From c68c2f5ebe8bc55b83acbdd32361aa418db72b3e Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Fri, 2 Nov 2018 00:09:21 -0400 Subject: [PATCH 01/10] Updated groups_integrations tool with new name. --- exoctk/exoctk_app/app_exoctk.py | 58 +++++++------------ exoctk/exoctk_app/log_exoctk.py | 5 +- exoctk/exoctk_app/templates/base.html | 4 +- ...s_groups.html => groups_integrations.html} | 0 ...or.html => groups_integrations_error.html} | 0 ....html => groups_integrations_results.html} | 0 exoctk/exoctk_app/templates/index.html | 4 +- setup.py | 2 +- 8 files changed, 28 insertions(+), 45 deletions(-) rename exoctk/exoctk_app/templates/{integrations_groups.html => groups_integrations.html} (100%) rename exoctk/exoctk_app/templates/{integrations_groups_error.html => groups_integrations_error.html} (100%) rename exoctk/exoctk_app/templates/{integrations_groups_results.html => groups_integrations_results.html} (100%) diff --git a/exoctk/exoctk_app/app_exoctk.py b/exoctk/exoctk_app/app_exoctk.py index b6fcc7ba..6b8473d8 100644 --- a/exoctk/exoctk_app/app_exoctk.py +++ b/exoctk/exoctk_app/app_exoctk.py @@ -10,33 +10,17 @@ import astropy.table as at import astropy.units as u import bokeh -from bokeh import mpl from bokeh.resources import INLINE from bokeh.util.string import encode_utf8 from bokeh.core.properties import Override from bokeh.embed import components -from bokeh.models import ColumnDataSource -from bokeh.models import FuncTickFormatter -from bokeh.models import HoverTool -from bokeh.models import Label -from bokeh.models import Range1d -from bokeh.models.widgets import Panel -from bokeh.models.widgets import Tabs -from bokeh.mpl import to_bokeh -from bokeh.plotting import figure -from bokeh.plotting import output_file -from bokeh.plotting import show -from bokeh.plotting import save +from bokeh.models import ColumnDataSource, FuncTickFormatter +from bokeh.models import HoverTool, Label, Range1d +from bokeh.models.widgets import Panel, Tabs +from bokeh.plotting import figure, output_file, show, save import flask -from flask import current_app -from flask import Flask -from flask import make_response -from flask import redirect -from flask import render_template -from flask import request -from flask import send_file -from flask import send_from_directory -from flask import Response +from flask import current_app, Flask, make_response, redirect, render_template +from flask import request, send_file, send_from_directory, Response from functools import wraps import matplotlib.pyplot as plt import numpy as np @@ -50,7 +34,7 @@ from exoctk.contam_visibility import visibilityPA as vpa from exoctk.contam_visibility import sossFieldSim as fs from exoctk.contam_visibility import sossContamFig as cf -from exoctk.integrations_groups.integrations_groups import perform_calculation +from exoctk.groups_integrations.groups_integrations import perform_calculation from exoctk.limb_darkening import limb_darkening_fit as lf from exoctk.utils import find_closest, filter_table import log_exoctk @@ -70,7 +54,7 @@ EXOCTKLOG_DIR = os.environ.get('EXOCTKLOG_DIR') # Load the database to log all form submissions -dbpath = os.path.realpath(os.path.join(EXOCTKLOG_DIR,'exoctk_log.db')) +dbpath = os.path.realpath(os.path.join(EXOCTKLOG_DIR, 'exoctk_log.db')) if not os.path.isfile(dbpath): log_exoctk.create_db(dbpath) DB = log_exoctk.load_db(dbpath) @@ -328,18 +312,18 @@ def limb_darkening_error(): # Load the integrations and groups page -@app_exoctk.route('/integrations_groups', methods=['GET', 'POST']) -def integrations_groups(): +@app_exoctk.route('/groups_integrations', methods=['GET', 'POST']) +def groups_integrations(): # Print out pandeia sat values with open(INTEGRATIONS_DIR) as f: sat_data = json.load(f)['fullwell'] - return render_template('integrations_groups.html', sat_data=sat_data) + return render_template('groups_integrations.html', sat_data=sat_data) # Load the integrations and groups results -@app_exoctk.route('/integrations_groups_results', methods=['GET', 'POST']) -def integrations_groups_results(): +@app_exoctk.route('/groups_integrations_results', methods=['GET', 'POST']) +def groups_integrations_results(): # Read in parameters from form params = {} @@ -372,7 +356,7 @@ def integrations_groups_results(): err = 'You are saturating past the full well. Is that a good idea?' if type(err) == str: - return render_template('integrations_groups_error.html', err=err) + return render_template('groups_integrations_error.html', err=err) # Only create the dict if the form input looks okay # Make sure everything is the right type @@ -427,19 +411,19 @@ def integrations_groups_results(): form_dict = {'miri': 'MIRI', 'nircam': 'NIRCam', 'nirspec': 'NIRSpec', 'niriss': 'NIRISS'} results_dict['ins'] = form_dict[results_dict['ins']] - return render_template('integrations_groups_results.html', + return render_template('groups_integrations_results.html', results_dict=results_dict, one_group_error=one_group_error, zero_group_error=zero_group_error) else: err = results - return render_template('integrations_groups_error.html', err=err) + return render_template('groups_integrations_error.html', err=err) except IOError: err = 'One of you numbers is NOT a number! Please try again!' except Exception as e: err = 'This is not an error we anticipated, but the error caught was : ' + str(e) - return render_template('integrations_groups_error.html', err=err) + return render_template('groups_integrations_error.html', err=err) @@ -517,7 +501,7 @@ def contam_visibility(): except IOError:#Exception as e: err = 'The following error occurred: ' + str(e) - return render_template('integrations_groups_error.html', err=err) + return render_template('groups_integrations_error.html', err=err) return render_template('contam_visibility.html', contamVars = contamVars) @@ -655,9 +639,9 @@ def save_fortney_result(): headers={"Content-disposition": "attachment; filename=fortney.dat"}) -@app_exoctk.route('/integrations_groups_download') -def integrations_groups_download(): - return send_file(INTEGRATIONS_DIR, mimetype="text/json", attachment_filename='integrations_groups_input_data.json', as_attachment=True) +@app_exoctk.route('/groups_integrations_download') +def groups_integrations_download(): + return send_file(INTEGRATIONS_DIR, mimetype="text/json", attachment_filename='groups_integrations_input_data.json', as_attachment=True) @app_exoctk.route('/fortney_download') diff --git a/exoctk/exoctk_app/log_exoctk.py b/exoctk/exoctk_app/log_exoctk.py index cc11522a..176707c6 100644 --- a/exoctk/exoctk_app/log_exoctk.py +++ b/exoctk/exoctk_app/log_exoctk.py @@ -1,5 +1,5 @@ """ -This module creates and manages a SQL database as a log for all jobs submitted via the ExoCTKWeb app +This module creates and manages a SQL database as a log for all jobs submitted via the exoctk web app """ import os import numpy as np @@ -38,7 +38,6 @@ def create_db(dbpath, overwrite=True): # Generate the tables conn = sqlite3.connect(dbpath) cur = conn.cursor() - cur.execute("CREATE TABLE 'exotransmit' ( 'id' INTEGER NOT NULL UNIQUE, 'date' TEXT NOT NULL, 'eos' TEXT, 'tp' TEXT, 'g' REAL, 'R_p' REAL, 'R_s' REAL, 'P' REAL, 'Rayleigh' REAL, PRIMARY KEY(id));") cur.execute("CREATE TABLE 'tor' ( 'id' INTEGER NOT NULL UNIQUE, 'date' TEXT NOT NULL, 'ins' TEXT, 'mag' REAL, 'groups' TEXT, 'amps' INTEGER, 'subarray' TEXT, 'sat_lvl' REAL, 'sat' TEXT, 'T' REAL, 'n_reset' INTEGER, 'band' TEXT, 'filt' TEXT, PRIMARY KEY(id));") cur.execute("CREATE TABLE 'ldc' ( 'id' INTEGER NOT NULL UNIQUE, 'date' TEXT NOT NULL, 'n_bins' INTEGER, 'teff' REAL, 'logg' REAL, 'feh' REAL, 'bandpass' TEXT, 'modeldir' TEXT, 'wave_min' REAL, 'mu_min' REAL, 'wave_max' REAL, 'local_files' TEXT, 'pixels_per_bin' INTEGER, 'uniform' TEXT, 'linear' TEXT, 'quadratic' TEXT, 'squareroot' TEXT, 'logarithmic' TEXT, 'exponential' TEXT, 'three_parameter' TEXT, 'four_parameter' TEXT, PRIMARY KEY(id));") conn.close() @@ -123,7 +122,7 @@ def view_log(database, table): def scrub(table_name): """ - Snippet to prevent SQL injection attcks! + Snippet to prevent SQL injection attcks! PEW PEW PEW! """ return ''.join( chr for chr in table_name if chr.isalnum() ) \ No newline at end of file diff --git a/exoctk/exoctk_app/templates/base.html b/exoctk/exoctk_app/templates/base.html index f7113708..a196b117 100644 --- a/exoctk/exoctk_app/templates/base.html +++ b/exoctk/exoctk_app/templates/base.html @@ -73,7 +73,7 @@ @@ -111,7 +111,7 @@ diff --git a/exoctk/exoctk_app/templates/integrations_groups.html b/exoctk/exoctk_app/templates/groups_integrations.html similarity index 100% rename from exoctk/exoctk_app/templates/integrations_groups.html rename to exoctk/exoctk_app/templates/groups_integrations.html diff --git a/exoctk/exoctk_app/templates/integrations_groups_error.html b/exoctk/exoctk_app/templates/groups_integrations_error.html similarity index 100% rename from exoctk/exoctk_app/templates/integrations_groups_error.html rename to exoctk/exoctk_app/templates/groups_integrations_error.html diff --git a/exoctk/exoctk_app/templates/integrations_groups_results.html b/exoctk/exoctk_app/templates/groups_integrations_results.html similarity index 100% rename from exoctk/exoctk_app/templates/integrations_groups_results.html rename to exoctk/exoctk_app/templates/groups_integrations_results.html diff --git a/exoctk/exoctk_app/templates/index.html b/exoctk/exoctk_app/templates/index.html index 57ce8ad2..6225fe26 100644 --- a/exoctk/exoctk_app/templates/index.html +++ b/exoctk/exoctk_app/templates/index.html @@ -19,7 +19,7 @@

Observation Planning

Tools for observation planning with JWST. - Integrations and Groups + Groups and Integrations Contamination Overlap
@@ -81,7 +81,7 @@

GitHub Source Code

ExoCTK Data

diff --git a/setup.py b/setup.py index 601cc97f..02a5b545 100755 --- a/setup.py +++ b/setup.py @@ -6,7 +6,7 @@ description='Observation reduction and planning tools for exoplanet science', install_requires=['numpy', 'astropy', 'scipy', 'cython', 'matplotlib', 'numba', 'pysynphot', 'sphinx_automodapi', 'sphinx_rtd_theme', 'bibtexparser', 'bokeh', 'pandas', 'svo_filters', 'sphinx_astropy', 'batman-package', 'lmfit', 'flask'], author='The ExoCTK Group', - author_email='jfilippazzo@stsci.edu', + author_email='exoctk@gmail.com', license='MIT', url='https://github.com/ExoCTK/exoctk', long_description='', From 084179e028e8c95d00b703fb8b50bce63d0ba279 Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Fri, 2 Nov 2018 10:30:22 -0400 Subject: [PATCH 02/10] Made log_exoctk.py PEP8 compliant. Updated the database insert calls to reflect the more descriptive tool names and all column names. --- exoctk/exoctk_app/app_exoctk.py | 257 ++++++++++++++++---------------- exoctk/exoctk_app/log_exoctk.py | 105 +++++++------ 2 files changed, 191 insertions(+), 171 deletions(-) diff --git a/exoctk/exoctk_app/app_exoctk.py b/exoctk/exoctk_app/app_exoctk.py index 6b8473d8..57570cf9 100644 --- a/exoctk/exoctk_app/app_exoctk.py +++ b/exoctk/exoctk_app/app_exoctk.py @@ -1,34 +1,24 @@ -## -- IMPORTS import datetime -import glob import os import json -import shutil import astropy.constants as constants from astropy.extern.six.moves import StringIO import astropy.table as at -import astropy.units as u -import bokeh +import astropy.units as u from bokeh.resources import INLINE from bokeh.util.string import encode_utf8 -from bokeh.core.properties import Override from bokeh.embed import components -from bokeh.models import ColumnDataSource, FuncTickFormatter -from bokeh.models import HoverTool, Label, Range1d +from bokeh.models import Range1d from bokeh.models.widgets import Panel, Tabs -from bokeh.plotting import figure, output_file, show, save +from bokeh.plotting import figure import flask -from flask import current_app, Flask, make_response, redirect, render_template -from flask import request, send_file, send_from_directory, Response +from flask import Flask, Response +from flask import request, send_file, make_response, render_template from functools import wraps -import matplotlib.pyplot as plt import numpy as np import pandas as pd -from sqlalchemy import * -import sqlite3 -import exoctk from exoctk.modelgrid import ModelGrid from exoctk.contam_visibility import resolve from exoctk.contam_visibility import visibilityPA as vpa @@ -41,7 +31,7 @@ from svo_filters import svo -## -- FLASK SET UP (?) +# FLASK SET UP app_exoctk = Flask(__name__) # define the cache config keys, remember that it can be done in a settings file @@ -54,21 +44,24 @@ EXOCTKLOG_DIR = os.environ.get('EXOCTKLOG_DIR') # Load the database to log all form submissions -dbpath = os.path.realpath(os.path.join(EXOCTKLOG_DIR, 'exoctk_log.db')) -if not os.path.isfile(dbpath): - log_exoctk.create_db(dbpath) +if EXOCTKLOG_DIR is None: + dbpath = '::memory::' +else: + dbpath = os.path.realpath(os.path.join(EXOCTKLOG_DIR, 'exoctk_log.db')) + if not os.path.isfile(dbpath): + log_exoctk.create_db(dbpath) DB = log_exoctk.load_db(dbpath) # register the cache instance and binds it on to your app # cache = Cache(app_exoctk) # Nice colors for plotting -COLORS = ['blue', 'red', 'green', 'orange', +COLORS = ['blue', 'red', 'green', 'orange', 'cyan', 'magenta', 'pink', 'purple'] # Supported profiles -PROFILES = ['uniform', 'linear', 'quadratic', - 'square-root', 'logarithmic', 'exponential', +PROFILES = ['uniform', 'linear', 'quadratic', + 'square-root', 'logarithmic', 'exponential', '3-parameter', '4-parameter'] # Redirect to the index @@ -85,23 +78,23 @@ def index(): def limb_darkening(): # Get all the available filters filters = svo.filters()['Band'] - + # Make HTML for filters filt_list = '\n'.join([''.format(b,\ ' selected' if b=='Kepler.K' else '') for b in filters]) - + return render_template('limb_darkening.html', filters=filt_list) - + # Load the LDC results page @app_exoctk.route('/limb_darkening_results', methods=['GET', 'POST']) def limb_darkening_results(): - + # Log the form inputs try: - log_exoctk.log_form_input(request.form, 'ldc', DB) + log_exoctk.log_form_input(request.form, 'limb_darkening', DB) except: pass - + # Get the input from the form modeldir = request.form['modeldir'] profiles = list(filter(None,[request.form.get(pf) for pf in PROFILES])) @@ -114,7 +107,7 @@ def limb_darkening_results(): # Get models from local directory if necessary if modeldir=='default': modeldir = MODELGRID_DIR - + # Throw error if input params are invalid try: teff = int(request.form['teff']) @@ -126,81 +119,81 @@ def limb_darkening_results(): logg = str(request.form['logg']).replace('<', '<') feh = str(request.form['feh']).replace('<', '<') message = 'Could not calculate limb darkening with the above input parameters.' - + return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ band=bandpass or 'None', profile=', '.join(profiles), models=modeldir, \ message=message) - + n_bins = request.form.get('n_bins') pixels_per_bin = request.form.get('pixels_per_bin') wl_min = request.form.get('wave_min') wl_max = request.form.get('wave_max') - + model_grid = ModelGrid(modeldir, resolution=500) - + # No data, redirect to the error page if not hasattr(model_grid, 'data'): message = 'Could not find a model grid to load. Please check your path.' - + return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ message=message) - + else: - + if len(model_grid.data)==0: - + message = 'Could not calculate limb darkening with the above input parameters.' - + return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ message=message) - + # Trim the grid to the correct wavelength # to speed up calculations, if a bandpass is given min_max = model_grid.wave_rng - + try: - + kwargs = {'n_bins':int(n_bins)} if n_bins else \ {'pixels_per_bin':int(pixels_per_bin)} if pixels_per_bin else {} - + if wl_min and wl_max: kwargs['wl_min'] = float(wl_min)*u.um kwargs['wl_max'] = float(wl_max)*u.um - + # Make filter object bandpass = svo.Filter(bandpass, **kwargs) min_max = (bandpass.WavelengthMin,bandpass.WavelengthMax) n_bins = bandpass.n_bins bp_name = bandpass.filterID - + # Get the filter plot TOOLS = 'box_zoom,resize,reset' bk_plot = figure(tools=TOOLS, title=bp_name, plot_width=400, plot_height=300, x_range=Range1d(bandpass.WavelengthMin,bandpass.WavelengthMax)) - + bk_plot.line(*bandpass.raw, line_width=5, color='black', alpha=0.1) try: for i,(x,y) in enumerate(bandpass.rsr): bk_plot.line(x, y, color=(COLORS*5)[i]) except: bk_plot.line(*bandpass.raw) - + bk_plot.xaxis.axis_label = 'Wavelength [um]' bk_plot.yaxis.axis_label = 'Throughput' - + js_resources = INLINE.render_js() css_resources = INLINE.render_css() filt_script, filt_plot = components(bk_plot) except: message = 'Insufficient filter information. Please complete the form and try again!' - + return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ message=message) - + # Trim the grid to nearby grid points to speed up calculation full_rng = [model_grid.Teff_vals,model_grid.logg_vals,model_grid.FeH_vals] trim_rng = find_closest(full_rng, [teff,logg,feh], n=1, values=True) @@ -234,52 +227,52 @@ def limb_darkening_results(): return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ band=bp_name, profile=', '.join(profiles), models=model_grid.path,\ message=message) - + # Calculate the coefficients for each profile ld = lf.LDC(model_grid) for prof in profiles: ld.calculate(teff, logg, feh, prof, bandpass=bandpass) - + # Draw a figure for each wavelength bin tabs = [] for wav in np.unique(ld.results['wave_eff']): dat = ld.results[ld.results['wave_eff'] == wav] - + # Plot it TOOLS = 'box_zoom,box_select,crosshair,resize,reset,hover' fig = figure(tools=TOOLS, x_range=Range1d(0, 1), y_range=Range1d(0, 1), plot_width=800, plot_height=400) ld.plot(wave_eff=wav, fig=fig) - + # Plot formatting fig.legend.location = 'bottom_right' fig.xaxis.axis_label = 'mu' fig.yaxis.axis_label = 'Intensity' - + tabs.append(Panel(child=fig, title=str(wav))) - + final = Tabs(tabs=tabs) - + # Get HTML script, div = components(final) - + # Store the tables as a string file_as_string = str(ld.results[[c for c in ld.results.dtype.names if ld.results.dtype[c] != object]]) - + # # Format mu and r_eff vals # r_eff = '{:.4f} R_\odot'.format(grid_point['r_eff']*1.438e-11) # mu_eff = '{:.4f}'.format(0) r_eff = mu_eff = '' - + # Make a table for each profile with a row for each wavelength bin profile_tables = [] for profile in profiles: - + # Make LaTeX for polynomials latex = lf.ld_profile(profile, latex=True) poly = '\({}\)'.format(latex).replace('*','\cdot').replace('\e','e') - + # Make the table into LaTeX table = filter_table(ld.results, profile=profile) co_cols = [c for c in ld.results.colnames if (c.startswith('c') or @@ -288,17 +281,17 @@ def limb_darkening_results(): table = table[['wave_min','wave_max']+co_cols] table.rename_column('wave_min', '\(\lambda_\mbox{min}\hspace{5px}(\mu m)\)') table.rename_column('wave_max', '\(\lambda_\mbox{max}\hspace{5px}(\mu m)\)') - + # Add the results to the lists html_table = '\n'.join(table.pformat(max_width=500, html=True))\ .replace(' float(params['mag'])) or (12.5 < float(params['mag'])): err = 'Looks like we do not have useful approximations for your magnitude. Could you give us a number between 5.5-12.5?' if float(params['obs_time']) <= 0: err = 'You have a negative transit time -- I doubt that will be of much use to anyone.' - + if float(params['sat_max']) <= 0: err = 'You put in an underwhelming saturation level. There is something to be said for being too careful...' if (params['sat_mode'] == 'well') and float(params['sat_max']) > 1: @@ -357,7 +350,7 @@ def groups_integrations_results(): if type(err) == str: return render_template('groups_integrations_error.html', err=err) - + # Only create the dict if the form input looks okay # Make sure everything is the right type ins = params['ins'] @@ -368,17 +361,17 @@ def groups_integrations_results(): params[key] = float(params[key]) if key in str_params: params[key] = str(params[key]) - + # Also get the data path in there - params['infile'] = INTEGRATIONS_DIR - + params['infile'] = INTEGRATIONS_DIR + # Rename the ins-mode params to more general counterparts params['filt'] = params['{}_filt'.format(ins)] params['filt_ta'] = params['{}_filt_ta'.format(ins)] params['subarray'] = params['{}_subarray'.format(ins)] params['subarray_ta'] = params['{}_subarray_ta'.format(ins)] results = perform_calculation(params) - + if type(results) == dict: results_dict = results one_group_error = "" @@ -407,18 +400,18 @@ def groups_integrations_results(): results_dict['subarray_ta'] = 'SUBTASOSS -- FAINT' results_dict['subarray'] = results_dict['subarray'].upper() results_dict['subarray_ta'] = results_dict['subarray_ta'].upper() - + form_dict = {'miri': 'MIRI', 'nircam': 'NIRCam', 'nirspec': 'NIRSpec', 'niriss': 'NIRISS'} results_dict['ins'] = form_dict[results_dict['ins']] - + return render_template('groups_integrations_results.html', results_dict=results_dict, one_group_error=one_group_error, zero_group_error=zero_group_error) - + else: - err = results + err = results return render_template('groups_integrations_error.html', err=err) - + except IOError: err = 'One of you numbers is NOT a number! Please try again!' except Exception as e: @@ -431,6 +424,12 @@ def groups_integrations_results(): @app_exoctk.route('/contam_visibility', methods = ['GET', 'POST']) def contam_visibility(): + # Log the form inputs + try: + log_exoctk.log_form_input(request.form, 'contam_visibility', DB) + except: + pass + contamVars = {} if request.method == 'POST': tname = request.form['targetname'] @@ -443,9 +442,9 @@ def contam_visibility(): contamVars['binComp'] = list(map(float, request.form['bininfo'].split(','))) else: contamVars['binComp'] = request.form['bininfo'] - + radec = ', '.join([contamVars['ra'], contamVars['dec']]) - + if contamVars['PAmax']=='': contamVars['PAmax'] = 359 if contamVars['PAmin']=='': @@ -453,48 +452,48 @@ def contam_visibility(): if request.form['submit'] == 'Resolve Target': contamVars['ra'], contamVars['dec'] = resolve.resolve_target(tname) - + return render_template('contam_visibility.html', contamVars = contamVars) - + else: - + try: contamVars['visPA'] = True - + # Make plot TOOLS = 'crosshair,resize,reset,hover,save' fig = figure(tools=TOOLS, plot_width=800, plot_height=400, x_axis_type='datetime', title=contamVars['tname'] or radec) pG, pB, dates, vis_plot = vpa.checkVisPA(contamVars['ra'], contamVars['dec'], tname, fig=fig) - + # Format x axis day0 = datetime.date(2019, 6, 1) vis_plot.x_range = Range1d(day0,day0+datetime.timedelta(days=367)) - + # Get scripts vis_js = INLINE.render_js() vis_css = INLINE.render_css() vis_script, vis_div = components(vis_plot) if request.form['submit'] == 'Calculate Visibility and Contamination': - + contamVars['contam'] = True - + # Make field simulation contam_cube = fs.sossFieldSim(contamVars['ra'], contamVars['dec'], binComp=contamVars['binComp']) contam_plot = cf.contam(contam_cube, contamVars['tname'] or radec, paRange=[int(contamVars['PAmin']),int(contamVars['PAmax'])], badPA=pB, fig='bokeh') - - + + # Get scripts contam_js = INLINE.render_js() contam_css = INLINE.render_css() contam_script, contam_div = components(contam_plot) - + else: - + contamVars['contam'] = False contam_script = contam_div = contam_js = contam_css = '' - + return render_template('contam_visibility_results.html', contamVars=contamVars, \ vis_plot=vis_div, vis_script=vis_script, vis_js=vis_js, vis_css=vis_css,\ contam_plot=contam_div, contam_script=contam_script, contam_js=contam_js, contam_css=contam_css) @@ -505,12 +504,12 @@ def contam_visibility(): return render_template('contam_visibility.html', contamVars = contamVars) - + # Save the results to file @app_exoctk.route('/download', methods=['POST']) def exoctk_savefile(): file_as_string = eval(request.form['file_as_string']) - + response = make_response(file_as_string) response.headers["Content-type"] = 'text; charset=utf-8' response.headers["Content-Disposition"] = "attachment; filename=ExoXTK_results.txt" @@ -533,10 +532,10 @@ def fortney(): """ Pull up Forntey Grid plot the results and download """ - + # Grab the inputs arguments from the URL args = flask.request.args - + temp,chem,cloud,pmass,m_unit,reference_radius,r_unit,rstar,rstar_unit = _param_fort_validation(args) #get sqlite database @@ -552,29 +551,29 @@ def fortney(): reference_radius = float(reference_radius) rplan = (reference_radius*u.Unit(r_unit)).to(u.km) - #clouds - if cloud.find('flat') != -1: + #clouds + if cloud.find('flat') != -1: flat = int(cloud[4:]) - ray = 0 - elif cloud.find('ray') != -1: + ray = 0 + elif cloud.find('ray') != -1: ray = int(cloud[3:]) - flat = 0 - elif int(cloud) == 0: - flat = 0 - ray = 0 + flat = 0 + elif int(cloud) == 0: + flat = 0 + ray = 0 else: - flat = 0 - ray = 0 + flat = 0 + ray = 0 print('No cloud parameter not specified, default no clouds added') - - #chemistry - if chem == 'noTiO': + + #chemistry + if chem == 'noTiO': noTiO = True - if chem == 'eqchem': + if chem == 'eqchem': noTiO = False #grid does not allow clouds for cases with TiO - flat = 0 - ray = 0 + flat = 0 + ray = 0 fort_grav = 25.0*u.m/u.s/u.s @@ -586,15 +585,15 @@ def fortney(): wave_planet=np.array(pd.read_sql_table(df['name'].values[0],db)['wavelength'])[::-1] r_lambda=np.array(pd.read_sql_table(df['name'].values[0],db)['radius'])*u.km z_lambda = r_lambda- (1.25*u.R_jup).to(u.km) #all fortney models have fixed 1.25 radii - - #scale with planetary mass + + #scale with planetary mass pmass=float(pmass) mass = (pmass*u.Unit(m_unit)).to(u.kg) gravity = constants.G*(mass)/(rplan.to(u.m))**2.0 #convert radius to m for gravity units #scale lambbda (this technically ignores the fact that scaleheight is altitude dependent) #therefore, it will not be valide for very very low gravities z_lambda = z_lambda*fort_grav/gravity - + #create new wavelength dependent R based on scaled ravity r_lambda = z_lambda + rplan #finally compute (rp/r*)^2 @@ -602,10 +601,10 @@ def fortney(): x=wave_planet y=flux_planet[::-1] - else: + else: df= pd.read_sql_table('t1000g25_noTiO',db) x, y = df['wavelength'], df['radius']**2.0/7e5**2.0 - + tab = at.Table(data=[x, y]) fh = StringIO() tab.write(fh, format='ascii.no_header') @@ -615,12 +614,12 @@ def fortney(): fig.line(x, 1e6*(y-np.mean(y)), color='Black', line_width=0.5) fig.xaxis.axis_label = 'Wavelength (um)' fig.yaxis.axis_label = 'Rel. Transit Depth (ppm)' - + js_resources = INLINE.render_js() css_resources = INLINE.render_css() - + script, div = components(fig) - + html = flask.render_template( 'fortney.html', plot_script=script, @@ -671,23 +670,23 @@ def decorated(*args, **kwargs): return authenticate() return f(*args, **kwargs) return decorated - + @app_exoctk.route('/admin') @requires_auth def secret_page(): - + tables = [i[0] for i in DB.execute("SELECT name FROM sqlite_master WHERE type='table'").fetchall()] print(tables) - + log_tables = [] for table in tables: - + try: data = log_exoctk.view_log(DB, table) - + # Add the results to the lists html_table = '\n'.join(data.pformat(max_width=500, html=True)).replace(' Date: Fri, 2 Nov 2018 11:35:03 -0400 Subject: [PATCH 03/10] Made app_exoctk.py PEP8 compliant --- exoctk/exoctk_app/app_exoctk.py | 407 +++++++++++++++++++------------- 1 file changed, 243 insertions(+), 164 deletions(-) diff --git a/exoctk/exoctk_app/app_exoctk.py b/exoctk/exoctk_app/app_exoctk.py index 57570cf9..ac391b9d 100644 --- a/exoctk/exoctk_app/app_exoctk.py +++ b/exoctk/exoctk_app/app_exoctk.py @@ -29,6 +29,7 @@ from exoctk.utils import find_closest, filter_table import log_exoctk from svo_filters import svo +from sqlalchemy import create_engine # FLASK SET UP @@ -45,16 +46,13 @@ # Load the database to log all form submissions if EXOCTKLOG_DIR is None: - dbpath = '::memory::' + dbpath = ':memory:' else: dbpath = os.path.realpath(os.path.join(EXOCTKLOG_DIR, 'exoctk_log.db')) if not os.path.isfile(dbpath): log_exoctk.create_db(dbpath) DB = log_exoctk.load_db(dbpath) -# register the cache instance and binds it on to your app -# cache = Cache(app_exoctk) - # Nice colors for plotting COLORS = ['blue', 'red', 'green', 'orange', 'cyan', 'magenta', 'pink', 'purple'] @@ -64,30 +62,35 @@ 'square-root', 'logarithmic', 'exponential', '3-parameter', '4-parameter'] -# Redirect to the index +# Set the version VERSION = '0.2' + + +# Redirect to the index @app_exoctk.route('/') @app_exoctk.route('/index') - -# Load the Index page def index(): + """The Index page""" + return render_template('index.html') -# Load the LDC page + @app_exoctk.route('/limb_darkening', methods=['GET', 'POST']) def limb_darkening(): + """The limb darkening form page""" + # Get all the available filters filters = svo.filters()['Band'] # Make HTML for filters - filt_list = '\n'.join([''.format(b,\ - ' selected' if b=='Kepler.K' else '') for b in filters]) + filt_list = '\n'.join([''.format(b, ' selected' if b == 'Kepler.K' else '') for b in filters]) return render_template('limb_darkening.html', filters=filt_list) -# Load the LDC results page + @app_exoctk.route('/limb_darkening_results', methods=['GET', 'POST']) def limb_darkening_results(): + """The limb darkening results page""" # Log the form inputs try: @@ -97,7 +100,7 @@ def limb_darkening_results(): # Get the input from the form modeldir = request.form['modeldir'] - profiles = list(filter(None,[request.form.get(pf) for pf in PROFILES])) + profiles = list(filter(None, [request.form.get(pf) for pf in PROFILES])) bandpass = request.form['bandpass'] # protect against injection attempts @@ -105,7 +108,7 @@ def limb_darkening_results(): profiles = [str(p).replace('<', '<') for p in profiles] # Get models from local directory if necessary - if modeldir=='default': + if modeldir == 'default': modeldir = MODELGRID_DIR # Throw error if input params are invalid @@ -113,16 +116,16 @@ def limb_darkening_results(): teff = int(request.form['teff']) logg = float(request.form['logg']) feh = float(request.form['feh']) - mu_min = float(request.form['mu_min']) except: teff = str(request.form['teff']).replace('<', '<') logg = str(request.form['logg']).replace('<', '<') feh = str(request.form['feh']).replace('<', '<') - message = 'Could not calculate limb darkening with the above input parameters.' + message = 'Could not calculate limb darkening for those parameters.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bandpass or 'None', profile=', '.join(profiles), models=modeldir, \ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bandpass or 'None', + profile=', '.join(profiles), models=modeldir, + message=message) n_bins = request.form.get('n_bins') pixels_per_bin = request.form.get('pixels_per_bin') @@ -133,21 +136,24 @@ def limb_darkening_results(): # No data, redirect to the error page if not hasattr(model_grid, 'data'): - message = 'Could not find a model grid to load. Please check your path.' + message = 'Could not find a model grid to load. Please check the path.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bandpass or 'None', + profile=', '.join(profiles), + models=model_grid.path, message=message) else: - if len(model_grid.data)==0: + if len(model_grid.data) == 0: - message = 'Could not calculate limb darkening with the above input parameters.' + message = 'Could not calculate limb darkening with those parameters.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, + band=bandpass or 'None', + profile=', '.join(profiles), + models=model_grid.path, message=message) # Trim the grid to the correct wavelength # to speed up calculations, if a bandpass is given @@ -155,28 +161,31 @@ def limb_darkening_results(): try: - kwargs = {'n_bins':int(n_bins)} if n_bins else \ - {'pixels_per_bin':int(pixels_per_bin)} if pixels_per_bin else {} + kwargs = {'n_bins': int(n_bins)} if n_bins else \ + {'pixels_per_bin': int(pixels_per_bin)} if pixels_per_bin else\ + {} if wl_min and wl_max: - kwargs['wl_min'] = float(wl_min)*u.um - kwargs['wl_max'] = float(wl_max)*u.um + kwargs['wl_min'] = float(wl_min) * u.um + kwargs['wl_max'] = float(wl_max) * u.um # Make filter object bandpass = svo.Filter(bandpass, **kwargs) - min_max = (bandpass.WavelengthMin,bandpass.WavelengthMax) + min_max = (bandpass.WavelengthMin, bandpass.WavelengthMax) n_bins = bandpass.n_bins bp_name = bandpass.filterID # Get the filter plot - TOOLS = 'box_zoom,resize,reset' - bk_plot = figure(tools=TOOLS, title=bp_name, plot_width=400, plot_height=300, - x_range=Range1d(bandpass.WavelengthMin,bandpass.WavelengthMax)) + TOOLS = 'box_zoom, resize, reset' + bk_plot = figure(tools=TOOLS, title=bp_name, plot_width=400, + plot_height=300, + x_range=Range1d(bandpass.WavelengthMin, + bandpass.WavelengthMax)) bk_plot.line(*bandpass.raw, line_width=5, color='black', alpha=0.1) try: - for i,(x,y) in enumerate(bandpass.rsr): - bk_plot.line(x, y, color=(COLORS*5)[i]) + for i, (x, y) in enumerate(bandpass.rsr): + bk_plot.line(x, y, color=(COLORS * 5)[i]) except: bk_plot.line(*bandpass.raw) @@ -190,43 +199,47 @@ def limb_darkening_results(): except: message = 'Insufficient filter information. Please complete the form and try again!' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bandpass or 'None', profile=', '.join(profiles), models=model_grid.path, \ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bandpass or 'None', + profile=', '.join(profiles), + models=model_grid.path, message=message) # Trim the grid to nearby grid points to speed up calculation - full_rng = [model_grid.Teff_vals,model_grid.logg_vals,model_grid.FeH_vals] - trim_rng = find_closest(full_rng, [teff,logg,feh], n=1, values=True) + full_rng = [model_grid.Teff_vals, model_grid.logg_vals, model_grid.FeH_vals] + trim_rng = find_closest(full_rng, [teff, logg, feh], n=1, values=True) if not trim_rng: message = 'Insufficient models grid points to calculate coefficients.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bp_name, profile=', '.join(profiles), models=model_grid.path,\ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bp_name, + profile=', '.join(profiles), + models=model_grid.path, message=message) elif not profiles: message = 'No limb darkening profiles have been selected. Please select at least one.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bp_name, profile=', '.join(profiles), models=model_grid.path,\ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bp_name, + profile=', '.join(profiles), + models=model_grid.path, message=message) else: try: model_grid.customize(Teff_rng=trim_rng[0], logg_rng=trim_rng[1], - FeH_rng=trim_rng[2], wave_rng=min_max) + FeH_rng=trim_rng[2], wave_rng=min_max) except: message = 'Insufficient wavelength coverage to calculate coefficients.' - return render_template('limb_darkening_error.html', teff=teff, logg=logg, feh=feh, \ - band=bp_name, profile=', '.join(profiles), models=model_grid.path,\ - message=message) + return render_template('limb_darkening_error.html', teff=teff, + logg=logg, feh=feh, band=bp_name, + profile=', '.join(profiles), + models=model_grid.path, message=message) # Calculate the coefficients for each profile ld = lf.LDC(model_grid) @@ -236,10 +249,9 @@ def limb_darkening_results(): # Draw a figure for each wavelength bin tabs = [] for wav in np.unique(ld.results['wave_eff']): - dat = ld.results[ld.results['wave_eff'] == wav] # Plot it - TOOLS = 'box_zoom,box_select,crosshair,resize,reset,hover' + TOOLS = 'box_zoom, box_select, crosshair, resize, reset, hover' fig = figure(tools=TOOLS, x_range=Range1d(0, 1), y_range=Range1d(0, 1), plot_width=800, plot_height=400) ld.plot(wave_eff=wav, fig=fig) @@ -259,10 +271,6 @@ def limb_darkening_results(): # Store the tables as a string file_as_string = str(ld.results[[c for c in ld.results.dtype.names if ld.results.dtype[c] != object]]) - - # # Format mu and r_eff vals - # r_eff = '{:.4f} R_\odot'.format(grid_point['r_eff']*1.438e-11) - # mu_eff = '{:.4f}'.format(0) r_eff = mu_eff = '' # Make a table for each profile with a row for each wavelength bin @@ -271,42 +279,47 @@ def limb_darkening_results(): # Make LaTeX for polynomials latex = lf.ld_profile(profile, latex=True) - poly = '\({}\)'.format(latex).replace('*','\cdot').replace('\e','e') + poly = '\({}\)'.format(latex).replace('*', '\cdot').replace('\e', 'e') # Make the table into LaTeX table = filter_table(ld.results, profile=profile) co_cols = [c for c in ld.results.colnames if (c.startswith('c') or c.startswith('e')) and len(c) == 2 and not np.all([np.isnan(i) for i in table[c]])] - table = table[['wave_min','wave_max']+co_cols] + table = table[['wave_min', 'wave_max'] + co_cols] table.rename_column('wave_min', '\(\lambda_\mbox{min}\hspace{5px}(\mu m)\)') table.rename_column('wave_max', '\(\lambda_\mbox{max}\hspace{5px}(\mu m)\)') # Add the results to the lists html_table = '\n'.join(table.pformat(max_width=500, html=True))\ - .replace(' Date: Fri, 2 Nov 2018 14:04:01 -0400 Subject: [PATCH 04/10] Updated the README with a lightcurve fitting figure and some text. --- README.rst | 21 +++-- exoctk/data/images/lightcurve_fitting.png | Bin 0 -> 46631 bytes .../notebooks/lightcurve_fitting_demo.ipynb | 77 ++++++++---------- 3 files changed, 51 insertions(+), 47 deletions(-) create mode 100644 exoctk/data/images/lightcurve_fitting.png diff --git a/README.rst b/README.rst index 4044253f..a871daa9 100644 --- a/README.rst +++ b/README.rst @@ -8,23 +8,32 @@ Introduction ------------ ExoCTK is an open-source, modular data analysis package focused primarily on atmospheric characterization of exoplanets. The subpackages included are: -* Transit light-­curve fitting tools -* Limb-­darkening calculator +* Transit Lightcurve Fitting Tool +* Limb-­darkening Calculator +* Groups and Integrations Calculator Transit light-­curve fitting tools --------------------------------- The ``lightcurve_fitting`` tool fits large numbers of spectroscopic light curves simultaneously while sharing model parameters across wavelengths and visits. It includes multiple uncertainty estimation algorithms and a comprehensive library of physical and systematic model components that are fully customizable. +.. figure:: /exoctk/data/images/lightcurve_fitting.png + :alt: lightcurve_fitting Demo + :scale: 50% + :align: center + + The filled circles show the raw data and the red line shows the best fit transit+linear composite model. + + Limb Darkening Calculator ------------------------- -The ``limb_darkening`` tool calculates limb-darkening coefficients for a specified stellar model, plotting results versus µ and wavelength. It uses high spectral resolution stellar atmospheric models, which are a necessity given JWST's expected precision. +The ``limb_darkening`` tool calculates limb darkening coefficients for a specified stellar model, plotting results versus µ and wavelength. It uses high spectral resolution stellar atmospheric models, which are a necessity given JWST's expected precision. .. figure:: /exoctk/data/images/limb_darkening.png - :alt: LDC Demo - :scale: 100% + :alt: limb_darkening Demo + :scale: 50% :align: center - Coefficients of the quadratic and 4-parameter limb darkening profiles for the Phoenix ACES stellar atmosphere model [4000, 4.5, 0] through the WFC3_IR.G141 grism. + Solid lines show the best fit quadratic and 4-parameter limb darkening profiles for the Phoenix ACES stellar atmosphere model [4000, 4.5, 0] through the WFC3_IR.G141 grism (open circles). diff --git a/exoctk/data/images/lightcurve_fitting.png b/exoctk/data/images/lightcurve_fitting.png new file mode 100644 index 0000000000000000000000000000000000000000..5a94e040727cad4f80a886653f1ea355c60884f8 GIT binary patch literal 46631 zcmeFZbyU>d7C#J#3Mimb(nxoABM3-JH%K=~3_}j3pmcXAHIgIUAky6(Lw61hGw_bj zeV%*0zxDg`{o`Hly0BP$=djN?