#include <unistd.h> #include <fcntl.h> #include <string.h> #include <signal.h> #include <time.h> #include <assert.h> #include "fio.h" #include "hash.h" #include "verify.h" #include "trim.h" #include "lib/rand.h" #include "lib/axmap.h" #include "err.h" #include "lib/pow2.h" #include "minmax.h" struct io_completion_data { int nr; /* input */ int error; /* output */ uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */ struct timeval time; /* output */ }; /* * The ->io_axmap contains a map of blocks we have or have not done io * to yet. Used to make sure we cover the entire range in a fair fashion. */ static bool random_map_free(struct fio_file *f, const uint64_t block) { return !axmap_isset(f->io_axmap, block); } /* * Mark a given offset as used in the map. */ static void mark_random_map(struct thread_data *td, struct io_u *io_u) { unsigned int min_bs = td->o.rw_min_bs; struct fio_file *f = io_u->file; unsigned int nr_blocks; uint64_t block; block = (io_u->offset - f->file_offset) / (uint64_t) min_bs; nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; if (!(io_u->flags & IO_U_F_BUSY_OK)) nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); if ((nr_blocks * min_bs) < io_u->buflen) io_u->buflen = nr_blocks * min_bs; } static uint64_t last_block(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir) { uint64_t max_blocks; uint64_t max_size; assert(ddir_rw(ddir)); /* * Hmm, should we make sure that ->io_size <= ->real_file_size? */ max_size = f->io_size; if (max_size > f->real_file_size) max_size = f->real_file_size; if (td->o.zone_range) max_size = td->o.zone_range; if (td->o.min_bs[ddir] > td->o.ba[ddir]) max_size -= td->o.min_bs[ddir] - td->o.ba[ddir]; max_blocks = max_size / (uint64_t) td->o.ba[ddir]; if (!max_blocks) return 0; return max_blocks; } struct rand_off { struct flist_head list; uint64_t off; }; static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b, uint64_t lastb) { uint64_t r; if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE || td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) { r = __rand(&td->random_state); dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r); *b = lastb * (r / (rand_max(&td->random_state) + 1.0)); } else { uint64_t off = 0; assert(fio_file_lfsr(f)); if (lfsr_next(&f->lfsr, &off)) return 1; *b = off; } /* * if we are not maintaining a random map, we are done. */ if (!file_randommap(td, f)) goto ret; /* * calculate map offset and check if it's free */ if (random_map_free(f, *b)) goto ret; dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", (unsigned long long) *b); *b = axmap_next_free(f->io_axmap, *b); if (*b == (uint64_t) -1ULL) return 1; ret: return 0; } static int __get_next_rand_offset_zipf(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { *b = zipf_next(&f->zipf); return 0; } static int __get_next_rand_offset_pareto(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { *b = pareto_next(&f->zipf); return 0; } static int __get_next_rand_offset_gauss(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { *b = gauss_next(&f->gauss); return 0; } static int __get_next_rand_offset_zoned(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { unsigned int v, send, stotal; uint64_t offset, lastb; static int warned; struct zone_split_index *zsi; lastb = last_block(td, f, ddir); if (!lastb) return 1; if (!td->o.zone_split_nr[ddir]) { bail: return __get_next_rand_offset(td, f, ddir, b, lastb); } /* * Generate a value, v, between 1 and 100, both inclusive */ v = rand32_between(&td->zone_state, 1, 100); zsi = &td->zone_state_index[ddir][v - 1]; stotal = zsi->size_perc_prev; send = zsi->size_perc; /* * Should never happen */ if (send == -1U) { if (!warned) { log_err("fio: bug in zoned generation\n"); warned = 1; } goto bail; } /* * 'send' is some percentage below or equal to 100 that * marks the end of the current IO range. 'stotal' marks * the start, in percent. */ if (stotal) offset = stotal * lastb / 100ULL; else offset = 0; lastb = lastb * (send - stotal) / 100ULL; /* * Generate index from 0..send-of-lastb */ if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1) return 1; /* * Add our start offset, if any */ if (offset) *b += offset; return 0; } static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b) { struct rand_off *r1 = flist_entry(a, struct rand_off, list); struct rand_off *r2 = flist_entry(b, struct rand_off, list); return r1->off - r2->off; } static int get_off_from_method(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) { uint64_t lastb; lastb = last_block(td, f, ddir); if (!lastb) return 1; return __get_next_rand_offset(td, f, ddir, b, lastb); } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) return __get_next_rand_offset_zipf(td, f, ddir, b); else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) return __get_next_rand_offset_pareto(td, f, ddir, b); else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS) return __get_next_rand_offset_gauss(td, f, ddir, b); else if (td->o.random_distribution == FIO_RAND_DIST_ZONED) return __get_next_rand_offset_zoned(td, f, ddir, b); log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); return 1; } /* * Sort the reads for a verify phase in batches of verifysort_nr, if * specified. */ static inline bool should_sort_io(struct