diff --git a/Harsha Vardhan Chalapati/README.md b/Harsha Vardhan Chalapati/README.md new file mode 100644 index 0000000..ea71e98 --- /dev/null +++ b/Harsha Vardhan Chalapati/README.md @@ -0,0 +1,9 @@ +TASK-1:Image Converter + Write a program that accepts images in multiple formats (JPEG, PNG, BMP, GIF) and converts them into a desired format using Python Imaging Library (PIL). +Task-2:Data Analysis with Pandas + Load the "Iris" dataset from Seaborn and analyze it using Pandas. Perform exploratory data analysis, cleaning, aggregation, visualizations, and correlation calculations. +TASK-3:Linear Regression with Scikit-learn + Apply linear regression to predict house prices from the Boston housing dataset using scikit-learn. Compare train and test scores and plot residuals. +Task-4:Image Compression + Develop a Python tool for compressing images while maintaining quality.Explore compression techniques like RLE and DCT.Allow users to adjust compression quality, support various image formats, and provide output options. + Optionally, include a user interface. Ensure code modularity, performance optimization, and test with diverse images, along with comprehensive documentation diff --git a/Harsha Vardhan Chalapati/Task-1 b/Harsha Vardhan Chalapati/Task-1 new file mode 100644 index 0000000..ebe144b --- /dev/null +++ b/Harsha Vardhan Chalapati/Task-1 @@ -0,0 +1,36 @@ +from PIL import Image +import os + +def convert_image(input_path, output_path, output_format): + try: + # Open the image + with Image.open(input_path) as img: + # Convert and save the image to the desired format + img.save(output_path, format=output_format) + print(f"Image converted successfully to {output_format} format.") + except Exception as e: + print(f"An error occurred: {e}") + +def main(): + input_path = input("Enter the path to the input image: ") + output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper() + + # Validate output format + if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']: + print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.") + return + + # Extract the file name and extension + file_name, file_extension = os.path.splitext(input_path) + + # If the input file already has an extension, remove it + file_name_without_ext = file_name.split('.')[0] + + # Set the output path + output_path = f"{file_name_without_ext}_converted.{output_format.lower()}" + + # Convert the image + convert_image(input_path, output_path, output_format) + +if _name_ == "_main_": + main() diff --git a/Harsha Vardhan Chalapati/Task-2 b/Harsha Vardhan Chalapati/Task-2 new file mode 100644 index 0000000..2fee7c7 --- /dev/null +++ b/Harsha Vardhan Chalapati/Task-2 @@ -0,0 +1,43 @@ +import seaborn as sns +import pandas as pd +import matplotlib.pyplot as plt + +# Load the Iris dataset from Seaborn +iris = sns.load_dataset("iris") +numeric_iris = iris.drop(columns='species') + +# Display the first few rows of the dataset +print("First few rows of the dataset:") +print(iris.head()) + +# Summary statistics +print("\nSummary statistics:") +print(iris.describe()) + +# Checking for missing values +print("\nMissing values:") +print(iris.isnull().sum()) + +# Visualizations +# Pairplot +sns.pairplot(iris, hue="species") +plt.title("Pairplot of Iris Dataset") +plt.show() + +# Boxplot +plt.figure(figsize=(10, 6)) +sns.boxplot(data=iris, orient="h") +plt.title("Boxplot of Iris Dataset") +plt.show() + +# Histograms +plt.figure(figsize=(10, 6)) +iris.hist() +plt.suptitle("Histograms of Iris Dataset") +plt.show() + +# Correlation heatmap +plt.figure(figsize=(8, 6)) +sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm") +plt.title("Correlation Heatmap of Iris Dataset") +plt.show() diff --git a/Harsha Vardhan Chalapati/Task-3 b/Harsha Vardhan Chalapati/Task-3 new file mode 100644 index 0000000..2fee7c7 --- /dev/null +++ b/Harsha Vardhan Chalapati/Task-3 @@ -0,0 +1,43 @@ +import seaborn as sns +import pandas as pd +import matplotlib.pyplot as plt + +# Load the Iris dataset from Seaborn +iris = sns.load_dataset("iris") +numeric_iris = iris.drop(columns='species') + +# Display the first few rows of the dataset +print("First few rows of the dataset:") +print(iris.head()) + +# Summary statistics +print("\nSummary statistics:") +print(iris.describe()) + +# Checking for missing values +print("\nMissing values:") +print(iris.isnull().sum()) + +# Visualizations +# Pairplot +sns.pairplot(iris, hue="species") +plt.title("Pairplot of Iris Dataset") +plt.show() + +# Boxplot +plt.figure(figsize=(10, 6)) +sns.boxplot(data=iris, orient="h") +plt.title("Boxplot of Iris Dataset") +plt.show() + +# Histograms +plt.figure(figsize=(10, 6)) +iris.hist() +plt.suptitle("Histograms of Iris Dataset") +plt.show() + +# Correlation heatmap +plt.figure(figsize=(8, 6)) +sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm") +plt.title("Correlation Heatmap of Iris Dataset") +plt.show() diff --git a/Harsha Vardhan Chalapati/Task-4 b/Harsha Vardhan Chalapati/Task-4 new file mode 100644 index 0000000..5bb8616 --- /dev/null +++ b/Harsha Vardhan Chalapati/Task-4 @@ -0,0 +1,45 @@ +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +import pandas as pd +data_url = "http://lib.stat.cmu.edu/datasets/boston" +raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) +data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) +target = raw_df.values[1::2, 2] + +# Load the Boston housing dataset + +X = data +y = target + +# Split the data into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Initialize the linear regression model +model = LinearRegression() + +# Fit the model on the training data +model.fit(X_train, y_train) + +# Predict on the training and testing data +y_train_pred = model.predict(X_train) +y_test_pred = model.predict(X_test) + +# Calculate the scores +train_score = model.score(X_train, y_train) +test_score = model.score(X_test, y_test) + +print("Training score:", train_score) +print("Testing score:", test_score) + +# Plot residuals +plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data') +plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', label='Testing data') +plt.xlabel('Predicted values') +plt.ylabel('Residuals') +plt.legend(loc='upper left') +plt.hlines(y=0, xmin=0, xmax=50, lw=2, color='red') +plt.title('Residual plot') +plt.show()