forked from lightvector/GoNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
executable file
·315 lines (262 loc) · 11.3 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/python3
import sys
import os
import argparse
import random
import time
import logging
import json
import datetime
import tensorflow as tf
import numpy as np
from model import Model
#Command and args-------------------------------------------------------------------
description = """
Export neural net weights and graph to file.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-model-file', help='model file prefix to load', required=True)
parser.add_argument('-export-dir', help='model file dir to save to', required=True)
parser.add_argument('-model-name', help='name to record in model file', required=True)
parser.add_argument('-filename-prefix', help='filename prefix to save to within dir', required=True)
parser.add_argument('-for-cuda', help='dump model file for cuda backend', action='store_true', required=False)
args = vars(parser.parse_args())
model_file = args["model_file"]
export_dir = args["export_dir"]
model_name = args["model_name"]
filename_prefix = args["filename_prefix"]
for_cuda = args["for_cuda"]
loglines = []
def log(s):
loglines.append(s)
print(s,flush=True)
log("model_file" + ": " + model_file)
log("export_dir" + ": " + export_dir)
log("filename_prefix" + ": " + filename_prefix)
# Model ----------------------------------------------------------------
print("Building model", flush=True)
with open(model_file + ".config.json") as f:
model_config = json.load(f)
model = Model(model_config)
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
log("Model variable %s, %d parameters" % (variable.name,variable_parameters))
log("Built model, %d total parameters" % total_parameters)
# Testing ------------------------------------------------------------
print("Testing", flush=True)
saver = tf.train.Saver(
max_to_keep = 10000,
save_relative_paths = True,
)
#Some tensorflow options
#tfconfig = tf.ConfigProto(log_device_placement=False,device_count={'GPU': 0})
tfconfig = tf.ConfigProto(log_device_placement=False)
#tfconfig.gpu_options.allow_growth = True
#tfconfig.gpu_options.per_process_gpu_memory_fraction = 0.4
with tf.Session(config=tfconfig) as session:
saver.restore(session, model_file)
sys.stdout.flush()
sys.stderr.flush()
log("Began session")
sys.stdout.flush()
sys.stderr.flush()
if not for_cuda:
tf.train.write_graph(session.graph_def,export_dir,filename_prefix + ".graph.pb")
savepath = export_dir + "/" + filename_prefix
saver.save(session, savepath + ".weights")
with open(savepath + ".config.json","w") as f:
json.dump(model_config,f)
with open(savepath + ".graph_optimized.pb.modelVersion") as f:
f.write(model.version)
log("Exported at: ")
log(str(datetime.datetime.utcnow()) + " UTC")
with open(savepath + ".log.txt","w") as f:
for line in loglines:
f.write(line + "\n")
else:
f = open(export_dir + "/" + filename_prefix + ".txt", "w")
def writeln(s):
f.write(str(s)+"\n")
writeln(model_name)
writeln(model.version) #version
writeln(model.max_board_size) #x
writeln(model.max_board_size) #y
writeln(model.num_input_features)
variables = dict((variable.name,variable) for variable in tf.global_variables())
def get_weights(name):
return np.array(variables[name+":0"].eval())
def write_weights(weights):
if len(weights.shape) == 0:
f.write(weights)
elif len(weights.shape) == 1:
f.write(" ".join(str(weights[x0]) for x0 in range(weights.shape[0])))
elif len(weights.shape) == 2:
f.write("\n".join(" ".join(str(weights[x0,x1])
for x1 in range(weights.shape[1]))
for x0 in range(weights.shape[0])))
elif len(weights.shape) == 3:
f.write("\n".join(" ".join(" ".join(str(weights[x0,x1,x2])
for x2 in range(weights.shape[2]))
for x1 in range(weights.shape[1]))
for x0 in range(weights.shape[0])))
elif len(weights.shape) == 4:
f.write("\n".join(" ".join(" ".join(" ".join(str(weights[x0,x1,x2,x3])
for x3 in range(weights.shape[3]))
for x2 in range(weights.shape[2]))
for x1 in range(weights.shape[1]))
for x0 in range(weights.shape[0])))
else:
assert(False)
f.write("\n")
def write_conv(name,diam,in_channels,out_channels,dilation,weights):
writeln(name)
writeln(diam) #y
writeln(diam) #x
writeln(in_channels)
writeln(out_channels)
writeln(dilation) #y
writeln(dilation) #x
assert(len(weights.shape) == 4 and list(weights.shape) == [diam,diam,in_channels,out_channels])
write_weights(weights)
def write_bn(name,num_channels):
writeln(name)
(nc,epsilon,has_bias,has_scale) = model.batch_norms[name]
assert(nc == num_channels)
writeln(num_channels)
writeln(epsilon)
writeln(1 if has_scale else 0)
writeln(1 if has_bias else 0)
weights = get_weights(name+"/moving_mean")
assert(len(weights.shape) == 1 and weights.shape[0] == num_channels)
write_weights(weights)
weights = get_weights(name+"/moving_variance")
assert(len(weights.shape) == 1 and weights.shape[0] == num_channels)
write_weights(weights)
if has_scale:
weights = get_weights(name+"/gamma")
