
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Veri�cation of Domain Speci�c Languages

Technical report

Author:

Semeráth Oszkár

Advisor:
dr. Varró Dániel

Associate Professor, BME-MIT

created: October 28, 2012

last edited: March 28, 2013

Contents

1 Preliminaries 2

1.1 Technological basics . 2
1.2 Overview of the approach . 3

2 Z3 Representation of the EMF Metamodel 4

2.1 Objects . 4
2.2 Types . 4
2.3 Class hierarchy . 4
2.4 Reference . 5
2.5 Multiplicity . 6
2.6 Inverse edges . 6
2.7 Containment . 7
2.8 Instance models . 7
2.9 Conclusion . 8

3 Z3 Representation of the IncQuery Patterns 9

3.1 Structure of the Patterns . 9
3.2 De�ning Domain Speci�c Languages with IncQuery Patterns 10
3.3 Classi�er Constraints . 10
3.4 Path Constraints . 10
3.5 Constraint Approximation . 11
3.6 Recursive Patterns . 11
3.7 Pattern Call . 12
3.8 Creating an Approximated Pattern Call Graph 14
3.9 Transitive Closure . 14
3.10 Conclusion . 17

Bibliography 18

1

Chapter 1

Preliminaries

1.1 Technological basics

The design of integrated development environments (IDEs) for complex domain-speci�c lan-
guages (DSL) is still a challenging task nowadays. Generative environments like the Eclipse
Modeling Framework (EMF) [10], Xtext or the Graphical Modeling Framework (GMF) signif-
icantly improve productivity by automating the production of rich editor features (e.g. syntax
highlighting, auto-completion, etc.) to enhance modeling for domain experts. Furthermore, there
is e�cient tool support for validating well-formedness constraints and design rules over large
model instances of the DSL using tools like Eclipse OCL [11] or EMF-IncQuery [3]. As a re-
sult, Eclipse-based IDEs are widely used in the industry in various domains including business
modeling, avionics or automotive.
However, in case of complex, standardized industrial domains (like ARINC 653 [1] for avionics

or AUTOSAR [2] in automotive), the sheer complexity of the DSL is a major challenge itself.
(1) First, there are hundreds of well-formedness constraints and design rules de�ned by those
standards, and due to the lack of validation, there is no guarantee for their consistency or
unambiguity. (2) Moreover, domain metamodels are frequently extended by derived features,
which serve as automatically calculated shortcuts for accessing or navigating models in a more
straightforward way. In many practical cases, these features are not de�ned by the underlying
standards but introduced during the construction of the DSL environment for e�ciency reasons.
Anyhow, the speci�cation of derived features can also be inconsistent, ambiguous or incomplete.
As model-driven tools are frequently used in critical systems design to detect conceptual �aws

of the system model early in the development process to decrease veri�cation and validation
(V&V) costs, those tools should be validated with the same level of scrutiny as the underlying
system tools as part of a software tool quali�cation process issues in order to provide trust in
their output. Therefore software tool quali�cation raises several challenges for building trusted
DSL tools in a speci�c domain.
In the current paper, we aim to validate DSL tools by proposing an automated mapping

from their high-level speci�cation to the state-of-the-art Z3 SMT-solver [4]. We assume that
DSL tools are speci�ed by their respective EMF metamodels extended with derived features
and well-formedness constraints captured (and implemented) by graph queries within the EMF-

IncQuery framework [8, 5]. We de�ne a validation process, which gradually investigates derived
features and well-formedness constraints to pinpoint inconsistency, ambiguity or incompleteness
issues. We identify constraints and derived features which can be mapped to e�ectively proposi-
tional logic formula [7], which are a decidable fragment of �rst order logic with e�ective reasoning
support. Moreover, we provide several approximations for constraints which lie outside of this
fragment to enable formal analysis of a practically relevant set of constraints.
The main innovation of our approach is to provide a combined validation of metamodels,

derived features and well-formedness constraints de�ned by an advanced graph query language

2

(instead of OCL) using approximations to cover complex query features. Our approach is illus-
trated on validating several DSL tool features taken from an ongoing industrial project in the
avionics domain.

