
17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 1 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

MARGO JuMP arrays test

model_parameters

ClimateModelParameters("default", Domain(5.0, 2020.0, 2020.0, 2200.0), Economics

 =

time 2020.0:5.0:2200.0 =

max_slope_M 0.02 =

Simple forward model function
To keep things simple, we wrap MARGO's forward model in a number of functions with:

input: Vector{Real}

output: Real or Vector{Real}

temperatures_controlled (generic function with 1 method)

import ClimateMARGO⋅

using ClimateMARGO.Models⋅

using ClimateMARGO.Optimization⋅

using ClimateMARGO.Diagnostics⋅

time = let
 d = model_parameters.domain
 d.initial_year:d.dt:d.final_year
end

⋅
⋅
⋅
⋅

Enter cell code... ⋅

max_slope_M = .02⋅

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 2 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

sample_M

Float64[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

 =

Float64[1.15472, 1.2157, 1.28262, 1.35512, 1.43286, 1.51547, 1.6026, 1.69388,

final_temperature_controlled (generic function with 1 method)

3.3993935573899714

control_costs (generic function with 1 method)

39.31668762833109

Let's optimize!

setup_opt_model (generic function with 1 method)

function temperatures_controlled(M::Vector{<:Real})::Vector{<:Real}
 model = ClimateModel(model_parameters)

 model.controls.mitigate = M
 T(model; M=true, R=true, G=true)
end

⋅
⋅
⋅
⋅
⋅
⋅

temperatures_controlled(sample_M)⋅

function final_temperature_controlled(M::Vector{<:Real})::Real
 temperatures_controlled(M)[end]
end

⋅
⋅
⋅

final_temperature_controlled(sample_M)⋅

function control_costs(M::Array{<:Real,1})::Real
 model = ClimateModel(model_parameters)

 model.controls.mitigate = M
 costs = cost(model; M=true, discounting=true)

 sum(costs .* model.domain.dt)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

control_costs(sample_M)⋅

using JuMP⋅

import Ipopt⋅

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 3 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

Wrapping functions
We can have "vectors" in JuMP, but really, they are a list of scalar variables, with handy notation. It

is not a vector in the sense of Array .

You cannot call a JuMP-registered Julia function with a JuMP vector, but you can call a function

that takes a long list of arguments. So if we want to register a function that takes an array as

argument, we have to write a wrapper function. This trick is described in the JuMP docs

temperatures_controlled_jump (generic function with 1 method)

final_temperature_controlled_jump (generic function with 1 method)

control_costs_jump (generic function with 1 method)

T_max 2.5 =

setup_opt_model() = Model(optimizer_with_attributes(Ipopt.Optimizer,
 "acceptable_tol" => 1.e-8, "max_iter" => Int64(1e8),
 "acceptable_constr_viol_tol" => 1.e-3, "constr_viol_tol" => 1.e-4,
 "print_frequency_iter" => 50, "print_timing_statistics" => "no",
 "print_level" => 0,
))

⋅
⋅
⋅
⋅
⋅
⋅

temperatures_controlled_jump(M...) = temperatures_controlled(collect(M))⋅

final_temperature_controlled_jump(M...) =
final_temperature_controlled(collect(M))

⋅

control_costs_jump(M...) = control_costs(collect(M))⋅

T_max = 2.5⋅

begin
 model_optimizer = setup_opt_model()

 local m = model_optimizer
 local N = length(time)

 M = @variable(model_optimizer, 0.0 <= M[1:N] <= 1.0)

 # Register our wrapper functions
 ###

 register(m,
 :final_temperature_controlled_jump,
 N,
 final_temperature_controlled_jump,
 autodiff=true
)
 register(m,
 :control_costs_jump,
 N,
 control_costs_jump,

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://jump.dev/JuMP.jl/v0.21.1/nlp/#User-defined-functions-with-vector-inputs-1

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 4 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

