From cc8c4b6bd868a198dcdbb615cc8d8b4db69e2534 Mon Sep 17 00:00:00 2001 From: dora-b72 <145428217+dora-b72@users.noreply.github.com> Date: Mon, 10 Jun 2024 13:15:50 +0530 Subject: [PATCH 1/5] Add files via upload --- Calc.py | 30 ++++++++++++++++ number guessing.py | 33 +++++++++++++++++ pdfconv.py | 90 ++++++++++++++++++++++++++++++++++++++++++++++ to_do_list.py | 59 ++++++++++++++++++++++++++++++ 4 files changed, 212 insertions(+) create mode 100644 Calc.py create mode 100644 number guessing.py create mode 100644 pdfconv.py create mode 100644 to_do_list.py diff --git a/Calc.py b/Calc.py new file mode 100644 index 0000000..952e22b --- /dev/null +++ b/Calc.py @@ -0,0 +1,30 @@ +#a simple python program to perform basic tasks like addition,subtraction,multiplication,division +print('please select any of the number for performing arithmetic operations') +print("1.Addition") +print('2.Subtraction') +print('3.Multiplication') +print('4.Division') +print('5.exit') +a=int(input('Enter any of the number for performing arithmetic operations')) +def ari(a,var1,var2): + a,var1,var2=a,var1,var2 + if(a==1): + print(var1+var2) + if(a==2): + print(var1-var2) + if(a==3): + print(var1*var2) + if(a==4): + print(var1/var2) + return + +#Enter Two numbers +if((a>0) and (a<5)): + var1 = int(input('Enter First number: ')) + var2 = int(input('Enter Second number: ')) + ari(a,var1,var2) +elif(a==5): + exit() +else: + print('Invalid Option') + print('please select 1/2/3/4/5 only') \ No newline at end of file diff --git a/number guessing.py b/number guessing.py new file mode 100644 index 0000000..032c5dd --- /dev/null +++ b/number guessing.py @@ -0,0 +1,33 @@ +import random + +def guess_number(): + # Generate a random number between 1 and 100 + secret_number = random.randint(1, 100) + attempts = 0 + max_attempts = 10 + + print("Welcome to the Number Guessing Game!") + print("I have chosen a number between 1 and 100. You have", max_attempts, "attempts to guess it.") + + while attempts < max_attempts: + try: + guess = int(input("Enter your guess: ")) + except ValueError: + print("Invalid input! Please enter a valid number.") + continue + + attempts += 1 + + if guess < secret_number: + print("Too low! Try again.") + elif guess > secret_number: + print("Too high! Try again.") + else: + print("Congratulations! You've guessed the number", secret_number, "correctly in", attempts, "attempts!") + break + else: + print("Sorry, you've run out of attempts. The correct number was", secret_number) + +if __name__ == "__main__": + guess_number() + diff --git a/pdfconv.py b/pdfconv.py new file mode 100644 index 0000000..6b2aa9f --- /dev/null +++ b/pdfconv.py @@ -0,0 +1,90 @@ +import PyPDF2 +from PIL import Image +import os + +def convert_pdf_to_text(pdf_path, text_output_path): + """Converts a PDF file to text. + + Args: + pdf_path (str): Path to the input PDF file. + text_output_path (str): Path to save the converted text file. + """ + try: + with open(pdf_path, 'rb') as pdf_file: + pdf_reader = PyPDF2.PdfReader(pdf_file) + with open(text_output_path, 'w', encoding='utf-8') as text_file: + # Iterate through each page of the PDF + for page_num in range(len(pdf_reader.pages)): + page = pdf_reader.pages[page_num] + # Extract text from the page and write it to the text file + text_file.write(page.extract_text()) + print(f"PDF converted to text successfully. Text file saved at {text_output_path}") + except Exception as e: + print(f"An error occurred: {e}") + + +def extract_images_from_pdf(pdf_path, image_output_folder): + """Extracts images from a PDF file. + + Args: + pdf_path (str): Path to the input PDF file. + image_output_folder (str): Folder to save the extracted images. + """ + try: + with open(pdf_path, 'rb') as pdf_file: + pdf_reader = PyPDF2.PdfReader(pdf_file) + # Iterate through each page of the PDF + for page_num in range(len(pdf_reader.pages)): + page = pdf_reader.pages[page_num] + xObject = page.resources['XObject'].resolve() + for obj in xObject: + if xObject[obj]['/Subtype'] == '/Image': + size = (xObject[obj]['/Width'], xObject[obj]['/Height']) + data = xObject[obj].get_data() + mode = '' + if xObject[obj]['/ColorSpace'] == '/DeviceRGB': + mode = "RGB" + else: + mode = "P" + if xObject[obj]['/Filter'] == '/FlateDecode': + img = Image.frombytes(mode, size, data) + img.save(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.png")) + elif xObject[obj]['/Filter'] == '/DCTDecode': + img = open(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.jpg"), "wb") + img.write(data) + img.close() + elif xObject[obj]['/Filter'] == '/JPXDecode': + img = open(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.jp2"), "wb") + img.write(data) + img.close() + print(f"Images extracted successfully. Saved in {image_output_folder}") + except Exception as e: + print(f"An error occurred: {e}") + +def main(): + # Get input paths and output folder from user + pdf_path = input("Enter the path to the PDF file: ") + output_folder = input("Enter the output folder path: ") + + # Create the output folder if it does not exist + if not os.path.exists(output_folder): + os.makedirs(output_folder) + + # Choose conversion option + choice = input("Choose an option:\n1. Convert PDF to text\n2. Extract images from PDF\nEnter your choice: ") + + if choice == '1': + # Convert PDF to text + text_output_path = os.path.join(output_folder, "converted_text.txt") + convert_pdf_to_text(pdf_path, text_output_path) + elif choice == '2': + # Extract images from PDF + image_output_folder = os.path.join(output_folder, "extracted_images") + if not os.path.exists(image_output_folder): + os.makedirs(image_output_folder) + extract_images_from_pdf(pdf_path, image_output_folder) + else: + print("Invalid choice. Please choose 1 or 2.") + +if __name__ == "__main__": + main() diff --git a/to_do_list.py b/to_do_list.py new file mode 100644 index 0000000..4766564 --- /dev/null +++ b/to_do_list.py @@ -0,0 +1,59 @@ +class TaskManager: + def __init__(self): + self.tasks = [] + + def add_task(self, task): + self.tasks.append({"task": task, "completed": False}) + + def delete_task(self, index): + if 0 <= index < len(self.tasks): + del self.tasks[index] + else: + print("Invalid task index") + + def mark_task_completed(self, index): + if 0 <= index < len(self.tasks): + self.tasks[index]["completed"] = True + else: + print("Invalid task index") + + def display_tasks(self): + print("Tasks:") + for i, task in enumerate(self.tasks): + status = "Completed" if task["completed"] else "Pending" + print(f"{i+1}. {task['task']} - {status}") + + +def main(): + task_manager = TaskManager() + + while True: + print("\nOptions:") + print("1. Add Task") + print("2. Delete Task") + print("3. Mark Task as Completed") + print("4. View Tasks") + print("5. Exit") + + choice = input("Enter your choice: ") + + if choice == "1": + task = input("Enter the task: ") + task_manager.add_task(task) + elif choice == "2": + index = int(input("Enter the index of the task to delete: ")) - 1 + task_manager.delete_task(index) + elif choice == "3": + index = int(input("Enter the index of the task to mark as completed: ")) - 1 + task_manager.mark_task_completed(index) + elif choice == "4": + task_manager.display_tasks() + elif choice == "5": + print("Exiting...") + break + else: + print("Invalid choice. Please try again.") + + +if __name__ == "__main__": + main() From a91d3ec6047794c6b0c9f27e76dc6d6733953b86 Mon Sep 17 00:00:00 2001 From: dora-b72 <145428217+dora-b72@users.noreply.github.com> Date: Wed, 12 Jun 2024 21:58:05 +0530 Subject: [PATCH 2/5] Add files via upload MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit ### Simple Calculator To solve the Simple Calculator task, we can use Python’s basic arithmetic operators for performing addition, subtraction, multiplication, and division. We'll capture user inputs and apply conditional statements to execute the desired operations, providing error handling for cases like division by zero. ### To-Do List For the To-Do List task, we can develop a list to store tasks and create functions to add, delete, and mark tasks as completed. Using either a console-based interface or a GUI with Tkinter, we can interact with the user to manage their tasks effectively. ### Number Guessing Game In the Number Guessing Game task, we can generate a random number using Python’s `random` module. We then use a loop to prompt the player for guesses, compare each guess to the target number, and provide feedback until the player guesses correctly or runs out of attempts. ### PDF Converter To build the PDF Converter, we can use libraries like PyPDF2 for extracting text and pdf2image for converting PDF pages to images. We will implement functions to handle file input/output and allow the user to choose the desired output format for conversion. ### Weather App For the Weather App, we can fetch weather data from an API like OpenWeatherMap using the `requests` library. By parsing the JSON response, we can extract and display current weather conditions, forecasts, and temperature trends. ### Web Scraper In the Web Scraper task, we can use libraries such as BeautifulSoup and requests to fetch and parse HTML content from websites. Extracted data can then be stored in structured formats like CSV or JSON using Python’s built-in modules. ### Chatbot To build a simple chatbot, we can use natural language processing libraries like NLTK or spaCy. By defining responses based on pattern matching or predefined rules, we can create a program that responds to user queries and provides relevant information. ### PDF Merger/Splitter For the PDF Merger/Splitter, we can employ PyPDF2 to read and manipulate PDF files. The program can merge multiple PDFs into a single file or split a PDF into multiple smaller files based on specified page ranges. ### Image Converter To solve the Image Converter task, we can use the Python Imaging Library (PIL) to accept images in formats like JPEG, PNG, BMP, and GIF and convert them into a desired format. The program will handle various image processing tasks efficiently. ### Data Analysis with Pandas For the Data Analysis with Pandas task, we can load the "Iris" dataset from Seaborn and perform exploratory data analysis using Pandas. This includes cleaning, aggregating, visualizing data, and calculating correlations to derive meaningful insights. ### Linear Regression with Scikit-learn To apply linear regression for predicting house prices, we can use the Boston housing dataset with scikit-learn. We will split the data into training and testing sets, fit a linear model, and compare performance metrics while visualizing residuals. ### Image Compression In the Image Compression task, we can develop a tool using Python to compress images while maintaining quality. By exploring compression techniques like RLE and DCT, we can allow users to adjust compression settings and support various image formats. --- TASK-10.py | 43 ++++++++++++++++++++++++ TASK-11.py | 40 ++++++++++++++++++++++ TASK-12.py | 66 +++++++++++++++++++++++++++++++++++++ TASK-5.py | 65 ++++++++++++++++++++++++++++++++++++ TASK-6.py | 97 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ TASK-7.py | 26 +++++++++++++++ TASK-8.py | 61 ++++++++++++++++++++++++++++++++++ TASK-9.py | 37 +++++++++++++++++++++ 8 files changed, 435 insertions(+) create mode 100644 TASK-10.py create mode 100644 TASK-11.py create mode 100644 TASK-12.py create mode 100644 TASK-5.py create mode 100644 TASK-6.py create mode 100644 TASK-7.py create mode 100644 TASK-8.py create mode 100644 TASK-9.py diff --git a/TASK-10.py b/TASK-10.py new file mode 100644 index 0000000..365c14e --- /dev/null +++ b/TASK-10.py @@ -0,0 +1,43 @@ +import seaborn as sns +import pandas as pd +import matplotlib.pyplot as plt + +# Load the Iris dataset from Seaborn +iris = sns.load_dataset("iris") +numeric_iris = iris.drop(columns='species') + +# Display the first few rows of the dataset +print("First few rows of the dataset:") +print(iris.head()) + +# Summary statistics +print("\nSummary statistics:") +print(iris.describe()) + +# Checking for missing values +print("\nMissing values:") +print(iris.isnull().sum()) + +# Visualizations +# Pairplot +sns.pairplot(iris, hue="species") +plt.title("Pairplot of Iris Dataset") +plt.show() + +# Boxplot +plt.figure(figsize=(10, 6)) +sns.boxplot(data=iris, orient="h") +plt.title("Boxplot of Iris Dataset") +plt.show() + +# Histograms +plt.figure(figsize=(10, 6)) +iris.hist() +plt.suptitle("Histograms of Iris Dataset") +plt.show() + +# Correlation heatmap +plt.figure(figsize=(8, 6)) +sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm") +plt.title("Correlation