diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 68db9d6..a29ad78 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -36,5 +36,5 @@ jobs: echo "SPOTIFY_CLIENT_ID=${{ secrets.SPOTIFY_CLIENT_ID }}" >> ./frontend/assets/.env echo "OPENAI_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ./frontend/assets/.env - - run: flutter build apk --debug + - run: flutter build appbundle working-directory: ./frontend diff --git a/frontend/android/app/build.gradle b/frontend/android/app/build.gradle index 1e3ada5..b31f2c0 100644 --- a/frontend/android/app/build.gradle +++ b/frontend/android/app/build.gradle @@ -81,104 +81,14 @@ android { packagingOptions { - exclude 'META-INF/native-image/ios-x86_64/jnijavacpp/reflect-config.json' - exclude 'META-INF/native-image/ios-x86_64/jnijavacpp/jni-config.json' - exclude 'META-INF/native-image/ios-x86_64/jnijavacpp/proxy-config.json' - exclude 'META-INF/native-image/ios-x86_64/jnijavacpp/resource-config.json' - exclude 'META-INF/DEPENDENCIES' - exclude 'META-INF/NOTICE' - exclude 'META-INF/LICENSE' - exclude 'META-INF/LICENSE.txt' - exclude 'META-INF/NOTICE.txt' - exclude 'META-INF/ASL2.0' - pickFirst 'META-INF/ASL2.0' - pickFirst 'META-INF/native-image/**/jnijavacpp/reflect-config.json' - pickFirst 'META-INF/native-image/**/jnijavacpp/jni-config.json' - pickFirst 'META-INF/native-image/**/jnijavacpp/resource-config.json' - pickFirst 'nd4j-native.properties' - - // resources.excludes += [ - // pickFirst 'META-INF/native-image/**/jnijavacpp/reflect-config.json' - // pickFirst 'META-INF/native-image/**/jnijavacpp/jni-config.json' - // ] -// pickFirst 'META-INF/native-image/ios-x86_64/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/linux-x86_64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/windows-x86/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/android-x86_64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/android-x86/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/ios-arm64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/windows-x86_64/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/windows-x86_64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/android-arm/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/linux-ppc64le/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/linux-x86_64/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/linux-arm64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/android-arm64/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/android-arm/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/ios-x86_64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/android-arm64/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/windows-x86/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/macosx-x86_64/jnijavacpp/reflect-config.json' -// pickFirst 'META-INF/native-image/linux-x86/jnijavacpp/jni-config.json' -// pickFirst 'META-INF/native-image/ios-arm64/jnijavacpp/reflect-config.json' + } dependencies { implementation 'org.tensorflow:tensorflow-lite:2.12.0' // Use the latest version - - - - implementation (group: 'org.deeplearning4j', name: 'deeplearning4j-core', version: '1.0.0-beta6') { - exclude group: 'org.bytedeco', module: 'opencv-platform' - exclude group: 'org.bytedeco', module: 'leptonica-platform' - exclude group: 'org.bytedeco', module: 'hdf5-platform' - exclude group: 'com.google.guava', module: 'guava' - exclude group: 'org.nd4j', module: 'protobuf' - exclude group: 'com.google.code.findbugs', module: 'jsr305' - } - implementation (group: 'org.nd4j', name: 'nd4j-native', version: '1.0.0-beta6') { - exclude group: 'com.google.code.findbugs', module: 'jsr305' - exclude group: 'com.google.guava', module: 'guava' - } - implementation group: 'org.nd4j', name: 'nd4j-native', version: '1.0.0-beta6', classifier: "android-arm" - implementation group: 'org.nd4j', name: 'nd4j-native', version: '1.0.0-beta6', classifier: "android-arm64" - implementation group: 'org.nd4j', name: 'nd4j-native', version: '1.0.0-beta6', classifier: "android-x86" - implementation group: 'org.nd4j', name: 'nd4j-native', version: '1.0.0-beta6', classifier: "android-x86_64" - implementation group: 'org.bytedeco', name: 'openblas', version: '0.3.7-1.5.2' - implementation group: 'org.bytedeco', name: 'openblas', version: '0.3.7-1.5.2', classifier: "android-arm" - implementation group: 'org.bytedeco', name: 'openblas', version: '0.3.7-1.5.2', classifier: "android-arm64" - implementation group: 