
Contents

1 Summary of NT synchronization primitives 1

1.1 Object types . 1

1.2 Wait functions . 2

1.3 Events . 4

1.4 Semaphores . 4

1.5 Mutexes . 5

1.6 Object names . 5

1.7 Handles . 6

2 Implementation constraints 6

2.1 Performance constraints . 7

2.2 Correctness constraints . 9

2.3 Robustness constraints . 10

3 Existing implementations 11

3.1 Server-side synchronization . 11

3.2 esync . 11

3.3 fsync . 13

3.4 Attempts to introduce a new kernel interface 14

4 Other ideas and proposals 15

4.1 Acceleration of in-process objects 15

4.2 Migration . 16

4.3 Object isolation . 16

4.4 In-process wait queues . 17

4.5 Extending an existing kernel interface 18

1 Summary of NT synchronization primitives

1.1 Object types

The Windows NT kernel exposes a long list of object types. Almost all of

these can be involved in synchronization; that is, they can be waited on, and

all using the same API, namely NtWaitForMultipleObjects. Some of these

objects are intended and used exclusively as synchronization primitives; others

are used for other purposes and tie into NtWaitForMultipleObjects simply

by virtue of being synchronizable.

The complete list of synchronizable objects which Wine implements at this

time is as follows:

1

� Semaphore: A classic semaphore object. It holds one 32-bit value of

dynamic state, which can be decreased by one [i.e. acquire] or increased

by an arbitrary amount [i.e. release]; the object is “signaled” when this

value is nonzero. It also holds a second, static 32-bit value denoting the

maximum count; an attempt to post past this maximum results in an

error.

� Mutex (or “mutant”): A classic recursive mutex. This holds one 32-bit

value denoting the current recursion count, as well as a reference to the

thread which owns it. A thread which exits (normally or violently) while

holding a mutex “abandons” it, and the user-space API makes a

distinction as to whether a mutex is signaled normally or abandoned

(much like robust pthread mutexes and EOWNERDEAD.)

� Event: Holds a single boolean value denoting whether the object is

signaled or nonsignaled. There are two types of events, manual-reset and

auto-reset; most NT APIs treat these identically, but due to their

differing semantics it is often useful to think of them as separate types of

objects. Auto-reset events are “consumed”, that is, reset, by wait

operations, much like semaphore and mutexes; manual-reset events are

not.

� Timer: Like events, these hold a boolean value denoting their current

signaled state. Timers can be made either non-periodic or periodic.

They can be configured to call a user-space callback function when

signaled (much like alarm(2)). They can also be canceled at any time.

Like events, they can be manual-reset or auto-reset.

� Thread, process, job: These are similar to Linux’s pidfd, and can

similarly be waited on. They are signaled when terminated.

� File: These are designaled when I/O is queued, and signaled when it is

completed, according to complex rules.

� Message queue: These are signaled when a thread has window messages

that match its mask, which is set according to complex rules.

1.2 Wait functions

All synchronizable objects can be at any point described as “signaled” or “not

signaled”. The logic for determining this state is usually more complex than

2

that, however. Moreover, Windows conflates (from a POSIX perspective) the

concepts of “polling” and “reading”, such that many objects have their state

changed by successful wait operations.

Waiting is performed by one of the following syscalls:

� NtWaitForSingleObject: This function takes an object of any type and

a timeout (which may be “infinite”), sleeps until the object is signaled or

the timeout expires, and atomically “consumes” the object if

appropriate. In detail:

– A semaphore is considered signaled if its count is nonzero, and

consumed by decreasing the count by one. This is the only way to

acquire a semaphore; there is no distinct semaphore-specific “down”

operation.

– A mutex is considered signaled if it is already owned by the current

thread or if it is unowned. It is consumed by granting ownership to

the current thread (if it is not already owned) and increasing its

recursion count by one. This is the only way to acquire a mutex.

The return value to this function also includes a flag

(STATUS ABANDONED) denoting whether the mutex was abandoned.

