
Midas
On-the-fly-Schema-Migration Tool

For

Schema Migration Problems
Applications have to hand-roll their own schema
migration infrastructure or use some third-party tool

!

Difficult to migrate TBs of data without downtime

unacceptable from SLA stand-point!

!

How about: on-the-fly schema migration - a Midas
Touch?

Zero-downtime Deployment
Expansion Scripts

Apply changes to the documents safely that do not
break backwards compatibility with existing version
of the application.

e.g Adding, copying, merging, splitting fields in a
document.

Contraction Scripts

Clean up any database schema that is not needed
after the upgrade.

e.g. removing fields from a document.

The Mechanics

Run Expansion scripts before upgrading the application

Upgrade the cluster, a node at a time

Run Contraction Scripts

Once the system has been completely upgraded and
deemed stable.

Typically, contractions can be run, say days/weeks
after complete validation.

Do we need DB rollback?
Short Answer

No

!

Long Answer

Reversing DB changes can lead to potential loss of
data or leave it in an inconsistent state.

Its safer to rollback application without needing to
rollback DB changes as expansions are backward
compatible.

How it works?
An Architectural Overview

Application

How it works?
An Architectural Overview

Application Midas

Intercepts Responses at Protocol Level

Upgrades/Downgrades Document
schema in-transit

Protocol Level brings
Transparency

From the App perspective
Midas is Agnostic of Language specific drivers and versions
within those languages

Works with versions of Ruby, Python, C# and Java drivers.

From MongoDB perspective
Midas is Agnostic of the MongoDB configurations

Works with Standalone, Replica Sets, Sharded
environments.

Delta Files
(written in a DSL)

Deep Dive
Midas

Req

Re
s

Req

Re
sTransformer

Configurer

Parser

I’m just a decorating
proxy!

Ap
pl

ica
tio

n

Delta scripts
Group ChangeSet as Directories

Group deltas as Expansion and/
or Contraction deltas as
Directories within ChangeSet

Write delta scripts using
the .delta extension

Midas relies on the order
specified by you

Ordering info is embedded by you
within the change set directory
name and delta files

Delta Scripts - Convention
Must begin change set directories with a number and
subsequent change set directories are numbered in
ascending order.

Example: use <changesetNumber>-<featureName> as
convention for naming change set directory.

Within a change set, expansion and contraction scripts are
grouped by folders - expansions and contractions.

Always begin delta scripts with a number and subsequent
delta scripts are numbered in ascending order.

Example: use <changeNumber>_<WhatTheChangeIs>.delta
as convention for naming delta files

Sample Delta Script
Each Delta script is written using a DSL

Very close to MongoDB lingo, virtually no learning
curve.

use users
db.customers.remove(‘["address.line1"]')
db.customers.merge([“lname”, “fname”], “ “, “name”)
!
!
use transactions
db.orders.add(‘dispatch : { status: ‘NOT DELIVERED’}’)

Agile App Delivery & DevOps
Inject Midas into Architecture

Start or Middle of project

Supports Development of Application in small-steps
Add Application ChangeSets/Deltas on-the-fly

Copes with Load
Add/Remove Application Nodes on-the-fly

Supports Multiple Applications
Add/Remove Application(s) on-the-fly

No Leaky Abstractions
Does not expect the Domain Model to be aware of
versioning.

Allows developers to focus on the domain while freeing
them from versioning concerns.

If you wish to take charge, Midas will not come in your way.

Midas maintains versioning information within the
document itself.

_expansionVersion and _contractionVersion fields are part
of the documents “touched” by Midas.

Updates them during request and response.

Caveats
Never ever change a delta that has been applied to
production.

Always move forward in time.

Reverse a change by a counter-change.

Force-update migration on documents that are not
expanded by App demand, and then proceed to
contraction.

contracted by App demand, and then proceed to next App-
upgrade cycle.

Currently Midas supports Zero Downtime Configuration - 1
(see later slides), others will be supported in subsequent
releases.

Midas Domain Model
Configuration

Application

Transformer

<<Folder>>
ChangeSet

<<File>>
Delta

1

*

1 * 1 *

1

1RequestInterceptor

ResponseInterceptor
Node

*
1

<<Verb>>
Transformation

Parsed and Injected in

Zero-Downtime Deployment
Configuration - 1
!

Injecting and Using Midas

Site A

App v0

Load
Balancer

App v0

Site B

App v0

App v0
0 Offline

Online

Deployment config - 1

Offline does not mean
node is physically taken

down or is off

Site A

App v0

Load
Balancer

App v0

Midas
Site B

App v0

App v0
1 Offline

Online

Deployment config - 1
1. Inject Midas in to the architecture with

app configured in Expansion Mode
2. Start with all Sites, having changeSet = 0

(no change) for all nodes

Offline does not mean
node is physically taken

down or is off

Site A

Deployment config - 1

App v0

Load
Balancer

App v0

Site B

App v1

App v1
2

Midas

Offline

Online

4. For all nodes in Site B - v1, Apply
new change set, say changeSet = 3

3. Upgrade Site B to App v1.

Offline does not mean
node is physically taken

down or is off

Site A

App v0

Load
Balancer

App v0

Site B

App v1

App v1
3

Deployment config - 1

Midas

Offline

OnlineOffline does not mean
node is physically taken

down or is off

5. Flip to Site B

Site A

App v0

Load
Balancer

App v0

Site B

App v1

App v1
4

Deployment config - 1

Midas

6. Confirm that App v1 is stable, in case it is
not, bug fix and re-deploy it.
7. Once deemed stable, Make sure that
expansion of all documents is complete. This
can be currently achieved by writing a simple
script, that does a find and save thru’ Midas.

