-
Notifications
You must be signed in to change notification settings - Fork 0
/
hat.c
891 lines (790 loc) · 27.3 KB
/
hat.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
* Code to generate patches of the aperiodic 'hat' tiling discovered
* in 2023.
*
* This uses the 'combinatorial coordinates' system documented in my
* public article
* https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/
*
* The internal document auxiliary/doc/hats.html also contains an
* explanation of the basic ideas of this algorithm (less polished but
* containing more detail).
*
* Neither of those documents can really be put in a source file,
* because they just have too many complicated diagrams. So read at
* least one of those first; the comments in here will refer to it.
*
* Discoverers' website: https://cs.uwaterloo.ca/~csk/hat/
* Preprint of paper: https://arxiv.org/abs/2303.10798
*/
#include <assert.h>
#ifdef NO_TGMATH_H
# include <math.h>
#else
# include <tgmath.h>
#endif
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "puzzles.h"
#include "hat.h"
#include "hat-internal.h"
void hat_kiteenum_first(KiteEnum *s, int w, int h)
{
Kite start = { {0,0}, {0, 3}, {3, 0}, {2, 2} };
size_t i;
for (i = 0; i < KE_NKEEP; i++)
s->recent[i] = start; /* initialise to *something* */
s->curr_index = 0;
s->curr = &s->recent[s->curr_index];
s->state = 1;
s->w = w;
s->h = h;
s->x = 0;
s->y = 0;
}
bool hat_kiteenum_next(KiteEnum *s)
{
unsigned lastbut1 = s->last_index;
s->last_index = s->curr_index;
s->curr_index = (s->curr_index + 1) % KE_NKEEP;
s->curr = &s->recent[s->curr_index];
switch (s->state) {
/* States 1,2,3 walk rightwards along the upper side of a
* horizontal grid line with a pointy kite end at the start
* point */
case 1:
s->last_step = KS_F_RIGHT;
s->state = 2;
break;
case 2:
if (s->x+1 >= s->w) {
s->last_step = KS_F_RIGHT;
s->state = 4;
break;
}
s->last_step = KS_RIGHT;
s->state = 3;
s->x++;
break;
case 3:
s->last_step = KS_RIGHT;
s->state = 1;
break;
/* State 4 is special: we've just moved up into a row below a
* grid line, but we can't produce the rightmost tile of that
* row because it's not adjacent any tile so far emitted. So
* instead, emit the second-rightmost tile, and next time,
* we'll emit the rightmost. */
case 4:
s->last_step = KS_LEFT;
s->state = 5;
break;
/* And now we have to emit the third-rightmost tile relative
* to the last but one tile we emitted (the one from state 2,
* not state 4). */
case 5:
s->last_step = KS_RIGHT;
s->last_index = lastbut1;
s->state = 6;
break;
/* Now states 6-8 handle the general case of walking leftwards
* along the lower side of a line, starting from a
* right-angled kite end. */
case 6:
if (s->x <= 0) {
if (s->y+1 >= s->h) {
s->state = 0;
return false;
}
s->last_step = KS_RIGHT;
s->state = 9;
s->y++;
break;
}
s->last_step = KS_F_RIGHT;
s->state = 7;
s->x--;
break;
case 7:
s->last_step = KS_RIGHT;
s->state = 8;
break;
case 8:
s->last_step = KS_RIGHT;
s->state = 6;
break;
/* States 9,10,11 walk rightwards along the upper side of a
* horizontal grid line with a right-angled kite end at the
* start point. This time there's no awkward transition from
* the previous row. */
case 9:
s->last_step = KS_RIGHT;
s->state = 10;
break;
case 10:
s->last_step = KS_RIGHT;
s->state = 11;
break;
case 11:
if (s->x+1 >= s->w) {
/* Another awkward transition to the next row, where we
* have to generate it based on the previous state-9 tile.