– An event is considered signaled if it is in the signaled state. A

manual-reset event is not affected by this function; an auto-reset

event is atomically reset to the nonsignaled state. [An auto-reset

event is somewhat similar to a non-recursive mutex, or a semaphore

with a maximum count of one, though it is not usually used in

those ways].

Furthermore, the function can optionally be made “alertable”, in which

case certain APIs will cause it to return with STATUS ALERTED. Alerts

are mostly used for file I/O, and can be thought of as similar to POSIX

signals such as SIGIO; in that case STATUS ALERTED is itself analogous to

EINTR.

The caller must have SYNCHRONIZE access to the object, or this function

fails. Note that even though the call may modify state, no other access

flags are required.

� NtWaitForMultipleObjects: Essentially a superset of the above [in

3

particular, NtWaitForSingleObject can be trivially implemented on top

of NtWaitForMultipleObjects], but for the sake of clarity I’ve

separated it here. This function receives up to a fixed limit of 64

handles. It has two modes of operation:

- wait for any of the objects to become signaled, atomically consuming

[at most] one object;

- wait for all of the objects to become signaled, atomically consuming all

of them at once. The call times out if all of the objects are never

simultaneously signaled, even if they are signaled at one point or another

during the wait. Note that because the acquisition is atomic, use of this

API is not vulnerable to lock inversion, regardless of the object order

specified by user space.

Like NtWaitForSingleObject, this function can be made alertable, and

its status reflects whether an acquired mutex was marked as abandoned.

In a wait-any operation, the index of the acquired object is still returned

in the status, combined with the STATUS ABANDONED flag, but a wait-all

operation returns simply STATUS SUCCESS or STATUS ABANDONED. If

multiple mutexes are acquired in a wait-all operation, STATUS ABANDONED

is returned if any were marked abandoned; accordingly there is no way

for the caller to know which or how many mutexes were actually

abandoned.

� NtSignalAndWaitForSingleObject: This function sets an object of any

type to a signaled state. Depending on the object type, this is equivalent

to NtSetEvent, NtReleaseSemaphore (with a count of 1), or

NtReleaseMutant. It then waits on another object, as with

NtWaitForSingleObject.

The objects may be the same or different. If either handle is invalid, or

has insufficient access to the object, the call fails and neither object is

affected. The entire operation is not atomic (i.e. other threads can

observe a state where the first object is signaled but the second has not

yet been modified by the wait call), however, if the call fails neither

object can be affected. That is, if the second object cannot be waited on

for any reason, the first object must not be signaled.

4

1.3 Events

The type of an event, and its initial state, are specified at creation time.

Events are affected by the following syscalls:

� NtSetEvent: This function atomically sets an event to the signaled

state, and returns its previous state. If threads are waiting on the event,

they are signaled, up to a maximum of one thread if the event is

auto-reset. In the case of an auto-reset event the state is also reset. The

caller must have EVENT MODIFY STATE access.

� NtResetEvent: This function atomically sets an event to the nonsignaled

state, and returns its previous state. The caller must have

EVENT MODIFY STATE access.

� NtPulseEvent: Akin to NtSetEvent followed by NtResetEvent, but

performed as a single atomic operation. Hence this function wakes up at

most one eligible waiter if the event is an auto-reset event, and all

eligible waiters if it is manual-reset, but it leaves the event state set to

nonsignaled. The caller must have EVENT MODIFY STATE access.

� NtQueryEvent: This function returns whether the event is currently

signaled, and whether it is manual-reset or auto-reset. The caller must

have “read” access. The caller must have EVENT QUERY STATE access.

1.4 Semaphores

The initial and maximum count of a semaphore are specified at creation time.

Semaphores are affected by the following syscalls:

� NtReleaseSemaphore: This function atomically increments the

semaphore count by a given 32-bit value, and returns the previous value.

If threads are waiting on the semaphore, they are signaled, and the

semaphore’s count is decremented accordingly. If the caller attempts to

increment the count past its maximum, the call fails. The caller must

have SEMAPHORE MODIFY STATE access.

� NtQuerySemaphore: This function returns the current and maximum

semaphore count without modifying the semaphore. The caller must

have SEMAPHORE QUERY STATE access.

