

Nuke Survival Toolkit Documentation

Release v1.0.0

Tony Lyons | 2020

About

The Nuke Survival Toolkit is a portable tool menu for the Foundry's Nuke with a hand-picked selection of nuke gizmos collected from all over the web, organized into 1 easy-to-install toolbar.

Installation

Here's how to install and use the Nuke Survival Toolkit:

1.) Download the .zip folder from the Nuke Survival Toolkit github website.

https://github.com/CreativeLyons/NukeSurvivalToolkit_publicRelease

This github will have all of the up to date changes, bug fixes, tweaks, additions, etc. So feel free to watch or star the github, and check back regularly if you'd like to stay up to date.

2.) Copy or move the NukeSurvivalToolkit Folder either in your User/.nuke/ folder for personal use, or for use in a pipeline or to share with multiple artists, place the folder in any shared and accessible network folder.

3.) Open your init.py file in your /.nuke/ folder into any text editor (or create a new init.py in your User/.nuke/ directory if one doesn't already exist)

4.) Copy the following code into your init.py file:

nuke.pluginAddPath("Your/NukeSurvivalToolkit/FolderPath/Here")

5.) Copy the file path location of where you placed your NukeSurvivalToolkit. Replace the Your/NukeSurvivalToolkit/FolderPath/Here text with your NukeSurvivalToolkit filepath location, making sure to keep quotation marks around the filepath.

6.) Save your init.py file, and restart your Nuke session

7.) That's it! Congrats, you will now see a little red multi-tool in your nuke toolbar.

Technical Details

There are a few things about this menu that try and make it both easy and safe to use.

1.) In the main folder there is an init.py file that is used to recursively add any folder downstream of the main folder to the nuke plugin path list. This is very useful for folder organization or for quickly adding a "pre-built" toolkit/menu by another artist.

You can ignore any folder by adding an "_" underscore in front of the folder name and the init.py will skip over it while loading. This can be useful for quickly debugging if an error is coming from a specific folder. There is also a "whitelist" and a "blacklist" in the init.py and you may add any folder to that list for it to skip or load.

2.) The menu.py in the main folder is primarily building almost the entire toolkit menu. You will find it organized into sections: Draw, Time, Color, Filter, etc. The tools will show up in the order that you designate them in this menu.

Because the init.py is loading downstream folders, any menu.py files located in another folder, will be loaded along with the main menu.py. This is happening with "Expression Nodes", "Hagbarth Tools" and "Xavier Martin's X_Tools" toolset menus. It was sometimes easier to group these tools together by artist and add them to Draw/Expression AG, Draw/Hagbarth Tools, or Filter/X_Tools XM. These submenus are being added by the menu.py files in their artist's respective folder.

3.) Nuke does not like to load multiple gizmo files with the same name. Because the Nuke Survival Toolkit may be added into company pipelines that already have many gizmo's being loaded in, I have given all .gizmo files their own prefix "NST_". This means all files should have a unique name to any file that would be already installed. For example, if there was an iBlur.gizmo installed, the one in Nuke Survival Toolkit is named NST_iBlur.gizmo, so there should be no conflicts. In the main menu.py at the top, there is a variable that you can replace if you choose to find/replace the "NST_" prefix to a custom one for all the gizmos. You could do this with a renaming software or via the terminal for all gizmos with the "NST_" prefix. If you change "NST_" to "WOW_" for example, just enter "WOW_" in this variable. This might help if two different Nuke Survival Toolkits are being loaded at once, to keep them unique.

- 4.) All gizmo's are stored as .gizmo files on the folder system, but are all actually loaded into nuke as Groups, with no link back to the gizmo filepath. This is a strange bug / feature / work around that sort of tricks nuke into thinking you have loaded a gizmo, but actually have loaded a group. There are a few advantages to this method:
 - a.) Nuke will automatically open the properties panel of the tool, unlike if you nuke.nodePaste() a .nk file
 - b.) Nuke actually stores the defaults of the gizmo in memory, during that specific nuke session. This means you will be able to ctrl + click on knobs and reset them to their intended default settings. This unfortunately goes away once you close and re-open the script, as nuke will just consider the nodes a normal group and will not know what the defaults are.
 - c.) Groups are generally easier to debug and enter inside to see what is going on.
 - d.) This will help with render farms or other users opening scripts that would normally be sourcing the gizmos from wherever you have placed the Nuke Survival Toolkit. Sometimes render farms or other users cannot access your local directories, which might cause errors when other artists or render farms are trying to open the script, since they may not be loading the NukeSurvivalToolkit. Making sure the tools are Groups will mean the tools exist in your nuke script and will never be unlinked/unsourced when someone else is opening the nuke script.

If you prefer to use gizmos instead of groups, you simply have to open the gizmo in a text editor and change where it says "Group" at the top of each .gizmo file, and replace it with "Gizmo". It is case sensitive, so make sure you capitalize Gizmo or Group.

- 5.) Removed all x and y node graph positions from the gizmos, (xpos and ypos). If you leave these in; when you have a node selected and create a gizmo, instead of spawning under the node, it can fly to the part of the node graph where the x and y positions were stored at.
- 6.) Removed all Nuke Version lines from the gizmos to avoid annoying errors about different versions. Most of these tools were tested using Nuke 11.3v4, but that does not mean they require that version. Some gizmos were created for different versions, so please use the links provided to see what versions the tools are compatible with if something is not working.

- 7.) Tried consolidating the types of channels the gizmos might be bringing into your scripts by making sure they are using the same types of channel names. For example, all Position World pass channels will come in as P.red, P.green, P.blue, P.alpha, and all Normals World pass channels will come in as N.red, N.green, N.blue, N.alpha. There are a few exceptions where some tools are using unique channel names, but for the most part they are always using .red, .green, .blue, .alpha, .u, or .v at the end of the channels. Most channel/layer names are kept as the original tool had them. For example apChroma, hag_pos, despill, etc.
- 8.) Added an Author Tag to the end of all Gizmos in the menu. NKPD just stands for Nukepedia, where I did not make a custom tag if there weren't many tools from this author. These might help in 2 ways:

1.) To filter for certain tools if you want to search by all of Adrian Pueyo's AP tools or Mark Joey Tang's MJT tools using nuke's tab search. Will also help you identify who made what, and make it easier to find in the Tool Documentation

2.) To help identify that this gizmo is from the Nuke Survival Toolkit, in case there are duplicate tools in the pipeline loaded with the same name.

Menus

The tool menu's categorization is laid out in a bit of a mix between Nuke's original toolbar organization, and Nukepedia's gizmo categories. This should be helpful and intuitive when browsing for certain types of tools, or to quickly find the tool you are looking for if you forget the name. Some of these menus have sub-menus such as Filter/Glows/ for further groupings to reduce the overall list size of each menu.

Nuke Survival Toolkit Menu Bar:

Nukepedia's gizmo Categories

Share useful gi	zmos with the Nuke communit
Deep	0/15)
💮 Ima	ge (0/74)
🛞 Part	icles (0/8)
Drav	N (0/84)
⊘ Tim	e (0/18)
Char	nnel (0/45)
💍 Colo	(u)r (0/63)
Filte	(0/161)
📉 Key	er (0/67)
A Mer	ge (0/22)
⇔ Trar	15form (0/86)
📦 3D	(0/81)
Ster	eo (0/16)
Met	aData (0/2)
1 04	

Tool Index

About	2
Installation	2
Technical Details	3
Menus	6
Tool Index	7
1. Image LabelFromRead TL	15 15
2. Draw	16
Expression Nodes AG Menu	16
Hagbarth Tools MHD Menu	17
Silk MHD	17
Gradient Editor MHD	18
STICKIT MHD	19
WaveletBlur MHD	20
GradMagic TL	21
NoiseAdvanced TL	22
RadialAdvanced TL	23
WaterLens MJT	24
VoronoiGradient NKPD	25
CellNoise NKPD	27
LineTool NKPD	28
PlotScanline NKPD	29
SliceTool FR	30
DasGrain FH	31
LumaGrain NKPD	32
GrainAdvanced SPIN	33
PerspectiveGuide NKPD	34
SpotFlare MHD	35
AutoFlare NKPD	36
FlareSuperStar NKPD	37
3. Time	38
apLoop AP	38

Looper NKPD	39
FrameMedian MHD	40
TimeMachine NKPD	41
4. Channel	42
BinaryAlpha TL	42
ChannelCombiner TL	43
ChannelControl TL	44
ChannelCreator TL	45
InjectMatteChannel TL	46
StreamCart MJT	47
RenameChannels AG	49
5. Color	50
BlacksMatch TL	50
ColorCopy TL	51
Contrast TL	52
GradeLayerPass TL	53
HighlightSuppress TL	54
ShadowMult TL	55
WhiteBalance TL	56
WhiteSoftClip TL	57
apColorSampler AP	58
apVignette AP	59
GammaPlus MJT	60
Suppress_RGBCMY SPIN	61
HSL_Tool NKPD	62
BiasedSaturation NKPD	63
6.) Filter	64
X Tools XM	64
X Aton Volumetrics XM	64
X_Denoise XM	65
X_Sharpen XM	66
X_Soften XM	66
X_Distort XM	67
X_Tesla XM	68
Glows Menu	69
apGlow AP	69
ExponGlow TL	70
Glow_Exponential SPIN	71

Optical Glow BM	72
Blurs Menu	73
ExponBlurSimple TL	73
Directional Blur TL	74
IBlur NKPD	75
Edges Menu	76
apEdgePush AP	76
EdgeDetectAlias TL	77
AntiAliasFilter AG	78
ErodeSmooth TL	79
Edge_RimLight AG	80
EdgeDetectPRO AG	81
Erode Fine SPIN	82
Edge_Expand SPIN	83
ColourSmear NKPD	84
KillOutline NKPD	85
EdgeFromAlpha FR	86
VectorExtendEdge NKPD	87
FractalBlur NKPD	88
Distortions Menu	89
Glass FR	89
HeatWave NKPD	90
BeautifulSkin TL	91
BlacksExpon TL	92
Halation TL	93
Highpass TL	94
LightWrapPro TL	95
iConvolve AP	96
ConvolutionMatrix AG	97
apChroma Tools AP	98
apChroma AP	99
apChromaTransform AP	100
apChromaBlur AP	101
apChromaUnpremult AP	102
apChromaPremult AP	102
apChromaMerge AP	103
Chromatik SPIN	104
CatsEyeDefocus NKPD	105
DefocusSwirlyBokeh NKPD	106

deHaze NKPD	107
DeflickerVelocity NKPD	108
FillSampler NKPD	111
MECfiller NKPD	112
7.) Keyer	113
apDespill AP	114
SpillCorrect SPIN	115
DespillToColor NKPD	116
AdditiveKeyerPro TL	117
apeScreenClean AP	118
apScreenGrow AP	119
LumaKeyer DR	120
8.) Merge	121
ContactSheetAuto TL	121
KeymixBBox TL	122
MergeAtmos TL	122
MergeBlend TL	124
MergeAll AP	125
9.) Transform	125
Math Tools MGA-EL	126
InvertAxis MT	127
ZeroAxis MT	127
InvertMatrix4 MT	127
ProductMatrix4 MT	127
RotateMatrix4 MT	127
ScaleMatrix4 MT	128
TransformMatrix4 MT	128
TranslateMatrix4 MT	128
TransposeMatrix4 MT	128
CrossProductVector2 MT	129
DotProductVector2 MT	129
MagnitudeVector2 MT	129
NormalizeVector2 MT	129
RotateVector2 MT	129
TransformVector2 MT	130
CrossProductVector3 MT	130
DotProductVector3 MT	130
MagnitudeVector3 MT	130

MultiplyVector3Matrix3 MT	131
NormalizeVector3 MT	131
RotateVector3 MT	131
TransformVector3 MT	131
GenerateMatrix4 MT	131
GenerateSTMap MT	132
LumaToVector3 MT	132
STMapToVector2 MT	132
Vector2ToSTMap MT	133
Vector3ToMatrix4 MT	133
vector3DMathExpression EL	134
Vectors_Direction EL	134
Vectors_to_Degrees EL	134
VectorTracker NKPD	135
AutoCropTool TL	136
BBoxToFormat TL	137
ImagePlane3D	138
Matrix4x4_Inverse TL	141
Matrix4x4_Math TL	142
MirrorBorder TL	143
TransformCutOut TL	144
IMorph TL	145
RP_Reformat MJT	146
InverseMatrix MJT	148
CardToTrack AK	149
CProject AK	149
TProject AK	150
TransformMatrix AG	152
CornerPin2D_Matrix AG	153
IIDistort EL	153
CameraShake BM	155
MorphDissolve SPIN	156
ITransform FR	156
RotoCentroid NKPD	158
STMapInverse NKPD	159
Transform_Mix NKPD	160
PlanarProjection NKPD	161
) 3D	161

10.) 3D

aPCard AP	161
DummyCam AP	162
mScatterGeo MJT	164
Origami MJT	164
RayDeepAO MJT	170
SceneDepthCalculator MJT	172
SSMesh MJT	174
Unify3DCoordinate MJT	175
UVEditor MJT	175
Distance3D NKPD	181
DistanceBetween_CS NKPD	182
Lightning3D EL	183
GeoToPoints MHD	184
Noise3DTexture NKPD	185
11.) Particles	186
WaterSchmutz DR	186
Sparky NKPD	186
ParticleLights MHD	189
ParticleKiller NKPD	190
10 \ Doop	190
12.) Deep	100
Deep2VP Suite MJT	191
Deep2VP Suite MJT Deep2VPosition MJT	191 192
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT	191 192 194
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT	191 192 194 194
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT	191 192 194 194 195
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPattern MJT	191 192 194 194 195 199
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT	191 192 194 194 195 199 199
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT	191 192 194 194 195 199 199 203
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT	191 192 194 194 195 199 199 203 204
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPmattern MJT DVProjection MJT DVProjection MJT DVPsetLight MJT DVPrelight MJT	190 191 192 194 194 195 199 199 203 204 204
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT	191 192 194 194 195 199 199 203 204 206 207
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT DVPscene MJT	190 191 192 194 194 195 199 199 203 204 204 206 207 210
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPmatte MJT DVPmattern MJT DVProjection MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT DeepToPosition TL DeepRecolorMatte TL	190 191 192 194 194 195 199 199 203 204 204 206 207 210 211
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT DeepToPosition TL DeepRecolorMatte TL DeepCropSoft NKPD	190 191 192 194 194 195 199 199 203 204 206 207 210 211 212
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT DeepToPosition TL DeepRecolorMatte TL DeepCropSoft NKPD DeepKeyMix NKPD	191 192 194 194 195 199 199 203 204 206 207 210 211 212 214
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVProjection MJT DVPsetLight MJT DVPfresnel MJT DVPrelight MJT DVPscene MJT DeepToPosition TL DeepRecolorMatte TL DeepCropSoft NKPD DeepKeyMix NKPD DeepHoldoutSmoother NKPD	190 191 192 194 194 195 199 199 203 204 206 207 210 211 212 214 215
Deep2VP Suite MJT Deep2VPosition MJT DVPToImage MJT DVPort MJT DVPort MJT DVPmatte MJT DVPattern MJT DVProjection MJT DVProjection MJT DVPsetLight MJT DVPsetelight MJT DVPrelight MJT DVPscene MJT DeepToPosition TL DeepToPosition TL DeepCropSoft NKPD DeepKeyMix NKPD DeepHoldoutSmoother NKPD DeepCopyBBox NKPD	191 192 194 194 195 199 199 203 204 206 207 210 211 212 214 215 216

DeepFromPosition MJT	220
DeepSampleCount MJT	221
DeepSer MJT	221
13.) CG	225
UV_Mapper TL	225
PNZ Suite MJT	228
ConvertPNZ MJT	229
P2N MJT	229
P2Z MJT	230
Z2N MJT	231
Z2P MJT	232
Pos Toolkit MJT	234
PosMatte MJT	235
PosPattern MJT	235
PosProjection MJT	237
Noise3D SPIN	237
Noise4D MHD	238
Relight_Simple SPIN	240
Reproject3D SPIN	241
C44Kernal AP	242
apDirLight AP	243
apFresnel AP	243
CameraNormals NKPD	245
NormalsRotate NKPD	246
EnvReflect_BB NKPD	247
Relight_BB NKPD	247
N_Reflection KNPD	249
aPmatte AP	250
P_Project NKPD	251
P_Ramp NKPD	251
P_NoiseAdvanced NKPD	253
14.) Curves	253
WaveMachine FL	254
WaveMaker FL	255
WaveCustom FL	255
WaveGrade FL	256
WaveRetime FL	256
WaveMerge FL	258

Randomizer TL	259
AnimationCurve AG	259
CurveRemapper BM	269
NoiseGen BM	269
15.) Utilities	270
GUI_Switch TL	271
NAN_INF_Killer TL	271
apViewerBlocker AP	273
Python_and_TCL AG	274
RotoQC NKPD	276
ViewerRender MJT	277
NukeZ MJT	277
Pyclopedia MJT	279
16.) Templates	281
Advanced Keying Template TL	281
Advanced Keying Template Stamps TL	282
STMap Keyer Setup EL	283
Gizmo Demo Scripts	284
WaterLens Demo MJT	284
SSMesh Demo MJT	284
UV Editor Demo MJT	284
Sparky Demo NKPD	284
Particle Lights Demo MHD	284
Special Thanks	285
Contact	286

1. Image

LabelFromRead TL

Author: Tony Lyons Nukepedia Link: <u>http://www.nukepedia.com/gizmos/image/labelfromread</u>

Displays Filepath of topmost read node over the image. Useful when viewing sequence contact sheets / matching shots.

2. Draw

Expression Nodes AG Menu

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

Full tool details: <u>http://www.andreageremia.it/tutorial expression node.html</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/expression-node-collection-for-nuke</u> Quick preview of some of the tools: <u>https://vimeo.com/364508565</u>

Various premade expressions. Separated into 6 categories. Please go to the first link above for full details on Andrea Geremia's main website.

- **1. CREATIONS**
- 2. ALPHA
- 3. PIXEL
- 4. KEYING and DESPILL
- 5. TRANSFORM
- 6. 3D and DEEP

Hagbarth Tools MHD Menu

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

A collection of some of Mads Hagbarth Damsbo's best tools

<u>Silk MHD</u>

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Main description website: <u>https://hagbarth.net/project/silk/</u> Nukepedia download: <u>https://www.nukepedia.com/gizmos/filter/silk</u>

Silk is a creative 2d processing effect that takes your footage and turns it into laser spaghetti.

Video demo: <u>https://vimeo.com/195532256</u> Demo: <u>https://vimeo.com/156336299</u> Introduction Video: <u>https://vimeo.com/195883171</u>

Gradient Editor MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

🔻 o 🗰 😫 G	radientEditor			S ? 8 ×
Gradient Respo	onse Curve Node			
	GradientEdito	F v0.9 - 2016		
INPUT MAPPING				
Туре	Generator • Sample Av	erage • From	rgba	* = Reverse
GRADIENT				
Gradient Preset	s • Interpolation Smooth	1 🔻		
		C		
Interval		Bounce * 1		N Bounce *
	Preserve Luma			
PHASING				
Phase	0			
Frequency	1			
PREMULT	-BCB (-2.20) -			
colorspace	SKGB (~2.20)			-
Unpremult by	rgpa.alpha			Premult

Nukepedia link: <u>http://www.nukepedia.com/gizmos/draw/gradient-editor</u> Preview: <u>https://vimeo.com/223874378</u>

This is a simple little visual gradient editor for Nuke

STICKIT MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

🔻 💿 👾 🐈 S	itickIt5			S ? ð >
Main - StickIt	Keyframe As:	sist Advanced	i Node	
		GBARTH	v2.0	
INPUT				
Reference Frame	126	This Frame		
Range From	53	To 150	Set To Global	
OPTIONS				
Output	Source & Ov	verlay 🔹		
Filter Method	Cubic -			
	Enable Mo	tion Blur		
DISPLAY	Preview F X Show Feat X Disable W	eatures tures arp		
ANALYZE				
	Analyse	-> Solve		
	Clear Tracks	3		
Help				

Detailed blog post: <u>https://hagbarth.net/stickit-digital-makeup-gizmo-for-nuke/</u> Nukepedia link: <u>http://www.nukepedia.com/toolsets/transform/stickit-alpha</u> Video preview: <u>https://vimeo.com/94563838</u>

StickIt V2 is a 2D Warp Match-Moving tool, for matchmoving on (from a 2D perspective) non-ridgid surfaces.

WaveletBlur MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/filter/wavelet-blur</u> Video preview: <u>https://vimeo.com/212641249</u>

This tool allows you to pick a specific range of frequencies to blur in an image. Helpful for doing beauty and other work where preserving original image detail is important. Using a BlinkScript powered bilateral filter, this tool also allows you to preserve edges of your footage, while still having good render times.

GradMagic TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Nukepedia link: http://www.nukepedia.com/gizmos/draw/gradmagic

A live sampling 4 point gradient tool with ability to bake colors.

Demo video: https://youtu.be/oge8jMR0LRw Or here on vimeo: https://vimeo.com/341514150

NoiseAdvanced TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

http://www.nukepedia.com/gizmos/draw/noiseadvanced

Noise with user friendly animation sliders and overscan.

Demo: https://youtu.be/EsHDBGonwEs

RadialAdvanced TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

A radial tool that creates a circle and ramped falloff to create a "ring" effect. Easy animation settings. Useful for shockwaves or other lookDev tasks.

WaterLens MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia Link: http://www.nukepedia.com/gizmos/draw/waterlens 11

Create water droplet on lens.

VoronoiGradient NKPD

Author: Nikolai Wüstemann - www.wuestemann.net

Nukepedia Link: http://www.nukepedia.com/gizmos/colour/voronoi-gradient/

Nuke implementation for 2D Gradients. Create an arbitrary number of color-samples in 2D and produce a smooth, natural interpolation over the entire image.

The Gizmo uses Natural Neigbor Interpolation to calculate the pixels inbetween samples, using Blinkscripts.

You can also output the underlying Voronoi Diagram or play with the smoothness value to control the amount of the softening (0 = Voronoi Diagram, 1 = Accurate Natural Neighbor Interpolation).

Another important function is the ability to sample input colors, instead of defining them yourself. Setting the Type to 'Sample' uses all created points to sample the input colors at given positions. Furthermore you can use the 'Fill' Type to interpolate missing information in any image. A premultiplied input is required for this.

Changing the Colorspace will change the color falloff. This can be used to achieve the best artistic result. Setting the Colorspace to HSV for example, will interpolate the colors over the spectrum.

There are several tricks and hacks used in this Gizmo to make it work, so please report any bugs you find, I am sure there still are some.

The user knobs and the inside of the gizmo are well documented to help with understanding the concept.

(The algorithm implemented is not the elegant geometric process, but a simple brute-force method, which was easy to implement. This however makes the tool super slow and you might wanna use the speed optimization control to make it a little bit faster at the cost of some quality. That's why I would still consider the whole thing a proof of concept. Although, with my update to v2.7 I'd say we are production ready now :))

CellNoise NKPD

Author: Matthew Shaw

Nukepedia: http://www.nukepedia.com/blink/image/cell-noise

6 cellular noise types :

Worley, Voronoi, Manhattan, Chebyshev, Euclidian, and Worley Inverse.

Uses the same transformation controls as standard nuke noise.

LineTool NKPD

Author: Fredrik Brännbacka

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/draw/mcp-line</u>

Line drawing gizmo. Use it to draw lines on an input or use it as an input draw node. Subsample or don't if you are drawing vertical or horizontal lines.

PlotScanline NKPD

Author: Theodore Groembroome

www.eugahuba.com | theo@eugahuba.com | 2010

Website Download: https://euqahuba.com/blog/?p=121

Slice and plot scanlines in Nuke!

Set up point 1 and point 2 and calculate alone whole line from edge of frame to edge of frame or calculate only the area between the 2 points.

SliceTool FR

Author: Frank Rueter - <u>www.ohufx.com</u>

analyze an arbitrary slice of an image. Place start and end position on the incoming image to plot a scan line to represent an arbitrary slice.

Thanks to Ben Pierre for a little magic under the hood.

DasGrain FH

Author: Fabian Holtz

Nukepedia Link: http://www.nukepedia.com/gizmos/other/dasgrain

Semiautomatic regraining tool.

DasGrain takes the pain out of the re-graining process by automatically adapting the plate grain to your comp.

For areas where the original grain doesn't work, you can generate a new grain that is based on the original grain.

Having a good degrain is crucial for this tool!

Amazing Video demo here: <u>https://vimeo.com/284820390</u>

LumaGrain NKPD

Author: Luma Pictures

▼ (0) ¥ ¥	LumaGrain						2 2	5	-	r s	?	₽×
L_Grain Node	3											
Size												
rSize	1.16			e.s		ţ.				2.5		N
gSize	1.48			4.5			1.5 ····			2.5		2
bSize	1.88			e.a			1.5			7.5		
Blacks												
rBlack	0.11		8	0.2		8.4		9.6			2.9	2
gBlack	0.125	a :				3,4		0.0		0.0	4.9	N
bBlack	0.19	0		1.0		8.4		8.6		8.8	0.8	1
Minimum												
Mids												
rMid	0.575			0.3		5.4	2.5	8.6		.8.8	8.8	
gMid	0.63			0.2		8.A. (0.0		0.0	0.9	
bMid	0.915				8.3	0,4	9.8	-	4.7	1.0	-U	12
Highs												
Irregularity												
rIrregularity	0.73					0.4		10.0		8.8	5.9	
gIrregularity	0.73			6,8		8,4	es.	6.6			4.9	N
bIrregularity	0.73					11.4		12.6	3.7	11.0		
Softness												
Other												1000
GrainSaturation	1	0		10.2		0.4	0.5	0.0		1000	(\$ 9)	
GrainLuminance	1					8.4		8.6		8.8		
OverallMix	1	a				0.4		10.0.1		(0.9)	6.8	10/
	Mask	Inve	rt									
MaskGrade												
	Luma Dictu	rac										
	coma Picto	nua										

Nukepedia link: http://www.nukepedia.com/gizmos/draw/l grain

Added functionality to Nuke's default grain node.

GrainAdvanced SPIN

Author: Spin FX

	GrainAdvance	:d								r s	?	đ×
Grain Node												
seed Size	134											
red	0.4							46		70 60	2	N
green	0.6							40		70 60	1000 2	2
blue	1.6		J					40 3	16 60	70 100	2	N
irregularity	0.6				0.3	8.4		1	0.7	6.8	0.9	-2
Intensity Bright												
red	0.15		9.1			1		0.6		0.8	0.5	-~
green	0.15		- D-	1	0.3	0.4		0.6	0.7	0,8	0.9	
blue	0.2			0	6,3	0.4	0.5	0.6	0.7	0.8	0.8	-2
Intensity Darks												
red	0.025			0.04	0.04	1 1		0.12	0.54	0.38	0.18	3
green	0.01	-1-		0.04	0.06	0.08		0.12	0.84	0.18	0.18 0	
blue	0.03		0.02	0.04	0.06	0.06			0.34	0.18	0.18	-~
Softness												
red	1.3		1 1 9.2	9.4	2.6	1			1.1	1.6	3.8	-~
green	1.1	0	0.2	0.4	0.0	0.8	0	3.2	3.4	1.6	1	-~
blue	1.3			0.4	0.9	0.8		12	3.4	1.0	1.4	~~
Global Controls												
Grain Saturation	0.85		0.1	4.2	0.3	8.4	0.5	5.6	8.7	0.8	0.9	-2
Aspect Ratio	1		0.7			1 1.8	1.5		1.93	V C	ubic	
	Apply only through alpha Invert alpha Invert mask										¢	
mix	1			63	6.3	8.4		9.6		9.8	4.8	12
SPINITS: - Version 1.1 - 2	2017 - <u>Cithub Page</u>											

Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Github link: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u>

Adds synthetic grain. The defaults are setup to resemble an HD Alexa plate's grain. You can adjust the sliders to match a sample grain.

