From 17fa38863a42ab4f80473544bc1e9eea75d9870b Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sun, 29 Aug 2021 17:44:51 +0200 Subject: [PATCH] Re-order `plots.py` to class-first (#4595) --- utils/plots.py | 50 ++++++++++++++++++++++++++------------------------ 1 file changed, 26 insertions(+), 24 deletions(-) diff --git a/utils/plots.py b/utils/plots.py index 696d32345dd5..99c8cc2f7044 100644 --- a/utils/plots.py +++ b/utils/plots.py @@ -45,30 +45,8 @@ def hex2rgb(h): # rgb order (PIL) colors = Colors() # create instance for 'from utils.plots import colors' -def hist2d(x, y, n=100): - # 2d histogram used in labels.png and evolve.png - xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) - hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) - xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) - yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) - return np.log(hist[xidx, yidx]) - - -def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): - from scipy.signal import butter, filtfilt - - # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy - def butter_lowpass(cutoff, fs, order): - nyq = 0.5 * fs - normal_cutoff = cutoff / nyq - return butter(order, normal_cutoff, btype='low', analog=False) - - b, a = butter_lowpass(cutoff, fs, order=order) - return filtfilt(b, a, data) # forward-backward filter - - class Annotator: - # YOLOv5 PIL Annotator class + # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True): assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.' self.pil = pil @@ -79,9 +57,11 @@ def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=Tr f = font_size or max(round(s * 0.035), 12) try: self.font = ImageFont.truetype(font, size=f) - except: # download TTF + except Exception as e: # download TTF if missing + print(f'WARNING: Annotator font {font} not found: {e}') url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/" + font torch.hub.download_url_to_file(url, font) + print(f'Annotator font successfully downloaded from {url} to {font}') self.font = ImageFont.truetype(font, size=f) self.fh = self.font.getsize('a')[1] - 3 # font height else: # use cv2 @@ -122,6 +102,28 @@ def result(self): return np.asarray(self.im) +def hist2d(x, y, n=100): + # 2d histogram used in labels.png and evolve.png + xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) + hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) + xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) + yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) + return np.log(hist[xidx, yidx]) + + +def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): + from scipy.signal import butter, filtfilt + + # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy + def butter_lowpass(cutoff, fs, order): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + return butter(order, normal_cutoff, btype='low', analog=False) + + b, a = butter_lowpass(cutoff, fs, order=order) + return filtfilt(b, a, data) # forward-backward filter + + def output_to_target(output): # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] targets = []