1.2 Overview of the approach

Our approach (illustrated in Figure 1.1) aims at validating complex DSL languages by automat-
ically mapping from their high-level speci�cation to the Z3 [4] SMT-solver. These complex DSLs
are assumed to be de�ned by (i) a metamodel speci�ed in EMF and augmented with both (ii)
derived features and (iii) well-formedness (WF) constraints captured by model queries within the
EMF-IncQuery framework. These three artifacts form the input for our generator to provide
the logical formulas that is fed into the Z3 solver. The output of the solver is either a proof
of inconsistency or a valid model that satis�es all given constraints generated from the input
artifacts.
Additionally, search parameters can be de�ned to impose additional restrictions or speci�c

overapproximations to reduce the complexity of the formula to be proved. Moreover, as an
optional input for the generator the user can de�ne � based on the counter examples and proves
provided by the solver � speci�c instance level constraints in the form of an partial snapshot [9, 6]
(also called input model) to restrict the domain of possible instance model and thus prune trivial
valid models (e.g., empty model) provided by the Z3 solver.

Figure 1.1: The structure of the analysis

The tool can be used to:

� check the consistency of a domain speci�c language.

� get a minimal element of a language.

� formally prove some property of an informally speci�ed design language.

� compare the matches of the patterns with the IncQuery, and used as a test oracle.

3

Chapter 2

Z3 Representation of the EMF

Metamodel

2.1 Objects

The models of the EMF framework are graph based , where the EObjects are the nodes of the
graphs and the EReferences are the edges. The objects of an EMF model are one-to-one compiled
to individuals of the Z3 models that instances of a type Object.

(declare-sort Object)

If the number of object is bounded there is a more e�cient way to declare �x sized enum-like
types:

(declare-datatypes () ((Object O1 O2 O3)))

where O1, O2 and O3 are the only objects in an three element model.

2.2 Types

The possible types of the instance model are the classes of the input Ecore metamodel. The
language of the Z3 does not support inheritance between the types, so other convention is needed
to be used. The most e�cient way to describe if an object is an instance of a type from the �nite
domain of the classi�ers is the de�nition of type indicator predicates. If an o object is an instance
of a type T, the isTypeT o expression is true, and false otherwise. The declaration of the possible
types should be enumerated.

Example 1 For example with types A, B and C it looks like:

(declare-fun isTypeA (Object) Bool)

(declare-fun isTypeB (Object) Bool)

(declare-fun isTypeC (Object) Bool)

2.3 Class hierarchy

A simple way to de�ne the type hierarchy of the EMF is to enumerate the possible type cases of
type predicate combination. This is de�nable by a table where every column representing a type
and every row a concrete (nor abstract, neither interface) type. The cells contain a predicate.
This predicate is positive if the type of the row is compatible with the type of the column, and
negated if it is not. The type A is compatible with the type B if they satisfy one of those:

� A=B

4

� B is supertype of A

The conjunction of the predicates in a row describes a possible case of the type evaluation of
an object. The disjunction of those di�erent type cases expresses that an object satis�es one and
only one type case. This feature is expressed to every object.

Example 2 The following example expresses the type hiearchy of the metamodel visible in
�gure 2.1.

Figure 2.1: Type hierarchy example.

And the statement that de�nes the possible types are the following:

(assert (forall ((o Object))(or

A B C

B (and (isTypeA o) (isTypeB o) (not (isTypeC o)))

C (and (not (isTypeA o)) (not (isTypeB o)) (isTypeC o))
)))

The size of this statement is O(|types|2) which seems quiet big, but in case of mostly disjoint
types there is not any much more e�cient technique: it should be stated that the predicates are
mutually exclusive.
If the metamodel extension is enabled the type hierarchy could be extended that the an object

could have any type set from the powerset of types. The only constraint that the inheritance
should be satis�ed: if an object has the type A and A is compatible with the type B then the
object has the type B too. This can be expressed by simple implications over the type predicates.

2.4 Reference

The references of the EMF models are the edges between the object-nodes. Those edges are di-
rected; loop edges are allowed; parallel edges are not supported but not prohibited. The IncQuery
pattern language follows the ideology of the EMF. This concludes that the EMF metamodel with
IncQuery constraints is incapable to de�ne any parallelism property of the instance models. This
fact reduces the complexity of references to the level of relations which can be easily described
as Z3 relations.
The types of the objects on the ends of the relations are needed to be de�ned. In case of a

relation this de�nition is a simple assumption: if a (O1,O2) pair satis�es the relation than the O1
need to be an instance of the source of the relation and O2 needs to be the instance of the target.