* But this time at least we generate the rightmost tile
* of the new row, so the next states will be simple. */
s->last_step = KS_F_RIGHT;
s->last_index = lastbut1;
s->state = 12;
break;
}
s->last_step = KS_F_RIGHT;
s->state = 9;
s->x++;
break;
/* States 12,13,14 walk leftwards along the upper edge of a
* horizontal grid line with a pointy kite end at the start
* point */
case 12:
s->last_step = KS_F_RIGHT;
s->state = 13;
break;
case 13:
if (s->x <= 0) {
if (s->y+1 >= s->h) {
s->state = 0;
return false;
}
s->last_step = KS_LEFT;
s->state = 1;
s->y++;
break;
}
s->last_step = KS_RIGHT;
s->state = 14;
s->x--;
break;
case 14:
s->last_step = KS_RIGHT;
s->state = 12;
break;
default:
return false;
}
*s->curr = kite_step(s->recent[s->last_index], s->last_step);
return true;
}
/*
* The actual tables.
*/
#include "hat-tables.h"
/*
* One set of tables that we write by hand: the permitted ways to
* extend the coordinate system outwards from a given metatile.
*
* One obvious approach would be to make a table of all the places
* each metatile can appear in the expansion of another (e.g. H can be
* subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0 or 1 of a P
* or an F), and when we need to decide what our current topmost tile
* turns out to be a subtile of, choose equiprobably at random from
* those options.
*
* That's what I did originally, but a better approach is to skew the
* probabilities. We'd like to generate our patch of actual tiling
* uniformly at random, in the sense that if you selected uniformly
* from a very large region of the plane, the distribution of possible
* finite patches of tiling would converge to some limit as that
* region tended to infinity, and we'd be picking from that limiting
* distribution on finite patches.
*
* For this we have to refer back to the original paper, which
* indicates the subset of each metatile's expansion that can be
* considered to 'belong' to that metatile, such that every subtile
* belongs to exactly one parent metatile, and the overlaps are
* eliminated. Reading out the diagrams from their Figure 2.8:
*
* - H: we discard three of the outer F subtiles, in the symmetric
* positions index by our coordinates as 7, 10, 11. So we keep the
* remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist of
* three H, one T, three P and three F.
*
* - T: only the central H expanded from a T is considered to belong
* to it, so we just keep {0}, a single H.
*
* - P: we discard everything intersected by a long edge of the
* parallelogram, leaving the central three tiles and the endmost
* pair of F. That is, we keep {0,1,4,5,10}, consisting of two H,
* one P and two F.
*
* - F: looks like P at one end, and we retain the corresponding set
* of tiles there, but at the other end we keep the two F on either
* side of the endmost one. So we keep {0,1,3,6,8,10}, consisting of
* two H, one P and _three_ F.
*
* Adding up the tile numbers gives us this matrix system:
*
* (H_1) (3 1 2 2)(H_0)
* (T_1) = (1 0 0 0)(T_0)
* (P_1) (3 0 1 1)(P_0)
* (F_1) (3 0 2 3)(F_0)
*
* which says that if you have a patch of metatiling consisting of H_0
* H tiles, T_0 T tiles etc, then this matrix shows the number H_1 of
* smaller H tiles, etc, expanded from it.
*
* If you expand _many_ times, that's equivalent to raising the matrix
* to a power:
*
* n
* (H_n) (3 1 2 2) (H_0)
* (T_n) = (1 0 0 0) (T_0)
* (P_n) (3 0 1 1) (P_0)
* (F_n) (3 0 2 3) (F_0)
*
* The limiting distribution of metatiles is obtained by looking at
* the four-way ratio between H_n, T_n, P_n and F_n as n tends to
* infinity. To calculate this, we find the eigenvalues and
* eigenvectors of the matrix, and extract the eigenvector
* corresponding to the eigenvalue of largest magnitude. (Things get
* more complicated in cases where there isn't a _unique_ eigenvalue
* of largest magnitude, but here, there is.)
*
* That eigenvector is
*
* [ 1 ] [ 1 ]
* [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ]
* [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ]
* [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ]
*
* So those are the limiting relative proportions of metatiles.