Heatmap of Iris Dataset") +plt.show() diff --git a/TASK-11.py b/TASK-11.py new file mode 100644 index 0000000..195849c --- /dev/null +++ b/TASK-11.py @@ -0,0 +1,40 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error + +# Fetch the Boston housing dataset from the original source +data_url = "http://lib.stat.cmu.edu/datasets/boston" +raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) +data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) +target = raw_df.values[1::2, 2] + +# Split the dataset into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42) + +# Create and train the linear regression model +model = LinearRegression() +model.fit(X_train, y_train) + +# Make predictions on the training and testing sets +y_train_pred = model.predict(X_train) +y_test_pred = model.predict(X_test) + +# Calculate the mean squared error for training and testing sets +train_mse = mean_squared_error(y_train, y_train_pred) +test_mse = mean_squared_error(y_test, y_test_pred) + +print("Train MSE:", train_mse) +print("Test MSE:", test_mse) + +# Plot residuals +plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data') +plt.scatter(y_test_pred, y_test_pred - y_test, c='green', marker='s', label='Test data') +plt.xlabel('Predicted values') +plt.ylabel('Residuals') +plt.legend(loc='upper left') +plt.hlines(y=0, xmin=min(y_train_pred.min(), y_test_pred.min()), xmax=max(y_train_pred.max(), y_test_pred.max()), color='red') +plt.title('Residuals plot') +plt.show() diff --git a/TASK-12.py b/TASK-12.py new file mode 100644 index 0000000..72eed63 --- /dev/null +++ b/TASK-12.py @@ -0,0 +1,66 @@ +from PIL import Image +import os + +def get_size_format(b, factor=1024, suffix="B"): + """ + Scale bytes to its proper byte format. + e.g: 1253656 => '1.20MB', 1253656678 => '1.17GB' + """ + for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: + if b < factor: + return f"{b:.2f}{unit}{suffix}" + b /= factor + return f"{b:.2f}Y{suffix}" + +def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True): + try: + # Load the image into memory + img = Image.open(image_name) + + # Print the original image shape + print("[*] Image shape:", img.size) + + # Get the original image size in bytes + image_size = os.path.getsize(image_name) + print("[*] Size before compression:", get_size_format(image_size)) + + if width and height: + # If width and height are set, resize with them instead + img = img.resize((width, height), Image.LANCZOS) + elif new_size_ratio < 1.0: + # If resizing ratio is below 1.0, multiply width & height with this ratio to reduce image size + img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.LANCZOS) + + # Split the filename and extension + filename, ext = os.path.splitext(image_name) + + # Make a new filename appending "_compressed" to the original file name + if to_jpg: + # Change the extension to JPEG + new_filename = f"{filename}_compressed.jpg" + # Ensure image is in RGB mode for JPEG + if img.mode in ("RGBA", "LA"): + img = img.convert("RGB") + else: + # Retain the same extension of the original image + new_filename = f"{filename}_compressed{ext}" + + # Save the compressed image + img.save(new_filename, optimize=True, quality=quality) + + # Print the new image shape + print("[+] New Image shape:", img.size) + + # Get the new image size in bytes + new_image_size = os.path.getsize(new_filename) + print("[*] Size after compression:", get_size_format(new_image_size)) + print(f"[*] Compressed image saved as: {new_filename}") + + except FileNotFoundError: + print("Error: The file was not found.") + except OSError as e: + print(f"Error: {e}") + +# Example usage: +input_image = input("Enter the path to the image: ") +compress_img(input_image, new_size_ratio=0.8, quality=80, width=800, height=600) diff --git a/TASK-5.py b/TASK-5.py new file mode 100644 index 0000000..ee915c5 --- /dev/null +++ b/TASK-5.py @@ -0,0 +1,65 @@ +import requests +import datetime + +# Your OpenWeatherMap API key +API_KEY = '69e7dd8a8069d4066de2a18ea5996e36' +BASE_URL = 'http://api.openweathermap.org/data/2.5/' + +# Function to get current weather data +def get_current_weather(city): + url = f"{BASE_URL}weather?q={city}&appid={API_KEY}&units=metric" + response = requests.get(url) + return response.json() + +# Function to get weather forecast data +def get_forecast(city): + url = f"{BASE_URL}forecast?q={city}&appid={API_KEY}&units=metric" + response = requests.get(url) + return response.json() + +# Function to display weather data +def display_weather_data(city): + current_weather = get_current_weather(city) + forecast = get_forecast(city) + + if current_weather.get("cod") != 200 or forecast.get("cod") != "200": + print("Failed to retrieve data. Please check the city name or API key.") + return + + # Current weather + print(f"\nCurrent weather in {city.capitalize()}:") + print(f"Temperature: {current_weather['main']['temp']}°C") + print(f"Weather: {current_weather['weather'][0]['description']}") + print(f"Humidity: {current_weather['main']['humidity']}%") + print(f"Wind Speed: {current_weather['wind']['speed']} m/s") + + # Forecast + print(f"\n5-Day Forecast for {city.capitalize()}:") + for item in forecast['list']: + timestamp = item['dt'] + date_time = datetime.datetime.fromtimestamp(timestamp) + if date_time.hour == 12: # Show data for 12 PM each day + temp = item['main']['temp'] + weather = item['weather'][0]['description'] + print(f"{date_time.strftime('%Y-%m-%d %H:%M:%S')}: {temp}°C, {weather}") + + # Temperature trends (Average temperatures per day) + temp_trends = {} + for item in forecast['list']: + date = datetime.datetime.fromtimestamp(item['dt']).date() + if date not in temp_trends: + temp_trends[date] = [] + temp_trends[date].append(item['main']['temp']) + + print(f"\nTemperature Trends in {city.capitalize()}:") + for date, temps in temp_trends.items(): + avg_temp = sum(temps) / len(temps) + print(f"{date}: {avg_temp:.2f}°C") + +# Main function +def main(): + city = input("Enter the city name: ") + display_weather_data(city) + +if __name__ == "__main__": + main() diff --git a/TASK-6.py b/TASK-6.py new file mode 100644 index 0000000..c2551cf --- /dev/null +++ b/TASK-6.py @@ -0,0 +1,97 @@ +import requests +from bs4 import BeautifulSoup +import pandas as pd +import json +from urllib.parse import urljoin + +# Function to check robots.txt