diff --git a/autoaugment.py b/autoaugment.py index 76c6bc4..282a4c8 100644 --- a/autoaugment.py +++ b/autoaugment.py @@ -2,174 +2,479 @@ import numpy as np import random +class MyPolicy1(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. + Example: + >>> policy = ImageNetPolicy() + >>> transformed_img, transformed_mask = policy(image) + Example as a PyTorch Transform: + >>> transform=transforms.Compose([ + >>> transforms.Resize(256), + >>> ImageNetPolicy(), + >>> transforms.ToTensor()]) + """ + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + + self.policies = [ + policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + #policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + #policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) + ] -class ImageNetPolicy(object): - """ Randomly choose one of the best 24 Sub-policies on ImageNet. + def __call__(self, img, mask=None): + policy_idx = random.randint(0, len(self.policies) - 1) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) + + def __repr__(self): + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" + +class MyPolicy2(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. Example: >>> policy = ImageNetPolicy() - >>> transformed = policy(image) + >>> transformed_img, transformed_mask = policy(image) + Example as a PyTorch Transform: + >>> transform=transforms.Compose([ + >>> transforms.Resize(256), + >>> ImageNetPolicy(), + >>> transforms.ToTensor()]) + """ + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + + self.policies = [ + policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + #policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + #policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + #policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + #policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) + ] + + def __call__(self, img, mask=None): + policy_idx = random.randint(0, len(self.policies) - 1) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) + + def __repr__(self): + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" + +class MyPolicy3(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. + Example: + >>> policy = ImageNetPolicy() + >>> transformed_img, transformed_mask = policy(image) Example as a PyTorch Transform: >>> transform=transforms.Compose([ >>> transforms.Resize(256), >>> ImageNetPolicy(), >>> transforms.ToTensor()]) """ - def __init__(self, fillcolor=(128, 128, 128)): + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + self.policies = [ - SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor), - SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), - SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor), - SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor), - SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), - - SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor), - SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor), - SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor), - SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor), - SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor), - - SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor), - SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor), - SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor), - SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), - SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), - - SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor), - SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor), - SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor), - SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor), - SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor), - - SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), - SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), - SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), - SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), - SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor) + #policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + #policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + #policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) ] - def __call__(self, img): + def __call__(self, img, mask=None): policy_idx = random.randint(0, len(self.policies) - 1) - return self.policies[policy_idx](img) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) def __repr__(self): - return "AutoAugment ImageNet Policy" + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" +class MyPolicy4(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. + Example: + >>> policy = ImageNetPolicy() + >>> transformed_img, transformed_mask = policy(image) + Example as a PyTorch Transform: + >>> transform=transforms.Compose([ + >>> transforms.Resize(256), + >>> ImageNetPolicy(), + >>> transforms.ToTensor()]) + """ + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + + self.policies = [ + policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) + ] -class CIFAR10Policy(object): - """ Randomly choose one of the best 25 Sub-policies on CIFAR10. + def __call__(self, img, mask=None): + policy_idx = random.randint(0, len(self.policies) - 1) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) + + def __repr__(self): + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" + +class MyPolicy5(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. + Example: + >>> policy = ImageNetPolicy() + >>> transformed_img, transformed_mask = policy(image) + Example as a PyTorch Transform: + >>> transform=transforms.Compose([ + >>> transforms.Resize(256), + >>> ImageNetPolicy(), + >>> transforms.ToTensor()]) + """ + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + + self.policies = [ + #policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + #policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + #policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + #policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + #policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + #policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + #policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + #policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + #policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + #policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + #policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) + ] + + + def __call__(self, img, mask=None): + policy_idx = random.randint(0, len(self.policies) - 1) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) + + def __repr__(self): + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" + +class ImageNetPolicy(object): + """ Randomly choose one of the best 24 Sub-policies on ImageNet. Adapted to segmentation tasks too. + Example: + >>> policy = ImageNetPolicy() + >>> transformed_img, transformed_mask = policy(image) + Example as a PyTorch Transform: + >>> transform=transforms.Compose([ + >>> transforms.Resize(256), + >>> ImageNetPolicy(), + >>> transforms.ToTensor()]) + """ + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + + self.policies = [ + policy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + