
Graduate Portal: CI/CD

Conducted by:

Team GO

Team Members Email

Alexander Muendesi u20426918@tuks.co.za
Jason Antalis u19141859@tuks.co.za
Ying Hao Li u20460687@tuks.co.za
Chris Magerat u19029242@tuks.co.za
Priyolan Pillay u20471582@tuks.co.za
Regan Zhao u20556455@tuks.co.za
Josh Brink u19185678@tuks.co.za

April 16, 2022

mailto:{u20426918@tuks.co.za}
mailto:{u19141859@tuks.co.za}
mailto:{u20460687@tuks.co.za}
mailto:{u19029242@tuks.co.za}
mailto:{u20471582@tuks.co.za}
mailto:{u20556455@tuks.co.za}
mailto:{u19185678@tuks.co.za}

Mr A Schreuder - Team GO Graduate Portal: CI/CD

Table of Contents
1 Introduction 2

1.1 Purpose . 2
1.2 Scope . 2

1.2.1 Name . 2
1.2.2 Explanation of CI/CD . 2

1.3 Definitions, Acronyms and Abbreviations . 2
1.4 References . 3
1.5 Overview . 4

1.5.1 Contents of the SRS . 4
1.5.2 SRS Organization . 4

2 Overall Description 5
2.1 Product Perspective . 5

2.1.1 Product Function . 5
2.1.2 User Characteristics . 5
2.1.3 General Constraints . 5

3 Specific Requirements 6
3.1 Business Needs . 6
3.2 System Requirements . 6

3.2.1 Functional Requirements . 6
3.2.2 Non-Functional Requirements . 6

3.3 System Decomposition . 7
3.3.1 Subsystems . 7

3.4 System requirements associated with the subsystems 7
3.4.1 Component compilation . 7
3.4.2 API Tests . 7
3.4.3 Database Tests . 7
3.4.4 User Interface Tests . 7
3.4.5 Merge . 8
3.4.6 Continuous Delivery . 8
3.4.7 Continuous Deployment . 8
3.4.8 Linting of git comments . 8
3.4.9 Pipeline Error Detailing . 8

4 Acceptance Criteria 8

Appendices 9

A Tools 9

B Diagrams 10

1 Page 1

Mr A Schreuder - Team GO Graduate Portal: CI/CD

1 Introduction

1.1 Purpose
Team GO was contacted by Mr A Schreuder to create a graduates portal where students and
industry can collaborate. It is meant to be a platform that gives graduates and industry a
chance to find potential talent with the intent of getting job opportunities.

Mr A Schreuder wanted to fast track the tedious and often repetitive process of selecting and
interviewing prospective candidates after an impressive Capstone Project. Mr A Schreuder
requested that we create a portal similar to LinkedIn, however specially catered towards
graduates.They requested for the important academic information that an institute may
require when interviewing potential graduates be displayed on the graduates page. Their
main concern was that of authenticity and security and as a result tasked us with certifying
the graduates degree on the block-chain.

Mr A Schreuder allowed us creative freedom and suggested that we add fun elements into the
graduates portal comprising of but not limited to, a social competent and a social feed.

1.2 Scope
1.2.1 Name

Continuous integration / Continuous deployment

1.2.2 Explanation of CI/CD

Continuous Integration/Continuous Deployment is a method for allowing frequent application
delivery via automation during the development of the application. The main aspects of
Continuous Integration/Continuous Deployment include delivery and deployment.Team GOś
role in this project will be to accomplish the above by introducing automation scripts,as
well as maintaining and ensuring the health of the repository by monitoring pull requests,
commits and merges. Automation scripts include those for testing code, building the code
and releasing validated code to correct branch.

1.3 Definitions, Acronyms and Abbreviations

Table 1: Definitions, Acronyms and Abbreviations

Role Name
CI/CD Continuous Integration/Continuous Deployment
GitHub GitHub is a website and cloud-based service that helps developers

store and manage their code, as well as track and control changes to
their code.

