diff --git a/doc/api/index.rst b/doc/api/index.rst index c62508c4efb..5a52888262e 100644 --- a/doc/api/index.rst +++ b/doc/api/index.rst @@ -228,6 +228,7 @@ and store them in GMT's user data directory. datasets.load_earth_vertical_gravity_gradient datasets.load_mars_relief datasets.load_moon_relief + datasets.load_venus_relief datasets.load_sample_data In addition, there is also a special function to load XYZ tile maps via diff --git a/pygmt/datasets/__init__.py b/pygmt/datasets/__init__.py index 88af82f5953..d0003fdec1a 100644 --- a/pygmt/datasets/__init__.py +++ b/pygmt/datasets/__init__.py @@ -17,3 +17,4 @@ from pygmt.datasets.moon_relief import load_moon_relief from pygmt.datasets.samples import list_sample_data, load_sample_data from pygmt.datasets.tile_map import load_tile_map +from pygmt.datasets.venus_relief import load_venus_relief diff --git a/pygmt/datasets/load_remote_dataset.py b/pygmt/datasets/load_remote_dataset.py index b3d17d9c11a..1eb763ddc37 100644 --- a/pygmt/datasets/load_remote_dataset.py +++ b/pygmt/datasets/load_remote_dataset.py @@ -272,6 +272,26 @@ class GMTRemoteDataset(NamedTuple): "14s": Resolution("14s", registrations=["pixel"], tiled=True), }, ), + "venus_relief": GMTRemoteDataset( + title="Venus relief", + name="venus_relief", + long_name="NASA Magellan Venus relief", + units="meters", + extra_attributes={}, + resolutions={ + "01d": Resolution("01d"), + "30m": Resolution("30m"), + "20m": Resolution("20m"), + "15m": Resolution("15m"), + "10m": Resolution("10m"), + "06m": Resolution("06m"), + "05m": Resolution("05m", tiled=True), + "04m": Resolution("04m", tiled=True), + "03m": Resolution("03m", tiled=True), + "02m": Resolution("02m", tiled=True), + "01m": Resolution("01m", registrations=["gridline"], tiled=True), + }, + ), } diff --git a/pygmt/datasets/venus_relief.py b/pygmt/datasets/venus_relief.py new file mode 100644 index 00000000000..fea98a68a00 --- /dev/null +++ b/pygmt/datasets/venus_relief.py @@ -0,0 +1,101 @@ +""" +Function to download the Venus relief dataset from the GMT data server, and load as +:class:`xarray.DataArray`. + +The grids are available in various resolutions. +""" +from typing import Literal + +from pygmt.datasets.load_remote_dataset import _load_remote_dataset +from pygmt.helpers import kwargs_to_strings + +__doctest_skip__ = ["load_venus_relief"] + + +@kwargs_to_strings(region="sequence") +def load_venus_relief( + resolution="01d", + region=None, + registration: Literal["gridline", "pixel"] = "gridline", +): + r""" + Load the Venus relief dataset in various resolutions. + + .. figure:: https://www.generic-mapping-tools.org/remote-datasets/_images/GMT_venus_relief.jpg + :width: 80% + :align: center + + Venus relief dataset. + + The grids are downloaded to a user data directory (usually + ``~/.gmt/server/venus/venus_relief/``) the first time you invoke this function. + Afterwards, it will load the grid from the data directory. So you'll need an + internet connection the first time around. + + These grids can also be accessed by passing in the file name + **@venus_relief**\_\ *res*\[_\ *reg*] to any grid processing function or plotting + method. *res* is the grid resolution (see below), and *reg* is the grid registration + type (**p** for pixel registration or **g** for gridline registration). + + The default color palette table (CPT) for this dataset is *@venus_relief.cpt*. It's + implicitly used when passing in the file name of the dataset to any grid plotting + method if no CPT is explicitly specified. When the dataset is loaded and plotted as + an :class:`xarray.DataArray` object, the default CPT is ignored, and GMT's default + CPT (*turbo*) is used. To use the dataset-specific CPT, you need to explicitly set + ``cmap="@venus_relief.cpt"``. + + Refer to :gmt-datasets:`venus-relief.html` for more details about available + datasets, including version information and references. + + Parameters + ---------- + resolution : str + The grid resolution. The suffix ``d`` and ``m`` stand for arc-degrees and + arc-minutes. It can be ``"01d"``, ``"30m"``, ``"20m"``, ``"15m"``, ``"10m"``, + ``"06m"``, ``"05m"``, ``"04m"``, ``"03m"``, ``"02m"``, and ``"01m"``. + region : str or list + The subregion