PerspectiveGuide NKPD

Author: Peter Farkas - Baseblack (London) Ltd.

Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/perspective-guide-110</u>

Simple perspective guide.

SpotFlare MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Website: <u>https://hagbarth.net/project/spotflare/</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/draw/spot-flare</u>

Spotflare is a procedural flare generator, that generates a general radial light but also allow for light shimmer and "cone" masking.

At the core of spotflare is a radial light, that is generated from the inverse square of the distance to the center. Unlike a liniear falloff, a inverse square falloff gives a very realistic light look.

If you look at the diffrence between a gaussian and a gamma adjusted inverse square profile you can clearly see the effect.

Demo: https://vimeo.com/116440577

AutoFlare NKPD

Author: Vincent Wauters

Website: www.vincentwauters.com

Detailed description on AutoFlare: http://vincentwauters.com/programming/autoflare20-for-nuke
FlareSuperStar NKPD

Author: Lukas Fabian

Nukepedia link: http://www.nukepedia.com/gizmos/draw/flaresuperstar

Main features

- easily create star flares with saperate controls over rays, glare and glow

- automatic animation on the glare either by shimmer (over time) and/or by changing the position of the flare

- rays are very customizable and have controls for adjusting thickness and angle + spread (or shrink) from a specific distance

- position the flare either manual or let it spawn automatically from the highlights of an input image with convolve mode

3. Time

apLoop AP

Author: Adrian Pueyo - <u>http://www.adrianpueyo.com/</u>

Quick tool to simulate a loop effect while affecting the gain, blur and transformations on each "iteration".

Feel free to play with it and see its applications. Some of them: create an exponential (or normal) glow in seconds, an expo blur, a grid or mosaic (adding this gizmo twice), godrays, directional blurs, etc.

Looper NKPD

Author: Damian Binder

Original:

Morph:

Nukepedia Link: http://www.nukepedia.com/gizmos/time/looper

Looper is a tool that allows you to create seamless loops of playing clips.

Looping is not only a useful way to lengthen clips that are too short to be used in a comp but it is also a great way to save rendering times since only a specific frame range needs to be rendered.

Looper has two looping methods: Dissolve and Morph

Dissolve: Uses a simple Dissolve node to dissolve the input clip between an offset version of the same clip. The offset amount is determined by the number of frames looped. Works great when looping clips with constant/similar movement like rain or snow stock footage.

Morph: Similar to the Dissolve method but instead uses a Kronos node to calculate motion vectors to then generate a morphed loop. Best used with clips containing complex but well defined movement.

Other Features:

- FgMatte input: An optional matte of the foreground can be used which may improve Kronos's motion estimation. (Highly recommended)

- Vector generator settings like Vector Detail and Strength are accessible.

- Avoid Clip End knob: Negatively offsets the input clip to avoid looping unexisting frames before first frame.

- A dynamic text visually indicates the total number of frames being looped.

FrameMedian MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Nukepedia link: <u>http://www.nukepedia.com/blink/time/framemedian</u> Website: <u>https://hagbarth.net/1054/</u>

FrameMedian is a temporal median toolset that calculates a median from a range of frames. Unlike the TemporalMedian tool that samples 3 frames, the FrameMedian can sample up to 20 frames.

What is it for?

The tool is generally used for creating cleanplates from super very busy shots.

TimeMachine NKPD

Author: Ivan Busquets

Nukepedia link: http://www.nukepedia.com/gizmos/time/timemachine

Does a per-pixel time offset on the image, based on a secondary mask input.

This is sort of a copy of Houdini's Time Machine. Takes an image sequence plus a mask, then offsets the image in time based on the input mask as follows:

- Pixels with a mask value of 1 will be offset by the number of frames set in the "frames" knob.
- Mask values of 0 return the image at the current frame.
- Values between 0-1 will return an interpolated offset.
- Mask gets clamped to 0-1, so values <0 and >1 are not accounted for.

Very simple as it stands, but could be a good example of rebuilding a gizmo's internals using callbacks.

4. Channel

BinaryAlpha TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Nukepedia Link: http://www.nukepedia.com/gizmos/channel/binaryalpha

Analyzes a choice of the RGB, RGBA, or Alpha input and outputs an Alpha Channel (or RGBA) that is Binary, 0 or 1. Any Pixels that are not 0 will be turned into 1 (negative numbers also), and 0 will remain 0. This is perfect for those blur + unpremult tricks or if you need a quick matte for finding any rgb color above or below 0, in a CG render passes for example.

Tcl expression: r!=0 || g!=0 || b!=0 || a! = 0 ? 1 : 0

ChannelCombiner TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

▼ 0 ₩ ¥	ChannelCombiner		S? 8×
ChannelCombine	er Info Node		
Channel 1			
value	1		
Ch1>Ch2	over 👻 disab	le	
Channel 2	none		
value	1	, 9	; [] 🚺 4 📈
Ch2>Ch3	over 🔹 disab	le	
Channel 3	none		
value	1		, 🗌 🥥 4, 📈
Ch3>Ch4	over 🔹 disab	le	
Channel 4	none		
value	1 0 0.1 0.2	1	1.7 1.8 0.9 (N)
	X Clamp Values?		

Quickly combine 4 channels with an operation between each of them. Works best with ID mattes or roto's that are injected into a single stream. The channels dropdown lists every channel in the stream, so the best workflow would be to have a "mattes Stream" or "ID stream" with all the matte/roto/ID channels copied into an empty stream (no other channels)

Then you can use this node to make quick combinations: Helmet.red plus Visor.red minus Antenna.red, for example

ChannelControl TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

▼ 0 ₩	💡 Chann	elControl									S ?	đ×
ChannelCo	ntrol Info	Nod	e									
Channel	rgba											-
Operation	plus	- ×	Clamp (Output								
Red	1		10.1	1	il. Sector	il Taxas	1		(and		11	-IN
Green	1									1		1
Blue					0.3	(024)	0.5	0.6:		0.8	0.9	
blue	1			9,2	0.3	19.41	9.3	0.6		9.8	0.9	
Alpha	0	ļ.			0.0	(9.4)	9.5	0.6		0.0	0.9	
mask	none							•	inject	: 🔲 inve	ert 🗌 fr	inge
mix	1				0.3	() (#.4)	0.3	0,6'	0.7	0.0	0.0	

Mix the ratio of Red, Green, Blue, Alpha Channels and choose a Merge operation. Result is a black and white matte output into RGBA. Mask and mix options available.

ChannelCreator TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u> python help by Carlo Cherisier

• 0	🗕 🖌 ChannelCreator		S ? 5 ×
Channe	elCreator Info Node		
input	rgba		•
	Populate List		
Red	rgba.red	Channel1	
Green	rgba.green	Channel2	
Blue	rgba.blue	Channel3	
Alpha	rgba.alpha	Channel4	
	generate copy node		

This tool is meant to be used with ID's or mattes that are in the RGBA layer. Create new names for the channel you wish to copy over and this node will create a copy node that converts rgba.red rgba.green, rgba.blue, and rgba.alpha over to new channels. Just enter a name in the right side column and the suffix will be <string>.red

Use this to quickly transfer and rename channels into a new "channel" stream in nuke that are uniquely named and can be identified and pulled out later to be used when compositing. Good for roto shapes or ID's when CG compositing.

Example: rgba.red --> hat = hat.red rgba.green --> glasses = glasses.red rgba.blue --> shoes = shoes.red rgba.alpha --> jacket = jacket.red Generate copy node will generate a copy node as follows: rgba.red --> hat.red rgba.green --> glasses.red rgba.blue --> shoes.red rgba.alpha --> jacket.red Any fields left blank will not copy over in the generated copy node.

InjectMatteChannel TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

	🔻 0 🗰 🐓 Inje	ectMatteChannel	7 5 X
	DeepRecolorMatte	Node	
matte		Grab Title Inject New Channel	
	New Channel Name		
InjectMatteChannel	input Matte Channel	red green blue ● alpha	
n jeen namer		AUG FICHA AUG FUSHIA	
\mathbf{V}			

Takes a matte input and injects it into the stream as a new channel, using the "New Channel Name text input" and adding '.red' to the end, creating a new <channelName>.red channel.

A couple of buttons for ease of use, but 'grab title' requires adrian pueyo's stamps installed to work properly because it is running a function from his code.

Grab Title: Will try and grab either the nearest stamp name, from the matte stream, or else a read node name if it finds a read node. Hopefully if you are using a pipeline, and stamps, and have configured stamps to default to part of the name of a read node to use as the name (you can adjust this in the stamps_config.py file) then it will run the same function to find the 'right' name to use and fill in the "New Channel Name" text input.

Inject New Channel: This will generate a new channel based off the new channel name input text and the add prefix, add post fix text inputs. It will copy the selected channel from 'Input Matte Channel" into the stream

Reset: Set node to default (does not remove the channel from the script)

New Channel Name: Manually enter the new channel name, or try the Grab Title to autofill

Input Matte Channel: Choose which channel from the matte input with be copied as new channel

Add Prefix, Add Postfix : click to reveal additional input text fields, where you can add a prefix, which will appear before the new channel name, with an underscore. ie. "ID_" or a postfix, which will add text after your new channel name, with an underscore. ie. "_DImatte"

StreamCart MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Demo video : <u>https://vimeo.com/367649727</u> Nukepedia link: <u>https://www.nukepedia.com/gizmos/channel/streamcart</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Select channel or geo and quickly shuffle it.

How to use (channel shuffle) :

- connect streamCart node to anywhere of the tree.
- click 'get channels / geo'. It will scan through available channels from upstream
- click the channels to create shuffle node

How to use (Geo select) :

- connect streamCart node directly to 'ReadGeo'

- click 'get channels / geo'. It will scan through available geo mesh from upstream 'scene_view'

- select all the individual objects
- click 'ReadGeo Checkout' to create a new ReadGeo with the selection.

	and the second second second		
	🔻 💿 🖮 🐓 Inje	ctMatteChannel	? @ ×
Read2	DeepRecolorMatte	Node	
Marcia_2K.dpx		Grab Title Inject New Channel	
Marcio 2k CheckerBoard1	New Channel Name	Marcie_2K	
	input Matte Channel	🔍 red 🔍 green 👘 blue 🔍 alpha	
•		Add Prefix Add Postfix	
Marcie_2K matte apple -> Marce_2K			

Above is an example of InjectMatteChannel 'Grab Title' grabbing the name of the incoming stamp. This can speed up your workflow quite a bit if you are used to using stamps to move around AOVs and mattes, and parts of your script with an alpha that you might want to use as a matte

To the Right is a small example of how you might use a channel workflow. I have roto'ed the eyes and mouth of Marcie, and used InjectMatteChannel to copy the alpha into a new channel 'EyesMouth".

This channel now exists in the stream as another 'layer' you can see it in your viewer channels, and later on you can shuffle out the channel and use it for masks, grain matte, DI mattes, etc

RenameChannels AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

	9 renameChannels		BackdropNode15
Rename	? Node		
old Layer	1. Select old Layer and enter a new one DIFF_diffuse_renderCam	🔹 🐹 red 📓 green 💥 blue 😑	
new Layer	diffuse	clear	ALC: NO.
	2. Select channels and populate list rgba rgb a u.v. nx ny nz M Clear All	uni uni z	renameChannels
			le l
Channel 1	DIFF_diffuse_renderCam.red	> diffuse.red	
Channel 2	DIFF_diffuse_renderCam.green	> diffuse.green	Copy1
Channel 3	DIFF_diffuse_renderCam.blue	> diffuse.blue	DIFF_diffuse_renderCam green -> diffuse green
Channel 4			
			(DIF_difuse_renderCam)
	,	24	
			•
			•
			Copy2 (DIFRAW diffuseMate3401896387.reg > diffuse raw.red DIFRAW diffuseMate3401895387.geen > diffuse raw.geen DIFRAW_diffuseMate3401896387.blue -> diffuse raw.blue)
			Bernove6 (remove) (DIFFAW, of use Mate 340, 896387)
			•

With this Gizmo you can rename Channels and Layers through Copy and Remove Nodes. In this way you have more control with the possibility to cancel the operation.

Instruction:

1. Connect renameChannels node to your script.

2. Select the oldLayer and insert the name of the newLayer. Basically you want to rename the old name with the new one.

- 3. Select the Channels you want to create. They depend from the oldLayer
- 4. Click on button "Create Copy and Remove Nodes"
- 5. Connect the nodes created to your script.

5. Color

BlacksMatch TL

Author: Tony Lyons - www.CompositingMentor.com

Full Tool Description Breakdown:

https://compositingmentor.com/2019/06/30/blacksmatch/ Nukepedia link: http://www.nukepedia.com/gizmos/colour/blacksmatch_20

Full tutorial/ Demo: <u>https://www.youtube.com/watch?v=Kw3bcsmkGuk</u>

This tool recreates a toe operation that's able to input an external image as it's black point and has controls for the multiply (the amount above the blackpoint that the operation stops affecting the midtones and highlights), and a control for the Gamma, or falloff, which is the bottom part of the curve and how it's blending with the blackpoint. You can toggle a preview overlay of a plotscanline and see how your blackpoint is affecting the rest of your image.

ColorCopy TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

ColorCopy converts A and B images into HSV or HSL colorspace and mixes hue, saturation, and luminance (value) from image A to image B.

The other modes are a way of separating color and luminance from the image by dividing the original image by a desaturated version. The other methods are the methods found in the saturation node: rec709, average, maximum, etc.

When you are on HSV or HSL you have control over hue and saturation separately, and in the rest of the methods have just a single 'color mix' control (along with the luminance mix).

Can toggle Operations to be done in Log space.

Contrast TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Simple contrast tool with a pivot point controlling areas about and below the pivot separately.

GradeLayerPass TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Useful for grading CG AOVs. Choose AOV from the channels dropdown that you wish to grade. I've chosen the most common grade adjustments (also useful from a lighting artist point of view that translates well back to lighting application).

Exposure - for luminance, Multiply - for color, Gamma - midtones, Saturation.

This tool will minus the AOV layer from the beauty, makes adjustments to the AOV layer, and plus the changed layer back. It also injects the changed AOV layer back into the stream so if you shuffle it out afterwards it will reflect the changes made to the AOV layer.

HighlightSuppress TL

Author: liro Harra - Originally Lazy_Tonemap

Modified and renamed by: Tony Lyons - www.CompositingMentor.com

LazyTonemap Tofo Node	<u>ф</u> ж
and other and where	
channels rgb	
Whitepoint 4	
gamma 1	
Limit Affected Area 0,7	
reverse	
mask ¥ rgba.alpha * = inject invert frin	ige
(un)premult? by rgba.alpha *	
mix 1	N

Original Nukepedia Link: http://www.nukepedia.com/gizmos/colour/lazy_tonemap

Uses expression to try and suppress highlights above 1 to a more aesthetic fall off, retaining color information. When the whitepoint is set to 1, the image will be the same as the original, higher the whitepoint, the stronger the effect. Gain and gamma can be used to compensate for the slight decontrasting that occurs on the image.

Limit Affected Area is a Luminance key on the original image. Setting to 1 will gradually ramp up the effect towards (and above) a value of 1 and helps preserve lows and midtones.

ShadowMult TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Arnold rendering and other renderers enable you to output a layer called "shadowMatte". This can be a bit of a mysterious pass to figure out. Most artists just desaturate the image, shuffle to alpha and use it as a mask to multiply the plate or CG down to 0.

There is in fact color information in the shadowMatte pass. Each channel, red, green, blue, needs to be used as a mask to multiply the corresponding channel. shadowMatte.red - used as mask to multiply red to 0 shadowMatte.green - used as mask to multiply green to 0 shadowMatte.blue - used as mask to multiply blue to 0

I made this tool to automatically apply this method quickly and effortlessly. Simple additional controls for multiply (in case you want to change color) and gamma.

WhiteBalance TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Sample the 'white' or neutral area of the plate you wish to white balance. This tool preserves the overall luminance of the image. There is also a reverse option. Can be used to balance plates before greenscreen/bluescreen keying, and then reverse back after the keying/despill process to preserve original colors.

WhiteSoftClip TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

0 Millite Ceff Clip	WhiteSoftClip				? . ×	
Max Max	the Node					
Max value	16	<u>8</u> .			8124	
operation	plus *					
FallOff	0.4		3 84 95 9			
Color Mult	4	14 T	23 3	83 - 4	- 104	
luminance math	Maximum *					
Restore Color	0.5		3: 0.4 2.5 0	u 12 iu i	2.9 2	
mask mix	X rgba.alpha		* = inj	ect invert	fringe	

This tool's aim is to better approach the softClip tool. There are many times where you want to set a max value amount for the shot, 16, 25, 50, whichever. Unfortunately, the softClip tool in nuke tends to clamp all channels at the top amount equally, which seems to break the ratio between the channels and lose the color of the highlights.

Set the max value you'd like to max your highlights out at.

Adjust the FallOff and Color Mult to adjust where the whiteclipping begins in the highlights.

The Restore Color slider restores more of the color by pushing the ratio between the colors a bit farther apart and maintaining the original colors. Default is set to .5

apColorSampler AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

	• • •	ColorSampler
	ColorSam	mpler Node
a Villan	mode	e Average 🔹 calculate alpha
Carlos and		
	Bake	· · · · · · · · · · · · · · · · · · ·
		Bake Reset Bakes use baked
	Export	
		Average 🔹 linked create
		V who sloke
	mask	k X rgba.alpha * = invert intect fringe
	mix	× 1

Nukepedia Link: <u>http://www.nukepedia.com/blink/colour/colorsampler</u> Tutorial/Overview video: <u>https://vimeo.com/adrianpueyo/colorsampler</u>

apColorSampler is a tool that calculates the average color of a target input (or the src image if there's no target input), weighted through the area input (or the whole frame if there's no area input). It can also calculate the maximum or minimum value over the area. Additionally, you can directly remove color flickering to an image, or apply it from a target.

You can think of ColorSampler as a live version of CurveTool with some additional features using the power of Blinkscript, where instead of being limited to a rectangle you can plug a roto to use for the sampling area... or a key... :)

Bake options available for framerange

apVignette AP

Author: Adrian Pueyo - <u>http://www.adrianpueyo.com/</u>

TO 44	apeVignette			ए 5 ? म ×
apeVignette	Node			
aspect	1		<u> </u>	image format
falloff	2	24 82 23 2 1		
amount	1	64 96 Ga	1	
Color	o vitput matte in alph	a	1) (I	
apeVignette v0.				

Simple and lightweight vignetting gizmo with controls for size, falloff, color Option for outputting matte in the alpha channel.

GammaPlus MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/colour/gammaplus</u> Demo Video: <u>https://youtu.be/bhjwnHXHPxQ</u>

Provide more options on Gamma math. Make contrast more easier in color integration. Break the boundary of default Gamma method.

Algorithm of Color Integration in Nuke :

[Nuke Math] Color Grade https://www.facebook.com/media/set/?vanity=MJTlab&set=a.665976340650857 [Nuke Math] ColorCorrect - contrast https://www.facebook.com/media/set/?vanity=MJTlab&set=a.678965762685248 [Nuke Math] Keyer - Luminance & Saturation https://www.facebook.com/media/set/?vanity=MJTlab&set=a.684167245498433 [Nuke Math] HSV & sRGB https://www.facebook.com/media/set/?vanity=MJTlab&set=a.690958631485961 [Nuke Math] Saturation in Nuke https://www.facebook.com/media/set?vanity=MJTlab&set=a.709545469627277

Suppress_RGBCMY SPIN

Author: Spin VFX

* 0 ¥ ¥	Suppress_R	GBCMY						6	S 1	? ē ×
Color Suppressi	on Node									
Red				1		ii Taal		-	0.8	-477
Red Luma					1.2 0.4		4.6 4.2	13 0.0		3 N
Green	1									17
Green Luma				11	4.3 5.4		28 27	2.4 2.3		3 N
Bhue										
Blue Luma			6.8 		A8.		4.7 	0.6	i di ci	3 ~
Cyan				2.4		8.8		- 10		- <u>M</u>
Cyan Luma	1				0.3 0.4		9.6 4.7	R.A. 035		3 [//]
Magenta								1		- 2
Magenta Luma					4.5 9.4		44 47	4.8 9.9		3 ~
Yellow	1									
Yellow Luma				63	23 24		31 47	28 59		3 N
SPINNER - Version 1.2 -	- 2017-2018 - <u>Gai</u>	ub Page								

Spin tools github: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Vimeo Demo: <u>https://vimeo.com/381270956/f7399b6e1d</u> @ 9:15

Suppress (or boost) specific colors: Red, Green, Blue, Cyan, Magenta or Yellow.

HSL_Tool NKPD

Author: Den Gheiko Website: <u>www.gheiko.com</u>

Nukepedia: http://www.nukepedia.com/gizmos/colour/dg_hsltool

A kind of DaVinci Resolve 'Hue Vs Hue', 'Hue Vs Sat' and 'Hue Vs Lum' color correction tool

Curve based adjusting hue, sat and value in a specific hue range

Adjust the curves, by default, the difference matte from the original image is stored in alpha, so can be used as a subtle keyer.

BiasedSaturation NKPD

Created by: Paul Raeburn adjusted by: Tony Lyons - <u>www.CompositingMentor.com</u>

Nukepedia link: http://www.nukepedia.com/gizmos/colour/biasedsaturation

Simple tool for changing the saturation but toward a picked colour.

**Changes:

- Added channels dropdown and restore luminance slider.
- Default set to a bluish color and saturation and mix sliders set to 0.5

6.) Filter

X Tools XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

These tools were made by Xavier Martin. I decided to place them all in 1 folder because I felt they are great and unique tools.

X Aton Volumetrics XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Nukepedia Link: <u>http://www.nukepedia.com/blink/filter/x_aton</u> Website Documentation: <u>http://www.xaviermartinvfx.com/x_aton/</u>

This tool is an advanced variation on the God Rays node. It creates volumetric lighting effects with more realism. It supports soft and diffused light rays created by area lights and volumetric lights. It supports Nuke 3D Cameras, Point Lights and Axis to have a better control of the direction of the illumination.

It supports Nuke 3D Cameras, Point Lights and Axis to have a better control of the direction of the illumination. The tool can also be used as a simple screen-space extruder, to create apparent 3D texts or extruded shapes. Now you can do WordArt from the 90s inside of Nuke!

All of this using the power of the GPU to speed up the calculations.

X_Denoise XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Noise Reduction	Quality About Node
fix luminance fix chrominance	$1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad 1 \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad b \\ 1 \qquad b \qquad b.2 \qquad b.4 \qquad b.6 \qquad b.8 \qquad t \qquad b \\ 1 \qquad b \qquad b \qquad b.2 \qquad b \\ 1 \qquad b \qquad b \qquad b \\ 1 \qquad b $
iterations	$3 \qquad 1 \qquad 2 \qquad 4 \qquad 5 \qquad 1 \qquad 2 \qquad 2 \qquad 3 \qquad 3$
filter	Cubic - output Result -

Nukepedia link: <u>http://www.nukepedia.com/gizmos/filter/x_denoise</u> Website Documentation: <u>http://www.xaviermartinvfx.com/x_denoise/</u>

X_Denoise is a noise reduction gizmo that can be used to repair damaged or compressed footage. It does the same function of the Nuke Denoise, but using a different algorithm that can sometimes provide better results.

While most de-noisers try to work out which small pixels are susceptible to be noisy, the X_Denoise averages different frames in order to smooth the noise, making it invisible to the eye. The gizmo offers multiple settings to take control over how many frames are being used and how much detail is preserved.

X_Sharpen XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Nukepedia Link: <u>http://www.nukepedia.com/blink/filter/x sharpen-and-x soften/</u> Advanced Sharpening and Softening filter.

This GPU accelerated filter preserves colours, avoid negative lobes and creates minimal ringing and banding on edges.

X_Soften XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Nukepedia Link: <u>http://www.nukepedia.com/blink/filter/x_sharpen-and-x_soften/</u> The softening filter is similar to a bilateral filter but much much faster

X_Distort XM

▼ • ¥ ¥ X_Distort • ■ ■ ■ ■ ■ ■ ■ ×	1
X_Distort About Node	
Distortion	-
channels rgb 🔹 🗶 red 🗶 green 💥 blue 📃 none 🔹 😑	
distort 20	
blur 5 0 10 20 40 60 80100 2 N	
direction 0.25 0.2 0.4 0.5 0.8 1	
revolutions 1 10 20 30 40 50 N	
blur then distort 🔹	
distart man Seurce x X fringe dame treat as IV	
maek luminance v invert fringe	
biur map 50 $_{0}$ $_{10}$ $_{50}$ $_{100}$ $_{2}$ $//$ 100	
rob balance 1 1 1 1	
Aberration	
off chromatic aberration levels	
strength 1.2 1 0.8	
output Result 🔹 multiply UV 20 🖓 🛄 2 📈 🕱 normalize	

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/transform/x_distort</u> Website Documentation: <u>http://www.xaviermartinvfx.com/x_distort/</u>

This gizmo allows you to distort images with control and flexibility. It is more customizable and easier to use than Nuke's IDistort. You don't need to copy any channels and you have many other controls to play with. You can blur the parts of the image which are being distorted to get a smoother result.

You can distort an image using its own channels, using another image or using an automatic noise. You can choose the detail of the deformation.

You can distort each color per separate, creating a realistic chromatic aberration effect. You can decide the quality of the effect in order to speed up render times.

X_Tesla XM

Author: Xavier Martin - http://www.xaviermartinvfx.com/articles/

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/draw/x_tesla</u> Website Documentation: <u>http://www.xaviermartinvfx.com/x_tesla/</u>

With this Gizmo you will be able to create lightning and electricity effects. Animated electric arcs will be procedurally created between two points.

The gizmo includes some realistic render option such as the temperature based chromatic aberration and glow, an advanced soften filter, an easy to use 2 colour system. Or you can just disable everything with a simple check box, that's also OK.

Glows Menu

apGlow AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Nukepedia link: http://www.nukepedia.com/gizmos/filter/apglow

apGlow is a lightweight exponential glow effect with advanced control over the steps, falloff, distribution, color and other useful parameters.