*
* So if we have a particular metatile, how likely is it for its
* parent to be one of those? We have to adjust by the number of
* metatiles of each type that each tile has as its children. For
* example, the P and F tiles have one P child each, but the H has
* three P children. So if we have a P, the proportion of H in its
* potential ancestry is three times what's shown here. (And T can't
* occur at all as a parent.)
*
* In other words, we should choose _each coordinate_ with probability
* corresponding to one of those numbers (scaled down so they all sum
* to 1). Continuing to use P as an example, it will be:
*
* - child 4 of H with relative probability 1
* - child 5 of H with relative probability 1
* - child 6 of H with relative probability 1
* - child 4 of P with relative probability 0.70820393249936908922
* - child 3 of F with relative probability 1.14589803375031545538
*
* and then we obtain the true probabilities by scaling those values
* down so that they sum to 1.
*
* The tables below give a reasonable approximation in 32-bit
* integers to these proportions.
*/
typedef struct MetatilePossibleParent {
TileType type;
unsigned index;
unsigned long probability;
} MetatilePossibleParent;
/* The above probabilities scaled up by 10000000 */
#define PROB_H 10000000
#define PROB_T 1458980
#define PROB_P 7082039
#define PROB_F 11458980
static const MetatilePossibleParent parents_H[] = {
{ TT_H, 0, PROB_H },
{ TT_H, 1, PROB_H },
{ TT_H, 2, PROB_H },
{ TT_T, 0, PROB_T },
{ TT_P, 0, PROB_P },
{ TT_P, 1, PROB_P },
{ TT_F, 0, PROB_F },
{ TT_F, 1, PROB_F },
};
static const MetatilePossibleParent parents_T[] = {
{ TT_H, 3, PROB_H },
};
static const MetatilePossibleParent parents_P[] = {
{ TT_H, 4, PROB_H },
{ TT_H, 5, PROB_H },
{ TT_H, 6, PROB_H },
{ TT_P, 4, PROB_P },
{ TT_F, 3, PROB_F },
};
static const MetatilePossibleParent parents_F[] = {
{ TT_H, 8, PROB_H },
{ TT_H, 9, PROB_H },
{ TT_H, 12, PROB_H },
{ TT_P, 5, PROB_P },
{ TT_P, 10, PROB_P },
{ TT_F, 6, PROB_F },
{ TT_F, 8, PROB_F },
{ TT_F, 10, PROB_F },
};
static const MetatilePossibleParent *const possible_parents[] = {
parents_H, parents_T, parents_P, parents_F,
};
static const size_t n_possible_parents[] = {
lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F),
};
/*
* Similarly, we also want to choose our absolute starting hat with
* close to uniform probability, which again we do by looking at the
* limiting ratio of the metatile types, and this time, scaling by the
* number of hats in each metatile.
*
* We cheatingly use the same MetatilePossibleParent struct, because
* it's got all the right fields, even if it has an inappropriate
* name.
*/
static const MetatilePossibleParent starting_hats[] = {
{ TT_H, 0, PROB_H },
{ TT_H, 1, PROB_H },
{ TT_H, 2, PROB_H },
{ TT_H, 3, PROB_H },
{ TT_T, 0, PROB_P },
{ TT_P, 0, PROB_P },
{ TT_P, 1, PROB_P },
{ TT_F, 0, PROB_F },
{ TT_F, 1, PROB_F },
};
#undef PROB_H
#undef PROB_T
#undef PROB_P
#undef PROB_F
HatCoords *hat_coords_new(void)
{
HatCoords *hc = snew(HatCoords);
hc->nc = hc->csize = 0;
hc->c = NULL;
return hc;
}
void hat_coords_free(HatCoords *hc)
{
if (hc) {
sfree(hc->c);
sfree(hc);
}
}
void hat_coords_make_space(HatCoords *hc, size_t size)
{
if (hc->csize < size) {
hc->csize = hc->csize * 5 / 4 + 16;
if (hc->csize < size)
hc->csize = size;
hc->c = sresize(hc->c, hc->csize, HatCoord);
}
}
HatCoords *hat_coords_copy(HatCoords *hc_in)
{
HatCoords *hc_out = hat_coords_new();
hat_coords_make_space(hc_out, hc_in->nc);
memcpy(hc_out->c, hc_in->c, hc_in->nc * sizeof(*hc_out->c));
hc_out->nc = hc_in->nc;
return hc_out;
}
static const MetatilePossibleParent *choose_mpp(
random_state *rs, const MetatilePossibleParent *parents, size_t nparents)
{
/*
* If we needed to do this _efficiently_, we'd rewrite all those
* tables above as cumulative frequency tables and use binary
* search. But this happens about log n times in a grid of area n,
* so it hardly matters, and it's easier to keep the tables
* legible.