policy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor_img, fillcolor_mask), + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + policy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor_img, fillcolor_mask), + policy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor_img, fillcolor_mask), + policy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + + policy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor_img, fillcolor_mask), + policy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor_img, fillcolor_mask), + policy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + + policy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor_img, fillcolor_mask), + policy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask) + ] + + + def __call__(self, img, mask=None): + policy_idx = random.randint(0, len(self.policies) - 1) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) + + def __repr__(self): + return "AutoAugment ImageNet Policy" if self.classification else "Segmentation AutoAugment ImageNet Policy" + +class CIFAR10Policy(object): + """ Randomly choose one of the best 25 Sub-policies on CIFAR10. Adapted to segmentation tasks too. Example: >>> policy = CIFAR10Policy() >>> transformed = policy(image) - Example as a PyTorch Transform: >>> transform=transforms.Compose([ >>> transforms.Resize(256), >>> CIFAR10Policy(), >>> transforms.ToTensor()]) """ - def __init__(self, fillcolor=(128, 128, 128)): + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + self.policies = [ - SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor), - SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor), - SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor), - SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor), - SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor), - - SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor), - SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor), - SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor), - SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor), - SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor), - - SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor), - SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor), - SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor), - SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor), - SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor), - - SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor), - SubPolicy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor), - SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor), - SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor), - SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor), - - SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor), - SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor), - SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor), - SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor), - SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor) + policy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor_img, fillcolor_mask), + policy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor_img, fillcolor_mask), + policy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor_img, fillcolor_mask), + policy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor_img, fillcolor_mask), + policy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor_img, fillcolor_mask), + + policy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor_img, fillcolor_mask), + policy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor_img, fillcolor_mask), + policy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor_img, fillcolor_mask), + policy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor_img, fillcolor_mask), + + policy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor_img, fillcolor_mask), + policy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor_img, fillcolor_mask), + policy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor_img, fillcolor_mask), + policy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor_img, fillcolor_mask), + policy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor_img, fillcolor_mask), + + policy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor_img, fillcolor_mask), + policy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor_img, fillcolor_mask), + policy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor_img, fillcolor_mask), + policy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor_img, fillcolor_mask), + + policy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor_img, fillcolor_mask), + policy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor_img, fillcolor_mask), + policy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor_img, fillcolor_mask), + policy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor_img, fillcolor_mask), + policy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor_img, fillcolor_mask) ] - - def __call__(self, img): + def __call__(self, img, mask=None): policy_idx = random.randint(0, len(self.policies) - 1) - return self.policies[policy_idx](img) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) def __repr__(self): - return "AutoAugment CIFAR10 Policy" + return "AutoAugment CIFAR10 Policy" if self.classification else "Segmentation AutoAugment CIFAR10 Policy" class SVHNPolicy(object): - """ Randomly choose one of the best 25 Sub-policies on SVHN. - + """ Randomly choose one of the best 25 Sub-policies on SVHN. Adapted to segmentation tasks too. Example: >>> policy = SVHNPolicy() >>> transformed = policy(image) - Example as a PyTorch Transform: >>> transform=transforms.Compose([ >>> transforms.Resize(256), >>> SVHNPolicy(), >>> transforms.ToTensor()]) """ - def __init__(self, fillcolor=(128, 128, 128)): + def __init__(self, fillcolor_img=(0, 0, 0), fillcolor_mask=0, task="classification"): + self.classification = False + if task == "classification": + self.classification = True + policy = SubPolicy + elif task == "segmentation": + policy = SegmentationSubPolicy + self.policies = [ - SubPolicy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor), - SubPolicy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor), - SubPolicy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor), - SubPolicy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor), - SubPolicy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor), - - SubPolicy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor), - SubPolicy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor), - SubPolicy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor), - SubPolicy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor), - SubPolicy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor), - - SubPolicy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor), - SubPolicy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor), - SubPolicy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor), - SubPolicy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor), - SubPolicy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor), - - SubPolicy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor), - SubPolicy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor), - SubPolicy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor), - SubPolicy(0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor), - SubPolicy(0.1, "shearX", 