'org.bytedeco', name: 'openblas', version: '0.3.7-1.5.2', classifier: "android-x86" - implementation group: 'org.bytedeco', name: 'openblas', version: '0.3.7-1.5.2', classifier: "android-x86_64" - implementation group: 'org.bytedeco', name: 'opencv', version: '4.1.2-1.5.2' - implementation group: 'org.bytedeco', name: 'opencv', version: '4.1.2-1.5.2', classifier: "android-arm" - implementation group: 'org.bytedeco', name: 'opencv', version: '4.1.2-1.5.2', classifier: "android-arm64" - implementation group: 'org.bytedeco', name: 'opencv', version: '4.1.2-1.5.2', classifier: "android-x86" - implementation group: 'org.bytedeco', name: 'opencv', version: '4.1.2-1.5.2', classifier: "android-x86_64" - implementation group: 'org.bytedeco', name: 'leptonica', version: '1.78.0-1.5.2' - implementation group: 'org.bytedeco', name: 'leptonica', version: '1.78.0-1.5.2', classifier: "android-arm" - implementation group: 'org.bytedeco', name: 'leptonica', version: '1.78.0-1.5.2', classifier: "android-arm64" - implementation group: 'org.bytedeco', name: 'leptonica', version: '1.78.0-1.5.2', classifier: "android-x86" - implementation group: 'org.bytedeco', name: 'leptonica', version: '1.78.0-1.5.2', classifier: "android-x86_64" - testImplementation 'junit:junit:4.12' implementation 'com.spotify.android:auth:1.2.3' -// -// implementation 'org.nd4j:nd4j-native:1.0.0-M1:android-x86' -// -// implementation group: 'org.deeplearning4j', name: 'deeplearning4j-core', version: '1.0.0-M1' -// - implementation(group: 'org.nd4j', name: 'guava', version: '1.0.0-beta6') { - exclude group: 'com.google.code.findbugs', module: 'jsr305' - } - implementation(group: 'org.nd4j', name: 'protobuf', version: '1.0.0-beta6') { - exclude group: 'com.google.guava', module: 'guava' - } -// -// configurations.all { -// exclude group: 'com.google.code.findbugs', module: 'jsr305' -// exclude group: 'com.google.guava', module: 'guava' -// } } } diff --git a/frontend/android/app/src/main/java/com/moodmix/app/frontend_temp/NeuralNetService_old.java b/frontend/android/app/src/main/java/com/moodmix/app/frontend_temp/NeuralNetService_old.java index ecb466c..aa64945 100644 --- a/frontend/android/app/src/main/java/com/moodmix/app/frontend_temp/NeuralNetService_old.java +++ b/frontend/android/app/src/main/java/com/moodmix/app/frontend_temp/NeuralNetService_old.java @@ -1,436 +1,436 @@ -package com.moodmix.app.frontend_temp; - -import android.content.Context; -import android.graphics.Color; -import android.graphics.Canvas; -import android.graphics.ColorMatrix; -import android.graphics.ColorMatrixColorFilter; -import android.graphics.Paint; - - -import android.graphics.Bitmap; -import android.graphics.BitmapFactory; -import android.util.Base64; - -import java.io.InputStream; -import java.io.ByteArrayInputStream; -import java.io.ByteArrayOutputStream; - -import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; -import org.deeplearning4j.util.ModelSerializer; -import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization; -import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; -import org.nd4j.linalg.api.ndarray.INDArray; -import org.datavec.image.loader.NativeImageLoader; -import org.nd4j.linalg.factory.Nd4j; - - -import org.slf4j.Logger; -import org.slf4j.LoggerFactory; - -//import javax.swing.*; -import java.io.File; -import java.util.Arrays; -import java.util.List; - -import java.io.IOException; -import android.content.Context; -import android.content.res.AssetManager; - -//import androidx.appcompat.app.AppCompatActivity; -import android.os.Bundle; - -import android.util.Log; - - - -import android.content.Context; -import android.content.res.AssetManager; -import android.graphics.Bitmap; -import android.graphics.BitmapFactory; -import android.util.Log; - -import org.tensorflow.lite.Interpreter; - -import java.io.FileInputStream; -import java.io.IOException; -import java.io.InputStream; -import java.nio.MappedByteBuffer; -import java.nio.channels.FileChannel; - -import android.content.Context; -import android.content.res.AssetFileDescriptor; -import android.content.res.AssetManager; -import java.io.FileInputStream; -import java.io.IOException; -import java.nio.MappedByteBuffer; -import java.nio.channels.FileChannel; -import org.tensorflow.lite.Interpreter; - - - - - -public class NeuralNetService_old { - private Context context; - private Interpreter tflite; - - public NeuralNetService_old(Context context) { - this.context = context; - // loadModel(); - } - - - - public byte[] convertInputStreamToByteArray(InputStream inputStream) throws IOException { - ByteArrayOutputStream buffer = new ByteArrayOutputStream(); - int nRead; - byte[] data = new byte[16384]; // 16KB buffer - - while ((nRead = inputStream.read(data, 0, data.length)) != -1) { - buffer.write(data, 0, nRead); - } - - buffer.flush(); - return buffer.toByteArray(); - } - - - - - public Bitmap convertToGrayscale(Bitmap originalBitmap) { - int width, height; - height = originalBitmap.getHeight(); - width = originalBitmap.getWidth(); - - Bitmap grayscaleBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); - Canvas canvas = new Canvas(grayscaleBitmap); - Paint paint = new Paint(); - ColorMatrix colorMatrix = new ColorMatrix(); - colorMatrix.setSaturation(0); - ColorMatrixColorFilter colorFilter = new ColorMatrixColorFilter(colorMatrix); - paint.setColorFilter(colorFilter); - canvas.drawBitmap(originalBitmap, 0, 0, paint); - - return grayscaleBitmap; - } - - - - public INDArray bitmapToINDArray(Bitmap grayscaleBitmap) { - int height = grayscaleBitmap.getHeight(); - int width = grayscaleBitmap.getWidth(); - - // Create a float array to hold the pixel values - float[] pixelValues = new float[height * width]; - - // Extract the pixel values - int index = 0; - for (int y = 0; y < height; y++) { - for (int x = 0; x < width; x++) { - int pixel = grayscaleBitmap.getPixel(x, y); - // Bitmap is already grayscale, so red, green, and blue values are the same - // Use the red component, as it's equal to green and blue in grayscale - float grayscaleValue = Color.red(pixel); - // Store the grayscale value in the array - pixelValues[index++] = grayscaleValue / 255.0f; // Normalize to [0, 1] if needed - } - } - - // Create an INDArray from the pixel values - INDArray indArray = Nd4j.create(pixelValues, new int[]{1, 1, height, width}); - return indArray; - } - - - - - - - - - - - - - -// private void loadModel() { -// try { -// // Load the model from assets -// AssetManager assetManager = context.getAssets(); -// InputStream modelInputStream = assetManager.open("model.tflite"); // Replace with your actual model file name +//package com.moodmix.app.frontend_temp; // -// // Load the TFLite model -// tflite = new Interpreter(loadModelFile(modelInputStream)); -// Log.d("NeuralNetService", "MODEL LOADED!!!!!!!!!!!!!!!"); +//import android.content.Context; +//import android.graphics.Color; +//import android.graphics.Canvas; +//import android.graphics.ColorMatrix; +//import android.graphics.ColorMatrixColorFilter; +//import android.graphics.Paint; // -// } catch (IOException e) { -// Log.e("NeuralNetService", "Error loading model", e); -// } -// } // -// private MappedByteBuffer loadModelFile(InputStream inputStream) throws IOException { -// FileChannel fileChannel = ((FileInputStream) inputStream).getChannel(); -// long startOffset = 0; // The starting offset in the file -// long declaredLength = fileChannel.size(); // The total size of the model file -// return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength); -// } - - - - - - private MappedByteBuffer loadModelFile(AssetManager assetManager, String modelPath) throws IOException { - try (AssetFileDescriptor fileDescriptor = assetManager.openFd(modelPath)) { - FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor()); - FileChannel fileChannel = inputStream.getChannel(); - long startOffset = fileDescriptor.getStartOffset(); - long declaredLength = fileDescriptor.getDeclaredLength(); - return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength); - } - } - - - - - public String getMood(byte[] imageBytes) { -// InputStream inputStream = new ByteArrayInputStream(imageBytes); -// Bitmap bitmap = BitmapFactory.decodeStream(inputStream); -// -//// ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); -//// bitmap.compress(Bitmap.CompressFormat.PNG, 100, outputStream); -// -// if (bitmap == null) { -// //Log.e("NeuralNetService", "Error: Bitmap is null"); -// System.out.println("asas"); -// return "Error: Bitmap is null"; -// } +//import android.graphics.Bitmap; +//import android.graphics.BitmapFactory; +//import android.util.Base64; // -// Log.d("NeuralNetService", "Bitmap loaded successfully."); +//import java.io.InputStream; +//import java.io.ByteArrayInputStream; +//import java.io.ByteArrayOutputStream; // -// int image_height = 48; // pixel size -// int image_width = 48; // pixel size -// int color_channels = 1; // 1 means grayscale +//import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; +//import org.deeplearning4j.util.ModelSerializer; +//import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization; +//import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; +//import org.nd4j.linalg.api.ndarray.INDArray; +//import org.datavec.image.loader.NativeImageLoader; +//import org.nd4j.linalg.factory.Nd4j; // -// //List labelList = Arrays.asList("angry", "happy", "neutral", "sad"); // -// String[] emotions = {"angry", "happy", "sad"}; +//import org.slf4j.Logger; +//import org.slf4j.LoggerFactory; // -// // Load the model from assets +////import javax.swing.