ExponGlow TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

There are many Glow tools out there, Here are some of the features that makes this one unique:

- 1.) Iterable Blur steps, adds more or less blurs as you change the steps number
- 2.) Uses percentage blurs, meaning the blur ratio scales along with your format, so when changing from a 2K plate to a 4K plate, the Glow should look the same
- 3.) Different types of Merge operations to choose from: Screen, Plus, Over, Hypot, Average, Max, Min (Can include original image in Merge)
- Different type of falloff to choose from, similar to ramp or roto falloff: Linear, pLinear, Smooth, Smooth0, Smooth1
- 5.) Tolerance option (luma key on input) and Area mask input, so you can use mattes/rotos to isolate which part of the image glows
- 6.) BBox optimization, which has a safe BBox mode that will stop the bbox from growing 10% beyond the format size (or input BBox size, whichever is bigger). You can adjust this amount, or change to pixels instead of percent. And final BBox adjustment, so you can further grow/shrink the final bbox (in percent or pixels.

The focus was on an exponential Glow that has a lot of control and lookDev options in the type of falloff, size, and amount, while still paying attention to Bounding Box size and calculation time.

Glow_Exponential SPIN

Author: SPIN FX

Github link: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Vimeo link: <u>https://vimeo.com/381270956/f7399b6e1d</u> @ 23:30

Exponential Glow node, with options to recolor and adjust falloff.

Optical Glow BM

Author: Ben McEwan - https://benmcewan.com/blog/

* • ¥ ¥ I	om_OpticalGlow			6 2 2	S	? ð ×
Options Info	Node					
Merge Operation Glow Math	Max • Fibonacci • * Crop BBox	Effect On Use Thres View Thr	ly ⊧hold eshold			
Threshold Sel	ector					
Size Aspect Brightness Gamma Saturation	100 1 1 1 1 1 1 1 1 1		200 1.1 1.1 0.4 0.7	300 1-3 1-5 5 3 1 	460 1.7 7.5 7.5	
Use Alpha From Mix	Plate & Glow	0.1 0.2 0				. [2]

Link to Ben's Website: https://benmcewan.com/nukeTools.html

Adds exponentially-increasing blurs together to produce a more optically-correct, natural glow.
Blurs Menu

ExponBlurSimple TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

💌 💿 👾 🔮 ExponBlurSimple	S 2 5 X
ExponBlurSimple Info Node	
channels rgba	•]=
area 🗙 rgba.alpha	 inject invert fringe
Operation: Screen * Steps 4 X Include Original?	
Size 2	17 27 27 10 10 10 10 2 IV
Multiplier 2	5 b3 8 63 7 35 6
Post Blur 0	· · · · · · · · · · · · · · · · · · ·
BBox Control	
mask 🛪 rgba.elpha	🔭 = inject invert fringe
mix 1	

Simple exponential blur iterating steps feature. Most often used with rotos/Mattes Based on Luma Pictures ExponBlur gizmo. http://www.nukepedia.com/gizmos/filter/l_exponblur

Set your blur size and multiplier (exponent), and steps (iterations, # of blurs)

Different types of Merge operations to choose from: Screen, Plus, Over, Hypot, Average, Max, Min (Can include original image in Merge) Has a clamp and post blur options.

If you go negative with the size, the matet will blur inwards (invert, blur, invert back). This can be used for softly eroding/blurring mattes and alpha edges

BBox optimization, which has a safe BBox mode that will stop the bbox from growing 10% beyond the format size (or input BBox size, whichever is bigger). You can adjust this amount, or change to pixels instead of percent. And final BBox adjustment, so you can further grow/shrink the final bbox (in percent or pixels.

Directional Blur TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Nukepedia Link: http://www.nukepedia.com/gizmos/filter/directionalblur

Select the rotation angle and size of the blur. Choose between blur and defocus. Has a perpendicular blur that blurs in the perpendicular direction to the angle chosen.

Some helpful options for managing your BBox. Has channels, mask, mix, etc

View the Demo here on youtube: <u>https://youtu.be/BrioyN9YMA8</u>

IBlur NKPD

Author: moritz eiche Modified by Tony Iyons <u>www.CompositingMentor.com</u>

Nukepedia Link: http://www.nukepedia.com/gizmos/filter/iblur

With this gizmo you get a smoothly ramped blur on your image, based on the matte input. It works like 'iBlur'/'iDefocus' in Shake.

It's faster and easier than 'ZBlur', also you can choose between 'blur' and 'defocus'.

Update by Tony Lyons: Allowed for x,y individual size options. Added some better BBox management.

Edges Menu

apEdgePush AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

apEdgePush is a vector distort edge warp that warps the edge to try and get right of fringe colors. By default looks for alpha in the img input but you can plug in a custom matte to the matte input. Switch channels to rgb and warp before the premult in order to warp the image "within" the premulted alpha region.

EdgeDetectAlias TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Analyzes your alpha for aliased edges and gives you an edge detect for aliased areas. You can then use an iBlur or blur with mask to introduce blurs to help smooth out edges. Good for CG or DMP or deep combines where you get some harsh edges.

AntiAliasFilter AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

Nukepedia link: http://www.nukepedia.com/gizmos/filter/antialiasing-filter

Increase Antialiasing filter Decrease Antialiasing Instructions:

Select channels. You can just apply to the edge in your alpha channel or also to the RGB Decide the operation (increase or reduce) Move slider to select size of the filter Use gamma for a better tuning This gizmo uses a 3x3 Matrix

ErodeSmooth TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

4 f/8 ▶ 1	<u>н</u> ү 1	🗔 2D - 🍠 🖉			
x=503 y=735	2.020 0.020 0.020 0.02 0.02	5:0.00 V:0.00 L: 0.00000 ×			
V 0 ¥	ErodeSmooth				S ? & X
ErodeSm	ooth info Node				
Tuna	linear T				
Range	0.5		<u>a ipana antana</u>		
Blur	5	92 84 1 1 1 1 1 1	0.5 0.8	0,8	2 10
Tighten	1			30 60 70 80	
		N. N. N.	1 13	M M	
mask	none		•][=	inject inve	rt 🗌 fringe
mix	1	0.2 0.3 0.4	••••••••••••••••••••••••••••••••••••••		···

This erode uses a method of blurring the alpha, then uses colorlookup node to tighten the edge back down. The range slides along the full area of the blurred region. Best when used with tight rotos / edges without much blur or falloff.

Edge_RimLight AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

▼ ⊙ 举 ♀	Edge_RimLig	ht				-	5 1) 8 ×
RimLight @	Node							
channels	all							
rotate	15	<u>i i i</u> 0 2	6. 10. 0. 4	(6)	96 - 94 (180)		1 I E 014	1
Matrix								
matrix	0	1	1					
	-1	0	1	N				
	-1	-1	0					
Parameters								
innerEdgeErode	0	-100 -50	10 0	10	50 100	2 N filte	r box	•
innerEdgeBlur	0	Contract of the second	5 10	20 3	: 10 40	50 60 70	80 90100	2 ~
	keep origi	nal alpha						
alpha Erode	0	1000 -50	-10 0 × 1	40 40	50 100	2 📈 filte	r box	•

Nukepedia Link: http://www.nukepedia.com/gizmos/filter/edge-rim-light

With this tool you can create a quick mask for your Rim Light. Move the slider rotate and that's it!

Use the Parameters to modify the size and the softness of the edge.

EdgeDetectPRO AG

Author: Andea Geremia

			Ige Detect	from Nuk			Edge Detect PRO
EdgeDetect	Ø Node						
channels	rgba		🔀 red 🔣 g	reen 🔀 blue	🗙 rgba.alpha		
IN							
IN erode	0						
IN blur	0					·····	
Ουτ							
OUT erode	0						
OUT blur	0					45 50 N	
OVERALL							
Dilate	0		40 20			70 100 2 ~/	
Blur	0				40 30 60 70	10 90100 2 M	
Gain	1		75		🚺 🌖 4	📈 🗙 clamp	
rotate 0)	2.5	1 () () (4) 2 ()	7 8 9	1 12 12	12 14 15	
Filters							
filter erode	box						
filter blur	gaussian						

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/filter/edgedetect-pro</u>

If you want to go deeper with this topic, visit this tutorial: <u>http://www.andreageremia.it/tutorial_edge_rim_light.html</u>

EdgeDetect PRO is an evolution of the classic node from Nuke. Here you have more options to get a better result with thinner edge reveal.

Erode Fine SPIN

Author: Spin FX

🔻 💿 🐝 🐈 🛛 Erode_Fine					ଟ S ? ୫ ×
Fine Erode Node					
channels rgba	🕋 🗾 re	d 🗵 green	× blue ×	rgba.alpha	
Round Filter					
Size 0	* *	-	-		• 10 N
mask none				- inject	invert fringe
mix 1	¢.1 0.2	0.3 0.4	(6.5 (d.	A 0.7 9.8	•= [M
SPIN/VPX - Version 1.0 - 2018 - Github Page					

Erode an image with fine controls, as opposed to Nuke's default erode node which can only erode full pixels.

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Github Link: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Demo video: <u>https://vimeo.com/381270956/f7399b6e1d</u> @ 31:08

Edge_Expand SPIN

Author: Spin FX

• • •	Edge_Expa	nd								100			5] 7	•
User Node														
Method	Dilate 🔹	🗙 Inpu	t is Pre	multiplie	d									
erode	5				į		, y	ii S					1	
edge blur	0	ţ	<u>alt i a</u>	<u></u>			30	No		80	70			2 ~
size	15				111 [N AG		9	75			2 ~
samples	10													
blur expansion	0	ļ —	ali a a A	*	10	- 26	30	W.S	30	60	70	<u>.</u>	40 100	2 ~
mix luma	1	1 <u>.</u>	i.	Um	Ľ.	l)	Ŋ	Ű.	Ţ	~	l.			- U N
mix chroma	1					©.4		0,8			1. 1		0.9	-in
	- shuffle edg	e matte	× pre	mult oui	tput	0.4		<u>84</u>		ŗ	4.4			
SPINVEX - Version 1.0	- 2018 - <u>Github F</u>	age												

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Github Link: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Demo video: <u>https://vimeo.com/381270956/f7399b6e1d</u> @ 24:55

Expand edges to fix fringing on keys.

ColourSmear NKPD

Author: Richard Frazer

Github link:

https://github.com/RichFrazer/colour-smear-for-Nuke/blob/master/colour-smear.nk

Smear out the edge colour of your A plate to create better soft edges. Works by blurring and un-premultiplying your image.

I have seen different artists do similar techniques in a number of ways, but this is my take on it (the EdgeExtend gizmo is a simpler version – this one combines the edge erosion aspect and produces softer results). This technique is not application specific, but I am demonstrating it here in Nuke (although I doubt you could do this in After Effects as you need to be able to manually control pre-multiplication).

KillOutline NKPD

Author: Andreas Frickinger

Nukepedia link: http://www.nukepedia.com/gizmos/keyer/killoutline/

Erodes/Expands rgb edges of keyed image image to get rid of unwanted outlines. Includes fine tuning for edge treatment. Based on Frank Rueter's Edge Extend.

EdgeFromAlpha FR

Author: Frank Rueter - <u>www.ohufx.com</u>

37,13	
	dgeFromAlpha
control channel	rgba.alpha 🔹
output X blackpoint c whitepoint 1	
edge size inside 3 outside 3	
edge Blur inside C outside C	Image: state in the s

Nukepedia link: http://www.nukepedia.com/gizmos/filter/edgefromalpha/

This tool is an edge detect on the alpha channel that has separate adjustable erode and blur controls for both inside and outside of the matte.

VectorExtendEdge NKPD

Author: Michael Garrett

Nukepedia link: http://www.nukepedia.com/gizmos/filter/vectorextendedge/

Pushes rgb pixels outwards using vectors generated perpedicular to a control matte edge. It's similar to Frank Reuter's EdgeExtend gizmo but instead of recursively blurring and unpremulting, it recursively generates vectors based on the input control matte and uses VectorBlur to push the rgb pixels outwards.

To get the best results, you need to input a matte that conforms to the pixels you want to extend.

FractalBlur NKPD

Author: Richard Frazer

Tool link: <u>https://richardfrazer.com/tools-tutorials/fractal-blur-for-nuke/</u> Github Link: <u>https://github.com/RichFrazer/fractal-blur/blob/master/fractal-blur.nk</u>

It's essentially just a blur combined with a noise filter so that the softened image does not have smooth gradients. It really helps to hide soft-edge mattes where the combined images have a lot of texture. I was working on Where the Wild Things Are at the time and every plate almost entirely consisted of heavy natural texture (forests, trees, fur etc.) and it became essential to use the fractalBlur on every single mask. Since then I frequently require this plugin and have not found an equivalent in Nuke, so thought I'd put one together.

Distortions Menu

This menu focuses on tools that distort, warp, haze, etc

<u>Glass FR</u>

Author: Frank Rueter - www.ohufx.com

000	
0	
Glass No	
Displace	5. <u>2</u> 2 4 8 8 20 12 14 26 18 20 <u>1</u>
Abberation	
Defocus	
	Apply Defocus
Size	
filter chance	
niter snape	

Nukepedia link: http://www.nukepedia.com/gizmos/transform/glass

This gizmo uses IDistort to create a simple glass light effect based on a control mask.

HeatWave NKPD

Author: Damian Binder

Nukepedia link: <u>http://www.nukepedia.com/gizmos/filter/realheatdistortion</u> HeatWave is a gizmo created by Damian Binder that simulates realistic heat distortion you often see around fire or other sources of heat.

Main Features:

- Realistic heat distortion and haze simulation.
- Smart on-screen wind direction controller.
- Smooth transitions between distorted and non-distorted areas.
- Tracking data for moving shots can be added.
- Custom distortion maps can be used (Real fire elements or cg simulations).

Other features:

- Faster rendering: When using the Mask or Custom input, only the inside of the bounding box will be calculated.

- Distortion maps can be looped. This helps when using short fire or cg elements. It can also save rendering times (Limit the number of frames the noise node has to calculate).

- Works with anamorphic resolutions.
- Some effects like Smoke and Chromatic Aberration can be added.

BeautifulSkin TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

rgba 🔻 🔝 sRGE	3 *		⇒ III ×	rgba 🔹 rgba	a.alpha 👻 IP sR	GB 🝷
<. f/8 ▶ 1 -	γ 1 — I	[]], 2D		4 f/8 ▶ 1	у 1	<u> </u>
in the second	0			N.Y.	1	
x=0 y=0			-	x=918 y=40	9	0.35 0.27 0.27 0.00
V O 👾 🐓 B BeautifulSkin	leautifulSkin Info Node			0 m 0 5	S ? 5 ×	
channels	rah	red 🖬	-	lue none		
Dilate size	3	i in Lea in i	green 📫 i		2 1	
	ante Jana					
Blur Type	Median *					
Blur/Defocus size			n at t	r 64 78	** ** ** M	
Median size	3			ra atrada	2 1	
	× use blur in g	ui, switch to de	focus/medi	ian at render ti	me	
mix Max back in	0.5		a 94 🖑	8 68 97	NR 1.0 1	
mix Min back in	0.2		1.1 (0,1 ()	3 64 07	6.8 6.8 (<i>M</i>)	
mask	🗙 rgba.alpha			inject in	vert fringe	
mix						

Simple tool that uses erode dilate, blur, defocus, median with a mask to paint out moles, artifacts, markings, etc while maintaining a soft smooth appearance. Ability to bring back min/max values with separate sliders. Best when used with mask.

BlacksExpon TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

This tool Exponentially blurs the lows of the plate with a merge(Min) operation. Basically trying to find the low colors and spread them out using blur/unpremult technique. This can be quite handle if used with the blacksMatch tool color input. If you have a plate with dynamic lighting, it can be a handy way to get an animated black color for free to match your CG renders too. Can also help with prep tasks if you need to paint out highlights and replacing with a "base" color.

Halation TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

x=769 y=431		0.50 0.15			0.71 V:0	50 Lt		564 y=35			
V 0 # 4	Halation							C S	? 8 ×		
Halation Inf	o Node										
Output View Key: blackpoint whitepoint size	Final Outp 2 6 1.2		- <u>1</u> 3 2	2 A	1 1 1 27 - 27	l.	- - - - - - - - - - - - - - - - - - -		2 2		
red green blue Global Amount	1 0.25 0.08 1								a a a a		
mix				13 8		0.4		08 0	! ~!		

Simple tool to introduce a little halation effect. Adjusts amount of r,g,b channels individually with an overall blur. Blackpoint and whitepoint sliders are the low and high of a luminance key threshold for where the effect starts. You can output final, effect only, and luma key.

Highpass TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

550 DOX: 0 0 2048 1550	chan x=070 y=001	0.21001 0.13397 0.15238 0.00000	
HighPass Info N	ass		
channels Operation Blur Size	rgb • K red K High Contrast •	green 🕷 blue 🗌 none 🔷	
High Contrast Amount High Pass Amount Post Mult	0.8 -0.01		RR
mask mix	X rgba.alpha 1	* inject invert fri	inge

Gives you the difference between a blurred input and the original input. making small details quite noticeable.

The 2 main uses are:

- 1.) to aid 2d tracking
- 2.) to apply a different type of sharpen filter to an image.

LightWrapPro TL

Author: Tony Lyons - www.CompositingMentor.com

This lightwrap tool evolved from luma pictures Fuse node, but as a stand alone lightwrap. The features that set this tool apart: Exponential blurring with adjustable steps, a Highlight Wrap and Overall Wrap, blend edges and bleed color options (idea from luma's fuse). Multiple output views to help you work step by step with the workflow of the tool. Steps:

- 1.) View/Adjust Highlight key, this is a key of the brightest areas of the plate to wrap
- 2.) View/Adjust Highlight Wrap, make adjustments for a tight wrap for highlight areas
- 3.) View/Adjust Overall Wrap, make adjustments for larger, dimmer overall lightwrap
- 4.) Good rule of thumb is when you think your lightwrap looks good, reduce the global amount down to $\frac{1}{3}$

iConvolve AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Similar to the iBlur, but with a convolve (defocus)! Uses a control mask and a custom filter/ kernel to create a convolve effect with a falloff. Ramps off from 0-1, 0 will have the min size convolve, 1 will have the max size convolve.

ConvolutionMatrix AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

▼ (0 i	¥ ¥	LEARN_MAT	RIX					2.0	S	?	ð ×
Matrix	@	Node									l.
9	Select a	matrix and	see the res	ult:							
	X 01	- Identity									
	02	- Smoothing	- 3x3 conv	olution ker	nel						-
matrix	03	- Gaussian B	lur								
	04	- Antialiasing	filter (1)								
	05	- Antialiasing	filter (2)								
	06	- Blur									
	07	- Sharpen									
	08	- Intensified	sharpen								10
	09	- Edge detec	t		_						
	10	- Edge enhar	ice								
	11	- Emboss									
	12	- Outline									
	13	- Top sobel									
	14	- Bottom sob	el								
	15	- Right sobel									
	16	- Left sobel									
rgba • rgba.alpha	- +968	• A LEAR TRUE •	- B LEAR_TRON	₽≣ \$ 0 II		10 - 1 K			110000000		
	2		Hillion	and		Matrix O Select a 15 Rig matrix	LEARN_MATRIX Node matrix and see th pht sobel	• news:	00		5 7 7 4
	- C						0	3			
	Ke		and the second s								

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/filter/learn_matrix</u> Website: <u>http://www.andreageremia.it/tutorial_matrix.html</u>

Apply a preset Matrix Filter 3x3 to your image

apChroma Tools AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

The following tools are apChroma tools meant to work with each other in a chromatic aberration workflow. From applying different types of chromatic aberration, blur, transforms, per channel (and could apply to all channels in the stream) to merging per channel so the aberration is applied correctly with the background.

apChroma AP

V 0 # 4	apChroma	1	C S	? 5 ×	V 0 🗰 🐓	apChroma			C S	? # ×
apChroma	Spectrum	Node			apChroma	Spectrum	Node			
Transform					red					
translate	× 0	у о			blue		\wedge	\wedge		
rotate	0					0.9		$ \rangle$		
scale				2 1						
center	× 1024	y 576	N center on inp	put		0.8				
smooth	0									
	invert	black outside				0.7				
	Create UV	Мар								
Cettings						0.6				
samples	10					0.5				
aberration	1			N						
compensate						0.4			X	
monochrome	0									
overscan	0			2 1		0.3				
	invert spe	ectrum 🗶 cak	culate per-channel a	alpha						
	output dis	stortion matte	🗙 rgba.alpha			0.2				
mask	× rgba.alp	ha * =	Intect Invert	fringe		0.1				
mix	1						/		Vred V	
						green				
apChroma Bl	ETA V0.6 - 80				reset			0.5		

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Nukepedia link: http://www.nukepedia.com/gizmos/filter/apchroma

apChroma is an advanced chromatic aberration and drift gizmo, that works through a sub-frame blend of different values on an STMap and Transform, while creating a user-defined color spectrum.

apChroma can calculate a multi-channel alpha for correct merging of the result onto a plate, and the included apChromaMerge node will perform the multi-alpha merge operation.

Demo video on vimeo: <u>https://vimeo.com/344248811</u> apChroma demo on VFXforFilmmakers channel: <u>https://youtu.be/K28VNUVseTY?t=1764</u>

apChromaTransform AP

Author: Adrian Pueyo

▼ 0 ₩ ₩	apChromaTra	ansform)			? 8 ×	
apChromaTransform Node									
channels	rgba		r 🔀 red 🔀	green 🙁	blue 🗙	rgba.alpha			
translate x	0	-300, -80, -60, -40				30	40 ED 100		
translate y	0	-199 -49 -41				30 A5	AP 80 (00	4 //	
rotate	0	-160 -100 -70	-40 -10			40 70 10	c 180	4 14	
scale x	1		0.2 64 0.5					4 10	
scale y	1 ¥ linked		0.2 0.4 0.6	0.8		s D.		4 /	
skew X	n inked			<u>مىرى بار م</u>				4 0/	
skew Y	0	-1 -0.0 -0.0 -0.0				3-2 8/4 (4 1	
mix	1						(4 N	
skew order	XY ·				1. (934)		0.9 0.9 10-0		
center	x 1024	y 576	2						
	invert								
multi-alpha	apChroma		👕 🔛 red 🔛	green 😕	blue 🗙	apChroma.a	alpha		
	X process m	iulti-alpha							
filter	Cubic	clamp X	black outside						
motionblur	0							- 2	
shutter	0.5			0.6 0.8		<u> i j i</u>	<u>, i i i</u>		
shutter offset	centred 🔻	0			<u> </u>				
mask	X rgba.alph	ıa				= inject	invert	fringe	
mix	1			34		6 (2)	1. I Dat 0.9		
anChromaTrace									
-									

This tool allows you to transform red, green, and blue channels separately, and for all Layers (channels) in the stream.

Each transform knob can be broken up to r,g,b,a channels and individually manipulated.

To be used with the apChroma multi-channel alpha workflow so that apChromaMerge can be used.

apChromaBlur AP

▼ (0 🐳 🐈)	apChromaBlur S? 3 ×
apChromaBlur	Node
channels	rgba 🔹 🔀 red 🗶 green 🗶 blue 🗶 rgba.alpha 🔹 =
mode	blur -
size	
aspect	1 001 002 01 02 03 04 05 04 07 08 08 1
bloom	1 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
mix	1. 0.01 0.05 0.1 0.2 0.3 0.4 0.3 0.8 0.7 0.8 0.8 0.7 0.1 0.3 1
multi-alpha	apChroma 🔹 🔀 red 🐰 green 🐰 blue 🗶 apChroma.alpha 🔹 =
	× process multi-alpha
mask	🗙 rgba.alpha 🔹 = inject invert fringe
mix	1 43 62 57 64 55 55 57 68 59 1

Author: Adrian Pueyo - <u>http://www.adrianpueyo.com/</u>

This tool allows you to blur or defocus red, green, and blue channels separately, and for all Layers (channels) in the stream.

Each knob can be broken up to r, g, b channels and individually manipulated.

To be used with the apChroma multi-channel alpha workflow so that apChromaMerge can be used.

apChromaUnpremult AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

There are some rare cases where you will need to unpremult and premult all layers(channels) by the apChroma multi-alpha layer. Whether it's for color corrections, lightwrap, or something else, this node gives you the option to successfully unpremult and premult during the apChroma workflow.

apChromaPremult AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

There are some rare cases where you will need to unpremult and premult all layers(channels) by the apChroma multi-alpha layer. Whether it's for color corrections, lightwrap, or something else, this node gives you the option to successfully unpremult and premult during the apChroma workflow.

apChromaMerge AP

Author: Adrian Pueyo

▼ [⊙] ₩ ₩	apChromaMerge S ? # >
apChromaMe	erge Node
operation	over 🔹 Video colorspace alpha masking
set bbox to	union 🔹 metadata from B 🔹 range from B 🔹
A channels	rgba 🔹 🔀 red 📓 green 🐱 blue 🗶 rgba.alpha 🔹 👘 🖃
B channels	rgba 🔹 🔀 red 📓 green 🕷 blue 🗶 rgba.alpha 🔹 👘
output	rgba 🔹 🐹 red 🐰 green 🕷 blue 🕷 rgba.aipha 🔹 =
also merge	none × none × =
multi-alpha	apChroma 🔹 🐹 red 🐹 green 🐱 blue 🗶 apChroma.alpha 🔹 =
	keep multi-alpha 🕱 process single alpha from Rec 709 🔻
mask	X rgba.alpha T = inject invert fringe
mix	1 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.5 1
apChromaMe	

apChromaMerge is the final step in the apChroma Workflow. When using the apChroma toolset, a new layer, apChroma will be in the channels stream. This layer(channel) is storing each 'alpha' to be used per channel.

Since there is separation between the channels, whether they are transformed or blurred differently, they also need individual alphas to properly merge them over the background image.

You will find the normal options of a merge, with the option to:

- 1.) Keep the mult-alpha apChroma layer and pass it onto the this merge stream
- 2.) Since there are 3 alphas being used to merge each channel (red, green, blue) it's difficult to know which alpha to use for the final alpha to be passed onto this stream, representing the A inputs final alpha. By default, process single alpha from Rec 709 is checked on, meaning all 3 channels will be desaturated with the Rec 709 algorithm to produce a new greyscale alpha off the (luminance) and this will represent the new alpha channel to be passed onto the B stream after the merge.

Chromatik SPIN

Author: SPIN FX

							197
						_	
	-						HD
▼ 0 ₩ ₩	Chromatik						5 ? 6 ×
Chromatik N	ode						
Aspect Ratio	1				10 14	is is in	
Size	100		0001 K 00 8 - 548 - 544		AL IA AL IA Commentation and Al	11 11 11 1 100 - 200	210 - 24000
Protect Center Falloff Hardness	0		64 64	-		17 18 17 18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Swirl	0						
Saturation	1		94 - 38 1 - 1			10 1 1) 10 1 1	
Min Samples	5	Max Samples	150				
SPINUME - Version 1.1 -	2018 - <u>Cithub Pa</u>	91					

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Github Link: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Demo video: <u>https://vimeo.com/381270956/f7399b6e1d</u> @ 16:45

Chromatic aberration node using a spectral wavelength gradient.

CatsEyeDefocus NKPD

Author: Alexander Kulikov

CatsEyeDefocus is a convolution filter which simulates swirly bokeh.