6, 0.6, "invert", 5, fillcolor), - - SubPolicy(0.7, "solarize", 2, 0.6, "translateY", 7, fillcolor), - SubPolicy(0.8, "shearY", 4, 0.8, "invert", 8, fillcolor), - SubPolicy(0.7, "shearX", 9, 0.8, "translateY", 3, fillcolor), - SubPolicy(0.8, "shearY", 5, 0.7, "autocontrast", 3, fillcolor), - SubPolicy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor) + policy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor_img, fillcolor_mask), + policy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor_img, fillcolor_mask), + policy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor_img, fillcolor_mask), + + policy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor_img, fillcolor_mask), + policy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor_img, fillcolor_mask), + policy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor_img, fillcolor_mask), + policy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor_img, fillcolor_mask), + policy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor_img, fillcolor_mask), + + policy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor_img, fillcolor_mask), + policy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor_img, fillcolor_mask), + policy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor_img, fillcolor_mask), + policy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor_img, fillcolor_mask), + policy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor_img, fillcolor_mask), + + policy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor_img, fillcolor_mask), + policy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor_img, fillcolor_mask), + policy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor_img, fillcolor_mask), + policy(0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor_img, fillcolor_mask), + policy(0.1, "shearX", 6, 0.6, "invert", 5, fillcolor_img, fillcolor_mask), + + policy(0.7, "solarize", 2, 0.6, "translateY", 7, fillcolor_img, fillcolor_mask), + policy(0.8, "shearY", 4, 0.8, "invert", 8, fillcolor_img, fillcolor_mask), + policy(0.7, "shearX", 9, 0.8, "translateY", 3, fillcolor_img, fillcolor_mask), + policy(0.8, "shearY", 5, 0.7, "autocontrast", 3, fillcolor_img, fillcolor_mask), + policy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor_img, fillcolor_mask) ] - - def __call__(self, img): + def __call__(self, img, mask=None): policy_idx = random.randint(0, len(self.policies) - 1) - return self.policies[policy_idx](img) + return self.policies[policy_idx](img) if self.classification else self.policies[policy_idx](img, mask) def __repr__(self): - return "AutoAugment SVHN Policy" - + return "AutoAugment SVHN Policy" if self.classification else "Segmentation AutoAugment SVHN Policy" class SubPolicy(object): - def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128)): + def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128), fillcolor_mask=None): ranges = { "shearX": np.linspace(0, 0.3, 10), "shearY": np.linspace(0, 0.3, 10), @@ -231,4 +536,80 @@ def rotate_with_fill(img, magnitude): def __call__(self, img): if random.random() < self.p1: img = self.operation1(img, self.magnitude1) if random.random() < self.p2: img = self.operation2(img, self.magnitude2) - return img \ No newline at end of file + return img + +class SegmentationSubPolicy(object): + def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor_img=(0,0,0), fillcolor_mask=0): + ranges = { + "shearX": np.linspace(0, 0.3, 10), + "shearY": np.linspace(0, 0.3, 10), + "translateX": np.linspace(0, 150 / 331, 10), + "translateY": np.linspace(0, 150 / 331, 10), + "rotate": np.linspace(0, 30, 10), + "color": np.linspace(0.0, 0.9, 10), + "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int), + "solarize": np.linspace(256, 0, 10), + "contrast": np.linspace(0.0, 0.9, 10), + "sharpness": np.linspace(0.0, 0.9, 10), + "brightness": np.linspace(0.0, 0.9, 10), + "autocontrast": [0] * 10, + "equalize": [0] * 10, + "invert": [0] * 10 + } + + # from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand + def rotate_with_fill(img, magnitude): + rot = img.convert("RGBA").rotate(magnitude) + return Image.composite(rot, Image.new("RGBA", rot.size, (0,) * 4), rot).convert(img.mode) + + func = { + "shearX": lambda img, mask, magnitude: ( + img.transform(img.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), + Image.BICUBIC, fillcolor=fillcolor_img), + mask.transform(mask.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), + Image.BICUBIC, fillcolor=fillcolor_mask) + ), + "shearY": lambda img, mask, magnitude: (img.transform( + img.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0), + Image.BICUBIC, fillcolor=fillcolor_img), + mask.transform( + mask.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0), + Image.BICUBIC, fillcolor=fillcolor_mask)), + "translateX": lambda img, mask, magnitude: (img.transform( + img.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0), + fillcolor=fillcolor_img), + mask.transform( + mask.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0), + fillcolor=fillcolor_mask)), + "translateY": lambda img, mask, magnitude: (img.transform( + img.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])), + fillcolor=fillcolor_img), + mask.transform( + mask.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])), + fillcolor=fillcolor_mask)), + "rotate": lambda img, mask, magnitude: (rotate_with_fill(img, magnitude), rotate_with_fill(mask, magnitude)), + "color": lambda img, mask, magnitude: (ImageEnhance.Color(img).enhance(1 + magnitude * random.choice([-1, 1])), mask), + "posterize": lambda img, mask, magnitude: (ImageOps.posterize(img, magnitude), mask), + "solarize": lambda img, mask, magnitude: (ImageOps.solarize(img, magnitude), mask), + "contrast": lambda img, mask, magnitude: (ImageEnhance.Contrast(img).enhance( + 1 + magnitude * random.choice([-1, 1])), mask), + "sharpness": lambda img, mask, magnitude: (ImageEnhance.Sharpness(img).enhance( + 1 + magnitude * random.choice([-1, 1])), mask), + "brightness": lambda img, mask, magnitude: (ImageEnhance.Brightness(img).enhance( + 1 + magnitude * random.choice([-1, 1])), mask), + "autocontrast": lambda img, mask, magnitude: (ImageOps.autocontrast(img), mask), + "equalize": lambda img, mask, magnitude: (ImageOps.equalize(img), mask), + "invert": lambda img, mask, magnitude: (ImageOps.invert(img), mask) + } + + self.p1 = p1 + self.operation1 = func[operation1] + self.magnitude1 = ranges[operation1][magnitude_idx1] + self.p2 = p2 + self.operation2 = func[operation2] + self.magnitude2 = ranges[operation2][magnitude_idx2] + + def __call__(self, img, mask): + if random.random() < self.p1: img, mask = self.operation1(img, mask, self.magnitude1) + if random.random() < self.p2: img, mask = self.operation2(img, mask, self.magnitude2) + return img, mask \ No newline at end of file