5

1.5 Mutexes

The initial owner of a mutex is specified when the mutex is created, and may

be set to zero, indicating that the mutex is not owned by any thread. If a

mutex is created owned, the initial recursion count is always 1.

Mutexes are affected by the following syscalls:

� NtReleaseMutant: This function atomically decrements the mutex

recursion count by one, and returns the previous count. If the count

reaches zero, the call relinquishes ownership of the mutex, and causes it

to become signaled. No access flags are required.

� NtQueryMutant: This function returns the current mutex recursion

count, whether the caller owns it, and whether it is abandoned. The

caller must have MUTANT QUERY STATE access.

1.6 Object names

Almost all NT objects can be named or anonymous. This provides a simple

way to access objects from multiple processes. The name of an object cannot

be changed, added, or removed after it is created. Names are associated with

the object, not with its handles.

Most objects, including semaphores, events, and mutexes, have two different

associated syscalls which can create a new object or open an existing one, e.g.

NtCreateEvent and NtOpenEvent. “Create” syscalls can optionally specify

create-if-exists behaviour (akin to O CREAT). The name is specified at creation

time.

1.7 Handles

All Windows kernel objects can be accessed from multiple processes. They are

exposed to user space via “handles”, which are 30-bit1 values roughly

analogous to file descriptors. Like file descriptors, multiple handles can refer to

the same object, and have different access flags, which track what operations

can be legally performed on the object. Unlike file descriptors, however, these

access flags are more fine-grained and partially depend on the object type.

1The data type for a handle is pointer sized. However, the lowest two bits are always zero
(and masked out by kernel APIs which take handles).

Note also that although the data type for HANDLE is pointer-sized, Microsoft documenta-
tion suggests that handle values always fit within 32 bits even on 64-bit architectures, to allow
for interoperability. Since 30 bits is quite a huge limit anyway, this is difficult to confirm and
not particularly important either.

6

https://docs.microsoft.com/en-us/windows/win32/winprog64/interprocess-communication
https://docs.microsoft.com/en-us/windows/win32/winprog64/interprocess-communication

Like file descriptors, handles can be duplicated within a process or across

processes. Like file descriptors, handles represent a user-space reference count

on an object, which is independent of its kernel-space reference count, but

handles themselves are not reference-counted.

Besides functions which can open an object by its name, the following syscalls

are particularly important when optimizing synchronization primitives:

� NtDuplicateObject: This is similar to dup(2), but much more generic.

It allows a caller in process A to duplicate a handle (that is, create a new

handle referring to the same object) from process B into process C, and

all three processes can be arbitrarily the same or different. The new

handle can be given different access rights than the original. There is

also an optional flag allowing to close the source handle at the same time.

� NtClose: This function closes a handle in the current process, analogous

to close(2).

The access rights that a handle has are requested when the handle is created,

either by a create or open syscall or by NtDuplicateObject. The ACL

associated with an object is specified at creation time.

2 Implementation constraints

The constraints we need to account for fall broadly into three categories:

performance, correctness, and robustness.

2.1 Performance constraints

Only some objects are known to be used in hot paths, in particular,

semaphores and events.

It is likely that mutexes do as well, although this has not been confirmed.

Mutexes tend to need to be “accelerated” in the same way regardless, though,

for reasons that will be described later.

Only some operations are known to be used in hot paths. Specifically, the

following functions are known:

� NtWaitForSingleObject

� NtWaitForMultipleObjects

7

� NtSetEvent

� NtResetEvent

� NtReleaseSemaphore

� NtReleaseMutant

The “query” operations are rarely used by applications, probably because they

are undocumented and have no corresponding kernel32 export. So too is the

ability to atomically return the previous state of an object from operations

that modify it—this part of the API is optional and is not used by

documented kernel32 exports. NtPulseEvent is also rarely used, probably

because Microsoft has publicly discouraged its use (or rather, the use of the

documented equivalent). In practice, however, because these operations are so

closely tied to the state of the relevant objects, it has generally been necessary

to accelerate them anyway.