This lens abnormity is also called cat's eye effect and it is noticeable when an aperture goes wide. The shape of the bokeh progressively narrows from the image center towards the edges and starts to resemble a cat's eye.

DefocusSwirlyBokeh NKPD

Author: Jed Smith

🔻 💿 👾 🐈 De	focusSwirlyB	okeh1					S ? 5 ×
DefocusSwirlyBoke	h About	Node					
	🗶 use gpu						
bokeh size	25	2 10	20 0 30	40 50			90 100 N
aspect ratio	1	0.250.3 0.4			0.9	11 12 1	M 21 4 1
swirly amount	1	0 0.1	0.2 0.3	0,4 0		9.7 9.5	N 8.9
bokeh contrast	1	0 0.2	0.4 0.6	0.8 9	1.2	1.4 1.6	18 2 1
bokeh blur	0	0.05	0.1 0.1	5 0.2 0	1.25 0.3	0.35 0.4	0.45 0.5
	🔲 enable b	okeh maski	ng				
radial softness	0.5	<u>a 01</u>	0.2 0.3	0.4 7		67 N	N 1 20
mattebox	X 0	у 0	r 0	t 0		wh 📈 😽	
mattebox softness	0	1 1	1. (A) (B)	10 12	14 16	1E 20	22. 245 /1
				Re	evert	Cancel	Close

Github link: https://gist.github.com/jedypod/5d35858d488df478aaf2f2e8f3f7875a

Creates Swirly Bokeh or Cat's Eye Bokeh shapes on the edges of frame. Does not perform depth-varying defocus. Needs a good GPU to run fast.

Based on Alexander Koolikov's CatsEyeDefocus.

deHaze NKPD

Author: Lucas Pfaff

deHaze is build after the great dehazing-tutorial made by Mads hagbarth Damsbo. Mads concludes the tutorial with 'So you can just package this up and make a cool tool and put it Nukepedia', so I gave it a try :)

I added some functionality to shuffle the affected areas into the alpha channel, as well as colour correct the footage based on this matte. Results vary highly with the given shot, it always needs a bit of fiddling around. I highly recommend watching the tutorial to understand the underlying principle.

Needs Nuke 12 for the C_Bilateral node.

DeflickerVelocity NKPD

Author: Julien Vanhoenacker

Deflickering

Part of the CG artist's job is to balance rendering time and quality. Low rendering quality often resulting in aliasing, or flickering, specially on raytrace renderers. To find the right balance means to test render with different settings in order to find the one that render the fastest while still being acceptable in terms of aliasing and flickering. But this is time consuming and
the render time necessary to achieve this result might also be quite high. It is therefore interesting to find tricks to improve quality with equal or even lower render times. It is possible to use built-in denoisers, however this becomes useless if the flickering happens on the edges of the objects, or if it is on wide GI artefacts (as in lightcache or irradiance GI), and tends to make the image blurry. The technique we present here is deflickering based on previous and next frames.

Basic Deflickering

Consider this, a static or very slow camera movement, and slow or no animations in the scene. This is a scenario where flickering will be most obvious as very little is changing in the scene. This is also a scenario where deflickering is the easiest to achieve. Offset time by -1 frame to get the previous frame, merge it at 50% on top of your current frame, Offset time by +1 frame to get the next frame, merge it at 33% on top of your previous result and voila! Your compositing is now averaging previous, current and next frame and as a result, flickering, aliasing and noise are decreased by 3. And because the camera and animation are not or slowly moving, the averaging is close to invisible, apart in the overall gained stability in the picture.

The Deflickering is specially useful when dealing with sharp self-illuminating object that create complex GI solutions...

Masking

Now a situation where nothing is moving in the scene is uncommon. In the case where something is bouncing around, it should definitely not be averaged, otherwise this will result in an ugly 3 frame long stepped motion blur that nobody wants. The good news is that if the object is actually moving quite fast while the rest of the scene is quiet, the flickering will most likely not be noticeable on this object, since its position, angle, lighting will be changing every frame. It is therefore ok to not deflicker it, while still deflickering the surroundings. In order to do that we can just mask it out of the deflicker.

Now nobody likes to animate roto shapes, so a quick tip to automatically mask the fast moving subject is to use the velocity pass that you have cleverly rendered beforehand. The velocity pass is actually a colored representation of the speed of each pixels, so all we have to do is to key in static (grey) pixels, key out fast (colorful) pixels and use the resulting alpha as a mask for the deflickering, the tolerance of the keying will dictate how much deflickering you want.

Deflickering with Velocity pass

Now in some cases, things are not that easy. For example a not so slow but smooth camera pan or track, or an object slowly shifting in the opposite direction will result in quite visible flickering, and would give ugly results with basic deflickering. Here we want to use the

aforementioned velocity, but not for masking anymore. The velocity channel stores in the red and green channel the velocity of a pixel as a 2D vector. Following the same principle as before, we want to offset time to get the previous frame, and use the velocity pass with a displacement node to distort this frame 'forward' and align it with the current frame. Realign the next frame 'backward' and blend the whole thing together and you get a result that is deflickered, with movement. Now this technique is quite powerful and can save your life in a tight deadline. Of course there are still limitations for super fast moving objects and very separate foreground and backgrounds, but mixing this with the previous mask technique, you can deal with pretty much anything...

Extra Tip 1:

For those who use Vray, it is important in the DMC settings to uncheck "Time independent", to enable a noise that changes every frame, otherwise averaging will still display the same amount if noise.

Extra Tip 2:

Also for VRay users, you will notice if you separate your renders into elements, that flickering is mostly in the GI pass, and sometime in reflection or speculars... The deflickering can be applied only on these passes, leaving the other passes intact...

Extra Tip 3:

You can use multiple Deflickering nodes one after another to average 5, 7, 9 or even 11 frames together, depending on your type of animation/camera move...

FillSampler NKPD

Author: Mads Hagbarth Damsbo

Website with more Details: <u>https://hagbarth.net/pixel-filling-methods/</u> Download Link: <u>http://www.hagbarth.net/nuke/FFfiller_v01.nk</u>

Great tool from Mads Hagbarth that fills or extends edges or holes in the plate.

MECfiller NKPD

Author: Matthias Eckhardt

Nukepedia link: http://www.nukepedia.com/gizmos/draw/mecfiller

Modes:

- complex: 6 directional filtering with center/axis control settings
- fast: approach like 'complex', but with no center/axis control
- rough: multidirection estimation with center/axis control

center:

- if both values are on 0, the filtering is using the overall center of the image to direct the expension towards.

- if the center gets placed, its redirecting the filtering distribution to this new middlepoint.

axis multiplier:

- specifies the amount of horizontal/vertical influence for the direction of the filling that should be used.

Axis Explanation:

In general the tool splits up the picture in quarters and applies a downsizing with a custom filter based on the direction from the specified center. Red for example filters more from the top left while yellow filters more information of the picture from the bottom up. If the axis multiplier is very low it only takes a very small amount of vertical/horizontal direction into account. If the axis multiplier is higher it filters more directly from the top/bottom or left/right which creates a more pointed fill estimation. This value generally can be adjusted to try to find a nicer overall filling.

This hole approach is based on Mads Hagbarth's FFfiller tool. He wrote an article about it that can be found on his homepage - check it out if you want your mind to be blown: https://hagbarth.net/pixel-filling-methods/

7.) Keyer

apDespill AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Website download: <u>http://www.adrianpueyo.com</u> Vimeo demo: <u>https://vimeo.com/208432912</u> Nukepedia Link: <u>http://www.nukepedia.com/blink/colour/apdespill</u>

Nuke gizmo made to despill an image, with options to despill any hue (and not only the primaries), select different algorithms for de/re-spilling, and protect tones from the despill. All coded in Blinkscript.

- choose a custom color
- Despill math
- output a despillMatte
- swap colorspaces before/after
- despill in log Space
- adjust hue before/after
- adjust tolerance
- Protect tones for extra level of precision
- adjust respill color
- mask/mix

SpillCorrect SPIN

Author: SPIN FX

Github link:

https://github.com/SpinVFX/spin_nuke_gizmos/blob/master/gizmos/spin_tools/Keying/Spill_C orrect2.gizmo

Vimeo demo: https://vimeo.com/381270956/f7399b6e1d @ 33:07

Use this tool to "despill" or mute colors introduced from Red/Green/Blue screens. Can replace the spill with a chosen color.

DespillToColor NKPD

Author: Johannes Masanz

Authors website: www.johannesmasanz.com

Nukepedia link: <u>http://www.nukepedia.com/toolsets/colour/despill-to-color</u> Demo video: <u>www.vimeo.com/despillToColor</u>

If you are trying to fix an object's edge, by bringing back its original color, then this tool is perfect for you! DespillToColor is designed to work best with a specific user defined screen color and therefore a good local solution for certain areas of your plate.

- pick a blue- / greenscreen color - set or pick a target color.

- 'balance' controls how much red tones are being affected by the despill operation opposed to blue and green tones.

- Increasing the 'gain' will affect a wider range of colors, like the finetune knob in DespillMadness.

- 'erode' and 'falloff' sometimes work well for increasing the effect in defocussed areas. I usually go for ramping up the 'gain' OR the 'erode', rarely both.

Example pics: (For testing I recommend blurring these jpegs a little to get rid of compression artefacts.)

http://johannesmasanz.com/files/despillToColor/greenscreen.jpg http://johannesmasanz.com/files/despillToColor/bluescreen.jpg

AdditiveKeyerPro TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Additive Keyer pro does an additive key, which finds the highs and lows from the difference of a cleanplate and the original greenscreen plate and lightens / darkens the BG image. This process is handy for capturing subtle details in edges, such as hair and motionblur. There are many additivekeyers, but this one has some unique features:

1.) The light values have a plus and BG mult sliderm, giving you more control over highlights

2.) The dark values uses a divide/multiply technique on the bg, preventing negative values

3.) Option to keep some saturation from the original colors, with a screen color picker to help remove green/blue spill from the edges if you choose to keep saturation.

4.) Options to output the difference to RGB, and difference matte to alpha, to use other comp techniques

apeScreenClean AP

Author: Adrian Pueyo

Website download: http://www.adrianpueyo.com

Clean up an irregular green or blue screen using your plate and a clean plate. apScreenClean is my own flavor of clean screen tool (ScreenCorrect, PxF_ScreenClean, ...) offering extended functionality.

apScreenGrow AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Erode the color of a screen to fill the insides of your subject, useful to generate cleanplates in a controlled way.

LumaKeyer DR

Author: Derek Rein - <u>http://derekvfx.ca/nuke/</u> adjusted by Tony Lyons <u>www.CompositingMentor.com</u>

Original Tool by Derek Rein can be found on his github page: https://github.com/DerekRein/.nuke/blob/master/ToolSets/lumaKeyer.nk

Derek's tool is a simple slider controlled luminance keyer.

Addition features added

1.) output options of the result to alpha or rgba

2.) smoothing settings which mimic the smoothstep options found in a ramp, smooth,

smooth0, and smooth1, using colorLookup curves

3.) mask and mix options

8.) Merge

ContactSheetAuto TL

Author: Tony Lyons <u>www.CompositingMentor.com</u> (based on Ben McEwan's blog post)

Nukepedia link: http://www.nukepedia.com/gizmos/merge/contactsheetauto

Full Credit goes to Ben McEwan and his very detailed blog post about powering up your contact sheets. <u>https://benmcewan.com/blog/2018/08/26/power-up-your-contact-sheets/</u>

The python script to change your knob defaults on the normal contactSheet node in your menu.py file is already here, posted by Ben: http://www.nukepedia.com/python/misc/autocontactsheet

This one is just for people who want to download the expressioned node and add it to their toolsets and not mess with any menu.py files.

Demo video: https://youtu.be/dqzzT169GAc

KeymixBBox TL

Author: Tony Lyons - www.CompositingMentor.com

Same functionality as normal keymix, but with slightly better BBox management.

Nuke's keymix node takes into account the bbox's of the A, B, and mask inputs. In most cases you want the mask bbox to be ignored and that the maximum BBox result would be max bbox of A or B, and then an intersection of both A and B when the mask bbox is smaller.

MergeAtmos TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

MergeAtmos is a merge for smoke, dust, and/or atmospheric effects. It has mixes of a merge(plus) and merge(over) exposed so you can find the right balance. The alpha of the smoke element is also driving a blur node that is simulating a bit of a diffusion effect.

MergeBlend TL

Author: Tony Lyons - <u>www.compositingMentor.com</u>

▼ 0 ₩ 4	MergeBl	end							- F	S	? 8
MergeBlend	Info M	lode									
channels set bbox to	rgba union	* met	+ adata fron	B Ted	x green range from	B T	X rgba	alpha.			
Merge1	screen 0 is Merge1	+ <>	Merge 1 is Merge	2 plus 2							
Blend	0.5			2 0	a 84		e.	0.7	0.8	0.9	-, N
mask	none						•	inject	inve	ert 🗌	fringe
mix	1			2 0	3 6.4			<u>.</u>	4.1	0.9	- N

Select 2 different Merge Operations and Blend between the 2 results

MergeAll AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Many times when we are using an extra channel in the stream to pull out later to either use as a mask, DI matte, grain matte, etc. we have to manage that channel separately.

In this example, we have a statue matte channel that we want to pull out later, and we've over'ed a colorwheel. Normally you might have to add a channelMerge and stencil the colorWheel from the statue matte channel separately. MergeAll can save you this step. It basically adds all the channels from A stream to B stream and vice versa, ensuring that before merging, both streams contain the same exact channels. Because the colorWheel in this case now contains a "statue channel" which is black, when you mergeAll, it will merge "black" where the colorWheel is in the statue channel. So when you pull out the statue channel layer, it will appear as though the colorWheel is stenciled from the statue alpha.

This is sort of what you would expect to happen when you "merge All channels" in a merge node, but because sometimes the 2 streams don't have exactly the same channels, sometimes they get ignored. This helps solve that.

9.) Transform

Math Tools MGA-EL

Authors: Mathieu Goulet-Aubin & Erwan Leroy - http://erwanleroy.com/blog/

Math Tools combines Mathieu Goulet-Aubin & Erwan Leroy's vector tools into 1 main menu Original nukepedia links:

Vector matrix toolset: <u>http://www.nukepedia.com/toolsets/transform/vector-matrix-toolset</u> Vector Tools: <u>http://www.nukepedia.com/toolsets/other/vectortools</u> Collaboration Github link: https://github.com/mapoga/nuke-vector-matrix

Resources to learn about Vectors and Matrices:

Most tools in this toolset are mathematical tools and require some basic knowledge about Vectors and Matrices for optimal use.

Math is Fun: Scalar, Vector, Matrix Wikipedia: Transformation Matrices Nukepedia: Python Vector and Matrix Math Nukepedia: The Matrix Knob

Erwan Leroy's tool description: http://erwanleroy.com/vector-tools-for-nuke-tutorials-and-math/ http://erwanleroy.com/vector-tools-for-nuke-tutorials-and-math-part2/ Introduction:

The toolset is separated into 2 categories. One to operate on vectors3 and one to operate on 4x4 transformation matrices. Every pixel can be worked on independently because each can have its own vector and matrix data.

Math Menu:

Axis Menu:

InvertAxis MT

Inverts an input Axis

ZeroAxis MT

Inverts an input Axis at a specified frame

Matrix4 Menu:

Matrix data is expected to be in the layers; matrix0, matrix1, matrix2 and matrix3. Layers are automatically created by the nodes. The transformation matrix is stored as followed: LayerName: red[0], green[1] ,blue[2], alpha[3] matrix0: [0, 1, 2, 3, matrix1: 0, 1, 2, 3, matrix2: 0, 1, 2, 3, matrix2: 0, 1, 2, 3]

InvertMatrix4 MT

Invert a pixel based Matrix4 (Defined as layers matrix0, matrix1, matrix2 and matrix3) Returns the inverted input 4x4 matrix. input: matrix output: matrix

ProductMatrix4 MT

Multiply two pixel based Matrix4 (Defined as layers matrix0, matrix1, matrix2 and matrix3) Returns the dot product of matrixB * matrixA.

The matrix order is very important as switching A and B will give different results. inputs: matrixB, matrixA output: matrix

RotateMatrix4 MT

Returns the input 4x4 matrix rotated by the input vector. The rotation unit knob specify the rotation unit(degrees or radians) of the input vector. The rotation order knob specify the order in which the axes are rotated inputs: matrix, vector output: matrix

ScaleMatrix4 MT

Scale a matrix4 using a control channel (rgb from vector input) for which each channel is considered as a scalar for x, y and z Returns the input 4x4 matrix scaled by the input vector. inputs: matrix, vector output: matrix

TransformMatrix4 MT

Returns the input 4x4 matrix transformed by the the node's knobs. If no matrix is given, the transformations will be made on a identity matrix. input: matrix output: matrix

TranslateMatrix4 MT

Translate a matrix4 using a control channel (rgb) for which each channel is considered as a scalar for x, y and z Returns the input 4x4 matrix translated by the input vector. inputs: matrix, vector output: matrix

TransposeMatrix4 MT

Transpose a pixel based Matrix4 (Defined as layers matrix0, matrix1, matrix2 and matrix3) Returns the input 4x4 matrix transposed. Values of the matrix are mirrored diagonally. inputs: matrix output: matrix Vector2 Menu: (for 2D vectors)

Vector data is expected to be in the layer rgb. (r, g) = (x, y)Operations like vector addition, substraction, multiplication and division can be done with a standard merge or merge expression node.

CrossProductVector2 MT

Calculates the cross product of 2 Vector2 inputs. Returns the cross product between 2 vectors. input: vectorA, vectorB output: vector

DotProductVector2 MT

Calculates the dot product of 2 Vector2 inputs. Returns the dot product between 2 vectors. The resulted output is repeated to fill up the output vector. inputs: vectorA, vectorB output: vector

MagnitudeVector2 MT

Calculate the magnitude (scalar) of an input Vector2. Returns the magnitude of a vector. In other words, the vector's length. The resulting output is repeated to fill up the output vector. input: vector output: vector

NormalizeVector2 MT

Normalize the magnitude of a Vector2 (to be of magnitude 1) Returns the normalized vector. Scaling the vector so that its length equal 1. input: vector output: vector

RotateVector2 MT

Rotate a 2D vector on the same 2D plane. A utility to rotate 2D vectors such as motion vectors, and flip them if necessary

TransformVector2 MT

Transforms an image assuming it is a motion vector in RGBA.

Compared to a regular transform, this will edit the pixel colors to compensate for vector direction and magnitude.

Warning: This node breaks concatenation.

Like Nuke's default transform, but will rotate vectors and scale them accordingly.

Vector3 Menu: (for 3D vectors)

Vector data is expected to be in the layer rgb. (r, g, b) = (x, y, z) Operations like vector addition, substraction, multiplication and division can be done with a standard merge or merge expression node.

CrossProductVector3 MT

Calculates the cross product of 2 Vector3 inputs. Returns the cross product between 2 vectors. input: vectorA, vectorB output: vector

DotProductVector3 MT

Calculates the dot product of 2 Vector3 inputs. The resulting output is repeated to fill up the output vector. inputs: vectorA, vectorB output: vector

MagnitudeVector3 MT

Calculate the magnitude (scalar) of an input Vector3. Returns the magnitude of a vector. In other words, the vector's length. The resulting output is repeated to fill up the output vector. input: vector output: vector

MultiplyVector3Matrix3 MT

Multiply (transform) a Vector3 by a Matrix3. This is the equivalent of applying Rotation/Scale/Skew from a Matrix to the vector. A Matrix4 can be used, but the last row/column will be ignored.

NormalizeVector3 MT

Normalize the magnitude of a Vector3 (to be of magnitude 1) Returns the normalized vector. Scaling the vector so that its length equal 1. input: vector output: vector

RotateVector3 MT

Rotate a Vector3 in 3 dimensions. A utility to rotate vectors such as motion vectors, and flip them if necessary.

TransformVector3 MT

Transform a Vector3 in 3 dimensions.

Generate Menu:

GenerateMatrix4 MT

Generate a Matrix4 based on a Matrix Knob. (Defaults to an identity matrix) Matrix data is expected to be in the layers; matrix0, matrix1, matrix2 and matrix3. Layers are automatically created by the nodes. The transformation matrix is stored as followed: LayerName: red[0], green[1], blue[2], alpha[3] matrix0: [0, 1, 2, 3, matrix1: 0, 1, 2, 3, matrix2: 0, 1, 2, 3, matrix3: 0, 1, 2, 3] Returns an 4x4 identity matrix. The input bg is used to give a format to the matrix. input: bg output: matrix

GenerateSTMap MT

Generates a default UV map at any resolution. Can be used to run through a lens distortion in another software or any sort of distorion that can then be re-applied with an STMap node. Options for generating overscan STMap data

Convert Menu:

LumaToVector3 MT

Performs a Sobel filter on the Luminance channel of an image to extract an approximation of a Normal map. For a mathematical conversion of a displacement map to normals, do not use Details separation. Converts any image to normals, using it's Luma Channel. Provides most accurate results used on displacement maps or Zdepth passes.

STMapToVector2 MT

Transforms a distorted UV Map to Motion Vectors corresponding to the distortion. Converts a distorted UV map to motion vectors.

Vector2ToSTMap MT

Converts 2D Vectors to an UV map.

Vector3ToMatrix4 MT

Converts 3D vectors to a 4x4 Matrix Matrix data to be in the layers; matrix0, matrix1, matrix2 and matrix3. Layers are automatically created by the nodes. The transformation matrix is stored as followed: LayerName: red[0], green[1] ,blue[2], alpha[3] matrix0: [0, 1, 2, 3, matrix1: 0, 1, 2, 3, matrix2: 0, 1, 2, 3, matrix3: 0, 1, 2, 3] Returns an 4x4 identity matrix.

vector3DMathExpression EL

Author: Erwan Leroy - http://erwanleroy.com/blog/

A NoOp node with expressions to calculate a 3D vector between 2 3D points, as well as it's magnitude.

http://erwanleroy.com/vector-tools-for-nuke-tutorials-and-math/ http://www.nukepedia.com/toolsets/other/vectortools

Vectors_Direction EL

Author: Erwan Leroy - http://erwanleroy.com/blog/

An utility to rotate 2D vectors such as motion vectors, and flip them if necessary. angleRad = radians(parent.rotation) r = r * cos(angleRad) - g * sin(angleRad)g = r * sin(angleRad) + g * cos(angleRad)

http://erwanleroy.com/vector-tools-for-nuke-tutorials-and-math/ http://www.nukepedia.com/toolsets/other/vectortools

Vectors_to_Degrees EL

Author: Erwan Leroy - http://erwanleroy.com/blog/

Gives you an angle value (0-360) for a given channel. Can be used to generate Anisotropy maps from vectors for CG

http://erwanleroy.com/vector-tools-for-nuke-tutorials-and-math/ http://www.nukepedia.com/toolsets/other/vectortools

VectorTracker NKPD

Author: Jorrit Schulte

Author's website: http://www.jorritschulte.com/nuke-tools/

🔻 o 🗯 🖞 Vector	Tracker1					N) M	C I	5 ?	8	×
VectorTracker Node	3									_
< ∢ ►	►		export	trackers	?					
樹										-1
add tracker rer	nove all tracker	rs enable	all di	sable all						
🗙 tracker1 × 745	y 1015	area	1)	4 20		40 50	2 ~	×	
🗙 tracker2 x 995	y 745	🖉 📈 area	1		10 20	36 C	48 - 58	2 ~	×	

This is a tracker gizmo that uses vector information rather than image data to track points. This is useful for certain tracking jobs that are otherwise hard to accomplish. Think of shots that constantly shift focus, or tracks on objects that deform.

This gizmo works with both classic nuke vectors or smartvector data.

If you use smartVectors live, make sure to add a VectorToMotion node after the smartVector and plug the vector input into this to register.

Simply render out either classic nuke vectors or smartvectors, and use this tool to generate tracker points. you can try using a VectorGenerator node to generate live vectors instead, but due to the way nuke and python sample image data this wont always work. the points are exported to a regular Tracker node.

It is look for motion, forward, backward, backward channels, or a vectorGenerator / smartVector(plus VectorToMotion) nodes for the vector input.

AutoCropTool TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

		2048,1080		
		2K_DCP	7382	2K. DCP
🔻 o 🗰 🐓 Auto	CropTool		5 × -	
AutoCropTool Noo	de			
By: Tony Lyons v02				
Operation:				
channels	alpha 🔭 🔀 alph	a none ·		
Pre-Reformat Scale				
type	scale *		an and a second s	
scale	0.05 Go!	а. т. т. т. от.	2 100	
Adjust Final BBox				
Add Pixels	20	48 50 80 70 85 90		
Output BBox				

AutoCropTool runs a curvetool node autocrop process on a scaled down single channel version of the input image. Use this to generate a quick bounding box on CG renders or other elements without a defined bounding box. Keeping your bounding box tight and isolated to only the important part of the frame will save processing time in nuke.

BBoxToFormat TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

🔻 💿 🗰 🐓 Be	BoxToFormat				S? F×
CropBBox Info	Node				
	intersect	Black Out	tside		
Overscan Type:	Pixels				
Overscan	0				800 400 2 N
BBox Data					
Input Format	× 0	y 0	r O	t o	wh 📈
Input BBox	× 0	Y 0	r o	t 0	wh 📈
OutputBBoxCenter	× 960	y 540			
Output BBox	× 0	Y 0	r 1920	t 1080	wh 📈
					-11

BBoxToFormat sets your bbox exactly to the input format.

You also have options for either a percentage overscan or pixel based overscan. This is a good way to manage your bbox while keeping some extra overscan for distortion or cameraShake, etc when you are using CG with overscan or additional elements. The intersect option will the the intersection of the input format with the input bbox.

Exposed data for input format, input bbox, output BBox Center, and Output BBox in a group tab because sometimes it's useful to reference.

ImagePlane3D

Author: Tony Lyons

🔻 💿 🗰 😫 İn	nagePlane3D								S	?	ē ×
ImagePlane3D	Node										
Output:	Stabilize										
Result:	3D Projectio	on Setup									
Status:	Is NOT Bake	d									
	Bake Frame	Range	Clear B	aked							
	Export Bak	ed Track	Export	t Link	ed Tr	ack					
Ref Frame	1001	Set Re	f Frame								
DistanceFromCam	500				400		600		810	1992 190	2
Overscan											
Overscan	0		1. 1. 1.	80	80			240		1 10 - 30	N
MotionBlur											
samples		+		20		1.0					\sim
shutter	0.5	0 03	<mark>-</mark>	0.0	2.8			1.4	1.0	3.0	2
shutter offset	centred 🝷										

Based off the great imagePlane tool by Frank Rueter on nukepedia: <u>http://www.nukepedia.com/gizmos/transform/imageplane</u>

The original imagePlane node seems to have a problem with stabilizing the image, and then reverting the stabilized image back to the original position by matchmoving. Unfortunately, not being about to reliably restore the stabilized image back to the original position meant your rotos and prep work or whatever positioning you were doing was not guaranteed to matchmove back into the original footage. This tool aims to solve this problem and offering a few extra features.