thread_data *td) { if (!td->o.verifysort_nr || !td->o.do_verify) return false; if (!td_random(td)) return false; if (td->runstate != TD_VERIFYING) return false; if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE || td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) return false; return true; } static bool should_do_random(struct thread_data *td, enum fio_ddir ddir) { unsigned int v; if (td->o.perc_rand[ddir] == 100) return true; v = rand32_between(&td->seq_rand_state[ddir], 1, 100); return v <= td->o.perc_rand[ddir]; } static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { struct rand_off *r; int i, ret = 1; if (!should_sort_io(td)) return get_off_from_method(td, f, ddir, b); if (!flist_empty(&td->next_rand_list)) { fetch: r = flist_first_entry(&td->next_rand_list, struct rand_off, list); flist_del(&r->list); *b = r->off; free(r); return 0; } for (i = 0; i < td->o.verifysort_nr; i++) { r = malloc(sizeof(*r)); ret = get_off_from_method(td, f, ddir, &r->off); if (ret) { free(r); break; } flist_add(&r->list, &td->next_rand_list); } if (ret && !i) return ret; assert(!flist_empty(&td->next_rand_list)); flist_sort(NULL, &td->next_rand_list, flist_cmp); goto fetch; } static int get_next_rand_block(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *b) { if (!get_next_rand_offset(td, f, ddir, b)) return 0; if (td->o.time_based || (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) { fio_file_reset(td, f); if (!get_next_rand_offset(td, f, ddir, b)) return 0; } dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", f->file_name, (unsigned long long) f->last_pos[ddir], (unsigned long long) f->real_file_size); return 1; } static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, uint64_t *offset) { struct thread_options *o = &td->o; assert(ddir_rw(ddir)); if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) && o->time_based) { struct thread_options *o = &td->o; uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]); if (io_size > f->last_pos[ddir]) f->last_pos[ddir] = 0; else f->last_pos[ddir] = f->last_pos[ddir] - io_size; } if (f->last_pos[ddir] < f->real_file_size) { uint64_t pos; if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) { if (f->real_file_size > f->io_size) f->last_pos[ddir] = f->io_size; else f->last_pos[ddir] = f->real_file_size; } pos = f->last_pos[ddir] - f->file_offset; if (pos && o->ddir_seq_add) { pos += o->ddir_seq_add; /* * If we reach beyond the end of the file * with holed IO, wrap around to the * beginning again. If we're doing backwards IO, * wrap to the end. */ if (pos >= f->real_file_size) { if (o->ddir_seq_add > 0) pos = f->file_offset; else { if (f->real_file_size > f->io_size) pos = f->io_size; else pos = f->real_file_size; pos += o->ddir_seq_add; } } } *offset = pos; return 0; } return 1; } static int get_next_block(struct thread_data *td, struct io_u *io_u, enum fio_ddir ddir, int rw_seq, unsigned int *is_random) { struct fio_file *f = io_u->file; uint64_t b, offset; int ret; assert(ddir_rw(ddir)); b = offset = -1ULL; if (rw_seq) { if (td_random(td)) { if (should_do_random(td, ddir)) { ret = get_next_rand_block(td, f, ddir, &b); *is_random = 1; } else { *is_random = 0; io_u_set(td, io_u, IO_U_F_BUSY_OK); ret = get_next_seq_offset(td, f, ddir, &offset); if (ret) ret = get_next_rand_block(td, f, ddir, &b); } } else { *is_random = 0; ret = get_next_seq_offset(td, f, ddir, &offset); } } else { io_u_set(td, io_u, IO_U_F_BUSY_OK); *is_random = 0; if (td->o.rw_seq == RW_SEQ_SEQ) { ret = get_next_seq_offset(td, f, ddir, &offset); if (ret) { ret = get_next_rand_block(td, f, ddir, &b); *is_random = 0; } } else if (td->o.rw_seq == RW_SEQ_IDENT) { if (f->last_start[ddir] != -1ULL) offset = f->last_start[ddir] - f->file_offset; else offset = 0; ret = 0; } else { log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); ret = 1; } } if (!ret) { if (offset != -1ULL) io_u->offset = offset; else if (b != -1ULL) io_u->offset = b * td->o.ba[ddir]; else { log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b); ret = 1; } } return ret; } /* * For random io, generate a random new block and see if it's used. Repeat * until we find a free one. For sequential io, just return the end of * the last io issued. */ static int __get_next_offset(struct thread_data *td, struct io_u *io_u, unsigned int *is_random) { struct fio_file *f = io_u->file; enum fio_ddir ddir = io_u->ddir; int rw_seq_hit = 0; assert(ddir_rw(ddir)); if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { rw_seq_hit = 1; td->ddir_seq_nr = td->o.ddir_seq_nr; } if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random)) return 1; if (io_u->offset >= f->io_size) { dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", (unsigned long long) io_u->offset, (unsigned long long) f->io_size); return 1; } io_u->offset += f->file_offset; if (io_u->offset >= f->real_file_size) { dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", (unsigned long long) io_u->offset, (unsigned long long) f->real_file_size); return 1; } return 0; } static int get_next_offset(struct thread_data *td, struct io_u *io_u, unsigned int *is_random) { if (td->flags & TD_F_PROFILE_OPS) { struct prof_io_ops *ops = &td->prof_io_ops; if (ops->fill_io_u_off) return ops->fill_io_u_off(td, io_u, is_random); } return __get_next_offset(td, io_u, is_random); } static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u, unsigned int buflen) { struct fio_file *f = io_u->file; return io_u->offset + buflen <= f->io_size + get_start_offset(td, f); } static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u, unsigned int is_random) { int ddir = io_u->ddir; unsigned int buflen = 0; unsigned int minbs, maxbs; uint64_t frand_max, r; assert(ddir_rw(ddir)); if (td->o.bs_is_seq_rand) ddir = is_random ? DDIR_WRITE: DDIR_READ; minbs = td->o.min_bs[ddir]; maxbs = td->o.max_bs[ddir]; if (minbs == maxbs) return minbs; /* * If we can't satisfy the min block size from here, then fail */ if (!io_u_fits(td, io_u, minbs)) return 0; frand_max = rand_max(&td->bsrange_state); do { r = __rand(&td->bsrange_state); if (!td->o.bssplit_nr[ddir]) { buflen = 1 + (unsigned int) ((double) maxbs * (r / (frand_max + 1.0))); if (buflen < minbs) buflen = minbs; } else { long long perc = 0; unsigned int i; for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { struct bssplit *bsp = &td->o.bssplit[ddir][i]; buflen = bsp->bs; perc += bsp->perc; if (!perc) break; if ((r / perc <= frand_max / 100ULL) && io_u_fits(td, io_u, buflen)) break; } } if (td->o.verify != VERIFY_NONE) buflen = (buflen + td->o.verify_interval - 1) & ~(td->o.verify_interval - 1); if (!td->o.bs_unaligned && is_power_of_2(minbs)) buflen &= ~(minbs - 1); } while (!io_u_fits(td, io_u, buflen)); return buflen; } static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u, unsigned int is_random) { if (td->flags & TD_F_PROFILE_OPS) { struct prof_io_ops *ops = &td->prof_io_ops; if (ops->fill_io_u_size) return ops->fill_io_u_size(td, io_u, is_random); } return __get_next_buflen(td, io_u, is_random); } static void set_rwmix_bytes(struct thread_data *td) { unsigned int diff; /* * we do time or byte based switch. this is needed because * buffered writes may issue a lot quicker than they complete, * whereas reads do not. */ diff = td->o.rwmix[td->rwmix_ddir ^ 1]; td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; } static inline enum fio_ddir get_rand_ddir(struct thread_data *td) { unsigned int v; v = rand32_between(&td->rwmix_state, 1, 100); if (v <= td->o.rwmix[DDIR_READ]) return DDIR_READ; return DDIR_WRITE; } int io_u_quiesce(struct thread_data *td) { int completed = 0; /* * We are going to sleep, ensure that we flush anything pending as * not to skew our latency numbers. * * Changed to only monitor 'in flight' requests here instead of the * td->cur_depth, b/c td->cur_depth does not accurately represent * io's that have been actually submitted to an async engine, * and cur_depth is meaningless for sync engines. */ if (td->io_u_queued || td->cur_depth) { int fio_unused ret; ret = td_io_commit(td); } while (td->io_u_in_flight) { int fio_unused ret; ret = io_u_queued_complete(td, 1); if (ret > 0) completed += ret; } return completed; } static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) { enum fio_ddir odir = ddir ^ 1; long usec; uint64_t now; assert(ddir_rw(ddir)); now = utime_since_now(&td->start); /* * if rate_next_io_time is in the past, need to catch up to rate */ if (td->rate_next_io_time[ddir] <= now) return ddir; /* * We are ahead of rate in this direction. See if we * should switch. */ if (td_rw(td) && td->o.rwmix[odir]) { /* * Other direction is behind rate, switch */ if (td->rate_next_io_time[odir] <= now) return odir; /* * Both directions are ahead of rate. sleep the min * switch if necissary */ if (td->rate_next_io_time[ddir] <= td->rate_next_io_time[odir]) { usec = td->rate_next_io_time[ddir] - now; } else { usec = td->rate_next_io_time[odir] - now; ddir = odir; } } else usec = td->rate_next_io_time[ddir] - now; if (td->o.io_submit_mode == IO_MODE_INLINE) io_u_quiesce(td); usec = usec_sleep(td, usec); return ddir; } /* * Return the data direction for the next io_u. If the job is a * mixed read/write workload, check the rwmix cycle and switch if * necessary. */ static enum fio_ddir get_rw_ddir(struct thread_data *td) { enum fio_ddir ddir; /* * see if it's time to fsync */ if (td->o.fsync_blocks && !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && td->io_issues[DDIR_WRITE] && should_fsync(td)) return DDIR_SYNC; /* * see if it's time to fdatasync */ if (td->o.fdatasync_blocks && !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && td->io_issues[DDIR_WRITE] && should_fsync(td)) return DDIR_DATASYNC; /* * see if it's time to sync_file_range */ if (td->sync_file_range_nr && !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && td->io_issues[DDIR_WRITE] && should_fsync(td)) return DDIR_SYNC_FILE_RANGE; if (td_rw(td)) { /* * Check if it's time to seed a new data direction. */ if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { /* * Put a top limit on how many bytes we do for * one data direction, to avoid overflowing the * ranges too much */ ddir = get_rand_ddir(td); if (ddir != td->rwmix_ddir) set_rwmix_bytes(td); td->rwmix_ddir = ddir; } ddir = td->rwmix_ddir; } else if (td_read(td)) ddir = DDIR_READ; else if (td_write(td)) ddir = DDIR_WRITE; else ddir = DDIR_TRIM; td->rwmix_ddir = rate_ddir(td, ddir); return td->rwmix_ddir; } static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) { enum fio_ddir ddir = get_rw_ddir(td); if (td_trimwrite(td)) { struct fio_file *f = io_u->file; if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM]) ddir = DDIR_TRIM; else ddir = DDIR_WRITE; } io_u->ddir = io_u->acct_ddir = ddir; if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) && td->o.barrier_blocks && !