7eg+6J74zhO4mO5c4vNT7PJGJpeRh7qb9uL2mddnwNDsSJqt2xyvGz4vcRCWvQBE662pPEdeqRCCnhFNUEc5A9dY17T8/BlsTHpKXRtkJb9u3fx4cffsg///nPP9wlXGTFG1nMEcDjpPv5WOH666/nu+++w3EcOnXqxKhRo+jYsWNCk9aR4zevXLZsGePGjWPAgAG0b9/ej/CBiub16tWLBx54gBEjRhCNRhk5ciR9+/b1x+zduxdN08jIyKBly5bous4dd9zBjTfeyI4dO7j33nu5+OKLfzFi+EuoWrUqAwcO5PHHHz+kWSRAgAABAhx9mKbJF198QfNTm2NFzUMoVGw7IXqW6kW7dMUZ6DovKhKmE8uNEsoIE9lfiJ5quE6QxIt0CamIoM3CGFbUtRcx0ULJRNCWqaKOsfyYKwXnysXZTjwq5HjRODUPy7QxEqNxlo0ggQg6pBErNAmlGURzo2gpB9tTzqAdNTHSwsQKognE0q5qiANSl4oMO6wTy49hpBnE8mNohkrZenvnKaWYBTFSslOJFcQwUg1VRxizMYV5kD0NsyAeXRXaQWomLq2MFTEx0kOc3ro9i5cs5vPPP6d79+7F8qwI7TCp7mN8vxMZBw4c4K677qJ79+5kZGQcFZu/6QB+9tln2LbN+PHjGT9+fNK5jz76iCFDhhCJRLj22msJh8P06tWLAQMG+GNuvPFGKleuzIgRI8jOzuaFF15gxIgRXHLJJYTDYXr06MGQIUN+1+T79evH5MmTk7qIAwQIECDAscGSJUvIy8ujY6eOSKSbEk0gbnYl24RXA2hrbg1g/MNZC2kgwCgRQoY0whkpyJDmqmhofgpYaAItqqmaPr+mUHdr9lR9IeBT0+iphqrvSzFUFM105d4SiZtNVS8nXUk5PcXwa/6UMeHbM1LUfb0aRdtKiO45bqpVk0l2dI8E29FwvU63wxeMVANN1xBpas6O68QK6fIIGpoilNYleqoBLlG16VjoId2v8RMpqo7QSDV+WR7PJc72ajFTSqTS7+p+jHxiJBkZGbRv3/7YPyyaAL0YnbIT3AEsSrbzSPGbDuCgQYMOkW47GA888AAPPPDAYc9NnDgx6fv69evz8ssvF32GQJs2bVi5cuUhx3Vd57///e8R2QoQIECAAL8PuQdyqVShEhIVnQPNJW52FTZiFg6o6KDQVX2a6zD5HH1qOFbUQkqJGYmhCbCjFjiKYBpNoDkSy+2aVdFGFWHz9IR9uNE4K2IihVA1e8Kdn6Pq6BwcJKhjQseKmWiOS1B9GC1gEK7msbongOU5lK6yCLjSdEKoSKLbqKG4AfHtKU1iz566RrrdwaCcQTtmgRCYhSaGFPHIKW73sGkdSiztEknbpiLH9gm0pYpwOqhOYSFVpDMrI4t/Xnc9Tz/7DLqu06ZNm2P4pOB2yBSjU1ac9zpB8PuTxwECBAgQ4KTB8uXL+eLLLzit9Wluk4YiI5aa5n/2Sl19LXW3g9XQVFTPk3lzXGfMcLXSXMJjIbzIoEAKda3ixdN8u6AaQ5QiiBvVk646iCZw3GicdNPImttpnMifp+bsdtvqEtw6Oq9+TkX4hK9goVLRqp5P012eQL/Gz40qStW97NmLax67fIiePcflNZTKSVR7oL7WQipiKHWJ0CSarvkNNiqCKhFeFNOxEbpA4nZc65rf/OHB+1pdi4ou6hoVK1Zi4D8HMvbpsezZs4fGjRtTuXLlQ4iyjwo8epbiQnHe6wRB4AAGCBAgQIBfxf/+9z8+++wzLr30UurVynG7eh2l7Ws7fipTNXkIP0rnpV9tx1YSbo5z0Dn8xhClEeyGzmxFs5I0Btzr43YFju9s+efsZLvqwkR7AsexARlvlkhMnzoOwkGNcWRyA4sfeVT5WO86kuYnEuYZb1hJXIPwLvHkUVR4z19X0npJWK+7LuF4zSAkzy9xDSLuiHpRS8dxqFihIjcOvIHPv5jKzJkzMQyD3r17U7du3cO+947jYFnWkTcbBE0gxz2CHQsQIECAowDTtBkx4hvq1XuKcPjflCv3GFdc8S5r1+4+aveIxSyefnqu//3w4TNo2XL8r1zx+7F//35yc3NxHIfZs2fzt/MvomG9hq7vo1KRQJLDctvQL+h61kSf8sVx8FOWjmX7DpRH9JzY8eulY3/8aQ9/v24y1WuNpkKl0TRr8Rzjxn3vk017Dh4OfhrVccmRXa+KOvXGMvbpefgydHZCs4VU8nOOqWhYfCcO4uMsRR