
Storage Feature - SRS

Team Fortran

Team Members + Roles (Sprint 1)

•Project Manager - Zoe Liebenberg

•Business Analyst - Christian Kenan Devraj

•Designer - Olumayowa Shoderu

•UI Engineer - Olumayowa Shoderu

•API Engineers - Muziwandile Ndlovu

•Backend/Service Engineers - Omolemo Mashigo

•Data Engineers - Larisa Botha

•Testers - Simphiwe Ndlovu

•Developer Operations - Lindinkosi Kunene

General Description of Feature

Context of Feature

The web application will need storage both locally and externally. Locally that would be the session
storage and the latter would be server storage which will consist of a variety of the user’s
uploaded files. This includes the user’s Academic Transcripts , CVs and profile photos.

A reliable database system will have to be implemented to ensure consistent data capturing and
file storage. FORTRAN decided that Firebase will be the best storage solution due to its security
and convenience . GraphQL will be the API used to upload the user’s files.

2

Feature Functions

The storage functions should be able to store different types of data such as JPEG,
PDF, TEXT ect. However, the user will only be able to choose from a limited
number of file types. While giving users the ability to upload, download, append
and remove data files uploaded by the web application.

Additionally the storage feature will be integrated into numerous other features
namely the student/company profiles and the company rep features. This in turn
will allow students to upload their credentials and academic transcripts on the
undergraduate portal and also allow the respective companies to download these
files. The UI of our storage feature as well as the backend implementation will be
merged in with the above-mentioned features when fully functional.

User Characteristics
The users can be broken down into 3 main subgroups, which consists of students,
industry members and Administrator Users. This is mostly because each subgroup
will have vastly different objectives when interacting with the University of
Pretoria (UP) graduate’s portal.

1. Students – These users will generally be University of Pretoria
undergraduates and postgraduates. The main objective of these users
will be to advertise their profiles and accomplishments. Students will
also be interested in uploading their academic records/CVs to this portal
for Companies to view.

2. Companies – This user type will be interested in browsing UP graduates
on the portal by viewing their profiles and downloading the students’
academic records and CVs.

3

3. Administrators - These users will be granted special privileges in the UP
portal. Mainly the user type will be in charge of managing and
moderating what the Students and Companies are doing on the website.
Admin users will also have the power to remove uploaded files/profile
photos and suspend certain accounts.

Constraints
● PostgreSQL or Firebase software will need to be used for the online data storage.

This promotes consistency among the other features who will use the same
software.

● Angular will be used to implement the client-side framework and the UI of our
feature. This is required as all the UI of the other features will be programmed
using Angular and the storage feature must be compatible in this regard.

Assumptions and Dependencies

The storage feature will be implemented alongside the user profiles and company
features, therefore it is assumed that these respective features will be fully
developed for FORTRAN’s feature to be functional.

The storage feature’s UI will be implemented within the user profiles UI; hence our
feature will be fully dependent on the user profile team to provide a suitably
implemented system. Although our front-end software will be created
independently, a problematic user profile page will not be easy to merge with.

Additionally, it is assumed that the company feature will develop a functional UI to
download the students’ academic transcripts/CV. We will thus be dependent on the
Company Profile team to meet their task or downloading files will not be an
available feature for this system.

4

Lastly the Authentication feature team will need to be utilized as there are many
instances where a user (Student or Company) will be requesting access to
download certain files from our storage. Therefore the users will need to be
systematically verified to maintain security within the mini-project.

Specific Requirements

5

Functional Requirements

1. Interface - System must be able to provide a user-friendly interface for
the user to upload their files. This includes a "file upload" button as well
as a brief menu to upload a file. If the incorrect file was uploaded, the
user will be prompted to upload the correct file type.

2. Storage - System must store all the users’ files on a database, namely
Firebase or PostgreSQL.

3. Data Retrieval - The feature shall allow users who have been granted
access to view undergraduate's documents to have access to the files
and can download them easily.

Non-Functional Requirements

1. Security - The files uploaded must be stored securely in a database
outside the reach of users who are not authorized to view such
information.

2. Error Handling - System shall provide simple and understandable
feedback when a user makes an error. Such as a pop-up message when
the user tries to upload an invalid file type.

3. Usability - System shall upload/download the required files within a
reasonable time frame, assuming that the user has a decent internet
speed.