Example 3 The following example de�nes the types of the references visible on the Figure 2.2:

5

; reference A.b

(assert (forall ((s Object) (t Object))(=> (referenceAB s t)

(and (isTypeA s) (isTypeB t)))))

; reference B.a

(assert (forall ((s Object) (t Object))(=> (referenceBA s t)

(and (isTypeB s) (isTypeA t)))))

2.5 Multiplicity

A relation with 0..* multiplicity by default. In the other cases, some multiplicity assumption
might be necessary.
In case of n..m the n lower bound means that every object is in relation with n di�erent

target. An m upper bound can be set on an object by stating that there is not m + 1 di�erent
target that is in relation with the object. This can be expressed in E High numbers can only be
de�ned with unacceptable amount of existential quanti�er, which can easily kill the e�ciency
of the theorem prover. This assumption should be added with low priority to the system. Some
example:

Example 4 The relations of the �gure 2.2 should be declared in the following way (the �rst is
the A.b reference, the second is the B.a):

Figure 2.2: Reference example.

(declare-fun referenceAB (Object Object) Bool)

(declare-fun referenceBA (Object Object) Bool)

The multiplicities of A.b is implicitly de�ned. The multiplicities of B.a are presented in the
following lines (the upper bound have got two equivalent versions: the �rst is more intuitive and
the second is more e�cient):
Lower: (assert (forall ((src Object)) (=> (isTypeA src)

(exists ((trg Object)) (referenceAB src trg)))))

Upper v1: (assert (forall ((src Object)) (not

(exists ((trg1 Object)(trgextra Object)) (and (not (= trg1 trg2))

(referenceAB src trg1)(referenceAB src trgextra))))))

Upper v2: (assert (forall ((src Object)(trg1 Object)(trgextra Object)) (=>

(and (referenceAB src trg1)(referenceAB src trgextra)) (or (= trg1 trgextra)))))

2.6 Inverse edges

The inverse of a reference can also be de�ned as demonstrated in the following example:

Example 5 The A.b and B.a references on �gure 2.2 are the inverse of each other. This can
be stated by:

(assert (forall ((s Object) (t Object))(=> (referenceAB s t)

(referenceBA t s)))

6

(assert (forall ((s Object) (t Object))(=> (referenceBA s t)

(referenceAB t s)))

2.7 Containment

The objects of an EMF model are arranged in a directed tree hierarchy by the containment edges.
A tree is a connected acyclic graph:

� The acyclicity describable by that any object is unreachable from itself by the path of
composition edges. This can be approximanted like as an IncQuery pattern with a simple
transitive closure.

� If the previous requirement is satis�ed, the composition graph is a DAG. There should be
a root element in this graph that referenced by the root Z3 constant.

� Every object of the model have exactly one parent in the model with the only exception of
the root element.

If these three requirements are held then composition edges are arranged in a tree.

Example 6 At �rst the the root constant and the containment relation are declared. There is
containment relation between two object if and only if there is a containment type edge between
them.

(declare-fun root () Object)

(declare-fun containment (Object Object) bool)

We de�ned the statement that the roots does not have any parent and each non-root element
have exactly one in the following way:

(assert (forall ((parent Object)) (not(containment parent root))))

(assert (forall ((o Object)) (or(= o root)(exists ((parent Object))

(and(not (= parent o)) (containment parent o))))))

2.8 Instance models

The analysis can be parameterized by an initial instance model of the metamodel. This initial
model can be inserted to the axiom system of input of the Z3 with the following translations
steps:

� Every object of the instance model is compiled into a constant, like:
(declare-const instance1 Object).

� The constants are forced to be unique:
(assert (distinct instance1 instance2 ...)).

� The type of a constant is settable by the type predicate:
(assert (isTypeA instance1)).

� The references are settable by the same way:
(assert (referenceAB instance1 instance2)).

