
TEST

assert_in_delta({150, 0, 0}, 2)

?

Find home

ASSERT

RECOVERY SEQUENCE

Recover
Continue
Recover
E-stop

IF TEST FAILS...
The RECOVERY SEQUENCE field only shows 
if needed (when the Recover option is chosen 
for if the test fails). This would be useful, for 
example, to go back to the home position and 
then send an email, or to try a test again.

The ASSERT input should allow the 
checking of basically anything in the 
FBOS state tree (locations, peripheral 
states, wifi signal strength, encoders, 
hardware settings, FBOS version, etc) 
using Lua assertions

Example uses

TEST ?

Find home

RECOVERY SEQUENCE

Recover

IF TEST FAILS...

This example checks that the bot moved to the correct position (within 
2 mm of tolerance). Specifically, it tests positive coordinate x-axis 
movements and positive x-offsets. Further movements and test 
commands could be added to check all possible combinations of +/- 
coordinate, offset, and axis combinations for the MOVE TO command. 
Could easily create tests using variables as well.

What types of bugs would this automate catching?

With several beta releases of the v8 `next` branch, basic movements 
like this were executing incorrectly and it took a few tries and 
in-person checking of a bot to iron them out. One bug caused an 
incorrect axis to be moving. Another bug was subtracting offsets 
instead of adding them. Both of these bugs made it past the FBOS 
test suite, but would be quickly caught with this method of testing.

While it is fairly easy to catch bugs for simple examples like this 
in-person, the Test command could allow us to automate such tests, 
and be significantly more comprehensive to cover more permutations 
and more complex scenarios. Comprehensiveness will be especially 
critical with the launch of variables, multi-variables, multi-location 
variables, variables of different types, etc because the possibilities of 
how one can use FarmBot are going to dramatically increase.

Does the system work as expected with a multi-axis movement, 
traversing from positive coordinates into negative coordinates, with a 
destination location being a variable with multiple offsets?

That would be pretty dang easy to test with the Test command, either 
with several smaller unit-like tests or with a more integrated 
one-fell-swoop kind of test. Such examples of that complexity are 
exhausting to test manually and thoroughly with each release, let 
alone with each beta, but they would be trivial tests to create (and 
re-use) with the Test command.

TEST ?

Continue

IF TEST FAILS...

This example checks that the bot turned on the lighting. Again, while it 
might be easy to surface-level check things like this now by simply 
looking at a bot, it’s not so fast and easy to make sure this command 
works in all the ways it can be used: with Peripherals (named pins) vs 
raw pins, with digital vs analog mode, turning ON vs OFF, etc. And 
imagine where we’re heading: Variable Peripherals, Variable Values, 
SPI based peripherals(?), etc.

We could also use the Test command with an instrumented FarmBot 
to do even more comprehensive testing. For example, if a bot had an 
ambient light sensor hooked up to it, we could check the value of the 
light sensor instead of the state of the lighting peripheral to see if the 
lights are actually on. This would test not only FBOS, but the firmware 
and hardware as well as more of an integrated test.

TEST ?

Continue

IF ASSERTION FAILS...

We could use an instrumented FarmBot to test out most of the 
common uses of FarmBot’s hardware:

● Movements: Limit switches and/or hall effect sensors could 
determine if FarmBot is at a physical location or not

● Solenoid valve: A flow meter could determine if the solenoid 
valve is open or closed

● Vacuum pump: A microphone could determine if the vacuum 
pump is on

● Lighting: Light sensor as described above

Test results (pass or fail) are always 
sent as a log.

Diagnostics/Test Page
To take this testing approach one step further, 
Test command logs could be sent out with a new 
log type, `Test`, and/or on a dedicated AMQP 
channel. These could be intercepted by the FE 
and used to provide glanceable/easy-to-read test 
results on a dedicated page, or the logs page 
with filtering.

Imagine a bot being set up to run a suite of 
several hundred tests every night between 1am 
and 4am. You could login to that bot’s account 
and see what’s passing or failing right away 
without having to do much manual QA or sift 
through logs.

It would also be great to build up an idea of how 
hardware performs and fails over time in a 
better-than-anecdotal way.

We could develop Test Suites tailored to our 
various bot models (provided to users via 
account seeding or something) which would help 
customers diagnose hardware issues, and help 
us help them.

Diagnostic center

Plot of CPU temp

Plot of undervoltage events

Plot of WiFi signal strength

Plot of connectivity events
6 of 247 tests are not passing

Move absolute (coordinates)

Move absolute (coordinates with offsets)

Move absolute (variables)

Control peripheral (analog)

Control peripheral (digital)

Read sensor (analog)

Sequence name

Sequence name

Sequence name

Sequence name

Read sensor (digital)

Test: Lighting is equal to 0

Test: Lighting is equal to 1, Lighting value was 0

VIEW SEQUENCE

These are Sequences that have 
at least one Test command. 
Clicking them reveals results.

These are the test/assertion 
results/logs

1:42 AM

1:43 AM

assert_in_delta({150, 0, 0}, 2)

ASSERT

assert(peripheral.lighting_peripheral == 1)

ASSERT

assert(sensor.light_sensor >= 500)

ASSERT