assert(len(weights.shape) == 1 and weights.shape[0] == num_channels)
write_weights(weights)
if has_bias:
weights = get_weights(name+"/beta")
assert(len(weights.shape) == 1 and weights.shape[0] == num_channels)
write_weights(weights)
def write_activation(name):
writeln(name)
def write_matmul(name,in_channels,out_channels,weights):
writeln(name)
writeln(in_channels)
writeln(out_channels)
assert(len(weights.shape) == 2 and weights.shape[0] == in_channels and weights.shape[1] == out_channels)
write_weights(weights)
def write_matbias(name,num_channels,weights):
writeln(name)
writeln(num_channels)
assert(len(weights.shape) == 1 and weights.shape[0] == num_channels)
write_weights(weights)
def write_initial_conv():
(name,diam,in_channels,out_channels) = model.initial_conv
#Fold in the special wcenter weights
w = get_weights(name+"/w")
wc = get_weights(name+"/wcenter")
assert(len(w.shape) == 4)
assert(len(wc.shape) == 4)
assert(wc.shape[0] == 1)
assert(wc.shape[1] == 1)
wc = np.pad(wc,((w.shape[0]//2,w.shape[0]//2),(w.shape[1]//2,w.shape[1]//2),(0,0),(0,0)),mode="constant")
assert(wc.shape[0] == w.shape[0])
assert(wc.shape[1] == w.shape[1])
write_conv(name,diam,in_channels,out_channels,1,w+wc)
def write_block(model,block):
trunk_num_channels = model.trunk_num_channels
mid_num_channels = model.mid_num_channels
regular_num_channels = model.regular_num_channels
dilated_num_channels = model.dilated_num_channels
gpool_num_channels = model.gpool_num_channels
writeln(block[0])
if block[0] == "ordinary_block":
(kind,name,diam,trunk_num_channels,mid_num_channels) = block
writeln(name)
write_bn(name+"/norm1",trunk_num_channels)
write_activation(name+"/actv1")
write_conv(name+"/w1",diam,trunk_num_channels,mid_num_channels,1,get_weights(name+"/w1"))
write_bn(name+"/norm2",mid_num_channels)
write_activation(name+"/actv2")
write_conv(name+"/w2",diam,mid_num_channels,trunk_num_channels,1,get_weights(name+"/w2"))
elif block[0] == "dilated_block":
(kind,name,diam,trunk_num_channels,regular_num_channels,dilated_num_channels,dilation) = block
writeln(name)
write_bn(name+"/norm1",trunk_num_channels)
write_activation(name+"/actv1")
write_conv(name+"/w1a",diam,trunk_num_channels,regular_num_channels,1,get_weights(name+"/w1a"))
write_conv(name+"/w1b",diam,trunk_num_channels,dilated_num_channels,dilation,get_weights(name+"/w1b"))
write_bn(name+"/norm2",regular_num_channels+dilated_num_channels)
write_activation(name+"/actv2")
write_conv(name+"/w2",diam,regular_num_channels+dilated_num_channels,trunk_num_channels,1,get_weights(name+"/w2"))
elif block[0] == "gpool_block":
(kind,name,diam,trunk_num_channels,regular_num_channels,gpool_num_channels) = block
writeln(name)
write_bn(name+"/norm1",trunk_num_channels)
write_activation(name+"/actv1")
write_conv(name+"/w1a",diam,trunk_num_channels,regular_num_channels,1,get_weights(name+"/w1a"))
write_conv(name+"/w1b",diam,trunk_num_channels,gpool_num_channels,1,get_weights(name+"/w1b"))
write_bn(name+"/norm1b",gpool_num_channels)
write_activation(name+"/actv1b")
write_matmul(name+"/w1r",gpool_num_channels*2,regular_num_channels,get_weights(name+"/w1r"))
write_bn(name+"/norm2",regular_num_channels)
write_activation(name+"/actv2")
write_conv(name+"/w2",diam,regular_num_channels,trunk_num_channels,1,get_weights(name+"/w2"))
else:
assert(False)
def write_trunk():
writeln("trunk")
writeln(len(model.blocks))
writeln(model.trunk_num_channels)
writeln(model.mid_num_channels)
writeln(model.regular_num_channels)
writeln(model.dilated_num_channels)
writeln(model.gpool_num_channels)
write_initial_conv()
for block in model.blocks:
write_block(model,block)
write_bn("trunk/norm",model.trunk_num_channels)
write_activation("trunk/actv")
def write_model_conv(model_conv):
(name,diam,in_channels,out_channels) = model_conv
write_conv(name+"/w",diam,in_channels,out_channels,1,get_weights(name+"/w"))
def write_policy_head():
writeln("policyhead")
write_model_conv(model.p1_conv)
write_model_conv(model.g1_conv)
write_bn("g1/norm",model.g1_num_channels)
write_activation("g1/actv")
write_matmul("matmulg2w",model.g2_num_channels,model.p1_num_channels,get_weights("matmulg2w"))
write_bn("p1/norm",model.p1_num_channels)
write_activation("p1/actv")
write_model_conv(model.p2_conv)
write_matmul("matmulpass",model.g2_num_channels,1,get_weights("matmulpass"))
def write_value_head():
writeln("valuehead")
write_model_conv(model.v1_conv)
write_bn("v1/norm",model.v1_num_channels)
write_activation("v1/actv")
write_matmul("v2/w",model.v1_num_channels,model.v2_size,get_weights("v2/w"))
write_matbias("v2/b",model.v2_size,get_weights("v2/b"))
write_activation("v2/actv")
write_matmul("v3/w",model.v2_size,model.v3_size,get_weights("v3/w"))
write_matbias("v3/b",model.v3_size,get_weights("v3/b"))
write_trunk()
write_policy_head()
write_value_head()
f.close()
log("Exported at: ")
log(str(datetime.datetime.utcnow()) + " UTC")
with open(export_dir + "/log.txt","w") as f:
for line in loglines:
f.write(line + "\n")
sys.stdout.flush()
sys.stderr.flush()