3jOWlxZ8p9uWvC/dq2HCVph5LRc/ytcR1FM36tgnDpabx0rtJB9vbMI9VOmhP412DHbSWOS1xnfFHJ9mzLpmyZcvS5rA933nEnZ3U9i+eff5558+axd+9e9u7di+M4HDhwgDdef4NBgwYxePBgJk6YeERSY6oJpHhfAY4MQQQwQIAAAY4Chg37knffXc7o0d1p1Kgc27blMnz4V3To8BLLlg2kZMki0mf8Cl5/fTH33DOdf/6zFQC33tqOG29s/YftHoxVq1bxn//8h3A4TKNGjXAch8ZNTlFpVcdxiYfddKdITJcqhVpNV+lY73/FTeI6Q24toObobnOH5jZhOPywcBtndX+V886tyztvX0JaqmDOvO3ccsvn/LR+H48/1i0pDevZ8+XbNKlSq568mzs/xztnKydTGiplK/xIY1wazhEaSNAgnt6Vwk/FgnLEEs956xSOSjd7fp4qBxSuPenbSUzXCinQHEUoLW0tya5ASb1JKVXKGYFmKGdHuo0onh6zJC4xJ3WpUtYuvYymu2lk8MmiPWe8ebNmlK9UnkceeYSUlBR0XcdxHGzbpk3rNgy/dzi6rvHWpEmMHDmSzp07F+0hkhQzD2Dx3epEQeAABggQIMBRwAsvLOA//zmb887LAaBGjZK8884llC//OB98sIKrrz71D9/DcZK/L1EiRIkSocMP/gOYPHkyPc7twa5duyhTujSXXdwbO2JhIYjlRwGBGYmhh4146lGqKJPjOMQKTXTAjlloQsc2Td/xsGM2elhX5MaaoowRmsCMmvTt9wHnn1eX58f3QAhBXm4+DRtWQMeh/3VTGNCvKTl1S/tROFDRLS2kYUZMRRpdEPWjg2bU8jfOsRzVXOHEm1SsqHVIJ7Nt2YrMOmKigUvSbLjzdKNtloNmuATVYV0RTLv0N4kdz150TwtpmFHXXtRCM2Q8Yuc2wOgYxHKjOOkhrKhJKC2EFbMwTRMzZrppbLfpw9CwCk23mcYEQ0tagxVT4ctYxEQXKuKquY0oiQ6g1BUvYaXylbiydx9q1q5JdmY2+ZF8dE1XHI0uifVVV17FrO9mFr0bNUgBH/cIHMAAAQIEOAqQUjBt2jouv/wUdLcgPT09xA8//IOyZdMAlSa+//6vePXVRWzcuJ9SpVK5/PLGjBx5FpomGT58BosWbaNq1RJMnLgEx4F+/U7l8cfP4n//W0+/for1QIj7mD69LzNmrGPy5FXMm/d3AN54YzGPPvody5fvIBTS6Ny5JuPH96B8+RIATJv2E4MHf8bKlbto2bISXbrU4Kuv1jNjxtXs37+fl176lKeeWsXGjRbZ2cv4vyubcP99nQil6NgxG2lIt+FBRZk++3wtQ4d+wZq1e+jWrSbly6UjpPCpU+Ys2Mqtt01l3rwtVKmSyYD+zRj0rzbIkIbhSppJt3nj+7mbWbZsJ29P6qUidEKgh3WkLrniyiZUrZlNzVql0MI6mv4A//2gNz165GCbNv/7dgNdu05k376hpGekgICfNuyjQ+cJLFy4lebNK/LSiz2pU6cUQgrW/rSHO+6cxowZ68nPj1G3bikeerALPc7PURQxusQQqnnDm5+XYhQCHFulOA0Zcv8XriScO85z1CVIUyJ0oWhldOnLwvlpWgGEDLWnmnTvqexpQqBjoRt63J6Uat+kOy9pKHue+gjCb04JuWOkUHPw54dyYtUxHaFL2rRr65Njl0wPH9Zeu9Pbk5aZztSpU3/7B6K407JBCviIEbjMAQIECHAUcMstp/Hyyz9QpcoTXH31B7zyyg9s25ZLnTqlyMpS6d9HH/2WCRMWMmHCRaxefSOPPXYmY8fO5cMP4zRXkyev4sCBKDNn9mfkyLN48snZTJmyinbtqvKf/5xNqVKpbNlyC+3aVU26/3ffbeTqq//Lbbe1Y+XKG/jgg8v44YetPPTQ1wD89NMezjvvdc49ty4//HAdvXo14KGHviEajTJx4kRuvvl+hg5dQbNm1fhmel+eeeocXn11MXfc/gVWxCJ6oBA7ZlG4N59YXpRli7Zy4UVvcdEF9ZjzXT9Oa1OZF1/6QcmX5UXYunk/3c95jXPOrs33s65h5KNdefrpuTz62LfYMZtYQRTbsonmRbAiJvPnbSYjI0SdmiWxoiZW1MSMmlgRE6swRscO1ZCOrShTwB1jYUZiSbWAhfsKwHEY/9x8+l/dhNnf9KNyxRJ06zaR3F35mIUmF1zwFiXSQ3w1tQ9zZ/WnUcMy9O//IQUHosQKY9gxi2heFMd0iORGMAtNzIh3PwszamIWmkRyIzimQzQ/ihWziLmk1bHCmLITtYgVRn17VlT9bxbGiBXEiOVHMfOjxPIjxHKjFOzOx47ZRHMjao8KY77dWEFU2StQ94rmRTAj7rxiFlbEfUUtLPd4ND+CY9nuHGw170hMvaIxda8CtX/e+2C6+5poz4yo9yGaH6VMqTJF+4HwtICL8xXgiBBEAAMECBDgKOD220+nbt1SPPPMPF5/fTGvvLIQTRMMHNiKJ544G02TNGxYlpdeuoDTT1dSmTVqlGTkyJksWbKdiy5qAEBqqsGoUWeSlVWCevXK8NRTc5g1axPnn1+PrKwUhIAKFUoccv9wWOO5587n8stPAaB69ZJceGE9lixR6k3PPTefBg3K8NBDXQHIzrZ55RWdTZt+pnSpNqSnd6JO7Q288XofBILmAgqiNn37fsD9/+5CWmYKQpOEs1LRDI0JbyyladPy3HtfJwTQuGlFZvxvA9GoRSg9zLhRs2nVujK339EBgHqNyrE/N8agwZ8z7M4OhNLDCE0QSg8jdcm+3CiZmWH0kIGnBqKbSgNYkUsLjNSQn2LVQjpaSEMzVMQMVB1dSkYYhOCafqcy4O8tlTM4/nyq1XiST6et47zzc7jmmlMZcG1zSmalIKTgtiHtmfT2cnbuKaBK5UyEREUxDUm4RFhRz7h8fl6HsdQkmqHmFUpTa9E0RRWjofnvS8iljwmVcKN/bs2gUjMRrqybItDWwjrSkIRKpCB1SUgLYUeUaolHBG24EURv3+wkfkI3TWyrY9pB+yb1gzgPcQilhZLeB9uyVc3hYexJXUPuK5qjJdxoZnGhOFVHThQEDmCAAAECHCVcfHFDLr64Ibm5UWbMWMeECQsZPXoOFStmcPvtp3PhhfX56qt13HHHF6xcuYuFC7fx4497uOii+r6N6tWzCIXiDkRmZpioV8v2K2jRohKZmWH+/e//sWLFTpYu3cHixdt8Z3PRom20alUJgH379vHEE0/QplV9li636XpGF8Y89Q6tW1XENm2fWuS0VpWJxWxWLt/JKQ3LKBm1mIWTarBk8TZObVoeK6Ik4YTm0Kp5Bb6ZuQkzEmPJ4u1Mn76OzKwR/hxt26GgwGT71lyyM8PoKYYignZ0SpVMYe/eQqyYquWTmiIytmKKCFoL64rsWVd7Y5uWmovtYJvx7l2zMAYOtGpRETtmYdsO6Skadepks2zpdi6+uAF/79eUSW8vY8GCraxavYv5C7YCEIuYbn2gwDItdAFWxPLl5zxH0OVmwYya6GGdWKGSlPMaMjx+v4OJoDVH1R1iOVimek89+Tk97BDLj2Kkh4nlRZU8Hko6z5ImgMt7aCOE6ubVHCWz5zia6qrGJZY2bRzdURJ6YR0zEovzDiZ1gah56WHDJe3W/GuT7Vk4usbO7Tv4/PPPi/bDIBJuVRwIMsBHjMBlDhAgQIA/iEWLtvGvf33if1+iRIgePXKYNOkSevduxKefrgHggQe+4sIL3yIatbjwwvpMmXIFp55aIclWovPn4eDmj8Nh2rSfOOWUZ1i9ejft21flmWfO87uFAXRdYpoWX3zxBQ8//DAdO3YkJydHSZcZGuGwjpAqqqWiWzL+CSFUfZqeoqOFdOXwSfUJr4V0FRmSgnCqAYCma5iWzd8uqs/87//O93MGMH/etSz4/u8sX3o9pcqkK9kz6ZIzC0Hr1lXIy4uxYtVuRYTsnZMCB8F5Pd7gq683qk5kQEhFbiw16dP9CSl9YmQjpCTpNENTzpkNqWkhCgpNzjjzVZ5/YQFVqmRw881tefftSwD8Dl0Z0vzuWwGqYUKT/nw1t9NYdetK9JCScfOiblJT8/fk2DTD3Ve3BhCpIph6SNU46mHdJYR2v09V0U0ppUt+HZfXk5pUkU+vA9nQ3Xtp8a5kt4ZS8yKOhu7uqfT3TEpvb/R4J7N37UH2pK6xeMlinhg9ikg08tsPI3Et4OJ7BR7gkeKoO4Bbt27lpptuok2bNrRv355hw4axf/9+AGKxGPfffz9t2rShTZs2PProo1hW/C/bKVOm0LlzZ6644gq2bNkCwKZNm6hXrx7333//IfeaPn069erVO9pLCBAgQIAjgmXZjB49h6++WnfIuczMMGXLpgMwZswcRo48i5Ejz+aqq5pSs2ZJ1q/fm8AP9+v4NcGGcePmcemljXjllQu5/vpWtG1bhTVrdvvOY+3aGXz88Q+sXbuWf153PWd1PZN5