*/
unsigned long limit = 0, value;
size_t i;
for (i = 0; i < nparents; i++)
limit += parents[i].probability;
value = random_upto(rs, limit);
for (i = 0; i+1 < nparents; i++) {
if (value < parents[i].probability)
return &parents[i];
value -= parents[i].probability;
}
assert(i == nparents - 1);
assert(value < parents[i].probability);
return &parents[i];
}
void hatctx_init_random(HatContext *ctx, random_state *rs)
{
const MetatilePossibleParent *starting_hat = choose_mpp(
rs, starting_hats, lenof(starting_hats));
ctx->rs = rs;
ctx->prototype = hat_coords_new();
hat_coords_make_space(ctx->prototype, 3);
ctx->prototype->c[2].type = starting_hat->type;
ctx->prototype->c[2].index = -1;
ctx->prototype->c[1].type = TT_HAT;
ctx->prototype->c[1].index = starting_hat->index;
ctx->prototype->c[0].type = TT_KITE;
ctx->prototype->c[0].index = random_upto(rs, HAT_KITES);
ctx->prototype->nc = 3;
}
static inline int metatile_char_to_enum(char metatile)
{
return (metatile == 'H' ? TT_H :
metatile == 'T' ? TT_T :
metatile == 'P' ? TT_P :
metatile == 'F' ? TT_F : -1);
}
static void init_coords_params(HatContext *ctx,
const struct HatPatchParams *hp)
{
size_t i;
ctx->rs = NULL;
ctx->prototype = hat_coords_new();
assert(hp->ncoords >= 3);
hat_coords_make_space(ctx->prototype, hp->ncoords + 1);
ctx->prototype->nc = hp->ncoords + 1;
for (i = 0; i < hp->ncoords; i++)
ctx->prototype->c[i].index = hp->coords[i];
ctx->prototype->c[hp->ncoords].type =
metatile_char_to_enum(hp->final_metatile);
ctx->prototype->c[hp->ncoords].index = -1;
ctx->prototype->c[0].type = TT_KITE;
ctx->prototype->c[1].type = TT_HAT;
for (i = hp->ncoords - 1; i > 1; i--) {
TileType metatile = ctx->prototype->c[i+1].type;
assert(hp->coords[i] < nchildren[metatile]);
ctx->prototype->c[i].type = children[metatile][hp->coords[i]];
}
assert(hp->coords[0] < 8);
}
HatCoords *hatctx_initial_coords(HatContext *ctx)
{
return hat_coords_copy(ctx->prototype);
}
/*
* Extend hc until it has at least n coordinates in, by copying from
* ctx->prototype if needed, and extending ctx->prototype if needed in
* order to do that.