Wait-all is believed to be a rare operation in general, or at least in hot paths.

This is stated in an interview with Microsoft programmer Arun Kishan

regarding the redesign of the NT scheduler and synchronization object

implementation2. It’s also rarely useful, if the number of uses in Wine code is

any indication. Existing solutions have made wait-all “mostly”

optimized—that is, not as fast as wait-any, but still far faster than RPC to

wineserver—so it is not known how many programs, if any, actually need it

to be fast.

Use of objects visible to multiple processes has not been known to be common

in hot paths, and one would not believe it to be common either. Most hot

paths which require synchronization are attempting to synchronize access to a

common resource, which due to ease of design as well as speed of access

usually is better suited to live within a single process. (For example, there are

known costs that the memory manager must pay for MAP SHARED pages, and

messaging via pipes or sockets is clearly less efficient than messaging in

memory.)

Here, too, existing solutions have made cross-process access as fast as

in-process access, and so it is not known whether applications depend on it.

However, of late many programs (in particular HTML engines) have

increasingly used multiple processes for the sake of robustness and security,

2https://www.youtube.com/watch?v=OAAiOEQhsK0&t=2556s

8

https://www.youtube.com/watch?v=OAAiOEQhsK0&t=2556s

including to the extent of rendering in a separate process. If cross-process

synchronization is not a bottleneck now, it is not unlikely that it will be in the

near future.

Alertable waits are believed to be relatively rare in hot paths, partly because

alerts are usually associated with file I/O, and partly because at least some

versions of ntsync have used relatively slow code paths for alertable waits (i.e.

involving at least one wineserver call even when a thread is not alerted),

without any known performance problems. While the performance of file I/O

is certainly important to some programs, synchronization primitives have not

yet been known to be the largest bottleneck in any such program.3

There is also a risk of making some paths too performant. Some optimizations

have been known to expose application bugs, by making operations faster than

those applications implicitly expect them to be. This is arguably a lesser

concern: it is often easy to “fix” expectations within the same design, simply

by adding artificial delays, and working around application bugs is not

something that upstream Wine is usually interested in.

2.1.1 Specific bottlenecks

While many factors can affect performance, one of the most important

bottlenecks (once all the overhead of RPC to a single-threaded server process

was bypassed) ended up being syscall context switches. During the

development of esync we saw consistent performance improvements from

reducing the number of syscalls made. This remains true even where no lock

contention was relevant; e.g. avoiding clock gettime(2) helped improve

performance. Accordingly much of the performance analysis has been focused

on counting the number of syscalls in a given path, and trying to find ways to

avoid them.

2.2 Correctness constraints

Most of the behaviour of individual APIs is described above. Some particular

problems are worth pointing out, though:

1. Cross-process usage. Many solutions which would be easy to implement

(in a performant, robust manner) within a single process are much harder

when it becomes necessary to synchronize between multiple processes.

3It seems likely that there is much less demand for running Windows versions of such
I/O-heavy programs under Wine; a common example of an I/O-heavy program a database
manager, running on a server, which often has better native equivalents.

9

This is most of the reason why wineserver is involved, and wineserver

is essentially responsible for the current performance problems.

As has been described above, objects can be given a name at creation

time, which allows them to be opened from other processes, but they can

also be arbitrarily opened using NtDuplicateObject. The latter means

that any solution must be prepared for any object to be used from

another process. Notably, this makes it much more difficult to accelerate

objects which will always remain in-process, while letting others go

through the current (or a slower) path.

Of course, there is nothing preventing an application from using a named

object in a hot path, and as described above, Wine may likely see a need

to accelerate cross-process objects anyway.

2. Wait-all. This is one of the things (although not the only thing) that

stands in the way of “esync” and “fsync”. It is difficult if at all possible

to map directly onto an API which only supports wait-any. “esync” and

“fsync” approximate it by acquiring objects non-atomically, and rolling

back if unable to acquire all of them. No application is known to

misbehave due to this difference, but it still prevents such solutions from

being acceptable upstream.