Output: Choose between stabilize and matchmove

Result:

3D Projection Setup - this is using 3d nodes, cards and camera projections to guarantee no funkiness and that the stabilize/matchmove process will be reversible. Unfortunately the 3d projection setup will be the slowest option, but it will be a clean preview

card3D setup - this is using the same method as the original imagePlane node, for some reason, this method creates the problem of stabilizing and reversing the movement when matchmoving. It is however very fast because there is no 3D scanline render and calculates as a 2d cornerpin. This will either give you identical or very similar results to the 3D projection setup but is prone to this "unreversible" result. Good mode finding the stabilized distance quickly.

Live (Reconcile 3D) - This is by far the fastest calculation for this stabilization process and is recommended for quick previews and finding the stabilization distance. However when using nuke's reconcile 3D node with live points, it get's very buggy. Some frames are black, other frames 'explode' and seem to lose the 3d points for reference. Proxy mode or lower resolution preview will be buggy or not work. In theory it should be the exact same result as the 3d Projection setup, so the stabilization/matchmove workflow is in tact, but it's very buggy, especially when rendering. Do not leave on this live mode, purely use it as a quick preview to find the stabilization distance and ensure accuracy.

Baked (Cornerpin) - When you bake the framerange, it will switch to this mode in order to same calculation time, and to eliminate the bugginess of the stabilization/matchmove workflow from the "live" previews

Status: will tell you the status of the node, whether it is Live or baked (and what framerange)

Ref Frame: This frame is the stabilization pivot frame of the stabilization/matchmove and will be unaffected / have zero transformations

Distance from Cam: This number is the distance from camera in nuke units to place the stabilization card. Sometimes you roughly know the distance from the camera that the object you are trying to stabilize is, and other times you can just eye ball distance by move away from your reference frame in the timeline and changing the distance until object remains in the same position in the screen as it was in the reference frame. Using the color picker to 'save' a position can sometimes help you line up the object position over multiple frames.

Bake FrameRange: This will create a baked cornerpin based off the ref frame and distance from camera. It's recommended to run this once you are happy with your stabilization result because it will not only be less prone to nuke's bugginess from the other live setups but it will also be a lot faster since it is baked and not calculating anything live with expressions or 3D setups. Warning: this may take awhile as it is running a reconcile3D for each of the 4 points over the desired framerange. Large frameranges can take some time, and unfortunately there is no feedback on how long it is taking, so nuke may appear to freeze. Just be patient and it will work, normally it is a very fast process.

Clear baked: Clears the keyframes and reverts the node back to live. Sets to default

Export Baked Track Export Linked Track: These 2 buttons are acting like the export cornerpin button in nuke's 2d Tracker node. They will export a cornerpin node that is stabilized or matchmoved (depending on the output you have selected). This way you can use the cornerpin elsewhere in your script and won't have to duplicate this 'heavy' node. Please node, expression linked cornerpin, while convenient, will be slower in nuke to calculate than a baked result, so choose wisely

There are some additional settings i have added to the cornerPin node for convenience of use for you.

There are controls for settings and changing the reference frame that you want. And also 2 buttons to switch the cornerpin between stabilize and matchmove.

Overscan: A simple setting to manage your bbox and set an overscan allowance (in pixels). This will be important when distorting and undistorting your image. Once you bake the cornerpin this shouldn't matter too much, mostly for the 3d projection setup scanline render overscan

Motion Blur: Ability to add motionblur for your matchmove result based on either samples on the scanline render or motion blur knob on the card3D or cornerpin node. Depends on the 'result' mode you choose

Matrix4x4_Inverse TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

🔻 O 🛶 🐓 Mat	rix4x4_Invers	e			2.16 ×
MatrixInverse Ch	eck Result: I	dentity Matrix			
Input Matrix From:	world •				
Input Matrix A	0.97154939	0.10293522	0.21329823	4.22332191	
	0.1386693	0.97733277	0.15997382	2.03966498	
	-0.1919964	-0.16500039	0.96380097	-0.8658527	
	0	0	0	1	
Result					
Matrix A Inverse	0.97154938	-0.1386693	-0.1919963	-3.98656744	
	0.10293522	0.97733262	-0.1850003(-2.5883427	
	0.21329622	0.15997381	0.96380091	-0.3926103	
	0	0	0	1	
Export Inverse Axis					
	FrameRange				
	FrameRange	(Linked) Fr	rameRange (I	Baked)	
	Static Frame				
Ref Frame	1001	Set to Curre	ent Frame		
	Static Frame	(Linked) S	tatic Frame (I		

Matrix4x4_Inverse is a node that takes a node with a 3d transformation matrix, such as cameras, cards, axis, transformGeo, etc, and produces the inverse matrix. This inverse matrix can be used to return the 3D object to the origin (aka to the identity matrix). Sounds really complicated but an easy way to comprehend it is this node stabilizes and returns the 3d object to the origin, where you can then transform it to a new position. Like a 3D 'Stabilize' and then 'matchmove' technique.

Plug the node into the 3d node or chain of axis' or cameras with transformGeo, etc. Be sure to choose between the input matrix being either the world matrix or local matrix. Local matrix is only taking into consideration the transformations of that specific input node. World matrix takes into consideration the actual position of the object in 3D space, or the 'totality' of all concatenated 3d transformations (real position).

You can choose to export an Axis node with the inverse matrix either linked or baked and either over a framerange or on a single reference frame.

Matrix4x4_Math TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Matrix4x4_Math does some basic matrix math between matrix A and matrix B.

Operations are: Add, Subtract, Mult

Choose between local and world matrices of the inputs.

You can expression link the resulting matrix (matrix C) to other nodes' local matrix

MirrorBorder TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

MirrorBorder mimics Adobe AfterEffect's Motion Tile effect. It will tile and mirror the frame around the border of the input format, mostly to be used to produce extra edge pixel details for camera shake. This can avoid either a black edge or stretchy pixels around the edge of frame when adding camera shake.

The tile region is either the input format or input bbox. Tile amount is expansion amount in pixels.

Choke edges refers to cropping the edges in a bit before mirroring them. Left, Right, Top, Bottom choke sliders available.

TransformCutOut TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

TransformCutOut takes the masked area of the image and transforms it and overs it (disjoint-over) back onto the image. Useful for masking an object and placing it somewhere else.

This is different to the transformMasked node which essentially moves the image around 'inside' of the masked area. This node will cut out the masked area, and over it back after the transformation, leaving a hole where the original mask was.

Buttons to set center pivot to either the center of the input format or the center of the mask bounding box, which is meant to compliment rotoshapes that have their own BBox that you will likely use as the mask input. So this option will snap the center pivot to the center of the rotoshape/mask input.
IMorph TL

Author: Tony Lyons - www.CompositingMentor.com and Adrian Pueyo www.AdrianPueyo.com

IMorph is a spin-off of MorphDissolve from Erwan Leroy and SPIN FX gizmo set. It's also inspired by the TimeMachine gizmo by ivan busquets. Here are the links to those nodes:

http://www.nukepedia.com/gizmos/transform/morph_dissolve http://www.nukepedia.com/gizmos/time/timemachine

MorphDissolve uses 2 images and has a slider from 0-1 to determine how much morphing there is. IMorph, similar to IBlur or ITransform, uses a Mask input to determine where image A is shown and where image B is shown and then morph-dissolves in steps from A to B in between, which produces really smooth transitions from 1 image into another.

RP_Reformat MJT

Author: Mark Joey Tang - www.facebook.com/MJTlab

Nukepedia link: <u>http://www.nukepedia.com/gizmos/draw/rp-reformat</u> FaceBook Link: <u>https://m.facebook.com/MJTlab/posts/628051737776651</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Video about this tool : <u>https://youtu.be/vGZ6kNnOcTs</u>

Reformat Roto & RotoPaint node's vector data without resolution issue. Keep the same result on any paint strokes. Support all kinds of splines, brushes and aspect ratio reformat.

How to use:

Fill in the old resolution of the Roto/RotoPaint was done before.

Fill in the new resolution.

Selected which type of resize to process (This depends on how's the plate resize) Select all the Roto/RotoPaint node(s) *Support mult-select

Click 'convert roto/rotopaint node(s)' . Then the new generated node will be placed next to the original node(s)

* Entire process will NOT modify the original node

** The resize data will replaced on individual shape elements :
 Spline : translate, scale, center & feather
 Stroke : translate, scale, center, source translate, brush size, brush space & effect

*** Resize process will not touch any data on Layer.

InverseMatrix MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

	TO#	inverse	Matrix]		S ? 5 ×
	General	ersion 1	Node			
	knob_path					
	id	0		2		
		4	S	6	\sim	
(inverseMatrix)		8	9	10		
	determinant	0).	i i i •2 •2 •2	i i i i as as ias as	
	cofactor	0	0	0		
		0	0	0	N	
		0	0	0		
	invMatrix	0	0	0		
		0	0	0	\sim	
		0	0	0		
						- 4

Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Inverse Matrix provide the calculate output of matrix inverse, which is c44matrix and colorMatrix doesn't show the result. It handy for using this for deep expression which is heavily use in deepExpression.

How to use :

- fill in knob_path of the node with matrix. e.g. camera1.world_matrix

- id is reassign 4x4 matrix to 3x3 matrix. Default value already good for rotation and scale inverse

- don't have to do anything for the rest of the knob. Inverse matrix result will be shown in invMatrix knob

CardToTrack AK

Author: Alexey Kuchinski & Helge Stang

Nukepedia link: <u>http://www.nukepedia.com/python/3d/cardtotrack</u> Video Demo: <u>https://youtu.be/N-_M2IJWpe4</u>

Finding position in 3D space based on Geometry, World position pass, Deep or manual method. Reconcile 3D position to CornerPin, Transform and Roto nodes.

*Calculation from an Axis: Many times we provided with an animated Axis, in previous version i was copying values from an Axis to the card and calculating, the problem is that if by default an axis had an unfortunate rotation like 90 degrees to the camera it was impossible to adjust it. With the Axis option you can connect a few Axises together and Card to track will calculate the animation from the world matrix of the Axis you connected to with CardToTrack.(Supports animated Axises)

*Calculation from Deep: Connect your Deep footage to the Extra input. (The position sampled on the reference frame and can not be animated)

*UI changes: Knob Groups are presented only if they are relevant.

CProject AK

Author: Alexey Kuchinski

i and a second			() () () () () () () () () () () () () (
			User Frendfill Bode
			hurde's chaliness o stationes (hurdes statistics o structures (
			North + 132346204 + 1988.830000 (_ North + 820.880010 + Kin.482084 (_
	Manager and a state of the stat		Tool & Exchanged & Reactioned (1) and a mark solution a mark solution (1)
BUD1 740 400			Contraction and a second of the second se
	and the second s		
	anna anna		
-			
and the second se	and a second sec		
and the second sec			
bor Job			
be (type of)			
R2 charrelat rgfm	a=636 y=+158	•	
	140 230 240 100 100 100 100 100 100 100 100 100 1		
e. 14 14 14 14 14		00ê 🕹 👘	
	🔨 🖮 🖞 CProject	02 5	7 m x
	CProject From/To Node		
	freeze input		
	set current as reference frame or set reference frame 69		
	stabilize		
	motionblur 0		
CProject	shutter 0,5		
Chroject			
	crop Hard Crop *		
	tip Image is cropped to Input, Concatenation preserved.		
	element: elem		

Nukepedia link: <u>http://www.nukepedia.com/python/3d/cardtotrack</u> Video Demo: <u>https://youtu.be/N-_M2IJWpe4</u>

CornerPin matchmove/stabilize meant to be used with CardToTrack tool.

Allows you to set frame, switch between stabilize and matchmove, add motion blur, and 3 different BBox management settings:

Hard Crop - (reformat node - concatenation is preserved)

Adjustable crop - breaks concatenation but allows for adjustable bbox

No Crop - no crop applied at all, concatenation preserved but bbox can get quite big

Set to input: This will distort the image with the corner pin to fit the format, it is the same as projecting the image on a card and rendering in UV space

TProject AK

Author: Alexey Kuchinski

Ause Proverbe Note Norm-A STATUTERER PARAMETER V RELATIONER (Norm-A STATUTERER V RELATIONER V RELATIONER (Norm-A STATUTERER V RELATIONER V RELATIONER (NORM-A STATUTER V RELATIONER V RELATIONER (NORM-A STATUTER V RELATIONER (NORM-A STATUTER V RELATIONER (NORM-A STATUTER V RELATIONER V RELATIONER (NORM-A STATUTER V RELATIONER (NORM-A STATUTER V RELATIONER (NORM-A STATUTER V RELATIONER V RELATIO	
Notes + Statistics + Mediantes - Mediantes	
THE PART AND A DESCRIPTION OF THE PA	
22 denvelu rgla • e-¢14 e+152 • •	
Y O W V Chroject U V S 7 4 X	
CProject From/To Node	
freeze input	
set surgent as reference frame, or set reference frame, 69	
1 Set to Input	
stabilize	
motorhiur 0	
crop Hand Crop	
crop Hand Ocep * tip Image is cropped to Input, Concatenation preserved.	
crop Fland Ocep * tip Image is cropped to Input, Concatenation preserved.	

Nukepedia link: <u>http://www.nukepedia.com/python/3d/cardtotrack</u> Video Demo: <u>https://youtu.be/N-_M2IJWpe4</u>

TProject is similar to CProject but uses a Transform instead of a CornerPin to do a basic single point track.

Allows you to set frame, switch between stabilize and matchmove, add motion blur, and 3 different BBox management settings:

Hard Crop - (reformat node - concatenation is preserved)

Adjustable crop - breaks concatenation but allows for adjustable bbox

No Crop - no crop applied at all, concatenation preserved but bbox can get quite big

Set to input: This will distort the image with the corner pin to fit the format, it is the same as projecting the image on a card and rendering in UV space

TransformMatrix AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

		TransformM	latrix				366	S 1	1 8 ×
	Transform	@ Node							
n s f	translate	× o y o	o]/						
	rotate	0							M
		0		1. A.				v V ny	
	scale	1						80: 95/200	
(x) Im a t	Skew A	0							
	center	x0 y(0	center in the	e img				
		Invert							
(×) 2D		This is just a visu	alization. Can	't modify direct	ly this ma	atrix			
	visualize	Translation-Rota	tion-Scale 🔻	🕱 transpose					
1 100 T. H. D. D. S. S. A.C. S. C. D. M.	matrix	1 0	0	0					
		0 1	0	0		1			
		0 0		0					
		0 0	0						
	cosθ	1					1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (- 1 _2
	sinə	0		1.3 I.A					

Nukepedia link: <u>http://www.nukepedia.com/gizmos/transform/transform-matrix</u> Andrea's Transform Matrix tutorial: <u>http://www.andreageremia.it/tutorial_matrix_transform.html</u>

Classic Transform node with a Matrix 4x4 Modified the Transform node of Nuke, adding a Matrix 4x4. Now you can visualize the 2D Transformation with a Matrix.

This Matrix is good because you can understand how it works, but at the same time copy/paste the matrix to the extra_matrix knob in the CornerPin (for example).

V 0 =	9 Transfo	rmMatrix				C S	7 @ ×		CornerPir	12D				S	7 6 8
Transform	Node							CornerPin2D	From	User Node					
translate	× 600	Y 800						tol	× 0	v 0	🔣 🗶 er	able1			
rotate								to2	× 2048	y û	📈 🗙 er	able2			
rotate Rad	-0.6457718							to3	× 2048	y 1556	📈 🗙 er	able3			
scale	0.55							to4	× 0	y 1556	📈 🗙 er	able4			
skew X	0								Copy from						
skew Y								extra matr	ix						
center	×o	Y 0	↓ √ cente	r in the img					0.4392495	2 0.33099827	0	600			
	invert								-0.330998	0.43924952	0	800	191		
									0	0	1	0			
visualize	Translation-	Rotation-Scal	e 🔹 🗙 tran	spose					0	0	0	4			
matrix	0.43924952	0.33099827		600					invert						
	-0.33099823	0.43924952		800				filter		 clamp 1 	black out	de			
	0							motionblur	0.	A House and the second					
										1					
								shutter offset		1 W					

CornerPin2D_Matrix AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

Nukepedia link: <u>http://www.nukepedia.com/gizmos/transform/cornerpin-matrix</u> Andrea's Transform Matrix tutorial: <u>http://www.andreageremia.it/tutorial_matrix_transform.html</u>

Get the classic CornerPin node in a Matrix 4x4

There is a checkbox useful to invert the Matrix. In this case we can copy the matrix in another CornerPin and the copy the inverse matrix in another CornerPin. The final result will be the original picture

IIDistort EL

Author: Erwan Leroy http://www.erwanleroy.com

Nukepedia link: http://www.nukepedia.com/blink/transform/iidistort

Recursive IDistort, produces similar results as Substance Designer's Vector Warp/Morph.

Built with Blinkscript, this is a very easy kernel to breakdown for beginners. The code is almost identical to Mads Hagbarth Damsbo's example code in his Foundry talk https://www.youtube.com/watch?v=p3Lv7ThKbUk

I find the distortions created from it sometime smore interesting than from a regular IDistort. the tool will be included with the Nuke Vector Matrix toolset available here: https://github.com/mapoga/nuke-vector-matrix

CameraShake BM

Author: Ben McEwan - https://benmcewan.com/blog/

▼ 0 ₩ ¥	bm_Came	eraShake					S 1	? @ ×
Options Jitte	r Shake	s Float	Info	Node				
	Test	Noise Ty	vpe fBm		Ŧ			
Global Amount	1							-
CONTR	lols							
	🗙 Jitter	1		j.				-
	X Shake	1						- 2
	🗙 Float	1		1	2			N
EDGE	СОМРЕ	NSATI	N C					
► MÓTIO	N BLUI	ι						
	Load these	values int	o the curv	ve edito	r to viev	v the ov	erall an	imatior
	× -2	y 8	0					

Nukepedia link: <u>http://www.nukepedia.com/gizmos/transform/bm_camerashake/</u> Ben's Website: <u>http://benmcewan.com/nukeTools.html</u>

A replacement for Nuke's default camera shake node -- offers more control over 3 different frequencies of camera shake, and also shakes the centre-point, giving more detail to sub-frame motionblur. Also has options for how to deal with edge-of-frame pixels, so pushing in isn't always your best option anymore!

MorphDissolve SPIN

Author: SPIN FX and Erwan Leroy - http://erwanleroy.com/blog/

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/transform/morph_dissolve</u> Github Link: <u>https://github.com/SpinVFX/spin_nuke_gizmos/blob/master/gizmos/spin_tools/Comp/Morph_Dissolve.gizmo</u> Erwan's Write up: http://erwanleroy.com/morph_dissolve-gizmo-for-nuke/

Allows to morph between two moving plates automatically, or can be used to improve manual Morphs. Inspired by Avid Fluid Morph or Adobe's Morph Cut.

Inspired by Avid Fluid Morph or Adobe's Morph Cut.

Will work best on visually similar plates or for invisible jump cuts. The more different the two plate to morph, the more artefacts will be present.

Can be used to improve manual Morphs (splineWarp or Gridwarp) by feeding the distorted A in one input and the distorted B in the other input. The Morph_Dissolve will look for the small details you may have missed or ignored with your manual morph.

ITransform FR

Author: Frank Rueter

	🔻 o 👾 🐓 ITransformU 📃 🗹	S ? # ×
	Transform Node	
COLLARS AND COLLARS AND	channels all	
ANTERIAL ANTERIAL M	Black Outside Before?	
	translate × 0 y 0	
	rotate 0	
	scale 1	2 /
	skew X 0	** ** ** <u>~</u>
	skew Y 0	14 Br 13 [N]
	center × 1220 y 901 📈 Set Center	
	filter Cubic *	
	clamp	
	Crop To Format Black Outside After	
	Add Pixels 0	10 AT 10 AT 10 AT 2 N
	mix 1	

Updated version of Frank Rueter's Itranform tool on nukepedia, link here: <u>http://www.nukepedia.com/gizmos/transform/itransform/</u>

mask based warper with transform controls

Updates include:

Channels: defaults to all channels but you can select channel to warp
Set Center Button: Click to set to the center of the root.format or the input.format
Black Outside Before/After: Click to apply a black outside before and/or after the warp, this can eliminate unwanted stretching edge pixels because of bounding box issues.
Crop To Format and Add Pixels: More options for BBox management
Mix: Using a transformMasked node instead of a transform, so the node is able to mix the warp effect

Otherwise the node reacts the same way as the original ITransform node.

RotoCentroid NKPD

Author: Alister Chowdhury - <u>http://alisterchowdhury.co.uk/?page=vfx</u>

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/transform/roto-centroid</u> Demo Video: <u>https://www.youtube.com/watch?v=McDI_gb3ycE&feature=youtu.be</u>

It tries to find out the centroid of a given rotoshape (based upon the area, NOT bounding box or average point values).

It does this using an algorithm I put together in python for finding the centroid of 2d shapes based upon their point locations.

This allows you to effectively find the center of mass of a Beziers etc.

This differs from the center of the bounding box, or average point values in that it changes depending on how the shape is distributed, so it is unbiased on the amount of points you're using.

I made this because Houdini can do this, so I felt Nuke should be able to as well.

STMapInverse NKPD

Author: Luca Mignardi - <u>www.lookinvfx.com</u>

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/transform/in_inversestmap</u>

A simple and fast solution to Unwarp to UV space your CG render

The Gizmo use a simple PositionToPoint node to redistribute each pixel in his UV space position.

Works as the nuke default STMap but does exactly the opposite. Can be used in many different ways.

Very useful especially for reference to know where to draw a roto in uv space to be then distorted via STMap to mask a particular area of your CG render.

Transform_Mix NKPD

Author: Franklin Toussaint

Tool Source Page: <u>http://franklinvfx.com/transform_mix-3/</u> This tool has two functions:

Mix mode – To decrease the resulting value of an other Transform node. Dissolve mode – To mix two Transform nodes together whis a slider.

Mode: To choose between "Mix" mode or "Dissolve" mode

Transform 1: To create a link (enter the name of the Transform reference node)

Transform 2: If on "Dissolve" mode enter the name of the second Transform reference node Mix: 0 = all the knobs go to the default value of a native Transform node

1 = the value of all the knobs becomes the value of the linked node (Transform 1) Dissolve: 0 = the value of all the knobs becomes the value of the linked node (Transform 1)

1 = the value of all the knobs becomes the value of the linked node (Transform 2) Create Transform: To create a new Transform node with the current transform value (linked or baked)

PlanarProjection NKPD

Author: Vit Sedlacek www.vitsedlacek.com

optimized and improved by Jed Smith - <u>http://gist.github.com/jedypod</u>

	- a -	🕶 🔮 PlanarP	rajection				00 8 7 5
	PlanarP	rejection Nec					
Čam .		Input 3D Posit help Set from Select	ions	om Axes			
BG		Set Animated	Set Point	target	point 2	8	
D	point 1	× 0. γ	o	2.0			
DisperDraigation	point 2	× 0. Y		2.0		Set 2	
PlanarProjection	point 3	×0 Y		10		Set 3	
	point 4	× 0. y	0			Set 4	
		Reconcile Poir	its into Se	reen Soa			
		help					
		Calculate					
	peint 1	× 0 Y	o 🛛				
	paint 2	× 0 Y	0				
	point 3	× 0 Y	0				
		× 0 Y	0				
	matrix	1 0					
		o o					
		a a					
		Identity Frame					
		1001					
		Link Tracking	Data to N	odes			
		Tracker# 1					
		× expression li	ik Indes	endent ide	ntity fram		
				Pin Corne		R GridWerp	
		developed by Vi optimized and in	Sediacek	www.vitsed Jed Smith	laceik.com - http://gk	st.github.com/jedy	ped

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/vplanarprojection</u> Updated tool Github link: <u>https://gist.github.com/jedypod/98dc18acd8008e7e5cbe</u>

Smart, better and faster Reconcile3D node. PlanarProjection Planar Projection Generates 2D coordinates for points in 3D space. Works on 4 points at once, is instantaneous to calculate, and generates a 4x4 transform matrix for use in rotos. This gizmo was initially developed as a tool for fixing drift in complex matchmove shots in post, rather than spending time to solve unsolvable shots, but during the time it served as a perfect tool for rotoscoping or cornerpining (instead of using 3d cards).

Workflow:

1) connect the camera

2) select the points in 3d viewport (you can use vertex selection mode, or move handles manually)

3) generate 2D projection points

4) generate matrix

5) use inbuild functions to generate Rotopaint/SplineWarp or GridWarp node, which is tracked with generated points

10.) 3D

aPCard AP

Author: Adrian Pueyo - <u>www.adrianpueyo.com</u>

	• o in 4	aPCard							S	? @ ×
	aPCard Node									
	input	position	• channels	P				•	unpr	emult
	Position									
	pick	0	0	D				3 ~ (ctrl+alt+	click)
1 4	mode	project *	1001	set to c	urrent					
bg pos	size									2 1
img	preview	grid + img	▼ subdiv 1	0	size 5					
aPCard	pivot	× 0	Y O	z O						
	translate	× 0	y 0	z 0						
	face camera	none								
	depth add	0	100. 40.							
	depth mult						÷		1	
	Tweak									
	Output									
	output	Image over	bg - d							
	motionblur	Ö								
	shutter	0.5								-10
	shutter offset	centred *								-2

aPCard helps you quickly place a card using CG render passes. Use either: Position Pass, Depth pass, Deep data, or geometry. Ctrl+alt click to sample image data in order to place the 3d card. From there you can set a reference frame, face the card to the camera (on ref frame or permanently) and you can choose the mode of either projection or just place the card (so the texture will be in card UV space.

When you are previewing the card placement, it provides a handy grid for quick placement and size/orientation checking.

You can also use additional deep data to do a deep holdout of the card, in case it needs to go behind/between some 3d objects

DummyCam AP

Author: Adrian Pueyo - www.adrianpueyo.com

00	Prope	rties	
▼ 0 ₩ ₩ 1	DummyCam		? # ×
Camera Proje	ction Defaults No	de	
projection	perspective 🔻		
focal	60		1 100 A
horiz aperture	24.576		
vert aperture	18.672		~
near	0.1		10 10
far	10000		- N
window translate	× 0 y 0	N	
window scale	× 1 y 1	\sim	
window roll	0		N
focal distance	2		N
fstop	16		N
	DummyCam v1.0 - ad		
		Revert Cancel	Close

Nukepedia link: http://www.nukepedia.com/gizmos/3d/dummycam

DummyCam is a Camera that apart from the matrices also grabs all the 'Projection' values from the upstream camera that it's connected to. Has a 'Defaults' tab with the knob values to use if not there's no Camera connected. It can also be used inside of groups, as many levels deep as you want. All using live and super fast TCL.

DummyCam is mainly meant for making gizmos that require a Camera input, as there is currently no other way to look for the Projection values upstream, and it is usually solved with ugly callbacks, with a Python button, or looking for the topnode, which only works as long as you don't plug an axis to the top camera, etc. Simply put it inside the Group, plugged to the cam Input node, and voilà.