*; +//import java.io.File; +//import java.util.Arrays; +//import java.util.List; // -// MultiLayerNetwork model = null; +//import java.io.IOException; +//import android.content.Context; +//import android.content.res.AssetManager; // +////import androidx.appcompat.app.AppCompatActivity; +//import android.os.Bundle; // +//import android.util.Log; // -// try { // // -// // AssetManager assetManager = context.getAssets(); +//import android.content.Context; +//import android.content.res.AssetManager; +//import android.graphics.Bitmap; +//import android.graphics.BitmapFactory; +//import android.util.Log; // +//import org.tensorflow.lite.Interpreter; // -// // InputStream modelInputStream = assetManager.open("savedNeuralNet.zip"); +//import java.io.FileInputStream; +//import java.io.IOException; +//import java.io.InputStream; +//import java.nio.MappedByteBuffer; +//import java.nio.channels.FileChannel; // -// // byte[] modelBytes = convertInputStreamToByteArray(modelInputStream); +//import android.content.Context; +//import android.content.res.AssetFileDescriptor; +//import android.content.res.AssetManager; +//import java.io.FileInputStream; +//import java.io.IOException; +//import java.nio.MappedByteBuffer; +//import java.nio.channels.FileChannel; +//import org.tensorflow.lite.Interpreter; // -// InputStream is = context.getResources().openRawResource(R.raw.small_test); -// Log.d("ModelLoader", "Model input stream available: " + (inputStream != null)); -// // Load the model using ModelSerializer -// model = ModelSerializer.restoreMultiLayerNetwork(is); // // -// // Log.d("Output shape: " , output.shapeInfoToString()); // -// INDArray input = Nd4j.zeros(1, 1 ,48, 48); -// INDArray layerInput = input; // -// INDArray results = model.output(input); -// System.out.println("Results: "+ results ); +//public class NeuralNetService_old { +// private Context context; +// private Interpreter tflite; // -// for (int i = 0; i < model.getLayers().length; i++) { -// // Create input for each layer based on the previous layer's output +// public NeuralNetService_old(Context context) { +// this.context = context; +// // loadModel(); +// } // -// // Get the output of the current layer -// INDArray layerOutput = model.output(layerInput); -// // Log.i("Layer " + i + " (" + model.getLayer(i).getClass().getSimpleName() + ") output shape: " + layerOutput.shapeInfoToString()); -// Log.i("NeuralNetService",model.getLayer(i).getClass().getSimpleName() + " " + layerOutput.shapeInfoToString()); -// } // -//// if (modelInputStream == null) { -//// Log.e("ModelLoad", "InputStream is null. The model file may not exist."); -//// return null; // Or handle the error as needed -//// } // -// // model = ModelSerializer.restoreMultiLayerNetwork(modelInputStream); -// // model = ModelSerializer.restoreMultiLayerNetwork(new ByteArrayInputStream(modelBytes)); -// // modelInputStream.close(); +// public byte[] convertInputStreamToByteArray(InputStream inputStream) throws IOException { +// ByteArrayOutputStream buffer = new ByteArrayOutputStream(); +// int nRead; +// byte[] data = new byte[16384]; // 16KB buffer // -// Log.d("Model Configuration", model.conf().toJson()); -// // INDArray layerWeights = model.getLayer(0).getParam("W"); -// // System.out.println("First layer weights: " + layerWeights); +// while ((nRead = inputStream.read(data, 0, data.length)) != -1) { +// buffer.write(data, 0, nRead); +// } // -// if (model != null) { -// Log.i("NeuralNetService", "Model loaded successfully. Number of layers: " + model.getnLayers()); -// } else { -// Log.e("NeuralNetService", "Error: Model not loaded"); -// } +// buffer.flush(); +// return buffer.toByteArray(); +// } // -// } catch (IllegalArgumentException e) { -// Log.e("NeuralNetService", "Illegal argument while loading model", e); -// } catch (IOException