4. Reliability - System shall have near perfect reliability when performing
tasks with the database, assuming the user has a stable internet
connection.

6

Preliminary Database Schema

Upload Table

fileId userId filePath fileCategory fileExtension

Data Types

● fileId– Integer(10)
● userId– Varchar(255)
● filePath– Varchar(255)
● fileCategory – Varchar(255)
● fileExtension– Varchar(255)

Descriptions

● File_ID – The primary key of the table, this ID will be generated dynamically and be
used to differentiate and locate the user’s respective files.

● User_ID – The user’s unique ID will be stored (may that the Student or Company)
as to have a form of reference to identify which user is uploading documents.

● File_Extension– The type of data file uploaded must be specified, this will assist in
differentiating between what the file is being used for. For example, a photo of the
student and the student’s academic transcript will have different file types.

● File_Path – This field will store the path of the file, the primary function of this is
for data retrieval by the companies that will be useful later on.

● Description – A short description of the file uploaded by the user will be tabulated,
however this description may be automated with prepared explanations of the

7

uploaded file. These descriptions may help the developers differentiate between
the purpose of the files

Database Security Measures
In our efforts to provide a protected and stable storage feature for our users (students
and companies) to interact with, Firebase Security Rules was chosen as the optimal
solution. Firebase Security Rules (FSR) allows developers to write JSON documentations
which define exactly what data is accessible.

FSR will be used to define explicit conditions and criteria which must always be met before
a request is made to our database. The Request's path will be processed and inspected
until confirmed that it is not a user with malicious intent. Any requests that are matched
will only have access to the intended documents and not the entire collection of data we
are protecting. For example, a company rep wishing to access a student’s CV or academic
record will only be able to download that student documents and not the entire database
of data.

Additionally, we will work closely with the Authentication Team to ensure that any user
attempting access to the database will be identified through their UserID, Credentials
and/or authentication tokens. Thus, a student/company that is not signed into an account
with the designated privileges will be barred from accessing any documents in our storage
system.

Contracts

8

Storage API & Company Representative Profile

An integration exists between our Storage API and the Company Representative Profile team
which uses our API to store the user’s profile photos. This is done through calling our API, which
already has the functionality implemented to communicate with our database. The profile photos
are then stored on our file base.

Storage Firebase Repo & Hosting/Shorts/Blog

The Firebase Repository of our Storage feature was made available for the Hosting, Shorts and
Blog features to store any documents/images/videos etc. Although the storage falls under our
repository , we do not monitor or are involved with the design of schemas or databases these
features have implemented in this repository .

Storage Functions & Hosting Feature

Our data engineer implemented a directory upload function specifically for the Hosting feature.
This function allows the Hosting team to upload any Database Dumps created from their
directory. The database dumps will be stored in our Storage firebase and will be accessible and
retrievable by the Hosting Team.

9

Storage Repository & User Profile

The User Profile feature makes use of our storage Repository which needed to be altered for this
integration. This was implemented to allow for profile photos to be stored in our relation but in a
different file category. The profile photos stored will be accessible and retrievable by the User
Profile Team.

10

Acceptance Criteria
The storage feature provides a backbone for the entire Mini-Project as a core functional
requirement is data upload/retrieval by the respective users. With this fact in mind, we
have set mandatory acceptance criteria before the release of this feature:

● File upload must have a near perfect success rate, when users use our feature
there must be minimal errors when interacting with the database. Any errors while
uploading must be caught and the user must be notified. [Signed by Christian
Devraj - Business Analyst of Team FORTRAN]

● File download must be quite reliable as well. When a user attempts to download

the file it must be:

○ The correct file selected by the user. [Signed by Christian Devraj - Business

Analyst of Team FORTRAN]

○ The same file format that was uploaded. [Signed by Christian Devraj -

Business Analyst of Team FORTRAN]

○ Not corruptible in any way. [Signed by Christian Devraj - Business Analyst

of Team FORTRAN]

● The UI must be aesthetically pleasing and completely functional, a UI with even a

few faults will make the user-experience inadequate. This in turn will damage our
entire system's reputation among other repercussions. [Signed by Christian Devraj
- Business Analyst of Team FORTRAN]

● Features should be able to integrate the other features and the mini-project as a

whole. [Signed by Christian Devraj - Business Analyst of Team FORTRAN]