Special thanks to Ernest Dios, we decyphered the undocumented parts of the code together.

mScatterGeo MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/mscattergeo</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

mScatterGeo supports scattering on geo's vertices, faces and density map in nuke. 2 rotation types available, 'look At' and 'normals'. Variation of size, rotation, texture and instance geo can be set.

v1.0 Demo : https://youtu.be/ v-6UR Mkj4 v1.1 Extract Axis Demo : https://youtu.be/CpcWB1oXdtk v1.2 Density Map Demo : https://youtu.be/EWjjN05bsS8

Origami MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/origami</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Demo video (new version) : https://www.facebook.com/MJTlab/videos/527711171052558/ https://vimeo.com/318138533

Initial intention of 'Origami' is a *just for fun* tool. Since the tool involved many setup. Then I start to build it for practical usage. It helps to build geo patch for scatter objects or form a new UV, re-build a messy wireframe photoscan geo, clone a high-end geo to low-end geo for patch or 3D reference, and also able to create interact animation. v1.2 added tangent for geo smoothness.

Here is one of the example case of using origami :

create fake new UV for texturing in nuke

https://www.facebook.com/pg/MJTlab/photos/?tab=album&album_id=415866105661883

RayDeepAO MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/raydeepao</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

A setup to render Ambient Occlusion from Geo to deep format, able to set non-renderable objects.

Create all in layers, so the main scene can interact with other geos but not holdout by them.

inputs :

cam: connect with camera node

bg: define the output resolution

msc: stand for 'main scene', which is the pirmary geo(s) to render AO. Input can be a single geo or a scene node connected to multiple geos.

ssc: stand for 'sub scene', which is setup non-renderable geo(s) but they interact with the pirmary geo(s). Input can be a single geo or a scene node connected to multiple geos. msc_tex: stand for 'main scene texture'. This input will be use when 'use texture' checked. texture required in UV space.

output :

Output is in deep format. If output vector is checked, position and normal data is also in deep format.

SceneDepthCalculator MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/scenedepthcalculator</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Demo video :

https://vimeo.com/309033461 https://www.facebook.com/MJTlab/videos/2330503703848374/

SceneDepthCalculator for calculate the depth value from camera to object. It useful for any depth tool, mostly common for rack defocus. I am also using this to drive all 2D nodes while setup template. Use lidar and camera to calculate the shot scale, and use the scale ratio to drive all 2D nodes in template base on the key shot. So it will get the consistent look from the key shot.

SSMesh MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>https://www.nukepedia.com/gizmos/3d/ssmesh</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Using Position, depth or deep data to convert screen space mesh. Since pointcloud is pixel base 3D coordinate data, and it changes on every frame. So SSMesh helps to convert those data to vector data and process any vector tools.

Demo v1.2 (added focus region demo) : https://www.facebook.com/watch/?v=493031774607125 https://vimeo.com/356083546

Unify3DCoordinate MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/unify3dcoordinate</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Unify all the 3D transformation nodes into one single coordinate value. Snap vertex supported animation, shifted pivot, and able to export translation and rotation. Solve complicated 3D transformation setup and tricky snap vertex, return in one single coordinate value.

video about the latest tool can be find here : https://vimeo.com/308083719 https://www.facebook.com/MJTlab/videos/591505891309655/

video content : Part01 - introduction & camera demo Part02 - geo demo Part03 - light demo Part04 - snap vertex on readGeo demo

When swap the Axis to Camera's upstream, the rotation applied to the camera. Then the Camera Class (Camera2) should be on 'filterNonReverse' list for Unify3DCoordinate to process.

UVEditor MJT

Author: Mark Joey Tang - blog: <u>www.facebook.com/MJTLab</u>

	UVEditor1		7 8 ×	6 .	
General No	de			N	
texture size	256			tox	
filter	Impulse •			lex	geo
antialiasing	none *				
				UVEd	litor1
wireframe size	0.1			(preview in	uv space
				all and a second	
output	preview in uv space *			N	
		Revert Cancel	Close		

Nukepedia link: <u>http://www.nukepedia.com/gizmos/3d/uveditor</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

UVEditor is simplify the steps of create uv tile or udim setup in nuke, provide the visual of uv tile in uv space of the geo, export udim texture, extract mattepainting projection in udim, paint fix the texture and map it back to the geo.

For what is uv tile / udim and how to get it works in nuke. Please check here : https://www.facebook.com/pg/MJTlab/photos/?tab=album&album_id=348648709050290

Download zip included this tool in gizmo and group format, UVEditor_demo.nk, demo geo (please re-link the geo file).

texture size - Define the texture resolution in here.

filter

- uv output has to go through scanlineRender, this filter is same as all the transformation pixel filter

antialiasing

- uv output has to go through scanlineRender, this antialiasing is same as antialiasing setting as scanlineRender

show tile number

- show the number of tile, helps for indicate udim frame.

view wireframe

- Enable this wireframe option will preview uv in wireframe instead of texture. Give user an idea of how the look of geo in uv space.

wireframe size

- The thickness of wireframe to show. Only enable when view wireframe is checked.

output

- preview in uv space

This will displace uv tile in uv space. For preview purpose.

-udim

This will separate uv tile in udim format (base on frame number start from 1001). When selected udim as output, 'export' button will able. That will scan through all available udim and return the frame range of the udim. It will generate a group with all udim combined for nuke to work with, and also a write node to show where should render if udim need to be export as texture sequence.

- uvtile

Output the uv in tile format, can map to the geo directly without any process. If user work with

uvtile for texture modification, user need to work with overscan size manually.

- uv pass

Output uv data as texture, same as 3D software will provide in render. Since the tool is working n 10x10 uv tile, so the uv pass will also support 10.0x10.0 uv data. Then user can use this to work with stmap for texture mapping.

Distance3D NKPD

Author: Falko Paeper

Nukepedia: http://www.nukepedia.com/gizmos/3d/distance3d_v02_fp

This is a pretty handy gizmo to measure the distance between two 3D objects whether its an axis, camera or geometry.

Originally built to control focus plane in 2d DOF or the cameras focus point with an axis! enjoy.

DistanceBetween_CS NKPD

Author: Christian Kauppert

	2 a a 🖉	
kok	💌 0 🗰 🐓 CS_DistanceBetween1	🗏 🖉 📭 🖓 S 7 S X
lock axis axis	CS_DistanceBetween Node	
Axis2	Object A Position × 79.3182678 y 540	
	Object B Position × 1024.76684 y 341.651580	
	Distance2D 966.030594	
look	Distance3D 6.9612136	
axis RahinctA Object8	UpdateLabel	
Camera 1 C.f.bstance3b; 956,0505941 Distance3b; 959(2)3937	CS_DistanceBetween v1.1 by Christian Schulze - www.christian-schulze.e	eu:

Github link: <u>https://gist.github.com/kpprt/a86e5c8a3a181c89e24cc45281c6d1d3</u> Christian's git gists: <u>https://gist.github.com/kpprt</u>

Calculate the distance between two 3D objects (Camera, Axis) in Nuke. 3D distance needs the two objects, 2D distance also needs a Camera input and an optional format when different from the root format.

Lightning3D EL

Author: Erwan Leroy - http://erwanleroy.com/blog/

Making 3D Lightning in Nuke using Blinkscript. Needs to be used with the HigX particle renderer by Mads Hagbarth 3D lighitng, similar to the X_tesla node, settings for look and animation of 3d Lighting.

Blog Website: <u>http://erwanleroy.com/making-3d-lightning-in-nuke-using-blinkscript/</u> Github Link:

https://github.com/herronelou/nuke_stuff/blob/master/toolsets/blinkscript/lightning_generator. nk

Demo Video: https://vimeo.com/387061845

GeoToPoints MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Blog write up: <u>https://hagbarth.net/major-bug-in-nukes-particle-system/</u> Link to tool: <u>http://www.hagbarth.net/nuke/GeoToPoints.nk</u>

Creates a point cloud based on input Geo vertices

Noise3DTexture NKPD

Author: Ben Sumner

Nukepedia link: http://www.nukepedia.com/gizmos/3d/bs_noise3d

This Gizmo outputs either the input geometry with a 3D world position noise applied as a texture, or it can output the texture itself in the UV space of the model.

Your model must have UVs!

You can output noise or textured model, either with the originally applied alpha, solid white alpha, or with the generated noise in the alpha channel.

This node is a good way to get seamless noise textures on your 3D models, or to export a texture to be used for seamless displacement.

11.) Particles

WaterSchmutz DR

Author: Derek Rein - http://derekvfx.ca/nuke/

githubLink: https://raw.githubusercontent.com/DerekRein/.nuke/master/ToolSets/schmutz.nk

WaterSchmutz is a quick and easy particle box to create floating (or static) particles with some built-in variation settings such as size and color.

Plug in a camera and an optional customSprite input.

* 0 * 4 *	aterSchmutz	l.					C S	? # X
waterSchmutz	renderSettin	gs partic	ieSettings N	ode				
boundaries	× -500	V 0	n -500		± 500	f 500		
translate	×o	y 0	z O					
rotate	1 × 0	у 0	z ()					
	spriteVic	w custor	n sprite					
start at	995							
particle density								
6i28	0.61							
size ranga	0.53							
		ticles seed	15870					
wind direction	i x 5	у б	z 6					
	🗙 wrep par							
edge fade	0.275							
turbulence scale								
turbulence stregth								
	waterSchmu DerokVFX.c	tz v1.5 18						

Sparky NKPD

Author: Dimitri Breidenbach

Nukepedia link: http://www.nukepedia.com/gizmos/particles/db_sparky

Easy to use particle setup to create sparks. Comes with a few animation presets.

Sparky is a pretty clean and simple setup to add sparks in your shot. It is a particle setup that is rendered through a ScanlineRender. The idea is that you can use it like a simple pre-rendered 2D Element coming from your favorite library, but, the main difference being that you can rotate the sparks, and give them the exact orientation you need.

This tool is delivered with an example .nk scene to see both 2D and 3D workflows. -> Axis and Cam input : While the main goal is to be a 2D pre-rendered option, you can also select to use a 3D camera to track properly with your shot. In this case, you'll have to plug your Camera and an Axis to move the sparks in the 3D space.

--> Presets : While the look of the particles is very important, the emission rate is definitely a huge part of selling the sparks look. That is why, I decided to add 6 presets that can be loaded from the second tab. These presets will ask you to provide an initial frame and will then apply an animation to the 'Emission Amount' setting.

Warning: Presets dont work in Nuke Non-Commercial due to some Python Limitation

- ---- Single Hit Heavy: Heavy hit with a double pop.
- ---- Single Hit Light : Light pop of sparks.
- ---- Welding : Expression that will mimic a natural welding feeling.
- ---- Wavy : Constant sim with some strong variation in birth rate.
- ---- Constant : Softer variation than the Wavy preset.
- ---- Loopy : Loops the same pop animation of Sparks.

--> Output As Particles : This will allow you to plug the particles into a Scene node. It will therefore not render any 2D preview anymore. If Sparky doesn't render anything, verify that you didn't check this box by error.

--> Advanced Settings : If you wish to have a wider spread of sparks, or if you decide do animate the Axis to which the sparks are attached, you can access to a few settings that may interest you here.

Video example of Sparky https://vimeo.com/420973211

The node is deep compatible if you keep it in MultiScanline mode (the default one), but if you want to be 200% sure you are in the right setting, you can check the 'Output Deep' option.

While this tool will never replace the real thing, it will definitely be more than enough when chucked in some background scene, or with some DoF or motionblur. Hopefully you will find some use for it and maybe even learn a little bit more about particles.

For any bug or suggestion, dont hesitate to contact me. LinkedIN : <u>https://www.linkedin.com/in/breidenbachdimitri</u>

ParticleLights MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Nukepedia link: <u>http://www.nukepedia.com/blink/particles/particle-lights</u> Mads' blog post: <u>https://hagbarth.net/project/particle-lights/</u> Vimeo Demo: <u>https://vimeo.com/96521727</u>

Particle Lights is a custom relight node that, enables particles to cast lights into a scene. Using the new node "ParticleToImage" introduced in Nuke8 to relight a scene using particles.

ParticleKiller NKPD

Author: Wouter Gilsing - <u>www.woutergilsing.com</u>

Nukepedia link: http://www.nukepedia.com/gizmos/particles/particlekiller

A tool to kill specific particles based on their id.

Options to make identifying individual particles easier:

12.) Deep

Deep2VP Suite MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/deep/deep2vp</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

3.5 Showcase : <u>https://vimeo.com/379527067</u> 2.0 Demo : <u>https://vimeo.com/338501133</u>

Deep2VP suite is a toolset to convert deep data to world space position, and process with all the possibilities of this deepPosition data.

Deep2VPosition MJT

Deep2VPosition is a main node in this entire toolset. It converts deep data to 3D position data and process all the nodes in this toolset. So this node needs to go before any nodes. Once gather the camera data, and it will generate position data under a new channel, called 'deepPosition'. After this channel had been created, then you don't have to add this node anymore in downstream.

'deepPosition' also able to use on any position tools in 2D. Use 'DVPToImage' converts to this channel to 2D can fix all the semi-transparent pixels and pixel filter.

Linked to selected camera:

All required camera data will be linked to this node by expression. Some companies have their own camera node with a different node class or different knob name, so this button is not limited to specify node class. When default camera knob name cannot find in selected node, it will prompt up a window to let user selected relevant knobs. You can find the world space position data under 'deepPosition' channel after this node. It supported volumatric deep data. If want to bring the position data to 2D in downstream. Please only use DVPToImage which comes along with this toolset.

Removed linked expression:

Removed linked expression in this node. All the values remain unchanged, but no animation will be baked.

Baked expression link:

Will baked all the animated value from expression, no more connection with any nodes.

Copy from selected camera:

Select a camera and this will copy all the animated values to this node without any connection with any nodes.

User can also copy or linked the camera data manually to the knobs in 'CAMERA DATA' group.

This node will also create another channel called 'deepRawColor' . Casual user doesn't need to understand what

this channel does. This channel will be removed when you use 'DVPToImage' to convert 2D image. It is only for

operation in this toolset. Check out Notes section if you want to understand how the tools use this channel.

* This node supported animated or non-animated re-rack camera since 3.0

** This node supported pixel aspect in project setting since 3.3 (esp for anamorphic project)

DVPToImage MJT

This node helps to output 'deepPosition' and 'deepNormal' channel to 2D. Due to 3D data supposed to be non-filtered data, all transparent, semi-transparent and filtered pixel will be fixed to raw non-filtered 3D data. That is regular 'DeepToImage' cannot do beside deep.front and depth.z. If want to keep deepPosition and deepNormal in 2D, required this node to process.

DVPort MJT

This node will centralize the camera data in one place. Due to the limitation in TCL and speed in python, I choose expression link to camera in this toolset. But one of the requests is get camera input for the tool instead of link with expression. The request concern is when the camera node changed, all the Deep2VP nodes need to

re-link again. So the purpose of this node is centralize all

the camera data in this node, and set link to this node instead. So when the camera change, just connect the new camera to this node.

The camera can stack with axis nodes, the toolset will only gather world matrix for any camera transformation (beside DVProjection). It doesn't expect any nodes between camera and this node. It's because it is using 'input.xxxxx' TCL to fill up the camera information. * I don't use [topnode] because concern axis stack. 'KnobChanged' on parent node will slow down the nuke script.

DVPmatte MJT

Position matte is very common in CG compositing. DVPmatte is same as position matte but with deep in real 3D space. It is taking advantage of using deep to get real z matte and separate non-filtered deep samples and pixel filter in alpha. In 3.5, this tool can combine with multiple matte with different operation, so it can generate more shape than just sphere, cube and cylinder shape.

This tool has 4 different ways to sample the position where you want to apply. 2D sample, transform preview geo in 3D, link selected axis and import chan file.

Matte shape:

Select the 3D shape of the matte. 3D shape can be preview under 3D view when the panel of this node is active.

Sphere : only support uniform falloff.

Cube : support separate 3-axis falloff.

Cylinder : only support uniform falloff.

Invert matte:

Invert the matte of the shape. Same as deepHoldout but with falloff support (soften matte).

Node type:

finalize matte: Premult all the mattes in the 'DVPmatte' stack to get the final matte. multi matte: Keep the matte and pass along to downstream for multi mattes purpose. It will only premult RGB for 2D preview.

Options:

premult RGBA: Premult RGBA in volumetric deep. It good to carry for deep comp in down stream. May find some edges has stronger alpha in 2D view. That is because of the samples overlap in front and back, but the data per sample are accurate.

black & white matte: This will fix the samples overlap look, but not good for deep comp. Recommend convert it back to 2D and shuffle the black & white to alpha for 2D comp purpose.

Toggle 2D sample:

By default, this option is off. Turn this on, then you can sample the image in 2D view. When you are done, remember to turn this off again. Otherwise it will sample the value in every frame.

Sample position:

This knob is disable by default. Active when 'Toggle 2D sample' is on.

Transformation:

Then this node is active (shown in panel), user switch to 3D view to preview the matte in 3D space. Snap the pointcloud or move the preview geo manually.

Linked to selected axis/geo:

Use this function to link the transformation of 3D node to this node.

Remove linked expression:

Removed linked expression in this node. All the values remain unchanged, but no animation will be baked.

Baked expression link:

Baked out the existing expression link back to this node itself. After that, the linked node is not required for this node anymore. Baked value is base on the frame range in project setting of the nuke script.

Copy from selected axis/geo:

Select the axis/geo, then this will process 'link to selected axis/geo' and 'bake expression link' in once.

Pointcloud:

When this node panel is active, pointcloud will be shown under 3D view. None: will not show the pointcloud in 3D raw pointcloud: show the pointcloud from input data, without any effects from this node.

with matte applied: This can show the instant result. Since it feedback in real time, it might slow down the progress in 3D space.

Cube 3D falloff: This will only applied when matte shape selected as cube.

Falloff type: 6 different falloff types

Uniform falloff: This is a globel falloff value. Support for any shape of matte. Exponential:

This knob will enable when exponential had been selected in falloff type.

Fall off types:

Quadratic

Exponential

Output options:

Matte on deep, you might see this kind of edges on semi-transparent pixel. That's because of multi sample layers in the same screen space coordinate, but it does make sense and correct in 3D space. So if compositing in deep, it all works fine. If you want to output the matte in 2D, it might give you edge issue. So 'DVPmatte' options can give you a black & white matte that can be use in 2D comp.

But black & white matte will makes you loss the possibilities matte in z axis. Be consider what the needs in your comp.

Mutli-matte workflow

Multi matte workflow needs to set all the node type to multi matte, but the last one set to finalize matte. The first multi matte node's operation must be 'union'.

DVPattern MJT

Position noise is one of the common nodes in CG compositing. DVPattern is also doing the same thing in deep, has 7 different patterns.

They are: fBm, turbulence, noise, random, stripes, ripple and rays.

Pointcloud:

When this node panel is active, pointcloud will be shown under 3D view.

none: will not show the pointcloud in 3D

raw pointcloud: show the pointcloud from input data, without any effects from this node with pattern applied: This can show the instant result. Since it feedback in real time, it might slow down the progress in 3D space.

Bm
Image: Section 1.1 ministration 1.

DVProjection MJT

		🔻 💿 🗰 🐓 DVProje	ction				S	? 6 ×
		General Version M	lode					
tex		PROJECTION CAMERA						
\sim	deen		freeze fra	me				
	deep							
DVProjection		Camera setting						
(wrapped texture	+ source)	rotation order	ZXY -					
2D Image Output	1	translate	× 0	y 0	z 0	N		
		rotate	×o	y 0	z O	N		
		scale	× 1	y 1	z 1			
		skew	×o	у 0	z 0			
		project z range	0		999999	1000000	IN	
			link to select	ted camera	remove lini	ked expressio	п	
			bake expres	sion link	copy from sel	ected camera		
		Pointcloud preview						
		OUTPUT SETTING						
		output	wrapped tex	ture + sou	rce *			
		STMap setting						
					Reve	rt Can	cel	Close

This node can process projection on deep. It can be used with the current shot camera, or place the camera manually. Output of this node is 2D image, so it doesn't need 'DeepToImage' or 'DVPToImage in downstream. On the other hand, the deep data will be lose after this node.

Settings:

Freeze frame: Check this box to enable framehold function for animated camera

Framehold: Input the frame number and freeze the projection camera's animation

Set current frame:

Automatically set frame frame into framehold knob.

Project z range: Set the projection distance from the projection camera (in term of distance) First value : start ramp in value Second value : end of ramp in value Third value : start ramp out value Forth value : end of ramp out value

Link to selected camera: Selected any Camera nodes and this button will link the position to the projection camera.

Removed linked expression:

Removed linked expression in this node. All the values remain unchanged, but no animation will be baked.

Baked expression link: Will baked all the animated value from expression, no more connection with any nodes.

Copy from selected camera:

Select a camera and this will copy all the animated values to this node without any connection with any nodes.

Pointcloud:

When this node panel is active, pointcloud will be shown under 3D view.none:will not show the pointcloud in 3Draw pointcloud:show the pointcloud from input data, without any effects from this nodewith project image:This can show the instant result. Since it feedback in real time, it might
slow down the progress in 3D space.

Output	
Support 3 different outputs	
Wrapped texture + source:	which is a projected texture composite with the input.
Wrapped texture:	which is only projected texture
UV:	which is a uv map, can use this with STMap in downstream.

DVP Relight setup

Let's introduce a basic setup for relight before I walkthrough the nodes in toolset. For relight in deep, I breakdown 2-3 nodes in the setup for multi lights supported, raw light pass output and light with beauty output. DVPsetLight always be the first node for relight preparation, then add DVPrelight nodes as many as you need. If you need raw light only, you can convert it to 2D image directly. If you are lighting on beauty and keep the deep comp, connect DVPscene at the end.

DVPsetLight MJT

This node needs to go before DVPrelight. Setup how the normal data use in deep for relight. This node will provide 4 options to pipe in normal data into deep stream.

Generate normal by estimate from position:

If no any normal data provide, this could be one of the options. The result might not perfect, might have some edges problem on individual objects. If deep data from scanlineRender, geo required high level subdivision.

Required camera data for this option.

Input 2D normal (world / camera space):

If have normal data in 2D data, connect the pass to this node. The resolution of normal2D input must be the same as the deep resolution. Camera space normal required camera data, but not for the world space.

Deep normal:

Use deep normal data from deep input. Type in the channel contain normal data in deep. For example : channel name is 'Nworld.red', 'Nworld.green', 'Nworld.blue'. Type in 'Nworld' for the channel name.

* When using scanlineRender for deep output, set output vector normal, then you can have normal data in deep format.

Link to selected camera:

Selected any Camera nodes and this button will link the position to the projection camera.

Removed linked expression:

Removed linked expression in this node. All the values remain unchanged, but no animation will be baked.

Baked expression link:

Will baked all the animated value from expression, no more connection with any nodes.

Copy from selected camera:

Select a camera and this will copy all the animated values to this node without any connection with any nodes.

DVPfresnel MJT

DVPfresnel is part of the lighting node in this toolset. It is because it required normal data. It created fresnel (aka facing ratio) to every objects in the scene. This node can stack with multiple 'DVPrelight' nodes together. The node itself output raw light data in deep format. Connect to 'DVPscene' to get this raw fresnel composite with beauty.

DVPrelight MJT

'DVPrelight' node has 3 types of light as default nuke light node. It can stack with multiple nodes together and will out raw light in deep format. Connect 'DVPscene' to composite with beauty. The setting in this node is almost same as nuke basic light node, but with extra exponential falloff type, to get a flexible result.

Pointcloud: When this node panel is active, pointcloud will be shown under 3D view.

None raw pointcloud with light applied

will not show the pointcloud in 3D

d show the pointcloud from input data, without any effects from this node ied This can show the instant result. Since it feedback in real time, it might

slow down the progress in 3D space.

DVPscene MJT

This node will composite the relight process in deep format.

Original mix: Combine the original color in diffuse.

Ambient:

Add ambient color on top of diffuse, before the rawlight

Notes:

Stack DVP nodes:

All the nodes in the toolset can stack together, only green nodes need to connect between 'DVPsetLight' and 'DVPscene'. Blue nodes cannot put inside the lighting setup, otherwise will break the setup.

DeepRawColor:

'Deep2VPosition' and 'DVPsetLight' will generate a channel called 'deepRawColor'. The channel helps to pass the data from upstream to process stack operations. Regular user might not need to understand how this process. If anyone want to troubleshoot the setup, the following is the Information.

In 'DVPmatte', current matte processed under deepPosition.alpha, and then deepRawColor.alpha stored the matte from upstream plus current matte. When selected 'multi mattes', all the matte process will store under

deepRawColor.alpha, but will not applied on alpha because of the premult process in deep. When selected 'finalize matte', the deepRawColor.alpha will process to RGBA and removed the deep samples when alpha <= 0.0 . And removed samples cannot restore anymore in downstream.

In Deep2VP lighting setup, because requested to have raw light output and concern multple light apply, so 'DVPsetLight' will shuffle RGB to deepRawColor.RGB and put RGB to black.

In 'DVPrelight' and 'DVPfresnel', light matte process under deepNormal.alpha and apply the matte to RGB for the raw light. 'deepRawColor' remain untouch until 'DVPscene' node connected.

Current light will combine with input RGB to output the new raw light. That's why 'DVPsetLight' set RGB to black.

In 'DVPscene', it will bring back deepRawColor.RGB and process with RGB (raw light) to return

the color with new lighting. Like how diffuse color combine with raw light in AOV. The algorithm

is :

(input deep color + ambient color) * raw light color

DeepToPosition TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Plug in your deep render and your camera and this node will convert the deep into a WorldPosition pass. There was an option when using Houdini renders that the scale was off so there is a houdini scale compensation checkbox

There is also a preview in 3d space option for seeing where your deep exists in nuke's 3d viewer.

DeepRecolorMatte TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

There is a popular deep workflow used in production where you deep combine many elements together, and have to make deepHoldouts for each layer, usually pre-rendering out the alpha channel for each individual layer, to use later, in order to reduce heaviness. A really great article is written about this method from Boris MC, which can be found here: http://boris-mc.com/?p=2700

There is also a nice video explaining the workflow here: <u>https://vimeo.com/429161580</u>

This workflow can often get chaotic quite quickly with lots of objects holding out each other:

This tool aims to speed up and simply this workflow even further. It creates a new layer with the alpha channel of the element and a custom name.

Using additional channels and deepMerging all of the elements together into 1 big scene, you can later pull out the mattes from each individual element, giving you the matte of that element, held out by all other elements in the scene. This is a custom holdout matte for that object.

The goal would be to prerender just 1 render with all channels, and simply shuffle out the deep holdout matters for any element you need.

Grab Title button is using functions from Adrian Pueyo's stamps plugin to try and predict the layername from the deep input. It tries to grab the name from the nearest stamp, or the nearest read node filepathName, in the same way that stamps does, so if you are using stamps, this should work for you, and if not, it's ok, you can just enter the name manually.

After you've auto-grabbed the layer name, or entered a manual layer name in the New Channel Name field, you can choose to add a prefix or postfix to the layername. Check the box and enter a prefix or postfix. For example, you can add ID to the prefix and the layername will be "ID_newLayer" or "matte" to the postfix, and the layername will be "newLayer_matte". No need to include the underscores, this tool will add the underscores between the prefix / layername / postfix automatically.