Run the optimization
model_optimized =

\text{$$ \begin{alignat*}{1}\min\quad & control_costs_jump(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}, M_{9}, M_{10}, M_{11}, M_{12}, M_{13}, M_{14}, M_{15}, M_{16}, M_{17}, M_{18}, M_{19}, M_{20}, M_{21}, M_{22}, M_{23}, M_{24}, M_{25}, M_{26}, M_{27}, M_{28}, M_{29}, M_{30}, M_{31}, M_{32}, M_{33}, M_{34}, M_{35}, M_{36}, M_{37})\\ \text{Subject to} \quad & M_{1} - M_{2} + dM_{1} = 0.0\\ & M_{2} - M_{3} + dM_{2} = 0.0\\ & M_{3} - M_{4} + dM_{3} = 0.0\\ & M_{4} - M_{5} + dM_{4} = 0.0\\ & M_{5} - M_{6} + dM_{5} = 0.0\\ & M_{6} - M_{7} + dM_{6} = 0.0\\ & M_{7} - M_{8} + dM_{7} = 0.0\\ & M_{8} - M_{9} + dM_{8} = 0.0\\ & M_{9} - M_{10} + dM_{9} = 0.0\\ & M_{10} - M_{11} + dM_{10} = 0.0\\ & M_{11} - M_{12} + dM_{11} = 0.0\\ & M_{12} - M_{13} + dM_{12} = 0.0\\ & M_{13} - M_{14} + dM_{13} = 0.0\\ & M_{14} - M_{15} + dM_{14} = 0.0\\ & M_{15} - M_{16} + dM_{15} = 0.0\\ & M_{16} - M_{17} + dM_{16} = 0.0\\ & M_{17} - M_{18} + dM_{17} = 0.0\\ & M_{18} - M_{19} + dM_{18} = 0.0\\ & M_{19} - M_{20} + dM_{19} = 0.0\\ & M_{20} - M_{21} + dM_{20} = 0.0\\ & M_{21} - M_{22} + dM_{21} = 0.0\\ & M_{22} - M_{23} + dM_{22} = 0.0\\ & M_{23} - M_{24} + dM_{23} = 0.0\\ & M_{24} - M_{25} + dM_{24} = 0.0\\ & M_{25} - M_{26} + dM_{25} = 0.0\\ & M_{26} - M_{27} + dM_{26} = 0.0\\ & M_{27} - M_{28} + dM_{27} = 0.0\\ & M_{28} - M_{29} + dM_{28} = 0.0\\ & M_{29} - M_{30} + dM_{29} = 0.0\\ & M_{30} - M_{31} + dM_{30} = 0.0\\ & M_{31} - M_{32} + dM_{31} = 0.0\\ & M_{32} - M_{33} + dM_{32} = 0.0\\ & M_{33} - M_{34} + dM_{33} = 0.0\\ & M_{34} - M_{35} + dM_{34} = 0.0\\ & M_{35} - M_{36} + dM_{35} = 0.0\\ & M_{36} - M_{37} + dM_{36} = 0.0\\ & M_{1} = 0.0\\ & M_{1} \geq 0.0\\ & M_{2} \geq 0.0\\ & M_{3} \geq 0.0\\ & M_{4} \geq 0.0\\ & M_{5} \geq 0.0\\ & M_{6} \geq 0.0\\ & M_{7} \geq 0.0\\ & M_{8} \geq 0.0\\ & M_{9} \geq 0.0\\ & M_{10} \geq 0.0\\ & M_{11} \geq 0.0\\ & M_{12} \geq 0.0\\ & M_{13} \geq 0.0\\ & M_{14} \geq 0.0\\ & M_{15} \geq 0.0\\ & M_{16} \geq 0.0\\ & M_{17} \geq 0.0\\ & M_{18} \geq 0.0\\ & M_{19} \geq 0.0\\ & M_{20} \geq 0.0\\ & M_{21} \geq 0.0\\ & M_{22} \geq 0.0\\ & M_{23} \geq 0.0\\ & M_{24} \geq 0.0\\ & M_{25} \geq 0.0\\ & M_{26} \geq 0.0\\ & M_{27} \geq 0.0\\ & M_{28} \geq 0.0\\ & M_{29} \geq 0.0\\ & M_{30} \geq 0.0\\ & M_{31} \geq 0.0\\ & M_{32} \geq 0.0\\ & M_{33} \geq 0.0\\ & M_{34} \geq 0.0\\ & M_{35} \geq 0.0\\ & M_{36} \geq 0.0\\ & M_{37} \geq 0.0\\ & dM_{1} \geq -0.1\\ & dM_{2} \geq -0.1\\ & dM_{3} \geq -0.1\\ & dM_{4} \geq -0.1\\ & dM_{5} \geq -0.1\\ & dM_{6} \geq -0.1\\ & dM_{7} \geq -0.1\\ & dM_{8} \geq -0.1\\ & dM_{9} \geq -0.1\\ & dM_{10} \geq -0.1\\ & dM_{11} \geq -0.1\\ & dM_{12} \geq -0.1\\ & dM_{13} \geq -0.1\\ & dM_{14} \geq -0.1\\ & dM_{15} \geq -0.1\\ & dM_{16} \geq -0.1\\ & dM_{17} \geq -0.1\\ & dM_{18} \geq -0.1\\ & dM_{19} \geq -0.1\\ & dM_{20} \geq -0.1\\ & dM_{21} \geq -0.1\\ & dM_{22} \geq -0.1\\ & dM_{23} \geq -0.1\\ & dM_{24} \geq -0.1\\ & dM_{25} \geq -0.1\\ & dM_{26} \geq -0.1\\ & dM_{27} \geq -0.1\\ & dM_{28} \geq -0.1\\ & dM_{29} \geq -0.1\\ & dM_{30} \geq -0.1\\ & dM_{31} \geq -0.1\\ & dM_{32} \geq -0.1\\ & dM_{33} \geq -0.1\\ & dM_{34} \geq -0.1\\ & dM_{35} \geq -0.1\\ & dM_{36} \geq -0.1\\ & M_{1} \leq 1.0\\ & M_{2} \leq 1.0\\ & M_{3} \leq 1.0\\ & M_{4} \leq 1.0\\ & M_{5} \leq 1.0\\ & M_{6} \leq 1.0\\ & M_{7} \leq 1.0\\ & M_{8} \leq 1.0\\ & M_{9} \leq 1.0\\ & M_{10} \leq 1.0\\ & M_{11} \leq 1.0\\ & M_{12} \leq 1.0\\ & M_{13} \leq 1.0\\ & M_{14} \leq 1.0\\ & M_{15} \leq 1.0\\ & M_{16} \leq 1.0\\ & M_{17} \leq 1.0\\ & M_{18} \leq 1.0\\ & M_{19} \leq 1.0\\ & M_{20} \leq 1.0\\ & M_{21} \leq 1.0\\ & M_{22} \leq 1.0\\ & M_{23} \leq 1.0\\ & M_{24} \leq 1.0\\ & M_{25} \leq 1.0\\ & M_{26} \leq 1.0\\ & M_{27} \leq 1.0\\ & M_{28} \leq 1.0\\ & M_{29} \leq 1.0\\ & M_{30} \leq 1.0\\ & M_{31} \leq 1.0\\ & M_{32} \leq 1.0\\ & M_{33} \leq 1.0\\ & M_{34} \leq 1.0\\ & M_{35} \leq 1.0\\ & M_{36} \leq 1.0\\ & M_{37} \leq 1.0\\ & dM_{1} \leq 0.1\\ & dM_{2} \leq 0.1\\ & dM_{3} \leq 0.1\\ & dM_{4} \leq 0.1\\ & dM_{5} \leq 0.1\\ & dM_{6} \leq 0.1\\ & dM_{7} \leq 0.1\\ & dM_{8} \leq 0.1\\ & dM_{9} \leq 0.1\\ & dM_{10} \leq 0.1\\ & dM_{11} \leq 0.1\\ & dM_{12} \leq 0.1\\ & dM_{13} \leq 0.1\\ & dM_{14} \leq 0.1\\ & dM_{15} \leq 0.1\\ & dM_{16} \leq 0.1\\ & dM_{17} \leq 0.1\\ & dM_{18} \leq 0.1\\ & dM_{19} \leq 0.1\\ & dM_{20} \leq 0.1\\ & dM_{21} \leq 0.1\\ & dM_{22} \leq 0.1\\ & dM_{23} \leq 0.1\\ & dM_{24} \leq 0.1\\ & dM_{25} \leq 0.1\\ & dM_{26} \leq 0.1\\ & dM_{27} \leq 0.1\\ & dM_{28} \leq 0.1\\ & dM_{29} \leq 0.1\\ & dM_{30} \leq 0.1\\ & dM_{31} \leq 0.1\\ & dM_{32} \leq 0.1\\ & dM_{33} \leq 0.1\\ & dM_{34} \leq 0.1\\ & dM_{35} \leq 0.1\\ & dM_{36} \leq 0.1\\ & final_temperature_controlled_jump(M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}, M_{9}, M_{10}, M_{11}, M_{12}, M_{13}, M_{14}, M_{15}, M_{16}, M_{17}, M_{18}, M_{19}, M_{20}, M_{21}, M_{22}, M_{23}, M_{24}, M_{25}, M_{26}, M_{27}, M_{28}, M_{29}, M_{30}, M_{31}, M_{32}, M_{33}, M_{34}, M_{35}, M_{36}, M_{37}) - 2.5 \leq 0\\ \end{alignat*} $$}