for scraping permission +def check_robots_txt(base_url): + robots_url = urljoin(base_url, '/robots.txt') + response = requests.get(robots_url) + if response.status_code == 200: + robots_txt = response.text + if "Disallow: /" in robots_txt: + return False + return True + return False + +# Function to list all tables in the HTML +def list_tables(soup): + tables = soup.find_all("table") + if not tables: + raise Exception("No tables found on the webpage.") + table_summaries = [] + for i, table in enumerate(tables): + summary = table.attrs.get("summary", f"Table {i+1}") + table_summaries.append(summary) + return tables, table_summaries + +# Function to extract data from the selected table +def extract_data(table): + data = [] + headers = [header.text.strip() for header in table.find_all("th")] + rows = table.find_all("tr")[1:] # Skipping the header row + for row in rows: + cells = row.find_all("td") + row_data = [cell.text.strip() for cell in cells] + data.append(row_data) + return headers, data + +# Main function to perform web scraping +def main(): + # Read the URL from the user + base_url = input("Enter the URL of the website to scrape: ") + + # Check if scraping is allowed + if not check_robots_txt(base_url): + print("It is not possible to perform web scraping on this website.") + return + + # Send a GET request to fetch the raw HTML content + response = requests.get(base_url) + if response.status_code != 200: + raise Exception(f"Failed to load page {base_url}") + + # Parse the content with BeautifulSoup + soup = BeautifulSoup(response.content, "html.parser") + + # List all tables + try: + tables, table_summaries = list_tables(soup) + except Exception as e: + print(f"Error during table listing: {e}") + return + + # Display the tables to the user and ask for a selection + print("Tables found on the webpage:") + for i, summary in enumerate(table_summaries): + print(f"{i + 1}: {summary}") + + try: + table_index = int(input("Enter the number of the table you want to scrape: ")) - 1 + if table_index < 0 or table_index >= len(tables): + raise ValueError("Invalid table number selected.") + except ValueError as e: + print(f"Error during table selection: {e}") + return + + # Extract data from the selected table + try: + headers, data = extract_data(tables[table_index]) + except Exception as e: + print(f"Error during data extraction: {e}") + return + + # Convert to DataFrame + df = pd.DataFrame(data, columns=headers) + + # Save to CSV + df.to_csv("scraped_data.csv", index=False) + + # Save to JSON + df.to_json("scraped_data.json", orient="records") + + print("Data has been scraped and saved to scraped_data.csv and scraped_data.json") + +if __name__ == "__main__": + main() diff --git a/TASK-7.py b/TASK-7.py new file mode 100644 index 0000000..143858c --- /dev/null +++ b/TASK-7.py @@ -0,0 +1,26 @@ +import nltk +from nltk.chat.util import Chat, reflections + +# Define pairs of patterns and responses +pairs = [ + (r'hi|hello|hey', ['Hello!', 'Hey there!', 'Hi! How can I help you?']), + (r'how are you?', ['I\'m doing well, thank you!', 'I\'m good, thanks for asking!']), + (r'what\'s your name\??', ['I\'m a chatbot!', 'You can call me ChatBot.']), + (r'(.*) your name\??', ['I\'m a chatbot!', 'You can call me ChatBot.']), + # Add more patterns and responses as needed +] + +# Create a Chatbot instance +chatbot = Chat(pairs, reflections) + +print("Welcome! Type 'quit' to end the conversation.") + +# Start the conversation loop +while True: + user_input = input("You: ") + if user_input.lower() == 'quit': + print("ChatBot: Bye! Have a great day!") + break + else: + response = chatbot.respond(user_input) + print("ChatBot:", response) diff --git a/TASK-8.py b/TASK-8.py new file mode 100644 index 0000000..7579a56 --- /dev/null +++ b/TASK-8.py @@ -0,0 +1,61 @@ + +import os +from PyPDF2 import PdfMerger, PdfReader, PdfWriter + +def merge_pdfs(pdf_list, output_path): + merger = PdfMerger() + + for pdf in pdf_list: + if os.path.exists(pdf): + merger.append(pdf) + else: + print(f"File not found: {pdf}") + + with open(output_path, 'wb') as output_file: + merger.write(output_file) + + print(f'Merged PDF saved as {output_path}') + +def split_pdf(input_path, output_folder): + if not os.path.exists(input_path): + print(f"File not found: {input_path}") + return + + with open(input_path, 'rb') as input_file: + reader = PdfReader(input_file) + num_pages = len(reader.pages) + + for page_num in range(num_pages): + writer = PdfWriter() + writer.add_page(reader.pages[page_num]) + + output_path = os.path.join(output_folder, f'page_{page_num + 1}.pdf') + with open(output_path, 'wb') as output_file: + writer.write(output_file) + + print(f'Saved {output_path}') + +def main(): + print("PDF Merger/Splitter") + print("1. Merge PDFs") + print("2. Split PDF") + print("3. Exit") + choice = input("Enter your choice: ") + + if choice == '1': + pdf_files = input("Enter the PDF files to merge (separated by commas): ").split(',') + pdf_files = [pdf.strip() for pdf in pdf_files] # Strip whitespace + output_path = input("Enter the output path for the merged PDF: ") + merge_pdfs(pdf_files, output_path) + elif choice == '2': + input_path = input("Enter the PDF file to split: ") + output_folder = input("Enter the output folder for the split PDFs: ") + os.makedirs(output_folder, exist_ok=True) + split_pdf(input_path, output_folder) + elif choice == '3': + print("Exiting.") + else: + print("Invalid choice. Exiting.") + +if __name__ == "__main__": + main() diff --git a/TASK-9.py b/TASK-9.py new file mode 100644 index 0000000..4ae7d87 --- /dev/null +++ b/TASK-9.py @@ -0,0 +1,37 @@ +from PIL import Image +import os + +def convert_image(input_path, output_path, output_format): + try: + # Open the image + with Image.open(input_path) as img: + # Check if the image has an alpha channel and convert it to RGB if necessary + if output_format == 'JPEG' and img.mode == 'RGBA': + img = img.convert('RGB') + + # Convert and save the image to the desired format + img.save(output_path, format=output_format) + print(f"Image converted successfully to {output_format} format.") + except Exception as e: + print(f"An error occurred: {e}") + +def main(): + input_path = input("Enter the path to the input image: ") + output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper() + + # Validate output format + if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']: + print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.") + return + + # Extract the file name and extension + file_name, file_extension = os.path.splitext(input_path) + + # Set the output path + output_path = f"{file_name}_converted.