e) { -// Log.e("NeuralNetService", "IO error while loading model", e); -// } catch (Exception e) { -// Log.e("NeuralNetService", "Unexpected error while loading model", e); +// +// +// +// public Bitmap convertToGrayscale(Bitmap originalBitmap) { +// int width, height; +// height = originalBitmap.getHeight(); +// width = originalBitmap.getWidth(); +// +// Bitmap grayscaleBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); +// Canvas canvas = new Canvas(grayscaleBitmap); +// Paint paint = new Paint(); +// ColorMatrix colorMatrix = new ColorMatrix(); +// colorMatrix.setSaturation(0); +// ColorMatrixColorFilter colorFilter = new ColorMatrixColorFilter(colorMatrix); +// paint.setColorFilter(colorFilter); +// canvas.drawBitmap(originalBitmap, 0, 0, paint); +// +// return grayscaleBitmap; +// } +// +// +// +// public INDArray bitmapToINDArray(Bitmap grayscaleBitmap) { +// int height = grayscaleBitmap.getHeight(); +// int width = grayscaleBitmap.getWidth(); +// +// // Create a float array to hold the pixel values +// float[] pixelValues = new float[height * width]; +// +// // Extract the pixel values +// int index = 0; +// for (int y = 0; y < height; y++) { +// for (int x = 0; x < width; x++) { +// int pixel = grayscaleBitmap.getPixel(x, y); +// // Bitmap is already grayscale, so red, green, and blue values are the same +// // Use the red component, as it's equal to green and blue in grayscale +// float grayscaleValue = Color.red(pixel); +// // Store the grayscale value in the array +// pixelValues[index++] = grayscaleValue / 255.0f; // Normalize to [0, 1] if needed +// } // } -// // Log.i("NeuralNetService", "Model loaded successfully."); // -// Bitmap grayscaleBitmap = convertToGrayscale(bitmap); -// Bitmap scaledGrayscaleBitmap = Bitmap.createScaledBitmap(grayscaleBitmap, image_width, image_height, false); +// // Create an INDArray from the pixel values +// INDArray indArray = Nd4j.create(pixelValues, new int[]{1, 1, height, width}); +// return indArray; +// } +// +// +// +// // -// INDArray inputArray = bitmapToINDArray(scaledGrayscaleBitmap); // -// // Log the shape of the INDArray -// Log.i("NeuralNetService", "Shape: " + Arrays.toString(inputArray.shape())); // -//// Log the data in the INDArray -// Log.i("NeuralNetService", "Data: " + inputArray.toString()); // -//// NativeImageLoader loader = new NativeImageLoader(image_height, image_width, color_channels); -//// INDArray image = null; // // // +// +// +//// private void loadModel() { //// try { -//// // Load the image as INDArray -//// image = loader.asMatrix(inputArray); +//// // Load the model from assets +//// AssetManager assetManager = context.getAssets(); +//// InputStream modelInputStream = assetManager.open("model.tflite"); // Replace with your actual model file name +//// +//// // Load the TFLite model +//// tflite = new Interpreter(loadModelFile(modelInputStream)); +//// Log.d("NeuralNetService", "MODEL LOADED!!!!!!!!!!!!!!!"); +//// //// } catch (IOException e) { -//// // e.printStackTrace(); -//// Log.e("NeuralNetService", "Error loading image", e); -//// return "Error loading image"; +//// Log.e("NeuralNetService", "Error loading model", e); //// } +//// } +//// +//// private MappedByteBuffer loadModelFile(InputStream inputStream) throws IOException { +//// FileChannel fileChannel = ((FileInputStream) inputStream).getChannel(); +//// long startOffset = 0; // The starting offset in the file +//// long declaredLength = fileChannel.size(); // The total size of the model file +//// return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength); +//// } +// // -//// if (image.shape()[1] != 1 || image.shape()[2] != 48 || image.shape()[3] != 48) { -//// Log.e("NeuralNetService", "Error: Incorrect image shape"); -//// return "Error: Incorrect image shape"; -//// } // -// Log.d("NeuralNetService", "Image loaded and preprocessed successfully."); // -// // DataNormalization scaler = new ImagePreProcessingScaler(0, 1); // -// // scaler.transform(image); THIS BREAKS CURRENT IMPLEMENTATION AS IMAE IS AN INDARRAY +// private MappedByteBuffer loadModelFile(AssetManager assetManager, String modelPath) throws IOException { +// try (AssetFileDescriptor fileDescriptor = assetManager.openFd(modelPath)) { +// FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor()); +// FileChannel fileChannel = inputStream.getChannel(); +// long startOffset = fileDescriptor.getStartOffset(); +// long declaredLength = fileDescriptor.getDeclaredLength(); +// return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength); +// } +// } // -// // image = image.reshape(1, 1, 48, 48); // -// //INDArray output = model.output(inputArray); // Pass image to neural net -// // Reshaping to the expected format if necessary // // -//// float highestProbability = Float.MIN_VALUE; -//// int highestProbabilityIndex = -1; +// public String getMood(byte[] imageBytes) { +//// InputStream inputStream = new ByteArrayInputStream(imageBytes); +//// Bitmap bitmap = BitmapFactory.decodeStream(inputStream); +//// +////// ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); +////// bitmap.compress(Bitmap.CompressFormat.PNG, 100, outputStream); +//// +//// if (bitmap == null) { +//// //Log.e("NeuralNetService", "Error: Bitmap is null"); +//// System.out.println("asas"); +//// return "Error: Bitmap is null"; +//// } +//// +//// Log.d("NeuralNetService", "Bitmap loaded successfully."); +//// +//// int image_height = 48; // pixel size +//// int image_width = 48; // pixel size +//// int color_channels = 1; // 1 means grayscale +//// +//// //List labelList = Arrays.asList("angry", "happy", "neutral", "sad"); +//// +//// String[] emotions = {"angry", "happy", "sad"}; +//// +//// // Load the model from assets +//// +//// MultiLayerNetwork model = null; +//// +//// +//// +//// try { +//// +//// +//// // AssetManager assetManager = context.getAssets(); +//// +//// +//// // InputStream modelInputStream = assetManager.open("savedNeuralNet.zip"); +//// +//// // byte[] modelBytes = convertInputStreamToByteArray(modelInputStream); +//// +//// InputStream is = context.getResources().openRawResource(R.raw.small_test); +//// Log.d("ModelLoader", "Model input stream available: " + (inputStream != null)); +//// // Load the model using ModelSerializer +//// model = ModelSerializer.restoreMultiLayerNetwork(is); +//// +//// +//// // Log.d("Output shape: " , output.shapeInfoToString()); +//// +//// INDArray input = Nd4j.zeros(1, 1 ,48, 48); +//// INDArray layerInput = input; +//// +//// INDArray results = model.output(input); +//// System.out.println("Results: "+ results ); +//// +//// for (int i = 0; i < model.getLayers().length; i++) { +//// // Create input for each layer based on the previous layer's output +//// +//// // Get the output of the current layer +//// INDArray layerOutput = model.output(layerInput); +//// // Log.i("Layer " + i + " (" + model.getLayer(i).getClass().getSimpleName() + ") output shape: " + layerOutput.shapeInfoToString()); +//// Log.i("NeuralNetService",model.getLayer(i).getClass().getSimpleName() + " " + layerOutput.shapeInfoToString()); +//// } +//// +////// if (modelInputStream == null) { +////// Log.e("ModelLoad", "InputStream is null. The model file may not exist."); +////// return null; // Or handle the error as needed +////// } +//// +//// // model = ModelSerializer.restoreMultiLayerNetwork(modelInputStream); +//// // model = ModelSerializer.restoreMultiLayerNetwork(new ByteArrayInputStream(modelBytes)); +//// // modelInputStream.close(); //// -//// for (int i = 0; i < output.length(); i++) { -//// float currentProbability = output.getFloat(i); -//// if (currentProbability > highestProbability) { -//// highestProbability = currentProbability; -//// highestProbabilityIndex = i; +//// Log.d("Model Configuration", model.conf().toJson()); +//// // INDArray layerWeights = model.getLayer(0).getParam("W"); +//// // System.out.println("First layer weights: " + layerWeights); +//// +//// if (model != null) { +//// Log.i("NeuralNetService", "Model loaded successfully. Number of layers: " + model.getnLayers()); +//// } else { +//// Log.e("NeuralNetService", "Error: Model not loaded"); //// } +//// +//// } catch (IllegalArgumentException e) { +//// Log.e("NeuralNetService", "Illegal argument while loading model", e); +//// } catch (IOException e) { +//// Log.e("NeuralNetService", "IO error while loading model", e); +//// } catch (Exception e) { +//// Log.e("NeuralNetService", "Unexpected error while loading model", e); //// } -// // Log.i("NeuralNetService", "Predicted emotion: " + emotions[highestProbabilityIndex]); -// // return emotions[highestProbabilityIndex]; -// -// -// // throw new IllegalArgumentException("Your error message here"); -// // Log.d("ModelLoader", "Model input stream available: " + (inputStream != null)); - - - - - - - Bitmap bitmap = BitmapFactory.decodeByteArray(imageBytes, 0, imageBytes.length); - - // Step 2: Preprocess the Bitmap - Bitmap