7

2.9 Conclusion

The generated statements de�nes the basic structure of the analysed domain. The set of those
statements are handled as META.
In general, this report aims to ensure the traceability between the two kinds of model. This

means that every distinct valid Z3 model can be translated to every di�erent EMF instance
model. This requirement is satis�ed at metamodel mapping.
The second goal is to achieve decidability and e�cient feasibility if it is possible with the given

domain. For this purpose a subclass of the �rst order logic is used:

De�nition 1 (E�ectively propositional logic) The e�ectively propositional logic[7] is
a fragment of the �rst order logic, which contains �nite number of constant variables and
the statements in prenex form build from universal quanti�ers, predicates and logical con-
nectives.

This fragment of the �rst order logic is decidable, and e�ciently provable.
The list of features of an EMF metamodel and witch one is expressible at e�ectively proposi-

tional form:
Section Name

section 2.1 Objects E +
section 2.2 Types E +
section 2.3 Class hierarchy E +
section 2.4 References E +
section 2.5 0..X multiplicities E +
section 2.5 Not 0..X multiplicities (like 1..1) E �
section 2.6 Inverse edges E +
section 2.7 Containment hierarchy A �
section 2.8 Initial instance model E +

where:

E means that the feature is expressible
A means that the feature can be approximated (see the exact de�nition later)
+ means that the expression is at e�ectively propositional form
� means that the expression is not at e�ectively propositional form

8

Chapter 3

Z3 Representation of the IncQuery

Patterns

3.1 Structure of the Patterns

An IncQuery pattern consists of a parameter list and some pattern body . The parameter list is a
�x sized vector of variables over the EObject-s of the model, let sign this with Params. The bodies
de�ne properties of the parameters; this de�nition may use some other existentially quanti�ed
object variables called Vars. The properties are de�ned in by constraints over the parameters
and the variables. The disjunction of the properties of the bodies de�ne the predicate of the
pattern. Formally:

pattern(Params) =
∨

body ∈
pattern.bodies

∃Vars
∧

constraint ∈
body.constraints

constraint(Params,Vars)

The match-set of a pattern is a relation over the objects of the model. An object vector is in
the match-set if and only if the vector satis�es predicate of the pattern:

Params ∈ patternMatch ⇔ pattern(Params)

The relation of a pattern is de�ned as a predicate over the objects of the model. The inter-
pretation of the pattern matching predicates are enforced by implication assertions. Some cases
a direction of implication might be omitted if it does not serve any cause in the analysis.

Example 7 There is a two parametered pattern called Reachable(x, y). The matchings of
this pattern are de�ned by the satisfaction of the following predicate:

(declare-fun patternReachable (Object Object) Bool)

If some property de�ned in the bodies of the pattern holds, the predicate should be true, and
the satisfaction of the predicate implies the mentioned property:

Params ∈ patternMatch ⇔ pattern(Params)

(assert (forall ((x Object)(y Object))(iff (properties)

(patternReachable x y))))

9

3.2 De�ning Domain Speci�c Languages with IncQuery Patterns

An M model is the element of a domain speci�c language (DSL) if it is conform with the
metamodel (META) and satis�es its well-formedness statements (WF):

M ∈ DSL ⇔ META ∧WF |= M

The goal of the validation framework of the IncQuery is to de�ne the well-formedness by
patterns. The model is violating the well-formedness (WF) criteria if it is satisfying any of the
forbidden pattern (that is marked with @Constraint annotation). So a well formed M is free
from any matches of those patterns:

M |= WF = ¬
∨

pattern ∈
annoted patterns

∃Params pattern(Params)

Develop the patterns and the vectors of the WF statement:

WF = ¬
∨

patterns

∃p1 . . . ∃pn︸ ︷︷ ︸
parameters

∨
bodies

∃v1 . . . ∃vn︸ ︷︷ ︸
variables

∧
constraints

constraint(Params,Vars)

Which equals with this in prenex form (renaming the parameters and the variables to unique
name might be necessary) :

WF = ∀p1 . . . ∀pn︸ ︷︷ ︸
parameters

∀v1 . . . ∀vn︸ ︷︷ ︸
variables

∧
patterns

∧
bodies

∨
constraints

¬constraint(Params,Vars)

And that form is satisfying in the requirements of the the of the e�ectively propositional logic.