3. NtPulseEvent. This operation is difficult to map directly onto other

synchronization APIs; like wait-all it essentially requires direct support

from the underlying wait-queue implementation.

The documented equivalent (viz. PulseEvent()) has been publicly

deprecated by Microsoft.4 The reasoning given is somewhat unusual:

due to the design of the Windows scheduler, a thread can be temporarily

removed from its wait-queue while executing a high-priority kernel

procedure, and miss a pulse.5 In practice this does not occur with any

observable frequency. Moreover, since the function is most commonly

used via the timeSetEvent() API, i.e. in order to implement a timer,

the occasional missed wakeup is not really a problem anyway. However,

some synchronization primitive implementations (namely, “esync” and

“fsync”) miss wakeups more than occasionally, and in practice this has

4https://docs.microsoft.com/en-us/windows/win32/api/winbase/

nf-winbase-pulseevent
5One cannot help but notice that this does not inhere to the documented behaviour, and

that other operating systems handle this situation just fine, e.g. by allowing multiple wait-
queues to be simultaneously used, or by not stealing arbitrary threads.

10

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-pulseevent
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-pulseevent

been known to break applications.

4. Synchronization APIs must always wake up eligible waiting threads.

That is, the wakeup essentially must be atomic. This constraint is

violated by “esync” and “fsync”, which allow object state to be modified

between e.g. NtReleaseSemaphore, and acquisition of the same

semaphore by another thread. In practice one specific pattern has been

known to cause problems, namely, NtSetEvent followed immediately by

NtResetEvent from the same thread; at least one application has been

known to depend on this always waking up another thread.

Not all existing synchronization optimizations follow all correctness

constraints, and in some cases this ends up breaking applications. This is often

not a concern for users (or forks of Wine), as long as one can revert to an

implementation which behaves correctly, but it is not acceptable for upstream

Wine. An upstreamable implementation will require that all applications work

without application-specific code. Even guaranteed behaviour which

applications are not known to depend on should be followed (after all, new or

existing applications may be found to depend on it in the future).

2.3 Robustness constraints

As far as most users (and forks of Wine) are concerned, it is sufficient to avoid

crashing or misbehaving. Much like the “correctness” class of constraints, this

can even be limited to “for most applications”, or “for applications which have

synchronization as a bottleneck”, as long as one can revert to an

implementation which behaves correctly.

For upstream Wine this is not sufficient. We care about the following things,

and any upstreamable solution will need to follow these constraints:

� The server (wineserver) cannot be allowed to misbehave on client

input. It should never crash or deadlock, and should never perform any

incorrect behaviour, regardless of what client processes do. Wine takes

extra care to ensure this in general—e.g. by aggressively validating RPC

input, even though the protocol is internal to Wine.

There are a few notable consequences that fall out of this. For one, we

cannot allow object state to be locked, and for that lock to be acquired

by the server, if it is possible for a client to block the server indefinitely

by holding the lock. Nor can we allow clients to store object state, and

11

for the server to read that same object state, if it is possible for the

server to misbehave if that object state is corrupted.

� Client processes should not be able to cause each other to misbehave

(except to the extent that voluntarily sharing objects with each other

allows). In practice this ends up having similar effects to the above. It

also means that one client process cannot be allowed to write the state of

an object that it does not have (and cannot by its own powers gain) a

handle to.

It is currently true that a sufficiently determined process can arbitrarily break

other processes anyway, including wineserver, by making direct calls to

debug utilities such as ptrace(2). However, we’d like to leave the option open

for processes to run with different Unix permissions, including potentially as

different users.

3 Existing implementations

3.1 Server-side synchronization

The current implementation of synchronization primitives in Wine makes use

of RPC to the wineserver process, which controls all cross-process operations,

and ultimately most operations normally handled by the Windows kernel. For

synchronization APIs each NT syscall maps to one server request.

For obvious reasons, this satisfies all of the correctness and robustness

constraints. However, the overhead of IPC is significant. Making matters

worse, the server is single-threaded, so that multiple simultaneous requests are

not handled well. Hence the impetus to find a better solution.