`|PvhbN1O^zPwYB!^R@PLP0^nek(7dj)L-l3IzpC z7vmAKCCww~1M(NDo4VXW1bViby6(ElO2X#O zj_jru&SsYEo{qn}qM(R+3L_sKE!|D2JRKdJ+=M;FsQ;o6Mn3;;=Afqfi^Sbtj9ORu z9hJ1Rt0fg5J1;vYwKx_P6_u!~g_W?njO^dtk)OnrJK2{?FV;TXD6!PZ|1Kh=^see!O z@2`LH>27QFpP8K8{$3VxfgHd8!okJP$?@;8kzGZ9w+gGe+FBxK{yn}pm*`)V|JC;Q zJfa-GC;x+)f35VdR^(E}u|zrkEjDp1rC$tsC@7LBZ)K!3JyG|YF~5>&rT#!%47MEk z(7qxyluDxgiowH78-Nw~7VYyDcDC@VWpGsN``2gF1HM!SR4|dx7(Bu}cIYn>Wj?+9 znV60Gb_O#h<{1^{?4?*eBD;2Xs(ErzYjG0!tz|SEm|i5j=aZ%3r_yY#oFDo8DLNGj zDuyHq+Oq%@x6JsMNd8sr1ABuOIEatfa+fVbk5rR)Pm{eSg2L4PNS)r2M-_HDejNohDsY@_Wl z<(X^TY^Aky(41hp|?v>bcMib$1a;mZZL%F_R)S;d?{uq|+w1|LpF9Pqg?bz-~k1<=_D3=0bp<%=Srcy#uS-==~--1ofcPIO? za&ze#ERV1S7Gj>uaW#@TFE(f;u^TbBhvFuyWC~k$v_JS`bqAPaf*&N8K(~(d%Rx`_ zoS`k%M2sOXelMAK5w+j`Tm7T)9UVLdl`69l0OhdQrD0c1W0CK7^_;HRsLPspr%L>% z{oH$$TH@lD^~094FpU3f`ZGQ>3B-=-Mp1EDSekBm%;Sf7l3dCuoKi^~CWkwUa+2<~ zEPNUTO67MIV#YoP)vou5%Uh@Ey$c8prQO*lCkKbB!)tI0=0FOU^yYB32{e@!$cD~% zM2P>T?pqU{+5lT>UX#JQ3B+JuB1OocHH3ZkHdA(MgX!207HdhUm>O=7;zWVqdpOpe65y} z1mN}4HNxQ2MM8o4Tq|V?}55H637Uh+2n6DY^ClUEiTt&s8jgwrA4)~t)b&u1XBr!@Csnm)Tpexfo_fwyv zW`W$1VbN2ie$|kCuaWVgt-*ALX(M1Jfy(s9fm9wjq^V>aRBz~kjckP*c#=r89IC+c zN9$)v0So^Q-ALJgjl!I0MpGY1C2PP~7#_$F8XxW*2hCO4=J>z-lNZUaiIQdo@2jm+ zMKEMSen?=s7uaV6AqcRC9eoS7X;Pt0JO#&NfKNHWy-%9^!wzfzUjMH9S zC;A(6{G~K}v;k=9(pR+D|4|{7z`W;@sBiVZ#GCxd{6q{AcVMr?^ZrMZQPAULQ6AFT z(y4&{G>>=EXpB^RA63Wxg>C*dvi$!T{hvhtr=x$NeN>G9e;SjceG30?pF=?X<9*=g zyFww)cNUAnv8L@Z!X8xzWlicb_niOs318=s{-{VfM9DJruN+7m}!$$qeQH z-Rgz$149fqvwV~_6QQaEO zY>Qvx+2NwWREZu99=%cwlSaY%)qJ&m@&XcrS?ChMOj+cx z;4$ww*6ai9zxl$D74rp;A*{>gsQFUZ_`l&*Ec&i7s@L|n(2^jdMvqctkSpGPZET98 z=D8gBczveaoY+*W_oX$CPTgu4i+%#O*1Lti&_{wtO{eRm(5sMbj6Ta`Bl@i@A17H+ z(LX~Q671=IH2zw3)OaLLyyxOQzXQ&8`s52g={7Lat^4o|Y(kFu7Cc_zFk3;``d>kj z>dSA)m(ZZ{ZEVNDxWIZi3$`4LTO+trS%&E0SMf9w2@3qvAH@BI`TVp<+*j(8T?q3; zoRG*T!(p*u(#xSdf|598&kEVthTs_J+W%2%=evymu)9Z1b$%H0OE)vL6_c&3egO1Fh*87V;@e}w*LWyru+ z@ScFtWwEVKPbTX?3v9AO*k~*(C+2;=O9w?90-G~V=LV5*t3uACjJG>`kMhxf0`ym5 zbV62Ls+%o-seEGTtV?4H^81iDz*Q+aUHB3XTfc#xHiLv>Bz|OK`vJ-Px5( zj3afbdo}MfbPB&d6&uFuJ^B3bKZYXNiQx%A*?TqV{gSW19Zji?`KQy(*-j3}91{EU z`0k>9Y^Y4kazErBmbh=)F5H{#3$^S2L|D?ewnFhA&QQ?K<*B%6s6;&WfAn!=zxb+A zaC33MQmkES$7C;d;=4OhnDlx@o7rkOi>($4YIHwZYVL%nOg8LS^vlR8yCXv9w~1f5 zZ4S5?xKPrd3E%8S{GTg`C&>;E;5%oGV3xB6Rs9W&HNAVd^GPau|6|n2?u=} z|L)#lhO|N0aXYR7I30?_a>UF3cPK}ItwsME$gOCB&3Cp#of^{}c^$W8&Kv}?a#eqp zzE7F%ecC*S)jLx@noN%QZy+O?fPn;cu6w1mk2ag#chpT)~j$?QyEL;OsNWGf|6S2#0? zMy}yyVP9e+~ric#sF!iKl*En8k4}my2#2yT#Ryso4~h@;*|0 zhNVnt*vP$|WJ@JtZ&KuU*mg*mKyU+gXQwcT73{+rv_;2Ir2t%@Kre%onBv2jmYhIE<)Q5iz<10*msUGovd`lp5WEM_lQTo)M0@ErqV0qNCZ6usm)?dI>rA;01Lp~biE*9b zN8DJS!8}R7`=LF5zbH$k?l4r<&@FlaxpJ}RU)>6`6ylpCsalXbzG~nhZ%l_)sHrelJ#Vdks=+yy)Ogb_ zlZ--XJjzB&TTFo}oLtnMmVn#`f8^2g&f!C#{AwPUp#V=ba)4Rro99n8nE6m1J@i1^3d6NEO zoJysJj%m|=b~YYfvRFp=FQZ}&etc9*!Y+3`!XsrfL9Ofg866o0K1wdg5@a4s9FSvg zkC@v^?WGyZnVx!0p2I_qB%~G0EJ})#ZXUMYA zzX?e}iaiGtzcJI>!=Ul67+h8T1@xuI*9N%(uch^xKg02#f-5HWqWxJ{we+$+ygpx7 zQc&pRw|l$tTKsp=Oi=u3JI$LF{J43Z&k^rQs#%Q&(1X{#wwgtIyQlVZACHH_w}}rB z{=gqg@pk>0>u2vIsdaBmZs)3D13cNR-fD(1ed;Wuu1_UkO5XXrcBx#)NP!^j1B4z_ zWe+l4yl?;?7CeXEQbDQaM#CyzBDiHyzq}`QT=a(M;n#M~0hsKXdBg?komXVlwC8fs5P-J@0plNO@--3eb zI6*>^TSaM)Ny^LCubxt#6)v5F~t# z4td6j{u1@evHi$|`!`l&-{e^@reCkA)A+R5uZUlvgp&kPN#D%vg&^J4s`A$nkKOa8 zht4VIWY&cpx4>rvJ8F_S>Mycf^VWM}hjR9wX1sC9TKZAK6i6#z$M=v@eN`&tOj;q# z26<0Jf_FTx(%faHC3^j1SEwcv;;BYQk2FeoB7i>9IznO3cepD)DVpUHT1D$W4SV_g z6-ryn?WXegZ%AoFAW<^mDtdr_I4knW^U>!OFBjA+{fV3@HH!eq6| z6k0tFN53e5-@uXT$NhT{y$y@afynXfN7eH%pg?iO5{$v|8~Y?h<3>OVT&> zaYguVj=>@F$UemA3aL>VAcWko2k{$ikCE?L`M+!oXWtl{V;~QgQ5op*DpX+#YGeH$ z;mFX}`J53Ttip6oDK_7ksQj`8f!|rj@*0g9nHv{v`}+ zqHgb<*)nBvotyC8GB+M;KKFPrA40uQS`I_cWQUm%y+^o992(#(qjB4{{D`hZmCzVd zWN^U@rglLptL5`!=l#Ageg;mlLLvDd0g}DwMO@@yWAB<`t?op_lsD)Rb2X>=QC$SF zmQC8fz3RiSFX+&zo{6DJd8@x^c%%A(Hb_zibHVpi$qUxYRN-p5QLr{rnQ3q}N}_y1 zg6K=EkKK1asj}c5Z9Ol`W%QN;nUx?A56UIo8rkWc^ zuV#SnfLR2{L$e%@fZ!}yjV4!J1p|}FQ9%y9a+XXa4?Fu9dh~&2ETd+KWG0HXy$H#e ztchYsS*22Z=FIcY^So^eD&60#MHC>;=Lsw7b2oMoU2h6`ccqd-ynE2S{tBDXl3Zei z*Q;&VXovz~ zXfH}(l4&w8z8ep#Q=gna%2>5fG%+hnC50ZZ1 zah|D2Y$?cgxllQwf0;{pu4cfa(>q!hFmtSpjw&k|7Vv4>48tZju~XBJ&1P{cM4 z0c_ck6kb7p-Yo2~OJOaoYL}tNL0mCEj?QsB;Gi-7slxL_Bg?6c)nIR(aY_Q@_0@Vl zTFLT&C(+c}g2gfuQSQ3&)Sh&yPvM=@e$>E5m-Lmw^Y`d^>K1q}A^djwwrqyqBQ1z{ z3>$~%NDX~{gc098tw2$hh+4A?I%6ehXJN(3A7~s@61fvAEY`N%{LFx%87|2+jt-FF z_o-Vhh`={{>*4b9%ti&7@YvVurI$4nh9C%9oKUkv=2lsvZ6v2llGuF-_;B#RaQS z{Ri))G3{aXt8vy0_g~H4e#_f|nw`v7Wix*KUd<&2nXK)K*-GDT!}!c05Lz!TgfMb!t%poi@?w%!%k}0 z?N68C=j_c4d~l$q)W^wqeXj2^hC1j$zMl0GJs?e6p+AqrXgwP^tMyB~eB%d29772$X-v1?ol+(88(oJ3fwEI8v zN1k085hlYJ%{VVsVpZ@2nD|TL50- zt$E>D)`S^UO`?85Eb@kH*;(P}?RhjF5k`W_*Mx`Dpw{5lyYs?LCT%A#&GI9&JNObJ zflO#juPQ4{0kM`O&VJcBWvMnmv}Gq#uDPpN(4Zs9-U@f+=~$GLjd=O0=wpIefoirB z6GiQUtD@rZ>EN!R*6*ZLx*5EoT?^JyAvS5or!5ynTdU@F=}ExcEqK9Nf4X&8n#uiU z`exvKz_nbgFuy4mZqcM3HSPUCZ3fSKjJOI^Rq z?87n|{1^e1NY(d& zcWQuu9S;IG)$#eAQWHHJktW=zwx8}R(W?xjZ~5ixB6j@qfh+QcGU7+=qDQ*kQvsE- zx>c;5rRK&B?FeW@4>NpO03Sm6g+(W+b(1QJa*{wcOW?+PTMx^JmSF%mp~~gLp&xmJ z|GA0dSyVaoI|paa7TX|`tDsB(P%dEFC$m*Wd|n2Ya(!!o(`^R!5(;aP%~Mco8HHwa zn3<_LTqD^nYw>nkcgt2KZrLfA%PLlLNX365a@!2LJ*aw0nbkK_5};CIR=9a%O}b=A zPt1S02+W>!qyaWYj;l&6!Y;4YqHC`>x||iiGB13rtj@jQ_9UKfsW8a6$v>b|Jv*qf zE<}P8x4NlZSzQKa+r9dK9VgFYhh;V&MF)Wq&KBbOYL z`;ZmEJt&Si>x zj07t&Oy&7cO2-N8l2-PM<9RwE2j!!G7_*A$%hF`4jb=UB3o1Vi3#S}LV z?M>_`+A)%yqmGx`PL(0Z{9bOSb4$Z`xaO`%TKZ!xLPd_tg{vQdl3wWhOULzDu}Cpg z;e7w-A}ri;UMey;t27IM(P$eLD83BNDE`)}wRO2GfGB?9#YjKodkzw>^|eK3lDLdA zz24(K5KX7Py+D|pf*WJ1vsmwnO_XDC{cK{Z9Onnq`ZgWTVw=Co7GC!xck4G;ssdnr zzza>VuVoHtPTn|BFZToJ8fLy-Gpy;Fk&+Shz-R7eQYT%*hszRq{$YBM9Tl*@P|x%3 zY3CK_SWOZZgSL@}Q+E5EKxZo7#E$#Aydb+JZZx9PKF`xaa>2$1VG z<~2BQKp<`PGRh8aoyphfkav8(*_Bf*chbuM)(yqkBxMSJV!j^15D0HxNnG(tVQ&gH^}eVgrzGo(O4cHFGznKLx=mchZ`_x z*$TBsNi?2zHiwUl=K8E}B!g3I8}7&-J8e*juvQYyDx?H+OFmlH<374kl#rwM`9zOEL* z!Fv7$B7!APYzZERATJ&W7(>k9kHSXUMxz|3zc$xL0i3$6-+<sEpgbh-s3-OZJ=v3szk8qE(22XGIL-CKd9XJe_AFF#_O1z zYxlwNIa(`(Hxeobt*CjFNiG`j}WFdTr-EqAZ#izugCzF_GaK|BNPJ^lbbM?(3pAtiw3&4)Sh1=q*BFf!6 zjx2AkZ4-qvM1bb@!(RqlJ*YD@+oL=0jV8QCp#1)a(ZK^*y+aHKkQ$fJ$7TOittJ>(ectEV0#%>GFP)SH+N3@gBH0v3j9~QvM|$4?s4N z1YtTSHgoNL7KW%hRh(yu{H4%NZY8MY)7T{83FsF$8efUv-Jb_zO{pV6Y9>!~lGnh~ zH`!~Vn)~{!5VMCT&JG7DnwVH~l^cm3cfj(xM`I>a2@X(-A)5@72m6Par}hEOuxKN{ z7sviY2k-_F+y(Tr#d_pXajK!3ipJ;ghfDM2{c_XKD$-Ns8n{GJG+DVs5&6c?@W2Lg z;q}Yg={m#$Z_WN_$m?-SKxvPmi}1%J*0*~0yojYx$N7#7Ne*s{&+^&grJ+1Ejw0i} zO}p&6_4Zud5%tn{XW#)omZMe(W$)Zl705UJaq?S(r(`PEdq&tv2<-RWdnVeYeSs~l z8!zv13ipRbr!=vugQY+keFe&-5a72Fk+DfKPBD38v6%JXz?bX6MsEsE8c!nqE%zN~ zecY_6_U~Nzc*r>Y*EJwF2=2+_?*{DuvPB|;OEr;v+jQ#weTcvF3h?VAKugcPamF`M zi|cXw#-3#g-(K{f+j%Bs!M#UgzVE_@;=H{g6i-FaU}gm}{_I@4V5 zQE>GK84%@Ur%L0={qh8ylE)v!y~+F-q;BGse}4q^y-R<;q+xT0e>El&r{52`y8M=| zrO{N|OSLAm_2w&apS~mz!%RW7l3{Pn!c8l~-0b#nja+ne|6H}( zMqa#9@noksrr&{nY;hTuvyoDG%-d!z4ms)w;!gQ=N}HRz+oQ`t$SkvfnBBy8vdeys zR#7pZi~XlQxz`2A`m|(IFmC77AWjK)+9hY{wEBQf3+$ju$Y{Rf8+gm|j*l14?ubLc z>oR}QNoyKvTk)%5qt7|J2L3qq?b=y9i#&;}kW#k$m`wa7G}TvtZ>zaC;nI2BaUR4Q z`YC-d=2iUIu$Xn|Xw`&`Z=c=OF{UkGx>&r}udpk#HTzyPv*pU{)_JwV-FqO#T_0ix zgr7k9UAH*e)h$1SjyKuNJ|%I_TH)zM!vA==+NQ$~Qhm~h+vLWAtpv4Ak)n(CP^7~) z`T-?SmbN@+2KwPn7%!e~wMQwA4{(g5E8{!}Bt!!pX@x(ICT->HoU@;pHSN0OEqwRPZtJ3A6UlC^UK{(zt zmz#gfbwAsaZk2gSHVuyWLFPtBQn7|!yLn*%vu3x|)a^BF#kc>v=AxA zEGb1R;H1Z5k09Gz=kPKOPc;q#@PE;uMpk00-k>e*gJCt8Mn`1$Axo!5GPn(z|K{I|@>TgfvcXc(s7Ks$qAZs;#B;g}c zwTR~-Wu-ZYL?T715 zlt#5-$$U>eWY?pV&43{jD9O~irM`}%|JWibz&qc)nYc7t%|m444$-*hhd@Z&?$aPs z|E+QR{NGX<+7w|Q4)#6R{K@m0;o(ZS@LHZZ{#M_s$wt{7PSQh{xh-!lMp;v0Js_zMVyOU}xMSDFu)fXWd0tRPhKz(3| zkS2$z%e&Dgn&C%gdrYE9me0T6GU?Xt!qWn*cGNSw)*P*dGIkD@O${PUqL=9mgd}(` zFZ_p|L8d42WoIjZezHi#!D7yIu2y)*LJw6J#HZ z-9YeEiWR>WDFr(-YF94V`T3&+C?A~;MhVUx@3=o;W6*j=$rHKn zD|9~bT4P}XGVYm1ew^NKH2jIl66Ckpt#02$A8Vyy_+bCzYMLS1;SGb2f`*U?=Jj*7 zi_3i?RqJ`w}iCNWI+c-0rG#JF9{ZYksoHUHG+J(&8M+dw_N~>JJHGyqUg#z5W2Q z$p^(eRA!jZ){*vEi(FyDA5!6fR^F~Pr93>iUM&eRSP5agG#5;7tV~%Fvo`R_U+D4& z)exsRFMa9~-yXf2;W&TLePlEttB|<9|7c7tu5vp2yMJQaEcs?m`2K-twF6(I_FBGV zRm08V#=Wlh0Pj-iX$fNWr}!*-22j)A!271YtakiT0XoV8ac|A7&!~W28d6?62Hj_! zcCQ_fG~tZk3U%Wb0i9bHDZV|e%ygZ;jUpT3%T8YdCry6^yo>P_JTEg~8jrqt6VA@3 zcUDAG?FIPt6}WwCKtl)${Yj#l)deY)2Q&1qwA%`8B-~FsWM=pu*f1S@1#^lg zfu17v7f0*n=Lgdl*%y*uqdd&Rw=2h7)0)+k^}Gxc1!9@9;d^xJ4K!Z0;g(8BKnrML-1*cTxlJ7(S9@|aLu%zHc9E)1I$!|I+TzFrhRtoEeFtq z)B&q_)j#!8`FWlFsLrQ2==9$xTS7lj8P+qQ89^?MNr?!L1a7WTioU0#f7y59#5J{ z@5HVI@|NL-!yHOxsLP3yn} z@BQMK`$4D^-nIW=cGhVex4pDGrMGp@0!#7|rQl)M97}@v7H`au+r=bAPFc>b35U(? zmye&!PGO_Ot=`4=FCoX!%r4?Ym(>ldKnJw^mfYEs1X#xXWeL}2RNAIuw_+-D0nUf} ztToM}P4gEEY`Q+{1ST$6>EyvC@HAH{{L*94_uULOf4w zmD8`^!;ceWEbQd&@VCTFfJKEc#oiy)UqzBPB^Ivk1uO_Jh@qv`H+!V87Ln_eD@cl8 zhZP1Z6t2PiCiZR`wTcP#Xnv*UPS#r{8q{3KyLLydDA$+CiljhTKNRC2?+kZ8unQ;d zQ+mdG2d${ky@c}1h%m5X)_6=Scj}NV`17Qo^10bl@P6i(f+fl2@Lj5a} z)JwSpzd7#~wRr9NCj3%uokObSXCuZYNAXGIluT>JSMSAqXhO!8L|UPh>{Q|>9U>bh z_Zz0CE?$}>d2gdAoZ@I6rw?qB30E+=c4Sm7ep8MoTbic51@iTdLE%!u{JwA19hU^w zvXwV$9d8wTdpGYSA{V<^MY;zY_~CEvOjlpdR%{Zm7*|>s`tgk&tTW{`;ye(#i93aax(=1lMRyAGP#Pc?P4Mm}dqg=dnn{C)& z6%qr~M36i1OK=TLAz;eabJ?n~#mF>Pp7bpa+YY!i)A<1IJeQEvA5yT9X~Nsv#;|`y z?p5oc(yv9y=_Elg>wM7TwAC3aeR@1_UlJ3&zr#RDTy$zkl;VC+bw2mw@`otrMlSc^ zS^Qx9mwB_Y=_=o&1r^v_0Hi=Qb2a77JS;Nd$ ziGq!2e}`&Pi~ZK6;ksfq32A+VvG2`%g-d%VZQ|i1Yy81*97nbEBkUO((pH3Ny<U}^VX(dMD2skfUd>}L;>kI3>-zm&K5t|n(d&}zw2R3?8wh}Q04ti^gi_yTLrmj zOww%>-mI|n`Y`#^2Z?g`Waftk`}!qr2MeGQpAD-!=W^$$VGutq{gQNJv|!-}w%CA` z9rn@}=C5=a(KF)t2Jgm*8NP|+;(1dwLKp5FP~pGu?I9;gFX#=jd{6LQ-B!mO-vf$u zkH||Ys%s40IX=4o64C*R%SJDa`z|j}EBiJaluoG>z*NMTDIMTh@ay3xdG^Wd1zF{! z%3DP)LYG66j$nfL@gCtrZ@=?I`c&@8fhxbc-VW#jC%-^flmzx|%Is&yS#`&}0lC0y z-5Cp&c5>byZ|7<&4~E19*eGAl(VE=E_23@ba?i`A(|A0t8B)rsV@gD2ZmY>J2{4^Z%Uj>S-hT&OeL=|N|$>Y9lnt=I|PDe(eKPn z^1e?8u_()NI3z7P0rY>R3N`?|4B6`^$f$~J^<1|nqnx{ODs@jU{nqVU;eipP5V6*m z80#-SOd|m1jh@`nB!s(bv-j zhiQ_bi?yr4dOJ_^!jr1H!c4BFdj3#aL@}T4Toc9(*0xsUZT1N+FK;gj%BG3xgvcGSaL5U{8Zy)(GOrvi&6NuP+~lt0BI%rt5t&?R1vJr)cp;hO zV1iazr#pYkVYTbk-Gewp^JZReH7C+#{)#BtY*&-Kb5r85-FE>VV5vN}t*R<63D@Ei?hECv zyOFjkcU}qCY8~@V%b?xM)mUlU%E&C+nX_8(PD%%>kA`WLKo0-+e9LU&DbHHCK}}jz zp(igWQZ6z+gkT{r_d*{a@~9#BnvJ!7!=v8w0{hFd6n!|uvbH4hwsR^fmbjfgHhr2SX+Fev zK+{xz)FJtmG_e2Wc)NrBp+~9vgl5P6=|Fe|5c)x*^t=}R2f{g#-DtW;$RAjs7dokZ zcg2u<;ZJS33ySQ=DV`>8RIhN*Q=m5(YW?gbC9_AU8EjOCgR zKx+<|^qM-zgoK&s{BCVat#6?X)l!6a+;ke?f;^M^1o)Oe2S3(5o$SRXZqH^hmW|2) z*Iqa1)xjJvR?KIf*z*3fkecsz-~Bbp*o%S{dE(Y2F4w%XClx}D)rx#G!)zCW9(&VZ zi@QZ^ZgW`$erMa5jbVEV()Av-%pvowQX>(Kwe+hYK^i*BJ9#$}dZ)<#Fi1U@%WBO& zpBUfnaAu9Axx!w7r0M}PSrBCjXl!%MPl263wrTX?_|ttE%{soE1Kb9v(CHY`r6o5){N#5ZvI=J zosCCAmkW=s+bK!ctHxd1Nl1x7a813|mFIXlLfP8eQ~qbHtYYnb&Gg{O$ySZg1Mq}T zrrvwXhsT;zK^J?a)l7%bs7C2(U7y5Z4yD41$Cz6K8M;4~)y7Yb1@L32MttEZs&Yyb z73eo7-cug@0AEX_)aK>2R6eOLE+FE_UJhV#9FSCe1Xin_AGfE=Ri1;uqbQ<#&|Y zWt|*b8dC5$rur^?b3gSW zHLNH~-B|?&v$>okn1d}XNeK$-|M_14p|e$mQg>_JOxM4NWFFy64L@9S`qf|wAW>k+ z2odo5K}s(ILSAg1V{;!3C2WuK4vXJ@hwpIEJT)M9szvCDp7jf#7uohq^(AIEcPMnn zUhdr6a*6~OLLUkF=Cv_ri~Erd*z^a(?l$q1MAyMp`^P(2m8}j?tpg4^e!If?k&X;)a1@`ky5{g%kKv0Kd6WA5V={_)CPBQ8@3#g zUTg6^-|Gf;T%Ztf8XeyWQlD1dmcBB zv1tkGd5OAj5V+5h+NL<$lf+~W)rSH@6bY+pz(Zgk?&YA7XrF9$uxT42BxdEcP81`yjdcL_?gTCyy|zV=Vml) z0jO|8p&i;vh05@$S|$zXoW^H>ewmn79iLLhAvZWsl{+UoI{s=jUJLx*G)L;^(+%5u zUww#EZgkh&Orzr|^!5|el(7aAof2rrVS2F<2v!xgHJjtDqxTmcDY|y3$eJ`>T(r76 zJ~g~^p!awwlF_imqavQ=Q^q7_(UZ4%R$Uil89=F7@XK-=N^zb4oL6;Y!X-_%e&=!Gcz?FZT<6?0HD&5T zbL(^yEFx0?_25N^mz7pTx`gNcD0V`v6^?i9;oyy>pma!SW5nM3rW1Ql3MQ% z2Q43<8emvF9|5}T{>UAhYH|`_H+IO>Ke&tvK{O7&$S;u_l*8W(sNmL8e-Br)4V_O1l!AU{ZpNnAVUR>o?S9KFO2YPFLAe@^|Y`kiU?I;RPO}s zC%*!Hks^OHDdAa9sW$9%-PAN)8M%K`n7S4eC@G1Ct(erq(hZCaG⪙5dEdS3fzlT z>eU{FJWv?YUkVUzmIZeixyPpB(kJWxuHxs=aPY|+kEc)76S)D0RtV4ciy+I#CK3#~ zA1XigFGa@!l2zSou)jp*nScHOH8kMj2LJA-n{Tok8{FLKpc%M1BAi&({PUo!=TZq?0&yZSDDT+=~O5qVrzK)Ts{u2~Ho5WEI7F(%(4vbWrCuF=z>D>0W7X`ZTn zwNe{vy1`hvMn&8j{$u94GZ<}Ej{en!{>iT9_fJm%Ro@bV5eg5quDbWdu$fB~YG=A~ zs|@EtSGD4t9q|j*Z6}xwPa@yk#83AGbQko8w>GG%G{ae{Uu3wOzh2%5ZQ)oO%vpVv z&2wx1nDY~;_9CJC_47BE=A|*~YHq_BIQ#NjN{>|x#skk2jver{eGPlh|ET{^*P z-k*K@l25T+5$BVLM@)1A*CIFyU$|yXQ-TtgVL)%cGl$4XQUD0?`}LP$T!%Q&h~wLYbm4sOZuDf&vd7v4qiqHsdi`4qRwfxJcV?p^==xH z3#pL9Y9O1#_((x%$<0it#Q>!-xAl68M&2OLBQ#_5vzXyg)zYe^t-#AS+O-V1hSd@0ph_Kohb?)l>^6c7C3BeAV{C9Fw){)=!8SclofH z8jmc*A|;|5HDgdbK1`dj#11@t&R90hV4}29FC?+4pd8Gs+At=q6T~sjp}-NX{yNKd zhj(^nk?j37RDzjK(DcRY_v1mgmdScbKCYh!Z0oA3P**%RqB2LvL>J5B;=#K&u87%dVPouUv&LFr2 z@u^&a>6@nScFaow4B3e~UAXa;A|7QaWSxE`pG=~YMC{bLIA6UXvk*Qm(t1TF%S#ye zV_yD8S2PL@)d@@G2yMYM18+js^H043Za1G!16TIP;(Tm!!IHX!%3rs(3VOd9DZ_T- z?iqzyQFk*X^*u`b^huy%RE3H`Y~mb=@|)dhI;^(Hms_(JJk5(rPU)J=aOT;=a+!wQ z-}9ehG*+E<6Iqd_O3)eR$_G4;VN6m;w7?qM)1Xt^cOVPL&f)kBtJ`I-uY|qrj=>8aDFgtipv-R34Fb zx|(SFJTG#9!mF?LOHdfzI)Yit0XUZ~kWBJq1^KEN70wrQ<4oghPMixxs+J%`zmzy;U1ra1TB7y9#uN5qyPZFlBGu=5d@Wxj8G=sg z#*1|0hn1)Rv*_GlsW5lv`zT+tasGPHHa^eI)tkK^ z4GK;M#(mxTv#IoGCTMRVM1F1fJI`cE^(^8%qcM<&*3bAKlV8rZBZ!QuR0~wZ45}EE z{Hs<-A<^>#ni#=#bV-MFBO%=# z0#edl(swqVd%y3G^E?|5%$~hw#jJXlZu<=Z=eJ_+AE5g!CvWMNRPYbBJkkq?rjyGK zMiSW;q%$wIwgh(6?R^5{aqJ;h)IuyDLyX)hwr;6>y}rkuJiWYggVpx7tCFC%FYe2u z&2Sp;K=EH&T>E?mNumgi4LvlD;9KKAoY}T8eyiA4s{i*AO@_ zGI?_*f=nXboNsj9Pg>Ue(;}vO-d2gl1OX5Jb+z1Xf`W}M^&*L>IB^ZFU$4BsEX;@n z8Q_S7fI@fCP+s@iMaK8+^0dymxa(J>z3SRW>is97wX3u*?Y%b2?sPa$SeWDlr$0BlGJ)R0)_(iCvT`cqcwH1LX* z>UaJm>`0*{ugalHwgoFo*J{o=7WIZ#x_!3BB9VQxgbeqIZ{-q5qpOSjrDriFgIP|Q~@|AX7TF*SvUQ_>o9)peiin|-iBD|5`;+N0?)*Il0I#GYfJT^nxN+u82lVqf>cy?t zq)Plf?|$dn7OXc4ZQYOUgwlzT*utJOig;Zl6LQz;%{uOAqic|(Q(@sXI;Jt~dDbVZ z7`XUBP1%w>5cf92?=9Vadb|(SQ1<<9y*fra$K^eReWJ?zq(|}Hh2+S8-+q~PwA#$K z$ogK z=|zPN5f4AD#)~wl(M^~d(3@veTI}t-PUK&_Vij&In{gzr-s;{sg&AUxQHj+c4fdM- z(}c|UhpYMIzPqIYCOOsb(~6_iUYSLM_Bc{SPN+`(8%+-qct-I}@2$4}*-+xFWv1Cw z5Nm|=h8l*}co;&+%(#AaC7&Nd_!$*C=Lzs$WzRp^0RE>V_Q#~}e9lV!>8m*6?;>Pn zPT`Gnx&GOlBOU>5tO%cBL=VG#@`B)e>&b*rH95tk#P5kQeeUba@;iq;PCno-g>3p5 z?|xtWEx#y-*jq_a`VgUErQuBS@GmB@MM2MymXT19nBZXsLOz`o&p(Z`ExX_!by!4O zn@6iW=%NwJQYoMpOAF^+8+h|vO!p);TAf_S2pIEi@aM5>A669OX`WCXm1jF)6Q-aVb} zXhCp<2RXEtA+PWg(?{jRxh1$0niK@uvGzSHp3$R7#>y11lv`<@`aR*Hi{?RFt6=#U z%nsDwG->Pswj(eFN=#&{7Gy#>bAEnF&oS{%G9oo;_q}#qKg(E9!g?mde*8&Djeq^( zG@>iAH1SD~6qi-G=KSt@OnZE?aQYeSONaIqix2{6%zXi?KP6(&s{gjyT`*-x{>mUg z>fO*bljg`No}K)c5iE69Ur@2pt=@7;RJW0d-1$ctIBMpRK)AM`=2Oo&>N@aDC;R&b zUMCyGu;`LeMkGG}7@4r??c75hZI;=m3Bk2URO#W`E~2#u{iW{5 zKp`{;76WPnT*7!aAk9UXh0|A(ag%*@$*6?=*tI|?eSU7g`wzTMVU+Sw^xr?6>pi`3 zdI{gYJ=RH7&={gu|F)*JSpR0P*}bGMe6AKdJv_`EIi6Y&Mbh;e2^C%sp-AIU4BH|w zt35IXo__Kt4?2?GbKkw~nx2xCOPTdiKWsX5Un-eYmflWn1(JeTsOe2fh%e=P7%lv4 z_ZJ*(Ndwl0^psJe4}j|Q7n&QP?)Bl9E4S(TV`TJ2yBY(p)-{cg-|KB3E9Vl1 z?8L>)4;6b`kb(!eN$CQh({WsaJNhwrMuD9?$h!*8)ub)Mx#YucOC*<3lRklky<@zEf_2l;Fqx2P!4_v2hc(+o^fqY@?9>&L&cmuKi9 z;?FB4CH6^elqpe()XX+rngi^X(Q+dx>CTAoEdpO{(3%I;>Gozwyak76jl4RSXd*Y) z%3`)IW1ro+kQn&$yW`dKN~5BIt#f0?E?xT@%Fq6YV*j-mfgU>FZz<4eAH?C?pW@0Q7_bnn#Nshzzd3Ay%X=)^fF}}T-5sG*zPE$kv#b|@ zLxp*7Ll}H#!>FinIPn1{$Fk@T8VPg<-fm5DUqcDBz9=gRN_KnE z;8z$=K=(D=|Mi*!_57PWo%fiHW5L*I*>!xH$K+|Y@c_KLs8R1smUeSpu{y$j%XjTr z66{Tnw!kg+(ACFK`?f0bxHkL@xN81>(sFY)=XulvJz@sBbpC>W?RAtD8#`+lW|pgfqbJQU)FJpQmQvp+v-d(6}gimV5$ zDJpU#B8d;lLbJgK%wyW_J5?FKH>_MBh){A3M_>ui#4X1XHWVPlkk3X=fZEC$V2 zp@C;nyK^;tb?d40==>*9VR)~|4cS&Z32fNheIsLP7TjdM$tIFpOqDS5_`?9jNfnV1 z+y$A1+^nW`gY$w}4PdjS?h4gUHlDxA$3TRL=K;}lbEYDfL94o7SqK2_ybll1w)^>P zGOx?3X8r|_Sf8BOd9+CS0uoy|m+m7Q0n*JEDaro%CJ6kKHZlAnS5qHwdLZB+ z-vX?>I)vp_wOsw;x8K{oz6XLK%)0It&VKpb?bMtbpyLqQ+ynoK`UwTTqLw-rA)i|` zB$A{=$@UX|@~crVf=IB)j~0U+TFeMD2%rY7#whguJzOzfA55{o+|1Pq38JIK)pf}z z(yDo>kt1vk+Ht$FH$0DAWIDr{ZrP8@$=_|loUGg=E_W1Uu9T?biIK_fAxKF50sSy^ zTuR=QypT_(sVCLR)!_%FS(z3hx0`9VQlK7vQOiPPukm>BN$Y(JrJ@XizkHRm=~{c-hh^+47^`;!SACeAp(F0Q+NAWArgJXbZPN6F>8pY&19$dp`-LL zovg}}Ag*svvHv?=4yjbq#Z&36dkB99#6=1;NcoT2v4?W1Gkj#g3teWqBa z+QC6=2$#0gl(1eTflkcrWe@w5_DX|HLX0lJ4*|eQ8Vzonl4y`FL`RSaAfdj|^QaME z5qZgn?BIItIrFNvCYRtI+kjN@IrNTtIR3nmH$mQqp?a{>)Fm4LqZ7Yu2jO#0r+MFA z#0%e}b2fNz)+>6A=PB8P(tv80v6O~C{fQJY)C$($$C4~cn5cEmepicmXvszvfd0jpx}Zt2om&#&-EJb z?Wk5y3-^BC{Tj_Typ*4QxBvCI&U1wxyLN>8kC%qjqNrf^&8@>gpmj^(HirXDG?zEd zz(LfY18JY^B$eO2*B@QrEwd)TmfDr9wwo-w-nH?zup6yZ*&I=k;YeaTq%3CEKzN@bwWv8!vSqi8Q4RTF?Ltw;@Xda^^7vM{GYT}MV> zjUZRJ7>n98D}5!e^PeR72qnS{vV1mpP<1|*poqNcRKhs=bg0ZwezR@xfoZKvLom9y zV}ty|JhBXK{r2Uv6t|qv3IFbx6b=BcCFFoiNI0(GW;sKo1OK_m2!Uv_IDzp2>(osg zAwK-Q`bz&KG~nDinv#QpuM<|%pqNkVL===drPS?GyxWbIHCEstJ>fW|GgXdSn)+b* z%MSYso_T5G$@%Y~2-ED-*r%O>jt!EAcigMB!lVnZuK{SEy}Ugb7ZQcs6cFY)cB6h ziDj5DN|1cRs0f@4KeA4o{|@_ew3jJfId+Kb0B5aaBhApkJns2@c2>3NI41k2mtG*7Cud}b7cf8&{ zYvAz%^`c%Q-+K!c^BD@#-vL>_BptRG4=f7XaXF>}HG4G5^tegtEi@wiI=L$nQ%WV> zD3B62#RwW8Ke4yn9A}(RJB8WT*x^(o;%kg3J=T%E1yHOFSy2Ggw=bFd1Ivy>7sLEb zZ=dN`wrp@%4B6;D`)r-2Kt>xkI= z&*%Jy+EaQEvfgAGwr(7vDnmK$$L%2T#b!_Ai2~IKb(xD=fG5T>>BwclU(#}WiR0~d zJS>8)kwu3tcx~JH^_i;l31L)@Ov3xW>+pa~Oui91?)TR0Qhxi})58JOXkOS^iRXO% z?qbn9p0j&vFO=?qpsFsUf=N^Pr=4D_9z&;{h}WsVuP!|$)k(l+fzN`I&O|OKLfeIw z%_P2Z80i+d-17-Wk1@}rAtLUBAfj`OL%T{n`K0@P24)`M;cuNF*#vKv@`0R&KxsnKk z!fz?dFdDPoeT4f=LyAEG9of8hdoMWp6ulb#GLFR_(AsZR4HN=*p?s&V{#)NH5%yaS7hmd znARihNKFuuPvjw2X4}>I1M09attW z{)s(U<~w;=LmHqgqZ$iE5hwgQM%&Xs47Ueu_xNFnki!I%w1r41{rh*i*QjA1@w;(& zcr>yie__hUfDqYGz_8v00}U+u*!Lu=b<~?T5VJF<@u;VV?Bm78ZwO8ca4)-(5QI+& zpuu}C0NB~``nTJ;>hSTB*0nL}N038?R7t=g>_#lxx3IfEC6^lg6_fwt!F1GXsR4lt z2n0>h4q9V$voiK*YJ6P9j+7G6Oep;+f=+~BD@yf6__G`swX7%-S0Dz5$Gf+pl)_J- zZJ$b{ZvlWl%(d$YJW1y3MJ^ts4C}2Jm5kR7@=d*5v}i zfQNtl0FD!!Zzl52=Hfh|cx}~&Ei4EPP&-UsgA^Iipalxb)mZl6gJ)w%cw$nuxWmeN zr$yuBE3E9%PP^nN_ea~a-Idku6mrA?w^YY%(EwCzAi(lVz)GH=gD(U}f8RltLUixE ztYS>hHc$j&{!t7L{PY27sf|j6%J>gr(LKglx8Fl@!>&#WbVw!B(C=CzjF;Cpf&L39h-jWedavLlFNiwJ4yXwYXX0zki-m)b~Z2`>yj#HUfP#D}0kSTvJgs_7@ zJ_kux-!I2V#qCH#iLpXFhyCTm!dx9e3$7h_z-~r*948$cEw$x_$>Dm#C@0#5Yk@=Tnde4IMFEjeX#ry!H0O?omQ0FuTACTZwgaXv7XWy z^OtIKi!`4yeh?=6XIOfnU@ndTboIgLrYajC6rX;7)2WSUNiOq)`{TjqE?p28e3)uq zpj__qUB0gk@CP`H{}&O0Kro%o_sLQ?td4D4=?Y-UB1n0>sk3NR@)tA05`2+k}cTmwUKBD%Q+eSvL03kVQTpN&XyFdHU-<^RjuF7ZgT# z&v_84VYOJ`Z}3tFBrcMIYEc~tc1_MC^_P(mL6XZ5b;?=^h4a=upitb!Q9>Fh4IJXs ze|Znnm;7Kk6ch3O)yTFO`tMX+J_4y7mL^@)cWjbKGjRQNF-cGE?JZ?Nx<@Yc!xJe3 zB~Q9@-gzjluoMTM^Cg7e2=J37Ln7`;U?2r{6aO<{80>}-IqxVVaCBx}te-tIyIMEw+!*ycCvik%D4p3p`2bg%^ zazO5D#NsuJLmPu(Ep`er^f*aEO zX9}JEl*MtvtFn6jKg?}|gyMLi37x<)ObEr`g(8SZ0u~0bdB0~@qq@3${%SW)zY>s-kdETssB}0@2w;6Gv zOf3#ca7E|{5ZW_1X>J#!37q}%so$mvGfA6LY1oQh{q4-2w4oAc2ytcfO$1&BFq1P!a}6A^Max5%9eE z>vxOk&7)Vvs8y0YlVtN^0Fn_ncoG0) zd<5@*ABwX_CcOHAu~~B}R5yar><6p2{6*J*cvkcdMfBgCgBf7i%YzS|Kt_cU!77r3 z_U4?Ur?rV!B;>Pc+lyh7V`6SLqj%FISR~Ne0GAZlWkfXjd!9%4 zpI$V5b6N?%b|o)60JT&RMfCB#In;%{eXuO{kQd@=S0p2*=zH+RonK<3O$vPTA;w)v zOudIB&7=xpToZmj{?zD3`*z9Jh4W+p`~3nkQ4qGYl;uc_9k9nL2zz3q7t44q%PwXt z#An6jHEsjzxHVhY(?_!(GGj{JBDkwAgJZ~{zk^}FLs9d4oK^&Ma~#!hhK%#fucp@# zO-4u+P*sC#8OL-2!Iw?Hm^EMTDggV4D- zwTv4?XDkJZ^rugCX^&xr2TATL}ao=haMn? zhbKEPxH9g|a6<7n$Onm*&Y?_^@547qR&w|{V|N7jq$5x$SBYBMy<%cpykc#ew1QrZ zFw8xn^cnru2RG&Ve5ps)yp-FKS3-m#Fo5_7g!7qi2My_1u0qYzNG*IVS(1(GH;NZha9NdX@XOZm!ATUq-|i?f$A&b0fkr6Ko?~{s*lN z0^E`x5i&`x(fJO12zlSvlj;1ap0kdzTj}h%TU2Gs1zbpCqrBte=NauwsI!wcqI1CH( zcI@Dv8evnBkN;ZqTv%3X(mJ)CXsGfYT7R>@0P1;Ka&;$eCNA!V@HwrMC&sgD9yFgX zxLbj+S+&cdfgbXE*7yBo$k;E~Fi6L~$$c>42VmWV3Z;p-$Wa_tvmGm3fKz&tgt~_G zHk=NI|ETvhWKm5v%$GKsTBUGIom^*f^LzvZhXjpM5mSBxV2XeDy18WkF@{10O{%T1kkW05 z>PCGDLINMOsx+qN&Jo~_0uV^~baL4;N@AnSr%(9;Ptx5JJMz((T>RF5_&)fSh|Qh8 zKU2|F@4RoVeu0BXF!P% zBB@+cm%bM=5}tS)l^>@zERBYRkKzTtj7(hY!*1Lg>w?3bQ>s-nNbI`$*@ciAD1!^^ zzkiD&CS7lm))q&ww)Bskon{bCs>?6Acd*R4-sHjVx ziSb_-Tn@%775EuR%+EtsCtJZrL2lxN0Dj#IR_Watgn7zj@|mA^pO2Mjs?j;Z@z=4* z)z2Z2*vgfulwfZ-o0CY}R?IBUow+A=-++nX& z&3MV8cAw0?AT)n#PdxCpwlIa7pa}_(X%jPV^Ma~oq(RrSRnvJ(*^P*%0*7SbJk^nl zuwum|&4P3BT12b%fIByk5zNLy<7J)l-zjN$p>-4zXdK|P2acQ!nQu?lYI_YmwJKCF z;odh)!(j=BnQwfV!8@L3!f0bu3%nSSuR=BwOfrd23?q zYfW&*E=b8Eg}2B0cS+uC1S}jX?I)h=p6f*12B6763s<6n%{l%=b$B21`i0UE`B+PX zuKP$mZ{nZZt@G;Nf?YF*E6!Z%s?{G%`ib34>yAanXxwiv#Dbz^Tce2)j3r4o5Z@)P zT99xHpTX#aeN5wp2Nz$z7Jki}8HmhMchsNPc%td0&PoFfLcm=c3}JX%M(UN~!D36g zJxI;E^c-PL_IH@IUZr4~k&}^yi-beVkEpA}=50zzglaZA69?|ixn@pX`#w+oImd{< zwZGIQ;@q3;4EsUW!pr@jmDl5(>)&DJA;mVK2MNg~bB#EX3c4J;L*V2N>5Db*jv_-o ze2qJctkbt)z1YmZbOuJI5m<8NT~b;`k4e8O6qu(5#Euh5pVioMRG*7sj6bf-j$@qMS2kMWT$F1>4!XolJK(!hAx4|^E zh0 zm@uu;=uBS)u*30AnY7H{1T4v&j5{ArtNk08I3B zd!$D9UJbSL1vTe1jO5l6P{Lo9!CSpIz0?o zB^Hi$#V*?dNYH2O4G$&Gt6$}dv)6h%HB$?g{%>62y9(P=BX^qm5H*>uzV|FOE@0}g zlD&%gyD_m1-*7xA_Rx|{6`~N04Z^df2g(Z~lKWt<%A~{P?o2g_4SMLhpG%)!D%Ns{ zuZP;5bW2Pg{&>ZkJ%i{r(4VSNc)7JSNcjE=S#l@#L6sPs z?+HxaO2e>0OLgu$(cCC?f9t&R+_)ku$>}o1r5u8w$FXX{!McFA5}M>2O7Qz2^5WHMd+i3 zB3l6EQ~?e?+P!leETqEVE4sevpE5hM$$PHC5Y9|A^~YNx(%k=t$_pjAIm&}xY<_z6r^oRrY*V@M%3EQe&E`PkG+=+NKBRPbmvoC_AoGLyL% zhwD}$r^k1oqJgE#awy=?oy@Vd*}g-YAdSLB`0KO!kTnhxW1;j{>zjxGmN@0CxavI8 zbL)3rSmdH5;qR7BMjT>V0nu#!laO`q$499JKqR3uWNBiL7Sa7;(kiu-(?67M9| z_-=MO^Y@zCz3tBsdX#;PShFyu(-|m^mAt{wlwSjIHbBjpkVKKpHSAa0av)!KgAn`b zo?^+>HqpnMtE7DX8)5Uh^O|M@A|m+d#=S-ccLfgUx_}Yn2Zun35)un07O3#~G7pZ~ zc>d~HItd~2+!n0(vvwCJm=t(WM1RX**u0g{9po1C<2*%YgO}&VbgaVp&8sMq`vd+e z1V?@H;s?e31d>Q0y!A~%^{$;C`Gc48`<6%Lc2C4eCqmw4uykP)c^p4GZydv&en5%# z2`CgegomU)aI|m^1wd?iV|HV{NA}6yqJ*lxx@|(H2{1;{=x??7?0*BIK4PIh^wZ# z2X#pcw>&X3$#PJyG7mpX&Zl;69|#WT+DE8+kclMCBU+iX5Pz~naD+6FkB}80n2&<(K+$=>ALmRMq)aMry)_s zAlOFPR^4`b@wOSv1CXe4@A6efFbj7zTIne{EU0&9^sxZhCp@)QzjwqM$o+|_*J2&T%-0KVd680CWPA8_1$4Yi)0+@O0 z5hp(H7D-j__Ot0VP~GVhxH(r&5)BQo(Qp1!p$6csLB7iO9%v_0vg?J))wG8H!9nT1 zOd^}9xc*d0oYUU}YWY+Z1PXxKM8vV%n`(trk>##PG}HgpXs#3cLfMY%v#^Ox%Qf%S zXgvDv*sClo8(S!F4g`S=2m+E59k{2^B?=vXm9K6zq%ORfw|QeA$)5G@+e}n0!m(>Z zG2%i$DNBFE-tBUE3j1LK<{2M>V9Y?|FDnvuR)CF!-lir33d8|tb(6uvB+-_Xp{a|$ zDli;XJ+r17Z&O}9J%TTkr(tbI)Hi}$rFy(fHjhZ(PfRFi+*ohNAoTT7D)ZK#Z=D*} z^fNme@mfSnCB<@>s!7uOvR5O#?a~vp^4{^TPFW~<^Gy}p?e6(j2q^dmc~9@<=@mkY zm(5oqM*-i(>&0_6$**4G8F4XQpQ|h{1dBeHbZO0(I7D*JpZKjXm3LQS8mzQpzig## zBAQoyKh49E!j4?R?P*z{k>Nn^V|C+C(Z6sxU9f5?@{dI`A#D+&pN zuklRn*oL0Kq3IC+)7Wkp>+H;E&Me|;!royk;=Uxk01La$k&^?umc+M;7pOc$@@Pu#sX^=p@|6=^R{o%~g0B z`Zp|@JbmuWH8kn4DVp`Xlp;wZ278UuE8a^@@`9iQ4u{w4*WktZ`pz1YbH$kXEW0i; zEwqjhDHD(i*H&37h+bQsc-GAq9p&{kH%S$LO0adkR=wGOV6TM`;Ge&4pyk|4cfqzxRyKjHFDjJuFz1#@J5Og8`-(c_8Anjp)t5at}2-&2ApL$lp^e{Qywx6UhTjK)zUH-!2l) zF`1=q%!*Y0fp5IcLjy@k#o8Ci$HN|h?n8GbhYR~N3K2}zCGO@s7b%*WHN8%IVcar( zFP%xMtIFdNiAT48zOLs{DZz0+V)`3vTK|-i`T5tE`N^^(1x_g*M`Ty?`{FZ!BwmX% z88>LT(*ZY+>4h6LGUjYr7BN``tDP6EmWoDCKhsa{HL}`0EStK$xtqp4^D=jD;Uya@ ziTY0vWPut8={ttZEy4f3Ks{J~3d+j(m%{(<1x+`E>)vPK(Z zO`y0+i&7u>Xu9VnARxt4R&FRgbr2UGuJ}QB0N9r?$3O;>* zQAxuJ;pLlK!Mm6yXSXUH<}-Kw&=*i{3IrR2;RHxs5#-nb8?RwWCV!IrbCAqvedyTW zaV~FRcjS)DNrmSZA1^2QbeUW_@C;*uin6Ept_S(`IwR|^s%=Hy^&QMf!=G+it_%2Q zBcBDSD+56ZHDECsKA=pNx_ofJ56^^1r+qciW*DtTntLXf-&FMR4$6~{*qY5`!!lm- zkLAd6;5<>ar3h~Oo3=AM(H4LjI^(*Yi0XW%O86@Cb}g}-UHOyy-2U$t&nuK|C(GKD z(~KDro5=5>OvGy+4$$8`H~S|uQ!wV%UUvOnC>i-11IZ~J=PQ5p>F=rCoU;ggwNnHw zOD{~UaPI(fWW)MwheX8SJZx6X+v{Lf!PjO6llf!%4eP0NT|LbU-Y?!zyH9Yw@Ao|0 zDqM6P+!|;s;c<-EHFb>UZ@GdG-PK+C)v^eXhef3RalaxA_645S?{zx(5yUbi*&mNI zoNw;Y$%iVmOqWbIwae!V;00pFd5bsx_$w8K7qn=3(y{Q`YzYpIO+iZZwF;|qJ-DRG z&)RSoI-#=f+GPG+#o#-BlSWr?3sCLVrt13{PqGUrIR4yB?esX^FucDE-?cAn(bJ>$ z{%1uGpbcE(4TG+MbYUdefbhwNT{ktwU8TUniFYY(r|inrptR11G6rgh|eNE&T1Vl8b=AueN0R_#dT zx?U8pI74Qw)@Eb{$PL{0T*M~tgCEt2{~0Qh6GB589};$9rSQKCo%zaIxLZQuJXdFe z%5h;~imW?7q#E_(ZF%-ByG8s=(qQKfkDFb68X?v>>*0IlM%7|#JN4b8^~1{q`aA5F zMD;jN^ShO4S@)dz{A&HkslOZj)7Ll4g!eY2oZ1JjCzXgB`g&1eA@ogv#2slll+seB zdlfk+=#?|8W6qJVOfeT=Qc)0hnUV7$;ib-!%9YG{-ge$4h{F0O+b7H|rnv)<%>}Zn zhWAHVhs_J|+!b62Msqqx|MVLg(mTJn{|pr=0RqugWQF_Sg+x-lOO=(^A9c0!D*6iA z7bdRJ11Zndo_7A~Nn$tqG8ZbvfqHDSk;m5aP5&{DY&AU-zGVeRNtO53k(j$v;Mpyg z{-3IMt>mSq_eC9~fO#-T#h8)Upj57p#P7ixZ!7hxeN&0sZFZ-faP*z*_qi@LC|)N? zybnt~o`u)Nz{I025=eero>G^{+surbOEdi<*UFh|2^ zN_(t#K2e~%E9bkL{CFEEFn|aq1_zJzOse-k|4fj?!qDc|S>##5omD13t67-NWsIJf zqPc_Es-gO+tkzWn$!)l&Rx9lPEs5Q5bo8qwTd%En%M8PHn6LD9XUO=AS||jb zM*oyh6j=VJ$!#G`Zm2K-85U)%jk_U*nFTfKIYe*%UW2a4T-k(u0(-)#E$uqZ3A&0~ z!kRbU2dGzn$ITmlo7me@|9d+v#t&HGQ}JL9;0QjG_bzRrR7dJnPt2ZxSmMluTrA3T4 zRGZA=fGRua>(0O)XDTSD0X=<_u{O@9-t5lY9p|BX?W{XZZqB~7c_+W!S8~v)UWKA= zy|VmcKl%1{Qhg_zY2f>M^X$((@5_={RnryGU7d2<3?~_z&7E1VY2bz#u~3DYay5OoqcJrXy6c~ z{6}gp45#D1ObjC^8ThOA z*-xRd^`x9Ip6d-)t*I;7?L%k5vVoyh1Ak#|zjXm43bg8$+P1-_GaUD|#%iZSrYQ|o z$IH^v4xKsw%clb+yRWIRq2eGogiYk^JD5URLc_mHj|2jBibu$)=J!^o8XN1}FhVQ$ zY8%-+9kg8v@$r@bbWYwOyU5{@(6O6UQoXPwo7;>Eo^i$X$(mnTCC}0dqw=|?&j)cr zbq-PIyxmy0s|`}vEf&aC#wsn`9UaSJ+#F9?0{f^kddV>V9iI$voK0Popa0`J(}|1< zA{X8UpzNxyW3M1k!Y;JXm`X!A?Lz)61Ej;x<`_cScvHS zmA@iLS{h&1dD$KGbdk(PklpMix2Mep4i!~$q%?3yrqKz@?3U>A_i|W=d8$Qv$QeY? zXuNN71P z!%`<+ zkybV`l_g}eaf-h2l2jn5G>>WeD@d)m|B5q*hSsyP#^P!;hd%jZi-VJup1!7Af*jJ= zhn1HQDYdbFz~~bkXdxF}C?00Svvy%g$ZZhc_&USFn*HLnd+TA~hI=1_`)QkIq5GwA zA@|CTBK!M4NPCPi1O*$z!F+biUXA@f4I;Sm><4}dT)#`Wu^YzSZJRoqC3(MSnZR`u z_G0xL$w+0mGNj^E&;Wa{g|YJk=S@1uXEBXJr-G^8?Ay&@|KOzO^}w0@U8>V6r*|1^ zgI-h=m1KYa7bRm758G)e>f_vW#AA(!Q3KmQkyn|qN>#+sv?=TY=6&4iY4(-di_wS5ef?uoM>5 zcYIS&cy(p(crq+FeH~WSWR{n5c=*cQxreD}@qkbT%d>(OYAk|-u}}izi-Fez@xfCH z-_(SN@|v`pVj>cbY55k1ye6KjJD!2Y7glcww5YZ&)^WL;vCKk)cK$rv{WF*FLfcA0 zzPOrVsHpt-N_Td(-2c57W!_iLQYM}_W()hDPr;(#+|9rjj4m(TXQ)TXY|kDhOsC@B znl?N_uavpHa^Cs+!OP_P3OY9tlCDk12N-C4y0ThoyANrV4WHgw$Nle(btvx>(L(7RNGf4)iClJ>^n9SY9-kz0 zsXeg4Z?%5AB(y7s7oWrO%f!UQOgp+Dp~4F#J23Eg7R=gSv3pHj;0^LkuWN$t4HGK@ zg=B*iy%gZ|#BZOzWr(-L zL~Xo9<7Hm9v26cHzmwUe_IAQ>eXhcLq@8EMspjP@lC44wRv$*=&a-5qrCg=@JT#qglKC zY(5*e_~wN1PwChrgIwZByHbtyJc2}>96$^EFIC;UFM^)jlL7kgtU*_&MYK)b)L4qx zI=hT84L^das_LM)WxgI35ldkVSKQl?CmOFlx*q@GPU@1YNziqpE&P+c{o$yI`59Xk zzy21f+9NK>2wxD$DKll*#m%_pzha)sXYo{%>s` z+xKn0S4GYnE9mid=~q$A>A@~XJ4`%&x5^%ECT`O|GRvxeTv0$~ z&JOnl&54Uer$SqvNFdr|u0q=Cdrmh-rI!^y-!e>^g1nt3XE?0+wu@3RTI9`Kj5hJq z2&U;|<0nt!Bmeh<+lwT(>h4RaT{}kw>brgyEmcl;N0o0z&@Jci2Q1ZVSQ(v;f@g}S zO;$X1vJ`g1IrcS%`XcMYXPq_Utnw{PO2ZmE1__;uJvRwfvMd;={&_JoP*O44y7Htf z2eGHqPqw(yPtE>7*2WJOBwKndzu)6p_YxHWD}TY?$v*Vdr*vZcO`1PpZ7NlRaK z$Z;sXb=r(h3=Vsbkiev;D?OiGECu7yInlWqiP)cwi)hfC6X>$KnpHg;?EQJRc|0_; zIk)h=0PgkW=65=+$@+w*Gfw}aA=Sm|mk$D_;kuqO$ zQIBh-UeMWf?O`XuN=+qt5H3h%rf$YLM;fkSNS^CPznzc`9_`lGlHrjV=cwkZIO>U2 z*o;%SaBMOi$%K{B$($PtJlo^!X~KYWol?d>uID0wq*%lYdzD2ykuX&#xlb^g~i z28s%XeAqbnzSc!Ou=|pJBe-f>G=OBh{c?otnBbv;&xX1!Kb(9b3spup^Vtb9ek~0? z!gHIZ$dlA45=lkHMwtIPMMf5^NcJ4(rM4-^?mlLl8oPaEzkIen<}ORF-X?n9Y+S7AVUv77&IayvC*S<=8P^up9+_)C6^($qv$%3fV$;)XxRFMzH z7ehY~CPlj8x$14>!WdV3&=EKor)yZMTHsK89!5BGDsXBOlFyg=_h5al*|TB$Dbu=j z@eeAyEH`R})Sc!N-SI2s_x>UDDm2w+PeUG@0xu0*y*9C2etqYi=p#9~Q7{EnluNZc z{>Suo{jM~RcXE$^<9*=3ebSgfxEb_iHSfzY2Hpo*gXbO85_zZ*!P52)ZB-Q-8Sz9R zo01^VY$PT`LNVACeC&$# z(*4_Jdz|$BNbfZXpY^J5k!E83K3wQ(djWQ!h(h))mU;^xFS^PL>g7&9uZ(!Zy7$T_ z+f}$vo#(7-ToZCUuQwIncJ@Y}R7_ zcvbN0S`>b~pX_y`MyyJOlde~j_p{N96c;mA?to33FKmh9QlKUSA|Xfy1VZIPyDlY7 zgq4&f-WuA$h{&OVX(b<<*@4=xmo|}bKxf}O5Ig# z@;CenKHb?e|9%h7{t$ct3D1l@wvOyQ>)IGkAVGhy#0iM1V` z(hFrt zG*EK1;e_$#w__TlUwk2q=LHx zoh+dGc)Dk%L)r$^{;Xagru3Ea_3Ggb_p_2(YH6Fj(Iz=i$fFQpwAwszr)t8-*AhPi zd%rtOBMt*~iSr2;d?d0Sa^i1qYa?~$K++bvbeC&|LWqfqV`f)4r)LM7PI-xU?s#bu zD>zVf1u9sIVBPr+UfR9Bg$ zPv9FH#~we`jo0cU(LG9{Z0U$l<~8cTH@?%-P!`8!F=HB&s_qGHE3s!XI_2Rjb-90c z8fm>VMdHZ^Oj69Xi%SW8z`QbKyTkY$~PHC`bA+ zFU>f7U73$AAf$vQx2$(%9xPUnB$p?pmp2Yy(c`n8lbw>aG8jLz=&Y3nN-m{SYVRe; zhxRYNW$dx+=VYPkPWDhaP(JwiD0OVmem8i*$g?8MFhllLWv&LJvoUJ?5l9ZY7bsP3 z-t4MJxk7N7j$kFeM5v{>_tAI@vQ?U}%4r6RPNyjaT|`;}=}x0ul6U(|m<4mS43b5h z-1(7uRsEHlDC64KGA6Uy)dg~k9J+Dp0dhhDZfO>OwqB zZ1)`55Xn84$|ybL6oO&`U>dI=9I_Q7@!R;GJ7ct;s=q6&O2Lrh;-Q=#yxYbyZ2&)j z6R+2Oa!vl}C;Xh16Jsyo^aLYz>mct}x-s3Ir1=D-0&n*4>3NkuR z`5t@8^rK8ey2O>WBJQI#^|&!5ikOdrmSX2P>7ZL@42#IZfG@605 zM$nmqh?3iMWu&sarshhDly?mXjEdVI$bJ9w4TKYBtJ=i+!q_-8Zr-$9G&yyK(eZIx z{m!^8XrfyMYN6&|p8Y=8?Q*S0g}**7c9R=arv943Oe{!|?Y>kq=2U>uhF4GBnMKFv zxcCm&xD^&78Si3h$oF^Fs%!>wKA&QFIBBv!AoAlOh~-|Jy+66!m+|Pw;y`YGOEix7 zf|(L^9G(#DM2q@twrqNMxv>8I`}dn{!L_TRo|_h5YLO^1rYj#;!mQ+;<-_Aaht%Km zpbo$zcnSTOU;d4V&-Cr+NQKSxwu%tzFJpjR+1r3`aQh++V~Vwv4kHXKJXuHAGlBOa z12NT~056Y$BdRxq@l!B4i@o#h#7DKM!`Q>@$wd$oFXu!jB{qG`*B)E;Cp>ljWp~AB zU>By35$^H+5&#>Sq4N;XMK1KQ*6z+>_z~?93x=zjLt*?n@K#Zg);r*q%ngng*6VDp z7pN{KSp(OF=AfUMEEz0!EvBhzeZnx$iF}G_P*TpX;(Pfy8z3t$o9v%Z6rDY<({$p` z2Db|V6?)-+*3iwXuK{pSfUi3HrROf9k(a_QE_V<>COaL%RaPvH7xk1`S4PtCn< zZ2qhtSSenCo+@9e9MUiq)Zp^nJ42?v^(nd=g?gyS`B>jj^x~H)6hkf@t?}_zuJn`K zj+{{sD_rgvtEKoLk57VE|E!>H<@G*DJgyxVCm8yxfojF?b zlqT8r14M;v!dcE|SGjruPsqfW-_T&MMdkQg1~++1X%u3{W0VloG8)W$F3 z;e4&4k5}wKU_Hv|QptxpJF|vC26oDjYvU%aO`0~;6`8ujQH9R$KdIMDu{-`4wDO|( zr2s7;$*k3t6+8Xf#xxu-KCe`I2(fg~=!)+czKI;%`ys`Waqdf;QbTuk%5wrc zJ~`yAYG#^1k6%hB?`p6JQ^hcHh;j&Xh;iuDCH9Lvb}B)u*-H=omTCly1PCo0p5RC~ zaWDsK!}s33D+LQ>$}cgQ8;&)NIhPb%c*jornSCeMd(xx$0_xmBR0RYTz$GfIlF8{Y zYjIICbF4>*teWTYfcvkcI_9+lIsNd6RSHxG#@vQ1+627frbC#&i)Xf_9-dDyK$(ya zKSzp=rm+pdftHx<)!lv<;33$XZ$xoxOnFMK$$YrfEawRcxYiuiHn1dLXlBWSaK33T z`~JpSL3Nv^D8xVEmJ<;4viUSq3k*laZB=5_<|rPc7DI;*gTd6#oh-NN4hxUK zP{;GRX?L$<*(xhTz`@GydC3DvGCuMeMrpxw5 z52@ti)&8!lC)cFJFf=T%vBqt=g4tfRO%`%1(#tdj-Ny&}q*b6pV-b6-fLd|WEYH7k3OP#ovdYFNAQm+VFuXsCQ(WOPYMDU1wfw` z*0D zLtrxK6o{AqIg24+jKE5X-FS&5mj4-q4N$^D@z}2YGbZ@)D=_{|PHZ&)eFc0l00hd7 z!*PC38LSsRWh517llNy#pl(D&sf;pooZ8LbK9{e69zdn;D69`(H$BkM@@DgAxKVw3y?hUw5kb!1mh2TFwM;UTSGllGA(i)T;kkP332Z z7NRIn$W_xMm)S`AKA0SNq60LwnZK4Td4@r>3jo32z6P^I<}zHm?KkGNTr3K@wRxmA z2RFBZPG06BA|mz&1vd*-cL&e-9(kPqE2?0lH1Glb46!}j`?0-{^|VHa@<<>a5d{~_F5yt|0BLk_8^4sRb~%T3?v2W7m-(7m4vWeEEE0`uIvb=N zG-fF>ZSWxrs&JTiYd?yP=VcgGiHvg80L4+2%5Sp8k_;}G)QK@SIDTzv+!H3G3~#Y( z38UGlNYxPq1TNpYGJGBVHM%u4y<=<2MhPFm7A?V748|P2tBt{!^DAryT3}Y&& zq`2$dj^y~a910x=S2|tn4Sb z)gg0cp5(FF<$)@a$^dySvlk|L7QCA41^|Kmk;sD`Qzb{=TesD3w%aDRVehL=< zG^h(zAz?p!36#+cbdoZN+BvFMvYKf`=|?w$`;BWK*>g1;yMMOaE>An`vdDBBvB~8e zo&HCz0L4%EJL^Wqyr`@@t}N)zSdE*1pfDlZ_qLqs zUJEyBb30yLuHn`c#1x)gS$he9dG~ISA&*2xEHsSsZ(&h*LM&q!J|64yHBv@NR4#%i>9&h zed)tR_31@dHW&Wx0*@osqm&VL`2b4*gkj4C|C$>O3JA}2KWpK&+BK;!WtQQ*@*I>i z`xG1yi-FvvXv@w7&N|{aUl7r(N{&Ujd<7R>Q}!=pmX!27KeTpyAF5GJ$?CngMO>o> zxXBuKAQoEr25Ju4+K21uH@_!SZcT?sae-7Nvr`f%H zA{Hq5%1lRW{Xj+AY-i%Baq<*XwicF{i8xA`B$B8Z!Ay_#jjHJH3q-! z@HRc}If<8VHZ~M*klbiA7-pM$c3adsc-mnuGSL^ndCC+SuiTk$5Ok_VKVFcav|c){ z8u}<;-rAfRthFXMclh)wx%7tE4H9)&*oHf^s(GZewd~!kLzIWC6NRJCx{GuzQ|x{O zeM0zJKm@%;X6TPjQdR{>rib=*&Fhgh3a^wPndb_DIBK$cC+fCm&iNMF~x=g zqd5?F&alAhZ!DCvr?7C>9WZ8bMHS<9fc4p`=Y31bdxxe-R?WOSNvI9n(>j#C_ttyA z#;GS*`_Y3A3eC7^qw_=6tk4$y3r24)txK}|a?Ve`*DcbIPHEM?*9u`2c;-yl51?cY zK7EQD$E44gbC{}DKeZnM%t|mnPW;9uI&|+w)S^Ri`6=oQF(P?^@mt>7ITbQ8DtpU^ z2)H+artjG}sc1(@%yA;_W&wOW4m|eebVr+mneupu>`PW8|)6yurSlm^@pvzy~Ma z+kJ1APn{Q+w0)fd(z=3&7va8aTweN`g}0wCxPR@%ZTVLvo$I7P1Vtc7KTb;1OMVB+-6xW&y{)wHAZH;RmB zzO~gjCB|jW{-U{FBe597dlgGMa|TBdUhwEenv6HZ@*Br1@fn{lN=EHHQY}x7j~+dx z?JF_=n04~W&6<(-M~$#@<@>ja1U{X9t%|Df)qi%Sf3UZH3I-iS$~bMEZzu*>K?suC z0S!mDYwo~BLlGC-l*#i1hn|5%gI2K-EiZnO!Gd1Ds|-18&rSIAmU1{5G%Oq=JSKF4 z9ZK$^iE?ED2PcRgb77vC5V-3vvnx`YZ9u-l{@P~XJd*Z{0c-CV>CEK2M~elMCUj7u z@5UM@$GQqgpWU{6T)ddHmGjZnPFt4RQaIaZGl(l{MSn3-$lIS)s;Rt3Pgzp&o;weG zVMsG+{F1Y z$SSD@kTEF;Je~m5@8Re81LP__n@c&ivNlxKOGp`;9jX0K?1-|vL)JamRsUcurvxST z&uddIXQs?YPIx0ZRJYB<~r6|I3!~&+C77B8^vZK?&PtIZcNZb@J!F0DP}@SRA=O{HS3d zo>dD_2l!ZSbB@Qln$v9W8>SKF2cXq2GbHe^Y_ur&tp$8*h2Y09RcTb?Bsi}%Ca(jM zNzW_JZ4b~k|DRF42p*X)Gp*W)R!D_sYHDcgwM^a0e*Tn>2VT~qg`jlx$)|FFRa_s4 zf*nILe;(`7d3lVz^?o3G%ECQ2_~sZF^(ml)hHqJJS+l_xf=PP21Q(>7cDYI&CZwwR zT_?(A(x#Jq&dxO4Z80#97ro2hlM}B{xP_mUZ*(k&_QNOqwp56+zdeMy>>hlE$w)!O zcTI@GM>Ptc2vE&2*Y2QEw${V-8nXz=9+k# zE>Htn{EY^80S|iOwXT&O$ajTEmoB)-kzaat=fo6`qJ{Qx!=UwwJO8_k=e_mmYmmbU zbNfXK?nra(HbZF+8>1h-D-*67nex(FKPL!VK1`$S9{ULQAHPg!`a}*%P69tkJ&N^q z?e~rhKD?NxiY9yT1ka|OWAj<5gYx)rbQZs&zZ%^dKr)fr?0H}J9_z3*A77)5ixdO= zMIjYyg`!ydNpaQu5*_Ufpips%NQ_wuOYBM{bKU?m6bgTU-HM!@@JOZrq`>NF5D5RiBuwoX!)+I^XlQ&3Rw zp+Y&`HNT(d?Sq|FV*VB-kFMuehn^%N*swt*!V?6!acyG#*iwjS=(>EH9?tl9}k z&>5zsurP6#xtB$^=JbHk7Rm0m%quPy>8?;s5^T92+f0N*3zX9UP`uR^#f+ItNCW}| zN=9a{oM)AFBwiHl%> zB=|joWSc0PL4b%5e&P0w04{&#;mPL0IuORXAO0AsO$3adADKAN2@wj)0pk`LammVR zHkdEz;}fK`!g){mjz0upNDz36hUuhaRb{O7arpLsKgb1<2wt-gDgqp#>N!0SqV*`%Q{$L*v!HZX>&RS{93w&& zst7B6LC;N85a;(o(1*kDZEEk~lWi-hx+LhaB!gi=f(rR;lwRX)t)^?jc{%6NaiGD2B zhcE-`Nz$1%f*FQd#Q#HB$JVr9s>rYixGM3dn+Q^@g>Gi2R4VQR?J+I zdic}Pu<~Afhn-5(%Yp)Q5E+9NXlLTjR9ILjbX-_dGa@qIpA(Gc6}qH5P9m>>sR#Fu zVRr<#NIpA>W6s|oT97g2_XR6Wy>_8{xnZrBz3m4;7-|-PDp6?1D8Sa56yqd1O{3oUF`?