forked from lightvector/GoNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·220 lines (179 loc) · 7.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/python3
import sys
import os
import argparse
import traceback
import random
import math
import time
import logging
import h5py
import contextlib
import json
import tensorflow as tf
import numpy as np
import data
from board import Board
from model import Model, Target_vars, Metrics
#Command and args-------------------------------------------------------------------
description = """
Test neural net on Go positions from an h5 file of preprocessed training positions.
Computes average loss and accuracy the same as in training.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-gamesh5', help='H5 file of preprocessed game data', required=True)
parser.add_argument('-model-file', help='model file prefix to load', required=True)
parser.add_argument('-rank-idx', help='rank to provide to model for inference', required=False)
parser.add_argument('-require-last-move', help='filter down to only instances where last move is provided', required=False, action="store_true")
parser.add_argument('-use-training-set', help='run on training set instead of test set', required=False, action="store_true")
parser.add_argument('-validation-prop', help='only use this proportion of validation set', required=False)
args = vars(parser.parse_args())
gamesh5 = args["gamesh5"]
model_file = args["model_file"]
rank_idx = (int(args["rank_idx"]) if args["rank_idx"] is not None else 0)
require_last_move = args["require_last_move"]
use_training_set = args["use_training_set"]
validation_prop = 1.0
if "validation_prop" in args and args["validation_prop"] is not None:
validation_prop = float(args["validation_prop"])
def log(s):
print(s,flush=True)
# Model ----------------------------------------------------------------
print("Building model", flush=True)
with open(model_file + ".config.json") as f:
model_config = json.load(f)
model = Model(model_config)
target_vars = Target_vars(model,for_optimization=False,require_last_move=require_last_move)
metrics = Metrics(model,target_vars,include_debug_stats=False)
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
log("Model variable %s, %d parameters" % (variable.name,variable_parameters))
log("Built model, %d total parameters" % total_parameters)
# Open H5 file---------------------------------------------------------
print("Opening H5 file: " + gamesh5)
h5_propfaid = h5py.h5p.create(h5py.h5p.FILE_ACCESS)
h5_settings = list(h5_propfaid.get_cache())
assert(h5_settings[2] == 1048576) #Default h5 cache size is 1 MB
h5_settings[2] *= 128 #Make it 128 MB
print("Adjusting H5 cache settings to: " + str(h5_settings))
h5_propfaid.set_cache(*h5_settings)
h5fid = h5py.h5f.open(str.encode(str(gamesh5)), fapl=h5_propfaid)
h5file = h5py.File(h5fid)
h5train = h5file["train"]
h5val = h5file["val"]
h5_chunk_size = h5train.chunks[0]
num_h5_train_rows = h5train.shape[0]
num_h5_val_rows = h5val.shape[0]
if use_training_set:
num_h5_val_rows = num_h5_train_rows
h5val = h5train
# Testing ------------------------------------------------------------
print("Testing", flush=True)
saver = tf.train.Saver(
max_to_keep = 10000,
save_relative_paths = True,
)
#Some tensorflow options
#tfconfig = tf.ConfigProto(log_device_placement=False,device_count={'GPU': 0})
tfconfig = tf.ConfigProto(log_device_placement=False)
#tfconfig.gpu_options.allow_growth = True
#tfconfig.gpu_options.per_process_gpu_memory_fraction = 0.4
with tf.Session(config=tfconfig) as session:
saver.restore(session, model_file)
sys.stdout.flush()
sys.stderr.flush()
log("Began session")
log("Testing on " + str(int(num_h5_val_rows * validation_prop)) + "/" + str(num_h5_val_rows) + " rows")
log("h5_chunk_size = " + str(h5_chunk_size))
sys.stdout.flush()
sys.stderr.flush()
input_start = 0
input_len = model.input_shape[0] * model.input_shape[1]
policy_target_start = input_start + input_len
policy_target_len = model.policy_target_shape[0]
value_target_start = policy_target_start + policy_target_len
value_target_len = 1
target_weights_start = value_target_start + value_target_len
target_weights_len = 1
rank_start = target_weights_start + target_weights_len
rank_len = model.rank_shape[0]
side_start = rank_start + rank_len
side_len = 1
turn_number_start = side_start + side_len
turn_number_len = 2
recent_captures_start = turn_number_start + turn_number_len
recent_captures_len = model.max_board_size * model.max_board_size
next_moves_start = recent_captures_start + recent_captures_len
next_moves_len = 12
sgfhash_start = next_moves_start + next_moves_len
sgfhash_len = 8
def run(fetches, rows):
assert(len(model.input_shape) == 2)
assert(len(model.policy_target_shape) == 1)
assert(len(model.value_target_shape) == 0)
assert(len(model.target_weights_shape) == 0)
assert(len(model.rank_shape) == 1)
if not isinstance(rows, np.ndarray):
rows = np.array(rows)
row_inputs = rows[:,0:input_len].reshape([-1] + model.input_shape)
row_policy_targets = rows[:,policy_target_start:policy_target_start+policy_target_len]
row_value_target = rows[:,value_target_start]
row_target_weights = rows[:,target_weights_start]
ranks_input = np.zeros([rank_len])
ranks_input[rank_idx] = 1.0
ranks_input = [ranks_input for i in range(len(rows))]
return session.run(fetches, feed_dict={
model.inputs: row_inputs,
model.ranks: ranks_input,
target_vars.policy_targets: row_policy_targets,
target_vars.value_target: row_value_target,
target_vars.target_weights_from_data: row_target_weights,
model.symmetries: [False,False,False],
model.is_training: False
})
def np_array_str(arr,precision):
return np.array_str(arr, precision=precision, suppress_small = True, max_line_width = 200)
def merge_dicts(dicts,merge_list):
keys = dicts[0].keys()
return dict((key,merge_list([d[key] for d in dicts])) for key in keys)
def run_validation_in_batches(fetches):
#Run validation accuracy in batches to avoid out of memory error from processing one supergiant batch
validation_batch_size = 128
num_validation_batches = int(num_h5_val_rows * validation_prop + validation_batch_size-1)//validation_batch_size
results = []
for i in range(num_validation_batches):
print(".",end="",flush=True)
rows = h5val[i*validation_batch_size : min((i+1)*validation_batch_size, num_h5_val_rows)]
result = run(fetches, rows)
results.append(result)
print("",flush=True)
return results
vmetrics = {
"acc1": metrics.accuracy1,
"acc4": metrics.accuracy4,
"ploss": target_vars.policy_loss,
"vloss": target_vars.value_loss,
"vconf": metrics.valueconf,
"wsum": target_vars.weight_sum,
}
def validation_stats_str(vmetrics_evaled):
return "vacc1 %5.2f%% vacc4 %5.2f%% vploss %f vvloss %f vconf %f" % (
vmetrics_evaled["acc1"] * 100 / vmetrics_evaled["wsum"],
vmetrics_evaled["acc4"] * 100 / vmetrics_evaled["wsum"],
vmetrics_evaled["ploss"] / vmetrics_evaled["wsum"],
vmetrics_evaled["vloss"] / vmetrics_evaled["wsum"],
vmetrics_evaled["vconf"] / vmetrics_evaled["wsum"],
)
vmetrics_evaled = merge_dicts(run_validation_in_batches(vmetrics), np.sum)
vstr = validation_stats_str(vmetrics_evaled)
log(vstr)
sys.stdout.flush()
sys.stderr.flush()
# Finish
h5file.close()
h5fid.close()