
Assignment

Anton Jürß, Tijana Milentijevic, Robin Sadeghpour Faraj

Information Systems Engineering
TU Berlin, Germany

tijana.milentijevic@campus.tu-berlin.de

juerss@campus.tu-berlin.de

sadeghpour@campus.tu-berlin.de

1 Introduction

The microservice demo of Google implements an online boutique. We have no-
ticed it has no review feature. Therefore, we decided to implement it with our
microservice. Our project and the associated repositories are available at:
https://github.com/Continious-Software-Engineering.

2 Development Approach

This project was developed in an agile manner. More specifically we used the
Kanban approach because of the short production time and small team size. We
set up a Github organization and a Github Project Kanban board with four
columns: To do, In progress, In Review and Done. Regarding the git workflow,
we decided to use a feature branch workflow with required pull requests for
merging to main.
The Kanban method does not require any roles, so all of us were developers.
Every group member contributed equally. Anton Jürß was mainly responsible
for integrating the service in the existing frontend. Anton extended the Web-
Interface. Also, he extended the frontend server handlers and gRPC methods
to provide the needed functionality to make requests to the review service. Ti-
jana Milentijevic was in control of implementing the service functionality itself.
Tijana connected the service to the database and provided the basic CRUD
functionalities. Furthermore, Tijana integrated the functionality of the gRPC
methods. Robin Sadeghpour was responsible for DevOps topics and the gen-
eral engineering and infrastructure. Robin led design decisions, implemented the
CI/CD pipelines, set up the Version Control System and also set up the Kuber-
netes Cluster and migrated the service to it. Everyone contributed to each part
of the development, since most of these tasks were done in Pair-Programming,
where one person is the ”Driver” and the other person is the ”Leader”. The API
Interface was designed as group. Further, everybody had to review pull requests.
The requirements were specified in a meeting at the beginning of the develop-
ment process and afterwards manifested in the form of Github Issues, which were
then displayed as cards on the Github Project Kanban board. During the devel-
opment process, some of the requirements were proven to be not well suited for

https://github.com/Continious-Software-Engineering


2 Milentijevic, Jürß, Sadeghpour Faraj

this project. Because of that, we thoroughly discussed alternatives in meetings
and updated the requirements (Github Issues).

3 Technology Decisions

For this assignment, we decided to use Java as our programming language, since
we are the most familiar with it compared to other programming languages. To
manage the dependencies of our project and automate the builds, we applied
the maven build automation tool. We used Spring Boot as Java framework for
microservices. Spring Boot is open-source, lightweight and quick to set up. Spring
Boot included Spring IoC Containers, allowing an easy implementation of the
Inversion of Control (IoC) and Dependency Injection (DI) Principle. To integrate
gRPC in our Spring Boot application, we applied gRPC-Spring-Boot-Starter
Project which allows an easy integration of gRPC into Spring Boot by adding
one dependency and one annotation. For testing concerns we used the JUnit
Framework along with the Mockito Framework. Mockito simplifies the mocking
of interfaces. Hence, it simplifies the use of test doubles. Also, we integrated
Project Lombok in our service. This provides several annotations which can
minimize the number of lines of code and also simplify the integration of different
tools (e.g. Logger). In our case, we made use of the LOG4J Logger Library.
Furthermore, user reviews had to be stored in a database. To do so, we used
MongoDB Atlas which is a NoSQL database. It is free of charge, lightweight and
easy to set up and to connect it to our Spring Boot application.

4 Quality Approach

We followed the IoC and DI Design Principles in our service. These design prin-
ciples achieve loose coupling of classes. This results in enhanced maintainability,
reusability, cohesion and testability of the code. This also complements well with
Solitary Unit testing which is our approach for reliability. We implemented unit
tests using JUnit. The loose coupling of classes which results from those prin-
ciples allows us to easily mock interfaces in our unit tests and use test doubles
with Mockito. By using a Continuous Integration Pipeline and requiring that
all tests pass in combination with the approval of another developer for our pull
requests, we ensured reliability and code quality of the service. Once the Con-
tinuous Integration Pipeline is successful and the commit is merged to main, we
run one Pipeline for Continuous Deployment, which builds the Docker Image
and pushes it to our Docker repository on the Google Cloud Platform. Then it
deploys the Docker Image to the Kubernetes Cluster, which is running on the
Google Kubernetes Engine. We also have another Docker Deployment Pipeline,
that runs parallel to the other pipeline. It builds and pushes the Docker Image
to a public Dockerhub Repository. This approach enhances the reliability aspect.
To approach the observability aspect, we implemented Logging in our microser-
vice. We catch and log errors that occur in our service to the console. Further,
we log the gRPC service calls made to our service as information to the console.



Assignment 3

Fig. 1. The Github Project Kanban Board at the begin of the development

Fig. 2. The Github Project Kanban Board at the peak of the development

Fig. 3. The Github Project Kanban Board at the end of the development



4 Milentijevic, Jürß, Sadeghpour Faraj

Fig. 4. The Review Feature in the online boutique frontend

Fig. 5. Database records



Assignment 5

Fig. 6. Continuous Integration

Fig. 7. Continuous Deployment


	Assignment

