
Patrick Gartung, Chris Green,
Marc Mengel

Spack Tutorial

• What is Spack?
• Tutorial (play along!)

– Setting up, Seeing what is installed
– Making software available to use
– Build/Binary Caches
– Spack and CVMFS
– Making and using a development instance

Overview

• Supercomputing Package manager
– system for organizing and building software
– multiple platforms
– multiple versions

• Avoids LD_LIBRARY_PATH explosion
– RPATH in binaries
– => relocating binary packages (patchelf)
– Path length / Padding

• Avoiding PATH explosion
– Environments + Views
– forest of symlinks

What is Spack?

• Access Spack via a setup script: (exercise 1)
EXP=mu2e

source /cvmfs/$EXP.opensciencegrid.org/packages/setup-env.sh

spack --help

• See what packages are installed (exercise 2)
 spack find

• spack find takes a "spec" -- package specification (used all over Spack)
spack find python target=x86_64_v2

spack find python target=x86_64

spack find python@3.8:

• more spec details
 spack help --spec

Using Spack – getting started and spack find

• can show packages unique hash:
spack find --long python

spack find --very-long python

• can show dependencies:
spack find --deps python

• can show paths:
spack find --paths python

Using spack find: cont.

• Spack (un)load puts packages in your PATH, etc.
python3 -V

spack load python@3.9.16

python3 -V

spack unload python

python3 -V

spack load python/avsjsvp

python3 -V

Making software available

• Spack “environments” access many packages at once
spack find
spack env list
spack env activate ${EXP}_externals_current
spack find
which root
spack env deactivate

Making Software Available

• spack cd
spack cd -i python@3.9.15
pwd
ls
./bin/python3 -V

spack cd --env ${EXP}_externals_current
ls -a
cp spack.lock $HOME/saved_spack.lock # for later…
cd .spack-env/view
ls -l bin | more

• Note that there are a bunch of other spack cd options, use --help to see them

Using Spack (cont)

While you can just checkout a copy of spack from Git, and
configure it yourself, we recommend our “bootstrap” script from
fermi-spack-tools:
wget https://github.com/FNALssi/fermi-spack-tools/raw/v2_20_0/bin/bootstrap

chmod +x bootstrap

sh ./bootstrap /path/to/new/instance

Or for a build instance
Sh ./bootstrap --with_padding /path/to/new/instance

Starting a new instance

https://github.com/FNALssi/fermi-spack-tools/raw/v2_20_0/bin/bootstrap

A tour of spack recipes…
Run spack edit on the following to examine their recipes:
• ‘watch’ : simple case: Versions, A few dependencies,

determine_version (for spack external find),
executables for recipes that depend on it

• ‘python’: above plus: setting phases, lots of variants,
setup_build_environment, setup_dependent_environment,
flag_handler, configure_args, @run_after decorators…

• ‘art-root-io’: a representative case for us

Spack recipes

Our Fermi version of spack has ups compatibility features
. /grid/fermiapp/products/common/etc/setups

ups list -az /cvmfs/$EXP.opensciencegrid.org/packages
setup -z /cvmfs/$EXP.opensciencegrid.org/packages \
bzip2 1.0.6

You can also convert existing ups packages to spack packages
spack load fermi-spack-tools
ups_to_spack htgettoken v1_16_1

(Run this later in our own Spack area)

SPACK and ups

• Make a spack instance “chained” to the other ("test release" equivalent)
• we have a script for that...[in fermi-spack-tools]

mkdir /build/$USER

cd /build/$USER

spack load fermi-spack-tools

make_subspack --with_padding /cvmfs/$EXP.opensciencegrid.org/packages \

 $PWD/my_spack

• The --with-padding enables directory padding/relocatability
spack unload fermi-spack-tools

. my_spack/setup-env.sh

spack cd -r

more etc/spack/config.yaml etc/spack/upstreams.yaml

Your own spack area

• We can install something in our spack area;
first: see what would be installed:
spack spec --install-status py-black ^python@3.9.16

• Note that packages are labelled:
 - not installed
 [+] installed here
 [^] installed in upstream spack instance)
• Actually install it:

spack install py-black ^python@3.9.16
spack spec --install-status py-black ^python@3.9.16

Our own spack area (cont.)

In theory, plain spack install will get things from a buildcache,
but it is difficult to give a command line spec that matches…

Recommend

• using spack buildcache install by hash:

spack buildcache list -al watch

spack buildcache install -oa /tyd3og5

• Installing an environment with a spack.lock file

(in a later slide)

Installing prebuilt packages from buildcache

Setting up and use a build environment in our chained instance
spack env create myenv1 $HOME/saved_spack.lock
spack env activate myenv1
spack develop art@develop
spack develop art-root-io@develop
spack config edit

 …change version of art and art-root-io to "develop"
spack cd --env
cd art
cd ../art-root-io
spack concretize --force
spack install

Developing sw in your environment

Add a gpg signing key if needed
spack gpg list

gpg-agent --homedir=/dir/from/above --daemon &

gpg --gen-key --homedir=/dir/from/above

cp /dir/from/above/secring.gpg /some/place/safe

Put signed packages in a local buildcache directory
spack buildcache create -k gpg-key ./bc spec

Copy them to a distribution area & reindex (needs permissions added)
scp -r ./bc/build_cache products@fifeutilgpvm01:/spack_cache/

ssh products@fifeutilgpvm01 sh /spack_cache/.mkindex.html

Adding packages to a buildcache

Installing into cvmfs: use (only) pre-built packages
• Login into cvmfs node,

ssh cvmfsmu2e@oasiscfs01

. /cvmfs/$EXP.opensciencegrid.org/packages/setup-env.sh

• Start a cvmfs transaction
cvmfs_server transaction $EXP.opensciencegrid.org

• Install with buildcache intall hash

spack buildcache install -oa /hash1

• …or install an environment from a lock file

spack env create newenv /path/to/spack.lock

spack -e newenv install

• End the cvmfs transaction
touch xyz/.cvmfscatalog # to partition cvmfs catalogs

cvmfs_server publish $EXP.opensciencegrid.org

Installing in cvmfs

Most experiments will be building their own packages against
toolsets like the Art suite or LArSoft.

Recommendation:

• Install exact env: spack env create name spack.lock
• spack add new_package to environment
• spack install

• Use resulting spack.lock and buildcache to distribute

Building with upstream packages

Sometimes, Spack will just not concretize a new package
depending on an existing one. You can “change its mind”:
• spack spec –yaml new_package_spec > file1.yaml

Spack spec -yaml existing/hash > file2.yaml
– Save output of concretizing and existing spec
– Create combined file with upper package from file1 with

hashes replaced and lower packages from file2
• spack install -f combined_file.yaml

– Install already concretized package

Working around the “concretizer”

To learn more

• Run commands with --help
• Read the documentation at spack.readthedocs.io

After the class

https://spack.readthedocs.io