Statement 1 (E�ectively propositional nature of patterns) If every constraint in
the patterns are de�nable in a form of predicate that does not use any universally quanti�ed
variable then the well-formedness is an e�ectively propositional statement.

The aim is to keep the e�ective propositional property of the Z3 statements whenever it is
possible. The following sections provide the translation of the constrains of the IncQuery language
to a Z3 expression.

3.3 Classi�er Constraints

A classi�es constraint de�nes the type of the objects that are binded to the variable. The Inc-
Query constraint can be easily compiled to type predicate.

Example 8 There is an IncQuery classi�er constraint that de�nes that the variable x is an
instance of the type T: T(x). In Z3 the constraint is compiled to this expression: isTypeT x.

3.4 Path Constraints

Path constrains in IncQuery de�nes that there is a path consists of sequence of references from the
de�ned type that leads from a variable to another. By introducing the implicit object variables as
the inner nodes of the path, the expression can be compiled into simple reference requirements.

Example 9 The IncQuery path expression constraint A.b.c.d(x,y) de�nes that there is a
path that starts from x, leads through references b, c and d and ends in the y object. The path

10

touches some further object that should be referred by implicit variables. In this example there
is two of that that should be called pathVariable1 and pathVariable2.
After this the following sequence de�nes the existence of the path:

and (referenceAB x pathVariable1)

(referenceBC pathVariable1 pathVariable2) (referenceCD pathVariable2 y)

The equivalence and unequivalence of two object can be simply de�ned as well.
The check expressions are relations over the variables that are impossible to be fully sup-

ported. If the results of the case expressions are modelled by a predicate than the result could
be consequent. In individual cases some manual assertion might be achievable.

3.5 Constraint Approximation

The expressive power of the IncQuery language is de�nitely larger than the input language of
the Z3 �rst order theorem prover. Some constraints such as recursively called patterns, transitive
closures, set cardinalities and check expressions can not be fully compiled into it.
To handle this some approximation techniques need to be deployed:

De�nition 2 (Approximations of Constraints) The CUA predicate is underapproxi-
mate (COA overapproximate) the C constraint if it satis�es the following implications for
every parametrisation:

CUA ⇒ C (C ⇒ COA)

The constant true predicate is always a good overapproximation, and false approximates every
predicate under. A statement also approximates itself. Let us see what approximated constraints
can provide:

De�nition 3 (Approximations of Well-Formedness) The axioms of well-formedness
WF of a domain speci�c language are overapproxiated (underapproxiamted) by WFOA

(WFUA) if it is produced by the overapproximation (underapproxiamtion) of the forbidden
patterns de�ning the WF .

The approximations de�ne languages with more or less elements than the approximated one,
as the following implications show:

METAUA ∧WFUA |= M ⇒ META ∧WF |= M

METAOA ∧WFOA 6|= M ⇒ META ∧WF 6|= M

If the analysis is about the consistency of the language, the following implications are the
interesting ones:

METAOA ∧WFOA unsatis�able ⇒ META ∧WF unsatis�able

METAUA ∧WFUA satis�able ⇒ META ∧WF satis�able

This means that the consistency check of a domain speci�c language can be done by verifying
a more general logical structure what more e�cient to reason over.

3.6 Recursive Patterns

The pattern call constraint makes it possible to compose more complex patterns that referring
to others. Those complex patterns might exceed the expression power of the Z3, so it needed to
be handled carefully.

11

The Z3 theorem prover does not support the de�nition of recursive axioms, but the IncQuery
language does. However, some experimental test has been tried about the recursive axioms that
resulted in the following results:

� sometimes the axioms are handled correctly.

� if the Z3 has reached some kind of �x point in the proving, the created model are believed
to be correct wrongly.

� � the axiom system is inconstant the model search resulted in in�nite loop.

This means that results are overapproximations of the domain speci�c language, but it fail
to work when this kind of approximations are useful. The developers promised that this feature
will be supported, but not in the near future. This implied that the recursion must be handled
manually.

3.7 Pattern Call

The conclusion of the previous section is that the recursive pattern calls have to be approximated.
At �rst the cases of recursion are needed to be found. For this, a pattern call graph should be
created witch sign every pattern call constraints.