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && td->io_issues[DDIR_WRITE]) io_u_set(td, io_u, IO_U_F_BARRIER); } void put_file_log(struct thread_data *td, struct fio_file *f) { unsigned int ret = put_file(td, f); if (ret) td_verror(td, ret, "file close"); } void put_io_u(struct thread_data *td, struct io_u *io_u) { if (td->parent) td = td->parent; td_io_u_lock(td); if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT)) put_file_log(td, io_u->file); io_u->file = NULL; io_u_set(td, io_u, IO_U_F_FREE); if (io_u->flags & IO_U_F_IN_CUR_DEPTH) { td->cur_depth--; assert(!(td->flags & TD_F_CHILD)); } io_u_qpush(&td->io_u_freelist, io_u); td_io_u_unlock(td); td_io_u_free_notify(td); } void clear_io_u(struct thread_data *td, struct io_u *io_u) { io_u_clear(td, io_u, IO_U_F_FLIGHT); put_io_u(td, io_u); } void requeue_io_u(struct thread_data *td, struct io_u **io_u) { struct io_u *__io_u = *io_u; enum fio_ddir ddir = acct_ddir(__io_u); dprint(FD_IO, "requeue %p\n", __io_u); if (td->parent) td = td->parent; td_io_u_lock(td); io_u_set(td, __io_u, IO_U_F_FREE); if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir)) td->io_issues[ddir]--; io_u_clear(td, __io_u, IO_U_F_FLIGHT); if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) { td->cur_depth--; assert(!(td->flags & TD_F_CHILD)); } io_u_rpush(&td->io_u_requeues, __io_u); td_io_u_unlock(td); td_io_u_free_notify(td); *io_u = NULL; } static int fill_io_u(struct thread_data *td, struct io_u *io_u) { unsigned int is_random; if (td_ioengine_flagged(td, FIO_NOIO)) goto out; set_rw_ddir(td, io_u); /* * fsync() or fdatasync() or trim etc, we are done */ if (!ddir_rw(io_u->ddir)) goto out; /* * See if it's time to switch to a new zone */ if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { struct fio_file *f = io_u->file; td->zone_bytes = 0; f->file_offset += td->o.zone_range + td->o.zone_skip; /* * Wrap from the beginning, if we exceed the file size */ if (f->file_offset >= f->real_file_size) f->file_offset = f->real_file_size - f->file_offset; f->last_pos[io_u->ddir] = f->file_offset; td->io_skip_bytes += td->o.zone_skip; } /* * No log, let the seq/rand engine retrieve the next buflen and * position. */ if (get_next_offset(td, io_u, &is_random)) { dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); return 1; } io_u->buflen = get_next_buflen(td, io_u, is_random); if (!io_u->buflen) { dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); return 1; } if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { dprint(FD_IO, "io_u %p, offset too large\n", io_u); dprint(FD_IO, " off=%llu/%lu > %llu\n", (unsigned long long) io_u->offset, io_u->buflen, (unsigned long long) io_u->file->real_file_size); return 1; } /* * mark entry before potentially trimming io_u */ if (td_random(td) && file_randommap(td, io_u->file)) mark_random_map(td, io_u); out: dprint_io_u(io_u, "fill_io_u"); td->zone_bytes += io_u->buflen; return 0; } static void __io_u_mark_map(unsigned int *map, unsigned int nr) { int idx = 0; switch (nr) { default: idx = 6; break; case 33 ... 64: idx = 5; break; case 17 ... 32: idx = 4; break; case 9 ... 16: idx = 3; break; case 5 ... 8: idx = 2; break; case 1 ... 4: idx = 1; case 0: break; } map[idx]++; } void io_u_mark_submit(struct thread_data *td, unsigned int nr) { __io_u_mark_map(td->ts.io_u_submit, nr); td->ts.total_submit++; } void io_u_mark_complete(struct thread_data *td, unsigned int nr) { __io_u_mark_map(td->ts.io_u_complete, nr); td->ts.total_complete++; } void io_u_mark_depth(struct thread_data *td, unsigned int nr) { int idx = 0; switch (td->cur_depth) { default: idx = 6; break; case 32 ... 63: idx = 5; break; case 16 ... 31: idx = 4; break; case 8 ... 15: idx = 3; break; case 4 ... 7: idx = 2; break; case 2 ... 3: idx = 1; case 1: break; } td->ts.io_u_map[idx] += nr; } static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) { int idx = 0; assert(usec < 1000); switch (usec) { case 750 ... 999: idx = 9; break; case 500 ... 749: idx = 8; break; case 250 ... 499: idx = 7; break; case 100 ... 249: idx = 6; break; case 50 ... 99: idx = 5; break; case 20 ... 49: idx = 4; break; case 10 ... 19: idx = 3; break; case 4 ... 9: idx = 2; break; case 2 ... 3: idx = 1; case 0 ... 1: break; } assert(idx < FIO_IO_U_LAT_U_NR); td->ts.io_u_lat_u[idx]++; } static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) { int idx = 0; switch (msec) { default: idx = 11; break; case 1000 ... 1999: idx = 10; break; case 750 ... 999: idx = 9; break; case 500 ... 749: idx = 8; break; case 250 ... 499: idx = 7; break; case 100 ... 249: idx = 6; break; case 50 ... 99: idx = 5; break; case 20 ... 49: idx = 4; break; case 10 ... 19: idx = 3; break; case 4 ... 9: idx = 2; break; case 2 ... 3: idx = 1; case 0 ... 