SRS Software Requirements Specification

2 Page 2

Mr A Schreuder - Team GO Graduate Portal: CI/CD

1.4 References

References
[1] What Is GitHub? A Beginner’s Introduction to GitHub. 2021. url: https://kinsta.c

om/knowledgebase/what-is-github.
[2] CI/CD Pipeline: What, Why How to Build The Best One | 2022 Updated. 2022. url:

https://katalon.com/resources-center/blog/ci-cd-pipeline.
[3] What Is CI/CD and How Does It Work? | Synopsys? url: https://www.synopsys.co

m/glossary/what-is-cicd.html.
[4] Continuous Delivery | Get started with CI/CD | Atlassian. url: https://www.atlass

ian.com/continuous-delivery.
[5] Dean Leffingwell. Nonfunctional Requirements - Scaled Agile Framework. url: https:

//www.scaledagileframework.com/nonfunctional-requirements/.
[6] Continuous Integration: A ’Typical’ Process | Red Hat Developer. url: https://develop

ers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process.
[7] Setting Issues as High Priority. url: https://help.zenhub.com/support/solutions

/articles/43000495285-setting-issues-as-high-priority.
[8] DataVisBob Laramee. Software Engineering Principles Lecture 06: Subsystems. 2017.

url: https://www.youtube.com/watch?v=3A0gY8f8x2A.
[9] David C. Kung. The Principles of Quantum Mechanics. McGraw-Hill Education, 2014.

isbn: 9780073376257.

3 Page 3

https://kinsta.com/knowledgebase/what-is-github
https://kinsta.com/knowledgebase/what-is-github
https://katalon.com/resources-center/blog/ci-cd-pipeline
https://www.synopsys.com/glossary/what-is-cicd.html
https://www.synopsys.com/glossary/what-is-cicd.html
https://www.atlassian.com/continuous-delivery
https://www.atlassian.com/continuous-delivery
https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.scaledagileframework.com/nonfunctional-requirements/
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process
https://help.zenhub.com/support/solutions/articles/43000495285-setting-issues-as-high-priority
https://help.zenhub.com/support/solutions/articles/43000495285-setting-issues-as-high-priority
https://www.youtube.com/watch?v=3A0gY8f8x2A

Mr A Schreuder - Team GO Graduate Portal: CI/CD

1.5 Overview
1.5.1 Contents of the SRS

The SRS will provide a description of the CI/CD. It will provide an outline of the re-
quirements. It will also provide an overview of the characteristics and constraints of the
CI/CD.

1.5.2 SRS Organization

The following section, section 2, will provide an overview of the CI/CD and its perspectives,
functions, characteristics, constraints, and dependencies. Section 3 will outline in more detail
the specific requirements for the software.

4 Page 4

Mr A Schreuder - Team GO Graduate Portal: CI/CD

2 Overall Description

2.1 Product Perspective
This section introduces Continuous Integration/Continuous Deployment that was selected by
our team along with the functional requirements that need to be met in order for successful
completion of our feature.

2.1.1 Product Function

Continuous Integration/Continuous Deployment is a method for allowing frequent application
delivery via automation during the development of the application. The main aspects of
Continuous Integration/Continuous Deployment include delivery and deployment.Team GOś
role in this project will be to accomplish the above by introducing automation scripts,as well
as maintaining and ensuring the health of the repository by monitoring pull requests, commits
and merges. Automation scripts include those for testing code, building the code, linting code
and releasing validated code to correct branch.

2.1.2 User Characteristics

The users of the CI/CD system include students and faculty of the University of Pretoria. The
users are assumed to have a good understanding of coding and coding related applications,
e.g. GitHub.

2.1.3 General Constraints

Due to the fact that the CI/CD system will only be active on the COS301/Graduate Portal
GitHub, users will have to be a University of Pretoriastudent who is registered for COS301
and be granted access to the repository by the owners of the repository.

The pipeline may (at any time) break due to erroneous code being merged into the main
repository.

5 Page 5

Mr A Schreuder - Team GO Graduate Portal: CI/CD

3 Specific Requirements

3.1 Business Needs
The following is an overview of business needs which should be implemented:

• Provide a system that enables code to be continually integrated and deployed.

• Allow for users to test their code before merging with current code ready for deployment.

3.2 System Requirements
3.2.1 Functional Requirements

• FR1. The implemented system shall notify users if there are any issues during the
integration of their changes.

• FR2. The system shall be automated so that there is no manual intervention required
from the user in terms of building,testing and deploying.

• FR3. The system shall automatically integrate code/changes that have successfully
passed the checks to the relevant repository.

• FR4. Continuous delivery shall ensure that there is always a code base ready for
deployment to a production environment.

• FR5. Each pull request shall trigger an automatic test and build sequence.

• FR6. Each pull request shall trigger a meta tag test to ensure that the correct meta
tags are used before merging.

• FR7. The system shall have badges in the README.md to display the test coverage
and the status of the system.

• FR8. The system shall enable manual triggers for the automation scripts to allow for
manual testing of the code.

3.2.2 Non-Functional Requirements

• N-FR1. The implemented system shall give users an adequate description of any
issues experienced through integration to ease the correction process.(Usability)

• N-FR2. The Continuous integration/Continuous delivery system shall prevent any
faulty code form being merged into the develop branch(Safety requirements)

• N-FR3. The Continuous integration/Continuous delivery system shall be available
99 percent of the time to handle pull requests(Availability)

6 Page 6

Mr A Schreuder - Team GO Graduate Portal: CI/CD

3.3 System Decomposition
3.3.1 Subsystems

.