{output_format.lower()}" + + # Convert the image + convert_image(input_path, output_path, output_format) + +if __name__ == "__main__": + main() From 6b11f9eb19c16ff25631068f3a7dff4985d5770a Mon Sep 17 00:00:00 2001 From: dora-b72 Date: Sun, 16 Jun 2024 16:27:00 +0530 Subject: [PATCH 3/5] completed all tasks --- Aaluru_Bhavana/Task9-imgconv/TASK-9.py | 37 ++++++++++ Aaluru_Bhavana/task1/TASK-1.py | 30 ++++++++ Aaluru_Bhavana/task10/TASK-10.py | 43 ++++++++++++ Aaluru_Bhavana/task11/TASK-11.py | 40 +++++++++++ Aaluru_Bhavana/task12/TASK-12.py | 66 ++++++++++++++++++ Aaluru_Bhavana/task2/TASK-2.py | 59 ++++++++++++++++ Aaluru_Bhavana/task3/TASK-3.py | 33 +++++++++ Aaluru_Bhavana/task4/TASK-4.py | 93 ++++++++++++++++++++++++ Aaluru_Bhavana/task5/TASK-5.py | 65 +++++++++++++++++ Aaluru_Bhavana/task6/TASK-6.py | 97 ++++++++++++++++++++++++++ Aaluru_Bhavana/task7/TASK-7.py | 26 +++++++ Aaluru_Bhavana/task8/TASK-8.py | 61 ++++++++++++++++ Calc.py | 0 13 files changed, 650 insertions(+) create mode 100644 Aaluru_Bhavana/Task9-imgconv/TASK-9.py create mode 100644 Aaluru_Bhavana/task1/TASK-1.py create mode 100644 Aaluru_Bhavana/task10/TASK-10.py create mode 100644 Aaluru_Bhavana/task11/TASK-11.py create mode 100644 Aaluru_Bhavana/task12/TASK-12.py create mode 100644 Aaluru_Bhavana/task2/TASK-2.py create mode 100644 Aaluru_Bhavana/task3/TASK-3.py create mode 100644 Aaluru_Bhavana/task4/TASK-4.py create mode 100644 Aaluru_Bhavana/task5/TASK-5.py create mode 100644 Aaluru_Bhavana/task6/TASK-6.py create mode 100644 Aaluru_Bhavana/task7/TASK-7.py create mode 100644 Aaluru_Bhavana/task8/TASK-8.py create mode 100644 Calc.py diff --git a/Aaluru_Bhavana/Task9-imgconv/TASK-9.py b/Aaluru_Bhavana/Task9-imgconv/TASK-9.py new file mode 100644 index 0000000..fcd4fc3 --- /dev/null +++ b/Aaluru_Bhavana/Task9-imgconv/TASK-9.py @@ -0,0 +1,37 @@ +from PIL import Image +import os + +def convert_image(input_path, output_path, output_format): + try: + # Open the image + with Image.open(input_path) as img: + # Check if the image has an alpha channel and convert it to RGB if necessary + if output_format == 'JPEG' and img.mode == 'RGBA': + img = img.convert('RGB') + + # Convert and save the image to the desired format + img.save(output_path, format=output_format) + print(f"Image converted successfully to {output_format} format.") + except Exception as e: + print(f"An error occurred: {e}") + +def main(): + input_path = input("Enter the path to the input image: ") + output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper() + + # Validate output format + if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']: + print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.") + return + + # Extract the file name and extension + file_name, file_extension = os.path.splitext(input_path) + + # Set the output path + output_path = f"{file_name}_converted.{output_format.lower()}" + + # Convert the image + convert_image(input_path, output_path, output_format) + +if __name__ == "__main__": + main() diff --git a/Aaluru_Bhavana/task1/TASK-1.py b/Aaluru_Bhavana/task1/TASK-1.py new file mode 100644 index 0000000..1422fc1 --- /dev/null +++ b/Aaluru_Bhavana/task1/TASK-1.py @@ -0,0 +1,30 @@ +#a simple python program to perform basic tasks like addition,subtraction,multiplication,division +print('please select any of the number for performing arithmetic operations') +print("1.Addition") +print('2.Subtraction') +print('3.Multiplication') +print('4.Division') +print('5.exit') +a=int(input('Enter any of the number for performing arithmetic operations')) +def ari(a,var1,var2): + a,var1,var2=a,var1,var2 + if(a==1): + print(var1+var2) + if(a==2): + print(var1-var2) + if(a==3): + print(var1*var2) + if(a==4): + print(var1/var2) + return + +#Enter Two numbers +if((a>0) and (a<5)): + var1 = int(input('Enter First number: ')) + var2 = int(input('Enter Second number: ')) + ari(a,var1,var2) +elif(a==5): + exit() +else: + print('Invalid Option') + print('please select 1/2/3/4/5 only') \ No newline at end of file diff --git a/Aaluru_Bhavana/task10/TASK-10.py b/Aaluru_Bhavana/task10/TASK-10.py new file mode 100644 index 0000000..2fee7c7 --- /dev/null +++ b/Aaluru_Bhavana/task10/TASK-10.py @@ -0,0 +1,43 @@ +import seaborn as sns +import pandas as pd +import matplotlib.pyplot as plt + +# Load the Iris dataset from Seaborn +iris = sns.load_dataset("iris") +numeric_iris = iris.drop(columns='species') + +# Display the first few rows of the dataset +print("First few rows of the dataset:") +print(iris.head()) + +# Summary statistics +print("\nSummary statistics:") +print(iris.describe()) + +# Checking for missing values +print("\nMissing values:") +print(iris.isnull().sum()) + +# Visualizations +# Pairplot +sns.pairplot(iris, hue="species") +plt.title("Pairplot of Iris Dataset") +plt.show() + +# Boxplot +plt.figure(figsize=(10, 6)) +sns.boxplot(data=iris, orient="h") +plt.title("Boxplot of Iris Dataset") +plt.show() + +# Histograms +plt.figure(figsize=(10, 6)) +iris.hist() +plt.suptitle("Histograms of Iris Dataset") +plt.show() + +# Correlation heatmap +plt.figure(figsize=(8, 6)) +sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm") +plt.title("Correlation Heatmap of Iris Dataset") +plt.show() diff --git a/Aaluru_Bhavana/task11/TASK-11.py b/Aaluru_Bhavana/task11/TASK-11.py new file mode 100644 index 0000000..85bc4e1 --- /dev/null +++ b/Aaluru_Bhavana/task11/TASK-11.py @@ -0,0 +1,40 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error + +# Fetch the Boston housing dataset from the original source +data_url = "http://lib.stat.cmu.edu/datasets/boston" +raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) +data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) +target = raw_df.values[1::2, 2] + +# Split the dataset into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42) + +# Create and train the linear regression model +model = LinearRegression() +model.fit(X_train, y_train) + +# Make predictions on the training and testing sets +y_train_pred = model.predict(X_train) +y_test_pred = model.predict(X_test) + +# Calculate the mean squared error for training and testing sets +train_mse = mean_squared_error(y_train, y_train_pred) +test_mse = mean_squared_error(y_test, y_test_pred) + +print("Train MSE:", train_mse) +print("Test MSE:", test_mse) + +# Plot residuals +plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data') +plt.scatter(y_test_pred, y_test_pred - y_test, c='green', marker='s', label='Test data') +plt.xlabel('Predicted values') +plt.ylabel('Residuals') +plt.legend(loc='upper left') +plt.hlines(y=0, xmin=min(y_train_pred.min(), y_test_pred.min()), xmax=max(y_train_pred.max(), y_test_pred.max()), color='red') +plt.title('Residuals plot') +plt.show() diff --git a/Aaluru_Bhavana/task12/TASK-12.py b/Aaluru_Bhavana/task12/TASK-12.py new file mode 100644 index 0000000..98c044f --- /dev/null +++ b/Aaluru_Bhavana/task12/TASK-12.py @@ -0,0 +1,66 @@ +from PIL import Image +import os + +def get_size_format(b, factor=1024, suffix="B"): + """ + Scale bytes to its proper byte format. + e.g: 1253656 => '1.20MB', 1253656678 => '1.17GB' + """ + for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: + if b < factor: + return f"{b:.2f}{unit}{suffix}" + b /= factor + return f"{b:.2f}Y{suffix}" + +def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True): + try: + # Load the image into memory + img = Image.open(image_name) + + # Print the original image shape + print("[*] Image shape:", img.size) + + # Get the original image size in bytes + image_size = os.path.getsize(image_name) + print("[*] Size before compression:", get_size_format(image_size)) + + if width and height: + # If width and height are set, resize with them instead + img = img.resize((width, height), Image.LANCZOS) + elif new_size_ratio < 1.0: + # If resizing ratio is below 1.0, multiply width & height with this ratio to reduce image size + img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.LANCZOS) + + # Split the filename and extension + filename, ext = os.path.splitext(image_name) + + # Make a new filename appending "_compressed" to the original file name + if to_jpg: + # Change the extension to JPEG + new_filename = f"{filename}_compressed.jpg" + # Ensure image is in RGB mode for JPEG + if img.mode in ("RGBA", "LA"): + img = img.convert("RGB") + else: + # Retain the same extension of the original image + new_filename = f"{filename}_compressed{ext}" + + # Save the compressed image + img.save(new_filename, optimize=True, quality=quality) + + # Print the new image shape + print("[+] New Image shape:", img.size) + + # Get the new image size in bytes + new_image_size = os.path.getsize(new_filename) + print("[*] Size after compression:", get_size_format(new_image_size)) + print(f"[*] Compressed image saved as: {new_filename}") + + except FileNotFoundError: + print("Error: The file was not found.") + except OSError as e: + print(f"Error: {e}") + +# Example usage: +input_image = input("Enter the path to the image: ") +compress_img(input_image, new_size_ratio=0.8, quality=80, width=800, height=600) diff --git a/Aaluru_Bhavana/task2/TASK-2.py b/Aaluru_Bhavana/task2/TASK-2.py new file mode 100644 index 0000000..1eacb0a --- /dev/null +++ b/Aaluru_Bhavana/task2/TASK-2.py @@ -0,0 +1,59 @@ +class TaskManager: + def __init__(self): + self.tasks = [] + + def add_task(self, task): + self.tasks.append({"task": task, "completed": False}) + + def delete_task(self, index): + if 0 <= index < len(self.tasks): + del self.tasks[index] + else: + print("Invalid task index") + + def mark_task_completed(self, index): + if 0 <= index < len(self.tasks): + self.tasks[index]["completed"] = True + else: + print("Invalid task index") + + def display_tasks(self): + print("Tasks:") + for i, task in enumerate(self.tasks): + status = "Completed" if task["completed"] else "Pending" + print(f"{i+1}. {task['task']} - {status}") + + +def main(): + task_manager = TaskManager() + + while True: + print("\nOptions:") + print("1. Add Task") + print("2. Delete Task") + print("3. Mark Task as Completed") + print("4. View Tasks") + print("5. Exit") + + choice = input("Enter your choice: ") + + if choice == "1": + task = input("Enter the task: ") + task_manager.add_task(task) + elif choice == "2": + index = int(input("Enter the index of the task to delete: ")) - 1 + task_manager.delete_task(index) + elif choice == "3": + index = int(input("Enter the index of the task to mark as completed: ")) - 1 + task_manager.mark_task_completed(index) + elif choice == "4": + task_manager.display_tasks() + elif choice == "5": + print("Exiting...") + break + else: + print("Invalid choice. Please try again.") + + +if __name__ == "__main__": + main() diff --git a/Aaluru_Bhavana/task3/TASK-3.py b/Aaluru_Bhavana/task3/TASK-3.py new file mode 100644 index 0000000..f1bc4c2 --- /dev/null +++ b/Aaluru_Bhavana/task3/TASK-3.py @@ -0,0 +1,33 @@ +import random + +def guess_number(): + # Generate a random number between 1 and 100 + secret_number = random.randint(1, 100) + attempts = 0 + max_attempts = 10 + + print("Welcome to the Number Guessing Game!") + print("I have chosen a number between 1 and 100. You have", max_attempts, "attempts to guess it.") + + while attempts < max_attempts: + try: + guess = int(input("Enter your guess: ")) + except ValueError: + print("Invalid input! Please enter a valid number.") + continue + + attempts += 1 + + if guess < secret_number: + print("Too low! Try again.") + elif guess > secret_number: + print("Too high! Try again.") + else: + print("Congratulations! You've guessed the number", secret_number, "correctly in", attempts, "attempts!") + break + else: + print("Sorry, you've run out of attempts. The correct number was", secret_number) + +if __name__ == "__main__": + guess_number() + diff --git a/Aaluru_Bhavana/task4/TASK-4.py b/Aaluru_Bhavana/task4/TASK-4.py new file mode 100644 index 0000000..2b9f9ea --- /dev/null +++ b/Aaluru_Bhavana/task4/TASK-4.py @@ -0,0 +1,93 @@ +import PyPDF2 +from PIL import Image +import os + + +def convert_pdf_to_text(pdf_path, text_output_path): + """Converts a PDF file to text. + + Args: + pdf_path (str): Path to the input PDF file. + text_output_path (str): Path to save the converted text file. + """ + try: + with open(pdf_path, 'rb') as pdf_file: + pdf_reader = PyPDF2.PdfReader(pdf_file) + with open(text_output_path, 