1: break; } assert(idx < FIO_IO_U_LAT_M_NR); td->ts.io_u_lat_m[idx]++; } static void io_u_mark_latency(struct thread_data *td, unsigned long usec) { if (usec < 1000) io_u_mark_lat_usec(td, usec); else io_u_mark_lat_msec(td, usec / 1000); } static unsigned int __get_next_fileno_rand(struct thread_data *td) { unsigned long fileno; if (td->o.file_service_type == FIO_FSERVICE_RANDOM) { uint64_t frand_max = rand_max(&td->next_file_state); unsigned long r; r = __rand(&td->next_file_state); return (unsigned int) ((double) td->o.nr_files * (r / (frand_max + 1.0))); } if (td->o.file_service_type == FIO_FSERVICE_ZIPF) fileno = zipf_next(&td->next_file_zipf); else if (td->o.file_service_type == FIO_FSERVICE_PARETO) fileno = pareto_next(&td->next_file_zipf); else if (td->o.file_service_type == FIO_FSERVICE_GAUSS) fileno = gauss_next(&td->next_file_gauss); else { log_err("fio: bad file service type: %d\n", td->o.file_service_type); assert(0); return 0; } return fileno >> FIO_FSERVICE_SHIFT; } /* * Get next file to service by choosing one at random */ static struct fio_file *get_next_file_rand(struct thread_data *td, enum fio_file_flags goodf, enum fio_file_flags badf) { struct fio_file *f; int fno; do { int opened = 0; fno = __get_next_fileno_rand(td); f = td->files[fno]; if (fio_file_done(f)) continue; if (!fio_file_open(f)) { int err; if (td->nr_open_files >= td->o.open_files) return ERR_PTR(-EBUSY); err = td_io_open_file(td, f); if (err) continue; opened = 1; } if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { dprint(FD_FILE, "get_next_file_rand: %p\n", f); return f; } if (opened) td_io_close_file(td, f); } while (1); } /* * Get next file to service by doing round robin between all available ones */ static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, int badf) { unsigned int old_next_file = td->next_file; struct fio_file *f; do { int opened = 0; f = td->files[td->next_file]; td->next_file++; if (td->next_file >= td->o.nr_files) td->next_file = 0; dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); if (fio_file_done(f)) { f = NULL; continue; } if (!fio_file_open(f)) { int err; if (td->nr_open_files >= td->o.open_files) return ERR_PTR(-EBUSY); err = td_io_open_file(td, f); if (err) { dprint(FD_FILE, "error %d on open of %s\n", err, f->file_name); f = NULL; continue; } opened = 1; } dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, f->flags); if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) break; if (opened) td_io_close_file(td, f); f = NULL; } while (td->next_file != old_next_file); dprint(FD_FILE, "get_next_file_rr: %p\n", f); return f; } static struct fio_file *__get_next_file(struct thread_data *td) { struct fio_file *f; assert(td->o.nr_files <= td->files_index); if (td->nr_done_files >= td->o.nr_files) { dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," " nr_files=%d\n", td->nr_open_files, td->nr_done_files, td->o.nr_files); return NULL; } f = td->file_service_file; if (f && fio_file_open(f) && !fio_file_closing(f)) { if (td->o.file_service_type == FIO_FSERVICE_SEQ) goto out; if (td->file_service_left--) goto out; } if (td->o.file_service_type == FIO_FSERVICE_RR || td->o.file_service_type == FIO_FSERVICE_SEQ) f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); else f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); if (IS_ERR(f)) return f; td->file_service_file = f; td->file_service_left = td->file_service_nr - 1; out: if (f) dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); else dprint(FD_FILE, "get_next_file: NULL\n"); return f; } static struct fio_file *get_next_file(struct thread_data *td) { if (td->flags & TD_F_PROFILE_OPS) { struct prof_io_ops *ops = &td->prof_io_ops; if (ops->get_next_file) return ops->get_next_file(td); } return __get_next_file(td); } static long set_io_u_file(struct thread_data *td, struct io_u *io_u) { struct fio_file *f; do { f = get_next_file(td); if (IS_ERR_OR_NULL(f)) return PTR_ERR(f); io_u->file = f; get_file(f); if (!fill_io_u(td, io_u)) break; put_file_log(td, f); td_io_close_file(td, f); io_u->file = NULL; if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM) fio_file_reset(td, f); else { fio_file_set_done(f); td->nr_done_files++; dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, td->nr_done_files, td->o.nr_files); } } while (1); return 0; } static void lat_fatal(struct thread_data *td, struct io_completion_data *icd, unsigned long tusec, unsigned long max_usec) { if (!td->error) log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec); td_verror(td, ETIMEDOUT, "max latency exceeded"); icd->error = ETIMEDOUT; } static void lat_new_cycle(struct thread_data *td) { fio_gettime(&td->latency_ts, NULL); td->latency_ios = ddir_rw_sum(td->io_blocks); td->latency_failed = 0; } /* * We had an IO outside the latency target. Reduce the queue depth. If we * are at QD=1, then it's time to give up. */ static bool __lat_target_failed(struct thread_data *td) { if (td->latency_qd == 1) return true; td->latency_qd_high = td->latency_qd; if (td->latency_qd == td->latency_qd_low) td->latency_qd_low--; td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2; dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); /* * When we ramp QD down, quiesce existing IO to prevent * a storm of ramp downs due to pending higher depth. */ io_u_quiesce(td); lat_new_cycle(td); return false; } static bool lat_target_failed(struct thread_data *td) { if (td->o.latency_percentile.u.f == 100.0) return __lat_target_failed(td); td->latency_failed++; return false; } void lat_target_init(struct thread_data *td) { td->latency_end_run = 0; if (td->o.latency_target) { dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target); fio_gettime(&td->latency_ts, NULL); td->latency_qd = 1; td->latency_qd_high = td->o.iodepth; td->latency_qd_low = 1; td->latency_ios = ddir_rw_sum(td->io_blocks); } else td->latency_qd = td->o.iodepth; } void lat_target_reset(struct thread_data *td) { if (!td->latency_end_run) lat_target_init(td); } static void lat_target_success(struct thread_data *td) { const unsigned int qd = td->latency_qd; struct thread_options *o = &td->o; td->latency_qd_low = td->latency_qd; /* * If we haven't failed yet, we double up to a failing value instead * of bisecting from highest possible queue depth. If we have set * a limit other than td->o.iodepth, bisect between that. */ if (td->latency_qd_high != o->iodepth) td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2; else td->latency_qd *= 2; if (td->latency_qd > o->iodepth) td->latency_qd = o->iodepth; dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); /* * Same as last one, we are done. Let it run a latency cycle, so * we get only the results from the targeted depth. */ if (td->latency_qd == qd) { if (td->latency_end_run) { dprint(FD_RATE, "We are done\n"); td->done = 1; } else { dprint(FD_RATE, "Quiesce and final run\n"); io_u_quiesce(td); td->latency_end_run = 1; reset_all_stats(td); reset_io_stats(td); } } lat_new_cycle(td); } /* * Check if we can bump the queue depth */ void lat_target_check(struct thread_data *td) { uint64_t usec_window; uint64_t ios; double success_ios; usec_window = utime_since_now(&td->latency_ts); if (usec_window < td->o.latency_window) return; ios = ddir_rw_sum(td->io_blocks) - td->latency_ios; success_ios = (double) (ios - td->latency_failed) / (double) ios; success_ios *= 100.0; dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f); if (success_ios >= td->o.latency_percentile.u.f) lat_target_success(td); else __lat_target_failed(td); } /* * If latency target is enabled, we might be ramping up or down and not * using the full queue depth available. */ bool queue_full(const struct thread_data *td) { const int qempty = io_u_qempty(&td->io_u_freelist); if (qempty) return true; if (!td->o.latency_target) return false; return td->cur_depth >= td->latency_qd; } struct io_u *__get_io_u(struct thread_data *td) { struct io_u *io_u = NULL; if (td->stop_io) return NULL; td_io_u_lock(td); again: if (!io_u_rempty(&td->io_u_requeues)) io_u = io_u_rpop(&td->io_u_requeues); else if (!queue_full(td)) { io_u = io_u_qpop(&td->io_u_freelist); io_u->file = NULL; io_u->buflen = 0; io_u->resid = 0; io_u->end_io = NULL; } if (io_u) { assert(io_u->flags & IO_U_F_FREE); io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT | IO_U_F_TRIMMED | IO_U_F_BARRIER | IO_U_F_VER_LIST); io_u->error = 0; io_u->acct_ddir = -1; td->cur_depth++; assert(!(td->flags & TD_F_CHILD)); io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH); io_u->ipo = NULL; } else if (td_async_processing(td)) { /* * We ran out, wait for async verify threads to finish and * return one */ assert(!(td->flags & TD_F_CHILD)); assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock)); goto again; } td_io_u_unlock(td); return io_u; } static bool check_get_trim(struct thread_data *td, struct io_u *io_u) { if (!(td->flags & TD_F_TRIM_BACKLOG)) return false; if (td->trim_entries) { int get_trim = 0; if (td->trim_batch) { td->trim_batch--; get_trim = 1; } else if (!(td->io_hist_len % td->o.trim_backlog) && td->last_ddir != DDIR_READ) { td->trim_batch = td->o.trim_batch; if (!td->trim_batch) td->trim_batch = td->o.trim_backlog; get_trim = 1; } if (get_trim && get_next_trim(td, io_u)) return true; } return false; } static bool check_get_verify(struct thread_data *td, struct io_u *io_u) { if (!(td->flags & TD_F_VER_BACKLOG)) return false; if (td->io_hist_len) { int get_verify = 0; if (td->verify_batch) get_verify = 1; else if (!(td->io_hist_len % td->o.verify_backlog) && td->last_ddir != DDIR_READ) { td->verify_batch = td->o.verify_batch; if (!td->verify_batch) td->verify_batch = td->o.verify_backlog; get_verify = 1; } if (get_verify && !get_next_verify(td, io_u)) { td->verify_batch--; return true; } } return false; } /* * Fill offset and start time into the buffer content, to prevent too * easy compressible data for simple de-dupe attempts. Do this for every * 512b block in the range, since that should be the smallest block size * we can expect from a device. */ static void small_content_scramble(struct io_u *io_u) { unsigned int i, nr_blocks = io_u->buflen / 512; uint64_t boffset; unsigned int offset; void *p, *end; if (!nr_blocks) return; p = io_u->xfer_buf; boffset = io_u->offset; io_u->buf_filled_len = 0; for (i = 0; i < nr_blocks; i++) { /* * Fill the byte offset into a "random" start offset of * the buffer, given by the product of the usec time * and the actual offset. */ offset = (io_u->start_time.tv_usec ^ boffset) & 511; offset &= ~(sizeof(uint64_t) - 1); if (offset >= 512 - sizeof(uint64_t)) offset -= sizeof(uint64_t); memcpy(p + offset, &boffset, sizeof(boffset)); end = p + 512 - sizeof(io_u->start_time); memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); p += 512; boffset += 512; } } /* * Return an io_u to be processed. Gets a buflen and offset, sets direction, * etc. The returned io_u is fully ready to be prepped and submitted. */ struct io_u *get_io_u(struct thread_data *td) { struct fio_file *f; struct io_u *io_u; int do_scramble = 0; long ret = 0; io_u = __get_io_u(td); if (!io_u) { dprint(FD_IO, "__get_io_u failed\n"); return NULL; } if (check_get_verify(td, io_u)) goto out; if (check_get_trim(td, io_u)) goto out; /* * from a requeue, io_u already setup */ if (io_u->file) goto out; /* * If using an iolog, grab next piece if any available. */ if (td->flags & TD_F_READ_IOLOG) { if (read_iolog_get(td, io_u)) goto err_put; } else if (set_io_u_file(td, io_u)) { ret = -EBUSY; dprint(FD_IO, "io_u %p, setting file failed\n", io_u); goto err_put; } f = io_u->file; if (!f) { dprint(FD_IO, "io_u %p, setting file failed\n", io_u); goto err_put; } assert(fio_file_open(f)); if (ddir_rw(io_u->ddir)) { if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) { dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); goto err_put; } f->last_start[io_u->ddir] = io_u->offset; f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen; if (io_u->ddir == DDIR_WRITE) { if (td->flags & TD_F_REFILL_BUFFERS) { io_u_fill_buffer(td, io_u, td->o.min_bs[DDIR_WRITE], io_u->buflen); } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) && !(td->flags & TD_F_COMPRESS)) do_scramble = 1; if (td->flags & TD_F_VER_NONE) { populate_verify_io_u(td, io_u); do_scramble = 0; } } else if (io_u->ddir == DDIR_READ) { /* * Reset the buf_filled parameters so next time if the * buffer is used for writes it is refilled. */ io_u->buf_filled_len = 0; } } /* * Set io data pointers. */ io_u->xfer_buf = io_u->buf; io_u->xfer_buflen = io_u->buflen; out: assert(io_u->file); if (!td_io_prep(td, io_u)) { if (!td->o.disable_lat) fio_gettime(&io_u->start_time, NULL); if (do_scramble) small_content_scramble(io_u); return io_u; } err_put: dprint(FD_IO, "get_io_u failed\n"); put_io_u(td, io_u); return ERR_PTR(ret); } static void __io_u_log_error(struct thread_data *td, struct io_u *io_u) { enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) return; log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n", io_u->file ? " on file " : "", io_u->file ? io_u->file->file_name : "", strerror(io_u->error), io_ddir_name(io_u->ddir), io_u->offset, io_u->xfer_buflen); if (td->io_ops->errdetails) { char *err = td->io_ops->errdetails(io_u); log_err("fio: %s\n", err); free(err); } if (!td->error) td_verror(td, io_u->error, "io_u error"); } void io_u_log_error(struct thread_data *td, struct io_u *io_u) { __io_u_log_error(td, io_u); if (td->parent) __io_u_log_error(td->parent, io_u); } static inline bool gtod_reduce(struct thread_data *td) { return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw) || td->o.gtod_reduce; } static void account_io_completion(struct thread_data *td, struct io_u *io_u, struct io_completion_data *icd, const enum fio_ddir idx, unsigned int bytes) { const int no_reduce = !gtod_reduce(td); unsigned long lusec = 0; if (td->parent) td = td->parent; if (no_reduce) lusec = utime_since(&io_u->issue_time, &icd->time); if (!td->o.disable_lat) { unsigned long tusec; tusec = utime_since(&io_u->start_time, &icd->time); add_lat_sample(td, idx, tusec, bytes, io_u->offset); if (td->flags & TD_F_PROFILE_OPS) { struct prof_io_ops *ops = &td->prof_io_ops; if (ops->io_u_lat) icd->error = ops->io_u_lat(td, tusec); } if (td->o.max_latency && tusec > td->o.max_latency) lat_fatal(td, icd, tusec, td->o.max_latency); if (td->o.latency_target && tusec > td->o.latency_target) { if (lat_target_failed(td)) lat_fatal(td, icd, tusec, td->o.latency_target); } } if (ddir_rw(idx)) { if (!td->o.disable_clat) { add_clat_sample(td, idx, lusec, bytes, io_u->offset); io_u_mark_latency(td, lusec); } if (!td->o.disable_bw && per_unit_log(td->bw_log)) add_bw_sample(td, io_u, bytes, lusec); if (no_reduce && per_unit_log(td->iops_log)) add_iops_sample(td, io_u, bytes); } if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) { uint32_t *info = io_u_block_info(td, io_u); if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) { if (io_u->ddir == DDIR_TRIM) { *info = BLOCK_INFO(BLOCK_STATE_TRIMMED, BLOCK_INFO_TRIMS(*info) + 1); } else if (io_u->ddir == DDIR_WRITE) { *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN, *info); } } } } static void file_log_write_comp(const struct thread_data *td, struct fio_file *f, uint64_t offset, unsigned int bytes) { int idx; if (!f) return; if (f->first_write == -1ULL || offset < f->first_write) f->first_write = offset; if (f->last_write == -1ULL || ((offset + bytes) > f->last_write)) f->last_write = offset + bytes; if (!f->last_write_comp) return; idx = f->last_write_idx++; f->last_write_comp[idx] = offset; if (f->last_write_idx == td->o.iodepth) f->last_write_idx = 0; } static void io_completed(struct thread_data *td, struct io_u **io_u_ptr, struct io_completion_data *icd) { struct io_u *io_u = *io_u_ptr; enum fio_ddir ddir = io_u->ddir; struct fio_file *f = io_u->file; dprint_io_u(io_u, "io complete"); assert(io_u->flags & IO_U_F_FLIGHT); io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK); /* * Mark IO ok to verify */ if (io_u->ipo) { /* * Remove errored entry from the verification list */ if (io_u->error) unlog_io_piece(td, io_u); else { io_u->ipo->flags &= ~IP_F_IN_FLIGHT; write_barrier(); } } if (ddir_sync(ddir)) { td->last_was_sync = 1; if (f) { f->first_write = -1ULL; f->last_write = -1ULL; } return; } td->last_was_sync = 0; td->last_ddir = ddir; if (!io_u->error && ddir_rw(ddir)) { unsigned int bytes = io_u->buflen - io_u->resid; int ret; td->io_blocks[ddir]++; td->this_io_blocks[ddir]++; td->io_bytes[ddir] += bytes; if (!