De�nition 4 (Call Graph) A pattern call graph is a directed graph, where every node
is bijectively mapped to a pattern (representing : V 7→ Patterns), and there is a directed
edge between two nodes if and only if the pattern of the source edge contains a call to the
pattern of the target of the edge.

Every circle in the call graph can be traced back to a case of a recursion. So the goal is to
create an acyclic call graph that somehow approximate the original call graph.
The approximated call graph is need to be introduced. The �rst di�erence between this and

the original is that a pattern might be represented by multiple node in the call graph, but one
node must be assigned as an entry point. The second is that there might be omitted cases of the
pattern calls. Formally:

De�nition 5 (Approximated Call Graph) Approximated call graph is a directed acyc-
lic graph (DAG), where every node is surjectively mapped to a pattern (representing : V 7→
Patterns), every pattern are injectively mapped to a node (entry : Patterns 7→ V), and if
there is an edge between two nodes that means that the pattern of the source edge contains
a call to the pattern of the target of the edge.

Example 10 Check the following IncQuery patterns:

pattern A(...) {find B(...); ...}

pattern B(...) {find C(...); find D(...);...}

pattern C(...) {find A(...); ...}

pattern D(...) {...}

The call graph of this is visible on the left side of the �gure 3.1.
There is an approximation of this call graph on the right side of this �gure. The nodes labelled

with a pair of a letter and a number representing the patterns with the same name as the
letter. There are di�erent nodes that representing the same pattern they are distinguished by
the numbers. The ones with the number 0 are the entry points. Note that the edges representing
the calls can leads into any instance of the node belongs to the target pattern as long as the
acyclicity is hold. There is a missing call from C2 to an A node that is allowed. (It needs to be
allowed or else the DAG property can not be satis�ed.)

12

Figure 3.1: Normal and approximated call graphs

When an approximated call graph is constructed than the approximations of the pattern call
constraints can be created. For each node of the approximated call graph a new pattern matching
relation should be created, like it was a whole new pattern. In the property assertions of those
patterns, every pattern call constraint should refer to the relation that belongs to the target of the
pattern call edge. If there is a pattern call constraint that has not got edge in the approximated
call graph, the constraint should be approximated to a constant true or false predicate.
A pattern body is the conjunction of the constraints. This means that a constant true predicate

is omittable without changing the semantics, and a constant false predicate make the body
unsatis�able,
This means that the unapproximated pattern match relation has to satisfy all the over- and

underapproximation property. The following assertion was the inexpressible one, where pattern
was possibly recursive:

Params ∈ patternMatch ⇔ pattern(Params)

The pattern(Params) property has been approximated:

patternUA(Params) ⇒ pattern(Params) ⇒ patternOA(Params)

So the following assertion de�nes the relation of the match-set are under- and overapproxi-
mated by the properties de�ned by the pattern:

patternUA(Params) ⇒ Params ∈ patternMatch ⇒ patternOA(Params)

Example 11 We want to de�ne the pattern referred in the pattern call graph in �gure 3.1, and
we only need overapproximations. For this purpose we use the approximated pattern call graph
on the right side of same �gure.
First we de�ne the pattern matching relations:

13

(declare-fun A (...) Bool)

(declare-fun A0 (...) Bool)

(declare-fun A1 (...) Bool)

(declare-fun A2 (...) Bool)

(declare-fun B (...) Bool)

(declare-fun B0 (...) Bool)

(declare-fun B1 (...) Bool)

(declare-fun B2 (...) Bool)

(declare-fun C (...) Bool)

(declare-fun C0 (...) Bool)

(declare-fun C1 (...) Bool)

(declare-fun C2 (...) Bool)

(declare-fun D (...) Bool)

After this, the approximated pattern properties can be added. The target og the pattern calls
are de�ned in the approximated pattern call graph:

A: approximated
in A0: referring to B0

in A1: referring to B1

in A2: referring to B2

B: approximated
in B0: referring to C0 and D0

in B1: referring to C1 and D0

in B2: referring to C2 and D0

C: approximated
in C0: referring to A1

in C1: referring to A2

in C2: true

And the approximations:

A ⇒ A0 B ⇒ B0

C ⇒ C0 D ⇔ D0

3.8 Creating an Approximated Pattern Call Graph

In this section I provide an algorithm that can create an approximated pattern call graph.
Let MaxCallNumber ∈ N mark Level of precision in the approximation. The base idea of

this approximation is that it neglects the cycles in the call graph where a pattern has been called
more times than the MaxCallNumber parameter.
The algorithm is a repetition bounded depth-�rst search. It starts on a pseudo-node that calls

the forbidden patterns. A call history is a multiset of patterns; in this collection shows that a
pattern is how many times called before an actual call. The algorithm: 1.

