
1.1

1.2

1.2.1

1.2.2

Table of Contents
Introduction

Console Applications

Your first VB.NET program

The Console object

1

Introduction
This book covers the basics of Visual Basic.net.

2

Introduction to Console Applications
Console applications are programs that interact with users using a text only interface. The most used console
application is perhaps the “Command Prompt” in Microsoft Windows. It can be opened by finding “Command
Prompt” in the Start Menu, or by running the “cmd” command.

Comparison with GUI applications

Most computer users use only GUI (graphical user interface) applications, with graphical elements like buttons,
text boxes, pull-down menus, etc. While GUI applications are more satisfying to users, they are not easy to create.
Instead, console applications are straight forward even for beginners.

Therefore, you are learning to create console applications first. When you acquire enough experience, you can learn
to create GUI applications.

3

Your first VB.NET program
Now you will create your first VB.NET program.

Creating a new project

This book assumes that you’re using Visual Studio 2015 Community. The user interface may be a bit different in
other versions of Visual Studio, but the interface should be similar.

After you start Visual Studio, select "New Project" in the File menu. Select "Visual Basic" in the left pane, and then
"Console Application" in the right pane. Give the project a name (if not "ConsoleApplication1"), and then press okay.
A project with a file called module1.vb will be created.

Adding some code

Now you should add your own code between Sub Main() and End Sub . Your file should look like this:

hello_world.vb

Module Module1

 Sub Main()
 Console.WriteLine("Hello world!")
 Console.ReadLine()
 End Sub

End Module

Running the program

Press the key F5 to run the program. After seeing the result, press the key Enter to close the program.

Using the code view

For those familiar with word processors, the code editor should be very easy to use. However, this is not the case for
an average student. So it will be advantageous to try the following:

Remember the shortcut key Ctrl+Z for undo. This is the FIRST thing to do when something is wrong.

Use the keys Insert , Delete , Backspace and Enter . Do this

at the beginning of a line, and

in the middle of a line.

Select text by holding Shift while using the arrow keys.

4

Use the shortcut keys Ctrl+C (copy), Ctrl+X (cut) and Ctrl+V (paste).

Type when there is an active selection. See how the text is overwritten.

Advanced: While holding Ctrl , press the left and right arrow keys to move the cursor. You may use this in

combination with the Shift key.

5

The Console object
In VB.NET the console is accessed by the Console object. It has the following methods:

Method Description Example

WriteLine Outputs a string to the console, and moves
the cursor to the next line Console.WriteLine("str")

Console.WriteLine()

Write Outputs a string to the console, but do not
move the cursor to the next line. Console.Write("str")

Clear Clear the content of the console. Also moves
the cursor to the top-left corner. Console.Clear()

ReadLine Reads a line from the console (press
 Enter to finish input). In this book,
ReadLine method is also used to prevent the
console from closing after running the
program.

Dim s As String
s = Console.ReadLine()

Console.WriteLine and Console.Write

 Console.WriteLine and Console.Write are used to output text to the console. These methods has only

one difference: Console.WriteLine moves the cursor to the next line, while Console.Write does not.

Calling Console.WriteLine without any argument simply moves the cursor to the next line.

The example below shows the differences of Console.WriteLine and Console.Write.

console_writeline_and_write.vb

6

Module Module1
 Sub Main()
 Console.WriteLine("Console.WriteLine results")
 Console.WriteLine("=========================")
 Console.WriteLine("Item 1")
 Console.WriteLine(2.345)
 Console.WriteLine("Item " & 3)
 Console.WriteLine("Item {0}", 4)
 Console.WriteLine()
 Console.WriteLine()
 Console.WriteLine("Console.Write results")
 Console.WriteLine("=====================")

 Console.Write("Item 1")
 Console.Write(2.345)
 Console.Write("Item " & 3)
 Console.Write("Item {0}", 4)

 Console.ReadLine()
 End Sub
End Module

See the output below to check your understanding.

Console.WriteLine results
=========================
Item 1
2.345
Item 3
Item 4

Console.Write results
=====================
Item 12.345Item 3Item 4

Substitutions in the output

If {0} , {1} , {2} , … are found in the string, it is replaced by following arguments (i.e. the things inside

 Console.WriteLine and the like, separated by commas).

Since the output string is the first argument, {0} is replace by the content of the second argument, {1} by the

third argument, etc.

See the following example:

console_writeline_substitutions.vb

7

Module Module1
 Sub Main()
 // {0} is "David", {1} is "Peter".
 Console.WriteLine("{0} and {1} are good friends.",
 "David", "Peter")
 // {1} is used multiple times.
 Console.WriteLine("{1} * {1} = {0}", 9 * 9, 9)
 Console.ReadLine()
 End Sub
End Module

Class Work

Write a program that produces the given output. Use Console.WriteLine only.

Output Visual Basic Program

This is my first
console program.

It is easy!

Sub Main()

End Sub

Console.Clear

 Console.Clear is used to clear the content of the console. After the console is cleared, the cursor goes to the

top-left corner.

Console.ReadLine

The Console.ReadLine method reads a line of characters from the console and returns a string. To add a prompt, use
Console.Write immediately before Console.ReadLine.

A typical use of Console.ReadLine is as follows:

Console.Write("Enter the number n: ")
Dim n As Integer = Console.ReadLine()

Again, to convert the string into a number, use the Val function. Example 1.2.2 Console.ReadLine with prompt: Find
the n-th triangle number. Module Module1 Sub Main() Console.Write("Enter the number n: ") Dim n As Integer =
Val(Console.ReadLine()) Console.WriteLine("The " & n & "th triangle number is " & n * (n + 1) \ 2) Console.ReadLine()
End Sub End Module In the notes, Console.ReadLine is also used at the end of Sub Main. This prevents the console
from closing when the program ends.

8

	Introduction
	Console Applications
	Your first VB.NET program
	The Console object