Once you are ready, click Inject New Channel, and the node's text will turn red and label will change to let you know that you have injected a new Channel. All channels are just a single .red channel, to save time during the deep merge process, since each layer and each channel must be calculated, you'll want as few remaining as possible. The tool only saves RGBA, and the new channel and removes all other channels to save caluculation time.

Click Reset to restore default state of the node

Turn on Target Input Alpha if your alpha from your color input is different than the alpha from your deep input. If you've roto'ed something out for example Remove Deep channel, Prerender the Deep Tree after DeepTolmage, Shuffle out the mattes

DeepCropSoft NKPD

Author: Wouter Gilsing - <u>www.woutergilsing.com</u>

	🔻 💿 🗃 🔮 DeepCropSoft	
	DeepCropSoft Node	
DeenCronSoft	falloff 0 4	
DeepCropSoft (0 - 1)	falloff 0 keep outside zrange	

Nukepedia link: http://www.nukepedia.com/gizmos/deep/deepcropsoft

A version of the DeepCrop node that allows the user to set a falloff for a soft transition. Can be used to gradually fade off anything that reaches a specific distance from the camera (like anything super close). This can for example be useful to prevent visible 'popping' when a camera moves through geometry.

**Minor tweaking of the original knob positions to make it slightly easier to use.

DeepKeyMix NKPD

Author: Luc Julien

DeepKeyMix	V O M DeepKeyMix DeepKeyMix Node	
	matte alpha * invert	
	DeepKeyMix 1.00 © Luc Julien	

http://www.nukepedia.com/gizmos/deep/deepkeymix

Same basic function as the original keymix but for deep input.

It enable you to copies deep channels from A to B only where the mask input is non-zero. The mask input use standard channels.

DeepHoldoutSmoother NKPD

Author: Denis Scolan + Jesús Diez-Pérez

	Y 0 🗰 🔮 Der	epHaldou	Smooth	ier						e s	1 7	6 ×
A A	D_DeepHoldoutSmo	other	Node									
	number of samples	6		Update								
bbox deep	depth spread	1					**		-	**		
DeepHoldoutSmoother	depth offset	-1	. 4				. 6.4	*		1	8.5	
	D_DeepHoldoutSmo	other v1.	0 - (c) 2	013 - C	enis :	Scolan	/Jesú:	s Diez-	Pérez			

Nukepedia link: http://www.nukepedia.com/gizmos/deep/d_deepholdoutsmoother

Smoothing the harsh holdout intersection that occurs when the holdout itself doesn't have enough samples.

I've made a gizmo to smooth the harsh holdout intersection the occurs when the holdout itself doesn't have enough samples (coming from a standard Z pass for intance).

The D_DeepHoldoutSmoother is meant to be insert in your tree on the holdout stream and before the DeepHoldout/DeepMerge(holdout mode) node.

Keep in mind that the holdout will expand slightly and also the more you increase the samples the heavier your comp will get.

Thank you to Jesús Diez-Pérez for the Python script.

DeepCopyBBox NKPD

Author: Denis Scolan

Nukepedia link: <u>http://www.nukepedia.com/gizmos/deep/d_deepcopybbox</u>

CopyBBox for deep image stream

this gizmo helps you carry the BBox of your 2D stream onto your deep image stream.

It's useful for reintruducing the BBox after a DeepMerge in 'holdout' mode.

Down side : you can only copy the BBox from a 2D stream, it doesn't work with a deep stream yet.
DeepBoolean MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/deep/deepboolean</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u> Demo video: <u>https://vimeo.com/354811205</u> Demo Video: <u>https://vimeo.com/322695922</u>

DeepBoolean works like maya's boolean's tool, but for deep in nuke. It works like deepHoldout but more function than that. Intersect mode to keep the deep data inside the geo matte. Subtract mode to holdout the deep data outside of the geo matte. Both support geo matte extrude (erode the terms in nuke) and falloff in 3D space.

Any geo needs to be close face because this tool is camera space Normal deep matte.

It works with any kind of readgeo or basic geo in nuke (cube might has a bit strange behaviour on extrude because of separate faces).

*Beware: before Nuke11, DeepExpression has some strange behavior, thanks Foundry to fix most of them in Nuke11. So this tool is only work and tested in Nuke11. If you are using lower version, this tool will not work probably.

Works with Deep2VP v3.7+ , can link the camera data through DVPort and stack with DVPmatte.

DeepFromPosition MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

	cam img DeepFromPosition Deep Output		
Properties			×
🔻 🛛 🗰 🔮 DeepFromPosition			? 5 ×
General Version Node			
position channel none		* = 5	pace world *
		Revert Canc	el Close

Nukepedia link: https://www.nukepedia.com/gizmos/deep/deepfromposition

Convert position data to deep.

How to use :

- connect comp tree
- connect camera
- select the channel and what space of your position data
- then downstream will deep

DeepSampleCount MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

rgsa 🛪 rgbalaipha 🛪 👘 eRGB 🔹	$\mathbf{E}_{2} \equiv \mathbf{O} \oplus \mathbf{H} \ \mathrm{in} \ \mathbf{v} = \mathbf{i}$	10 - × 2				Properties		
4 (YE) 1	["L 20 • 🖉 🦞	TO M V DeepSampinCount						
		Guneral Node		O H	DeepSamp	eCount		Y m ×
n - N		max count 10 * # show colormap		General	Node			
		I sample 0.5 0.15	8.15	max count	AD -			
	Street Villenters	2 somples 0.5 0.255	0.15	max count				
	STATE OF LUID	3 samples 0.5 0.36 4 samples 0.5 0.465	0.15		* show colorma	ър		
The second s	the state of the s	5 complex 0.43 0.5	6.15	sample	s count colormap			
the second se		6 somples 0.325 0.5	0.15		1 sample	2 samples	3 samples	
		s complex 0.15 0.5	0.185					
	State Value	8 complex 0.15 0.5	0.27		4 samples	5 samples	6 samples	
					7 samples	8 samples	9 samples	
x=0 y=0					🔲 10 samples	🔲 11 samples	12 samples	
1 13 20 20 40 20 46 77 24* - Giesel - 75, 1 46 46 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·				13 samples	14 samples	15 samples	
Ande Grante					16 samples	🔲 17 samples	18 samples	
Despiration of the second seco	Description and and				19 samples	20 samples	21 samples	
	Succession Street				22 samples	23 samples	24 samples	
					25 samples	26 samples	27 samples	
	Describer and the ED sample Consult				28 samples	29 samples	30 samples	
					31 samples	32 samples	33 samples	
					34 samples	35 samples	36 samples	
					37 samples	38 samples	3 9 samples	
					40 samples	41 samples	42 samples	
					43 samples	44 samples	45 samples	
					46 samples	47 samples	48 + samples	
						Revert	Cancel	Close

Nukepedia link: <u>http://www.nukepedia.com/gizmos/deep/deepsamplecount_v11</u>

Convert the amount of samples per pixel into colormap visual. Help for troubleshoot, investigate the ground of slow deep tree, or tool development. The setup run by some math & TCL expression, able to run in realtime and fast feedback.

It will created a channel called 'deepSample.count', it stores the total samples per pixel.

*support to detect 48 samples in pixel on v1.2+

DeepSer MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/deep/deepser</u>

A tool to manage/remove/optimize deep samples.

Remove nan/inf samples

Remove samples by alpha value

Remove samples by layer in pixel

*deep sample colormap generated by DeepSampleCount

13.) CG

UV_Mapper TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

UV_Mapper is for mapping textures on a UV pass with multiple UDIM in the render. Sometimes for creature or other assets, the CG department breaks up the texture passes into multiple UDIMs. This means there are multiple UV sections in the render. Frequently they render this UV pass with each UDIM offset by 1. So you would have 0.5, 1.5, 2.5 for UDIM 1001, 1002, 1003 for example. Here is a preview of what that pass might look like using nuke nodes:

Plug the your UV pass render into the UV_mapper in the UVs input. Use the select UV color picker to isolate which of the UDIM UVs you'd like to use. By default, when where it no image plugged into the img input, I have a UV grid preview as a placeholder for you to see which UDIM you have selected. Selecting around the UV pass you will have this texture jumping from UDIM to UDIM. You should see something like this:

Once you plug an image into the img input, it will replace this placeholder. You can create a couple UV_Mappers and grab a few textures, and with a simply setup you can retexture parts of your image:

Sometimes anti-aliased UV passes can give unwanted results when blending with another UDIM or around the edges when there is filtering. I've included some basic kill outline (erodes in a bit), and edge extend option to help push some UV color value there to reduce artifacting.

Take alpha from UVs: means instead of using the CG render alpha, use the alpha from the input image, that's remapped in UV space.

Sometimes it's useful to know where the UV's are corresponding to in UV space, thanks to Luca Mignardi and his inverseSTMap gizmo, I included the option for seeing what part of UVspace the texture occupies when "unwrapped"

This is just a crude visual to help with roto's or paints or alignments. There is of course some situations where you want to know where the beauty render lies in UV space in the selected UDIM. So there is a checkbox called 'Img is beauty render'. First select the UDIM you want, and plug the image into the beauty render and select both preview STMap and Img is beauty and it will isolate the area of the beauty render where the UDIM you have selected is, and unwrap this in UV space, so you can roughly see where your beauty render lies in UV space according to the UDIM you have chosen.

PNZ Suite MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

pos	Sition ConvertPNZ	position P2N utput : normal(camera)	position P2Z output : depth	
	depth 22N output : normal(c	depr camera) output :	th 22P man position(world)	

Nukepedia link: http://www.nukepedia.com/blink/draw/positiontonormal

Convert 3D data passes. Included P2N (PositionToNormal), P2Z (PositionToDepth), Z2N (DepthToNormal), Z2P (DepthToNormal) and ConvertPNZ (self convertion, such as space convert, fresnel, invert depth.

I have done PositionToNormal during Deep2VP v3.5. I create this standalone version for 2D comp and added more different convertion for 2.5D comp.

Convert Position/Depth to Normal. It might has a little bit artifact on edges. Try to adjust 'Depth Threshold' for better result. It might not able to get decent result on thin object, such as hair/fur. Depends on the needs.

If you use it for relight, try to light it with this pass first, those artifact might not an issue.

Some space swap require camera data.

ConvertPNZ MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Convert PNZ is for self conversion cases

Select the input data: Position, Normal or Depth

With Position selected:

INPUT: world coordinate space or camera space

OUTPUT: world space or camera space conversion.

With Normal selected:

INPUT: world coordinate space or camera space

OUTPUT: world space or camera space conversion. Or fresnel pass

With Depth selected:

You can choose to invert your depth pass with 1/z to switch between normalized depth and real units from the renderer

<u>P2N MJT</u>

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

position P2N output : normal(can	iera)	Position
* • • • • P2N		
General Misc Version Node		
Local GPU: Quadro 2000		
X Use GPU if Available		
INPLIT		
position space world -		
OUTPUT		
normal space camera *		
Camera Setup		
link to selected camera remove linked expression		
bake expression link copy from selected camera		and a large
CAMERA DATA		
depth threshold 0.1		
	Revert Cancel Close	Care
		and the second s
		Normal

Position To Normal

INPUT: World or Camera Space Position

OUTPUT: World or Camera Space Normals

<u>P2Z MJT</u>

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

position P2Z output : dept		Position
	0 × 5 5 7 8 ×	
Camera Setup link to selected camera remove linked expressio bake expression link copy from selected camera CAMERA DATA		
	Revert Cancel Close	
		Depth

Position To Depth

INPUT: World or Camera Space Position

OUTPUT: Real unit depth or normalized depth 1/z

<u>Z2N MJT</u>

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

depth Z2N output : normal(camer	a)	Depth
* 0 • ¥ Z2N		
General Misc Version Node		
Local GPU: Quadro 2000		
🗙 Use GPU if Available		
K depth (1/z)		
OUTPUT		
normal space camera *		
Camera Setup		
link to selected camera remove linked expression		all
CAMERA DATA		and the second
		diffe la
<u> </u>		State of the
depth threshold 0.1	to the an an in in	
		and the second
Re	vert Cancel Close	Cococo
		a contraction of the second se
		Normal
		Nonnai

Depth To Normals

INPUT: Real unit or normalized 1/z depth

OUTPUT: World space or camera space normals

<u>Z2P MJT</u>

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

depth Z2P output : position(world)	Depth
C C	□ 0 ► ₽ 5 7 8 ×	
Camera Setup link to selected camera remove linked expression bake expression link copy from selected camera CAMERA DATA	йл 1	
	Revert Cancel Close	
		Position

Depth To Position

INPUT: Real unit or normalized 1/z depth

OUTPUT: World space or camera space Position

Pos Toolkit MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia Link: <u>http://www.nukepedia.com/toolsets/3d/pos-toolkit</u> Demo/ Tutorial video: <u>https://vimeo.com/391732849</u>

This position toolkit is based on Deep2VP to create and work in 2D compositing instead of Deep. The toolset has PosMatte, PosPattern and PosProjection, the function and workflow is the same as DVPMatte, DVPattern and DVProjection in Deep2VP.

Input of all these nodes must contain world space position data and alpha. If you need to convert position camera space, can use PNZ Suite to do the job. <u>http://www.nukepedia.com/blink/draw/positiontonormal</u>

PosMatte MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Creates 2.5D matte from position data. In this node, it has 3 matte shape and 5 different ways to place the matte.

Choose your World Position channel you are sampling from Choose either a 2d position (picks from 2d screen space), or a 3D position. Choose shape type: Sphere, Cube, Cylinder (choice to invert the matte)

Link to a selected axis or copy / bake animations from a selected 3d Axis. Make tweaks to 3d position with these settings

Pointcloud preview:

Choose between no point cloud, raw (full) point cloud, or with matte applied, which the pointcloud will only appear within the 3d shape applied. Additional point size and amount settings in this section.

Falloff type - choose between: none linear smooth quadratic cubic Exponential - additional exp in / out settings

Fall off global controls in this section

PosPattern MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Can create 7 different patterns through position data. fBM, turbulence, noise, random, stripes, ripple, and rays

Each have different parameters exposed when selected for adjustments Snap menu available to snap to points and vertices

3D translation/scale options available

Pointcloud preview:

Choose between no point cloud, raw (full) point cloud, or with pattern applied. Additional point size and amount settings in this section.

PosProjection MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Can do camera projection with position data. This node requires a camera, texture is optional (it is because it also can output UV maps). Camera can be a custom one, but usually for CG patch fix will use the shot camera to avoid line up perspective manually. It's because the node will calculate FOV of the camera for projection.

Select your WorldPosition channel

Optional freeze frame settings

Project Z range, similar to deepSoft Clip, you can set up where the texture begins and ends in Z space from the camera, along with a Z fade (similar to keyer node)

Link, bake, or copy camera settings from a selected camera

Pointcloud preview:

Choose between no point cloud, raw (full) point cloud, or with project image(slow), Additional point size and amount settings in this section.

Outputs:

wrapped texture + source: which is a projected texture composite with the input. wrapped texture: which is only projected texture uv: which is a uv map, can use this with STMap in downstream. STMap settings available

Noise3D SPIN

Author: SPIN FX - Erwan Leroy - http://erwanleroy.com/blog/

Spin gizmos on github: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Spin tools 2.0: <u>http://erwanleroy.com/spin-vfx-nuke-gizmos-2-0-released/</u> Vimeo Demo @ 00:50 : <u>https://vimeo.com/381270956/f7399b6e1d</u>

Generate Noise in 3D space based on Position passes. It includes pre-made Position passes for some 3D primitives, or can use a custom Position pass. Uses a 4D noise internally so that the 4th dimension can be used to add a 'boiling' effect.

Choose between fBm and Turbulence.

Multiple mapping options:

Card (Flat), Spherical, Cylindrical (Tile X), Cylinder 4D (Tile X and Y), Custom P Input

The Custom P Input lets you input the shape of your choice. Using a pWorld pass as cutom P will generate a 3D noise as seen from the same camera as used to render the Pworld. Ensure an Alpha channel is present for Custom P.

Noise4D MHD

Author: Mads Hagbarth Damsbo - https://hagbarth.net/blog/

Nukepedia link: <u>http://www.nukepedia.com/blink/draw/4d-noise</u>

This is a port of the 4D simplex noise found at https://github.com/Draradech/csworldgen/blob/master/simplexnoise.cpp

Blink script - 4D Noise Generator (Based on image values)

It uses the image values of the input image to generate the noise. It is not fast, but it does the job quite well.

Red, Green, Blue image (Pworld or Pref or vectors) X,Y, Z position

Alpha Channel is the evolution (4th dimension), change alpha to change the seed/evolution.

Relight_Simple SPIN

Author: SPIN FX - Erwan Leroy - http://erwanleroy.com/blog/

Spin gizmos on github: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Spin tools 2.0: <u>http://erwanleroy.com/spin-vfx-nuke-gizmos-2-0-released/</u> Vimeo Demo @ 03:28 : https://vimeo.com/381270956/f7399b6e1d

Simplified relight node. Only requires a normal map to get started.

This node will not reproduce accurate lighting, as it does not take into account the actual 3D world space, but instead considers the image in its own local space.

Plug in Normals input to a Normals Pass that is shuffled into rgba

Choose a 2d position to orient the relighting angle Light Z attempts to set an distance of the picker, forward or backwards in 'Z space'

Choose light color

Option to use an albedo pass (aka a texture or color pass) as an input

Specularity and shininess options

Reproject3D SPIN

Author: SPIN FX - Erwan Leroy - http://erwanleroy.com/blog/

Spin gizmos on github: <u>https://github.com/SpinVFX/spin_nuke_gizmos</u> Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/spin_nuke_gizmos-1</u> Spin tools 2.0: <u>http://erwanleroy.com/spin-vfx-nuke-gizmos-2-0-released/</u> Vimeo Demo @ 04:45 : <u>https://vimeo.com/381270956/f7399b6e1d</u>

This gizmo does camera projection using a render point position pass (in world space) and a 3D camera to remap all the layers in the input image.

NOTE: The projection works best with unmatted input images or at least unpremulted matting with some coverage, then all masking occurs within the gizmo. It can mask the projected image in the following ways:

Input alpha from the 3D render.

Projecting on surfaces facing camera, using normal (N) in world space.

C44Kernal AP

			Propertie	s		
▼ 0 ₩	C44Ke	ernel			15 7 5 S	? & ×
C44Kerne	I GPU Set	tings Nod	e			
channels	rgba	* 🔀	red 📕 gree	n 🔀 blue 🗶	rgba.alpha	*
matrix	1	0	0	0		
	0	1	0	0	invert	
	0	0	1	0		
	0	0	0	1		
Advan	alpha ma: ced	sking				
mix	1	0 0.1	0.2 0.3	i i 0.4 0.5 0.6	1 1 0.7 0.8	1 1 N
	C44Kernel v	1.0 - adrianț	oueyo.com, 20	018		
				Revert	Cancel	Close

Author: Adrian Pueyo - http://www.adrianpueyo.com/

Nukepedia link: http://www.nukepedia.com/blink/colour/c44kernel

Multiply the rgb or rgba colors by an arbitrary 4x4 Matrix. Useful for transforming vector passes like Position or Normals. You can also plug in an Axis or Camera node into the axis input, to apply its transformations.

C44Kernel is a simpler, Blinkscript-based alternative to the C44Matrix node by Ivan Busquets, which is incredibly useful but has the compatibility limitations of a plugin.

apDirLight AP

Author: Adrian Pueyo - www.adrianpueyo.com

	¥ 0 🗰 ¥	apDirLight									- S	2	ð ×
	apDirLight N	ode											
	input normals rgb											• 🚍	
mask	pick		1		1								3 //
N	radius	0.5									1.0	1.0	2
	falloff							3.8			4		N
apDirLight	hardness	0	10				0,4		4.5		3.8		
	output	alpha 🔻											
										8 A.			
													-
	apDirLight v0.2 -	adrianpuey	/o.com,	, 201 <i>6</i>									

Simulate a simple directional/infinite light through a normal pass, by picking a Normals pass color and then tweaking the radius, falloff and hardness of the light.

Demo Video: https://vimeo.com/157309298

00	AP_DirLight Demo.nk [modified]	
23		Properties E x
0		AP_DirLight Node
Ξ.		input normals N
=		pick 0.0625 0.439453 0.895996 🛛 3
٢		radius (0,5
0		falloff 1
Š.		hardness 0
ĸ	The second second	output rgb
۲		intensity 1
-4-		
÷.		AP_DirLight v0.2 - adrianpueyo.com, 2016.
		🕈 💿 🖷 🔮 Read2 🔤 🗟 🖬 🖘 🖓 🥱 🛪
*	1965x1106 bbox: 0.0 x=1323 y= 520 1.00000 1.00000 0.00000 H: 0.5:0.00 V:1.00 L: 1.00000 •	Read Sequence Node
0		file inpueyo/Desktop/3D Frames/goomba_maskEyes.exr 🍯
		cache locally auto ·
0	(Global • 10 20 30 40 50 60 79 60 90 100	format 1965x1106 * =
•	Node Graph Curve Editor Dope Sheet	proxy
32		frame range 1 hold * 1 hold *
-		frame expression *
	Fleadt	original range 1 1
\$	Pead?	missing frames error • reload
٢		colorspace default (lii • premultiplie raw data auto alpha
26	AP Dright	exr Options
100		edge powels plate detect *
	Vewert	

apFresnel AP

Author: Adrian Pueyo - www.adrianpueyo.com

Convert your Normals Worldspace pass into a Camera Space Fresnel pass. Plug in your render camera, pick the normals and position channels from the input.

Can adjust the gamma of the Fresnel (Facing ratio)

CameraNormals NKPD

Author: Nikolai Wüstemann

Nukepedia link: http://www.nukepedia.com/gizmos/channel/cameranormals

The Gizmo lets you convert your CG worldspace normals to camera space normals.

As the blue component of camera space normals is often used as a facing ratio, you also have the option to directly output the mask.

In addition you have some control about the facing mask falloff (Simple or Biased), that is driven by an exponential expression.

Modified with Adrian Pueyo's Dummy Camera gizmo

NormalsRotate NKPD

Author: Wes Heo - gizmo named W_SuperNormal, renamed for clarity

Nukepedia link: http://www.nukepedia.com/gizmos/3d/w_supernormal

There are two ways to select the surface angle:

1. P_Matte has been the inspiration for this tool to do with normals what it does with position data, and as such there is the colorpick method like P_Matte

2. Horizontal and Vertical Rotations sliders

Instructions:

- 1. Select the layer containing normals in the dropdown menu.
- 2. Enable color picker and pick the point where you want the matte to be white.

(I look at the alpha output, hold ctrl+alt and "glide" over the surfaces.)

3. You can also manually rotate the matte. When you colorpick a new point,

it is recommended that you reset the manual rotation values to 0.

Matte output:

invert output, mask by alpha, unpremult

Exponential falloff controls and post grade. Mask and mix controls added.

EnvReflect_BB NKPD

Author: Bastian Brenot - http://www.bastienbrenot.com/nuke-tools/

Nukepedia link: http://www.nukepedia.com/gizmos/other/envreflect_bb_v03

Fake Environment reflections on normals pass Feed it with a normals pass through the 'image' input, and select the right channel for it. (works better with cameraSpace Normals)

Choose between: Mirror Ball, Latlong Map, Cube, Angular map 180, angular map 360, sphere and 180 degree fish eye lens

- Option to Blur the IBL
- Antialias normals to get rid of flickering
- option to rotate the environment map in x,y,z
- Use Env Preview to preview the Envball with transformations

Relight_BB NKPD

Author: Bastian Brenot - http://www.bastienbrenot.com/nuke-tools/

Nukepedia link: http://www.nukepedia.com/gizmos/other/relight_bb_v04

A 2D based Relighting tool to help relight 3d renders with help of a normals pass. All you need is to feed it with a normals pass through the Normals input

Use the 'mask' input to isolate a specific object in your scene.

- Antialias normals to get rid of flickering
- use ReNorm if your normals are coded from 0 to 1 instead of -1 to 1

N_Reflection KNPD

Author: Chetal Gazdar

Nukepedia link: https://www.nukepedia.com/gizmos/transform/nreflection

Through this Gizmo you can create fake reflection in post using only Normal pass.

Plug in your Normals pass, select normals channel, and rotate the environment map. LatLong HDRI's work best, but any image will work

aPmatte AP

Author: Adrian Pueyo - www.adrianpueyo.com

Nukepedia link: <u>http://www.nukepedia.com/blink/keyer/apmatte</u> Tutorial/Overview video: <u>https://vimeo.com/adrianpueyo/apmattev2</u>

Blinkscript-based Nuke gizmo for generating mattes or 4D noise from a Position pass.

v2.0 includes some new shapes and modes, a 3D-space view of the matte and point cloud, and accepts an Axis or Camera input. Also, lets you preview the p-matte over an image input and merge the alpha with the incoming one through different operations.

P_Project NKPD

Author: Franklin Toussaint - http://franklinvfx.com/tools-2/

Website download: <u>http://franklinvfx.com/pos_project/</u> Github Link: <u>https://github.com/franklinvfx/Position_Project-Tool-for-Nuke</u>

Camera projection using the render of "World Position" and camera. The most important advantage of this one is that it's a very light tool (you don't need to import in nuke a heavy mesh).

So it's fast and easy to use, but still has to have the position pass and the 3D camera

Tool details:

P Channel: To select the Position Pass channel.Project Frame: Select the reference frame (hold the camera who do the projection).Hold Image: To frame hold the input image as the same frame as the camera.Crop: To project or not outside of the format area.Antialiasing: To reduce the edges aliasing problems.(Un)Premult: To keep nice shapes on edges.

P_Ramp NKPD

Author: Franklin Toussaint - http://franklinvfx.com/tools-2/

Website download: <u>http://franklinvfx.com/pos_ramp/</u> Github Link: <u>https://github.com/franklinvfx/Position_Ramp-Tool-for-Nuke</u>

To quikly create a ramp using the data contained in the render of "World Position" or "Ref Position".

This node has several advantages. The position of the ramp is not set by a "color picker" but with a 2D Position knob which executes callbacks. So it is possible to precisely place the ramp regardless of the channel viewed. With the "Overlay" mode, the tool is visually even more convenient. Visualization in 3D space is also a real advantage in a certain situation, as well as the integration of the "Unpremult" and "Premult" which makes it possible to obtain clean edges.

Tool details:

P Channel: To select the Position Pass channel.

Axe: To choose the ramp direction (x,y or z).

Start & End: To adjust the position of the two extremes of the ramp.

Offset (Start & End): To precisely adjust the position between the two extremes with a slider. Overlay: To show the ramp on overlay (looking the rgb) and to change the color (none, red, green, blue or black)

3D Options:

- To visualize in 3D the input image and the ramp. This uses a "position to point" node and it gives the possibility to adjust the "Point Detail" and the "Point Size".