3.2 esync

eventfd-based synchronization, referred to in the code and in common

parlance as “esync”, maps waitable objects to eventfd(2) file descriptions.

eventfd is trivially capable of emulating the basic functionality of semaphores

(via EFD SEMAPHORE), both auto-reset and manual-reset events, and waiting for

a single object (via blocking read(2), or, in the case of a manual-reset event,

poll(2)). By relaxing the constraint that wakeups must be atomic, one can

emulate wait-any via poll(2). Signal-and-wait is also trivial enough to

implement. Cross-process objects are also trivial, by duplicating file

12

descriptors with SCM RIGHTS.

This alone correctly accelerates almost all of the operations which must be

fast, as described above. However, it misses the following:

� respecting the maximum count on semaphores

� mutexes

� returning the previous state (atomically) from signal or designal

operations

� reading the current state of an object (NtQuery*)

� wait-all

� NtPulseEvent

In order to implement mutexes, esync needs to store extra volatile state to

determine the current owner. Somewhat relatedly, it needs to be able to read

the current state of semaphores, which is not possible for an eventfd object.

Because of the cross-process nature of objects, esync uses shared memory

mappings to store and retrieve this information. In order to satisfy atomicity

constraints, the state in shared memory is actually treated as “canonical” to

some degree (as opposed to the internal state of the eventfd object).

As has been described above, wait-all is implemented by ignoring the

atomicity requirements. A waiting thread polls on each object, one at a time,

while not actually consuming their state until all have been signaled. It then

attempts to consume all objects in a tight loop, rolling back if any object

became unsignaled in the meantime. This is not strictly conformant, but has

not yet been known to cause problems.

Atomicity of wakeups is also violated, as has been described above. This is

known to cause problems with real applications.

NtPulseEvent is implemented by setting and then immediately resetting the

event. This causes problems mostly due to missed wakeups (due to, again, lack

of atomicity). There are other respects in which this is not conformant (e.g.

another thread which is not sleeping can observe the event as being signaled),

but this has not been known to cause problems, and is not particularly likely

to either.

13

The end result is that most of the important NT syscalls are implemented

using one host syscall, and no RPC. Wait operations usually require two

syscalls (specifically, poll, and read to consume the state for objects other

than manual-reset events). This is fast enough to show huge performance

benefits in many applications.

Because object state is stored in shared memory, it is not only possible but

easy for an application to modify the state of objects in ways not provided for

by the API. This is not a problem in practice. Applications which overwrite

internal data generally run into problems before then, and there usually aren’t

other important applications in the prefix that can be corrupted anyway. And,

of course, malicious applications abusing out-of-tree Wine patches is all but

unheard of. Nevertheless, it is a significant barrier to upstreaming, especially

considering the extent to which esync relies on shared memory.

Although esync was designed around eventfd (which is a Linux-specific API),

it is possible to emulate eventfd with named pipes, and some versions of

CrossOver do ship with some custom patches for this, in order to improve

performance on other platforms. This is done by mapping the count of an

eventfd to the number of bytes currently stored in the pipe.

3.3 fsync

futex-based synchronization, referred to in the code and in common parlance

as “fsync”6, maps waitable objects to futexes.

These futexes are, naturally, stored in shared memory, so as to be accessible

from multiple processes. For mutexes it is necessary to store extra data

(namely, they need to store both the owner thread ID and the recursion count,

which together comprise 8 bytes).

The most important thing that this requires is the ability to wait on multiple

futexes at once, i.e. an equivalent of poll(2). This was done via a custom

kernel patch introducing a new futex operation. The ABI for this has changed

over the years as attempts were made to upstream this kernel patch; certain

versions of the ABI have been known as FUTEX WAIT MULTIPLE, futex2, and

futex waitv. The latter syscall did eventually make it into upstream Linux

release 5.16.

6The decision to give this patch set a name identical to a completely unrelated POSIX
API was a regrettable one.

14

Most other simple operations proceed intuitively. Operations which change

state are implemented by simply atomically writing the state (usually via

atomic read-modify-write instructions) and then, depending on the operation,

performing a wake operation on the futex.