*/
void hatctx_extend_coords(HatContext *ctx, HatCoords *hc, size_t n)
{
if (ctx->prototype->nc < n) {
hat_coords_make_space(ctx->prototype, n);
while (ctx->prototype->nc < n) {
TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type;
assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1);
const MetatilePossibleParent *parent;
if (ctx->rs)
parent = choose_mpp(ctx->rs, possible_parents[type],
n_possible_parents[type]);
else
parent = possible_parents[type];
ctx->prototype->c[ctx->prototype->nc - 1].index = parent->index;
ctx->prototype->c[ctx->prototype->nc].index = -1;
ctx->prototype->c[ctx->prototype->nc].type = parent->type;
ctx->prototype->nc++;
}
}
hat_coords_make_space(hc, n);
while (hc->nc < n) {
assert(hc->c[hc->nc - 1].index == -1);
assert(hc->c[hc->nc - 1].type == ctx->prototype->c[hc->nc - 1].type);
hc->c[hc->nc - 1].index = ctx->prototype->c[hc->nc - 1].index;
hc->c[hc->nc].index = -1;
hc->c[hc->nc].type = ctx->prototype->c[hc->nc].type;
hc->nc++;
}
}
void hatctx_cleanup(HatContext *ctx)
{
hat_coords_free(ctx->prototype);
}
/*
* The actual system for finding the coordinates of an adjacent kite.
*/
/*
* Kitemap step: ensure we have enough coordinates to know two levels
* of meta-tiling, and use the kite map for the outer layer to move
* around the individual kites. If this fails, return NULL.
*/
static HatCoords *try_step_coords_kitemap(
HatContext *ctx, HatCoords *hc_in, KiteStep step)
{
hatctx_extend_coords(ctx, hc_in, 4);
hat_coords_debug(" try kitemap ", hc_in, "\n");
unsigned kite = hc_in->c[0].index;
unsigned hat = hc_in->c[1].index;
unsigned meta = hc_in->c[2].index;
TileType meta2type = hc_in->c[3].type;
const KitemapEntry *ke = &kitemap[meta2type][
kitemap_index(step, kite, hat, meta)];
if (ke->kite >= 0) {
/*
* Success! We've got coordinates for the next kite in this
* direction.
*/
HatCoords *hc_out = hat_coords_copy(hc_in);
hc_out->c[2].index = ke->meta;
hc_out->c[2].type = children[meta2type][ke->meta];
hc_out->c[1].index = ke->hat;
hc_out->c[1].type = TT_HAT;
hc_out->c[0].index = ke->kite;
hc_out->c[0].type = TT_KITE;
hat_coords_debug(" success! ", hc_out, "\n");
return hc_out;
}
return NULL;
}
/*
* Recursive metamap step. Try using the metamap to rewrite the
* coordinates at hc->c[depth] and hc->c[depth+1] (using the metamap
* for the tile type described in hc->c[depth+2]). If successful,
* recurse back down to see if this led to a successful step via the
* kitemap. If even that fails (so that we need to try a higher-order
* metamap rewrite), return NULL.
*/
static HatCoords *try_step_coords_metamap(
HatContext *ctx, HatCoords *hc_in, KiteStep step, size_t depth)
{
HatCoords *hc_tmp = NULL, *hc_out;
hatctx_extend_coords(ctx, hc_in, depth+3);
#ifdef HAT_COORDS_DEBUG
fprintf(stderr, " try meta %-4d", (int)depth);
hat_coords_debug("", hc_in, "\n");
#endif
unsigned meta_orig = hc_in->c[depth].index;
unsigned meta2_orig = hc_in->c[depth+1].index;
TileType meta3type = hc_in->c[depth+2].type;
unsigned meta = meta_orig, meta2 = meta2_orig;
while (true) {
const MetamapEntry *me;
HatCoords *hc_curr = hc_tmp ? hc_tmp : hc_in;
if (depth > 2)
hc_out = try_step_coords_metamap(ctx, hc_curr, step, depth - 1);
else
hc_out = try_step_coords_kitemap(ctx, hc_curr, step);
if (hc_out) {
hat_coords_free(hc_tmp);
return hc_out;
}
me = &metamap[meta3type][metamap_index(meta, meta2)];
assert(me->meta != -1);
if (me->meta == meta_orig && me->meta2 == meta2_orig) {
hat_coords_free(hc_tmp);
return NULL;
}
meta = me->meta;
meta2 = me->meta2;
/*
* We must do the rewrite in a copy of hc_in. It's not
* _necessarily_ obvious that that's the case (any successful
* rewrite leaves the coordinates still valid and still
* referring to the same kite, right?). But the problem is
* that we might do a rewrite at this level more than once,
* and in between, a metamap rewrite at the next level down
* might have modified _one_ of the two coordinates we're
* messing about with. So it's easiest to let the recursion
* just use a separate copy.
