diff --git a/qiskit/algorithms/amplitude_estimators/ae.py b/qiskit/algorithms/amplitude_estimators/ae.py index 512405f19c9f..f79419706cd4 100644 --- a/qiskit/algorithms/amplitude_estimators/ae.py +++ b/qiskit/algorithms/amplitude_estimators/ae.py @@ -387,15 +387,12 @@ def estimate(self, estimation_problem: EstimationProblem) -> "AmplitudeEstimatio shots = ret.metadata[0].get("shots") if shots is None: - result.circuit_results = { - np.binary_repr(k, circuit.num_qubits): v - for k, v in ret.quasi_dists[0].items() - } + result.circuit_results = ret.quasi_dists[0].binary_probabilities() shots = 1 else: result.circuit_results = { - np.binary_repr(k, circuit.num_qubits): round(v * shots) - for k, v in ret.quasi_dists[0].items() + k: round(v * shots) + for k, v in ret.quasi_dists[0].binary_probabilities().items() } # store shots diff --git a/qiskit/algorithms/amplitude_estimators/ae_utils.py b/qiskit/algorithms/amplitude_estimators/ae_utils.py index 87ce83a9cc42..bd695be45a63 100644 --- a/qiskit/algorithms/amplitude_estimators/ae_utils.py +++ b/qiskit/algorithms/amplitude_estimators/ae_utils.py @@ -20,22 +20,6 @@ # pylint: disable=invalid-name -def _probabilities_from_sampler_result(num_qubits, result, estimation_problem): - """calculate probabilities from sampler result""" - prob = 0 - for bit, probabilities in result.quasi_dists[0].items(): - i = int(bit) - # get bitstring of objective qubits - full_state = bin(i)[2:].zfill(num_qubits)[::-1] - state = "".join([full_state[i] for i in estimation_problem.objective_qubits]) - - # check if it is a good state - if estimation_problem.is_good_state(state[::-1]): - prob += probabilities - - return prob - - def bisect_max(f, a, b, steps=50, minwidth=1e-12, retval=False): """Find the maximum of the real-valued function f in the interval [a, b] using bisection. diff --git a/qiskit/algorithms/amplitude_estimators/fae.py b/qiskit/algorithms/amplitude_estimators/fae.py index 697556840df0..14de16554810 100644 --- a/qiskit/algorithms/amplitude_estimators/fae.py +++ b/qiskit/algorithms/amplitude_estimators/fae.py @@ -25,7 +25,6 @@ from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem -from .ae_utils import _probabilities_from_sampler_result class FasterAmplitudeEstimation(AmplitudeEstimator): @@ -156,10 +155,14 @@ def _cos_estimate(self, estimation_problem, k, shots): if shots is None: shots = 1 self._num_oracle_calls += (2 * k + 1) * shots + # sum over all probabilities where the objective qubits are 1 - prob = _probabilities_from_sampler_result( - circuit.num_qubits, result, estimation_problem - ) + prob = 0 + for bit, probabilities in result.quasi_dists[0].binary_probabilities().items(): + # check if it is a good state + if estimation_problem.is_good_state(bit): + prob += probabilities + cos_estimate = 1 - 2 * prob elif self._quantum_instance.is_statevector: circuit = self.construct_circuit(estimation_problem, k, measurement=False) diff --git a/qiskit/algorithms/amplitude_estimators/iae.py b/qiskit/algorithms/amplitude_estimators/iae.py index 59a4429d0bf4..a1f6bb14a1a1 100644 --- a/qiskit/algorithms/amplitude_estimators/iae.py +++ b/qiskit/algorithms/amplitude_estimators/iae.py @@ -26,7 +26,6 @@ from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem -from .ae_utils import _probabilities_from_sampler_result from ..exceptions import AlgorithmError @@ -426,12 +425,11 @@ def estimate( ) from exc # calculate the probability of measuring '1' - prob = _probabilities_from_sampler_result( - circuit.num_qubits, ret, estimation_problem - ) - prob = cast( - float, prob - ) # tell MyPy it's a float and not Tuple[int, float ] + prob = 0.0 + for bit, probabilities in ret.quasi_dists[0].binary_probabilities().items(): + # check if it is a good state + if estimation_problem.is_good_state(bit): + prob += probabilities a_confidence_interval = [prob, prob] # type: list[float] a_intervals.append(a_confidence_interval) @@ -444,8 +442,8 @@ def estimate( break counts = { - np.binary_repr(k, circuit.num_qubits): round(v * shots) - for k, v in ret.quasi_dists[0].items() + k: round(v * shots) + for k, v in ret.quasi_dists[0].binary_probabilities().items() } # calculate the probability of measuring '1', 'prob' is a_i in the paper diff --git a/qiskit/algorithms/amplitude_estimators/mlae.py b/qiskit/algorithms/amplitude_estimators/mlae.py index 8d46e1a2c21e..2113a405995b 100644 --- a/qiskit/algorithms/amplitude_estimators/mlae.py +++ b/qiskit/algorithms/amplitude_estimators/mlae.py @@ -364,19 +364,16 @@ def estimate( result.circuit_results = [] shots = ret.metadata[0].get("shots") if shots is None: - for i, quasi_dist in enumerate(ret.quasi_dists): - circuit_result = { - np.binary_repr(k, circuits[i].num_qubits): v - for k, v in quasi_dist.items() - } + for quasi_dist in ret.quasi_dists: + circuit_result = quasi_dist.binary_probabilities() result.circuit_results.append(circuit_result) shots = 1 else: # get counts and construct MLE input - for circuit in circuits: + for quasi_dist in ret.quasi_dists: counts = { - np.binary_repr(k, circuit.num_qubits): round(v * shots) - for k, v in ret.quasi_dists[0].items() + k: round(v * shots) + for k, v in quasi_dist.binary_probabilities().items() } result.circuit_results.append(counts) diff --git a/test/python/algorithms/test_amplitude_estimators.py b/test/python/algorithms/test_amplitude_estimators.py index 8360ff4fdd91..2b9f3a4721d2 100644 --- a/test/python/algorithms/test_amplitude_estimators.py +++ b/test/python/algorithms/test_amplitude_estimators.py @@ -196,21 +196,21 @@ def test_qasm(self, prob, shots, qae, expect): @idata( [ - [0.2, 100, AmplitudeEstimation(4), {"estimation": 0.500000, "mle": 0.562783}], + [0.2, 100, AmplitudeEstimation(4), {"estimation": 0.14644, "mle": 0.198783}], [0.0, 1000, AmplitudeEstimation(2), {"estimation": 0.0, "mle": 0.0}], [ 0.2, 100, MaximumLikelihoodAmplitudeEstimation([0, 1, 2, 4, 8]), - {"estimation": 0.474790}, + {"estimation": 0.200308}, ], [0.8, 10, IterativeAmplitudeEstimation(0.1, 0.05), {"estimation": 0.811711}], - [0.2, 1000, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.199073}], + [0.2, 1000, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.198640}], [ 0.12, 100, FasterAmplitudeEstimation(0.01, 3, rescale=False), - {"estimation": 0.120016}, + {"estimation": 0.120017}, ], ] ) @@ -422,10 +422,10 @@ def test_statevector(self, n, qae, expect): @idata( [ - [2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.270290}], - [4, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.0}], - [3, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.0}], - [3, FasterAmplitudeEstimation(0.01, 1), {"estimation": 0.017687}], + [2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2702}], + [4, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.2725}], + [3, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2721}], + [3, FasterAmplitudeEstimation(0.01, 1), {"estimation": 0.2792}], ] ) @unpack @@ -444,7 +444,7 @@ def test_sampler(self, n, qae, expect): @idata( [ - [4, 10, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.333333}], + [4, 100, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.281196}], [3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.256878}], [3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.271790}], [3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.274168}], @@ -465,10 +465,10 @@ def test_qasm(self, n, shots, qae, expect): @idata( [ - [4, 10, AmplitudeEstimation(2), {"estimation": 0.0, "mle": 0.0}], - [3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.0}], - [3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.0}], - [3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.000551}], + [4, 1000, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2636}], + [3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.2904}], + [3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.2706}], + [3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.2764}], ] ) @unpack