Skip to content

ChainAware/behavioral-prediction-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

🧠 Behavioural Prediction MCP Server

MCP Server Name: Behavioural Prediction MCP

Category: Web3 / Security / DeFi Analytics

Status: Public tools – Private backend

Access: By request (API key)

Server URL: [https://prediction.mcp.chainaware.ai/]

Repository: [https://github.com/ChainAware/behavioral-prediction-mcp]


📖 Description

The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.

Developers and platforms can integrate these tools through the MCP protocol to safeguard DeFi users, monitor liquidity risks, and score wallet or contract trustworthiness.

All tools follow the Model Context Protocol (MCP) and can be consumed via MCP-compatible clients.


⚙️ Available Tools

1. Predictive Fraud Detection Tool

ID: predictive_fraud

Description: This AI‑powered algorithm forecasts the likelihood of fraudulent activity on a given wallet address before it happens (≈98% accuracy), and performs AML/Anti‑Money‑Laundering checks. Use this when your user wants a risk assessment or early‑warning on a blockchain address.

➡️ Example Use Cases:

• Is it safe to intercant with vitalik.eth ?
• What is the fraudulent status of this address ?
• Is my new wallet at risk of being used for fraud?  

Inputs:

Name Type Required Description
apiKey string API key for authentication
network string Blockchain network (ETH, BNB,POLYGON,TON,BASE, TRON, HAQQ)
walletAddress string The wallet address to evaluate

Outputs (JSON):

{
    "message": "string",              // Human‑readable status message
    "walletAddress": "string",        // hex address 
    "status": "Fraud",                // Fraudelent status (Fraud,Not Fraud,New Address)
    "probabilityFraud": "0.00–1.00",  // Decimal probability
    "token": "string",                //
    "lastChecked": "ISO‑8601 timestamp",
    "forensic_details": {             // Deep forensic breakdown
    /* ...other metrics... */
    },
    "createdAt": "ISO‑8601 timestamp", 
    "updatedAt": "ISO‑8601 timestamp"
}

Error cases:

• `403 Unauthorized` → invalid `apiKey`  
• `400 Bad Request` → malformed `network` or `walletAddress`  
• `500 Internal Server Error` → temporary downstream failure  

2. Predictive Behaviour Analysis Tool

ID: predictive_behaviour

Description: This AI‑driven engine projects what a wallet address intentions or what address is likely to do next, profiles its past on‑chain history, and recommends personalized actions.

Use this when you need:

  • Next‑best‑action predictions and intentions(“Will this address deposit, trade, or stake?”)  
  • A risk‑tolerance and experience profile  
  • Category segmentation (e.g. NFT, DeFi, Bridge usage)  
  • Custom recommendations based on historical patterns

➡️ Example Use Cases:

• “What will this address do next?”  
• “Is the user high‑risk or experienced?”  
• “Recommend the best DeFi strategies for 0x1234... on ETH network.”

Inputs:

Name Type Required Description
apiKey string API key for authentication
network string Blockchain network (ETH, BNB,BASE,HAQQ)
walletAddress string The wallet address to evaluate

Outputs (JSON):

{
    "message":           "string",                    // e.g. “Success” or error text  
    "walletAddress":     "string",                    // echoed input  
    "status":            "string",                    // Fraudelent status (Fraud,Not Fraud,New Address)  
    "probabilityFraud":  "0.00–1.00",                 // decimal fraud score  
    "lastChecked":       "ISO‑8601 timestamp",        // e.g. “2025‑01‑03T16:19:13.000Z”  
    "forensic_details":  { /* dict of forensic metrics */ },  
    "categories":        [ { "Category":"string", "Count":int }, ],  
    "riskProfile":       [ { "Category":"string", "Balance_age":float }, ],  
    "segmentInfo":       "JSON‑string of segment counts",  
    "experience":        { "Type":"Experience", "Value":int },  
    "intention":         {                              
    "Type":"Intentions",  
    "Value": { "Prob_Trade":"High", "Prob_Stake":"Medium", }  
    },  
    "protocols":         [ { "Protocol":"string","Count":int }, ],  
    "recommendation":    { "Type":"Recommendation", "Value":[ "string", ] },  
    "createdAt":         "ISO‑8601 timestamp",  
    "updatedAt":         "ISO‑8601 timestamp"  
}

Error cases:

• `403 Unauthorized` → invalid `apiKey`  
• `400 Bad Request` → malformed `network` or `walletAddress`  
• `500 Internal Server Error` → temporary downstream failure  

3. Predictive Rug‑Pull Detection Tool

ID: predictive_rug_pull

Description: This AI‑powered engine forecasts which liquidity pools or contracts are likely to perform a “rug pull” in the future. Use this when you need to warn users before they deposit into risky pools or to monitor smart‑contract security on-chain.

➡️ Example Use Cases:

• “Will this new DeFi pool rug‑pull if I stake my assets?”  
• “Monitor my LP position for potential future exploits.”  

Inputs:

Name Type Required Description
apiKey string API key for authentication
network string Blockchain network (ETH, BNB, BASE, HAQQ)
walletAddress string Smart contract or liquidity pool address

Outputs (JSON):

{
  "message": "Success",
  "contractAddress": "0x1234...",
  "status": "Fraud",
  "probabilityFraud": 0.87,
  "lastChecked": "2025-10-25T12:45:00Z",
  "forensic_details": { /* dict of on‑chain metrics */ }, 
  "createdAt": "2025-10-25T12:45:00Z",
  "updatedAt": "2025-10-25T12:45:00Z"
}

Error cases:

• `403 Unauthorized` → invalid `apiKey`  
• `400 Bad Request` → malformed `network` or `walletAddress`  
• `500 Internal Server Error` → temporary downstream failure  

🧠 Example Client Usage

Node.js Example

import { MCPClient } from "mcp-client";

const client = new MCPClient("https://prediction.mcp.chainaware.ai/");

const result = await client.call("predictive_rug_pull", {
  apiKey: "your_api_key",
  network: "BNB",
  walletAddress: "0x1234..."
});

console.log(result);

Python Example

from mcp_client import MCPClient

client = MCPClient("https://prediction.mcp.chainaware.ai/")

res = client.call("chat", {"query": "What is the rug pull risk of 0x1234?"})
print(res)

Service Configuration:

  "type": "http",
  "config": {
    "mcpServers": {
      "behavioural_prediction_mcp": {
        "type": "http",
        "url": "https://prediction.mcp.chainaware.ai/sse",
        "description": "The Behavioural Prediction MCP Server provides AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.",
        "headers":{
          "x-api-key":""
        },
        "params":{
          "walletAddress":"",
          "network":""
        },
        "auth": {
          "type": "api_key",
          "header": "X-API-Key"
        }
      }
    }
  }
}

🔌 Integration Notes

  • Compatible with all MCP clients (Node, Python, Browser)
  • Uses Server-Sent Events (SSE) for real-time responses
  • JSON schemas match MCP spec
  • Rate limits may apply
  • API key required for production endpoints

🔒 Access Policy

The MCP server requires an API key for production usage. To request access:


🧾 License

MIT (for client examples). Server implementation and backend logic are proprietary and remain private.

About

AI-powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published