Wait-all and pulse are implemented almost exactly as they are in esync, and

the same characteristic problems apply here. The problems associated with

the lack of atomicity of wakeups, and of the use of shared memory, affect fsync

as well.

fsync was commissioned by Valve for its Proton software, on the theory that it

would offer better performance than esync, due to its ability to avoid some

host syscalls. In particular, unlike esync, NtResetEvent can be implemented

without any syscalls. Wait operations can also be implemented without any

syscalls if the object is uncontended, and consuming object state does not

require a syscall either.

These performance benefits did pan out, and were measureable, for at least

one piece of software. However, the number of games showing an improvement

in performance from fsync (as compared to esync) is very low, and remains so

to this day (in fact, there are only three known applications right now: Final

Fantasy XV, Beat Saber, and Greedfall).

fsync does have some drawbacks. Spurious wakeups are potentially more

common, meaning that more syscalls may need to be made on contended

objects. fsync has been known under some conditions to cause stuttering, or

less consistent performance, than esync, possibly for this reason. It has also

been known to expose multiple application bugs by making operations

(especially wait operations) too fast, and recent versions of Proton have in fact

introduced artificial slowdown into wait operations to protect from this.

3.4 Attempts to introduce a new kernel interface

There are current plans, and even functional patch sets, to introduce a new

interface into the Linux kernel, which would allow all of the exact semantics of

wait operations to be followed exactly, while making exactly one (fast) syscall

per NT syscall. These patch sets are still very much a work in progress (in

particular, the design of the API surface is not fully settled), and have not

been submitted upstream to the Linux or Wine projects, but have been

variously referred to as “ntsync”, “fastsync”, and “winesync”.

15

The ability to have fine control over the wait-queue implementation allows all

of the correctness constraints to be followed exactly, and by relegating control

over all objects entirely to the kernel, ntsync can satisfy robustness constraints

as well.

The question of performance is more interesting. Since each NT syscall is

mapped to one host syscall, one would expect performance within measuring

error from Windows in all cases.

esync, for comparison, makes one syscall for most important operations, but

may make multiple syscalls for wait operations. Hence one would expect

ntsync to perform at least as well as esync, and preliminary results bear this

out.

fsync makes one syscall for wake operations, no syscalls for NtResetEvent, and

zero or more syscalls for wait operations. As such one cannot conclude simply

from guessing whether its performance would be better or worse than ntsync.

Quantitative results, for the few known games where esync and fsync differ,

are lacking, but at least one test, with Final Fantasy XV, shows that fastsync

performs about as well as esync, and hence not as well as fsync. It is not yet

known whether fastsync will suffer from any of the other performance-related

problems associated with fsync.

One obvious disadvantage of this approach is that it requires changes to the

kernel (and hence also will require a new kernel, even if accepted). As such it

will also need to be adapted for any other kernels, such as BSD or Mach, and

may not be deemed acceptable to any given kernel.

4 Other ideas and proposals

Some of these ideas are partial solutions, or solutions to specific problems that

arise with e.g. esync. Most of them have some flaw or another. Other solutions

do not have obvious flaws, but become sufficiently complex that it is difficult

to tell whether they have non-obvious flaws, and ultimately approach

unmaintainability.

I, personally, have come to put enough stock in fastsync (and have spent

enough time fruitlessly considering other approaches) that I do not believe it

particularly worthwhile to explore any other ideas.

16

4.1 Acceleration of in-process objects

Many difficulties result from the cross-process nature of synchronization

primitives. In particular, the ability to track and modify object state from

within a client process leads to robustness problems already described for

esync and fsync.

One idea which has been floated for quite a while, would be to accelerate

objects which can be guaranteed to live in a single process. Any object created

without a name (and in practice most are) would in theory fall into this

category. Unfortunately, the existence of NtDuplicateObject means this is

impossible.

4.2 Migration

An extension of the previous idea, which has also been floated for quite a

while, is to create all objects as initially accelerated, with in-process state, and

then to convert them back to server-managed objects once they are accessed

from another process.