'w', encoding='utf-8') as text_file: + # Iterate through each page of the PDF + for page_num in range(len(pdf_reader.pages)): + page = pdf_reader.pages[page_num] + # Extract text from the page and write it to the text file + text_file.write(page.extract_text()) + print(f"PDF converted to text successfully. Text file saved at {text_output_path}") + except Exception as e: + print(f"An error occurred: {e}") + + +def extract_images_from_pdf(pdf_path, image_output_folder): + """Extracts images from a PDF file. + + Args: + pdf_path (str): Path to the input PDF file. + image_output_folder (str): Folder to save the extracted images. + """ + try: + with open(pdf_path, 'rb') as pdf_file: + pdf_reader = PyPDF2.PdfReader(pdf_file) + # Iterate through each page of the PDF + for page_num in range(len(pdf_reader.pages)): + page = pdf_reader.pages[page_num] + xObject = page['/Resources']['/XObject'].getObject() + for obj in xObject: + if xObject[obj]['/Subtype'] == '/Image': + size = (xObject[obj]['/Width'], xObject[obj]['/Height']) + data = xObject[obj]._data + mode = '' + if xObject[obj]['/ColorSpace'] == '/DeviceRGB': + mode = "RGB" + else: + mode = "P" + if xObject[obj]['/Filter'] == '/FlateDecode': + img = Image.frombytes(mode, size, data) + img.save(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.png")) + elif xObject[obj]['/Filter'] == '/DCTDecode': + img = open(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.jpg"), "wb") + img.write(data) + img.close() + elif xObject[obj]['/Filter'] == '/JPXDecode': + img = open(os.path.join(image_output_folder, f"page{page_num+1}_{obj[1:]}.jp2"), "wb") + img.write(data) + img.close() + print(f"Images extracted successfully. Saved in {image_output_folder}") + except Exception as e: + print(f"An error occurred: {e}") + + +def main(): + # Get input paths and output folder from user + pdf_path = input("Enter the path to the PDF file: ") + output_folder = input("Enter the output folder path: ") + + # Create the output folder if it does not exist + if not os.path.exists(output_folder): + os.makedirs(output_folder) + + # Choose conversion option + choice = input("Choose an option:\n1. Convert PDF to text\n2. Extract images from PDF\nEnter your choice: ") + + if choice == '1': + # Convert PDF to text + text_output_path = os.path.join(output_folder, "converted_text.txt") + convert_pdf_to_text(pdf_path, text_output_path) + elif choice == '2': + # Extract images from PDF + image_output_folder = os.path.join(output_folder, "extracted_images") + if not os.path.exists(image_output_folder): + os.makedirs(image_output_folder) + extract_images_from_pdf(pdf_path, image_output_folder) + else: + print("Invalid choice. Please choose 1 or 2.") + + +if __name__ == "__main__": + main() diff --git a/Aaluru_Bhavana/task5/TASK-5.py b/Aaluru_Bhavana/task5/TASK-5.py new file mode 100644 index 0000000..a9c61c2 --- /dev/null +++ b/Aaluru_Bhavana/task5/TASK-5.py @@ -0,0 +1,65 @@ +import requests +import datetime + +# Your OpenWeatherMap API key +API_KEY = '69e7dd8a8069d4066de2a18ea5996e36' +BASE_URL = 'http://api.openweathermap.org/data/2.5/' + +# Function to get current weather data +def get_current_weather(city): + url = f"{BASE_URL}weather?q={city}&appid={API_KEY}&units=metric" + response = requests.get(url) + return response.json() + +# Function to get weather forecast data +def get_forecast(city): + url = f"{BASE_URL}forecast?q={city}&appid={API_KEY}&units=metric" + response = requests.get(url) + return response.json() + +# Function to display weather data +def display_weather_data(city): + current_weather = get_current_weather(city) + forecast = get_forecast(city) + + if current_weather.get("cod") != 200 or forecast.get("cod") != "200": + print("Failed to retrieve data. Please check the city name or API key.") + return + + # Current weather + print(f"\nCurrent weather in {city.capitalize()}:") + print(f"Temperature: {current_weather['main']['temp']}°C") + print(f"Weather: {current_weather['weather'][0]['description']}") + print(f"Humidity: {current_weather['main']['humidity']}%") + print(f"Wind Speed: {current_weather['wind']['speed']} m/s") + + # Forecast + print(f"\n5-Day Forecast for {city.capitalize()}:") + for item in forecast['list']: + timestamp = item['dt'] + date_time = datetime.datetime.fromtimestamp(timestamp) + if date_time.hour == 12: # Show data for 12 PM each day + temp = item['main']['temp'] + weather = item['weather'][0]['description'] + print(f"{date_time.strftime('%Y-%m-%d %H:%M:%S')}: {temp}°C, {weather}") + + # Temperature trends (Average temperatures per day) + temp_trends = {} + for item in forecast['list']: + date = datetime.datetime.fromtimestamp(item['dt']).date() + if date not in temp_trends: + temp_trends[date] = [] + temp_trends[date].append(item['main']['temp']) + + print(f"\nTemperature Trends in {city.capitalize()}:") + for date, temps in temp_trends.items(): + avg_temp = sum(temps) / len(temps) + print(f"{date}: {avg_temp:.2f}°C") + +# Main function +def main(): + city = input("Enter the city name: ") + display_weather_data(city) + +if __name__ == "__main__": + main() diff --git a/Aaluru_Bhavana/task6/TASK-6.py b/Aaluru_Bhavana/task6/TASK-6.py new file mode 100644 index 0000000..b0d5169 --- /dev/null +++ b/Aaluru_Bhavana/task6/TASK-6.py @@ -0,0 +1,97 @@ +import requests +from bs4 import BeautifulSoup +import pandas as pd +import json +from urllib.parse import urljoin + +# Function to check robots.txt for scraping permission +def check_robots_txt(base_url): + robots_url = urljoin(base_url, '/robots.txt') + response = requests.get(robots_url) + if response.status_code == 200: + robots_txt = response.text + if "Disallow: /" in robots_txt: + return False + return True + return False + +# Function to list all tables in the HTML +def list_tables(soup): + tables = soup.find_all("table") + if not tables: + raise Exception("No tables found on the webpage.") + table_summaries = [] + for i, table in enumerate(tables): + summary = table.attrs.get("summary", f"Table {i+1}") + table_summaries.append(summary) + return tables, table_summaries + +# Function to extract data from the selected table +def extract_data(table): + data = [] + headers = [header.text.strip() for header in table.find_all("th")] + rows = table.find_all("tr")[1:] # Skipping the header row + for row in