3.9 Transitive Closure

The Z3 theorem prover is a highly optimised tool. If the approximations can be failed easily,
the prover will try to do it, because the failed approximations do not enforce anything. This
happens for example when transitive closure simply written in form of recursion is tried to be
overapproximated.

Example 12 For the sake of simplicity the following example is demonstrated in the language
of the IncQuery patterns. The goal is to de�ne reachability by recursion. (Usually transitive
closure is recommended for this purpose.) It would look like this:

pattern reachable(x, y) {

Node.edge(x,y); } or {

Node.edge(x,middle);

14

Algorithm 1: CreateApproximationNode
Data: n: Node, h: Call history
Result: a: Approximated node
a := new Approximation node
a.hasEnded := false
a.representing := pattern of n
begin

if h does not contains a.representing then
entry(a.representing) := a

end

while n has unprocessed neighbour m do

if entry(m).hasEnded then

If the control is here than h does not contains entry(m).
add an edge between a and entry(m)

else

h2 := h + a.representing
if every element in h2 has multiplicity up to MaxCallNumber then

add an edge between a and CreateApproximationNode(m,h2)
end

end

end

a.hasEnded := true

end

find reachable(x,y);

}

When overapproximated for example at most 3 steps, the following patterns would be compiled:

pattern reachableOrCanStepAtLeast3(x, y) {

Node.edge(x,y); } or {

Node.edge(x,middle);

find reachableOrCanStepAtLeast2(middle,y);

}

pattern reachableOrCanStepAtLeast2(middle, y) {

Node.edge(x,y); } or {

Node.edge(x,middle);

find reachableOrCanStepAtLeast1(x,y);

}

pattern reachableOrCanStepAtLeast1(middle, y) {

Node.edge(x,y); } or {

Node.edge(x,middle);

find reachableOrCanStepAtLeast0(middle,y);

}

pattern reachableOrCanStepAtLeast0(x, y) {

Node.edge(x,y); } or {

Node.edge(x,middle);

// find reachable(middle,y) approximated to true

}

Get an example of at most 100 steps. The expected behaviour of the prover is that it tries to

15

�nd reachable nodes, and if it stuck in 100 steps it invalidate the unapproximated property.
In reality that happens what the �gure 3.2 shows when the Z3 asked to overapproximate the

reachability between A and E: the tool �nds a circle and wastes all the approximation steps in a
3 long cicle.

Figure 3.2: The behaviour of naively overapproximated transitive closure

The �rst moral of the example is to forcing the tool to e�ectively approximate a recursive
pattern is might be hard, and it is not likely be automatizabled. The second is that the approx-
imation of the transitive closure is needed to be with simple paths rather than paths.
The di�erence between simple paths and paths that the simple ones has unique nodes. This

should be enforced in the patterns by inequality constraints: the variable named middle equiva-
lent to:

� the source or the target of the transitive closure

� earlier elements of the path

The earlier elements can be �ltered if the pattern parametrized by those elements.

Example 13 A valid implementation of the approximation of the transitive closure: pattern

reachableOrCanStepAtLeast3(x, y) {

Node.edge(x,y); } or {

middle != x;

middle != y;

Node.edge(x,middle);

find reachableOrCanStepAtLeast2(middle,y,x);

}

pattern reachableOrCanStepAtLeast2(x, y, earlier1) {

Node.edge(x,y); } or {

middle != x;

middle != y;

middle != earlier1;

Node.edge(x,middle);

find reachableOrCanStepAtLeast1(middle,y,earlier1,x);

}

pattern reachableOrCanStepAtLeast1(x, y, earlier1, earlier2) {

Node.edge(x,y); } or {

middle != x;

middle != y;

middle != earlier1;

middle != earlier2;

16

Node.edge(x,middle);

find reachableOrCanStepAtLeast0(middle,y,earlier1,earlier2,x);