This is a lot more difficult than it sounds. The main problem is avoiding

missed wakeups while migrating a thread which is currently in a wait

operation. In order to completely avoid that Wine would need to manage the

wait-queues in user space, and these wait-queues would need to be

cross-process.

This also means that cross-process objects will not be accelerated, and as

described above, it may be or become necessary to accelerate them, which

would leave us right back where we started.

Another problem with migration is the fact that one cannot simultaneously

wait on client-managed and server-managed objects. Hence migration of one

object can cascade and cause other objects to be migrated. Ensuring correct

synchronization here is very difficult.

4.3 Object isolation

To some degree we can avoid letting process corrupt other processes’ object

state by ensuring that a process does not map any shared memory containing

objects it does not have access to.

This can be simply done by allocating one page of memory to each object, but

17

this doesn’t scale. Address space is often at a premium for 32-bit processes;

memory usage can be at a premium for any process (and all of this memory

would need to be mapped); and some applications leak hundreds of thousands

of synchronization primitives. By contrast, the volatile state encompassed by

any one object never comprises more than eight bytes.

A better approach is to carefully arrange objects in shared memory pages such

that a process only maps pages containing objects that it can access. There is

no show-stopping problem with this solution, although it doesn’t offer as

complete restrictions as a kernel or RPC-based approach. It is, however, only

a very partial solution; while one can isolate objects this way, problems with

wait-queues are not addressed, and wait-queues cannot be so easily isolated

(from other processes, or from the server).

4.4 In-process wait-queues

Many of the problems with esync and fsync result from their inability to

directly map some esoteric NT operations onto lower-level operations. Indeed,

much of the above language includes phrases like “direct support from the

underlying wait-queue implementation”.

There is no inherent, or at least immediate, reason the wait-queue

implementation has to live in the kernel, though. After all, the server itself has

its own wait-queue implementation. Hence the question becomes: can

management of that queue be moved to individual processes?

Here we essentially run up against robustness constraints, and these are hard

if not impossible to solve. In particular, it is impossible to implement proper

wait-queues without locks (after all, as has been described, we really do need

many multi-step operations, such as wait-all, to be executed atomically), and

because some objects need to be modified from the server as well, this means

that the server can end up taking locks that clients can take as well. This

means that the server can be broken by misbehaving clients, including by

clients which just happen to crash while holding a lock, which is unacceptable

for upstream Wine. (Robust mutexes would potentially help, but not enough

to be acceptable upstream.)

4.5 Extending an existing kernel interface

This is essentially a variation of ntsync, or more generally the idea of

introducing a new kernel interface, worth mentioning for completeness.

18

The obvious candidate for extension is eventfd. Some things could be

relatively easily added to it, such as operations to query the current state, or

atomically modify the state while retrieving the previous state. Mutexes would

be more complex, but still feasible.

Harder are atomic wakeups, and wait-all. These do not fit well with the

POSIX model. One would need to extend (or introduce new APIs similar to)

poll(2) itself, as well as fundamentally modifying struct file operations,

which would affect all file descriptors, and would be of questionable utility

outside of Wine. Wait-all is not clearly a good design for an API, and wait-any

already has many existing and arguably superior alternatives on Linux.

Alternatively, one could design APIs that only affect eventfd, but at this

point one is 90% of the way towards designing a new API, and the parts of

eventfd that are still associated to traditional file I/O would be more of a

burden than a help, and might potentially cause performance overhead as well.

Extending futex(2) is not viable. The very model for futexes does not allow

wakeups to be atomic.

19

	Summary of NT synchronization primitives
	Object types
	Wait functions
	Events
	Semaphores
	Mutexes
	Object names
	Handles

	Implementation constraints
	Performance constraints
	Correctness constraints
	Robustness constraints

	Existing implementations
	Server-side synchronization
	esync
	fsync
	Attempts to introduce a new kernel interface

	Other ideas and proposals
	Acceleration of in-process objects
	Migration
	Object isolation
	In-process wait queues
	Extending an existing kernel interface