of the grid to load, in the form of a list + [*xmin*, *xmax*, *ymin*, *ymax*] or a string *xmin/xmax/ymin/ymax*. + Required for grids with resolutions higher than 5 arc-minutes (i.e., ``"05m"``). + registration + Grid registration type. Either ``"pixel"`` for pixel registration or + ``"gridline"`` for gridline registration. + + Returns + ------- + grid : :class:`xarray.DataArray` + The Venus relief grid. Coordinates are latitude and longitude in degrees. Relief + is in meters. + + Note + ---- + The registration and coordinate system type of the returned + :class:`xarray.DataArray` grid can be accessed via the GMT accessors (i.e., + ``grid.gmt.registration`` and ``grid.gmt.gtype`` respectively). However, these + properties may be lost after specific grid operations (such as slicing) and will + need to be manually set before passing the grid to any PyGMT data processing or + plotting functions. Refer to :class:`pygmt.GMTDataArrayAccessor` for detailed + explanations and workarounds. + + Examples + -------- + >>> from pygmt.datasets import load_venus_relief + >>> # load the default grid (gridline-registered 1 arc-degree grid) + >>> grid = load_venus_relief() + >>> # load the 30 arc-minutes grid with "gridline" registration + >>> grid = load_venus_relief(resolution="30m", registration="gridline") + >>> # load high-resolution (5 arc-minutes) grid for a specific region + >>> grid = load_venus_relief( + ... resolution="05m", + ... region=[120, 160, 30, 60], + ... registration="gridline", + ... ) + """ + grid = _load_remote_dataset( + dataset_name="venus_relief", + dataset_prefix="venus_relief_", + resolution=resolution, + region=region, + registration=registration, + ) + return grid diff --git a/pygmt/helpers/caching.py b/pygmt/helpers/caching.py index 09677be3478..84847e22251 100644 --- a/pygmt/helpers/caching.py +++ b/pygmt/helpers/caching.py @@ -65,6 +65,9 @@ def cache_data(): # Moon relief grids "@moon_relief_01d_g", "@N00W030.moon_relief_01m_p.nc", # Specific grid for 01m test + # Venus relief grids + "@venus_relief_01d_g", + "@N00W030.venus_relief_01m_g.nc", # Specific grid for 01m test # Other cache files "@capitals.gmt", "@circuit.png", diff --git a/pygmt/tests/test_datasets_venus_relief.py b/pygmt/tests/test_datasets_venus_relief.py new file mode 100644 index 00000000000..bd9a959139d --- /dev/null +++ b/pygmt/tests/test_datasets_venus_relief.py @@ -0,0 +1,51 @@ +""" +Test basic functionality for loading Venus relief datasets. +""" +import numpy as np +import numpy.testing as npt +from pygmt.datasets import load_venus_relief + + +def test_venus_relief_01d(): + """ + Test some properties of the Venus relief 01d data. + """ + data = load_venus_relief(resolution="01d") + assert data.name == "venus_relief" + assert data.attrs["units"] == "meters" + assert data.attrs["long_name"] == "NASA Magellan Venus relief" + assert data.shape == (181, 361) + assert data.gmt.registration == 0 + npt.assert_allclose(data.lat, np.arange(-90, 91, 1)) + npt.assert_allclose(data.lon, np.arange(-180, 181, 1)) + npt.assert_allclose(data.min(), -2069.0, atol=0.5) + npt.assert_allclose(data.max(), 9656.0, atol=0.5) + + +def test_venus_relief_01d_with_region(): + """ + Test loading low-resolution Venus relief with 'region'. + """ + data = load_venus_relief(resolution="01d", region=[-10, 10, -5, 5]) + assert data.shape == (11, 21) + assert data.gmt.registration == 0 + npt.assert_allclose(data.lat, np.arange(-5, 6, 1)) + npt.assert_allclose(data.lon, np.arange(-10, 11, 1)) + npt.assert_allclose(data.min(), -1244.0, atol=0.5) + npt.assert_allclose(data.max(), -74.0, atol=0.5) + + +def test_venus_relief_01m_default_registration(): + """ + Test that the grid returned by default for the 1 arc-minute resolution has + a "gridline" registration. + """ + data = load_venus_relief(resolution="01m", region=[-10, -9, 3, 5]) + assert data.shape == (121, 61) + assert data.gmt.registration == 0 + assert data.coords["lat"].data.min() == 3.0 + assert data.coords["lat"].data.max() == 5.0 + assert data.coords["lon"].data.min() == -10.0 + assert data.coords["lon"].data.max() == -9.0 + npt.assert_allclose(data.min(), -943.0, atol=0.5) + npt.assert_allclose(data.max(), -192.5, atol=0.5)