Figure 1: System Functional Block Diagram

3.4 System requirements associated with the subsystems
3.4.1 Component compilation

• The system shall successfully build individually components.

3.4.2 API Tests

• The system shall run available API tests and give detailed feedback on the conducted
tests.

3.4.3 Database Tests

• The system shall run available Database tests and give detailed feedback on the con-
ducted tests.

3.4.4 User Interface Tests

• The system shall run available UI tests and give detailed feedback on the conducted
tests.

7 Page 7

Mr A Schreuder - Team GO Graduate Portal: CI/CD

3.4.5 Merge

• The system shall accept pull requests once a successful build has occurred and all tests
have been passed.

3.4.6 Continuous Delivery

• The system shall automatically release the validated code to the repository.This should
occur when pull requests are accepted.

3.4.7 Continuous Deployment

• The system shall automate the release of the application to production.

3.4.8 Linting of git comments

• The system shall maintain a clean, easy to read and maintainable project history.

3.4.9 Pipeline Error Detailing

• The system shall display any and all errors that have been found or have occurred in
processes in the pipeline.

4 Acceptance Criteria
CI/CD is essential for maintaining and monitoring the health of the pipeline. It enables
automation to allow for smooth integration and deployment of a system. This feature thus
needs to meet the following acceptance criteria to be ready for production:

• The building of the system should be automated for each pull request opened.

• Unit testing and e2e testing should be automated.

• Linting of code should be automated.

• The correct standard for meta tags should be tested.

• The automation scripts should also contain manual triggers for manual testing of code.

• Automation scripts should run in parallel.

• Test the entire code base after each push commit to main branches in the repository.

8 Page 8

Mr A Schreuder - Team GO Graduate Portal: CI/CD

Appendices

A Tools

Name Description Link
GitHub Version Control Software https://github.com/COS-301
Angular A platform for building mobile and desk-

top web applications.
https://angular.io/

NGXS A state management pattern and a library
for Angular

https://www.ngxs.io/

NestJS A framework for building efficient, scal-
able Node.js web applications

https://nestjs.com/

Narwhal Mono-repo management tool https://nx.dev/
Prisma An evidence-based minimum set of items

for reporting in systematic reviews and
meta-analyses

https://www.prisma.io/

Postgres An application database https://www.google.com/search?cli
ent=safari&rls=en&q=postgres&ie=UT
F-8&oe=UTF-8

GraphQL A graph-based API standard https://graphql.org/
CQRS Command and Query Request Segrega-

tion
https://docs.nestjs.com/recipes/cq
rs

Docker A set of platform as a service products
that use OS-level virtualization to deliver
software in packages called containers

https://www.docker.com/

LucidChart A web-based proprietary platform that al-
lows users to collaborate on drawing, re-
vising and sharing charts and diagrams.

https://www.lucidchart.com/

9 Page 9

https://github.com/COS-301
https://angular.io/
https://www.ngxs.io/
https://nestjs.com/
https://nx.dev/
https://www.prisma.io/
https://www.google.com/search?client=safari&rls=en&q=postgres&ie=UTF-8&oe=UTF-8
https://www.google.com/search?client=safari&rls=en&q=postgres&ie=UTF-8&oe=UTF-8
https://www.google.com/search?client=safari&rls=en&q=postgres&ie=UTF-8&oe=UTF-8
https://graphql.org/
https://docs.nestjs.com/recipes/cqrs
https://docs.nestjs.com/recipes/cqrs
https://www.docker.com/
https://www.lucidchart.com/

Mr A Schreuder - Team GO Graduate Portal: CI/CD

B Diagrams
.

Figure 2: Github workflow Sequence Diagram

.
Figure 3: Nx Test Sequence Diagram

10 Page 10

	Introduction
	Purpose
	Scope
	Name
	Explanation of CI/CD

	Definitions, Acronyms and Abbreviations
	References
	Overview
	Contents of the SRS
	SRS Organization

	Overall Description
	Product Perspective
	Product Function
	User Characteristics
	General Constraints

	Specific Requirements
	Business Needs
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Decomposition
	Subsystems

	System requirements associated with the subsystems
	Component compilation
	API Tests
	Database Tests
	User Interface Tests
	Merge
	Continuous Delivery
	Continuous Deployment
	Linting of git comments
	Pipeline Error Detailing

	Acceptance Criteria
	Appendices
	Tools
	 Diagrams

