From 0fe656e0d7c571c95cea943343b93b5d339413ae Mon Sep 17 00:00:00 2001 From: Paul He Date: Thu, 23 Sep 2021 12:33:25 -0400 Subject: [PATCH] Proved admitted lemmas about xor for xor_swap --- heapster-saw/examples/xor_swap_proofs.v | 13 ++--- .../CryptolToCoq/SAWCoreBitvectors.v | 47 ++++++++++++++++++- 2 files changed, 53 insertions(+), 7 deletions(-) diff --git a/heapster-saw/examples/xor_swap_proofs.v b/heapster-saw/examples/xor_swap_proofs.v index 2114d9ed90..e6c3ca5ac6 100644 --- a/heapster-saw/examples/xor_swap_proofs.v +++ b/heapster-saw/examples/xor_swap_proofs.v @@ -4,6 +4,7 @@ From Coq Require Import String. From Coq Require Import Vectors.Vector. From CryptolToCoq Require Import SAWCoreScaffolding. From CryptolToCoq Require Import SAWCoreVectorsAsCoqVectors. +From CryptolToCoq Require Import SAWCoreBitvectors. From CryptolToCoq Require Import SAWCorePrelude. From CryptolToCoq Require Import CompMExtra. @@ -23,19 +24,19 @@ Proof. time "no_errors_xor_swap" prove_refinement. Qed. -(* FIXME: move lemma to SAWCorePrelude...? *) + Lemma bvXor_twice_r n x y : SAWCorePrelude.bvXor n (SAWCorePrelude.bvXor n x y) y = x. Proof. - admit. -Admitted. + rewrite <- bvXor_assoc. rewrite bvXor_same. rewrite bvXor_zero. reflexivity. +Qed. -(* FIXME: move lemma to SAWCorePrelude...? *) Lemma bvXor_twice_l n x y : SAWCorePrelude.bvXor n (SAWCorePrelude.bvXor n y x) y = x. Proof. - admit. -Admitted. + rewrite bvXor_comm. rewrite bvXor_assoc. + rewrite bvXor_same. rewrite bvXor_comm. rewrite bvXor_zero. reflexivity. +Qed. Lemma xor_swap_correct : refinesFun xor_swap xor_swap_spec. Proof. diff --git a/saw-core-coq/coq/handwritten/CryptolToCoq/SAWCoreBitvectors.v b/saw-core-coq/coq/handwritten/CryptolToCoq/SAWCoreBitvectors.v index af2d4cb0be..cfda7581f4 100644 --- a/saw-core-coq/coq/handwritten/CryptolToCoq/SAWCoreBitvectors.v +++ b/saw-core-coq/coq/handwritten/CryptolToCoq/SAWCoreBitvectors.v @@ -16,7 +16,7 @@ Import SAWCorePrelude. (* A duplicate from `Program.Equality`, because importing that module directly gives us a conflict with the `~=` notation... *) -Tactic Notation "dependent" "destruction" ident(H) := +Tactic Notation "dependent" "destruction" ident(H) := Equality.do_depelim' ltac:(fun hyp => idtac) ltac:(fun hyp => Equality.do_case hyp) H. Create HintDb SAWCoreBitvectors_eqs. @@ -229,6 +229,51 @@ Admitted. Lemma bvule_msb_r w a b : isBvule (Succ w) a b -> msb w b = false -> msb w a = false. Admitted. +(** Lemmas about bitvector xor **) + +Lemma bvXor_same n x : + SAWCorePrelude.bvXor n x x = SAWCorePrelude.replicate n Bool false. +Proof. + unfold SAWCorePrelude.bvXor, SAWCorePrelude.bvZipWith, SAWCorePrelude.zipWith, SAWCorePrelude.replicate. + induction x; auto; simpl; f_equal; auto. + rewrite SAWCorePrelude.xor_same; auto. +Qed. + +Lemma bvXor_zero n x : + SAWCorePrelude.bvXor n x (SAWCorePrelude.replicate n Bool false) = x. +Proof. + unfold SAWCorePrelude.bvXor, SAWCorePrelude.bvZipWith, SAWCorePrelude.zipWith, SAWCorePrelude.replicate. + induction x; auto; simpl. f_equal; auto; cbn. + rewrite SAWCorePrelude.xor_False2; auto. +Qed. + +Lemma bvXor_assoc n x y z : + SAWCorePrelude.bvXor n x (SAWCorePrelude.bvXor n y z) = + SAWCorePrelude.bvXor n (SAWCorePrelude.bvXor n x y) z. +Proof. + unfold SAWCorePrelude.bvXor, SAWCorePrelude.bvZipWith, SAWCorePrelude.zipWith. + induction n; auto; simpl. f_equal; auto; cbn. + unfold xor. rewrite Bool.xorb_assoc_reverse. reflexivity. + remember (S n). + destruct x; try solve [inversion Heqn0; clear Heqn0; subst]. injection Heqn0. + destruct y; try solve [inversion Heqn0; clear Heqn0; subst]. injection Heqn0. + destruct z; try solve [inversion Heqn0; clear Heqn0; subst]. injection Heqn0. + intros. subst. clear Heqn0. cbn. apply IHn. +Qed. + +Lemma bvXor_comm n x y : + SAWCorePrelude.bvXor n x y = SAWCorePrelude.bvXor n y x. +Proof. + unfold SAWCorePrelude.bvXor, SAWCorePrelude.bvZipWith, SAWCorePrelude.zipWith. + induction n; auto; simpl. f_equal; auto; cbn. + unfold xor. apply Bool.xorb_comm. + remember (S n). + destruct x; try solve [inversion Heqn0; clear Heqn0; subst]. injection Heqn0. + destruct y; try solve [inversion Heqn0; clear Heqn0; subst]. injection Heqn0. + intros. subst. clear Heqn0. cbn. apply IHn. +Qed. + + (** Some general lemmas about boolean equality **)