To adjust the size of 3D points representing the position of the two extremes of the ramp.
(Un)Premult: To keep nice shapes on edges.
P_NoiseAdvanced NKPD

Author: Riley Gray

Nukepedia link: http://www.nukepedia.com/blink/keyer/p_noise_advanced

P_Noise_Advanced is a tool that allows you to apply various 3d noises and fractals to a rendered position pass such as world position or rest position. The various noise types are shown above and each has their own knobs and controls specific to each one.

A 2d position knob can be used to sample a center point in real time and Adrian Pueyo's 'c44kernal' allows you to transform the noise however you wish in 3d space. The Blink written noise types (Euclidian, Voronoi, Manhattan, Chebyslev and Worley) are based on matthew Shaw's 'Cell Noise' and just adapted to work on a position pass; click here to see his tool. The other noise types are simply written in tcl using nukes expression node.

14.) Curves

WaveMachine FL

Author: Fynn Laue - www.fynnlaue.com

Wave St Machine

Nukepedia Link: <u>https://www.nukepedia.com/toolsets/other/wavemachine</u> Demo Video: <u>https://vimeo.com/431245732</u>

Node Based Animation - Generate and modify animation curves with this toolset collection

WaveMaker FL

Author: Fynn Laue - <u>www.fynnlaue.com</u>

Generate standard waves such as sine, triangle, square, random and more

	v o w y waveMaker User Node	a a a a a a	
	First Frame 1 Min Value 0 Max Val	ue 1 (77)	
	Length 25		
waveMaker	evolution 0		
(0.5)	Wave Sine Wave 1 P		
× *	power 1 output 0.5	1	
	WaveMaker v1:0 Fyrm Laue 2020		

First Frame: is the time pivot point for length(frequency)

Length: Higher values are slower. Values below 2 may produce undesirable results when using even waves like sine

Phase: Not counted in frames but in cycles: 1 'phase' is half a cycle (or evolution) of the wave. Evolution: evolution for the random curve

Wave mix: Blend between 2 types of curves, 0 is wave0, 1 is wave1 Power: power is the final mix for the curve

Output: use with other wave machine nodes or to drive other nodes' animation

Wave types: Sine Triangle Square Bounce Random Sawtooth/Sawtooth Sawtooth/Sawtooth (Parabolic) Sawtooth/Sawtooth (Parabolic Reversed) Sawtooth/Sawtooth (Exponential)

WaveCustom FL

Author: Fynn Laue - <u>www.fynnlaue.com</u>

	Ver Node	
·	custom 0	17 11 10 III
(0)	waveCustom v1.0 Fynn Laue 2020	

Create a custom animation curve or expression link an external curve into this custom knob.

WaveGrade FL

Author: Fynn Laue - <u>www.fynnlaue.com</u>

	User Node Der Node
	amplify 0 metory 1 to 2
4	multiply 1 offer 1
waveGrade	offset 0 WaveGrode v1.0 (Pyrn Laue
	output 0 2 23 24 55 24 55 28 28 28 28 28 28 28 28 28 28 28 28 28
1.04	WaveGrade v1.0 Fvnn Laue

Grade animations. This way you can easily modify an existing animation or remap it for different ranges.

Amplify:

Multiply the average input value with this and add the input curve on top: ((inp1 - avgcurve) * amplify) + inp1

Multiply: Multiplies the input curve Offset: adds an amount to the input curve

Plug this into the wave machine node stack to further manipulate the curve

WaveRetime FL

Author: Fynn Laue - www.fynnlaue.com

Loop and retime input animation curves from wave machine nodes

WaveMerge FL

Author: Fynn Laue - <u>www.fynnlaue.com</u>

waveMerge combines 2 different wave machine curves and mixes them with a few different merge operations:

Operations:

(input0 + input1 * power)
((input0 * (1 - power)) + (input1 * power))
(max(input0, input1 * power + (1 - power) * input0))
(min(input0, input1 * power + input0 * (1 - power)))
((input0 * (input1 * power)))
((input0 - (input1 * power)))
((input0 * (1 - power)) + ((input0 + input1) - (input0 * input1)) * power)

Power:

This is your mix slider for the operation 0 = curve from input 01 = curve from input 1

Randomizer TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Curve Editor	2 🖬 🕱 🖉
Curve	▼ 0 ₩ ¥ Randomizer 🔲 🖬 🖛 🖙 S ? 🗗 ×
A MAR AND MAN AND MAN	Settings Info Node
ELE WUTH TWWWWWWW	type: random 🔹
	Amplitude Pivot: center *
	Amplitude 1
✓ ### ★ -50 0 50 100	Pivot Frame 0
No curve selected = Revert	Frequency 1
Node Graph 🗶 Dope Sheet 🚿	PositionX 0
ν.	PositionY 0
Randomizer (random) -0.18081996	Curve -0.1808199

Randomizer is aimed at being a simple curve manipulation tool. It is meant to be used with the curve editor and to have terminology relating to graphs

Pick between the following curve types:

random, noise, sine, triangle, square, bounce, sawtooth, sawtooth (parabolic), sawtooth (parabolic reversed), sawtooth (exponential), blip, sine blip

Amplitude scales the curve in the Y axis. You can set the pivot of the scale point to either center, min, or max, depending on how you want your curve to scale.

Frequency scales the curve in the X axis, and pivot frame serves at the pivot point for the X axis scale, so if you set to frame 1050 and scale the frequency, frame 1050 will remain the same value and scale outward from there.

Position X and position Y are simple controls to move the curve up and down and left and right on the curve editor.

You can sort of 'stack' or drive multiple curves by expression linking another curve/randomizer into the Position Y, amplitude, or frequency knobs, or by manually animating them. You can achieve some pretty dynamic results.

Squarify option makes random and noise steppy, and included a random seed button

This tool can also be used with the Wave Machine toolset

AnimationCurve AG

Author: Andrea Geremia - http://www.andreageremia.it/tutorial.html

Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/animation_curve</u> Very detailed tutorial: <u>www.andreageremia.it/tutorial_animation_nuke.html</u>

Generate or modify animation curves

All the functions in this Gizmo:

Wave Generator New Range Smooth Curves Modify Curves Fade Reference Frame Percentage Average

1. Wave Generator

In this first Tab you can generate a Wave with different options. For of all, select the Type. Please, check all the available types.

Noise Random Sine Sine Blip Triangle Square Bounce Blip Saw Tooth Saw Parabolic Saw Parabolic Reverse Saw Exponential

🔻 o 👾 🐓 🗛	IMATION_CUR	/E							C.	S	? @ ×
Wave Generator	New Range	Sm	ooth Cu	irves	Modify	/ Curve	es	Ref fr	ame	Pen	cen 🔹 🕨
Wave type	Random										
Min val	-5			-					6		10 20
Max val	10										-
Speed (frequency)	23		0. 20			50	68			90;	100
Time offset	0			5 4	<u>12 (1))</u> 42		1	-			10
Blip	1	 			5				R.		10 ~
output_wave	1.44793096					1.5				10	
Expression	random((fran	ne+off	set)/sp	∋ed)*(max_va	ıl-min_	val) +	min_	val		
	Gizmo create andrea geren www.andreag	d by A nia89@ eremia	ndrea ()gmail.c a.it	Geremia om	1.						

2. New Range

Here you can change the range of an Animation Curve. For example, if min and max values are -5 and 6, you can project all the curve in the new frame range -5 and 20.

Drag and Drop your curve in the knob Input and use the button to find out the min and max value, then insert your new values and check in the Curve Editor your new curve.

▼ 0 ₩ ¥ A	NIMATION_CURV	/E						-	C :	S	? # X
Wave Generator	New Range	Smoo	th Cur	ves	Modi	fy Curv	res	Ref fr	ame	Perc	cen 🕴
	Normalize anim Shift a curve int	ation cui to a new	rves range	, keep	ing the	e propo	ortion				
input	-1 1580058	01	0.2		.ŏ.4				(9/E)		IN
ORIGINAL RANGE											
	Calculate Min a	ind Max									
min	-5	0.1	02	03	0.4						IN
max		01	0.2		0.4		9.6	0.7	0.8		N
NEW RANGE											
min	-5	01	0.2	03	0.4					0.9	- N
max	20	61	02		0.4						P N
output_range	3.73180501				0.4		0.6				3
Expression	in_new+(((max_	_new-mi	n_new)/(max	_old-m	nin_old)))*(inp	ut-min_	old))	Gen	erate

In blue, you can see the original curve and in yellow the new one

3. Smooth Curves

Smooth the curve with this tool. Insert your curve in the knob Input, select the Type (High or Low) and the power of the smooth

V 0 ¥ ¥	ANIMATION_CURVE			Ø 🖛 🛛 5	S? #×	
Wave Generate	or New Range	Smooth Curves	Modify Curve	s Ref fram	e Percen	
input	Drag and drop your	curve and apply 1	the smooth. D _{20 30 4}	0 50 60 70	80 90100 2 ~	
Smooth Type	2 Iow -	1 0 10	20 30 4	0 50 60 70	80 50100 2 1	
output_smooth Expression	9.22916541 input.x.integrate(fr	1 s 10 ame-smooth, fran	20 30 4 ne+smooth) / (2*	0 50 60 70 smooth)	80 90100 2 N	
 An and an analysis of the second secon						

4. Modify Curves

With this tool you can modify curves with: Translate, Scale and Time Offset. With the checkbox you can activate or not the modifiers.

V 0 ¥ ¥	ANIMATION	CURVE	1					G	S	?	₽×
Wave Generat	or New Ra	ange	Smooth	Curves	Modify	/ Curves	R	ef fram	e	Percen	• •
input	8.18027906	0 1		10 II	20	30 40		60 70		2	2
X TRANSLATE	12	10.009	Li uig	<u></u>	28	30 40	50		80 3	2	2
SCALE		i) - s - s -									
scale	1	o l	5	10	20	30 40	50	60. 70	80 (0100 2	
Time offset	-6	frames									
output_modify Expression	14.9863008 (input(frame	+ offse	et)+ tran	10 I slate)	20.	30 40		60 70		010 2	2
A Additional Castor And Castor Additional Castor										\wedge	

5. Fade

Create the fade/dissolve from start frame till end frame. Animate mix or another knob from 0-1 or 1-0.

Select between:

- Linear
- Slow-in Slow-out
- Slow-in Linear-out
- Linear-in Slow-out

From David Ozols' tutorial

HTTPS://DJOZOLS.COM/2018/03/01/SIMPLE-FADE-EXPRESSIONS-IN-NUKE/

6. Reference Frame

Here set a reference frame. What does it mean? It means that your curve will be set to 0 in that frame. Basically it will be translated to 0 in the Reference Frame.

▼ 0 ¥ ¥ P	ANIMATION_CURVE							-	G :	S ?	8×
Wave Generator	New Range	Smoot	h Curv	/es	Modify	/ Curve	2S	Ref fr	ame	Perce	en 🕗
	Set the input equ	al to 0	in the	refere	nce fra	ame					
input	17.6742635	0.1	0.2	0.3	0.4	0.5	0.6	0,7	0.8	0.9	1N
Reference frame	100 set	curren	t to fra	ime							
output_ref	-0.36376558	01		6.2	0.4	0.5	0.6			100	-2
Expression	input - input(fram	ne)								Gene	rate
w.											
Analytics cant analytics analytics analytics					-						\wedge
nague annues. • angue angue annues. •	\wedge		\wedge		\sim \		\mathbb{N}				$/ \sim$
- nday anim	$\vee \setminus \land$		/ \	\bigvee							
											~
	\wedge			($\sim $. /	$\overline{\mathbf{A}}$		\wedge		/
-/	$^{\prime} \setminus \wedge \uparrow$	$\langle \rangle$	$ \land $			\bigvee	_/_	,	/`		/
en de la constante	Ŭ V	\bigvee						\mathcal{S}		\vee	

7. Percentage

Increase or Decrease the curve for a X percentage.

8. Average

This is a single value for the entire curve. It will return the average value for the curve.

▼ 0 ₩ 4	ANIMATION_CUP	WE					-	G	S 1	? # ×
New Range	Smooth Curves	Modify	Curves	Ref	frame	Per	centag	e A	verage	e 🔹
input frame range	Find the average n 17.67426351 1 100	umber of t	he curve	values 0.4	0.5	0.6	0.7	0.8	0.9	4
average Expression	19.6879814i	01 02 me_in, frar	0.3 ne_out)/(04 (frame_	0.5 out-frar	0.6 ne_in)			Gent	Prate

CurveRemapper BM

Author: Ben McEwan - https://benmcewan.com/blog/

Nukepedia Link: http://www.nukepedia.com/gizmos/other/bm_curveremapper

Useful for remapping arbitrary animation curves, such as those from the CurveTool. Input the animation's min & max values, then set new min & max values.

NoiseGen BM

Author: Ben McEwan - https://benmcewan.com/blog/

V O M	bm_Noi Info Node	seGen :			S	? 8 ×	
Noise Type	Random	÷					
Minimum Maximum Frequency Time Offset Seed	0 1 10 0 12345	andomi	ze Seed		7 0.8 0		
	0.37331052						

Download tool: <u>https://benmcewan.com/nukeTools.html</u>

Generates a random noise curve based on a minimum, maximum & frequency value.

Modified so the output curve will work with Wave Machine toolset

15.) Utilities

GUI_Switch TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

There were some issues with the \$gui expression that everyone knows that when you render a frame locally instead of on a render farm, it did not register and would not switch over.

This tool is using a lesser known python expression called nuke.executing() and seems to solve this problem. Inside the gizmo is just a switch node with the expression on the 'which' knob. 2 inputs, GUI and Render. Plug GUI into the node you want to view live in the nuke script while you are working, and Render input plug into whatever you want to switch to when you are rendering / executing something. Usually this is for speedy work environments and switching to higher settings / samples on render time

For visuals, when the node is on it's Red and says GUI, and if you disable the node, it will turn Green and say RENDER. Hopefully this will let you conveniently preview the Render or GUI

Node has no settings, just a description. Just plug in and disable/enable!

NAN_INF_Killer TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

4 f/8 ▶ 1¥	T 0 - 4	NAN Killer					F S	? & ×
nan nan nan 0.2	AN_Killer I	nfo Node						
Hall Hen Hall OLE-	channels	rgba						
	Method	Replace wit	±h0 ▼					
Node Graph Curve Editor Dope		X Keep Alpha						
	Replace Color		0	0	0			4 📈
mask	Translate	× 4	y 4					
	Extra traniat	e Options						
NAN_Killer Replace with 0	Blur Size			1		1 1 1 20 40 20	40, 70, 60, 1	2 2
Replace With 0	TimeOffset							
	mask					• = injec	t 🗌 invert	fringe

Kills NAN and INF pixels using a variety of replacement methods: Replace with 0 Replace with Custom Color Clone Over Blur/Unpremult Time

Keep alpha will keep the original alpha if the alpha channel does not have NAN or INF in it. Separates RGB from Alpha in expression

Exposed settings for replace color, transform (for Clone over), blur/unpremult, time offset

apViewerBlocker AP

Author: Adrian Pueyo - http://www.adrianpueyo.com/

• •	ViewerBlocker		? ₽ ×				
ViewerBlocker Node							
viewer	Viewer1	Set to selected	Unblock				
1	Grade1	Set to current	Clear				
2	Write2	Set to current	Clear				
3	Read3	Set to current	Clear				
4		Set to current	Clear				
5		Set to current	Clear				
6		Set to current	Clear				
7		Set to current	Clear				
8		Set to current	Clear				
9		Set to current	Clear				
o		Set to current	Clear				
Viewer	Blocker by Adrian Pueyo						

Locks the Viewers input to specific nodes, so you can reference the same views when you are using the numeric hotkeys without worrying about resetting or accidentally switching the viewer inputs. Good for referencing certain images, like Final image set to 9, reference image set to 8, plate set to 0, etc

Select a viewer you wish to Block / Lock and click set to Selected on the viewer box

View an image that you wish to save/ lock to hotkey and 'set to current' on one of the numbers 1,2,3,4,5,6,7,8,9,0. This will enter the nodes name in the text input and lock that viewer input to that node so when you use the number hotkey it always views this node.

Clear any fields to reset them.

Python_and_TCL AG

Author: Andrea Geremia - www.andreageremia.it/tutorial.html

Nukepedia link: http://www.nukepedia.com/gizmos/other/python-and-tcl-tips-and-tricks

Huge collection of Python and TCL snippets to use inside Nuke

In this Gizmo you will find out some tips and tricks that I've wrote and picked up from other websites about Python and TCL.

Check out the complete guide even here: http://www.andreageremia.it/tutorial_python_tcl.html

It's a Guide by categories to read directly in Nuke, really useful for all the Nuke Artists.

Sections of the Guide:

- 00. PYTHON AND TCL OVERVIEW
- 01. CREATE NODE
- 02. SELECT NODE
- 03. CONNECT NODES
- 04. READ FROM A KNOB
- 05. WRITE INTO A KNOB
- 06. CREATE A NEW KNOB
- 07. ANIMATION AND CURVE
- **08. EXPRESSIONS**
- 09. MATH FUNCTIONS AND WAVE GENERATOR
- 10. FUNCTIONS DEF()
- 11. CALLBACKS
- 12. CUSTOMS PANELS
- 13. TRICKS

RotoQC NKPD

Author: Tor Andreassen - <u>http://www.fxtor.net/nuke.html</u> Originally named fxT_matteQC

	▼ O ₩ ¥	ReteQC			a s	3	5 ×
matte rgb RotoQC red overlay	mode	red overlay					
	color opacity custom BG color	0.25 0.2 X keep matte in alpha channel keep bbox pipe alpha through invert matte		3		4	22
	// fxT_matteQC)	¥2,4 © Tor Andreatsen = www.fater.net					

Nukepedia Link: http://www.nukepedia.com/gizmos/other/matteoverlay

Tool intended to check roto matte's accuracy.

This is a QC tool for checking roto-mattes. It works with all formats (format is grabbed from the input), meaning it will work with all aspect ratios, including anamorphic plates.

The node has these QC options: overlay of red, green, or blue, Stencil from plate, premult against BG (grey, checkerboard, or custom color). It's set up in a way so all the user needs to do is pick the QC mode from a dropdown menu, and the rest is handled by the gizmo, including alpha handling. For color overlay the user can control the opacity with a slider. The node is stackable and alpha will carry through so you can have as many of these nodes you want and the alpha will still be correct.

ViewerRender MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia link: <u>http://www.nukepedia.com/gizmos/other/viewer-render</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Viewer Render is a tool that can render anything shown in viewer, even with UI, like playblast in maya but in nuke. Support 2D and 3D, anything visible in the viewer. It's good to show a witness camera, while making tutorial video, show the problem in visual and bring it up for discussion.

If you run into any problems during render, please make sure the display card driver is up to date.

Demo video : https://www.facebook.com/MJTlab/videos/766383973741245/ https://vimeo.com/315590788

Enter Viewer node name to render and set render path and frameRange and click render

NukeZ MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

		a linear III	1					
	V O 🗰	Y NukeZ	? 🗗 X					
	General	Misc Version Node						
	node	PSDMerge 👻 update menu Total : 235						
		[create node]						
			unlock					
NukeZ		sort by alphabet						
		add to favorite remove from favorite reset favorite						
		[create quick access node]						
	filter list menu							
	blacklist							
		add to blacklist remove from blacklist reset blacklist						
	whitelist							
		add to whitelist remove from whitelist reset whitelist						

Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

NukeZ can access hidden / old version nodes quickly without memorize the class name. Create personal favorite node set (including those hidden / old version nodes)

Click 'update menu' for your first run. It's because different versions of nuke has different node set.

e.g. ParticleBlinkscriptRender will give you error if pull it out on Nuke12.0 below.

After update the menu, you can simply select any nodes in the menu, and click 'create node' to pull it out.

You can also 'add to favorite'. Once you are done with the favorite list, click 'create quick access node', then it will create a node with all your favorite nodes in a single panel.

After that, you don't need NukeZ anymore, you can just save 'NukeZfav_xx' into your toolset for your perosnal use.

The tool actually detect all the file in plugin folder, there has a lot of node already exist in nuke's UI menu, so I created a filter function. The duplicated class will not show up in this tool. I only keep those with multiple versions and hidden ones.

e.g.

you can found those 4 different versions of 'Tracking' (many people like to stick with the old one), 2 versions of lensdistortion (I also prefer the old one).

hidden node like 'ParticleToImage' (you can check the document from Mads website)

You can edit those filter manually and detect file type.

Whitelist is a list that doesn't find in the folder, so type in the node class manally to make it appear in the menu.

Pyclopedia MJT

Author: Mark Joey Tang - <u>www.facebook.com/MJTlab</u>

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/other/pyclopedia_v10</u> Download Mark Joey Tang's entire Toolset: <u>http://bit.ly/menupy</u>

Video : <u>https://youtu.be/icLr4uo6F-c</u>

Check available python API and documents in Nuke with clear interface.

type in the command line you want to check.

click 'get next level' to see what command available.

click 'get details' to see what is the command doing, what argument it takes, how to use, etc. In command line, can type in any level to get quickly search.

It also can check python from import any module.

In Pyclopedia, you can also point to a node and check what attributes can use.

16.) Templates

Advanced Keying Template TL

Author: Tony Lyons - <u>www.CompositingMentor.com</u>

Nukepedia Link: <u>http://www.nukepedia.com/gizmos/keyer/advanced_keying_template_pack</u> Website Write-up:

https://compositingmentor.com/2015/12/18/advanced-keying-breakdown-4-1-template/

Video Tutorial on Template: <u>https://www.youtube.com/watch?v=BKcKpPFVmCk</u>

For in depth detail about how to use this template and different techniques and methods to look for in each section, please visit the full Keying Tutorial Playlist: <u>https://www.youtube.com/playlist?list=PLt2Nu4KGXJ2iXe7s-ydCQ9u1tTzzApmJX</u>

There are also more details on the website series: <u>https://compositingmentor.com/category/advanced-keying-breakdown/</u>

Broken down into 5 sections, Core Despill, Edge Despill, Core Key, Edge Key, and the Background Blend. Organized to help with complex shots with transformations and color corrections to the Greenscreen element.

Advanced Keying Template Stamps TL

Author: Tony Lyons - www.CompositingMentor.com

This is an updated Advanced Keying Template using Adrian Pueyo's Stamps. You can download his stamps plugin here: <u>https://www.nukepedia.com/gizmos/other/stamps</u>

Mainly just changed the organization of the script while keeping true to the original template structure. There is a cleanplate section, which can be used later on with the additive keying section.

All passes are piped in before the Color Corrections and Transformations section, and piped out and converted to stamps after the transformations section, to be used elsewhere. There is an updated, although experimental way of creating the cleanplate from ibk_Colour node. Feel free to use this or any other unpremult/blur or IBK stack, or edge extend method, or plug in your cleanplate if you have one. Feature was replaced by the exponBlurSimple node

There is a lightwrap section after the premult as well as an additive keying section near the merge.

If you don't like stamps, feel free to adjust/ add dots and pipelines and configure in whichever way you like to help your workflow

STMap Keyer Setup EL

Author: Erwan Leroy - http://erwanleroy.com/blog/

Great Write up about this cool STMap keying technique by Erwan Leroy: http://erwanleroy.com/make-a-custom-advanced-keyer-using-stmap/

The idea of this method is to represent the image as a 2D point cloud (vs 1D points or 3D points above) and use some sort of shape to define which area should be transparent or solid, as well as softness. This is convenient because we have some great tools to define areas in 2d: Roto and Rotopaint, as well as a great tool to do 2d mapping: STMap.

Since we're in 2D, we can now use 2 channels as our 2 axes. Which 2 you would like to use is sort of up to you, and based on your specific footage. I will be using a plate from the Open Source project Tears of Steel, which you've probably seem many times, and can download here: https://media.xiph.org/tearsofsteel/tearsofsteel-footage-exr/02_3c/linear_hd/ For chroma keying, two channels that make sense for this approach are the cb and cr channels of the Ycbcr colorspace, though Luma and Hue could work, or Hue and Saturation, etc..

The basic implementation is rather simple: Set 2 channels as the STMap input of an STMap node, and a roto as the source.

Gizmo Demo Scripts

There are Demo Scripts graciously donated by the Authors to help demo their tools. The following tools have Scripts in this menu, links to the tools in this document below:

WaterLens Demo MJT

SSMesh Demo MJT

UV Editor Demo MJT

Sparky Demo NKPD

Particle Lights Demo MHD

Special Thanks

I'd like to take this opportunity to thank the entire Nuke Compositing Community, and all of the various artists who have made and shared a gizmo online, and donated a piece of their knowledge, experience, and hard work to making this community better.

<u>Nukepedia</u> is an amazing website that many of us take for granted just how powerful it is for all of us to be able to gather, share, explore, and create new tools and techniques. Thank you to the founders of Nukepedia for providing over 10 years of gizmos, tutorials, and scripts for all of us to play with.

This Toolkit is in no way trying to "steal the thunder of", undermine, or "re-distribute" the various gizmo's through another website. I have done my best to document, link to, and credit every single tool and author to the best of my knowledge, and fully encourage anyone who wants to know more to explore their websites, and click on the links in the tools to check for updates and more details and support the authors of the tools. My goal was to simply bring the tools together in a single organized menu, so that anyone could download, install, and access a library of tools at their fingertips. Full credits belong to the authors; this toolkit would not exist without their contribution.

Also, this toolkit is just a small collection of the thousands of tools available on nukepedia and online. It is not a reflection of "the best" tools. The tools selected on this menu are subjectively picked by myself because I found them useful and unique. There are many tools that I either missed, overlooked, or simply tried to condense the categories, but are no doubt just as valuable or more valuable to another artist out there. I encourage you to explore more tools and not to take this as an "end all be all". Some tools will fit your workflow better than someone else's workflow, and it's up to you to find your "go-to" tools for a compositing situation. You may consider this a "rough guide" or good starting point in your search. And many in here you may not personally find a use for.

In particular, I'd like to personally thank a few of my favorite contributors:

Frank Rueter Erwan Leroy Xavier Martin Mads Hagbarth Damsbo Mark Joey Tang Wouter Gilsing Ben McEwan SPIN VFX Andrea Geremia Alexey Kuchinski Derek Rein Fynn Laue And many others for all of their awesome work.

And a very special thank you **Adrian Pueyo**, for helping come up with the vision for this Toolkit with me back in 2019, for allowing me to post all of his amazing tools in this toolkit, for teaching, inspiring, and encouraging me to get better at coding and gizmo creation to the point where I am confidently able to deliver to everyone the Nuke Survival Toolkit.

You all drive me to be a better artist, and I am very honored to be part of this community with you. Thank you.

Contact

If you are having any trouble with the Nuke Survival Toolkit, or would like me to remove a certain tool, or think I need to update or include a particular tool, please feel free to contact me via email.

You can reach me by filling out a brief contact form on my contacts page, found here: <u>https://www.creativelyons.com/contact</u>

Please include "Nuke Survival Toolkit" or "NST" in the subject field to help me prioritize the mail in my inbox. I appreciate your feedback.

Swiss Army Knife Icon Source: https://icons8.com/icon/2532/swiss-army-knife

Thank you, and please enjoy the Nuke Survival Toolkit.

Tony Lyons | 09/2020