resizedBitmap = Bitmap.createScaledBitmap(bitmap, 48, 48, true); - - // Convert to grayscale if necessary - int width = resizedBitmap.getWidth(); - int height = resizedBitmap.getHeight(); - float[][][][] inputData = new float[1][48][48][1]; // 1 sample, 48x48 image, 1 channel - - for (int i = 0; i < width; i++) { - for (int j = 0; j < height; j++) { - // Get pixel value and convert to grayscale - int pixel = resizedBitmap.getPixel(i, j); - int grayValue = (int) (0.299 * Color.red(pixel) + 0.587 * Color.green(pixel) + 0.114 * Color.blue(pixel)); - inputData[0][i][j][0] = grayValue / 255.0f; // Normalize to [0, 1] - } - } - - - - - try{ - - AssetManager assetManager = context.getAssets(); - MappedByteBuffer modelBuffer = loadModelFile(assetManager, "new_model_9_modified_newest.tflite"); - - // Create the TFLite interpreter with the MappedByteBuffer - tflite = new Interpreter(modelBuffer); - - Log.d("NeuralNetService", "MODEL LOADED!!!!!!!!!!!!"); - - } catch (IOException e) { - e.printStackTrace(); - // Handle exceptions here (e.g., model file not found) - } catch (Exception e) { - e.printStackTrace(); - // Handle other potential exceptions - } - - +//// // Log.i("NeuralNetService", "Model loaded successfully."); +//// +//// Bitmap grayscaleBitmap = convertToGrayscale(bitmap); +//// Bitmap scaledGrayscaleBitmap = Bitmap.createScaledBitmap(grayscaleBitmap, image_width, image_height, false); +//// +//// INDArray inputArray = bitmapToINDArray(scaledGrayscaleBitmap); +//// +//// // Log the shape of the INDArray +//// Log.i("NeuralNetService", "Shape: " + Arrays.toString(inputArray.shape())); +//// +////// Log the data in the INDArray +//// Log.i("NeuralNetService", "Data: " + inputArray.toString()); +//// +////// NativeImageLoader loader = new NativeImageLoader(image_height, image_width, color_channels); +////// INDArray image = null; +//// +//// +//// +////// try { +////// // Load the image as INDArray +////// image = loader.asMatrix(inputArray); +////// } catch (IOException e) { +////// // e.printStackTrace(); +////// Log.e("NeuralNetService", "Error loading image", e); +////// return "Error loading image"; +////// } +//// +////// if (image.shape()[1] != 1 || image.shape()[2] != 48 || image.shape()[3] != 48) { +////// Log.e("NeuralNetService", "Error: Incorrect image shape"); +////// return "Error: Incorrect image shape"; +////// } +//// +//// Log.d("NeuralNetService", "Image loaded and preprocessed successfully."); +//// +//// // DataNormalization scaler = new ImagePreProcessingScaler(0, 1); +//// +//// // scaler.transform(image); THIS BREAKS CURRENT IMPLEMENTATION AS IMAE IS AN INDARRAY +//// +//// // image = image.reshape(1, 1, 48, 48); +//// +//// //INDArray output = model.output(inputArray); // Pass image to neural net +//// // Reshaping to the expected format if necessary +//// +//// +////// float highestProbability = Float.MIN_VALUE; +////// int highestProbabilityIndex = -1; +////// +////// for (int i = 0; i < output.length(); i++) { +////// float currentProbability = output.getFloat(i); +////// if (currentProbability > highestProbability) { +////// highestProbability = currentProbability; +////// highestProbabilityIndex = i; +////// } +////// } +//// // Log.i("NeuralNetService", "Predicted emotion: " + emotions[highestProbabilityIndex]); +//// // return emotions[highestProbabilityIndex]; +//// +//// +//// // throw new IllegalArgumentException("Your error message here"); +//// // Log.d("ModelLoader", "Model input stream available: " + (inputStream != null)); +// +// +// +// +// +// +// Bitmap bitmap = BitmapFactory.decodeByteArray(imageBytes, 0, imageBytes.length); +// +// // Step 2: Preprocess the Bitmap +// Bitmap resizedBitmap = Bitmap.createScaledBitmap(bitmap, 48, 48, true); +// +// // Convert to grayscale if necessary +// int width = resizedBitmap.getWidth(); +// int height = resizedBitmap.getHeight(); // float[][][][] inputData = new float[1][48][48][1]; // 1 sample, 48x48 image, 1 channel // -//// Fill inputData with random values or your actual test data -// for (int i = 0; i < 48; i++) { -// for (int j = 0; j < 48; j++) { -// inputData[0][i][j][0] = (float) Math.random(); // Replace with actual data if needed +// for (int i = 0; i < width; i++) { +// for (int j = 0; j < height; j++) { +// // Get pixel value and convert to grayscale +// int pixel = resizedBitmap.getPixel(i, j); +// int grayValue = (int) (0.299 * Color.red(pixel) + 0.587 * Color.green(pixel) + 0.114 * Color.blue(pixel)); +// inputData[0][i][j][0] = grayValue / 255.0f; // Normalize to [0, 1] +// } +// } +// +// +// +// +// try{ +// +// AssetManager assetManager = context.getAssets(); +// MappedByteBuffer modelBuffer = loadModelFile(assetManager, "new_model_9_modified_newest.tflite"); +// +// // Create the TFLite interpreter with the MappedByteBuffer +// tflite = new Interpreter(modelBuffer); +// +// Log.d("NeuralNetService", "MODEL LOADED!!!!!!!!!!!!"); +// +// } catch (IOException e) { +// e.printStackTrace(); +// // Handle exceptions here (e.g., model file not found) +// } catch (Exception e) { +// e.printStackTrace(); +// // Handle other potential exceptions +// } +// +// +//// float[][][][] inputData = new float[1][48][48][1]; // 1 sample, 48x48 image, 1 channel +//// +////// Fill inputData with random values or your actual test data +//// for (int i = 0; i < 48; i++) { +//// for (int j = 0; j < 48; j++) { +//// inputData[0][i][j][0] = (float) Math.random(); // Replace with actual data if needed +//// } +//// } +//// +////// Prepare output data array +// +// +// float[][] outputData = new float[1][3]; +// +// +// try { +// tflite.run(inputData, outputData); // Run the model with the input data +// +// // Output the results +// Log.d("NeuralNetService", "Inference Output: " + Arrays.toString(outputData[0])); +// } catch (Exception e) { +// e.printStackTrace(); +// } +// +// //[0.32354924, 0.35912168, 0.3173291] +// +// String[] emotions = {"angry", "happy", "sad"}; +// +// int current_highest_index = 0; +// float current_highest_value = 0; +// +// for(int i = 0; i < 3; i++){ +// if(outputData[0][i] > current_highest_value){ +// current_highest_index = i; +// current_highest_value = outputData[0][i]; // } // } // -//// Prepare output data array - - - float[][] outputData = new float[1][3]; - - - try { - tflite.run(inputData, outputData); // Run the model with the input data - - // Output the results - Log.d("NeuralNetService", "Inference Output: " + Arrays.toString(outputData[0])); - } catch (Exception e) { - e.printStackTrace(); - } - - //[0.32354924, 0.35912168, 0.3173291] - - String[] emotions = {"angry", "happy", "sad"}; - - int current_highest_index = 0; - float current_highest_value = 0; - - for(int i = 0; i < 3; i++){ - if(outputData[0][i] > current_highest_value){ - current_highest_index = i; - current_highest_value = outputData[0][i]; - } - } - - - return emotions[current_highest_index]; - } -} - -// red error screen is caused when an exception is thrown in this class, as the -// confirmation_pop_up page's mood list never gets any data, so trying to access -// any of its elements (as in the fetchMood function) will result in the red error screen \ No newline at end of file +// +// return emotions[current_highest_index]; +// } +//} +// +//// red error screen is caused when an exception is thrown in this class, as the +//// confirmation_pop_up page's mood list never gets any data, so trying to access +//// any of its elements (as in the fetchMood function) will result in the red error screen \ No newline at end of file diff --git a/frontend/lib/pages/camera.dart b/frontend/lib/pages/camera.dart index 7b9fd5e..220a58b 100644 --- a/frontend/lib/pages/camera.dart +++ b/frontend/lib/pages/camera.dart @@ -165,7 +165,7 @@ class _CameraPageState extends State { isRecording = false; // Stop recording captureTimer?.cancel(); // Stop the timer print("Recording stopped. Moods: $returnedMoods"); - if(audioMoodWeight != ''){ + if (audioMoodWeight != '') { returnedMoods.add(audioMoodWeight); } print("Recording stopped. Moods: $returnedMoods"); @@ -192,18 +192,27 @@ class _CameraPageState extends State { imagePaths.clear(); // Clear previous image paths }); + // Counter for the number of pictures taken + int pictureCount = 0; + // Start capturing photos at intervals captureTimer = Timer.periodic(Duration(seconds: 2), (timer) async { try { + if (pictureCount >= 4) { + timer.cancel(); // Stop the timer once 4 pictures are taken + print("Reached the picture limit of 4."); + return; + } + XFile? pictureFile = await controller?.takePicture(); if (pictureFile != null) { // Send photo to method channel and get the mood String? mood = await _neuralNetMethodChannel.get_mood(pictureFile); setState(() { - - if(mood != "") { + if (mood != "") { returnedMoods.add(mood); // Store the mood imagePaths.add(pictureFile.path); // Store the image path + pictureCount++; // Increment the picture count } }); print("Captured mood: $mood");