-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bb9fea2
commit 8df063e
Showing
10 changed files
with
178 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
#=---------------------------------------------------------- | ||
Define G-actions on Tensor Categories | ||
----------------------------------------------------------=# | ||
|
||
|
||
struct GTensorAction | ||
C::Category | ||
G::GAPGroup | ||
images::Vector{<:AbstractFunctor} | ||
end | ||
|
||
group(T::GTensorAction) = T.G | ||
|
||
function gtensor_action(C::Category, G::GAPGroup, images::Vector{<:Functor}) | ||
GTensorAction(C,G,images) | ||
end | ||
|
||
function gtensor_action(C::Category, G::GAPGroup, images::Vector{<:Object}) | ||
GTensorAction(C,G,[(X ⊗ -) for X ∈ images]) | ||
end | ||
|
||
function (T::GTensorAction)(g::GroupElem) | ||
i = findfirst(==(g), elements(group(T))) | ||
return T.images[i] | ||
end | ||
|
||
|
||
#=---------------------------------------------------------- | ||
Cannonical G-action | ||
----------------------------------------------------------=# | ||
|
||
function gtensor_action(C::Category, G::GAPGroup) | ||
|
||
C₁ = invertibles(C) | ||
n = length(C₁) | ||
|
||
mult = multiplication_table(C₁) | ||
M = [findfirst(!iszero, mult[i,j,:]) for i ∈ 1:n, j ∈ 1:n] | ||
|
||
H = MultTableGroup(M) | ||
|
||
m,r = divrem(order(G), n) | ||
|
||
if r != 0 | ||
return gcrossed_product(C, trivial_gtensor_action(C,G)) | ||
end | ||
|
||
subs = representative.(subgroup_classes(G, order = m)) | ||
|
||
i = findfirst(N -> is_isomorphic(quo(G,N)[1], H), subs) | ||
|
||
Q,p = quo(G,subs[i]) | ||
|
||
proj = compose(p, is_isomorphic_with_map(Q, H)[2]) | ||
|
||
els = elements(H) | ||
|
||
images = [findfirst(==(proj(g)), els) for g ∈ elements(G)] | ||
images = [C₁[i] for i ∈ images] | ||
|
||
action = gtensor_action(C, G, images) | ||
end | ||
|
||
#=---------------------------------------------------------- | ||
Trivial G-action | ||
----------------------------------------------------------=# | ||
|
File renamed without changes.
File renamed without changes.
80 changes: 80 additions & 0 deletions
80
src/TensorCategoryFramework/SixJCategory/GCrossedFusion.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
#=---------------------------------------------------------- | ||
Build the G-Crossed product 𝒞 ⋊ G of a Fusion category | ||
with a G-action on 𝒞. | ||
----------------------------------------------------------=# | ||
|
||
function gcrossed_product(C::SixJCategory, T::GTensorAction) | ||
S = simples(C) | ||
G = group(T) | ||
K = base_ring(C) | ||
|
||
irreducibles = ["($s,$g)" for g ∈ elements(permutation_group(G)), s ∈ simples_names(C)][:] | ||
|
||
elements_of_G = elements(G) | ||
CxG = six_j_category(K, irreducibles) | ||
|
||
m,n = length(S), length(elements_of_G) | ||
|
||
mult = zeros(Int,n*m,n*m,n*m) | ||
|
||
for i1 ∈ 1:m, j1 ∈ 1:n, i2 ∈ 1:m, j2 ∈ 1:n | ||
g,h = elements_of_G[[j1,j2]] | ||
X = S[i1] ⊗ (T(g)(S[i2])) | ||
Y = g * h | ||
|
||
Y_ind = findfirst(==(Y),elements_of_G) | ||
|
||
for k ∈ 1:m | ||
mult[(i1-1)*n + j1, (i2-1)*n + j2, (k-1)*n + Y_ind] = X.components[k] | ||
end | ||
end | ||
|
||
ass = Array{MatElem,4}(undef, n*m, n*m, n*m, n*m) | ||
|
||
for i1 ∈ 1:m, j1 ∈ 1:n, i2 ∈ 1:m, j2 ∈ 1:n, i3 ∈ 1:m, j3 ∈ 1:n | ||
g1,g2,g3 = elements_of_G[[j1,j2,j3]] | ||
|
||
X = S[i1] ⊗ (T(g1)(S[i2])) ⊗ (T(g1*g2)(S[i3])) | ||
Y = g1 * g2 * g3 | ||
|
||
for k ∈ 1:m, l ∈ 1:n | ||
ass[(i1-1)*n + j1, (i2-1)*n + j2, (i3-1)*n + j3, (k-1)*n + l] = C.ass[i1,i2,i3,k] | ||
end | ||
end | ||
|
||
set_tensor_product!(CxG, mult) | ||
set_associator!(CxG, ass) | ||
|
||
one_coeffs = zeros(Int,n*m) | ||
one_C = one(C).components | ||
|
||
for i ∈ 1:m | ||
one_coeffs[(i-1)*n + 1] = one_C[i] | ||
end | ||
|
||
set_one!(CxG, one_coeffs) | ||
|
||
try | ||
spheric = [C.spherical[i] for j ∈ 1:n, i ∈ 1:m][:] | ||
set_spherical(CxG, spheric) | ||
catch | ||
end | ||
|
||
set_name!(CxG, "Crossed product of $(C.name) and $G") | ||
|
||
return CxG | ||
end | ||
|
||
|
||
function ⋊(C::SixJCategory, G) | ||
gcrossed_product(C,G) | ||
end | ||
|
||
function gcrossed_product(C::SixJCategory, G::GAPGroup) | ||
# Define a canonical G-action on C. Might be trivial | ||
|
||
action = gtensor_action(C,G) | ||
|
||
return gcrossed_product(C, action) | ||
end | ||
|
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters