Skip to content

ElGarash/L2LTR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cross_view_localization_L2LTR

will be updated soon

Experiment Dataset

Dataset Preparation

Our method follow SAFA and DSM to get polar transform aerial images. Please download data_prearation.py for pre-processing.

Models

Pretrained model Download(Google's Official Checkpoint)

Our trained models for CVUSA and CVACT will be available soon

Train and test model

Train

python train.py --name CVUSA --dataset CVUSA --pretrained_dir YOUR_PRETRAINED_MODEL --output_dir MODEL_WHERE_WILL_BE_SAVE --dataset_dir YOUR_DATASET_PATH --learning_rate 1e-4 --weight_decay 0.03

Test

python test.py --name CVUSA --dataset CVUSA --output_dir MODEL_WHERE_WILL_BE_SAVE --dataset_dir YOUR_DATASET_PATH

If you want to use auto mixed precision, you should install APEX and add --fp16 in startup code.

Result

dataset top-1 top-5 top-10 top-1%
CVUSA 94.05% 98.27% 98.99% 99.67%
CVACT_val 84.89% 94.59% 95.96% 98.37%

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%