}

pattern reachableOrCanStepAtLeast0(x, y, earlier1, earlier2, earlier3) {

Node.edge(x,y); } or {

middle != x;

middle != y;

middle != earlier1;

middle != earlier2;

middle != earlier3;

Node.edge(x,middle);

// find reachable(middle,y) approximated to true

}

3.10 Conclusion

The axiom system of the input consists of the statements derived from the metamodel, the initial
instance model and the forbidden patterns. The following features are expressible in e�ectively
propositional form:

section 3.3 Classi�er constraint E +
section 3.3 Classi�er constraint from parameter list E +
section 3.4 Path constraint E +
section 3.7 Positive non-circular call E +
section 3.7 Negative pattern call E �
section 3.6 Positive recursion A +
section 3.9 Transitive closure A +
section 3.7 Arbitrary call of patterns A �

Cardinality X
Check expressions X

where:

E means that the feature is expressible
A means that the feature can be approximated
X means that feature is inexpressible
+ means that the expression is at e�ectively propositional form
� means that the expression is not at e�ectively propositional form

The traceability is also provided with the exception of the recursive patterns: in this case
the patterns may have multiple valid case of di�erent match set. The IncQuery chooses the the
match-set depending on the history of the edited model. The compiler can be used to detect such
cases, where the output of the pattern matcher is ambiguous.

17

Bibliography

[1] ARINC - Aeronautical Radio, Incorporated. A653 - Avionics Application Software Standard
Interface.

[2] AUTOSAR Consortium. The AUTOSAR Standard. http://www.autosar.org/.

[3] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán Balogh,
and András Ökrös. Incremental Evaluation of Model Queries over EMF Models. In MOD-
ELS'10, volume 6395 of LNCS. Springer, 2010.

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: an e�cient SMT solver. In Proceedings of the
Theory and practice of software, 14th international conference on Tools and algorithms for
the construction and analysis of systems, TACAS'08/ETAPS'08, pages 337�340. Springer-
Verlag, 2008.

[5] Ábel Hegedüs, Ákos Horváth, István Ráth, and Dániel Varró. Query-driven soft intercon-
nection of EMF models. In Proc of the Int. Conf on Model Driven Engineering Languages
and Systems, volume LNCS 7590, pages 134�150, 2012.

[6] Ethan K. Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. Reasoning about
metamodeling with formal speci�cations and automatic proofs. In Proc. of the 14th Int.
Conf. on Model Driven Engineering Languages and Systems, volume 6981 of LNCS, pages
653�667, 2011.

[7] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjorner. Deciding e�ectively propositional
logic with equality, 2008. Microsoft Research, MSR-TR-2008-181 Technical Report.

[8] István Ráth, Ábel Hegedüs, and Dániel Varró. Derived features for EMF by integrating
advanced model queries. In Antonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald
Störrle, and Dimitris Kolovos, editors,Modelling Foundations and Applications, volume 7349
of Lecture Notes in Computer Science, pages 102�117. Springer Berlin / Heidelberg, 2012.

[9] Sagar Sen, Jean-Marie Mottu, Massimo Tisi, and Jordi Cabot. Using models of partial
knowledge to test model transformations. In 5th Int. Conf. on Theory and Practice of
Model Transformations, volume 7307 of LNCS, pages 24�39, 2012.

[10] The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/emf.

[11] E. D. Willink. An extensible OCL virtual machine and code generator. In Proc. of the 12th
Workshop on OCL and Textual Modelling, pages 13�18. ACM, 2012.

18

http://www.autosar.org/
http://www.eclipse.org/emf

	Preliminaries
	Technological basics
	Overview of the approach

	Z3 Representation of the EMF Metamodel
	Objects
	Types
	Class hierarchy
	Reference
	Multiplicity
	Inverse edges
	Containment
	Instance models
	Conclusion

	Z3 Representation of the IncQuery Patterns
	Structure of the Patterns
	Defining Domain Specific Languages with IncQuery Patterns
	Classifier Constraints
	Path Constraints
	Constraint Approximation
	Recursive Patterns
	Pattern Call
	Creating an Approximated Pattern Call Graph
	Transitive Closure
	Conclusion

	Bibliography