Offline

Online

Site A

App v0

Load
Balancer

App v0

Site B

App v1

App v1
5

Deployment config - 1

Midas

8. Change Application mode to Contraction.

Offline

Online

Site A

App v0

Load
Balancer

App v0

Site B

App v1

App v1
6

Deployment config - 1

Midas

Offline

Online9. Make Sure that Contraction of all
documents is complete. This can be
achieved by writing a simple script that does
find and save through Midas.

Site A

App v0

Load
Balancer

App v0

Site B

App v1

App v1
7

Deployment config - 1

Midas

Offline

OnlineOffline does not mean
node is physically taken

down or is off

10. Prepare for next Release and Repeat
steps from #1.

Zero-Downtime Deployment
Configuration - 1
!

Node Removal at Runtime

Load
Balancer

Site A
Node0

Node1
Midas

2. Remove Node0 from
app.midas
!
demoAppV1 {!
 mode = contraction!
// siteANode0 {!
// ip = x.x.x.x!
// changeSet = 3!
// }!
 siteANode1 {!
 ip = y.y.y.y!
 changeSet = 3!
 }!
}

Offline

Online

Say, due to some problems, you want to
remove Node0 from service:
!
1. Remove Node0 from LB.

0

Load
Balancer

Site A
Node0

Node1
Midas

Offline

OnlineOffline does not mean
node is physically taken

down or is off

2. Midas will sever all connections
with Node0

1

Zero-Downtime Deployment
Configuration - 1
!

Node Injection at Runtime

Load
Balancer Midas

0

Site A
Node0

Node1

Node2

Offline

OnlineOffline does not mean
node is physically taken

down or is off

You want to inject new node for App
in service
1. Add Node2 to app.midas.
demoAppV1 {!
 mode = expansion!
 siteANode0 {!
 ip = x.x.x.x!
 changeSet = 3!
 }!
 siteANode1 {!
 ip = y.y.y.y!
 changeSet = 3!
 }!
 siteANode2 {!
 ip = z.z.z.z!
 changeSet = 3!
 }!
}

2. Midas is ready to receive
connections from Node2

Load
Balancer

1

3. Add Node2 to LB.

Offline

Online

Midas

Site A
Node0

Node1

Node2

Zero-Downtime Deployment
Configuration - 1
!

App Removal at Runtime

App1
Load

Balancer

Midas

0

Deployment config - 1

Offline

Online

Site A

Site B

Site A

Site B

App2
Load

Balancer

1. Say, you want to
remove App2 from
Midas.

2. Stop App2 LB so
that it stops receiving
requests

App1
Load

Balancer

Midas

1

1. Remove App2 from midas.config
!
apps {!
 demoApp1!
// demoApp2!
}!!
Note: You don’t have to remove demoApp2 dir or
demoApp2.midas to remove the application from
Midas (this allows you to re-inject App2 should the
need be)

Offline

Online

Site A

Site B

Site A

Site B

App2
Load

Balancer

3. You can now take down App2

2. Midas will sever all connections
from App2

Zero-Downtime Deployment
Configuration - 1
!

App Injection at Runtime

App1
Load

Balancer

Midas

0 Offline

Online

Site A

Site B

Site A

Site B

App2
Load

Balancer

1. Say, you want to add App2
to Midas.

2. Setup the infrastructure for
App2 (Sites and Nodes).

App1
Load

Balancer

Midas

1

3. Create App2 dir within deltas dir
4. Set-up change sets with expansions
and contractions in App2 dir.

Offline

Online

Site A

Site B

Site A

Site B

App2
Load

Balancer

App2
Load

Balancer

Site A

Site B

2 Offline

Online

App1
Load

Balancer

Midas

5. Add demoApp2.midas (with
mode and nodes configured)
demoApp2Ver1_0 {!
 mode = expansion!
 siteANode1 {!
 ip = a.a.a.a!
 changeSet = 2!
 }!
 …!
 …!
 siteBNode1 {!
 ip = p.p.p.p!
 changeSet = 2!
 }!
}

Site A

Site B

App2
Load

Balancer

Site A

Site B

2 Offline

Online

9. Start the LB so that
App2 is live

8. Start any Site that can
go-live, say Site A here

App1
Load

Balancer

Midas

6. Add App2 to midas.config
apps {!
 demoApp1!
 demoApp2!
}!
!
7. Midas is ready to receive
connections from App2

Site A

Site B

Zero-Downtime Deployment
Configuration - 2
Not Supported in this Release

Load
Balancer

Node A
App v1

0 Offline

Online

Deployment config - 2

Node B
App v1

Node C
App v1

Zero-Downtime Deployment
Configuration - 3
AWS
Not Supported in this Release

Load
Balancer

Node A
App v1

0 Offline

Online

Deployment config - 3

Node B
App v1

Node C
App v1

The Team
Brian Blignaut

bblignaut@equalexperts.com

Dhaval Dalal [@softwareartisan]
ddalal@equalexperts.com

Vivek Dhapola
vdhapola@equalexperts.com

Komal Jain
kjain@equalexperts.com

mailto:bblignaut@equalexperts.com
mailto:ddalal@equalexperts.com
mailto:vdhapola@equalexperts.com
mailto:kjain@equalexperts.com

References

Owen Rogers

http://exortech.com/blog/2009/02/01/weekly-
release-blog-11-zero-downtime-database-
deployment/

http://exortech.com/blog/2009/02/01/weekly-release-blog-11-zero-downtime-database-deployment/

Thank-You