rows: + cells = row.find_all("td") + row_data = [cell.text.strip() for cell in cells] + data.append(row_data) + return headers, data + +# Main function to perform web scraping +def main(): + # Read the URL from the user + base_url = input("Enter the URL of the website to scrape: ") + + # Check if scraping is allowed + if not check_robots_txt(base_url): + print("It is not possible to perform web scraping on this website.") + return + + # Send a GET request to fetch the raw HTML content + response = requests.get(base_url) + if response.status_code != 200: + raise Exception(f"Failed to load page {base_url}") + + # Parse the content with BeautifulSoup + soup = BeautifulSoup(response.content, "html.parser") + + # List all tables + try: + tables, table_summaries = list_tables(soup) + except Exception as e: + print(f"Error during table listing: {e}") + return + + # Display the tables to the user and ask for a selection + print("Tables found on the webpage:") + for i, summary in enumerate(table_summaries): + print(f"{i + 1}: {summary}") + + try: + table_index = int(input("Enter the number of the table you want to scrape: ")) - 1 + if table_index < 0 or table_index >= len(tables): + raise ValueError("Invalid table number selected.") + except ValueError as e: + print(f"Error during table selection: {e}") + return + + # Extract data from the selected table + try: + headers, data = extract_data(tables[table_index]) + except Exception as e: + print(f"Error during data extraction: {e}") + return + + # Convert to DataFrame + df = pd.DataFrame(data, columns=headers) + + # Save to CSV + df.to_csv("scraped_data.csv", index=False) + + # Save to JSON + df.to_json("scraped_data.json", orient="records") + + print("Data has been scraped and saved to scraped_data.csv and scraped_data.json") + +if __name__ == "__main__": + main() diff --git a/Aaluru_Bhavana/task7/TASK-7.py b/Aaluru_Bhavana/task7/TASK-7.py new file mode 100644 index 0000000..66157af --- /dev/null +++ b/Aaluru_Bhavana/task7/TASK-7.py @@ -0,0 +1,26 @@ +import nltk +from nltk.chat.util import Chat, reflections + +# Define pairs of patterns and responses +pairs = [ + (r'hi|hello|hey', ['Hello!', 'Hey there!', 'Hi! How can I help you?']), + (r'how are you?', ['I\'m doing well, thank you!', 'I\'m good, thanks for asking!']), + (r'what\'s your name\??', ['I\'m a chatbot!', 'You can call me ChatBot.']), + (r'(.*) your name\??', ['I\'m a chatbot!', 'You can call me ChatBot.']), + # Add more patterns and responses as needed +] + +# Create a Chatbot instance +chatbot = Chat(pairs, reflections) + +print("Welcome! Type 'quit' to end the conversation.") + +# Start the conversation loop +while True: + user_input = input("You: ") + if user_input.lower() == 'quit': + print("ChatBot: Bye! Have a great day!") + break + else: + response = chatbot.respond(user_input) + print("ChatBot:", response) diff --git a/Aaluru_Bhavana/task8/TASK-8.py b/Aaluru_Bhavana/task8/TASK-8.py new file mode 100644 index 0000000..61b10ce --- /dev/null +++ b/Aaluru_Bhavana/task8/TASK-8.py @@ -0,0 +1,61 @@ + +import os +from PyPDF2 import PdfMerger, PdfReader, PdfWriter + +def merge_pdfs(pdf_list, output_path): + merger = PdfMerger() + + for pdf in pdf_list: + if os.path.exists(pdf): + merger.append(pdf) + else: + print(f"File not found: {pdf}") + + with open(output_path, 'wb') as output_file: + merger.write(output_file) + + print(f'Merged PDF saved as {output_path}') + +def split_pdf(input_path, output_folder): + if not os.path.exists(input_path): + print(f"File not found: {input_path}") + return + + with open(input_path, 'rb') as input_file: + reader = PdfReader(input_file) + num_pages = len(reader.pages) + + for page_num in range(num_pages): + writer = PdfWriter() + writer.add_page(reader.pages[page_num]) + + output_path = os.path.join(output_folder, f'page_{page_num + 1}.pdf') + with open(output_path, 'wb') as output_file: + writer.write(output_file) + + print(f'Saved {output_path}') + +def main(): + print("PDF Merger/Splitter") + print("1. Merge PDFs") + print("2. Split PDF") + print("3. Exit") + choice = input("Enter your choice: ") + + if choice == '1': + pdf_files = input("Enter the PDF files to merge (separated by commas): ").split(',') + pdf_files = [pdf.strip() for pdf in pdf_files] # Strip whitespace + output_path = input("Enter the output path for the merged PDF: ") + merge_pdfs(pdf_files, output_path) + elif choice == '2': + input_path = input("Enter the PDF file to split: ") + output_folder = input("Enter the output folder for the split PDFs: ") + os.makedirs(output_folder, exist_ok=True) + split_pdf(input_path, output_folder) + elif choice == '3': + print("Exiting.") + else: + print("Invalid choice. Exiting.") + +if __name__ == "__main__": + main() diff --git a/Calc.py b/Calc.py new file mode 100644 index 0000000..e69de29 From f9c5cda08f3ebee02d1374ec7dde40d32ada12ce Mon Sep 17 00:00:00 2001 From: dora-b72 Date: Sun, 16 Jun 2024 17:15:24 +0530 Subject: [PATCH 4/5] Renamed Calc.py to task1 --- Calc.py => task1 | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename Calc.py => task1 (100%) diff --git a/Calc.py b/task1 similarity index 100% rename from Calc.py rename to task1 From 170b7a37f86efcdf4ff0f3c86e13f68805e46cdf Mon Sep 17 00:00:00 2001 From: dora-b72 Date: Sun, 16 Jun 2024 17:38:52 +0530 Subject: [PATCH 5/5] Completed Tasks --- task1 | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) diff --git a/task1 b/task1 index e69de29..1422fc1 100644 --- a/task1 +++ b/task1 @@ -0,0 +1,30 @@ +#a simple python program to perform basic tasks like addition,subtraction,multiplication,division +print('please select any of the number for performing arithmetic operations') +print("1.Addition") +print('2.Subtraction') +print('3.Multiplication') +print('4.Division') +print('5.exit') +a=int(input('Enter any of the number for performing arithmetic operations')) +def ari(a,var1,var2): + a,var1,var2=a,var1,var2 + if(a==1): + print(var1+var2) + if(a==2): + print(var1-var2) + if(a==3): + print(var1*var2) + if(a==4): + print(var1/var2) + return + +#Enter Two numbers +if((a>0) and (a<5)): + var1 = int(input('Enter First number: ')) + var2 = int(input('Enter Second number: ')) + ari(a,var1,var2) +elif(a==5): + exit() +else: + print('Invalid Option') + print('please select 1/2/3/4/5 only') \ No newline at end of file