329RKU3Lpn790sye/bPq5LUcHBu+/XYjhiGpWaOk3+HrWDbYDo0blWPu3J9dbjrFTzd/vrJn2zb165dhxYqd1K6VTa1a2dSunc3Spdu5/4H/IQWKO8+lG3Ech6ZNy9G4cVkeHzlT2XMcbLd797XXF/P55z9SqVIJHMfBMCT79hW63cA2a39UXIuqs1ZF6H5YuA3bsrEtm1278lm9Zjf1ckoxY/pPrFq1mxnTr+K2W9tx3jl12LYtF1Bzst21KN5BW0XEbNu35b0c2+MLdLDdjl5/3radfMxWtkm85mB7vt14N7V/rR3nQPTu7c/T5R30OQId/D217eQ99r53vPkdfM61h29Pff3iSy8yefJk/v73v9OzZ8+i/VB4WsDF9QocwCPGUXUAbdtm4MCB5OfnM2HCBJ555hlWrFjB0KFDAXjiiSeYOXMm48ePZ9SoUXz44Yc8//zzAEQiEcaNG8eoUaPo2bMno0ePTrL9xhtvsHDhwqM53QABAgQ4KmjWrCJ/+1sDLrnkbcaP/561a3fzww9befzx73jttcUMHtwWgFKlUpkyZTVr1uxm/vwtXHrpO+zZU0gk8tspXlCRxdzcKMuW7aCw0Ew6V6pUKnPm/Mz8+VtYtWoXd975JZ98soZIxMQ0TdLTV7Brl2TdT7U4kBvm2efmM+ntZSqSJwT//EdL1q3fy79u/owVq3by8SerGHrHl/zflU0oWTLspgLjqh8D+jdl9Zo9DB02jZWrdjH2mXl8/MkaPxU38PqWrFm7h3/d/CmrVu/ii6k/csNNn5KVFXZnHCdFFq40xtNjz+Wdd5fT/9rJfD9/K6tX72b0U3O4adDnDL2tHTl1S+E4Dq1aVmL8c9+zfPkOpn+1nlFPzPZM+f8/M+573pq0lKXLdnDNgI+oUT2L7mfWolTpNKJRi7feWsqGjft4/4MV3DrkCwAKI6Zy0kyVpvUIrYUQSs6OuNKIt2+erIeidInzEsad9XjHr+OlhqX0CbS9ukLVHXzQNQn2vPvElUsS+RA9bmyPgVrN2U/DumTQiqPQS08nrMXdM28ucXvqc33Z8mXcOuRW6tSpU6TnFCjm6J8MagB/B47qji1fvpwlS5bw8MMPU69ePZo0acKdd97JtGnT2LFjB2+88QZDhw6ladOmtGvXjltuuYWJEydi2zaxWIyUlBRycnKoX78+eXl5SbYrVqzI3XffjWmav3D3AAECBPjz8Prrf+Omm9rw5JOzOeWUZ+jQ4SU+/XQNn37ah9NOUx27L798IT/9tIdTTnmGCy98k+rVs+jfvxnff7+lSPfo2rUWzZpVpFmzZ5kyZVXSufvu60Tt2qU444yXaN/+RRYt2sbpp+fzww8/M2TIHVSqlM5771zKf/+7iuYtn2fSpGX0uaIxITcVW6VqFh990Jvv52+hZesX+Mc/P+H/rmzCU6O7qzSgR2Is1YdtrZql+GTK5cyYvo4WrZ7n/fdX8M/rWwKKqqRKtSymfHgZ38/fQotWz9NvwEdcdlljnhh5tnKQEKQpsQAAHExJREFUpGpmkJpwSaQl7dtVZcb0q9i/P0LPC96kQ8dXmTBxEU88fiYPPtRF3VvA6Ce7E4natGj1PENv/5KHHlTkxMJzroBbBrXl8ZGzaHPai+Tnx/jg/UvRQxpt21bh/uEdufPu6TRt/hwPPvQNjz7SlfR0g+7nvk5q1iM0a/UCk95fgactLKT0U8DSTX/7Xwtv/onnXNJoV6NXaN45/DHSt+k6MP7/SkNYCDXGsyel0kiW0iWC1kR8H2WcMFqIg+bnOoqJ8/RsmmaMn7f8zHezZvLBhx/w3gfv8fGnH7No0SIOHDhAJBrhvQ/eo0KFCqSmph7ZD4TnBRfnK8ARQThFzT0UAXv27GHx4sWcccYZ/rHvv/+eK664grfeeovevXvz/fffU6KE6mDbuHEj3bp147PPPqNGjRqMGjWK559/nhIlSvDCCy/QuHFjNm3aRNeuXRk7diyDBw/mhhtu4O9/V5xX06dP5x//+AcrV6487Hy8a7/88kuqVKlytJZ51FFQUHDkP1wnGII9UAj2IdgDODp74DgOQ4cOpVR2KS67rDe7d+jETIfmzVTNoRCC62/4hFjUYtzYczBSdMxfaHiQunQbCjRiBTG0kB6PRiV2lbpRKztmoafoLumxhuV3lqp0o0e0rIcNzMKEBgXhhqsAIST5BfmkpqSqBoqQjh1TJMi2paJxqinCUoTGrr1YQRQtpMXN4XLeSaEaVjSJFTExSoQwC030kM7rby5m+ANfM/7pc2nTogKz52/j7/+Ywv33d+Li7rVVQ4bj+MoWXvTPjlkYaQZmoWpSsWNqLo5tu40sqoFC6hqW2zBiRkw/Auh1NDvA7t27+fTTT6jfoAHNmpyKHtKxTItoLEY4FMIBNLdhRIbUejXdazyRWJbF7t272blrJyXS0ylXrjyWabJi9Up0qVGqdGk2btjA+o0b+GndT+zevRvTNClXrhxVq1alcuXKSCkpKChg3bp1bNiwgWg0St26denXrx9paYrL8rc+V73zb495nYrlKhxy/lhhy/atXHLjFcf95/3xhKPaBZydnZ3k/AG8/PLLVK9enW3btpGWluY7fwBly5YFVN1gjRo1GDRokP+ghULJ7PbVqlXj+uuvZ+zYsZxzzjlUrZrMgRUgQIAAARRs2+a9994jPT2da/pdQ5lyZfhhwUquuvoDXn/tbzRsWIa5czfz5ltLmfTWxRhhJcumh92IlxtFko70KU9ApfWMFEOl2xI8LM8JlBp+w4iiHMFvJFBjXXtSooVUo4CeovsO0cFRHN1tuPDsAX6DCBCPdCWQMOuphiujFk8yo7tjNUUZoxmKcgVUM8ZjT8zmuWd70KVbLeyYRbez6/Dcs+dx861TufySRshQnBZF3VgkRPckethAGvGIpmN781NRQK/RRWgCPWz4qVsH2Lt3L+t++okvvvwChCC6JEarVq3UnkuBxEIzdDxqHMfdA8u0mDV3NosWLWLP3j1s376dEiVKULZsWQ4cOMCOHTuQUlKnTh0cx2Hv3r1UqVyZGjVr0r59eypUrEBKSopK+x4DeE0gxYWgCeTIcUxpYMaPH8/UqVMZN24ce/fuPcSp875PFJguWbLkL9obMGAAU6ZMYfjw4bzwwgvHZM4BAgQI8FfHhx9+yPqf1nPzjTcTEgZ2zKZ7txoMHdKOgTd8zLZtedSoUZJRj3WjW9eaRPOjhNLCRPIi6GE9oTZNOSlSSiX95tK2GCmGklEzEuhHpEudEtaJ5auxVsTECTk4jt+nC46DrUnfjlnojk2w5zk5sUKTUMgmVuCOjcSUvUQVDdvBMoUvn2YWuPOMmb5zYxWaaCk60X2FhEumUrgrn1DJFMxcRbeyfMVO2jSvQCwvih01MbUYzXNKsXz5Tgr35hPKSMEsiCF1VVRnmxZ6Wojoftfe3gJCmWEcO+4sezV1VsyCMMQKYxipim7Fi+45ODwx6glSU1OxbZsLLriADz/8kGh+BD2k3gczamLi0cDYWFGTvNxcnh3/LOHUFDp06EDp0qUpX748KSlxvWnbtolEIn9aNF0UsxJI4AAeOY6ZAzh27FhGjx7NXXfdRadOnfj000+THD2IO35FfUANw+C+++6jT58+fPTRR0nRxF9DYWEhBQUFR7aAYkQkUrS2+hMZwR4oBPsQ7AH8sT3YtHETixcvZkD/ARgphlJ5sKI4OAy6pRU339zSjciBYzrErBiOtImYERzdwcR0eQAVHAeELXB0h5gdwxE2USumxrjdqokEybap7MXsGI7mYNsxt/EABG5TgyVwNEfZEQ62FcPBQdiuo+iAZVlYWETNqHtPB0e6Y117eQfyWL9+PRs2biAvN4+YGSM1NZWMjAwyMzLJzMqkQoUKZKSl4yAgTRDDRJSQWJoNJTRMYVOvXim+nr2Rjp2qgeEgDJi1dCv16pWGNIEpLeyQDboGONjSwRQWpCp7Ml1iSdXJa9k2PmuzCnpiW+4aTLfz1u32jZkxbNsmLy+P888/n88//5xOnTphaw4xR70Plm0Rc2LEojEKCgrYvWc3n3/+OfUbNKDbmd18J9dxnMN+zh3tz77CwsKiDRTCT5kXC4IawCPGMXEAH3zwQSZOnMg999xDnz59AKhQoQL5+fnk5eWRnq4oEXbsUAz15cuXL7LtFi1acOmll/Lwww9z2223FemalJSU476m6HifX3Eg2AOFYB+CPYDftwfr1q3jhRde4NJLLiW7RDaa1LAw0XUDy7bQNA3bseIkxdJG0ySmaaJJHcs00TUDy7H8NKsDSCEwYyaapmNZFrquYzmWUrSwEhQjNFtxAJqx+FhDS4rYOY4bUYya6Jqm5qXr2FjxrlpU9Gx33m6WLF3Czu07QeLX1u3Zs4ctW7awb/8+6tatS926dalVqxa6rpOfn6/Ob93C0mVLWb9+PVJIatasSfVK1ahdrw5lUrNZtngJy5cvY8/+vTQ5pZC+/d7lztsb0+n0mixctpc775zDwOvrs/HHjdSqUwthaQjHTe3aGrqhE4ta6LokmhfDyAxhRmy0sBsBdBsvHNtB0zTMpH3TsIXNxx9PYd++fQC8+uqrAFSvVh29mabGxixszWL9j+sY/8JzpKWlUbJkSdq3b0+7du2OWfr215AYZfw1FHdnbtAFfOQ46g7gk08+yWuvvcaIESO48MIL/eP169cnNTWV77//3q8TnDdvHmXKlKFatWpHdI9bb72VadOmMWbMmKM59QABAgT4S+PVV1+lS5fOnNrsVNXIoSsiY6lLl8xYIKQeD07pqkZND+tx0l+3E1X4cmCuLJsQvj0hBXpIV0EezY93qfSnUHV16zasIz83n4qVK6JLnR8W/cCePXs4cOAAubm5/ss0TVJSUvw/1FNSUgiFQmzbto1oNErVqlUpX7686oJFOY/Vqlfj7O5nU6VKFf/4L8FxHHbu3MmPP/7I2rVrmTvpTbZu3Urt2rVp3bo1ZcuW5eJeBq+8Mp/HRy1j8JCFlCsnOeusFDJLbeDdjxdimiY9evTg1MZN4zQsQqCnhdDTDPV1iuGTJntpcalLLNNWdYIh4dcx7t23lydGPeFz5NauXZu1a9cCsHrNap9cW8nKWXz1zf/429/+dkiN/XGNYk4BBzyAR46j6gAuW7aMcePGMWDAANq3b+9H+EA1iPTq1YsHHniAESNGEI1GGTlyJH379j3i+2RmZjJs2DAGDRp0NKcfIECAAH9J/Pjjj3z77bfEYjFaNGvhEwYLie+AqJozGc9OutEpIcB2x9imK1tm2ZiRKLm5eViW6pwtmZGF0FRKWXqp3MN0ARcUFDDxtYns2LmDUtml2Lp1K5FIhKanNqVixYpUrlyZ9PR0MjIyKFGiBIZh+GU63v+RSIQOHTpQoUKFIpf6/BKEEJQtW5ayZcvSpk0bgHjaOgHDh9dk+PBDr3cch1WrVvH2228zd/Zcev3tYrJKZIJQXcWaIf3uYjum+BxtM57Ktk0LIXE7qwW2aTN5ymT27t0LqLr3goICKlasyM6dOwmFQrz62quc1u40NKGxZOkStmzZQr9+/f7QPhQ3PFqb4rxfgCPDUXUAP/vsM2zbZvz48YwfPz7p3EcffcSQIUOIRCJce+21hMNhevXqxYABA37Xvc4991z++9//MmPGjKMw8wABAgT4a8KyLCZMmEC9nHrcdMNNZGVmArjOGX69n8cTF6dQcR1ATYLt8MWXX/D111+Tm5tLqVKl2LVrl5IT0zRCoRDhcJg2bdrQoF4DSmaXpLCgENMyiRQUEolGicaibNy0ke+++47mzZtz3T+uQ9eL9hGTlZV12OPHqnb7SFKnQgjq1avH0KFD+eSTT3hk5KO0atGKktklkQhO79DBJ3EWuuS72TMxDIN6deuRlZWJIxwK8gvIzy+g0Cxk4/qNrFmzxrefk5PDihUr6NSpE5988gk//fQT69atY/6C+ZQrV44mTZpw0003FTn1erxARZGLsQkk8P+OGEeVB/B4Q8AD+NdBsAcKwT4EewBHtgffffcds2fP5saBN/qdu/jRPRXNk4bEcVPCtu34DmAsGiNmmcybO49J70wClGLTtm3b2L17N/Xq1cO2bdLT01m3bh3fffcda1avITcvVzmFoTChUEh9nRKmYsWKtG7d+qj9vj0en4W9e/cy7YsvsR2bnTt2sXzlckpnl8IIhcjNPUAoHKZ0qdL8tO4nLMsiFosRCoVITUklNS2VShUrUaVqFWrWrEmNGjVYv349X331FRkZGaSkpJCVlUXbtm19h+9424Oi8gD+9433qVShUrHNa/PWzVxw+UXH/ef98YRjSgNzvODnn3/+s6fwqygsLPzL/XV3tBHsgUKwD8EewJHtwYL5CyhXthw///yzr92aV5jPti1bSU1PA8shL5LPzxt/5uctP7N582YikYivw67rOmXKlKFFixbUrl2bnTt3omkaZcuWZfdupbG7d+9eDMOgY8eOdOzY8TfntGnTpt+/+AQcr89C67Zt/K/Pjp3Nrl27XLm9dEqWLKnS4Y5DNBolFAr9YsRx+/btpKam0r1796TjO3fu9L8+3vZg69atRRq3Y9fOYk3L7ti187cHBUjCCe0AZrqpkKuuuupPnkmAAAECBAhwYiArK+sXazNLlChBVlYWA264tphn9evzCnAoTugUMMD+/fv9TqsAAQIECBAgwB9DiRIlflW0Ye/eveTm5hbfhFz81rwCJOOEdwADBAgQIECAAAECJCPomwkQIECAAAECBDjJEDiAAQIECBAgQIAAJxkCBzBAgAABAgQIEOAkQ+AAHgXk5uYybNgw2rZtS9u2bRk6dCh79uw5ZNwTTzxBly5dko5NmTKFzp07c8UVV7BlyxYsy6JFixa89tprSePeeust6tWrx+jRo5OOf/TRRzRp0oRoNHr0F3YY/Npat27dyk033USbNm1o3749w4YN+9UGnI8//ph69eolvXr06OGff/nllznjjDO47rrrOHDggM9LdjD59xNPPEG9evV49913k46PGzeOrl27Hr3FFwFFeRai0Sjnn38+06dPTzr+V3oW3nvvvUPeO+81d+5c9u7dy6233kqbNm3o0KEDTz31FLZt/6K9E+lZ+K29+a1n5K/0HBRlvZZlMXLkSNq3b0/Lli0ZNGiQr4JxOJxMz8KiRYsOOd6sWTP/+r/asxDgr4XAATwKuO+++1i9ejUvvPACL7zwAqtXr+buu+9OGrNkyRJeeOGFpGORSIRx48YxatQoevbsyejRo9E0jRYtWrBw4cKksTNnzqR8+fLMnDkz6fiCBQto1qwZoVDo2CzuIPzSWm3bZuDAgeTn5zNhwgSeeeYZVqxYwdChQ3/R1tq1azn99NP55ptv/NfEiRMBxSP2ySef8Mwzz9CwYUNeeeUVSpUqRZ06dY5obzzpp+LCbz0LhYWF3HzzzaxatSrpur/as3DuuecmvW/ffPMNHTp04NRTT6VZs2bceOONrFixgmeeeYaxY8fy+eefM2rUqF+0dyI9C7+1N7/2jPzVnoOirHfkyJG8//77PPbYY0ycOJF169Zxzz33/KK9k+lZWLNmDXXq1Ek6/8UXXwB/zWchwF8LgQN4FDBt2jT69u1Lo0aNaNSoEf369ePbb7/1z0ejUe64446kv+wAYrEYKSkp5OTkUL9+ffLy8gBo3bp10g+44zjMnj2b/v37s2jRoqT2+uJ2cn5prcuXL2fJkiU8/PDD1KtXjyZNmnDnnXcybdq0X4wCrl69mpycHF+ns2zZsmRnZwOQn59PqVKlyMnJoU6dOr+4NwcOHGDp0qX079+fWbNmJdn/4Ycfit0B/LVnYenSpfTq1euwxOR/tWchJSUl6X374YcfmD17No8//jgrV65kzpw5PPbYYzRv3pwmTZrwwAMP8PLLL/+itNeJ9Cz82t7ouv6rz8hf7Tn4rfUWFhYyceJEhg8fTrt27WjQoAFDhw5l1apVxGKxw9o7mZ6F1atXU7t27aQxpUuXBv6az0KAvxYCB/AoIDs7m8mTJ3PgwAFyc3OZPHkyjRs39s+PHTuWatWqHcL2XqJECdq1a0erVq247rrr+Pvf/w6oH/B169b5aZKVK1eSn5/PZZddRokSJZg3bx6gfhmuXLmStm3bFs9C+eW1VqpUieeee46yZcseck0kEjmsrTVr1lCrVq3DnsvJySEjI4OmTZsycuRIrrzySgBatWrFokWLfAH62bNnU6lSJS688EJ27drF6tWrARVF2Lt3b7HuDfz6szBr1iy6du3KW2+9dch1f8VnwYNpmjz++OP069ePqlWrsmHDBlJSUmjQoIE/pl69ekSjURYvXnxYGyfiswCH7g38+jPyV34O4ND1zps3D03TktRD2rZty6effophGIe1cTI9C7+21r/6sxDg+EfgAB4F3H///SxZsoRWrVrRsmVLfvzxRz/dtXTpUiZNmsTw4cMPe+2gQYP49ttv+frrr/0PgUaNGpGenu7/lffdd9/RokULwuEwrVu35rvvvgNg4cKFhMNhTjnllGO/SBe/tNbs7GzOOOOMpLEvv/wy1atXP6xTGIvFWL9+PbNmzaJ79+507tyZe+65hwMHDvhjHn30Ub755humTp1K5cqVAWjTpg0HDhzgxx9/BFTq47TTTiMrK4sGDRr4e7NgwQJq1KhB+fLlj9VWHBa/9iz079+fQYMG/aKs01/tWfDw2WefsX37dvr37w9AmTJlKCws9GXEIC7HmHjMw4n6LMChewO//ozAX/c5gEPXu379eipUqMCXX35Jz5496dChA8OGDUt6bxNxsj0La9asYdWqVf7eDB48mO3bt/vn/8rPQoDjH4EDeBTw008/UbNmTSZOnMhLL71ESkoKw4YNIxqNcvvtt3Pbbbcd1gnyULJkyaQaDa/OY9GiRYD6Zeb9Fde2bVu/zmP+/Pm0aNHiF/+SPhb4pbUejPHjxzN16tTDngNYt24dpmmi6zqjRo1i+PDhzJ07l5tvvjlpXKlSpdA0zf++dOnS1K5d2//l5/2iB/UhkLg3f8ZfvkXdn1/CX+lZ8PD666/zt7/9jaysLACaNm1K1apVuffee9m3bx979uzhoYceQtf1w6b9TtRnAQ7dGyjaM/JXfA7g0PXm5eWxfft2xo0bxx133MHIkSNZtmwZgwcPPuz1J9OzkJeXx5YtW4hGo/z73/9m5MiRbN68mf79+yf9nPxVn4UAfwE4Af4Q1q9f79SvX9/56aef/GOrV692cnJynP79+zv9+/f3j0+cONHp3Llzkew+++yzTv/+/Z1oNOqceuqpzqJFixzHcZw1a9Y49erVc/bt2+f079/fGT9+/FFdz6/h19a6cOFC/9hTTz3l5OTkOBMmTPhVe7t37076ftGiRU5OTk6S/cPhnnvuce655x5n27ZtTr169ZydO3c6juM4M2bMcFq3bu3Ytu10797dmTJlypEt8A+iqPvjOI6Tk5PjTJs2rUh2j8dnwcPWrVsPu77ly5c755xzjlOvXj3n1FNPdZ5//nnntNNO+8U1n2jPguMcfm+O5Bk5GMfzc+A4h1/vs88+6+Tk5DjLly/3jy1dutTJyclx1q1bd1g7J8uz4DiOs3//ficWi/nf79ixw6lfv77zzTff/Kq94/1ZCPDXQBAB/INYsmQJoVCIGjVq+Mfq1KlDSkoKP/74I7Nnz6ZZs2Y0a9aMESNGsHnzZpo1a+bXafwS2rRpw+LFi1m4cCG6rtOoUSMAateuTZkyZZg/fz6LFi0q1r9mf22tmzZtAuDBBx9kzP+3cz8hiURxHMC/yUSH6L8Z9k+kDMlISpuJirp2DCLoDxVU2KWioIsIgodgLoGxHUro2KWTVFTSJYTAU0VpFBEYhRBh2MEyCXcPu87mZhbJ7lrz+8AcfOKD9/yqP2fem2/fYDab0d/fn7C/6MLu530BwPX1dcLXRefG5XKhqqpKWDSt1+sRDAaxt7cHr9f7z//pv2d+PiIVsxDldDohl8tRW1sb065Wq7GxsYHd3V24XC709PTA7/cLa5/+9NWyAMSfm2Qykso5AOKPVyaTAfj9fgIQ1rz5fL64/YglCwCQlZUFhmGEx1KpFLm5ue8ea6pmgXwOVAAmqaioCKFQCF6vV2i7urpCKBQCz/NYX1+H3W6H3W7H6OgoZDIZ7HZ7zCaReDQaDcLhMNbW1sBxHCSS328Vx3HY3NxEJBJBdXX13xraC4nGWl5ejrm5OSwvL4PnefT19SXsa3t7GxzHxewK9Xg8kEgkMT+O8bAsi7Ozs5jLPACQmZmJmpoarKysoLKyEvn5+R8a50e9NT8flYpZiNrf34der49pu7u7Q29vL3w+HwoKCpCRkYGdnR0UFhaioqLiRR9fMQtA/LlJJiOpnAMg/nh1Oh0A4Pj4WGiLbsgoLS190YeYsnB0dIS6ujpcXl4KbT6fD7e3t3E/J8+lehbI50AFYJK0Wi00Gg2MRiM8Hg/cbjemp6fBsixYloVCoRCOvLw8MAwDhULx6kaAKIZhUF9fj9XV1ZgvM+DnOg+Hw4GGhoaYdTB/W6KxSiQSLCwsYHh4GM3Nzbi5uRGOp6cnAEAgEBAWc+v1ejAMA6PRiPPzc7hcLphMJnR2dr65QFsqlaKkpARbW1uvzs3/uPVBovl5q+BPJBWzEHV6egqVShXTlpOTg8fHR/A8j4uLCzidTlgsFoyNjSEtLQ3A188CEH9ukslIKucAiD/esrIytLe3w2Qy4eDgAG63G2azGW1tbcLZYLFmQa1WQy6Xw2Qy4eTkBIeHh5icnERTUxO0Wm3C/lI9C+RzoAIwSQzDYHFxEcXFxRgZGYHBYIBSqcT8/HzSfXMch/v7+xen8RsbG/Hw8PDPv8wSjdXhcCASicBms6GlpSXmiO7MGx8fx8zMDICfl3mWlpYQCATQ1dWFqakptLa2JrxB7HMsyyIcDr/4Vx2dm/9x6UNMWYjy+/0xGxyirFYrgsEgOjo6YLFYMDExge7ubuH5r54FIP7cJJuRVM0B8HoWeJ6HTqeDwWDA4OAgVCoVZmdnhefFmoX09HTYbDZkZ2djYGAAQ0NDUCqVsFqt7+ozlbNAPoe0799/3TiJEEIIIYSIAp0BJIQQQggRGSoACSGEEEJEhgpAQgghhBCRoQKQEEIIIURkqAAkhBBCCBEZKgAJIYQQQkSGCkBCCCGEEJGhApAQQgghRGR+ACXYvnkwZ1pwAAAAAElFTkSuQmCC\n",
"text/plain": [
"