

GENIE NC zero momentum nucleons

Jie Cheng North China Electric Power University chengjie@ncepu.edu.cn

2023/11/21

GENIE zero momentum nucleons in NC

GENIE v3.0.6 G18_02b_02_11a

													1
GENIE	GHEP Event Reco	ord [pr	int level:	3]									
 Idx	Name	Ist	PDG	M	other	Daugl	hter	Px	Py	Pz	E	 I m	
 0	 nu_e	0	 12	-1	 -1	4	4	0.402	-0.415	0.122	0.591	 0.000	
1	C12	0 O	1000060120	-1	-1	2	3	0.000	0.000	0.000	11.175	11.175	
2	neutron	11	2112	1	-1	5	5	-0.165	-0.101	-0.089	0.919	**0.940	M = 0.894
3	C11	2	1000060110	1	-1	10	10	0.165	0.101	0.089	10.256	10.254	
4	nu_e	1	12	Í 0	-1	-1	-1	0.415	-0.027	-0.098	0.427	0.000	P = (-0.971,0.062,0.230
5	neutron	14	2112	2	-1	6	7	-0.178	-0.489	0.131	1.082	0.940	FSI = 3
6	neutron	14	2112	5	-1	8	8	0.070	-0.023	-0.041	0.943	0.940	FSI = 1
7	proton	14	2212	5	-1	9	9	-0.020	-0.509	0.163	1.080	0.938	FSI = 1
8	neutron	1	2112	6	-1	-1	-1	0.000	-0.000	-0.000	0.940	0.940	
9	proton	1	2212	7	-1	-1	-1	-0.018	-0.459	0.147	1.055	0.938	
10	HadrBlob	15	2000000002	3	-1	j -1	-1	-0.063	0.143	0.098	9.315	**0.000	M = 9.313
11	NucBindE	1	2000000101	-1	-1	-1	-1	0.070	-0.023	-0.041	0.025	**0.000	M = -0.081
12	NucBindE	1	2000000101	-1	-1	-1	-1	-0.002	-0.050	0.016	0.025	**0.000	M = −0.046
 	Fin-Init:						 	-0.000	-0.000	0.000	0.021	I	
 	Vertex: nu_e @ (x = 0.00000 m, y = 0.00000 m, z = 0.00000 m, t = 3.566833e-09 s)												
Err Err	Err flag [bits:15->0] : 000000000000000 1st set:												
 sig(sig(Ev) = 8.30191e-39 cm^2 dsig(Q2;E)/dQ2 = 3.08873e-39 cm^2/GeV^2 Weight = 1.00000												

- Check samples:
 - Honda flux @ JUNO
 - Ev: 0.1-20 GeV
 - Target: C-12, including NC and CC interactions
 - Genie versions: v3.0.6, v3.2.0 and v3.4.0

Check-1: NC

JUNO

Check1: the fraction of events with Ek=0 nucleon in different cross section models and different genie versions

Check-1: CC

Check1: the fraction of events with Ek=0 nucleon in different cross section models and different genie versions

Check the same models and Genie versions as NC events
✓ No CC events with Ek=0 nucleon production

Check2: the distributions of kinetic energy of final-state nucleon in QE

In hN models, the fraction of nucleons w/ Ek=0 is about 25% in QE within [0, 100] MeV Ek range
In hA model, the fraction is about 10%

Jie Cheng

GENIE Forum

Check2: the distributions of kinetic energy of final-state nucleon in QE

- Quite similar results in new versions of GENIE
- In hN models, the fraction of nucleons w/ Ek=0 is about 25% in QE within [0, 100] MeV Ek range
- In hA model, the fraction is about 10%

Check3: check if energy is conserved before and after QE interactions

Events with Ek=0 > energy is not conserved

Other events: energy is conserved

* Check3: check if energy is conserved before and after QE interactions

Quite similar results in new versions of GENIE

Check4: check if the nucleon with Ek=0 is strongly correlated with FSI

Very strong correlation between nucleon (Ek=0) with FSI

Why there is no nucleon production with Ek=0 in CCQE events?

Check-4

Check4: check if the nucleon with Ek=0 is strongly correlated with FSI

Very strong correlation between nucleon (Ek=0) with FSI

Why there is no nucleon production with Ek=0 in CCQE events?

Check5: nucleon multiplicity

Check5: nucleon multiplicity

Summary

- Nucleon production with Ek=0: not be ignored
 - Only in NCQE process, about 20% (hA model) 35% (hN model) NCQE events with nucleon production (Ek=0)
 - The fraction of nucleons (Ek=0) of the total nucleons in NCQE is about 25% and 10% for hA and hN, respectively
 - The kinetic energy distributions of nucleon (Ek>0) from NCQE is quite similar in hA and hN models (different in CCQE)
 - The events with nucleon production (Ek=0):
 - energy is not conserved!
 - Strongly related to FSI
- For nucleon multiplicity, NCQE (including nucleon(Ek=0)) is more consistent with CCQE
- Any comments or suggestions for these nucleons?