 autodiff=true
)
 # register(m,
 # :temperatures_controlled_jump,
 # N,
 # temperatures_controlled_jump,
 # autodiff=true
 #)

 # Temperature constraint
 ###

 temp_constraints = @NLconstraint(m,
 final_temperature_controlled_jump(M...) <= T_max)

 # Slope constraint
 ###

 max_difference_M = max_slope_M * step(time)

 dM = @variable(m,
 -max_difference_M <= dM[1:N-1] <= max_difference_M
)
 diff_con = @constraint(m, diff_con[i = 1:N-1],
 dM[i] == (M[i+1] - M[i])
)

 # Initial value constraint
 ###

 init_con = @constraint(m, init_con,
 M[1] == 0.0
)

 # Objective
 ###

 min_objective = @NLobjective(
 m, Min,
 control_costs_jump(M...)
)

 model_optimizer
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 5 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

LOCALLY_SOLVED::TerminationStatusCode = 4

70.82786507385671

M_optimized

Float64[4.93536e-45, 0.1, 0.2, 0.3, 0.376304, 0.412795, 0.452837, 0.496775, 0.544985

 =

Result

model_optimized = let
 optimize!(model_optimizer)
 model_optimizer
end

⋅
⋅
⋅
⋅

termination_status(model_optimized)⋅

objective_value(model_optimized)⋅

M_optimized = let
 model_optimized
 value.(M)
end

⋅
⋅
⋅
⋅

using Plots⋅

using PlutoUI⋅

plot(time, M_optimized,
 title="Optimized Mitigation",
 dpi=300, size=(400,200))

⋅
⋅
⋅

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 6 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

Conclusion
I was able to run some MARGO functions directly inside JuMP:

The total control costs

The final temperature

These are both functions that take the M array as input, and return a scalar. I had to make one

modification to ClimateMARGO.jl: the type of the control vectors changed from

Vector{Float64} to Vector{<:Real} . This is necessary because JuMP uses forward mode

automatic diff: it runs your function with dual numbers instead of floats. See the diff here (don't

merge this yet).

Using these two I was able to: minimize control costs subject to temp[2200] <= T_max (i.e.

overshoot allowed).

I was not able to write the global temperature constraint, without calculating the entire

temperature series once for each variable M. To my knowledge, it is not possible have this

NLconstraint:

f(my_vector...) <= my_scalar

because you can only give scalar equations & constraints to JuMP. If you write a 'vector constraint'

in JuMP, it is really just a pointwise scalar constraint, and this is not the case with our 'black box'

Vector->Vector function.

4 vectors instead of 1
The unwrapping trick can also be used to take the M, R, G, A arrays as inputs:

small_N 2 =

plot(time, temperatures_controlled(M_optimized),
 title="Temperature increase",
 dpi=300, size=(400,200))

⋅
⋅
⋅

https://github.com/ClimateMARGO/ClimateMARGO.jl/compare/forward-diffable

17-12-2020 20:26

🎈

 jump test margo.jl

⚡

 Pluto.jl

⚡

Pagina 7 van 7http://localhost:1234/edit?id=2f628b86-409b-11eb-3946-759e5200beb1

f (generic function with 1 method)

f_wrapped (generic function with 1 method)

Int64[10, 0]

Int64[10, 0]

small_N = 2⋅

f(M, R, G, A) = M .+ R .+ G .+ A⋅

function f_wrapped(MRGA...)
 M = collect(MRGA[1 : 1 * small_N])
 R = collect(MRGA[small_N + 1 : 2 * small_N])
 G = collect(MRGA[2 * small_N + 1 : 3 * small_N])
 A = collect(MRGA[3 * small_N + 1 : end])
 f(M, R, G, A)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

f_wrapped(1, 0, 2, 0, 3, 0, 4, 0)⋅

let
 # in jump it would look a bit like:
 M = [1, 0]
 R = [2, 0]
 G = [3, 0]
 A = [4, 0]
 f_wrapped(M..., R..., G..., A...)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