+eIBB#gKMa6(KffM)k`sT0GvF zxWoyR3|KT_M(z{;nkgue3^0DsC`DZ7|J2jhW% NO4n}4m&o1@_#YfzDt-U} literal 0 HcmV?d00001 diff --git a/exoctk/notebooks/lightcurve_fitting_demo.ipynb b/exoctk/notebooks/lightcurve_fitting_demo.ipynb index 553d015c..0310ed34 100644 --- a/exoctk/notebooks/lightcurve_fitting_demo.ipynb +++ b/exoctk/notebooks/lightcurve_fitting_demo.ipynb @@ -12,11 +12,18 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jfilippazzo/miniconda3/envs/astroconda/lib/python3.5/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", + " from ._conv import register_converters as _register_converters\n" + ] + } + ], "source": [ "# Imports\n", "import numpy as np\n", @@ -30,9 +37,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Toy data\n", @@ -57,15 +62,13 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9wVNeZJ/zvacOGQWkLk8wmlmuCJBMSVepNYiTXWoPX\nJEYWZFbInpFwrHGmnKmJcYZgVcmWA7ZYo6lBMYkFjMoRiU1246pkDDaS3wRlAhjDxrzLy5Ag4VnP\nlpJ4AZGZsXYrayypR463wP3sH/de1Oq+t++Pvj+6b38/VV2g/nF1+qr73uc+5znnKBEBERERUVgS\nUTeAiIiIyguDDyIiIgoVgw8iIiIKFYMPIiIiChWDDyIiIgoVgw8iIiIKFYMPIiIiChWDDyIiIgoV\ngw8iIiIK1YKoG6CUahORYZvn1ABoB3ABQA2AfSIyrT+2BsBK/am3AtgiIhcDbDIREREVILLgQynV\nBmApgGeVUktEZCbP0w+KSIP+ukoABwE06/9fKSJPZ2zzGIDlwbaeiIiIvFJRr+2ilHofwA1WwYdS\n6hYAz4nIrRn3XYaW7bgZwCsicp1+fyWAdwDUishE0G0nIiIi94qh5kPZPN4A4HLWfZehBRjHAdRn\n3H8rAGHgQUREVLyKIfiws8TkvinjfhF5PeP+rwPYGEajiIiIyJvIC04dmIJWG5JpiX7/NUqpBwG8\nJCL/yWpDSqkPAVgLYALAe/42k4iIKNYWAagGcFRE3i5kQ8UQfNgVnZxFbjZjKbSRLwCujXh5W0Re\nttnWWgB/67qFREREZLgfwAuFbKAYgo+cmg+9yHRKRC6KyDml1JKMx5YAOG/UdSilVgKAEXjoGZAX\nLQpYJwDghz/8Ierq6vx+H2Shq6sLe/bsiboZZYX7PHxu9vn4OPClLwE//CHAQ5F3/JyHa3x8HF/6\n0pcA/VxaiCiH2hrzcwiAx5VSx0TkhP7w4wB+DqBf/3mDUqobwEVoBagb9G3UQMuMiFIK0AKZd0Rk\nn8WvfQ8A6urqsHLlSounkN8qKyu5v0PGfR4+L/u8rg6I859p/37tBgDvvQdcugQsWwYsWqTd19Gh\n3bzi5zwyBZctRBZ86CNVjgN42uSxe7N+fh2AUVg6nHH/RZRG0Sw5FPTBiojCk/l9HRsD6uu17zfj\nBSqGbpeixJNgNHiwIiKKPwYfFngSJCIiCga7LChwHUwRhY77PHzc5+HjPi9dzHxQ4HiAmBNWdx73\nefi4z8PHfV66GHwQhYjdeURE7HYhIiKikDHzQURERYWjDeOPwQcRUYF4svQXuyfjj8EHEVGBeLIk\ncoc1H0RERBQqBh9EREQUKna7EBFRSWKtTeli8EFERCWJtTali8EHEVEAurqAykrzK/Lbbou2bURR\nY/BBRBSAPXu0K3CzK/KxMaCnJ9r2UXkpti4qBh9EREQxV2xdVBzt4phE3QAiihUeU6h8MfjII5VK\nobNzO1pamgDcg5aWJnR2bkcqlYq6aURUgnhMIdIw+LCQSqXQ2NiGwcFGTE4eA/BjTE4ew+BgIxob\n23iwICJXZmd5TCEysObDQk9PP8bHH0E6vS7jXoV0eh3GxwXbtu3CwECvb78v6GKgYis2ck4AqKgb\nQVSwvXvDPaYQFTMGHxZGRk4hne41fSydXodDh3ZjYMC/3xd0MVCxFRvlk0ql0NPTj6GhUwAq0NIy\ni/b2Vejr60YymYy6eUSevPZauMeU0r3goHLA4MOEiODKlQpYX3ErXLmyGCICpXhV7ieju0u7QuwF\noDA5KRgcPIoTJ9pw+vQwAxAqAdkZO8HVq+EeU0rpgsM/zJSWCgYfJpRSWLhwFtYfZMHChbMMPAIQ\ndncXkV+sMnYbNnQDSGLBgngdU7xlVvwPDpgpLU0sOLWwfv0qJBJHTR9LJI6gtfX2kFtUHrTurrWm\nj2mp6VMht4jIXr4C9S9/uQ1ACqtXx+uY0tEBHDqk3XbuBH79a+1f4z4j8AhyhA8HBpQuBh8W+vq6\nUVe3G4nEYcyNxxckEodRV7cHO3Y8GmXzYslNdxdRMZmfsTM+v1rGbmKiC0A/Nm0qv2NK0MFBvv0+\nPt6Fbdt2FfoWKCAMPiwkk0mcPj2MzZvPoKqqGcDdqKpqxubNZ1h3EJD53V1mBG+/PYtPflKhuRlo\nbdVuRuq3NDGQigPzjF0KwHak07sAvIovfvGPcfvtK7Fx4/9XNseUoIMDZkpLF2s+8kgmkxgY6MUD\nDwD19YKRERXzYq3orV+/CoODR7NqPjSJxBHcc8/tOHCgtAvn2EcdL+YZuxSANgCPAOiFUTi9b99R\n1NXtxoEDL+OOOz4Y+2NKkKMGOTBAU6qjmhh8OBbfD28x6evrxokTbRgfl4yrJUEicQR1dXuwadMw\nDhzwtu1i+JJyNE/8mBeo90MLPMwLp/fu3QUtKImvoIMDDgzQlOqoJna7lLGuLq3borkZ+MQnUBRd\nGXbdXRUV3k/MTgvkgsQ+6njKLVA/BcC6O+Dkyfh3BzjpRi00OODAgNLFzEcZy7fkd5Ti3N0V9uR1\nFI75Gbu1AOyv+MthTgq7btRCgwO7TOmOHcMFbZ+Cw8wHFbn4HJw5mie+5mfs1gK4iHxX/NqcH/H5\nbFuxGjUIHEZFxR688cajBWVdOTCgdDHzQRQS9lHH2/yM3ZNIJKyv+Fevvt1z7VIpMYKDbdt2YWho\nN956azGqqt5Fe/sq7NgxjDffTBacdY06U1oMtWSliMEHUYiCTkNTsXgM1dVtmJhwXzgd9cmskN/f\n1QVUVma/LgmgF1/7GtDT4zU4cNpFFX7gXqoFn1Fj8FG04t8fXI7YR10uknj++WEMDVlf8VuJ+mRW\nyO/PV0c2Ngb09Dg/pkU9JD3qIDB40Z5jGHwUkai/bBQ8uzQ0/87FpZATUEVFfAung1YMQ9KjDgKD\nYHeOsfu833abf21h8FEkwv+yMbMSlaj7qMk5/05A/K65UQ4LTIadWXFyjunoSOb9vGvZK3/aw9Eu\nRSKM+R+sFnianeXiS9HhSYkoWzlMmx72vEPFNscQg48iEfSXzcmqm+Tc/v1zQwOLaZI2olLHIenB\nKLaAjt0uRcDJl21ycjFWrBBUVytPabl8acyJCQEQ/HTPcSrgimN/MMVdaXS1cki6/4pxHRwGH0XA\nyZdt6dJZvPmmwoED3k5wdjNrArvdb9QlnrCJwlUaRey5xz0/h6TH6aLHq2IM6Bh8FAm7L1shkxI5\niXoBI43pz4cvzKpp70rjSpDIC6dF7Pm+q9PTwbUtX1DkdEh6dttXrAC2bs0NLMrtoufIEaC3V/u/\n8Td9//1VAI5i/mKHmijmGGLwUSSCXM3VSdQL+Bv12n3h/ayadqM0rgSJCud0xEi+76rxs59mZ50F\nRU6GpJdD1sI9wbp1Ck88of1k/A1PnuzGX/5l8cwxxODDgtOI2i9OpiF2eqVudiVjF/Wm0/GfWbMY\n5g4gCkv0ixiaH6/27nUWFHkZkl4aGVf/5buoArRjWkVFcc0xxODDhIigo0OFHlGbfdk+/nH3V+pm\nVzL5ot6amj04f34orLcZmuwD0S9+0Y+pqUcwPwCL19wBREB0BYazsyl0duY/Cb72mpegyFkbizXj\nGiS7i6rvfGcYxr4vpjmGGHxA+3D+4Acp/PKX/ZicPIWrVyuwYMEsbrxxFT75yW782Z8lfQ1EnEXn\nynF60gmzqPejH53BRz7yb/C//tdVAH8Wuy6I3APRKViN6IlyOXuz/tlyK4ijfNzXJvldYGj3GdWO\nWTP48pfbMTGR7yT4QVy9GmZQFP+6Lrvutb17rUYyRrtfGHwAaGlJoa+vDZcuzX1prl4VXLp0FIsX\nt6GlZS5y9IPT6NxpetKp+VHvDBYvbscbb3TpY79LqQvC+QHFSEcePPhfAfyfPK8Lf6iZYd065PTP\nxr0gLm7yddN6Kdr0ozbJzxEjVp9RIzP77W+fAnAZFy78Nawyi8ZJcMGCYEddOOmCiBO77rWTJwsZ\nyRhc8MbgA8U7la+39KRTu/QrFHfvOapha14OxrnpyLvg9aAXxYgAKh3Zn/vMz8sHPqAFIw88APz2\nt9p9//bfWteR+VWbFPQihrmZ2bsA/JHpczNPgqtXr8JLLwWzsrObLojghJdtcdq95uWCzTx485GI\nlM0NwEoAMjo6Kpmqq9cIkBZATG5pqa5ukqCMjmq/J7NJ2n1p+f3fb7Vok3a76aZWSafTHrdf+Hs2\n27a7NuR/rfGckydn5FOfuksSicMZbU5LInFYPvWpu2RmZsb09Q8//KT+GuN9PSnAYdP3nEj8VDo7\nt9u+Z7O2O90PdtspZFsUvLD+NrmfW2+fUxGRmZkZ6ezcLlVVTQK0SlVVk3R2brf8zph/ttOmn9H7\n7stsZ1qA/Mcr7XiWzvg+/zTr+/xT0++zm/1ut+/uu297Ad/VtOXrZmZm5OGHn5Qbb1wjQKvceOMa\nefjhJy33s/n2vX227M5fWpucHWdmZvIfa0+ePCl6JLNSCjwfl/306iLFOpWvykhPmvGentTei7MZ\nVYthyvD53U/O1yTInU64G9pkaocxt18FicRh/Urw0QJaGfbng+LKz2mwja7WkZFjAH6EkZFj10aS\n5KMVjuauA5VKzS3DoGVmjXYqAPmPV9rxTF2rP9u8+QyqqpoB3I2qqmZs3nym4O5eu3138qS7KcSz\n18Nas6YJtbXb8Ud/lLq2rMKdd6Zw001teOaZ3KUrGhvb5u2zIKxfvwqJxFHTx4w5opwen+zWf9m7\n94e+tBng2i5ZhVlmwpj5zfx3r16d/0PlNT2pvZf879mYUdW/hY6cffgz10zZulVLTf/oR+4PxuZB\nZRLAMIAzAJoB3F7QQc/JAZrIjWAvhpwew1L48pfN14FqbGzTF6IUk8JRYzh/rrmToMZrUJSP033n\n9Fhkth7W1NQxXLrUiN/8pg3/8T+m8OtfAx/5SD9mZ41RdOEv2NbX1426ut1IJOZfVCk1jCVLtuJn\nPzsJp8cnu+Dttdde963dZR98APaRo9VJvpBsiNUKs5kfjE2bzD9U/lypO4mWC+PkPWbLXOnxlVeA\nX/5S8KEPuT8YWweVSWiV368A+EABB738B2gGIORFcVwM9WfUg5ld/e6CeWY2f2Zx0yar45U/78XJ\nvjOyL07YZwG0oGJ+Bmi+dHod9u49FWgG+YMf/GBOJumjH70TN9zw15ia2on/+T+PwzyAnM9J8Hb1\n6iLf2s3gA9aRo9lJ3jih1tQ04Q/+4B7U1Li/2s23wmzmB8O/9KTZl7Eb1dXW79n6QOHve7RTyMHY\nLqgE/r2jNpjLf4AOe3lqig+vF0P+cdZ1kZuZzcws3g7g8/OOVxUV/hZ6ml38OeuCcMZZF45ZBiiT\nwtWri/HUU+Iog9zV5Wyl7Ozz0Kc//ccQERw48DKAH+Fzn7sDU1M7kU5/AfkCp3ktdRS8/c668W4V\nWjRS6A1Am4Pn1AB4DEAbtPC60sljJtsxLTh94QWRL3xhRmpqtsuiRU2yYEGrLFrUJDU12+ULX5iR\nF15wVozjtLjIS1GUXcFTtnwFUJmFnFbFaFa/L7PANV+RlJ+FX14L8Ob+XrmFbTfffJcAM54KvIIs\n2GXBafEK62+T73Pr5jiTyWnbz571p3BU+35N23623RSej47OHdeqq9fITTe1SnX1/MJOu3138uSM\no/2QTqflppuc7QftGGt9LADudF2Un2+/5DsP1dZqxzW7NmnH/Nzt2x+3Nwp8KjiNNOgA8CCANIDr\nbZ57NuP/lQBecfKYyXZMg49sViNInJwEX3hBZP167XbXXSIrVmj/Gve98IJ9dbLZB8PNgc++Ynn+\nFzAz0DALWh56aIs89NDWnC98vi+yl/do/36sD8ZW+90IKpcsmR9gOT0ImXFygC5sJBKDj2IU5t/G\n7SgVO+5GpjkfPWHVTrPvV1ij3vLtOzd/Q6ejSOaP+jFuM6KNrvtDAT5nO/rFTfBhdx4CnrQdKWkE\nTtnbn56etgne/BvtEkngMa8BwPv5gg8AtwD4RdZ9lwFU53vMYlsrAci/+3ej84IBpz784fwfxg9/\neM2855tF7MuW3SmJxCrXH4wgh5vl/3JPC3CbAD/J+cIbUbZZdsTpVYObTI7Tg3G+4cuFDo+de61d\n5mONw+0w+CgVYfxtsgNWtxlPK+6Cj8Izs04/226Cj9tusx4qD/xU1q7dbvI68+NoX5/9RaLT42hu\nBmhGgLsE+LucY6ZV5spN8GF3HgKabDMf2QFkZjbpYx9bLZ/+dLN89KN35hxrR0dHfQs+imGSMbvq\nnwZoAUWmywBqAdyc57EJqw0+/DBw//3uGiki+MAHzPr2UgD6AZzC5cvvoaamCevXz59Nz3wyHjHZ\nFgCXRVFmk1/95jfeZrwzn1F1F4DtMJu18MIF0R+f/7ucTO3s5j0C3tYkyJ4SesUKVdCsk/NpfctB\nTJRE5cWY1Glk5BSuXKnAwoWzWceQsKfB7kZ1dRsmJtyusJ3bztzv4PyJ1dws9HbpkvXyCMA6/OpX\nZsc1833nZFbhlhZnK43nLl3xNoC/xvwJ1/yZtNL6PJT5fhfjjjs+g4MHrY9Pq1ffjgMHzFcYBgT/\n/M9HUV29G8APMDJyfcYaY4c9tdtMMQQfdpaY3Del35/vMV+Zn1BT0HqPHgHQi3RaYWIidza93JN6\n/hVmjQ+G3RfXmBFx/lTtgt///Qq89577Ge/MZ1TN/4UHdpmu+2C3iq7xHru6gMpKt7OlOjkYz19W\nOlvhS4XnP0Abs0dyZlTKx2xGTiDsGTmzJfH888MYGsq3wrYzmSd5M84XerMv7LxyZTFeeEFw4ID2\nnEKDHWcrjc89d+7iqAn5ZnotZGZqJxd2wCy+9rXH8I//aB845VvCY2JCAOzG7OyjGZ/RVmj5AB8U\nmjop9Aabmg9odSHZXSv/A8Cd+R6z2NZKAPLDH3rLYa5dm532yz9jppGWW7IkOwVmpOXm96sBP5Vk\n8i75/OdnTNOAdoxUnZuU29zrzGZUtaptMPoz1wiwyrKY1b7wy303iF0hltNZBgvvdslfsOuk7ex2\nKS1B/G1yjynzuxIaG7f78ju9fr+suy7ydwvn+31O6uLM2mR3XAuyq9PJexbxXg/mZv/ZfWaA7Xnr\ncTKP07nnpuzjf1NWTUu8ul3E5vGzADZm3bcUwAUA7+R5zNKuXV148cXKefd1dHSgw2YWrYMHu/UI\n0Igm86+SeuTIbgCChQutJrvaBW1c/O9QVfV71yLqQhd0s1s7wcg6zKdMFnzKnIzMPNtjtXaC2Sq6\nVVXvorW1ASL1+OIX/xiZ6wZs2FDYok9e18PwvqKsoKLCy/LUgq4udS3bU8iVGZW+X/0qf2bx0qVC\nFgXzi/bd92vBNq/rPy1btgqTk+bZVOAIPvGJoLs67TOu8ydwDGbhvNzz0FxWo6ZmD86f17Ku9l3V\nZuemTAcAvIGhodeRTp8DsBeAj+naQqOXQm8wyXxAKyStyfj5zYz/L0FGtiPfYya/q6DMh8hcNLls\n2RrHhaP20aX9UCxDvquGO+5wk3XIjbLNq7a9ZXvMrpTyVatbFa9ms7oicDsc18sVkFVmxW7kTFgZ\nGQqWX8WfBq+F2XajqKzb7jXzYT/SxOqY4se+cppNdTISqNCiV2cFtO6nBnCT+RCZOw9VVzfpIxC9\njTJycm66/vrMz6h/mY/Qg41rvxhYA21+jvcBPIWMrhIALwHozvj5s9Dm8GjTn1vt5DGT31lw8JHJ\nrupY+8NandTnPoxGmsytfB9YN8PN8n+5jdEuI/p93ocJ+7EfrL6UbhcHdHsQcjK23u3rrBfR8u8E\nR4UrdNGwfJwO5/zDP5yRmponZdGiNfo8RGukpubJefMQ5VNo8GH33bUaQedn8JF5XMs+6RaygJv/\nwceM1Na6C5Kyv/fGtp2MyrGbeynffU6OyfO7u2IQfERx8zv48D4Ua+7DWPhkV05qCNJ5P8RGxsQq\naPnqV7fKV7/6uKtsj9kH3X4yniZPwYeTK8jsfla3ByH7sfXbTffxH/yBs5V0gzzBkXd+TSxoxVnN\nh3Ey896GQoMPp5NW3XGH81oOp6za7lcGyP/gw3k9mJtsaqHtNDs+ff7zM5JM5tYfZp6bgqr5iDwg\nCPNmBB8f/vCtvhzY3cym5yZN5pRVtOzfBzb3Ctz78s1mBa3Zt1Y5e9b9xFxO2pVdjOZ2X9ltPztw\ncnrQrq5uCvwER975uby9GWfHkMLb4PRKuq9v/nfA6XfX7bw9bgSVRZl/X/62uw0+svefH9lUP4Ok\n7HbkOzfNv3g+61vwUQwFp6H73//7Oxgc/G3eQkQnModiHTq0G1euLMbChe+itdV6KNbAgBbwGQVH\nY2Puf69V4VehRZu5zNdLGRx0W8yqbSu3oDWTAPBeiGXXrtbW23OGvTot9hSxX3AJMBa3y3yOs+GB\nPT1PWw53K3ReACqMtr5Hr+ljxrDJv/kb8fy5dXYMsW+D06GbdvNbmA99tf/uup23J1sUQ9LzFdAW\nWvSfOYVA5vxCwFzB7fyF6wyZw1xz51AKgt25KXPwwMGDhzE56dMvLjR6KaUb9MyHljry58olk93w\nKYPboWaZoo6Wvayd4KZ/0Uu3i5N2FZqats98rPGY+Vjjul6FwpG/O88Ybv7/yHXXua/ByPc7M4U9\nlb9Vt4vbmo9COOlOLmzb+YvfrWux7DMmbtrqNZvqd+bD3bbiNdQ2Mun0Ojz33G4cOeJ0eGV+Tq9+\nvG4fCDZadjapmfOJd7Jt2tSNN96wHyLmhd2EQIVeydhlVtJp82F+dsOe169fhZdffh122RER71fX\n5I31hE7GcPMuAL14/32F998XXLp0FIsXt6GlxfvEYNl/40KGbnrN9Jn9rnzf3fyznhaH7CzHunUX\n8e67T8Fs5ma7bKMfQ45FvGZTnXE6QWWkCo1eSumGrMxHKfVVGsKKlp1wGvln3udmISqvbXXSh+t2\n225XyM0sPLPLyLitV6HwmNd8OCsi9oP2OQqm7iT7e2lX+OjXgm1u2mX2s1vm2WJvo+PcDjnOx2s2\n1c9Meja7bfX1seDU25vNCT7MCyT94nfw4WRUR3bRZvDBh/tU7tx92cWy9gFD2MFUJq8reNotihd0\nUSN5Zx50BttNln0CWL58RioqzEckFFKQ7OSEat2V6727wWm7/Bo5k/v9ct+VFUT3k5MRdEHtY6/Y\n7eKT/AWSxcfpvP5O0vN2KdlC03LOFpRSmJ1NobMzmKIvp5wWnlnNGGhXNGw302BfX/4FrIx1Yih8\nud15v4dE4ndIp4PrJsv+7u3fn8QPfjCMX/5yFyYnd+Pq1cVYsOBd3HjjKnzsY8P4yU+SBX1X7df3\nMOvKDb4LcM8eOJgx2F5u0bD3rizz9a80+RbtNCuovemmblRUtCGVEmjdP/51Q5eCMg0+BInE4ZLo\nq8zmtfYgW9B9fs4WlErhy19uw8SEuynRzXgNpqymZX/mmaN4/vk2NDQM41/+JTmvJsgInOZXtDvt\nT889oAVdr0KFyQ4eP/KRuzA56f7E5ZVRa2UEAIUENmbsTqjaEhClScSqtiL/wpfmq1I7G71mFtTk\nLgCqBZUf/7j59769fRh33BHv731ZBh8f/vAm/OmffsH1Co3eWB2kvMl3lVx60XK/HngUPsTUazBl\nVcALrMPsrOAjH9mF//Jfek2HI+a7MtOe4/xvb78OAxUHZVtEbH7i8rEFvhYe259QCyl8jJp1ttiY\nFDsN4Atwlm30f8ix+2xqaf4dzJRl8PE3f/Md3H9/cEf2IMeP57tKNqLlkqh0BuDn/AVe2c3jYJVG\ntZL9t1+zZhY33LAKn/xkN65eTTr8W8Tj4BJXK1aYp8uBI6io2IPPfKaULgCcnVAff1yV7OKH5tli\nY3HPh1FR8SRmZ2/KyTaaZVN/9zvrjAlwBAsW3F7A8db8ex/k+SRShRaNlNINJtOr+13EE+ZsleZF\nm+EVJBUyptyvpacL4XVhL/u5RoKfBpvCZ1ZE7HWNkWLgtIjSj0UZvbTL/2NyvrmJnI2OC2o+IasR\nPm7nIwmanwWniUgjnxian8afW5pe60rowrZtu3z+jaV5lTx//gIz/vedm7VhLiVr3gY3adTw//YU\nFSNdfvHiMfzTP/0IFy8ew8BAb0leiW7a1I26ut1IJA5j7rswVxe3Y8ejUTavYEa2ePPmM6iqagZw\nN6qqmrF58xmcPj2MiookjBqu1laguRn4xCe0f1tbtZuRAbHblt9///nFwPE6ppRlt0uQnEzHHHRX\nQulYhUQiur5zoJDp4nPxb1+eopj8Ld905IC7rtXM6bOLp+DZ39oGJzVVRg2X2bTzbrdlz9n7sysG\nLuVjCoMPH4llZbWBs1XO143q6jZMTOQfYhrksGC7Ya5OR0Pxb09hMh894WVoqnYSLIaC5/BqG/z8\n/jnflvuZUdOORteU6jGFwYePnMzDUWhXQr4TcVALMAUnieefH8bQUP4rriALZO2GuTodDRXG354o\nn+xCc6tsiP1JMPzPqNWQdy/D7ouR3fv7zne0Kfmz5z16++3ziOsxhcGHz5ysrlqIfCdi4wooSM7W\ni3CeMq2oiP6Ky6+rvqD/9kT52K1YCzg/CTrh56i6fGtWxWFlZ7v3t3fvLgCP5sx7lE4/CeAwgD/K\n2WapH1PKMvh45hngxRe1//s9bCzus1Xmm6yrp6cf3/52ISnTYojgvbch7n97Kn3OToK9jrZlN5Gg\nG3Gvl3I2pF9M5j16DNp8JAItAInPMaUsR7vs3QscOqTd1pkN1y5A2NXQuaxGbgTHuJoaHGzE5OQx\nAD/G5OQxDA42orGxDalUKvQ2RSH6vz1RftpJcK3pY9pJ8JTpY/v3z4382Lp1LsuRPRrECzf1UqXI\n6fvT5j3K/tsY85H8HNdd92nE6ZhSlpmPoIVdvBX1JDRxT5kCgiNHlKMUczEU7hGZcX4SzD89uN+i\nqJfK12Xkd+2ck/d33XX/CuCDFo8nAfwVli59Hb/97f+LkZFELI4pDD4ABDtlbbBdCcVQqBXHlGl2\nQPftb5dqNxKRxslJ0O304H4Ju14qX5dRELVzdu/vc5/79zhw4L/C/m8Tn86K+LwTl1KpFDo7t6Ol\npQnAPWj495mkAAAgAElEQVRpaUJn5/aS6yKIemKrOKZMZ2fZjUTxtH69NreOGWNemyj09cV7ojO7\n97dp06Mw5j0yE+XfJihlGXzMzs7G5uRi14d76JB5H65fnMwSWmrDweI8qyCVN2cnwfDFvV7K2Syr\n3aiuLr6/TVDKMvgYHPxBLE4uxZJ1sLua8jtlmln8lm8qZK+0WQWjC+iIguLsJBhd2wYGejEycgzA\njzAyUrpT1puxf3/avEfF+LcJQlnWfJw8+TrS6WdNHyulGoVimdgq7CGm/s3umDtvycc/LvjNb+I7\nqyBRaRRFx/27Zf7+imHeo7CUZfBx9ervIS4nl2KY2MpullAjsi/G2Vlzq/gVampmMTERXkAX5PTx\nRPkV/zGufMX7b1OWwceCBb9D1NkCvxTLxFZOrqainp3VqbADOgYXRFRuyrLm4447PhtqjUKQirNQ\ny1ngFuTERYWIe+U9EVHUyjLz8bWv/Rn+8R//OvJsgV9Kow83V7Fe8TvtRsrmZ/eJn0umE1G0nK2J\nlcvP9XOKTVkGHxUVFZ5OLqWhNLqLip2XgM7PA4GfRbVEFC27Y8PYGNDTk3u/n+vnFJuyDD6A0s0W\nUBQY0BERi8P9VLbBx3w8uRARUX4MLvxTlgWnREREFB1mPoiILDDNHg7u5/LD4IOIyAJPeuEox/1c\njJMuhonBh88YwRMRkZ1SmXQxKAw+fMbggoio1FnNgE1+YcEpEVHJM1u5OtjVrOMmlUqhs3M7Wlqa\nANyDlpYmdHZuRyqVirppscTMBxFRCUqlUujp6cfQ0CkAFWhpmUVrawMAhUOHfnHtvvb2Vejr60Yy\nmfQ802bcpVIpNDa2YXz8EaTTvQAUJicFg4NHceJEW4RLVcQXgw8iohJjfrKcwbPPrgWwDcA3YHYC\n7ehI5nQLZwYkP/tZ/OrUnNThnT7dr+/LzMUkFdLpdRgfF2zbtgsDA71hNz3WGHwQEZWYnh6zk+Uu\nANsBuDuBlnpwYcfJ+3viiVN6EJcrnV6HQ4d2Y2DA/7aVMwYfRFk4YomK3ciI2cnyFIDs+zQ8gVoT\nEVy5UgHrAlOFK1cWQ0SgFItQ/cLggygLgwsqZuYnSwHAE6gXSiksXDgL6xEugoULZ7nffMbRLkRE\nJWT+yfLavQCy78vEE2g+69evQiJx1PSxROIIWltvD7lF8cfgg4ioxJifLFcB4AnUi76+btTV7UYi\ncRhzAZwgkTiMuro92LHj0SibF0sMPohKAudsoDnmJ8tHAfwVgJ+AJ1B3kskkTp8exubNZ1BV1Qzg\nblRVNWPz5jMcZhuQsqz5OHIE6O3V/s+CQipWZvM4ZM7ZQOXLOFlu27YLQ0O78dZbi1FV9S5aWz8H\n4P/HoUMD1+5rb1+FHTt4ArWTTCYxMNCLBx4A6usFIyMKK1dG3ar4KsvgY9064Iknom4F+Sd+UyFz\n0iOyk+9k+eCDPIEWJl7Hk2JUlsEH+SuKoalxzwqYz+Ogzdnw3/+74GMf24Vbb+1lto50ZidLnkCp\neDH4oIKFfeIrh6yA+TwOhnWYmtqNnTvBq1qimCi3+YUYfFDJyZcViMNUyE4mPQK0ORt4dUsUD3EL\nLuxwtAuVHC0rsNb0MW0mx1Mht8hf5vM4ZBIAnLOBiEoXMx8lrtxSdeUyFfL69aswOHg0K7ujSSSO\nIJ3mnA1EVLoYfJS4uAUXdsplKuS+vm6cONGG8XHRAxAFbc6GI6ip2YPz54ejbiIRkWeRdrsopWqU\nUo8ppdqUUt1Kqco8z71FKfWU/tydmc/Vt/OgfntKKXVLOO+AolAOUyHnm/To+98fBlDaBbVEVN6i\nznwcFJEGANCDiYMAmrOfpD92XESW6j9fALAPwL36Ux4Ska0Zz38p4zGKmXxZAW0mx3hkBazmcRgb\ni7plRESFiSzzoWcnrlXUicg0gAalVLXJ05sAvJ3x3HMA2pVS1+t3tSulajKe/zYotspzKuTS7kYi\nIsoUZeajAcDlrPsuA6gFMJF1/1TmDxldLrUAXgfwLIDzSqlvATgP4Jt+N5aKC6dCJiIqXVEGH0tM\n7psyu19EjiulppRS1SIyAS1wEQBL9ac8p/+/CUAbgLPIDWAotpgVICIqJVEGH1OYCx4MS5CV5TCI\nyK16Qel5ABegnXEu6FmQb4rIVwE8rpR6EMCrSqkaEZkx21ZXVxcqK+fXtnZ0dKCjnIaNEBERWdi/\nfz/2G/M46Kanp33bfpTBx1kAG7PuWwotsDAlIvsAQClVC+AdEZlQSrUBeCXzOfrjDQBOmG1nz549\nWMkcPRERkSmzC/KxsTHU19f7sv3ICk71otFrXSxKqSUAzuvdKsbQ2pqMxy9nFJhuBPCg/v8LAG41\n+RVng2g3ERERFSbqobYblFLdAC5Cy1RsyHjscQA/B9Cv//wNAE1KqZsB/FxEXga0IEaf56MbwDSA\nSgAvWnW5EBERUbQiDT5E5HVoo1UAYDjrsXuzfu6HBSMQISIiouLHheWIiIgoVAw+iIiIKFQMPoiI\niChUURecEhEVjf37tRsAvPcecOkSsGwZsGiRdl+5rSJNFBQGH0REuszgYmwMqK/XghFOC0TkL3a7\nEBFZEvunEJFrzHwQEWVIpVLo6enH0NApABVoaZlFe/sq9PV1F/WKyUeOAL292v/few9YsQLYupVd\nRk5kd7dx3wWPwQcRkS6VSqGxsQ3j448gne4FoDA5KRgcPIoTJ9pw+vRwUQQgZifLn/1s7mT553/O\nk6UbDC7Cx+CDqAjluxLT1nYScDVf//X09OuBx7qMexXS6XUYHxds27YLAwO9UTXvGp4sqdSx5oOo\nCHV0AIcOabdXXgF+9StgeDiF6urtePPNJgD3oKWlCZ2d25FKpaJubmyMjJxCOr3W9LF0eh0OHToV\ncouI4onBB1EJMLoDBgcbMTl5DMCPMTl5DIODjWhsbGMA4gMRwZUrFbDOKClcubIYIixCJSoUgw+i\nEjC/O8A4ORrdAV3Ytm1XlM2LBaUUFi6chfUIF8HChbNQit1dRIVi8EFUAtgdEI7161chkThq+lgi\ncQStrbeH3CKieGLwQVTk2B0Qnr6+btTV7UYicRhzGRBBInEYdXV7sGPHo1E2jyg2XAcfSqnqPI99\ntpDGEFEudgeEJ5lM4vTpYWzefAZVVc0A7kZVVTM2bz5TNMNsieLAS+bjglLqG5l3KKWuV0q9BGDU\nn2YRUSZ2B4QnmUxiYKAXIyPHAPwIIyPHMDDQy8CDyEdego/lAG5VSr2plPq8UuorACYALNEfIyKf\nsTsgKswmEQXB9SRjInIBwF1KqZ0AjkM7Ej4kIt/zu3FEZspxKmSjO2Dbtl0YGtqNt95ajKqqd9He\nvgo7drA7gIhKi3JbpKaUuh7ANwFsBLAVWrbjKwC+LiJFPd5PKbUSwOjo6ChWcplKKlHaaquC0VHF\n1VZ9lh3YXroELFsW78CWyKmxsTHU19cDQL2IjBWyLS/Tq08A+AWA5SJyEQCUUs8CeEkp9VUR+Xgh\nDSIiJ9gdEAQGF0Th8BJ8PCgiw5l36BHQcqXUY/40i4iIiOLKdcFpduCR9djThTWHiIiI4s515kMf\nUmtZKCIiXyyoRURERBRrXrpdfpH184cArATQAODrBbeIiIiIYs3LUFvTrhWl1EYA9QA45JaIiIgs\necl8WDkG4CkAf+njNonIZxxOSkRR8yX40Of+YJcLUQnIDC60OUO0YIRzhhBRWLwUnKaRW3BqTDrQ\nXnCLiIiIKNa8ZD5uMLtTRKYLbAsRERGVAUfBh96tYjAdZms8R0RmfGgXERERxZTTzMcUrLtaJONn\nAXCdD+0iIiKimHIafJh2tRARERG55XR69csAqkVk2rgBWANAMu9j3QcRERHZcRp8KOQuo3kQQK2/\nzSEiIqK4c72wXAau6U1ERESuFRJ8EBEREbnmJvgwG2JrubotERERkRk3k4w9oZS6YHefiDxeeLOI\niILFNW6IouM0+DgH4Gb9ZhgzuU8AMPggoqLHNW6IouMo+BCR+qAbQkREROXBl1Vtiai0HTkC9PZq\n/2cXBBEFjcEHUQnIrk9YsQLYutW/4GDdOuCJJ7T/swuCiILG4IOoBDDzEAYBpy8iCgfn+SCispVK\npdDZuR0tLU0A7kFLSxM6O7cjlUpF3TSiWGPwQURlKZVKobGxDYODjZicPAbgx5icPIbBwUY0NrYx\nACEKELtdiEoU56koTE9PP8bHH0E6vS7jXoV0eh3GxwXbtu3CwEBvVM0jijUGH0QlivNUFGZk5BTS\n6V7Tx9LpdTh0aDcGBsJtE1G5YLcLEZUdEcGVKxWwLjBVuHJlMUS4ggRREBh8EFHZUUph4cJZWC9P\nJVi4cBZKcfQLURAYfBCVvfK8ul+/fhUSiaOmjyUSR9DaenvILSIqHww+iMoQh5gCfX3dqKvbjUTi\nMOYCMEEicRh1dXuwY8ejUTaPKNYYfBCVGbshprOz5RGAJJNJnD49jM2bz6CqqhnA3aiqasbmzWdw\n+vQwkslk1E0kiq1IR7sopWoAtAO4AKAGwD4RmbZ47i0A7gVwFsCtAJ7KfK5Sqg3ADQDeAQARGQ62\n9USlyW6I6d69uwD0RtS6cCWTSQwM9OKBB4D6esHIiOJoIaIQRD3U9qCINACAUqoSwEEAzdlP0h87\nLiJL9Z8vANgHLRiBUupBAJUi0q8HNK8AYPBBZMJuiOnJk7vDbZCF8OcxYXEpUVgiCz70TMa1SjcR\nmVZKNSilqkVkIuvpTQDeznjuOaVUu1LqehGZAfBNIzARkYtKqfoQ3gJRyXE6xLQY1jkxm8fkgQeA\nv/977b7vf19biZcTqxGVnigzHw0ALmfddxlALYCJrPunMn/QMyEAUKv0sXBKqTuhHS2bADwHYMbn\n9hKVvPlDTM2CC8GCBbMWj0WPq+8SxUOUBadLTO6bMrtfRI4DmFJKVet3NUA7ei7V/18J4IL+vJ0A\njgXQXqJYsBtiuno1h5gSUbCizHxMQQseMi1BVpbDICK3KqUeVEqdh1agqjL+nTK6avTum1ql1GdF\n5HWzbXV1daGysnLefR0dHehgvpZKmrOukr6+bpw40YbxcdGLThW0IaZHUFe3B5s2DePAgaDbSkTF\nbP/+/dhvFF3ppqdNx4N4EmXwcRbAxqz7lkILKEyJyD4AUErVAnhHRCb0bhezLIqlPXv2YCXztBQD\nqVQKPT39GBo6BaACLS2zaG9fhb6+bsuhosYQ023bdmFoaDfeemsxqqreRXv7KuzYMYw33yyPIabZ\nBa0rVgBbt7J+hAgwvyAfGxtDfb0/JZWRBR960ei1oEH//3kjg6EXpE6JyEX958sAqvUC040AHtS3\nc1EpNWYUquqByXmrrAdRXBjzdWjDZnsBKExOCgYHj+LEiba8c1WU2xBTu5Ezf/7nDDSIwhT1UNsN\nSqluABeh1W5syHjscQA/B9Cv//wNAE1KqZsB/FxEXs7cDoCH9CG4KwHcFXjLiSLm35LwxVlc6ieu\nAExUXCINPvTshJGhGM567N6sn/thQc+WPO53+4iKGZeEJ6JSxenViUpQeS4JH6f3QlTeGHwQlaBy\nWRKeC+ARxVPUNR9E5NH69aswOHg0q+ZDU/iS8M6G7QY5BbpdQe13vjMMoDxG5hDFDYMPohJlN1/H\njh3uljfyMmw3yEJOZwvgbUc5FMwSxQ2DD6ISZTdfh5sl4WdnvQ/b9cJJxsS6oDaFdPo0Dh58GcA5\nR0ESERUXBh9EJcyv+Tr27vVr2K4zdhkTEcFjj5kV1KYAtAF4BO+//1cIOkgiomCw4JQoNrx3P7z2\n2imk02tNH9OG7Z7yvG0vrAtq+wE8AsDoZgLmgqQubNu2K8xmEpFHDD6Iyp7g6tXiG7ZrvgDeKQDF\nEyQRkTcMPojKnsKCBX4N2/UvQOnr60Zd3W4kEof17QqA4guSiMg9Bh9EhNWrzbIMGrthu0HNxWEU\n1G7efAZVVc0A7sF1151H3Oc2ISoHDD6ICJs2ZWcZAG3Y7mF92O6jpq8z5uIYHGzE5OQxAD/G5OQx\nDA42orGxzZcAZGCgFyMjxwD8CBs2tHkOkoioeDD4ICJUVGRnGe5GVVUzNm8+k3cEyfy5OIIuAFWe\ngyQiKi4MPogIQG6WYWTkGAYGevMOXdXm4vCjANRZnYbXIImIigvn+SAiE/Z1E24WtzOrw/Ayoyrg\n39wmRBQdZj6IyJNCFrfzr1aExaVEpYjBBxF5Zj4XhyZfAWi4tSJEVGzY7UJUorLXR1mxAti61Z8V\nZZ3yurid9botRq3IbgwMBNZsIooYgw+iEhVGcGHHy+J2hdaKEFHpY/BBRKaOHAF6e7X/W60829GR\nWwD6ta8p/P3fA/ffr71uYkJQXa0yXpdZK2IWXLibLMxpO4moeDD4ICJT69YBTzyh/d9s5VlzCuvW\nAQ8/PDeSZXKyAv/6r/NHspw+vQqDg0ezVtHVuJ0szFs7iShKDD6IyoxdrchttxW2/dlZbSSLVlDa\nC7Nl753UirzwguDAAeWhnVYZFSIqFgw+iMqMXTfE2BjQ02P2iLOT+t69mSNZDMZIFsG2bbswMNBr\nWivS2toAkXp8+tN/jCtXKrBw4SzWrzef+yOznV7nDCGiaHCoLRFZ8rJo3GuvOZv1NHtG1a985WX8\n7d+O4tlnV2Ni4hj+5V9+jImJY3jmmUbcdFMb/vN/Nv+dRqYlqPVliMh/zHwQxUh2l0ohxZdOuk9y\nswqCq1e9jGRR+PWv+zE7+wiA+RkTYB1mZwX/8A+7sH9/b06X0f339+Of/in3ddmZlux2smuGKEIi\nUjY3ACsByOjoqBDF3eioCKD96+V19933pCQShwWQnFsi8VPp7Nxu+robb1wjQNr0dUBaqqvXeHxd\nk2l7q6udvW5mZkYefvhJ/fe0yo03rpGHH35SZmZm3O0gojI1Ojoq0CL3lVLg+ZiZDyIypXWf9Jo+\nZkwEdtttucWrv/vdKgBHMT8TobEeyeItYyIO5wyZmZnBH/5hu8ssDhEFhcEHEZlwFgzcd5+go2P+\nc1Kpbr27xs2spwoLFrif+2P++jLWr9u2bZejIlgiCgcLTolirqsLaG0FmpuBT3xC+7e1VbsZWYtc\nmcGAGeuJwIxZT90ue796tbd1YpysL6NN525fBEtE4WDmgyjm9uzRJtxyOwHX6tWr8NJL7icC04pe\nkwB68alPARUV2gynFy9qs55aFb2uWNGNioo2pFICrctGy5gAR1BRsQef+Yz5OjFWc4YYr/tv/20I\n//zP58Dp3ImKB4MPIjK1aVM33njD/aJxucGFsxP63Xcn0d2tzf1x6NBuXLmyGAsXvovWVut1YgD7\n9WXefDOJ+nr/pnMnosIx+CAiUxUV7heNc8p6llUtY/KNbwD33ec8E5G9vszIiMrK7mhdM35M505E\nhWPwQUSW7E/q3jibb8RrJsLsdd2orm7DxIS7LA4RBYMFp0TkUCl3SyTx/PPui2CJKBjMfBCRqeyl\n6rMXdiuWpeqdLpRXURFMFoeI3GPwQUSmMpeqB3JP8r29wPe/H30w4m2hvFLO4hCVPgYfRORI5kne\n7bBdIqJMDD6IyLbroli6WIgoHhh8EBGDCyIKFUe7EFEZsJomnoiiwOCDKNbK96SbSqXQ2bkdLS1N\nAO5BS0sTOju3Y3Y2FXXTiMoeu12IYiaVSqGnpx9DQ6cAVKClZRbt7auwYUM3gA+iHEZ6pFIpfWXd\nR5BO9wJQmJwUDA4exd/9XRuAYQCc24MoKsx8EMWIcdIdHGzE5OQxAD/G5OTLeOaZS7jzzkYArdcy\nAKlUfDMAPT39euBhzGYKAArp9DpMTHQB2BVh64iIwQdRjOSedFMA2gHch6tX3wAwgsnJYxgcbERj\nY1uBAUjxdumMjJxCOr3W9DFt35wKt0FENA+DD6IYyT3p9gN4BHNL1ANGBmB8vAvbtrnLAFjVURRT\nFkVEcOVKBay7lxSAxRAp3uCJKO4YfBDFhPlJ9xQA6wzAoUPOMwDmXTp+ZVH8o5TCwoWzsM7MCIBZ\nxyvmEpH/GHwQxUTuSVcA5M8AXLniPAOQr47CSxYlSOvXr0IicdT0sUTiCIDbw20QEc3D4IMoRuaf\ndBWA/BmAhQudZwDs6ijcZFGC1tfXjbq63UgkDiMzGEskDqOmZg+ARyNsHREx+CCKkdyT7ioAR0yf\nm0gcQWurswyAkzoKN1mUoCWTSZw+PYzNm8+gqqoZwN2oqmrG5s1n8P3vc5gtUdQ4zwdRjBgn3W3b\ndmFoaDfeeuvfYMGC/Xj//fch8h+gBQ+CROII6ur2YMeOYUfbnd+lYxaAuMuihCGZTGJgoBcPPADU\n1wtGRhRWrtQWxSOiaDHzQRQzxkl3ZOQYgJ/gxIlRPPzw2ZwMwOnTw0gmnWcA7OoonGZRolE8QRER\nMfNBFHMKFRXmGQC3+vq6ceJEG8bHJaPo1H0WhYgo0syHUqpGKfWYUqpNKdWtlKrM89xblFJP6c/d\nafVcpdR3lVLXB9dqolLmPQOQr47CbRaFiMpb1JmPgyLSAAB6MHEQQHP2k/THjovIUv3nCwD2Abg3\n63lrAGwAsBPATLBNJyo/VnUURERuRJb5UErdgowxgCIyDaBBKVVt8vQmAG9nPPccgPbMDEdGJuRy\nEO0lomysoyAib6LsdmlAbqBwGUCtyXOnMn/ICDQyn7tBRI6DR0QiIqKiFmXwscTkvimz+/WgYioj\nK9IALWtidMOsAfBSIK0kIiIiX0UZfExBDx4yLEFWlsMgIrcCuEspdSeAC9AyHBeMLIiIsMaDiIio\nBERZcHoWwMas+5ZCCyxMicg+AFBK1QJ4R0QmlFJtAG5QSn0FWkBSC60e5FURed1sO11dXaisnD9Y\npqOjAx0dHZ7fDBERUVzs378f+/fvn3ff9PS0b9uPLPgQkXNKqWtdLPr/z4vIhP7zLQCmROSi/vNl\nANV6hmMjgAf17cybXEAp9SyAIWM7Zvbs2YOVLNEniq39+7UbALz3HvDRjwJr1wLXXQe8/77289at\nwKJF2nM6OrQbEWnMLsjHxsZQX1/vy/ajHmq7QSnVDeAitDqODRmPPQ7g5wD69Z+/AaBJKXUzgJ+L\nyMuZG9K7XzZCqwXZopT6Zr4AhIjcyT6hr1hRvCfwYmoLEeWKNPjQu0WMrpHhrMfuzfq5H3noQ3Wf\n1m9E5DOe0InIL1FnPogo5rIzJpcuAcuWFWfGhIjCweCDiAKVGVyMjQH19VowwrIrovLFVW2JiIgo\nVMx8EMVcVxdQWVn8RaJEVD4YfBDF3J497OIgouLC4IMoRkppOCwRlS8GH0QxwuCCiEoBC06JiIgo\nVAw+iIiIKFQMPoiIiChUDD6IiIgoVAw+iIiIKFQMPoiIiChUDD6IiIgoVAw+iIiIKFQMPogoZBJ1\nA4goYgw+iChwqVQKnZ3b0dLSBOAetLQ0obNzO1KpVNRNI6IIMPggokClUik0NrZhcLARk5PHAPwY\nk5PHMDjYiMbGNgYgRGWIwQcRBaqnpx/j448gnV4HQOn3KqTT6zA+3oVt23ZF2TwiigCDDyIK1MjI\nKaTTa00fS6fX4dChUyG3iIiixuCDiAIjIrhypQJzGY9sCleuLIYIi1CJygmDDyIKjFIKCxfOwnqE\ni2DhwlkoZRWcEFEcMfggokCtX78KicRR08cSiSNobb095BYRUdQYfBBRoPr6ulFXtxuJxGHMZUAE\nicRh1NXtwY4dj0bZPCKKAIMPIgpUMpnE6dPD2Lz5DKqqmgHcjaqqZmzefAanTw8jmUxG3UQiCtmC\nqBtQavbv124A8N57wKVLwLJlwKJF2n0dHdqt2LZNFKVkMomBgV488ABQXy8YGVFYuTLqVhFRVBh8\nuJQZAIyNAfX1WsDgx4E0yG0TFQ8WlxKVO3a7EBERUagYfJSJrVu3IpFIzLstXboUzc3NGB4e9rTN\n48ePY9++fT63lIiI4o7dLgUTBJdG9nfbSik899xz1yZ0mpqawosvvogNGzZgy5YteOqpp1xt7+DB\ngxgdHcWDDz7oWxuJiCj+GHx4kEql0NPTj6GhUwAq0NIyi/b2Vejr6y64cj/IbQPAX/zFX8z7ubu7\nG1u3bsW3vvUtfPGLX8RnP/vZgn8HERFRPux2cSnIFTqjWv1z586dqKyszMl8bNmyBcuXL7/WRXPv\nvfdiZmYGANDQ0IDnnnsOo6OjuO666/D666/nfd309HQgbSciotLD4MOlIFfojHL1z6amJoyNjV37\n+aGHHkJ/fz/uvfdeDA0N4aGHHsLw8PC1LpYTJ06gvb0d9fX1uHDhwrWMidXrNm7cGFjbiYiotLDb\nxSVthc5e08e0FTp3Y2Cg+LZtp7a2dl7h6dTUFJ577rlr3TR/8id/gnfeeQfHjx8HAFx//fVYunQp\nLl68iGXLljl+HREREYMPF9ys0Ol2oawgt+3Fiy++eO3/09PTOHbsGF599VXb3+31dUREVD7Y7eJC\nkCt0Rr3654ULF1BbW3vt57GxMTQ3N2Pp0qWora3FwYMHsWTJEtvteH0dERGVDwYfLgW5QmeUq3++\n+uqrqK+vv/ZzQ0MDli5dinPnzuHtt9/Giy++iKamJtvteH0dERGVDwYfLgW5QmdUq39u2bIF09PT\nePzxxwEA586dA6BNTJZZzzE6Opp3O15fR0RE5YXBh0tBrtAZ9OqfIoJ9+/Zduz399NNoaGhAf38/\ntmzZgs985jMAcK375etf/zqOHz+OV199Fc3NzRgbG8Ply5fnDau9cOECjh8/jpmZGdvXGcEJERGV\nOREpmxuAlQBkdHRU/DA6KgKkxafNBbrtLVu2SCKRmHdbunSpNDc3y8svv5zz/OPHj8vy5cslkUjI\n8uXL5Xvf+55cvHhRli9fLg0NDSIiMjY2du05586dc/w6Kl/a51oC+c4QUbBGR0cFWlp+pRR4PlYi\nVgWO8aOUWglgdHR0FCt9WCrWWHl2dNT/lWeD3DZRmPbv124A8N57wKVLwLJlwKJF2n2ZqzkTUfEa\nG0FbOEkAAAfBSURBVBszagPrRWTM7vn5cKgtEQWKwQURZWPw4VL2VdyKFcDWrf5cxQW5bSIiomLB\n4MOlIAMABhdERFQOONqFiIiIQsXgg4iIiELF4IOIiIhCxeCDiIiIQsXgg4iIiELF4IOIiIhCxeCD\niIiIQsXgg4iIiELF4IMCt9+YtpVCw30ePu7z8HGfl65Igw+lVI1S6jGlVJtSqlspVZnnubcopZ7S\nn7sz87lKqTX6dh5TSr2klKoJ5x2QEzxAhI/7PHzc5+HjPi9dUU+vflBEGgBADyYOAmjOfpL+2HER\nWar/fAHAPgD36o+tFJGn9cfaABwDsDyct0BERERuRJb5UErdAkCMn0VkGkCDUqra5OlNAN7OeO45\nAO1KqesBNADYmfHcVwHUWmyHiIiIIhZlt0sDgMtZ910GUGvy3KnMHzK6XGpF5DiA+oyHbwUgIjLh\nUzuJiIjIR1F2uywxuW/K7H4ROa6UmlJKVetBRQO0rMlS/fHXM57+dQAbLX7nIgAYHx8voNnk1vT0\nNMbGxqJuRlnhPg8f93n4uM/DlXHuXFTotpSI2D8rAEqpBwFsFJFbM+77H/p9J/K85jyAi/q/tZkZ\nDv1xEZHvWbz+TwH8rW9vgoiIqPzcLyIvFLKBKIOPWwA8lxV8XIZWPDph89paAL8QkQ9l3LcGQKWI\nvJzndR8CsBbABID3CnoDRERE5WURgGoAR0XkbZvn5hVZ8AEASqk3ReTj+v+XADhmBCN6cDIlIhf1\nny8DqBaRGaXUTgA/NwINpdRKADfo9R9GBuRFEZkJ/10RERFRPlEHH5+FNpLlIrQ6jmeNrIdS6iVo\nAUa//nM3gAsAbgZwPiPwqIHWBWO8EQXgncysCBERERWPSIMPIiIiKj+cXp2IiIhCxeCDqAS5WZog\n63Xf1SfnIyIypc8UbvccT8ega6+PW7eLXgPSDq0+pAbAPn321IKeS9Zc7vM1AFbqP94KYItRVEzO\nKaXOZi9NICI5SxNkvWYNgJcA1HMSPvfcHi/0A/gNAN4BABEZDqOdceLheN6k/1gL4CV9NmxySP/M\nLgXwLIAl+QZteDkGZYp6bZcgOFovxsNzyZqbNXq4Dk+BzJYmUEo1ZEzCZ/Ya46oke1Zhcs7x8UIf\ncVcpIv36SfEVAAw+3HNzjH5IRLYaP+iDFu4NvonxYQTISqnv5nuel2NQtlh1u7hZL8bl2jJkweV+\n5Do8/nCzNIFhgz4UXQXWqhjzcLz4pjFST8/s1Vs8jyx42OftWSuaFzQPRZmzO054OQbNE6vgA+52\nSME7jwC42I9ch8c3jpcmAOZ1t5B3jj/nxklTKXWnUmqNUuopABz6757bY/SzAM4rpXbqmadvBtm4\nMufqGGQmbt0ubnZIwTuPALjcjy7W4SFrU9DXNcqwBFkLMAJz3S2ccK9gbj7nDfr9F0RkQil1FsAo\n2L3olttj9HPQvhdNANoAnIU2mzX5z/ExyErcMh9udkjBO48AeNyP+pXJSyLyn4JqWIydNblvKbSi\nvGxNAGqUUl/R93kttPT0Z4NsYAy5+ZxfgDY78wRwrbuglvvcNbdB9jdF5HF9luxvAXiVI7s8sxuJ\n4uYYZCpuwYebHVLwziMAHvaj3g3wttUCgJSfXsF/7epPX5rgfMbswLcYfd8iMiwi39Nv+/SXDGVl\noMiem8/5BTCD6ge3QfYrxg/6Z/05aFkoci+n5iPruJL3GORErIIPlwflgnceudvn+s8r9dcZ0+M/\nyKsTTzboY+vbAGwBsCHjscehpZ2vUUpVKqUeg3ZFs4VFvu64PLZcBDBm7GN9IczzDPjccXlsuQCt\nhiybWQBDFvQaJeM48bhS6s6Mh7OPK/mOQfa/K4bzfLhZL8byueSc033OdXiolLk8tlQDeAjaSXEl\ntC6BidAbXeJc7vM/gdatOA2gEsCrDPiKV+yCDyIiIipusep2ISIiouLH4IOIiIhCxeCDiIiIQsXg\ng4iIiELF4IOIiIhCxeCDiIiIQsXgg4iIiELF4IOIiIhCxeCDiHynlEorpd63eGyj/vhTFo8/qJS6\nnPHzqP5843ZZKfVS5rT9RFRaGHwQUWCy1oYwbID9qpmS9f+DAG6BNlX5V6BNnz3KNWqIShODDyIK\nyhjMF5taoz/mxgUR+QcReV1EXhaRtdDWTdlSaCOJKHwMPogoKC8CuDfzDn0FzFEAl01f4c5TADb6\nsB0iChmDDyIKyhhwbWVSwxehBSXKx+1f78O2iChEDD6IKEgvQQs4DE0Ahnza9mVoQUytT9sjopAw\n+CCiIA1Br/tQSjUBeFtEJnza9lJoxagXfNoeEYWEwQcRBUZEjgOo0UelmGY9lFLfVUp9xcPm6/Xf\nMVNIG4kofAw+iChoRvajHcABk8drMX9UTAOcFaRuBfBswa0jotAtiLoBRBR7LwHYB0BE5B9MHj8G\nYKc+EmYaWiDy3azn1CqlbtH/fzOAhwDUQAtoiKjEMPggoiBkThL2KrRJwZ41e1xEnlZK1QJ4Tr/r\ngIg8kbW9dswFGlMAfgFgpYhc8rXVRBQKJWI30SARERGRf1jzQURERKFi8EFEREShYvBBREREoWLw\nQURERKFi8EFEREShYvBBREREoWLwQURERKFi8EFEREShYvBBREREoWLwQURERKFi8EFERESh+r/K\ng1NUTeZgGAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFwCAYAAAAYFxnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X1wHPWdJ/73d2zzYCFkTJI7RAUkYZyonK1gy+yhiMW7\nWBZKfpJhI5ngJfsjdbtA1jG6mIjY2FqsrbMOB/yALpEJD3ubqk0Q2Ba3WBuQMfYVvjg+EiSTy1Le\nwNkWuQq6TdZG0kQmOeP53B/dbY1muqd7evpx5v2qmrI109P6Tmu6+/P9fJ+UiICIiIgoKImwC0BE\nRESlhcEHERERBYrBBxEREQWKwQcREREFisEHERERBYrBBxEREQWKwQcREREFisEHERERBWp22AUI\nklLqSgC3ARgF8LtwS0NERBQrlwCoArBfRE4XsqOSCj6gBR4/CLsQREREMXY3gOcK2UGpBR+jAPD9\n738ftbW1IReldKxbtw47d+4Muxglhcc8eDzmweMxD9bx48fx5S9/GdDvpYUoteDjdwBQW1uLJUuW\nhF2WklFRUcHjHTAe8+DxmAePxzw0BXdbYIdTIiIiChSDDyIiIgoUgw8iIiIKFIMP8t3q1avDLkLJ\n4TEPHo958HjM40uJSNhlCIxSagmA4eHhYXZSIiIiysPIyAjq6uoAoE5ERgrZFzMfREREFCgGH0RE\nRBQoBh9EREQUKAYfREREFCgGH0RERBSoUptenYiIYqy/X3sAwO9+B7z3HnDttcAll2jPrV6tPaK6\nf9JwqC0REcXSyAhQVwcMDwN+XNL93n/ccKgtERFRjGzYsAGJRGLGY/78+WhqasLAwICrfR48eBDP\nPPOMxyUNBptdiIgoxgSAisX+lVJ4+umnYbQ4jI+P44UXXsCqVauwfv16PProo3ntb8+ePRgeHsa9\n997rSfmCxOCDiIhiJZlMYtOmbdi79wiAMrS0TKG9vQE9PZ0oLy+P9P7/4i/+YsbPnZ2d2LBhAx57\n7DF86Utfwg033FDQ/uOCzS5ERBQbyWQS9fVt6Ourx9jYAQAvYWzsAPr66lFf34ZkMhnp/ZvZunUr\nKioqsjIf69evx4IFCy400dx5552YnJwEACxduhRPP/00hoeHMWvWLLz11ls53zcxMeF5uQvB4IOI\niGJj06ZtOH78QaRSzZhuDlFIpZpx/Pg6dHVtj/T+rTQ2NmJkZLoP5/33349t27bhzjvvxN69e3H/\n/fdjYGDgQhPLoUOH0N7ejrq6Opw8efJCxsTqfffdd58v5XaLzS5ERBQbg4NHkEp1m76WSjVj374d\n6O2N7v6t1NTUzOh4Oj4+jqeffvpCM80Xv/hFfPDBBzh48CAA4PLLL8f8+fNx6tQpXHvttY7fFxUM\nPoiIKBZEBOfOlcG6A6jCuXNzISJQKv9Oon7vPx8vvPDChf9PTEzgwIEDeO2112x/r9v3BY3NLkRE\nFAtKKcyZMwVtBIoZwZw5U65vtH7vP5eTJ0+ipqbmws8jIyNoamrC/PnzUVNTgz179mDevHm2+3H7\nvqAx+CAiothobW1AIrHf9LVEYggrV94c6f1bee2114wJvABoHUrnz5+PY8eO4fTp03jhhRfQ2Nho\nux+37wta6M0uSqk2Eck5w4pSqhpAO4CTAKoBPCMiE/prywEYc8/dCGC9iJzyschERLFUDFOH9/R0\n4tChNhw/LmmdQgWJxBBqa3diyxZ3E3YFtX8z69evx8TEBB5++GEAwLFjxwBoE5Ol9+cYHh7OuR+3\n7wtDaMGHUqoNwHwATyml5onIZI7N94jIUv19FQD2AGjS/79ERB5P2+cBAAv8LT0RUXjcBhHpzxtT\nh/f3x2vq8PLychw9OoCuru3Yu3cH3n9/Liorz6K9vQFbtgwUPA+Hn/sXkRkzkhqTjB07dgzr16/H\nZz/7WQC40PzyzW9+E+vXr4eI4LHHHrswGuatt966MLrl5MmTOHjwIG688Ubb9x07dgyLFy92XX5P\niUioDwDnAVye4/XFAH6a8dwZAFUAlgM4n/Z8BYAUgCqLfS0BIMPDw0JEVAyGh0UA7d8g3hcl2mdI\n+fYZvNz/+vXrJZFIzHjMnz9fmpqa5MUXX8za/uDBg7JgwQJJJBKyYMECefbZZ+XUqVOyYMECWbp0\nqYiIjIyMXNjm2LFjjt/n1vDwsEDrELNECrz3h97sAvt5a5dCCzbSnQFQIyIHlVJ1ac/fCEBEZNTD\n8hERUWT5PYrDm/1v3boVW7dudbz9rbfeinfffTfr+fTnFi9enLWNk/dFQRw6nJp10x03nheRt9Ke\n/yaAaM2kQkRERDNEIfNhZxxa35B08/TnL1BK3Qtgt4j8bVAFIyKiYGX2d1m4ENiwwbtOs37vnzRR\nCD6sBlQb3kR2NmM+tJEvAC6MeDktIi96XDYiIooQv2/+DC6CEYXgI6tBTSm1GMC4iJwSkWNKqXlp\nr80DcMLo16GUWgIARuChZ0BekByjZ9atW4eKiooZz61evRqr+Y0LXTEMBSQiirv+/n70GxdjnZeL\n0ykRu8SDP9Lm59gK4DEAB0TkkP7abgA/EZFt+s83AGgEcApaB9SnRGRUn//jBKazJwrAByJypcXv\nXAJgeHh4GEviNLasRBlDAYeH4zUUkChIbs8Tnl+Ur5GREWMitDoRGbHbPpfQMh8ichDAQQCPm7x2\nZ8bPbwEwOpYOpD1/CvHoNEtEREQ63riJiIgoUAw+iIiIKFBR6HAauDVrgE98Qvs/OzASEREFqySD\njwceAO6+O+xSEBERlSY2uxAREVGgGHwQEZWscKZaIGLwQURUQpLJJDo6NqOlpRHAHWhpaURHx2Yk\nk8mwi0YlhMEHEVGJSCaTqK9vQ19fPcbGDgB4CWNjB9DXV4/6+jYGIBQYBh9ERCVi06ZtOH78QaRS\nzZhe2UIhlWrG8ePr0NW1PcziUQkpydEuRESlaHDwCFKpbtPXUqlm7Nu3A729wZYpCrimVPAYfFBg\neIIT+UVgskbnzC1EcO5cWY7tFM6dmwsRgVK591Vs0q89xpo3/f1c88ZPDD4oMDzBibyTTCaxadM2\n7N17BEAZWlqm0N7egJ6eTpSXl2dtr5TCnDlTsA5UBHPmTJVc4FGM4lDRY/BBRBQzRsdRrf9GNwCF\nsTFBX99+HDrUhqNHB0wDkNbWBvT17df7fMyUSAxh5cqb/S88+S4OFT0GH1Qy4lAbIHJiZsdRg9Fx\nVNDVtR29vd1Z7+vp6cShQ204flzSOp0KEokh1NbuxJYtA1nvIfIDgw+P8QYXXXGoDRA54bbjaHl5\nOY4eHUBX13bs3bsD778/F5WVZ9He3oAtW8yzJUR+YPDhMd7giMhPhXYcLS8vR29vN+65B6irEwwO\nKl6fKHAMPiwwg0FEUeRtx1F2LqVwMPiwEHQGg8EOETnFjqMUdyUZfHz961/FG2983nJIWhjYXENE\nTrHjKOVraAjo7tb+H4UKbkkGH//6r0+ir+83OYekERFFFTuOlgYvM+LNzcDGjdr/o1DBLcngw8mQ\nNIoK+5kbiUoRO44Wv2LOiJf0wnKpVDOefvoIPvUpoKkJWLlSexiRJoWDS34T5YsBOsVLiWY+DArl\n5XPxzjuC/n7WGqLA7cyNRER+M2sGuegi4De/0Z77xCeA3/+egwWcKPHgQzB79hRYa/CeXVvlTTeZ\nv8/tzI1ERN4xb+41awYZHp5uBim2phE/lXTwkUgMYdmym/H882GXpPjYtVWOjACbNmW/j0t+E1EY\n8l2or1ClPr1CiQYfgkTiFdTW7sSaNQMMPiKCS34TURjCaO4t5s6kTpRk8PGxj63Bn/3Z57FlywDe\nfZf9B6KCS34TURhyNfe+/bZg0aLtuPTSbkdNx+RMSQYfTzzxJO6+u3jDyzin8zhzIxEFfQ3L1dwL\nNOP8+R145x1nTcfkTEkGH8Uuzuk8ztxIRF5ew+wCmbvuctbcG+85h6JXdgYfkWX+ZYlzVsMJztxI\nRF6yD2QUNm3K3dwbnVGRzoOIXB1ogfCvoww+IsRJb+s4ZzWciuLMjcUe9FFpyPweL1wIbNjg3/c4\nLueNXXNvmKMi3YzCsetA++STAwg7AGHwERGcXMtKFGobpRH0UfEL+mYfl/PGrrk3v1GR3jVxuL0v\n2M2XtGvXdgDdnpTRrZKeXj1KZn5ZjC+u8WVZh66u7WEWj4go8vr7p5fJaGpC1tIZQ0Pm7zOae9eu\nfQOVlU0AbkdlZRPWrn0DR48OoKwsd8XPryUh3N4XtA60t5m+lko14/DhIwWVywvMfEQEJ9cKQ/Q6\nYRFlcjtbcClyO7kh4L65d2rKv6y1m/uC0/mSgBTCzD8w8xEB+UyuVVyC/zxctI7iZvVqYN8+7bF1\nK/DOO9q/xnPN2d0UqGDOKyW7dvmTtXZ7X5g5X1KmJIBHcPr0CQB/Gur1j8GHY/7dKHN/WbTfXSyT\na4V58zfaT/v66jE2dgDASxgbO4C+vnrU17cxACGivL3+eu4mjn373DVxFHJfaG1tQCKxP+PZJIA2\nADchlfo5wr7+MfgAYPXHDfJGaf5l0eSeXCs+2RAjPRnWzZ/9aojIW4KPPvIva+32vtDT04na2h1I\nJF7B9D3icQBfB/AFROH6V7LBh11gEXQt2fzLMr0GzZYt33Bc9qjyKz3plF0nLLc1FCIqBWYBhNLn\nAPEna53PfSGdWQfaWbNeBPB50+3DuP6VZPDx4YdTtoGFd7VkZxGvXW9ro8NSnJsO/EpPOlG6/Woo\nCHajLIwOo14ZGpre94YN0/N1+PX7iovzc9xJRW/ZMrdZa3tO7wtW7+3t7cbg4AEA/xXz51+HSF3/\nRKRkHgCWAJCmpnslkXhFAMl6JBIvS0fHZqmqWi5AynQbICVVVY1iZXJyUh544BG56qrlAqyUq65a\nLg888IhMTk5avifd8LD2O4aHs1974IFHbMuevS8x3VdQtDKcl49/fKXF8dQeV1+9UlKplG9lt/+b\nLs/j84R7TCm6/Px+xPm757bsXrwvn2uy8b7Dhydl0aIV+vU2deE6kUi8IosWrZDDhycztns5Y7uX\nZdGiFY6u+7mu+flsk+s4aJ+9sOvf8PCwQIvelkiB9+OSzHyMjLyVswb+0ks/cl1L9i4zYf67g246\nKKRGN7PW8Kd6D+vwOtW671dDROFyXyN329fMrplYm6gLKCtzn53Ivwnd/fXRzwyNK4VGL3F6QM98\nzJt3i20N3G0tOd/MhHl0aR7pp1Ipufrq8LIH+exrctKs1vDXAvwwtKzNdJly11Cee06ktVV7rFgh\nsnCh9q/xXE9PfGuf5D9mPszlW3ZvMsgid93lLltslymorGzM+jz5ZCfMr5HTmZXMz1loBsibDA0z\nHwU5e/ZD2NXA3daS/cxMxGlIrnmfmYcAPAHgh8in85RXnLafcl4F8sK6dcH1AYkPZxkML/u2uetr\n5mwUi1UnVCfc9itM7++Tz3erkAyNLwqNXuL0gJ75+NKX7Pt8OKklZ9aQr78+JRdfnF9mwjy6tI5w\nw+zzkc++rDNHkwI8IrNmfUaAlVJZ2XjheBfy+9x9FvsailkZ4lz7JP9lfj/COgejwkkGI/NaOm/e\nIwJ4kUFOue5rZpf50F53f23It1+h22uR9fvc9B/xLvNRktOrf+1rf45/+qf/aLmIkLF0u93S7tlT\n+SpcddUUxsYEVkszF5qZsFsAacuWAdf7dmrdOqCiwnqVyrvuyjWypBzA32D+/Lfwm9/8VwwOJkJc\nZCr8DBGRV/xcQdbtvp0ujJZ9LT0Cq4XP8ltuIn0obH7X5GXLGrB7tz8r3Yo4H33nXyY73OtfSQYf\nZWVlWYHFxRefRWVlAz7xiQEsXVqun1jlALrxta8BmzY5m+vf7gtbaKceJ0GR33bu1NZKsF6lMr15\nyPyE1y4IJdnqRyXJ6lzwjp8ryLrdt93qql1d29Hb2w1geun4PXt+BOD38OrG7PaavGZNJ37+c69W\nus34BMr+GhlEE/rQENDdrf3f64DVTkkGH0D2IkI//rGyvKFqixE5+xLYfWG9yEy4XQApSK2tDejr\n86fW4FSu2trEhL+/m2hqKomOjm3Yu/cIgDK0tEyhvb0BPT2dwbevh8TpwmjZGZIVyHVjPn16Cp/+\ntHJ0o3R7TTb6SFhV9N59t7C/od01MojRJ83NwMaN2v+9DljtlGzwMZN30aXdF9b7i040mw7smofy\nqTW4jc5z1daMn4n8kcRXvtKG0VHvVzqNi3yaFrIzJA0A9gMwvzHfcYdWeXFyo3RyTc6sqBiTtrnJ\nfjsVhSb0MDH4yEOum2B6TToOmQm/2TUP5VNr8DM6twtsuFw5ubNNDzzsmxuKVT5NC9kZkk5oi6AJ\ntACksCaPzGvy176m8D/+B3D33dnn/SWXaNeE9AqNdfbbfXOakyZ066BIey7O1ycGH3nIdRO0rklH\nMzPhviOT85MtDkGYXWCjXXTCKx/FlbPmhmLnpGnBPENSDmAAwHYAOwB8iMrKS7MqL04rhDOpgio0\nRt8Us+Y0rdzO2V0j7fpcBHF9Sg+Afv1r7/bL4KMg/nci84ZgaEihqyuJf/7nbRgbO4KPPirD7NlT\nuOqqBnz605348z8vt/ySW51sq1ZpJ5uz7EEcjhNR4UQEQNgjGaLBSdOCdYZEa/LQnm/E4OCBrODA\nXYXQPWO2VKvRO08+OYB8A5Bp0fwupAdAP/gB8MYb3uyXwUee7G7Ebtml1/LtdZxZzv/8nydw7tw4\nxscfvXDSfPSR4L339mPu3Da0tJifNLmGyv3wh20ABtDcXF6C2YO4BJ4UNC2gCH8kQxQ4HZ1nlyFJ\npf7I4W/097ycOeW6QWtOe/ttwd13b8fChd0FXbtLRejBh1KqTURy9qxRSlUDaAdwEkA1gGdEZMLu\nNa/linqNG7HbAMTLL6hZwPAv//IIgJswc0ll+zboXEPlRkcFWlo0+33FKFe61ax91moOlFK46ZA2\nQ3KYIxmccjeHh7fNr7kyJNXVO3HihPUtwq8KoRltttRui1ebMWvWDvziF+73bzeHUjEFMaEFH0qp\nNgDzATyllJonIpM5Nt8jIkv191UA2AOgycFrnsoV9QZxI3aapjUPGH4M4G9Mt8/VBm03VE77zMXP\nLt169OgAVq8uNx1dc/312sVx48YjeOihsgvT95fSkMvS8w1UVbVjdLTwkQx+N884ncPDLvh2Rlk0\n05bjmmsGcPbsdnzwwQ6Mj09nSNrbB3DLLeb7965C6CSYcjbleiF/L/s5lIpHaMGHke1QSn0313ZK\nqcVIm0BfRCaUUkuVUlUArrB6TURGvS5zrqhXu8DscLSfzC+n1Ze1vx/4+7+f2U9DqSnMnt2Ayy7r\nxL/5N+WmzTPZAYO7NmjroXJJANsAHAHwO7S0NLrucGX2maPXu1tyBp65MkcvvZTEzp1tSCYfhBaY\najehb397P773vTY88cQA/v2/ZwBSDDJvzlNT/xef+cwT+PWvt+H//J/LHA+5Nzvvjf5ZV13lfW3e\nCaczlaazuq5Z99PQ+nhoz01nSEZGrMtVSIUw/2DK/WypQYvmdXSm0JtdYB9uLgVwJuO5MwBqAFyX\n47VRLwo3zT7qBebqnc2ytzG+6IODR3DuXBlmzZrAvHkXY3z8HM6fLzetDbe0JNHT04b33ps+4QHB\n+fP7UVPThh//2PyEf+ihzHK6a4M27wiWhDYEbvpm6l2HK3e9u53XNJynijMvTLt3n3A1euGdd7Zh\naupBzJyvQAFoxtSU4Gc/K51mq2Jm3tQp+M1v9qOqageAv8fg4OWOarFm573RP0tLGLs7xwo5T5zM\nVPrEE5vx29/+dsZ1Lv26ll+ZnZ2nbiuETjKZZgGI3zNYeyUKo2TsxGF+63kmz43rz+d6zWPpUa8Z\nAWAe9Rpf9L6+eoyOHsCvfvV9/PKXF+F//s//gF/+8iB+9auXMDqavWKjm1UPrVe+NSbtyZbrpMle\n3XcbtMDDvEy7dgXTDPPAA0nU1GzGpZc24qKL7sCllzaipmYzvvCF5IxVHZPJJDo6NqOlpRHAHWhp\naURHx2ZMTVmtiikz/l7aipr/gFTqOjjJHGVyt6ImxU2uc3V0dB2sboL9/dkrlC5atA1vv51rX87P\nMW2W1c2orm7EJz95B6qrte9/5qqwVueJsZ31at1JpFJH0de3F1df3YIrr6zDt7/9h/p1buZ1zfqc\nm7lS64YN0zX1lSu1fhDm8qkQzjQzY+J8Rdk1azpRW7sDicQrmL7GBrcytzmre1LEFboyXaEPACkA\nl+d4/V4AP8147n8BuDXXaxb7WgJAhtOW8nOyAqXx3F135V5RFtjs8H3OVmzMd9VDg/nKt5MCrBDg\nH8VqlV4z2av75i5TZWWjo5UX3a7Oqb1vUmpqVuifMf2zvDLjs0yXPXu7mpoVAkzK8HD2qptz5/6B\nfpzSP1vuzz1r1q2yYsX0ypw9PSLA+bxX1KR4sjtXgUbHKyjbrabqfF8TMnfuCv1ak0p7/ytSXr5C\n/vZvc58nwCtSVrZCrrtuwmK1buOaYrzvEQFetij3y1Jfv9nVdSDX9cP+WN3q6n1VVY1ZK+0uXKj9\n+/nPT0p19WaZN69R7FbmdirflZCdrBScz++zei7z2vT97xfXqrZi8/qbAO7LeG4+tNEtH+R4zXO5\n1gjI1SN7aCgzNZh7xcb+/h144gn3qx6a9xy/DErdjyuu2IiLLtrhuA06fajcnj3bMTb2O9sy5dO8\n4Y717JFvvy1YtGg7Lr20Gx9+uA3/+39nN3mktwdPTX0jK/169mwjgC9k/E6z6Z6Nvi+v4fz5i/BP\n/9SIlSuXAlD4znd+CqAMp0+fQBzaiMk9EftzdfbsuVi/XnDppdo21mlxJ7X5S/XKlHXzrtZceAZn\nz/5H2DX5WTWpAM348EPBiRM7LFbrTs+CArmua0Az3nvPWZ+4fJg3g0yfl8BFWL68EVdcoc1n9NFH\n5bj+esEvf2l/bb3rLsHq1VYrc2f3TQmKm/43gPN+IMaaROZNZx4qNHop9AGTzAeAxQCq035+N+3/\n85CW7cj1msnvWgJAbrnlFmltbZXW1la55ZZWAVqlp+e5tOgvZRkRTk5OSkfHZr2GPx31Hj48aRFJ\npjJqvykBnNWG7TMfyzMD2gsyyzlvXqNUV2+Wz39+UlasELn++tSMmvpzz1nuKuPz5C6TFon7nflw\nln1xUoPMzkpZ/X2MWp6RATJ+/mHa75gQ4CaZmV36a30bszK8LBUVj+T9d6DoKeRcNeSulU+KlllY\nLsDnTGu62RkMZ5lTJ1kb86xv+vvsr2vaddD62mp3XMzed/hwZmbW7LzMzop6+ffK9xrmZF9m9yGD\neWZbe6Rnzt2VYTItW/YDAVr1x7+TWbM+Jtdc8zmBR5mPgt5c0C8GlgN4CMB5AI8irakEwG4AnWk/\n34Dpyf4fBVDl5DWT32nZ7HL4sHUay/rLn8r4spifIPPmZX7Rc3/xP/Yx7Yvv5kuWmSbL9SXOl7av\n3GW6667NlsehkODDSDP+2397qwANDi5y9k0ext85+29h9feZ1D//ZwRYLNlNM2bNaWbNXRMC/P8y\ne/YiAVryTplS9HhxQ7Bups1s3hDTG+rMMjir5Jw/f16uvtr+PHn99YmMm7zZ/r2pmFgdF2cVQrPz\nMvvv4OXfy8vgI9d9yOC2Od5ZGXIfl6am+yT2wUcYDyP46OkZntGWt2DBpJSVWZ/cRlajp8e8DbC1\nVeSWW6xPELd9PrL7Wxjlejmrb8MDDzwiVVXL5eqrV0pVVe7AyUpmG2dmdkTrx2D0tzAvk3UGyH3w\nkW+NzrjIOWkPNg9Qcv99tAAr/6AF+IzMmvUFUep6sauZUbw4PVdzsa7NW/elyN1HzFnt3j7zsdw0\n6ztr1qKM91mfN371+ch+ztmN2cu/l3fBh31ftlQqZRssuu1H5uT4fexjfygMPtx8WJPMh4h9FGxW\nmzf/w+WbGszd+fO556Y7N11ySaPMnr1SLrlkuvnkuedyd6q0CgZyydWRKf3zmDU95c4SuQ8+sv8+\nToIDZx2ErVPcZqlb7e/z+usTkl3rc1bTXLv2ry3LBLwsn/zk5hlBLZti4sOqSTb9fLYP7rV/0897\n4A9sb6jmNyVnlRy76595R/qU3HRT5v4zmyZnnjdOKyZmxyrznDCOVfr73nzTeZO2k7+XHe+DD2fZ\nGC+ajMzkPn5aBUqpBcLgw82HtQg+7P6YZiM4MjlNDVZVNcrVV6+Ua675Y/nsZ2+Ta6+9Vc9W2H/x\nzaLZ227Lv7YhYn5y/8mfTEp5uX0GKFe7pB/BR/bfx9lFLjvom97uuuu00S7WAcqkAPdIWVld1oXJ\nuoZgf1Hw4rtG0ZarqdNJcJ852sBpTdfpeQK8bDHaxfo8cVapEtGaFO+ROXM+I1dd1TLjuuZ936/s\nbPTs2fnfmN02TReSVTYPppxlbfzt85GrMvayAG8Kgw83H9Yk+HBycl988UrbDpr5nFiZQUQhQy29\nDJzsMgWZGaBcnzlXE5VVzcWM9d9nUoDNAjQK0GCZfcms3Vx8sZY5+pM/mcwIuHIFMmYBltmxyl3T\nfOCBR2y/a2ad8iherM57t1lKpzVd6yH2mwX4nJSV/bFlJSf/jvTmlar0/Zv3P/My+Mg+T9zcmAsN\ngLx4Xz5ZGy+ajKzLZXdd826obegBQZAPt5kPtz2fvUzLmXESODm5mRnltOsjkRnIFPKZC8t8zCyX\n+RwbZuWyro3m34xk1vfFGO0yaHlRsPssZp3yKF6svttum3ed3lDtbkoTExMOy+6sI71dpUrEaY3f\nebBtN7+FmxtzWMFHIVmbQpuMrMtljHZJP37p5fIu+IjDDKe+y57Fc1qUpszNZD2bqUH0WVmdTans\nZNEk69/lH7u/z9e+9kd49VVg3z7t0dwMmJfT/LMZq24ODmqzmQ4OHkBvb7fNYlnl+N73BrB27Ruo\nrGwCcDsqK9vw1a/+Mb761R+nPdeEtWvfuDD23u6zLFsWze8aFc56llAglWrG4cPms9329DibVdOY\nk2fmd3L6+3f55Zc7LKm7eWfM5qtZvXr6vHz1VeAXv9D+/cEPkqiq2ozvfMd8RlUzxvwW0zMPv4Sx\nsZkzQ9vm1mf8AAAgAElEQVQdgygt5NjcPPPY/NVfOb8PZV6zFiw4gFOnutHWVo5PfUqbLdeYMTZ9\nxmd7l2FoaAAdHW+gqqoJlZUrMWvWh/Bl3qZCo5c4PWCR+fCr57PfmQ8RbzvL2mU+Mmvl+X5mu1qQ\nVcfKfEf9OG1PtzoO+fZXse77kl2js/ss+XYQpuhx23cjV5Yy35quV/0Y/Liu2TU/WX2mfJtUnB6D\nKDS7iHiTtXFTplzXzey+RMU1w2no0mfx3Lt3B95/f67jFSjDdsMNnSgra0MyKZheb0UADKGsbCcW\nLnS+dHeuRZOAIcyeffOMWfEmJqz2JDCLlO0WO7Li5O9jN+tfoQvemVm3DqioMGYLVCazBWYfA7vP\n8u670f2ukXvmizSmy52lNGq699yTz6yazmqruWa+1M5xqzK742SROrMVorNX655mvbijebntZvt0\ne60qRBj3ISezpba2NqCvz+q+UIBCo5c4PWCR+UhXWI0h/9n7vJCr01c+Nf5co0PMIu/MjmeFrDXg\nlNuOZoUOl87372q1jdPhlsx8xJfXfT6c7NvtdlYKzSLm4maSLDfzW/h9/fUzY+I2a5NvmZxkk2Zm\nZLwb7cLMhynnUX7m0ustLVNob3ezhLR7Rq2ot1cLJt2uFfLf/3s5rrlmAGfPbsfY2A589NFczJ59\nFldd1YBrrhnAP/5juWltwO3y1O5lfz67WtHhw96vK+FGdo1q5mfRlrr2tqZJ0WC+5pK2NlRt7U6s\nWTOA558Pu5TWteFvf3s/vve9NixdOoCFC8tdZQpE3K1Z5SRzVHzrJPn/WZxlk7ovZGSee+4V/Ou/\nevO7GXwUIIxUv51CTr7mZmDjRm3RJMB5IDNzeeoLJbFNo3rF6QXN6/Sxl3IFsVFu9iPn4tLklmuh\nuakpwR/8wXYcOtTtat+FBBG50v9RHhgQVfkEgkYF9w//cCW+/OU6T34/R7sUYOZJavwBjZvuOuza\ntT3M4hXMaSDz+uu5e/Hv22fei98r3o76ca+/f7qH+YYN0+3Idr3OnfTip+LgbmRVsOxG5RR6Prsd\nXeh01A854+S66Wc2iZmPAtilrP7hH3ZEoiOTlzI7ajldnrqQ5iAn7GpFy5bd7HtK2+3f1m0HPIqX\n7E6OZp2Uw83OuW0WyYdd89OWLead5OM8MCCqwswmMfhwyclJeuWVc/HP/+zvTTdoZn0WqqunMDoa\nblus1QXNGPXzL/8yYBoIArl7vWs3BH+568VPcWMVnBpNbt/5TvhNbkH0rSgkiHA36oesuA0EvcDg\nw6XS7ABlLgptsYVc0HJlK7QOoD4UWBdETZOiy8lQx6ADkCDOZ2+CCJ4PhQozm8TgowBRuOlGQZjR\nc7o41ooYxJa2KDa5BX8+87sNhDf3SFjXTXY4LQA7QGmiOaVxfC5ocZ3enwrnd+dON6J5Phc/q6no\njeeC6SsY3HWTmY8CsAPUtDhmHazY1UC87gcSlcwRBSvKTW7FdD5TNDH4KBBPUjPxyTqYsUtvet0P\nhEFsvGQGp++9B1x8MfDrX2vPffzjzlLm8WlyC/v3UzFi8OEpnqTkDoPY+EgPJEZGgLo6YHgYrv5e\nXvYbi+J6JeQ9+7V44oHBB4XGrAZ57bXZF8soXFSDLQOD2FLhZZMbg4vSkOvvbATDccDgA9G4uZUi\nsxpkf392DTIKxz8KZaDiwyY3irr0+6PRtOgFBh8ovhtLKQZTpfiZqTiwyS0+4nGd8XaWXLNKohcY\nfBShaJwAwSrFz0zFiE1uURbV60wcF6bkPB9EREQxFdeFKZn5IF10l5snIooLu470Xi8gGMVZcp1g\n8FHC4piqK0bxaEcmIiesOtJff70/CwjGdWFKBh8lKooLWpUqBhdxx6xhPkox2J6a8ud6G+VZcu0w\n+ChRcU3VEUVBMWcN/Q4OijG4sLNrlz/X2/jMkpuNwUeJimuqjihsxZ41LMXgwG+vv+7f9Tauq6sz\n+ChBcU7VEYWNWcPoimaTjuCjj/y73sZ1YUoGHyUozqk6oiCZjVz45S+ZNQyD08Aielkbhdmz/bve\nxnWWXAYfJSquqTqiIGWPXBB8/ONl+N3vgssaRrM2H7w4f85lyxqwe7d/19s4zpLL4KNExTVVRxQu\nf2uxZuJ80yXNmjWd+PnPg7rexiNjzRlOS5SRqlu79g1UVjYBuB2VlU1Yu/aN2HeYI/LTsmUNSCT2\nm77GrCGZKSvj9TYTMx8lzKtUHdPCVEqCrcVSsYhj04ifGHyQzn2qzrvggpM1UfQZtdi4dfCjKOF1\njsEHhaqYJ2ui4sVaLBWDMLPWDD4oNMU+WRMVI7PsHGuxFE9hNomzwymFZuZkTcYF3JisaR26uraH\nWTwiAFqQ3NGxGS0tjQDuQEtLIzo6Nkd2qXKiOGDmg0LDKd4p6uyyc08+OQDAfXaOnbWpVDH4oFBw\nineKA7up1Hft2g6g2/X+GVxQqWKzC4Vi5hTvZjjFO4VPy87dZvpaKtWMw4ePBFwiouLAzEcBmDIt\nDKd4pyhzmp3jEHGi/DH4KACDi8JwineKMicLMGpTrTPwIMoXm10oNJzinaKutdV6KnVgCLNn33wh\n47lypfYwsqFEGqum5dLGzAeFipM1UZTZZee0IDnsUlLU5Jo8sZDRUcWEmQ+KEKavKVqYnaN8GcOz\n+/rqMTZ2AMBLGBs7gL6+etTXt2FqivPDAC4yH0qpKhEZtXjtBhF5q+BSERFFBLNzlA+/h2cXCzfN\nLieVUltFZKPxhFLqcgDPAmgDMMurwhERRQuzc5Sb3eSJhw/v8PT3xXXUpZvgYwGAp5RS7wK4D8B1\nAB4D8Kb+GhEVKPOC8t57wLXXRv+CQlTKwhieHddrQd7Bh4icBLBCKbUVwEFoR/F+EXnW68IRlar0\nC8rICFBXpwUjTPcTRReHZzuXd4dTpdTlSqknATwEYD205panlFLf8LpwREREcZJreHYiMYRlyzh5\nIuButMsogBoAC0TkcRG5H8CNAP5Kb4ohIiIqST09nait3YFE4hVMz/EhSCReQW3tTqxZw3o64C74\nuFdEbhORU8YTIjIiIgsAPJ3PjpRS1Uqph5RSbUqpTqVURY5tFyulHtW33Zq+rb6fe/XHo0qpxS4+\nFxERUUHshmeXlXF4NuCuz4flnNci8nieu9sjIksBQA8m9gBoytxIf+2giMzXfz4J4BkAd+qb3C8i\nG9K23532GhGRK3EdSUDh4vBse27m+diNHPPFisiXHO5ncfp+RGRCKbXUYh6RRgCn07Y9ppRqV0pd\nLiKTANqVUk+lZWNOg6iocPGyMDC4oMLxvDXjZqjtTzN+vhLAEgBLAXwzj/0sBXAm47kz0PqTjGY8\nP57+Q1qTSw2AtwA8BeCEUuoxACcAfCuPcpQk1uiiL9cUzZxZk4jizE2zi2nTilLqPgB10Ea/ODHP\n5Llxs+dF5KBSajwtK7IUWlVwvr7J0/r/G6FNdPYmsgMYSsPgItqMKZq1mRK7ASiMjQn6+vbj0KE2\nTu1NFCNDQ0B3t/Z/VvY0Xi4sdwDAowD+yuH245gOHgzzkJHlMIjIjXqH0hMATkLLZZ3UsyDfEpGv\nAnhYKXUvgNeUUtV6kwxR7NhN0dzVtR29vd1hFY+I8tDcDGzcaL9dKfEk+NCnV8+nyQXQshP3ZTw3\nH1pgYUpEntF/Xw2AD0RkVCnVBuDV9G3015cCOGS2n3Xr1qGiYubAmtWrV2N1qYWeFFl2UzTv27cD\nvb3BlomISkd/fz/6jbZ53cTEhGf7d9PhNIXsDqdGj5p2p/vRO41eaGLR/3/C6Gyqd0gdNzqRKqXO\nAKjSsxn3AbhXf+tJaCNbXsz4FW9a/e6dO3diCbseU0Q5naJZRKAUO7MRkffMKuQjIyOoq6vzZP9u\nMh9XmD0pIm5ColVKqU4Ap6BlKlalvfYwgJ8A2Kb//J8ANCqlrgPwExF5Uf+9x/R5PjoBTACoAPAC\nm1worpxM0TxnzhQDDyKKLUfBh96sYjAdZmtsk89NX0TegjZaBQAGMl67M+PnbbBgBCIULxxxY621\ntQF9ffsz+nxoEokhrFzJKZr9wAX9iILhNPMxDuumFkn7WQDM8qBcVAJ4IbfW09OJQ4facPy46AGI\ndnolEkOord2JLVss5/qjAnBBP6JgOJ1e/QponUHTH1dkPG/8n4gKZDdFM4fZElGcOc18nAGwRER+\nZjyhlPoigNfYt4LIH5yimYiKldPMh0J2z7c90GYYJSLfsXMpERUPN6vaGng1JKIiZ7mMFREVoJDg\ng4io6CSTSXR0bEZLSyOAO9DS0oiOjs1IJpNhF42oaOQTfJhVAVgtIKKiYayp09dXj7GxAwBewtjY\nAfT11aO+vo0BCJFH8plkbKNSKnPq86znROThwotFRBQ8rqlDFAynmY9jAK4DsCLtMWLyXKMPZSQi\nCoS2ps5tpq9pa+ocCbhERMXJUeZDRLyZzJ2IHIni7K/FPvsn19QhCo4nq9oSkbeieCMv9tk/uaYO\nUXAYfBAR6bimDhUqilnLKGLwQUSk45o6VCgGF85wng8iIh3X1CEKBjMfRERpuKYOkf+Y+SAissTO\npUR+YOaDKAaKfZgrEZUWBh9EMVDsw1yJqLSw2YWIiIgCxcwHEZGOczQQBYPBBxGRjsEFUTDY7EJE\nRESBYuaDiIoeRwsRRQuDDyIqehwtRBQtbHYhIiKiQDHzQVTE2NxARFHE4IOoiLG5gYiiiM0uRERE\nFCgGH0SxJGEXgIjINQYfRDGRTCbR0bEZLS2NAO5AS0sjOjo2I5lMhl00IqK8MPggioFkMon6+jb0\n9dVjbOwAgJcwNnYAfX31qK9vYwBCRLHCDqdEMbBp0zYcP/4gUqnmtGcVUqlmHD8u6Orajt7e7rCK\nFzm5RvlMTIRbNiJi8EEUC4ODR5BKdZu+lko1Y9++HejtDbZMUZZrlI/xMxGFh80uRBEnIjh3rgyA\nsthC4dy5uRBhJ1QiigcGH0QRp5TCnDlTsB7hIpgzZwpKWQUnRETRwuCDKAZaWxuQSOw3fS2RGMLK\nlTcHXCKAw32JyC0GH0Qx0NPTidraHUgkXsH0TV+QSLyC2tqd2LLlG4GUg8N9icgLDD6IYqC8vBxH\njw5g7do3UFnZBOB2VFY2Ye3aN3D06ADKy8t9LwOH+xKRVzjahSgmysvL0dvbjXvuAerqBIODKtA1\nWjjcl4i8wswHUSwF37lUG+57m+lr2nDfIwGXiIjiisEHEdnicF8i8hKDDyKyxeG+ROQl9vkgIkda\nWxvQ17c/o8+HJrzhvu4NDQHd3dr/M6dgB2bOkkpE3mLwQUSO9PR04tChNhw/LnoAoqAN9x3Sh/sO\nhF3EvDQ3Axs3av/PnIKdiPzFZhciciQKw32JqDgw80FEjoU93JeIigMzH0TkEjuXEpE7zHwQxRQ7\nTBZCwOCJKDwMPohiih0m8zM1lURHxzbs3XsEQBlaWqbQ3t6Anp5OAOyvQhQkNrsQUQlI4itfsV6X\nZmqK69IQBYmZD6IY6O/XHoDWxLJwIbBhw3QTy003Od1TdJsbMj+jt81Ij2N01Hpdml27tgPYjKge\nG6Jiw+CDKAbsbrwjI8CmTeavJZNJbNpk3twQpeGx6Z/Ri2akmZ/710il/sZsK6RSR7Fnz4sAjkX2\n2BAVm1CDD6VUNYB2ACcBVAN4RkQmLLZdDOBOAG8CuBHAo+nbKqXaAFwB4AMAEJF4zXhE5INkMon6\n+jZ9NdpuAApjY4K+vv04dKitaOfnmPm5NwP4U2RnNZIA2gA8iPPn/walcmyIoiDsPh97RORxPVB4\nBsAes42UUhUADorIw/q2L+jbG6/fC6BaRJ4FMAJgq/9FJ4q+TZu26TdgY0ZSYLq5YR26uraHWTzf\nzPzcCQBm69JsA/AggNI6NkRREFrwoWcyLlwN9CzGUqVUlcnmjQBOp217DEC7Uupy/alvicg2/bVT\nAOp8KjZRrAwOHkEqdZvpa6lUM/btOxJwiYKR/bkbAOzP2OoIgNI7NkRREGazy1IAZzKeOwOgBsBo\nxvPj6T/omRAAqFH6MppKqVuhVV8aATwNYNLj8hLFiojg3LkyWHeiVDh3bi5EpKhWozX/3J3QmlgE\nWqYDAErv2BBFRZjBxzyT58bNnheRg0qpcaVUlYiMQgtcBMB8ANcBqABwUkRGlVJvAhgGsMC3khPF\ngFIKc+YYzQ1mN1DBnDlTRXdzNf/c5QAGAGwHsAPAWcyaNYHz50vr2BBFRZh9PsahBQ/p5iEjy2EQ\nkRsBrNAzHCehXTFO6o9xPSgxmm9qlFI3+FRuothobW1AIpHZ3KBJJIawcuXNAZcoGOafuxxANxKJ\nBwE0YtWqtpI8NkRREGbm400A92U8Nx9aMGFKRJ4BAKVUDYAP9EyHgnkWxdK6detQUVEx47nVq1dj\nNeeipiLT09OJQ4facPy4pHU6FSQSQ6it3YktW4pzUFiuz11dvRMnTgxgzRrg5z8vvWND5ER/fz/6\njYl3dBMTpoNRXQkt+BCRY0qpC0GD/v8TRgZD75A6rncghVLqDIAqEZmEFrTcq+/nlFJqxGiS0QOT\nEyLyltXv3rlzJ5ZwDmoqAeXl5Th6dABdXduxd+8OvP/+XFRWnkV7ewO2bCneoaS5Pnd7+wBuuaUc\nZWUoyWND5IRZhXxkZAR1dd6M5wh7krFVSqlOAKeg9eNYlfbawwB+Am08HAD8JwCNSqnrAPxERF5M\n3w+A+5VSJwEsAbDC95ITxUR5eTl6e7txzz1AXZ1gcFCVxPovVp97ZMR+GyLyV6jBh56dMDIUAxmv\n3Znx8zZY0LMlD3tdPqLiU6odKJ187lI9NkTBC3uSMSIiIioxDD6IiIgoUAw+iIiIKFBhdzglogjw\ndzl7IqKZGHwQkefL2RMR5cLgg4giymrq85nssjY33WT+vqEhoLt7+n0LFwIbNjDbQxQEBh9EFBnJ\nZBKbNm3D3r1HAJShpWUK7e0N6OnptJz0yy5rMzICbNqU/b7mZmDjRn8+BxHlxg6nRBQJyWQS9fVt\n6Ourx9jYAQAvYWzsAPr66lFf34ZkMhl2EYnIIww+iCgSNm3ahuPHH0xbZwUAFFKpZhw/vg5dXdvD\nLB4ReYjNLkRFw1kfCbcy+1Z43UdicPAIUqlu09dSqWbs27cDvb3u909E0cHggyjG3PSRcMvPDpgi\ngnPnymAdPCmcOzcXIgJtIWsiijMGH0QxZfSR0JoqugEojI0J+vr249ChNhw9WtjKrJmjQfyc+0Mp\nhTlzpmCdvRHMmTPlMPDwNwNERIVj8EEUUzP7SBiMPhKCrq7t6O3tznqfXVBhDE1NHw0SxNwfra0N\n6Ovbn/F5NInEEFauvNnyvbkyQIC3GSAiKhw7nBLFlNZH4jbT17Q+EkdMX2tuBvbt0x5btwLvvKP9\nazzXnH3vD0RPTydqa3cgkXgFWvYCAASJxCuord2JLVu+Yfo+u1EyU1McJUMUNQw+iGIonz4ScVFe\nXo6jRwewdu0bqKxsAnA7KiubsHbtGzmbkOxGyezaxVEyRFHDZheiGPK2j4RT/velKC8vR29vN+65\nB6irEwwOKttmHrtRMocP7/C+oERUEGY+iGKqtbUBicR+09fs+kg4lUwm0dGxGS0tjQDuQEtLIzo6\nNgc04Zd9oOMkA3T69Fxcf71gwwZg5Upg3TpPC0lELjDzQRRTPT2dOHSoDcePS1qTgyCRGNL7SAwU\nsHfB1NRvfR1N4wUnGaCrrprCO+9Mv2Z0niWi8DDzQRRTbvtIWMnMcjQ3N+Dtt/9D3jOO9vdrGYaV\nK4GmJuBTn9L+NZ4zJirzShAZICLyFjMfRDHmpo+Emamp7DlDzp5tBPAF0+1zzThqt9CbmUImD/M3\nA0REfmDmg6hoZN+8nY522bUrc8SIAPB3NI2RaamubsQnP3kHqqvd9SfxOgNERP5j5oOoyBgTbg0O\nHsG5c2WYM2cKra0NWLXKesKt11/PHDGiAPgzmkZE8Hd/91t8/ettSCYfBNANI+D59rf343vfa8O6\ndQOWZTVjlwHye10aIsoPgw+iImLWfGLc1P/Lf2nDggUD2LChPGM2U8FHH5llORoA7AeQ/4yjZuXq\n6JgOiCYnTyGZfDRj3wpAM6amBO+8sx1aUOJGdkDE4IIoWhh8EBWRmc0nBu2m/uGHgi98YeaU6yMj\nwKZNwOzZZlmOTgBtAFIAPg/3fSmS+MpX2jA6mh4Q5e5Pwrk5iIob+3wQFZGhodxTrvf3a1OuZ45s\nmZj4NZR6OeMd5QAGAOxGWdmNcN+XYpseeOTXn2R6inUiKjbMfBAVDcGcOblv6hddNBeTk5P43Ofa\nM0a2TAK4DdoN///DdJbjR6itfR9PPvnfcMstl7kcTZN/fxItE8OVaYmKFYMPoqKhLJpPDFon0a6u\n7SZNM5cDeBXAAygr68bU1NWorDyL9vYGbNkygHffzX/OkE2btmHPnh8B+L1JeXL3J1m27GY8/7yz\n38XOpETxw+CDqIhce20DxsbMb+rAED71qZsxOPgji7VQygH8HSoqmjA19Q+u5wwxVpmdzqysgNP+\nJMAQysp2YuFC53NzMLggih/2+SAqIo891olFi8yXpV+0aCd2737Q0Wq4hcheZdbIcqSb7k9y6aU3\n4uqrb0dVVRM6Ot7Ar341gNtvN8+0ZM6eunCh+Dp7KhH5g5kPoiJSVqZNuNXVtR379u3AuXNzMWfO\nWaxcqTWflJeX266FUmh/i+xVZo0sh0DLyMzsT3L06H/DZZdd5mjOkNWrgZYWrUln794jGBsrw29/\nO4X29gb09HRyQjGimGDwQVRkjAm3envNpy1vbW1AX9/+jD4fmvT+FkNDQHe39rzTvhTmq8waWY7t\nAHYgkfgQ11xz6YyAyMq6dUBFhfb733sPuPrqJN58c+bkZFFb7I6I7DH4ICpiZtkEu7VQ1qwZwPPP\nA83NwMaN+f8+88xKObRgQfDJTzbi1KkDWe816zh68cXaz7//PfDOO8CSJdswNfUgMicn0xa7E3R1\nzZzHhIiiiX0+iEqM3VooZWWFZQ7sVpm9/fY/Mn1t9Wpg3z7t8eqrwC9+of27bx+wc6e2jTYNvPU8\nJvv2HSmo7EQUDGY+iEqQV6vhmvFvlVmraeAN04vduV0hl4iCwcwHUcnz9kbt3yqz6fOYmHG/2B0R\nBYuZDyLynF+ZlWXLGrB7t3Vn2XwWuyOi8DDzQUQ+8y4TsWZNJ2przecx0Zp0vuHZ7yIi/zD4IKKY\nkAvzmHjfpENEQWKzCxG5ljk89r33gGuvnZ4L5KabCtu/sUbM3r1HAJRh+fIpXHFFAz796U4sWtSN\nsjJBVZXCqVPA3XdzqnWiuGDwQUSupd/sR0aAujotGDH6d4yMAJs2udt39hoxCuPjgsnJ/Zg7lxOK\nEcUZm12IKJKy14gBpicUW4euru1hFo+ICsDMBxG5mkrdb9lrxEzTJhTbgd7eYMtERN5g8EFErqZS\n95P5GjHpOKEYUZwx+CCKKbO1UMLOVgCCoSFVcBbFeo2Y6d/DCcWI4ovBB1FMRWVkR+aIlO98x5sl\n7u1W3+WEYkTxpUSspiouPkqpJQCGh4eHscSrhSyIYsZueGw+Qc3MESm3YXodl/2ord1R0IiU6X2v\nM10jhqNdiII1MjKCuro6AKgTkZFC9sXMB1GJ8TJjMnNEisGbJe6NNWK6urZj794deP/9uaisPIv2\n9gZs2cLAgyjOmPkgIteqqxsxOnoAVv0yqqqacOrUgYJ/jzaHiGB42LvVd4koP15mPjjPBxG5ks+I\nFG+wcylRsWDwQUSuzByRYoYjUojIHIMPInKttbUBicR+09c4IoWIrIQafCilqpVSDyml2pRSnUqp\nihzbLlZKPapvu9VqW6XUd5VSl/tXaiIy9PRwiXsiyl/YmY89IvK4iAwAeAbAHrON9EDjoIg8rG/7\ngr595nbLAawCMN/HMhORzhiRwiXuiSgfoQ21VUotRlpjsYhMKKWWKqWqRGQ0Y/NGAKfTtj2mlGpX\nSl0uIpP6/oxMyBmfi05EacrLy9Hb24177tFGpAwOckQKEeUW5jwfS5EdKJwBUANgNOP58fQf0gKN\nGgBv6f9fJSLPKvZuIwqRd6dfNKePJyIvhBl8zDN5btzseRE5qJQaT8uKLIWWNZkPXGhu2e1jWYko\nYAwuiIpXmH0+xpHdN2MeMrIcBhG5EcAKpdStAE5Cq2KdNLIgRvMLERERRVuYwcebJs/NhxZYmBKR\nZ0TkELTA4wM9C9IIoFop9ZdKqXuhNcW0K6Vu8KHMREREVKBQp1dXSr0rItfr/58H4ICe4TA6pI6L\nyCn95zMAqkRkUim1FcBPRORFk32mANSYdFq9ML36LbfcgoqKmSN1V69ejdXM8RLlxctF6ogoOvr7\n+9FvnNy6iYkJHD58GPBgevWwg48boGUuTkHrx/GUETQopXZDCzC26T93QsuKXAfgRGbgoTe/3Adg\nK4CnAXwrMwDh2i5ERETuFM2qtiLyFqZHqwxkvHZnxs/bbPY1AeBx/UFEREQRFfYkY0RERFRiGHwQ\nERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EBERUaAYfBAR\nEVGgGHwQERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EBER\nUaAYfBAREVGgGHwQERFRoBh8EBERUaAYfBAREVGgGHyQ7/r7+8MuQsnhMQ8ej3nweMzji8EH+Y4X\niODxmAePxzx4PObxxeCDiIiIAsXgg4iIiALF4IOIiIgCNTvsAgTsEgA4fvx42OUoKRMTExgZGQm7\nGCWFxzx4PObB4zEPVtq985JC96VEpNB9xIZS6s8A/CDschAREcXY3SLyXCE7KLXg40oAtwEYBfC7\ncEtDREQUK5cAqAKwX0ROF7Kjkgo+iIiIKHzscEpERESBYvBBREREgWLwQRRDSqlqpdRDSqk2pVSn\nUmSwzdwAAAWiSURBVKrC4fu+q5S63O/yEVF8KaXaHGzj6hp04f3F1udDKVUNoB3ASQDVAJ4RkYlC\ntyVreR7z5QCW6D/eCGC9iJwKpKBFRCn1pogs1f9fAWCPiDTZvGc5gN0A6kRk1P9SFpd8rxf6BfwK\nAB8AgIgMBFHOYuLiet6o/1gDYLeIHAukoEVC/87OB/AUgHkiMplj27yvQemKcZ6PPZkHBIDVAcln\nW7Lm6Djqry0Rkcf1n9sAHACwIMCyxp5SajGAC7UGEZlQSi1VSlVZBRVptZIzARSxWDm+Xiil7gVQ\nISLb9JviqwAYfOQvn2v0/SKywfhBKbUbwJ3+F7F4GAGyUuq7ubZzcw3KVFTNLmYHBMBSpVRVIduS\ntTyP41IAW9N+fg1ADY953pYiO4g4A622Z2WViBwEoHwrVRFzcb34lohs07c9BaDO7zIWGxfHvF0P\n9AwFDQUtcXbXCTfXoBmKKvhAfgek4INHAPI4jvrNL/0ifKP2NJsA8jTP5Llxi+fTm1vIPcffc+Om\nqZS6VSm1XCn1KIArAyhjscn3Gv0UgBNKqa165ulbfhauxOV1DTJTbM0u+RyQgg8eAcjzOIrIW2k/\nfhPAfX4UqsiNQ2uXTTdPf34Go7klV9stOZLP93yp/vxJERlVSr0JYBhsXsxXvtfop6GdF40A2gC8\nCW1CSfKe42uQlWLLfORzQAo+eATA5XHUaya7ReRv/SpYEXvT5Ln50DrlZWoEUK2U+kv9mNdAS0/f\n4GcBi1A+3/OTAMaNjJ7eXFDDY563fIPsb4nIwyJyI4DHALzGkV2u2Y1EyecaZKrYgo98DkjBB48A\nuDiOejPAaRF51rdSFTG9B/+F2p9Sah6AE8bNTim12Gj7FpEBEXlWfzyjv2VvRgaK7OXzPT8JZlC9\nkG+Q/arxg/5dfxpaForyl9XnI+O6kvMa5ERRBR95XpQLPniU3zHXf16iv+9F/ed7WTtxZZU+tr4N\nwHoAq9Jeexha2vkCpVSFUuohaDWa9ezkm588ry2nAIwYx1gpVaNvy4AvD3leW05C60OWySyAIQt6\nHyXjOvGwUurWtJczryu5rkH2v6sI5/m4AVoUfApa1PtU2pd1N4CfGL3Qc21Lzjk95vqF4gSmU3oK\nwAciws54FHl5XluqANwP7aa4BFqTwGjghY65PI/5F6E1K04AqADwGgO+6Cq64IOIiIiiraiaXYiI\niCj6GHwQERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EBERUaAYfBAREVGgGHwQERFRoBh8EJHn\nlFIppdR5i9fu019/1OL1e5VSZ9J+Hta3Nx5nlFK706ftJ6J4YfBBRL7JWBvCsAr2q2ZKxv/3AFgM\nbaryv4Q2ffYw16ghiicGH0TklxGYLza1XH8tHydF5Gci8paIvCgit0FbN2V9oYUkouAx+CAiv7wA\n4M70J/QVMIcBnDF9R34eBXCfB/shooAx+CAiv4wAF1YmNXwJWlCiPNz/5R7si4gCxOCDiPy0G1rA\nYWgEsNejfZ+BFsTUeLQ/IgoIgw8i8tNe6P0+lFKNAE6LyKhH+54PrTPqSY/2R0QBYfBBRL4RkYMA\nqvVRKaZZD6XUd5VSf+li93X675gspIxEFDwGH0TkNyP70Q7geZPXazBzVMxSOOuQugHAUwWXjogC\nNzvsAhBR0dsN4BkAIiI/M3n9AICt+kiYCWiByHcztqlRSi3W/38dgPsBVEMLaIgoZhh8EJEf0icJ\new3apGBPmb0uIo8rpWoAPK0/9byIbMzYXzumA41xAD8FsERE3vO01EQUCCViN9EgERERkXfY54OI\niIgCxeCDiIiIAsXgg4iIiALF4IOIiIgCxeCDiIiIAsXgg4iIiALF4IOIiIgCxeCDiIiIAsXgg4iI\niALF4IOIiIgCxeCDiIiIAsXgg4iIiAL1/wCRumid7EqLfAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -91,15 +94,13 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAF+CAYAAABOGyq2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XtwlNd9//HPMZeKXKyL26auXVtIEJP86IxuQOY3yPHP\nwhaNO4bYXKwm7a+pBVIcx4YWGUSi2J5MwAZlTOpeLC6GtDhywMDUSZxKgmDPzyHBRkLOxrnUCNS0\nQYVEAgEKiWLp/P7YR0SIlbS72t2zz+77NaOJ9jlHj777jLP6cJ5zzmOstQIAAEh217kuAAAAIByE\nFgAA4AuEFgAA4AuEFgAA4AuEFgAA4AuEFgAA4AuEFgAA4AuEFgAA4AuEFsSNMabQGPOcMabAdS0A\nAP8jtCBurLXHJZ13XQcAIDVMdl1AqjLGFEpaJumYpDmSNlpre6Ppa4y5X1K2pHOSZK3d5x0/ISnP\nO2687hustfVR1Hv/0HmHHZsuaYmkk5KmS9o22nsAACDeCC0TEOoPvXc8U9Iha22O9/qkpG0KBpOI\n+hpjVkjKtNbWeyGiWdLQ73xO0l55YUZSbaSBxQtEOZIajDFZ1toLw5r3WmtLhtW5V9Ldw+safipJ\nVtJBa217JDUAABAOwwMTo2eMecpauy7E8fslPWWtnTns2KCkkaFg3L7GmJ6hQOO1Xe8dz5Rkh85n\njCmT1GGt7RzWd4W1dtuI35cpqcxau3/E8QFJ2cPOVyhpq7V2zrA+PZKKhv+OcK6RpBcJMgCAiWJO\ny8SMlviumsfhBQUpeCsn7L5ecJAx5k5jTJkxZqOkGyTJWts7IgAVhggTx7yfGTp3lqStkg6GqMOM\neF0iqWfEsZ5R3kNIXpAqlLTcGJMb7s8BABAKt4cmZuQfekmStfaQMea8MSbXCxIlCgacnAj75it4\nC+aktbbTGHNMUqukGVcVYUyNpIYQ5z5ujJEXXJ6StFHSipGjPaPICnHs/CjHQ7LWHpJ0KNz+AACM\nhdASJm8EpFa/G10xkoZGP4bCyy+H5pRYa+cYY1YYYzoUnMhqvP+9xhh9jaTzQyMo1tpeY0yeMaZg\nxO2W5dbazaOc+7gxJkfBsFMUZmCRggFlZMjKEquBAACOEFrC5K2auWr+ijFmo7W2doyf2eb1y5N0\nbqy5IKH6GmOMxhnZ8G7BjDoxyQtbSyQ9pmDoGq3ekec4JmnliGM5GiV4AQAQb05DSyRLasfqG22b\n1x5yOXG4b2GM99YjKdcb2VgpacWwtkIFR1BOjdXXWnvKGNM2dOvICzQdI0ZZinTt3JPhnpb0mDd5\n99QYQeuq9+KN0FwJTN73HWMFLwAA4sn1SMuoS2oj7BtV2zjLicMx1tKrDZIWGGPyJb0xYrVOraQ3\nJNWH0XeppCpvKXSRpLtG/J7zGmX0w1u589jQLSEviFhjTKW1drvXp8w7r5VUa4xpsdZ+Z+h3G2PW\nSDql4FybpWO8XwAA4srZkudIltSO1VfBUZKI27yRi5DLiSN4D/eNXDoMAADiw+VIy1hLajsj6Jsf\nTZsxJlsKLidW8NbIAgWXA4cdWggsAAAkjsvQEsmS2rH6RtsW1nJiAACQHFyGlkiW1I7VN9q2XoW3\nnFjGmBsklSs4AvTr8d4YAAC4IkNSrqQma233RE7kMrREsqR2rL7nomwbdznxMOWSXgizLwAAuNYn\nJH1tIidwFlrGW1I7fFnwOH07o2xTGMuJh3RK0u7du/WhD30oNhcA41q9erWeeeYZ12WkFa554nHN\nE49rnlg//vGP9clPflK6dr5qxFwveR5rSe3IZcFj9Y26TWMvJx7ya0n60Ic+pKKioojfJKKTmZnJ\n9U4wrnnicc0Tj2vuzISnVzgNLd6oxtDIxr4Rbcsi6BttW6dG3yEWAAAkEZ7yDAAAfIHQAgAAfIHQ\ngqRVUVHhuoS0wzVPPK554nHN/cvZNv5+YowpktTa2trK5C0AACLQ1tam4uJiSSq21rZN5FyMtAAA\nAF8gtAAAAF8gtAAAAF8gtAAAAF8gtAAAAF8gtAAAAF8gtAAAAF8gtGBUOTk5qq2tvep1fX39GD8B\nAED8EFoQtjlz5igvL891GQCANOX0Kc/wl6amJtclAADSGCMtCFt2dvZVt4dmzJih+vp67du3TyUl\nJbruuutUUlKi48ePX/VzL7300pX2nJwcrVu37ppzr127VjNmzLjSZ9myZert7b3qd23fvl1bt25V\nTk6O9u/fH783CgBISoy0IGzGmGuOvfjiizLGaP369ZKkyspKLVu2TO+8844kaevWraqurtayZcu0\nfv16vfnmm3r66ad16tQpff3rX5ckVVVVafv27Vq7dq1KSkr05ptvatOmTTLGXOkjSXv27FFra6uq\nq6t5BhQApCFCiyNdF7vUdalr1PaMyRn68B98eMxz/OgXP9Kv3/31NcdvfN+NuvH9N064xnCcOnVK\n3d3dV153d3erurpaFy5c0PXXX69169apurpa//RP/yRJuu+++5Sfn6+qqip1dnYqNzdX58+f19at\nW/Xggw9e6XPu3DkdOnToqt916NAhnTx5UrfeemtC3hsAILkQWhxpaG3Qk689OWr7h//gw3r7obfH\nPMfSvUv1o1/86Jrjj3/0cT1xxxMTLTEsCxYsuOr18Im6bW1t6u3t1cqVK6/qs2TJEq1cuVJtbW3K\nzc29ajSlt7dXLS0tOnjw4DUjO0uWLCGwAEAaI7Q4UlVcpXtvu3fU9ozJGeOeY+/SvaOOtCRKTk7O\nqG3nzp2TtTbkrRxjjHp6eiQFw826det07NgxGWO0YMECZWVlXTWnRRIrlwAgzRFaHLnx/RO/hTPe\n7SPXhgLNvn37NH369Gvah0JISUmJli1bpuPHj18ZSVm3bp327duXuGIBAEmP1UOIm8LCQklSR0eH\nCgoKrnz98pe/VGVlpXp6eq6sNFq3bt1Vt35aW1ud1AwASF6MtCDmrLVXvn/66af12GOP6cSJE7rr\nrrv0xhtvaNu2bZo7d65yc3OVnZ0tSXrssce0du1aWWu1adMmtbW1SZLa29tVUFDg5H0AAJILIy0Y\nlTHmqsmwIyfGjmwP1a+mpkYvvfSSWltbtWzZMm3fvl0PPPCA9uzZI0nKzMzUwYMHderUKd199936\n9Kc/reXLl6u1tVU5OTlasWJFyN8NAEg/Zvi/ihGaMaZIUmtrayv7gwAAEIG2tjYVFxdLUrG1tm0i\n52KkBQAATMjpi6f1/f/+ftx/D6EFAABE5VL/JT3x6hOa+exMPfzKw4r33Rsm4gIAgIgMDA5oV/su\n1R2uU/flbq2at0q1pbVxn39IaAEAAGFrOtGkmpYaBc4G9MDsB7SxbKNys3IT8rsJLQAAICx/deCv\n9K8/+FeV3lKqo5VHNfemuQn9/YQWAAAQlntm3qOPz/q4Fs9a7GQrCkILAAAIy/LZy53+flYPAQAA\nXyC0AAAASdIbP3/DdQljIrQAAJDmAmcCWrh7oeZtn6fv/uy7rssZFaEFAIA0dfriaVW+XKmChgKd\nPHdSB5Yf0P/+k//tuqxRMREXAIA009ffp81HNmvzkc2aNnmatpRvUXVJtaZMmuK6tDERWgAASCPf\n/dl3tXTv0qt2ss3KyHJdVlgILQAApJGZN8xU+YxyPf7RxxO2k22sEFoAAEgjf/jeP9TORTtdlxEV\nJuICAABfILQAAJBCLvVf0tm+s67LiAtCCwAAKWBgcEA72nbog89+UKubVrsuJy6czmkxxkyXtETS\nSUnTJW2z1vZG2ncCbc9JWinJSmqTtMJa2x6fdwsAQHw0nWjSmpY1+uHZH6pidoW+dOeXXJcUF64n\n4u611pZIkjEmU9JeSXdH0TfathOSMiUZa+2FWL4xAADiLXAmoDUta9Tc0azSW0p1tPKo5t4013VZ\nceMstBhjChUc4ZAkWWt7jTElxphca21nuH0lZUfT5v0OY629GIe3BwBA3AwMDqj6m9V6vv155Wfn\n68DyA1p02yIZY1yXFlcuR1pKJPWMONYjKU9SZwR986Ns65R0gzHmPkm9ku6S1GCtPRXh+wAAIKEm\nXTdJUydN1ZbyLaoqqdLUSVNdl5QQLkNLqO33zo9yfKy+0bZJ0nNDozrGmB4Fbx2VjFk1AABJ4B/v\n+UfXJSScy9VD5yXljDiW5R2PpG+0bRpxG+qkpCJjzPXhlQ8AABLJ5UjLMQVX7gyXo2B4iKTvuWja\nvHkyh6y1OdKV+S5WY1i9erUyMzOvOlZRUaGKioqxfgwAgIidu3xO2dOyXZcRkcbGRjU2Nl51rLc3\n5KLgqBhrx/w7HVfGmHestTO977MktVhr53ivCyWdH5pjMk7fiNu8lUQrrLX1XtsS73V5iDqLJLW2\ntraqqKgofhcEAJD2Tl88rS8c/oJe+tFL+unDP9UH3vcB1yVNSFtbm4qLiyWp2FrbNpFzuV7yvNQY\ns0bSKQXnkiwd1lYr6Q1J9WH0jbjNG1k57rX1Kjg5d/jPAQCQMJf6L6n+SL02H9msaZOn6Yv/54u+\nG2mJN6cjLX7BSAsAIF4GBge0q32X6g7Xqftyt1bNW6Xa0lplZYRaS+I/qTTSAgBA2nr9Z6/roW89\npMDZgCpmV2hD2QblZuW6LitpEVoAAHCkr79PmRmZKb+TbawQWgAAcKR8Rrnuzr875XeyjRWe8gwA\ngEMElvARWgAAiJOBwQG9O/iu6zJSBqEFAIA4aDrRpIKGAm1t3eq6lJRBaAEAIIYCZwJauHuhFr6w\nUNkZ2UywjSEm4gIAEANDO9nubN+p/Ox8HVh+QItuW8SclRgitAAAMAGXf3tZm767SZuObNK0ydP0\nlYVfUVVxlaZMmuK6tJRDaAEAYAKMMXrx7Rf1mTmf0frS9Smzk20yIrQAADABGZMz9IPqHzCykgBM\nxAUAYIIILIlBaAEAYBw8XDg5EFoAABhFX3+fnnz1SZX9S5kG7aDrctIeoQUAgBEGBge0o22HZj47\nUxte36CSPy7Rbwd+67qstMdEXAAAhmnuaNaa5jUKnA2oYnaFNpRtUG5WruuyIEILAACSgjvZ1rTU\nqKmjSaW3lOpo5VF2s00yhBYAACS9+MMX1XGuQ/uX7dfiWYvZyTYJEVoAAJD0+ds/r8fveFxTJ011\nXQpGQWgBAEDStCnTXJeAcbB6CAAA+AKhBQCQ8gJnAvrYCx/TW//zlutSMAGEFgBAyuq62KUVL69Q\nQUOBTvSc0IXfXHBdEiaAOS0AgJTT19+n+iP12nxkszImZ+grC7+iquIqnhHkc4QWAEDKGBgc0Fff\n+qo+/53Pq+dyjx6d96hqS2uVlZHlujTEAKEFAJAyOs51qOqbVVr64aXsZJuCCC0AgJTxwRs+qJOP\nnNSfZP6J61IQB0zEBQCkFAJL6iK0AAAAXyC0AAB8YWBwQDvadmjj/9vouhQ4QmgBACS95o5mFTYU\nqvIblfpp909lrXVdEhxgIi4AIGkFzgRU01Kjpo4mld5SqqOVRzX3prmuy4IjhBYAQNLputilusN1\n2tm+U/nZ+Tqw/IAW3bZIxhjXpcEhQgsAIOn89b/9tVpPt2pL+RZVl1Szky0kEVoAAEnon+/5Z+VM\ny2EnW1yF0AIASDp52XmuS0ASYvUQAADwBUILACChui526e+a/k6/+u2vXJcCnyG0AAASoq+/T0++\n+qRmPDtDX33rq3r77NuuS4LPMKcFABBXA4MD2tW+S3WH69R9uVur5q1SbWktk2wRMUILACBumjua\ntaZ5jQJnA3pg9gPaWLZRuVm5rsuCTzkNLcaY6ZKWSDopabqkbdba3kj7Rts24vzPSXrMWnshpm8S\nANLUK++8onu+do/m3zKfnWwRE65HWvZaa0skyRiTKWmvpLuj6Bttm7zjZZKWSnpKEqEFAGKgPL9c\nr/zFK1o4YyE72SImnE3ENcYUSrryxCtv9KPEGJMbSd9o24adO9P7ticmbwwAIEmadN0k/dnMPyOw\nIGZcrh4q0bVBoUdSqB2FxuobbduQpdbaQ5L4fxUAAEnMZWgJNW38/CjHx+obbdvQbaE94RQLALha\nc0ezDp867LoMpBGXoeW8pJwRx7K845H0japt6LYQE28BIDKBMwEt3L1Q5bvL9S8/+BfX5SCNuJyI\ne0zSyhHHchRc5RNJ33NRti2QlG2MqVTw1lCepCXGmIPW2vZQBa9evVqZmZlXHauoqFBFRUWo7gCQ\nUroudukLh7+g59ufV352vg4sP6BFty1yXRaSSGNjoxobG6861tsbclFwVIy1dvxecWKMecdaO9P7\nPktSi7V2jve6UNJ5a+2pMPpG1TailkFJedbazhBtRZJaW1tbVVRUFNuLAABJrq+/T/VH6rXpyCZN\nmzxNj3/0cVWXVGvKpCmuS4MPtLW1qbi4WJKKrbVtEzmX6yXPS40xaySdUnDS7NJhbbWS3pBUH0bf\naNuGVg+tVHCV0VpjzNOhggsApKNBO6i52+fqRM8JPTrvUa0vXc9OtnDG6UiLXzDSAiCdvfLOK/rw\nH3yYnWwRlVQaaQEAJLmPzfyY6xIASTzlGQAA+AShBQDSWF9/nxoDjeN3BJIAoQUA0tDA4IB2tO3Q\nzGdn6lP/9in95/n/dF0SMC5CCwCkmaYTTSpsKFTlNyp1R+4d+snDP9GtWbe6LgsYFxNxASBNBM4E\nVNNSo6aOJpXeUqqjlUc196a5rssCwkZoAYA0sPP4TlV+o/KqnWx5+jL8htACAGngrvy79Ez5M6ou\nqdbUSVNdlwNEhdACAGng5utv1iPzHnFdBjAhTMQFAAC+QGgBgBQQOBPQ6YunXZcBxBWhBQB87PTF\n06p8uVIFDQXa8v0trssB4oo5LQDgQ5f6L6n+SL02H9msaZOnaUv5FlWVVLkuC4grQgsA+MjA4IB2\nte9S3eE6dV/u1iNzH9Hnbv+csjKyXJcGxB2hBQB84sJvLmj+8/MVOBtQxewKbSjboNysXNdlAQlD\naAEAn7j+967XotsWafu929nJFmmJ0AIAPvLFO7/ougTAGVYPAQAAXyC0AECSGBgc0Ntn33ZdBpC0\nCC0AkASaO5pV2FCo23fdrl/99leuywGSEqEFABwKnAlo4e6FKt9drqyMLH37E9/We6a8x3VZQFJi\nIi4AONB1sUt1h+u0s32n8rPzdWD5AS26bZGMMa5LA5IWoQUAEqzhWIP+tvlvr+xkW11SrSmTprgu\nC0h6hBYASLAb33+jPjPnM1pfup6dbIEIEFoAIMHuve1e3Xvbva7LAHyHibgAAMAXCC0AEGP/c+l/\nNDA44LoMIOUQWgAgRvr6+/Tkq08q/+/ztfsHu12XA6Qc5rQAwAQNDA5oV/su1R2uU/flbj0671Et\nmrXIdVlAyiG0AMAENJ1oUk1LjQJnA6qYXaENZRuUm5XruiwgJRFaACAKP7/wcz348oNq6mjS/Fvm\n62jlUc29aa7rsoCURmgBgChkZWTpNwO/0f5l+7V41mJ2sgUSgNACAFF479T36vD/Pey6DCCtsHoI\nAAD4AqEFAEZxqf+S6xIADENoAYARAmcCWrh7oe752j2y1rouB4An4tBijMkdo61gIsUAgEtdF7tU\n+XKlChoK1HGuQ6vmrXJdEoBhopmIe9IY85S1dv3QAWPM9ZK2S7pf0qRYFQcAidDX36f6I/XadGST\npk2epi3lW1RVUqWpk6a6Lg3AMNGElhmSGowx70haKSlf0iZJx7w2APCNr7Z/VbWHaq/sZLu+dL2y\nMrJclwUghIhDi7X2pKS7jDFPSTokyUqqstZuj3VxABBvb515S3fk3qEv3fklTc+e7rocAGOIOLR4\nt4KeVnCUZa1+N/KSaa39cozrA4C4qr+7XtcZ1iQAfhDN7aFOSW9KmmGtPSVJxpgGSXuMMdXW2pkx\nrA8A4orAAvhHNKFlhbV23/AD1to2STOMMTWRnMgYM13SEkknJU2XtM1a2xtp3wm0lUnKkpQj6S5J\nG621xyN5DwCS27uD72rydWz+DaSCaOa07BujbXOEp9trrS2RJGNMpqS9ku6Oom+0bS2SCq21b3nP\nDdkrJhMDKWFgcEC72nfpydeeVMtftui237/NdUkAJiiaOS17FJx8G5K1dnmY5ykcfh5rba8xpsQY\nk2ut7Qy3r6TsaNq835E34nedC6d2AMmt6USTalpqFDgb0AOzH9B7przHdUkAYiCaMdM3R7y+QVKR\npBJJj0VwnhJJPSOO9UjKU3DeTLh986Ns6xwRWPIlLQ27egBJJ3AmoJqWGjV1NGn+LfN1tPKo5t40\n13VZAGIkmttDIW8BGWNWSipWcJO5cITaCOH8KMfH6httm6Qrc16qJBUqODLTOVbRAJJP18Uu1R2u\n0872ncrLztP+Zfu1eNZiebd9AaSIWE6bb5G0LIL+5xWcADtclnc8kr7RtkmSrLWnrLXrJB2UdMhb\n0g3AR870ndHLP31Zz5Q/o7cfelsf/9DHCSxACorJlHrvD30kt4ak4A66K0ccy1FwlU8kfc9F0zY0\nwuIFFkl6ScH9Z0okfSdUwatXr1ZmZuZVxyoqKlRRURGqO4AEKfijAv1s9c+UMTnDdSlAWmtsbFRj\nY+NVx3p7Qy4Kjko0E3EHde1E3KF/0iwJ9zzW2uPGmOG3abIkdQzNM/Em3573RkLG6tsZTZu33Lls\nWEn5CoacY6PV/Mwzz6ioqCjctwgggQgsgHuh/iHf1tam4uLimJw/mpGW7FAHR9tfZRxLjTFrJJ1S\ncIRj+ETYWklvSKoPo2/EbdbaQ8aYBmNMpYKha4GkO621F6J4HwDizFrLLR8gzRlrR129/LtOEczz\nSMU/+saYIkmtra2tjLQACTY0yfbm62/WE3c84bocABEaNtJS7G1GG7VwR1rOa/RbQnbYaytp0kQK\nAgBJ6uvvU/2Rem06skkZkzO04c4NrksC4Fi4oSXkLSEAiLWhnWzrDtep+3K3Hp33qNaXrldWRqgd\nDACkk3BDS4+kImvtW0MHjDH3STqYireDALgxfCfbitkV2lC2QblZua7LApAkwg0tRr+7HTRkr4Kb\nybXHtCIAaclaq89953PKzMhkJ1sAIU1knxam8QOIGWOMmj7ZpJxpOawSAhASz2sHkDRueM8NrksA\nkMQi2cY/1Nro8ddLAwAAxEAkIy3rjTEjt9i/5pi1tnbiZQFINc0dzfqHN/5Be5fu1e9N/j3X5QDw\noXBDy3EFt7nPH3asLcQxq+BOtgAgSQqcCaimpUZNHU2af8t8/eJXv9DN19/suiwAPhRWaLHWxuah\nAQDSRtfFLn3h8Bf0fPvzysvO0/5l+7V41mIm2QKIGhNxAcTU0E62m49sVsbkDG0p36KqkipNnTTV\ndWkAfI7QAiCmdv9gtza8vkGr5q1SbWktO9kCiBlCC4CY+pvCv1H5jHJ2sgUQc5EseQaAcU2ZNIXA\nAiAuCC0AAMAXCC0AwtbX36cnX31Sh04ecl0KgDREaAEwroHBAe1o26GZz87Uhtc36Ce//InrkgCk\nISbiAhhTc0ez1jSvUeBsQBWzK7ShbANzVgA4QWgBENLwnWxLbynV0cqjmnvTXNdlAUhjhBYA17jU\nf0nzd87XB977AR1YfkCLblvETrYAnCO0ALjG+6a+Twf/8qAK/qhAUyZNcV0OAEgitAAYxZyb5rgu\nAQCuwuohAADgC4QWIA0FzgRUf6TedRkAEBFCC5BGui52qfLlShU0FGhb2zZd6r/kuiQACBtzWoA0\n0Nffp/oj9dp0ZJOmTZ6mLeVbVF1SzSRbAL5CaAFS2MDggHa171Ld4Tp1X+7Wo/Me1frS9crKyHJd\nGgBEjNACpLB1B9ep/nv17GQLICUQWoAU9pm5n9HS/7WUnWwBpARCC5DCcrNyGV0BkDJYPQQAAHyB\n0AL41MDggJ4//rzO9p11XQoAJAShBfCh5o5mFTYU6sGXH9S3/uNbrssBgIQgtAA+EjgT0MLdC1W+\nu1yZGZk6WnlUnyr8lOuyACAhmIgL+EDXxS7VHa7TzvadysvO075l+/TxWR+XMcZ1aQCQMIQWIMmd\nPHdSf/rPf3plJ9uqkipNnTTVdVkAkHCEFiDJTc+ari/f/WU9MPsBdrIFkNYILUCSM8aouqTadRkA\n4BwTcQEAgC8QWgDHui526bXO11yXAQBJj9ACONLX36cnXn1CM56doYdeeUiDdtB1SQCQ1JjTAiTY\nwOCAdrXvUt3hOnVf7taj8x7V+tL1us7wbwgAGIvT0GKMmS5piaSTkqZL2mat7Y207wTayiQVeb9i\njqS11tpTcXirgCSp6USTalpqFDgbUMXsCm0o28ADDQEgTK5HWvZaa0skyRiTKWmvpLuj6Btxm/d9\nkbV2s9d2v6QWSTNi+xaBoBUvr9D249s1/5b5+v6D39e8m+e5LgkAfMVZaDHGFEqyQ6+ttb3GmBJj\nTK61tjPcvpKyo2zLl/SUpM1e80FJeaF+PxALi2Yt0sdmfkyLZy1mJ1sAiILLkZYSST0jjvVIypPU\nGUHf/GjarLWHjDHFw47PkWQJLIiXP//gn7suAQB8zeXMv1Bbe54f5fhYfaNtk7W2fdjxxyStHKNe\nAADgkMvQcl5SzohjWd7xSPpG23aFMWaFpD3W2h3hFg+M9PrPXpe1dvyOAICouLw9dEzXjmzkKLjK\nJ5K+56Jsk3RlBVG3tXb/eAWvXr1amZmZVx2rqKhQRUXFeD+KFBY4E1BNS42aOpr075/4d5XPKHdd\nEgA40djYqMbGxquO9faGXBQcFePyX4bGmHestTO977MktVhr53ivCyWdH1qCPE7faNuKJGVbaw95\nr1dI+rq19sKIOosktba2tqqoqEiAFNzJtu5wnXa271Redp42LdjEJFsAGKGtrU3FxcWSVGytbZvI\nuVwveV5qjFkj6ZSCk22XDmurlfSGpPow+kbc5u3fckyS9f7IGEnnrLXbYvoOkXL6+vtUf6Rem45s\n0rTJ0/RM+TOqLqnW1ElTXZcGACnN6UiLXzDSgiFv/vxNLXpxkbovd2vVvFWqLa1VVkao+d4AACm1\nRloAX/ngDR/UPTPv0edu/xw72QJAghFagAhkZmRq273cQQQAF3hCGwAA8AVCCzBMX3+ffn7h567L\nAACEQGjOJvv/AAAORklEQVQBJA0MDmhH2w7NfHamPv2tT7suBwAQAqEFaa/pRJMKGwpV+Y1KfTT3\no/r7P/t71yUBAEJgIi7S1vCdbOffMl9HK49q7k1zXZcFABgFoQVpx1qrT3/r09rWtk152Xnav2w/\nO9kCgA8QWpA2hjZSNMYoOyNbW8q3qKqkip1sAcAnCC1IK0OjKRsXbHRcCQAgUkzERdrg9g8A+Buh\nBSnpF32/cF0CACDGCC1IKacvnlbly5W6dcut6jzf6bocAEAMMacFKeFS/yXVH6nX5iObNW3yND21\n4Cn98fv/2HVZAIAYIrTA1wYGB7SrfZfqDtep+3K3Vs1bpdrSWmVlZLkuDQAQY4QW+Nb3/ut7qvpm\nlQJnA6qYXaENZRuUm5XruiwAQJwQWuBbxhhlZWSxky0ApAlCC3zrIzd/RK/99WssZQaANMHqIfga\ngQUA0gehBUlrYHBA/QP9rssAACQJQguSUtOJJhU2FOrLR77suhQAQJIgtCCpBM4EtHD3Qi18YaGy\nMrJUllfmuiQAQJJgIi6SQtfFLtUdrtPO9p3Kz87XgeUHtOi2RcxZAQBcQWiBU7959zd66vWntOnI\nJk2bPE1byreouqRaUyZNcV0aACDJEFrg1KTrJukb//ENPTznYXayBQCMidACpyZfN1lHK49q0nWT\nXJcCAEhyTMSFcwQWAEA4CC2Iu0E76LoEAEAKILQgbvr6+/Tkq09q3vZ5enfwXdflAAB8jjktiLmB\nwQHtat+lusN16r7crUfmPqL+gX5Nvo7/3AAA0eOvCGKquaNZa5rXKHA2oIrZFdpQtkG5WbmuywIA\npABCC2IicCagmpYaNXU0af4t8/X9B7+veTfPc10WACCFEFoQE98+8W11nOvQ/mX7tXjWYnayBQDE\nHKEFMbHqI6u06iOrNHXSVNelAABSFKEFMUFYAQDEG0ueAQCALxBaMK7AmYAW7l6o13/2uutSAABp\njNCCUZ2+eFqVL1eqoKFAHec69NuB37ouCQCQxpjTgmv09fep/ki9Nh3ZpGmTp2lL+RZVlVQxbwUA\n4BShBVeM3Ml21bxVqi2tVVZGluvSAAAgtOB3ui516bPf/qwWz1rMTrYAgKTjNLQYY6ZLWiLppKTp\nkrZZa3sj7Rtt27Bz32+t3Rf7d+gvN19/szoe6dCN77/RdSkAAFzD9UjLXmttiSQZYzIl7ZV0dxR9\no2ozxtwvKUdSgzEmy1p7Icbvz3cILACAZOVs9ZAxplCSHXrtjX6UGGNyI+kbbZv3ep+1dtvwPgAA\nIDm5XPJcIqlnxLEeSXkR9o22bbiUf1DOwOCAdrTt0PpD612XAgBAVFyGllBLUs6PcnysvtG2pY3m\njmYVNhSq8huV+q8L/6VBO+i6JAAAIuZyTst5BeeTDJflHY+kb7RtKS9wJqCalho1dTSp9JZSHa08\nqrk3zXVdFgAAUXEZWo5JWjniWI6Cq3wi6XsuyrbhwprTsnr1amVmZl51rKKiQhUVFeH8eMKcvnha\nXzj8Be1s36m87DztX7Zfi2ctljEpfxcMAOBQY2OjGhsbrzrW2xtyUXBUjLXu5qAaY96x1s70vs+S\n1GKtneO9LpR03lp7Koy+UbUNq2NQ0qirh4wxRZJaW1tbVVRUFOOrEHtL9izRq52v6vGPPs5OtgAA\np9ra2lRcXCxJxdbatomcy/WS56XGmDWSTik4aXbpsLZaSW9Iqg+jb1RtxpgySUUKjrTUGmNarLXf\nieH7c2LLwi1639T3sZMtACClOB1p8Qu/jbQAAJAsYjnSwlOeAQCALxBafOb0xdP67Cuf1bnL51yX\nAgBAQhFafKKvv09PvPqEZj47U40/bNTbv3jbdUkAACSU64m4GMfA4IB2te9S3eE6dV/u1qp5q1Rb\nWsskWwBA2iG0JLGmE02qaalR4GxAD8x+QBvLNio3K9d1WQAAOEFoSVKvdb6mhS8sZCdbAAA8hJYk\ndfutt+vgXx7UndPvZCdbAABEaElaxhiV5ZW5LgMAgKTB6iEAAOALhBZHmk406Zv/8U3XZQAA4BuE\nlgQLnAlo4e6FWvjCQr0QeMF1OQAA+AahJUG6LnZpxcsrVNBQoJPnTurA8gP62n1fc10WAAC+wUTc\nOOvr71P9kXptOrJJ0yZP0zPlz6i6pFpTJ011XRoAAL5CaIkja61u33W7fnj2h+xkCwDABBFa4sgY\no813bVZedh472QIAMEGElji7c/qdrksAACAlMBEXAAD4AqFlAvr6+/T88edlrXVdCgAAKY/QEoWB\nwQE9f/x5zXx2ph761kP6afdPXZcEAEDKI7REqLmjWYUNhXrw5Qd1R+4d+snDP9Gs35/luiwAAFIe\nE3Ej8PArD+t7A99T6S2lOlp5VHNvmuu6JAAA0gahJQL/feG/deBvDmjRbYtkjHFdDgAAaYXQEoGX\nlr6kubMYXQEAwAXmtERg8iQyHgAArhBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBaAACA\nLxBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBaAACALxBa\nAACALxBaAACALxBaAACALzgNLcaY6caYGmPM/caYNcaYzGj6xqMN7jU2NrouIe1wzROPa554XHP/\ncj3Sstdau9lau0/SNkl7o+wbjzY4xgdL4nHNE49rnnhcc/+a7OoXG2MKJdmh19baXmNMiTEm11rb\nGW5fSdmxbhv5+wEAgHsuR1pKJPWMONYjKS/CvvFoAwAAScZlaMkKcez8KMfH6huPNgAAkGSc3R5S\nMCDkjDiW5R2PpG882kbKkKQf//jHIZoQL729vWpra3NdRlrhmice1zzxuOaJNexvZ8aET2atdfIl\nqVDSmyOO9UjKjaRvPNpC/P6/UHD+C1988cUXX3zxFd3XX0w0OzgbabHWHjfGXLkV433fMTQJ1pt8\ne95ae2qcvp1xaBupSdInJHVK+vUE3zoAAOkkQ8HBgqaJnsh4IwlOGGMKJC2QdErBibENw0LLHklv\nWGvrw+gb8zYAAJBcnIYWAACAcLneXA4AACAshBYgjUT76ApjzHPGmOvjXR8A/zLG3B9Gnwk9Pofb\nQx5jzHRJSySdlDRd0jZrbe9E+2J0EV7zMklF3ss5ktZaa08lpNAUYow5Zq0t8b7PVPBRFneP8zNl\nkvZIKmbOV+Qi/bzwPvizJZ2TJO8xI4hAFJ/nC7yXeZL2WGuPJ6TQFOH9N5sjqUFSlrX2whh9I/4M\nGs7lPi3JZu/ICylptAsZSV+MLqzr6LUVWWs3e6/vl9QiaUYCa/W9SB6dMexnhv4VNHL3aIQv7M8L\nY8wKSZnW2nrvj2mzJEJL5CL5jK6y1q4beuEtAlkW/xJTx1CwNsY8N1a/aD6DRuL2kEJfSElDzyiK\nui9GF+F1LJH01LDXByXlcc0jFs2jK5Zaaw9JMnGrKoVF8Xnx9NCKSW8ksTjeNaaaKK75Ei8gDumO\nX3Upb7zPiQk/PofQEhSr5yAhfGFfR++P5vAP7znBw9yqiFBEj64YdlsI0Qv7v/OhP7bGmDuNMWXG\nmI2SbkhAjakm0s/oBkkdxpinvJGup+NZXJqb8ONzuD0UFKvnICF8EV1Ha237sJePSVoZj6JSXNiP\nrhi6LTTWvWmEJZL/zku84yettZ3GmGOSWsVt0EhF+hm9VcH/XyyQdL+kYwpuJIrYi+TxOSEx0hIU\nq+cgIXxRXUfvX0J7rLU74lVYCjsW4liOgpMVR1ogaboxptK75nkKDqMXxLPAFBTJf+cnFdwFvFO6\nclsjj2sesUjD+dPW2lpr7RxJmyQdZKVc1MZb2RPJZ1BIhJagSC7khC86JEVxHb3bFd3W2u1xqyqF\neSsixnx0xtC9fWvtPmvtdu9rm/cjL40Y8cL4Ivnv/KQYsY2FSMN589AL77/1rQqOeiFy18xpGfG5\nMuZnUDgILYr4w3zCFx2RXXPvdZH3c/u91yv411BUlnp7I9wvaa2kpcPaahUcHr/CGJNpjKlR8F9Q\na5n8HJkIP1tOSWobusbGmDyvL0ExAhF+tpxUcI7cSKGCD0bhzcEa+pyoNcbcOax55OfKWJ9B4/8u\n9mkJitVzkBC+cK+59wHTod8NPRpJ56y1TFJE0ovwsyVXUpWCf0yLFLx10Znwon0uwmt+n4K3P3sl\nZUo6SFBMXoQWAADgC9weAgAAvkBoAQAAvkBoAQAAvkBoAQAAvkBoAQAAvkBoAQAAvkBoAQAAvkBo\nAQAAvkBoAZA0jDGDxpiBUdpWeu0bR2lfYYzpGfa61es/9NVjjNkz/PEQAPyF0AIg6Yx4dsmQpRr/\nKbJ2xPd7JRUquCV+pYLbtLfyDCXAnwgtAJJNm0I/RK3Ma4vESWvtW9badmvtfmttuYLP9Vk70SIB\nJB6hBUCy+bqkZcMPeE+EbZXUE/InIrNR0soYnAdAghFaACSbNunKk3qHLFcwzJgYnv/6GJwLQAIR\nWgAkoz0KBpUhCyS9FKNz9ygYfvJidD4ACUJoAZCMXpI3r8UYs0BSt7W2M0bnzlFwku7JGJ0PQIIQ\nWgAkHWvtIUnTvVU+IUdZjDHPGWMqozh9sfc7LkykRgCJR2gBkKyGRluWSHoxRHuerl5lVKLwJuqu\nk9Qw4eoAJNxk1wUAwCj2SNomyVpr3wrR3iLpKW9lUa+CAea5EX3yjDGF3vf5kqokTVcwCAHwGUIL\ngGQyfHO4gwpuBtcQqt1au9kYkydpq3foRWvt+hHnW6LfBZTzkt6UVGSt/c+YVg0gIYy1420wCQAA\n4B5zWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8QWgAAgC8Q\nWgAAgC8QWgAAgC8QWgAAgC/8f2bhPikvaOrHAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -123,16 +124,14 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, + "execution_count": 11, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X1wXFd5x/HfEzvBkMSS1oZpSQiS4jA40CZ6cekESodY\nMZRSCralVKVAil9TOm09k8R2pjPQdho7iWkgUyaxbCi0NIrfQmFaKInFUNJOqW1JNgklJbUkaIG2\nsWTJcYLjJH76x72rrNerl9W+nN2738+MRr73nr16dKOsfjr33HPM3QUAAFAuF4UuAAAA1BbCBwAA\nKCvCBwAAKCvCBwAAKCvCBwAAKCvCBwAAKCvCBwAAKCvCBwAAKCvCBwAAKKv5oQsws1XufmCGNk2S\nVksaktQkaZe7T8x0DAAAVB4LNb26ma2SlJK0U1K9u5+apu0Rd2+P/10naZ+7r5jpGAAAqDzBbru4\n+wF33yVp2vRjZi2ZbeJejXYza5zuWEmKBgAABauEMR82w/F2SWNZ+8YkNc9wDAAAVKBKCB8zqc+x\nbzzeP90xAABQgYIPOJ2FcUVjQzLVx/unO3YBM1sk6d2SRiSdKWqVAAAk2wJJjZK+4e6jhZyoEsLH\nTCNej0han7UvpejplpPTHMvl3ZL+Nt8CAQDApA9JeqiQE1RC+LhgzEc8kHTc3YfdfdDM6jOO1Us6\n7u4jkkamOZbLiCR96Utf0tKlS4v3HWBamzZt0n333Re6jJrCNS+/Ka/5tm1Sf7+0f3/5i0o4fs7L\n6/vf/75+53d+R4p/lxYiWPgws+WSWhX1fGw1s8fc/Zvx4a2SDknaEW93mtltkoYVDTLtzDjVdMey\nnZGkpUuXqrW1tWjfC6ZXV1fH9S4zrnn5TXnNf/IT6Zd/WeK/R9Hxcx5MwcMWgoUPd++T1Cfp3hzH\nurK2j0o6Gm8emO0xAAjq3Dnpu9+V3v/+0JUAFaUannYBkO3HP5Y+/3kp0CSBmCV36ctflrq6Zm4L\n1BDCB1CNjh2T1qyRRkZCV4LpzJsndXRITU2hKwEqCuEDJdfd3R26hOS57rro87FjOQ9zzcuPa15+\nXPPqRfhAyfEGUQKvf720aBHho4JwzcuPa169CB9ANTKLej+mCB8AUMkIH0C1InwAqFKED6BaXXed\nNDQknToVuhIAyAvhA6hW118ffX7iibB1AECeCB9AtVq6VLrqKmm0oPWdUCqf/7z0tywlBeRSCWu7\nAJiLSy6RfvjD0FVgKg88IL3lLdKHPhS6EqDi0PMBAMX20kvSk0++Mh8LgPMQPgCg2J5+WjpzhvAB\nTIHwAQDFln4EmvBRE/r6+rRr167QZUxKpVLasWPH5Hal1ScRPgCg+I4dk668MpqFFom3b98+9fT0\nhC5j0rJly9Tc3Dy5XWn1SQw4BYDiO3aMXg8E841vfCN0CTOi5wMAio3wUTPa29vV09Oj/v5+zZs3\nT0ePHpUkLVmyRLt371ZPT49SqZQeeeQRSdLmzZu1ZMkSXXTRRUqlUurq6tLExMTk+ZYsWaIdO3bo\nwIEDam9v10UXXaT29nYNDg5OthkaGtJNN92kVCqV83hDQ8PkbZep6guNng8gCV58Ubr44tBVQJLO\nnpV+5Vekd74zdCXV7ac/jT6msmCBdO2105/j3/89Gviby8//fPRRoG9+85tau3athoeHtX//fr3x\njW+cPLZ371719/dr48aNam1t1YYNG7R7925t3rxZ7e3tOnz4sO655x6Zmfbs2TP5uocfflhmpjvv\nvFOStHbtWnV1denpp5+WJLW1tWnx4sW699575e7avn27Ojo6NBrP+WNms6ovJMIHUO2+9jXpgx+M\n3qhTqdDV4JJLpIcfDl1F9du5U/qTP5n6+LXXSt/73vTn6OyMAkgun/iE9MlPzrm8tIULFyqVSml4\nePiCX+x9fX0aGhqa3D8+Pq6enh6tWbNGkrRy5UqdPHlSfX19571ueHh4MkhI0ujoqDZu3KhTp05p\ndHRUExMT+tznPqeVK1dKino3du7cqZGRETU2Ns66vpAIH0C1a2yM/to+dkx617tCVwMUx4YN0vvf\nP/XxBQtmPse+fdP3fJTY6tWrz/uFn9m7MTExoccee0wHDx48r6dCkjo6Os7bzhw82tTUpPr6em3e\nvFmjo6Pq6urS9ddfrwceeKBE30VpED6AavemN0VvxIQPJEkxbovMdFumxDJDgyQNDAxoy5YtOnLk\niMxMHR0dqq+vP2/MhxQ9KjudgYEBbd68WVu2bNGGDRvU3NysDRs26Pbbby/691AqDDgFqt38+dJb\n3/rK3BIAKlJ7e7tSqZQGBwc1OjqqPXv2XNDLMRuNjY3as2ePRkdHNTQ0pM7OTm3evFm7d+8uQdWl\nQfgAkuCtb5363jaA4NJPo2zZsuW8WzH9/f15nefAgQNKpVIaGRmRFAWRbdu2qb6+XsePHy9avaVG\n+ACS4Od+TnrmmdBVADVraGhIfX19OnXqVM7j6Vswd9xxh/r6+nTw4EGtWLFCAwMDGhsbm/ERWHeX\nFI0HGR8fV0dHh3bt2qVdu3aps7NTExMTWrFixYz1Zd/iCYXwASTB4sXSiROhqwBq0oYNG5RKpbRi\nxQoNDQ1J0gWDSOvq6nTw4EENDw9rxYoVuvXWW3XzzTerv79fqVRK69atm2yb/drMfenzNDQ0aOPG\njdq4caNGRka0f/9+vSse85X9+sz6hoeHi/q9z5Wl01QtMLNWSf39/f1qbW0NXQ5QPF/8onTLLdHI\n/le9KnQ1tevMGen06eiR54v42w7JMjAwoLa2Nklqc/eBQs7F/x1AEixfHs33wS+8sPr6pNe+Vvqf\n/wldCVDReNQWSIIrr4w+EFb61hcLygHT4s8kACiWEyekyy/n1hcwA8IHABTLiRPR4F8A0yJ8AECx\nED6AWSF8AECxnDgRDTgFMC3CBwAUCz0fwKwQPgCgWAgfwKzwqC2QFI8/Hv3y++AHQ1dSux5+OHra\nBcC0CB9AUjz0kHToEOEjpOuuC10BUBW47QIkBeu7AKgShA8gKQgfAKoE4QNIisWLpeefjz4AoIIR\nPoCkSD9lMToatg4AmAHhA0iKdPjg1guACkf4AJKC8AGgShA+gKRYvFhKpaQzZ0JXUpv+8R+lL34x\ndBVAVWCeDyApLr2U8R4h7dkj/eAH0kc/GroSoOIFDR9m1iRptaQhSU2Sdrn7xBRtWyR1SToiaZmk\nbem20x0DgLJganVg1kL3fOxz93ZJMrM6SfskrchuFB/rc/dUvD0kaZekLjOrn+pYeb4FAFAUPq69\nNnQVQFUINuYj7q3w9HbcU9FuZo05mndIGs1oOyhptZktlLR8mmMAUB70fACzFnLAabuksax9Y5Ka\nc7Qdz9yIe0IUt53uGACUB+EDmLWQ4aM+x77xXPvdvU/SeEavSHv8OTXFMZeUKmKtADC1F1+UxscJ\nH8AshRzzMa4LA0K9snoy0tx9mZmtM7PjigaoKv05xzHLaHOBTZs2qa6u7rx93d3d6u7untM3AqDG\npZ8yInwgIXp7e9Xb23vevomJ4j3HYe4+c6sSiMd89Lj7sox9Y5Ja3X1khtc2Szrs7ovyPNYqqb+/\nv1+tra2FfgsAEBkakt77Xulv/kZatmzm9kAVGhgYUFtbmyS1uftAIecKdtslHhg6eYslfmrleDp4\nmFlL/Chu+vhYxiDS9ZLWzeYYUFP+6Z+iX36nToWupLY0N0tPPUXwAGYp9KO2nWZ2m6RhRWM1OjOO\nbZV0SNKOePsuSR1mdrWkQ+7+SEbb6Y4BteOll6QjR6LBjwt54AtAZQoaPtz9qKSj8eaBrGNdWds7\nNIXpjgE1JXN9l2Ye+AJQmVjbBUgSFpcDUAUIH0CSLIrHWRM+AFQwwgeQJAsWSJddRvgAUNEIH0DS\nLF5M+ABQ0QgfQNIQPgBUOMIHkDRr1kg33RS6itryjndIf/mXoasAqkboeT4AFNvGjaErqD1Hj0or\nV4auAqga9HwAQCHOnJGee0567WtDVwJUDcIHABSCReWAvBE+AKAQ6cG9hA9g1ggfAFAIwgeQN8IH\nABSC8AHkjfABAIU4cUK65JJoZlkAs0L4AJLm3DnpqaeksbHQldSGt71N2r5dMgtdCVA1CB9A0pw7\nJy1dKv3d34WupDa0t0ubNoWuAqgqhA8gaebPlxoamGIdQMUifABJxPouACoY4QNIIsIHgApG+ACS\niPABoIIRPoAkInwAqGCEDyCJCB8AKhjhA0giwkd5PPec9Pjj0unToSsBqgrhA0iij31MGhgIXUXy\nPfWU9M53Sk8/HboSoKrMD10AgBJYvJi1RsrhmWeiz1xrIC/0fADAXKVvbS1aFLYOoMoQPgBgrk6c\nkF7zmugDwKwRPgBgrk6c4JYLMAeEDwCYK8IHMCeEDwCYqxMnGO8BzAHhAwDmanxcSqVCVwFUHR61\nBZLqwQelyy+XPvSh0JUk11e+Ir34YugqgKpDzweQVF/+cvSB0rn0Uqm+PnQVQNUhfABJVV8f3RYA\ngApD+ACSqqFBOnkydBUAcAHCB5BU9HwAqFCEDyCp6PkAUKEIH0BS1ddLExPSuXOhKwGA8xA+gKRq\naIiCx7PPhq4EAM5D+ACS6sorpbe/XXrhhdCVJNOhQ9L69dLzz4euBKg6hA8gqW64Qfrnf5Ze97rQ\nlSTTk09Ku3ZJl1wSuhKg6hA+AGAuxselyy6T5jNRNJCvoP/XmFmTpNWShiQ1Sdrl7hNTtG2R1CXp\niKRlkral28bn6YibNkva6+6DJS4fQC07eTIaVwMgb6Ej+z53b5ckM6uTtE/SiuxG8bE+d0/F20OS\ndikKI5K0wd23ZLTfm3EMAIpvfJyp1YE5CnbbJe7J8PR23IvRbmaNOZp3SBrNaDsoabWZLYx3rY57\nP9JGBQClRM8HMGchx3y0SxrL2jem6LZJtvOmaYx7QpTRdqek42a23czWSbq7mIUCwAXo+QDmLGT4\nyPV/7Xiu/e7eJ2k8o1ekXVGvSSre7lEUOJZLukMSf44AKC16PoA5CznmY1yvhIe0emX1cqS5+zIz\nW2dmxxUNUDVJQ3EvyN3uvlHS1rjn46CZNbn7qVzn2rRpk+rq6s7b193dre7u7sK+IwC1o71duuaa\n0FUAJdHb26ve3t7z9k1M5HweZE7M3WduVQLxmI8ed1+WsW9MUqu7j8zw2mZJh919kZmtkuTu/kjG\n8W2SHnP3b2a9rlVSf39/v1pbW4v43QAVas0a6fRpac+e0JUAqHIDAwNqa2uTpDZ3HyjkXMFuu8SD\nRidvsZhZvaTj6eBhZi2Zg0jNbCxjgOl6Sevifw8pevQ225FS1A1UlZdekn7849BVAMB5Qj9q22lm\nt0kaVjSOozPj2FZJhyTtiLfvktRhZldLOpTu6XD3QTNris8zIalO0p6pbrkANaW+PhoYCQAVJGj4\ncPejko7GmweyjnVlbe/QFDJvuQDI0NAQDYwEgArC9OpAkjU00PMBoOIQPoAkq6+PVl09ezZ0JQAw\nifABJFl6Hgp6PwBUEMIHkGTpGTgZ91FcgaYoAJKC8AEk2ZvfLD3wgLR4cehKkuXBB6XLLyeEAHMU\n+lFbAKX0utdJGzeGriJ5Tp6UFiyQzEJXAlQlej4AIF8sKgcUhPABAPliUTmgIIQPAMgXPR9AQQgf\nAJAvej6AghA+ACBf9HwABSF8AEC+6PkACsKjtkDSfe970V/qb3976EqS4zOfkd7whtBVAFWL8AEk\n3f33S/390pEjoStJjve9L3QFQFXjtguQdA0NTK8OoKIQPoCkq69nYTkAFYXwASRdQ0MUPs6dC10J\nAEgifADJV18fBY/Tp0NXAgCSCB9A8qUfCWXcB4AKQfgAki49GRbjPgBUCMIHkHT0fBTXk09KX/lK\n6CqAqkb4AJKuuVl67jnpV381dCXJsG+f9PGPh64CqGpMMgYk3bx50mteE7qK5GBqdaBg9HwAQD5Y\nVA4oGOEDAPJBzwdQMMIHAOSDng+gYIQPAMgHPR9AwQgfAJAPej6AghE+ACAfL7xAzwdQIB61BWpB\nb6/0b/8mffrToSupfs88I7mHrgKoavR8ALXgqaek/ftDV5EcZqErAKoa4QOoBQ0NTK8OoGIQPoBa\nUF8vPf+8dPZs6EoAgPAB1IT0AElWtgVQAQgfQC1IPxpK+ABQAfIOH2bWOM2x6wspBkCJpHs+GPcB\noALMpedjyMzuytxhZgvNbK+k/uKUBaCo6PkAUEHmEj6WSFpmZk+b2bvMbK2kEUn18TEAlWbRImnl\nSibHKtTOndKtt4auAqh6eU8y5u5Dkm4ys+2S+iS5pA3uvrvYxQEokksvlQ4cCF1F9RsYiD4AFCTv\n8GFmCyXdLWm9pM2Kejt2mlmdu3+qyPUBQOU4eZJ1XYAimMv06iOSDkta4u7DkmRmOyXtNbON7n5N\nEesDgMoxPs6tK6AI5jLmY527vzsdPCTJ3QfcfYmknuKVBgAVhp4PoCjyDh/uPuWNY3e/N59zmVmT\nmd1uZqvM7DYzq5umbYuZbYvbbs9sa2b/aWbnzGzUzMbij9vyqQUAZkTPB1AUcxnzsVfRINOc3P3m\nPE63z93b4/PWSdonaUWOr1knqc/dU/H2kKRdkrriJg/Gr01PYrDV3XfkUQcAzIyeD6Ao5jLm43DW\n9iJJrZLaJd0x25OYWYsyQoy7T5hZu5k1uvtIVvMOSaMZbQfNbHU8+NUk9bj7qfi8yyXtzOP7AYCZ\nudPzARTJXB61zXlrxczWS2qTNNtHbtsljWXtG5PUrGhQa6bzZkbKuOXS7O5Hs9q2uHvfLGsAaoe7\ndOaM9OpXh66kOr30krRmjfSLvxi6EqDqFXNtl8f0ym2Q2cjVdzmea38cJsYzpnZvV9RrkspsZ2a3\ni0GvQG733CO94Q2hq6heF18cTTJ2ww2hKwGq3lxuu1wgvv0x61susXFlhQdFwSPn/M/uvszM1pnZ\ncUlDim63DGU1u3k2g143bdqkurrzx7Z2d3eru7t7trUD1aeuLrpt4C6Zha4GQAXr7e1Vb2/vefsm\nJiaKdv65DDg9pwsHnKbfyVbncaojiiYqy5TShYFikrvvimtolnQyc2xIPNZjyoGwme677z61trbm\nUSqQAPX10ssvS6dPS5dfHroaABUs1x/kAwMDamtrK8r559LzkXO0lbvnFYniQaOTt1jifx9PB4p4\nQOp4xkRmY5Ia44Gl6yWtyzplqy4cQwIgLT1Qcnyc8AEgqFmFj/i2SlrO3oV0m/RTJ7PUGc/HMaxo\nHEdnxrGtkg5JSj8ye5ekDjO7WtIhd38k61zjmqbXBKh56fBx8iRjPwAENduej3FNfavFM7Zd0rzZ\nfvH4SZX00yoHso51ZW1PO29H+pYMgCmk4iFWJ09O3w4ASmy24YMH24Fql+75GOPuJICwZvuobXq8\nxUT6Q9JySZ65L99xHwDKKD0zJ+FjbsbGpGefDV0FkAizDR+mV26zpO1TNCEYgGowb5701a9KN90U\nupLq9PGPSx/4QOgqgEQoZJ4PJgoAqs1v/EboCqrX2Ngr42YAFKSYM5wCQHKNjbGuC1Ak+YSPXI/Y\nzmpSLwCoevR8AEWTz22XO+Ol7Kfd5+5bCy8LACrMyZOED6BIZhs+BiVdHX+kDeTY54omBwOA5Hj5\n5WhmWMIHUBSzCh/uXpzJ3AGgGk1MRAvyET6AomDAKQDMJD03CgNOgaIgfAC1ZGRE2rlTevHF0JVU\nlyuukB5/XGI1bKAoCB9ALTl2TNq4kfVd8vXqV0vveIdUVxe6EiARCB9ALUmPWWCKdQABET6AWkL4\nAFABCB9ALSF8AKgAhA+glqSf1iB8AAiI8AHUkgULosGTDDgFEBDhA6g1qRQ9HwCCInwAteYNb5DO\nnQtdRXX5whekvr7QVQCJkc/CcgCS4F//NXQF1eeee6T3vEdavjx0JUAi0PMBADMZG2NdF6CICB8A\nMB13wgdQZIQPAJjOc89Fa+GwqBxQNIQPAJhO+skgej6AoiF8AMB00nOiED6AoiF8AMB06PkAio7w\nAQDTOXdOamwkfABFRPgAas3QkPSOd0hPPhm6kuqwfLk0PMyAU6CICB9ArZk3T/qXf5F+8pPQlQCo\nUYQPoNakbx+wvguAQAgfQK257DJp/nzCB4BgCB9ArTGLxi+kHyEFgDIjfAC1KJWi5wNAMIQPoBYR\nPgAERPgAahHhA0BAhA+gFq1eLb3vfaGrqA4tLVJvb+gqgESZH7oAAAHcckvoCqrDCy9IR49KZ8+G\nrgRIFHo+AGAqLCoHlAThAwCmwqJyQEkQPgBgKvR8ACVB+ACAqaR7PlhUDigqwgcATIXwAZRE0Kdd\nzKxJ0mpJQ5KaJO1y94kp2rZI6pJ0RNIySdsy25rZKkkNkk5KkrsfKG31ABJvbEy69FLpVa8KXQmQ\nKKEftd3n7u2SZGZ1kvZJWpHdKD7W5+6peHtI0i5FYURmtk5SnbvviAPNo5IIH8BU3KWRkegv+vr6\n0NVUrre9TfrEJ0JXASROsNsucU+Gp7fjXox2M2vM0bxD0mhG20FJq81sYbzrbnffER8bltRWorKB\nZDh3Tmpulg6Q0ad1ww3S7beHrgJInJA9H+2Ssud3HpPULGkka/945kbcEyJJzWZm8b4bJZmioNIj\n6VSR6wWSY968qMeDKdYBBBAyfOTq6x3Ptd/d+8xs3Mwa3X1EUXBxSSlJV0uqkzTk7iNmdkRSv6Ql\nJascSIKGBsIHgCBCho9xReEhU72yejnS3H2Zma0zs+OKBqhaxufxOJTI3SfMrNnMrnf3o7nOtWnT\nJtXV1Z23r7u7W93d3YV8P0B1YXE5AFPo7e1Vb9aaRhMTOZ8HmRNz95lblUA85qPH3Zdl7BuT1JoO\nEtO8tlnSYXdfFA8w/U93n5dx/Fx8nqNZr2uV1N/f36/W1tYifjdAFVqxIrr1sndv6EoAVIGBgQG1\ntbVJUpu7DxRyrmADTuNBo5O3WMysXtLxdPAws5Y4WKSPj2UMMF0vaV18nmFJA+mBqnEwOT5VrweA\nGD0fAAIJ/ahtp5ndJmlY0TiOzoxjWyUdkrQj3r5LUoeZXS3pkLs/knkeSRviR3BbJd1U8sqBapdK\nST/4QegqANSgoOEj7p1I91AcyDrWlbW9Q1OIe0u2Frs+INEYcDq9s2elo0elpUulyy8PXQ2QKEyv\nDtSqj39cevTR0FVUrv/6r2iSsSNHQlcCJE7o2y4AQnn960NXUNnSvUKsaAsUHT0fAJAL4QMoGcIH\nAOTCirZAyRA+ACCXsTHp4oujVW0BFBXhAwByGRuLbrlEy0cBKCLCBwDkcvIk4z2AEiF8AEAu6Z4P\nAEXHo7ZALbv/fulNb5Le857QlVSez3xGeu650FUAiUTPB1DLdu+Wvva10FVUpro65kIBSoTwAdQy\nFpcDEADhA6hlrO8CIADCB1DL6PkAEADhA6hlqZR04kToKgDUGMIHUMuuuUYaGZF+9rPQlQCoIYQP\noJa1tkovvyw98UToSgDUEMIHUMve+lapvV16/vnQlVSWT39auu++0FUAicUkY0AtW7BAOnw4dBWV\n56GHpGuvDV0FkFj0fABAphdflL77XamlJXQlQGIRPgAg01NPSS+8EI2HAVAShA8AyDQ4GH2+7rqw\ndQAJRvgAgEwDA9KSJdLChaErARKL8AEAmQYHueUClBjhAwDSzp2LwgeDTYGSInwAiPz0p9Ev31p2\n5oy0Zo10442hKwESjfABQOrrk17/emloKHQlYb3mNdHkYr/0S6ErARKN8AFA+oVfiD6nn/QAgBIi\nfACQXvc66Yoroic9AKDECB8AIi0t9HwAKAvCB4BIS0vU8+EeuhIACUf4ABBpbZWeeUb6yU9CVwIg\n4QgfACLpuS249QKgxAgfACJXXSU1NNTuoNPHH5d++MPQVQA1gfABIGImfec70ubNoSsJ48Mflj77\n2dBVADVhfugCAFSQN70pdAVhjI5GvR5Mqw6UBT0fAHD0aPSZ8AGUBeEDAAYHpUsvla65JnQlQE0g\nfADA4KB03XXSvHmhKwFqAuEDQG07e1Z69FHphhtCVwLUDMIHgNr2D/8gnTghfeQjoSsBagbhA0Bu\nL70UuoLy+NGPpHe+85WVfQGUXNDwYWZNZna7ma0ys9vMrG6ati1mti1uuz2zrZk9aGbnzOxlMzts\nZteX5zsAEqqnJ/plfO5c6EpK7w//UPrWt0JXAdSU0PN87HP3dkmKw8Q+SSuyG8XH+tw9FW8PSdol\nqStu8p+S6iSZu58qR+FAol17rfTUU9Ev5RtvDF1N6ZmFrgCoKcF6PsysRdLk8pnuPiGp3cwaczTv\nkDSa0XZQ0mozW5g+nbs/S/AAiuTtb48eO/3CF0JXAiCBQt52aZc0lrVvTFJzjrbjmRsZt1zSbReZ\n2UozWx7fkmkqbqlAjTGTbrlF2r9fOkWmB1BcIcNHfY5947n2u3ufpPGMXpF2Rb0mqXj7QXd/JG63\nR9HtGwCF+MhHpBdekPbuDV0JgIQJOeZjXK+Eh7R6ZfVypLn7MjNbZ2bHJQ1Jsviz3H0ko+mQpFYz\nWzjVbZhNmzapru78sa3d3d3q7u6ey/cBJNOVV0o33ST91V9Ja9eGrgZAGfX29qq3t/e8fRMTE0U7\nv7n7zK1KIB7z0ePuyzL2jUlqzQoTuV7bLOmwuy+KzzM5GDU+/rKkhuzwYWatkvr7+/vV2tpaxO8G\nSKg9e6Tf+i3pP/6jdhedAyBJGhgYUFtbmyS1uftAIecKdtslHjQ6eYvFzOolHU8Hj/jR2qaM42MZ\nA0zXS1oX/3tI0l0Z7VZLOsjgU6AIfvM3pVQqeY+i3n+/9MQToasAalboR207zew2ScOKxnF0Zhzb\nKumQpB3x9l2SOszsakmH3P0RKXpKxswG4/NMKBqEmnkeAHO1YIE0NCTVTTkFT/X57/+W/uiPXpnL\nBEDZBQ0f7n5UUryWtQ5kHevK2t6hKcQDTfuKXiCAZAUPSdq9OwpVXV0ztwVQEkyvDqB2nDolfeYz\n0vr10sKFM7cHUBKEDwC147OflZ5/Xrr99tCVADWN8AGgNpw+LX3qU9KaNdIVV4SuBqhphA8AteHB\nB6PbLlvkHijcAAAKA0lEQVS2hK4EqHmEDwDJ9+KL0l/8hfTRj0pXXRW6GqDmhX7UFkA1OXNG+rM/\nk9773mjxuWpx8cXSwYPS5ZeHrgSACB8A8vGqV0l///fS4cPSo4+GriY/114bugIAMW67AJg9M+mP\n/1h67DHpO98JXQ2AKkX4AJCfVaukpUulP/3T0JUAqFKEDwD5uegi6ZOflL7+9egWDADkifABIH+d\nndJ73iPdeqv07LOhqwFQZQgfAPJnFs2bcfKkdOedoasBUGUIHwDm5o1vlP78z6XBQens2dDVnK+n\nR7rtNsk9dCUAciB8AJi73/996dvfli65JHQlr/jxj6PgMTER9dAAqDjM8wFg7ubNC13B+dyl3/s9\n6dJLpXvuCV0NgCkQPgAkx4ED0le/Ku3fLzU0hK4GwBS47QIgGZ5+Wtq4UfrAB6SVK0NXA2AahA8A\n1e///k/6tV+TXvta6XOfY6wHUOG47QKg+NJPmZQrBNxyi3T6dDTleypVnq8JYM4IHwCKy136gz+I\nxlyUawr2T31K+tnPpMbG8nw9AAUhfAAoLjPpiiukrVulq66S1q4t/ddcurT0XwNA0RA+ABTf5s3S\nj34UDQCdN0/63d8NXRGACkL4AFB8ZtL990czn37sY9K3viV99rPSZZeFrgxABeBpFwClMX++tHu3\n9Nd/Hc2/sWyZ9MQToasCUAEIHwBK68Mflo4ciaZg//Vfn9s6MBMT0a2cxx4rfn0Ayo7bLgBK781v\njh6D/cEPZr8OzEsvRWHji1+UvvKVaLupSbrpptLWCqDkCB8AyuPVr5auu276Nt/+tvTQQ9ILL0hf\n/7r0v/8rveUt0SO7v/3b0VM0AKoe4QNA5XjmmegWjZl0883SRz8qtbQwYymQMIQPAJVj1aroA0Ci\nMeAUAACUFeEDAACUFeEDAACUFeEDAACUFeEDAACUFeEDAACUFeEDAACUFeEDAACUFeEDAACUFeED\nAACUFeEDAACUFeEDAACUVdDwYWZNZna7ma0ys9vMrG6ati1mti1uu32qtmb2oJktLF3VyFdvb2/o\nEmoO17z8uOblxzWvXqF7Pva5+73ufkDSLkn7cjWKg0afu2+N2+6J22e3Wy6pU1KqhDUjT7xBlB/X\nvPy45uXHNa9ewcKHmbVI8vS2u09IajezxhzNOySNZrQdlLQ6s4cjoydkrBT1AgCA4gjZ89GuC4PC\nmKTmHG3HMzcygkZm205375NkRasQAAAUXcjwUZ9j33iu/XGoGM/oFWlX1GuSkiZvt+wtSZUAAKCo\n5gf82uO6cGxGvbJ6OdLcfZmZrTOz45KGFPVwDKV7Qdz91Cy+5gJJ+v73vz/nopG/iYkJDQwMhC6j\npnDNy49rXn5c8/LK+N25oNBzmbvP3KoE4jEfPe6+LGPfmKRWdx+Z4bXNkg67+yIzWyWpIX1I0k5J\nd0g66O5Hs17325L+tnjfBQAANedD7v5QIScIFj4kycyedvdr4n/XS3osHUbicDLu7sPx9pikRnc/\nZWbbJR1y90dynPOcpOZcAcbMFkl6t6QRSWdK810BAJBICyQ1SvqGu4/O0HZaocPH9YqeZBlWNI5j\nZzo0mNleRQFjR7x9m6LbLVdLOp4dPOLbL+slbZfUI+numXpQAABA+QUNHwAAoPaEnmQMAADUGMIH\nAAAoK8IHUIXyWRcp63WsfQRgWvFTpDO1mdN70OTrkzbmw8yaJK1WNDi1SdKueOr2gtpianle8+WS\nWuPNZZI2p59owuyZ2RF3b4//XadonaQVM7wmPRlfG4Ox85fv+0XGNAAnJSlelwp5mMP7eUe82Sxp\nb7wUB2Yp/plNKZqyon66+bPm8h6UKeQkY6WyL/uCSJrqguTTFlOb1XWMj7W6+73x9ipJj0laUsZa\nq16udZHMrN3MGqcKFax9VBSzfr8ws3WS6tx9R/xL8VFJhI/85fMevcHdt6Q34icmu0pfYnKkA7KZ\nPThdu7m8B2VL1G2XfBary3NhO0whz+vYruhR6LSDkpq55nnLZ12kNNY+KsAc3i/uTk8TEPfstZW6\nxqSZwzVfHQe9tILmoahxM71PzOU96DyJCh/K74IUfPEgKY/rGP/yy3wTXhbt5hZAnma9LpLE2kdF\nMuuf8/QvTTO70cyWm9k2SYvKUGPS5PsevVPScTPbHvc83V3K4mpcXu9BuSTttks+F6TgiwdJeV7H\nrCnv71A0MRzyM+t1kfJc+whTy+fnvD3eP+TuI2Z2RFK/uL2Yr3zfo3sU/X/RIWmVpCOKZrNG8eW1\nNlsuSev5yOeCFHzxIGmO1zH+y2Svu3+uVIUl2JEc+1KKBuVl65DUZGZr42verKh7+vpSFphA+fyc\nDylaGmJEmrxd0Mw1z1u+Iftud98aL9Fxj6SDPNk1ZzM9iZLPe1BOSQsf+VyQgi8eJM3hOsa3AUbd\nfXfJqkqweAT/5F9/8bpIxzOWJmhJ3/t29wPuvjv+2BW/ZH/2oouYUT4/50OiB7UY8g3Zj6Y34p/1\nHkW9UMjfBWM+st5Xpn0Pmo1EhY8835QLvnjI75rH263x6x6Jt9fx18mcdMbP1q+StFlSZ8axrYq6\nnSeZWZ2Z3a7oL5rNDPLNT57vLcOSBtLXOF6F+ziBLz95vrcMKRpDli1XgMEU4jFK6feJrWZ2Y8bh\n7PeV6d6DZv5aCZznI5/F6qZsi9mb7TWP3yiO65UuPZN00t0ZjIeKl+d7S6OkDYp+KbaKhS7nJM9r\nvlLRbcUJSXWSDhL4KlfiwgcAAKhsibrtAgAAKh/hAwAAlBXhAwAAlBXhAwAAlBXhAwAAlBXhAwAA\nlBXhAwAAlBXhAwAAlBXhA0DRmdk5M3t5imPr4+Pbpji+zszGMrb74/bpjzEz25s5bT+A6kL4AFAy\nWWtDpHVq5lUzPevf+yS1KJqqfK2i6bP7WaMGqE6EDwClMqDci00tj4/lY8jdj7n7UXd/xN3frWjd\nlM2FFgmg/AgfAEplj6SuzB3xCpj9ksZyviI/2yStL8J5AJQZ4QNAqQxIkyuTpt2sKJRYEc+/sAjn\nAlBGhA8ApbRXUeBI65C0v0jnHlMUYpqLdD4AZUL4AFBK+xWP+zCzDkmj7j5SpHOnFA1GHSrS+QCU\nCeEDQMm4e5+kpviplJy9Hmb2oJmtncPp2+KvcaqQGgGUH+EDQKmlez9WS3o4x/Fmnf9UTLtmNyB1\ni6SdBVcHoOzmhy4AQOLtlbRLkrv7sRzHH5O0PX4SZkJREHkwq02zmbXE/75a0gZJTYoCDYAqQ/gA\nUAqZk4QdVDQp2M5cx939XjNrltQT73rY3e/MOt9qvRI0xiUdltTq7j8satUAysLcZ5poEAAAoHgY\n8wEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEAAMqK8AEA\nAMqK8AEAAMrq/wGDNb0CGoAjkwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X+QXXV9//HXOwkQQLKbmwBKHU2WYAVBkt3NtLVjLWSJ\ndmytkh901XZ0yC8709r0C2yCnaqDQ4LEptWOkmz8Va1LfjH9YcciWcZatAPJbgIZdCruD1pFquyv\nIKJG8v7+cc5Zbm7u/ri7997PPec+HzN3ds+PPfveQ7j72s/ncz4fc3cBAABUy5zQBQAAgPpC+AAA\nAFVF+AAAAFVF+AAAAFVF+AAAAFVF+AAAAFVF+AAAAFVF+AAAAFVF+AAAAFU1L3QBZrbG3Q9Pcc5S\nSWsl9UtaKqnT3cemOgYAAGqPhZpe3czWSMpJ2iOp0d1PTXLuMXdvjT9vkHTQ3VdPdQwAANSeYN0u\n7n7Y3TslTZp+zGxF/jlxq0armS2Z7FhFigYAALNWC2M+bIrjrZKGC/YNS2qa4hgAAKhBtRA+ptJY\nZN9ovH+yYwAAoAYFH3A6DaOKxobka4z3T3bsHGa2SNJbJQ1K+nlZqwQAINvmS1oi6UF3H5rNhWoh\nfEw14vWYpE0F+3KKnm4ZmeRYMW+V9I+lFggAAMa9R9JXZnOBWggf54z5iAeSjrr7gLsfN7PGvGON\nkvrcfVDS4CTHihmUpC9/+cu6+uqry/cTYFJbt27V7t27Q5eRDocOSR//uPTII9L558/4Mtzz6uOe\nVx/3vLq++93v6r3vfa8U/y6djWDhw8xWSWpW1PKx3cwecveH48PbJT0maVe8vc7MbpM0oGiQ6bq8\nS012rNDPJenqq69Wc3Nz2X4WTK6hoYH7PV2nT0s7dkjnnSfN4p5xz6uPe1593PNgZj1sIVj4cPdu\nSd2S7i1ybH3B9glJJ+LNw9M9BqTOdddJc+ZIx49LLS2hq8Fkvva1qJXqq1+VLr44dDVAqqThaReg\nflx0kfTrvx6FD9S2Rx+Vnnwy+m8GoCS1MOYDQL41a/iFlgYnT0YtVTbVVEUAChE+UHHt7e2hS0iX\nu+6a9SW451XwxBPS298+vsk9rz7ueXrR7YKK4w2i+rjnFfbCC1JfX9TyEeOeVx/3PL0IHwBQqu98\nR3KX3vjG0JUAqUT4AIBSPfFENNbjDW8IXQmQSoQPACjVyZPSlVcyMBiYIQacAkCp3v52acWK0FUA\nqUX4AIBS3XRT6AqAVKPbBahVzz4r/fjHoasAgLIjfAC1yF269lrpM58JXQkAlB3hA6hFZtLy5Uyz\nDiCTCB9ArVqxQjpxYurzAATV3d2tzs7O0GWMy+Vy2rVr1/h2rdUnET6A2rVihfT009LwcOhKAEzi\n4MGD2rt3b+gyxq1cuVJNTU3j27VWn8TTLkDtSh7lPHFCuvHGsLUASI0HH3wwdAlTouUDqFWve100\niRXjPmrHs89KXV3ST38auhLUiNbWVu3du1c9PT2aO3euTsRdpcuWLdO+ffu0d+9e5XI5PfDAA5Kk\njo4OLVu2THPmzFEul9P69es1NjY2fr1ly5Zp165dOnz4sFpbWzVnzhy1trbqeN77QH9/v2666Sbl\ncrmixxcuXDje7TJRfaHR8gHUqrlzo7VDCB+14z//U3r3u6NHoF/xitDVZNuPfhS9JjJ/vnTNNZNf\n4zvfkX7+8+LHXvWq6DVLDz/8sDZs2KCBgQEdOnRIr33ta8ePHThwQD09PdqyZYuam5u1efNm7du3\nTx0dHWptbdXRo0f18Y9/XGam/fv3j3/d/fffLzPTnXfeKUnasGGD1q9fr6eeekqS1NLSosWLF+ve\ne++Vu2vnzp1qa2vT0NCQJMnMplVfSIQPoJatWCE98kjoKpB44gnp8sulSy8NXUn27dkjffSjEx+/\n5hrpyScnv8a6dVEAKebDH5Y+8pEZl5dYsGCBcrmcBgYGzvnF3t3drf7+/vH9o6Oj2rt3r2699VZJ\n0s0336yRkRF1d3ef9XUDAwPjQUKShoaGtGXLFp06dUpDQ0MaGxvTZz/7Wd18882SotaNPXv2aHBw\nUEuWLJl2fSERPoBadtdd0sUXh64CiZMnWcm2WjZvlt7xjomPz58/9TUOHpy85aPC1q5de9Yv/PzW\njbGxMT300EM6cuTIWS0VktTW1nbWdv7g0aVLl6qxsVEdHR0aGhrS+vXrtXz5cn0mZXMCET6AWrZo\nUegKkO/kSemd7wxdRX0oR7fIVN0yFZYfGiSpt7dX27Zt07Fjx2RmamtrU2Nj41ljPqToUdnJ9Pb2\nqqOjQ9u2bdPmzZvV1NSkzZs36/bbby/7z1ApDDgFgOl4/nmpv1+67rrQlSClWltblcvldPz4cQ0N\nDWn//v3ntHJMx5IlS7R//34NDQ2pv79f69atU0dHh/bt21eBqiuD8AEA05GML6DbBTOQPI2ybdu2\ns7pienp6SrrO4cOHlcvlNDg4KCkKIjt27FBjY6P6+vrKVm+lET4AYDr++7+jj1dfHbYO1KT+/n51\nd3fr1KlTRY8nXTB33HGHuru7deTIEa1evVq9vb0aHh6e8hFYd5cUjQcZHR1VW1ubOjs71dnZqXXr\n1mlsbEyrV6+esr7CLp5QCB8AMB1nzkhXXSVdeGHoSlBjNm/erFwup9WrV6u/v1+SzhlE2tDQoCNH\njmhgYECrV6/WBz7wAd1yyy3q6elRLpfTxo0bx88t/Nr8fcl1Fi5cqC1btmjLli0aHBzUoUOHdMMN\nNxT9+vz6BgYGyvqzz5QlaaoemFmzpJ6enh41NzeHLgcAgNTo7e1VS0uLJLW4e+9srkXLBwAAqCrC\nB1DrDh2SNm0KXQUAlA3hA6h1g4NS3uREAJB2hA+g1i1eLJ06Jf3yl6ErAYCyIHwAtW7x4uhj3loP\nAJBmhA+g1iWLmD33XNg6AKBMCB9ArUtaPggfADKC8AHUuiR8/OQnYeuoZ3190vXXS088EboSIBMI\nH0CtW7BAmjePlo+Qnn02Ch7zWAgcKAfCB1DrzKT3vU9asiR0JfUrCX5JKxSAWSHGA2nQ2Rm6gvqW\nPGmUy4WtA8gIWj4AYCrPPSctXEi3C1AmhA8AmMpzz9HlApQR4QMApkL4AMqK8AEAU3nuOWnRotBV\nAJlBByYATGX9eum880JXAWQG4QMApvLe94auAMgUul2ANHCPVrY9fTp0JQAwa0HDh5ktNbPbzWyN\nmd1mZg2TnLvCzHbE5+7MP3eyY0AmHD8uNTRIjz8euhIAmLXQ3S4H3b1VkuLAcFDS6sKT4mPd7p6L\nt/sldUpab2aNEx2rzo8AVAEr2wLIkGAtH2a2QpIn2+4+JqnVzJYUOb1N0lDeucclrTWzBZJWTXIM\nyIbkSQvCB4AMCNnt0ippuGDfsKSmIueO5m/kdas0TXEMyIaLLopehA8AGRAyfDQW2TdabL+7d0sa\nzWsVaY0/5iY45pJYhAHZsngx4QNAJoQc8zGqcwNCowpaMhLuvtLMNppZn6T+eHf/BMcs75xzbN26\nVQ0NZ49JbW9vV3t7+4x+EKAqLr2U8BHCM89EC8tdd13oSoCq6erqUldX11n7xsbGynZ9c/epz6qA\neMzHXndfmbdvWFKzuw9O8bVNko66+zlTDk5xrFlST09Pj5qbm2f7IwDV9ba3Sa94hXToUOhK6suO\nHdInPkHwQ93r7e1VS0uLJLW4e+9srhWs2yUeGDrexRI/tdKXBI/48dmleceH8waRbpK0cTrHgMyg\n2yUM1nUByi70o7brzOw2SQOKxmqsyzu2XdJjknbF23dLajOzKyU95u4P5J072TEgG7ZtY5KxEAgf\nQNkFDR/ufkLSiXjzcMGx9QXbuzSByY4BmXHttaErqE+ED6DsmF4dACZD+ADKjvABAJN57rmXJ3kD\nUBaEDwCYDC0fQNkRPgBgIqdPR6sJEz6Asgr9tAsA1K5586Qf/EC65JLQlQCZQvgAgImYSb/2a6Gr\nADKHbhcgTT7/eenb3w5dBQDMCuEDSJO775b+6Z9CVwEAs0L4ANKEKdYBZADhA0gTwgeADCB8AGlC\n+ACQAYQPIE0uvVT6yU9CVwEAs0L4ANKElo/q2r1b+od/CF0FkDmEDyBNFi+WRkejmTdReV/5ivTI\nI6GrADKH8AGkyRVXSE1N0vPPh66kPrCuC1ARzHAKpMnb3ib19YWuon4QPoCKoOUDAIr5xS+kn/6U\n8AFUAOEDAIoZGoo+Ej6AsiN8AEAxyVNFhA+g7AgfAFAM4QOoGMIHABQzf750ww3RxG4AyoqnXQCg\nmDe9SXr44dBVAJlEywcAAKgqwgeQNvfcI73rXaGrAIAZI3wAafP889Lx46GrAIAZI3wAabN4MSvb\nAkg1wgeQNosXSz/7WfQCgBQifABps2hR9HF4OGwdADBDhA8gbRYujD6OjoatI+vcQ1cAZBbhA0ib\nxsbo48hI2Dqy7MUXpQsukA4eDF0JkEmEDyBtkvBBy0fljIxIp09LF18cuhIgkwgfQNrkctKHPywt\nWxa6kuxKWpWSLi4AZcX06kDanH++9JGPhK4i25JWpaSVCUBZ0fIBAIWSlg/CB1ARhA8AKJS0fNDt\nAlQE4QMACo2MRE+7zJ8fuhIgkwgfAFBodJRWD6CCGHAKAIXe+U7pmmtCVwFkFuEDAApdd130AlAR\ndLsAafSTn0jHj4euAgBmhPABpNGXviS95S2hqwCAGQna7WJmSyWtldQvaamkTncfm+DcFZLWSzom\naaWkHcm58XXa4lObJB1wd/4sRHY1NkrPPy/96lfSPHpPAaRL6Hetg+7eKklm1iDpoKTVhSfFx7rd\nPRdv90vqVBRGJGmzu2/LO/9A3jEge5InMcbGpEWLwtYCACUK1u0St2SMr1kdt2K0mtmSIqe3SRrK\nO/e4pLVmtiDetTZu/UgMCcgyVrYFkGIhx3y0Shou2DesqNuk0FnLd8YtIco7d4+kPjPbaWYbJd1T\nzkKBmpO0fLCyLYAUChk+ii2aMFpsv7t3SxrNaxVpVdRqkou39yoKHKsk3SGJ2YGQbbR8VM6LL0oH\nDkj/93+hKwEyK+SYj1G9HB4SjSpo5Ui4+0oz22hmfYoGqJqk/rgV5B533yJpe9zyccTMlrr7qWLX\n2rp1qxoaGs7a197ervb29tn9REC1JC0fhI/y+9GPpFtukY4ckS6/PHQ1QBBdXV3q6uo6a9/YWNHn\nQWYkZPg4JmlTwb6comBRlLt3SpKZNUkacfdBM1sj6ev558THWyU9XOw6u3fvVnNz8yzLBwK65BLJ\njG6XSkgCHdOro44V+4O8t7dXLS0tZbl+sG6XeNDoeBeLmTVK6nP3wXh7Rf4gUjMbzhtguknSxvjz\nfkWP3hY6Vom6gZowZ470/e9L73lP6EqyJwl0jcV6hgGUQ+hHbdeZ2W2SBhS1VKzLO7Zd0mOSdsXb\nd0tqM7MrJT3m7g9IUYgxs6XxdcYkNUjaP1GXC5AZTcXGZmPWaPkAKi5o+HD3E5JOxJuHC46tL9je\npQkkQQQAZi1p+ViwYPLzAMwY06sDQL7RUamhQZo7N3QlQGYRPgAg38gI4z2ACiN8AEC+F15gvAdQ\nYaEHnAJAbfnbv5Veeil0FUCm0fIBAIUY7wFUFOEDSKtHH5X+/M8l96nPBYAaQvgA0qqvT/rUp6Sf\n/Sx0JQBQEsIHkFasbAsgpQgfQFqxsi2AlCJ8AGlFyweAlCJ8AGlFyweAlCJ8AGlFy0f5DQ5Kf/AH\n0ve+F7oSINMIH0BaXXCBdOGFtHyU0zPPSF/9qnT6dOhKgEwjfABptmqVtGhR6CqyIwlyTK8OVBTT\nqwNp9q//GrqCbEm6sFhYDqgoWj4AIDEyIp1/ftSdBaBiCB8AkBgdjVo9zEJXAmQa4QMAEiMjjPcA\nqoDwAQCJpOUDQEUx4BQAEr/xG9JVV4WuAsg8wgcAJDZtCl0BUBfodgEAAFVF+ADS7N//XWpokJ57\nLnQlADBthA8gzS64QDp1ivVdAKQK4QNIMxaXA5BChA8gzZLHQllcDkCKED6ANEvCBy0fAFKE8AGk\n2YIF0VTgtHzM3i9/Gd3HM2dCVwJkHuEDSLM5c6KnXWj5mL1HHpFyOWlgIHQlQOYRPoC0W7iQlo9y\nSAIc06sDFccMp0Da7dwpLV0auor0SwJcQ0PYOoA6QPgA0m79+tAVZMPoqHTJJdI83haBSqPbBQCk\nqOUjmTcFQEURPgBAilo+GO8BVAXhAwAkWj6AKio5fJjZkkmOLZ9NMQAQDC0fQNXMZGRVv5ntdPc7\nkx1mtkDSPklrJM0tV3EAUDX33MMEY0CVzKTbZZmklWb2lJndYGYbJA1KaoyPAUD6XHut9MY3hq4C\nqAslhw9373f3myQdltQtaY+kO9x9tbszNSBQbcPD0r/8i/TCC6ErAYBpmcmYjwVm9hlJt0vqUNTd\nssfM/l+5iwMwDd/7nvSHf8i04ABSYyZjPgYlHZW0LGnpMLM9kg6Y2RZ3v6qM9QGYCivbAkiZmYSP\nje5+OH+Hu/dKWmZmt5enLADTljweyvouAFJiJmM+Dk9y7N5SrmVmS83sdjNbY2a3mdmEiyqY2Qoz\n2xGfuzP/XDP7vpmdMbMhMxuOX7eVUguQWknLB+EDQEqU3PJhZgck+UTH3f2WEi530N1b4+s2SDoo\naXWR79kgqdvdc/F2v6ROScmiFvfFX5u8+253910l1AGk1wUXSBdeSLcLgNSYyaO2RyUdy3sNSFoo\n6SZJD033Ima2Qnkhxt3HJLVOMIlZm6ShvHOPS1obD35tkLTX3Z9291OSVip6AgeoH42NtHzMxlNP\nSZ/8pPTii6ErAepCyS0fE3WtmNkmSS2Knn6ZjlZJwwX7hiU1KRrUmu+sP+nyulya3P1Ewbkr3L17\nmjUA2dDYSMvHbBw9Kn3wg9Ktt4auBKgL5Vzb5SG93A0yHcXmMR4ttj8OE6N5rSKtilpNcvnnxQNe\n95ZQA5ANCxcSPmZjdFSaN0+66KLQlQB1YSZPu5wjnl79jhK/bFQF4UFR8Cj6DuruK81so5n1SeqX\nZPHHfLdMZ9Dr1q1b1dBw9tjW9vZ2tbe3T7d2oLZ0d0djPzAzyaJyZqErAWpCV1eXurq6zto3NjZW\ntuvPZMDpGZ074DT5P3ZtCZc6JmlTwb6czg0U49y9M66hSdKIuw/m1bWqSF1F7d69W83NzSWUCtS4\n+fNDV5BuLCoHnKXYH+S9vb1qaWkpy/Vn0vJRdM3peMDotLn7cTMb/789/rwvCRTxgNTRvInMhiUt\niQeVbpK0seCSzTp3DAkATC1p+QBQFdMKH3G3SqJo60JyThwOpmtdPB/HgKJxHOvyjm2X9Jik5JHZ\nuyW1mdmVkh5z9wcKrjWqSVpNAGBCtHwAVTXdlo9RTdzV4nnbLmnudL95/KRK8rRK4ayp6wu2J523\nI+mSAYCSjYxIixeHrgKoG9MNH7RHAsiuV7xCes1rQlcB1I3pho9hSc3u/niyw8xulnSkxG4WAKg9\n//zPoSsA6sp05/kwvdzNkjioaEIwAACAaZvNJGM8EA/Uimefldavl06eDF0JAEypnDOcAgjFTDp4\nUBoYCF0JAEyplPBR7BHbaU3qBaDCkjkqhpnqBkDtK2WSsTvjpewn3efu22dfFoCSnH9+9MQGK9sC\nSIHpho/jkq6MX4neIvtc0eRgAKotl6PlA0AqTCt8uHt5JnMHUDmEDwApwYBTICsWLiR8zMQXvyj9\n7u+GrgKoK4QPICtyOcZ8zERfX/QCUDUzWdUWQC268UZpaCh0FekzPBwFNwBVQ/gAsuJP/zR0BelE\n+ACqjm4XAPWN8AFUHeEDQH0bGSF8AFVG+ABQ32j5AKqO8AGgvg0Pvzw9PYCqIHwAqG9bt0q/8zuh\nqwDqCk+7AKhvf/VXoSsA6g4tH0CW/Pzn0QsAahjhA8gKd+mSS6TPfS50JQAwKcIHkBVmLC4HIBUI\nH0CWsL4LgBQgfABZQssHgBQgfABZsnAh4QNAzSN8AFlCt0tpnn5aGhgIXQVQdwgfQJbQ7VKav/5r\n6Y//OHQVQN0hfABZQvgoDYvKAUEwwymQJe9+t/SWt4SuIj2Gh6Vly0JXAdQdwgeQJcuW8cu0FKxo\nCwRBtwuA+kX4AIIgfACoT+6EDyAQwgeA+vTCC9Lp04QPIADCB4D6lDwVRPgAqo4BpwDq0xVXSP39\n0mWXha4EqDuEDwD1ad48aenS0FUAdYluFyBrDhyQvvnN0FUAwIQIH0DW3HOP9JWvhK4CACZE+ACy\nhsXlANQ4wgeQNQsXsr4LgJpG+ACyhsXlANQ4wgeQNXS7AKhxQR+1NbOlktZK6pe0VFKnu49NcO4K\nSeslHZO0UtKO/HPNbI2khZJGJMndD1e2eqBG0fIxPbt3S69+tbRuXehKgLoTep6Pg+7eKklm1iDp\noKTVhSfFx7rdPRdv90vqVBRGZGYbJTW4+6440HxdEuED9SmXk8bGpJdekubODV1N7fr856W3vIXw\nAQQQLHzELRmebLv7mJm1mtkSdx8sOL1N0lDeucfNbK2ZLXD3U5LuSYKJuw+YWUsVfgSgNl12WTR7\n5/PPS42NoaupXSwqBwQTsuWjVVJh2/CwpCZJgwX7R/M34pYQSWoyM4v33SjJFAWVvZJOlbleIB1+\n//elH/4wdBW1j/ABBBMyfBT7k2y02H537zaz0bxWkVZFrSY5SVdKapDU7+6DZnZMUo+kZRWrHEC6\nvfhi9CJ8AEGEDB+jisJDvkYVtHIk3H2lmW00sz5FA1Qt7+No0lUTd980mdlydz9R7Fpbt25VQ0PD\nWfva29vV3t4+m58HQFokTwMRPoCiurq61NXVdda+sbGiz4PMSMjwcUzSpoJ9OUWBoih375QkM2uS\nNBK3dJiKt6JMaPfu3Wpubi6xXACZkTwNRPgAiir2B3lvb69aWsozpDLYPB/uflx5ocHMGiX1JS0Y\nZrYifnIlOT5sZgvizU2SNsbXGZDUa2ZL4vOa4usUbfUAAMIHEFboR23XmdltkgYUjePIf+Ztu6TH\nJO2Kt++W1GZmV0p6zN0fyL+OpM3xI7jNkm6qeOUA0uv886U3vUlavDh0JUBdCho+4taJpIXicMGx\n9QXbuzSBuLVke7nrA5BRv/mb0re+FboKoG4xvToAAKgqwgeQRXfeKf3Zn4WuAgCKCj3mA0AlPPOM\n9NRToasAgKJo+QCyiMXlANQwwgeQRYQPADWM8AFkUS4XzeLpPvW5AFBlhA8gi3I56fRp6YUXQlcC\nAOcgfABZtHBh9JGul+Je/Wpp797QVQB1i/ABZFEybXiygBpedvq09MMfSuedF7oSoG4RPoAses1r\npI6Ol1tA8LLReOFs1nUBgmGeDyCLLr9c2rkzdBW1iUXlgOBo+QBQXwgfQHCEDwD1hfABBEf4AFBf\nkvDBeBggGMIHgPoyNCRdeKE0f37oSoC6xYBTAPXlbW+TFiwIXQVQ1wgfAOrL618fvQAEQ7cLkGUn\nTkhPPRW6CgA4C+EDyLJbbpE+9anQVQDAWQgfQJYtXy49/njoKgDgLIQPIMuWL4+6XtxDVwIA4wgf\nQJYtXy6dOiUNDoauBADGET6ALFu+PPp44kTYOgAgD+EDyLJXvlK67DLGfUhSf7+0a1fUEgQgKMIH\nkGVmL4/7qHcPPyx1dEhz54auBKh7hA8g666/XvrBD0JXEV5Pj3T11dLFF4euBKh7zHAKZN3HPiad\nd17oKsLr6ZFaWkJXAUC0fADZd/75UfdLPTt9WnriCcIHUCMIHwCy78knpV/8gvAB1AjCB4Ds6+mR\n5sx5+dFjAEERPgBkX09PtJItg02BmkD4AJB9l14qveMdoasAEONpFwDZ99GPhq4AQB5aPgAAQFUR\nPoB6cfPN0vbtoasAAMIHUDfmzJEefTR0FQBA+ADqxvXXR2u8uIeuBECdI3wA9WL5cmlkRHr66dCV\nAKhzhA+gXrz5zdIFF0iHDoWuBECdI3wA9aKxUXrXu6TPf75+ul7+67+kF14IXQWAAoQPoJ68733S\nd74jHTsWupLKe+EF6a1vlXbtCl0JgAJBw4eZLTWz281sjZndZmYNk5y7wsx2xOfuzD/XzO4zszNm\n9pKZHTUzFnAAimlrk664Qvryl0NXUnkPPCA9/7z0J38SuhIABULPcHrQ3VslKQ4TByWtLjwpPtbt\n7rl4u19Sp6T18Snfl9Qgydz9VDUKB1Jp7lzpa1+TrroqdCWV97nPSTfcIC1dGroSAAWCtXyY2QpJ\n4x3P7j4mqdXMlhQ5vU3SUN65xyWtNbMFyeXc/XmCBzANb3yjdOGFoauorP5+6RvfkN7//tCVACgi\nZLdLq6Thgn3DkpqKnDuav5HX5ZKcu8jMbjazVXGXDH/qAPXsi1+ULrlEWrMmdCUAigjZ7dJYZN9o\nsf3u3m1mo2a2xN0HFQUXl5SLT7kv3i8zG1bUfdNaiaIB1LgzZ6QvfEH6oz+SLroodDUAiggZPkb1\ncnhINKqglSPh7ivNbKOZ9Unql2TxRyXBI9YvqdnMFkzUDbN161Y1NJw9trW9vV3t7e0z+TkA1JKH\nH5b+53/ocgFmoaurS11dXWftGxsbK9v1zQM97x+P+djr7ivz9g1Lai4IE8W+tknSUXdfFF9nfDBq\nfPwlSQsLw4eZNUvq6enpUXNzcxl/GgA1o7tb6uyUuroks9DVAJnR29urlpYWSWpx997ZXCvYmI94\n0Oh4F4uZNUrqy+s+WZE/dsPMhvMGmG6StDH+vF/S3XnnrZV0hMGnQJ1atUq6/36CB1DDQj9qu87M\nbpM0oGiMxrq8Y9slPSYpmSHobkltZnalpMfc/QEpekrGzI7H1xlTNAg1/zoAJnLmjPT970uve13o\nSgDUkaDhw91PSDoRbx4uOLa+YHvCaQrdvVtSd9kLBLLu3nulj30sWmwuVzgECwAqg+nVgXr2/vdL\nL70kffKToSsBUEcIH0A9u+wyafNm6e/+TjrFMCkA1UH4AOrd7bdLP/uZ9Pd/H7oSAHWC8AHUuyuu\nkG69Vfqbv0nv8vMvvRS6AgAlIHwAkDo6pLEx6b77QldSuv/4D+maa6Qf/jB0JQCmifABQHrta6Ol\n5++9V3oZWO/dAAAJxklEQVTxxdDVlOauu6KF8q64InQlAKYp9DwfAGrF9u3Sa14Tzf2RFt/6VjSj\n6eHDTCoGpAjhA0Bk2TLpwx8OXUVp7rpLuvZa6Z3vDF0JgBIQPgCk06OPSg8+KO3fL82hBxlIE/6P\nBZA+Z85If/mX0UDTNWtCVwOgRLR8AEifT39a+va3pW9+U5o7N3Q1AEpEyweA9Ln44mhytDe/OXQl\nAGaAlg8A6fP+94euAMAs0PIBYGK9vUy7DqDsCB8AJnbkiPTBD0rHjoWuBECGED4ATGzrVum666SN\nG6XTp0NXAyAjCB8AJnbeedK+fdLJk9Jf/IXkHroiABlA+AAwudbWaMG5T39a+sQnqv/9f/Wr6n9P\nABVF+AAwtQ0bpA99KHq89cCB6n3fJ56IJhJ78snqfU8AFcejtgCm5667pMHBaPXbN7whelXS//6v\n9Hu/J11+ebTgHYDMIHwAmB4z6bOflX77t6Wrr67s9xodjYLHeedJ//Zv0iWXVPb7AagqwgeA6bvg\nAukDH6js9/jxj6P1Wp55RvrWt6RXvaqy3w9A1THmA0DtePhh6frrpe99L2rxqHQLC4AgCB8AasM3\nviG1tUVjSR5/XPqt3wpdEYAKIXwAKJ+RkZnPBfLmN0tf+IL04IPSK19Z1rIA1BbCB4DyaW+XXv96\naccO6Qc/KO1r586NnqSZO7cytQGoGQw4BVA+HR3S5z4XPZb7oQ9Jq1ZJS5ZIc+ZErw0bpJaW0FUC\nCIyWDwDlc8MN0pe+JD37rNTZGQWOkyel48elo0el4eHQFQKoAbR8ACi/BQukW2+NXgBQgJYPAABQ\nVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQP\nAABQVYQPAABQVUHDh5ktNbPbzWyNmd1mZg2TnLvCzHbE5+6c6Fwzu8/MFlSuapSqq6srdAl1h3te\nfdzz6uOep1folo+D7n6vux+W1CnpYLGT4qDR7e7b43P3x+cXnrdK0jpJuQrWjBLxBlF93PPq455X\nH/c8vYKFDzNbIcmTbXcfk9RqZkuKnN4maSjv3OOS1ua3cOS1hAxXol4AAFAeIVs+WnVuUBiW1FTk\n3NH8jbygkX/uOnfvlmRlqxAAAJRdyPDRWGTfaLH9cagYzWsVaVXUapKTxrtbDlSkSgAAUFbzAn7v\nUZ07NqNRBa0cCXdfaWYbzaxPUr+iFo7+pBXE3U9N43vOl6Tvfve7My4apRsbG1Nvb2/oMuoK97z6\nuOfVxz2vrrzfnfNney1z96nPqoB4zMded1+Zt29YUrO7D07xtU2Sjrr7IjNbI2lhckjSHkl3SDri\n7icKvu7dkv6xfD8FAAB15z3u/pXZXCBY+JAkM3vK3a+KP2+U9FASRuJwMuruA/H2sKQl7n7KzHZK\neszdHyhyzTOSmooFGDNbJOmtkgYl/bwyPxUAAJk0X9ISSQ+6+9AU504qdPhYruhJlgFF4zj2JKHB\nzA4oChi74u3bFHW3XCmprzB4xN0vmyTtlLRX0j1TtaAAAIDqCxo+AABA/Qk9yRgAAKgzhA8AAFBV\nhA8ghUpZF6ng61j7CMCk4qdIpzpnRu9B41+ftTEfZrZU0lpFg1OXSuqMp26f1bmYWIn3fJWk5nhz\npaSO5IkmTJ+ZHXP31vjzBkXrJK2e4muSyfhaGIxdulLfL/KmARiRpHhdKpRgBu/nbfFmk6QD8VIc\nmKb432xO0ZQVjZPNnzWT96B8IScZq5SDhTdE0kQ3pJRzMbFp3cf4WLO73xtvr5H0kKRlVaw19Yqt\ni2RmrWa2ZKJQwdpHZTHt9wsz2yipwd13xb8Uvy6J8FG6Ut6jN7v7tmQjfmJyfeVLzI4kIJvZfZOd\nN5P3oEKZ6nYpZbG6Ehe2wwRKvI+tih6FThyR1MQ9L1kp6yIlWPtoFmbwfnFPMk1A3LLXUukas2YG\n93xtHPQSs5qHos5N9T4xk/egs2QqfKi0GzLrmwdJJdzH+Jdf/pvwymg3XQAlmva6SBJrH5XJtP+d\nJ780zexGM1tlZjskLapCjVlT6nv0Hkl9ZrYzbnm6p5LF1bmS3oOKyVq3Syk3ZNY3D5JKvI8FU97f\noWhiOJRm2usilbj2ESZWyr/z1nh/v7sPmtkxST2ie7FUpb5H71X0/0WbpDWSjimazRrlV9LabMVk\nreWjlBsy65sHSTO8j/FfJgfc/bOVKizDjhXZl1M0KK9Qm6SlZrYhvudNipqnl1eywAwq5d95v6Kl\nIQal8e6CJu55yUoN2fe4+/Z4iY6PSzrCk10zNtWTKKW8BxWVtfBRyg2Z9c2DpBncx7gbYMjd91Ws\nqgyLR/CP//UXr4vUl7c0wYqk79vdD7v7vvjVGX/JocJFFzGlUv6d94sW1HIoNWR/PdmI/63vVdQK\nhdKdM+aj4H1l0veg6chU+CjxTXnWNw+l3fN4uzn+ugfi7Y38dTIj6+Jn69dI6pC0Lu/YdkXNzuPM\nrMHMblf0F00Hg3xLU+J7y4Ck3uQex6tw9xH4SlPie0u/ojFkhYoFGEwgHqOUvE9sN7Mb8w4Xvq9M\n9h409ffK4DwfpSxWN+G5mL7p3vP4jaJPLzfpmaQRd2cwHmpeie8tSyRtVvRLsVksdDkjJd7zmxV1\nK45JapB0hMBXuzIXPgAAQG3LVLcLAACofYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQPAABQVYQP\nAABQVYQPAABQVYQPAGVnZmfM7KUJjm2Kj++Y4PhGMxvO2+6Jz09ew2Z2IH/afgDpQvgAUDEFa0Mk\n1mnqVTO94PODklYomqp8g6Lps3tYowZIJ8IHgErpVfHFplbFx0rR7+6Pu/sJd3/A3d+qaN2UjtkW\nCaD6CB8AKmW/pPX5O+IVMHskDRf9itLskLSpDNcBUGWEDwCV0iuNr0yauEVRKLEyXn9BGa4FoIoI\nHwAq6YCiwJFok3SoTNceVhRimsp0PQBVQvgAUEmHFI/7MLM2SUPuPlima+cUDUbtL9P1AFQJ4QNA\nxbh7t6Sl8VMpRVs9zOw+M9swg8u3xN/j1GxqBFB9hA8AlZa0fqyVdH+R4006+6mYVk1vQOo2SXtm\nXR2AqpsXugAAmXdAUqckd/fHixx/SNLO+EmYMUVB5L6Cc5rMbEX8+ZWSNktaqijQAEgZwgeASsif\nJOyIoknB9hQ77u73mlmTpL3xrvvd/c6C663Vy0FjVNJRSc3u/nRZqwZQFeY+1USDAAAA5cOYDwAA\nUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWEDwAAUFWE\nDwAAUFX/H8D+WWUqOmK4AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -144,7 +143,7 @@ "params = Parameters()\n", "params.rp = 0.22, 'free', 0.0, 0.4 # rprs\n", "params.per = 10.721490, 'fixed'\n", - "params.t0 = 0.5, 'free', 0, 1\n", + "params.t0 = 0.48, 'free', 0, 1\n", "params.inc = 89.7, 'free', 80., 90.\n", "params.a = 18.2, 'free', 15., 20. # aprs\n", "params.ecc = 0., 'fixed'\n", @@ -172,16 +171,14 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, + "execution_count": 12, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt8XHWd//HXd5LeL5mZpiAXaZoWFETbJlN0ES9IqLvq\n6krbdLt4Q9omrL9FeSw0LfvT1fVSaKssPtaFpnhZf66FtgHdXRVsw0/lp2LbJC2CgKVJuBZoLjOl\n9ybz/f1xzqSTZCbNZCZzMjPv5+ORRzLnNp85TWfe+Z7v+X6NtRYRERGRbPF5XYCIiIgUFoUPERER\nySqFDxEREckqhQ8RERHJKoUPERERySqFDxEREckqhQ8RERHJKoUPERERySqFDxEREcmqYq8LMMYs\nttY2nGWb2cASoBWYDWy21kbOtk5ERETGHuPV8OrGmMVAENgE+K21h4fYdo+1NuT+XAJss9YuOts6\nERERGXs8u+xirW2w1m4Ghkw/xpgF8du4rRohY0zZUOtGpWgRERFJ21jo82HOsj4EdA1Y1gWUn2Wd\niIiIjEFjIXycjT/BsrC7fKh1IiIiMgZ53uF0GMI4fUPi+d3lQ60bxBgzA/gg0A6cyGiVIiIi+W0i\nUAY8Yq3tTOdAYyF8nK3H6x5g1YBlQZy7W7qHWJfIB4H/TLVAERER6XM98ON0DjAWwsegPh9uR9Kw\ntbbNWttijPHHrfMDB6y17UD7EOsSaQf40Y9+xKWXXpq5VyBDuuWWW7jrrru8LqOg6JxnX9Jzvm4d\nNDXB9u3ZLyrP6fc8u55++mk+8YlPgPtZmg7Pwocx5hqgAqflY60xZoe19lF39VpgF7DRfbzUGHMr\n0IbTyXRp3KGGWjfQCYBLL72UioqKjL0WGVpJSYnOd5bpnGdf0nP+yivwrneB/j0yTr/nnkm724Jn\n4cNa2wg0AhsSrKse8HgvsNd92DDcdSIinopG4Ykn4KMf9boSkTElF+52EZGBXn4Zvvc98GiQQBkm\na+Ghh6C6+uzbihQQhQ+RXLRvH9x4I7S3e12JDKWoCKqqYPZsrysRGVMUPmTULV++3OsS8s+8ec73\nffsSrtY5zz6d8+zTOc9dCh8y6vQGMQrOPx9mzFD4GEN0zrNP5zx3KXyI5CJjnNaPJOFDRGQsU/gQ\nyVUKHyKSoxQ+RHLVvHnQ2gqHD3tdiYhIShQ+RHLV/PnO9z/+0ds6RERSpPAhkqsuvRQuugg605rf\nSUbL974H/6mppEQSGQtzu4jISIwfD88/73UVksw998Db3gbXX+91JWNaNGqxFqw1WOsMCjvw+8me\nUxw9dZxoNEpv1NIbjdLTG8VaS9RaDD6CE85xj5P4GC8feYFjp48RtZbe3ihRd9/eqHOcknGlzJxw\nYfIaek/yZPjxvue07r7Rvu9RLpn8LqYWBQbtH/v5lRP7aTvR0vecvTbadxyLpdhOYuHk6kH7xX62\nFppObCPc+wo2VoN19o26xzifSuaYqkH7xR4fjx7md747+l5D1N3fxo5DlHnHP8/03tmDzsGhQ5n7\nd1f4EMkxsUFNzYApGU/0nKAn2uO8KTHwjcUyoXgCU8dPTXrcnmgPL0Re6Ldf1Eb7PZ7tn82U8VOS\nHuPgGwdpC7cN2i/28/ii8bxn1nuGfH2/bv81Hcc6+vaLr8NiuWTGJYTODyXd/+ipo/xw3w8HnYP4\nmv728r/lgukXJD3G4y89zi/2/2LQvrGfp42fxhff98XkL6Knhw2T9/LcJcUc37aSPU2Wnt4zb/CW\nKG86uoiyw59I+GFnLZwwXTS/+bPgfiDg7hf/QXFx67eYcvTypB80r5/zAAfL7gLOPC9x34tOlVL2\n68aEH3Sxn19971JOztgNxt3X/Y5xjjnpTyuY9PuvJ/3g7538Cidqyt19bN9xnJ/dX+bvPQYvXJX8\nfL7r3+Evb0m+/o3z4JuvJF8P8NnlcNHvkq9//GZ4+O7k66d1wD++f+jn+O7/gxffnXz9u3521tdx\n7zfPjIZrjPPl8535uef6e4ie9wecOVkNWAPWh8H5PvGpGqb+oWrQfj6f8xWddJxXP7IF8IE1GHyA\n6dvfYHhjz6eZHOm/nzFw7NjQLz8VBRk+jhw/RfjICaJRS4+bgGPfJxVNocgUJ0y+1sKRU0cIn+im\nx02u0ajt+7mnN4qPIi6cMidperYWWg8/w5HTh53kHXXezOITeHDc+Zw/cW7S/U/2nqAlsoPeuPQd\nn557o1HeNukDTPXNTJico1F46dSTPHfy9276jTp/fXDmGOPsZN45/sakCTwahabe/yBsk39YXRC9\nkjm9H0l6Lk4Q4feT/snZnjNv7mfeoC2Xh+uYfvqSpOfi5ck/pz3wvX770bd3lOIeP+947kdD/nvs\nv/hzHJm678x+pv8btP/lZZyz/7ak+58a9zovLXr3mTdl9zjxb9aBRx6i+LUrkn/QvP0eTr53NcTt\n1++N+ui5mLte6gseM2Y4fU2nTz/ze33ND6/hdy8mf3P9hyv+gW//1beTrn/96OvM+facIf/vPHbD\nY1x1UfIPia1PbeULj3wh6fo3TX0TB//x4JDPcfujtw/5Om6+4uYhw8fhk4e5+eGbMRh8xocx7ve4\nx1e++cohw8eTrz/Jd1u+S5GvqN9+BoMxhnOmnDN0+Ni/n2f8PTwxoZuuA0/Q2mmYOsX9gIi90Ue6\nGPdK4g8IY6BnHETpAQy++A8IDD6fD4OPQEkxJZP77xd/vGmTZuArvryvboOv71wYY5gw3s+V1ySv\nweeDvUXX8obvrXHHMH3n1Gd8XPjOhVxyZfIaTpsS/nBqQ99+Rcbn1G8MPve1zP/iXPzFg+uI/fzq\n6Q/zwqkLKIr9OxhDkc/X93hC0UQqfp5439jPB45+h+PRN/DF9o3V4D6ecc25nP+NwfvFvvfac3n5\n2LMUF53ZL/Zzsc+Hz2eYccNMJo1LXIPPB6d6b+JU9LMUF/nwGYPPZ/p+Li5yjjF+/Zn9Ens02Yph\nOhdnHtbUNTdDZWWaT+8ytoDmhjDGVABNrALOT7LR934DLwzxl9k774a/Sv7mypFzYeOrQxfy2avg\not8mX/+Hf4BfJP+QYOpBuDXZC3AN93VYNzm7qdf5Mpij5zGpvrXfG8rA/5CRD32UnnN3OftgMO53\n5+ciph34NME//nPCNzRjoHfCIdreW9V/P+ftiNgb7Zyn72Ha0flJ31AOzfgJL73pHkzsDTVuX4OP\n8dEgoZe+l/DNJPbzk4Gv88b4/YPeoGPHufD0B7j4VHXS83DKHObx8V/rezOOvUHH/1xhbiDgm5W0\nhldsC629vzrzQenuV+RzXtcE3xSunPIpjIGODrj9dvjVr+B97zvzT7rjwA46jnUk/IDwGR/lgXLe\nce47kv5KnOw5yW9f/G2/fQd+gL9t5tuYNmFa0mN0HuvktaOvDXr9sZ+LfcVcVHLRkL+6kRMRem1v\n0vBQ7CtmXNG4IY/hufvvh+XLoaODf/zGDB56yAmLIrmsubmZSid9VFprm9M5VkGGj+vq/oVzZs12\n35Sd9Bn7+W1T349/3Mx+Hw79PuxOP8/LJ551k7fpS89FPmf/8UUTuNz/zkH7xh/vpWPPccoe60vM\nxncmffuMoWSCn9JJ5yT84Pf5IGp76T51qO95Y6k79lqKfD6mTpjMuKLipB/8YPH5kkZrGcNOn4Zp\n02D9erj5Zq+rkYTWroUf/QhefJGqKuff66GHvC5KJD2ZDB8Fednln6o/TEVFxQj3nuV+jVwFc9Pa\nH4q4kDeleQwFj1w1bpzTj3HvXq8rkaT27YN587DW+fFzn/O6IJGxRbfaiuQgDW46xrnh4+BB5zJZ\nbEgWEXEofIjkoPnz4amnoKfHXXD6tKf1SJxTp+A974H3vrcvIMYmIRYRh8KHSA6aNw9OnoRnnwV+\n/nOYOhW6urwuS8AZf+X+++GDH2TfPueOpLIyr4sSGVsUPkRy0Dvcm1b27sX5ZDt1StdhxqC9e51/\nq+S3TYoUJoUPkRwUCDgjq+/bB1xyCUycqPAxBrldP0RkAIUPkRw1f76bN4qL4fLLFT7GmOPH4c9/\nVvgQSUThQyRH9bvj5fLL4U9/8rQe6e/JJ51RbBU+RAZT+BDJUfPmwWuvwauvAm96U2ZnfZK07dvn\nDOp3+eVeVyIy9ih8iOSo2F/U+/YBpaXOgBIyZuzb53THmTzZ60pExh6FD5EcVV7u3GHbFz7eeMO5\n/1a8c+KEEwKjUfbu1SUXkWQUPkRylM/n3Ma5bx9wzTXOeB8+/Zf2VGMjzJyJPfgqTzyh8CGSTEHO\n7SKSL+bNg1//GrjwQudLvOVe+mp/YwaHDyt8iCSjP5NEcti8ec4opydOeF2JAE74mDaNfc9MABQ+\nRJJR+BDJYfPnQ2+vM8+LjAEdHVBayr59MGMGnH++1wWJjE0KHyI57PLLnaG7Nb7YGBEXPubP17Dq\nIskofIjksClT4OKLFT7GjI4OmDlTd7qInIXCh0iOmzfPnWBOvNfRwamSUtraFD5EhqLwIZLjYnO8\nWOt1JUJHB4eipYDCh8hQdKutSI6bNw8iEXht+2O8qbgDPv5xr0sqXPffz6M/mca4cXDppV4XIzJ2\nqeVDJMfF/sI+8b0fw9e+5m0xhW7ePB57uZxLL4Xx470uRmTsUvgQyXEXXODc1vnCMc3vMhbs26dL\nLiJno/AhkuOMcT7sngsrfHjNWnjySWfYexFJTuFDJA+85S2wv7sUjh1zvsQTR486p/+CC7yuRGRs\nU/gQyQMzZ7qXXQA6O70tpoDFGp5KS72tQ2SsU/gQyQOlpdB62P3E06UXzyh8iAyPwodIHigthVdO\nK3x4TeFDZHgUPkTyQGkpdFBKrz+oKW698vDDTH/oPwDn7iMRSU6DjInkgdJSOMYUWnZ0Egp5XU2B\neuAByn71ZyZP/jSTJ3tdjMjY5mn4MMbMBpYArcBsYLO1NpJk2wVANbAHWAisi2071DqRQlCqKy7e\n6+ggMq5Ul1xEhsHrlo9t1toQgDGmBNgGLBq4kbuu0VobdB+3ApuBamOMP9m67LwEEe8pfIwBHR10\n+S5T+BAZBs/6fLitFX1TYbktFSFjTFmCzauAzrhtW4AlxpjpwDVDrBMpCJMmwZQpcOiQ15UUsI4O\nDlm1fIgMh5cdTkNA14BlXUB5gm3D8Q/clhDcbYdaJ1IwSjXAqbc6Ojh4upSZM70uRGTs8zJ8+BMs\nCydabq1tBMJxrSKxLnXBJOssEMxgrSJjnsKHh06fhnCYl06q5UNkOLzs8xFmcEDwM6AlI8Zau9AY\ns9IYcwCngyqx7wnWmbhtBrnlllsoKSnpt2z58uUsX758RC9EZCxQ+PCQO6rsC0dLeYvCh+SBLVu2\nsGXLln7LIpHM3cfhZfjYA6wasCzIEKHBWrsZwBhTDnRba9uHs26gu+66i4qKihEXLjIWlZbCiy96\nXUWBOnYM+5a3sH//m3i3wofkgUR/kDc3N1NZWZmR43t22cXtGNp3icW9a+VALDQYYxa4t+LG1nfF\ndSJdBawczjqRQlFaCmXP/xoWLoTDh70up7CUlxP+/TP8IbpQl11EhsHrW22XGmNuBdpw+mosjVu3\nFtgFbHQffwOoMsbMAXZZax+M23aodSIFobQUXor0wPN7nOsv03XDVzZpaHWR4fM0fFhr9wJ73YcN\nA9ZVD3i8kSSGWidSKAZNLleuG76ySeFDZPg0t4tInigthdeiGm3MKwofIsOn8CGSJ0pLoRN3RjOF\nj6yLnXJNKidydgofInmitBROMpHeyVMVPjzQ0QElJTBunNeViIx9Ch8ieSLW3H9yqgb88EJHhy65\niAyXwodInog19x+drPDhBYUPkeFT+BDJE+PGgd8PLQtuhGuv9bqcwnLVVVyx+98UPkSGSeFDJI+U\nlsLOubWwdOnZN5bM2buXk2+cUvgQGSaFD5E8ovldPHDiBBw9yovHZ2pGW5FhUvgQySMKHx5wJ5V7\n/qhmtBUZLoUPkTyi8OEB94S3HVH4EBkuhQ+RPKLw4QH3hHeg8CEyXAofInlE4cMDCh8iKVP4EMkj\npaXQ3Q09PV5XUkA6OoiOG88Rpip8iAyTwodIHiktBUOUyB+ega4ur8spDO98J09efwdgFD5Ehknh\nQySPlJaCjygzrroUfvITr8spDKEQj//FLfh8ziBvInJ2Ch8ieaS0FHop5vS0gDp/ZFFHBwSDUFTk\ndSUiuUHhQySPxJr9T2hyuazSvC4iqVH4EMkjfj/4fHB0ksJHNil8iKRG4UMkjxQVOc3/h8crfGST\nwodIahQ+RPLMzJnQ7VP4yCaFD5HUKHyI5JnSUmfAK4WP7Dl0SOFDJBUKHyJ5prQUXu1R+MiKo0fh\nscc4fuiIZrQVSYHCh0ieKS2FLZM+C83NXpeS/555Bt77Xs47ul8tHyIpUPgQyTOlpXAgUgplZV6X\nkv8OHQI0r4tIqhQ+RPKMJpfLIvdEdzJD4UMkBQofInmmtBSOHIETJ7yupAB0dNA7cTLHmazwIZIC\nhQ+RPBP7EOzs9LaOgtDR4Ywmi+52EUmFwodInol9COrSSxZ0dHB0UinjxsG0aV4XI5I7FD5E8ozC\nRxZ1dPDGOKe/hzFeFyOSOxQ+RPKMwkcWhcOEi4K65CKSomKvCxCRzJo2DcaNg3Mfuhd6psH113td\nUv766U/590+dprTb60JEcotaPkTyjDFO68eFex6Chx7yupz8NmUKLxz2q+VDJEUKHyJ5aOZMiBg/\nhMNel5L3NKmcSOoUPkTyUGkpdNkAdOt6wGhT+BBJncKHSB4qLYXOHrV8jDZrNaOtyEiow6lIHiot\nhVdPBeCEWj5G09GjcPIkmtFWJEVq+RDJQ6WlcPC4HyIRiEa9LidvxW5nVsuHSGoUPkTyUGkpvHQk\n4ASPN97wupy8pfAhMjIKHyJ5qLQU2noupPdd73auC0jm7drFuV9cxSSOKXyIpEjhQyQPlZbC77mS\nF7f8PzjnHK/LyU9PPsmbH97MKcYzY4bXxYjkFoUPkTykIdazIBzm1ISpTJhczOTJXhcjkls8vdvF\nGDMbWAK0ArOBzdbaSJJtFwDVwB5gIbAutq17nCp303Jgq7W2ZZTLFxmzFD6yoLubYxMClPq9LkQk\n93h9q+02a20IwBhTAmwDFg3cyF3XaK0Nuo9bgc04YQSgxlq7Jm77rXHrRApO7DKAwscoCoc5Uqyh\n1UVGwrPLLm5Lho09dlsxQsaYsgSbVwGdcdu2AEuMMdPdRUvc1o+YTkQK2OTJztehQ15Xkse6u4n4\nAurvITICXvb5CAFdA5Z14Vw2GajfMI1uSwhx224CDhhj7jDGrATuzGShIrloxgzoGvg/TDInHCaM\nn2DQ60JEco+Xl10SXSkNJ1purW00xoSNMWXW2nac4GKB2H/7evfnKmAxTr+Q9lGoWSRn+DW6+ujq\n7qYrejF+9fkQSZmX4SPMmfAQ42dAK0eMtXahMWalMeYATgdVA7S6rSB3WmtrgbVuy8dOY8xsa+3h\nRMe65ZZbKCkp6bds+fLlLF++PL1XJDKGBDSv3OgKhdjz7MUEAl4XIpJ5W7ZsYcuWLf2WRSIJ7wcZ\nEWOtPftWo8Dt81FvrV0Yt6wLqHBbN4batxzYba2dYYxZDFhr7YNx69cBO6y1jw7YrwJoampqoqKi\nIoOvRmTs+djH4HPNN7LoyiPwwANel5OXgkGoq3O+RPJdc3MzlZWVAJXW2uZ0juVZnw+302hfg6Ux\nxg8ciAUPY8yC+E6kxpiuuA6mq4CV7s+tOLfeDrRnNOoWyRWBAPSe7IGXX/a6lLwUjTqXtdTyIZI6\nr2+1XWqMuRVow+nHsTRu3VpgF7DRffwNoMoYMwfYFWvpsNa2GGNmu8eJACXAA8kuuYgUCr8fOnrU\n8WO0vPEGWIv6fIiMgKfhw1q7F9jrPmwYsK56wOONJBF/yUVEHIEAvH5aHT9GS+y0quVDJHVet3yI\nyCjx++HFEwGIquVjNMQalNTyIZI6ze0ikqcCATjU44djx+DUKa/LyTtq+RAZOYUPkTwVCEA37iej\n+n1kXCx8qOVDJHUKHyJ5yu+HcOyGMvX7yCxrddlFJA0KHyJ5KhCAZ3grrbfdg2Y/y7B77+UTfz+N\nqVMsxeo5J5IyhQ+RPOX3wyHO4dmra9HsZxnW3c3pookEgsbrSkRyksKHSJ6KdYTUFZdREA5zdJxf\nnU1FRkjhQyRPTZ4MxcXqazoqurt5ozig/h4iI6TwIZKnjNHkcqMmHCZi1PIhMlIKHyJ5zK/R1UdH\ndzfdVi0fIiOl8CGSx9TyMUrCYTp71fIhMlIKHyJ5TOFjlHR38/pptXyIjJTCh0ge8/uh5KWn4Le/\n9bqU/HL33fzw9HK1fIiMkMKHSB4LBODDB74Nn/+816XklRNVH2H3qXlq+RAZIYUPkTzm98OhHl17\nybRYJ161fIiMjMKHSB4LBOC1k7rlJdM0r4tIehQ+RPKY3w8HTwSw4TBEo16XkzdiDUlq+RAZGYUP\nkTwWCEA3fkw0CkeOeF1O3lDLh0h6FD5E8pjfD91okpdMU8uHSHoUPkTyWCAAYdw/z9XvI2O6u515\ncyZP9roSkdyk8CGSx5zLLmr5yKgnn+Sc3/+UQMCZP0dEUqfwIZLH/H5opZyf/vgovO99XpeTH7Zt\n49qffk79PUTSUOx1ASIyekpKIEoRnccng/5Kz4zubo6MC6i/h0ga1PIhkseKi2HaNF1xyahwmMM+\nv1o+RNKg8CGS5zS5XIZ1dxM2avkQSYfCh0ie82uA08wKh+nq9St8iKRB4UMkz6nlI8O6uznUG9Bl\nF5E0KHyI5Dm1fGRYOMzrJ9XyIZIOhQ+RPKeWj8yyJ0/y6km1fIikQ+FDJM8FAnDl81vgC1/wupS8\nENl/iH/l82r5EEmDwodInvP74bzIM7B9u9el5AXnEpZRy4dIGhQ+RPJcIACvntS1l0zRpHIi6VP4\nEMlzfj8c6vHDsWNw6pTX5eS8WOddtXyIjJzCh0ie6ze5nG57SZtaPkTSp/Ahkuf8fgjj/pmu8JG2\n2CksKfG2DpFclnL4MMaUDbFufjrFiEjm9Wv5UL+PtHV3O/PlFGtaTpERG0nLR6sx5hvxC4wx040x\nW4GmzJQlIpmilo/MCofV30MkXSMJH3OBhcaY/caYq40xK4B2wO+uE5ExJBCATmbwwsLr1FEhXZs2\nseihm3QaRdKUcsOhtbYVuNYYcwfQCFigxlp7X6aLE5H0TZoEPeOn8N+fbuBzV3hdTY5rbub8g834\nL/e6EJHclnL4MMZMB+4EVgF1OK0dm4wxJdbab2a4PhFJkzHOZQJ198iA7m4OG83rIpKukXSZagd2\nA3OttW0AxphNwFZjTK219uIM1iciGRAIqLtHRoTDdKF5XUTSNZI+HyuttR+MBQ8Aa22ztXYuUJ+5\n0kQkU9TykSHd3XT2quVDJF0phw9rbcMQ6zakcixjzGxjzG3GmMXGmFuNMUnvnDfGLDDGrHO3vSN+\nW2PMc8aYqDGm0xjT5X7dmkotIvlMLR8ZEg7z+umAwodImkbS52MrTifThKy1y1I43DZrbcg9bgmw\nDViU4DlLgEZrbdB93ApsBqrdTe519439bbfWWrsxhTpE8prfD6+95nUVeaC7m9dO+pmpyy4iaRlJ\nn4/dAx7PACqAELB6uAcxxiwgLsRYayPGmJAxpsxa2z5g8yqgM27bFmPMErfzqwHqrbWH3eNeA2xK\n4fWI5L1AAJ591usqcpy12HCYQ70BLlHLh0haRnKrbcJLK8aYVUAlMNxbbkNA14BlXUA5TqfWeP0a\njOMuuZRba/cO2HaBtbZxmDWIFAS/H7q7LBw/4dx7K6nr6eH48ht54kfv4MNq+RBJSybndtnBmcsg\nw5Hov2840XI3TITjhnYP4bSaBOO3M8bchjq9igwSCMCnX1sPb36z16XkrnHjeP72TfyeK9XnQyRN\nGZmdwL38MexLLq4wA8IDTvBI2C3OWrvQGLPSGHMAaMW53NI6YLNlw+n0esstt1AyYFao5cuXs3z5\n8uHWLpJTAgFoPVGCPR3GWOsM/iEpi3Xa1a22ku+2bNnCli1b+i2LRCIZO/5IOpxGGdzhNPZOtiSF\nQ+3BGagsXpDBgaKPtXazW0M50B3fN8Tt65G0I2y8u+66i4qKihRKFcltfj9048f09sKRI87MaJKy\n2O3KavmQfJfoD/Lm5mYqKyszcvyRtHwk/G9nrU0pErmdRvv+fnB/PhALFG6H1HDcQGZdQJnbsXQV\nsHLAISsY3IdERBgws204rPAxQmr5EMmMYYUP97JKTMLWhdg2sbtOhmmpOx5HG04/jqVx69YCu4DY\nLbPfAKqMMXOAXdbaBwccK8wQrSYihcxp+XDDR3e3+n6MUHc3jBsHkyd7XYlIbhtuy0eY5JdabNxj\nCxQN98ndO1Vid6s0DFhXPeDxkON2xC7JiMhggQB0xbpYaajTEQuHnSCnLjMi6Rlu+NAVTpEc1q/l\no0tXJ0equ1v9PUQyYbi32sb6W0RiX8A1gI1flmq/DxHJjpISCMfuYlf4GJmuLo6//ob6e4hkwHDD\nh+HMZZaYbTgDgonIGFdUBFOnF/HgDf8F117rdTm56XOfo+bhv1HLh0gGpDPImK56iuSQQACaz/9r\nuOgir0vJTV1ddBNUy4dIBmRyhFMRGcMCAfU1TUtXF51RzWgrkgmphI9Et9gOa1AvEfGe339mnAoZ\nga4uXjutlg+RTEhlkLHb3ansh1xmrV2bflkikmlq+UhTdzevngqq5UMkA4YbPlqAOe5XTHOCZRZn\ncDARGWP8fnjmGa+ryFG9vdhwmFdskIVq+RBJ27DCh7U2M4O5i4hn1PKRhkgEYy2dqOVDJBPU4VSk\nQKjPRxrcsVG6UYdTkUxQ+BApEIEATO9qh02b4PRpr8vJLRdcwJ+/+xjNVKjDqUgGKHyIFAi/H956\nah/U1ur6S6omTeKlsqs4TIlaPkQyQOFDpED0m1xOQ6ynLHbJSi0fIulT+BApEAof6Yk1FpWUeFuH\nSD5Q+BApEAof6enqcoJHcSqjI4lIQgofIgUiGHTu1gAUPkagq8s5hyKSPoUPkQIRCMBJJtIzfpI6\nnI6Awoc9eIh9AAAgAElEQVRI5ih8iBSI8eNh6lQ4Pimolo8RUPgQyRyFD5ECEgxC99Q3QzTqdSm5\n5Qc/oOxAo8KHSIYofIgUkGAQ7vzY7+GrX/W6lNyyfj3zXvqZwodIhih8iBSQoK64jExXl2a0Fckg\nhQ+RAqLwMQLWQlcXr5wIquVDJEMUPkQKSDCoG11SdvQonD7NwZMBhQ+RDFH4ECkggYBaPlLmnrAu\n1PIhkikKHyIFRJddRsBtKlL4EMkchQ+RAhIMOhOk9fZ6XUkOUcuHSMYpfIgUkGDQ6T8ZiXhdSQ6J\nRjl2TpnCh0gGKXyIFJBgEGbTyqRFV8GTT3pdTm645hq2b2gjTEC32opkiMKHSAEJBqGXIiY1/RZe\necXrcnJGdzdMngwTJ3pdiUh+UPgQKSDBoNN3AVDP0xRoXheRzFL4ECkgwSAcYSrRomKFjxQofIhk\nlsKHSAGZNAkmTDCcmBTQaGMp6OpC/T1EMkjhQ6SAGOP8BX9sogb8SIVaPkQyS+FDpMAEg/DGOIWP\nVCh8iGSWwodIgQkEIOJT+EiFwodIZil8iBSYYBB+VboEPvIRr0vJDQsW8P6DWxQ+RDJI4UOkwASD\nsG3KZ2DlSq9LGftOnoS9ezl99JTCh0gGKXyIFBhNLpcC946gTg2tLpJRCh8iBUbhIwWaVE5kVCh8\niBSYWPiw1utKcoDb8qHwIZJZCh8iBSYYhJ4eOHLE60pygNvy0U1A4UMkgxQ+RApMUFO7DF9c+NAI\npyKZU+zlkxtjZgNLgFZgNrDZWhtJsu0CoBrYAywE1sVva4xZDASAbgBrbcPoVi+Sm+LDx6xZ3tYy\n5nV1cXr8FKLRCUyd6nUxIvnD0/ABbLPWhgCMMSXANmDRwI3cdY3W2qD7uBXYjBNGMMasBEqstRvd\nQPNLQOFDJAEnfFiOPdUOswPg93tc0Rj2znfy66v/mWCLMzS9iGSGZ5dd3JaMvi5vbitGyBhTlmDz\nKqAzbtsWYIkxZrq76E5r7UZ3XRtQOUpli+S8QAB8RHn3J8uhQRl9SFdeyc8vu039PUQyzMuWjxAw\n8KpzF1AOtA9YHo5/4LaEAJQb4/w9Yoz5AGBwgko9cDjD9YrkhenTAV8RJyf6maCOH2elodVFMs/L\n8JGorTecaLm1ttEYEzbGlFlr23GCiwWCwBygBGi11rYbY/YATcDcUatcJIf5fE7rx/FoQOFjGBQ+\nRDLPy/ARxgkP8fwMaOWIsdYuNMasNMYcwOmgauK+h91QgrU2YowpN8bMt9buTXSsW265hZKSkn7L\nli9fzvLly9N5PSI5IxiEI4eD+BU+zqqrC+bM8boKkezasmULW7Zs6bcsEkl4P8iIeBk+9gCrBiwL\n4gSKhKy1mwGMMeVAt9vSYUjcipLUXXfdRUVFRYrliuSPYBAiR4Nc6A6iJcl1d6vlQwpPoj/Im5ub\nqazMTJdKzzqcup1G+0KDMcYPHIi1YBhjFrh3rsTWd8V1MF0FrHSP0wY0xzqqusHkQLJWDxFxPky7\njcZZHw5ddhHJPK9vtV1qjLkVaMPpx7E0bt1aYBew0X38DaDKGDMH2GWtfTD+OECNewtuBXDtqFcu\nksOCQeiwQej6s9eljGnWKnyIjAZPw4fbOhFroWgYsK56wOONJOG2lqzNdH0i+SoYhEOnA2r5GMqp\nU5z4/V7Gn7qUQGCa19WI5BUNry5SgIJBuLfoc/DLX3pdytj14otMev87CbFHLR8iGeb1ZRcR8UAw\nCE9HzodLvK5kDHNbhTSjrUjmqeVDpAAFAnD8uPMlSSh8iIwahQ+RAhT7MNWdtkOIm9FW4UMksxQ+\nRApQ/My2kkRXF71F4zjGFAaMSSgiaVKfD5ECpPAxDF1dHJ8UxD/OUFTkdTEi+UXhQ6QA6bLLMHR3\nc3RCkGBK4yeLyHDosotIAQoEnO9q+RhCVxdvFKuzqchoUPgQKUDFxTB9Osz66bfh4Ye9Lmdsuvtu\n7qzcqvAhMgoUPkQKVDAIl/3uPvj5z70uZWwqKeHA8fMVPkRGgcKHSIEKBuFwsSaXG0pX15lLVCKS\nOQofIgUqGISwT/O7DEWTyomMDoUPkQIVDEKnVcvHUBQ+REaHwodIgQoE4FBPEDo6vC5lTDp5Eo4e\nVfgQGQ0KHyIFKhiEZ3ovhvZ2TfKSQGwMFIUPkcxT+BApUMEg/O5EBfT2wh//6HU5Y07sapTCh0jm\naYRTkQIVDMLjRy/HVoYwx455Xc7Y8q//yqRWC9yi8CEyChQ+RApUMAgnmUjnw7spLfW6mjHmxz+m\neNplgFo+REaDLruIFChNLpfE6dPwxBMcfNMCQON8iIwGhQ+RAqXwkcQzz8DJk7QHK5g6FcaP97og\nkfyj8CF5JRgMsnHjxr7HjY2NbN682cOKxi6FjyRaWgD486R5avUQGSUKH5JXFi5cSHl5ed/jbdu2\nUV9f72FFY5dmtk2iuRnmzuXg0enq7yEyStThVPLKI4884nUJOWPSJOdL4WOAlhaoqNDopiKjSC0f\nBWb9+vXMnTsXn89HKBSioaGh3/r6+npCoRA+n4+5c+eyYcOGfutjyzZs2MDcuXMJBoPcdNNNANTV\n1fUde9myZX37RCIRfD4fLS0t1NTUEAwGCQaD1NbWDqrvbM/f2trKtddeSzAY7HsNLW4zOUAgEOi7\n7BIKhaivr6epqYmioiL27t3bt9327dv7nicYDLJmzZoRntHcFtDULv1Fo074WLBA4UNkFCl8FJC6\nujrWrl1LdXU127dvZ86cOSxdupQHH3ywb31tbS1XXHEF27dvZ+nSpdTV1fWFi5h169axZ88e6uvr\nqampYdOmTQSDQdrb26mvr6euro5t27b163sBsHTpUtrb27nvvvu4/fbbqa+vZ+HChf3qO9vzV1ZW\n0t7ezoYNG6ivryccDlNVVdW33hjT9/Ojjz7KkiVLqKyspLW1lfnz5wNOwKmurmbu3Lls376dmpoa\n1q9f3y8wFYpg/NQuBw86H76F7MQJuPFG+MAHFD5ERpO1tmC+gArANjU12Uw4etTapqbR/Tp6NCOl\n2nA4bI0xduPGjf2Wh0Ihu2jRor71a9eu7bd+/fr11ufz2ba2NmuttXPmzLFz587tt00gELAXX3zx\noGXV1dX9nnvhwoX9ttm+fbv1+Xy2sbFxWM/f2tpqjTG2oaGhb31LS4utra3tqy8QCNgNGzb0ra+p\nqbGhUGhQbTfddFO/ZZs3b+73OgvFe99r7fXXW2t37rQWrN2/3+uSxozycmvr6ryuQmTsaGpqsoAF\nKmyan8fq85GGZ56BysrRfY6mJqioSP84O3bswBjDypUr+y3fvXs3hw8fZvfu3RhjWLVqVb/1q1at\noq6ujubmZsrKygD6tTQAlJeX92vBiC0bqKampt/jxYsXU1JSwo4dO7DWnvX5r7vuOvx+P3V1dXR2\ndlJdXc38+fO55557hn0eWlpaiEQig55nyZIlrFq1qt/rLAR9LR9vf7uzoKUF5s71tKaxortbLR8i\no0XhIw1vfasTDkb7OTKhra0NgOnTpw9aN336dFpbWwHnVtV4JSUlAHRloGNAIMF9i+Xl5bS2tg77\n+Zubm6mrq2PNmjXU1NRQXl5OTU0Nt91227Bq6OrqwlpLRYJEZ4zJyOvMJcEgPPUUcM45cMEFzp0e\nS5d6XZbnenshHFb4EBktCh9pmDw5M60S2RBriTh8+HC/ANLW1kY4HO5b39XV1W99JBIBYMaMGWnX\nkOiDPdaBtLy8HGtt0uePhZKysjIeeOABANrb29m0aRN1dXUEAgFWrFhx1hpix2loaGD27NmD1idq\nsclnwSB0dLgPFizoG+Oi0L3+OlgLM2d6XYlIflKH0wJRUVGBtZatW7f2W75kyRLWrFlDKBTCWsum\nTZv6rd+0aRPGmIQtBakaeOzt27cTDoe54oorCIVCCbeJf/6Ghoa+jq3gBJF169bh9/s5cODAsGpY\nsMAZMvvAgQPMnz+/76ujo4MVK1YUXMvHxRdDezscP44TPpqbnU/dAhe7MSp2NUpEMkstHwVi9uzZ\nrFq1ipqaGp577jkWLlzI/fffz969e9m5cyclJSWsXr2a9evX093dzbXXXsuuXbvYsGEDtbW1zJo1\nK+0ampubWbRoEUuXLuW5555jw4YNhEIhPv7xjwMM+fxlZWUEAoG+u1vq6uoA+OUvf0kkEmHRokVJ\nn7e1tZXGxkZCoRAlJSXceeedrF69mueee67veTZv3swVV1xRUP09wMkbvb3wxz/CFRUVcOgQvPKK\ncwmmgLW0QEkJJGgcE5FMSLfHai59keG7XXLRhg0b7Ny5c63P57Nz5861Dz74YL/1mzdv7rd+4N0x\nc+fOHXSnSCgUsrW1tf2WVVZW2mXLlllrz9zt0tDQYGtra20wGLTBYHDQcYbz/I2NjTYUClmfz2d9\nPp8NhUL9XkMwGOx3t0tzc3Pf8VpaWvqWNzQ09B0nVkskEhnOKcwrx49bW1Rk7b33Wmvb2507Xv77\nv70uy3OLF1v7/vd7XYXI2JLJu12MLaAmVmNMBdDU1NSUkcsIMjyRSIRAIMDOnTv5wAc+4HU5MsA7\n3gF/8Rew6V4LM2bAF74AX/qS12Vl32OPwUUXwaxZzJkDH/sYfOtbXhclMnY0NzdT6dziWWmtbU7n\nWOrzIVLgKiqcrh4YA48/Du4lrYLzyU/Cd75DOAytrbnTmVwkFyl8iBS4BQucPh+nTwOXXAITJnhd\nUvZ1dsLzz8OCBX2dTd2+ySIyChQ+JCvihz2XsaWiAk6ehKef9roSD8UljpYWZ8K9t7zF25JE8pnu\ndpFRV1JSQm9vr9dlSBLz5jnfW1qc/h8FqaUFpkyBiy+m+evOeSjWu6PIqFHLh0iBmz7dGe+jOa3u\nYzmupcVJYUVFtLSov4fIaFP4EBEqKgp4cNNTp+CXv4Qrr+TYMefyk/p7iIwuhQ8R6RtZPRr1uhIP\n/Oxnzhjzn/oUf/yjcw4UPkRGl8KHiFBRAUeOwHPPxS3s6fGsnqx64QV473vh7W+nudnp63H55V4X\nJZLfPA0fxpjZxpjbjDGLjTG3GmNKhth2gTFmnbvtHfHbGmPuNcZEjTG9xpjdxpj52XkFIvkh9pd+\n36WX+npnYpNCaAr5/OfhV78CnNd/2WUwcaK3JYnkO6/7c2+z1oYA3DCxDRg0SYe7rtFaG3QftwKb\ngWp3k+eAEsBYaw9no3CRfFJaCm9+s9PpdNkynE/gZ55xPpQLYVRa91ZwdTYVyQ7PWj6MMQtwxogH\nwFobAULGmLIEm1cBnXHbtgBLjDGxudeNtfYNBQ+RkYv1+wDg3e92boH5wQ+8LCmrTp+GJ55Qfw+R\nbPDysksIGDh/eRdQnmDbcPyDuEsusW1nGGOuM8Zc416S0VyUCTQ2NrJ582avy+gTDAbZuHFj3+Ox\nVl+hiQ2zbi1OS8BnPgPbt8Phwsj0Tz/t3Piilg+R0edl+PAnWBZOtNxa2wiE41pFQjitJkH38b3W\n2gfd7R7AuXwjA2zbto36+nqvy+izcOFCysvPZM2xVl+hWbDAGWX8pZfcBZ/6lDP06datntaVLc3N\nTuaKDbomIqPHyz4fYc6Ehxg/A1o5Yqy1C40xK40xB4BWwLjfsda2x23aClQYY6Ynuwxzyy23UFLS\nv2/r8uXLWb58+Uheh4zQI4884nUJEif2F39zs9P/gwsvhGuvhe9/H1as8LS2bGhpca40TZvmdSUi\n3tuyZQtbtmzptywSiWTuCay1nnwBC4DdA5Z1AWXD2Lcc6Iw7TteA9b3A9AT7VQC2qanJFprKykpr\njLHGGOvz+WxLS4u11to5c+bYzZs3202bNtlAIGAbGhqstdauXr3azpkzxxpjbCAQsEuXLrXhcLjv\neHPmzLEbNmyw27dv7zt2ZWWlbW5u7tvmwIEDtqqqygYCgYTr/X6/3bBhw5D1SfZEo9aWllr7pS/F\nLbz/fmvB2mef9ayubLnqKmuXLfO6CpGxq6mpyeJcdaiwaWYAz1o+rLUtxpi+Syzuzwes24rhdkgN\nW2vb3MexYHIYWAWsdHdtBb4Rd5wlwE6rzqf9PProo6xYsYK2tja2b9/OrFmz+tZt3bqVpqYmamtr\nqaiooKamhvvuu4+6ujpCoRC7d+9m/fr1GGN44IEH+va7//77McZw++23A7BixQqqq6vZv38/AJWV\nlZSWlrJhwwastdxxxx1UVVXR2en0HY6fbG6o+iQ7jEkw0unHPgbBoHPXyyWXeFVa5n3723D11c7t\nxDh3FO/dCx/5iMd1iRQIr2+1XWqMuRVow+nHsTRu3VpgFxDrkfgNoMoYMwfYZa19EJy7ZIwxLe5x\nIjitIvHHGV0HDzpfyUyc6Ny2OJQ//QlOnBi8/LzznK8MmD59OsFgkLa2tkEf7I2NjbS2tvYtD4fD\n1NfXc+ONNwJw3XXX0d3dTWNjY7/92tra+oIEQGdnJ7W1tRw+fJjOzk4ikQjf/e53ue666wAIhUJs\n2rSJ9vZ2ysrKhl2fZM+CBfCjH8UtmDgRWluhJOkQPLnnpZfgC184M5YJcOCAM8iaOpuKZIen4cNa\nuxdw57KmYcC66gGPN5KEdTqaNiZbP6o2bYKvfCX5+ssug6eeGvoYS5c6AWSgf/5n+PKX0ypvOJYs\nWdLvAz++dSMSibBjxw527tzZr6UCoKqqqt/j+M6js2fPxu/3U1dXR2dnJ9XV1cyfP5977rlnlF6F\nZEJFBdx5J7z+Opxzjrswn4IHwH33OaGq+sxbTGxSPd1mK5IdXrd85L6aGvjoR5OvH85Qidu2JW/5\nyIL40ADQ3NzMmjVr2LNnD8YYqqqq8Pv9gzobBYMD+wv319zcTF1dHWvWrKGmpoby8nJqamq47bbb\nMv4aJDNif/m3tMAHP+htLaPi8GG4+25YtcqZztfV0uJ0si0t9bA2kQKi8JGuTFwaOdtlmSwLhUJU\nV1fT0tLS1yKyZs0aGhoazrJnf2VlZX2tKO3t7WzatIm6ujoCgQArCuDuiVxUXu7c7dHUlKfh4zvf\ngWPHYEAA3rVLrR4i2aSJ5aSfFre34Zo1a/pdimlqakrpOA0NDQSDQdrb2wEniKxbtw6/38+BAwcy\nVq9kls/nzLH2X//ldSWj4MgR+OY34cYb4YIL+ha//DL8+tfw4Q97WJtIgVH4KDCtra00NjZyOMmo\nlbFLMKtXr6axsZGdO3eyaNEimpub6erqYu/evQn3i7HOLc1UVVURDoepqqpi8+bNbN68maVLlxKJ\nRFi0aND0PYPqy+j95JKSz3wG/vAHZ8TPvHLvvc5llzVr+i3+4Q9hwgR3ThsRyQqFjwJSU1NDMBhk\n0aJFtLa2AgzqRFpSUsLOnTtpa2tj0aJF3HTTTSxbtoympiaCwSArV67s23bgvvHLYscJBALU1tZS\nW1tLe3s727dv5+qrr064f3x9bW1tGX3tMnx//dfO3bXf/77XlWTQ6dPwrW/Bpz8NF13Ut9ha53Ve\nd13+9asVGctM7C/VQmCMqQCampqaqNA9dSJJ3XyzM6r6iy/CuHFxK06cgK9+FT70IWfyuVzypz85\nHVre/Oa+Rb/7nfMydu6Ea67xsDaRHNDc3ExlZSVApbW2OZ1jqeVDRAa54QZ47TV4+OEBKyZMgP/5\nn6FvLx+rLrusX/AAp9Vj1ixnvDERyR6FDxEZZMECmD8/waUXY+B//2/YsQMef9yT2jLl6FF44AHn\nSoxP74QiWaX/ciKS0A03wH//Nxw6NGDF4sVw6aXwL//iSV2Z8uCD8MYbTgdbEckuhQ8RSejv/s5p\n6Og33Do4zQRf/jL84hfOJZgc9f3vw/vfD7Nne12JSOFR+BCRhEpLnXnlvv99566QfpYuhb/8S7jp\nJqf5IMe0tcH//b9O646IZJ/Ch4gkdcMN8Mc/npn7pI8xzrgZ3d3gzmqcS/7jP5wbXxYv9roSkcKk\n8CEiSS1a5Mwe8L3vJVg5axZ8/evOxCinTmW9tiHV18OttyZosoFoFH7wA2deuSlTsl+aiCh8iMgQ\niovhU5+CH/848dyH/K//Bb/5DYwfn/Xaknr5ZSd4RCJOC80Av/oVPP+8LrmIeEnhQ0SGdMMNEA47\nAWSQoqKxdZ+qtfD3f+80aaxfn3CTb33LGfLjyiuzXJuI9BlD7xoiMha95S3w8Y/DN74BPT1eV3MW\nDQ3OrHj/9m8QCAxa3dwMP/uZ000lQaOIiGSJwoeInNUXvwgHDsCWLV5XMoT9+6G2Fv7mb5zJWhL4\n6ldh7lxNIifiNYWPAhEMBlm7dm2/xxs3bvSwIsklCxY4E8597WvQ2+t1NQm8/jr81V/BzJnw3e8m\nbNZ44gn4yU/gn/7J6csiIt5R+ChQCxcupLy83OsyJId88Yvw5z87E86dlbUJ7zQZNZ/5DBw54gx8\nFgwm3OTrX4eyMrj++uyVJSKJKf8XqEceecTrEiTHLFzoNC587WvOZYuk/UytdabFDQSyNwT7N78J\nx4876SKBp5+GbducoUn6zdIrIp5Qy0eBCgQC/S67zJ07l40bN9LQ0EAoFMLn8xEKhWhpaem33/bt\n2/vWB4NB1qxZM+jYdXV1zJ07t2+b6upqIpFIv+e67777qK+vJxgM8uCDD47eC5WM+uIXnZnph/wn\nMwYuuMDpYHHffdkp7NJLoaIi6eqvfx0uvNCZRE5EvKeWjwJlElwTv//++zHGcLs7YuWKFSuorq5m\n//79ANTX11NbW0t1dTW33347u3fv5s4776StrY0HHngAgJqaGu677z7q6uoIhULs3r2b9evXY4zp\n2wZg69atNDU1UVtbS8UQHxoytvzFX8C11zq54rrrhmj9qKuDF15wOoAWFXk6qMb+/U5H2W9/GyZM\n8KwMEYmj8JGmg28c5OCRg0nXTyyeyGUzLxvyGH869CdO9Awewem8qedx3rTz0q5xuNra2ujs7Ox7\n3NnZSW1tLYcPH2b69OmsWbOG2tpa/v3f/x2A6667jjlz5lBTU0N7eztlZWWEw2Hq6+u58cYb+7bp\n7u6msbGx33M1NjbS2trKrFmzsvb6JDO+9CV4z3ucO1r/5m+SbGSM82l/6hR89rPOyF7f+Q5MnZrN\nUgHnFuFzzwX3V1JExgCFjzRtatrEV379laTrL5t5GU/9/VNDHmPptqX86dCfBi3/5/f9M19+/5fT\nLXHYqqqq+j2O75Da3NxMJBJh1apV/bZZsmQJq1atorm5mbKysn6tG5FIhB07drBz585BLS1LlixR\n8MhRV10FV18NX/mKcwdMUVGSDYuLncsu73ufMwHdrl1Ob9W3vz1rtT7zDPyf/wMbN8LEiVl7WhE5\nC4WPNNVU1vDRt3w06fqJxWd/x9u2dFvSlo9sCia5SwCgu7sba23CSyTGGLq6ugAnpKxZs4Y9e/Zg\njKGqqgq/39+vzwegO21y3Ne+Bu9+t9OYcfPNZ9n4k590eqsuWwYf/jA891zqw7FHIk4TRlWVc91n\nGKJRWLUKZs+GmprUnk5ERpfCR5rOm5b+pZGzXZYZC2LBpKGhgdmzZw9aHwsToVCI6upqWlpa+lo2\n1qxZQ0NDQ/aKlVF35ZXOKOa33w4f+5gzx9yQ3vpWePxx517d4QaPnh7YscOZgvanP3Uez5497PCx\neTM89hg8+ihMmjS8pxSR7NDdLjIsCxYsAODAgQPMnz+/76ujo4MVK1bQ1dXVd2fMmjVr+l1SaWpq\n8qRmGV3r1jl309bUDHNIj0mTYN68obf5zW+cTqo33ODcnvKhD8GTTzq37La3O+uG4eWXYfVqp5/H\n1VcPaxcRySK1fMiQbNynyp133snq1at57rnnuPbaa9m1axebN2/miiuuoKysjIA7l8bq1aupq6vD\nWsv69etpbm4GYO/evcyfP9+T1yGZN326M27GRz4CP/qRc3UlbYcOwZ49TofVZcuce2MXLEh5IpZ/\n+Acn62zYkIGaRCTj1PJRIIwx/Tp9DuwAOnB9ou1uu+02tm/fTlNTE9XV1dx333387d/+LVvdIS9L\nSkrYuXMnbW1tLFq0iJtuuolly5bR1NREMBhk5cqVCZ9bcteHPwzLl8MXvuCMcJ62xYud8LF7N9x9\ntzN2R4q/Lw8+CA89lHRuOREZA4zN5hDIHjPGVABNTU1NGltCJEMOHXLG+Fq0CH78Y29rCYedWq64\nwpnHRTlXJHOam5uprKwEqLTWNqdzLLV8iEhaZs6Ef/1XZyCv//kfb2u59VY4etS5C0fBQ2TsUvgQ\nkbRdf73T9+OTn3SGX/fC3Xc7E9redZfTV1VExi6FDxFJmzFOp9M3v9mZfO6VV7L7/A0NcMstZ+5w\nEZGxTeFDRDKipAR+/nNncK8PfQgOH87O8/7ud/CJTzg3x6xbl53nFJH0KHyISMZceCE8/LAzJMfi\nxc7ULqPpz3+Gj37U6WD6gx8MMdGdiIwp+q8qIhn1trc5A5L+5jewYsUwByAbgddfdy7xzJzp3Fqr\nGWtFcofCh4hk3PveBz/8oTOpW3W1cwtsJu3aBe98Jxw7Br/4BQwxLZGIjEEKHyIyKpYtczqC7tjh\nDFL6hz+kf0xrndt6r7oKzj0Xfv97KCtL/7gikl0KHyIyaq67DvbudYLCVVc5w51HoyM7Vnc3fPzj\nzl0tN9/sXNZR8BDJTQofIjKqysqc2WX/8R+dW2EXLXLuiunpGd7+nZ3OUOnz5zuB46c/hY0bhz85\nroiMPQofIjLqxo2DO+5w7oQ5eNCZE+aCC5w5YZqaBndKPX0a/uu/nDtmzjvPae2orISWFufuFhHJ\nbZ6GD2PMbGPMbcaYxcaYW40xJUNsu8AYs87d9o5k2xpj7jXGTB+9qiVVW7Zs8bqEgjNWz/kHPwhP\nPukEjr/7O7j/fgiFYMoUmDzZmYl24kTn+8c+Bq2tzqWaV15xJoybNcvrV5DcWD3n+UznPHcVe/z8\n26y1IQA3TGwDFg3cyF3XaK0Nuo9bgc1A9YDtrgGWAncAWRriSM5my5YtLF++3OsyCspYPufGOJPV\nVhkbJ2kAAAcXSURBVFQ4wWLnTnj2WWe5Mc5YHT4fXHklzJvndbXDN5bPeb7SOc9dnoUPY8wCoK+x\n1VobMcaEjDFl1tr2AZtXAZ1x27YYY5YYY6Zbaw+7x4u1hHSNcukikiHFxfCXf+l8iUjh8PKyS4jB\nQaELKE+wbb9RAuKCRvy2S621jYDmshQRERnDvAwf/gTLwomWu6EibIwpcxeFcFpNYpdhrgG2jkqV\nIiIiklFe9vkI44aHOH4GtHLEWGsXGmNWGmMOAK04LRytsVaQ2OWXs5gI8PTTT4+4aEldJBKhubnZ\n6zIKis559umcZ5/OeXbFfXZOTPdYxo7WxAtne2Knz0e9tXZh3LIuoCJBn4+B+5YDu621M4wxi4FA\nbBWwCVgN7LTW7h2w398B/5m5VyEiIlJwrrfW/jidA3gWPgCMMfuttRe7P/uBHbEw4oaTsLW2zX3c\nBZRZaw8bY+4AdllrH0xwzChQnijAGGNmAB8E2oETo/OqRERE8tJEoAx4xFrbeZZth+R1+JiPcydL\nG04/jk2x0GCM2YoTMDa6j2/FudwyBzgwMHi4l19W4dxmWw/cebYWFBEREck+T8OHiIiIFB4Nry4i\nIiJZpfAhIiIiWaXwIZKDUpkXacB+mvtIRIbk3kV6tm1G9B7Ut3++9fkwxswGluB0Tp0NbLbWRtLd\nVpJL8ZxfA1S4DxcCdbE7mmT4jDF7Bs6LZK0dNC/SgH1ig/FVqjN26lJ9v4gbBqAbwFrbkI0688kI\n3s+r3IflwFZrbUtWCs0T7u9sEGfICv9Q42eN5D0ontcTy42GYU1WN4JtJblUJgissNZucB8vBnYA\nc7NYa85LcV6k2D6a+yh9w36/MMasBEqstRvdD8VfAgofqUvlPbrGWrsm9sC9Y7I6ybaSQCwgG2Pu\nHWq7kbwHDZRXl10SnRAgFDcs+4i2leRSPI8hnFuhY3YC5TrnKUtlXqQYzX2UhhG8X9wZGybAbdmr\nHO0a880IzvkSN+jFpDUORYE72/vESN6D+smr8EFqJyTtkydACufR/fCLfxNe6CzWJYAUDXteJNDc\nRxky7N/z2IemMeYDxphrjDHrgBlZqDHfpPoevQk4YIy5w215unM0iytwKb0HJZJvl11SOSFpnzwB\nUjyPA4a8X40zMJykZtjzIqU495Ekl8rvechd3mqtbTfG7AGa0OXFVKX6Hl2P8/+iClgM7MEZzVoy\nL6W52RLJt5aPVE5I2idPgBGeR/cvk63W2u+OVmF5bE+CZUGcTnkDVQGzjTEr3HNejtM8PX80C8xD\nqfyet+JMDdEOfZcLynXOU5ZqyL7TWrvWnaJjPbBTd3aN2NnuREnlPSihfAsfqZyQtE+eACM4j+5l\ngE5r7X2jVlUec3vw9/31586LdCBuaoIFsWvf1toGa+197tdmd5ftAyddlLNK5fe8FbWgZkKqIfuX\nsQfu73o9TiuUpG5Qn48B7ytDvgcNR16FjxTflNM+eZLaOXcfV7j7Peg+Xqm/TkZkqXtv/WKgDlga\nt24tTrNzH2NMiTHmNpy/aOrUyTc1Kb63tAHNsXPszsJ9QIEvNSm+t7Ti9CEbKFGAkSTcPkqx94m1\nxpgPxK0e+L4y1HvQ2Z8rD8f5SGWyuqTbyvAN95y7bxQHONOkZ4Bua60648mYl+J7SxlQg/OhWIEm\nuhyRFM/5dTiXFSNACbBTgW/syrvwISIiImNbXl12ERERkbFP4UNERESySuFDREREskrhQ0RERLJK\n4UNERESySuFDREREskrhQ0RERLJK4UNERESySuFDRDLOGBM1xvQmWbfKXb8uyfqVxpiuuMdN7vax\nry5jzNb4YftFJLcofIjIqBkwN0TMUs4+a6Yd8PM2YAHOUOUrcIbPbtIcNSK5SeFDREZLM4knm7rG\nXZeKVmvtPmvtXmvtg9baD+LMm1KXbpEikn0KHyIyWh4AquMXuDNgNgFdCfdIzTpgVQaOIyJZpvAh\nIqOlGfpmJo1ZhhNKTAaPPz0DxxKRLFL4EJHRtBUncMRUAdszdOwunBBTnqHjiUiWKHyIyGjajtvv\nwxhTBXRaa9szdOwgTmfU1gwdT0SyROFDREaNtbYRmO3elZKw1cMYc68xZsUIDl/pPsfhdGoUkexT\n+BCR0RZr/VgC3J9gfTn974oJMbwOqWuATWlXJyJZV+x1ASKS97YCmwFrrd2XYP0O4A73TpgIThC5\nd8A25eb/t3MHJQgGURRG70RRE2gWO9jBCibQBIawgSlsYIPn4hcUEdzoA+Gc1TADwyy/xfDGWN7X\niySbJLNMQQP8GfEB/MLzkLBTpqFg+3fnVbUbY8yTHO5bx6ravty3ziM0rknOSVZVdfnqq4EWo+rT\noEEAgO/x5wMAaCU+AIBW4gMAaCU+AIBW4gMAaCU+AIBW4gMAaCU+AIBW4gMAaCU+AIBW4gMAaHUD\nFqyAYkCOOqwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt83FWd//HXmaTpPZmZptxESNOggoBtMkUfKl4g1N11\n1wttU7vgBWmbsvvzUoWmxUX0p8ut3WV1V6ENgrpqoW1Yd3/rukiDsuIFSpLSCq7SXEDuJJOZ9H5J\nzu+P73emk2SSZpKZ+c5M3s/HI49k5nuZT76UmXfOOd9zjLUWERERkWzxeV2AiIiITC4KHyIiIpJV\nCh8iIiKSVQofIiIiklUKHyIiIpJVCh8iIiKSVQofIiIiklUKHyIiIpJVCh8iIiKSVcVeF2CMWWKt\nbTrFPvOApUAHMA9otNZGT7VNREREco/xanp1Y8wSIAhsBvzW2r5R9n3SWhtyfy4DtltrF59qm4iI\niOQez7pdrLVN1tpGYNT0Y4xZmLiP26oRMsZUjLYtI0WLiIjIhOXCmA9ziu0hIDzkuTBQeYptIiIi\nkoNyIXycij/JcxH3+dG2iYiISA7yfMDpGERwxoYk8rvPj7ZtGGPMHOADQBdwJK1VioiIFLZpQAXw\nkLW2ZyInyoXwcaoRr08Cq4c8F8S5u6V3lG3JfAD4YaoFioiISNxVwI8mcoJcCB/Dxny4A0kj1tpO\na22bMcafsM0PtFtru4CuUbYl0wXwgx/8gPPPPz99v4GMau3atdx5551el5EfduyAO+6Axx6DkpJx\nn0bXPPt0zbNP1zy7fv/733P11VeD+1k6EZ6FD2PM5UA1TsvHBmPMw9baR9zNG4AngE3u42XGmOuB\nTpxBpssSTjXatqGOAJx//vlUV1en7XeR0ZWVlel6j9Xx43DrrTBlCkzgmumaZ5+uefbpmntmwsMW\nPAsf1tpmoBnYmGRb3ZDHu4Hd7sOmsW4TyTsXXQQ+H7S1QU2N19XIaH76U6eV6j//E2bO9LoakbyS\nD3e7iEweM2bAm9/shA/JbY8/Dk8/7fw3E5GU5MKYDxFJtGSJPtDywd69TkuVOdVURSIylMKHZNyK\nFSu8LiG/fO1rEz6FrnkW7NkDH/xg/KGuefbpmucvdbtIxukNIvt0zTPs4EFob3daPly65tmna56/\nFD5ERFL1zDNgLVx8sdeViOQlhQ8RkVTt2eOM9XjrW72uRCQvKXyIiKRq716YP18Dg0XGSQNORURS\n9cEPwsKFXlchkrcUPkREUnXFFV5XIJLXFD5EctUrrziznZ52mteViGTMwIDFWrDWYC0MDDDs+9ET\nxzh47DADAwP0D1j6BwY40T+AtZYBazH4CE49zT1P8nO8eOB5Dh0/xIC19PcPMOAe2z/gnKdsSjlz\np549cg39R/ld5Lfx17TusQPx7wO8acY7mFUUGHZ87OeXjjxL55G2+Gv224H4eSyWYjudRTPqhh0X\n+9laaDmynUj/S9hYDdY5dsA9x1nUMN/UDjsu9vjwQB+/9t0W/x0G3ONt7DwM8LbDn6O0f96wa/D6\n6+n7767wIZKLrIULL4TPfAZuvnlMhxw5cYQTAyecNyWGvrFYphZPZVbJrBGPPzFwguejzw86bsAO\nDHo8zz+PmSUjTyX+8v6X6Yx0Djsu9nNJUQmXnnvpqL/Ho12P0n2oO35cYh0Wy5vmvInQWaERjz94\n7CDff+r7w65BYk0fu/BjvKH0DSOe47cv/JafPvvTYcfGfp5dMpub3nsT//M/8G//lvzDqm3GRqJF\n++Jv6olv8JYBzji4mIq+q5N+2FkLR0yY1jd+GtwPBNzjEs9zXsc/MvPghSN+0Lx22gO8XHEncPJ1\nSfhedKycikebk37QxX5+5T3LODpnFxj3WPc7xjnn9GdWMv03fz/iB3//jJc4Ul/pHmPj53F+dhc1\nv/eX8Py7R/5H8Y5vw5+tHXn7/jPhH14aeTvAp1fAOb8eeftvPwv//Y2Rt8/uhi++b/TX+M5j8Kd3\njbz9HT855e9x9z+cXF3EGOfL5zv584mr7mLgzMdx1mQ1YA1YHwbn+7Sn65n1eO2w43w+52tg+mFe\n+cutgA+sweADTPx4g2H/k59kRnTwccbAoUOj//qpmJTh48DhY0QOHGFgwHLCTcCx79OLZlJkipO+\nmVgLB44dIHKklxNuch0YsPGfT/QP4KOIs2fOHzE9Wwsdff/LgeN9TvIecN7MEhN4cMpZnDWtasTj\nj/YfoS36MP0J6TsxPfcPDPDW6Zcxyzc3aXIeGIAXjv2OfUd/46bfAeevD06eY4qdwdtLrh0xgQ8M\nQEv/94jYkT+s3jDwTub3/+WI1+IIUX4z/UvO/px8c098s74w0kDp8TeNeC1enPFfdAXuHXQc8aMH\nKD7h5+J9Pxj1v8ez5/0tB2Y9dfI4M/gN2v/ick579oYRjz825TVeWPyuk2/K7nkS36wDD/0bxa9e\nMvIHzUV3cfQ96wBL8ZQBiqdY7N8eY2Dgq9ivfZ3TZ57OC194YdR/15d//3J+/aeR31w/c8ln+Oaf\nf3PE7a8dfI3535w/6mv88ppf8u5zRv6Q2Pb0Nj7/0OdH3H7GrDN4+Ysvj/oaNz5y46i/x2cv+eyo\n4aPvaB+f/e/PYjD4jA9j3O8Jj9/5xneOGj5+99rv+E7bdyjyFQ06zmAwxnDazNO46b03cfPNsHs3\nnH32yTf52Bv28wv/l8Ole06+ucc+IGJv9NEwU15K/gFhDJyYAgOcAAy+xA8IDD6fD4OPQFkxZTMG\nH5d4vtnT5+ArvjBet8EXvxbGGKaW+Hnn5SPX4PPB7qIr2O97S8I5TPya+oyPs9++iDe9c+Qajpsy\nHj+2MX5ckfE59RuDz/1dFtxUhb94eB2xn185/kGeP/YGimL/HYyhyOeLP55aNI3q/0p+bOzn9oPf\n4vDAfnyxY2M1uI/nXH46Z90y/LjY9357Oi8e+gPFRSePi/1c7PPh8xnmXDOX6VOS1+DzwbH+6zg2\n8GmKi3z4jMHnM/Gfi4ucc5TccfK45B4ZacMYnY6zDmvqWlvTt+SUsdam50x5wBhTDbSwGjhrhJ3u\n/R94fpS/zN7+Dfjzkd9cOXA6bHpl9EI+/W4451cjb3/8M/DTkT8kmPUyXD/SL+Aa6+9h3eTspl7n\ny2AOnsn0LR2D3lCG/g8Z/YsPceL0J5xj3DfXWBo3tojZ7Z8kuPfmpG9oxkD/1NfpfE/t4OOctyNi\nb7Tzf38Xsw8uGPEN5fU5P+aFM+7CxN5QE441+CgZCBJ64d6kbyaxn38X+Hv2lzw77A06dp6zj1/G\necfqRrwOx0wfvy35evzNOPYGnfhztbmGgO/cEWt4aaCNjoFf8Mwzhkivj5v+zmD+/cf4WndjvvZ1\nZpbM5BNv+8So/8kfbn+Y7kPdST8gfMZHZaCSi08feV6KoyeO8qs//WrQsUM/wN86963Mnjp7xHP0\nHOrh1YOvDvv9Yz8X+4o5p+ycUX+P6JEo/bZ/xPBQ7CtmStGUUc+RDdbC3Lnwuc/BTTd5XY1I5rW2\ntlLjpI8aa23rRM41KcPHlQ3/l9POnee+KTvpM/bzW2e9D/+UuYM+HAZ92B1/jheP/MFN3iaenot8\nzvElRVO50P/2Yccmnu+FQ/s4Zg/FE7PxnUzfPmMom+qnfPppST/4fT4YsP30Hns9/rqx1B37XYp8\nPmZNncGUouIRP/jB4vNpTYpcc9998OlPQ18fzP5/P4KrroKeHggGvS5Nhnj5ZTjrLKfb5SMf8boa\nkcxLZ/iYlN0uX6r7INXV1eM8+lz3a/yqqZrQ8VDE2ZwxwXMoeOSi2N2bTz0F74492L0bLrvMu6Ik\nqT17nO8JM6yLyBhpkjGRHHLBBTBlCrS1AW96kzOJVVub12VJzCuvwNatcOAAe/fCzJkwb57XRYnk\nH4UPkRxSUuL8Jd3WBhQVOWuHKHzkjl/+Ev76r+HwYfbscW5I8uldVCRl+t9GJMcsXJiQNxYuPNm+\nL97bswdOPx3mzmXvXq0rJzJeCh8iOWbhQnj6aTh2DPja1+CJJ7wuSWLcxHH8uLOwrcZ7iIyPwodI\njlm4EI4fdwIIc+bAtGlelyQxe/fCRRfx7LNOOFTLh8j4KHyI5JiLL3Zuh9ZQjxyzfz90dMBFF+lO\nF5EJUvgQyTGzZjk3uih85Jinn3a+X3wxe/c6c3xo+hWR8VH4EMlBCxc6UxlLDvnDH5zv55+vwaYi\nE6TwIZKDFi50Jhrr7/e6EokbGIDzzoPp09mzR10uIhOh8CGSg6qr4eBB2LfP60ok7ppr4I9/JBqF\n555Ty4fIRCh8iOSg2MzqGveRe373O+e7Wj5Exk/hQyQHzZkDb3yjGz527IDVq70uSVx79zqTz77l\nLV5XIpK/FD5EclR8ptOuLnjgAa/LEdeePU7wmDrV60pE8pfCh0iOioUPO6cc+vrcKU/Fa+48YyIy\nAQofIjlq4ULo7oYeU+480dPjbUGCteg2W5E0UPgQyVGxQae/757r/NDd7V0xAsCf/gTRqFo+RCZK\n4UMkR73xjc4MmrtfcFs+FD48t3ev810tHyITo/AhkqOMcVo/frvPDR+vv+5tQZNZezu87W28/NAe\nysqcYCgi46fwIZLDqqvhV3tLobhYLR9eeuUV2LOHP7QXc+GFTjAUkfFT+BDJYQsXwnPPG4587FNQ\nUeF1OZOXG/weby9Xl4tIGih8iOSw2KDTX32qEf7iL7wtZjJz7zR6Yl9Qg01F0kDhQySHnXee0+Py\nxz96Xckk193NidIAR/uL1fIhkgYKHyI5rKjImWpdwz081t3NoRnOwN8LL/S4FpECoPAhkuPKy3Wj\ni+e6uzkwrZwZM6CszOtiRPKfwodIjps7Vy0fnuvupq94DuXlXhciUhiKvS5AREZXXq7w4bm6On75\n3SmU93pdiEhhUPgQyXHl5c4cV+Khq6/moR9DeZHXhYgUBnW7iOS48nLoft06K9seP+51OZNWdzfq\ndhFJE0/DhzFmnjHmBmPMEmPM9caYEYdyGWMWGmNudfe9LXHf0baJ5Lu5c+ENr7U5Ix2fesrrciYt\nhQ+R9PG622W7tTYE4AaG7cDioTu525qttUH3cQfQCNQZY/wjbcvOryCSWeXl8MIxrWzrNYUPkfTx\nrOXDGLMQsLHH1tooEDLGVCTZvRboSdi3DVhqjCkFLh9lm0jeKy+HHuY4DxQ+PGGtwodIOnnZ7RIC\nwkOeCwOVSfaNJD5I6FapPMU2kbxXXg6HmUH/tBkKHx6JRqG/X+FDJF28DB/+JM9Fkj1vrW0GIgmt\nIiH3e3CEbRYIprFWEc/MdXtcjpXqnluvxC67wodIeng55iPC8IDgZ0hLRoy1dpExZpUxph3ocJ/u\nGGGbSdhnmLVr11I2ZJrCFStWsGLFinH9IiKZNMftcTk0cy7TFT6y76WXOPR4D3CRwodMGlu3bmXr\n1q2DnotGo2k7v7HWnnqvDHDHfGyx1i5KeC4MVFtru05xbCWwy1o7J8Vt1UBLS0sL1dXVE/0VRLJm\n5kx4+pw/o+Kts2DHDq/LmVxuvZVjt/0DU/u6eeklOPNMrwsS8UZrays1NTUANdba1omcy7NuF3dg\naLyLxb1rpT0WPNzbZ+clbA8nDCJdDawayzaRQlBeDpFidbt4orubw+6icnOG/UkjIuPh9a22y4wx\n1wOdOGM1liVs2wA8AWxyH98C1Bpj5gNPWGsfTNh3tG0ieW/uXPiPyvUs2KBJxrLOXVSutBRKSrwu\nRqQweBo+rLW7gd3uw6Yh2+qGPN7ECEbbJlIIysvhqf4LYaHXlUxC3d1EppRrvIdIGml6dZE8oMXl\nPNTdTdiUq8tFJI0UPkTygMKHh7q7ed3OUcuHSBopfIjkAYUPD3V388pxdbuIpJPCh0gemDsXenpg\nYMDrSiaZ48ehr48Xjih8iKSTwodIHigvd6b3jiSdgk8yprgYXniBrceWKHyIpJHCh0geiH3wqesl\ny4yh/4w38HykVOFDJI0UPkTyQOyDz/e9++DXv/a2mEkmEnG6uxQ+RNJH4UMkD8QWlzvjvlvgxz/2\ntphJRovKiaSfwodIHgi6SzAemq7bXrKtp8f5rvAhkj4KHyJ5oLgYAgHoK1H4yDa1fIikn8KHSJ4o\nL4feIoWPbItd7ljrk4hMnMKHSJ6YOxdeN3Ph9de9LmVS6e52Wp2KvV6GU6SAKHyI5Inycnj1hFo+\nsurOOznnF99Xl4tImil8iOSJ8nJ48Wi5c+/n8eNelzM5/OhHnNn+mMKHSJopfIjkifJy6DhyFlRW\nwv79XpczOXR389qAplYXSTeFD5E8UV4ODx76M2hv1+jHbOnu5uXj5cyZ43UhIoVF4UMkT8ydC9Go\nelyy5uhROHBAi8qJZIDCh0ie0PouWebOLtZ1UOFDJN0UPkTyhMJHlrkXuuuAwodIuil8iOQJhY8s\ncy90NwofIumm8CGSJ2KLyyl8ZMm0aRy85P28zlyFD5E0U/gQyROlpc4smwofWfLOd9K66REOMFvh\nQyTNFD5E8oQxTteLZlfPHi0qJ5IZCh8ieaS8HBY8dDt89KNelzIpdHeDzwd+v9eViBQWLZUkkkfm\nzoX+1/bDi21elzIpdHc787kVFXldiUhhUcuHSB4pL4dXjqvvJVu6u9XlIpIJCh8ieSS+uNyhQ86X\nZJTCh0hmKHyI5JHycnjugLvQSDjsbTGTgMKHSGYofIjkkfJyeH5/wHkQiXhbTKGzVuFDJEMUPkTy\nyNy58Oox99aL3l5viylkhw/D1Kks6tqu8CGSAQofInmkvBwiuOFDLR+Z09sLx4/zyv6ZzJnjdTEi\nhUfhQySPlJdDmCAvrboZqqq8Lqdwua1KLx4OqOVDJAM0z4dIHikvh+OUsOfKr3DW+V5XU8DcVqUI\nfoUPkQxQy4dIHtHKtlnitnwofIhkhsKHSB6ZPh1mzlT4yDi35aMXdbuIZILCh0ieKS9X+Mi43l76\np0zlKNMUPkQyQGM+RPKMVrbNgkiEI9MDFA1AWZnXxYgUHoUPkTwzd65aPjLuIx/hp89cQPnPwRiv\nixEpPAofInmmvByef97rKgrcRRfx2OkXqctFJEM05kMkz5SXQ/8rr0Nbm9elFDRNrS6SOQofInmm\nvBwue+lf4b3v9bqUgqbwIZI5nna7GGPmAUuBDmAe0GitjY6w70KgDngSWATcGtvXPU+tu2slsM1a\nqz8LpSCVl8Oug36w++HECShW72kmdHdDRYXXVYgUJq/ftbZba0MAxpgyYDuweOhO7rZma23QfdwB\nNOKEEYB6a+36hP23JWwTKShz50KPdVe2jUbR4iOZoZYPkczxrNvFbcmwscduK0bIGFORZPdaoCdh\n3zZgqTGm1H1qqdv6EdODSIEKBBIWl9PKthmj8CGSOV6O+QgB4SHPhXG6TYYatHyn2xJCwr6bgXZj\nzG3GmFXA7eksVCSXBALOzJuAVrbNkCNH4OBBNSqJZIqX4cOf5LlIsuettc1AJKFVJITTahJ0H2/B\nCRyXA+sg9s4sUnj8frV8ZNThwxz67jZO41WFD5EM8XLMR4ST4SHGz5BWjhhr7SJjzCpjTDvOAFUD\ndLitILdba9cAG9yWj53GmHnW2r5k51q7di1lQ6YtXLFiBStWrJjYbySSBYNaPhQ+0u/llwlet5wL\n2Ynff7rX1Yh4YuvWrWzdunXQc9Fo0vtBxsXL8PEksHrIc0GcYJGUtbYRwBhTCfRaa7uMMUuAnyXu\n424PAY8kO8+dd95JdXX1BMsX8cbs2XCA2VhjMOp2ST830PUSIKA2VJmkkv1B3traSk1NTVrO71m3\niztoNN7FYozxA+3W2i738cLEQaTGmHDCANPVwCr35w6cW2+HejITdYt4zeeDsoCPLTfsg6uu8rqc\nwuMGugh+/Mk6h0Vkwry+1XaZMeZ6oBOnpWJZwrYNwBPAJvfxLUCtMWY+8IS19kFwQowxZp57nihQ\nBjwwUpeLSCHw+6HLVwkzva6kAKnlQyTjPA0f1trdwG73YdOQbXVDHm9iBLEgIjJZBAK60SVj3At7\ntKSUadM8rkWkQHnd8iEi4+D3a6xpxkQiHJlWRpm/yOtKRAqW1nYRyUNq+cig3l4OlWi8h0gmKXyI\n5KFAQC0fGXPwIPuLNd5DJJPU7SKSh9TtkkH/9E988bl+/Ee9LkSkcKnlQyQPqdsls3oiRWr5EMkg\nhQ+RPOT3w3nhx7Gf+SxYe+oDJCWRCBrzIZJBCh8ieSgQgHP72zH/8s9w6JDX5RSc3l7U8iGSQQof\nInnI79fKtpmklg+RzFL4EMlDgYBWts2U/n6IRtXyIZJJCh8ieWjQyrZq+UirPndhBrV8iGSOwodI\nHvL71fKRKbHLqZYPkcxR+BDJQxrzkSFdXQQ/9Vecxx/V8iGSQQofInlo6lQomj6V41Omq+UjnV56\nCf8v/5MpHFfLh0gGKXyI5KlAADrmXQ5z5nhdSuFwg1wvAbV8iGSQwodInvL74a4//39w1VVel1I4\n3C6sKH7KyjyuRaSAaW0XkTylKdYzoLeXE0UlTJk5HZ/+NBPJGP3vJZKntLJtBkQiHJnqJxA0Xlci\nUtAUPkTylFa2zYDeXg6UaLyHSKYpfIjkKXW7ZEAkwv4iv+50EckwjfkQyVNq+ciAt7+dXz52nlo+\nRDJM4UMkT6nlIwNWr6bxPrhALR8iGaVuF5E85ffDgQNw/LjXlRSW3l6t6yKSaQofInkqEIAP8N8U\nzSmD7m6vyykYkYjWdRHJNIUPkTzl98NRpuLb36f+lzSxVi0fItmg8CGSpwIBLS6XbkeOwLFjavkQ\nyTSFD5E8FQhABPdPdN32khaxy6iWD5HMUvgQyVN+f0L4UMtHWsQuo1o+RDJL4UMkT82eDQdMKdYY\ntXykw7Fj9D3Xi2FALR8iGabwIZKnjIGygI+jU8vU8pEOjz3GO/4iyDw61fIhkmEKHyJ5LBCAg1O1\nwlxauAEugl8tHyIZpvAhksf8fmgK3QZXXul1KfnPDXBHSsqYPt3jWkQKnMKHSB4LBGBnsA4WLfK6\nlPwXiXB06mxmB7TqhEimKXyI5DGt75JGvb0cLAlovIdIFih8iOQxrWybRpEIB4s13kMkGxQ+RPKY\nWj7SqLeXaJFaPkSyIeXwYYypGGXbgokUIyKpUctHGkUiRKxaPkSyYTwtHx3GmFsSnzDGlBpjtgEt\n6SlLRMYi1vJhrdeVFIDbb+cbc/6vWj5EsmA84aMKWGSMedYY835jzEqgC/C720QkS/x+6O+HAwe8\nrqQAXHghu45erJYPkSxIOXxYazustVcATUAzsBlYZ61dbK3tTHeBIjKyQAAChDmy7T/g4EGvy8l7\nvb1a10UkG8Yz5qPUGHMXcAPQANwDbDbGfDHdxYnI6AIBeBN/ZO7KD0Onsv9E9PdDX59WtBXJhvHM\nptMF7AKqYi0dxpjNwDZjzBpr7XlprE9ERqGVbdMnGnW+q+VDJPPGEz5WWWubEp+w1rYCVcaYG9JT\nloiMRSAAvbiflrrtZUJi2U0tHyKZN54xH02jbNuYyrmMMfOMMTcYY5YYY643xpSNsu9CY8yt7r63\nJe5rjNlnjBkwxvQYY8Lu1/Wp1CKSjwa1fCh8TEjs8qnlQyTzUm75cG+pHfHGPmvt8hROt91aG3LP\nWwZsBxYnec0yoNlaG3QfdwCNQJ27y93usbF33w3W2k0p1CGSl6ZMgSkzp3L82HSmqNtlQtTyIZI9\n4+l22TXk8RygGggB68Z6EmPMQhJCjLU2aowJGWMqrLVdQ3avBXoS9m0zxiw1xpQCBthire1zz3s5\nzh04IpOC3w+Ho36mqOVj/J59ljk//CnTWEUgoCVtRTIt5fAxUteKMWY1UINz98tYhIDwkOfCQCXO\noNZEg/6kS+hyqbTW7h6y70JrbfMYaxDJe4EAHDrkp1QtH+O3axcL7vscPq6ltNTrYkQKXzrXdnmY\nk90gY5GscTOS7Hk3TEQSpnYP4bSaBBP3cwe8bkmhBpG85/dDX7EWeZmQSIR+XzFTSmdQVOR1MSKF\nbzzdLsO43R9j7nJxRRgSHnCCR9J3UGvtImPMKmNMO9CB093SMWS35WMZ9Lp27VrKygaPbV2xYgUr\nVqwYa+0iOSMQgPWhZh68d6rXpeSv3l4OTwvgDxivKxHJCVu3bmXr1q2DnovG7kdPg/EMOB1g+IDT\n2P+xS1M41ZPA6iHPBRkeKOKstY1uDZVAb+LYEHesx5hWuLjzzjuprq5OoVSR3BUIQEfHtJP/F0rq\nIhEOTvHrThcRV7I/yFtbW6mpqUnL+cfT8pH0f09rbUqRyB00Gu9icX9ujwUKd0BqJGEiszBQ4Q4s\nXQ2sGnLKaoaPIREpeFrZNg16e9lfHNCdLiJZMqbw4XarxCRtXYjtE7vrZIyWufNxdOKM41iWsG0D\n8AQQu2X2FqDWGDMfeMJa++CQc0UYpdVEpFAFAgofExaJEEUtHyLZMtaWjwgjd7XYhMcWGPNwLfdO\nldjdKkNnTa0b8njUeTtiXTIik43fr7GmE9bbS68tV8uHSJaMNXzo7wGRHOXcagvHjkFJidfV5KlZ\ns3jOnqOWD5EsGeuttrHxFtHYF3A5YBOfS3Xch4hMnF/ryk3cv/87XyrZqJYPkSwZa/gwDB9Lvx1n\nQjAR8VBA68pNmLXO9VPLh0h2TGSSMd3YJ5IDAgE4nVco/5s62LvX63Ly0pEjTreVWj5EsiOdM5yK\niAf8frAY5jyyHTo7vS4nL2lFW5HsSiV8JLvFdkyTeolI5gQC0BsbEx7WVDfjoRVtRbIrlUnGbnSX\nsh/1OWvthomXJSJjNXMmDBSVcKx4FiUa+DEuavkQya6xho82YL77FdOa5DmLMzmYiGSJMc6H5uET\nQUrU8jEuavkQya4xhQ9rbXomcxeRjPD74UBfkDKFj3FRy4dIdmnAqUgBCARgf1FAYz7G43vf4/1f\nfR8lJTBtmtfFiEwOCh8iBSAQgF5fUJN9jEd7O7NeaycQcLqwRCTzFD5ECoDfD7tmXQbvepfXpeSf\ncJiDJUF1uYhkUSp3u4hIjgoE4Lsz/obP3uR1JXkoHCZaHNRgU5EsUsuHSAEIqsdl/MJhIkYtHyLZ\npPAhUgBzAY0ZAAAgAElEQVQUPiagt5ce1PIhkk0KHyIFIBCAaBROnPC6kjwUDvP6iSDBoNeFiEwe\nCh8iBSD2wRmbLEtSEA7z6rGAwodIFil8iBSA2AenpvkYh7VrefjoexQ+RLJI4UOkACh8jN/RG/6O\nR468U+FDJIsUPkQKQOyDM/rqEThyxNti8kxsoK7Ch0j2KHyIFADnNlHLFUtmw733el1OXom1Fil8\niGSPwodIAZg+HaZONRyZEVTfS4oUPkSyT+FDpAAY43x4HpyqCT9SpfAhkn0KHyIFIhiE/VPU8pGq\n2OXSDKci2aPwIVIggkHo8wUUPlIUDsPs2TBliteViEweCh8iBSIQgDDqdknJc89hOzrV5SKSZQof\nIgUiGITX+9XtkpIvf5kPN31c4UMkyxQ+RApEMAivHlf4SElvLxGf1nURyTaFD5ECEQzCD+1fw9at\nXpeSP8JhwlbhQyTbir0uQETSIxiE1r4q7HuqMF4Xky/CYV7vV/gQyTa1fIgUiEAATpyAAwe8riSP\nhMO8ckzhQyTbFD5ECoQWl0uRtRAO89IRhQ+RbFP4ECkQCh8pOngQjh/nRYUPkaxT+BApEAofKXIv\nVBiFD5FsU/gQKRCxD1DNMTZGZ51Fx84OfsW7FD5Eskx3u4gUiNJSZ4E5tXyMUXExr82cxyG0qJxI\ntqnlQ6RA+HzOHS+n/WIb/M//eF1OXtCKtiLeUPgQKSDBIIQeuR1+9COvS8kLWtFWxBsKHyIFJBiE\nviItLjdW4TBMn+58iUj2KHyIFJBgECImoIEfYxQOq8tFxAsKHyIFJBCA7gEtLjdWCh8i3lD4ECkg\nwSC8dkLdLmOl8CHiDU9vtTXGzAOWAh3APKDRWhsdYd+FQB3wJLAIuDVxX2PMEiAA9AJYa5syW71I\n7gkG4ZVjavkYkzvv5IKnz+bQvGVeVyIy6Xg9z8d2a20IwBhTBmwHFg/dyd3WbK0Nuo87gEacMIIx\nZhVQZq3d5AaanwEKHzLpBIPwh8NBOBaF/n4oKvK6pNx1332c99p76ahR+BDJNs/Ch9uSYWOPrbVR\nY0zIGFNhre0asnst0JOwb5sxZqkxptRa2wfcHgsm1tpOY0xNFn4FkZwTDMKfjp2GPesszP794Pd7\nXVLuCod59bimVhfxgpctHyFgaNtwGKgEuoY8H0l84LaEAFQaY4z73GWAwQkqW4C+NNcrkvMCAfgJ\nf8mrLS9yhnLH6MJhXjIKHyJe8DJ8JHtrjCR73lrbbIyJJLSKhHBaTYLAfKAM6LDWdhljngRagKqM\nVS6SoxIXlzvjDG9ryWmHD8Phw7xoglQofIhknZfhI4ITHhL5GdLKEWOtXWSMWWWMaccZoGoSvkdi\nXTVu902lMWaBtXZ3snOtXbuWsrKyQc+tWLGCFStWTOT3EfGcVrYdI/duoG6rlg+RZLZu3crWrVsH\nPReNJr0fZFy8DB9PAquHPBfECRRJWWsbAYwxlUCv29JhSN6KMqI777yT6urqFMsVyX0KH2PkXqAw\nCh8iyST7g7y1tZWamvQMqfRsng9rbRsJocEY4wfaYy0YxpiF7p0rse1hY0yp+3A1sMo9TyfQaoyp\ncPerdM+TtNVDpJDF1ijRNB+noPAh4imvb7VdZoy5HujEGceReM/bBuAJYJP7+Bag1hgzH3jCWvtg\n4nmAevcW3GrgioxXLpKDSkpg5ky1fJxSSQm9F7yT7mfKFT5EPOBp+HBbJ2ItFE1DttUNebyJEbit\nJRvSXZ9IPgpqjrFTe8c7eOimXxFeoRlORbyg6dVFCozCx9iEwzBlitNSJCLZpfAhUmCCQbji5zfC\nZz7jdSk5LbauizNTkIhkk8KHSIEJBmFm9CVobfW6lJymReVEvKPwIVJgAgF4vV99L6ei8CHiHYUP\nkQITDMIrxxU+TkXhQ8Q7Ch8iBSYYhJcOB53JPqw99QGTlMKHiHcUPkQKTDAILx4OwvHjcPCg1+Xk\nLIUPEe8ofIgUmGAQwrhTnarrJbmzz+YvXtii8CHiEYUPkQITCDjThgOaZz2Z48fhxReJHJqi8CHi\nEYUPkQITDMLznMPLn2g4udiLnBRxFs5+vV/ruoh4xeu1XUQkzYJBeI3T2fPXt3HmOV5Xk4O0qJyI\n59TyIVJggupxGZ3Ch4jnFD5ECszMmc6aJRprOgKFDxHPKXyIFBhj3EGnCh/JuReml4DCh4hHFD5E\nCpBWth1FTw8npkznuG8apaVeFyMyOWnAqUgBUvgYxZ/9GT97rJTAL8CnP79EPKHwIVKAgkENOB3R\nW97CLyrfQnCP14WITF7K/SIFKN7ysXs3PPus1+XknHAY5szxugqRyUvhQ6QAxQecLl8O//zPXpeT\nc7Sui4i3FD5EClC85WPBAnjqKa/LyTkKHyLeUviQghIMBtm0aVP8cXNzM42NjR5W5I1Y+LBvW+B0\nvVjrdUk5ReFDxFsKH1JQFi1aRGVlZfzx9u3b2bJli4cVeSMYhGPH4Oj5C6CvD7q6vC4ppyh8iHhL\nd7tIQXnooYe8LiEnxD5Yw+cs4CxwWj/mzfOypJyi8CHiLbV8TDJ33HEHVVVV+Hw+QqEQTU1Ng7Zv\n2bKFUCiEz+ejqqqKjRs3Dtoee27jxo1UVVURDAa57rrrAGhoaIife/ny5fFjotEoPp+PtrY26uvr\nCQaDBINB1qxZM6y+U71+R0cHV1xxBcFgMP47tLW1xbcHAoF4t0soFGLLli20tLRQVFTE7t274/vt\n2LEj/jrBYJD169eP84rmpthitt3FZ8Bpp2ncB0BHB2zaxOFX+zh8WOFDxFPW2knzBVQDtqWlxU5G\n69atsz6fz27YsME2NTXZuro6a4yxTU1N8e3GGHvdddfZpqYmu379emuMsWvWrImfY/78+TYQCNi6\nujrb3Nwc3yfZcxs3brTWWhuJRKwxxs6fP98uXrzYNjU12Y0bN1pjjA2FQoPqO9Xr+/1+W1VVZe+5\n5x7b2Nho58+fb4PBYHx7IBCIv240GrXLli2zoVDIdnV1xffZvHmzNcbY5cuXD3qdurq6zFx4D/zx\nj9aCtT//ubV28WJrP/xhr0vyXmOjtT6ffenZAxas/a//8rogkfzS0tJiAQtU24l+Hk/0BPn0le7w\ncfCgtS0tmf06eDAtpcYDwKZNmwY9HwqF7OLFi+PbN2zYMGj7HXfcYX0+n+3s7LTWOuGjqqpq0D6B\nQMCed955w56LfZjHzr1o0aJB++zYscP6fD7b3Nw8ptfv6OgYFJastbatrc2uWbMmXl9i+LDW2vr6\n+kEBJ7bPddddN+i5xsbGQb9nvuvudv7vbmqy1t5wg7U1NV6X5L01a6x961vt3r3Otfntb70uSCS/\npDN8aMzHBPzv/0JNTWZfo6UFqqsnfp6HH34YYwyrVq0a9PyuXbvo6+tj165dGGNYvXr1oO2rV6+m\noaGB1tZWKioqAKitrR20T2VlJYsWLRr23FD19fWDHi9ZsoSysjIefvhhrLWnfP0rr7wSv99PQ0MD\nPT091NXVsWDBAu66664xX4e2tjai0eiw11m6dCmrV68e9HvmM7/f+d7bC3z9684yt5NdSwvU1MSn\nnVe3i4h3FD4m4C1vcd7PMv0a6dDZ2QlAaZKVtEpLS+no6ACcW1UTlZWVARBOw0IhgdhAhASVlZV0\ndHSM+fVbW1tpaGhg/fr11NfXU1lZSX19PTfccMOYagiHw1hrqU6S6Iwxafk9c0FRkRNAuruBkhKv\ny/He8eOwZw9cfbXCh0gOUPiYgBkz0tMqkQ2xloi+vr5BAaSzs5NIJBLfHg6HB22PRqMAzEnDXNTJ\nPthjA0grKyux1o74+rFQUlFRwQMPPABAV1cXmzdvpqGhgUAgwMqVK09ZQ+w8TU1NzEty90eyFpt8\ndd55TuucAE8/DUePOi0ff3CeirUOiUj26W6XSaK6uhprLdu2bRv0/NKlS1m/fj2hUAhrLZs3bx60\nffPmzRhjkrYUpGrouXfs2EEkEuGSSy4hFAol3Sfx9ZuamggGg3S5c1ZUVFRw66234vf7aW9vH1MN\nCxcuBKC9vZ0FCxbEv7q7u1m5cmXBtHyAM7lpwg0+k1tLi7OE7YIFvPqqczdQUZHXRYlMXmr5mCTm\nzZvH6tWrqa+vZ9++fSxatIj777+f3bt3s3PnTsrKyli3bh133HEHvb29XHHFFTzxxBNs3LiRNWvW\ncO655064htbWVhYvXsyyZcvYt28fGzduJBQK8dGPfhRg1NevqKggEAgQiUSora2loaEBgJ/97GdE\no1EWL1484ut2dHTQ3NxMKBSirKyM22+/nXXr1rFv37746zQ2NnLJJZcUxHiPmAUL4LvfdSYbm/Q9\nLy0tTh/mzJns3g0XXeR1QSKT3ERHrObTF5P8Vltrrd24caOtqqqyPp/PVlVV2QcffHDQ9sbGxkHb\nh94dU1VVNexOkVAoNOh2WGutrampscuXL7fWnrzbpampya5Zs8YGg0EbDAaHnWcsr9/c3GxDoZD1\n+XzW5/PZUCg06HcIBoOD7nZpbW2Nn6+trS3+fFNTU/w8sVqi0ehYLmHe+NWvnLs6du/2upIc8OUv\nW7t+vbXW2vnzrV271uN6RPJQOu92MdZOnjUfjDHVQEtLS0tauhFkbKLRKIFAgJ07d3LZZZd5Xc6k\nsX8/lJXBfffBJz/pdTW5IRJxulx+8AO46iqvqxHJL62trdQ4t3jWWGtbJ3IujfkQKVCzZ0NVlcZ9\nJGp13y4zfYu8iIxO4UOkgA0adHrllbBhg6f1eO3JJ2HWLHjTm7yuRGRyU/iQrDDGeF3CpBQLH9bi\n3O3x+ONel+SplhZYuNC5FCLiHf0vKBlXVlZGf3+/xnt4YMECZ5zD888Db3tbQhKZnNxJTkXEYwof\nIgXsbW9zvu/ejZNEenvhuec8rckrkQi0tyt8iOQChQ+RAnbWWVBe7oaPSy+FqVNhxw6vy/KEBpuK\n5A6FD5ECZkzCoFO/Hz76Uefe28nS9fKb38DBg4DT5TJzpgabiuQChQ+RAjfojpdPfQqeeca57aPQ\nHTwIH/gAbNoEnBxsqmnVRbznafgwxswzxtxgjFlijLneGFM2yr4LjTG3uvvelrivMeZuY8yAMabf\nGLPLGLMgO7+BSO5bsAC6upwxD9TWOn0xP/iB12Vl3oMPOjOtfeITgAabiuQSr9d22W6tDQG4YWI7\nMGyRDndbs7U26D7uABqBOneXfUAZYKy1fdkoXCRfLHCj+FNPwXvfWwQ//amz5G2hu/deeP/7Yd48\nIhHYt0/hQyRXeNbyYYxZiDNHPADW2igQMsZUJNm9FuhJ2LcNWGqMia29bqy1+xU8RIZ785udcabx\nrpeLL4bp0z2tKeM6OuAXv4BrrgE02FQk13jZ7RIChq5fHgYqk+wbSXyQ0OUS23eOMeZKY8zlbpfM\nvPSWWhiam5tpbGz0uoy4YDDIJrc/HnKvvkJRXOys4jqppln/3vec+eWXLAFODjZ985s9rktEAG/D\nhz/Jc5Fkz1trm4FIQqtICKfVJOg+vtta+6C73wM43TcyxPbt29myZYvXZcQtWrSIysqTWTPX6isk\ngwadFrqBAfjud+FjH4MZMwANNhXJNV6O+YhwMjzE+BnSyhFjrV1kjFlljGkHOgDjfsda25WwawdQ\nbYwpHakbZu3atZSVDR7bumLFClasWDGe30PG6aGHHvK6hEljwQKnMeDYMSgp8bqaDHvkEWdKV7fL\nBZzw8cEPeliTSJ7ZunUrW7duHfRcNBpN3wtYaz35AhYCu4Y8FwYqxnBsJdCTcJ7wkO39QGmS46oB\n29LSYiebmpoaa4yxxhjr8/lsW1ubtdba+fPn28bGRrt582YbCARsU1OTtdbadevW2fnz51tjjA0E\nAnbZsmU2EonEzzd//ny7ceNGu2PHjvi5a2pqbGtra3yf9vZ2W1tbawOBQNLtfr/fbty4cdT6JD0e\ne8xasHb3bq8ryYKdO61dvtzagQFrrbWRiPO7f//7HtclkudaWlosTq9DtZ1gBvCs5cNa22aMiXex\nuD+3W7cVwx2QGrHWdrqPY8GkD1gNrHIP7QBuSTjPUmCn1eDTQR555BFWrlxJZ2cnO3bs4Nxzz41v\n27ZtGy0tLaxZs4bq6mrq6+u55557aGhoIBQKsWvXLu644w6MMTzwwAPx4+6//36MMdx4440ArFy5\nkrq6Op599lkAampqKC8vZ+PGjVhrue2226itraWnxxk7nLjY3Gj1ycRdfLHzfffuk1OuF6zLL3e+\nXBpsKpJ7vL7Vdpkx5nqgE2ccx7KEbRuAJ4DYiMRbgFpjzHzgCWvtg+DcJWOMaXPPE8VpFUk8T2a9\n/LLzNZJp0+CCC0Y/xzPPwJEjw58/80znKw1KS0sJBoN0dnYO+2Bvbm6mo6Mj/nwkEmHLli1ce+21\nAFx55ZX09vbS3Nw86LjOzs54kADo6elhzZo19PX10dPTQzQa5Tvf+Q5XXnklAKFQiM2bN9PV1UVF\nRcWY65OJmz0bqqqc8PHJTyZsGBhw7kEt4Gk/NdhUJPd4Gj6stbuB2DC4piHb6oY83sQIrDPQtHmk\n7Rm1eTN89asjb7/gAnj66dHPsWyZE0CGuvlm+MpXJlTeWCxdunTQB35i60Y0GuXhhx9m586dg1oq\nAGprawc9Thw8Om/ePPx+Pw0NDfT09FBXV8eCBQu46667MvRbyKkkHXS6cSN8/evOYnPBoUOwCsOT\nTzq/uwabiuQOTa8+UfX1zp9WI31tH8ONN9u3Jz+2vj7z9TM4NAC0trayePFigsEglZWVbN++Hb9/\n+M1JwVN8WLW2tlJdXc369esJBAJUVVWxcePGtNYuYxcLH4OWdbnmGujvh29+07O6Mk0zm4rkHq+7\nXfJfOrpGTtUtk2WhUIi6ujra2triLSLr16+nqanpFEcOVlFREW9F6erqYvPmzTQ0NBAIBFi5cmXa\n65bRLVjgTLHe0QHz57tPnnaaE3K/8Q34whegtHTUc+SbaFQzm4rkIrV8yCBtbW2AEzYSu2JaWlpS\nOk9TUxPBYJCuri7ACSK33norfr+f9vb2tNUrY3fppc7Eptu2Ddlwww1w6BD8y794Ulcm/cd/ON/f\n8x5v6xCRwRQ+JpmOjg6am5vp60t+M1CsC2bdunU0Nzezc+dOFi9eTGtrK+FwmN2nmKnKum36tbW1\nRCIRamtraWxspLGxkWXLlhGNRlm8eNjyPcPqS+v95AI4jRpLljjzbw3qejnrLLj2WvjHf4wvP593\n+vuTPn3fffC+98GQ8c0i4jGFj0mkvr6eYDDI4sWL6ejoABg2iLSsrIydO3fS2dnJ4sWLue6661i+\nfDktLS0Eg0FWrVoV33fosYnPxc4TCARYs2YNa9asoaurix07dvD+978/6fGJ9XV2dqb1dxfHpz4F\nf/wj/OY3QzY0NDh9FHff7UVZE/Poo07X5YsvDnq6owN+/nP49Kc9qktERmTsoD+BCpsxphpoaWlp\nobq62utyRLJuYAAqK+GKK2DYMjrXXgs/+Ql0dubXwnO1tdDdDW1tkBBob74Z7rwTXnklPsu6iExA\na2srNc4AqhprbetEzqWWD5FJxOdz5vl44IEkPSwbNsB11zkJJV/86lfQ3Axf/vKg4JFkeRcRySEK\nHyKTzCc/Cfv3w4MPDtlQVeU0F8yc6Uld4/K1r8GFF8JHPjLo6STLu4hIDlH4EJlkKivhve91BmPm\ntccfh4cegptucpp0Etx3H7zlLfCOd3hUm4iMSuFDZBK65hpnMKZ7J3T+GRhw5iW54ALnFp4EkYjT\nqnPNNYN6YkQkhyh8iExCS5fCrFnwve95Xck4ffvb8OtfO3fnDJk3/f774fhx+PjHPapNRE5J4UNk\nEpo5E+rqnEGZ+TS+NG7mTGdytEsvHbbp3nvhz/88bWsyikgGaHp1kUnqU59yPqgffRTcqVfyxwgj\nSX/3O9i1K8lgWhHJKWr5EJmk3v1u5waXUQeetrbm1bTr990H5eXwwQ96XYmIjEbhQ2SSMsaZV2zb\nNnj55RF22rkTPvc5Z136HLd/v9ON9PGPQ0mJ19WIyGgUPkQmseuug2nTYOPGEXZYuxYuughWrXJG\nceawu+5yAsjnP+91JSJyKgofIpNYWZnTsHH33fDaa0l2mDIF7rkH9u51PtVzdDmGgwdh0yZnKMg5\n53hdjYicisLHJBEMBtmwYcOgx5s2bfKwIskVn/ucc7fqP/zDCDuEQk46+fa3R9kpg06cOOUumzdD\nb68zQ7yI5D6Fj0lq0aJFVFZWel2G5IBgEP7P/4FvfQt6ekbYaeVK+NKXnNtbt23LXnF79jgTiT39\n9Ii7HD4Md9wBn/gEVFRkrzQRGT+Fj0nqoYce4sorr/S6DMkRX/iC06PyT/80yk5f+xpcdZXzKT9K\nGEibP/3JmbBj1qxR+1IaG51FbW+8MfMliUh6KHxMUoFAYFC3S1VVFZs2baKpqYlQKITP5yMUCtHW\n1jbouB07dsS3B4NB1q9fP+zcDQ0NVFVVxfepq6sjGo0Oeq177rmHLVu2EAwGeVCTMnhu7lxn8Ok3\nv+lMT56UMfCd7zjr1J9/fmYLikSc4DFlCvzkJzB7dtLdjhyB2293MtH8+ZktSUTSR+FjkjJJFr24\n//77ue2227jxxhvZsWMHHR0d1NXVxbdv2bKFuro6qqqq2LFjB/X19dxxxx0sX748vk99fT2bNm2i\nrq4uvk9TUxOrV68e9Frbtm1jw4YNrFmzhurq6sz9ojJm118Px445AWREU6c6KcWXwbeO116Dv/or\neOkl+OlPR52q9L774JVX1Oohkm80w+kEvbz/ZV4+MNIkCTCteBoXzL1g1HM88/ozHDlxZNjzZ846\nkzNnZ2+O6M7OTnoSOv17enpYs2YNfX19lJaWsn79etasWcO3v/1tAK688krmz59PfX09XV1dVFRU\nEIlE2LJlC9dee218n97eXpqbmwe9VnNzMx0dHZx77rlZ+/1kdGecAatXO10vn/88lJZ6UMQjjzjN\nGAMDTovHKC0sx47BrbfCxz4Gb35zFmsUkQlT+JigzS2b+eqjXx1x+wVzL+Dpvxm9f3zZ9mU88/oz\nw56/+b0385X3fWWiJY5ZbW3toMeJA1JbW1uJRqPDWjCWLl3K6tWraW1tpaKiggceeCC+LRqN8vDD\nD7Nz585hLS1Lly5V8MhB69Y5N7Z84xvOSvVZ9YtfQG0tXHYZ/OAHThoaxb33wgsvwN/9XXbKE5H0\nUfiYoPqaej705g+NuH1a8bRTnmP7su0jtnxkUzAYHHFbb28v1tqkXSTGGMLhMOCElPXr1/Pkk09i\njKG2tha/3z9ozAegO21y1Bve4Nx6e8stTovCeeeleILeXvD7x7eW/aWXOlOUXnXVsJVqh4p1tXzi\nE5kffiIi6afwMUFnzp5418ipumVyQSyYNDU1MW/evGHbY2EiFApRV1dHW1tbvGVj/fr1NDU1Za9Y\nmZCvfAWampwumEceSTFHrFgBnZ3OqnUf/zicffbYjy0qctLEGHz2s1Bc7M20IyIycRpwKmOycOFC\nANrb21mwYEH8q7u7m5UrVxIOh+N3xqxfv35Ql0pLS4snNcv4zJjhTNr1i184XRspaWiASy5xbss9\n5xy44gpnavb6emegahr+Lfz7v8P27c7A2DlzJnw6EfGAwoeMyiZMp3377bezbt061qxZQ1NTEw0N\nDdTV1VFeXk5FRUW89WPdunU0Nzezc+dOFi9eTGtrK+FwmN27d3v1a0iKamudxosvfnGUReeSef/7\n4V//1ekXaWx07orZuxfa2py17t3uufGKRuFv/sZZtTbhJisRyTMKH5OEMWbQoM+hA0CHbk+23w03\n3MCOHTtoaWmhrq6Oe+65h4997GNsc2e8LCsrY+fOnXR2drJ48WKuu+46li9fTktLC8FgkFWrViV9\nbclNmzY5d9Z+5jPjOLi01Fky96GH4Le/hSeecFbGveKKCdXU0AB9fc4icvpnJJK/jM3RhaIywRhT\nDbS0tLRobgmRMXjgAWfg6YMPwkc/6m0tjz4K73sf/Mu/wN/+rbe1iExGra2t1NTUANRYa1snci61\nfIjIiOrq4C//0vmw7+31ro7Dh52hI+96lzN0RETym8KHiIzIGGcx2yNHYMkSOHo0+zX098PVVztz\nesSGkYhIftP/xiIyqje+0bnD5Ne/doZxZLOn1lpn0bsf/xjuv19zeogUCoUPETmlSy+F738ffvhD\n+NKXsve6d97p3FL7rW/Bh0aey09E8owmGRORMamrc1a5v/56OPdcZ+qOTHrgAedW3w0bYM2azL6W\niGSXwoeIjNkXvgDPPefMtfGGNziDUTPh0UedyU6vvhr+/u8z8xoi4h11u4jImBnjdIV86EPOANRv\nfzv9Y0B+9CMn1Fx6KXznO5rPQ6QQKXyISEqKipzBn6tXO7fg1tU5M49O1KFDsHKls67chz/sDDIt\nKZn4eUUk9yh8iEjKpk6Ff/5n2LEDHn4YqqudCUzH6+mnYdEip9Xj3nudGdpnzUpfvSKSWxQ+RGTc\nliyB1lZngbd3vtNZ5n7fvrEf//zzzhp0ixY583c8+SRcc426WkQKncKHiExIZSU89pgzGPVb34Lz\nznNmIt2yBSKR4fvv3w/f/S5cdhlUVMCttzrzhzz+OFxwQbarFxEveBo+jDHzjDE3GGOWGGOuN8aU\njbLvQmPMre6+t420rzHmbmNMaeaqllRt3brV6xImnWxf85ISuO02ZwXcH/3IWVfuuuvgtNNg7tyT\nX7HHn/6007px773w6qtOF86MGVktOe307zz7dM3zl9e32m631oYA3DCxHVg8dCd3W7O1Nug+7gAa\ngboh+10OLANuA/oyW7qM1datW1mxYoXXZUwqXl3zGTNgxQrn66WXnEGjfX3OHTGxu2JmzYKPfATO\nOSfr5WWU/p1nn655/vIsfBhjFgLxm/SstVFjTMgYU2Gt7Rqyey3Qk7BvmzFmqTGm1Frb554v1hIS\nzu/iD44AAAa6SURBVHDpIjIGZ53lzAciIjKUl90uIYYHhTBQmWTfQT3HCUEjcd9l1tpmQEPVRERE\ncpiX4cOf5LlIsufdUBExxlS4T4VwWk1i3TCXA9syUqWIiIiklZdjPiK44SGBnyGtHDHW2kXGmFXG\nmHagA6eFoyPWChLrfjmFaQC///3vx120pC4ajdLa2up1GZOKrnn26Zpnn655diV8dk6b6LmMzeb6\n2Ikv7Iz52GKtXZTwXBioTjLmY+ixlcAua+0cY8wSIBDbBGwG1gE7rbW7hxz318AP0/dbiIiITDpX\nWWt/NJETeBY+AIwxz1prz3N/9gMPx8KIG04i1tpO93EYqLDW9hljbgOesNY+mOScA0BlsgBjjJkD\nfADoAo5k5rcSEREpSNOACuAha23PKfYdldfhYwHOnSydOOM4NsdCgzFmG07A2OQ+vh6nu2U+0D40\neLjdL6txbrPdAtx+qhYUERERyT5Pw4eIiIhMPppeXURERLJK4UNERESySuFDJA+lsi7SkOO09pGI\njMq9i/RU+4zrPSh+fKGN+TDGzAOW4gxOnQc0WmujE91XRpbiNb8cqHYfLgIaYnc0ydgZY54cui6S\ntXbYukhDjolNxlejwdipS/X9ImEagF4Aa21TNuosJON4P691H1YC26y1bVkptEC4/2aDOFNW+Eeb\nP2s870GJvF5YLhPGtFjdOPaVkaWyQGC1tXaj+3gJ8DBQlcVa816K6yLFjtHaRxM35vcLY8wqoMxa\nu8n9UPwZoPCRulTeo+uttetjD9w7JutG2FeSiAVkY8zdo+03nvegoQqq2yXZBQFCCdOyj2tfGVmK\n1zGEcyt0zE6gUtc8ZamsixSjtY8mYBzvF7fHpglwW/ZqMl1joRnHNV/qBr2YCc1DMcmd6n1iPO9B\ngxRU+CC1CzLhiydACtfR/fBLfBNe5DytLoAUjXldJNDaR2ky5n/nsQ9NY8xlxpjLjTG3AnOyUGOh\nSfU9ejPQboy5zW15uj2TxU1yKb0HJVNo3S6pXJAJXzwBUryOQ6a8X4czMZykZszrIqW49pGMLJV/\n5yH3+Q5rbZcx5kmgBXUvpirV9+gtOP9f1AJLgCdxZrOW9EtpbbZkCq3lI5ULMuGLJ8A4r6P7l8k2\na+13MlVYAXsyyXNBnEF5Q9UC84wxK91rXonTPL0gkwUWoFT+nXfgLA3RBfHugkpd85SlGrJvt9Zu\ncJfouAPYqTu7xu1Ud6Kk8h6UVKGFj1QuyIQvngDjuI5uN0CPtfaejFVVwNwR/PG//tx1kdoTliZY\nGOv7ttY2WWvvcb8a3UN2DF10UU4plX/nHagFNR1SDdk/iz1w/61vwWmFktQNG/Mx5H1l1PegsSio\n8JHim/KEL56kds3dx9XucQ+6j1fpr5NxWebeW78EaACWJWzbgNPsHGeMKTPG3IDzF02DBvmmJsX3\nlk6gNXaN3VW42xX4UpPie0sHzhiyoZIFGBmBO0Yp9j6xwRhzWcLmoe8ro70Hnfq1CnCej1QWqxtx\nXxm7sV5z942inZNNegbotdZqMJ7kvBTfWyqAepwPxWq00OW4pHjNr8TpVowCZcBOBb7cVXDhQ0RE\nRHJbQXW7iIiISO5T+BAREZGsUvgQERGRrFL4EBERkaxS+BAREZGsUvgQERGRrFL4EBERkaxS+BAR\nEZGsUvgQkbQzxgwYY/pH2Lba3X7rCNtXGWPCCY9b3P1jX2FjzLbEaftFJL8ofIhIxgxZGyJmGade\nNdMO+Xk7sBBnqvKVONNnt2iNGpH8pPAhIpnSSvLFpi53t6Wiw1r7lLV2t7X2QWvtB3DWTWmYaJEi\nkn0KHyKSKQ8AdYlPuCtgtgDhpEek5lZgdRrOIyJZpvAhIpnSCvGVSWOW44QSk8bzl6bhXCKSRQof\nIpJJ23ACR0wtsCNN5w7jhJjKNJ1PRLJE4UNEMmkH7rgPY0wt0GOt7UrTuYM4g1E70nQ+EckShQ8R\nyRhrbTMwz70rJWmrhzHmbmPMynGcvsZ9jb6J1Cgi2afwISKZFmv9WArcn2R7JYPvigkxtgGp64HN\nE65ORLKu2OsCRKTgbQMaAWutfSrJ9oeB29w7YaI4QeTuIftUGmMWuj/PB+qBeTiBRkTyjMKHiGRC\n4iRhO3EmBducbLu1dqMxphLY4j51v7X2xiHnW8rJoBEBdgHV1trn0lq1iGSFsfZUEw2KiIiIpI/G\nfIiIiEhWKXyIiIhIVil8iIiISFYpfIiIiEhWKXyIiIhIVil8iIiISFYpfIiIiEhWKXyIiIhIVil8\niIiISFYpfIiIiEhWKXyIiIhIVv1/PD6XrGRNn00AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -207,10 +204,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, + "execution_count": 13, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -222,14 +217,14 @@ " # function evals = 13\n", " # data points = 100\n", " # variables = 10\n", - " chi-square = 1334.093\n", - " reduced chi-square = 14.823\n", - " Akaike info crit = 279.084\n", - " Bayesian info crit = 305.135\n", + " chi-square = 1218.389\n", + " reduced chi-square = 13.538\n", + " Akaike info crit = 270.011\n", + " Bayesian info crit = 296.063\n", "[[Variables]]\n", " rp: 0.22000000 +/- 0 (0.00%) (init= 0.22)\n", " per: 10.72149 (fixed)\n", - " t0: 0.50000000 +/- 0 (0.00%) (init= 0.5)\n", + " t0: 0.48000000 +/- 0 (0.00%) (init= 0.48)\n", " inc: 89.7000000 +/- 0 (0.00%) (init= 89.7)\n", " a: 18.2000000 +/- 0 (0.00%) (init= 18.2)\n", " ecc: 0 (fixed)\n", @@ -245,9 +240,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAF2CAYAAADOTvreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXt8VOWd8L/PJOGSEAIh3MIt4WqKUgvYmmKlCiJ2Ae0G\nL7y2a9utd6QvSlsUVtittO7KZXnb4Kvutu62FavEV6ErINVWWkqtBlCw3ATCNdxJMoRbknneP85M\nMpmcmTkzc2ZOZub3/Xzmk8y5POd3zpzzPL/ze34XpbVGEARBEAQhUbicFkAQBEEQhPRClA9BEARB\nEBKKKB+CIAiCICQUUT4EQRAEQUgoonwIgiAIgpBQRPkQBEEQBCGhiPIhCIIgCEJCEeVDEARBEISE\nIsqHIAiCIAgJJdNpAZRSZVrrijDbFAPTgf1AMfCS1rrWu24CMNq76XXAD7XWB+IosiAIgiAIMeCY\n8qGUKgPygReUUt201nUhNn9daz3Wu18e8Dowyfv/aK31c35tbgCGxld6QRAEQRCiRTld20Up1QR0\nD6Z8KKW+ALyotb7Ob9lZDGvHEOAdrXWGd3kecA4YrLWuirfsgiAIgiBETnvw+VBh1o8FzgYsO4uh\nYLwLjPFbfh2gRfEQBEEQhPZLe1A+wtHNZFmNb7nWepvf8h8ADyRCKEEQBEEQosNxh1ML1GD4hvjT\nzbu8GaXU/cBrWuv/DNaQUqoHcCtQBVyyV0xBEARBSGk6AUXAeq31mVgaag/KRzink49oa83Ix4h8\nAZojXs5ord8I09atwK8jllAQBEEQBB/3Aq/E0kB7UD7a+Hx4nUxrtNYHtNZblVLd/NZ1A/b5/DqU\nUqMBfIqH1wLymyAOrFUAv/rVrygpKbH7PIQgzJ49m2XLljktRloh1zzxRHLNd+6Eb3wDfvUrkK4o\neuQ+Tyw7d+7kG9/4BnjH0lhwMtTWl59DA08qpTZord/zrn4S+Cuw2Pv9TqXUHOAAhgPqnd42ijEs\nI1opBYYic05r/VKQw14CKCkpYfTo0UE2EewmLy9PrneCkWueeKK55iUlkMo/08qVxgfg0iU4eBAG\nDYJOnYxlM2YYn2iR+9wxYnZbcEz58EaqvAs8Z7LuroDv2wCfY2mF3/IDJIfTrGCReHdWgiAkDv/n\ndcsWGDPGeL5FXxDaw7RLu0QGQWeQzkoQBCH1EeUjCDIICoIgCEJ8kCkLIe7MEBNRwpFrnnjkmice\nuebJi1g+hLgjHUQLiZrOk2ueeOSaJx655smLKB+CkEBkOk8QBEGmXQRBEARBSDBi+RAEQRDaFRJt\nmPqI8iEIghAjMljai0xPpj6ifAiCIMSIDJaCEBni8yEIgiAIQkIR5UMQBEEQhIQi0y6CIAhCUiK+\nNsmLKB+CIAhCUiK+NsmLKB+CIAhxYPZsyMszfyO//npnZRMEpxHlQxAEIQ4sW2a8gZu9kW/ZAvPm\nOSufkF60tykqUT4EQRAEIcVpb1NUEu1iGe20AIIgpBTSpwjpiygfIXC73cyatYApUyYCdzBlykRm\nzVqA2+12WjRBEJIQ6VMEwUCUjyC43W5KS8soLy+lunoD8BbV1RsoLy+ltLRMOgtBECKivl76FEHw\nIT4fQZg3bzE7dz6OxzPZb6nC45nMzp2a+fOXsHz5QtuOF29noPbmbGQdDSinhRCEmFmxIrF9iiC0\nZ0T5CMKaNZvweBaarvN4JrN69VKWL7fvePF2BmpvzkahcLvdzJu3mFWrNgE5TJlSz/Tp41i0aA65\nublOiycIUfH++4ntU5L3hUNIB0T5MEFrTUNDDsHfuBUNDdlorVFK3srtxDfdZbwhLgQU1dWa8vL1\nvPdeGZs3V4gCIiQBgRY7TWNjYvuUZHrhsA+xlCYLonyYoJQiK6ue4DeyJiurXhSPOJDo6S5BsItg\nFrs775wD5JKZmVp9SnSWFfuVA7GUJificBqEqVPH4XKtN13ncq1j2rQbEixRemBMd91qus4wTW9K\nsESCEJ5QDurf+lYZ4Gb8+NTqU2bMgNWrjc+zz8KePcZf3zKf4hHPCB8JDEheRPkIwqJFcygpWYrL\ntZaWeHyNy7WWkpJlPPPME06Kl5JEMt0lCO2J1hY73/1rWOyqqmYDi3nkkfTrU+KtHIS67jt3zmb+\n/CWxnoIQJ0T5CEJubi6bN1cwc+YHFBZOAm6nsHASM2d+IH4HcaL1dJcZmjNn6rnqKsWkSTBtmvHx\nmX6TE1GkUgFzi50bWIDHswT4HXff/XVuuGE0Dzzwx7TpU+KtHIilNHkRn48Q5Obmsnz5Qu67D8aM\n0axZo1LcWct5pk4dR3n5+gCfDwOXax133HEDr76a3I5zMkedWphb7NxAGfA4sBCf4/RLL62npGQp\nr776Bjfe2CXl+5R4Rg1KYIBBskY1ifJhmdS9edsTixbN4b33yti5U/u9LWlcrnWUlCzjkUcqePXV\n6NpuDw+pRPOkHuYO6osxFA9zx+kVK5ZgKCWpS7yVAwkMMEjWqCaZdkljZs82pi0mTYIRI2gXUxnh\nprtycqIfmK06yMUTmaNOTdo6qG8Cgk8HbNyY+tMBVqZRY1UOJDAgeRHLRxoTquS3k6TydFeik9cJ\niaG1xe5WIPwbfzrkpAg3jRqrchDOUvrMMxUxtS/ED7F8CO2c1OmcJZondWltsbsVOECoN34j50fq\n3NvBCBY1CGvJyVnG9u1PxGR1lcCA5EUsH4KQIGSOOrVpbbF7Gpcr+Bv/+PE3RO27lEz4lIP585ew\natVSjh3LprDwAtOnj+OZZyrYuzc3Zqur05bS9uBLloyI8iEICSTeZmihvfB9iorKqKqK3HHa6cEs\nluPPng15eYH75QILefRRmDcvWuXA6hRV4hX3ZHX4dBpRPtotqT8fnI7IHHW6kMvLL1ewalXwN/5g\nOD2YxXL8UH5kW7bAvHnW+zSnQ9KdVgLjj7NjjCgf7QinHzYh/oQzQ8vv3L6IZQDKyUldx+l40x5C\n0p1WAuNBuDEm3P1+/fX2ySLKRzsh8Q+bWFacwuk5asE69g1A8qxFQjoUmEy0ZcXKGDNjRm7I+92w\nXtkjj0S7tBMSkf8hWIGn+nopvuQcMigJQiDpkDY90XmH2luOIVE+2gnxftisVN0UrLNyZUtoYHtK\n0iYIyY6EpMeH9qbQybRLO8DKw1Zdnc3w4ZqiIhWVWS6UGbOqSgPxT/ecSg5cqTgfLKQ6yTHVKiHp\n9tMe6+CI8tEOsPKw5efXs3ev4tVXoxvgwmXWhKWRNxohMmALQmJJDif2tv2enSHpqfTSEy3tUaET\n5aOdEO5hiyUpkRWtF3xmTHtuvkR6TUdPcrwJCkI0WHViD/Ws1tbGT7ZQSpHVkPRA2YcPh7lz2yoW\n6fbSs24dLFxo/O/7TZuaxgHraV3s0MCJHEOifLQT4lnN1YrWC/ZqveEeeDu9piMhOd4EBSF2rEaM\nhHpWfd/tpL7emlJkJSQ9HawWkaOZPFnx1FPGN99vuHHjHB5+uP3kGBLlIwhWNWq7sJKG2Oqbutmb\nTDit1+NJ/cya7SF3gCAkCueLGJr3VytWWFOKoglJTw6Lq/2EeqkCo0/LyWlfOYZE+TBBa82MGSrh\nGrXZwzZsWORv6mZvMqG03uLiZezbtypRp5kwAjuiDz9cTE3N47RWwFIrd4AggHMOhvX1bmbNCj0I\nvv9+NEqRNRnbq8U1noR7qXr++Qp817495RgS5QPj5vzlL93s2rWY6upNNDbmkJlZT9++47jqqjl8\n85u5tioi1rRzZdk8aQUzrbdPnzp69+7AiRONwDdTbgqibUe0iWARPU6Wszebn003hzghFJH7Jtnt\nYBjuHjX6rDq+9a3pVFWFGgS70NiYSKUo9f26wk2vrVgRLJLR2esiygcwZYqbRYvKOHiw5aFpbNQc\nPLie7Owypkxp0RztwKp2btU8aZXWWm8d2dnT2b59tjf2O5mmIKx3KD5z5Ouv/wm4HGK/xIea+Zg8\nmTbzs6nuEJdqhJqmjcZp0w7fJDsjRoLdoz7L7M9+tgk4y/79PyKYZdE3CGZmxjfqwsoURCoRbnpt\n48ZYIhnjp7yJ8kH7TeUbnXnSKku8byiRnbNTYWvRdMZtzZG3EG2n50REgJA8BN73/vdLx46GMnLf\nfXDqlLGsV6/gfmR2+SbFu4hhW8vsLcDXTLf1HwTHjx/Ha6/Fp7JzJFMQ8SNx1har02vRvLCZK282\norVOmw8wGtCVlZXan6KiCRo8GrTJx6OLiibqeFFZaRzHXyRjmUf37DktiEzGp1+/adrj8UTZfuzn\nbNZ2ZDKE3te3zcaNdXrkyFu0y7XWT2aPdrnW6pEjb9F1dXWm+z/22NPefXzn9bSGtabn7HK9rWfN\nWhD2nM1kt3odwrUTS1tC/EnUb9P2vo3uPtVa67q6Oj1r1gJdWDhRwzRdWDhRz5q1IOgzY35ve0zv\n0Xvu8ZfToyF0f2X0Zx6/5/ntgOf5bdPnOZLrHu7a3XPPghieVU/Q/erq6vRjjz2t+/adoGGa7tt3\ngn7ssaeDXmfz9qO7t8KNX4ZM1vqZurrQfe3GjRu1V5MZrWMcj9M+vbrW7TWVr/IzT5oRvXnSOBdr\nGVXbQ8rw1tNP1msStE0nPAcjmdpaWq6rxuVa630TfCIGKRN9fwipip1psH1TrWvWbADeZM2aDc2R\nJKEwHEfb1oFyu1vKMBiWWZ+cCgjdXxn9mWr2P5s58wMKCycBt1NYOImZMz+Iebo33LXbuDGyFOKB\n9bAmTJjI4MEL+NrX3M1lFW6+2U2/fmX89KdtS1eUlpa1umbxYOrUcbhc603X+XJEWe2fwtV/WbHi\nV7bIDFLbJcAxy4xEZH4zP/b48aFvqmjNk8a5hD5nX0ZV+wodWbv5/WumzJ1rmKbffDPyzthcqcwF\nKoAPgEnADTF1elY6aEGIhPi+DFntw9x861vmdaBKS8u8hSi1ieOoL5y/LS2DoEG0SlEorF47q32R\nWT2smpoNHDxYyqFDZfzTP7nZswd6915Mfb0vii7xBdsWLZpDSclSXK7WL1VKVdCt21z+8IeNWO2f\nwilv77+/zTa50175gPCaY7BBPhZrSLAKs/43xiOPmN9U9rypW9GWY8PKOQbiX+nxnXdg1y5Njx6R\nd8bBlcpcDM/vd4COMXR6oTtoUUCEaGgfL0OL/fzBzN5+l2BumQ1tWXzkkWD9lT3nYuXa+awvVghv\nBTCUitYWoNZ4PJNZsWJTXC3IXbp0aWNJ6tPnZrp3/xE1Nc9y/Pi7mCuQrbGivDU2drJNblE+CK45\nmg3yvgG1uHgiAwbcQXFx5G+7oSrM+t8Y9pknzR7GORQVBT/n4B2FvecYjlg643BKJXzFkgzmhO6g\nE12eWkgdon0Zsg9rUxdtLbP+lsUbgJta9Vc5OfY6epq9/FmbgrCGtSkcMwuQP4rGxmx+8hNtyYI8\ne7a1StmB49CoUV9Ha82rr74BvMlXv3ojNTXP4vHcRijFqZWklpS3i8GFj5RYnUZi/QBlFrYpBr4P\nlGGo13lW1pm0Y+pw+sorWt92W50uLl6gO3WaqDMzp+lOnSbq4uIF+rbb6vQrr1hzxrHqXBSNU1Q4\nh6dAQjlA+TtyBnNGC3Y8fwfXUE5Sdjp+ReuA1/J7tXVsGzLkFg11UTl4xdNhVxxO2y+J+m1C3beR\n9DP+WJX9o4/scRw1nq/asPd2JI7nlZUt/VpR0QTdr980XVTU2rEz3LXbuLHO0nXweDy6Xz9r18Ho\nY4P3BXBzxE75oa5LqHFo8GCjXwsnk9Hnt20/fL/9gMYmh1NHlQ7gfsADdA2z7Ud+/+cB71hZZ9KO\nqfIRSLAIEiuD4CuvaD11qvG55Rathw83/vqWvfJKeO9ksxsjko4vvMdy6wfQX9EwU1oefPCH+sEH\n57Z54EM9yNGcY/jzCd4ZB7vuPqWyW7fWCpbVTsgMKx10bJFIony0RxL520QapRKOyCLTrEdPBJPT\n7PlKVNRbqGsXyW9oNYqkddSP71Onjei6L2v4atjol0iUj3DjEDwdNlLSpzgFtl9bWxtGebMv2sUR\nxaOVANAUSvkAvgB8GLDsLFAUal2QtkYD+ktfqmylDFiloCD0zVhQMKHV9mYa+6BBN2uXa1zEN0Y8\nw81CP9y1Gq7X8Ns2D7xPyzazjlh9a4jEkmO1Mw4VvhxreGzLvuEsHxMstiPKR7KQiN8mUGGN1OIZ\njMiUj9gts1bv7UiUj+uvDx4qD2/rW29dYLKfeT+6aFH4l0Sr/WhbC1Cdhls0/E+bPjOY5SoS5SPc\nOAQTw1o+AhVIf2vSwIHj9ahRk3SfPje36WsrKyttUz7aQ5KxcN4/YzEUCn/OAoOBISHWVQVr8LHH\n4N57IxNSa03HjmZze25gMbCJs2cvUVw8kalTW2fTM0/Go03aAiJ0ijJLfnXoUHQZ78wzqi4BFmCW\ntXD/fu1d3/pYVlI7R3KOEF1NgsCU0MOHq5iyTrbGmFuOR6IkIb3wJXVas2YTDQ05ZGXVB/QhiU6D\nPYeiojKqqiKtsN1WzrbPYOvEapEUejt4MHh5BJjM7t1m/Zr5tbOSVXjKFGuVxtuWrjgD/IjWCdfs\nSVoZfBzyP99sbrzx87z+evD+afz4G3j1VfMKw6A5cmQ9RUVLgV+yZk1Xvxpja6OS24z2oHyEo5vJ\nshrv8lDrbMV8QHVjzB49DizE41FUVbXNptd2UA9dYdZ3Y4R7cH0ZEVunatf07JnDpUuRZ7wzz6ga\n+oGHJaZ1H8JV0fWd4+zZkJcXabZUK51x67LSgcReKjx0B+3LHimZUYVQmGXkhERn5Awkl5dfrmDV\nqlAVtq3hP8ibYb3QW3jHzoaGbF55RfPqq8Y2sSo71iqNt2zb8nI0kVCZXmPJTG3lxQ7qefTR77Nj\nR3jFKVQJj6oqDSylvv4Jv3t0GoY9wAZiNZ3E+iGMzweGX0jg1MpnwM2h1gVpazSgf/Wr6GyYt94a\naPYLnTHTZ5br1i3QBOYzy7WeV4O3dW7uLfqmm+pMzYDh8JnqIjG5texnllE1mG+Dbz5zgoZxQZ1Z\nwzt+RT4NEs4Ry2qWwdinXUI77FqRXaZdkot4/DZt+5TWUwmlpQtsOWa0z1fwqYvQ08KhjmfFL85M\npnD9WjynOq2cs9bR+4NFcv3C3TOwIKQ/jn8/3XZsCuz/Jwb4tKTWtIsOs/4j4IGAZfnAfuBciHVB\nWbJkNr/5TV6rZTNmzGBGmCxar78+x6sB+rTJ0FVS161bCmiysoIlu1qCERd/kcLCzs0adawF3cLV\nTvBZHVqjTAo++ScjM7f2BKudYFZFt7DwAtOmjUXrMdx999fxrxtw552xFX2Kth5G9BVlNTk50ZSn\n1syerZqtPbG8mQnJz+7doS2LBw/GUhTMLoxn366CbdHWfxo0aBzV1ebWVFjHiBHxnuoMb3FtncAx\nPoXz2o5DLVaN4uJl7NtnWF3DT1WbjU3+vApsZ9WqbXg8W4EVgI3m2li1l1g/mFg+MBxJi/2+7/X7\nvxt+1o5Q60yOFZPlQ+sWbXLQoAmWHUfDa5fhQ7F8hHpruPHGSKwObbVsc6/t6Kw9Zm9KobzVgzmv\nBhLsjSDScNxo3oCCWVbCRc4kyiIjxBe7nD99ROuYHS6KKrjs0Vo+wkeaBOtT7LhWVq2pViKBYnV6\nteZAG3lqgEgsH1q3jENFRRO9EYjRRRlZGZu6dvW/R+2zfCRc2Wg+MEzAyM/RBPwEv6kS4DVgjt/3\nazFyeJR5ty2yss7kmDErH/6E8zo2fthgg3rLzegzk0VKqBs2knCz0A+3L9pljXdZ9GHCdlyHYA9l\npMUBI+2ErMTWR7pf8CJa9g1wQuzEWjQsFFbDOb/85TpdXPy07tRpgjcP0QRdXPx0qzxEoYhV+Qj3\n7AaLoLNT+fDv1wIH3VgKuNmvfNTpwYMjU5ICn3tf21aicsLlXgq1zEqf3Hq6KwWUDyc+disf0Ydi\ntdyMsSe7suJD4Al5E/ssJsGUlocemqsfeujJiKw9Zjd6+GQ8E6NSPqy8QQbOs0baCYWPrV9geo0H\nDLBWSTeeA5wQPXYlFgyGNZ8P32AWvQyxKh9Wk1bdeKN1Xw6rBJPdLguQ/cqHdX+wSKypscpp1j/d\ndFOdzs1t63/oPzbFy+fDcYUgkR+f8lFQcJ0tHXsk2fQiMZNZJZi2bN8N2/YNPPryzWYOrYGfafqj\njyJPzGVFrkBntEivVbj2AxUnq512UdHEuA9wQvTYWd7eDGt9SOwyWH2TXrSo9TNg9dmNNG9PJMTL\nitJ6WWjZI1U+Aq+fHdZUO5WkQDlCjU2tX54/sk35aA8Opwnn9OnnKS8/FdIR0Qr+oVirVy+loSGb\nrKwLTJsWPBRr+XJD4fM5HG3ZEvlxgzl+xeq02Rbzeinl5ZE6sxpttXVo9UcD0TtihZNr2rQb2oS9\nWnX21Dp8wSXwFbfz38ZaeOC8ec8FDXeLNS+AEBtGfY+Fput8YZP//u866vvWWh8SXgaroZvh8luY\nh76Gf3YjzdsTiBMh6aEcaGN1+vdPIeCfXwhaHG5bF67z4R/m2jaHUjwINzb5Bw+8/vpaqqttOnCs\n2ksyffBaPgzTkT1vLv6EC5/yEWmomT9Oa8vR1E6IZH4xmmkXK3LFapoOb/mYEKXlY0LE/ipCYgg9\nnecLN79GZ2RE7oMR6pj+JDqVf7Bpl0h9PmLBynRybG2Hdn4P7osV3mISiazRWlPttnxE1lZqhdo6\nhsczmRdfXMq6dVbDK0Nj9e0n2vYhvtqytaRm1hPvBPLII3PYvj18iFg0hEsIFOubTDjLisdjHuYX\nLux56tRxvPHGNsJZR7SO/u1aiI7gCZ184eazgYU0NSmamjQHD64nO7uMKVOiTwwW+BvHEroZraXP\n7Fihnt3QWU+dRXs8aO2hrraWp59eyhtvbCJT5TDltgNcuvjPZKnrURnnUMoDgGI0B/fexz/9YAH/\n8i+Poz0e0JoLZ6FbRw/1pzwc2lXHsqX/wfr1lRR0zuabX7/ArZOu5bHH7qP2SGf65nioPeShOhvQ\nulkG7fEAvu+anq6LuLr+HqU0Cg9KeVD45NAo6jj5yWo+O6/R2sPJ/XB1voeTWzW7z3latW2crOb4\nAQ9jCzTvvOjhhX3G8Roa4PZrPJQ/rumQaSwbO8bD2DG6+Rr55PK1CXDkiGZiHw9H1mo8Hxvrdh08\nZttvo7RhEUgLlFKjgUqoxDCCQM+et3Pq1JtUVlrJ0RAZPrNmZSW2tV1cPJGqqg0En7qYRGXlhlZm\n1HAyRCKn78bU2kNlpYfS65v48581137eeLi2bYPx4z384fceRo0yln38sYdJk+Cd9R6Kiur4t397\ngbX/8yEnT3aiT++LTL5tDJNv/Tb33pvNG6s8lJR4HwLvQ+X/8O7aqfmHf/Dw8sserhpBwANtbLNn\nLzz8kIfnV2iGDvE+nH4PldYe8Bjt+687cADmztX85Mceigb5yeDRXLx0kR/96Kccr74F9Eijc1Ae\nlPqUgoLfcebU/cz9YQcG9DfaOnyoiaVL4dFHL/JGxcucOvkV0MNQCm9Hs4dePTfxwAN3s+JnK6mt\n/aa3wzGeR6U8KG0co1veSh568G7vtdCgPXTuO4Br7/nfEdw5QjTMmrWA8vLSAOVxAVCKefbetcyc\n+UGrabITe7ex775pZFy+gtIaX2Yjhfd/rY3l0PwXbfzf1AjuuosoMoAs457ANziB0g107NBEx04d\nm9tuaSugPe/xlPc4ugkuX4GOHcCFpqmxEU+TB+XVPTKVC5fLRVMDZGUa23iaPHg82mhbQYZSuJRC\nafA0gcsFLkWLLM1ytD7n5uXea+Tbpnm9/zq/bf3/mq7zLndF8BsL1tkCeBNDj9FaR+E00EJaKh/P\n98hleFYGCnApN3i6kNtFk5FBwMPb+mE2lvk/WP4Ptv/2xjqPBxquQIcsyFCt15nuh99D5d+B+H03\nOgeX30OnWz/AaFwov7b82m7Vnnef5nNqvU3gOnmY2x/7//w/DC41T+Ms2ENL8rrZfm/8E4HgLwBF\nRZM4cGBD85I/PPp3XP/i23w8qrexwNBAja19FguljP8V1F9QXLhgLPNoaGjSNDadxqO7Ap29KqpC\nc5GsDrX0698HlZHR0nar9lqORfN3Y93FS4rPPoPBQzwcOXqQi5d6oenqpwLX0aHjSS5dHsrnRmaQ\nnWPsW39BsX07XDNKkdPFWHa+XrF1m+La0YrcLq2P1fwhyPKAdbV1io1/VOT3cJGZpWhqggsXFZ2z\nFS6XsU3/AYqBg7z7ubw9niuwPRdKKT748GN27uyFR/dH4wI0mt+huRWNyzhfrZp/C61d5OT8D9/+\n7lSUt40TpxS/+hWMuGozu3b1w6MHG/tq5fc77qfkc8fY8elNPPCgorBQecVwgVIo5f3rcgGKN99a\nz6Y/F+PxlLTI4W1Tuf6Gx3OQuU9OYdAgY79Dh1386EfwT08riopcRnuulnaNS+hqOZ7/cb3rfNub\nrfPfr3m5V1bfsu279jB5+j+AKB+R4VM+FvXqQ1HHjmgukp1zhfP13enXX9GhY/OGLQ+u9zvQ+mEO\neHBabe8yhvELlxS7d8OIEYrOOSb7EtCOhYd08+ZtXLx0rd/N2vIB0HzEl8d9ka55rR/kG2+EvG6+\nG05x+Kji8GFjnyaP4vwFRU6OwpVhtDtwkKKoyF8O4yH0l/HMWcWbb7m44+uKgp7GNqfPKFatgi9+\nSXH8uLGssUlRV6fI7QoZmUb7ffsq/vgnF/fMaGD3ng/ZvesI7voO5OQ0MKJkADfd9GXjbc77EPiO\nW33cRfkKxaOPuujX3+/hpuVhO3LUxZIl8MQcxcCBrR944y+tHs5Lly/zRsV6/vrhZ9TUdiSv22Wu\n++II7r57CtnZOX77G/vtP+DiiScUS5e5GDrUxb59MOt7Lv7PTxXDhhkP6Wf7XDz4kOL/vgAjRhjL\n9ux18Z1/hJ//IoOSq1oe7gsXLvKtb3+ffQe+icfzFVpUyk0MHvzf/Oa1n9GlS25zB9BwqZ7sq67h\nw3+czFeft6/Qk2CO2+32Tudt4tixzrhcZ/B4NgXdvl+/2zl8+M3mqZBPhnXlYrccvvRhdJ56K1fC\nL3/pZtcr4saGAAAgAElEQVSuJVRXb6KxMZvMzAv07TuOq656gm9+MzeqaVyfxfOeexbw2muB1h0D\nl2stHs8HVFYuDGlNtdPKa7fF2NxaHE6BvIUDB37XRqa+fSdSXR18v8LCSRw7tqGN7GYOtf36ufno\nozLc7tkYVrS209CVlblxucbRsmXLFsYYRbFiVj5ichhJtg/NDqcfhXSQtAs7HaV8WMk3YYezkRVi\ncW4ytos8f4HdTrzBHHhhbdA6O75wxFA5DQJDFsNdm1BJ4czYfF1f/cmQLqEvsmArPgfDSGqMnNy/\nQzeB3rjg27bJEU1+CzOsOkVbcXyMdzhstAR3GraWf6e1TPaEHPufX7DnPto8H/FGHE5jpKDgEf7X\n/7ot4gqN0aEx15KjY9Gi4GWeY3XaTDyLqaqyJ8Q0WifeYA68MJn6ek3v3kv4/e8XmoYjLlsW2o9m\n3jzrv334OgytaZzyNUYu+E9O7d9Bz8FXWzqGYAcqrBPxtGktzse7/msJ44Cr7nvCPglsdTwOHw5u\nHkaeHAR3GvYlxfYAt+Hfj/pXpQ5ozfaQ42DPffAUDMn5O5iRllP5//7vz7N8+cKYIyCC4Xa7mTVr\nAVOmTATuYMqUicyatQC32x1z276ojpkzP6CwcBJwO4WFk5g58wN+8QvDy37dOpg2zfjMndvi5e5b\n5jP/Oc8mPJ5bTdcY+QuCm7btwsjjEFyGjRsjkyHwt58wYSKDBy/ga19zR/BbhO9crvqHJ9AKdr28\nOCL5hNgZPnwOOTlLgbU0e4+igbXk5Czj859vUTQ6/M9adgzNpWfxSAcktYL/gGqGMaA++aRqvmfX\nrUukfLEzdeo4XK71AUt9xT1fIyfnOvz7UV/up5Ur2/ajmZnjgMC2fKwjM/OGGPpb8+c+nuOJo8Rq\nOkmmDybp1e02ZSUyW6WVDKfxJBbzq12lp2Mh2sJe4XONxD8NttZabxvWVf9ldO8Iz1qIFjNzeaga\nI/U1p3R9Fvr3D9/moNTBsZrDw46ijNHIZX+fHCo3kbXsrPHKJxQst0mk+UjijZ3TLmlp+Ygnrc34\nLcFixlTCbObPX2LzEZPTBNc6f4EZsZeetiJDi0nWXIZIzKiJ/u3PTfoKoz45Qf25k7a2K4THZy4/\ncGADhw+/yYEDG9pYU3e8spzsBhj4D485KGl4HnlkDiUlS3G5WltyXK613ikI+6aMnCCUtXjz5gpy\ncnIBxezZhqVi0iQYMcL4G2i9CNeW3db0FSsSPZ4kDlE+bCacGT8RUwnJg5k51CBw7jxemJtkW2QY\nP966DIn+7Yv+4Xt0boQdr/y7re0KkRFMQb78xmsc6JXF4Otvs/2Y/lMCoQZLK/jSZydqQLVGsBeC\n6PApi2vWbADeZM2atsrismWwejU8+yzs2WP8Xb3a+Pj7k1lpKzzWzu/991N3PElLh9N4oXX4GiCS\nrdKfORQVlVFVZZ410ef0FS5TYywZY0M58EaSudGJ377oi7ewr08Hrvy/VfDoj21pU7AHT1MjV/1l\nL5/eNpbiOLTvf8+b1WixjuHAGKnDczyIZ62V1tjZ91pvK9T5mWfE9ViqDZWs44koHzYS3LPaR+xT\nCaEG4ngVYIofubz8cgWrVoVOiR6LchFWgjBp2a1GQyXitzfj8PgvMPK3f6Wp4QoZWR1sbVuInk/X\n/Jxrzmvy7/5Wwo4ZWB7BvzgbtDxH4QfBxA9kLcncHvcW0VNUV2vKy9fHXAC0PRDu/J5/3ggWqK93\nM2tWy29z5sw+Et2nJApRPmzGSnXVWAg1EPvegOKJtXoR1sPBcnKcf+Oy660v3r+9GT3u+Q49f/MB\nn6z+T0aVPWx7+0J0nHn155zOUYyc9t2EHTNcxVqwPghawVotKGuyh6pZlQqVncOd34oVS4An+Na3\nyrzpBxZ61z+NEVXVNpNxoqam40VaKh8//Sn85jfG/8GLK0VHODO+efx48hCsQ/G9Tf3sZ7GYTNuD\nBh+9DE789iOnfoeTXR7m7G9+AaJ8tBsGvL+VnV8awlfamTXK2iC40FJb/spOrBj+UubHNXwblrJ8\nuT3HcoJw57dx41JAm+Q9+j5GPhKNoYCkzniSlg6nK1a0OBJNbvuSGhOJ9oZui72OWlbwvU2Vl5d6\nUw+/RXX1BsrLSyktLUv+eHSLOPHbuzIy2VU6jEHvb7O9bSE6qv66gSHHr9Dh69OdFqUN0ea1Mct5\nYVfuoEj8pZIRq+dnnvfIl4/kr2RkjKJ9OAPbQ1paPuJNop23EueoZU6qm0xBs26dsmRidsJxr9PX\n76R4wzPs3/y2FJprB1T993J6Z8LV9852WpRWWB8E206bxtPvygl/qVBTRnb7zlk5v4yM80CXIOtz\ngX8mP38bp079P9ascTlW28VO0tLy0ZZ4atTxnUpoD1aHVAwvDswq+LOfTaSoaAG//rWbd96B3bvh\nnXfMQ/FaSMw00jX3zqY+Cw798mcJOZ4Qmu4b/sj2a3qR072X06K0wu68NnYSLuTdbt+GyZNbnt3A\n53nZMlsPBYQ/v69+9SuEy3tk/DapM2SnzplESKqkrE18UrPWpKLJtL7eeYUuEjp3zWfH5/vQ7b0/\nOy1K2tNw6QIjP6vj4oTxTotiip15bexk0aLUTnQW7vweeeQJwuU9cuq3iRdpqXzU19cn1eASCqet\nDlbeppItHCwZswpe/Nxw+h5Lnvs2VTn26V/I9ECXq9unXdzaIJh4nPeViy/WsqzOoaio/f028SIt\nlY/y8l8m3eBiRnuxOiTaZGpndkczkjGrYOaQ4fR2e7hQe9ppUdKaM3/7CICCq7/osCTmWBsEnZMt\n9syh7Zfw52fkPWqPv008SEuH040bt+HxvGC6LpnCupxKbBVIokNM7cvu2DZvybBhmkOHki+rYO5V\nowA4tv3PDL1hmsPSpC/nd31Ck4LCkTbH8NtIe8hmGp7282zFB/Pzaw95jxJFWiofjY2dSbbBJRhO\nJLYKJFyWUJ9m3x6zs7b14lcUF9dTVZU4hc6O9PG9rjEGu3N/2wKifDiGZ/8+qrtl0L9TttOiWKT9\n93HpS2r/NmmpfGRmXsRpa4FdtJekZlbeppzOzmqVRCt0doQx9h7+BS5nwIW9n9ojlBAVHQ4d5VTv\nXPo7LYggtHPS0ufjxhuvdbyaql20T0cta4pbPBMXxUIyet67MjI5lp+F3rffaVHSmrxjZznfr6fT\nYghCuyctLR+PPvpNduz4kePWArtIjjnctsQzcVEsWJ1GCsTO6ruBbQUrEubPmT5d6XSkOsKzFeyk\n96kLnJow0GkxhHaGtZpYbbGzfk57Iy2Vj5ycnKgGl+QgOaaL2jvRKHR2dgTRONVe6N+b3p+I5cMp\n3KePUVCvyRoy3GlRhHZGuL5hyxaYN6/tcjvr57Q30lL5gOS1FghOkBwKnae4iL7v/Q3t8aBcaTmj\n6ijV2/9MLtC15FqnRRHihJ3WzXQnbZWP1iTH4CIIoeg49Cq6Xn6bM0f20mPgCKfFSTvOfVoJQO9r\n2m+YrRAbolzYh7weCUKK0O1zhunuxPa/OCxJenJx704uZEHP4qudFkUQ2j1i+RCEFKHvNV8GoGbn\nFvi7+xyWJjWIxMyu9u/nWI+ODJUpr4iR6Yz0Q5QPQUgRuhUWU9NJceWz3U6LkjJEMuh1PnKCs33z\n4itQipKOykV7TLqYSET5sBnR4AUnqe7ZCdeBg06LkZbkH6/l6BfF10awRrIkXYwXonzYjCgXgpPU\nFOaTc/Sk02KkHdrjofDMZY4WD3ZaFMEWgmXAFuxCJicFIYW4PKAvBSfqnBYj7Th1YAfZDdBpWIlD\nEphVro5vNetUw+12M2vWAqZMmQjcwZQpE5k1awFut9tp0VISsXwIQgrhGjyUwjc+oqnhChlZHZwW\nJ2048clmegHdRybOVu52u5k3bzGrVm0CcpgypZ5p08YCitWrP2xeNn36OBYtmkNubm7UmTZTHbfb\nTWlpGTt3Po7HsxBQVFdrysvX8957ZQ6WqkhdRPkQhBQie8RIsjxwZOeH9B81zmlx0oa6XR8DUJig\na24+WNbxwgu3AvOBH2M2gM6YkdtmWthfIfnDH1LPT82KH97mzYu919K/mKTC45nMzp2a+fOXsHz5\nwkSLntKI8iEIKUSPkdcBcGrHB6J8JJCGz3ZzOkdRkN8nIcebN89ssFwCLAAiG0CTXbkIh5Xze+qp\nTV4lri0ez2RWr17K8uX2y5bOiPIhCAEkc8RS4dWleIDzu7c7LUpakXHwMMd7ZVOQoOOtWWM2WG4C\nApcZyAAaHK01DQ05BHcwVTQ0ZKO1RilxQrULUT4EIYD2rFyEo2NOV451y6Bp316nRUkrco+cpK5v\nfkKOZT5YakAG0GhQSpGVVU/wCBdNVla9XDebkWgXQUgxTvXKIevQEafFSCsKTp7nyqD+CTlW68Gy\neSkQuMwfGUBDMXXqOFyu9abrXK51TJt2Q4IlSn1E+RCEFMNdWEDXo2ecFiNtuHLxPIXnmnANHpqw\nY5oPluMAGUCjYdGiOZSULMXlWkuLAqdxudZSUrKMZ555wknxUhJRPgQhKbCes6GxaCC9T16IoyyC\nP9WffoAL6DLimoQd03ywfAL4Z+C3yAAaGbm5uWzeXMHMmR9QWDgJuJ3CwknMnPmBhNnGibT0+Vi3\nDhYuNP5PNodCIX0wy+Pgn7MhGJlDhtHr/B+oP3eSnO69EidwmnL60w8ZBBRcfV3CjukbLOfPX8Kq\nVUs5diybwsILTJv2VeDPrF69vHnZ9OnjeOYZGUDDkZuby/LlC7nvPhgzRrNmjWL0aKelSl3SUvmY\nPBmeesppKQT7SL1UyLEkPepaci0A1ds3M/TG2xMndJpSv3s7jS7oW/LFhB431GB5//0ygMZGavUn\n7ZG0VD4Ee3EiNDVaq0CyYJ7HwcjZ8OmnmoEDl3DddQtNr3HPkcYgeHZnJYjyEXc8+/dR3S2TAZ2y\nHZTCbLCUAVRov4jyIcRMoqep0iEVsnkeBx+TqalZyrPPYvpW23vYtVzKhIu7P42niIKXjgePcqpP\nLgOcFkRIapI5v1A0iPIhJB2hrAKpkArZStIjMHI2mG3jysjkWH4HOHAgjlIKPvKqz3JmWGLCbIXU\nJdWUi3BItIuQdBhWgVtN1xmZHDclWCJ7Mc/j4I8GQudsONM3j06Hq+MhnhBAn1MXaSoe5LQYgpBU\niOUjyUk3U126pEKeOnUc5eXrA6w7Bi7XOjye0DkbLvTvTd+tn8VLPMFL7YlD5F/QdBgywmlRBCGp\nEOUjyUk15SIc6ZIKedGiObz3Xhk7d2qvAqIwcjaso7h4Gfv2VYTcXxcXUbhhB9rjQbnEwBkvjm/f\nTB7QteTzTosiCEmFo72SUqpYKfV9pVSZUmqOUiovxLZfUEr9xLvts/7betu53/v5iVLqC4k5A8EJ\n0iEVcqikR7/4RQUQ2qG207ASulyBM4d2J0TedOXczi0A9L6m1GFJBCG5cNry8brWeiyAV5l4HZgU\nuJF33bta63zv9/3AS8Bd3k0e1FrP9dv+Nb91QooRyipgZHIMbRVIFoLlcdiyJfy+3T83BoDj2/9M\nQVFJnCVNXy7t3UV9FhQMkmssCJHgmOXDa51o9qjTWtcCY5VSRSabTwTO+G27FZiulOrqXTRdKVXs\nt70Utkhh0jMVcmTTSH28b+J1uz6OhzCCF3XgAMd6dpSpLUGIECctH2OBswHLzgKDgaqA5TX+X/ym\nXAYD24AXgH1KqX8D9gH/arewQvtCUiGHJq/3QM51Vlz5TKZd4knnoyc41yvobLEgCEFwUl3vZrKs\nxmy51vpdoMbPKjIWw2qS7/3+IobCMQH4AdDdZlmFdk1yO5fGi5P5HVFHjzktRkrT9bSbS30LnBZD\nEJIOJy0fNbQoDz66EWDl8KG1vs7rULoP2I8x4uz3WkH+VWv9EPCkUup+4HdKqWKtdZ1ZW7NnzyYv\nr/XbyowZM5iRTmEjQspT1zOXTsdPOy1GSlNw9hLH+xU6LYYg2M7KlStZ6cvj4KW2tta29p1UPj4C\nHghYlo+hWJiitX4JQCk1GDinta5SSpUB7/hv410/FnjPrJ1ly5YxWmz0QopzsVcPCnYdclqMlOXS\n+RoK6jWZAyTBmJB6mL2Qb9myhTFjxtjSvmPTLl6n0eYpFqVUN2Cf1rrK+/0L/k6kSqmzfg6mDwD3\ne//fD5jVsv4oHnILQrLg6deXgrOXnBYjZTm5dxsA2cXDHZZEEJIPp0Nt71RKzQEOYFgq7vRb9yTw\nV2Cx9/uPgYlKqSHAX7XWb4ChxHjzfMwBaoE84DfBplwEIV3I6D+QgvMerlw8T4fOXZwWJ+U499kO\nBgJ5gz/ntCiCkHQ4qnxorbdhRKsAVASsuyvg+2KC4FNEBEFooXPxMFzAyb0f03/UOKfFSTnq9xuR\nRL1GyBSuIESKBKcLQorieyM/t2+Hw5KkJlcOH6CuI+QWiMOpIESKKB+CkKL43sjd+3c5LElqoo4c\n5VT3Dk6LIQhJiSgfgpCidO01gPMd4MrBoAFkQgx0OHGKmh7iSyMI0eC0w6kgCHFCuVyc6pYFR486\nLUrSsHKl8QG4dAkOHoRBg6BTJ2OZfxXpLidrqSnq44yggpDkiPIhCCnMuYIudKg+6bQYSYO/crFl\nC4wZYygjZmmB8s9e5Exp78QKKAgpgky7CEIKc6Fnd7qcMk0aLFhCmy5tarhC77omXAMGJlgeQUgN\nxPIhCClMY2Fv8j856LQYSYXb7WbevMWsWrUJyGHKlHqmTx/HokVzmismnzqwgz4e6FQ01Flh/Vi3\nDhYuNP6/dAmGD4e5c82njITWBE63ybWLP6J8CEIKo/r1p3ftZjxNjbgy5HEPh9vtprS0jJ07H8fj\nWQgoqqs15eXree+9MjZvriA3N5eze7fTB+haXOKInGaD5R/+0DJYfvvbMlhGgigXiUd6I0Foh4R6\nEzNqO2msVPPtVDSULA+cOriLnoOvjqfIKcG8eYu9isdkv6UKj2cyO3dq5s9fwvLlC6nb/zcACoZf\n64icMlgKyY74fAhCO2TGDFi92vi88w7s3g0VFW6Kihawd+9E4A6mTJnIrFkLcLvdQdvpOsRINHZ6\nz7ag2wgtrFmzCY/nVtN1Hs9kVq/eBMDlQ/u5nAE9Bo5IpHiCkDKI8iEISYBvOqC8vJTq6g3AW1RX\nb6C8vJTS0rKgCkiPYaMAqDuwM4HSJidaaxoacghuUVI0NGSjtUYfPsyJbpkol3ShghAN8uQIQhLQ\nejrANzj6pgNmM3/+EtP9Coo+R4MLLlXtS5isyYpSiqyseoJFuIAmK6sepRSZx09yLj87keIJQkoh\nyocgJAFWpwMCcWVkciIvA334UDzFSxmmTh2Hy7XedJ3LtY5p024AIOfEOep7dUukaIKQUojyIQjt\nnEimA8w42yObzOoTcZMvlVi0aA4lJUtxudbSYgHRuFxrKSlZxjPPPAFAtzP1XOnT0zE5BSHZiVj5\nUEoVhVjnjOu3IKQwkUwHmFFfkEf2yXNxky+VyM3NZfPmCmbO/IDCwknA7RQWTmLmzA+aw2y1x0Pv\nmgZU/wFOiysISUs0lo/9Sqkf+y9QSnVVSr0GVNojliAI/lidDjDjct9edDtdHy/RUo7c3FyWL1/I\nmjUbgDdZs2YDy5cvbE4wVnv8INkN0GHQYGcFFYQkJhrlYyhwnVJqr1LqJqXUd4EqoJt3nSAINmN1\nOsCU/v3pVXMF7fEkQtQUo6016eSeLQB0KZYwW0GIloiTjGmt9wO3KKWeBd7F6Akf1Fr/h93CCYIZ\n6ZgK2TcdMH/+ElatWsqxY9kUFl5g+vRxPPNMRfNbuRkdBhbR5QrUnjpCXm+pRRIrdfuNsOUewz7v\nsCSCkLxErHwopboC/wo8APwQw9rxglIqT2ttHu8nCDaSisqFFXzTAffdB2PGaNasUabVVgPpUnwV\nAKd2bxXlIwxWFNv+B/biAXoOucYxOQUh2YkmvXoV8CEwVGt9AEAp9QLwmlLqIa31MBvlEwTBlPCp\n1X3kDzMGyZp9O+DG2+MlUEpgRbH9w7cOcrKriz6dJM+HIERLND4f92utb/UpHgBa6y1a66HAi/aJ\nJgiCHfQaZgShXaz6zGFJUgPXseOc7d7JaTEEIamJWPnQWleEWPdcbOIIgmA3HTp34VQXRdPhg06L\nkhJ0PnGGul55ToshCElNND4frxE84QBa67tjkkgQBNs5nd8J17Fqp8VICfJOn6d6tMwuC0IsROPz\n8WHA9x7AaGAs8IOYJRIEwXbqeubR+cQZp8VICXqeu8yxfoVOiyEISU00obamUytKqQeAMYCE3ApC\nO+Ny7x70/liKy8XKhdrTdL+oyRxQ5LQogpDURGP5CMYG4CfAwza2KQiCDXj6FVLwh78BbcNJDx6E\nQYNSO0+KXZzcvZUiIKd4uNOiCEJSY4vy4c39IVMugtBOyew/iB4XNBfrzjJjRn6zcrFlC4wZYygj\nVnKGpDs1+z8FoPtQyfEhCLEQjcOph7YOp76kA9NjlkgQBNvJ9r6pn9y7jUFjbnZYmuSlfv9uAHqN\n+ILDkghCchON5aO72UKtdW2MsgiCECe6DR0JwLm920X5iIGGw1Wc66zonlfgtCiCkNRYUj680yo+\nTMNsfdtoretskEsQBBvp6U00Vn9gt8OSJDfqyFFOd+9g/gYmCIJlrFo+agg+1aL9vmsgwwa5BEGw\nkdyCQmo7GW/uQvR0PHGamoLgRfwEQbCGVeVDFH1BSHJOdeuIOnrUaTGSmtxTdZwd2s9pMQQh6bGa\nXv0sUKS1rvV9gAmA9l8mfh+C0H6p6dmFjsdPOy1GUtPj7EWa+vV1WgxBSHqsKh+KtmU0XwcG2yuO\nIAjx4mKvfLqckveDaGm4dIFedR5c/Qc6LYogJD3RVLX1Yb2mtyAIjtNU2IceZy86LUbScmrfdlxA\n56KhTosiCElPLMqHIAhJhKv/AHrVeWi8cslpUZKSs/u2A5A35HMOSyIIyU8kyodZiG3Q6raCILQv\nOhcNI0Mbb/BC5Lj37QSgYOjnHZZEEJKfSJKMPaWU2h9umdb6ydjFEgTBbrp639hP795K35LrHJbG\neSKtcXO5ah/1WdC935DECysIKYZV5WMrMMT78bHFZJkGRPkQhHZIb6/C4XuDT3f8lQsrNW7UoUMc\nz+/AEJfMVgtCrFhSPrTWY+ItiCAI8SWvzyDcHeDKgb1Oi5KUdKg+yblekmBMEOzAlqq2giC0f5TL\nxYn8jqjDh9usW7cOFi40/rcyBZGOdD1RIwnGBMEmRPkQhCQg0D9h+HCYOzdy5eBcr1w6Vp9qs3zy\nZHjqKeN/K1MQ6UjP0xc5dZMoH4JgB6J8CEISYJfl4WLfAnruPBh7QymJJlj6okvna+h13sOeIsmr\nKAh2IJ5TgpBGePr3o+cZyfPhw+12M2vWAqZMmQjcwZQpE5k1awFut7vVdid2VQKQM6TEASkFIfUQ\n5UMQ0ojMosEU1Gsu1EqNF7fbTWlpGeXlpVRXbwDeorp6A+XlpZSWlrVSQM7u3gZA/ohrHZJWEFIL\nmXYRhCQl0jwVAF2GGrk+ju/8kMHX35ZAadsf8+YtZufOx/F4JvstVXg8k9m5UzN//hKWL18IQP2+\nXQD0vkoC/wTBDkT5EIQkJdI8FdDy5n5u98eQ5srHmjWb8HgWmq7zeCazevVSli83vjce3M+pLoqe\nXbolTkBBSGFk2kUQ0ojew0fjAS7s3+20KI6itaahIYfg9TEVDQ3ZaG1UkHAdPsqpHp0TJp8gpDqi\nfAhCGtExpysnu7poOnjAaVEcRSlFVlY9wctTabKy6lHKUE6yj5+mrrdYPQTBLkT5EIQ043SPzmQc\nOea3JD3rQ06dOg6Xa73pOpdrHdOm3dD8vftJN5cLeydKNEFIeUT5EIQ0w927G9nHTlkKMU1lFi2a\nQ0nJUlyutbQoYBqXay0lJct45pknjCUeD33OXkEPHOiYrIKQaojyIQhpxsU+Pel6vDZoiGl9fXoo\nILm5uWzeXMHMmR9QWDgJuJ3CwknMnPkBmzdXkJtr1HE5d3QfOQ3QsXiYswILQgrhaLSLUqoYmA7s\nB4qBl7TWtUG2/QJwF/ARcB3wE/9tlVJlQHfgHIDWuiK+0gtCcrKj7hKlbo3HM4kWh8uWENMVK5YA\nC50TMIHk5uayfPlC7rsPxozRrFmj2kQLndq9hXygqzdMWRCE2HE61PZ1rfVYAKVUHvA6MClwI++6\nd7XW+d7v+4GXMJQRlFL3A3la68VeheYdQJQPQTBhy/ELdG6Egs67OX2xdcZOj2cyGzcudUiy1kST\nxyQ2zCNfavZ+AkDPEsnxIQh24Zjy4bVkNHu6aa1rlVJjlVJFWuuqgM0nAmf8tt2qlJqulOqqta4D\n/tWnmGitDyilpJcQBBO01hxp6AEcYmBOZRvlwxdiGqrOSaIwy2Ny333wl78Yy37xC6MSb7yr717a\nv4fLGVBQJJYPQbALJy0fY4GzAcvOAoOBqoDlNf5fvJYQgMHKGwunlLoZo7ecCLwI1NksryAkPUop\nTns6ADCw43a2tNlCk5lZj9OKRzCcqL6rDx7kePdMBmU4bSgWhNTBSYdTs6D5GrPlWut3gRqlVJF3\n0ViMV7N87/95wH7vds8CG+IgryCkBF+57RYuZsLAzL1t1rlc6xg//gaTvdKXDkePc7ZnF6fFEISU\nwklVvgZDefCnGwFWDh9a6+uUUvcrpfZhOKgqv781vqka7/TNYKXUtVrrbWZtzZ49m7y8vFbLZsyY\nwQy77bWCkFCsTZX8+Mc/4MivFzGQ7X77aFyudZSULOORRyp49dU4i5pE5J44R+1AyfEhpBcrV65k\npc/pykttrWk8SFQ4qXx8BDwQsCwfQ6EwRWv9EoBSajBwTmtd5Z12iSj14LJlyxgdTzutICQIt9vN\nvHmLWbVqE5DDlCn1TJ8+jkWL5jSHigaSm5vLnj55fE6foLBwEseOZVNYeIHp08fxzDMV7N1rvl+q\nEX8SsEIAACAASURBVOjQOnw4zJ3b1n+kx5mLnCnt65ygguAAZi/kW7ZsYcwYe1wqHVM+vE6jzUqD\n9/99PguG1yG1Rmt9wPv9LFDkdTB9ALjf284BpdQWn6OqVzHZF8zqIQipgq8kvFGZdSGgqK7WlJev\n5733ylrlqgjkQmFPBuw/xpo1G4KGmKYS4SJnvv1tc0fVhksX6F3bxGeDihMnrCCkAU57UN2plJoD\nHMDw3bjTb92TwF+Bxd7vPwYmKqWGAH/VWr/h3w7woDcEdzRwS9wlFwSHiaQkfCBN/Qsp+HAfx7z7\npDrRVAAGOLFnK/01ZA8ZEX8hBSGNcFT58FonfBaKioB1dwV8X0wQvNaSJ+2WTxDaM5GUhA8kY1Ax\nfere5+DFOqBr3GRMds7s3kp/oPvwzzstiiCkFJJeXRCSkEhLwgeSM9TI7+E+0jbYtv2S+AJ45z/7\nGwC9S8Ym/NiCkMqI8iEISUikJeED8b3JXzzUvl2j3G63owXwGqr2cTZb0SW/T0KOJwjpgtM+H4Ig\nRMnUqeMoL18f4PNhEFgSPpA+JdcB0HT0b0G2sBa2G88U6OEcap9/vgKIb2SO68hRTuV3bJMTQBCE\n2BDlQxCSlEWL5vDee2Xs3Km9CkjrfB3PPBO8vFHnrvmczlG4jrVEtkcTthutI6cVwjnUGgXwFhBP\nh9lOx05R0ysv/IaCIESEKB+CkKT4SsLPn7+EVauWtsnXEUxh8HGqRyc6nTwKQH199GG70WDFYhLc\nodaNx7OZ119/A9hqSUmKlm4n66gePczWNgVBEOVDEJIaKyXhg1Hbuxu5p04DsGJF9GG70RDOYqK1\n5vvfN3OodQNlwOM0Nf0z8VaSep+9xLEB/W1rTxAEA3E4FYSUIbLph8t9e9HjjOG4+f77m/B4bjXd\nzgjb3RSzdJEQ3KF2MfA44JtmghYlaTbz5y+xTYbaE4fIuwQdiofa1qYgCAaifAhCmqIHDqDvuctA\nE42N0YftxoupU8fhcq0PWLoJSIySdHJXJQC5Q0fa1qYgCAaifAhCmtKxeBi5V6Bbx0NkZkYfthu4\nrV0sWjSHkpKluFxrve1qIHFKUs2eTwAouCqF884LgkOI8iEIaUruMOONfmDOh4wfb2ZlMAgXthuv\nXBw+h9qZMz+gsHAScAcZGfuwR0kKz8UDe2h0Qa+hkt1UEOxGlA9BSFMKRnwBgAGddvDII4FWBjDC\ndtd6w3afMG3Dl4ujvLyU6uoNwFtUV2+gvLyU0tIyWxSQ5csXsmbNBuBN7ryzLGolKVI8B6s4npdB\nRlYH29oUBMFAlA9BSFN6DRnFlQwYmLWHnJxAK8PtFBZOYubMD0JGkLTOxRFfB1BQUStJ0ZB5tJoz\nBTm2tScIQguifAhCmuLKyKQ6L5OBVAFtrQxr1mxg+fKFIUNXjVwcdjiAWvPTiFZJioYux89yvk93\n29oTBKEFyfMhCGnM6fwcBl4+brImvN9EJMXtzPwwosmoCrHlNomEHqfqqflCif0NC4Iglg9BSGdq\ne/Zg4OWzUe0bS3E7+3xF4pNavanhCn1qGnENLIpL+4KQ7ojyIQhpTH3fAZTUnaep8UpU+5vn4jAI\n5QCaWF+RyNn7+wqyPJA7aqyjcghCqiLKhyAkKStXwrRpxmfuXBg+3PjrW+arnRIK103fpMclzfGN\nz0clQ9tcHGDFAdQ+X5H4cPy/yznXWXF12cOOyiEIqYr4fAhCkhJLuXofvb90H4e7PEjmOz+HOd+L\neP9oitvF6iuSCAa8+yGfXj+YGzplO3J8QUh1RPkQhDTGlZHJ/+sxkukf7MDT1Igro6VLWLcOFi40\n/g9WeXbGjLYOoI8+qvjLX+Dee439qqo0RUXKbz9/XxEz5SKyZGFW5bTKvk2/ZcjxK5x++m7rOwmC\nEBGifAhCmlNx6TvMqvvf7Hj7v7h66j82L588GZ56yvjfrPKsOYrJk+Gxx1oiWaqrczh/vnUky+bN\n4ygvXx9QRdcg0mRh0ckZnMMvL6d3Bxh1r305QwRBaI0oH4KQZqxc2eIPcukSnMh7mJPu2fz5n17g\nqZf+keuvj639+nojksVwKF2IWdn7RYvm8N57Zezcqf2cTjUu1zqvr0gFr7yiefVV1Synz6fFZ9EI\nLmcwi4o1er+ziU/GDODLXfOjbkMQhNCI8iEIaUbbaYgObLx1BLdu2cr9Wzxs3eZi3jyzPa0N6itW\n+Eey+PBFsmjmz1/C8uULTX1Fpk0bi9ZjGDXq6zQ05JCVVc/Uqea5P7ZsoVnOaHOGBHJ420ZKDl3k\nz4993fI+giBEjkS7CIJA9j3fYNDpRvb8flWr5dEUjXv/fWuRLIEZVb/73Tf49a8reeGF8VRVbeDo\n0beoqtrAT39aSr9+Zfz85+bH9Fla7Kgvs+/nS7iUCdd864eW9xEEIXLE8iEIKUTglIpV58tR93yP\n2kfmU/3f5XT93l2AtemTtlYFTWNjNJEsij17FlNf/zjQ2mICk6mv13z88RJWrlzY6vyGD4d7713M\n4cNt9wu0tATKaSZj/trf8/Go3nypoDCI/IIg2ILWOm0+wGhAV1ZWakFIdSortQbjrxX+OH6w3tO3\nY/N+99zztHa51mrQbT4u19t61qwFpsfr23eCBo/pfuDRRUUTotxvoqncRUXW9qurq9OPPfa09zjT\ndN++E/Rjjz2t6+rqtNZaH9+zVTeB/uM//2NkF1oQ0oTKykqNobmP1jGOxzLtIggCAFl33s2w6suc\n/ttawNr0iVmis8zMcUCkWU+tW0xa7WUxZ0hdXV3YqZnd//GveFww8h+fDNKWIAh2IdMugiAAMOqb\nczj/+E+49D//Dky2pAzcc49mxozW27jdc7zTNcEjWczay8yMPPdH6/oywfebP39JWCfY+363no9L\n8hnTb0iQcxYEwS7E8iEIKc7s2YZlYtIkGDHC+GuWgr1z13y2j+7P4D/9idbKgBnBE4H5sp5GWvZ+\n/Pjo6sRYqS8TLp37799+h1G7zlE/1XwbQRDsRSwfgpDiLFtmJNyykoBL//3XufoHP2Vg7ia+PH4c\nr70WeSIww+k1F1jIyJGQk2NkOD1wwMh6GszpdfjwOeTklOF2awznUcNiAuvIyVnG5z9vZjEhaM4Q\n336ffLKKI0e2EsqKc0PGEVweGPGdHwTZRhAEOxHlQxCEZq759lwuPfVT7sr/MdMeeZXt2yOdPjFT\nLqwl/Lr99lzmzDFyf6xevZSGhmyysi4wbVrwOjEQvr7M3r25jBkTamqmiennq9kxNJdRw661JKsg\nCLEhyocgCM3kFhTyuy8N48nKtWyvOxRx0TirBIYEt2QvNSwmP/4x3HOP9cJygfVl1qxRAdYdY2rG\nzIpT1v8ubj7SyF+WPxT1+QiCEBmifAiC0IoOT72FZ/pIPP/yd+R+UBVmUI8Oa8Xeok2RbrbfHIqK\nyqiqam3F6dbpv/g/NW+weXRvrp/5bJTHEwQhUsThVBCEVnTpU8LjBd/lpr8e5KOfP+O3xpny9vaQ\ny8svt3WCfaHk++RegUH//RbKJd2hICQKsXwIgtCGXx7+vzwwuIL+j/8zX3/jAeqv9GpT2C3SUvXx\nIvgUjrHMV4AuJ6f11MwL3/+/TJn9O95/vIzxI7/kjPCCkKaI8iEIggkuLi56nd7fnMD3On2Nr/72\nozaD/MKF8ItfOK+MhDuufwE6H1mueoY/O5sdxTnc8Owr8RVQEIQ2iPIhCIIpPYbfzAffncxXXljH\nzvW/ZsaMe5sHeSthu+2ZHwy4g8GHL7P/d78iI6uD0+IIQtohyocgCEGnLjp3qKBHQQ/4zv00Higj\ns0MnZwW1gTM71zP/yLus/9qX+LubpjstjiCkJaJ8CIIQYuoim09/u4Krpn2HP977Fb76+oeJFs1W\nzp89zoDv38HhLlnkf/+3TosjCGmLuHcLghCSkVO+zZ9m3cFXV33EnxYlay4MjaepkR2TR9PvzCXu\ncL1Oxy4FTgslCGmLKB+CkNIEq80SGTcureCPE4YxduEL7Fjzn7a0GW/cbjezZi1gypSJwB2s/0ZP\nrv+wmnWzn+Bv5253WjxBSGtE+RCEFCNw0J0yZSKzZi2gvt5NtMqIcrn44lsfsXdQFwq+8QC1hz6y\nVWa7cbvdlJaWUV5eSnX1Br7ebwTz9tTwT0XXMvf1TwC30yIKQlojyoeQUuTn57N48eLm7++++y4v\nvfSSgxIllsBBF96iuvoNfvrTg9x8cykwrVkZcbsjG4A75nSl9/pNeFyKgu99lU4ZZ+NyDnYwb95i\ndu58HI9nMlfnv8F/n3yO1/r355mqSqqqZgNLnBZRENIaUT6ElOK6665j8ODBzd9ff/11XnzxRQcl\nSiz+g66RkdQNTAfuobFxO7CG6uoNlJeXUlpaFrEC0mvIKGpXvszQY/X8Z+Fomhqv2H8SNrBmzSY8\nnlspzPmItxrvYW/Xznz7eCXg8l6bTU6LKAhpjSgfQkqxfv16/v7v/95pMRzDN+i2sBh4nJYS9QAK\nj2cyO3fOZv78yCwAbreb59/ey8NDBnD3kYNU3dWVWY8+GbESE0+01jQ05FDc9X3+mFFKptbccWUD\nFxp7ebdQQDZa2+MPIwhC5IjykWb827/9G0OHDsXlcjF27FgqKlqXRX/xxRcZO3YsLpeLoUOH8txz\nz7Va71v23HPPMXToUPLz83n44YcB+OEPf9jc9t133928T21tLS6Xi61bt/Lggw+Sn59Pfn4+Dz3U\nNnIi3PH379/PLbfcQn5+fvM5bN26tXl99+7dm6ddxo4dy4svvkhlZSUZGRls27atebtVq1Y1Hyc/\nP5+5c+dGeUXbD75Bt3UNlk3ArabbezyTWb3augXAf0rnv3Yf5M7C7zPtyGUmv7mC8V+e2m4UEKUU\nw7sc4E9NE2h0KW7gjxxyj/PbQgP1livmCoIQB7TWafMBRgO6srJSpyM/+MEPtMvl0k8++aSuqKjQ\nd911l1ZK6YqKiub1Sin98MMP64qKCj137lytlNIPPfRQcxtDhgzR3bt313fddZd+9913m7cxW/bc\nc89prbWuqanRSik9ZMgQPWnSJF1RUaGfe+45rZTSY8eObSVfuON369ZNDx06VP/Hf/yHfumll/SQ\nIUN0fn5+8/ru3bs3H7e2tlbfeeedeuzYsbqqqqp5mxdeeEErpfTdd9/d6jh33XVXfC58AikqmqDB\no0F7/07z/m/+6ddvmvZ4PJbafuyxp7XLtbbV/hP6/Kt2Z6E39s7W33vof8f57KyxY83P9enO6K09\nOuhe2dvbnLPL9baGBTpNuwFBiJrKykqNob2P1rGOx7E2kEwfu5WP+iv1uvJYZVw/9VfqbZHVpwAs\nXry41fKxY8fqSZMmNa9/8sn/3979B7dx3ncefz9QlKhyKJJwclc7zYiC6JzVu9YUCerGtcdtLIpO\npolvLFHUqOk1d2OJlOfyxzmRCdrOtbkZu7JEOa7vxrFJOnP/JJEpEbrWmktsiVBaN6nHkgHKM83I\nHYkgfZer04sEEVSceOpI3/tjARgAQZEg8YM/Pq+ZHXF3n3322R1o8cXzPPs8j+bsP3TokPl8Phsf\nHzczL/hobGzMSVNfX2+33XbbtG3pL/N03q2trTlphoeHzefzWSQSmdP54/F4TrBkZjY6Omr79u3L\nlC87+DAz6+7uzglw0mkeeuihnG2Dg4M517lUTQ8QsoOR/OW6NTRsnXPeuYHNh8u//eSgJT7mbPQT\nPvt/8b8v49XNLvbdp23qo9hbgY/bln9zVyrQ+DAY8/m+bxs3bjOYUvAhUqRSBh8a4XQB3r70Ni0D\nLWU9R7QrSvMtC58849SpUzjn2Lt3b872s2fPMjU1xdmzZ3HO0dXVlbO/q6uLUChELBajoaEBgLa2\ntpw0gUCA1tbWadvydXd356zv2LGD2tpaTp06hZnNev7t27dTV1dHKBTi8uXLdHZ20tTUxPPPPz/n\n+zA6OkoymZx2no6ODrq6unKucyl68sn9nD69g/PnLdWx8i7gFeDz09L6fK9w//13zylfs0JNOp43\nfr6He/z1nPxVB79u+l3OPv1ntO750wVdR7H++Ve/4O+6Ps/d3/sRb/22n9tfO8/IR36Dr3/9aYaH\nv8k//uNabr31l3R03EVHR5h77qmpaPlEJJeCjwW4/RO3E+2Klv0cpTA+Pg7AunXrpu1bt24d8Xgc\n8F5VzVZbWwtAIrHw1yrr6+unbQsEAsTj8TmfPxaLEQqF6O3tpbu7m0AgQHd3N4888sicypBIJDAz\nmgvMhuacK8l1VlNNTQ2vvx7O+tL9KB/5yBGuXbuG2R/iBQ+Gz/cKmzY9wxNPhGfLEvDuzerV7+H9\n6JkegPx9Yjv33xbk+TXjtO79M147+j2avjvCuk/+Vikvr6ALf/M/+fW//xJ3/d9f8aP/cC93PXeC\n1WvWAvDss9/gy1+GlhbjxAlHc7M3KZ6IVJeCjwVYu3ptSWolKiFdEzE1NZUTgIyPjzM5OZnZn0gk\ncvYnk0kAbr755gWXodAXe7oDaSAQwMxmPH86KGloaGBoaAiAiYkJ+vv7CYVC1NfXs2fPnlnLkM4n\nHA6zYcOGafsL1dgsNTU1NTlfuqdP/4Lh4acZHn42pwbgiSfC1NTMvQbgi1+8i+eeezVVo5LL53uF\n3/v8H9LyzJ/y2n/5EzYf/i7Jf9XA2H8/yOYvfa2Ul5dx7YN/5m//8wPc2f99/s8nP8bF73+HP7jv\nSzOkVudSkcVEb7usEM3NzZgZR48ezdne0dFBb28vwWAQM6O/vz9nf39/P865gjUFxcrPe3h4mMnJ\nSbZs2UIwGCyYJvv84XAYv9/PxMQE4AUiBw4coK6ujrGxsTmVYfPmzQCMjY3R1NSUWS5dusSePXuW\nfM3HdI6bbvKCkRMnTgF/yYkTp3j22W8UFXiA16SzadM38fl+wIcjpRo+3w9StShfw/l83PPkd5h8\n42+49C8+zuY/3s8bwVs499JfYNevl+SKfjWV4LXH/5iJT9dwz7e+z+vbW/mtCz9j04yBh4gsNlWt\n+XDObcAbASkObAAGzSw5Q9rNQCfwJtAKHCiU1jn3AtBjZlNlK/gStGHDBrq6uuju7ubixYu0trby\n0ksvce7cOUZGRqitraWnp4dDhw5x5coVtm3bxpkzZ+jr62Pfvn2sX79+wWWIxWK0t7ezc+dOLl68\nSF9fH8FgkAceeADghudvaGigvr6eyclJ2traCIVCAJw8eZJkMkl7e/uM543H40QiEYLBILW1tRw8\neJCenh4uXryYOc/g4CBbtmxZ0v095mb+NQDTm3RmrkX5dNM9fOonl/jRk/v4ly98h9t2P8z5nse4\n3P0nbPnqYT76Gx8v+vw/H/8JP/mv/4l/Pfwad79nnGm9hfdffJI/+MJ/nPc1iUiVLLTH6kIW4M2s\nv2uBkzOkqwUSWeubgaMF0m0FLgMNM+Szol+1NTPr6+uzxsZG8/l81tjYaMePH8/ZPzg4mLM//+2Y\nxsbGaW+KBIPBnNdhzcxaWlps165dZvbh2y7hcNj27dtnfr/f/H7/tHzmcv5IJGLBYNB8Pp/5fD4L\nBoM51+D3+3PedonFYpn8RkdHM9vD4XAmn3RZksnkXG7hkhGNem+jpD/u+esLz/v6nPK6fu2avfk/\n/tzO/O4nzMB+fpOz11tvsR9232ejR56xq5ffLXjcP118y17/bz32w46gvdVYY++vwn6xGvvrL/yO\nTbwZKbKs5bkPIivJsnjVNhVAnM3bligUOAA7gAt5264D67LWa1PBxwUFH4tLOviIROb+hSELV/7g\no/i8LvztX9kP/+j3LPrb9Zb8GGZgv3bYu+t89rMab/mnj/vs0lpn6Xd5f1q3yn5856ftr7+6wxI/\nvbjgsir4EJmf5fKqbRAv2MiWAALARN72yewV51xt6s8AkB62cqeZveg0bKHIotV49/003n0/4HUY\nvfB3/4ufjfwl1376v8G5nOVjm36Hhs/v5lObWvlUlcstIqVVzeCjrsC2yULbzSzinJt0zjWY2QRe\n4GKAH8A5txU4mn+ciCxeq1Z/lNt+/wFu+/0Hql0UEamwar7tMkkqeMhSR14tR5qZtQLbnHP34nVQ\ndUA8XQti6mC6qKlCSkRE0qpZ8/Em0JW3zY8XWBRkZoMAzrkAcMXMJpxzO4B659wevIAkAHQ450bM\n7FyhfB5++OHM4FVpu3fvZvfu3fO+GJlZbW0t165dq3YxRERkjo4cOcKRI0dytqXHXSqFqgUfZjbq\nnMs0saT+Hks1q6RfrZ00s/HUeroz6hRe0LI3lU/OEI3OuX5gOJ1PIc8880xJxq0QkcXpyBFvAXj/\nffjN34T77oNVq+DaNW+9txfWrPHS7N7tLSLiKfSDPBaL0dJSmilFqj3C6U7n3H5gHK8fx86sfY8C\nZ4DDqfU/B9qccxuBM2Z2PDujVPNLF15fkJBz7uCNAhARKU7+F/pnPrN4v8AXU1lEZLqqBh+pZpF0\n00g4b19n3vphbsC8Acf6UouIlJi+0EWkVKpd8yEiy1x+jck778D69YuzxkREKkPBh4iUVXZwEYtB\nS4sXjKjblcjKpYnlREREpKJU8yGyzD38MNTWLv5OoiKycqjmY4XYtm0bPp9v2tLY2Eg4HJ49gyJF\nIhEGBwdnTdfb21uwXOnloYceAqC+vp7Dhz/sczzX/AWeeQZefhlOnoR/+Afv35df9hYFHiJSDar5\nWCGcc9TX13Po0KH0JHtMTk4yNDTEzp07GR4eZvv27SU737Fjx4hGo+zdu3dOZRsYGMiUK1swGARg\ny5YtBAKBeeW/kiyl12FFZOVS8LGC+P1+HnzwwZxt+/fvx+/309/fX9Lgo1j55cr36quvVqgkS5uC\nCxFZCtTsIvj9furqcufzGx4eJhgM4vP58Pv99Pb25uyPx+Ns27YNv9+Pz+cjGAwyOjoKeLUVAwMD\nRKNRVq1axblzBUe5L0p2s0s58hcRkcpR8LGCJBIJkslkZhkfHycUCjE+Ps5jjz2WSTcwMEBnZyeN\njY0MDw/T3d3NoUOH2LVrVyZNS0sLExMT9PX1MTAwwOTkJG1tbQCcPn2ajo4OWlpaiMfjNDU1zVq2\n8fHxnLKll7Tsienmk7+IiCweanZZiF/+Et5+u7znuP12WLu2JFlduXKF+vr6nG3OOXp6erjjjjsy\n23p7e9m3bx/f+ta3ANi+fTsbN26ku7ubiYkJzIxkMsm3v/3tTFNNMBikv7+fiYkJGhoa8Pv9jI+P\ns379+lnLZWZs3Lhx2vaNGzdy4cKFadvXrVtXVP4iIrK4KPhYiLff9kZMKqdotGSjMdXX1zM8PJzT\nsTMWi9HT00M8HmdoaIhYLEYymaSrK3fC4Y6ODrq6uojFYmzfvp26ujpCoRCXL1+ms7OTpqYmnn/+\n+XmVyznHyMjItA6nfr9/XvmJiMjipuBjIW6/3QsOyn2OEvH7/Xz2s5/N2XbvvfdiZvT29nLu3Dmu\nXLmCmRWc9dc5RyKRALygJRQK0dvbS3d3N4FAgO7ubh555JF5lS2/XCIisnwp+FiItWuXxRjR6UAj\nkUhkahvC4TAbNmyYljb9umtDQwNDQ0MATExM0N/fTygUor6+nj179lSo5CIishSpw6kQTdXebNy4\nkc2bNwMwNjZGU1NTZrl06RJ79uwhkUgQDofx+/1MTEwAXiBy4MAB6urqGBsbq9ZliIjIEqGajxUk\nkUhMGxX04sWL9PX10dnZmem8efDgQXp6erh48SLbtm3jzJkzDA4OsmXLFhoaGqivr8+83RIKhQA4\nefIkyWSS9vb2TN7xeJxIJEIwGKS2trbk11Pu/EVEpEzMbMUsQDNg0WjUVppt27aZz+ebtvj9fnvo\noYempQ+HwxYMBnPSJJPJzP5IJJLZ7/P5LBgM2vHjxzP7Y7GYNTY2ms/ns9HR0RnLFQqFbNWqVbOW\n3+/3W19fX9H5y+ISjZrBdVuB/wVFlrxoNGqAAc22wO9jZwWGtF6unHPNQDQajRbsUCki5XH16lUe\nf/www8M/5t13b+KWW96jo+MunnxyPzU1NdUunojMQSwWo8V7w7PFzGILyUt9PkSkrK5evcqdd+7g\nuefu5N13TwF/xbvvnuK55+7kzjt3cPXq1WoXUUQqTMGHiJTV448f5vz5r3L9+ueA9Ei1juvXP8f5\n8w/z9a8/Xc3iiUgVKPgQkbI6ceLHXL9+X8F9169/jpdf/nGFSyQi1abgQ0TKxsz44IOb+LDGI5/j\ngw/WThvdVkSWNwUfIlI2zjlWr34Pr4N8Icbq1e/lTBwoIsufgg8RKasvfvEufL5XC+7z+V7h/vvv\nrnCJRKTaFHyISFk9+eR+Nm36Jj7fD/iwBsTw+X7Apk3P8MQTX6tm8USkChR8iEhZ1dTU8PrrYb7y\nlTe49dZ24N9x663tfOUrb/D662GN8yGyAml49SIdOeItAO+/D++8A+vXw5o13rbdu71lseUtUk01\nNTU8++w3+PKXoaXFOHHCLYc5GUVknhR8FCk7AIjFoKXFCxhK8SAtZ94ii4c6l4qsdGp2ERERkYpS\n8LFC9Pb24vP5cha/3097ezvhcHheeUYikWmz5IqIiMxGzS4LZpSvGrm0eTvnGBgYyAzoNDk5ydDQ\nEDt37iQUCnHgwIGi8jt27BjRaJS9e/eWrIwiIrL8KfiYh+wZOuEmvvCF0s3QWc68AR588MGc9f37\n99Pb28uhQ4fYtWsXTU1NCz6HiIjIjajZpUjlnKGzWrN/PvXUU9TW1k6r+QiFQjQ2NmaaaDo7O5ma\nmgIgGAwyMDBANBpl1apVnDt37obHJZPJspRdRESWHgUfRSrnDJ3VnP2zra2NWCyWWe/u7ubw4cN0\ndnYyPDxMd3c34XA408Ry+vRpOjo6aGlpIR6PZ2pMZjquq6urbGUXEZGlRc0uRfJm6PxGwX3eDJ3f\n5NlnF1/eswkEAjkdTycnJxkYGMg002zfvp0rV64QiUQAWLduHX6/n/HxcdavXz/n40RERBR8kjqE\nAgAACUhJREFUFKGYGTqLnSirnHnPx9DQUObvZDLJqVOnGBkZmfXc8z1ORERWDjW7FKGcM3RWe/bP\neDxOIBDIrMdiMdrb2/H7/QQCAY4dO0ZdXd2s+cz3OBERWTkUfBSpnDN0VnP2z5GREVpaWjLrwWAQ\nv9/P6Ogoly9fZmhoiLa2tlnzme9xIiKycij4KFI5Z+is1uyfoVCIZDLJo48+CsDo6CjgDUyW3Z8j\nGo3eMJ/5HiciIiuLgo8ilXOGznLP/mlmDA4OZpa+vj6CwSCHDx8mFApxxx13AGSaX3p6eohEIoyM\njNDe3k4sFiORSOS8VhuPx4lEIkxNTc16XDo4ERGRFc7MVswCNAMWjUatFKJRM7huJcqurHmHQiHz\n+Xw5i9/vt/b2djt+/Pi09JFIxBobG83n81ljY6O9+OKLNj4+bo2NjRYMBs3MLBaLZdKMjo7O+ThZ\nubzPtZXl/4yIlFc0GjW8avlmW+D3sTObqYPj8uOcawai0WiU5hJMFZueeTYaLf3Ms+XMW6SSjhzx\nFoD334d33oH162HNGm9b9mzOIrJ4xWKxdN/AFjOLzZb+RvSqrYiUlYILEcmn4KNI+b/iPvMZ6O0t\nza+4cuYtIiKyWCj4KFI5AwAFFyIishLobRcRERGpKAUfIiIiUlEKPkRERKSiFHyIiIhIRSn4EBER\nkYpS8CEiIiIVpeBDREREKkrBh4iIiFSUgg8puyPpYVulYnTPK0/3vPJ0z5euqgYfzrkNzrlHnHM7\nnHP7nXO1N0i72Tl3IJX2qey0zrmtqXwecc4ddc5tqMwVyFzoAVF5uueVp3teebrnS1e1h1c/ZmZB\ngFQwcQxoz0+U2hcxM39qPQ4MAp2pfc1m1pfatwM4BTRW5hJERESkGFWr+XDObQYsvW5mSSDonGso\nkLwNuJyVdhTocM6tA4LAU1lpR4DADPmIiIhIlVWz2SUIJPK2JYBAgbST2StZTS4BM4sALVm7WwEz\ns4kSlVNERERKqJrNLnUFtk0W2m5mEefcpHOuIRVUBPFqTfyp/eeykvcAXTOccw3A+fPnF1BsKVYy\nmSQWi1W7GCuK7nnl6Z5Xnu55ZWV9d65ZaF7OzGZPVQbOub1Al5m1Zm27mNp2+gbHjAHjqX8D2TUc\nqf1mZi/OcPwfAd8t2UWIiIisPF8ys+8tJINqBh+bgYG84COB13l0YpZjA8BZM7s5a9tWoNbMjt/g\nuJuB+4AJ4P0FXYCIiMjKsgZoAF41s8uzpL2hqgUfAM65C2Z2W+rvOuBUOhhJBSeTZjaeWk8ADWY2\n5Zx7CjiTDjScc81Afar/R7oGZMjMpip/VSIiInIj1Q4+mvDeZBnH68fRn671cM4dxQswDqfW9wNx\nYCMwlhV4bMBrgklfiAOuZNeKiIiIyOJR1eBDREREVh4Nry4iIiIVpeBDZAkqZmqCvONeSA3OJyJS\nUGqk8NnSzOsZlDl+uTW7pPqAdOD1D9kADKZGT11QWplZkfd8K9CcWm0FQulOxTJ3zrk386cmMLNp\nUxPkHbMVOAq0aBC+4hX7vEg9wOuBKwBmFq5EOZeTeTzP21KrAeBoajRsmaPUZ9YP9AN1N3ppYz7P\noGzVntulHOY0X8w80srMipmjR/PwLFChqQmcc8GsQfgKHZP+VZI/qrDM3ZyfF6k37mrN7HDqS/Ek\noOCjeMU8o7vNrDe9knppobP8RVw+0gGyc+6FG6WbzzMo37Jqdilmvpgi55aRGRR5HzUPT2kUMzVB\n2s7Uq+iubKVaxubxvDiYflMvVbPXMkM6mcE87nlH3ozmCxqHYoWb7Tkxn2dQjmUVfFDcDVnwzROg\niPuoeXhKZs5TE0BOc4vM35w/5+kvTefcvc65rc65A4Be/S9esc/ofmDMOfdUqubpYDkLt8IV9Qwq\nZLk1uxRzQxZ88wQo8j4WMQ+PzGyS1LxGWerIm4ARPmxu0YB7C1bM5zyY2h43swnn3JtAFDUvFqvY\nZ/QA3v+LNmAH8CbeaNZSenN+Bs1kudV8FHNDFnzzBJjnfUz9MjlqZt8uV8GWsTcLbPPjdcrL1wZs\ncM7tSd3zAF71dFM5C7gMFfM5j+ONzjwBmeaCgO550YoNsg+a2aOpUbIPASN6s2veZnsTpZhnUEHL\nLfgo5oYs+OYJMI/7mGoGuDzTBIByY6ke/Jlff6mpCcayRgfenG77NrOwmb2YWgZThwzn1UDJ7Ir5\nnMdRDWopFBtkn0yvpD7rA3i1UFK8aX0+8p4rN3wGzcWyCj6KfCgv+OZJcfc8td6cOi49PP5e/TqZ\nl52pd+t3ACFgZ9a+R/GqnTOcc7XOuUfwftGE1Mm3OEU+W8aBWPoepybCHFPAV5winy1xvD5k+QoF\nMDKDVB+l9HPiUefcvVm7858rN3oGzX6uZTjORzHzxcyYVuZurvdc8/DIUlbks6UB6Mb7UmzGaxKY\nqHihl7gi7/l2vGbFJFALjCjgW7yWXfAhIiIii9uyanYRERGRxU/Bh4iIiFSUgg8RERGpKAUfIiIi\nUlEKPkRERKSiFHyIiIhIRSn4EBERkYpS8CEiIiIVpeBDRErOOXfdOXdthn1dqf0HZti/1zmXyFqP\nptKnl4Rz7mj2sP0isrQo+BCRssmbGyJtJ7PPmml5fx8DNuMNVb4Hb/jsqOaoEVmaFHyISLnEKDzZ\n1NbUvmLEzewtMztnZsfN7D68eVNCCy2kiFSegg8RKZchoDN7Q2oGzCiQKHhEcQ4AXSXIR0QqTMGH\niJRLDDIzk6btwgtKXAnzX1eCvESkghR8iEg5HcULONLagOES5Z3AC2ICJcpPRCpEwYeIlNMwqX4f\nzrk24LKZTZQobz9eZ9R4ifITkQpR8CEiZWNmEWBD6q2UgrUezrkXnHN75pF9S+ocUwspo4hUnoIP\nESm3dO1HB/BSgf0Bct+KCTK3Dqm9QP+CSyciFfeRahdARJa9o8AgYGb2VoH9p4CnUm/CJPECkRfy\n0gScc5tTf28EuoENeAGNiCwxCj5EpByyBwkbwRsUrL/QfjPrc84FgIHUppfM7LG8/Dr4MNCYBM4C\nzWb2TklLLSIV4cxmG2hQREREpHTU50NEREQqSsGHiIiIVJSCDxEREakoBR8iIiJSUQo+REREpKIU\nfIiIiEhFKfgQERGRilLwISIiIhWl4ENEREQqSsGHiIiIVJSCDxEREamo/w/kfx1S1/mWYgAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFwCAYAAAAYFxnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VPW9+P/XZ7IACSELexBIQkAprhC8Uqy2NSBtAW3B\nhWt77a/fKi5AS4uKwBX6LVytbOW20av23vZ7b1usEqvQKpTird5LqUsCdUNZAwiRLWQhbCHz+f1x\nZpLJzJmZM+uZ5f18PPKAnHPmnM9M5pzzPu/PprTWCCGEEELEi8PuAgghhBAivUjwIYQQQoi4kuBD\nCCGEEHElwYcQQggh4kqCDyGEEELElQQfQgghhIgrCT6EEEIIEVcSfAghhBAirjLtLkA8KaV6AzcD\ndcA5e0sjhBBCJJXuQAmwSWt9MpIdpVXwgRF4/MbuQgghhBBJ7C7gt5HsIN2CjzqAX//614wcOdLm\noqSPuXPnsnr1aruLkVbkM48/+czjTz7z+Nq5cyff/OY3wXUvjUS6BR/nAEaOHMno0aPtLkvayM/P\nl887zuQzjz/5zONPPnPbRNxsQRqcCiGEECKuJPgQQgghRFxJ8CGEEEKIuJLgQ8TcjBkz7C5C2pHP\nPP7kM48/+cyTl9Ja212GuFFKjQZqampqpJGSEEIIEYLa2lrGjBkDMEZrXRvJviTzIYQQQoi4kuBD\nCCGEEHElwYcQQggh4kqCDyGEEELElQQfQgghhIgrCT6EEEIIEVcSfAghhBAiriT4EEIIIURcSfAh\nhBBCiLiS4EMIIYQQcSXBhxBCCCHiSoIPIYQQQsSVBB9CCCGEiCsJPoQQQggRVxJ8CCGEECKuJPgQ\nQgghRFxl2l0ApdQ0rXV1kG1KgenAPqAUeE5r3eRadxMw2rXpWOARrfX+GBZZCCGS0tq1xg/AuXNw\n4AAMHQrduxvLZswwfoSINduCD6XUNKAIeEYpVaC1bg6w+Yta6wrX6/KBF4GJrv+P1lov99jnZqA8\ntqUXQgj7hBtEeC6vrYUxY4z9jB7tu60QsWRb8OHOdiil/i3QdkqpawDt8bompVSFUqoEGAY8ASx3\nrf4zUKaUKtFa18Wg2EIIYTsJIkSyS4Q2HyrI+gqgwWtZA1Cmtd4CjPFYPhbQEngIIYQQiSsRgo9g\nCkyWNbqXa613eCx/GLg3HoUSQgghRHiSIfhoxGgb4qnAtbyDUuoe4AWt9b/Hq2BCCCGECF0iBB86\nyPp3TZYVYfR8ATp6vJzUWv8imgUTQgghRPTZ3tUWkzYfrkamjVrr/Vrr7UqpAo91BcBed7sOpdRo\nAK31S67f7wF+F6j3zNy5c8nPz++ybMaMGcyQPma2k66AQghhv7Vr17LWfTF2aWpqitr+ldbBEg+x\n4TE+xxPAk8BmrfXrrnUvAG9rrVe4fr8aqAT2YzRAfUZrXeca/2MvndkTBZzSWvf2c8zRQE1NTQ2j\npVl4wnO34q+pkVb8QvgT7nki55cIVW1tLWPGjAEYo7WujWRfdna13QJsobObrOe6271+3wG4G5ZW\neyzfT2JUHQkhhBDCIrlxCyGEECKuJPgQQgghRFwlQoPTuHvgAejXz/i/NGAUQggh4istg4/Zs+Gu\nu+wuhRBCCJGepNpFCCGEEHElwYcQQqQte4ZaEEKCDyGESCMtLS3MmbOYyZMrgVuZPLmSOXMW09LS\nYnfRRBqR4EMIIdJES0sL48ZNo6pqHPX1m4FXqK/fTFXVOMaNmyYBiIgbCT6EECJNLFy4gp07f4DT\nOYnOmS0UTuckdu6cy6JFK+0snkgjadnbRQgh0tGGDVtxOpeYrnM6J7F+/SrWrIlvmRKBzCkVfxJ8\niLiRE1yIWNGYzNHZdQutaWvLDbCdoq0tB601SgXeV6rxvPa457xZu1bmvIklCT5E3MgJLkT0tLS0\nsHDhCtat2wrkMnlyK9Onj2fZsnnk5eX5bK+UIiurFf+BiiYrqzXtAo9UlAwPehJ8CCFEknE3HDXa\nbywBFPX1mqqqTbz++jS2bas2DUCmTBlPVdUmV5uPrhyOjUyden3sCy9iLhke9CT4EGkjGZ4GhLCi\na8NRN3fDUc2iRStZs2aJz+uWLZvH669PY+dO7dHoVONwbGTkyNUsXVrt8xohYkGCjyiTG1ziSoan\nASGsCLfhaF5eHtu2VbNo0UrWrVvFkSM5FBefYfr08Sxdap4tESIWJPiIMrnBCSFiKdKGo3l5eaxZ\ns4S774YxYzQbNii5Pom4k+DDD8lgCCESUXQbjkrjUmEPCT78iHcGQ4IdIYRV0nBUJLu0DD6+//37\neOutr/jtkmYHqa4RQlglDUdFqDZuhCVLjP8nwgNuWgYfJ048TVXV8YBd0oQQIlFJw9H0EM2M+KRJ\nsGCB8f9EeMBNy+DDSpc0kSiCj9woRDqShqOpL5Uz4mk9sZzTOYlnn93KpZfCxIkwdarx4440hT1k\nym8hQiUBukguaZr5cFPk5eWwa5dm7Vp5akgE4Y7cKIQQsWZWDZKdDcePG8v69YPz56WzgBVpHnxo\nMjNbkaeG6AtWV3nddeavC3fkRiGEiB7z6l6zapCams5qkFSrGomltA4+HI6N3Hjj9Tz/vN0lST3B\n6ipra2HhQt/XyZTfQgg7hDpRX6TSfXiFNA0+NA7Ha4wcuZoHHqiW4CNByJTfQgg72FHdm8qNSa1I\ny+CjT58H+Md//ApLl1aze7e0H0gUMuW3EMIOgap7P/xQM2rUSnr0WGKp6lhYk5bBx09/+jR33ZW6\n4WUyp/Nk5EYhRLyvYYGqe2ES7e2r2LXLWtWxsCYtg49Ul8zpPBm5UQgRzWtYsEDmzjutVfcm95hD\niVd2CT4SlvmXJZmzGlbIyI1CiGgKHsgoFi4MXN2bOL0irQcRgRrQgv3XUQk+EoiV1tbJnNWwKhFH\nbkz1oE+kB+/v8YgRMH9+7L7HyXLeBKvutbNXZDi9cII1oH366WrsDkAk+EgQMriWP4nwtJEeQZ9I\nffG+2SfLeROsuje0XpHRq+II974QbLykp55aCSyJShnDldbDqyeSrl8W9xfX/WWZy6JFK+0snhBC\nJLy1azunyZg4EZ+pMzZuNH+du7p31qy3KC6eCNxCcfFEZs16i23bqsnNDfzgF6spIcK9LxgNaG82\nXed0TuLNN7dGVK5okMxHgpDBteyQeI2whPAW7mjB6SjcwQ0h/Ore1tbYZa3DuS9YHS8JnNiZf5DM\nRwIIZXCt1BL/9yOT1olkM2MGrF9v/DzxBOzaZfzrXjbJt5mCiJj1h5KnnopN1jrc+0LX8ZK8tQCP\ncfLkXuDrtl7/JPiwLHY3ysBfFuPYqTK4lp03f3f9aVXVOOrrNwOvUF+/maqqcYwbN00CECFEyN54\nI3AVx/r14VVxRHJfmDJlPA7HJq+lLcA04Dqczvex+/onwQfg748bzxul+ZfFEHhwreTJhrjTk3bd\n/KVdjRAiujQXL8Yuax3ufWHZsnmMHLkKh+M1Ou8Ry4HvA18lEa5/aRt8BAss4v2UbP5l6ZyDZunS\nH1oue6KKVXrSqmCNsMJ9QhFCpAOzAEK5xgCJTdY6lPuCJ7MGtBkZLwFfMd3ejutfWgYfZ8+2Bg0s\noveUbC3iDdba2t1gKZmrDmKVnrQifdvViHgI1svC3WA0WjZu7Nz3/Pmd43XE6nipxfo5buVB78Yb\nw81aB2f1vuDvtWvWLGHDhs3A7ykqGkZCXf+01mnzA4wG9MSJ92iH4zUN2ufH4XhVz5mzWJeU3KTB\naboNOHVJSaX2p7m5Wc+e/ZgeOPAmDVP1wIE36dmzH9PNzc1+X+OppsY4Rk2N77rZsx8LWnbffWnT\nfcWLUYZ23bfvVD+fp/EzaNBU7XQ6Y1b24H/Tm0J4P/Z+piJxxfL7kczfvXDLHo3XhXJNdr/uzTeb\n9ahRE1zXW2fHdcLheE2PGjVBv/lms9d2r3pt96oeNWqCpet+oGt+KNsE+hyM9x7Z9a+mpkZjRG+j\ndYT347TMfNTW7gj4BP7KK/8b9lNy9DIT5seOd9VBJE90XZ8avu5qYW1fo9rw29UIIewV/hN5uG3N\nglUTGwN1QW5u+NmJ0KvQw78+xjJDE5ZIo5dk+sGV+SgouCHoE3i4T8mhZibMo0vzSN/pdOpBg+zL\nHoSyr+Zms6eGf9bwR9uyNp1lCvyE8tvfaj1livEzYYLWI0YY/7qXLVuWvE+fIvYk82Eu1LJHJ4Os\n9Z13hpctDpYpKC6u9Hk/oWQnzK+RnZkV7/cZaQYoOhkayXxE5MyZswR7Ag/3KTmWmYlk6pJr3mbm\nIeCnwB8JpfFUtFitP5VxFUQ0zJ0bvzYgycNaBiOabdvCa2tmrReLv0aoVoTbrtCzvU8o361IMjQx\nEWn0kkw/uDIfd9wRvM2Hladk7yfk4cOdulu30DIT5tGl/wjXzjYfoezLf+aoWcNjOiPjcg1TdXFx\nZcfnHcnxwnsvwZ9QzMqQzE+fIva8vx92nYOJwkoGw/taWlDwmIZoZJCdYbc1C5b5MNaHf20ItV1h\nuNci/68Lp/1I9DIfaTm8+oMPfosPPvix30mE3FO3B5va3XcoX8XAga3U12v8Tc0caWYi2ARIS5dW\nh71vq+bOhfx8/7NU3nlnoJ4lecCPKCrawfHjv2fDBoeNk0zZnyESIlpiOYNsuPu2OjGa77V0K/4m\nPgttugnPrrChXZNvvHE8L7wQm5lutbbe+y52mWx7r39pGXzk5ub6BBbdup2huHg8/fpVU1GR5zqx\n8oAlPPggLFxobaz/YF/YSBv1WAmKYm31amOuBP+zVHpWD5mf8MYFIS1r/URa8ncuRE8sZ5ANd9/B\nZlddtGgla9YsATqnjn/xxf8FzhOtG3O41+QHHpjH++9Ha6Zbr3eggl8j41GFvnEjLFli/D/aAWsw\naRl8gO8kQn/9q/J7QzUmI7L2JQj2hY1GZiLcCZDiacqU8VRVxeapwapAT2tNTbE9thCtrS3MmbOC\ndeu2ArlMntzK9OnjWbZsXvzr121idWI03wzJBALdmE+ebOWyy5SlG2W412R3Gwl/D3q7d0f2Nwx2\njYxH75NJk2DBAuP/0Q5Yg0nb4KOr6EWXwb6w0b/oJGbVQbDqoVCeGsKNzgM9rbl/FyI2Wvj2t6dR\nVxf9mU6TRShVC74ZkvHAJsD8xnzrrcbDi5UbpZVrsveDinvQtnCy31YlQhW6nST4CEGgm6Dnk3Qy\nZCZiLVj1UChPDbGMzoMFNjJduQjPClfgEby6IVWFUrXgmyGZhzEJmsYIQCKr8vC+Jj/4oOJvf4O7\n7vI977t3N64Jng80/rPf4VenWalC9x8UGcuS+fokwUcIAt0E/T9JJ2ZmIvyGTNZPtmQIwoIFNsZF\nx77yiWRlrboh1VmpWjDPkOQB1cBKYBVwluLiHj4PL1YfCLtSET3QuNummFWnGeW2Ltg1Mlibi3hc\nnzwDoGPHordfCT4iEvtGZNGh2bhRsWhRCx9/vIL6+q1cvJhLZmYrAweO57LL5vGtb+X5/ZL7O9lu\nu8042axlD5LhcxIiclprwO6eDInBStWC/wyJUeVhLK9kw4bNPsFBeA+E4XOPluqv987TT1cTagDS\nKTG/C54B0G9+A2+9FZ39SvARomA34nAFS6+F2urYu5z/+q9NtLU10tj4eMdJc/Gi5sCBTeTkTGPy\nZPOTJlBXuT/+cRpQzaRJeWmYPUiWwFPEmxFQ2N+TIRFY7Z0XLEPidH7B4hFje152HXLdzahO+/BD\nzV13rWTEiCURXbvThe3Bh1JqmtY6YMsapVQpMB3YB5QCz2mtm4Kti7ZAUa/7RhxuABLNL6hZwHD0\n6GPAdXSdUjl4HXSgrnJ1dRojLer7ulQUKN1qVj/rbwyUdLjpCGOEZDt7MlgV3hge0a1+DZQhKS1d\nzd69/m8RsXogNGOMlrrEz9pJZGSs4pNPwt9/sDGUUimIsS34UEpNA4qAZ5RSBVrr5gCbv6i1rnC9\nLh94EZhoYV1UBYp643EjtpqmNQ8Y/gr8yHT7QHXQwbrKGe859QVLt27bVs2MGXmmvWuGDzcujgsW\nbOWhh3I7hu9Ppy6X6eeHlJRMp64u8p4Msa6esTqGR7Dg2xrlp5o2jyFDqjlzZiWnTq2isbEzQzJ9\nejU33GC+/+g9EFoJpqwNuR7J3yv4GEqpw7bgw53tUEr9W6DtlFLX4DGAvta6SSlVoZQqAQr9rdNa\n10W7zIGiXuMCs8rSfry/nP6+rGvXwn/9V9d2Gkq1kpk5np4959G/f55p9YxvwBBeHbT/rnItwApg\nK3COyZMrw25wZfaeE691tw4YeAbKHL3ySgurV0+jpeUHGIGpcRP62c828atfTeOnP63mO9+RACQV\neN+cW1svcPnlP+XYsRV89llPy13uzc57d/usgQOj/zRvhdWRSj35u675b6dhtPEwlnVmSGpr/Zcr\nkgfC0IOp8EdLjbfEvI52ZXu1C8HDzQqgwWtZA1AGDAuwri4ahesUPOqFHFdjM99t3F/0DRu20taW\nS0ZGEwUF3WhsbKO9Pc/0aXjy5BaWLZvGgQOdJzxo2ts3UVY2jb/+1fyEf+gh73KGVwdt3hCsBaML\nXOfNNHoNrsJr3W39ScN6qtj7wvTCC3vD6r2wa9cKWlt/QNfxChQwidZWzd//nj7VVqnMvKpTc/z4\nJkpKVgH/xYYNvSw9xZqd9+72WUbCOLxzLJLzxMpIpT/96WJOnz7d5TrneV0LrczWztNwHwitZDLN\nApBYj2AdLYnQSyaYZBjfusBkWaNreaB1UeYZ9ZrRgHnU6/6iV1WNo65uM4cP/5qDB7N5773vcfDg\nFg4ffoW6Ot8ZG8OZ9dD/zLfuQXt8BTppfGf3XYEReJiX6amn4lMNM3t2C2Vli+nRo5Ls7Fvp0aOS\nsrLFfPWrLV1mdWxpaWHOnMVMnlwJ3MrkyZXMmbOY1lZ/s2LqLn8vY0bNl3E6h2Elc+QtvBk1RbIJ\ndK7W1c3F301w7VrfGUpHjVrBhx8G2pf1c8wYZXUxpaWVDB58K6Wlxvffe1ZYf+eJezv/s3W34HRu\no6pqHYMGTaZ37zH87GfXuq5zXa9r/s+5rjO1zp/f+aQ+darRDsJcKA+EXXXNmFifUfaBB+YxcuQq\nHI7X6LzGxm9mbnP+7kkJLtKZ6SL9AZxArwDr7wHe8Vq2B/hyoHV+9jUa0DUeU/lZmYHSvezOOwPP\nKAuLLb7O2oyNoc566GY+822zhgka/qD9zdJrxnd238BlKi6utDTzYrizcxqva9ZlZRNc79HzvbzW\n5b10lt13u7KyCRqadU2N76ybOTlXuD4nz/cW+H1nZHxZT5jQOTPnsmVaQ3vIM2qK5BTsXIVKyzMo\nB5tN1fq+mnROzgTXtcbp8frXdF7eBP3v/x74PIHXdG7uBD1sWJOf2brd1xT36x7T8Kqfcr+qx41b\nHNZ1IND1I/hn9eWwXldSUukz0+6IEca/X/lKsy4tXawLCip1sJm5rQp1JmQrMwWHcjx/y7yvTb/+\ndWrNaquDrH8XuNdrWRFG75ZTAdZFXaA5AgK1yN640Ts1GHjGxrVrV/HTn4Y/66F5y/GeKDWTwsIF\nZGevslwH7dlV7sUXV1Jffy5omUKp3giP/9EjP/xQM2rUSnr0WMLZsys4dMi3ysOzPri19Yc+6dcz\nZyqBr3od02y4Z3fblz/T3p7NBx9UMnVqBaD4+c/fAXI5eXIvyVBHLMKndfBzNTMzh0ce0fToYWzj\nPy1u5Wm+h+thyn/1rlFd2MCZMz8mWJWfvyoVmMTZs5q9e1f5ma3bMwsKga5rMIkDB6y1iQuFeTVI\n53kJ2dx0UyWFhcZ4Rhcv5jF8uObgweDX1jvv1MyY4W9mbt+2KfESTvsbsN4OxD0nkXnVWRRFGr1E\n+oNJ5gO4Bij1+H23x/8L8Mh2BFpncqzRgL7hhhv0lClT9JQpU/QNN0zRMEUvW/Zbj+jP6TcibG5u\n1nPmLHY94XdGvW++2ewnknR6Pf06NVh7Gg6e+bjJO6Dt4F3OgoJKXVq6WH/lK816wgSthw93dnlS\n/+1v/e7K6/0ELpMRicc682Et+2LlCdI3K+Xv7+N+ynNngNy//9HjGE0artNds0v/7NrGrAyv6vz8\nx0L+O4jEE8m56hb4qbxZG5mFmzR83vRJ1zeDYS1zaiVrY5719Xxd8OuacR30f20N9rmYve7NN70z\ns2bnpW9WNJp/r1CvYVb2ZXYfcjPPbBs/npnz8MrQ7JEt+42GKa6ff9AZGX30kCGf10Qp8xHRiyM6\nMNwEPAS0A4/jUVUCvADM8/j9ajoH+38cKLGyzuSYfqtd3nzTfxrL/5ff6fVlMT9BCgq8v+iBv/h9\n+hhf/HC+ZN5pskBf4lAZ+wpcpjvvXOz3c4gk+HCnGQcM+LKG8RYucsGrPNx/Z9+/hb+/T7Pr/V+u\n4RrtWzVjVp1mVt3VpOGfdGbmKA2TQ06ZisQTjRuC/2pa7+oNbXpD7VoGaw857e3tetCg4OfJG280\ned3kzfYfnQcTf5+LtQdCs/PS9+8Qzb9XNIOPQPcht3Cr462VIfDnMnHivTrpgw87ftzBx7JlNV3q\n8srLm3Vurv+T253VWLbMvA5wyhStb7jB/wkSbpsP3/YW7nK96tO2Yfbsx3RJyU160KCpuqQkcODk\nj3cdp3d2xGjH4G5vYV4m/xmg8IOPUJ/o3Bc5K/XB5gFK4L+PEWCFHrTA5Toj46taqeE62JOZSC5W\nz9VA/D/N+29LEbiNmLWn++CZj5tMs74ZGaO8Xuf/vIlVmw/fZdZuzNH8e0Uv+Ajels3pdAYNFsNt\nR2bl8+vT51otwUc4b9Yk86F18CjY7Gne/A8XamowcOPP3/62s3FT9+6VOjNzqu7evbP65Le/Ddyo\n0l8wEEighkye78es6ilwlij84MP372MlOLDWQNh/itssdWv8fd54o0n7PvVZe9KcNeuf/ZYJXtWD\nBy/uEtRKVUzy8Fcl63k+Bw/ujX89z3u4IugN1fymZO0hJ9j1z7whvVNfd533/r2rJrueN1YfTMw+\nK+9zwv1Zeb7u3XetV2lb+XsFE/3gw1o2JhpVRmYCf37GA5RS5VqCj3DerJ/gI9gf06wHhzerqcGS\nkko9aNBUPWTIF/VVV92shw79sitbEfyLbxbN3nxz6E8bWpuf3F/6UrPOywueAQpULxmL4MP372Pt\nIucb9HVuN2yY0dvFf4DSrOFunZs7xufC5P8JIfhFIRrfNZHYAlV1WgnuvXsbWH3StXqewKt+erv4\nP0+sPVRpbVQp3q2zsi7XAwdO7nJdi37bL99sdGZm6DfmcKumI8kqmwdT1rI2sW3zEehh7FUN72oJ\nPsJ5sybBh5WTu1u3qUEbaIZyYnkHEZF0tYxm4BQsU+CdAQr0ngNVUfl7cjHj/+/TrGGxhkoN4/1m\nX7yfbrp1MzJHX/pSs1fAFSiQMQuwzD6rwE+as2c/FvS7ZtYoTyQXf+d9uFlKq0+6/rvYL9bweZ2b\n+0W/DzmhN6Q3f6jy3L95+7NoBh++50k4N+ZIA6BovC6UrE00qoz8lyvYdS16XW1tDwji+RNu5iPc\nls/RTMuZsRI4WbmZucsZrI2EdyATyXuOLPPRtVzmY2yYlcv/02jo1UhmbV/cvV02+L0oBHsvZo3y\nRHLx990Ot3rX6g012E2pqanJYtmtNaQP9lCltdUnfuvBdrDxLcK5MdsVfESStYm0ysh/udy9XTw/\nP89ypdY4H7YLNp1zogyZ6818+HNP2jUqq7Uhla1MmuT/WLET7O/z4INf6DK0uTF0sFk5zcttZdZN\nk1fxq19Vs25d16nCp079IvBX1q9fYzp9eLD3cuON1/P888GOLZJRsEka33zTfByMQDO+ek5SZ3X6\n+uDCO7/NxqvxN56JezySn//c+iR1Vse36PoZdKd44BmmTRvHj5b8hh7dsmg7dwatnWinE62dXGh1\n0iPTyfnT0HrK2WWddjqNey50Waa1k9OfOenTA1rqnRzfp31fB6C11zJNwx4nJXlw7TAnd93s7Nim\nqmoAGzYsQ+sxKDQKJ0o5UWgcjnf52hd6s+sv1R3bPzBlJJNGXcrChU4uK4XWnZpZU39PwwlNn95O\nsrOM4117LVw7tvM4oH3eF2gOH3TypQFOHrz/Bt57fxUffTgbZ3sWrafPoPW/oNA0tx1h24mwvh4+\nlHYVIB0opUYDNTU1NYz2uLt0fqnnmp7c/gZt8eSeIKmmpnMWQrNl0TZnzmKqqsb5uZm9xu23v8Xz\nzy8JWAZ3OQcOrHQNJ24eyAwcOIH6+j/x7jtwzTVOamqcjLvOyV//6uTqq4yTa8cOuPFGJ3/5bydX\nXtl5MgK89JKTV37vBJycP685ctjJJYOcZHcDhZPJk5187Suu7bXueN3plhbu/qcfsL/uH0GPM05M\n1Y5Sf6O0ZC3P/NtScnr0oPX0af79F8/zxpsf0NDQjd5F57jhC6P49t3f4PCn3fne95ysWQNlZU5w\nui4WuvOk3L8f5s/XPP4vTkqGGsv373ey+DHNj34EQ4cY2x+o0yz9sZNFCzVDhsCBA06eeNzJ/Ec0\ngy8x9nXoYDurVmnm/gAuGdh5wp87d45nnv41x46PB13uei9OHGo3ffts42tfu43vrbmNDW9WpOxs\nlqnkbz97BOfatSjteiDU0HZBc+KYpm9fyMrCWKfh+LEGdHuBx2DeGoWx3rjBNIMzj/x8yMxwvc61\nXjs1586dp+1CGzgVDqXJzsqke3Y27nu++zhKa5ztcO4s5HTXOBxG0ZSrfMpjW+N1neu0Ey5e0GRl\ngUMBTrjYpsnKNH5XWqM1tLdBZqYxP0dnOd3vy6Ms7v3rzveMBpwahfJ5jXL/32d/7nJ2/gu+y9yv\nSYZ5Q5JRLTDG+O8YrXWAKf+CS8vg49eleXyue0bHiQqA6+S+2Hax4+TOysyge3ZW1ynatOeJ5Xqt\n66S9cE7TPdt1kqJxOqHtAmRnQYZyXxi6vs7sRAW6nNDK43efE9qdlXOdyJ0nou56kmJ+klo9seVk\njp+/9M+n16uNEnwkgb0Du5HV5uT4wF5oVxRw8SKcalQUFCkyMwEFGsWJk6e46CxCd14BOv6vUTgy\nTnDR2ZejARMoAAAgAElEQVR+/RXZWRj7U4BSHf+/cB4O1yuKBymyu3mtx/g/wLkLiroDiqEliu49\n6Fzn+tHu/wONTUZ5NQqnVpy/oMjOVigHXGxXtJyGz41S5OQar2k9o3j/fbjiSkVuT9Vlv3iWw8/y\nj3ft49ChApy6r+v9q47PAk4wtLSRUZdfCsrR8TqlFBv/9L+0nvkCWjvQSqG163XKgdaQ0/Mv3HLL\nTR2vaTjl4A9/VEyeoujd2yiDchhXsr17FXv2KTQO2tsVzacVPXsqMjIA5WD4CMWllylQDiOj01F+\nB8ph/H70qIP/+KXiO9+BAcUKhQMcCuUut7vsDuN39/LDRxys+VfF978Hlwx2eJRLcb7tAn/4w3+z\nfcdeGhu70Sv/AqPHlHPLLRPpkZPT8Rkq5UApB3UHFf/8mIMf/1hRWgp1Bxw8usDBE08oyoZ5HBeM\nf13lc5fp7LlzfP97P+bAoek4ndcany0K1LuUDH2Bp/9tKc8+9zzrqq/E6fw859t3cfzsP4EEH6Fx\nBx//cdUARuR18zpxjRP5/Hk49KnikiGKbt27ntAdJ6zrdZ5fsLPnFLv3Qnm5okeusb8z5xSffAKX\nXupa5v1avPYTbLmfdRfb29m99wDHjzXi1BmgnPTrX8iIS4fReiaTN/9HccMNkF/g/jJ23d+pJsWf\ntyi++KV2amr+SlPzZTj1QHBfGFQ9eb128tWvfoms7OyO151sULz8ioNbv67oVXCRd955j737PuPM\nmSxyci5SNmwg140bTXa3bl1P3o7jd57IxttynbQOrxPZ4z3Xf+ag6inFgw86GHRJ58n98it/Yutf\nS3E6R6JdoZLreRLUTkaPPsA7705mwQIHQ4bQecJ7nciPPQY//rGDklJj+f4DDubPV/zkSQdlZcbr\n9u138MMfOli1WlFe7ugog+e+9ux1MPM+xb89A5de6ug44Tf/WbF5swNwcOECHD6iGDjIQXa2sexL\n6sfc8+pL/M8f3ufGr10epW++iIUDNa8ztOIm/vavD3Pd7J90LPeX8YxmljJYNjXSrKvnMO319bkM\nHNhZLbJ7d15E+y4traSuzn+GtaRkIvv3b+66VGsGD76Vw4df8bvfQYNu4dChlzuqf2KdeQ53/1Ze\n5x66vaYmcBWw975CLVOw7+SsWW+xdOkPPWoG+mFMNB958BFRg5Fk+8FPg1PfRjfRHRcjno0HrbQw\n9+bZACrYuCJmr+vschd4BMZo8Pd+4tFdOlgZrJQzmDf++JG+qNC/v/9bob1QxN1f5n5Dn89ANx8/\n3GV58N4u1sfB8BaLBt3eAk00l5c3oaOnWDhj0UQySFaoHQNiff2NZUPVcP/OoZbJ6mip7gau0Rxk\nTBqcRiBYA6inn67GmIQofiKZpGzSJFiwwJg0CYzA1Mr+uk5P3VES1/TUmkWLVrJmzZKwyxWM1tYm\n4bOjsaxVnk+av+mfSY/1zzMnszRgAzxhr9w/v8H7I4sY06fY0vbBGoTu3p0Yf+dAE821tmquuGIl\nr7++JKx9W2kk72+yxWTtGJCorF43tdYdjfKvvXYq3/zmmKgcX6ryI9D1JO1sXWHcdOfy1FMr7Sxe\nxKwGMm+8sRWn82bTdU7nJNav3xrNYvnoekEzE0qvn/CtXQtTpxo/8+d3zhrpXuaeUdKbO4itqhpH\nff1mXsq+hS/Vt/Gfzw1j3LhptLS0xLTcInQtJ45wxUcnOT3hiyG9zn0R37BhM/AyGzZsZs2aJQkV\nYBq9cmJ3Pk+ZMh6HY5PpukBBxLJl8xg5chUOx2vg0WrG4XjN1evnhxGVK91YuW7GctZtyXxEIFjX\nuZdfXuUzbbH/qbSTg/e0zFanp7aaRQlXInRhDfdv6/2k+XLDQ/zMWc1X+77F73bOjXnmSITuw7Vr\nuK4dSu560PJrfKc0VyZTmtubnQvlaTjc89lq12Fv0etKLNzszCZJ8BEmKydp7945fPxxbG+68eZ7\ng1WUlrZSVxd6GjWa/F3QYCO5uas5erTaNBAE7xsCJjeE2PIOYj89/Q+81TeXb+hXWOv8OevXr+oy\njomwX9v6l9nbP5thY75s+TXRHPMiViKpFrEqkiAivDF5hD/hBoLRIMFHmOJxkiaLRKiLjeSCFihb\nYQxYFoMCu/gLYl/K+QKPHdlIj8yTcckcCeuc7RcZ8dYedt48mmER7svqwFnxFI/zOTpBhJwPkbIz\nmyTBRwQS4aabCOyMnj0l41ORvyD2903f5ydtG5k4aAV/T5MgNll8/Kff8rkWJ/XTvhnxvvw17oxX\nY20z8T+f5bsNZtVy8amyt+u6KQ1OIyANoAzu6HnWrLcoLp4I3EJx8URmzXrLlic3Q/Jc0Mwa4O1u\nvJkPirrxDcf/S5sgNlkce+GXNHWHUbfeE/G+Yt24MxyJeT6nvhkzYP164+dPf4JPPjH+dS+LT1vB\n+F03JfMRAWkA1SkZsw7+BHsCiXY7EH9Pmi/1Kmf2Zx/ytYUzo3tAEZF+//02H44ezOe750S0n3g0\n7gxXKp3PIjFJ8BEhOUnNJE/WwUyw9Ga024H4C2LPjr+Mwt98SM2rv6L3tx+N3gFF2I7u3sHnDpxh\n0eB/4ompRnB64AB06wbHjhnb9O1rLWWePO3G7D6+SEUSfESVnKQiPGZB7DVXOzm4sRutv/svkOAj\nIez69Rr6AnN/8316D4l8CO9othuzq82AiK9Af+emJnvLFgoJPoRtvE+iAwdg6FDfi2UiXFTjW4bO\nOWv2ffEqPrdpO+1tF8jIyo7WAUSYsl7bxAfleVw55NKo7C+ajTsluEgPgf7O7mA4GUjwQWLc3NKR\n5+fqPmnWrvV9gkyEz9+uMhTN+D/0q36A99b/giunPRD/AogO51ubufzv9bz77YlR26e0GxOJzvP+\n6K5ajAYJPkiMm1s0pWMwlarv+fJb76E16wEa/vIaSPBhqw/WPcWYC1B8Z+S9XDxJu7HkkRzXmeiO\nkmv2kBgNEnykoMQ4AeIrVd+zIyOTI327oeoO2F2UtNfy7lZOZ8PwG78Rw6NIu7FElqjXGc+JKe0e\nJdcqGedDiATXMKCAnEOf2V2MtKfqDlDfpxvKIZdNkTi8J6aEV6iv30xV1biEnphSMh/CJXGnm093\n5wYPZPC2j+wuRtrLOfQZDQMK7C6GSHDBGtJHewLBRBwl1woJPtJYMqbqUlGweuTbu5XxDw07cLZf\nxJEhp6xdij5r4tN/GGl3MUSC89eQfvjw2EwgGGx29USdmFKuZGkqESe0SlfB6pHffvpzdF/3EvW7\ndzDwsor4FUx00E4nxScv8GlpqdlaJGtoXXI02oyu1tbYXG8TeZTcYCT4SFPJmqpLR0WjjIDj2Pt/\nk+DDJsf2vkf/i9D90s8BqZ01jHVwkIrBRTBPPRWb623yjJLrS1pOpalEnNBKmCu+ajwALZ+8Z3NJ\n0texD94CoHDk6KRt4GdVYkxwllreeCN211uziSndEnl2dcl8pKFkTtWlo5z8PhzNc3Bxzy67i5K2\nmnfuAKD4yvEskKxhwkrMKh3NxYuxu95Gc5TceJLgIw0lc6ouXR3rl0Nm3SG7i5F23Dezm47sYkSO\n4vpxAzh4MDkb+CU7q4FF4mVmFJmZsbveJusouRJ8pKloTmglYq95UB/yjpywuxhpx30z+5/KQ9T3\nyWHXLk3fvrmcOxe/rGFiPs3HXzK/zxtvHM8LL8TuepuMo+RK8JGmkjVVl67ahg6m346DdhcjbfU8\nfJyGfkVwMLZPsWaS+aYrDA88MI/334/X9TY5MtbS4DRNuVN1s2a9RXHxROAWiosnMmvWW9LNNgFl\nlJUzsNnJ2eYGu4uSlvoebaF14CDAeIpNxgZ+wj65uXK99SaZjzQWrVSdpIVjL++yqwCo//BvlI37\nqs2lSS9t584wsLGddwcNA+L9FCtSRTJWjcSSBB/CJfxUXfSCCxmsyZ9+V1wHwMkP3pHgI86OfPg3\nhmpwDLkS6HyKTbYGfiKRyHVOgg9hq1QerCma+o+4hvMZcGbXB3YXJe2c/OhdhgI9SjsHeJOnWJEK\n7MxaS/AhbCNDvFuXkZXNwaIs9L79dhcl7Zz+5APaFeSXXId5dk6eYkVysrNKXBqcCtt0HeLdfQF3\nD9Y0l0WLVtpZvIRzckAvuh86Yncx0k7bro853Etx6zemArcyeXIlc+YsTvqRTIWwkwQfwjYyxHto\nzgweQOGRU3YXI620tLTQ+O577OueYzqUemtrZAHI2rUwdarxM39+Z9rbvcydEhci1Ui1i7CFDPEe\nOmfJUIr//CHa6UQ55LkhHhYuXMFdpxUf9ijGNzuneeqplcCSsPcvPcFEupIrmLBF1yHezcgQ7966\nDf8ceReg4dPddhclbWzYsJXS1vPsV4N91jmdk3jzTcnOCREOyXxEQMa3iIwM8R6aws8Z3Sk+e++v\n9B5yqc2lSX1aazLaM+h3RrPfOcJkCyM7J13EhQidBB8RkOAiMjLEe2gGXvl5AJp2bofJ/5/NpUl9\nSimG5tQDsP/8lSZbaNdQ6xJ4CBEqqXYRtpEh3kOTP2Aop3ooLuz5xO6ipI0bL8sHYN/pcSZrN5KZ\neb00EhVB+KtaTm+S+RC2ksGaQlPftweO/QfsLkba+PzgAs5mwtGzh4Gr8M7OGUGyzYUUCSfQ4Ikg\nXxiQzIdIKJK+DqapuIieh4/ZXYy0kXXoU470zmb27HckOycscQ+eWFU1Libds1NFyJkPpVSJ1rrO\nz7qrtdY7Ii6VEMLU+SHFDNpSa3cx0kb3Q/U0DMiX7JywrOvgiW7R656dKsKpdtmnlHpCa73AvUAp\n1Qv4BTANyIhW4YQQXTmGlVO87m3azp0hq3uO3cVJeUWfNXJktGdPF8nOicCMwROXmK4zumeviurx\nkrXXZTjBRznwjFJqN3AvMAx4EnjXtU4IESHvC8qBAzB0KFx28QpucMJ//OxtvvPQF20tY6rTTicD\nT5zncMlQu4sikoTVwROj2T07UYOLYEIOPrTW+4AJSqkngC0Yn+JMrfUvol04IdKV5wWlthbGjDGC\nkd7OsTAWrh7wDvBFO4uY8k4e/IQ+F6D78JF2F0Ukia6DJ5oFF9I92y3kBqdKqV5KqaeBh4BHMKpb\nnlFK/TDahRNCdDVw1D/QruD0J+/bXZSU99n7fwWg4LJrbC6JSCZTpozH4dhkus7h2MiNN8rgiRBe\nb5c6oAwo11ov11rPBMYC97uqYoQQMZLdoyf1BRk498qpFmvNH/8d6BzcTQgrli2bx8iRq3A4XqNz\njA+Nw/EaI0eu5oEH5Dkdwgs+7tFa36y13u9eoLWu1VqXA8+GsiOlVKlS6iGl1DSl1DylVH6Aba9R\nSj3u2vYJz21d+7nH9fO4UkoeVUTKOj4gj+yDh+0uRsq7sOcTTvVQ5A+QNh/CumCDJ+bmSvdsCK/N\nh98xr7XWy0Pc3Yta6woAVzDxIjDReyPXui1a6yLX7/uA54DbXZvM1FrP99j+BY91QqSU08V9Kdp7\nxO5ipDxH3UE+LezO3VON35OpJ4GwlwyeGFw443y8QIDxYrXWd1jczzWe+9FaNymlKvyMI1IJnPTY\ndrtSarpSqpfWuhmYrpR6xiMbcxIhUkpnA7b20qEM2LbH3uKkgdzDxzg9uIj16+0uiUhu0rjUTDhd\nbd/x+r03MBqoAB4OYT8VQIPXsgaM9iR1XssbPX/xqHIpA3YAzwB7lVJPAnuBn4RQjrSUrH3D04m/\nIZq/MbSM3mf+TPPxT+nV9xK7i5my+nzWzP4vldldDCFSUjjVLqZVK0qpe4ExGL1frCgwWdZotlxr\nvUUp1eiRFanAeBQscm3yrOv/lRgDnb2LbwAjPEhwkdjcQzQbIyUuART19Zqqqk3UX/F9vggc+6RW\ngo8YaW+7QPGpixwok6GLROQ2boQlS4z/y8OeIZoTy20GHgfut7h9I53Bg1sBXlkON631WFeD0r3A\nPoxc1j5XFuQnWuv7gEeVUvcAf1ZKlbqqZIRIOoGGaH53/3eBh2ja8yFcP9WuIqa0Y3v+zkAn9Ci/\nzO6iiBQwaRIsWBB8u3QSleDDNbx6KFUuYGQn7vVaVoQRWJjSWj/nOl4ZcEprXaeUmgb8yXMb1/oK\n4HWz/cydO5f8/K4da2bMmMGMdAs9RcIKNETz4dMzgYc4UyfdbWPl5O6/MxDILx9ld1GEsMXatWtZ\n666bd2lqaora/sNpcOrEt8Gpu0XNdKv7cTUa7ahicf1/r7uxqatBaqO7EalSqgEocWUz7gXucb10\nH0bPlpe8DvGuv2OvXr2a0dL0WCSoYEM0tznzOJoDFw/VxbVc6aRl3ycA9Cm/yuaSCGEPswfy2tpa\nxowZE5X9h5P5KDRbqLUOJyS6TSk1D9iPkam4zWPdo8DbwArX7/8CVCqlhgFva61fch13u2ucj3lA\nE5AP/E6qXESysjJE8+FcBxmH6+NcsvRx4cBezmZC4aBhdhdFiJRkKfhwVau4mXazdW8Tyk1fa70D\no7cKQLXXutu9fl+BH+5ARCQX6XHj35Qp46mq2uTV5sPgcGzkZEEO+Ue9O4uJSLm/k5MPfsolPTP5\n6kgHQ4fKd1KIaLOa+WjEf1WL9vhdAxlRKJdIA3Ih92/Zsnm8/vo0du7UrgDEOL0cjo2MHLmazMGX\nkP9Bnc2lTD3u7+TWLxyjsU8uu3YZwYjU0goRXVaHVy/EaAzq+VPotdz9fyFEhIIN0awGD6ZPw3m7\ni5myco830lxkNhqAECIarGY+GoDRWuu/uxcopb4B/FnaVggRG4GGaM68ZCi9z2jOnW6ke0+5SUZb\n4YlWDpdfancxhEhZVjMfCt+Wby9ijDAqhIi5rqdfTukIAI5+UmtHYVKadjrp33SRtn4ygJsQsRLO\nrLZuMmC9EDYpGH45AKd2v29zSVJPw6e76X4R1MBhBJjGSggRgUiCDyGETfqNuAaA1rpdNpck9Rx6\n/28AVL2wAbiVyZMrmTNnMS0tLfYWTIgUEkrwYfYIII8FQtigZ9EAmrpD28H9wTcWlrW0tLBm4Y8A\n+LD+P4FXqK/fTFXVOMaNmyYBiBBREsogYwuUUt5Dn/ss01o/GnmxhBDBHCvshjp8xO5ipJSFC1eQ\n3VhCu9rP0TNXuJYac+rs3KlZtGgla9YssbOIQqQEq5mP7cAwYILHT63JssoYlFEIYaKpT0+6fXbc\n7mKklA0btjKINupzHbTr7l3WOZ2TWL9+q00lEyK1WMp8aK2jM5i7EMISK6O/XtKviMJ98ct8eJfp\nwAFSavRP95w6gzIO8mmPHnDaewtFW1sOWmuUkvb2QkQiKrPaCiGiy8qN/C+vDaD3u3vjUyC6lqm2\nFsaMSa3RP91z6lxyvoHD2fkmW2iyslol8BAiCiT4ECJJOQYPoV/z/3Dxwjkys7sHf4EIasqU8Qz6\nzZtsyfuczzqHYyNTp15vQ6lEMpE5q6yR4EOIJNWjZDgZGur3vs/AkWPtLk5KWLZsHu3P/l+O9Mqi\nc1bhzjl1li6tDrIHke4kuLBGxvkQIkn1KhsJwMk979lcktSh2lopOA+Fo5TpnDp5eXl2F1GIlCCZ\nDyGSVF/XQGMtez+2uSSp49iu7fQEJn3zLib+3+/5zKkjhIgOyXwIkaQKBw3jbCZcOOg9/I4IV9Pe\njwAoHN45xocQIvok8yFEEjDv5urg6Z6ZfPL6IY6slXrmaGjd/wkA/YZfzck9NhdGiBQmwYcQScBf\nN9eWf8xlVN4xxkvgERUXDx3gZI6id68iu4siREqTahchklhr/0JyjzfaXYyUoQ4f4URhN7uLIUTK\nk8yHEEmsbUA/Cj/81O5ipAxdd4KD2Xk8NFXGaBAiliT4ECKJqUsG07/pbbTTiXJIIjNS/VqaOXHZ\nENavt7skQqQ2uVoJkcS6DS2j+0Vo+HS33UVJCb1PncM5aKDdxRAi5UnmQ4gklucaaOzErh30HnKp\nzaVJXFYmxZv+9TP0bXGy65Ih9hVUiDQhwYcQSaz3iKsAaN630+aSJDYrk+Id/uDvDAJ6lA63pYxC\npBOpdhEiifUtvZyLDjhbJ9UukWrYbQxTn1/mO6mcECK6JPMhRBLLyMrmSK8MnIcOmq63Ut0gvTcM\nLfuMYer7XSpjqQsRaxJ8CJHkThb1IKP+qOk6K9UNwnDh4H5as6BXv8F2F0WIlCfVLkIkudN988k5\netLuYiS/Tz/lWGGWdFkWIg7kLBMiKemO/10Y0JeCE6dtLEtqyP7sGI29c+0uhhBpQapdhEgSLS0t\nLFy4gnXrtgK5TJ7cyvTp45navz99Tu2wu3hJr+exRpoH9bW7GEKkBQk+hEgCLS0tjBs3jZ07f4DT\nuQRQ1Ndrqqo24bz8P6g8Dy0njpDXp9juoiatwoazNFT0s7sYQqQFCT6ESAILF65wBR6TPJYqnM5J\nvHdsCvA0x3fvkODDJVAvn6Ym3+2d7Rfp33SRfZdIY1Mh4kGCDyGSwIYNW10ZD1+fnrkNeJrGPR/A\nuK/GtVyJKlAvH/fvnk4e/IS+7dB96LD4F1aINCQNToVIcFpr2tpyAWW6/kjrNQC07vskjqVKLSd2\nGW1m8oaNtLkkQqQHCT6ESHBKKbKyWvHs4eLpfHs+x3Kg/VPzgcZEcO4BxnqXX2lzSYRIDxJ8CJEE\npkwZj8OxyXSdw7GRo3mZOA4fiXOpzIOhZHSubg9tDuhTIkOrCxEPEnwIkQSWLZvHyJGrcDheo/Om\nr3E4XmPkyNWcGVhI989OxLwcLS0tzJmzmMmTK4FbmTy5kjlzFtPS0hLzY8eS8/AhjvXKICMr2+6i\nCJEWJPgQIgnk5eWxbVs1s2a9RXHxROAWiosnMmvWW2zbVs35gX3pdSK2AYC7u29V1Tjq6zcDr1Bf\nv5mqqnGMGzctqQOQzCOf0dC7h93FECJtSG8XIZJEXl4ea9Ys4e67YcwYzYYNqmOOFuclg+j7xs6Y\nHj9Qd9+dOzWLFq1kzZolMS1DrPQ4dorTffPtLoYQaUMyH0Ikpa49X7JKhtH7jKb11LGYHdHo7nuz\n6TqncxLr12+N2bFjrfD4ac4XD7C7GEKkDQk+hEgBPcuNhpJHP343JvsP1t0XFG1tOWidfI1QtdPJ\ngFMXUEOG2F0UIdKGBB9CpICiEVcBcGrXezHZf7DuvqDJympFKX/BSeJq+HQ3OW3QrWy43UURIm1I\n8CFECuh/6WicwJm9H8fsGMG6+06den3Mjh0LGzfC1KnwyHeNbNGPn72CiRONZVOndg7PLoSIPmlw\nKkQKyO7Rk/peDtoP7I/ZMZYtm8frr09j507tanSqMLr7bmTkyNUsXVods2PHwqRJsGABvPXzD2Az\nvL13DJv+Hx2NeIUQsSOZDyFSxMnePcg4XB+z/Qfr7puXlxezY8fSuX27OJsJJ85eandRhEgbkvkQ\nIkW09C8ktz62A40F6u6brPTBAxwpzILj8iwmRLzI2SZEijg/qD+Fx0/H8YjJ17jUTLfDRzlZlJxZ\nGyGSlQQfQiQpd4PJqVNh4kTY/PEQBpxqY8oUpzSYDKqz107e0VM09+1tY1mESD9S7SJEknI3mASo\nrYUfTx1Oj4vwy599Qp8SmRreW2trC3PmrGDduq1ALpMntzJ9+ngWnDzL/tGD7C6eEGlFgg8hUsTB\n81cAcPzjGgk+fLTw7W9Po67uBzidSwBFfb3m2adf4l8vOjnfd7DdBRQirUjwIUQSWLu2sxrl3DkY\nMQLmz4fu3Y1l110Hh85cA0Dzng8D7EmTqG01vN/jgQMwdGjne5wxw/gJz3JX4NF1XprinN7QDNvq\n6knkz0aIVCPBhxBJINiNt7YWFi4cyblMo+uop5aWFhYu9K1uWLZsXkJ1j/V8j7W1MGaMEYyE25um\n6/s+htP5I59thvT4GzTDH97aBdyasJ+NEKnG1uBDKVUKTAf2AaXAc1rrJj/bXgPcDrwLjAUe99xW\nKTUNKAROAWitk2vEIyEi5uBIQRb64IGOJS0tLYwbN801G+0S3NUNVVWbeP31aUk9PkcgXd/3YuDr\n+GY1WhiS/XMADjbXAr3T4rMRIhHY3dvlRa31cleg8BzwotlGSql8YIvW+lHXtr9zbe9efw9QqrX+\nBVALPBH7oguReE4W9ST7SOfMtgsXrnDdgN0jkgIonM5J7Nw5l0WLVtpSzljr+r4dgNm8NCsY4ujL\n0RzFuXZ3b5fU/2yESAS2BR+uTEbH1cCVxahQSpWYbF4JnPTYdjswXSnVy7XoJ1rrFa51+4ExMSq2\nEAmtqW9v8o6e6vh9w4atOJ03m27rdE5i/fqt8SpaXPm+7/GA97w0Wxmiz3Iwp4fP61P5sxEiEdhZ\n7VIBNHgtawDKgDqv5Y2ev7gyIQBlyjWNplLqyxiPdpXAs0BzlMsrRMI727+YPu/vA0BrTVtbLv4b\nUSra2nLQWiflbLT+mL/vecA0jOcdd6PTXIa0neBgtwKTvaTmZyNEorCz2sXsjG80W6613gI0emRF\nKjCuIkWu/+cD+1zbPQFsjkF5hUh47f1L6N/spO3cGZRSZGWZVTe4abKyWlPu5mr+vvOAauAtYCJw\nPRkZexlyroWDmf1N9pKan40QicLO4KMRI3jwVIBXlsNNaz0WmODKcOzDeKzZ5/pp1FrXubZrwsiI\nXB2jcguRsByDLsMBHN1VC8CUKeNxOLyrG1zbOjYyder1cSxd/Ji/7zxgCQ7HD4BKpk//OkNOX+Ag\nQ3xen8qfjRCJwM5ql3eBe72WFWEEE6a01s8BKKXKgFNa6zpXtYtZFsWvuXPnkp+f32XZjBkzmBH+\nIAJCJITug68C4OTH27nkyutZtmwer78+jZ07tUejU43DsZGRI1ezdGlqdgoL9L5LS1ezd28137lz\nHz1/t5RD7Rl0jvGR+p+NEFasXbuWtV5zNDQ1mXZGDYttwYfWertSqiNocP1/rzuD4WqQ2uhqQIpS\nqgEo0Vo3YwQt97j2s18pVauUKnEFI2Wu/ezwd+zVq1czOtmn4hTCRN7QCgBO791p/J6Xx7Zt1Sxa\ntD2tTy0AACAASURBVJJ161Zx5EgOxcVnmD59PEuXpm5X0kDve/r0am64IY/24x8DMOIL7RS/MTFt\nPhshrDB7IK+trWXMmOj057B7kLHblFLzgP0YbTdu81j3KPA2sML1+78AlUqpYcDbWuuXPPcDzFRK\n7QNGAxNiXnIhElC3vH405Cja6vZ2LMvLy2PNmiXcfTeMGaPZsEGFPXBXMvH3vmuNGikuHHoPgLlL\nlzK98fK0+myEsJutwYcrO+HOUFR7rbvd6/cV+OHKljwa7fIJkYyO9e6O49CnftamawNK3/etj+zi\nXCb0HnoZhxrNtxFCxIbdg4wJIaKsqW8vutefsLsYCS+r/gCfFWbhyLA7ASxE+pHgQ4gUc664HwXH\nZJibYHKPfUZD3552F0OItCTBhxApRg++hP4N5+wuRsIrOHGK1gG9g28ohIg6yTcKkWKyhw4j/xw0\nH/+UXn0vsfSa2E5nn5j6NZyh8YZiu4shRFqS4EOIFNOz/HMAHNtZYzn4iPZ09okuU51hQLOTvUNL\n7S6KEGlJgg8hUkyfy4yI4dSuv8MNt9hcmki4B/4KLFjW5rrrfF8zqGctjhZ48X8vZflU43UjRsD8\n+amd7REiUUjwIUSK6Tf8KtoVnN2/y+6ihKylpYWFC1ewbt1WIJfJk1uZPn08y5bN8zvoV7CsTW0t\nLFzY9TVDcrZDC3x/2VWUjYvd+xFCmJMGp0KkmMzs7nyWn4HzQJ3dRQlJS0sL48ZNo6pqHPX1m4FX\nqK/fTFXVOMaNm0ZLS0vUjjUk+yMA+l9WEbV9CiGsk+BDiBR0sk8OmZ/W212MkCxcuIKdO3/gMRcL\ngMLpnMTOnXNZtGhl1I41xLGXkzmK3MJ+UdunEMI6qXYRImV0tpE43b+Q3KMNUd27d9uKaLeR2LBh\nK07nEtN1Tuck1q9fxZo14e/f0xD9KZ8Vdkc62gphDwk+hEhi/tpI3DKgL4M+PhLVY8WyAabWmra2\nXPw3MFW0teWgtcaYyDoyQy6e4FTf/OAbCiFiQoIPkVKKiopYsGAB8+bNA2DLli3s27ePe+65x+aS\nRZ+7jYRRVbEEUNTXa6qqNpE76hm+0HgRZ/vFsIcP37gRliwx/h/rsT+UUmRlteK/h4smK6vVYuAR\nvJfMkHPNHOp3aegFFUJEhQQfIqWMHTuWsrKyjt9ffPFFampqUjL46NpGws1oI/FRwxfJbv8dx+o+\not+wK7u8LlhQ4e6aOmkSLFhg/D8eY39MmTKeqqpNXu/H4HBsZOrU6/2+NlAvGejaS0Y7nQw9fZ69\n/QdH+R0IIayS4EOklE2bNtldhLgJ1EbiwLlbgd9xfGeNT/ARLKgw65oaD8uWzeP116exc6f2aHSq\ncTg2MnLkapYurTZ9XaAM0OuvT+Ppp6vxDEDONh4i7wLo4uFxeFdCCDPS2yXNPPnkk5SXl+NwOKio\nqKC6uusF/dlnn6WiogKHw0F5eTnLly/vst69bPny5ZSXl1NUVMT9998PwCOPPNKx7zvuuKPjNU1N\nTTgcDrZv387MmTMpKiqiqKiI++67z6d8wY6/b98+JkyYQFFRUcd72L59e8f6wsJCVqxYAUBFRQXP\nPvssNTU1ZGRksGPHjo7t1q1b13GcoqIi5s+fH+Ynao9gbSQOto4FoGn3B3EsVWTy8vLYtq2aWbPe\norh4InALxcUTmTXrLbZtq/Y7zkewXjJPPdW1l8zpA+8AkHXJqNi9GSFEYFrrtPkBRgO6pqZGp6OH\nH35YOxwO/eijj+rq6mp9++23a6WUrq6u7livlNL333+/rq6u1vPnz9dKKX3fffd17GPYsGG6sLBQ\n33777XrLli0d25gtW758udZa68bGRq2U0sOGDdMTJ07U1dXVevny5VoppSsqKrqUL9jxCwoKdHl5\nuf7FL36hn3vuOT1s2DBdVFTUsb6wsLDjuE1NTfq2227TFRUVuq6urmObZ555Riul9B133NHlOLff\nfntsPvgYKSm5SYNTgzb5uahbstD//eDXOravqTHWeX79Q1vm1PE6dUI5XuDPwamLiyu7vJ+XF/+z\n1qD/++X0vA4IEa6amhqN0ahqtI70fhzpDpLpJ9rBR+uFVl1zpCamP60XWqNSVncAsGLFii7LKyoq\n9MSJEzvWP/roo13WP/nkk9rhcOj9+/drrY3go7y8vMs2hYWFevjw4T7L3Ddz977Hjh3bZZt169Zp\nh8Oht2zZYun4+/bt6xIsaa319u3b9X333ddRPs/gQ2utZ86c2SXAcW9z//33d1n23HPPdXmfyWD2\n7Me0w/Ga6U3X4XhV/09Jd/3OFb07tg8n+GhubtazZz+mBw68ScNUPXDgTXr27Md0c3NzTN+bWbnM\nOJ1OPWjQVD+Bh/HTrdtUPXy4U0+YoPWUKVovGTNdn3eg337rfEzfgxCpJprBh7T5iMDHJz5mzLNj\nYnqMmntrGD0w8hZ+mzdvRinl0/DynXfeobm5mXfeeQelFPfee2+X9ffeey+PPPIItbW1lJSUAFBZ\nWdllm7KyMsaOHeuzzNvMmTO7/D5t2jTy8/PZvHkzWuugx//GN75BQUEBjzzyCCdPnuT222/n6quv\n5umnn7b8OWzfvp2mpiaf40yfPp177723y/tMdMHaSJyvnMS1P3+ZpqMHye8/JMS9a1pbTwdsSxGo\nKiRerPSSGTiwlV27OtdtvfJN3u6TR05mdryKKYTwIsFHBC7rcxk199bE/BjRsH//fgB69erls65X\nr17s27cPMLqqesrPN8ZCaGiIfMCqwsJCn2VlZWXs27fP8vFra2t55JFHmD9/PjNnzqSsrIyZM2fy\n0EMPWSpDQ0MDWmtGm3TZUEpF5X3Gi7uNxKJFK1m3bhVHjuRQXHyG6dPHs3RpNS0HPyJ7zcu8+58r\n+PxD/xp0f949RiZN2s+ZM48Dvr1pdu7ULFq0kjVrlvjsJ9hEb9EeLySUXjJNRw9S8dExHr7k69wd\nvSIIIUIkwUcEcrJyopKViAd3JqK5ublLALJ//34aGxs71jc0NHRZ39TUBEDv3pGPBWl2Y3c3IC0r\nK0Nr7ff47qCkpKSE3/3udwDU1dXxzDPP8Mgjj1BYWMh3v/vdoGVw76e6uprSUt/p1M0yNoksLy+P\nNWuWcPfdMGaMZsMG1dFrJW/UP/DRkBx4+WUIEny0tvr2GDlzphL4qun2gUYcDTbRmxl35iscofSS\nef8X/8L17VB98lEJPoSwkfR2SROjR49Ga80LL7zQZfn06dOZP38+FRUVaK155plnuqx/5plnUEqZ\nZgpC5b3vdevW0djYyLXXXktFRYXpNp7Hr66upqioiLq6OsAIRB5//HEKCgrYu3evpTJcc801AOzd\nu5err7664+fEiRN897vfTarMhy/fm/fRyuu4vOYQ51ubA77yqae8e4xowNqIo+FqaWlhzpzFlJZW\nMnjwrZSWVjJnzuKQJ5ALpZdMdvXv2VGax+HTY/3vUAgRc5L5SBOlpaXce++9zJw5kz179jB27Fie\nf/55duzYwZ///Gfy8/N5+OGHefLJJzl16hQTJkzg7bffZvny5dx3330MHTo04jLU1tYyceJEbrvt\nNvbs2cPy5cupqKjg61//OkDA45eUlFBYWEhjYyOVlZU88sgjAPzpT3+iqamJiRMn+j3uvn372LJl\nCxUVFeTn5/OTn/yEhx9+mD179nQc57nnnuPaa69NmvYegbirTzZs2MqQzGbeOA9LvnULN81dj/eA\nW25vvOE9ZogCojXiqNcrteaXvzzN978/jZaWHwBLcAc8P/vZJn71q2nMndt1bI5gAmWAwMi8rPv1\nQX773jFWXnMrI7KiOy+NECJEkbZYTaYf0ryrrdZaL1++XJeXl2uHw6HLy8v1Sy+91GX9c88912W9\nd++Y8vJyn54iFRUVXbrDaq31mDFj9B133KG17uztUl1dre+77z5dVFSki4qKfPZj5fhbtmzRFRUV\n2uFwaIfDoSsqKrq8h6Kioi69XWprazv2t3379o7l1dXVHftxl6WpqcnKR5iQ3L1D3nyzWY8aNcHV\nC8apoV3vzs/UTw8ZrHNzJ+jy8uaOXh9Tpmi9bJnW4NR9+5r1GHlMg//eNHPmLA6pXLNnP6ZLSm7S\ngwZN1Xl5V2j4g99933nnYku9Xfwdz+x1/7N0ptagj3z0dmg7FUJoraWrrQQfScYdfGzZssXuoqQs\n9033zjt9u98uHzpGH8l1aIda7xMwuMfTMLrSeo+V0axhgoY/eqxzaofjVT1q1ARL3W2N/TfrsjLP\ngEhrCG1sjlA/B7PX/W10f/338rzQdiiE6BDN4EPafAiRQjZu3IrTeXOXZS+f/Q4DW52M7fMZa9du\nBTrbW0yeXAncSlPTMZR61WtveUA18AK5uWOxOuKorxXU1YXensTYLjqajh7k6r8f5dTXboraPoUQ\n4ZM2H0KkDE1Wlu9Nfdux73IsZxa35vw7P7/Yn+bmZj7/+elePVuagZsxbvhfo7PHyP8ycuQRnn76\nv7nhhp4+bSmsCb09SWZmq5914fng3x9nfDuMmLkgavsUQoRPgg8RF+F2oxShUK6bdtebupNsNvQp\n59am7TxT8AUWLVppMhtuL+BPwGxyc5fQ2jqoy5ghu3eHNpiYu9Hriy/+L3Ae30BiPLCJrmOIGByO\njdx44/U8/7y1Y3mPKzJihG9j0rLq3/P+sJ5cMVJ6uQiRCCT4EDGXn59Pe3u73cVIC0OHjqe+3vem\n/vLFO/g/jUsZN7p/gNlw84Bfkp8/kdbWl8PMcpjNMjsB3yzHPGAa4AS+Qmd1zEZyc1czYoT5DLZm\ngvVUaTp6kO7fOsrfZt0a6lsRQsSItPkQIoU8+eS8/7+9uw+PqrrzAP49gygCkmS0VkVLMokoogWS\nAUQQUEJwtwKVvFja3dYuhIivD4qZoHZhXSgviVq6pZIE9nHdrhiSUAutvCSD0qogMhOstVCFmWgV\n7WMJmVCoFslv/7gzyWQyk+TOy00y8/08zzzkvp17cp5w5nfPOfccjB79DEymnWgfMyGwf34jzgwE\n/i3tL12uhts+3iJ8nVeZ9bVy+GsfT3LxxeMxfPhcpKbm4KGH3sInn9Ri7tzgLS1btgBz5mifnBxg\n5EhBTk77Pl8LiL8/bF6Ni9jlQtSnsOWDKI4MGdI+5fr27c/g3LnBGDjwLObMmYx39l+JK/YewMCB\nNyOW4y06t6z4WjkEWotMx/Ek+/e/iqFDh/aoa27+fODOO9ungf/00yH429/OIC9vMlatWhp0EOwF\n215mlwtRH8PggyjO+CbcWr++47Tlr6/6DDc+WY7ce4bj2RdCr4XiG2+xaxewYoW2P9RYisDuDhEJ\n0rLia+V4GsAzMJn+jm9842LMmaONJ+nqrZklS4CkpPY1YoYPP41DhzpOTtbVYnfNJ9wY885nOHDf\nXF1lSESxxeCDKI75tyaMXbwCJ8o2Ib9hJ3Ze/wmOHg2+Fsp999XipZeAO+4AHtfZUxF6ldlLoAUL\ngmuuyYbbXdfp2mADRy+6SNv+8kvg/feBzMwynDnzCHq62N3vF3wLYwcANzz0lL5fhIhiimM+iBLE\nUPMV+PPKYkx853Ns+JfrQq6FMmSIvjdbAs2ePRkmU+AYD43JtAtz594a9Nj8+cD27dpnzx7gT3/S\n/t2+HXj2We0cbRr4WUGv1xa7e6Nt+53qn2HqriNoeDAfl6d/M6LfiYiiiy0fRAlk4v0/xoH/eR6j\nVm/EuPdd+MEPVgRdCyUSelaZ1Ufw1Vc9W+zuH2dPY+iDj+Ld9KG4dc2LYd6PiGKFLR9ECWbEC9tx\n8T9a8c4P/8m7J7pzsOhZZVYf/3lMgmlf7G7//XNwzV//gUGbX4BpAJ+xiPoaBh8JYubMmTCZTJ0+\nGRkZqK0N90k0NLvdjsrKym7PKykpCZov32fx4sUAgJSUFJSVlelOnzq78norGh7Mx9RdR3Bi389j\ncg/foNcdO+oAvIwdO+qwfv2KCAIPzbRpXXfpzJkzBcff+DVu+cU+vDl/Cq6ddldE9yOi2OAjQYJQ\nSiElJQXr1q3zLbKH5uZmVFVVIT8/HzU1NZg3b17U7lddXQ2Hw4HCwsIe5a2ioqItX/6sVisAYMKE\nCbBYLGGlT51N+fEv8IfaVzBy7SMYaPo+gKExvFv0Wlbuu28p3n03dJfOU/9RhcYJqfjk0oG4+bkd\nUbsvEUUXg48EYjabsWDBgg77li5dCrPZjPLy8qgGH3oF5ivQ7t3Bn3YpPAMGXogLNz+PtOx8FF/z\nbQD1vZ2lHpAO85jU1DyDEycGd5gGvmH1vZj6QQsOb/kJ0oYm93aGiSgEdrsQzGYzkpM7VtQ1NTWw\nWq0wmUwwm80oKSnpcNzlcmHmzJkwm80wmUywWq1oaGgAoLVWVFRUwOFwYMCAATh8+HDEefTvdolF\n+olo5G152P2tSVj+Zzs+2bs+rDQCZxy97jp0mHF0167I8hi4+u6MGdkYM6YMH3zwKEaPrsO1176M\n0aPr4HavwMN5u5H59Iv4XfZIjP3Ow5HdmIhiii0fCaSpqQkej6fD9saNG+F2uzuM+6ioqMC9996L\ngoICPP7443j77bexdu1auN1uVFVVAQCysrJw2WWXobS0FCKCNWvWIDs7GydPnsTevXuxcOFCuN1u\n1NTUYMSIEd3mze12w2w2d9qflJQEoON8FeGkT8Fd/ng9fvv21Zi0fAk+zsnC1d+cout6/4nGnE4g\nK0sLSHxvzjidwBNPhJe3zmvEKDQ3C1padmPw4I4Tip386E84O24+Pv76xcjc+rvwbkhEhmHwEYmz\nZ4GjR2N7j+uvBwZHttaGz6lTp5CSktJhn1IKxcXFGDNmTNu+kpIS3Hvvvfj5z7XBiPPmzUN6ejqK\niorQ2NgIEYHH48HmzZvbumqsVivKy8vR2NiI1NRUmM1muN3uHgUGIoL09PRO+9PT0/HBBx902j9s\n2DBd6VNoF1w4GAXNb8Ex+AZ8+c8zcebdDwFc3tvZAhC4RoxP5wnFzn1xFn/OmYjhX56Had9vMSSl\nb+SfiEJj8BGJo0e1R71YcjgQrQkYUlJSUFNT02Fgp9PpRHFxMVwuF6qqquB0OuHxeLBo0aIO1+bl\n5WHRokVwOp2YN28ekpOTYbPZcPLkSRQUFGDs2LF47rnnwsqXUgr19fWdBpwGawmh6Gv64lq8VLgV\n95fPw94Jmfhp6kcYOdLU7VTqsRZ69V3fhGLPYP16YH/uBNx8zIOjVRvwzRsnGZtJIgoLg49IXH+9\nFhzE+h5RYjabcdttt3XYd/vtt0NEUFJSgsOHD+PUqVMQEWQGCXiUUmhqagKgBS02mw0lJSUoKiqC\nxWJBUVERHnvssbDyFpgvMlbOPXfhj9ctw+wHVuOSqTMxvc7eq/kJvkaMP21CsX2272DaK+/hdz/6\nAW7Nvc/ILBJRBBh8RGLw4Ki1SvQmX6DR1NTU1tpQW1uLtLS0Tuf6XndNTU1tG//R2NiI8vJy2Gw2\npKSkYOHChQblPLEFWwslktaKiff/GK8538L0/96LN29YglsefTaMXAl27VK6F6QLFHqNmPb73Jz0\nR9xSdgz75ozBtKeeDyOvRNRbGHwQHN7Wm/T09LYxFMePH8ddd7VP0FRfX4+SkhLU1NSgrq4OhYWF\ncDqdSE1NRWpqKlavXo3y8nIcP368V36HRBSLrpCpFbvxxgcZmFj8E7z+9zOY8mRFt9ecPt2+xD0w\nBD/7WddL3PfU7NmTsWFD8NV37xz+Pfzv+8dw+MbLMLn6QNj3IKLeweAjgTQ1NXWaFfTYsWMoLS1F\nQUFBW+Cxdu1aFBcX49ixY5g5cyYOHjyIyspKTJgwAampqUhJSUFzczOys7Nhs9kAAHv27IHH40FO\nTk5b2i6XC3a7HVarte2tlWiKdfrxqusWkwvwnUXvo/Wim3Drjyqx71QTpj1dEzKtYG+kdLXEvR6h\n1oj53jWz8fzHv8FB65XIevUoLrhwUFjpE1EvEpGE+QDIBCAOh0MSzcyZM8VkMnX6mM1mWbx4cafz\na2trxWq1djjH4/G0Hbfb7W3HTSaTWK1W2bZtW9txp9MpGRkZYjKZpKGhIWS+bDabDBgwoNv8m81m\nKS0t1Z0+haf1/Hl5NTdLBJBXF8yQ1vPng5734IP/LibTTgGk08dkekUeemh5RPloaWmRhx5aLldd\nlS3AHHnkusvlPCD7plvk3Jd/jyhtItLH4XAItL7QTInw+1hJkCmt45VSKhOAw+FwBB1QSUTtpLUV\n+4pmYfqmeryWm4WpVQc6LdKWlpaNxsY6hBqXkZqaA7e7LuK8OA614pd5M7Hyw73Y9+1xuLXmIBeM\nIzKY0+lElvaGZ5aIOCNJizOcElFQymTC9Mo67Fuah+m1DjSM+TpOvPdW23Hp4RspkT7gfO5+D2cL\nr8bKD/die/7tmFp7iIEHUT/H4IOIujSttBrOF9biyk88GJJ1M15/qhDS2hrwRkow7Uvch+vAT4uh\nbroJo97/DLnDl+LqEjuUidUWUX/H/8VE1K3Mfy3GkCPH8e4t6ZiyfBMOThyOz11/wOzZ3S9xH47m\nE268MS0NNz9cimM3XIH3tr6LbZ+URvIrEFEf0qvBh1IqTSn1mFIqVym1VCkV8pUFpdQ4pdRq77lr\nQp2rlNqolBoWu1wTJaakK0Zgyt5jeOu/SmA5+hdcOPomzD3xG0y+cTlMpp1obwERmEw7MWrUs1i5\n8lFd9/jc/R5e++FtODcyHTcebMTrK4sw8cDHuOTK0VH/fYio9/R2x2m1iFgBwBtMVAPICTzJe8wu\nImbvtgtAJYCCgPNmAMgHsAZAS2yzTpSYJj6wGn+98/toeOz7sO44BPs54JVR38X6L4fj1WPpHZa4\n7+lrtsd++yt8+p/FGP/a+xivgEOzbsLIdZsxZdT4GP82RNQbei34UEqNg19nsYh4lFJWpVSqiDQG\nnJ4N4KTfuQ1KqTyl1DARafGm52sJaYpx1okS3mWpozC9+m20fP4x3lz1ILJe2IG9p97D783H8dnI\nNAy+9GN8/t7rGDphVqcxGtLaio8aXsPHe2rw1Zuv42u/P44bPjqLIcNMOLBgFsb8aAOmDe+80CAR\nxY/ebPmwonOg0ATAAqAxYH+z/4ZfoGEBcNj7c76IbFKRjG4jIl2Gfe1qTPvJL/HVui/w8vIn8NcX\nf42pR1wY+doRYPlmNA9S+NvF7cGHKIUhX5zHiLOCEQBcl1+IE6OvwRuLZ2H8w2sx/eKhbedGe/p4\nIuo7ejP4SA6yrznYfhGxK6Wa/VpFrNBaTXzdMDMAbI1hXomoCxdcOAjfyH8ad615Gg4H4LnqQxzb\n9SJOv/kqcPZsx5MHDcKQm6cifdZ8WK65FpYQaTK4IIpfvRl8NMMbPPhJRkArh4+IjFdKFSqljgNw\nQZtcwOVrBfF1v8Ra4NPYhx8CI0ZE52kslmkTGSnpihHIumcZcM+y3s4KEfVBvRl8HAKwKGCfGVpg\nEZSIVAKAUsoC4JSINCqlcgGkKKUWQgtILADylFL1InI4VFrh8g8AnE4gK0sLGKIxYWos0yYiIuor\nei348A4abeti8f583DfY1DsgtVlE3N7tJgCp3haORQAKvenU+qerlCoHUBNk0GqbJUuWdFqIbP78\n+ZjPZgUiXTgugyg+bdmyBVt8/7m9PB5P1NLv1bVdlFJjob3J4oY2jqPcL/jYCuCgiJR5t5dCaxVJ\nhxakbAtIKwlaULIGQAWAtYEBSLTXdvG1Tjgc0W+diHbaJSUlWLduXYd9ycnJsFqtKCoqQm5uru40\n7XY7XC4XCgsLI88gERH1adFc26VX5/nwdov4ukZqA44VBGyXdZOWB0Cp92MgQei1LfpW2kopVFRU\ntK210dzcjKqqKuTn58Nms2H16tW60quurobD4WDwQUREuvT2JGP90unTp/HEE2WoqXkDwBDceecZ\n5OVNxqpVS3s8qVJvpA0ACxYs6LC9dOnStlaRu+++G2PHjo34HkRERF3h2i46nT59GpMm5WLDhkn4\n9NM6AL/Cp5/WYcOGSZg0KRenT5/uk2l3Zc2aNUhKSurU8mGz2ZCRkQGTyQSz2YyCggK0tGgvFVmt\nVlRUVMDhcGDAgAE4fPhwl9dFs6+QiIj6NwYfOj3xRBmOHHkEra13oL1LRKG19Q4cObIETz75dJ9M\nuzvZ2dlwOtu78IqKilBWVoaCggLU1NSgqKgItbW1bV0se/fuRV5eHrKysuByudpaTEJdt2hR4ItN\nRESUqNjtotOOHW+gtXVF0GOtrXdg+/ZnsH5930u7OxaLBbW17cNumpubUVFR0dZNM2/ePJw6dQp2\nux0AMGzYMJjNZrjdbowYMaLH1xERETH40EFEcO7cEIQeBKpw7txgiAj0zvIey7TDUVVV1fazx+NB\nXV0d6uvru713uNcREVHiYLeLDkopDBx4Bn7r4QUQDBx4Jqwv2lim3RMulwsWS/tE106nEzk5OTCb\nzbBYLKiurkZycrAZ8TsK9zoiIkocDD50mj17Mkym3UGPmUy7MGfOlD6Zdnfq6+t9728D0AaUms1m\nNDQ04OTJk6iqqkJ2dna36YR7HRERJQ4GHzqtWrUUo0Y9A5NpJ9pbKQQm006MGvUsVq58tE+m3RWb\nzQaPx4Nly7R1OBoaGgBoE5P5j+dwOBxdphPudURElFgYfOh0ySWXYP/+WjzwwFu46qocAHNx1VU5\neOCBt7B/f21Ec3HEMm1AG1dSWVnZ9iktLYXVakVZWRlsNhvGjBkDAG3dL8XFxbDb7aivr0dOTg6c\nTieampo6vFbrcrlgt9vR0tLS7XW+4ISIiBKciCTMB0AmAHE4HBINDocI0CpRSi6madtsNjGZTB0+\nZrNZcnJyZNu2bZ3Ot9vtkpGRISaTSTIyMmTTpk3idrslIyNDrFariIg4nc62cxoaGnp8HRER9T8O\nh0OgNctnSoTfx726tovREnltFyIiokhEc20XdrsQERGRoTjPh06xXEKcy5MTEVEiYPChUywD9q7S\nmwAABpJJREFUAAYXRESUCNjtQkRERIZi8EFERESGYvBBREREhmLwQURERIZi8EFERESGYvBBRERE\nhmLwQURERIZi8EFERESGYvBBMbfFN20rGYZlbjyWufFY5v0Xgw+KOVYQxmOZG49lbjyWef/F4IOI\niIgMxeCDiIiIDMXgg4iIiAyVaKvaDgKAI0eO9HY+EorH44HT6eztbCQUlrnxWObGY5kby++7c1Ck\naSkRiTSNfkMp9V0A/9fb+SAiIurHviciL0aSQKIFH5cCmAWgEcAXvZsbIiKifmUQgFQAu0XkZCQJ\nJVTwQURERL2PA06JiIjIUAw+iIiIyFAMPoj6IaVUmlLqMaVUrlJqqVIqqYfXbVRKDYt1/oio/1JK\n5fbgnLDqoLbr423Mh1IqDUAeABeANACVIuKJ9FwKTWeZzwCQ6d0cD8AmIm5DMhpHlFKHRMTq/TkJ\nQLWI5HRzzQwAWwFkiUhj7HMZX/TWF94KPAXAKQAQkVoj8hlPwqjPs72bFgBbRaTBkIzGCe/frBlA\nOYBkEWnp4lzddZC/eJznozqwQACEKhA951JoPSpH77FMESn1bucCqAOQYWBe+z2l1DgAbU8NIuJR\nSlmVUqmhggq/p5ImA7IYr3pcXyilCgEkiUiZ90txDwAGH/rpqaOLRKTEt6GU2gqgIPZZjB++AFkp\ntbGr88KpgwLFVbdLsAIBYFVKpUZyLoWmsxytANb4bdcDsLDMdbOicxDRBO1pL5R8EbEDUDHLVRwL\no75YKyJl3nPdALJincd4E0aZ53kDPZ+IXgVNcN3VE+HUQR3EVfABfQUSceERAB3l6P3y86+Ex2u7\n2QWgU3KQfc0h9vt3t1D4evx37vvSVErdrpSaoZRaDeBSA/IYb/TW0eUAjiul1nhbntbGMnMJTlcd\nFEy8dbvoKZCIC48A6CxHETnst1kMYFEsMhXnmqH1y/pL9u7vwNfd0lXfLfWInr9zq3e/S0QalVKH\nADjA7kW99NbRFdD+X2QDyAVwCNqEkhR9Pa6DQom3lg89BRJx4RGAMMvR+2SyVUQ2xypjcexQkH1m\naIPyAmUDSFNKLfSWuQVa8/TYWGYwDun5O3cBaPa16Hm7Cywsc930BtlrRWSZiIwHsA5APd/sClt3\nb6LoqYOCirfgQ0+BRFx4BCCMcvR2A5wUkU0xy1Uc847gb3v6U0olAzju+7JTSo3z9X2LSK2IbPJ+\nKr2X1AS0QFH39Pydu8AW1GjQG2Tv8W14/9YroLVCkX6dxnwE1Ctd1kE9EVfBh85KOeLCI31l7t3O\n9F63zbtdyKeTsOR7363PBWADkO93bBm0Zuc2SqkkpdRj0J5obBzkq4/OusUNwOkrY6WUxXsuAz4d\ndNYtLmhjyAIFC2AoBO8YJV89sUwpdbvf4cB6pas6qPt7xeE8H2OhRcFuaFFvud8f61YAB32j0Ls6\nl3qup2XurSiOo71JTwE4JSIcjEd9ns66JRVAEbQvxUxoXQKNhme6n9NZ5vOgdSt6ACQBqGfA13fF\nXfBBREREfVtcdbsQERFR38fgg4iIiAzF4IOIiIgMxeCDiIiIDMXgg4iIiAzF4IOIiIgMxeCDiIiI\nDMXgg4iIiAzF4IOIok4p1aqUOh/i2CLv8dUhjhcqpZr8th3e832fJqXUVv9p+4mof2HwQUQxE7A2\nhE8+ul81UwJ+rgYwDtpU5QuhTZ/t4Bo1RP0Tgw8iihUngi82NcN7TA+XiLwjIodFZJuIzIK2boot\n0kwSkfEYfBBRrFQBKPDf4V0B0wGgKegV+qwGsCgK6RCRwRh8EFGsOIG2lUl97oYWlKgopj8sCmkR\nkYEYfBBRLG2FFnD4ZAOoiVLaTdCCGEuU0iMigzD4IKJYqoF33IdSKhvASRFpjFLaZmiDUV1RSo+I\nDMLgg4hiRkTsANK8b6UEbfVQSm1USi0MI/ks7z1aIskjERmPwQcRxZqv9SMPwEtBjlvQ8a0YK3o2\nILUEQHnEuSMiw13Q2xkgori3FUAlABGRd4IcrwOwxvsmjAdaILIx4ByLUmqc9+d0AEUA0qAFNETU\nzzD4IKJY8J8krB7apGDlwY6LSKlSygKgwrvrJRF5PCC9PLQHGs0A3gaQKSIfRjXXRGQIJdLdRINE\nRERE0cMxH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9ERERkKAYfREREZCgGH0RERGQoBh9E\nRERkKAYfREREZCgGH0RERGQoBh9ERERkKAYfREREZKj/B7bWWFgSKwgsAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, From 3e49b24b4318e84c1b704e350183b69aa0c47455 Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Thu, 8 Nov 2018 14:02:36 -0500 Subject: [PATCH 05/10] Reverted README to upstream master --- README.rst | 21 ++++++--------------- 1 file changed, 6 insertions(+), 15 deletions(-) diff --git a/README.rst b/README.rst index a871daa9..4044253f 100644 --- a/README.rst +++ b/README.rst @@ -8,32 +8,23 @@ Introduction ------------ ExoCTK is an open-source, modular data analysis package focused primarily on atmospheric characterization of exoplanets. The subpackages included are: -* Transit Lightcurve Fitting Tool -* Limb-­darkening Calculator -* Groups and Integrations Calculator +* Transit light-­curve fitting tools +* Limb-­darkening calculator Transit light-­curve fitting tools --------------------------------- The ``lightcurve_fitting`` tool fits large numbers of spectroscopic light curves simultaneously while sharing model parameters across wavelengths and visits. It includes multiple uncertainty estimation algorithms and a comprehensive library of physical and systematic model components that are fully customizable. -.. figure:: /exoctk/data/images/lightcurve_fitting.png - :alt: lightcurve_fitting Demo - :scale: 50% - :align: center - - The filled circles show the raw data and the red line shows the best fit transit+linear composite model. - - Limb Darkening Calculator ------------------------- -The ``limb_darkening`` tool calculates limb darkening coefficients for a specified stellar model, plotting results versus µ and wavelength. It uses high spectral resolution stellar atmospheric models, which are a necessity given JWST's expected precision. +The ``limb_darkening`` tool calculates limb-darkening coefficients for a specified stellar model, plotting results versus µ and wavelength. It uses high spectral resolution stellar atmospheric models, which are a necessity given JWST's expected precision. .. figure:: /exoctk/data/images/limb_darkening.png - :alt: limb_darkening Demo - :scale: 50% + :alt: LDC Demo + :scale: 100% :align: center - Solid lines show the best fit quadratic and 4-parameter limb darkening profiles for the Phoenix ACES stellar atmosphere model [4000, 4.5, 0] through the WFC3_IR.G141 grism (open circles). + Coefficients of the quadratic and 4-parameter limb darkening profiles for the Phoenix ACES stellar atmosphere model [4000, 4.5, 0] through the WFC3_IR.G141 grism. From d0d47330735ffb352671e7b3cc822ac485bb5718 Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Thu, 8 Nov 2018 14:21:26 -0500 Subject: [PATCH 06/10] Typo fix --- exoctk/limb_darkening/limb_darkening_fit.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/exoctk/limb_darkening/limb_darkening_fit.py b/exoctk/limb_darkening/limb_darkening_fit.py index c8460d7a..1c819d81 100755 --- a/exoctk/limb_darkening/limb_darkening_fit.py +++ b/exoctk/limb_darkening/limb_darkening_fit.py @@ -239,16 +239,16 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, # Use tophat oif no bandpass if bandpass is None: units = self.model_grid.wl_units - bandpass = svo.Filter('tophat', wl_min=np.min(wave)*units, - wl_max=np.max(wave)*units) + bandpass = svo.Filter('tophat', wave_min=np.min(wave)*units, + wave_max=np.max(wave)*units) # Check if a bandpass is provided if not isinstance(bandpass, svo.Filter): raise TypeError("Invalid bandpass of type", type(bandpass)) # Make sure the bandpass has coverage - bp_min = bandpass.WavelengthMin*q.Unit(bandpass.WavelengthUnit) - bp_max = bandpass.WavelengthMax*q.Unit(bandpass.WavelengthUnit) + bp_min = bandpass.wave_min + bp_max = bandpass.wave_max mg_min = self.model_grid.wave_rng[0]*self.model_grid.wl_units mg_max = self.model_grid.wave_rng[-1]*self.model_grid.wl_units if bp_min < mg_min or bp_max > mg_max: From 75d0978f93271b2196b8dfe5e46a0ac62d2bbcca Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Thu, 8 Nov 2018 22:50:39 -0500 Subject: [PATCH 07/10] Edge case for self.centers --- exoctk/limb_darkening/limb_darkening_fit.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/exoctk/limb_darkening/limb_darkening_fit.py b/exoctk/limb_darkening/limb_darkening_fit.py index 1c819d81..15808655 100755 --- a/exoctk/limb_darkening/limb_darkening_fit.py +++ b/exoctk/limb_darkening/limb_darkening_fit.py @@ -295,6 +295,11 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, # Calculate errors from covariance matrix diagonal errs = np.sqrt(np.diag(cov)) + if bandpass.centers.shape == (2,): + wave_eff = bandpass.centers[0] + else: + wave_eff = bandpass.centers[0, n].round(5) + # Make a dictionary or the results result = {} result['Teff'] = Teff @@ -316,7 +321,7 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, result['n_bins'] = bandpass.n_bins result['pixels_per_bin'] = bandpass.pixels_per_bin result['wave_min'] = wave[n, 0].round(5) - result['wave_eff'] = bandpass.centers[0, n].round(5) + result['wave_eff'] = wave_eff result['wave_max'] = wave[n, -1].round(5) # Add the coeffs From 8d5dfcff487c93ad5b491e2b8386e166cee1abee Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Sat, 10 Nov 2018 01:02:38 -0500 Subject: [PATCH 08/10] Updated bandpass centers shape --- exoctk/limb_darkening/limb_darkening_fit.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/exoctk/limb_darkening/limb_darkening_fit.py b/exoctk/limb_darkening/limb_darkening_fit.py index 15808655..12ddff27 100755 --- a/exoctk/limb_darkening/limb_darkening_fit.py +++ b/exoctk/limb_darkening/limb_darkening_fit.py @@ -295,8 +295,8 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, # Calculate errors from covariance matrix diagonal errs = np.sqrt(np.diag(cov)) - if bandpass.centers.shape == (2,): - wave_eff = bandpass.centers[0] + if bandpass.centers.ndim == 1: + wave_eff = bandpass.centers[0].round(5) else: wave_eff = bandpass.centers[0, n].round(5) From acd4ec1927071d3f045dce846b49b55436ff7a0d Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Sat, 10 Nov 2018 01:18:06 -0500 Subject: [PATCH 09/10] Forced svo_filters version and used np.array.ndim --- ci/setup_conda_env.sh | 2 +- exoctk/limb_darkening/limb_darkening_fit.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/ci/setup_conda_env.sh b/ci/setup_conda_env.sh index 7877cc7e..afbd51c9 100755 --- a/ci/setup_conda_env.sh +++ b/ci/setup_conda_env.sh @@ -8,5 +8,5 @@ conda env list echo "Installing packages..." pip install numpy astropy conda install numpy astropy scipy cython matplotlib numba mock bokeh h5py sphinx pandas flask -pip install bibtexparser astroquery svo_filters batman-package lmfit +pip install bibtexparser astroquery svo_filters==0.2.15 batman-package lmfit echo $PATH \ No newline at end of file diff --git a/exoctk/limb_darkening/limb_darkening_fit.py b/exoctk/limb_darkening/limb_darkening_fit.py index 12ddff27..2e92e7fd 100755 --- a/exoctk/limb_darkening/limb_darkening_fit.py +++ b/exoctk/limb_darkening/limb_darkening_fit.py @@ -263,13 +263,13 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, # Make rsr curve 3 dimensions if there is only one # wavelength bin, then get wavelength only bp = bandpass.rsr - if len(bp.shape) == 2: + if bp.ndim == 2: bp = bp[None, :] wave = bp[:, 0, :] # Calculate mean intensity vs. mu - wave = wave[None, :] if len(wave.shape) == 1 else wave - flux = flux[None, :] if len(flux.shape) == 2 else flux + wave = wave[None, :] if wave.ndim == 1 else wave + flux = flux[None, :] if flux.ndim == 2 else flux mean_i = np.nanmean(flux, axis=-1) mean_i[mean_i == 0] = np.nan From 9c0d6552d6256da0ef93dcc81c3b77bb6c787211 Mon Sep 17 00:00:00 2001 From: Joe Filippazzo Date: Sat, 10 Nov 2018 23:47:49 -0500 Subject: [PATCH 10/10] Added grism test for LDC and released new svo_filters version --- .pytest_cache/v/cache/lastfailed | 3 +++ .pytest_cache/v/cache/nodeids | 1 + ci/setup_conda_env.sh | 2 +- exoctk/limb_darkening/limb_darkening_fit.py | 6 +----- exoctk/tests/test_limb_darkening.py | 21 +++++++++++++++++++++ 5 files changed, 27 insertions(+), 6 deletions(-) create mode 100644 .pytest_cache/v/cache/lastfailed create mode 100644 .pytest_cache/v/cache/nodeids diff --git a/.pytest_cache/v/cache/lastfailed b/.pytest_cache/v/cache/lastfailed new file mode 100644 index 00000000..59f35d35 --- /dev/null +++ b/.pytest_cache/v/cache/lastfailed @@ -0,0 +1,3 @@ +{ + "exoctk/tests/test_limb_darkening.py": true +} \ No newline at end of file diff --git a/.pytest_cache/v/cache/nodeids b/.pytest_cache/v/cache/nodeids new file mode 100644 index 00000000..0637a088 --- /dev/null +++ b/.pytest_cache/v/cache/nodeids @@ -0,0 +1 @@ +[] \ No newline at end of file diff --git a/ci/setup_conda_env.sh b/ci/setup_conda_env.sh index afbd51c9..996479ff 100755 --- a/ci/setup_conda_env.sh +++ b/ci/setup_conda_env.sh @@ -8,5 +8,5 @@ conda env list echo "Installing packages..." pip install numpy astropy conda install numpy astropy scipy cython matplotlib numba mock bokeh h5py sphinx pandas flask -pip install bibtexparser astroquery svo_filters==0.2.15 batman-package lmfit +pip install bibtexparser astroquery svo_filters==0.2.16 batman-package lmfit echo $PATH \ No newline at end of file diff --git a/exoctk/limb_darkening/limb_darkening_fit.py b/exoctk/limb_darkening/limb_darkening_fit.py index 2e92e7fd..9d2f1b64 100755 --- a/exoctk/limb_darkening/limb_darkening_fit.py +++ b/exoctk/limb_darkening/limb_darkening_fit.py @@ -294,11 +294,7 @@ def calculate(self, Teff, logg, FeH, profile, mu_min=0.05, ld_min=0.01, # Calculate errors from covariance matrix diagonal errs = np.sqrt(np.diag(cov)) - - if bandpass.centers.ndim == 1: - wave_eff = bandpass.centers[0].round(5) - else: - wave_eff = bandpass.centers[0, n].round(5) + wave_eff = bandpass.centers[0, n].round(5) # Make a dictionary or the results result = {} diff --git a/exoctk/tests/test_limb_darkening.py b/exoctk/tests/test_limb_darkening.py index 12433891..89ac2d85 100755 --- a/exoctk/tests/test_limb_darkening.py +++ b/exoctk/tests/test_limb_darkening.py @@ -73,6 +73,27 @@ def test_ldc_calculation_filter(): assert len(ld_session.results) == 2 +def test_ldc_calculation_grism(): + """Test to see if a calculation can be performed with a grism and + that they are appended to the results table""" + print('Testing LDC calculation using a filter grism...') + + # Make the session + ld_session = ldf.LDC(MODELGRID) + + # Make a filter + filt = Filter('2MASS.H', n_bins=10) + + # Run the calculations + ld_session.calculate(Teff=4000, logg=4.5, FeH=0, profile='quadratic', + bandpass=filt) + ld_session.calculate(Teff=4000, logg=4.5, FeH=0, profile='4-parameter', + bandpass=filt) + + # Two profiles split into 10 measurements = 20 calculations + assert len(ld_session.results) == 20 + + def test_ldc_calculation_interpolation(): """Test to see if a calculation can be performed with no filter and an interpolated grid point and that they are appended to the results