*/
if (!hc_tmp)
hc_tmp = hat_coords_copy(hc_in);
hc_tmp->c[depth+1].index = meta2;
hc_tmp->c[depth+1].type = children[meta3type][meta2];
hc_tmp->c[depth].index = meta;
hc_tmp->c[depth].type = children[hc_tmp->c[depth+1].type][meta];
hat_coords_debug(" rewritten -> ", hc_tmp, "\n");
}
}
/*
* The top-level algorithm for finding the next tile.
*/
HatCoords *hatctx_step(HatContext *ctx, HatCoords *hc_in, KiteStep step)
{
HatCoords *hc_out;
size_t depth;
#ifdef HAT_COORDS_DEBUG
static const char *const directions[] = {
" left\n", " right\n", " forward left\n", " forward right\n" };
hat_coords_debug("step start ", hc_in, directions[step]);
#endif
/*
* First, just try a kitemap step immediately. If that succeeds,
* we're done.
*/
if ((hc_out = try_step_coords_kitemap(ctx, hc_in, step)) != NULL)
return hc_out;
/*
* Otherwise, try metamap rewrites at successively higher layers
* until one works. Each one will recurse back down to the
* kitemap, as described above.
*/
for (depth = 2;; depth++) {
if ((hc_out = try_step_coords_metamap(
ctx, hc_in, step, depth)) != NULL)
return hc_out;
}
}
/*
* Generate a random set of parameters for a tiling of a given size.
* To do this, we iterate over the whole tiling via hat_kiteenum_first
* and hat_kiteenum_next, and for each kite, calculate its
* coordinates. But then we throw the coordinates away and don't do
* anything with them!
*
* But the side effect of _calculating_ all those coordinates is that
* we found out how far ctx->prototype needed to be extended, and did
* so, pulling random choices out of our random_state. So after this
* iteration, ctx->prototype contains everything we need to replicate
* the same piece of tiling next time.
*/
void hat_tiling_randomise(struct HatPatchParams *hp, int w, int h,
random_state *rs)
{
HatContext ctx[1];
HatCoords *coords[KE_NKEEP];
KiteEnum s[1];
size_t i;
hatctx_init_random(ctx, rs);
for (i = 0; i < lenof(coords); i++)
coords[i] = NULL;
hat_kiteenum_first(s, w, h);
coords[s->curr_index] = hatctx_initial_coords(ctx);
while (hat_kiteenum_next(s)) {
hat_coords_free(coords[s->curr_index]);
coords[s->curr_index] = hatctx_step(
ctx, coords[s->last_index], s->last_step);
}
hp->ncoords = ctx->prototype->nc - 1;
hp->coords = snewn(hp->ncoords, unsigned char);
for (i = 0; i < hp->ncoords; i++)
hp->coords[i] = ctx->prototype->c[i].index;
hp->final_metatile = tilechars[ctx->prototype->c[hp->ncoords].type];
hatctx_cleanup(ctx);
for (i = 0; i < lenof(coords); i++)
hat_coords_free(coords[i]);
}
const char *hat_tiling_params_invalid(const struct HatPatchParams *hp)
{
TileType metatile;
size_t i;
if (hp->ncoords < 3)
return "Grid parameters require at least three coordinates";
if (metatile_char_to_enum(hp->final_metatile) < 0)
return "Grid parameters contain an invalid final metatile";
if (hp->coords[0] >= 8)
return "Grid parameters contain an invalid kite index";
metatile = metatile_char_to_enum(hp->final_metatile);
for (i = hp->ncoords - 1; i > 1; i--) {
if (hp->coords[i] >= nchildren[metatile])
return "Grid parameters contain an invalid metatile index";
metatile = children[metatile][hp->coords[i]];
}
if (hp->coords[1] >= hats_in_metatile[metatile])
return "Grid parameters contain an invalid hat index";
return NULL;
}
void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc,
internal_hat_callback_fn cb, void *cbctx)
{
Kite kite0;
Point vertices[14];
size_t i, j;
bool reversed = false;
int coords[28];
/* Only iterate from kite #0 of a hat */
if (hc->c[0].index != 0)
return;
kite0 = kite;
/*
* Identify reflected hats: they are always hat #3 of an H
* metatile. If we find one, reflect the starting kite so that the
* kite_step operations below will go in the other direction.
