
Open Source License 
Compliance Proposal
for Dependency-Track

Draft 2018-12-10

Contributors: Henry Haverinen, Kim Paananen, Sami Lempinen, 
Juuso Kanner



Introduction

• This presentation is a draft concept for adding open source license
compliance functions to Dependency-Track



License policy

• Whether an OSS license is acceptable will depend on the organization
and the project. 

• Sometimes architecture decisions such as dynamic vs static linking
will impact the decision

• Proposed OSS license policy states:
• Uncategorized: license policy has not been defined for this license (default)

• Blacklisted: this license is not acceptable for use

• Whitelisted: this license is acceptable for use

• Case-by-case: whether the license is acceptable needs to be analysed
separtely per project



The scope of the license policy

• For simplicity, it is proposed to have a single global license policy in 
Dependency-Track, rather than multiple policies or project specific
policies

• Especially if the policy includes the ”case-by-case” option, a single 
global policy is expected to be good enough for most users



Defining the license policy

Name SPDX License ID OSI Approved License Policy

389 Directory Server Ex.. 389-exception No Uncategorized

3dfx Glide License Glide No Uncategorized

Abstyles License Abstyles No Uncategorized

Academic Free License … AFL-1.1 Yes Whitelisted

… … …

Uncategorized
Whitelisted
Blacklisted
Case-by-case

”OSI Approved” is not
user editable, so we
could use ”Yes” or
”No” instead of a 

checkbox

The user can define
the OSS License policy
by selecting one of the
options from a drop-

down list



Importing and exporting the license policy

• As an enhancement, it would be nice to be able to export the policy 
to a file and import a policy to the tool from a file



About license audit

• License audit is very similar to vulnerability audit

• License audit can be done per project or per component similarly as a 
vulnerability audit

• Analysis works similarly to the analysis of vulnerabilities

• Suppressing works similarly to suppressing vulnerabilities. 
Suppressing will impact the metrics, and it should be used mainly for 
possible "false positives" and case-by-case approved licenses.



License audit for a project

Rename the current
Audit as ”Security 

audit” or ”Vulnerability
audit”

License audit

Add a new tab
”License audit”



License analysis options

• License analysis options in license audit:
• NOT_SET: License audit has not been done
• APPROVED: the license has been approved
• REJECTED: the license has been rejected

• For whitelisted licenses, the initial analysis value is APPROVED

• For blacklisted licenses, the initial analysis value is REJECTED

• For uncategorized licenses, the initial analysis value is NOT_SET

• For case-by-case licenses, the initial analysis value is NOT_SET

• For components with an unknown license, the initial analysis value is 
NOT_SET



License audit

License audit

License audit

Component Version SPDX License ID License Policy License Analysis Suppressed

OpenSSL 1.0.1e OpenSSL Uncategorized APPROVED

Example tech 1.52.0 LGPL-3.0 Case-by-case REJECTED

henry – 10 Dec 2018 at 12:17:31
The application is statically linked, so the license is not acceptable

henry – 10 Dec 2018 at 12:18:18
NOT_SET → REJECTED

Audit trail

X

Comment

License

GNU Lesser General Public License v3.0 only

Analysis

Not set
Rejected
Approved



Re-auditing the licenses after the BoM is 
updated
• When a license issue is audited/suppressed and the BoM is later

updated, then the previous manual audit analysis decisions and 
suppression decisions should still remain, at least for those
components whose version does not change

• However, if the version of a component changes, then it is possible
that the previous manual approval/suppression decisions may
become invalid, especially for components whose BoM didn't include
a license. The simplest solution would be to restore the analysis state
the default value as dictated by the policy, and suppression state to 
unsuppressed. However, there could also be some other softer state
that suggests that the user should review the license audit decisions
to make sure they are still valid.



License compliance dashboard for a project

• Unprocessed license issues = 
# of components with an uncategorized
license or with an unprocessed case-by-
case license (License analysis NOT_SET 
and license issue is not suppressed)

• Approved licenses = 
# of components with a whitelisted or an 
approved case-by-case license
(License analysis APPROVED)

• Rejected licenses = 
# of components with a blacklisted or a 
rejected case-by-case license
(License analysis REJECTED and license
issue is not suppressed)

15

43

4

Project X License Compliance

Unprocessed license issues Approved licenses Rejected licenses



License compliance dashboard for portfolio

• Projects with license issues
= number of projects that
use a component that has
an uncategorized license,
a blacklisted license,
a rejected case-by-case 
licenses, or an
unprocessed case-by-case 
licenses and the issue is 
not suppressed

0
Projects with license issues


