Skip to content

Latest commit

 

History

History
28 lines (19 loc) · 816 Bytes

README.md

File metadata and controls

28 lines (19 loc) · 816 Bytes

The Statistical Recurrent Unit

  • authors: Junier B. Oliva, Barnabas Poczos, Jeff Schneider
  • arxiv: https://arxiv.org/abs/1703.00381
  • Pytorch implemention of the experiment of SRU with pixel-by-pixel sequential MNIST.
  • Powered by DL HACKS

Requirements

  • environment: python3.5
  • pytorch 0.2.0
  • hyperopt 0.1
  • numpy 1.13.1
  • scikit-learn 0.18.2

Implement

  • python main.py sru: trainning RNNs with fixed parameters.
  • python tune_params.py sru : tuning hyper parameters with hyperopt.
  • Choose your model from [sru, gru, lstm]
  • If you need more information, please run python tune_params.py --help.

notes

  • I choose Adam for optimization, though SGD is used in the paper. (It might converge faster)
  • weight_decay is used. (The paper doesn't refer to it)