*/
if (hc->c[2].type == TT_H && hc->c[1].index == 3) {
reversed = true;
Point tmp = kite.left;
kite.left = kite.right;
kite.right = tmp;
}
vertices[0] = kite.centre;
vertices[1] = kite.right;
vertices[2] = kite.outer;
vertices[3] = kite.left;
kite = kite_left(kite); /* now on kite #1 */
kite = kite_forward_right(kite); /* now on kite #2 */
vertices[4] = kite.centre;
kite = kite_right(kite); /* now on kite #3 */
vertices[5] = kite.right;
vertices[6] = kite.outer;
kite = kite_forward_left(kite); /* now on kite #4 */
vertices[7] = kite.left;
vertices[8] = kite.centre;
kite = kite_right(kite); /* now on kite #5 */
kite = kite_right(kite); /* now on kite #6 */
kite = kite_right(kite); /* now on kite #7 */
vertices[9] = kite.right;
vertices[10] = kite.outer;
vertices[11] = kite.left;
kite = kite_left(kite); /* now on kite #6 again */
vertices[12] = kite.outer;
vertices[13] = kite.left;
if (reversed) {
/* For a reversed kite, also reverse the vertex order, so that
* we report every polygon in a consistent orientation */
for (i = 0, j = 13; i < j; i++, j--) {
Point tmp = vertices[i];
vertices[i] = vertices[j];
vertices[j] = tmp;
}
}
/*
* Convert from our internal coordinate system into the orthogonal
* one used in this module's external API. In the same loop, we
* might as well do the bounds check.
*/
for (i = 0; i < 14; i++) {
Point v = vertices[i];
int x = (v.x * 2 + v.y) / 3, y = v.y;
if (x < 0 || x > 4*w || y < 0 || y > 6*h)
return; /* a vertex of this kite is out of bounds */
coords[2*i] = x;
coords[2*i+1] = y;
}
cb(cbctx, kite0, hc, coords);
}
struct internal_ctx {
hat_tile_callback_fn external_cb;
void *external_cbctx;
};
static void report_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords)
{
struct internal_ctx *ctx = (struct internal_ctx *)vctx;
ctx->external_cb(ctx->external_cbctx, 14, coords);
}
/*
* Generate a hat tiling from a previously generated set of parameters.
*/
void hat_tiling_generate(const struct HatPatchParams *hp, int w, int h,
hat_tile_callback_fn cb, void *cbctx)
{
HatContext ctx[1];
HatCoords *coords[KE_NKEEP];
KiteEnum s[1];
size_t i;
struct internal_ctx report_hat_ctx[1];
report_hat_ctx->external_cb = cb;
report_hat_ctx->external_cbctx = cbctx;
init_coords_params(ctx, hp);
for (i = 0; i < lenof(coords); i++)
coords[i] = NULL;
hat_kiteenum_first(s, w, h);
coords[s->curr_index] = hatctx_initial_coords(ctx);
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
report_hat, report_hat_ctx);
while (hat_kiteenum_next(s)) {
hat_coords_free(coords[s->curr_index]);
coords[s->curr_index] = hatctx_step(
ctx, coords[s->last_index], s->last_step);
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
report_hat, report_hat_ctx);
}
hatctx_cleanup(ctx);
for (i = 0; i < lenof(coords); i++)
hat_coords_free(coords[i]);
}