diff --git a/set.mm b/set.mm index 0d630c0df7..010f2ace1a 100644 --- a/set.mm +++ b/set.mm @@ -19024,7 +19024,8 @@ Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, $( Version of ~ cbv3 with a disjoint variable condition, which does not require ~ ax-13 . (Contributed by BJ, 31-May-2019.) $) cbv3v $p |- ( A. x ph -> A. y ps ) $= - ( wal nfal spimv1 alrimi ) ACHBDADCEIABCDFGJK $. + ( wal nf5ri hbal weq wi ax6ev eximii 19.36i alrimih ) ACHBDADCADEIJABCFCD + KABLCCDMGNOP $. $} ${ @@ -19614,7 +19615,8 @@ theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the does not use ~ ax-c9 . (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) $) cbv3 $p |- ( A. x ph -> A. y ps ) $= - ( wal nfal spim alrimi ) ACHBDADCEIABCDFGJK $. + ( wal nf5ri hbal weq wi ax6e eximii 19.36i alrimih ) ACHBDADCADEIJABCFCDK + ABLCCDMGNOP $. $} ${