(io_u->flags & IO_U_F_VER_LIST)) td->this_io_bytes[ddir] += bytes; if (ddir == DDIR_WRITE) file_log_write_comp(td, f, io_u->offset, bytes); if (ramp_time_over(td) && (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) account_io_completion(td, io_u, icd, ddir, bytes); icd->bytes_done[ddir] += bytes; if (io_u->end_io) { ret = io_u->end_io(td, io_u_ptr); io_u = *io_u_ptr; if (ret && !icd->error) icd->error = ret; } } else if (io_u->error) { icd->error = io_u->error; io_u_log_error(td, io_u); } if (icd->error) { enum error_type_bit eb = td_error_type(ddir, icd->error); if (!td_non_fatal_error(td, eb, icd->error)) return; /* * If there is a non_fatal error, then add to the error count * and clear all the errors. */ update_error_count(td, icd->error); td_clear_error(td); icd->error = 0; if (io_u) io_u->error = 0; } } static void init_icd(struct thread_data *td, struct io_completion_data *icd, int nr) { int ddir; if (!gtod_reduce(td)) fio_gettime(&icd->time, NULL); icd->nr = nr; icd->error = 0; for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) icd->bytes_done[ddir] = 0; } static void ios_completed(struct thread_data *td, struct io_completion_data *icd) { struct io_u *io_u; int i; for (i = 0; i < icd->nr; i++) { io_u = td->io_ops->event(td, i); io_completed(td, &io_u, icd); if (io_u) put_io_u(td, io_u); } } /* * Complete a single io_u for the sync engines. */ int io_u_sync_complete(struct thread_data *td, struct io_u *io_u) { struct io_completion_data icd; int ddir; init_icd(td, &icd, 1); io_completed(td, &io_u, &icd); if (io_u) put_io_u(td, io_u); if (icd.error) { td_verror(td, icd.error, "io_u_sync_complete"); return -1; } for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) td->bytes_done[ddir] += icd.bytes_done[ddir]; return 0; } /* * Called to complete min_events number of io for the async engines. */ int io_u_queued_complete(struct thread_data *td, int min_evts) { struct io_completion_data icd; struct timespec *tvp = NULL; int ret, ddir; struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); if (!min_evts) tvp = &ts; else if (min_evts > td->cur_depth) min_evts = td->cur_depth; /* No worries, td_io_getevents fixes min and max if they are * set incorrectly */ ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp); if (ret < 0) { td_verror(td, -ret, "td_io_getevents"); return ret; } else if (!ret) return ret; init_icd(td, &icd, ret); ios_completed(td, &icd); if (icd.error) { td_verror(td, icd.error, "io_u_queued_complete"); return -1; } for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) td->bytes_done[ddir] += icd.bytes_done[ddir]; return ret; } /* * Call when io_u is really queued, to update the submission latency. */ void io_u_queued(struct thread_data *td, struct io_u *io_u) { if (!td->o.disable_slat) { unsigned long slat_time; slat_time = utime_since(&io_u->start_time, &io_u->issue_time); if (td->parent) td = td->parent; add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen, io_u->offset); } } /* * See if we should reuse the last seed, if dedupe is enabled */ static struct frand_state *get_buf_state(struct thread_data *td) { unsigned int v; if (!td->o.dedupe_percentage) return &td->buf_state; else if (td->o.dedupe_percentage == 100) { frand_copy(&td->buf_state_prev, &td->buf_state); return &td->buf_state; } v = rand32_between(&td->dedupe_state, 1, 100); if (v <= td->o.dedupe_percentage) return &td->buf_state_prev; return &td->buf_state; } static void save_buf_state(struct thread_data *td, struct frand_state *rs) { if (td->o.dedupe_percentage == 100) frand_copy(rs, &td->buf_state_prev); else if (rs == &td->buf_state) frand_copy(&td->buf_state_prev, rs); } void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write, unsigned int max_bs) { struct thread_options *o = &td->o; if (o->compress_percentage || o->dedupe_percentage) { unsigned int perc = td->o.compress_percentage; struct frand_state *rs; unsigned int left = max_bs; unsigned int this_write; do { rs = get_buf_state(td); min_write = min(min_write, left); if (perc) { this_write = min_not_zero(min_write, td->o.compress_chunk); fill_random_buf_percentage(rs, buf, perc, this_write, this_write, o->buffer_pattern, o->buffer_pattern_bytes); } else { fill_random_buf(rs, buf, min_write); this_write = min_write; } buf += this_write; left -= this_write; save_buf_state(td, rs); } while (left); } else if (o->buffer_pattern_bytes) fill_buffer_pattern(td, buf, max_bs); else if (o->zero_buffers) memset(buf, 0, max_bs); else fill_random_buf(get_buf_state(td), buf, max_bs); } /* * "randomly" fill the buffer contents */ void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, unsigned int min_write, unsigned int max_bs) { io_u->buf_filled_len = 0; fill_io_buffer(td, io_u->buf, min_write, max_bs); }